
464 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

users modify them? Is the access control mechanism itself protected or done
by the general operating system functions?

The reference monitor addresses these questions, with the aim of formally
ensuring protection. Originally proposed in (Lampson, 1974), many works
have been based on it, broadening the scope of the original definition. In the
rest of this part we will use the notion of reference monitor. To help us with
our explanations, let us identify a few useful properties of a generic reference
monitor (RM), exemplified in Figure 18.16:

Completeness - the RM is invoked for any access to any object;

Obligation - the RM refers to an access control rule set;

Self-protection - the RM is immune to intrusion.

The completeness property is secured if the RM stands between all subjects
and all objects. The obligation property is compatible with mandatory access
control policies. One may of course implement an RM that does not exhibit
the obligation property, following a discretionary policy5. The self-protection
property is secured if the RM resides on a trusted computer base (TCB). As
we discussed in Section 18.3, in certain applications one may implement an
RM over an imperfect TCB and in that sense partially fulfill the self-protection
property.

Figure 18.16. The Reference Monitor Model

18.8 ARCHITECTURAL PROTECTION: TOPOLOGY AND
FIREWALLS

The way the architecture of the network is laid down helps implementing protec
tion, and forms part of what we might call passive security measures. Devices
like hubs, bridges and routers provide basic yet effective protection. Firewalls
implement more sophisticated forms of architectural protection, both at phys
ical and logical levels.

5The original work on the RM model did not follow a mandatory policy.

Exhibit 2026 Page 478

MODELS OF DISTRIBUTED SECURE COMPUTING 465

18.8.1 Topology

A naive form of internal network architecture is exemplified in Figure 18.17a.
This flat approach has the consequence of exposing the whole infrastructure to
an intruder that penetrates past the organization's entry router.

Figure 18.17. Network Architecture: (a) Flat

Figure 18.17b exemplifies the subnetting approach, that is, division of a net
work in two or more subnets, each with its own addressing mask, such that
traffic is diverted right at the entry router to the appropriate subnet. This is
valid both for traffic coming into the organization, and for traffic between differ
ent subnets of the organization. This division should be made according to an
appropriate risk analysis: in the figure, the notion of a more exposed laboratory
environment (Internal Network 2) versus the rest of the system (Internal Net
work 1) is patent. This is a primary form of error containment: intrusion in one
subnet does not imply the immediate intrusion in the whole system. Subnet
ting also provides a convenient way for primary countermeasures: traffic may
be easily blocked to/from specific networks, without affecting the operation of
the whole organization.

Laboratory

Figure 18.17 (continued). Network Architecture: (b) Subnets

The scenario depicted in Figure 18.17c exemplifies the utility of another
device: the bridge. By placing the department services and the system admin
istrator workstations in the Critical Network past the bridge, we neutralized

Exhibit 2026 Page 479

466 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

sniffing attacks coming from Internal Network 1. Last but not least, struc
tured cabling, such as hub-based Ethernet, eases reconfiguration and primary
countermeasures. Switched Ethernet further renders sniffing ineffective, since
it restricts the broadcasting ability of the medium.

Dept.
Server

Figure 18.17 (continued). Network Architecture: (c) Bridges

18.8.2 Firewall Architecture

A basic firewall is like having a "doorman" at the (single) entrance of a facility:
it allows or forbids information in and out, according to some criteria. More
specifically, a firewall is a set of components placed between an external network
and an internal network, with the following properties:

• all incoming and outgoing traffic must go through the firewall

• only authorized traffic must be able to get through

• the firewall hosts are trusted computing bases (TCBs)

Figure 18.18. Single-level Firewall Architecture

The business of a firewall system designer is to approximate these properties,
by putting the adequate firewall junctions and architecture in place. Firewall
architectures are built around routers, subnets and bastions, the trusted hosts
that run firewall functions. These architectures take essentially two forrfi'S. The
simplest, and most common, is a single-level firewall architecture, also known

Exhibit 2026 Page 480

MODELS OF DISTRIBUTED SECURE COMPUTING 467

as screened-host firewall, as depicted in Figure 18.18. The firewall comprises
a router and a bastion, a combination also known as a dual-homed host, that
stands between the external network (e.g., Internet) and the organization's (in
ternal) network, such that all traffic is inspected by the bastion. In a variation
of this architecture, the bastion stands single-homed in the internal network,
but all outgoing and incoming traffic goes through the bastion (e.g., Internet -t

router -t bastion --t internal host, and vice-versa). This architecture places all
hosts in the internal network at the same level of threat. The problem is that
any current organization is bound to have services that should operate under
different exposure scenarios.

Inner
Firewall

Server .~

~S S !f~"""-------tIO
. =+:~~rna,ie~ork

Outer
Firewall

~;~:: Sfl s~
(PFS)De.milit~~

Figure 18.19. Two-level Firewall Architecture

Figure 18.19 presents the most used partial fix to that problem, a two-level
firewall architecture, also known as screened-subnet firewall. The outermost
firewall is normally also the outside router of the organization's network, and
normally performs simple filtering functions. The inner firewall, a dual-homed
host, performs more elaborate functions, such as representing internal protocols
or applications. Between the inner and outer firewalls lies a subnet called the
de-militarized zone (DMZ). The DMZ is the place to locate hosts necessarily
subjected to high levels of threat, such as anonymous public front-ends, e.g., to
Web page, directory or commerce services. The reason for placing these servers
in the DMZ instead of just letting them be freely accessible from the Internet is
that they can still enjoy some protection from the firewall system. Besides, the
outer firewall is also a useful device for countermeasures: it can be instructed
in real-time by the inner firewall to disable certain flows considered suspicious,
that attack either the inner network hosts, or the DMZ hosts. In a variation
of this architecture, the bastion stands in the DMZ, with all traffic between
external and internal networks going through it. Several of these bastions may
exist in a DMZ, processing different flows and services.

Firewall functions are the logical complement to the physical separation
achieved by the architecture. They are divided into two main groups, that we
study next:

filters - the traffic flow passes through the firewall to end services in the
internal network, its content being inspected by filters on a go-no-go
basis

Exhibit 2026 Page 481

468 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

proxies - the traffic flow ends or starts in the firewall, being intercepted
and processed by representatives of end services in the internal net
work

Table 18.2 illustrates the main differences between the two. Filters work by
inspection of packet data that goes through the firewall, and as such they are
essentially stateless. Working at communications packet level, the filtering pro
cess is necessarily semantically limited (addresses, ports, interfaces). Rules are
content oriented, such as Udeny packets containing source address X". Proxies
intercept calls to the genuine servers, blocking direct communication through
the firewall, and act as representatives of those servers. As such, they are
stateful, dealing as much with data as with state, since they must handle the
progression of service requests such as "connect to FTP server". More than
packets, they reason in terms of protocols, users, and services, which provides
room for richer and thus more accurate protection semantics. Rules are both
content and action oriented, such as "allow user X to access service Y". Since
nothing comes for free, proxy systems are normally less efficient than packet
filter systems.

Certain firewalls implement a variant of PFS, called stateful packet filter
(SPF). Filters, although acting right above layer 3, probe further into each
packet looking for known high-level protocol headers. SPFs are a form of dy
namic packet filters, in that they adapt the rules to a flow of packets. Firewall-1
(see Section 19.2) is one example. On the other hand, a variant of proxy exists
called adaptive proxy, where the proxy is capable of interpreting varying degrees
of threat for different instances of a same service. Gauntlet (see Section 19.2)
is one example.

Table 18.2. Comparison between Firewall Functions

Filters Proxies

inspection
stateless
data based
poor semantics
packet level
content oriented rules
faster

interception
stateful
data+state based
rich semantics
protocol/user/ service level
action oriented rules
slower

18.8.3 Packet Filter Systems

The principle of packet filtering systems (PFS) is shown in Figure 18.20a. The
filtering mechanism is defined by the following:

• there is a list of rules to allow or deny packets through the filter in either
direction;

Exhibit 2026 Page 482

MODELS OF DISTRIBUTED SECURE COMPUTING 469

• each list element is a tuple (action, origin, destination, type, direction, subnet) ,
where: action is either allow or deny; origin is a complete source I d, for
example TCP/IP address/port, or subnet address/mask; destination is the
same, for a destination I d; type when available is the type of packet, which of
ten corresponds to a given protocol; direction is one of inbound or outbound;
interface represents the subnet from/to which the packet comes/goes, through
one of the interfaces to which the firewall is directly connected;

• the headers of all incoming and outgoing packets are scrutinized against the
contents of the list.

• the rules are applied in order; a packet is accepted immediately an "allow"
rule becomes true, or rejected if a "deny" rule becomes true;

Protocol Proxy (e.g. FTP)

• I. . . I lO- .r-ilr--S: B----~

~etwork

Protocol
(e.g.TCPIIP)

External Network

Netwqrk
Protodol
(e.g.TCPIIP)

Internal Network

:~9~V:s~:
:~:;:::::::
~ :'~~ ~ .: ' : : ..: .

Network
fr?tocol
(~.g~TCPIIP)

:PROXyri,j:
::'::::')~:

NetwOrk
Proto~o~
(e.g.TCr'~

[1·.. · ~
Internal Network

Figure 18.20. Types of Firewall functions: (a) Packet Filter, (b) Proxy

The PFS can be used for actions such as: blocking all packets coming from
a suspicious host; disallowing telnet connections from the outside; enumerating
the hosts allowed to access a given service. An example rule could be (deny
from any to 194.117.21.00 typeTelnet inbound ieO), meaning that telnet packets
coming from any machine in the subnet behind interface ieO, and addressed
to any machine of protected subnet 194.117.21.00, are blocked. A prudent
security policy can be implemented by using allow statements to specifically
permit the desired traffic flows and denying everything by default as the last
rule. Conversely, a pe'rmissive security policy will be implemented by using
deny to block undesired flows, and allowing everything by default in the end.
Firewall-1 (see Section 19.2) is a widely known example of PFS.

Network address translation (NAT) complements filtering to ensure logical
separation. It consists of assigning invalid addresses to the internal network
hosts, such that any traffic going in or out has to undergo a translation of the
destination or source address, respectively, at the firewall router. This controls
access of legitimate users to the external network, and hides the composition
of the internal network to intruders.

Exhibit 2026 Page 483

470 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

18.8.4 Proxies

PFSs allow packet flows to internal hosts and are stateless: this means they
cannot prevent direct probing and penetration attacks to internal hosts, as
long as each individual packet looks innocent. If instead of inspecting passing
traffic, it were intercepted and re-originated from the firewall, the chances of an
intruder would be reduced. Figure 18.20b introduces such a firewall function,
the proxy. Proxies reside in the firewall, and are representatives of application
or protocol services (or daemons in UNIX language). A proxy stands for a
genuine protocol server- such as HTTP, FTP, Telnet, or SMTP- which is
normally in the internal network. The user wishing to access such a service
is connected to the proxy server instead (left of the figure). The proxy. client
side performs the dialogue with the real server (right of the figure). Proxies
relay all traffic back and forth between the user in the external network and the
protocol server in the internal network. For that reason, proxies are also called
circuit gateways. The proxy mechanism is defined by the following generic
rules:

• there is a list of rules to allow, restrict or deny access to services;

• each element of the list is a service-specific tuple, that may comprise: user
Id and origin; service and server; type of access control (e.g., ACM, ACL);
type of authentication (e.g., password, signature); type of restrictions (e.g.,
from IDS); event monitoring and audit trail required; etc.;

• requests arriving at the proxy are tested against the rules, and serviced if
"allowed" or blocked if "denied";

• state is maintained during service execution, to ensure it is carried on cor
rectly.

Proxies significantly limit the freedom of action of an intruder in the internal
network, and they are more precise than packet filters, since they act at a higher
level of abstraction. A proxy rule may be something like (allow anyuser
from domain cs.comell.edu to ftp to FTP.di.fc.ul.pt requiring authentication
X509_certificate requiring authorization loca~. It means that any user coming
from cs.comell.edu may attempt to log into the FTP server of di.fc.ul.pt, then
pass an authentication process based on presenting a valid X.509 certificate,
and then following the local ftp server ACL control.

18.8.5 Application Gateways

Application gateways are proxies working at a higher level of abstraction than
circuit gateways. An application proxy server (a front-end of the application)
is installed in the firewall, which for all purposes becomes the interface to the
clients. The gateway, besides performing logging, validation and filtering func
tions, forwards the client's request to the real application server in the internal
network, and receives the replies back. The overall picture is represented in
Figure 18.20c.

Exhibit 2026 Page 484

MODELS OF DISTRIBUTED SECURE COMPUTING 471

Application Gateway

~

~~~~~~~.;:
'*

(~~~.~~;~~)

Split Gatew,.....-a"",,"-_--,
...- " .

ecurelP ;

:fi.?~~~~~;? ~~.~~~.~~~~i;:

C9mm's
Protocols
($.9. TCPIIP.
t(TTP.Telnet)

Ei.~:~) ~ ..
fl-o-+'t--«fo<

External Network

Comni's
Protocols
(e.g. TCP,IIP.,

HTIP,Telnet)

~----"'"-'-'.,;;::.~
\ /

i 4--flq..-,-",

InternalNetwork

Gomm's
p:r9tocols
(e.g. TCPIIP,

H!ip,Telnet)

(E~~4 m~~........,~!'O ~
SubnetA

; :

Comni'~

Protoc~l~
(e.g. TCP/IP;,
HTTP,Telnet) ,

~~--''i-"~A;;::)
.........,..................•...

Su netS'

Figure 18.20 (continued)
Types of Firewall functions: (c) Application Gateway; (d) Split Gateway

If all access from the outside is done through protocol and application gate
ways, an internal network may be completely closed to the outside at the
protocol level. An intruder's freedom of action is then reduced to trying to
tamper with the gateway or with the firewall's O.S. In consequence, applica
tion gateways are the most powerful and precise' protection devices in firewall
architectures, because they exert control at the highest possible semantic level:
that of the application itself. However, they are also the less versatile and most
difficult to build. Whereas COTS packet filters and protocol proxies abound
for the best known network environments and protocols, application gateways
must normally be custom made, with very few exceptions. Gauntlet (see Sec
tion 19.2) is a widely known example of proxy and application gateway system.

Note that there is nothing that prevents combining filters and proxies in
the same bastion, or distributing them by the components of a firewall. In
two-level firewalls, a current configuration is as shown in Figure 18.19: the
outer firewall performs packet filtering and routing; and the inner firewall hosts
protocol and application proxies. As a concluding remark, keep in mind that
the effectiveness of the firewall functions we have described is in the inverse
proportion of their generality. It is up to the architect to select the configuration
that best addresses the tradeoff between security and functionality, according
to the security policy previously defined.

18.8.6 Split Gateway Architectures

Sophistication of Internet-based distributed computing models calls for mod
ularity and splitting of functions, in support of multi-tiered client-server op
eration. Today's applications are becoming significantly more complex and
performance-demanding than is achievable by CGI-based connection of Web
servers to application servers. These applications are using more powerful,
stateful middleware based on the connection of front-end Web servers to back
end application servers, through enabling technologies such as Object Request
Brokers, Internet Inter-ORB protocols (IIOP), JDBC and ODBC database con-

Exhibit 2026 Page 485



472 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

nectors, Web Request Brokers and Event Brokers. These constructs must be
secure, and it makes sense that they operate across firewall architectures, for
example, by running the back-end server in the internal network and then, both
the front-end and the middleware in a firewall, or alternatively, the front-end
server in a DMZ and the middleware in a firewall bastion.

To support the necessary modularity, address space separation, and location
independence, we resort to what we may call a split gateway architecture,
depicted in Figure 18.20d. It is an application gateway where the server-side
and. the client-side modules are stateful machines that operate independently,
and communicate through a generic IPC. Both intra-host and inter-host IPC
operation are supported transparently, such that the split gateway may either
live on two separate hosts, as depicted in the figure, or in two disjoint realms of
a protected O.S. in a single host. These hosts must be considered as bastions
in what concerns their configuration and operation. IPC must be secure, in
either configuration.

18.9 FORMAL SECURITY MODELS

In this section, we discuss formal ways of specifying and assessing security of
computer systems. Namely, we discuss how, in a multi-level security mode, we
specify which subject security classes can access which object access classes,
and with what rights (e.g., can a top-secret subject write to an unclassified
object?). Secondly, we describe standard security classification and evaluation
criteria for computer systems (e.g., how secure is computer system X?).

18.9.1 Security Policy Models

It is obvious that for a verifiable goal to be attained, security policy rules
must follow some formal specification. There exist several attempts to enforce
mandatory access control policies in a formal way. The first such specification
was the Bell-LaPadula model (Bell and LaPadula, 1973), which aimed at se
curing confidentiality. Other models followed, such as the Biba model, inspired
by the Bell-LaPadula but addressing integrity instead (Biba, 1977), and the
Clark-Wilson model, more adequate for enterprise systems (Clark and Wilson,
1987). Formal specification methods verifiable by model checking are discussed
in (Ryan et aI., 2000). There is not a generally accepted model addressing all
needs, and this is a current research topic.

In generic terms, the relations between subjects and objects are established
on the basis of their security classes and the need to know. We say s dominates
o (or 0 is dominated by s) when the security class of s is at least as high as o's,
and s needs to know o. We denote it as s 2:: o.

Bell-LaPadula Model The Bell-LaPadula model, BeLa for short, describes
the information flow in a system in terms of very primitive read/write oper
ations. It aims at ensuring that the confidentiality property is respected in
systems where data and computations of different security levels exist, and
which can be accessed by subjects of different security classes. Consider sub-

Exhibit 2026 Page 486



MODELS OF DISTRIBUTED SECURE COMPUTING 473

ject s with security class C(s), and object 0, with security class C(o). The
access rights granted to s on 0 can be read or write. The properties of the
BeLa model are then:

Simple Security Property - A subject s has read access to object 0

only if C(s) ?: C(o)

*-Property - A subject s has write access to object 0 only if C(s) ::;
C(o)

Observe that a subject cannot read data from a level higher than its security
class, that is, read-up is not possible. More counter-intuitively, the answer to the
question in the beginning of the section- can a top-secret subject write to an
unclassified object?- is "no!": a subject cannot write data to a level lower than
its security class, that is, write-down is prevented. Also, if it writes data, it may
not be able read it back. This causes a certain difficulty in retrieving, using and
updating information for a repository. In fact, practical programming with this
model entails significant complexity. However, note that by preventing read
up, confidentiality is protected in normal conditions. By making write-down
impossible, information leakage attacks, directly or by means of Trojan horses,
are blocked.

In the Biba model, which is the converse of the BeLa model, the security
class interpretation concerns the sensitivity with regard to integrity. The model
properties, conversely to the BeLa model, forbid read-down and write-up, as a
way of preserving integrity of information. While no write-up is intuitive, note
that the reason why read-down is prevented is to avoid corruption of the system
with untrusted (low-integrity level) information.

18.9.2 Trusted Computer System Evaluation Criteria

Evaluating and grading the security of computer systems through objective
evaluation criteria is important, for it allows us to compare systems of different
models and makes. The Trusted Computer System Evaluation Criteria (TC
SEC), or Orange Book (TCSEC, 1985) originating from the U.S.A., and the
Information Technology Security Evaluation Criteria (ITSEC) (ITSEC, 1991),
from Europe, were initial efforts in that direction. More recently, the bodies
involved in both converged in a global standard, called Common Criteria for
Information Technology Security Evaluation (CC) (CC-ITSE, 1998), bound to
become an International Standard (ISO 15408) at the time of this writing.

The CC standard structures both the functionality requirements and the
assurance requirements of a system i.e., what the product should do, and what
trust can be placed in what it does. These requirements are expressed in terms
of classes.

The standard is highly modular, making possible a huge number of combi
nations of classes of functionality and assurance requirements. However, it is
expected that "typical" combinations emerge from the industry. The CC, like
the preceding standards, provide several levels of trust. There are 7 Evalua
tion Assurance Levels (EAL) that measure the user trust on a system (EAL7 is

Exhibit 2026 Page 487



474 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 18.3. Common Criteria (CC)- Security Levels

Levels Description TCSEC equiv. Classes

I D

EALI functionally tested I -

EAL2 structurally tested I Cl- Discretionary Security

EAL3 methodically tested C2- Controlled Access
and checked

EAL4 methodically designed, Bl- Labeled Security
tested and reviewed

EAL5 semi-formally designed B2- Structured
and tested

EAL6 semi-formally designed, B3- Security Domains
verified and tested

EAL7 formally designed, Al- Verified Design
verified and tested

highest). Evaluation Assurance Levels are represented in Table 18.3, which also
provides a mapping to the well-known TCSEC security classes. EALI applies
when minimal protection, namely of personal information, is desired, but secu
rity is not a main concern. EAL2 and EAL3 are expected to have been tested
against the functional criteria. In EAL4, it is expected that specific crucial
subsets of the design have been methodically designed having security in mind,
and that the whole has been thoroughly tested, and reviewed independently.
Level EALI-EAL4 assurance can generally be retrofitted into existing products
and sub-systems (such as O.S.s). Levels above EAL4 require adequate design
from the start. They provide maximum assurance, by application of specialized
security engineering techniques. They also become more complex and expen
sive to implement. EAL5 would represent the top assurance still within the
commercial systems area. EAL6 and EAL7 would apply to classified systems
and military.

18.10 SECURE COMMUNICATION AND DISTRIBUTED

PROCESSING

Secure channels and secure envelopes are basic paradigms of secure communi
cation and the support for distributed processing models with security, such
as remote sessions, RPC, and electronic mail. We study the above-mentioned
models and mechanisms in this section.

Exhibit 2026 Page 488



MODELS OF DISTRIBUTED SECURE COMPUTING 475

18.10.1 Establishing Secure Channels

Secure channels, that we studied in Section 17.11, are one of the basic support
primitives for distributed processing. They underlie file transfers, remote ses
sions, remote procedure calls, HTTP interactions, and so forth. They may be
implemented in several ways. In what follows, we will make a general analysis of
how to achieve each of the secure communication properties: authenticity, con
fidentiality, integrity. For simplicity, and without loss of generality, we consider
the case of point-to-point communication.

Authenticity In order to achieve authenticity in a secure channel, the princi
pals should authenticate themselves, in one of the styles shown in Figure 17.17.
Mutual authentication desirably guarantees that both principals know whom
they are talking to, mandatory if the channel is bi-directional. Several pro
tocols are discussed in Section 18.5. If only symmetric cryptography is being
used, shared-secret authentication protocols are the ones to be used. If asym
metric cryptography is available, then one can take advantage from the power
of signature-based authentication. Since the channel is being established for
exchanging a possibly large number of messages, with desirably low latency, it
is convenient to avoid having to do authentication on every future message ex
changed. Some of the short-term key exchange protocols studied in Section 18.6
are embedded with authentication, finishing by leaving the principals with a
session key K ss , known both of them and no one else. By majority of reason,
any future message exchanged that has a suitable cryptographic function of
that key enjoys the authenticity property if: messages are always encrypted
with K ss ; or messages are cryptographically checksummed with a function de
pending on K ss (see MACs in Section 17.5, and Figure 17.8). Note that the
validity of these two assumptions relies on subtle aspects: (a) that the recipient
knows something about the partial content (e.g., headers) or about the struc
ture of messages; (b) that forging or modifying the encrypted product, may
not possibly yield something intelligible in terms of (a), after decryption; (c)
as (b), for the cryptographic checksum and its verification.

Confidentiality When confidentiality is desired, the communication must
be encrypted. A channel using exclusively asymmetric cryptography for both
authentication and encryption would be extremely simple and secure. How
ever, it is not recommended for immediate communication, since it is very
slow. Practical secure channels resort to two alternatives: purely symmetric
cryptography; hybrid cryptography. In a symmetric system, after shared se
cret authentication and key exchange have been performed, as we just saw,
the channel has a session key. With hybrid cryptography, principals start with
using their public/private key pairs to exchange, encrypted and/or signed, a
session key as well (see the protocol described in Section 18.4.5). After that,
in both approaches, they use that key for symmetric encryption/decryption.

Exhibit 2026 Page 489



476 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Integrity In order to achieve integrity, messages must be cryptographically
protected in a way that any modification whatsoever (accidental or intentional)
is detected. This can be achieved in one of two ways: by a cryptographic
checksum, such as suggested for authenticity (in this role, it is often called
a message integrity check, or MIC); or by a digital signature. Note that the
proviso that we made under Authenticity above, on the recipient having to know
what it expects after decryption or verification, still applies here. Integrity can
also be protected by encryption, but the method is not general, since it requires
a modified message to decrypt to garbage, and this is not always achievable.

18.10.2 Secure Tunnels

The simplest form of building a secure channel through a network such as
the Internet is shown in Figure 18.21a. Encrypted and/or integrity protected
payload data blocks are encapsulated in protocol packets, Le., IP datagrams.
This does not always work. Take networks A and C, interconnected by network
B, and a problem: we want a packet to go from A to C, but for some reason
it cannot circulate through B (e.g., B does not understand the protocol). The
first approach will not work, so we have to use another form of secure channel.

Headert

Headerp

Headert

Headerp

Headert

I, Data p .1

I.. "'#$%43543'fga8a=?"'lf"'+Mfdg~S1'kji .J

(a)

I Datap .1

,: .>Oatal I
(b)

I Datap I

Da·tat

(c)

Payload Data

Encrypted
Payload Data

Packet

Payload Packet

Carrier Packet

Payload Packet

Encrypted
Payload Packet

Carrier Packet

Figure 18.21. Tunneling: (a) Secure packet; (b) IP-over-IP; (c) Secure Tunnel

Let us start by understanding what a tunnel is: the encapsulation of a whole
payload packet that circulates in network A, in a carrier packet, that circulates
through network B, until network C, where the carrier packet is de-capsulated
and the payload packet circulates again until the final destination. A classical
tunnel is IP-over-IP, whose packet structure is depicted in Figure 18.21b. It
consists of encapsulating a full IP datagram as if it were an upper layer service
data unit, in another IP datagram. A secure tunnel is then a tunnel that
guarantees the properties of a secure channel to the data carried inside it.
Figure 18.21c suggests how it can work: the whole payload packet is treated as

Exhibit 2026 Page 490



MODELS OF DISTRIBUTED SECURE COMPUTING 477

a block of data, and is encrypted and/or integrity protected. The result is then
treated as data and encapsulated in the carrier packet. In the final destination,
the operations are repeated in reverse order: the outer packet is de-capsulated,
the data decrypted/verified, and the inner packet launched on the network for
its final destination. IPsec (see Section 19.3) is the forthcoming standard for
secure channels and tunnels on the Internet.

18.10.3 Distributed Authentication and Authorization

Among the several functions that assist secure computing, two are fundamen
tal: authentication and authorization. We studied them independently, and we
saw that one can be done without the other: secure communication requires
authentication but not authorization; access to information requires authoriza
tion, but does often without authentication.

For example, message authentication can be achieved through MACs, mes
sage authentication codes, which are a cryptographic checksum technique, or
through a digital signature. The disadvantage of MAC w.r.t. signatures is that
it is a shared secret technique, ?~d thus a participant cannot hand the mes
sage over, that is, persuade third parties who do not share the secret, of its
authenticity.

Access to services and information often resorts to the assistance of a Security
Server (SS), which designates a trusted third party that performs authentica
tion and authorization. Let us see how these two functions work together in
supporting client-server operation. In what follows, we use AT for the authenti
cation service, and AC for the authorization or access control service, although
they are often co-located in the same server:

1. Client C and the AT run a protocol in order to authenticate C to the AT,
in the course of which C receives an authentication certificate, Acert, for
further use in the system

2. C wishing to use resource or service S, runs a protocol with A C, if necessary
using Acert, requesting authorization to access S, in the course of which C
receives a privilege certificate, Pcert, for S

3. Client C, using Acert and Pcert, presents itself to the server hosting S,
and they run a protocol aimed at:

• authenticating C to the server, based on Acert;

• validating C's privileges to access S, based on Pcert and the access
control list maintained by the server

4. If C is cleared, access is performed to S

The content of Acert and the protocol steps run between C and SS, and C
and S, depend on the type of protocol being used, either an arbitrated (KDC
based) or a certified (CA-based) trusted-third-party protocol (see Section 18.4).
The content of Pcert depends on the particular way access control is performed,
Le., whether it is capacity or ACL based, or both (ACM). Authentication may
be mutual, generalizing the use of authentication certificates, that is, S may
have its own Acert that authenticates it to C. Kerberos (see Section 19.4) is
an example of a KDC-based security service.

Exhibit 2026 Page 491



478 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

18.10.4 Secure Remote Session

Remote sessions (see Chapter 1.3) were among the first paradigms of distri
bution ever used. Primitives rlogin, telnet, rsh, or ftp, are distinguished
examples of long-lived distribution paradigms. Let us follow the steps of estab
lishing a remote session, seen from a connecting site:

1. bind to remote host socket

2. establish low level network connection between hosts

3. communication starts

4. perform cleartext remote login (e.g. telnet) authentication- authentication
follows traditional mechanisms (password, address-based)

5. start session, also in cleartext

@#O/o*§
111111

Sniffer

~

Session
Server

(deamon)

1- inter-host secure channel...................................

~3]:::;;=;;=~Host B

.: ~:.~.~~~~~~.~?'!!.'!!.~?~~~.t!.?!! .
••••• 2- session authentication......................................................................

Remote
Session
Client

Figure 18.22. Secu re Remote Session

However, remote session protocols were not designed to have security in
mind, and became one of the most exploited vulnerabilities in distributed sys
tems. Eavesdropping attacks easily yield not only conversation contents, but
also, and more importantly, login/password pairs. A secure session should not
be vulnerable to those attacks. To understand the principle of secure remote
session, remember the desirable properties of the underlying secure channel:
authenticity, integrity, confidentiality. The steps of establishing the secure ses
sion are the following (compare them with those of the cleartext session):

1. bind and authenticate to remote socket

2. establish low level secure channel between hosts

3. encrypted communication starts

4. perform remote login (e.g. telnet) authentication

5. authentication can either follow traditional mechanisms (password, address
based) protected by secure channel, or be cryptographic (e.g., public key)

6. start session, either in cleartext or encrypted

Observe Figure 18.22: notice that the first step is to establish a tamperproof
channel between the hosts wishing to communicate, so that external attacks are
not possible. However, at this point, the connecting host might be an attacker,

Exhibit 2026 Page 492



MODELS OF DISTRIBUTED SECURE COMPUTING 479

or the connected host might be a spoofer, and either would act inside the secure
channel. Then, the second step is to authenticate whoever is using the secure
channel in the other extremity. For a moderate level of security, the authen
tication mechanism may be a classical login/password pair, which now goes
encrypted on the network. However, for demanding levels of security, it may
alternatively be any of the strong, cryptographic authentication mechanisms
that we studied in Section 18.5, such as public key signature. Also depending
on the security versus performance tradeoff, the third and final step, session
communication on the channel, may subsequently be encrypted or not. SSH
and SSL (see Section 19.1) are examples of secure remote session protocols.

18.10.5 Secure Client-Server with RPC

The security concerns address not only remote sessions, but client-server oper
ations in general, such as RPCs. Many current services and applications are
based on RPC: some of which carrying sensitive information, such as distributed
file systems like NFS; others perform sensitive operations, such as transactional
managers. This concern raises the need for secure RPC: a remote procedure
call facility with strong authentication, encryption and protection. In order to
prepare for a secure RPC, the client must execute the following steps:

1. client binds to the desired service/server as usual

2. in that process, the client makes a call to the RPC runtime instructing it
that this is a secure RPC and specifying the desired security options:

o type of authentication;

o level of security;

On the server side:

1. server exports name and registers security capabilities with RPC runtime

2. server initiates activity, normally with a login to the security service

3. server checks the security attributes of each call, and:

o authenticates according to the chosen type;

o performs access control based on client's authorization for the

invoked service (e.g. ACL based)

4. if all is OK, the service is executed with the required level of security

As an example, Table 18.4 lists the typical options of a secure RPC. Type of
authentication specifies what kind of authentication model is followed. Level of
security involves combinations of integrity and confidentiality assurance. The
server acts as a reference monitor for the secure RPCs performed by clients,
authenticating them and then checking their authorization for the invoked op
eration. SUN Open Network Computing (ONC) RPC and DCE RPC are ex
amples of RPC packages with security facilities. In conclusion, note that using
secure RPC instead of normal RPC does not involve much complexity, besides
one or two additional calls to the runtime environment.

Exhibit 2026 Page 493



480 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 18.4. RPC Security and Authentication Options

Parameter Options

Authentication

Security

none
name-based (UNIX-like)
shared-secret
signature

none
integrity only
integrity and confidentiality

18.10.6 Secure Envelopes and E-Mail

Secure envelopes complement secure channels as the basic communication sup
port primitives for distributed processing. They are relevant in electronic e
mail, messaging systems in general, and transactional systems. Secure en
velopes should resort to per-message security. There is no point in establishing
a connection since message sending is sporadic. Again, let us see how each
of the secure communication properties that we studied in Section 17.11 is
achieved. We continue to consider the case of point-to-point communication,
and consider the situation where there is no shared secret between principals,
but public/private keys are in place, and known to the principals as appropri
ate.

Authenticity In order to achieve authenticity of a message in a secure enve
lope, the message should be signed with the sender's private key. The recipient
can authenticate the sender by verifying it's signature. It is obviously wise to
sign a digest of the message, as depicted in (with EK as an asymmetric cipher,
and K as the private key of the sender). See also Figure 17.10 in Section 17.6
for a description of such a protocol.

Confidentiality When confidentiality is desired, the message must be en
crypted. Although the envelope is used for deferred ,communication, there is
no point in being inefficient. In consequence, we will only use asymmetric ,en
cryption of the message for special cases of very small (control?) messages. Oth
erwise, hybrid cryptography with symmetric encryption of the message content
seems more appropriate. The mechanism for generating a hybrid cryptographic
envelope depicted in Figure 18.6 is perfectly appropriate.

Integrity After the steps to achieve either authenticity or confidentiality are
performed, we have in place mechanisms to secure integrity. A digital signa
ture as performed for authenticity guarantees message integrity. Encryption as
performed for confidentiality also guarantees message integrity. Keep in mind
the general remarks concerning integrity made throughout this section.

Exhibit 2026 Page 494



MODELS OF DISTRIBUTED SECURE COMPUTING 481

Secure E-Mail makes extensive use of the secure envelope concept, and in
consequence secures the desirable properties of: authenticity of the sender of
a message; confidentiality or privacy as used in this context, ensuring that
only the recipient will read the message; integrity ensuring that the message is
received as sent. Besides these obvious properties, electronic mail must have
other security properties in emulation or improving those of paper mail:

• non-repudiation of sending - the recipient can prove that a message came
from a given sender, who cannot deny

• non-repudiation of delivery - the sender can prove that a message was
delivered to a given recipient, who cannot deny

• anonymity - the ability to deliver a message without revealing the identity
of the sender

• timestamping - delivered messages can be totally ordered, even if a pos
teriori

PGP and PEM (see Section 19.1) implement the secure envelope concept
and are used for secure e-mail.

18.11 ELECTRONIC TRANSACTION MODELS

What is an electronic transaction? It is a transaction involving assets, finan
cial and other, made over computer and network systems. It assumes virtual
payment instruments, which emulate conventional transaction protocols by in
formatic means. Electronic transactions (ET) are distributed in their nature,
and assume several facets, which derive from the type of interaction of the
players, the values involved, and the timing of payment that is, whether:

• ET values involved are average to low, typical of personal retail transac
tions, or are high, typical of wholesale inter-bank transactions;

• ETs take place on proprietary, or on open networks (e.g. Internet)

• buyer and merchant are introduced by a mediator, or just contact sponta
neously;

• ETs need to contact the supporting infrastructure (e.g. PKI) on-line, or
can perform off-line;

We are interested in personal retail transactions that take place on open
networks, and in their several facets.

18.11.1 A Generic Model of Electronic Transaction

The generic model of ET is depicted in Figure 18.23. The main players are
described in Table 18.5. The trusted third party materialized by the hierarchy
of e-comm-specific certification authorities of the ET PKI is important to build
trust between principals. When it is absent, such as in systems using only sym
metric cryptography, the versatility of the system is limited, and the mediating
role of the acquirer is bound to be more active in each transaction. When it
exists, and whether it is concerned with credit card business, or digital cash or
cheques, there is bound to be a Root CA which should be as independent as

Exhibit 2026 Page 495



482 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

ELECTRONIC TRANSACTION
~ PUBLIC KEY
~ INFRASTRUCTURE

~rand / "'®rand
CA CA

•...-;••: ~~•••J..

e
Figure 18.23. Generic Electronic Transaction Model

possible, so as to be above the Brand CAs (e.g. Mastercard). Brand operators
break deals with Acquirers and Issuers, who set up their CAs under the Brand
hierarchy. Real Acquirer and Issuer institutions may have deals with different
Brands (e.g. Visa and Mastercard), but must maintain separate virtual trust
chains. Acquirers also set up a payment gateway, the technical interface to the
independent banking network, through which payments flow.

Table 18.5. Electronic Transaction Participants

Issuer

Client

Merchant

Acquirer

ET PKI

Normally a banking institution that issues the payment instru
ments: credit, debit or purse cards, digital cash, etc.

The buyer in the transaction, he is normally a card holder and
has an Id certificate, and is the transaction initiator

The supplier of the good, he has an Id certificate

The mediator in the process, normally a financial institution
that serves as a broker between the other players

The public key infrastructure, or a subset of it, concerned with
facilitating electronic transactions, it issues all certificates

Exhibit 2026 Page 496



MODELS OF DISTRIBUTED SECURE COMPUTING 483

18.11.2 Classes of Electronic Transactions

According to our initial remarks, we may informally divide transactions in three
classes, described in Table 18.6.

(a) (b)

Figure 18.24. Electronic Transaction Classes: Mediated vs. Spontaneous

The mediated versus spontaneous classes are depicted in Figure 18.24. Ob
serve that in the mediated class (Figure 18.24a), the mediator is in the way of
the transaction, which must always be performed on-line. This is typical of ear
lier generation systems, where the rudimentary cryptography made it necessary
that security and authenticity were ensured by the physical architecture, such
as using proprietary networks and dedicated terminal devices. ATM networks
are an example, where the transaction is "buying" money or paying for goods
with the debit card. In these systems, the mediator soon becomes a bottleneck.
The spontaneous class (Figure 18.24b) makes it possible for the client to pro
duce credentials that authenticate it to the merchant, allowing the transaction
to proceed as far as possible.

Table 18.6. Classes of Electronic Transactions

Mediated

Spontaneous

Off-line

On-line

The client must each time be introduced by a mediator that
builds trust between the client and the merchant

The client contacts the merchant spontaneously and presents
stand-alone authentication credentials (e.g. certificates); the
ET terminates either on-line or off-line:

The credentials presented are enough to complete the trans
action by the sole communication between client and mer
chant (e.g. digital cash)

The credentials presented are not enough to complete the
transaction, requiring communication with the support in
frastructure (e.g. checking credit card validity and ceiling)

The spontaneous off-line versus on-line classes are depicted in Figure 18.25.
Continuing our discussion, observe that in the off-line case (Figure 18.25a), the
client, prior to the transaction, acquires payment instruments to the issuer (1)

Exhibit 2026 Page 497



484 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

that have stand-alone validity (e.g. she loads her smart card electronic wallet
with digital cash at the card issuing bank). Then, she contacts the merchant,
performs some electronic commerce protocol and finally gets to the stage of
payment. The transaction can proceed off-line because the merchant not only
believes in the client's Id certificate, but also on the payment credentials she
produced (2), and gives her the goods after keeping her payment. The mer
chant can later contact the acquirer (3), possibly with a bunch of payments,
and consolidate them. The acquirer collects the issuing bank (4) through the
banking network.

(a) (b)

Figure 18.25. Spontaneous Electronic Transaction Classes: off-line V5. on-line

Sometimes, although the merchant accepts the client's Id certificate, the va
lidity of the payment credentials must be checked, e.g. to prevent fraud (e.g. to
check double spending of digital cheques, or the validity of credit cards). This
requires the transaction to go on-line (Figure 18.25b): the client addresses the
merchant (1) and when they get to the payment phase, the merchant goes on
line and contacts the acquirer (2). Depending on the specific type of transaction
(e.g. credit or debit), the acquirer may return the payment authorization code
(3) after performing local checks (e.g. credit card ceiling and validity), or may
instead contact the issuing bank (2a-3a) for further checks (e.g. cheque double
spending, account balance). When authorization comes, the merchant handles
the goods to the client (4). It may capture payment later, because it has the
irrevocable authorization code. Whether the client acquired payment instru
ments beforehand (0) or the issuer later collects from the client (5), depends
on the specific business. An example of the former would be digital prepaid
cheques, and an example of the later would be credit card operations.

18.11.3 An Analysis of Electronic Transaction Security

The cryptography used in ETs is relevant for the class to implement, and for the
security properties observed by the client and by the operators, namely privacy
and fraud protection. Symmetric cryptography does not allow mutual authen
tication in spontaneous transactions, and as such in absence of a arbiter or
adjudicator, fraud cannot be effectively handled. Only mediated on-line trans
actions apply. Privacy is thus not great. The use of asymmetric cryptography
is a pre-requisite, in order for certification authorities to be in place. In this

Exhibit 2026 Page 498



MODELS OF DISTRIBUTED SECURE COMPUTING 485

case, spontaneous on-line transactions are immediately possible that achieve
fraud prevention, since clients can present stand-alone identity certificates.

Off-line ETs are also possible, with protocols where fraud, although not
prevented, can be detected, and the culprit identified. But this also depends
on the business risk analysis and on how efficient is the court system. With
asymmetric cryptography and blind signatures, one can build protocols that
support non-traceable spontaneous ETs, with digital cheques or cash. That
was shown in Section 17.7: on-line transactions prevent fraud, whereas with
off-line transactions, fraud can at least be detected. The tradeoff to be made
depends again on the risk analysis. Another aspect of the problem is that
most current ET systems provide one-sided security. It is highly desirable
to go towards multi-party security architectures, where the security of each
participant does not depend on his a priori trust on the other participants, and
where privacy and non-traceability can be ensured as much as possible. We
are discussing these issues further in Section 19.5.

18.12 SUMMARY AND FURTHER READING

In this chapter, we discussed the main models of secure distributed computing.
The first objective of the chapter was to provide insight to the system architect,
about the main architectural options, strategies and frameworks that she has
available. The second was to discuss the main models in a problem-oriented
manner, establishing links, whenever possible, to the paradigms learned in the
previous chapter.

As further reading, we advise the following works. Slade does a fairly com
plete practical study on computer viruses (Slade, 1995). Neumann gives an
interesting account of several security related risks and hazards, some of them
caused by a wrong evaluation of the severity of faults, or by the layout of in
adequate strategies (Neumann, 1995). Further study on Lampson's model of
distributed authentication can be found in (Lampson et aI., 1992). In (Abrams
et aI., 1995) there are excellent studies on access control mechanisms and poli
cies, and on security policies.

On attacks and countermeasures, there is an anti-eavesdropping mechanism
described in (Rivest and Shamir, 1984), using an interlock protocol. Sophis
ticated spoofing attacks against Web pages or network downloadable software
are reported in (Brewer et aI., 1995; Felten et aI., 1996). Attacks on using the
same public key protocol for signing and encrypting are detailed in (Dolev and
Yao, 1981; Kaufman et aI., 1995), or (Schneier, 1996). Abadi and Needham do
a study on attack-resilient design of protocols in (Abadi and Needham, 1994).
Needham discusses attacks to a secure channel in (Needham, 1993).

A distributed TCB implementation is discussed in (Nicomette and Deswarte,
1997). There is an advanced discussion on authentication pitfalls in (Kaufman
et aI., 1995). Authentication and key distribution protocols can be further
studied in the following publications. An attack on Needham and Schroeder
(Needham and Schroeder, 1978) original protocol was reported by Denning
in (Denning and Sacco, 1981), and corrected in (Needham and Schroeder, 1987).

Exhibit 2026 Page 499



486 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Otway and Rees improved the latter protocol in (Otway and Rees, 1987). Den
ning and later the Kerberos protocol (Neuman and Ts'o, 1994) proposed to
use timestamps as a form to foil replay attacks. However, Gong (Gong, 1992)
showed that if an attacker succeeds in de-synchronizing the clocks, he can replay
old messages that seem current to the slow clocks. This is called a suppress
replay attack. Neuman and Stubblebine corrected the problem in (Neuman and
Stubblebine, 1993). See also (Gollmann, 2000) for a discussion on the pitfalls
of verification of authentication protocols.

On protection, Cheswick and Bellovin wrote one of the most complete essays
on firewalls (Cheswick and Bellovin, 1997). Formal access control models other
than BeLa and BiBa exist, such as Denning's (Denning, 1976). Recent work
on classification criteria taking fault tolerance and security both into account
is the Squale Criteria (Corneillie et aI., 1999). Security kernels are discussed
with detail in (Ames et aI., 1983; Schell, 1984). On the programming side, the
Generic Security Service API (GSS-API) is an attempt to standardize an API
for secure operations, independently from platform (Linn, 1996). The advan
tages are obvious, and for example, Kerberos V.5, among other products, is
GSS-API compliant.

Exhibit 2026 Page 500



19 SECURE SYSTEMS AND
PLATFORMS

This chapter gives examples of systems and platforms for secure computing.
We are going to talk about remote operations and messaging, firewall systems,
virtual private networks, authentication and authorization services, smart cards
and payment systems, and secure electronic commerce. In each section, we will
mention several examples in a summarized form, and then will describe one or
two the most relevant in detail. Table 19.2 at the end of the chapter gives a
few VRL pointers to where information about most of these systems can be
found. The table also points to the IETF Request for Comments site, where
the RFCs cited can also be found.

19.1 REMOTE OPERATIONS AND MESSAGING

There exist a few remote secure session packages. The Secure Sockets Layer
(SSL) is a basic secure channel plus a few ancillary protocols, which allows high
level remote session protocols to work securely, in a transparent way. Developed
and used initially by Netscape, it ended-up as a de facto standard in its Version
3.0, and a variation of it is currently endorsed as a standard of the IETF, the
Transport Layer Security, (TLS Vl.0 - RFC2246). There is a freeware version
of SSL 3.0, SSLeay independently developed by Eric Young, that is currently
incorporated in the Apache HTTP server. based on SSLeay, the OpenSSL is
a collective initiative for developing and making available free SSL software.
Also with relation to HTTP, there is an alternative protocol, Secure HTTP

P. Verissimo et al. 
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 501



488 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

(8HTTP) for achieving secure HTTP interactions, that has been around for
years but has been overtaken in importance by 88L. When all that is needed is
user authentication, secure, MAC based authentication of plain HTTP is speci
fied in Basic and Digest Access Authentication (RFC2617). Secure Shell (SSH)
is a suite of remote session protocols originally developed by Tatu Ylonen, com
mercialized by Secure Data Fellows, and currently endorsed as an IETF draft
standard called SECSH. There are free versions of SSH for some systems, e.g.
Linux. The 8ECUDE package is a freeware set of modules, libraries and APIs
for developing remote session protocols, from GMD-Darmstadt in Germany.
STEL is a freeware secure telnet developed at the University of Milano. S/Key
is a one-time password system based on Lamport's hash, developed at Bellcore
and now endorsed as an IETF RFC under the name of OTP, One-Time Pass
word System (RFC2289). Privacy Enhancement for Internet Electronic Mail
(PEM) and Pretty Good Privacy (PGP) are the two best known secure mes
saging packages, and can be used for secure e-mail amongst other things. PEM
is a set of IETF RFCs (1421-1424) based on a somewhat complex structure,
involving the PKI certification authority hierarchy. PGP is more lightweight
in key management, and more versatile in functionality. PGP is currently un
dergoing a standardization effort, OpenPGP Message Format (RFC2440) , to
ensure interoperability of different implementations. Sun RPC and DCE RPC
are examples of secure RPC packages. RSADSI supplies a few building mod
ules for use in this kind of packages, such as RSAref, the main library of RSA
cryptographic functions, and PKCS, the standard for formatting and encoding
of cryptographic structures. Next, we analyze SSL, SSH, PGP and S/Key in
detail.

19.1.1 Secure Sockets Layer (SSL)

SSL V3.0 has a basic secure channel layer, implemented by the Record Protocol,
which uses a socket abstraction and runs on top of any transport protocol,
such as, but not limited to, TCP/IP. This layer only knows about establishing
a low-level secure channel and sending blocks of data back and forth, in a
secure manner. S8L secure channels can securely encapsulate high-level session
protocols, such as: HTTP, FTP, SMTP, or POP3. For example, to use HTTP
with 8SL, you just have to type URLs in the form https : / / .... SSL provides
remote sessions with:

• anonymous, unilateral or mutual client/server authentication, with digital
signature certificates whenever supported

• data compression

• communication encryption via symmetric cryptography

• message integrity via authentication codes (MAC)

A few ancillary SSL protocols recursively use the record layer to extend the
capability of SSL to support secure remote session protocols. These are: the
Handshake Protocol, the Alert Protocol, and the ChangeCipherSpec Protocol.
The Record Protocol provides confidentiality and/or integrity of user message

Exhibit 2026 Page 502



SECURE SYSTEMS AND PLATFORMS 489

flows, encapsulating user data in record messages, which are either protected
with a MAC or MAC-protected and encrypted. The Handshake protocol per
forms client and server authentication. The Alert protocol signals errors and
exceptions through alert messages. The ChangeCipherSpec protocol is used
whenever the cipher specifications change. This can be done in the middle of
a session. SSL Version 3.0 supports RSA, X.509 certificates or Fortezza1 for
authentication. Encryption may be done by DES or RC4, with a 128-bit key
limited to 40 bits for export versions. Integrity is secured by means of SHA
and MD5 MACs.

Handshake Protocol The Handshake protocol (see Figure 19.1) initiates a
session, performing negotiation, authentication and session key exchange. The
protocol starts with the client and server exchanging nonces (C-Random, S
Random) negotiating the SSL version, session Id, and type of cryptography
and compression (10,11). Next, authentication and key exchange takes place.
The server normally sends its public key certificate (20a). Alternatively, if
it does not have one, it sends a key exchange message (20b) with additional
data to make an ad hoc key exchange. The server may also request a client
certificate, if mutual authentication is desired (21-22), otherwise, only the server
authenticates to the client. At this point, Hello is terminated (23). The client
now sends a client key exchange message (30) to set up the initial cryptography.
Both exchange now messages specifying the type of cryptography that will be
used, and finish by sending one another Finished messages (32-33).

Authentication and Key Generation The goal of the key exchange pro
cess within the Handshake protocol is to create a pre-master-secret, which in
turn will lead to a master-secret, from which all other keys will finally be
derived. The initial key exchange depends on ~he authentication mode (anony
mous, unilateral or mutual) and the cryptography suite, which may be RSA or
Diffie-Helman, either plain or signed.

We will study authenticated RSA, the most relevant for secure Web trans
actions. Authentication is combined with key exchange. The client creates the
pre-master-secret, a 46-byte random plus 2-byte version ID. The client then en
crypts the pre-master-secret with the public key in the server's certificate, sent
in the respective S-Cert message to the client, and sends it to the server, in an
EncryptedPremasterSecret record of the ClientKeyExchange message. When
the client receives the Finished message, it may deduce that the server has
successfully decoded the EncryptedPremasterSecret, and is thus authentic.

At this point, both the client and the server have the pre-master-secret.
The master-secret is computed with a few hashing operations having the pre
master-secret, C-Random, and S-Random as parameters. After a few more
hashing operations, the cryptographic checksumming (MAC) and encryption
keys are extracted. The ChangeCipherSpec message synchronizes the end

1Fortezza is a key escrow hardware assisted protocol that we will not address here.

Exhibit 2026 Page 503



490 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

I" Action Description

10 C-tS Client C opens connection with ClientHello message: (C-Random,
Sessionld, CipherSuites, CompressionMethods)

11 S-tC Server S sends ServerHello message: (S-Random, Sessionld, Cipher-
Suite, CompressionMethod)

20a I S-tC S sends its certificate: (S-Cert) ...

20b I S-tC or S sends a ServerKeyExchange message

21 I S-tC S sends the client a CertificateRequest message

22 I C-tS C sends its certificate: (C-Cert)

23 I S-tC S sends HelloDone message

30 III C-tS C sends a ClientKeyExchange message

31 III C-tS C sends S CertificateVerify message

32 III CBS C and S both send ChangeCipherSpec messages

33 III CBS C and S both send Finished messages

III C,S They are authenticated and have a secure channel set up

Figure 19.1. SSL Handshake Protocol (italicized steps are either optional or alternative)

of this process. The subsequent Finished messages go MAC-protected and
encrypted with the recently negotiated keys, and are used to test if the process
was successful.

This concludes our study on how to make secure sessions on the Web with
SSL. Given that most extranet (and also intranet) access to applications is
currently via Web protocols, the security of the architecture per se deserves
some brief comments. Despite the cryptographic material available for secure
web-based applications, these may fail on account of hidden vulnerabilities of
browsers, servers, and languages themselves, from HTTP to Java. So, much
attention should be given to configuration and operation of web-based systems
in a way that their security is not jeopardized by those vulnerabilities.

19.1.2 S/Key

S/Key one-time password (OTP) system is a simple package aiming at pro
tecting remote sessions from passive eavesdropping attacks. It does not store
sensitive information, and works with personal terminals, from workstations
and PCs, to CRT terminals. S/Key can also authenticate FTP, besides Telnet.

Principle of Operation The OTP mechanism is inspired by Lamport's hash
(see Section 18.5, Password-based Authentication). A primordial secret pass
word Ps is generated from a random number seed and a secret user passphrase

Exhibit 2026 Page 504



SECURE SYSTEMS AND PLATFORMS 491

1'" •..I.IIII..I.., II '".III~

3- 10 in res onse: <Pi>

> bad passwor
??????

Pi

~
HostS LUJ1- inter-host cleartext channel

2- login challenge: <password i; seed>

Host A

Alice , J
Remote Session i

Client!

Figure 19.2. S/Key One-time Password System

P. A passphrase is an arbitrary length legible string. See Section 18.3.2 to re
call why passphrases are good. P is concatenated to seed, and passes through
a secure hash function. Several hash functions are currently supported, such as
MD4, MD5 and SHA, so let us run our example with a generic H. The 128-bit
output is halved, and both halves XOR'ed, yielding an 64-bit secret password
Ps. Now, suppose we want to "buy" say a batch of n == 16 passwords. To gen
erate the first 64-bit one-time password, i == 1, Ps goes through the hash/XOR
function recursively n times. To get the second, it will go n - 1 times, un
til i == n, when it goes just once. The general expression to get password

P· 1 < i < n is: p' == Hn-i+l(p )~, _ _, ~ s

The Real Thing S/Key operation is depicted in Figure 19.2. Alice gives
her username. The server Stuart replies with the expected password sequence
number, i, and the seed. The seed can be different from system to system, and
thus allows Alice to use the same passphrase in all of them. Besides, it allows
her to recycle the passphrase when passwords are exhausted. Now Alice has
to have a local program installed on her computer to calculate the following:
the program asks Alice to type in her passphrase P, the seed and the sequence
number sent by the server; the output is Pi (see the expression in the last
section), a highly random password; alternatively, she can request the system
administrator to generate and print a list of passwords for her to take.

Alice sends the" password down the line, in cleartext. How is it authenticated?
The server database stores the last used password, Pi-I, so that it easily checks
if Pi is a good password by hashing it once and confirming that H(Pi) == Pi-I.
If the sniffer copies Pi, when he tries to use it, it will no longer work. Besides,
since the algorithm works backwards, he cannot derive Pi+1 from Pi either.

Exhibit 2026 Page 505



492 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

19.1.3 Secure Shell (SSH)

SSH is a secure session protocol suite that plugs classical holes in Internet jUNIX
based protocols. It supports several encryption and authentication mechanisms.
Besides protecting the login and authentication process, it also compresses and
encrypts the session (DES,3DES,IDEA). MD5 is used for hashing. Authenti
cation is modular: there exists the notion of server (host), service (application)
and client authentication. SSH supports three authentication styles: traditional
address-based (.rhosts, jetcjhosts.equiv) or UNIX password protected by the
secure channel; traditional enhanced with RSA; pure RSA. Key distribution is
also versatile: it can be manual, automatic or administrator based. There is
a user authentication agent, in charge of keeping the RSA keys, in case RSA
authentication is used. Several typical services are protected by this package:

• secure remote session (e.g., rlogin or telnet)

• secure remote execution (e.g., rsh)

• secure remote copy (e.g., rcp)

Action Description

1 C-tS (C, service) Client C requests service connection to SSH server S

2 SHC (vers!d) C and S exchange version info

3 S-tC (Kh, K a, ciphTyp, S sends RSA keys of host server, Kh (TYP 1024-
X s ) bit), and application service, Ka (TYP 768-bit), ci-

pher suites, and a challenge (64-bit random), all in
cleartext

4 C,S SID = H(Kh + Sand C compute a 128-bit session Id S1D (+ means
K a + X s) concatenate)

5 C-tS (ciphTyp, X s, C generates a random 256-bit session key Kcs , and
Eh(Ea(Kcs ))) sends it to S, along with the chosen cipher, and the

server challenge. The session key is XORed with S1D,
encrypted with Ka and then with Kh

6 S-tC (Ecs(cfm)) S extracts key Kcs and sends a confirmation encrypted
with it

- I S,C II - / / low-level secure channel established

7

I
CHS

II -
C now authenticates to the service in one of the meth-
ods available

8 I CHS II (Ecs(msg)) Session proceeds, encrypted with Kcs

Figure 19.3. SSH Secure Shell

The basic secure session operation can be understood by looking at Fig
ure 18.22 back in Section 18.10. The session establishment protocol, depicted

Exhibit 2026 Page 506



SECURE SYSTEMS AND PLATFORMS 493

in Figure 19.3, underlies all the operation of SSH. Note that the first phase
(1-6) is concerned with set-up of the low-level channel. Then, it is necessary to
authenticate the remote session that will work on top of the channel (see the
principles of Secure Remote Session in Section 18.10). This is done using one
of the methods available: address-based with or without RSA, password, or
RSA-only. Password authentication, the most used, is robust because it trusts
nothing but the holder of the password, since it does not dialog with a login
program, but with the SSH daemon.

SSH offers two useful additional functions: bi-directional TCP lIP port for
warding over the secure channel, implementing tunneling; XII connection tun
neling, to secure remote X terminal sessions, that usually go in the clear and are
thus a security headache. The principle of tunneling is discussed in Section 19.3
(see Figure 19.7).

19.1.4 Pretty Good Privacy (PGP)

PGP is a freeware messaging and file encryption software, based on hybrid
cryptography. Key management is based on public key cryptography (RSA),
and payload encryption resorts to IDEA. It achieves the properties of secure
envelopes.

~
o

~ U

Private (r.key}il!!I.•.•..•
Public (u-key)

KEY CERTIFICATE

1384, 512, 1024 bits I
.-----...

key 10~ 64 LSBs

timestamp

user 10 4
~I¥;ria ce

Figure 19.4. PGP - Key Generation

In PGP, all starts with key generation, shown in Figure 19.4. The user
is prompted to supply some random data for the process (e.g., key strokes),
and a passphrase. The passphrase is hashed and together with the random
information and the user Id, they form the raw material to generate the RSA
keys. Each key is then put in a certificate together with timestamp of generation
and owner Id. Key certificates are kept in keyrings (public and private key
rings). The public key certificate is then inserted on the pubring, whereas
the private is inserted in the secring. Private keys are protected with the
passphrase. Authentication is mutual, based on a ad-hoc chain of trust, instead
of using a PKI: principals sign key certificates of other principals and so forth,
creating a mutual chain of trust among clusters of people that are related.

Exhibit 2026 Page 507



494 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

/ c'eartext7~&.1"'ti::iJ

, f~ [S2J

~~~~~ed.SS.key.

Figure 19.5. PGP Encryption

PGP can encrypt, sign, sign and encrypt. These operations follow the hy
brid cryptographic envelope principle (see Figure 18.6) and are thus perfect
for secure e-mail. Besides, PGP can encrypt local files with plain symmetric
(IDEA) encryption, using a passphrase-derived key. The envelope encryption
operation is shown in Figure 19.5. The cleartext is compressed first with the
ZIP compression algorithm. As we pointed out earlier, this is a good idea, re
member why? A symmetric encryption key (Kss) is generated out of a random
function. The cleartext is encrypted with IDEA using K ss , and K ss itself is
RSA encrypted using public key K u of the recipient as a key-encryption-key.
Both the encrypted encryption key and the recipient Id go along with the ci
phertext. Since PGP allows RSA key lengths in excess of 1024 bits, and IDEA
itself does pretty well with 128-bit keys, this is bound to be very robust. Note
that the result of encryption is a binary file. If the file goes to disk, this is
OK. However, if it is an e-mail message, then RADIX-64 encoding converts it
to an ASCII stream. Decryption is performed by reversing these operations at
the other end: the recipient PGP extracts the key-encryption-key- the pri
vate recipient key K r - from secring, decrypting K ss , and then decrypting the
payload with the latter.

Finally, signing is depicted in Figure 19.6. Signing follows the principle of
digital signature with digests that we studied (see Figure 17.8). PGP makes
sure that the cleartext has adequate format or control information to ensure
it is verifiable at the other end. The text is hashed by MD5, and the result,
concatenated with a random quantity to avoid replay attacks, is signed with
the user's private key. A signature certificate is produced, by appending the
key Id and the timestamp of generation. The cleartext, the certificate and the
public key Id of the signer form the message, that is RADIX-64 coded if it
should go bye-mail. The recipient PGP extracts the relevant public key from
pubring and verifies the signature. Signed/encrypted messages combine both
procedures.

Exhibit 2026 Page 508

SECURE SYSTEMS AND PLATFORMS 495

t
...............................~:~~:..~~.i~.~~ j

Figure 19.6. PGP Signatures

19.2 INTRANETS AND FIREWALL SYSTEMS

Intranets are the nickname for protected environments, normally organization
networks closed to the outside or connected via protection devices, despite using
Internet protocols. Since it hardly makes sense for an intranet to be physically
disconnected, the most relevant devices for building intranet architectures are
firewalls. There a number of commercial firewall systems, and perhaps the two
best known, representing two competing classes, are the Checkpoint Firewall
1 and the Trusted Information Systems Gauntlet. Of the many free firewall
packages around, a few are known to be effective and reasonably secure and bug
free: the TIS firewall toolkit; the SOCKS proxy package (RFC1928-29,1961),
and the LINUX packet filter. The TIS toolkit is a proxy package, supporting the
most usual UNIX Internet daemons, such as telnet, rlogin, FTP, HTTP and
mail. It has its own authentication server, supporting regular and one-time
passwords. It also supports logging, and has a well-structured configuration
and management interface, following a prudent policy. SOCKS is also a proxy
package, but unlike TIS it bundles all servers in a single daemon, making it
harder to fine-tune policies. It mainly supports telnet and ftp, plus a few
ancillary services. Its security policy is less conservative than TIS. It supports
authentication as well. The LINUX firewall package, IPchains, is a packet filter
system that comes bundled with the distribution. Next, we study some of these
systems with more detail.

19.2.1 Firewall-1

The Firewall-l is filter oriented. However, it uses a form of stateful packet
filtering (SPF), called Stateful Multi-Layer Inspection, which tries to under
stand the following high-level protocols: Telnet, FTP, SMTP, rlogin and rsh,
NIS, NFS, HTTP, Gopher, Archie, WAIS, ICMP, RIP, 8NMP. FW-l supports
several 0.8.s, but it only supports two families of routers. FW-l provides

Exhibit 2026 Page 509

496 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

for NAT (Network Address Translation) and for secure cryptographic channels
between modules, using symmetric and asymmetric encryption: DH key ex
change; RSA for public key certificates; and DES or FWZ1 session keys. It
is divided into two modules that mayor may not be co-located: the control
and the filtering modules. The control module hosts the GUI interface and
the Management module. Configuration is done through a very powerful GUI.
The filtering module hosts the inspection module and the daemons. Besides
the firewall daemon (fwd), it provides authentication daemons for use with
several known services: atelnetd, aftpd, ahttpd, aclientd. Users can be individ
ually authenticated for the above-mentioned services, and the authentication
methods supported are: UNIX regular and one-time passwords, MD5 MACs,
Kerberos, Smart Card support, SSL and SHTTP. FW-1 supports event and
audit trail, firewall status monitoring and alarm generation (Status Monitor
and Log Viewer). Access control rules are defined through a special purpose
script language, INSPECT (Rule Base Manager). Following the SPF philoso
phy, rules have higher-level semantics than normal packet filters. The Network
Object Manager defines security labels for networks, servers, routers, etc. The
User Manager defines access rights for users on objects. The Service Man
ager manages services. Extension of services is simply done by the addition
of an additional set of expressions and macros. Performance is good, as usual
with packet filter systems. Firewall-1's main assets are: excellent GUI inter
face; overall performance; enhanced application-aware packet filtering; modular
structure supporting a number of firewall architectures.

The Inspection module lives between the network interface of the bastion and
layer 3 (e.g., IP), and inspects every incoming or outgoing packet. The baseline
policy is prudent (see Packet Filter Systems, Section 18.8). The dynamic filter
only opens the ports involved in cleared transfers, and closes them when the
transfer ends. Connectionless protocols are difficult to follow by PFSs. FW-1
simulates a connection for UDP and similar protocols, so that it can follow
a flow and reject alien packets. Similarly, RPC does dynamic port allocation.
FW-1 monitors the portmapper and checks further RPC traffic against its cache
of mapped ports.

19.2.2 TIS Gauntlet

The Gauntlet firewall is proxy oriented. It supports proxies for the best known
services, such as: Telnet, rlogin and rsh, FTP, SMTP, POP, HTTP, Gopher,
X-Windows, lpr. It also supports some packet filtering activity. Authentication
includes: UNIX passwords, MD5 MACs, Smart Card support, SSL and SHTTP.
Configuration is menu-driven, and addresses: the firewall architecture (network
interfaces, dual or single-homed, addresses and services); configuration of access
rules and user authentication; system integrity check against write penetration
attacks; log and event report manager. Extension of services is done by the
addition of new proxies. Performance is fair, as with any proxy-based system.
Gauntlet's main assets are: proxies are in essence transparent, not requiring
any adaptation or change in users and client applications; it has a framework

Exhibit 2026 Page 510

SECURE SYSTEMS AND PLATFORMS 497

for developing custom application gateways, called plug gateway proxy, with
which designers can support specific services and non-standard applications.

When a connection request comes in, the firewall analyzes the configuration
rules (see Proxies, Section 18.8) and determines whether or not it should pro
ceed. If so, the proxy contacts the end service, and from then on, the steps
of this connection are performed by the proxy between the client and the end
server, the proxy acting as server to the former, and client, to the latter (see
Figure 18.20b in Section 18.8). However, everything happens at the proxy
level, with the obvious performance implications. Later, TIS introduced the
concept of adaptive proxy. An adaptive proxy uses a dynamic packet filter
system (DPFS) at the internetwork layer. When a connection comes in, the
DPFS notifies the proxy, providing information about the former. The proxy
analyzes the connection parameters against the access control rules, as usual.
However, when a connection is allowed through, it further decides if it proceeds
at application level, or instead, because the connection is considered to be very
low risk, it is forwarded directly at the internetwork layer. In that case, the
dynamic packet filter manager inserts one or more rules for this connection.
Subsequent packets of the connection are then automatically forwarded with
out consulting the proxy. Once a connection terminates, the connection rule is
removed and the proxy is notified.

19.3 EXTRANETS AND VIRTUAL PRIVATE NETWORKS

In the measure that system architects became aware that leased lines are not
secure links per se, and that using the Internet infrastructure provides signifi
cant financial gains, extranets emerged. Extranet technology aims at ensuring
secure communication through the Internet, from the outside to an intranet, or
between intranets, in essentially three situations: between distant facilities of
the same organization; between facilities of different organizations; or between
the facility and remote users belonging to the organization. This kind of ar
chitecture is thus relevant for: geographically distributed enterprises, in exten
sion of their intranet; for virtual enterprises or enterprise networks, gathering
suppliers, producers and clients, such as manufacturing clusters or business-to
business electronic commerce; or for mobile organization workers. The main
attribute of extranet architectures is that security of external communication
should approximate that achieved inside the intranet. Thus, important build
ing blocks for these architectures are secure communication protocols (see Sec
tion 18.10), such as secure packets, tunnels and sessions, secure Internet and
wireless communication protocols, and secure Web protocols.

19.3.1 Virtual Private Networks

The main architectural device for building an extranet is the Virtual Private
Network (VPN), an example of which is shown in Figure 19.7. Networks A and
C, and the tunnel interconnecting them, constitute a very simple VPN over
Network B. Networks A and Care intranets of the same organization, and it

Exhibit 2026 Page 511

498 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

is desired that traffic goes from one to the other as if they were in the same
facility. For example, all addresses in both networks might be of the same
domain, but different subnets. Either intranet is isolated from direct access
to/from the Internet by a security gateway, such that the tunnel is laid between
the two security gateways. These can be implemented by firewalls. The source
and destination addresses of the payload packet on the left of the figure are
the actual source in network A (Alice) and the final destination in network C
(Bob), whereas the source and destination addresses of the carrier packet are
those of the security gateways in each extremity. Tunnels may be set up with
the desired granularity. They may carry the whole data between two networks,
or there may be separate encrypted tunnels for critical connections, even inside
untrusted intranets. Whatever the selection condition, routing tables inside the
source network must route packets scheduled to go through a tunnel, to the
tunnel mouth, that is, the security gateway, and not through the usual outgoing
router. The VPN concept also addresses host-to-gateway tunnels, to support
extranet client-server access to the intranet by remote users (e.g. travelling
employees). You can now generalize the examples given and imagine a real
installation with say half a dozen intranets, each of the~ interconnected to
every other by a tunnel, and several remote access tunnels or secure channels,
either from remote client-only offices, or mobile salesmen or executives.

Figure 19.7. Virtual Private Network Architecture

The main technology behind extranets are tunnels. Most firewall manufac
turers have extensions or separate packages implementing tunnels (e.g., Check
point, Gauntlet, Secure Data Fellows). Most of these implementations are
not interoperable. In order to overcome this problem, the IETF is standard
izing IPsec (Internet Protocol Security Architecture), a security architecture
framework for IP.

19.3.2 Secure Internet Communication: IPsec

IPsec (Internet Protocol Security Architecture) is the current initiative of the
IETF (RFC2401) to provide cryptographically-strong security for the IP pro
tocol (Kent and Atkinson, 1998). It addresses: access control, connectionless
integrity, data origin authentication, protection against replays, confidentiality,
and limited traffic flow confidentiality. IPsec is a protocol-independent frame
work, that guarantees negotiable security properties to IP flows between two

Exhibit 2026 Page 512

SECURE SYSTEMS AND PLATFORMS 499

nodes. Nodes are either hosts, or routers running IPsec, called security gate
ways. The properties are secured for armored data blocks, defined by a security
header that encapsulates the attached data. The cryptographic operations on
each module are specific to the several protocols that may be used. These se
curity functions are implemented around two extension headers and respective
processing protocols:

Authentication Header (AH) - provides connectionless integrity, data
origin authentication, and protection against replays

Encapsulating Security Payload (ESP) header - provides confiden
tiality by encryption, and limited traffic flow confidentiality. It may
also provide the functions of AH

IPsec headers can be combined with one another and with regular IP headers.
The AH protects the integrity of a block of data, except for the fields that must
be changed en-route. The AH includes security information for the receiver, the
Security Parameter Index (SPI) field, and the authentication field, which has
arbitrary length and depends on the algorithm being used. The ESP header
includes again security information for the receiver (SPI), and the transformed
data, according to the algorithm used. IPsec (either AH or ESP) can be used
in two modes: transport-mode, which corresponds to the generic concept of
secure channel depicted in Figure 17.18 back in Section 17.11; and tunnel-mode,
which corresponds to the tunnel concept (a form of secure channel) illustrated
in Figure 19.7 in this Section.

• Transport-mode- the protected data are upper layer service data units.
This option encapsulates data from the layer above (TCP) with one of the
IPsec headers, and then encapsulates it again in a normal IP datagram,
achieving end-to-end security

• Tunnel-mode- protects full IP datagrams. This option builds a complete
IPsec datagram, and then encapsulates it in a normal IP datagram. This
IPsec-over-IP mode is useful for building tunnels, and for bypassing network
areas that do not implement IPsec, achieving link security

Cryptographic checksums or signatures in AH, besides generally ensuring
integrity, may provide reliable source address and sequencing information, to
avoid spoofing and replay attacks. Data may be encrypted with ESP. Although
IPsec is algorithm-independent, the default protocol is DES-CBC. Data flow
confidentiality can be enforced to a certain extent with tunneling, since content
of traffic, such as addresses, is hidden. Before payload transmission can start,
IPsec must bootstrap through two crucial functions:

• security association - negotiation of protocols, ciphers and keys to be used

• key distribution - exchange of the keys needed for communication

The security association negotiation produces the above-mentioned SPI struc
ture, which specifies things like: authentication and encryption algorithms;
authentication and encryption keys; key and association lifetime. A security
association is uniquely identified by a triple consisting of a Security Parameter
Index (SPI), an IP Destination Address, and a security option (AH or ESP)

Exhibit 2026 Page 513

500 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

identifier. Key distribution may be manual or automated, in which case it uses
a protocol. Several of the key exchange models that we studied in Section 18.6
are foreseen, both in the public-key and symmetric shared-secret areas. Security
association and key management are at the time of this writing very active top
ics in the IETF, with the Internet Security Association and Key Management
Protocol, ISAKMP jOakley, being a strong candidate (RFC2408,RFC2412).

Headers may be combined to achieve further protection. For example, in
transport mode, by applying ESP encryption for confidentiality of upper layer
data, and then encapsulating again with AH for MAC-based integrity and au
thentication of the final IP packet. This is called transport adjacency. Iterated
tunneling concerns building tunnels inside tunnels. Several combinations are
possible, but perhaps an obvious and useful one is when specific tunnels, say
ESP protected, are built from host to host in different intranets of an organiza
tion, to serve different applications, and then all these tunnels go, AH protected,
through an outer, main tunnel, carrying all the traffic from one intranet to the
other intranet across the Internet.

19.4 AUTHENTICATION AND AUTHORIZATION SERVICES

Authentication services exist for a number of applications and systems. Mo
dem dial-up access is many often authenticated with front-ends such as Radius
(RFC2138), from Livingston Enterprise, or the Cisco TACACS (RFC1492).
RADIUS (Remote Authentication Dial In User Service) is a package for re
mote network access authentication in an open systems environment. RADIUS
is independent from the communications protocol, and has two modules: the
authentication server and the client protocols. RADIUS servers authenticate
users against a UNIX password file, the Network Information Service (NIS),
and an internal database. Password information is sent encrypted over the
line, by a shared secret key. TACACS is similar to Radius, but some differ
ences exist. TACACS uses TCP instead of UDP used by Radius. TCP is
more resilient to errors, and provides immediate indication of communication
or server failure. Radius sends a lot of relevant information in cleartext. Sen
sitive parameters such as username, authorized services, and accounting, can
be captured by an intruder. TACACS encrypts all user information. TACACS
has modular authentication, authorization and access control. TACACS can
bind to Kerberos for authentication. Kerberos (Neuman and Ts'o, 1994), is the
most widely used general purpose authentication and authorization server, in
cluded in services such as the Andrew File System and DCE. Several firewalls
include hooks to Kerberos. Unlike Kerberos, which is KDC-based, the Dis
tributed Authentication Security Service or DASS (Kaufman et aI., 1995) is a
distributed, CA-based authentication service developed at Digital and endorsed
by the IETF (RFC1507).

19.4.1 Kerberos

Exhibit 2026 Page 514

SECURE SYSTEMS AND PLATFORMS 501

Kerberos is conceptually divided in two modules, the Key Distribution Center
(KDC) and the Ticket Granting Service (TGS). However, they reside in the
same host and share the same database. The KDC handles the primary login
of a principal. The TGS is invoked each time a principal needs a credential, or
ticket, to access a regular system service. The TGS also checks the privileges of
the principal to access the request service. The unit of modularity of Kerberos
is a realm, the set of resources under the control of a KDC.

From now on, it is important that you have in mind the Kerberos authenti
cation protocol, presented in Figure 18.10 back in Section 18.5. Our description
will be based on Kerberos version 5. Each principal shares a master key with
Kerberos, which it stores in a database. User's keys are generated from the user
password through a cryptographic hash. Currently, Kerberos only supports
DES. The database is encrypted with Kerberos own master key, K kdc ' Ker
beros requires clocks to be synchronized, since it uses timestamps as nonces in
defense against replay attacks. The allowed de-synchronization is five minutes.
The credentials produced by Kerberos, called tickets, have a specifiable validity,
limited to 21 hours. In what follows, we denote K a as A's master key, K ab as a
session key shared between A and B, and tick(A,B)== EB(A, K ab , Tt , T l), as the
ticket given to A in order to access B. The ticket contains A's Id, the shared
key, the timestamp of creation Tt , and its time-to-live Tl.

/
passwd

• 2
K~Ka

Figure 19.8. The Kerberos Security Service

The steps for a principal A to get access to a service B are depicted in
Figure 19.8. The first step (1) is primary login. Principal A types in her
(login; password) pair at the client host. The host hashes the password into
A's master key K a (2), and sends a login request to the KDC (3). Along with
it, the client makes a proof of knowledge of K a , by encrypting the current time
with it. The KDC checks the time to see it is current (less than 5 minutes
skew), which also proves that A knows K a , and concludes the login process

Exhibit 2026 Page 515

502 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

by handing A a conversation key Kak' and a bf Ticket-Granting Ticket, TGT,
all encrypted with K a . The TGT is a credential to be used in any subsequent
addresses to Kerberos in this login session, and the key protects ~hese interac
tions when necessary. Client A is now ready to access actual services. When
A wants to access service B, she requests so to the TGS (4), presenting her
TGT. The protocol develops as described back in Figure 18.10, with A getting
tick(A,B) and K ab , and presenting tick(A,B) to B (5). The ticket also contains
authorization data, produced by the TGS after checking A's privileges to ac
cess B. After authentication and authorization is cleared by B, A and B share
session key K ab and A can access B.

19.4.2 DASS

The Distributed Authentication Security Service (DASS) is a distributed, hy
brid cryptography authentication service. Whereas Kerberos is based on the
KDC model and uses symmetric cryptography, DASS is a good sample of a CA
based system. It relies on long-term asymmetric (RSA) keys served by Public
Key Infrastructures (hierarchies of Certification Authorities), primary login
asymmetric (RSA) keys, and symmetric (DES) session keys. Alice has a long
term asymmetric key pair (KU a,K ra), and so does Bob. Furthermore, client
Alice has a login password P, and she can generate a password-derived encryp
tion key K p . As well as for any other user, certification authority CA with pub
lic key KUCA, stores a record for Alice comprising (A,Kua,Ep(Kra),H(P)),
that is, her public key, her private key encrypted with the password-derived key,
and a hash of the password itself. Any public key certificate can be obtained
from a CA (see Figure 18.11 in Section 18.6).

In what follows, we show how Alice initiates a session with Bob, in order to
illustrate the functionality of DASS. The protocol is presented in Figure 19.9,
and is self-explanatory. The process starts with a login phase, during which
Alice pre-authenticates to the CA, by proving that she knows the password
relevant to her record in the CA. Next, Alice performs the authentication
phase with Bob, at the end of which they both have a session key. Note that
after login, authentication of specific accesses is performed in just one message
(unilateral) or two messages (mutual). Other relevant hybrid distributed au
thentication mechanisms are EKE (Encrypted Key Exchange), described back
in Figure 18.15, and the NetWare authentication service.

19.5 SECURE ELECTRONIC COMMERCE AND PAYMENT SYSTEMS

Electronic Commerce (e-comm) comprises business made through informatic
means. The payment is electronic, which prefigures an electronic transaction
(see Section 18.11). The procurement may also be electronic, i.e. made through
the Web. The goods themselves may also be electronic (on-line books, MPEG-3
contents, software packages). An c-comm purchase has five phases: procure
ment; negotiation and order; payment system selection; payment authorization
and capture; delivery of goods. Generically, a customer navigates through a

Exhibit 2026 Page 516

SECURE SYSTEMS AND PLATFORMS 503

Action Description

- I I / / pre-authentication

1 A ---+ CA (ECA(Kss , hp, TA)) Alice invents symmetric key K ss, sends it to-
gether with password hash and local timestamp,
encrypted with the CA key

2 CA ---+ A (Ess(Ep(Kra))) CA verifies that Alice knows the password hash,
and checks the clock skew. If OK, CA sends Alice
her doubly encrypted long-term private key

3 A LCal Alice decrypts with K ss and the password-derived

Sa(KUal' T x) key, recovering Kra. Then, she generates a login
key pair (KUal, Kral), and produces a public login
key certificate LCal, signed with K ra, containing
the login key and the expiry time

- I / / authentication

5 A SCab Alice creates a session key Kab' and wraps it a
Sal (Eb(Kab)) session key credential, SCab, encrypted for Bob

and signed with the login key

6 A---+B (LCal, SCab, X a) Alice logs into Bob by sending the login key cer-
tificate, the session key credential, and an authen-
ticator based on local time and the session key

7 B Bob checks the skew of the timestamp and Alice's
signature on LCal , and extracts the login key, us-
ing it to verify SCab and extract Kab

- I / / Alice is authenticated to Bob

8

I
B---+A (Xb) Bob sends back an authenticator based on local

time and the session key

- I / / Alice and Bob are mutually authenticated

Figure 19.9. DASS Authentication Protocol

portal or virtual shopping, browses a catalogue, this is the procurement phase.
Next, she identifies the good and negotiates with the merchant, for price, con
ditions, and so forth, hopefully getting to order the goods, by means of a Web
transaction, e-mail, phone, fax, mail, etc. This is the negotiation and order
phase. The payment system is then selected, from a wealth of possibilities:
electronic cash, electronic cheques, credit card, electronic bank transfer, even
paper cheques by mail. The merchant acts in order to be sure that he will
be paid by the client (this is the payment authorization and capture phase),
and then delivers the goods, the final phase. Electronic shopping protocols are
emerging, covering most of the phases enumerated. However, current proto
cols focus on the most delicate ones, payment system selection and payment

Exhibit 2026 Page 517

504 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

authorization and capture, which pre-figure the so-called electronic transac
tion. In this section we are concerned with the security of payment devices,
such as smart cards and digital wallets, and payment systems. The two most
relevant frameworks for supporting electronic commerce are the SSL-related
infrastructure and the Secure Electronic Transactions (SET).

19.5.1 Smart Cards

Smart cards are important pieces of e-comm gear. They provide a small,
portable and secure means to carry value, and perform operations, some crypto
graphically secure. Smart cards occur in several types, described in Table 19.1.

Smart card technology is still recent (mid 70's) and is bound to evolve.
Besides more powerful processors and larger memory for enhanced function
ality, co-processors can be inserted for enhanced security e.g., to implement a
guardian scheme (see Figure 17.16 in Section 17.7). A "distributed systems"
philosophy has progressively emerged for the smart card area. The compo
nents of such an architecture are the smart card, the card terminal and the
remote server. Standards have emerged, ISO-7816 is the basic one, specifying
the mechanical and electronic structure, the I/O communication protocol and
command definition for the card-terminal interface. The ETSI GSM standard
specifies command messages for mobile phone SIM cards (see Section 19.3).
The EMV'96 standard (EMV'96: ICC Specifications for Payment Systems)
has more recently been introduced by Europay, MasterCard and Visa, and
endorsed by the industry in general.

Companies like Bull, GemPlus, Hitachi, Schlumberger, Motorola, IBM, cur
rently support the ICC (Integrated Circuit Card or smart card) specification,
which intends to be a standard for interoperability and secure operation of
smart cards in electronic transactions. The specification consists of several
parts, and addresses from the mechanical and electronic specification of cards
and terminals and the minimum requirements of card and terminal function
alities, to business and applicational issues related with debit and credit on
card. The Java Card standard, first appeared in 1996, is based on providing
cards with a Java Card Runtime Environment, supporting a Java Card API
on card, compatible with a subset of the Java language, in order to load and
execute Java Card Applets. This allows cards to be programmed and loaded
with programs, as normal distributed systems hosts. The Java Card API is
bound to give a push to smart card based systems, namely in electronic com
merce applications, because it is an open system specification: companies can
develop their own products on the Java card.

19.5.2 Payment Systems

Electronic payment systems take several forms, as a matter of fact essentially
emulating real payment systems:

• electronic cash

• electronic cheque

Exhibit 2026 Page 518

Table 19.1.

SECURE SYSTEMS AND PLATFORMS . 505

Smart Card Types

MEMORY
CARDS

LOGIC
CARDS

PROCESSOR
CARDS

Contact:

Contactless:

Memory cards just have a block of non-volatile memory posi
tions. They are very limited in functionality, and also in secu
rity, but are useful for small payments, such as phone cards. In
this case, each position corresponds to a payment unit. Positions
are cleared in the measure that they are "spent". Once cleared,
the memory cannot be rewritten, so the card is discarded when
finished.

Logic cards have limited processing capability, implemented by
hardwired state machines, but represent an evolution with re
gard to memory cards.

Processor cards have increased processing capability, since they
use microprocessors. They are capable of executing programs
and protocols with outside devices. Some of these operations
may be cryptographic. Processor (and logic) cards can either
be contact or contactless:

More usual, they have a range of contacts on the surface that
connect to corresponding contacts on the card reader where they
are inserted (instead of being swiped, as magnetic cards), to
receive power and to dialogue.

They communicate with external devices by some wireless
means. The simplest use short range electromagnetic fields,
but the most elaborate resort to radio transponding, which is
also used to energize the card. These cards have been used with
success in highway toll systems in Europe.

• credit card

• electronic bank transfer

The last has been around for quite some time and is implemented through
proprietary protocols in banking networks (e.g. SWIFT). The others are with
the reach of the common user.

Ecash was developed by DigiCash, a company founded by David Chaum,
the inventor of some of the protocols that we studied in Section 17.7. Ecash
is a form of digital cash that allows fully anonymous spending. Clients and
merchants must have accounts on an Ecash bank. The Ecash wallet, the cyber
wallet, is loaded at the bank. Ecash enforces spontaneous on-line transactions:
at the time of purchase, the merchant must be on-line with the bank, to en
sure that the coins used for payment have not already been spent. Ecash has
multi-party security. Ecash is easily integrated with the Web: the client runs
the cyberwallet and the browser; the merchant runs a server and a CGI to run
Ecash software. When payment of a purchase needs to be done, the merchant's
Ecash server contacts the Ecash client, and then payment is performed.

Exhibit 2026 Page 519

506 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Mondex was developed in the UK and has been in operation since mid'90.
It is a prepayment smart-card based electronic cash system. The scheme uses
a proprietary chip design from Hitachi, that creates end-to-end secure channels
between chips. All devices with which a Mondex smart card should commu
nicate must have such a chip. An optional PIN enhances personal security
of the wallet, but if lost or damaged, the money inside cannot be recovered.
The system supports multiple currencies and wallet-to-wallet transfer. There
are no specific mechanisms for non-traceability, which is said to be ensured by
a physical mechanism: the wallets, only way to reference a card holder, are
distributed anonymously. Since the channel is end-to-end, Mondex cards can
even be loaded by phone. More typically, they are loaded at a Mondex-enabled
ATM, that talks to the bank, which has a sort of virtual vault, the Mondex
Value Box, with a battery of Mondex chips to dialogue with remote client cards.
Similarly, the merchant has a Value Transfer Terminal to receive payments.

CAFE Conditional Access for Europe, was a European project ended in
1996 that developed a secure electronic payment system using the blind sig
nature principle. Unlike Ecash, CAFE used' smartcards with guardians, which
allowed completely non-traceable, fraud-free and off-line operation. CAFE has
a few interesting characteristics. It is entirely public-key based, and achieves
multi-party security. It can pay with cash but also sign cheques. It supports
multiple currencies and multiple issuers of electronic money. CAFE uses high
quality infrared communication wallets, and provides recovery of lost, stolen,
and damaged cards. An optional PIN enhances personal security of the wallet.

Millicent is a micropayment system developed at Digital, that allows pay
ments down to USDO.OOI to be made. It is still early to see whether this kind
of systems will go anywhere, but perhaps they will find a use in Web navigation
charging. Millicent uses a currency called Scrip, and believes in the principle
that the cost of doing a fraud should be more than the value of the transaction.
Users of the system aggregate payments until they have enough money to make
a macropayment.

The two most relevant frameworks for supporting electronic commerce in
general and credit-card based in particular, are the SSL-related infrastructure
and the Secure Electronic Transactions (SET). We have already talked quite
a lot about SSL. Electronic commerce around SSL involves a basic framework
consisting of: SSL as a secure communication channel; a Public Key Infras
tructure (PKI) in place which is recognized by the players; and SSL server and
client authentication mechanisms. The players (client, merchant, acquirer, is
suer) contact securely with each other using SSL-enabled servers and browsers.
To perforul mutual authentication of the principals and to authenticate the
several instruments of the electronic transaction (e.g., a credit card credential),
they resort to PKI certificate chains. To prevent fraud, they check certificate
revocation lists routinely. In the next section, we will focus on an alternative
framework: SET. The Secure Electronic Transactions protocol resulted from
the convergence of early works by Visa and MasterCard on protocols for the
secure presentation of credit cards, and is endorsed by several major players,

Exhibit 2026 Page 520

SECURE SYSTEMS AND PLATFORMS 507

including American Express, IBM, Microsoft, and Netscape. SET has evolved
in the recent years as a fully-fledged electronic transaction framework and ar
chitecture, together with the relevant protocols. Expectations about its success
must obviously be confronted with those about the SSL-based infrastructure.

19.5.3 Secure Electronic Transactions (SET)

SET is oriented to credit card payment, and the overall model obeys that of
the on-line spontaneous transaction, depicted in Figure 18.25b, back in Sec
tion 18.11. In terms of the figure, the SET protocol is concerned with steps
1,2,3 and 4, between the client (card holder), the merchant and the acquirer,
who implements the payment gateway between the card-holder issuer and the
merchant. The interaction between the acquirer and the issuer is currently
secured via a proprietary banking network. The SET trust model relies on the
existence of a trusted third party, a PKI, that builds trust among the players,
by certifying all the signatures involved in the transaction. SET uses X.509
certificates, produced by a chain whose main elements are a supra-national
root CA, which in turn will certify each brand CA (e.g., Visa), and on a third
level: card holder CAs; acquirers serving as payment and merchant CAs, and
running payment gateways. Unlike all the others', the card holder certifi
cate has its credit card number (primary account number, PAN) blinded by
concatenation with a nonce and a fixed sequence, and then hashed. SET uses
selective end-to-end encryption, such that content may be selectively revealed
to parties. SET messages are fairly dense, so we first present the overall picture
of a SET payment transaction, in Figure 19.10, comprised of request/response
pairs: the buyer initializes the protocol (PInit); and then emits the purchase
order (P); the merchant requests authorization (Auth) for the payment; once
cleared, the payment is captured (Cap); the card holder may do an optional
inquiry (Inq) at any time during the transaction, to find out about its state.

8
PlnitReq ., I
PlnitRes I...

I
PReq .,

AuthReq
I •

I
AuthRes

PRes •..
-____!!!.9f!::L!?E!L

I
CapReq

l:nqRes (opt) .,
.~~~-,~---------_.-

CapRes..
Figure 19.10. SET Payment Transaction

Exhibit 2026 Page 521

508 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

We now analyze the message structure, omitting unnecessary detail. The
PInitReq message contains: the brand of card, an optional thumbprint or
fingerprint (hash) of the certificates held by the card holder, a local transaction
Id', and a nonce challenge. In response, the merchant generates a global trans
action Id, timestamps it, includes the card holder's challenge and its own, signs
everything with the merchant's key, and sends it to the card holder, together
with any certificates that the latter might not have yet cached from former
transactions, such as the merchant's and the acquirer's.

The card holder believes the merchant is OK when she receives a correct
and fresh response (her challenge comes back), and in consequence she issues
the Purchase Order (PReq). The purchase order comprises two parts: the
Order Information (01) and the Payment Instructions (PI). The 01 contains the
order description data (OIData) for the merchant, essentially data from the Init
phase: global transaction Id, brand Id, the two challenges (to show freshness),
and a nonce, to prevent dictionary attacks on the alphabetic contents of the
01, once hashed. The 01 is validated with a dual signature field, which carries
the hashes of both the OIData and PIData. This kind of signature relates the
01 with the PI, and it has the property of being verifiable by only revealing one
of OIData or PIData (to either the merchant or the acquirer). The eard holder
certificate goes along. The PI is a credential encrypted with the acquirer's
key, containing payment data (PIData) for the acquirer. PI is forwarded by the
merchant, who cannot read it. The PI contains the PIData: global transaction
Id, amount, actual credit card data (CardData) encrypted with extra-strong
plain l024-bit RSA, and a hash of the order description aD. This is validated
with the same kind of dual signature as the 01, and the whole (PIData plus
signature) is finally encrypted. Sending PI is equivalent to signing the credit
card ticket in a conventional transaction.

The merchant now verifies the signature on 01 by following the certificate
chain in the PKI. The merchant will request authorization and initiate capture.
The PRes response may be issued at any time after this check. The autho
rization request (AuthReq) carries elements of the transaction (namely a hash
of aD and of OIData) and the PI credential, all signed with the merchant~s

private key and encrypted with the acquirer's public key. If the transaction
elements and those inside PI match, the acquirer knows that both the card
holder and the merchant agree on the transaction (goods and amount): the
dual signature in PI proves the connection of that order to the card holder.
The acquirer obtains authorization from the banking network and if all is OK,
sends the relevant code in an AuthRes message, together with a Capture
Token, a credential for the merchant to get paid. The merchant will capture
payment, eventually merging Capture Tokens of several transactions.

Remember that SET is the payment part of the whole purchase. SET can
and should be integrated in broader Web-based electronic commerce applica
tions. The SET consortium provides a SET reference API and implementation
to guide implementors. It is free for non-commercial use.

Exhibit 2026 Page 522

SECURE SYSTEMS AND PLATFORMS 509

19.6 MANAGING SECURITY ON THE INTERNET

Internet protocols have their design vulnerabilities. They improve with time,
but will hardly disappear. On the other hand, configuration of a large facility is
hard to do without any mistake, leaving configuration vulnerabilities. Attacks
and intrusions may go un-noticed, if there are many new events arriving. This
introduces detection latency, that may amplify the effects of an intrusion. These
reasons are more than enough to justify an investment in security management
of any facility. System Management strategies and tactics are discussed with
more detail in the Management Part (Part V) 'of this book, namely how to
insert these technologies in a coherent management framework. Amongst the
relevant functions, we are concerned with: security enhancement tools; fault
diagnosis tools; intrusion detection tools; auditing tools. These functions, as
well as tools to perform them, will be detailed in Section 24.7 of that part.

19.7 SUMMARY AND FURTHER READING

This chapter gave examples of systems and platforms for secure computing.
The objective of the chapter was to provide the reader with some knowledge
about existing products and systems, but above all to relate these systems with
the notions learned throughout this Part. We reviewed remote operations and
messaging packages, firewall and virtual private network systems, authentica
tion and authorization services, devices and frameworks for secure electronic
commerce.

Further reading on Java and Web Security can be found in (McGraw and
Felten, 1997; Garfinkel and Spafford, 1997). A thorough discussion on electronic
payment systems is done in (Mahony et al., 1997). Cheswick gives a detailed
account of firewall and Internet-related security tools (Cheswick and Bellovin,
1997). In (Quinn, 1996), an up-to-date survey is given of tools for UNIX host
and networking security. Table 19.2 gives a few pointers to information about
some of the systems described in this chapter. Some of the sites are extremely
complete repositories of security-related software.

Exhibit 2026 Page 523

510 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 19.2. Pointers to Information about Secure Systems and Platforms

Class of System

CERT
ITU
IETF RFCs

Remote
Operations
and
Messaging

Firewall
Systems

Virtual
Private
Networks

Authentication
and
Authorization
Services

Secure
Electronic
Commerce
and
Payment
Systems

System

(ex-CCITT)

SSL
SSLeay

SHTTP
TLS
SSH

PGP
S/Key

OPIE
RSADSI
SECUDE
PEM
DCE-RPC
SUN-ONC

FW-l
Gauntlet
TIS toolkit
SOCKS
SSLproxy
squid

VPN-l
VPN+
IPsec

ISAKMP
Stunnel
Web sec.

Kerberos
Radius

TACACS

Java Card
EMV'96
DigiCash
Mondex
Millicent
SIBS
SET

Pointers

www.cert.org
www.itu.int
www.rfc-editor.org

home.netscape.comjengjssl3
ftp.psy.uq.oz.aujpubjCryptojSSL
www.ssleay.org
www.openssl.org
www.homeport.orgj- adamjshttp.html
www.ietf.orgjhtml.chartersjtls-charter.html
www.ssh.org
www.uni-karlsruhe.de j - ig25 j ssh-faq
www.pgpLcomj
ftp.bellcore.comjpubjnmhjskey
ftp.cerias.purdue.edujpubjtoolsjunixjnetutilsjskey
www.ietf.orgjhtml.charters j otp-charter.html
ftp.inner.net/pubjopiejopie-2. 32.tar.gz
www.rsa.com
www.darmstadt.gmd.dejsecude
ripem.msu.edu
www.opengroup.orgjdce
www.sun.com

www.checkpoint.comjproductsjfirewall-ljindex.html
www.naLcom
ftp.tis.comjpubjfirewallsjtoolkit
ftp.cerias.purdue.edujpubjtoolsjunixjfirewallsjsocks
www.obdev.atjProductsjsslproxy.html
squid.nlanr.net jSquid

www.checkpoint.comjproductsjvpnljindex.html
www.datafellows.com
www.ietf.orgjhtml.chartersjipsec-charter.html
www.antd.nist.gov/antd/htmljsecurity.html
www.antd.nist.gov/antd/html/security.html
www.stunnel.org
www.cs.princeton .edu jsip

athena-dist.mit.edujpubjkerberos
www.Iivingston.comjtechjtechnotesj500
ftp.cerias.purdue.edujpubjtoolsjunixjnetutilsjradius
www.cisco.comjwarpjpublicj707jindex.shtml

www.gemplus.com
www.mastercard.com jemv
www.digicash.com
www.mondex.com
www.millicent.digital.com
www.sibs.pt j en j multibanco.html
www.setco.orgjset_specifications.html

Exhibit 2026 Page 524

20 CASE STUDY: MAKING VP'63
SECURE

This chapter brings our case study one step further: making the VP'63 (Vin
tagePort'63) Large-Scale Information System secure. Increased distribution of
the infrastructure through the Internet, combined with remote access of com
pany salespersons dictated this step in the project, in order to address concerns
with privacy and integrity of the company's information system. As selling on
the Internet becomes attractive, plans are also made for setting-up an electronic
commerce server, a major step for a company that did not even have a passive
Web presence.

20.1 FIRST STEPS TOWARDS SECURITY

The reader should recall that this is the next step of a project implementing a
strategic plan for the modernization of VP '63, started in Chapter 5, and con
tinued in the Case-Study chapters of each part of this book. The reader may
wish to review the previous parts, in order to get in context with the project.

The team identified the following problem areas with regard to security,
deriving from the corporate strategic plan:

• point-to-multipoint payload interconnection flows between the enterprise
units, now made through open networks (e.g. Internet);

• point-to-point remote session interconnections between employees and enter
prise units, now made through open networks (e.g. POTS, GSM, Internet);

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for
Exhibit 2026 Page 525

512 DISTRIBUTED SYSTEIVlS FOR SYSTEM ARCHITECTS

• multipoint-to-point anonymous connections from anywhere on the Internet
to the commercial Web site, not only to acquire information, but also to
perform electronic transactions.

(a) (b) (c)

Figure 20.1. Security Problem Areas: (a) Site !Interconnection; (b) External Remote
Access; (c) Anonymous Transactions

The risk of operation was evaluated for these problem areas. One of the
premises of the project is the use of COTS components, with their known
vulnerabilities, which can reduced by configuration and/or function elimination.
A preliminary abstract analysis of the degree of vulnerability suggested that
this presents disadvantages (vulnerabilities do exist) and advantages (they are
well-known and fixes exist), but yields a high cost-effectiveness ratio. On the
other hand, a preliminary abstract analysis of the level of threat revealed the
following:

• Site interconnection (Figure 20.1a)- the payload flow may be subjected to
attacks on confidentiality and integrity.

• External remote access (Figure 20.1b)- individual access sessions may fall to
intrusion campaigns that compromise the authenticity property, and from
then on, the confidentiality and integrity of the internal state of the system.

• Anonymous transactions (Figure 20.1c)- attacks on the commerce server
protocols with the attempt of fraud may assume several facets; general and
perhaps distributed denial-of-service attacks are also to be feared.

The architectural approach for security will be laid out around: the extranet
and the virtual private network of the company over the Internet; the intranet
and its firewall gateways to the outside. The team decided that the set-up for
business-to-business (B2B) transactions will be deferred to a later phase when
the technologies to be installed now are mature. This is because B2B depends
both on commerce server and on VPN technologies, which will be developed
with separate purposes in this phase.

Exhibit 2026 Page 526

CASE STUDY: VP'63 513

20.2 GLOBAL SECURITY: EXTRANET AND VPN

Recalling the infrastructure laid out in the first phase of the project, the in
frastructure should now evolve to a strict WAN-of-LANs organization, where
every facility has a single logical connection point to the Internet, the Facility
Gateway. All internet addresses behind the Gateway are invalid, which brings a
certain degree of protection to probing (e.g. port scanning) attacks, and on the
other hand allows creating a seamless virtual domain that spans all facilities,
so that all nodes anywhere in the company's installations are seen as being in a
single network. For this to be possible, IP-over-IP tunnels are created between
every Gateway and all the others.

Figure 20.2 depicts the big picture of the VP'63 Virtual Private Network
(VPN) design, interconnecting all VP'63 facilities over the Internet following
this model. In order for the payload traffic to be protected against attacks, the
tunnels are secured using link encryption between Gateways.

This set-up can be generalized in several ways under an extranet perspective.
To begin with, it solves the problem of remote fixed client-only offices, Le., the
small installations that once used to have a single remote terminal hooked by
leased line or dial-up. These offices will establish secure payload tunnels to
main facilities in the same way. The other problem are nomadic salesmen or
executive notebooks, bound to access the VP'63 network through the Internet
or modem dial-up. Functionally, they should desirably have the same kind of
direct access into the VP '63 intranet as provided by the site interconnection
tunnels. However, given the mobility and sporadic character of access, building
trust on these connections is more difficult. In consequence, they had better
be provided through an external remote access service that establishes a more
powerful filtering point at the Gateway, to be addressed upon the detailed
Intranet and Gateway design.

20.3 LOCAL SECURITY: INTRANET AND FACILITY GATEWAY

The architecture of the intranet of a facility is shown in Figure 20.3, focusing
on the Facility Gateway architecture. Under a security viewpoint, the Gateway
must protect the intranet and provide services hosted by internal servers in a
secure way. The team has studied the design of the following services: por
tal passive services (rendering, etc.); portal active services (messaging, search,
transactions, etc.); remote access (from the outside); internet navigation and
messaging (from the inside).

The Gateway is normally laid out around a two-level or screened-subnet
firewall architecture. The minimal functionality a Facility Gateway should
provide is the insertion in the VPN infrastructure, and for simple installations
(small client offices) that can be ensured by a single host acting as a bastion
router. Figure 20.3 depicts the maximal Gateway architecture, in fact a set of
hosts, providing all the services foreseen. The outer firewall is the router that
provides access to the Internet and implements the secure IP-over-IP protocols
(e.g. IPSec). It also implements the NAT (network address translation) that

Exhibit 2026 Page 527

514 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Figure 20.2. Extranet with view of the VPN

hides VP'63 internal addresses. As a firewall, it performs some form of packet
filtering, necessarily limited since some of the services on the DMZ are for
anonymous access. Still, on the intrusion detection side it is capable of some
counter-reaction. The inner firewall is a bastion router, acting as a multi-port
firewall to the intranet subnets. Between the outer and inner firewalls lies the
DMZ (de-militarized zone), where extranet services are installed.

The passive services of the portal are ensured by a Web (HTTP) server
with local storage of static pages for immediate rendering. The Web server
is placed on the DMZ, since it serves anonymous accesses. It also acts as
the overall portal for all other public access services from the outside. As
such, it also provides hooks for active services of the portal: email to the
enterprise, but more importantly, it connects to a lightweight transactional
server on the intranet. The lightweight server is so called due to the underlying
philosophy: hosting fragments or replicas of the global database so that they
may have a better performance serving the basic on-line commerce (e-comm)
applications, search queries and electronic transactions. Once the architecture
in place, new contents and new commerce offers can be readily offered in a
scalable way. The performance of this lightweight solution may be fairly high
with an adequate configuration and a correct balance of the fragment semantics,
between read-only, weak consistency (caching) and strong consistency (active
replication). It also provides an indirect way of reconciling operations with the
business information system, through the global database, without burdening

Exhibit 2026 Page 528

CASE STUDY: VP'63 515

its own transactional front-end with e-commerce transactions, which have a
highly unpredictable behavior and evolution.

The remote access service from the outside is given a low level of trust, as
discussed before. As such, a dial-up RAS service is hosted in a DMZ node,
with dial-up line/caller authentication. From then on, remote requests, both
via dial-up and via the Internet through the outer firewall, are treated equally
and directed to a proxy remote session (telnet) RAS server on the inner fire
wall. Plaintext telnet connections are not allowed under any circumstance,
employees will be instructed to have a secure telnet package installed on their
portable machines. Roaming access from alien machines will not be allowed.
Requests for all the above-mentioned services are authenticated on a need basis
on a strong authentication server, placed on the intranet but accessible from
any firewall and DMZ services. This offers incremental levels of authentication,
e.g., operation-dependent authentication for e-comm transactions. The au
thentication server hosts private (employee) and semi-private (regular client)
credentials, but may also be hooked to existing PKI-CA systems (anonymous
users).

The tunnels merely serve to reach another facility, and nowhere else on the
Internet, so direct Internet connection from the inside has to be specifically
addressed. Internet navigation and email sending are the only outgoing ser
vices to be supported at this stage, provided through central outgoing HTTP
and email servers located on the main facility. This may have some impact
on performance, namely on the Web side, but is otherwise transparent from
applications and provides a necessary control point.

Figure 20.3. Intranet with view of the Portal

Further Issues

These issues need some refinement now, and the reader was assigned the study
of a few questions that were still left to be solved:

Q.4. 1 Sketch the routing hops for an IP packet going between nodes in two
facilities separated by a secure tunnel.

Exhibit 2026 Page 529

516 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Q.4. 2 Propose the detail of the Gateway cryptographic set-up underlined in
Figure 20.3 (key types, distribution, and integration in protocols).

Q.4. 3 Is there a secure way for employees to access email and news via alien
Web browsers while roaming without access to a company machine?

Q.4. 4 How should outgoing direct Internet access be decentralized on a per
facility basis, if increased use starts creating a bottleneck on the central HTTP
and email servers?

Q.4. 5 How can the Web server designed for the portal be improved w.r.t. fault
tolerance and load balancing?

Q.4. 6 How can the transactional and search engine front-end designed for the
portal be improved w. r. t. fault tolerance?

Q.4. 7 Discuss other alternatives for remote access and e-commerce based on
different balances between threat and vulnerability than those assumed in the
present design.

Q.4. 8 Denial-of-service attacks may indeed become a concern. Discuss the
possible design of some form of availability measures facing such attacks.

Q.4. 9 The architecture proposed is essentially an attack prevention one. Dis
cuss the possible design of some form of attack tolerance.

Q.4. 10 Delineate a strategy for networking and data security assuming poten
tially harmful insider users, which have been precluded from the current model.

Exhibit 2026 Page 530

Exhibit 2026 Page 531

V Management

The direct forces fight the enemy on the ground, but the indirect forces ensure
victory. Their combinations are infinite.

— Sun Tzu, The Art of War, circa 500 B.C.

Contents

21.FUNDAMENTAL CONCEPTS OF MANAGEMENT

22. PARADIGMS FOR DISTRIBUTED SYSTEMS MANAGEMENT

23. MODELS OF NETWORK AND DISTRIBUTED SYSTEMS MGMT.

24. MANAGEMENT SYSTEMS AND PLATFORMS

25. CASE STUDY: MANAGING VP'63

Overview

Part V, Management, addresses the management of distributed systems, that is, the
issue of ensuring that distributed systems are configured correctly in order to provide
adequate service, and that they remain correctly configured and providing adequate
service throughout their life. In the measure that distributed systems technologies
achieve maturity and widespread use, management will become one of the most im-
portant disciplines in the area. This part introduces the Fundamental Concepts of

Managementin Chapter 21, and continues in Chapter 22 with the main Paradigmsfor
Distributed Systems Management, such as: managers, managed objects and MIBs,
domains, main management functions (e.g., configuration, fault, accounting), and
monitoring. Chapter 23 addresses Models of Network and Distributed Systems Man-
agement, and Chapter 24 discusses Management Systems and Platforms. In these two
chapters the notions of previous chapters are consolidated. Frameworks and strate-
gies for management are discussed, and the relevant models presented: centralized,
decentralized and integrated management, domains. Chapter 25 finalizes the case
study, this time: managing VP’63.

Exhibit 2026 Page 531

21 FUNDAMENTAL CONCEPTS OF

MANAGEMENT

This chapter discusses the problem of management. The fundamental concepts
are presented, and the rationale for configuring and managing systems is dis
cussed. The main architectures for systems management are introduced, in
order to be further developed in the following chapters.

21.1 A DEFINITION OF MANAGEMENT

What is management? Systems management is the set of planning, supervision
and control functions of a system, such that it provides the adequate service,
as expected by its users. The service is defined upon the configuration of the
system.

Systems management includes strategic as well as tactical factors. Strate
gic factors are concerned with establishing management policies, and planning
the system architecture and functionality so that these policies are fulfilled.
Tactical factors address the measures and mechanisms put in practice to ac
tually fulfill the strategic objectives, and the timely reaction to the varying
operating conditions such that the system maintains its functionality.

Why is management necessary? Whereas all previous parts of this book were
concerned with conferring architectural, functional or non-functional properties
to a system, management is concerned with the global measures that assist in
maintaining the whole of these properties through the system's useful life. Sys
tems evolve, and need planning and configuration in order to adapt to change.

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 532

supervise state

520 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Systems today are interconnected, and in consequence isolated and uncoor
dinated efforts may have undesirable or even harmful effects. This requires
integrated approaches, and adequate tools. Finally, systems became so complex
that manual approaches are obviously insufficient, requiring as much automa
tion of functions as possible.

As the quote with which we opened this part metaphorically implies, the
combinations between strategy and tactics, organization and technology, plan
ning and reacting, are infinite. But the successful combinations are only a
few.

21.1.1 The Management Life Cycle

A management support system works pretty much as a process control system.
The "controller" is the manager and the "process" is the managed system. The
"control cycle" is depicted in Figure 21.1. The manager monitors the state of
the system by receiving events from it and interpreting and processing them
under the light of the management policy. The manager controls the system
by issuing control operations on it. These operations are either dictated by
strategic management or issued as a result of the processing of events from the
system. That is, the manager either initiates some action, such as installing
new routing tables or configuring a new printer, or reacts to an environment
change, such as repairing a partitioned network, or performing load balancing
on a pool of servers upon detection of overload.

------------I~.,/.fuin;r;te~rp;,r;etr;s;t:ta;;te~E~I~I~)··~
ofsystem

'- make decisions~.

request control
operations

Figure 21.1. Management Life Cycle

A common representation of the flow of information concerned with manag
ing a system (Sloman, 1994) is given in Figure 21.2. The flow starts at strategic
level, with long term directives (strategic management policies) and immedi
ate action directives (strategic management decisions) issued to the tactical
managers, who interpret them. The mission of the managers is to implement
strategic decisions in the best possible manner. For that, they issue control

Exhibit 2026 Page 533

FUNDAMENTAL CONCEPTS OF MANAGEMENT 521

commands to the system being managed, that act on the resources. Some of
these commands may consist of polling or sampling the state of the resources.
Resources respond to these solicited actions, and may also trigger unsolicited
events, or notifications, back up to the managers, informing them of changes
of state. Managers monitor the system through these solicited and unsolicited
actions. Some of them require feedback in the form of new commands that
close the control loop.

g MONITOR

Management INTERPRET ~~--

Policies fi ----...oI~. Managers CONTRO~

Networked
or

Distributed System

RESOURCES

Figure 21.2. Management Information Flow

21.1.2 Organizational vs. Technical Management

In face of what was just said, we should understand that management exists
at two levels of abstraction in an organization:

• organization-level - dictated by the strategic executives of the organiza
tion, not necessarily the field executives

• technical-level - performed by the technical executives, or systems admin
istrators

In most organizations, the CTO (Chief Technology Officer) is the liaison
between the two, since she discusses the strategic issues with her fellow exec
utive managers, and coordinates the systems administration teams. The CTO
should enforce the above-mentioned separation of duties. Failure to do so may
lead to abnormal and undesired situations, whose extreme examples would be:
letting the technical staff acquire knowledge and decision power that belong
to the managerial area; putting the technical staff under the direct orders of
executives who do not master the technologies.

A key factor of success in management is the adequacy of the system, and
of its information and management models, to the models of human thinking
and of the organization it serves. Inappropriate models may have been at the
root of many a failure of the introduction of informatics l in businesses. Two
orders of reasons arise when debating this problem. The first is concerned with
the mapping between computer-level information and human-level perception.

1 "Informatics" is a word of european origin getting increased acceptance in the community
of computer users and developers. It is used to denote in general terms all that is related
with use of computers and networks in information processing, access and manipulation.

Exhibit 2026 Page 534

522 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Quoting Mintzberg: "Many management information systems (MIS) seem not
to be for management at all. They are computer information systems and
proceed on the assumption that managers care that the information has been
processed by a machine" (Mintzberg, 1989). Computer-generated information
is often too limited, too general, too late and too imprecise for human managers
to handle adequately. The second is concerned with the mapping of roles in the
organization onto the representations allowed by the actual computing model.
Think of the following example: why should a senior system administrator
who is a technician and not an executive, let alone the CEO (Chief Executive
Officer)- have read and write (or delete...) access to all the information of
the company where she works? She normally has it indeed, because of the way
most commercial systems work (she has root access), but is this a faithful
metaphor of that company's business model? Most probably not, that is, she
as a middle officer should have neither the power (e.g., to block or destroy the
system), nor the knowledge (e.g., of the whole salary policy) indirectly given
to her by the way the system is set up.

Can we do something about it? We are persuaded that the answers lie in sys
tems architecture, and we hope this book may give a few contributions. From
the earlier parts: the mapping of the functional characteristics of businesses
onto the functional attributes of technologies; the provision of non-functional
attributes to overcome the shortcomings of technologies (dependability, time
liness, security). From this part: the notion that the dichotomy between or
ganizational and technical management levels must be cast into the system
architecture; and that this can only be made through the adequate models and
tools to handle the information flow between both levels.

21.1.3 Management Support Services and Functions

So what is management in practical terms? Imagine a large enterprise, with
facilities in several locations, and thousands of interconnected machines. It is
necessary to control how the system is laid-down and configured, draw a map
of the existing links, keep directories of registered users and service names. It is
also necessary to diagnose, circumvent or repair faults and recover from errors.
These faults must include malicious faults that affect security. Performance
and quality-of-service guarantees must be preserved for the various services.
The utilization of resources by the several users must be accounted for, and so
forth. The main management functions arise from these needs:

• configuration management

• fault management

• accounting management

• performance management

• quality-of-service (QoS) management

• security management

• name and directory management

Exhibit 2026 Page 535

FUNDAMENTAL CONCEPTS OF MANAGEMENT 523

These functions are supported by a few classes of services, such as:

• remote operation execution

• management information storage

• event reporting

• log control

Operations related with the functions above are triggered on remote devices.
These operations read and modify the state of management information, whose
storage is performed both at the devices and at the managing hosts. The
paradigm that supports this concept of management data repository is called
Management Information Base (MIB). The MIB holds the data structures
concerning the managed resources, and their format is standardized for most
architectures. It is through the MIB that most management operations are
performed: reading status of resources, writing state variables. The structure
of management information (8M!) is the collection of specifications of these
structures and variables, normally organized in standards.

Event reporting is concerned with the unsolicited notifications (also called
up-calls) of resources to the management entities, by which they report unpro
grammed events, such as: changes in the environment configuration (new hosts
discovered), errors (printer out of paper), failures (a link that is down), and so
forth. Events need some processing, sometimes at the source, in order that the
destination is not showered with irrelevant or redundant event notifications.
Event discriminators are special programs that filter and select events accord
ing to pre-defined rules (e.g., thresholds), and pre-process them in order that
the information that arrives at the upper layers has more elaborate semantic
contents than the raw event (counters, rates). For example, a number of error
events may be produced as a consequence of a failing network link: several
garbled frame transmissions; frames that are completely lost; excess conflict
or collisions on the network access. Instead of producing n event reports, a
discriminator may send a failed() report up as a consequence of integrating
those several low-level events in the same window of time (see Arrival Distri
butions in Chapter 12).

It is a normal procedure that events are logged for ulterior analysis. The log
control is concerned with the conditions in which this log is performed: if the
log record is issued after a threshold on a level or on the number of consecutive
occurrences is exceeded; if the log itself has a water mark and generates an
alert after it is reached; if the log is done at the resource where events were
produced, or at a central point (a manager), etc.

21.1.4 Distributed Systems Management

Until now, we have discussed management in general terms. It should be clear
however, both from these introductory remarks and from previous parts of
the book, that the interesting management is distributed systems manage
ment, since current systems have that nature. Distributed systems manage
ment (DSM) is concerned with ensuring that distributed applications execute

Exhibit 2026 Page 536

524 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

correctly, over a distributed infrastructure that also remains correct. This is
important, since it indirectly explains the difference between DSM and NM
(network management). In fact, Network Management has been a well-known
and established discipline before distributed systems have gained their cur
rent momentum. It is concerned with the infrastructure- the computer and
telecommunication networks- and with how the information goes back and
forth, whereas DSM is concerned with how applications use that information
in order to provide services to the users.

Table 21.1. Comparison between NM and DSM Functions

Network Mgt. Distr. Systems Mgt.

node connectivity
reaction to partitions
load/congestion control
performance tuning
routing

information flow
information storage
system SW integrity
service availability
load balancing

Of course, they are complementary, but it is important to establish a differ
ence, since given the complexity of today's systems, there is room for special
ization in either field. For the sake of example, Table 21.1 presents a listing of
typical functions of network and distributed systems management.

21.2 SYSTEMS MANAGEMENT ARCHITECTURES

Systems management architectures have evolved during the recent years. There
have been several factors behind that evolution, amongst which we stress: the
expansion of internetworking brought the need to cope with heterogeneity and
domain independence; the expansion of distributed systems created the oppor
tunity to use distributed systems techniques for decentralized but coordinated
management. Evolution took place in several stages, expressed by classes of
management architectures, which we describe next.

21.2.1 Homogeneous with Centralized Management

The homogeneous with centralized management architectures, depicted in Fig
ure 21.3a, prefigure the situation of the early networks, mostly proprietary, and
where little interconnection existed. These systems were small-scale and had
by nature a centralized management, implemented by a single management
system, and a single console, the station from which management is performed.
Management was fairly straightforward, since systems were homogeneous and
small.

Exhibit 2026 Page 537

FUNDAMENTAL CONCEPTS OF MANAGEMENT 525

21.2.2 Heterogeneous with Uncoordinated Management

Figure 21.3b shows how these architectures evolved, when networked systems
started to proliferate. Whether homogeneous or heterogeneous, they consisted
of gluing together several of the above-mentioned smaller networks, managed
locally. In this new scenario, individual networks continued to be managed
independently, in an uncoordinated way, despite the fact that they already had
some interconnection. The uncoordinated management architectures represent
the state of affairs where several network architectures exist, but where loose
management is adequate, since they do, not require close interaction. Namely,
there exist several management systems, and several uncoordinated or very
loosely coordinated consoles. This was the status quo just before the advent of
large-scale distributed systems.

Single
Management

System

(a) (b)

Figure 21.3. Management Architectures: (a) Homogeneous with Centralized Manage
ment; (b) Heterogeneous with Uncoordinated Management

21.2.3 Heterogeneous with Coordinated Management

The heterogeneous with coordinated management architectures, illustrated in
Figure 21.4a, apply in situations with the same degree of technical evolution
as above. However, the several network domains must act together, because
the system has a moderate or large scale, and its components have signifi
cant interaction- e.g., they belong to or are controlled by a same organiza
tion and share significant amounts of data per time unit. In consequence, the
management is physically centralized in a control room where all the several
management systems and all the consoles are located. Although management
is technically heterogeneous (each console runs a proprietary subsystem) it is
coordinated at organizational level.

Exhibit 2026 Page 538

526 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

21.2.4 Heterogeneous with Centralized Management

In the meantime large-scale distributed systems made their appearance and the
Internet technologies contributed to this evolution. The scale of systems under
the control of an organization becomes such that several heterogeneous systems
have to coexist under the same managerial umbrella. Besides, those systems
have to be managed in a closely coupled way, since they support distributed
applications that run across them.

This situation paved the way for the appearance of heterogeneous architec
tures with centralized management: whilst multiple management systems exist,
they are ran from a single console. That is, the organizational-level coordina
tion is mapped onto the technical-level coordination of all the consoles, from
a centralized station. We also observe the utilization of distributed systems
technologies to help manage the distributed system itself. In this kind of ar
chitectures the console centralization, as suggested in Figure 21.4b, is achieved
through remote session protocols, such as Telnet, RPe and X-Windows.

The centralized console corresponds to the high-level notion of a physical
control or adrnin center. Nevertheless, the console is location independent:
the center can change location and be instantiated elsewhere. Technically, this
works by having the physical management console, wherever it is, open windows
over each of the management subsystems depicted in the figure. Since each
system has its own interface, the heterogeneity of applications is still visible,
at least for the more subtle semantic details. However, this is a major step
towards integration of management functions, which we discuss next.

(a) (b)

Figure 21.4. Management Architectures: (a) Heterogeneous with Coordinated Manage
ment; (b) Heterogeneous with Centralized Management

21.2.5 Heterogeneous with Integrated Management

The heteTogeneous architecture with integrated management is an advanced
distributed systems management architecture, and the state-of-the-art approach,
in what concerns available commercial systems. As depicted in Figure 21.5a,

Exhibit 2026 Page 539

FUNDAMENTAL CONCEPTS OF MANAGEMENT 527

the advance with regard to the centralized management architecture is that
the multiple management systems have a local scope (they could have local
consoles), they can run local management programs by delegation of high-level
management.

This architecture is more sophisticated than the previous centralized one,
in that it assumes a degree of delegation and in consequence of hierarchy.
Organizational-level management coordination is mapped onto a single inte
grated management system and console. The above-mentioned hierarchy also
hides the heterogeneity of the local management systems: the applications
running on the console address the local subsystems in a homogeneous man
ner, even if they have different makes. This is done through the utilization of
distributed systems technologies, including but going beyond the level of ab
straction of remote sessions: remote management protocols and APls, common
GUI interfaces, and sometimes a common database (MIB) representation.

The several systems have thus an apparent homogeneity, since at least
their graphical representation and user interface at the central management
system are uniform. Standardized protocols establish the dialogue between
the integrated management system, and the local- and to a certain extent
autonomous- management subsystems. Such as with centralized management
architectures, there is location independence: the integrated management sys
tem and its console can change location and be instantiated anywhere.

(a)

/---~~~:::"--
/ /',/' Decentralized-~

/ / Management ~
Cooperation, federation System ~ Autonomous
priOCo,s and brokers +ocal Managt.

& "Iif I \ \

~Rete~5 \\
~ ~temm&twork I

~<~~~ ~'::;~!:l~.
(b)

Figure 21.5. Management Architectures: (a) Heterogeneous with Integrated Manage
ment; (b) Heterogeneous with Decentralized Management

21.2.6 Heterogeneous with Decentralized Management

Distributed applications are attaining a scope, both in complexity and scale,
that renders centralized or integrated management ineffective or even impos
sible. Observe enterprise networks, business-to-business e-comm, or other in
teractions that are done between realms of distributed systems that belong to

Exhibit 2026 Page 540

528 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

different organizations, or even countries. Within the scope of network man
agement, the Internet has been managed under such a perspective: sophisti
cated routing protocols can make the difference between routing inside what
are called autonomous systems (AS), and between different AS's, which are
essentially independent management realms.

However, large-scale distributed systems present more complex problems
than just communication. This evolution requires a sort of federated man
agement, in essence a heterogeneous architecture with decentralized manage
ment, as exemplified in Figure 21.5b. Management is fully decentralized. The
organizational-level management is supposedly cooperative, and technical man
agement is performed within the scope of each autonomous local management
system, which may itself follow an integrated management approach, with its
console and local applications. The effective construction of these architectures
relies on distributed system paradigms such as: request brokers, message buses
and enabling protocols and algorithms for federation and cooperation.

21.3 CONFIGURATION OF DISTRIBUTED SYSTEMS

A great deal of the success in operating and managing a distributed system de
pends on whether it is configured adequately. The use of structured configura
tion methods, besides allowing to build better systems, makes them more man
ageable. Configuring distributed systems architectures has two major steps:
the hardware architecture; and the software architecture.

Configuring the hardware architecture begins with selecting the components:
routers, hubs, links, and so forth, for the network infrastructure; servers, to
install the services; and workstations, for the users to access the system. Then,
placing and interconnecting these components, through physical links. That
forms the infrastructure, and is concerned with defining the network layout
and placing the hosts or nodes. These processes are iterative, and it is normal
to come back to hardware configuration after having a first pass at software
configuration.

Configuring the software architecture consists of selecting the software com
ponents: drivers and protocols; service modules; client modules when appli
cable. Then, placing and interconnecting these modules. This latter part is
concerned with activities such as: placing services with servers, following ratio
nale such as load balancing, proximity, or criticality; interconnecting protocols
with higher-layer services, such as binding application modules to communica
tion protocols; interconnecting multi-tier services, such as binding a web server
to a web request broker and finally to a database engine. Part of the binding
is dynamic, during runtime, making use of previously configured services such
as name or directory services, and brokers or traders (ANSA, 1990).

Components should be modular, encapsulated, and have a well-defined in
terface, where both the services required by the component, and the services
supplied by it are represented (see Figure 21.6a, for a representation based on
the model of (Magee et aI., 1993)). Note that this is concerned with a generic
definition of systems architecture, and not necessarily related with a client-

Exhibit 2026 Page 541

FUNDAMENTAL CONCEPTS OF MANAGEMENT 529

Services Services
provided required

\--;
(a) (b)

Figure 21.6. Configuration of Distributed Systems

server relation. The interface definition should be precise and non-ambiguous.
This suggests the use of an object oriented approach, and of interface specifica
tion languages (ISL) or interface definition languages (IDL). These languages
may be further augmented by graphical configuration methods, where software
architectures can be defined by interconnecting software components graphi
cally, sometimes in more than one level. Figure 21.6b shows one such exam
ple of configuration, where two web clients (browsers) "require", and are thus
connected to (by instantiating the adequate protocols), a web service (HTTP
server), which in turn "requires" the provision of the database engine service
(possibly through a CGI) to supply the material with which to build the dy
namic pages needed for the web server to provide the service requested by the
web clients.

System configuration may be static or dynamic. Static configuration as
sumes that whatever the initial configuration is, it will remain stable during
the system lifetime, such as in Conic or Durra (Magee et aI., 1989; Barbacci
et aI., 1993). It is through dynamic configuration that the desirable relationship
with distributed systems management is established. In fact, the idea is that
systems change, in the course of operational events such as faults or of mere
evolution, and it should be possible to accommodate that change without pain,
that is, without stopping the system and going back to the design desk and
testing laboratory. Incorporating the ability to support operational changes
in the system configuration requires foreseeing those changes, for example by
defining several operational modes, and instantiating the relevant components
when needed. Incorporating evolution can be achieved by expressing the sys
tem configuration in the form of a configuration database, and defining the
initial system configuration in a non-declarative language, such that the con
figuration may change during the system lifetime in a non-programmed way,
such as done in Darwin (Magee et aI., 1993) or Olan (Bellissard et aI., 1996).
Clipper (Agnew et aI., 1994) and Evolution (Radestock and Eisenbach, 1996)
are other examples of dynamically reconfigurable configuration languages.

21.4 SUMMARY AND FURTHER READING

In this chapter we debated the introductory notions concerning configuration
and management of distributed systems. After defining management and dis
cussing its lifecycle, we presented management in practical terms, by introduc-

Exhibit 2026 Page 542

530 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

ing the main functions and support services. We presented the several architec
tures for distributed systems management, ranging between homogeneity and
heterogeneity, and between centralization, decentralization, integration and au
tonomy. We finalized by making an introductory discussion of the problem of
distributed systems configuration. In (Sloman, 1994), a good introduction to
systems management, and distributed systems management in particular, can
be found, where some of the discussed issues are further detailed. A distributed
programming environment based on 'configuration programming' is presented
in (Magee et aI., 1994).

Exhibit 2026 Page 543

22 PARADIGMS FOR DISTRIBUTED
SYSTEMS MANAGEMENT

This chapter addresses the main paradigms for distributed systems manage
ment. Management models have been developed in the past few years, mainly
in the course of standardization activities, such as OSI Systems Management,
the Internet Engineering Task Force, or the Open Distributed Processing initia
tive, but also under significant research effort. As these models have matured,
a number of significant paradigms have been retained, and made it possible
to define the generic body of research and technology of today's systems man
agement. We will make a non-exhaustive effort to study the main paradigms,
and in consequence, we will address: managers and managed objects, domains,
management information bases, and the several management functions- con
figuration, faults, performance and QoS, accounting, security, names and di
rectories.

22.1 MANAGERS AND MANAGED OBJECTS

Management is about managers, the performers of the act of managing, and
the targets of the act, the managed objects. The manager executes manage
ment functions, by requesting operations on the objects managed by it, and by
receiving notifications from those objects.

Managed objects are a form of uniformly modeling whatever is manageable
or needs to be managed. We talk of objects in a broad sense, which obviously
intends to capture some of the interesting properties of genuine objects: the

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 544

532 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

OPERATIONS

management
interface functional

interface

Figure 22.1. Modeling a Managed Object

encapsulation, the well-defined interface. Managed objects have a certain func
tional encapsulation. Sometimes, a natural one, around a hardware module
such as an ethernet adapter board, sometimes one that has to be extracted
from a bundled subsystem, such as a disk inside a computer. Besides their
functional interface, they also have a management interface. Likewise, this
interface is not always a natural one, since some objects are hardware units,
and the interface has to be implemented by software structures outside them, in
some controlling station that represents their state in the best manner possible.

This model of a managed object is represented in Figure 22.1, where we can
see the separation between interfaces. The object itself is characterized by its
behavior, represented by actions invoked at the interfaces, and its attributes.
The management interface allows three kinds of actions:

operations:

action req.

information req.

results

notifications

requests invoked on the object, either to read its state,
or to modify it

to perform an action on an object, such as writing a
variable (attribute), open a port, reset a connection

to read the state of an attribute, e.g., the state of error
counters, or of a network printer

issued back to the caller by the managed object, in re
sponse to invoked operations

unsolicited information sent by the managed object to
the manager, about events observed by the object

The attributes are the object properties visible from the outside, and have
a value that depends on their nature. Some attributes are writable, others
are read-only (e.g. counters externally available, but updated internally by the
object), others are constants (e.g., identifications, network board addresses).
Part of the operations on objects are primitive operations on attributes: get ()
or read(), to obtain attribute values; replace() or write() to change the
attribute value. Complex actions, such as combined actions on object at
tributes, are represented by a template of the form application...specific().
Attributes are never accessed directly, but through the management interface,
so that the appropriate validations can be made (e.g., bounds checking, ac-

Exhibit 2026 Page 545

PARADIGMS FOR DISTRIBUTED SYSTEMS MANAGEMENT 533

LaserPrinter MANAGED OBJECT CLASS
DERIVED FROM ... (existing top class)
CHARACTERIZED BY:

BEHAVIOR
ATTRIBUTES

PrinterID GET,
MACaddress GET,
IPaddress GET,
OnLine GET,
TonerLevel GET,
CurrentTray GET,
DoubleSide GET,
TimeSincePrinterReset GET,

ACTIONS
OnOffLinePrinterToggleAction,
ResetPrinterAction,

NOTIFICATIONS
MaintenanceRequired,
OutOfPaper,
OutOfToner,

NAME BINDING
SUBORDINATE OBJECT CLASS LaserPrinter;
NAMED BY ... (existing superior class)
WITH ATTRIBUTE PrinterID;

Figure 22.2. Example of Managed Object: a Network Laser Printer

cess control, etc.). Other general actions on objects are: create(), which
creates an instance of the object; delete (), which destroys an instance; and
action (), which encapsulates one of several management functions (e.g., con
figuration, fault, performance/QoS, accounting, or security). The object can
in turn invoke a notification(), or up-call, to the manager, to inform it of
some relevant event (e.g., buffer overflow, printer out of paper). An exam
ple description of a networked laser printer as a managed object is given in
Figure 22.2. The attributes, actions and notifications are defined in the de
scription. For example, if get (OnLine) returns true, and it is followed by
action(OnOffLinePrinterToggleAction) , the printer will go off-line.

22.2 DOMAINS

Management domains are groupings of objects for the purpose of establishing
management policies. They are an important paradigm, firstly as a vehicle for
mapping management policies to mechanisms, secondly as a means for easily
executing management operations on groups of objects. The following are
examples of domains: workstations on a same LAN, managed locally; the set
of servers that form a distributed file system; the group of internal routers of
an organization facility.

Domains allow a set of operations, such as: include () and remove (), which
add or remove an object ID to a domain; list (), which lists all objects in a

Exhibit 2026 Page 546

534 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

domain; move () is built by doing include () in new domain and remove () from
old domain; create() and delete() operations, which we saw earlier, are in
fact done under the scope of domains, if the system supports them. Why? If
an object existed outside any domain, there would be no management policy
for it, and in consequence it could not be managed.

Domains have another advantage: by policy, restrictions can be established
to the operations on a domain, and certain guarantees on the correctness of
management operations can be automated. For example: a domain of Intel
machines can be set-up so that only iAPX-compatible binaries may be installed
on the objects of that domain; a domain whose objects are compatible with a
given management protocol can disallow the insertion of objects that are not.
Inside a domain, sub-sets of objects may be addressed by regular expressions,
for example (all workstations of domain LABl with Linux O.S.).

22.3 MANAGEMENT INFORMATION BASE

The management information base (MIB) paradigm is the conceptual reposi
tory of the management information. It should contain the descriptions of all
the resources relevant to the system management, such as:

• network components: hosts, gateways, routers, ...

• protocol entities: TCP, XNS, IP, X.25, ...

• dynamic objects: TCP connections, secure tunnels, ...

• administrative objects: trouble tickets, user records, installation procedures, ...

• auxiliary objects: schedules, event records, filters, ...

• application objects: services, algorithms, ...

• object attributes: error counters, flags, water marks, ...

After having introduced the managed object paradigm, it is obvious that the
MIB must be constructed in terms of the former, as depicted in Figure 22.3.
The description of the objects should be done in a common, standardized, and
structured way, for example as shown back in Figure 22.2. Note that it is
desirable that access to the MIB is automated, as much as possible. MIBs may
have a very large number of objects, and management code elements may be
reused, or applied to groups of objects, belonging to devices that are possibly
of different brands and makes. This is only possible if the description of the
objects is precise and has a well-determined content. Structured languages
exist to achieve these objectives, such as ASN.1 (Abstract Syntax Notation)
(ASN.1, 1990).

Technically, the MIB may assume several forms. It is normally distributed,
scattered through several devices. Management platforms may have more com
plex MIBs, possibly under the control of a database manager, that hold caches
or copies of managed objects residing elsewhere. In terms of behavior, a MIB
captures much of the notions we studied in the Real-Time Part of this book,
of active and real-time databases (see Chapter 13): the information stored has
temporal validity; changes in the database may cause triggers to be produced.

Exhibit 2026 Page 547

PARADIGMS FOR DISTRIBUTED SYSTEMS MANAGEMENT 535

Structured Description:

userPrlnterMANAGEDOBJECTCLASS
DERIVEDFROM.•.(existingtopcl..s)
CHARACTERIZEDBY:
BEHAVIOR

ATTRIBUTES
PrlnffH1DGET.
MAClldd,..sGET.
IPadd,...GET.
OnUn. GET.
Tonerl..vfiGET.
CurrentTf1IyGET.
Doubl.sldeGET.
T/",.SlncePrlnterR...t GET.

Figure 22.3. The Management Information Base (MIS)

22.4 MANAGEMENT FUNCTIONS

In this section we will introduce the main management functions, some of
which will be detailed in the subsequent sections: configuration management,
fault management, performance and QoS management, accounting manage
ment, security management, name and directory management. Some of these
will deserve a detailed discussion in the sections to follow.

Configuration management is concerned with analyzing and maintaining
the configuration of a network or system. It is normal that this information
is graphically displayed. Typical functions of configuration management are:
automated discovery of network topology; automated update of configuration;
remote configuration and reconfiguration.

Fault management is concerned with detecting and solving error situations.
We have studied the fundamental concepts and mechanisms relevant to fault
tolerance in Part II of this book. Let us put the subject in context with man
agement. Faults give origin to errors, which are reported in alarms. Alarms
may be divided in a few broad classes: communication, software, hardware,
environment, and non-functional attributes such as QoS or security. The alarm
may further carry a few useful parameters, such as: probable cause (e.g., the
physical fault causing the error); severity (the potential for causing damage);
origin (location of the object causing or suffering the error); and optional in
formation about a possible exceed threshold (e.g., omission degree, that is, the
number of allowed omission errors during an interval). After the alarm, comes
the solution: reconfiguring the system under operator intervention, repairing
the fault that caused the error, or tolerating the fault with redundancy. Fault
diagnosis, either by routine or after service is re-established, is desirable: con
nectivity testing, data and protocol engine integrity, link integrity (loop-back
and echo), self-test. Typical functions of fault management are: monitoring
the system to detect alarms and perform preventive fault diagnosis; alarm pro
cessing; error confinement and recovery; interfacing with operator and user
assistant tools, such as trouble ticket and help desk facilities; audit trail, i.e.
logging alarms for ulterior analysis and fault diagnosis.

Exhibit 2026 Page 548

536 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Two related functions, Performance and QoS management, address the
problem of maintaining the performance of the system within specified limits.
QoS management is a more precise measure of the non-functional attributes of
a distributed system. Performance management is more concerned with net
work metrics: speed, throughput and latency. It may include performance as
well as fault parameters, such as the allowed omission degree or error rates.
Typical functions of performance/QoS management are: general QoS param
eter measurement; monitoring of the system for detection of QoS violations,
such as network congestion, host overload, unusual delays; execution of specific
measurements, calculation of statistics and production of reports; medium-term
capacity planning, such as latency and throughput.

Accounting management has some analogies to performance management,
but its main functions focus on user metrics, such as: collection of utiliza
tion data; construction of statistics; resource usage accounting; allocation of
resource usage quotas and costing. Such as with performance management,
there are special objects devoted to accounting management. The meter con
trol and meter data objects respectively control the acquisition and storage of
accounting data, such as kilobytes of bandwidth, megabytes of disk storage,
CPU seconds, etc. One meter control object may control several meter data
objects. The usage record objects hold the relevant records of utilization per
user, that will be used to produce for example per user accounting reports.

We have already dedicated quite a few pages to security in this book. Talk
ing about Security management is talking about applying those notions in
the context of management. Part of the strategic management policy con
cerns security, and tactical management with this regard concerns the necessary
measures for the implementation of the security policy. Typical functions of
security management are thus: intrusion detection; authentication; protection
measures; contingency plans for security hazards, such as intrusion counter
measures. Security management is mostly related with how to do the mapping
or establish the correspondence between security policy, and security measures.

N arne and Directory management are two sides of a same coin. We
have already discussed the need for name and directory services in Part I of
this book (see Name and Directory Services in Chapter 4). Name and direc
tory services bear an obvious relationship with management, since in order to
manage objects, we need information about them, such as how to name them
and their whereabouts.

22.5 CONFIGURATION MANAGEMENT

The basis of configuration management is that objects make available config
uration information, in the form of attributes. The description of managed
objects relevant to configuration management is made in terms of three classes
of attributes:

• state - referring to the global state of the object, such as if it is up or down;

Exhibit 2026 Page 549

PARADIGMS FOR DISTRIBUTED SYSTEMS MANAGEMENT 537

• status - referring to detailed state variables internal to the object, such as
whether a certain functionality is available, or a certain alarm was issued;

• relation - referring to the relations among objects, such as if the object is
a replica or back-up of another.

The object state variables may for example be (Langsford, 1994): operational
whether the object is disabled or enabled; utilization- whether the object is
normally loaded (act i ve), heavily loaded (busy), or free (idle); administrative
under operator intervention (locked), or in normal operation (unlocked). All
these variables but the administrative are read-only. The status attributes de
note the object state variables visible from the outside, for example the OnLine
variable, or the OutOfPaper alarm. The relation attributes may denote that
the object belongs to a Group, or that it is the spare copy StandByOf another
object.

Planning is related with configuration management, in the sense that it pre
cedes configuration. As a matter of fact, they alternate, as the system evolves
and needs to respond to new challenges. Planning is a strategic action, and it
is very important for network or system management. In fact, we have already
mentioned that the system must have the capacity of adapting to changing
situations, of having a certain dynamics, of complying with QoS specifications.
This takes place on-line, while the system is running, it is part of the tactical
abilities of the system to respond to new situations. However, none of this can
be achieved if the system has not been configured adequately. Strategic plan
ning concerns the phase before the system is configured, or intermediate phases
where it is necessary to reconfigure the system in order that it can respond to
significant modifications of the operational conditions. It consists of taking into
account all the requirements that the system will be faced with and study con
figuration alternatives, playing with hardware and software architecture, after
which a configuration plan is prepared and executed, sometimes step-by-step,
to ensure painless commissioning.

Sometimes, a network or distributed system is already in place when a man
agement system or platform is initialized. In this particular situation, the
management platform must learn the configuration of the system being man
aged. It can be loaded manually, or the platform can find it by itself, through
automated discovery, an interesting paradigm of configuration management.
Automated discovery consists of capturing information from the environment,
in order to discover, locate, and collect information about devices, and their
managed objects. Automated discovery is straightforward when all system de
vices respond to the protocols used by the platform to perform its discovery
campaign. When that does not happen, an effort must be made to complement
it (Norton, 1994; Siamwalla et aI., 1999). Protocols at different layers may con
tribute to discovery. For example, a router may discover what is at the end of
each link it is connected to, and share this information with the other routers,
creating a topology map of the network. Any host (e.g., a bridge) can learn
about the hosts located in the LAN segment(s) it is connected to, by logging
the MAC source addresses it sees passing. These are examples of passive dis-

Exhibit 2026 Page 550

538 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

covery. In complement, there may be active discovery actions, where devices
purposely scan for new resources. In practical systems, what happens is that
the platform discovers a very large percentage of devices passively, complements
that through active discovery, and the information about configuration ends-up
being completed and tuned manually.

22.6 PERFORMANCE AND QOS MANAGEMENT

There are special objects devoted to performance/QoS management. These
metric objects serve to collect statistical information about the system evolu
tion, and have methods that compute statistical functions about the utilization
of resources, quality of the infrastructure, and so forth. These methods can be
simple averaging functions such as computing the mean of the last n samples
of an attribute, or more sophisticated ones that avoid storing n - 1 samples,
such as an exponentially weighted mean (Sloman, 1994).

QoS management has become increasingly important as QoS architectures
proliferate, for example in areas such as distributed multimedia. As a matter
of fact, it should be seen as a generalization of performance management, that
is, we could talk only about QoS management. Its goal is to ensure that a
QoS specification for a service remains within the specified parameters for the
duration of service provision. Recall that a QoS specification consists of a
list of dimensions, and values and intervals for them (see Quality-oJ-Service
Models in Chapter 13). For example:

(throughput> 1Mb/s; 100/-ls <latency < 50ms; BER < 10-5)

Once contracted, a QoS specification may be violated both by the provider
or by the contractor. In fact, ensuring a given QoS at the start of an application
is not a guarantee that the QoS will hold for the application lifetime. The prob
lem is to maintain the QoS of individual activities, supplied by resources shared
by other activities, in the presence of changes in the operating conditions of the
infrastructure. One part of the solution to the problem is monitoring the in
frastructure, to ensure that the QoS remains within the parameters, and detect
deviations early enough. This management function is assisted by QoS failure
detectors. Monitoring may indicate the systematic (statistically meaningful)
failure of a QoS parameter. This is reported up to the support middleware
or to the application, with an event notification. There are several possible
responses to this event: termination; renegotiation; adaptation. Termination
is the outcome when the application is not capable of operating with a lesser
QoS. Renegotiation takes place as an attempt of the application to contract a
similar QoS, sometimes with a different combination of parameters, or a differ
ent network support. Adaptation occurs when the application is elastic enough
to withstand the reduction in QoS, an adapt to the new operating character
istics (see again Quality-oJ-Service Models in Chapter 13). The other facet of
maintaining QoS is policing the user activity to ensure that the QoS requested
at every moment is within the contracted QoS. For example, the user might
be grabbing more bandwidth than it had contracted, possibly jeopardizing the
QoS of other applications.

Exhibit 2026 Page 551

PARADIGMS FOR DISTRIBUTED SYSTEMS MANAGEMENT 539

22.7 NAME AND DIRECTORY MANAGEMENT

Recall that a name service allows the identification and location of users and
services without requiring previous knowledge of their whereabouts. Directory
services have a broader scope than their name service counterparts. They hold
more information about subjects than just the location.

DSA1 Root
DSA2

DIT· Directory
Information Tree

Figure 22.4. Managing X.500 Information

From the management viewpoint, a directory service, more than a name
service, offers crucial support. We refer to Name and Directory Services in
Chapter 4) to show how object names and other information can be managed
in a large-scale infrastructure under X.500, as depicted in Figure 22.4. In
order to manage an object, we need to have some information about it. This
information is stored in the Directory Information Tree (DIT) , managed by
several Directory System Agents (DSA) hierarchically. DSAs are the managers
of the entities of the subsystem they subtend (shaded areas). A name can be
looked up by traversing the DIT following the distinguished name fields down
to the final leaf, the common name of the object or subject. Once the name
obtained, all the relevant information about the corresponding object can also
be retrieved.

22.8 MONITORING

Monitoring is a paradigm representing the set of activities aiming at knowing
the state and evolution of the system during its operation. It is the basis of
most tactical management functions (the reader will perhaps remember that we
mentioned the word 'monitoring' several times during our discussion of other
paradigms in this chapter). As a matter of fact, tactical management relies on
the reactive system principle: the loop of monitoring (state acquisition) and
control (state modification).

Acquisition is performed through sensors, which may be implemented ei
ther in hardware (e.g., power supply voltage drop sensor), or in software (e.g:,

Exhibit 2026 Page 552

540 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

---------------------------------------L:~:~::!-----------------------------------.

Figure 22.5. Monitoring

boolean state transition detector). Sensors are incorporated in the managed ob
ject concept, and monitoring is characterized by interactions that extract state
snapshots and collect events from managed objects, as presented in Figure 22.5.
The monitoring subsystem must acquire information both by polling or sam
pling the managed system state (solicited operations to the managed object)
and by capturing all the events produced by the managed system (unsolicited
notifications from the managed object). In this matter, monitoring incorpo
rates notions on input-output sensing and actuating, studied in the Real-Time
Part of this book (see Chapter 12).

22.9 SUMMARY AND FURTHER READING

This chapter addressed the main paradigms available to the systems architect
in order to implement the management models that we discuss next. Namely,
we discussed managers and managed objects as the fundamental actors, the
role of domains in structuring management operations, the MIB (management
information base) as the conceptual central repository and representative of
the structure and state of the resources, and the main management functions,
of which we followed with detail: configuration, performance and QoS, name
and directories, and monitoring. For a deeper study on the paradigms debated
in this chapter, see (Hayes, 1993; Sloman, 1994). Namely, Hutchison et al.
do a treatment on quality of service management, Zatti addresses name and
directory management. See also a CORBA-based QoS management framework
in (Hong et al., 1999). Further material on fault detection and alarm correlation
can be found in (Ricciulli and Shacham, 1997; Lewis and Dreo, 1993; Hood
and Ji, 1996). An application of the domains paradigm to role-based enterprise
management can be found in (Lupu and Sloman, 1997). A study on information
push and pull paradigms applied to web-based management is done in (Martin
Flatin, 1999). In (Crane et al., 1995; Fossa, 1997), object-oriented and graphical
configuration management environments based on the Darwin (Magee et al.,
1993) language are presented.

Exhibit 2026 Page 553

23 MODELS OF NETWORK AND

DISTRIBUTED SYSTEMS MANAGEMENT

This chapter aims at giving the reader a global view of the problem of manage
ment. After studying several paradigms, we see how they fit in several models
for management of networks and distributed systems. We start by presenting
management frameworks: functional, such as configuration, management, mon
itoring; and structural, such as the tool and platform levels. Then we discuss
the strategic alternatives the architect is faced with, clarifying the difference
between strategy and tactics, and the subtleties between distribution, central
ization and decentralization. Finally, specific models for distributed systems
management are presented.

23.1 MANAGEMENT FRAMEWORKS

Network or Distributed Systems Management? It is important to em
phasize the difference between network and distributed systems management
again in this context. The framework of network management is focused on
communication, and is the more mature branch of management. Network man
agement (NM), or the telecommunications management network (TMN) are of
course adequate frameworks for telecom or computer network operators. Dis
tributed systems management (DSM) has the broader scope of system support
and application processing, in addition to networking support and communica
tion. In our opinion, it is very advisable for an enterprise to talk about DSM
whenever possible, despite eventually having a considerable networking infras-

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 554

542 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

tructure. The end purpose of most networking facilities we see today is the
support of distributed applications for organizations and for public use. DSM
is the adequate framework for that level of abstraction, whereas NM is the
framework to be considered by whoever is providing the infrastructure, be it
network operators, or the organization itself, or both.

Configuration Together with planning and development, configuration, that
we addressed in Section 21.3, materializes the framework of preparation of
the hardware and software architecture of the system. This involves selecting
the hardware and software components, and then placing and interconnecting
them. We also discussed structured configuration methods in order to improve
manageability of the system. In essence, successful configuration depends on
how well a few desirable characteristics are mastered:

• graphical programming- easy placement and interconnection

• well-defined components- modularity and encapsulation

• modeling of behavior and interactions- precise interface specification

Management Understood as the set of activities concerned with ensuring
the correct operation of the system while at work, management is concerned
with tactical issues, also called short-term management, as opposed to strategic
or long-term management. In Section 22.4 we saw that the main management
functions are: configuration management, fault management, performance and
QoS management, accounting management, security management, name and
directory management. These management functions are performed by man
agers, as we saw in Section 22.1. They operate on managed objects, either
directly, or through agents that establish a hierarchy, or through proxies that
implement gateway functions, as we will see in Section 23.3. The management
information model is materialized by the Management Information Base, or
MIB. The MIB, introduced in Section 22.3, is the conceptual repository of all
the information relevant to management. We will see that there are several
standard MIB formats in Sections 24.1 and 24.2.

Monitoring Introduced in Section 22.8, monitoring is the framework of real
time supervision of the state and of the evolution of the system. It assists most
of the management functions. Note that management functions are structured
around the MIB, and a good part of the content of the latter refers to time
sensitive information that resides on the managed objects (e.g., error counters,
number of open connections, used memory). Besides, a great deal of on-line
or tactical management operation is event-triggered, that is, managed objects
send information up (notifications) that need attention, processing and -timely
reaction. In consequence, we need a monitoring subsystem that follows these
events and extracts state information in real-time: periodically for state sam
ples, and upon their occurrence for events. We are going to present a complete
monitoring model in Section 23.9 that foresees data processing capabilities, dis
semination to peer managers, and graphical presentation facilities. The reader

Exhibit 2026 Page 555

MODELS OF NETWORK AND DISTRIBUTED SYSTEMS MANAGEMENT 543

will note a few keywords relevant to monitoring that have been introduced
in the Real-Time part of this book: timeliness; sensing and actuating; event
triggered.

The Tool Level Structurally, management and monitoring functions are per
formed by special applications that we call management tools. Tools specialize
in one or a few functions and are normally installed at the manager location.
For example, we can have a configuration management tool, or a security man
agement tool. The console from where the tool is run is the operator's console
for those functions. We will discuss tools in Section 24.4.

The Platform Level Obviously, a fully-fledged management facility requires
a comprehensive set of management and monitoring functions. A platform is
a set of tools integrated in a single package, such that the different tools share
common information acquired from the managed objects, and have similar,
if not common, interfaces. Platforms can be distributed, but they can be
controlled from a single location, where the management console is instantiated.
We will discuss platforms in Section 24.5.

23.2 STRATEGIES FOR DISTRIBUTED SYSTEMS MANAGEMENT

Strategic Management Strategic management has a long-term view of the
system. It starts with system planning and configuration. Strategic planning
aims at replying to requirements and casting them into the configuration of
the system. Once the system configured, strategic management is about estab
lishing management policies, that is, preparing for the tactical management of
the system. Systems should not be managed ad hoc. Worse than not having a
management platform is installing such a platform without knowing precisely
what to do with it. Strategic management decisions are things such as deciding
about restrictions of access and space quota to the public FTP directory per
class of outside and inside user, or defining the backup policy with regard to
periodicity and completeness, per class of service and user.

Tactical Management Tactical management is the real-time, reactive, and
short-term part of systems management. Supposedly educated by a manage
ment policy, tactical management concerns the execution of several manage
ment functions, processing information obtained by monitoring. Tactical man
agement is a good part of the management activity, and most of the actions
are concerned with responding to unforeseen situations, raised by events and
changes in state variables. Tactical management decisions are for example es
tablishing disk quotas for the FTP directory given an actual disk capacity,
increasing the disk quota upon the organization of an event by the institution,
or implementing an automated hierarchical and periodic backup procedure.

Distributed Management or Distributed Systems Management? Dis
tributed management is about managing systems in a distributed way. Dis-

Exhibit 2026 Page 556

544 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

tributed systems management is about managing distributed systems. Obvi
ously, distributed managing of distributed systems seems a good idea, but we
are really talking about different things. Note that management is classically
centralized, in the person of the manager, who runs a management console,
from where she controls the system. This characteristic does not need to change
because a system is distributed. In fact, networks have a great geographical
dispersion, and they have been managed in a non-distributed way for years.
On the other hand, a great deal of the existing distributed platforms follow
paradigms that aim at achieving distribution transparency, that is, hiding dis
tribution from the users, and making the system look as a huge single virtual
machine. It may even be a good strategy for small-scale homogeneous systems.

But that characteristic should change when the system is not only distributed
but is also heterogeneous, has geographical dispersion and is possibly large
scale. As we noted in Section 21.2, the fact is that the proliferation of het
erogeneous and large-scale distributed systems and networks made it impossi
ble to do centralized management of these complex infrastructures in a non
distributed way. Distributed protocols and algorithms are necessary to: handle
the correct execution of remote operations as if they were executed from the
central console, perform manager-initiated group operations and information
dissemination reliably, manage replicated information, and so forth.

Centralizing or Decentralizing? The last paragraph prefigures a strategy
that favors the use of distributed techniques in support of centralized manage
ment, as an artifact of the solution to problems such as heterogeneity, scale,
unreliability, inconsistency, etc. What is caIled integrated management takes
the use of distributed techniques even further, in order to run the management
protocols and applications themselves as distributed protocols and applications,
albeit from a central locus of control. It is a centralized management strategy
where transparency is achieved as much as possible through the use of some
times sophisticated distribution techniques. However, note that this attitude
maintains the classical manager-centric view of management. Alternatively,
we may follow a strategy in favor of decentralized management of a distributed
system. In this case, distribution appears as a natural consequence of the au
tonomy of the local systems. The same techniques that have recently been used
to support autonomous and cooperating distributed applications may be used
for these management systems, such as request brokers, message buses, and so
forth (see Chapter 4). The several models for centralized, decentralized and
integrated management will be addressed in Sections 23.4, 23.5, and 23.6.

23.3 A GENERIC MANAGEMENT MODEL

A generic management model is presented in Figure 23.1, in terms of which
all specific models that we encounter can be described. The manager is the
entity that executes management functions on, and collects information from,
the managed objects, either directly or through assisting components. In fact,
managers may access managed objects in one of three ways:

Exhibit 2026 Page 557

MODELS OF NETWORK AND DISTRIBUTED SYSTEMS MANAGEMENT 545

• directly;
• through agents in which they delegate direct access to objects;

• through proxies, to access alien resources.

Managers typically reside in the management console host, whereas agents
and proxies normally reside in managed hosts, and control a set of devices,
for example those of the host itself, or those of a LAN segment where the host
resides. The interactions shown in dashed lines between manager and agent are
in fact performed by management communication protocols. The same
happens with agents and managed objects when residing in different sites, or
with managers and managed objects when accessed directly. These protocols
are either proprietary or standardized, though the trend is for a standardization
of all management access, for example through the ISO CMIP or the Internet
Simple Network Management Protocol (SNMP). Managed objects are shown
as possessing two interfaces, the functional interface, from where it is possible
to make the object perform its functions, and the management interface, from
where it is possible to manage the object.

;;;); :>~
,.;

y '" :,"1' :~.:::

:;
MANAGER

f~~i'~lt~lllllli'- ~ :'\ .~

..~;::, '.~
.,.:': ,~:::"::,,,

.
OW' OW' ..- - .., !

InIO"'T~..

;; ;, :> ";'!;' .:>:;";, ii .i,

~ • Functional interfaces ~ • Management interface

Figure 23.1. Generic Management Model

Agents As sub-managers, so to speak, agents perform operations on behalf of
the high-level managers. As show in Figure 23.1, the agent accesses the objects
through operation requests, in result of high-level commands issued to it by the
manager. It gets results and notifications from the objects it subtends, which it
forwards to the manager. The manager may access managed objects directly,
a situation appropriate to small systems, corresponding to the configuration
where the dotted 'agent' box disappears in Figure 23.1, and the manager uses
the management communication protocols to issue requests, get results, and
receive notifications.

The agent concept is inspired by a "hardware" view of the system, the view
partaken by the ISO OSI model. In an abstract view of the system, for exam
ple that conveyed by the ODP model, instead of being special components, the
manager and the agent are both objects. The manager object accesses man
aged objects directly or delegates in an agent, which becomes in fact a composite

Exhibit 2026 Page 558

546 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Figure 23.2. Management Hierarchy

managed object. That is, the agent presents the manager with a managed object
interface, so that all the manager sees are objects. However, the agent behaves
as a manager to the objects below on behalf of the actual manager. This renders
the model homogeneous, since the manager accesses composite objects as nor
mal managed objects, through their management operation-result-notification
interface, and these objects access in turn a cluster of actual managed objects,
through the same kind of management.interface.

Hierarchy By recursing the manager-agent relation, one may introduce hi
erarchy in the model. This is extremely useful when managing large-scale
architectures, and/or when the system architecture is itself hierarchical. As
shown in Figure 23.2, the agent offers a "slave" interface to the manager, while
acting to the layer immediately below- another agent- as a mid-level man
ager, and so forth. Note that the 'composite object' model also fits perfectly
in a hierarchical structure: an object is a manager for a collection of managed
objects below, but is a managed object to the upper layer manager object, and
so forth. Delegation is the mechanism for introducing decentralization down
the hierarchy (Goldszmidt and Yemini, 1995). Managers may delegate an in
creasingly higher level of functionality on the agents, conferring them the sort
of properties (e.g., autonomy, reactivity, pro-activeness) that ultimately lead
to highly decentralized structures based on intelligent and/or mobile agents
(Sahai and Morin, 1998; Zhang and Covaci, 1997).

Figure 23.3. Management Cooperation

Exhibit 2026 Page 559

MODELS OF NETWORK AND DISTRIBUTED SYSTEMS MANAGEMENT 547

Cooperation Agents may cooperate to fulfill a management activity. Rather
than hierarchical, this establishes a peer-to-peer relation between agents or
mid-level managers. As suggested in Figure 23.3, agents cooperate in order to
perform a complex management task, exchanging information and operation
requests. Hierarchy and cooperation may be combined: cooperation relations
may be established between the agents of a given level of the hierarchy. These
agents may have a one-to-one relationship with a manager, or a one-to-many
relationship, understood as a collective delegation from the manager to a group
of agents, in order to perform some task. Inside the group, agents establish a
many-to-many, or cooperative relationship. For example, the manager-agency
paradigm (Post et aI., 1996) defines a specialization of the manager-agent hi
erarchy, where a cluster of agents can be grouped in an agency, which has a
common management policy, and consistency requirements among its members.

Figure 23.4. Proxy Management

Proxies There must be a way of accessing alien devices, that is, devices that
implement a different management communication protocol, proprietary or not,
or do not implement any protocol at all (for example because they are too sim
ple, or just passive). In this case, a proxy agent or object acts for the manager
as a normal agent or a managed object, and they both communicate through
the management communication protocol of the architecture, as depicted in
Figure 23.4. On the other end it dialogues with the alien resources in whatever
manner necessary, sometimes through direct wired connections. In essence, it
plays the role of a gateway in a communication stack or of a transformer in an
object model.

23.4 CENTRALIZED MANAGEMENT MODEL

Centralized local management is the classical model, inspired by the traditional
mainframe-oriented "computing center" concept. Homogeneity and geograph
ical concentration made integration happen naturally. The structure was also
compact in terms of personnel, who resided at a single central facility. With
the advent of networking, a simple management tool would extend the existing
functionality to manage the network infrastructure. This model was challenged
when the use of networks expanded, and it became necessary to coordinate sev-

Exhibit 2026 Page 560

548 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

eral clusters of resources, either because they lived in different locations or had
heterogeneous functionality.

Mgt.
Tool

Ad-hoc Operations Ad-hoc Operations

Mgt.
Tool

Resources

D CJ

DOD
Resources

D CJ

ODD
Resources

D CJ

o 0 [
Figure 23.5. Islands of Management in the Centralized Model

This first attempt at the transposition from local to distributed management
originated what we may call islands of management. This primitive model re
lied on simple tool and protocol level scripts and file transfers in order to loosely
coordinate operations, but it retained all the autonomy of each island, as de
picted in Figure 23.5. The islands preserved the computing-center model of
management, originating a syndrome of competing power by the local man
agers. This situation conflicted with the increasing integration of information
in each enterprise, requiring tighter coordination.

23.5 INTEGRATED MANAGEMENT MODEL

Management had inevitably to attain the desired level of integration, which
was achieved in this evolution interim through mobile management teams, to
execute the same actions at all sites, or through a greater cooperation between
the autonomous management teams, to a large extent manual.

~
~
Integrated Platform Operations

Tool Integration platform (RPC, APls, management algorithms and protocols)

Resources

D CJ

DOD
Resources

D CJ

DOD
Resources

D CJ

DOD
Figure 23.6. Integrated Management Model

Exhibit 2026 Page 561

MODELS OF NETWORK AND DISTRIBUTED SYSTEMS MANAGEMENT 549

The integrated management model solves the conflict, by allowing man
agement to be organizationally centralized, both strategically and tactically,
without incurring the shortcomings of physically centralized management. Ma
jor·strategic decisions impact all subsystems in the same manner, and tactical
management actions are performed in a centrally coordinated way. However, by
resorting to the adequate distributed systems techniques, this model achieves
a separation of concerns between the organizational and technical levels. Tech
nically, management actions can be performed remotely, in a distributed man
ner, from a management platform. This platform is location independent. The
model is shown in Figure 23.6. Integration has two facets: running several tools
in a coordinated way; and managing the whole of the system resources in the
several subsystems. Amongst the necessary techniques are: remote operation
support (remote session, RPC); APIs common to several tools; distributed algo
rithms/protocols, such as management communication protocols; and common
information formats (e.g. MIB). More recently, a form of integrated manage
ment, web-based management, emerged and became quite fashionable. It takes
advantage of web technologies to implement lightweight client-server models
(see 3-tier Client-server Architectures in Chapter 1). The form-based remote
access mechanisms improve tool interface integration around the HTTP-HTML
panoply, and allow lightweight, highly location-independent access.

23.6 DECENTRALIZED MANAGEMENT MODEL

The integrated management model is technically distributed, but still organi
zationally centralized- in philosophy and operation. This situation conflicts
with the increasing integration of distributed applications in geographically
distributed enterprises, and across enterprises, in enterprise networks. In these
scenarios, chances are that organizations wish to retain a certain autonomy in
managing their facilities, while still contributing to the operation of the whole
large scale distributed system, in sort of a federated way.

Mgt.
Application

Mgt.
Application

Mgt.
Application

.--------- Integrated Application Operations

Application Integration platform (e.g. object request broker)

@ @ @Tool Tool Tool

Resources Resources Resources

D CJ D CJ D CJ

D DO D DO D DO
Figure 23.7. Decentralized Management Model

Exhibit 2026 Page 562

550 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

The decentralized management model is based on two premises: distributed
and decentralized tactical management; more or less decentralized strategical
management. The model is depicted in Figure 23.7. Local subsystems have
local tactical management, with the necessary tools and/or platforms. Coordi
nation is achieved through an integration platform. Given the structure of this
model, the level of abstraction of the integration platform is necessarily higher
than that of the integrated management model. For example, it could be at
the level of an object request broker through which high-level applications dia
logue with the local platforms, gathering information and providing high-level
directives. Such as with political models, strategic management decentraliza
tion assumes several degrees, from confederated models to federated models.
That is, the degree of freedom of local management, or in opposite terms, the
degree of control exerted by the applications on local management platforms,
may vary.

The agent paradigm has assumed great importance in the development of
decentralized management models. Mobile agents have been used for build
ing decentralized management architectures, exemplified in several works: the
Java-based mobile intelligent agent framework discussed in (Zhang and Co
vaci, 1997), or by the 'mobile network manager' concept implemented by the
MAGENTA environment (Sahai and Morin, 1998). Using the principle of del
egation already discussed in Section 23.3, managers commit specific functions
to mobile agents that execute them in remote parts of the system. Agents may
even itinerate through the system to perform their function. Mobile agents
partake the same security concerns that have already been pointed out to
Java(McGraw and Felten, 1997; Garfinkel and Spafford, 1997). However, if
these problems are adequately addressed, mobile agents may become the main
paradigm for decentralized systems management.

Note that we have described the several generic models in an evolving way.
Arriving at decentralized management through integrated management, even
if only conceptually, considerably helps the understanding of the problems of
distribution and decentralization, and the important difference between the
two that we have always emphasized throughout this part of the book. Next
we describe some models in particular, such as OSI, ODP, monitoring, and
domains.

23.7 051 MANAGEMENT MODEL

In relation to our generic model, the OSI Systems Management model is largely
based on the manager/agent duality. This duality is exclusive, that is, a man
ager cannot interact directly with the objects subtended by an agent. Managed
objects are external representations of the devices (hardware or software) they
manage, and as such the conceptual functional and management interfaces do
not always co-reside.

The management information representation (MIB formats, etc.) is specified
in the standard Structure of Management Information (SMI) (IS010165, 1992).
OSI foresees several of the management functions we have discussed in the last

Exhibit 2026 Page 563

MODELS OF NETWORK AND DISTRIBUTED SYSTEMS MANAGEMENT 551

chapter, namely, configuration, faults and alarms, monitoring and event man
agement, log control, performance, accounting, and security. These are speci
fied under standard Systems Management Functions (SMF) (IS010164, 1992).
The architecture is depicted in Figure 23.8, and relies on the full OSI com
munication stack up to Layer 7, including accessory Layer 7 services such as
ACSE (Association Control Service Element - ISO 8649/8650) ana ROSE (Re
mote Operations Service Element - ISO 9072-1/2). There are essentially three
categories of management entities: layer management, common management
information; system management applications.

Syst. Mgt
Application~~ ---,

Process Systems Mgt I
(SMAP) Application

Entity (SMAE)

Systems Management Protocols-4-----------------------------__

Common Mgt Common Mgt
Information Information
Protocol I ...---~ Protocol
(CMIP) (CMIP)

Layer 051 I
Mgt Comm's

Entities Stack
(LME) (Layers

1-7)

Layer Mgt
...- ~ Protocols

(LMP)

Layer Mgt
Protocols

(LMP)

Common Mgt
Information

Service Entity
(CMISE)

051 Layer
Comm's Mgt
Stack Entities

(Layers (LME)
1-7)

.' /

Figure 23.8. 051 Management Model

The OSI model intends the communication layers to have tactical manage
ment capability. These low-level functions are simple and autonomous, and
normally do not require high-level intervention. They are typical of real-time
management functions that can be automated and need be performed respon
sively. For example, reconfiguring the medium after a ring fault in a token
ring network, recovering the token after a loss in a token bus, or rerouting
in a wide-area network on account of a link failure. These functions are per
formed by the Layer Management Entities (LME) , through appropriate Layer
Management Protocols at each of the lower OSI layers.

Next, the Common Management Information Service Entities (CMISE) de
fine the interaction types between managers and agents. They are based on the
connection-oriented remote operation paradigm (request-response), although
certain responses are optional. These interactions are performed by the Com
mon Management Information Protocol (CMIP) , which interprets for OSI the
management communication protocol foreseen in the generic model. CMIP re
sorts to ACSE to establish an association (an application-level connection in
OSI), and then to ROSE for the request/reply interactions. The main primi
tive classes supported by CMISE are: association, operation, notification. All
begins with establishing an association with a remote managed host. Then

Exhibit 2026 Page 564

552 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

several operations can be issued, such as create and delete, respectively to
create a new managed object, or delete it, or to access attributes, such as get
to request the value of an attribute, or set, to set its value. Managed hosts
may issue unsolicied notifications with event-reports.

The CMISE primitives are essentially a template for primitive operations
on the MIB objects, which may be combined into more complex sequences.
These complex operations are requested by Systems Management Applications,
supported on Systems Management Application Entities (SMAE). The man
agement applications run cooperatively in Systems Management.A.pplication
Processes (SMAP), that is, between a Manager SMAP and Agent SMAPs, as
depicted in Figure 23.8.

23.8 ODP MANAGEMENT MODEL

We saw that under the OSI philosophy, the managed objects are entities ex
ternal to the components they represent. If the component is hardware, this is
normal. However, if it is for example a protocol process, it would not be neces
sary, and introduces coherence problems that might be avoided if the managed
object state resided with the component itself. This is the approach of the ODP
management model, which relies on the fact that all components are objects.

In terms of our generic management model, the manager and the agents
if they exist- are fully-fledged objects. Managed objects comprise both the
functional and the management interfaces, such that the management function
ality is part of the object, unlike the OSI model. Objects can be arranged in a
manager jmanaged-object hierarchy according to the structure and scale of the
system.

Operations, Notifications

1:::W!%'i~~~]ii>r~i~!lWml

Figure 23.9. ODP Management Model

A simplified view of the ODP management model is presented in Figure 23.9.
Note that conlponents are wrapped with all the necessary functionality to man
age and be managed, including the management interface, the methods per
taining to the management functions that we studied, and the state in the
form of MIB elements. This configuration accounts for the use of the term
self-managed object in ODP.

Exhibit 2026 Page 565

MODELS OF NETWORK AND DISTRIBUTED SYSTEMS MANAGEMENT 553

23.9 MONITORING MODEL

Monitoring is horizontal to many management functions, and it may be complex
enough to be structured as a subsystem in a management architecture. A
fairly complete model of monitoring (Mansouri-Samani and Sloman, 1994) is
presented in Figure 23.10:

• acquisition- the monitor acquires information from the system being mon-
itored: state reports; event reports

• processing- the raw information is treated

• dissemination- treated information is sent to other units

• presentation- information is presented at the management consoles

Report Forwarding
Conditions

Discriminator: Trace"
Filtering, Validation
&Merging Criteria

State
Analysis

Conditions

(reply to request
or pre-programmed) Lo-:.,;"......:-:..:.-.;....;.~~,p.;.I

Event
Detection/Rep.

Conditions

(unsolicited)

Figure 23.10. A Model of Monitoring

Sampling and polling are parameterized by pre-defined conditions. Event
detection and reporting conditions are also parameterized. Several conditions
influence event detection, such as: intrusiveness, the measure in which the
sensor disturbs the managed object; location, whether detection is internal to
the managed object, or external, e.g., by sampling; promptness, whether the
event is detected immediately it takes place, or in a deferred manner, by record
analysis. This raw information is often post-processed, since it is sometimes
necessary to obtain the information in other forms. This involves several kinds
of functions, such as: generating composite variables, such as means, rates or

Exhibit 2026 Page 566

554 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

counters; building histograms; filtering glitches out; validating, such as checking
bounds; merging data from different sources. Processing takes place under
several classes of procedures, such as: construction of attribute traces during
pre-defined intervals, merging of different traces, validation and filtering of
results, updating of the MIB.

One of the functions of monitoring is to generate reports:

• event reports - such as the depassing of thresholds, or occurrence of errors

• state reports - amount of memory allocated, current network connections

• solicited (or on-request) reports - observation and report generation of
state variable samples triggered by the manager at pre-defined instants

• unsolicited (or on-demand) reports - event report generated by the
managed object, triggers the observation at the adequate moment, under
several event detection conditions

In a distributed system, the treated information is disseminated between
managers, and presented, normally in a graphical way (histogram bars, graph
ics, charts, meters and counters, and so forth), to the operator.

23.10 DOMAINS MODEL

The concept of domain has been introduced earlier. Let us look at domains
as a model for structuring managed objects (Sloman and Twidle, 1994). Do
mains help coping not only with scale, but also with heterogeneity, both of
resources and of their management policies. Domains can establish indirection,
grouping, and hierarchy. Domains do not establish encapsulation. Indirection
derives from the way objects are referenced. Each member object has a unique
identifier, which provides an indirection to it. Objects are grouped in a do
main. The object set (or policy set) of a domain is the identification of the
group of objects belonging to that domain. The object set can be referred to
collectively, through a group identifier. An object can belong to more than
one domain. Finally, domains accept hierarchy: a domain may be member of
another domain.

01

04

(~~)

01 02

(a) (b)

Figure 23.11. Domains Model: (a) user view; (b) implementation view

Exhibit 2026 Page 567

MODELS OF NETWORK AND DISTRIBUTED SYSTEMS MANAGEMENT 555

What was said above suggests the three possible relations between domains:
A disjoint from B (distinct domains); A overlapping with B (objects in more
than one domain); A contained in B (hierarchical domains). An example of
a collection of objects defined in terms of domains is given in Figure 23.11.
Figure 23.11a provides the user view. It shows that there exist four domains D1
through D4. The structure was chosen to emphasize the relations we have just
mentioned. Note that D4 is disjoint from any other. 03 belongs simultaneously
to D1 and D2, so the latter overlap. D3 is contained in D2. Figure 23.11b
provides the implementation view. Observe that objects preserve whatever
status they have in the system: there is no encapsulation, the domains data
structure "points" to objets instead.

23.10.1 Policy and Role Based Management

Domains offer an adequate basis for establishing management policies. Policy
based management has been gaining importance in the measure that systems
grow bigger and more complex. Policies establish relations between subjects
and objects, or between managers and managed objects, with a view of spec
ifying implementation-independent behaviors, such as authorization, and obli
gation.Policies have been used recently to specify security, and QoS, to name
a couple.

Policies enable the application of role theory to management. Role-based
management consists of the definition of roles in an organization, and of obli
gation and authorization policies to specify role relationships and interactions
(e.g., client-server, producer-consumer, peer-to-peer). An application of the
domains paradigm to role-based enterprise management can be found in (Lupu
and Sloman, 1997).

23.11 SUMMARY AND FURTHER READING

In this chapter, we discussed the main models of distributed systems manage
ment. The first objective of the chapter was to provide insight to the systems
architect on the main strategies and frameworks available. The second ob
jective was to discuss the main management models in a problem-oriented
manner, establishing links, whenever possible, to the paradigms learned in
the previous chapter. The models were purposely described in an evolving
way, trying to clarify in the mind of the reader the sometimes subtle issues
at stake in the checkboard of management: distribution and decentralization,
policy and politics, scale and heterogeneity, interconnectivity and interdepen
dency, etc. For further reading, please see (Tschichholz et aI., 1996). A recent
survey on distributed systems management can be found in (Martin-Flatin
et aI., 1999). Management policies are discussed in (Wies, 1994; Koch and
Kramer, 1995; Lupu and Sloman, 1997). More recently, mobile and intelligent
agent technologies have been proposed for distributed systems management
(Magedanz and Eckardt, 1996; Zhang and Covaci, 1997). An excellent survey
on, and evaluation of, mobile code approaches in management can be found

Exhibit 2026 Page 568

556 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

in (Baldi et aI., 1997). Fault-tolerant systems management in the scope of
ODP is discussed in (Powell, 1991).

In (Hegering and Abeck, 1994) a detailed discussion is found on integrated
management, as well as interesting notions on strategical management issues.
A detailed study of the monitoring model is given by Mansouri-Samani and
Sloman in (Mansouri-Samani and Sloman, 1994). The OSI Management Model
is addressed with detail in both of the above-mentioned works. For the ODP
model in general, see (ODP, 1987). Fusion between the ISO stack model and
the ODP object model has been tried by several research groups (Deri and Ban,
1997; Znaty et aI., 1995; Banker and Mellquist, 1995; Mazumdar, 1996). ISO
has endorsed the 'domains' concept in management, and it is used in several
documents, e.g., in (IS010040, 1992). A detailed specification of a domains
model was produced in the scope of project DOMINO, a revised version of
which can be found in (Sloman and Twidle, 1994).

The Telecommunications Management Network (TMN) model addresses the
management of telecommunication networks (Aidarous and Plevyak, 1998).
These networks have evolved from essentially dumb copper infrastructures to
fully-fledged distributed systems (Znaty and Hubaux, 1997). This evolution is
related with the Telecommunications Intelligent Network Architecture (TINA)
framework. Material on this subject can be found in (Sloman, 1994; Dupuy
et aI., 1995).

Enterprise management has a connection with systems management, which
involves managing systems and networks from the perspective of the company
organization and of human cooperation. It is a relevant subject for a deeper
approach into managing large-scale corporate systems, and some notes on the
subject can be found in (Daneshgar and Ray, 1997).

Exhibit 2026 Page 569

24 MANAGEMENT SYSTEMS AND

PLATFORMS

This chapter gives examples of management systems and platforms. Namely,
we discuss ISO (CMISE/CMIP) and Internet (SNMP) management services
and protocols, standard MIBs, management tools and platforms, and the Dis
tributed Management Environment (DME). We finish the chapter with a pre
sentation of several tools specifically addressing security management. In each
section of the chapter, we will mention several examples in a summarized form,
and then will describe one or two of the most relevant in detail. Table 24.6 at
the end of the chapter gives a few URL pointers to where information about
most of these systems can be found. The table also points to the IETF Request
for Comments, ISO and ITU sites, where any cited standards can also be found.

24.1 CMI5E/CMIP: 150 MANAGEMENT

Recall, as introduced in Section 23.7, that ISO management is based on a
set of services, CMISE, Common Management Information Services (CMISE,
1988), and that those services are implemented by a management communi
cation protocol, CMIP, Common Management Information Protocol (CMIP,
1988). CMISE is organized around three classes of services: association, oper
ation, and notification. The main primitive services of CMISE are:

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 570

558 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

common
management
association

management
operation

management
notification

o m-initialize, m-terminate, and m-abort, respectively to
start, terminate or abort a management connection

om-get and m-cancel-get., respectively to request the value
of an attribute, and cancel that request while pending;
o set, to set the value of an attribute;
o action, to invoke a specific action on a managed object,
for example, request head cleaning of a printer;
o create and delete, respectively to create a new managed
object, or delete it

o m-event-report, to issue agent-to-manager notifications

According to the specific management needs, managed hosts may imple
ment several types of management associations: event; event/monitor; mon
itor/control; full manager/agent. The event association is used for example
when we want a simple device to send nothing but notifications to a manager
host, using only management notification services. The event/monitor associa
tion allows the manager to read (monitor) the status of devices, in addition to
receiving events. The monitor/control association is typically used for configu
ration of a system. The full manager/agent association is obviously used when
we wish to impose no restrictions on the operations between two hosts.

event
association

event / monitor
association

monitor/ control
association

full manager/agent
association

hosts only send m-event-report messages

additionally uses operation service m-get

uses all management operation services, but does not
use management notification services

implements all CMISE services enumerated above

As we explained in Section 23.7, CMIP interprets requests from CMISE, and
uses the ACSE and ROSE protocols to reach remote hosts. There is a fairly
straighforward mapping between the management operation and notification
CMISE services and CMIP primitives or protocol data unit types (PDUs). This
relationship is shown in Table 24.1. For a notification, CMIP entities exchange
m-Event-Report, and then m-Event-Report-Cfm as a confirmation. Getting
data is done by m-Get primitives. In response, one or more m-Linked-Reply
PDUs are returned with the requested data. The interaction may be canceled
,while pending by an m-Cancel-Get-Cfm PDU. Setting attributes is done with
m-Set, and confirmed with m-Set-Cfm. Actions are triggered by m-Action
PDUs. They may be confirmed with m-Action-cfm, or with m-Linked-Reply,
when a result must be returned.

Exhibit 2026 Page 571

MANAGEMENT SYSTEMS AND PLATFORMS 559

Table 24.1. CMISE services and CMIP PDUs

Interaction I Service I Protocol (CMIP)

notification
get data
cancel get
set data
action
create
delete

M-EVENT-REPORT
M-GET
M-CANCEL-GET
M-SET
M-ACTION
M-CREATE
M-DELETE

m-Event-Report, m-Event-Report-Cfm
m-Get, m-Linked-Reply
m-Cancel-Get-Cfm
m-Set, m-Set-Cfm, m-Linked-Reply
m-Action, m-Action-cfm, m-Linked-Reply
m-Create
m-Delete

24.2 SNMP: INTERNET MANAGEMENT

Simpler, but less powerful and versatile than CMISE/CMIP, the implemen
tation of the Simple Network Management Protocol or SNMP (RFCl157),
is on the other hand more straightforward, and has spawned its success in
the Internet world and not only (see also RFC1155, the Internet Structure
of Management Information - SMI). SNMP has evolved since its inception,
through SNMPv2 (see mainly RFC1901, RFC1902) and is currently SNMPv3
(see mainly RFC2271, RFC2274). SNMPv2 introduces a more elaborate struc
ture for the SMI. Whereas SNMPv1 only supported TCP/IP, SNMPv2 is mul
tiprotocol: IP, Appletalk, Novell IPX, ISO Connectionless Network Protocol
(CLNP). Whereas in the CMISE framework managed hosts or agents may
be asked to perform complex actions, in SNMP agent-side interactions are
mostly reduced to reading and writing attributes. The SNMPv2 workplan ad
dressed security aspects, but only with SNMPv3 were these finally addressed,
in 1998 (Stallings, 1998). The main evolution brought by SNMPv3 was to es
tablish a common framework for incorporating security in all SNMP versions.
More recently, agent technology was introduced in SNMP, through the Agent
Extensibility (AgentX) Protocol (RFC2257), which allows communication be
tween master agents and subagents.

With relation to the generic model presented in Section 23.3, the SNMP man
agement model is based on the manager/agent relation, the SNMP station, and
the SNMP agent. It also supports proxies. SNMPv2 supports hierarchy, in the
form of intermediate manager/agents, or mid-level managers. Typically, agents
reside in managed nodes (PCs, WSs, network printers, routers, and so forth),
from where they control the devices they subtend. SNMP services and PDUs
are shown in Table 24.2. Note that there are no actions defined, as we already
had mentioned. SNMP only allows simple reading and writing of attributes
(Get-req and Set-req), and notifications from agents (Trap). The response to
any request comes in the form of a single response PDU, Resp. When getting a
structure, such as a table, Get-next-req PDUs are used after the first Get-req
PDU, returning the next element of the structure in order. Inform-req and
Get-bulk-req were intr8duced in SNMPv2. Inform-req supports unsolicited

Exhibit 2026 Page 572

560 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 24.2.

Interaction

notification
get data
set data
information
get bulk data

SNMP services and PDUs

Protocol (SNMP)

Trap
Get-req, Get-next-req, Resp
Set-req, Resp
Inform-req, Resp
Get-bulk-req, Resp

manager-to-manager communication, to exchange and/or disseminate informa
tion about management operations. Get-bulk-req optimizes the reading of
large amounts of data, which was awkwardly done in SNMPvl with a stream
of Get-next-req. Get-bulk-req asks for the next n values, instead of just
one.

While SNMPvl lack of security made it possible for anyone to act as a
manager and change managed objects at will in any system to which he had
physical access, SNMPv3 provides an authentication and encryption frame
work. Authentication uses the HMAC protocol (RFC2104), with a choice of
MD5 or SHA as the hash function (RFC2202). Encryption is performed by the
DES protocol in CBC mode. SNMPv3 establishes a security policy by defining
an attack model (akin to a fault model in fault tolerance). SNMPv3 should
secure against: modification of information- changing in-transit message pa
rameters; masquerading- impersonating an authorized manager in requestintg
operations; message stream modification- reordering or replaying messages;
disclosure- unauthorized read of exchanged management information. It does
not secure against: denial of service; traffic analysis. For notes on the men
tioned protocols, the reader is advised to see Using Cryptographic Protocols in
Chapter 18.

24.3 STANDARD MIBS

We have seen that standardization of the information representation is crucial
for the interoperability of applications and protocols in different hosts and
devices in a system. For example, for the Internet we have the Structure of
Management Information, SMI (RFCl155 or RFC1442 for SNMP version 2),
and detailed standards for the several relevant MIBs. As examples, we have
the Internet MIB-II (RFC1213, RFC1450 for SNMP v.2), the Bridge MIB
(RFC1493), or the Remote Network Monitoring RMON MIB, versions 1 and 2
(RFC1757, RFC2021).

Table 24.3 presents a few of the data types defined in the Internet SMI stan
dard. MIB standards further define the specific contents of the data structures
associated with the entities relevant to management. For example, there will be
MIB definitions for TCP, IP, routers, bridges, network adapters, etc. Manufac
turers will have "space" asigned in the MIB conceptual structure to insert data

Exhibit 2026 Page 573

Table 24.3.

Type

IpAddress
Counter
Gauge
TimeTicks
Opaque

MANAGEMENT SYSTEMS AND PLATFORMS 561

Example Abstract Data Types defined in SMI

Description

an IP address
nonnegative increasing integer 0~232)
nonnegative floating integer 0(23

)

counter in lOms increments
unformatted text

about their line of products. A MIB is organized hierarchically, so that MIB
searches can be systematized easily as MIB graph traversals, and optimized
using graph theory. At the time of this writing, the current effort is towards
standardization of a global, framework independent MIB, where Internet, ISO,
lTD, all fit. MIB objects are generically defined in ASN.1.

MIBs are divided in groups. For example, MIB-II features the following
groups: system; interfaces; ip; icmp; tcp; udp; egp; transmission; snmp.
The names are self-explanatory for the most part. The system group represents
the system where the entity resides. The interface group represents each
specific interface of a network device. ICMP is the control message protocol for
TCPlIP, EGP (Exterior Gateway Protocol) is the IP routing protocol between
autonomous systems, and the respective groups concern the relevant variables.
The transmission group represents the physical media entities.

In each group, the necessary data objects are defined, obeying to the data
types specified in the SMI. These data types correspond to attributes of one or
more entities, and are specified according to the several management function
needs. For example, Table 24.4 presents a few of the MIB-II tcp group objects,
for configuration and for performance management. Other objects exist, in
these and in other groups, for accounting management, fault management, and
so forth.

One problem haunting management platforms is the network load caused by
polling remote devices, specially in large-scale systems. An interesting standard
addressing this problem is the RMON MIB, Remote Network Monitoring. The
underlying idea is the concept of remote monitoring device. Such a device will
supposedly assist network management, by gathering data in remote places,
and making it accessible to the managing nodes. The RMON 1 standard is
Ethernet based. Later, it was extended to the higher layers, 3 through 7, in
RMON 2. This greatly increased the efficiency and accuracy of the remote
monitoring device, also called probe. For example, it can track the traffic of
a web-based application between two specific hosts. RMON devices can be
either dedicated, or live as software modules in functional devices, such as hubs,
bridges, routers, or PCs. However, the performance of the normal functions of
host devices may be affected by RMON monitoring. For example, PC-based

Exhibit 2026 Page 574

562 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 24.4. Example tcp group MIS Objects

Object

Objects for Configuration Management

IDescription

tcpRtoMin
tcpRtoMax
tcpMaxConn
tcpCurrEstab

minimum retransmission timeout
maximum retransmission timeout
maximum number of open connections
current number of open connections

Object

Objects for Performance Management

IDescription

tcpAttemptFails
tcpEstabResets
tcplnErrs
tcpOutSegs

number of failed connection attempts
number of connection resets
number of reception errors
rate of transmitted segments

monitoring of a network requires enabling promiscuous mode reception, Le.,
receiving all passing frames.

An RMON device only has to implement part of the MIB it is concerned
with. It can be normally off-line, and can be programmed to only contact
the manager (notification) when certain conditions are met: a failure; certain
thresholds passed; other conditions dictated by fhe manager (e.g., new host
found). RMON2 allows a probe to only return the values that have changed
since the last poll. The probe can also post-process data (e.g., create composite
variables), and execute complex actions (e.g., host discovery), offioading work
from the manager host. Finally, the probe supports multiple management plat
forms, that is, it can serve several managers. Incidentally, note the analogy of
remote monitoring with distributed sensing, and of probes with representatives
(see Entities and Representatives and Input/Output in Chapter 12).

24.4 MANAGEMENT AND CONFIGURATION TOOLS

What is required of management tools? In essence, whatever we have discussed
in the previous chapters that can be performed in an automated fashion. For
example:

• console management

• event monitoring and management

• remote control

• current management functions (configuration, accounting, etc.)

• software distribution

• backup management

• storage management

• server pool management

Exhibit 2026 Page 575

MANAGEMENT SYSTEMS AND PLATFORMS 563

• security management (protection, intrusion detection, etc.)

There are a num,b:cr of tools for these several different purposes, and in
general one can talk about the following classes:

• testers

• network analyzers

• management software packages

• distributed management protocol stacks

• integrated management systems

• help desk systems

• trouble ticket systems

24.4.1 Testers

The simplest tools, testers are, as the name implies, devoted to testing basic
hardware functions. Hardware probes test continuity of electrical circuits and
cables, or digital levels (logic probe). Signal generators serve to inject signals in
circuits or cables and test their reaction. Time domain reflectometers (TDR)
are sophisticated devices that test the state of transmission lines and cables
carrying high frequency signals. When these lines are twisted, smashed or
simply flickering, they do not propagate high frequency signals adequately (e.g.
lOOMb/s Ethernet), while still passing a simple continuity test. This is mainly
because spurious reflected signals develop on the cable and disturb the original
signal, hence the name of the detector. Impedance meters measure impedance,
another parameter that only makes sense at moderate to high frequency, and
must exhibit a stable value throughout the whole link between two nodes.
Electrical field meters measure radiated power (e.g., strength, direction), for
wireless communication.

24.4.2 Network Analyzers and Monitoring Tools

One level of abstraction up we have protocol signalling. Network (or proto
col) analyzers can follow all the communication between two (or more) parties,
and dissect the execution of a given protocol. Industrial network analyzers are
normally dedicated machines with real-time operating systems and fast commu
nication adapters that work in promiscuous mode, listening to everything on a
medium. These machines normally have powerful filtering functions that allow
pinpointing: packet types; origin and/or destination; contents; dialogues, etc.
They are also capable of detecting errors in the protocol execution. Modern
network analyzers are multi-protocol, Le., they understand several of the major
protocols. It is also possible to configure a software-based network analyzer,
by using an adequately powerful machine (e.g., a high-end PC) and a software
package, normally comprised of a modified network driver (e.g., Ethernet) that
works in promiscuous mode, and a filtering, processing and rendering module.

Exhibit 2026 Page 576

564 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Several of these analyzers for local area networks, also known as sniffers, are
discussed later in this chapter (see Section 24.7).

Two of the main attributes of analyzers and monitoring tools are non
intrusiveness, the degree in which the tool does not disturb the system under
observation, and precision, the degree in which the measurements correspond
to the magnitudes being measured. Monitoring tools with hardware sensors
exhibit better precision and smaller intrusiveness. On the other hand, they pro
vide significant amounts of raw information that must be processed. Software
sensors are implemented through the instrumentation of code. They exhibit
moderate precision and are significantly intrusive. However, they address high
level information (e.g., a certain step of the code), and can act at very specific
points to gather information. An example passive, software-based performance
measurement tool is described in (Malan and Jahanian, 1998). Hybrid systems
take the best of both worlds, by using low-level instrumentation in hardware,
hooked to software sensors. Consider the following example problem, compli
cated enough to deserve some hybrid tooling:

"Accurately measuring the interval between the reception instants of the first
frame after a hardware trigger, at two network adapters in the same LAN"

That is, there is a trigger signal, after which we want to catch the first frame
oIlthe LAN, and measure the interval between the reception of that frame
at two different network adapters. Note that this interval is of the order of
the microseconds, and depends on the difference in network propagation delay
and in reception processing speed at each adapter. As a hybrid solution, we
make a hardware sensor by hooking the hardware trigger signal to a hardware
interrupt line. Then, we build a software sensor activated by the trigger sensor.
The software sensor is composed of monitoring code that waits for the next
received frame, and produces an interrupt when that happens. The interrupt
handling code activates a hardware actuator, for example by flipping one of the
control pins of an unused RS-232C serial line connector. All these steps are
done at both hosts. By measuring the interval between the pin flips at the two
hosts with a simple external device such as an oscilloscope or an interval meter,
we have an extremely accurate monitoring tool with relatively little hardware
apparatus.

Amongst the existing monitoring and analyzing tools, we emphasize a few
easily available ones. The SNMP MIB Browser, based on the WWW, is devel
oped in the Technical University of Braunschweig (Germany). It is a simple CGI
script written in the Tool Command Language (Tcl), which uses the Tnm Tcl
extension for network management applications, and allows browsing SNMP
MIB contents in a structured away. Beholder, or BTNG, is an RMON compli
ant Ethernet network monitor developed at the Technical University of Delft
(Netherlands), which can be remotely queried by means of SNMP. Beholder is
accompanied by the Tricklet package: a set of SNMP utilities for OS/2 and
UNIX. Ethereal is a network protocol analyzer for Unix, in the context of the
GNU-GPL effort. It examines both real-time network data and data from a
capture file on disk. It allows a user to browse the data, viewing packets with

Exhibit 2026 Page 577

MANAGEMENT SYSTEMS AND PLATFORMS 565

programmable levels of detail. Ethereal features a display filter language and
the ability to view the ASCII contents of a TCP connection.

Multi Router Traffic Grapher, or MRTG, is a tool developed at the Swiss
Federal Institute of Technology (Switzerland), to monitor the traffic load on
network links, as seen for example through routers. MRTG generates HTML
pages containing GIF images of the traffic. RRDtool from the same institution
builds on MRTG to provide fast round-robin database storage and display
of time-dependent data (Le. network bandwidth, machine-room temperature,
server load average).

META is an interesting example of distributed monitoring tool is META
(Wood, 1991), developed in Cornell University (USA). META runs on UNIX.
It is distributed, and has a neat layered structure. Its functional part is a rule
based system written in a special language, Lomita. META not only monitors
but can also control the managed system. For that, it features a sensor/actuator
layer that deals with the infrastructure itself.. This layer conceals the specific
characteristics of the devices, and on top of it an abstract data model of the
system is constructed, on whose state the rules of the policy layer are applied.
Its data model is implemented on an active real-time database, capable of: trig
gering actions based on modifications of the state of the database (e.g., when
condition do action); and expressing conditions depending on time durations
(e.g., X until V).

24.4.3 Management Software Packages and Protocols

The core of modern management systems are specialized software packages
that implement specific management functions. Remote operation is possible
if those packages can talk with devices through a common protocol. This is
where management communication protocol stacks fit, such as CMIP or SNMP,
which should be supported by both managing and managed hosts. On top of
these stacks, management processes including the above-mentioned software
packages dialogue. Software packages can be used to build tools that perform
one or several related functions, such as configuration, or performance man
agement (Zeltserman and Puoplo, 1998). These tools normally reside in the
managing host(s), or manager(s), and talk remotely to the other (managed)
hosts or devices. For example, Zebra is a free routing software (GNU Generic
Public License or GPL) package that manages TCP/IP based routing pro
tocols. It supports Border Gateway Protocol, BGP-4 (RFC1771) as well as
RIPv1, RIPv2 and OSPFv2. Zebra software, unlike traditional, Gated based,
monolithic architectures.

Tcl Extensions for Network Management Applications, or Scotty, is a soft
ware package developed at the Technical University of Braunschweig (Ger
many), which simplifies the implementation of portable, script-based, specific
network management functions. Scotty is based on the scripting language Tcl,
and has two main components. The first one is the Tnm Tcl Extension which
provides access to network management information sources. The second com-

Exhibit 2026 Page 578

566 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

ponent is the Tkined network editor which provides a framework for construct
ing an extensible network management system.

24.4.4 Application Configuration and Construction

Tools and environments for system and application configuration programming
have emerged in the past few years. Regis is a programming environment for
constructing distributed programs and systems, developed in the University of
London, Imperial College (UK). Structural aspects of distributed programs
which are orthogonal to its algorithmics- are expressed in a configuration
language. Regis is based on the architectural configuration language Darwin.
Other aspects, such as inter-process communication, are orthogonal to the ap
plication structure. Programmers can create new communication classes (not
necessarily RPC) independently from the program and the interaction style.
Regis is assisted by companion software, such as the Software Architect's As
sistant, and a Tcl/Tk Graph Widget. AAA, "Agents Anytime Anywhere", is
an agent development environment, created at INRIA (France). It is mate
rialized as a Java agent-based platform, using the message-bus paradigm. It
supports the configuration and development of modular and configurable appli
cations. The TACOMA project focuses on operating system support for agents.
TACOMA is a collaboration between the University of Troms0 (Norway), Cor
nell University (USA) and the University of California San Diego (USA). An
agent in TACOMA can be installed and executed on a remote computer, and
may explicitly migrate to other hosts in the network during execution. Tacoma
currently features a web agent that can be used to construct management tools,
for example, for. remote monitoring. A striking example is StormCast,a wide
area network weather and environmental monitoring application accessible over
the internet.

24.4.5 Integrated Management Systems and Applications

When several subsystems, even heterogeneous, fall under the realm of a single
management system, we say we have an integrated management system (IMS).
Several freeware and commercial products fall into this designation. Current,
significant IMS are built according to standardized frameworks, such as those
originating from ISO or IETF (CMISE/CMIP or SNMP/RMON), which are
manufacturer-independent and support open systems. They are often comple
mented with powerful database management, and versatile graphical interfaces.

}3:esides the many commercial IMSs, there are a few freely available ones.
LANdb provides network managers a means of cataloging all connections, clos
ets, and network hardware on a network. It uses scripting and database query
languages in order to provide an efficient web-based frontend to a complete
network management package. LANdb is distributed under the GNU-GPL.
MibMaster is intended to be used on any SNMP-compliant network environ
ment, MIB Master allows performing web-based management. SNMP agents
can be viewed and/or modified using any Web browser. UTopia is an ATM

Exhibit 2026 Page 579

MANAGEMENT SYSTEMS AND PLATFORMS 567

management tool developed at the University of Twente that helps managers
to configure their ATM switches. UTopia is web-based. The web client part is
implemented as a JAVA applet.

GxSNMP is a GNU-GPL network management application developed in·the
context of the GNOME project. GNOME is the GNU Network Object Model
Environment. The GNOME project intends to build a complete, easy-to-use
desktop environment and application development framework.

5MB-SNMP is a management application based on MSFT Windows, de
veloped at the University of Pisa (Italy). It maps SNMP MIBs as files of a
Windows or WNT directory. MIB variables are represented as text ot HTML
files. It uses the Samba file system to transparently map file operations on
SNMP primitives. Whenever a variable is read/modified an SNMP get/set
is issued to the remote SNMP agent. SNMP resources can thus be managed
without any specialized software: the files can be edited by any normal editor.

24.4.6 Help Desks and Trouble Ticket Systems

Open systems, beyond a certain scale, require help desk functionality, normally
provided through a center that ensures information providing and first-line
assistance to users. A management help desk is little different from other kinds
of help desks. It may be either public or private, e.g., fully open or confined to
employees of an enterprise. Several media can be used, sometimes in alternative
or complement, to serve the user. Telephone is the most obvious and the one
with greater promptness. Fax or email provide a means for deferred attention,
which can reduce the costs of a telephone interaction. More recently, web
based interfaces started proliferating. This kind of interface offers a potential
for multimedia not available in the other means.

The help desk can have have a flat structure for simple systems (and simple
problems). Otherwise, in a large/complex system, it may be structured by
hierarchy and specialization. That is, personnel is stratified by expertise, and
that expertise may be divided between groups. Calls arrive at the front-line,
less expert and more generalist personnel, and may go up the ladder should
that be required. Routing of requests may be semi- or fully-automated.

The main requirements to be satisfied by a help desk system are:

• interactive access to management information (if possible, concerning the
function or device being asked about)

• interactive diagnosis guide (set-by-step methodology for arriving at the root
of the problem)

• frequently asked questions (FAQ) manual (both for user and manager)

• knowledge base (a "FAQ" with sophisticated search methods)

• trouble ticket system (a complement to the help desk function, to track
problems that remain unsolved for a while)

Some requests addressed to the help desk derive from malfunctions or other
kinds of problems that require further attention. There are several reasons

Exhibit 2026 Page 580

568 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

for organizing the response to these anomalies: to log requests, for legal and
administrative reasons; to sequence requests, eventually prioritizing them; to
classify problems, creating a typology for them; to create technical memory in
the system, for frequent or recurrent events. This is done through a Trouble
Ticket System.

Figure 24.1. Structure of a Trouble Ticket System

A TTS is mainly an anomaly record and response system. It receives events,
stores and processes them, and prepares the adequate response. Given the
amount and kind of information it gathers, a TTS can be integrated with fault
management functions to enhance the latter (Lewis and Dreo, 1993). TTS
events can be generated by users, but they can also be generated automatically,
by devices. After being processed, they originate a trouble ticket (TT). The
notification primitive that we studied in the managed object model can be used
to send events to a TTS. The structure of a TTS is depicted in Figure 24.1,
and has the following main blocks: input and output subsystems for interface
with the outside (users, infrastructure, and managers); database for storing all
necessary information (e.g., TTs, historical records); filtering and processing
modules for the main TTS functions (e.g., housekeeping, filtering irrelevant
requests); rule base and diagnosis modules for automating some of the TTS
functions (e.g., automatic generation of actions upon certain triggers, fault
diagnosis based on previous knowledge processed by an inference engine).

Not all TTS are as sophisticated as the model given in Figure 24.1, however,
a basic TTS has at least the functionality included in the dashed part. A TTS in
action is briefly as follows. The notification event is received, and filtered. The
problem is logged with all the necessary information, in what makes a trouble
ticket (TT): origin and location of the fault, nature of the fault, possible cause,
timestamp, contact person. The TT is classified, against ordering, type and

Exhibit 2026 Page 581

MANAGEMENT SYSTEMS AND PLATFORMS 569

priority, and then dispatched to a manager on duty. If the TTS allows data
mining, the historical records are searched for a match with a similar problem.
A current problem log is also opened, and will be maintained until the problem
is solved, with all relevant information, such as further findings or steps taken
to remedy. Automated instrumentation (management tools) may be used to
diagnose the problem better and attempt to correct it. If the problem persists
or is too complex, the TT is routed to a more senior manager. In background,
both the managed system and the TTS operation should be quality controlled:
Are there many problems? Are we solving most of them? Are we solving them
well?

24.5 MANAGEMENT PLATFORMS

What is a management platform? We have seen that management requires the
assistance of several functions that are normally performed by isolated tools.
A platform is a working base where the manager has access to a set of tools
that act in a coordinated way, interact among themselves, and share the same
raw data. Platforms are a pre-condition for integrated management, inasmuch
as distributed management frameworks are a pre-condition for open platforms
to work.

API .-----,-,-.-,-.-,-,--.-.-.-,-,..............-,-.-.-.-,-.-.-,-.-._-,-,-.-,-,----

Management
Applications and Tools

API .--
,- ~.

INFRASTRUCTURE I SupeNisor 1~~__--J£.~l··.·.·[··rIn ..;%1
/~ \ Datamanager

~comm'smanage~_" '-- , ,.'.....-4'.

"<"~ OOtift11Ut1ication••••••Ne~P!~="~w~-~>,,,,.,a...·::=::.:m.. mmmJ=-=-_~mm_~=-&mp

Figure 24.2. Generic Structure of a Management Platform

A generic block diagram of a platform is given in Figure 24.2. The platform is
supposed to be distributed, and has essentially three levels: the user interface
level, where all graphical rendering facilities lie; the managing level, where
management functions are concentrated; the infrastructure level, where the
device specific parts are located (managed objects, agent functionality, etc.).

Exhibit 2026 Page 582

570 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Let us consider the manager host. The management console runs in this
host, with the interface level software. The several software packages running
the necessary management functions run at the managing level (most modern
platforms are modular with this respect, one can install only the tools needed),
provide a substrate for building management applications and tools. They
communicate with the user interface through a API common to all application
modules, so that display is homogeneous. They communicate with the infras
tructure level through another API, also common to all application modules.
At this level, the supervisor is the kernel-level part that handles and dispatches
all management related requests. It interacts with the data manager, which
controls the database (MIB) operations, and with the communications man
ager, which runs the management communication protocols, that dialogue with
the other managed hosts in the system. Through this protocol, the platform
can invoke operations on remote managed hosts and objects.

A device may have more or less powerful machinery for management. Let
us consider a managed host, possibly subtending several simpler devices. It
will only have an implementation of the infrastructurallevel, that will dialogue
through the management communication protocols with the managing host,
where the rest of the platform functionality resides. The infrastructure can
have a simplified supervisor, a MIB database specific of the subtended devices,
and a fully-fledged communication stack (e.g., SNMP).

The integrated management model (see Section 23.5) is normally material
ized around management platforms. There are several commercial management
platforms, amongst which Sun Solstice, IBM Tivoli, HP OpenView. The latter
will be discussed with some detail.

HP OpenView The reference example of management platform is Open
View from HP. The architecture of OpenView is presented in Figure 24.3. The
architecture is modular, is pretty much in line with the generic platform struc
ture that we have just presented.

Figure 24.3. HP OpenView Management Platform

Exhibit 2026 Page 583

MANAGEMENT SYSTEMS AND PLATFORMS 571

Currently available on several operating systems, OpenView was one of the
first open platforms based on standards, namely ISO protocols and Internet
MIBs. Although it is a proprietary system, it soon became a market reference,
and was one of the main contributors to the Distributed Management Environ
ment initiative of the OSF. OpenView is distributed, and its components are
spread throughout all the managed hosts. The managing host runs the manager
console, and the platform server, the OpenView Network Management Server.
In each host one may install only the necessary modules. In Figure 24.3 we can
see the several modules of OpenView:

system

supervisor

IPC

support environment

objects

management services

datastore

user interface

applications

the host where the modules are installed

the kernel level manager of local resources

interprocess communication, also called postmaster,
handles message transactions between platform mod
ules, local or remote, through the adequate protocols
(local lPC, remote operations, CMlP, SNMP, etc.)

the platform modules rely on a set of local support
services, such as directories, file transfer, etc.

the representation of the managed objects themselves

management function modules necessary in this host

management of the data repositories

interface with a user console when necessary

management applications

High-Level Platforms The management models have evolved, as we have
studied in Chapter 23, and so have management platforms. Support began to
emerge for the global planning and configuration aspects, and for the strategic
management of large and/or loosely coupled (e.g., federated) facilities, in the
form of high-level platforms. High-level platforms perform strategic support to
management in a decentralized fashion, such as helping with the definition and
refinement of policies. For that reason, they must be capable of integrating
several platforms under their realm, such that it makes sense to call them
platforms of platforms. One of the enabling factors for this integration
to be possible is what has been denominated platform middleware, the set of
support technologies for high level integration of applications. Object request
broker, message bus and agent technologies are promising options for platform
middleware. This technology maps onto the decentralized management model
(see Section 23.6).

Examples of high-level platforms are OperationCenter from HP and Spec
trum from Cabletron. Essentially, they provide an environment-independent
platform, based on a virtual network machine, to which all underlying platforms
are translated. The machine can thus dialogue with the tools and applications
resident in the underlying platforms, and it can also interface directly the sev-

Exhibit 2026 Page 584

572 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

eral standard management protocols, or support new ones. Clients interface
this virtual platform and run high-level applications, mostly of the strategic
nature we have suggested above. Clients of high-level platforms supposedly
belong to strategic management teams.

24.6 DME: DISTRIBUTED MANAGEMENT ENVIRONMENT

The Distributed Management Environment or DME is a multi-vendor dis
tributed management platform originally developed by the Open Software Foun
dation (Chappell, 1992). It was based on several contributing technologies,
amongst which Bull, IBM, HP and Tivoli. DME was important in that it
launched the generic architectural foundations of distributed systems manage
ment platforms. DME lost momentum because of the hesitations of vendors to
endorse it, since a common platform would shave any competitive advantages
of their products. Namely, it ceased being supported by the now-called Open
Group, who has discarded plans to port CORBA to DME as its object broker.

The success of the Web also brought lightweight, desktop-oriented, web-based
management, a dressing of the integrated management models which changes
the focus of platform development towards the desktop. Research on web
based management models is very active. Standardization is lead by the Open
Group (OG) Management Program, and by the Distributed Management Task
Force (DMTF) (see Table 24.6 for URLs). Both are consortia of companies
operating in the field. Together, they are defining the object-oriented Common
Information Model. The DMTF is investing on a model for vendor-independent
remote management operations, has defined a Desktop Management Interface
(DMI) for the purpose, and has clearly endorsed the Web-Based Enterprise
Management (WBEM) model.

We can say DME fulfilled its role, in influencing a whole generation of plat
forms. Vendors have in most cases adopted DME concepts, and provide some of
its proposed functionality in their products. For these reasons, it is worthwhile
analyzing DME. Its functional structure consists of the following modules: ob
ject management framework, network management option, distributed services.
The object management framework is the central piece, based on cooperating
peer-to-peer objects, oriented to distributed systems management, on top of
which are based the distributed services. These are infrastructure independent,
and extensible.

DME is object based. Both managed objects and all functions are speci
fied and implemented as objects, in the sense of CORBA and ODP (see Sec
tion 23.8). However, with regard to our generic management model, where
there was a distinct hierarchy between manager and managed object or agent,
these objects in DME are cooperating, that is, they have a peer relationship. Of
course, a manager/agent relationship may be superimposed (and in fact often
is) on DME objects. The architecture of DME is depicted in Figure 24.4, and
consists of the following building blocks: object services; management services;
management applications; management user interface (MUI); support services.

Exhibit 2026 Page 585

,"'......-'~.:~.

MANAGEMENT SYSTEMS AND PLATFORMS 573

!ii~I&(I'::::;::t::~~::::::~I:i\:~ '.'.:
:./ '·1 Management Services I? .

:I].
>1 ~:~:::::~:~:: -I: ~~~~:oP'<i
DC~ ~~";i~es < I

~~~

Figure 24.4. Architecture of DM E

The Object Services are the core of DME. They are implemented by object
servers, and also feature a notification service, the event service, which is crucial
to implement interactions of the above-mentioned peer-to-peer nature, awkward
to build with mere RPC. The object services supply the basic modules for the
construction of the rest of the management services and applications.

The Management Services are built on top of the object services, and consist
of building blocks for applications in the several system management areas.

The Management Applications rely both on the object services and on the
management services. They interact with the user through a Management
User Interface module. The Support Services consist of: DCE (see DeE in
Chapter 4); management protocols; and development tools.

24.7 MANAGING SECURITY ON THE INTERNET

Internet protocols have their design vulnerabilities. In order to trace them and
neutralize their effect, the security management of a system is of extreme impor
tance. The functions relevant to security management are listed in Table 24.5.

First of all, in order to look for vulnerabilities we have to know about them.
Then, we also might appreciate advice on how to remove them. Several in
stitutional entities cooperatively centralize incident notices (e.g., new viruses,
attacks), and cures for them (e.g., patches, releases, scripts). One relevant
example is the CERT, Computer Emergency Response Team, whose URL is
given in Table 24.6, as well as the URLs of most of the systems described in
this chapter. The technologies cited above are freeware tools available to assist
the administrator or to enhance security of installations. The insertion of this
kind of technologies in a coherent management framework has been addressed
in Chapter 23, where we discussed System Management strategies and tactics.
In this section, we are going to briefly review the technologies themselves.

Exhibit 2026 Page 586



574 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 24.5.

security
enhancement
tools

fault
diagnosis
tools

intrusion
detection
tools

auditing
tools

in this class we have tools that render machines and soft
ware more robust, for example cryptographic communica
tion software, filtering and wrapping software, or packages
that encrypt, sign or checksum critical software, to de
tect modifications; examples of such software are Tripwire,
Xinetd, Tcpwrapper, Portmapper, and Cracklib

in this class we have for example packages that scan the
facility looking for design or configuration vulnerabilities;
examples of such software are Crack, COPS, Tiger, ISS,
Satan, Merlin, Trojan

in this class we have for example packages that perform
real-time supervision, looking for anomalous behavior or
state of the system, or abnormal patterns of usage, in order
to detect intrusions; examples of such software are Scan
detector, CPM, AID, AAID, NID, ASAX, Hummer

in this class we have for example packages that perform
logging and build audit trails of the system, in order for
the administrator to analyze events a posteriori e.g., cor
relate attacks to detect intrusion campaigns; examples of
such software are Tcpdump, Analyzer, Swatch, Logdae
mon, Netlog, Netman

24.7.1 Security Enhancement Tools

Tripwire is an integrity monitor tool for Unix systems. It uses message digest
algorithms to checksum files and guarantee their integrity, by detecting tamper
ing with file contents, in result of intrusions. Xinetd is a replacement for inetd,
the internet daemon in UNIX systems. It supports access control based on the
address of the remote host and the time of access. It also provides extensive
logging capabilities, including server start time, remote host address, remote
username, server run time, and actions requested. Tcpwrapper allows monitor
ing and controlling connections to the main inetd communication ports: tftp,
exec, ftp, rsh, telnet, rlogin, finger, and systat ports. Also includes a
I1brary so that other programs can be controlled and monitored in the same
fashion. Portmapper3 is a replacement of the original portmapper program,
known to have security flaws such as allowing anyone to read or modify its
tables and forwarding any request so that it appears to come from the local
system. Portmapper3 does essentially the same as Tcpwrapper, but for RPC
based programs invoked by the standard portmapper. The Securelib shared li
brary (eecs.nwu.edu:/pub/securelib.tar) implements access control for all kinds
of (RPC) services, not just the portmapper. Cracklib is inspired by the Crack
program (see next section). It is a library containing C functions that may be

Exhibit 2026 Page 587



MANAGEMENT SYSTEMS AND PLATFORMS 575

used in a passwd-like program. CrackLib prevents users from choosing pass
words that Crack could guess, by filtering them out at the source.

24.7.2 Fault Diagnosis Tools

Crack guesses eight-character standard Unix passwords, by standard guessing
techniques. It is written to be flexible, configurable and fast. COPS, the
Computer Oracle and Password System (COPS) package, examines a system
for a number of known weaknesses and alerts the system administrator to them;
in some cases it can automatically correct these problems. Tiger is similar to
COPS, but more up to date, and easier to configure and use. It consist of system
monitoring scripts that scan a Unix system looking for security problems. ISS
is a multi-level security scanner that checks a UNIX system for a number of
known security holes such as problems with sendmail, improperly configured
NFS file sharing, etc. ISS can be used to probe entire network facilities. Satan,
the System Administrator Tool for Analyzing Networks, is a network security
analyzer. SATAN scans systems connected to the network, notifying about the
existence of well-known, often exploited vulnerabilities. SATAN can scan the
system from the outside, as hackers do, and thus provide a realistic analysis.
Courtney monitors the network and identifies the source machines of SATAN
probes/attacks, because SATAN is also used by hackers. Courtney receives
input from tcpdump. If one machine connects to numerous services within a
short time window, Courtney identifies that machine as a potential SATAN
host. Merlin is a tool for managing and enhancing existing security tools. It
can provide a graphical front-end to many popular tools, such as Tiger, COPS,
Crack, and Tripwire. Merlin makes these tools easier to use, while at the same
time extending their capabilities. Trojan is a trojan horse checking program. It
examines a given search path and looks at all of the executables in the search
path for people who can create a trojan horse that root can execute.

24. 7.3 Intrusion Detection Tools

CPM Sniffer Detector, or Check Promiscuous Mode, checks a system for any
network interfaces in promiscuous mode; this may indicate that an attacker has
broken in and installed a sniffer program. Scan-detector is a tool to monitor for
port scans of a Unix system. This is a frequent attack, and normally the first to
be performed against a facility. Detecting port scans can give a security admin
istrator precious early warning. Adaptive Intrusion Detection System (AID) is
designed for network audit based monitoring of local area networks and used for
investigating network and privacy oriented auditing. The system has a client
server architecture consisting of a central monitoring station and several agents
(servers) on the monitored hosts. The central station hosts a manager (client)
and an expert system. Heterogeneous UNIX environments are supported by
having the agents produce OS independent data formats. Audit data are ana
lyzed at the central station by a real-time expert system. Secure RPC is used
for the communication between the manager and the agents. ASAX, Advanced

Exhibit 2026 Page 588



576 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Security audit trail Analysis on uniX, is a distributed audit trail analysis system
that also incorporates configuration analysis. The audit trail analysis system
consists of a central master host and one or more monitored machines. The
latter analyze their local audit data and send relevant events to the central
host. Heterogeneity is achieved by using an 0.8. independent data format.
The system is rule-based, detecting known penetration patterns. Hummer is
a distributed component for any intrusion detection system, that allows any
two Internet hosts to share security information. It enables cooperative intru
sion detection using data sharing between distinct sites, to counter the present
threat of distributed intrusion campaigns- systemic attacks involving multiple
hosts.

24.7.4 Auditing Tools

Tcpdump and Analyzer (formerly Windump) are packages for network monitor
ing and logging. Tcpdump is the best known and the most used such package.
It programs the driver to be in promiscuous mode and grabs the network" traffic.
Analyzer is the port to Windows95 and WNT. These packages are normally
assisted by analysis software, since they grab huges quantities of bulk data.
Swatch aims at monitoring events on a large number of systems. It modifies
certain programs to enhance their logging capabilities, and monitors the sys
tem logs for specific messages. Logdaemon is a package that provides modified
versions of rshd, rlogind, ftpd, rexecd, login, and telnetd. These versions log
significantly more information than the standard vendor versions, enabling bet
ter auditing of problems via the logfiles. It also includes support for the 8/Key
one-time password package. Netlog is a package that contains a TCP and UDP
traffic logging system. It can be used for locating suspicious network traffic.
Netman is a fairly complete toolbox for network monitoring and visualisation.
Two of the tools provide a real-time picture of network communications, while
the other provides retrospective packet analysis. These tools are designed to
allow network managers to passively monitor a network and diagnose common
network problems as quickly and efficiently as possible. Etherman is an XII
based tool which displays a representation of real-time Ethernet communica
tions. Interman focusses on IP connectivity within' a single segment. As with
Etherman, this tool allows a real-time representation of network communica
tions to be displayed. Packetman is a retrospective Ethernet packet analyser.
This tool allows the capture and analysis of an Ethernet packet trace.

24.8 SUMMARY AND FURTHER READING

This chapter gave examples of systems and platforms for distributed systems
management. We started by addressing tools and platforms and explaining
their differences. We talked about testers, network analyzers, management
software packages, distributed management protocol stacks, integrated man
agement systems, help desk systems, trouble ticket systems and monitoring
systems, integrated platforms. Then we discussed the two main management

Exhibit 2026 Page 589



MANAGEMENT SYSTEMS AND PLATFORMS 577

frameworks, ISO CMISEjCMIP and IETF SNMP, presenting the relevant pro
tocols, followed by a study of the main standard MIBs. Next, we addressed
DME as the reference environment for distributed management platforms, and
finalized by presenting a number of tools for managing Internet performance
and security.

Further study is suggested on several areas. Management of, and based on,
the World-Wide Web has deserved great attention, as exemplified by (Pras
et aI., 1997; Schonwalder and Toet, 1997; Hong et aI., 1997; Thompson, 1998).
High-level notations for the specification of network management functions help
bridging the semantic gap between the sometimes simplistic management func
tion standards and the often sophisticated requirements of application and tool
builders (Brites et aI., 1994; Pavlou et aI., 1998; Hughes, 1993). Agent technol
ogy can be used to develop new generation management platforms, as discussed
in (Muller, 1997).

Table 24.6 gives a few pointers to information about some of the systems
described in this chapter. However, for further practical study on CMIP and
SNMP, we suggest (Leinwand and Conroy, 1996) or (Stallings, 1999), besides
the standards and RFC documents themselves. The Distributed Management
Environment (DME) is further treated by Autrata & Strutt in (Sloman, 1994).
Omnipoints (OMNIPoint, 1993) is a Network Management Forum initiative for
achieving interoperability of management systems.

Exhibit 2026 Page 590



578 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 24.6. Pointers to Information about Management Systems and Platforms

Sys. Class

ISO
lTD
RFCs
ICANN
Op~nGroup
DMTF

NMF

OMG
GNOME
ASN.l

Management
Related
Sites

Managem.
Protocols

Managem.
and
Configur.
Packages
Tools and
Systems

Management
Platforms

I System

!
eX-CCITT)
IETF)
Names & Nrs)
ex-OSF)

(DMI spec.)

~
ObjectS)

GNU GPL)
Syntax Not.)

SmurfWeb
SimpleWeb
SimpleTimes
Agentlink

CMISE/CMIP
SNMP

SNMPv3
Agentx

MIB Browser
Beholder
Vendor MIBs
Ethereal
MRTG

Zebra
Scotty

AAA
GxSNMP
LANdb
MibMaster
Regis
5MB-SNMP
SAMBA
StormCast
TACOMA
Tcl
UTopia

HP OpenView
Tivoli
Spectrum
Solstice
DCE

Pointers

www.iso.ch
www.itu.int
www.rfc-editor.org
www.icann.org
www.opengroup.org/management
www.dmtf.org
www.dmtf.org/spec/ dmis.html
www.nmf.org
www.tmforum.org
www.omg.org
www.gnome.org
www-sop.inria.fr/rodeo/personnel/hoschka/asnl.html

netman.cit.buffalo.edu
www.simpleweb.org
www.simple-times.org
www.agentlink.org

www.cs.ucl.ac.uk/research/osimis/share.htm
ftp.net.cmu.edu/pub/snmp
www.gaertner.de/snmp
ucd-snmp.ucdavis.edu
www.snmpworld.com
www.ibr.cs.tu-bs.de/ietf/snmpv3
www.scguild.com/agentx
ftp.net.cmu.edu/pub/agentx

www.ibr.cs.tu-bs.de/cgi-bin/sbrowser.cgi
dnpap.et.tudelft.nl/pub/btng/README
www.simpleweb.org/ietf/enterprise.html
ethereal.zing.or~

ee-staff.ethz.ch/ - oetiker/webtools/mrtg
ee-staff.ethz.ch/-oetiker/webtools/rrdtool
www.zebra.org
wwwhome.cs.utwente.nl/-schoenw/scotty
www.ibr.cs.tu-bs.de/projects/scotty

www.dyadeJr/en/actions/aaa
www.gxsnmp.org
avenir.dhs.org/landb
www.equival.com.au/mibmaster
www-dse.doc.ic.ac.uk/-regis
jake.unipLit/-deri/SMB-SNMP
samba.anu.edu.au/samba
www.cs.uit.no/forskning/DOS/StormCast
www.tacoma.cs.uit.no/
www.scriptics.com
www.simpleweb.org/nm/research/projects/utopia

www.openview.hp.com
www.tivoli.com
www.aprisma.com
www.sun.com/solstice
www.opengroup.org/dee

Exhibit 2026 Page 591



MANAGEMENT SYSTEMS AND PLATFORMS 579

Table 24.6 (continued)
Pointers to Information about Management Systems and Platforms

Sys. Class I System I Pointers

Security

Manag.

Tools

CERIAS
tripwire
Xinetd

Tcpwrapper

Portmapper
Cracklib

Crack
COPS
Tiger
ISS
Satan

Courtney

Merlin
Trojan

Sniff Det

Scan Det
AID
ASAX
Hummer

Tcpdump

Analyzer
Swatch
Logdaemon
Netlog
Netman

www.cerias.purdue.edu
ftp.cerias.purdue.edu/pub/tools/unix/ids/tripwire
qic1ab.scn.rain.com/pub/security
www.synack.net/pub/xinetd
ftp.ox.ac.uk/pub/comp/security/software/monitors/
ftp.cerias.purdue.edu/pub/tools/unix/netutils/tcp_wrappers
ftp.cerias.purdue.edu/pub/tools/unix/netutils/portmap
ftp.cerias.purdue.edu/pub/tools/unix/libs/cracklib

ftp.cerias.purdue.edu/pub/tools/unix/pwdutils/crack
ftp.cerias.purdue.edu/pub/tools/unix/scanners/cops
ftp.cerias.purdue.edu/pub/tools/unix/scanners/tiger
ftp.cerias.purdue.edu/pub/tools/unix/scanners/iss
www.cs.purdue.edu/coast/satan.html
www.fish.com/- zen/satan/satan.html
ftp.cerias.purdue.edu/pub/tools/unix/scanners/satan
ciac.llnl.gov/pub/ciac/sectools/unix/courtney
ftp.cerias.purdue.edu/pub/tools/unix/logutils/courtney
ciac.llnl.gov/pub/ciac/sectools/unix/merlin/merlin.tar.gz
ftp.cerias. purdue.edu/pub/tools/ unix/sysutils/trojan

ftp.cerias.purdue.edu/pub/tools/unix/sysutils/cpm
ciac.llnl.gov/pub/ciac/sectools/unix/sniffdetect
ftp.cerias.purdue.edu/pub/tools/unix/logutils/scan-detector
www-rnks.informatik.tu-cottbus.de/-sobirey/ aid.e.html
www.info.fundp.ac.bej-amo/publications.html
www.csds.uidaho.eduj-hummer

ftp.cerias.purdue.edu/pub/tools/unix/netutils/tcpdump
ftp.ee.lbl.gov
netgroup-serv.polito.it/analyzer
ftp.cerias.purdue.edu/pub/tools/unix/logutils/swatch
ftp.cerias.purdue.edu/pub/tools/unix/logutils/logdaemon
ftp.cerias.purdue.edu/pub/tools/unix/logutils/netlog
ftp.cerias.purdue.edu/pub/tools/unix/netutils/netman

Exhibit 2026 Page 592



25 CASE STUDY: MANAGING VP'63

This chapter finalizes our case study: managing the (VintagePort'63) Large
Scale Information System. VP'63 became significantly complex, and the com
pany depends heavily on it. Its operation must remain stable, and its recon
figuration made as easy as possible. Tactical management mechanisms imple
menting strategic management policies will be studied, and developed around
an integrated management platform.

25.1 ESTABLISHING MANAGEMENT STRATEGIES AND POLICIES

The reader should recall that this is the next step of a project implementing a
strategic plan for the modernization of VP'63, started in Chapter 5, and con
tinued in the Case-Study chapters of each part of this book. The reader may
wish to review the previous parts, in order to get in context with the project.

The current infrastructure is managed on an ad hoc, uncoordinated way,
since there was not until now a real distributed systems approach to the prob
lem. The networking infrastructure evolved with the introduction of new seg
ments and modules, and the corresponding network management points. Sys
tems and applications are managed by staff local to the facilities. This situation
is depicted in Figure 25.1.

Before attempting to do any change, a management strategy should be de
fined. The objectives of this investment on VP'63 are: to have a global and
seamless information flow that serves decision making in the company; to al-

P. Verissimo et al. 
© Kluwer Academic 2001

Distributed Systems for System 
Exhibit 2026 Page 593



582 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

low corporate management decisions to be impressed as fast as possible on the
information system. Corporate management is centralized, and as such, cen
tralized strategic management is the option to make. The Chief Information
Officer (CIa) helps define this strategy, in the form of management policies,
and is responsible for its implementation by the tactical management team.
Management policies should be defined in terms of resources (information and
services) and users. They concern, amongst other things, the generic manage
ment policy for each service, and the characteristics of operations of users on
resources.

Current management personnel expertise should be preserved, but perhaps
reallocated under the viewpoint of the new organization. The core management
team should be allocated to one, at most two, physical sites, from where they
should be able to run the infrastructure. Then, more important facilities and
specially those hosting factory automation subsystems will have some dedicated
management personnel.

Figure 25.1. Uncoordinated Management

25.2 TOWARDS INTEGRATED MANAGEMENT

Integrated management is the best suited model to pursue the strategy under
lined in the previous section. Given the geographical dispersion of the company,
an integrated management platform should be selected that allows to perform

Exhibit 2026 Page 594



CASE STUDY: VP'63 583

remote management on all managed resources in the company domain, com
posed of all facilities interconnected by the secure tunnels.

If the platform supports it, a composite management structure would prove
quite effective in this system: hierarchical management, with mid-level agents
located in the Gateway Facilities, each acting on the managed resources of their
facility, and responding to the platform manager console above; and cooperative
management among those mid-level agents.

The desired setting is shown in Figure 25.1a. The platform and its services
are installed in the main facility at Porto, where the main management console
is also installed. Given that important services also exist in Lisboa, a secondary
management console is also installed there. The detail of the hierarchy to
the inside of each facility is omitted in the drawing. All equipment should
comply with the standard management communication protocol selected (e.g.,
SNMPv2, migrating to SNMPv3 a.s.a.p.), and with the standard MIB formats,
such as Internet MIB-II and RMON2 MIB.

Desktop
Mgt

(a) (b)

Figure 25.2. (a) Integrated Management; (b) Desktop Management

In a later phase, after the integrated management concept has stabilized, and
the informatics culture of the company is more mature, an evolution towards
desktop management may be envisaged, as depicted in Figure 25.1b. Most

Exhibit 2026 Page 595



584 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

of the current structure may remain. The integrated management agents and
middle managers will be provided with HTTP servers. Many emerging equip
ments are already provided with individual web servers allowing web-based
management. This evolution should be made as compatible as possible with
the emerging DMI standard. This will allow a moderate but desirable decen
tralization of management, specially low-level local functions, since a desktop
with a browser can virtually manage any equipment, depending on the access
control capabilities of the user.

Further Issues

These issues need some refinement now, and the reader was assigned the study
of a few questions that were still left unsolved:

Q.5. 11 Select the actual tools that should equip a platform managing a system
like VP'63.

Q.5. 12 Define a minimal structure for an enterprise-wide Help Desk and
Trouble Ticket System.

Q.5. 13 Monitoring is addressed both as an industrial system (SCADA) func
tion, and as a management function. Can they be aggregated or do they have
different characteristics?

Exhibit 2026 Page 596



References

Abadi, M. and Needham, R. (1994). Prudent engineering practice for cryptographic
protocols. In Proceedings of the IEEE Computer Society Symposium on Research
in Security and Privacy.

Abdelzaher, T. and Shin, K. (1998). End-host architecture for qos-adaptive com
munication. In Procs. of the 4th IEEE Real-Time Technology and Applications
Symposium, Denver, USA.

Abrams, M. (1998). World Wide Web, Beyond the Basics. Prentice Hall.
Abrams, M., Jajodia, S., and Podell, H., editors (1995). Information Security. IEEE

CS Press.
ADA 83 (1983). Ans reference manual for the ada programming language. Technical

Report Mil/Std 1815A-1983, American National Standards Institute.
Agnew, B., Hofmeister, C., and Purtilo, J. (1994). Planning for change. IEEE/ IOP/BOS

Distributed Systems Engineering Journal, 1(5):313-322.
Agrawal, D. and EI-Abbadi, A. (1990). Efficient techniques for replicated data man

agement. In Proceedings of the IEEE Workshop on the Management of Replicated
Data, pages 48-52, Houston, USA.

Agrawal, D. and EI-Abbadi, A. (1991). An efficient and fault-tolerant solution for
distributed mutual exclusion. ACM Transaction on Computer Systems.

Aguilera, M., Chen, W., and Toueg, W. (1998). Failure detection and consensus in
the crash-recovery model. In Proc. 12th Int. Symposium on DIStributed Computing
(formerly WDAG), pages 231-245, Andros, Greece. Sringer-Verlar LNCS 1499.

Ahamad, M. and Ammar, M. (1991). Multidemensional voting. ACM Transactions
on Computer Systems, 9(4):339-431.

Ahamad, M., Hutto, P., and John, R. (1991). Implementing and programming causal
distributed shared memory. In Proceedings of the 11 th IEEE International Confer
ence on Distributed Computing Systems, pages 274-281, Arlington, Texas, USA.

Aidarous, S. and Plevyak, T. (1998). Telecommunications Network Management 
Technologies and Implementations. IEEE Press.

Almeida, C. and Verissimo, P. (1996). Timing failure detection and real-time group
communication in quasi-synchronous systems. In Proceedings of the 8th Euromicro
Workshop on Real-Time Systems, L'Aquila, Italy.

Alpern, B. and Schneider, F. (1987). Recognizing safety and liveness. Distributed
Computing, (2):117-126.

Exhibit 2026 Page 597



586 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Alvisi, L., Elnozahy, E., Rao, S., Husain, S., and DeMel, A. (1999). An analysis
of communication induced checkpointing. In Digest of Papers, The 29th IEEE
International Symposium on Fault- Tolerant Computing, Madison - USA.

Alvisi, L. and Marzullo, K. (1993). Non-blocking and orphan-free message logging
protocols. In Digest of Papers, The 23rd IEEE International Symposium on Fault
Tolerant Computing, pages 145-154, Toulouse, France.

Ames, S., Gasser Jr., M., and Schell, R. (1983). Security kernel design and implemen
tation: An introduction. Computer, 16(7):14-22.

Amir, Y., Dolev, D., Kramer, S., and Malki, D. (1992). Membership algorithms for
multicast communication groups. In Proceedings of the 6th International Workshop
on Distributed Algorithms, pages 292-312, Haifa, Israel.

Amir, Y., Dolev, D., Kramer, S., and Malki, D. (1993a). Transis: A communication
sub-system for high-availability. In Digest of Papers, The 22nd IEEE Int. Symp.
on Fault- Tolerant Computing Systems, pages 76-84.

Amir, Y., Moser, L., Melliar-Smith, P., Agarwal, D., and Ciarfella, P. (1993b). Fast
message ordering and membership using a logical token-passing ring. In Proceedings
of the 13th International Conference on Distributed Computing Systems, pages
551-560, Pittsburgh, Pennsylvania, USA.

Ananda, A., Tay, B., and Koh, E. (1992). A survey of asynchronous remote procedure
calls. Operating Systems Review, 266(2):92.

Anderson, J. (1972). Computer security technology planning study. Technical Report
ESD-TR-73-51, Hanscom AFB.

Anderson, R. and Needham, R. (1995). Robustness principles for public key protocols.
In Proceedings of the Advances in Cryptology- CRYPTO '95. Springer-Verlag.

ANSA (1987). ANSA Reference Manual, Release 00.03. Advanced Networked Systems
Architecture, ESPRIT technical week edition.

ANSA (1990). ANSAware Release 3.0 Reference Manual. APM Ltd, Cambridge.
ANSI X9.9 (1986). American National Standard for Financial Institution Message

A uthentication (Wholesale).
Arlat, J., Aguera, M., Crouzet, Y., Fabre, J., Martins, E., and Powell, D. (1990). Fault

injection for dependability validation: a methodology and some applications. IEEE
Trans. on SW Engineering, Special Issue of Experimental Computer Science.

ASN.1 (1990). Information Technology - Open Systems Interconnection - Specification
of Abstract Notation One (ASN.1). ISO/IEC.

Audsley, N. (1993). Flexible Scheduling of Hard Real-Time Systems. PhD thesis, Uni
versity of York, UK.

Aurrecoechea, C., Campbell, A., and Hauw, L. (1998). A survey of QoS architectures.
Multimedia Sys. Journal, Special Issue on QoS Arch., 6(3):138-151.

Babaoglu, m. (1987). On the reliability of consensus-based fault-tolerant distributed
computing systems. ACM Transactions on Computer Systems, 5(3):394-416.

Babaoglu, m., Baker, M., Davoli, R., and Giachini, L.-A. (1994). RELACS: A com
munications infrastructure for constructing reliable applications in large-scale dis
tributed systems. In Procs. of the 28th Hawaii Int'l Confer. on System Sciences.

Babaoglu, m. and Marzullo, K. (1993). Consistent global states of distributed systems:
Fundamental concepts and mechanisms. In Mullender, S., editor, Distributed Sys
tems (2nd edition), chapter 4. Addison-Wesley.

Babaoglu, 0., Bartoli, A., and Dini, G. (2000). Programming partition-aware network
applications. In Krakowiak, S. and Shrivastava, S., editors, Recent Advances in
Distributed Systems, volume 1752 of LNCS, chapter 8. Springer-Verlag.

Exhibit 2026 Page 598



REFERENCES 587

Babaoglu, 0., Drummond, R., and Stephenson, P. (1986). The impact of communi
cation network properties on reliable broadcast protocols. IEEE Transactions on
Software Engineering, (6):212-217.

Baker, S. (1997). Corba Distributed Objects: Using Orbix. Number ISBN: 0201924757.
Addison-Wesley.

Bal, H. and Tanenbaum, A. (1988). Distributed programming with shared data. In
Procs. of the IEEE Conf. on Computer Languages, pages 82-91.

Baldi, M., Gai, S., and Picco, G.-P. (1997). Exploiting code mobility in decentralized
and flexible network management (ma'97). In Proceedings of the 1st International
Workshop on Mobile Agents 91, pages 13-26, Berlin, Germany. Springer, Lecture
Notes on Computer Science vol. 1219.

Banker, K. and Mellquist, P. (1995). Snmp++: A portable object-oriented approach
to network management programming. ConneXions, 9(3):35-41.

Barabanov, M. and Yodaiken, V. (1997). Real-time linux. Linux Journal.
Barbacci, M., Weinstock, C., Doubleday, D., Gardner, M., and Lichota, R. (1993).

Durra: A structure description language for developing distributed applications.
Sofware Engineering Journal, 8(2):83-94.

Barborak, M., Malek, M., and Dahbura, A. (1993). The consensus problem in fault
tolerant computing. ACM Computing Surveys, 25(2):171-220.

Barrett, P., Bond, P., Hilborne, A., Rodrigues, L., Seaton, D., Speirs, N., and Verissimo,
P. (1990). The Delta-4 Extra performance architecture (XPA). In Digest of Papers,
The 20th IEEE International Symposium on Fault- Tolerant Computing, Newcastle
UK. also as INESC AR/21-90.

Bartlett, J., Gray, J., and Horst, B. (1987). Fault tolerance in Tandem computer sys
tems. In Avizienis, A., Kopetz, H., and Laprie, J., editors, Dependable Computing
and Fault-Tolerant Systems, volume 1, pages 55-76. Springer-Verlag.

Bauer, A., Bowden, R., Browne, J., Duggan, J., and Lyons, G. (1991). Shop Floor
Control Systems. Chapman Hall, London.

Becker, L., Pereira, C., Dias, 0., Teixeira, 1., and Teixeira, J. (2000). Mosys a method
ology for automatic object identification from system specification. In Procs. of
ISORC 2000, the 3rd IEEE Int'l Symp. on Object-Oriented Real-Time Distributed
Computing, pages 198-201, Newport Beach, USA.

Beekmann, D. (1989). CIM-OSA: Computer integrated manufacturing - open system
architecture. Int 'l Journal Computed Integrated Manufacturing.

Beertema, P. (1993). Common dns data file configuration errors. Technical Report
RFC 1537, USc Inf. S. Inst.

Bell, D. and LaPadula, L. (1973). Secure computer systems: Mathematical founda
tions and model. Technical report, MITRE Corp.

Bellissard, L., Atallah, S., Boyer, F., and Riveill, M. (1996). Distributed application
configuration. In Proceedings of the 16th IEEE International Conference on Dis
tributed Computing Systems, pages 579-585, Hong-Kong.

Bellovin, S. and Merritt, M. (1992). Encrypted key exchange: Password-based proto
cols secure against dictionary attacks. In Proceedings of the 1992 IEEE Computer
Society Conference on Research in Security and Privacy, pages 72-84.

Ben-Ari, M. (1990). Principles of Concurrent and Distributed Programming. Prentice
Hall.

Berndtsson, M. and Hansson, J. (1995). Issues in active real-time databases. In
Proceedings of the First A CM International Workshop on Active and Real- Time
Database Systems, pages 142-157, Skovde, Sweden.

Exhibit 2026 Page 599



588 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Berners-Lee, T. and Cailliau, R. (1990). Worldwideweb: Proposal for a hypertext
project. Technical report.

Bernstein, P., Hadzilacos, V., and Goodman, N. (1987). Concurrency Control and
Recovery in Database Systems. Addison-Wesley.

Bershad, B. and Zekauskas, M. (1991). Midway: Shared memory paralel programming
with entry consistency for distributed memory multiprocessors. Technical Report
CMU-CS-91-170, Carnegie-Mellon University.

Bhide, A., Elnozahy, E., and Morgan, S. (1991). A highly available network file server.
In Proceedings of the USENIX Winter Conference, pages 199-205.

Biba, K. (1977). Integrity considerations for secure computer systems. Technical Re
port 76-372, U.S. Air Force Electronic Systems Division.

Birman, K., editor (1996). Building Secure and Reliable Network Applications. Num
ber ISBN 1-884777-29-5. Manning Publications Co.

Birman, K. and Joseph, T. (1987). Reliable Communication in the Presence of Fail
ures. ACM, Transactions on Computer Systems, 5(1).

Birman, K., Schiper, A., and Stephenson, P. (1991a). Lightweight causal and atomic
group multicast. ACM Transactions on Computer Systems, 9(3).

Birman, K., Schiper, A., and Stephenson, P. (1991b). Lightweight Causal and Atomic
Group Multicast. ACM Transacs. on Computer Systems, 9(3):272-314.

Birman, K. and van Renesse, R., editors (1994). Reliable Distributed Computing With
the ISIS Toolkit. Number ISBN 0-8186-5342-6. IEEE CS Press.

Birrell, A. and Nelson, B. (1984). Implementing remote procedure calls. ACM Trans
actions on Computer Systems, 2(1).

Bloom, J. and Dunlap, K. (1986). Experiences implementing bind, a distributed name
server for the darpa internet. In USENIX Summer, pages 172-181.

Bodilsen, S. (1994). Scheduling theory and ada 9x. Embedded Systems Programming,
pages 32-52.

Boehm, B. (1988). A spiral model of software development and enhancement. IEEE
Computer, pages 61-72.

Boly, J., Bosselaers, A., Cramer, R., Michelsen, R., Mjolsnes, S., Muller, F., Peder
sen, T., Pfitzmannn, B., de Rooji, P., Schoenmakers, B., Schunter, M., Vallee, L.,
and Waidner, M. (1994). The esprit project cafe - high security digital payment
system. In Proceedings of the Third ESORICS, European Symposium on Research
in Computer Security, pages 217-230. Springer-Verlag, Vo1.875.

Boorstin, D. (1983). The Discoverers. Gradiva/Random House.
Bowen, N., Antognini, J., Regan, R., and Matsakis, N. (1997a). Availability in parallel

systems: automatic process restart. IBM Systems Journal, 36(2):284-300.
Bowen, N., Elko, D., Isenberg, J., and Wang, G. (1997b). A locking facility for parallel

systems. IBM Systems Journal, 36(2):202-220.
Bozga, M., Daws, C., Maler, 0., Olivero, A., Tripakis, S., and Yovine, S. (1998).

Kronos: a model-checking tool for real-time systems. In Proceedings of CAV'98,
the 1Dth IEEE Conference Computer-A ided Verification.

Bradley, D., Dawson, D., Burd, N., and Loader, A., editors (1991). Mechatronics,
Electronics in Products and Processes. Chapman and Hall.

Brands, S. (1995). Electronic cash on the internet. In Proceedings of the Internet
Society 1995 Symposium on Network and Distributed Systems Security, pages 64
84. IEEE Computer Society Press.

Brewer, E., Gauthier, P., Goldberg, 1., and Wagner, D. (1995). Basic flaws in internet
security and commerce. Technical report, Dpt. of CS, Berkeley University.

Exhibit 2026 Page 600



REFERENCES 589

Brites, A., Simoes, P., Leitao, P., Monteiro, E., and Fernandes, F. (1994). A high-level
notation for the specification of network management applications. In Proceedings
of the INET'94/JENC5, pages 5611-8.

Budhiraja, N., Marzullo, K., Schneider, F., and Toueg, S. (1993). The primary-backup
approach. In Mullender, S., editor, Distributed Systems, 2nd Edition, ACM-Press,
chapter 8. Addison-Wesley.

Burns, A. and Welling, A. (1996). Advanced fixed priority scheduling. In Joseph, M.,
editor, Real- Time Systems. Prentice-Hall.

Burns, A. and Wellings, A. (1995). Hard Real-Time HOOD: A Structured Design
Method for Hard Real- Time Ada Systems. Elsevier.

Burns, A. and Wellings, A. (1996). Real-Time Systems and Programming Languages.
International Computer Science Series. Addison-Wesley.

Buttazzo, G., editor (1997). Hard Real- Time Computing Systems, Predictable Schedul
ing Algorithms and Applications. Kluwer Academic Publishers.

Callahan, J. and Montgomery, T. (1996). Approaches to verification and validation
of a reliable multicast protocol. ACM Software Engeneering Notes, 21(3).

CAN (1993). Int'l Std.11898- Road vehicles - Interchange of digital information 
Controller Area Network (CAN) for high-speed communication. ISO.

Carreira, J., Madeira, H., and Silva, J. (1998). Xception: A technique for the exper
imental evaluation of dependability in modern computers. Transactions on SW
Engineering, 24(2):125-136.

Carriero, N. and Gelertner, D. (1986). The S/Net's Linda Kernel. ACM Transactions
on Computer Systems, 4(2).

Cart, M., Ferrie, J., and Mardyanto, S. (IFIP, 1987). Atomic broadcast protocol,
preserving concurrency for an unreliable broadcast network. In Cabanel, J., Pu
jole, G., and Danthine, A., editors, Local communication systems: LAN and PBX.
North-Holland.

Carter, J., Bennettt, J., and Zwanepoel, W. (1991). Implementation and performance
of Munin. In Proceedings of the 13th ACM Symposium on Operating System Prin
ciples, pages 152-164.

Carter, W. and Schneider, P. (1968). Design of dynamically checked computers. In
Proc. IFIP'68 World Computer Congress, pages 878-883.

CC-ITSE (1998). Common Criteria for Information Technology Security Evaluation.
ISO/IEC JTC 1.

Chandra, T., Hadzilacos, V., and Toueg, S. (1996). On the impossibility of group
membership. In Proceedings of the 15th Annual ACM Symposium on Principles of
Distributed Computing (PODC '96), pages 322-330.

Chandra, T. and Toueg, S. (1996). Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 34(1):225-267.

Chandy, K. and Lamport, L. (1985). Distributed snapshots: Determining global states
of distributed systems. ACM, 3(1):63-75.

Chang, J. and Maxemchuck, N. (1984). Reliable broadcast protocols. ACM, Transac
tions on Computer Systems, 2(3):251-273.

Chappell, D. (1992). The osf distributed management environment. ConneXions,
6(10):10-15.

Chaum, D. (1983). Blind signatures for untraceable payments. In Proceedings of the
Advances in Cryptology- Crypto '82, pages 199-203. Plenum Press.

Chaum, D. (1992). Achieving electronic privacy. Scientific American, 267(2):96-101.

Exhibit 2026 Page 601



590 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Chen, L. and Avizienis, A. (1978). N-version programming: A fault-tolerance ap
proach to reliability of software operation. Bth IEEE Int. Symp. on Fault- Tolerant
Computing (FTCS-B), pages 3-9.

Chen, W., Toueg, S., and Aguilera, M. (2000). On the quality of service offailure de
tectors. In Procs. of DSN 2000, the IEEEIIFIP Int'l Conf. on Dependable Systems
and Networks.

Chereque, M., Powell, D., Reynier, P., Richier, J.-L., and Voiron, J. (1992). Active
replication in Delta-4. In Digest of Papers, The 22nd IEEE Int'l Symp. on Fault
Tolerant Computing Systems, page 28.

Cheriton, D. and Mann, T. (1989). Decentralizing a global naming service for im
proved performance and fault tolerance. ACM Transactions on Computer Systems,
7(2):147-183.

Cheriton, D. and Skeen, D. (1993). Understanding the limitations of causally and
totally ordered communication. In Proceedings of the 14th Symposium on Operating
Systems Principles, Asheville, NC, USA.

Cheriton, D. and Zwaenepoel, W. (1985). Distributed process groups in the V-kernel.
ACM Tran. on Computer Systems, 3(2).

Cheswick, W. and Bellovin, S. (1997). Internet Security: Firewalls and Gateways, 2nd
edition. Addison-Wesley.

Cheung, S., Ammar, M., and Ahamad, M. (1990). The grid protocol: A high perfor
mance scheme for maintaining replicated data. In Proceedings of the 6th Internation
Conference on Data Engineering, pages 438-445.

Chung, S., Lazowska, E., Notkin, D., and Zahorjan, J. (1989). Performance impli
cations of design alternatives for remote procedure call stubs. In Proceedings of
the 9th Int'l IEEE Conference on Distributed Computing Systems, pages 36-41,
Newport Beach - USA.

Clark, D. and Wilson, D. (1987). A comparison of commercial and military computer
security policies. In Proc. of the IEEE Symp. on Security and Privacy, pages 184
194.

Clegg, M. and Marzullo, K. (1996). Clock synchronization in hard real-time dis
tributed systems. Technical Report CS96-478, University of California, San Diego,
Department of Computer Science and Engineering.

CMIP (1988). Open Systems Interconnection - Management Information Protocol
Definition, Part 2: Common Management Information Protocol. ISO.

CMISE (1988). Open Systems Interconnection - Management Information Service
Definition, Part 2: Common Management Information Service. ISO.

CNMA (1993). CNMA Implementation Guide, Revision 6.01. Technical report, ES
PRIT Project 7096.

Comer, D. (1991). Internetworking With TCPlIP: Principles, Protocols, Architer::,t·ure.
Prentice Hall.

Comer, D. (1997). The Internet Book. Prentice Hall.
Cooper, E. (1985). Replicated distributed programs. In Procs. of the 10th ACM Sym

posium on Operating Systems Principles, Berkeley- USA.
Corneillie, P., Deswarte, Y., Goodson, J., Hawes, A., Kaaniche, M., Kurth, H., Liebisch,

G., Manning, T., Moreau, S., Steinacker, A., and Valentin, C. (1999). Squale- de
pendability assessment criteria (4th draft). Technical Report 98456, ACTS proj.
AC097, LAAS, Squale Consortium.

Cornhill, D., Sha, L., Lehoczky, J., Rajkumar, R., and Tokuda, H. (1987). Limitations
of ada for real-time scheduling. In Proceedings of the A eM International Workshop
on Real Time Ada Issues, Ada Letters, pages 33-39.

Exhibit 2026 Page 602



REFERENCES 591

Cosquer, F., Antunes, P., and Verissimo, P. (1996). Enhancing dependability of co
operative applications in partitionable environments. In Dependable Computing 
EDCC-2, volume 1150 of LNCS, pages 335-352. Springer-Verlag.

Crane, S.,Dulay, N., Fossa, H., Kramer, J., Magee, J., Sloman, M., and Twidle, K.
(1995). Configuration management for distributed software services. In Proceed
ings of the 4th IFIP/IEEE Int'l Symposium on Integrated Network Management
(ISINM'9S), Santa Barbara, USA.

Cristian, F. (1988). Reaching agreement on processor group membership in syn
chronous distributed system. Technical Report RJ 5964 (59426), IBM Almaden
Research Center.

Cristian, F. (1989). Probabilistic clock synchronization. Distributed Computing, 3(3):146
148.

Cristian, F. (1990). Synchronous atomic broadcast for redundant broadcast channels.
The Journal of Real- Time Systems, 2(1):195-212.

Cristian, F. (1994). Abstractions for fault-tolerance. In Proceedings of the 13th IFIP
World Computer Congress, Hamburg.

Cristian, F., Dancey, B., and Dehn, J. (1996). Fault-tolerance in air traffic control
systems. ACM Transaction on Computer Systems.

Cristian, F. and Fetzer, C. (1998). The timed asynchronous system model. In Proceed
ings of the 28th IEEE Annual International Symposium on Fault- Tolerant Com
puting, pages 140-149, Munich, Germany.

Cristian, F., H., A., Strong, R., and Dolev, D. (1985). Atomic broadcast: From simple
message diffusion to byzantine agreement. In Digest of Papers, The 15th IEEE
International Symposium on Fault-Tolerant Computing, Ann Arbor-USA.

Dana, P. (1996). Global positioning system (gps) time dissemination for real-time
applications. Journal of Real- Time Systems, this issue.

Daneshgar, F. and Ray, P. (1997). Cooperative management based on awareness mod
elling. In Proceedings of the 8th IFIP/IEEE Int'l Workshop on Distributed Systems
Operations and Management (DSOM'97), Sydney, Australia.

Danzig, P., Obraczka, K., and Kumar, A. (1992). An analiysis of wide-area name
server traffic. In Proceedings of ACM SIGCOM 1992, pages 281-292.

Davcev, D. (1989). A dynamic voting scheme in distributed systems. IEEE Transac
tions on Software Engineering, 15(1):93-97.

Debar, H., Dacier, M., and Wespi, A. (1999). A revised taxonomy for intrusion
detection systems. Technical Report 53, IBM Research, Zurich Research Labo
ratory.

Deering, S. (1989). Host extensions for ip multicasting. Technical Report RFC 1112,
Stanford University, Stanford, CA, USA.

Deering, S., Estrin, D., Farinacci, D., Jacobson, V., and Liu, C-G. andWei, L. (1996).
The PIM architecture for wide-area multicast routing. IEEE/ACM Transactions
on Networking, 4(2):153-162.

Deitel, H. and Deitel, P. (2000). Internet and World Wide Web: How to Program.
Number ISBN: 0130161438. Prentice Hall.

Denning, D. (1976). A lattice model of secure information flow. Communications of
the ACM, 19(5):236-243.

Denning, D. and Sacco, G. (1981). Time-stamps in key distribution protocols. Com
munications of the ACM, 24(8):533-536.

Deri, L. and Ban, B. (1997). Static vs. dynamic cmip/snmp network management
using corba. In Proceedings of the 4th Int'l Conference on Intelligence in Services
and Networks (IS&N'97).

Exhibit 2026 Page 603



592 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

DES (1977). Data Encryption Standard.
Deswarte, Y., Blain, L., and Fabre, J.-C. (1991). Intrusion tolerance in distributed

systems. In Proc. of the IEEE Symp. on Security and Privacy, pages 110-121,
Oakland - USA.

Diffie, W. and Hellman, M. (1976). New directions in cryptography. IEEE Transac
tions on Information Theory, IT-22(6):644-654.

DigiCash (1994). World's first electronic cash payment over computer networks. Tech
nical report, DigiCash Press Release.

Dolev, D., Dwork, C., and Stockmeyer, L. (1983). On the minimal synchronism needed
for distributed consensus. 24th Annual IEEE Symp. on Foundations of Computer
Science.

Dolev, D., Kramer, S., and Malki, D. (1993). Early delivery totally ordered multicast
in asynchronous environments. In Digest of Papers, The 23th IEEE Int'l Symp. on
Fault- Tolerant Computing, pages 544-553, Toulouse, France.

Dolev, D. and Yao, A. (1981). On the security of public key protocols. In Proc. of the
22nd Annual Symp. on the Foundations of Computer Science, pages 350-357.

Drummond, R. and Babaoglu, O. (1993). Low Cost Clock Synchronization. Distributed
Computing, 6:193-203.

DSS (1994). Digital Signature Standard.
Dupuy, F., Nilsson, G., and Inoue, Y. (1995). The tina consortium: Toward networking

telecommunications information services. IEEE Communications Magazine, pages
78-83.

Dwork, C., Lynch, N., and Stockmeyer, L. (1988). Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288-323.

EES (1994). Escrowed Encryption Standard.
EIGamal, T. (1985). A public-key cryptosystem and a signature scheme based on

discrete logarithms. In Proc. of Advances in Cryptology- CRYPTO'84, pages 10
18. Springer-Verlag.

Ellison, C. and Schneier, B. (2000). Ten risks ofpki: What you're not being told about
public key infrastructure. Computer Security Journal, XVI(l).

Elnozahy, E., Alvizi, L., Wang, Y., and Johnson, D. (1999). A survey of rollback
recover protocols in message-passing systems. Technical Report CMU-CS-99-148,
Carnegie Mellon University.

Elnozahy, E. and Zwaenepoel, W. (1992a). Manetho: Transparent Rollback-Recovery
with Low Overhead, Limited Rollback and Fast Output Commit. IEEE Transac
tions on Computers, 41(5):526-531.

Elnozahy, E. and Zwaenepoel, W. (1992b). Replicated distributed process in Manetho.
In Digest of Papers, The 22nd IEEE International Symposium on Fault-Tolerant
Computing Systems, page 18.

Eppinger, J.and Mummert, L. and Spector, A. (1991). Camelot and Avalon. Morgan
Kaufmann Publishers, Inc.

Eswaran, K., Gray, J., Lorie, R., and Traiger, 1. (1976). The notions of consistency and
predicate locks in a database system. Communics. of the ACM, 19(11):624-633.

Ezhilchelvan, P., Macedo, R., and Shrivastava, S. (1995). Newtop: A fault-tolerant
group communication protocol. In Proc. of the 15th IEEE Int'l Conference on
Distributed Computing Systems, pages 296-306, Vancouver, Canada.

Fabre, J., Nicomette, V., Perennou, T., Stroud, R., and Wu, Z. (1995). Implementing
fault tolerant applications using reflective object-oriented programming. In Digest
of Papers of the 25th IEEE Internatidnal Symposium on Fault- Tolerant Computing
Systems, pages 489-498.

Exhibit 2026 Page 604



REFERENCES 593

FDDI, X. (1986). FDDI documents: Media Access Layer, Physical and Medium De
pendent Layer, Station Mgt.

Felber, P., Grabinato, B., and Guerraoui, R. (1996). The design of a CORBA group
communication service. In Proceedings of the 15th IEEE Symposium on Reliable
Distributed Systems, pages 150-159, Niagara-on-the-Lake, Canada.

Felber, P., Guerraoui, R., and Schiper, A. (1997). Replicating objects using the corba
event service. In Proceedings of the Sixth IEEE Computer Society Workshop on
Future Trends of Distributed Computing Systems, pages 14-19, Tunis, Tunisia.

Felten, E., Balfanz, D., Dean, D., and Wallach, D. (1996). Web spoofing: an internet
con game. Technical Report 540-96, Princeton University, Department of CS.

Fetzer, C. and Cristian, F. (1996). Fail-awareness in timed asynchronous systems.
In Proceedings of the 15th Annual A CM Symposium on Principles of Distributed
Computing (PODC '96), pages 314-321, New York, USA.

Fetzer, C. and Cristian, F. (1997a). Fail-awareness: An approach to construct fail-safe
applications. In Proc. of the 27th IEEE Annual Int'l Fault- Tolerant Computing
Symposium, pages 282-291, Seattle, USA.

Fetzer, C. and Cristian, F. (1997b). Integrating external and internal clock synchro
nization. Journal of Real- Time Systems, 12(2).

FIP (1990). General Purpose Field Communication System - Part 3, WorldFIP.
Fischer, M., Lynch, N., and Paterson, M. (1985). Impossibility of Distributed Con

sensus with One Faulty Process. Journal of the ACM, 32:374-382.
Fisher,T., editor (1990). Batch Control Systems: Design, Application and Implemen

tation. ISA.
Fohler, G. (1995). Joint scheduling of distributed complex periodic and hard aperiodic

tasks in statically scheduled systems. In Proceedings of RTSS '95, the IEEE Real
Time Systems Symposium, pages 152-161, Pisa, Italy.

Forestier, J., Forarino, C., and Franci-Zannettacci, P. (1989). Ada++: A class and
inheritance extension for ada. In Procs. of the Ada-Europe Int'l Con/., Ada Com
panion Series, Madrid-Spain. Cambridge Univ. Press.

Fossa, H. (1997). Interactive Configuration Management for Distributed Systems. PhD
thesis, University of London, Imperial College.

Friday, A., Davies, N., Blair, G., and Cheverst, K. (1999). Developing adaptive appli
cations: The MOST experience. Journal of Integrated Computer-Aided Engineer
ing, 6(2).

Fritzke Jr., U., Ingels, P., Moustefaoui, A., and Raynal, M. (1998). Fault-tolerant total
order multicast to asynchronous groups. In Proc. 17th IEEE Symp. on Reliable
Distributed Systems, pages 228-234, West Lafayette, USA.

Furht, B., Grostick, D., Gluch, D., Rabbat, G., P., J., and McRoberts, M. (1991).
Real-time Unix Systems Design and Application Guide. Kluwer.

Garcia-Molina, H. (1982). Elections in distributed computer systems. IEEE Transac
tions on Computers, C-31(1):48-59.

Garcia-Molina, H. and Barbara, D. (1985). How to assign votes in distributed system.
Journal of the ACM, 32(4):841-860.

Garcia-Molina, H. and Spauster, A. (1991). Ordered and reliable multicast commu
nication. ACM Transactions on Computers Systems, 9(3):242-271.

Garfinkel, S. and Spafford, G. (1997). Web Security and Commerce. O'Reilly.
Gharachorloo, K., Lenoski, D., Laudon, J., Gibsons, P., Gupta, A., and Henessy, J.

(1990). Memory consistency and event ordering in scalable shared-memory mul
tiprocessors. In Proceedings of the 17th International Symposium on Computer
Architecture, pages 15-26, Seattle, Washington, USA.

Exhibit 2026 Page 605



594 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Gifford, D. (1979). Weighted Voting For Replicated Data. In Proceedings of the Sev
enth ACM Symposium on Operating System Principles, pages 150-162.

Golding, R. (1992). Weak consistent group communication for wide-area systems. In
Proceedings of the Second IEEE Workshop on the Management of Replicated Data,
pages 13-16, Monterey, California.

Goldszmidt, G. and Yemini, Y. (1995). Distributed management by delegation. In
Proc. of the 15th IEEE Int'l Conference on Distributed Computing Systems.

Gollmann, D. (2000). On the verification of cryptographic protocols - a tale of two
committees. Electronic Notes in Theoretical Computer Science, 32.

Gong, L. (1992). A security risk of depending on synchronized clocks. Operating Sys
tems Review, 26(1):49-53.

Goodman, J. (1989). Cache consistency and sequencial consistency. Technical Re
port 61, SCI Commitee.

Gorur, R. and Weaver, A. (1988). Setting target rotation times in an IEEE Token
Bus network. IEEE Transactions on Industrial Electronics, 35(3).

Graw, G., Herrmann, P., and Krumm, H. (2000). Verification of umI-based real-time'
system designs by means of ctla. In Proceedings of ISORC 2000, the Third IEEE
International Symposium on Object- Oriented Real- Time Distributed Computing,
pages 86-95, Newport Beach, USA.

Gray, C. and Cheriton, D. (1989). Leases: An efficient fault-tolerant mechanism for
distributed file cache consistency. In Proceedings of the 'Twelfth ACM Symposium
on Operating Systems Principles, pages 202-210.

Gray, J. (1978). Notes on Database Operating Systems, volume 60 of Lecture Notes in
Computer Science, pages 393-481. Springer-Verlag.

Gray, J. (1986). Why do computers stop and what can be done about it? In Proceedings
of the 5th IEEE Sycmp. on Reability in Distributed Software and Database Systems,
pages 3~,·~12, Los Angeles, USA.

Gray, J. and Reuter, A. (1993). Transaction processing: concepts and techniques. Series
in Data Management Systems. Morgan Kaufmann.

Guedes, P. and Castro, M. (1993). Distributed shared object memory. In Proceedings
of the Fourth IEEE Workshop on Workstation Operating Systems, pages 142-149,
Napa, California, USA.

Guerraoui, R., Hurfin, M., Mostefaoui, A., Oliveira, R., Raynal, M., and Schiper, A.
(2000). Consensus in asynchronous distributed systems: a concise guided tour. In
Krakowiak, S. and Shrivastava, S., editors, Advances in Distributed Systems, LNCS
1752, chapter 2, pages 33-47. Springer Verlag.

Guerraoui, R. and Schiper, A. (1997). Total order multicast to multiple groups. In
IEEE 17th Intl. Conf. Distributed Computing Systems, pages 578-585.

Guo, K. and Rodrigues (1997). Dynamic light-weight groups. In Proceedings of the
17th IEEE International Conference on Distributed Computing Systems (ICDCS'17),
Baltimore, Maryland, USA.

Gusella, R. and Zatti, S. (1989). The accuracy of the clock synchronization achieved
by tempo in berkeley unix 4.3bsd. IEEE Transactions on Software Engineering,
15(7):847-853.

Guy, R., Page, T., Heidemann, J., and Popek, G. (1990). Name transparency in
very large scale distributed file systems. In Proceedings of the IEEE Workshop on
Experimental Distributed Systems, pages 20-25, Huntsville, Alabama.

Haberman, S., Falciani, A., and Riggsby, M. (2000). Mastering Lotus Notes and
Domino R5 Premium Edition. Number ISBN: 0782126359.

Exhibit 2026 Page 606



REFERENCES 595

Hachiga, J. (1992). The Concepts and Technologies of Dependable and Real-time
Computer Systems for Shinkansen Train Control. In Proc. of the 2nd Int'l Work
shop on Responsive Computer Systems, Tokyo, Japan. Springer-Verlag.

Hadzilacos, V. and Toueg, S. (1994). A modular approach to the specification and
implementation of fault-tolerant broadcasts. Technical Report TR94-1425, Depart
ment of Computer Science, Cornell University, Ithaca- USA.

Halpern, J. and Moses, Y. (1987). Knowledge and common knowledge in a distributed
environment. Technical Report RJ4421, IBM Research Laboratory.

Halpern, J., Simons, B., Strong, R., and Dolev, D. (1984). Fault-Tolerant Clock Syn
chronization. In Proceedings of the 3rd ACM Symposium on Principles of Dis
tributed Computing, pages 89-102, Vancouver, Canada.

Halpern, J. and Suzuki, 1. (1991). Clock synchronization and the power of broadcast
ing. Distributed Computing, 5(2):73-82.

Halsall, F. (1994). Data Communications, Computer Networks and Open Systems,
3rd Ed. Addison-Wesley.

Harper, R., Lala, J., and Deyst, J. (1988). Fault-tolerant parallel processor architec
ture overview. In Digest of Papers, the 18th FTCS, IEEE Int'l Symp. on Fault
Tolerant Computing, pages 252-257, Tokyo - Japan.

Hawking, S. (1988). A Brief History of Time - from the Big Bang to Black Holes.
Gradiva.

Hayden, M. (1998). The Ensemble System. PhD thesis, Cornell University, Computer
Science Department.

Hayes, S. (1993). Analyzing network performance management. IEEE Communica
tions Magazine, pages 52-58.

Hedenetz, B. (1998). A development framework for ultra-dependable automotive sys
tems based on a time-triggered architecture. In Proceedings of RTSS'98, the IEEE
Real-Time Systems Symposium, pages 358-367, Madrid, Spain.

Hegering, H.-G. and Abeck, S. (1994). Integrated Network and System Management.
Addison-Wesley.

Heiner, G. and Thurner, T. (1998). Time-triggered architecture for safety-related
distributed real-time systems in transportation systems. In Digest of Papers, The
28th IEEE Int'l Symp. on Fault-Tolerant Computing Systems, Munich, Germany.

Henning, M. and Vinoski, S. (1999). Advanced CORBA Programming with C++.
Number ISBN: 0201379279. Addison-Wesley.

Herlihy, M. and Wing, J. (1990). Linearizability: a correctness condition for concurrent
objects. ACM Transac. on Programming Languages and Systems, 12(3):463-492.

Hiltunen, M. and Schlichting, R. (1993). An approach to constructing modular fault
tolerant protocols. In Proceedings of the 12th IEEE Symposium on Reliable Dis
tributed Systems, pages 105-114, Princeton, New Jersey.

Hiltunen, M. and Schlichting, R. (1994). Properties of membership services. Technical
report, University of Arizona, Department of Computer Science, Tucson, AZ.

Hong, J., Kim, J.-S., and Park, J.-K. (1999). A corba-based quality of service man
agement framework for distributed multimedia services and applications. IEEE
Network, 13(2):70-79.

Hong, J., Kong, J.-Y., Yun, T.-H., and Kim, J.-S. (1997). Web-based intranet services
and network management. IEEE Communic's Magazine, 35(10):100-110.

Hood, C. and Ji, C. (1996). Probabilistic network fault detection. In Proceedings of
the IEEE Globecom '96, pages 1872-1876, London, UK.

Hopkins, A., Smith, T., and Lala, J. (1978). FTMP - A highly reliable fault-tolerant
multiprocessor for aircraft. Proceedings of IEEE, 66(10):1221-1239.

Exhibit 2026 Page 607



596 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Hughes, D. (1993). Esl-a script language for snmp (and then some!). Technical report,
Bond University.

Hutchison, D., Coulson, G., Campbell, A., and Blair, G. (1994). Quality of service
management in distributed systems. In Sloman, M., editor, Network and Dis
tributed Systems Management, chapter 11. Addison-Wesley.

IEEE-RT (1994). Special issue on real-time systems. In Procs. of the IEEE.
ISOI0040 (1992). Information Technology - Open Systems Interconnection - Systems

Management Overview. ISO/IEC.
ISOI0164 (1992). Information Technology - Open Systems Interconnection - Systems

Management Functions. ISO/IEC.
IS010165 (1992). Information Technology - Open Systems Interconnection - Structure

of Management Information. ISO/IEC.
ISODE (1993). ISODE Volume 1: Overview of ISODE. England.
Issarny, V. (1993). An exception handling mechanism for parallel object-oriented

programming: Towards reusable, robust distributed software. Journal of Object
Oriented Programming, 6(6):29-40.

ITSEC (1991). Information Technology Security Evaluation Criteria, Ver. 1.2.
Iyer, V. and Joshi, S. (1985). FDDI's 100 mb/s protocol improves on 802.5 specs

4mb/s limit. EDN.
Jahanian, F. and MoranJr, W. (1992). Strong, weak, and hybrid group membership.

In Proceedings of the Second IEEE Workshop on the Management of Replicated
Data, pages 34-38, Monterey, California.

Jalote, P. (1994). Fault Tolerance in Distributed Systems. Prentice-Hall.
Janetzky, D. and Watson, K. (1986). Token bus performance in MAP and PROWAY.

In Proceedings of the IFAC Workshop on Distributed Computer Protocol Systems.
Jeffay, K. (1993). The real-time producer/consumer paradigm: A paradigm for con

struction of efficient, predictable real-time systems. In Procs. of the ACM/SIGAPP
Symp. on Applied Computing, Indianapolis, USA.

Jeffay, K., Stanat, D., and Martel, C. (1991). On non-preemptive scheduling of pe
riodic and sporadic tasks. In Proceedings of RTSS'91, the 12th IEEE Real-Time
Systems Symposium, pages 129-139.

Jensen, E. (2000). A proposed initial approach to distributed real-time java. In Procs.
of ISORC 2000, the Third IEEE Int'l Symp. on Object-Oriented Real-Time Dis
tributed Computing, pages 2-6, Newport Beach, USA.

Jensen, E. and Northcutt, J. (1990). Alpha: A non-proprietary os for large, complex,
distributed real-time systems. In Procs. of the IEEE Workshop on Experimental
Distributed Systems, pages 35-41, Alabama, USA.

Kaashoek, M. and Tanenbaum, A. (1991). Group communication in the Amoeba
distributed operating system. In Procs. of the 11th IEEE Int'l Conference on Dis
tributed Computing Systems, pages 222-230, Arlington, USA.

Kahn, D. (1967). The Codebreakers: The Story of Secret Writing. Macmillan Publish
ing Co.

Kaiser, J. and Livani, M. (1998). Invocation of real-time objects in a can-bus system.
In Proceedings of the ISGRC 1998, IEEE International Symposium on Object
Oriented Real- Time Distributed Computing.

Kaiser, J. and Mock, M. (1999). Implementing the real-time publisher/subscriber
model on the controller area network. In Procs. of the ISORC 1999, IEEE Int'l
Symp. on Object- Oriented Real- Time Distributed Computing.

Kaliski, B. (1993). A survey of encryption standards. IEEE Micro, 13(6):74-81.

Exhibit 2026 Page 608



REFERENCES 597

Kalogeraki, V., Melliar-Smith, P., and Moser, L. (2000). Dynamic scheduling for soft
real-time distributed object systems. In Proceedings of ISORC 2000, the Third
IEEE International Symposium on Object-Oriented Real-Time Distributed Com
puting, pages 114-121, Newport Beach, USA.

Kaufman, C., Perlman, R., and Speciner, M. (1995). Network Security, Private Com
munication in a Public World. Prentice-Hall.

Kemme, B., Pedone, F., Alonso, G., and Schiper, A. (1999). Processing transactions
over optimistic atomic broadcast protocols. In Procs. of the 19th IEEE Int' l Con
ference on Distributed Computing Systems, pages 424-431, Austin, USA.

Kent, S. and Atkinson, R. (1998). Security architecture for the internet protocol.
Technical Report Request for Comments 2401, IETF.

Kieckhafer, R., Walter, C., Finn, A., and Thambidurai, P. (1988). The MAFT archi
tecture for distributed fault tolerance. IEEE Trans. on Computers, 37(4).

Kim, K. and You, J. (1990). A highly decentralized implementation model for the
programmer-transparent coordination (ptc) scheme for cooperative recovery. In
Digest of Papers, 20th IEEE Inti. Symposium on Fault- Tolerant Computing Sys
tems, pages 282-289, Newcastle - England.

Koch, T. and Kramer, B. (1995). Toward a comprehensive distributed systems man
agement. Open Distributed Processing, pages 259-270.

Koops, B.-J. (1999). Crypto law survey. Technical Report Version 14.3.
Kopetz, H. (1992). Sparse Time versus Dense Time in Distributed Systems. In Proc. of

the 12th IEEE Int'l Conf. on Distributed Computing Systems, Yokohama, Tokyo.
Kopetz, H. (1997). Real-Time Systems. Kluwer.
Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C., and Zain

linger, R. (1989a). Distributed fault-tolerant real-time systems: The Mars ap
proach. IEEE Micro, pages 25-41.

Kopetz, H. and Grunsteidl, G. (1993). TTP - a Time-Triggered Protocol for Fault
Tolerant Real-Time Systems. In Digest of Papers, The 23rd IEEE Int'l Symp. on
FIT Computing, Toulouse, France.

Kopetz, H., Grunsteidl, G., and Reisinger, J. (1989b). Fault-tolerant Membership Ser
vice in a Synchronous Distributed Real-time System. In Proceedings of the IFIP
WG10.4 Int'l Working Conference on Dependable Computing for Critical Applica
tions, Sta Barbara - USA.

Kopetz, H. and Ochsenreiter, W. (1987). Clock Synchronization in Distributed Real
Time Systems. IEEE Transactions on Computers, C-36(8):933-940.

Kopetz, H. and Verfssimo, P. (1993). Real-time and Dependability Concepts. In Mul
lender, S., editor, Distributed Systems, 2nd Edition, ACM-Press, chapter 16, pages
411-446. Addison-Wesley.

Korth, H., Soparkar, N., and Silberschatz, A., editors (1996). Time-Constrained Trans
action Management: Real-time Constraints in Database Transaction Systems. Kluwer
Academic Publishers.

Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Jour
nal of Real- Time-Systems, 2(4):255-299.

Kronenberg, N., Levy, H., and Strecker, W. (1987). Vaxclusters: A closely-coupled
distributed system. ACM Trans. on Computer Systems, 4(3):130-146.

Kumar, A. and Cheung, S. (1991). A high availability VN hierarquical grid algorithm
for replicated data. Information Processing Letters, (40):311-316.

Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. (1992). Providing high availability
using lazy replication. ACM Transactions on Computer Systems, 10(4):360-391.

Exhibit 2026 Page 609



598 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Lai, X. (1992). On the Design and Security of Block Ciphers. ETH Series in Informa
tion Processing, Vol.1. Konstanz Hartung-Gorre Verlag.

Lamb, J. and Lew, P. (1996). Lotus Notes Network Design: For Notes Release 3 and
4. Computer Communications. McGraw-Hill.

Lamport, L. (1978a). The implementation of reliable distributed multiprocess systems.
Computer Networks 2, (1978):95-115.

Lamport, L. (1978b). Time, Clocks and the Ordering of Events in a Distributed
System. CACM, 21(7):558-565.

Lamport, L. (1979). How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transacs. on Computers, 28(9):690-691.

Lamport, L. (1981). Password identification with insecure communications. Commu
nications of the ACM, 24(11):770-772.

Lamport, L. (1984). Using Time Instead of Timeout for Fault-Tolerant Distributed
Systems. ACM Transactions on Prog. Lang. and Systems, 6(2).

Lamport, L. (1994). The temporal logic of actions. ACM Transactions on Program
ming Language and Systems, 16(3).

Lamport, L. and Melliar-Smith, P. (1985). Synchronizing Clocks in the Presence of
Faults. Journal of the ACM, 32(1):52-78.

Lamport, L., Shostak, R., and Pease, M. (1982). The byzantine generals problem.
ACM Transactions on Prog. Lang. and Systems, 4(3).

Lampson, B. (1974). Protection. Operating Systems Review, 8(1):18-24.
Lampson, B. (1981). Atomic transactions. In Distributed Systems - Architecture and

Implementation: An Advanced Course, volume 105 of Lecture Notes in Computer
Science, chapter 11, pages 246-265. Springer-Verlag.

Lampson, B. (1993). Authentication in distributed systems. In Mullender, S., editor,
Distributed Systems, 2nd Edition, ACM-Press, chapter 21. Addison-Wesley.

Lampson, B., Abadi, M., and Wobber, E. (1992). Authentication in distributed sys
tems: Theory and practice. ACM Trans. on Computer Systems, 10(4):265-310.

Langsford, A. (1994). Osi management model and standards. In Sloman, M., editor,
Network and Distributed Syst. Management, chapter 4. Addison-Wesley.

Laplante, P. (1997). Real-time systems design and analysis: an engineer's handbook,
2nd Edition. IEEE Press.

Laprie, J. (1987). Dependability: A Unifying Concept for Reliable Computing and
Fault-Tolerance. In Resilient Computing Systems, volume 2. Collins and Wiley.

Laprie, J.-C. (1992). Dependability: A unifying concept for reliable, safe, secure com
puting. In IFIP Congress, volume 1, pages 585-593.

Laprie, J.-C., editor (1998). Dependability Handbook, volume Report Nr.98-346 of
Laboratory for Dependability Engineering. LAAS.

Lauer, H. and Satterwaite, E. (1979). The impact of mesa on systems design. In Procs.
of the 4th IEEE Int'l Conf. on Software Engineering, pages 174-182.

Le Lann, G. and Riviere, N. (1993). Real-time communications over broadcast net
works: the CSMA-DCR and the DOD-CSMA-CD protocols. Technical Report
1863, INRIA.

Lea, D. (1997). Concurrent Programming in Java. Design Principles and Patterns.
Addison-Wesley.

Lee, P. and Anderson, T. (1990). Fault-Tolerant: Principles and Practice, Second
Edition. Springer-Verlag.

Lehoczky, J. (1998). Scheduling communication networks carrying real-time traffic.
In Procs. of RTSS'9S, the 19th IEEE Real-Time Systems Symp.

Exhibit 2026 Page 610



REFERENCES 599

Leiner, B., Cerf, V., Clark, D., Kahn, R., Kleinrock, L., Lynch, D., Postel, J., Roberts,
L., and Wolff, S. (1997). The past and future history of the internet. Communica
tions of the ACM, 40(2):102-108.

Leinwand, A. and Conroy, K. (1996). Network Management: a Practical Perspective.
UNIX and Open Systems. Addison-Wesley.

Leslie, 1., McAuley, D., Black, R., Roscoe, T., ·Barham, P., Evers, D., Fairbairns, R.,
and Hyden, E. (1996). The design and implementation of an operating system to
support distributed multimedia applications. IEEE Journal on Selected Areas in
Communication, 14(7).

Leung, J. and J., W. (1982). On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation, 2(4):237-250.

Levine, P. (1987). The apollo domain distributed file system. In Theory and Practice
of Distributed Operating Systems. Springer Verlag, NATO ASI Series.

Lewis, L. and Dreo, G. (1993). Extending trouble ticket systems to fault diagnostics.
IEEE Network, 7(6):44-51.

Li, K. and Hudak, P. (1989). Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4):321-359.

Lin, J. and Paul, S. (1996). RMTP: a reliable multicast transport protocol. In Pro
ceedings of the IEEE INFOCOM'96, pages 1414-1424.

Linn, J. (1993). Privacy enhancement for internet electronic mail: Part I-message
encipherment and authentication procedures. Technical Report RFC1421, IETF.

Linn, J. (1996). Generic security service application programming interface (GSS
API), version 2. Technical Report Internet Draft, IETF.

Liskov, B. (1985). The ARGUS language and system. In Distributed Systems, Methods
and Tools for Specification, volume 190 of LNCS. Springer-Verlag.

Liskov, B., Castro, M., Shrira, L., and Adya, A. (1999). Providing persistent objects
in distributed systems. In Proceedings of the ECOOP'99 - Object Oriented Pro
gramming, number 1628 in Lecture Notes in Computer Science, pages 230-257,
Lisbon, Portugal. Springer-Verlag.

Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., and Shrira, L. (1992). Efficient
recovery in harp. In Proceedings of the Second IEEE Workshop on the Management
of Replicated Data, pages 104-106, Monterey, California.

Liskov, B., Scheifler, R., Walker, E., and Weihl, W. (1987). Orphan detection. In Di
gest of Papers, The 11th IEEE International Symposium on Fault- Tolerant Com
puting, Pittsburgh-USA.

Liu, C. and Layland, J. (1973). Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM, 20(1):46-61.

Lockhart Jr., H. (1994). OSF DCE. McGraw-Hill.
Lowe, G. (1995). An attack on the needham-schroeder public-key authentication pro

tocol. Information Processing Letters, 56(3):131-133.
Lundelius, J. and Lynch, N. (1984a). A New Fault-Tolerant Algorithm for Clock

Syncr onization. In Proceedings of the 3rd ACM SIGACT-SIGOPS Symp. on Prin
ciples of Distrib. Computing, pages 75-88, Vancouver-Canada.

Lundelius, J. and Lynch, N. (1984b). An upper and lower bound for clock synchro
nization. Information and Control, 62:190-204.

Lupu, E. and Sloman, M. (1997). Towards a role based framework for distributed
systems management. Journal of Network and Syst. Manag't, 5(1).

Lynch, N. (1996). Data link protocols. In Distributed Algorithms, pages 691-732.
Morgan-Kaufmann.

Lyu, M., editor (1995). Software Fault Tolerance. Wiley.

Exhibit 2026 Page 611



600 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

M. Shapiro, M. (1986). Structure and Encapsulation in Distributed Systems: the
Proxy Principle. In Proceedings 6th IEEE Intl. Conf. on Distributed Computing
Systems, pages 198-204, Cambridge, USA.

Macedo, R., Ezhilchelvan, P., and Shrivastava, S. (1995). Flow control schemes for a
fault-tolerant multicast protocol. Technical report, Univ. Newcastle upon Tyne.

Madeira, H. and Silva, J. (1994). Experimental evaluation of the fail-silent behaviour
in computers without error masking. In Digest of Papers, Fault-Tolerant Comput
ers Symposium, pages 350-359.

Magedanz, T. and Eckardt, T. (1996). Mobile software agent: A new paradigm for
telecommunications management. In Proceedings of the IEEE/IFIP Network and
Management Operations Symposium (NOMS), Kyoto, Japan.

Magee, J., Dulay, N., and Kramer, J. (1993). Structuring parallel and distributed
programs. IEEE Software Engineering Journal, 2(8):73-82.

Magee, J., Dulay, N., and Kramer, J. (1994). Regis: A constructive development en
vironment for distributed programs. IEEE/IOP/BCS Distributed Systems Engi
neering Journal, 1(5):304-312.

Magee, J., Kramer, J., and Sloman, M. (1989). Constructing distributed systems in
conic. IEEE Transactions on Software Engineering, SE-15(6):663-675.

Mahony, D., Peirce, M., and Tewari, H. (1997). Electronic Payment Systems. Artech
House.

Malan, G. and Jahanian, F. (1998). An extensible probe architecture for net~vork

protocol performance measurement. In Procs. of ACM SIGCOMM'98.
Malkhi, D. and Reiter, M. (1998). Byzantine quorum systems. Distributed Computing,

11 (4):203-213.
Manna, Z. and Pnueli, A. (1992). The Temporal Logic of Reactive and Concurrent

Systems. Springer, New York.
Mansouri-Samani, M. and Sloman, M. (1994). Monitoring distributed systems. In

Sloman, M., editor, Network and Distributed Systems Management, chapter 12,
pages 303---:347. Addison-Wesley.

MAP (1985). Manufacturing Automation Protocol Specification V2.1.
Martin-Flatin, J. (1999). Push vs. pull in web-based network management. In Pro

ceedings of the 6th IFIP/IEEE International Symposium on Integrated Network
Management (IM'99), pages 3-18, USA.

Martin-Flatin, J.-P., Znaty, S., and Hubaux, J.-P. (1999). A survey of distributed
network and systems management paradigms. Journal of Network and Systems
Management, 7(1):9-26.

Marzullo, K. (1983). Maintaining the time in a distributed system. ACM, pages 295
305.

Marzullo, K. (1990). Tolerating failures of continuous valued sensors. A CM Transac
tions on Computer Systems, 8(4):284-304.

Maxion, R. and Olszewski, R. (1998). Improving software robustness with dependabil
ity cases. In Digest of Papers, The 28th Int'l Symp. on Fault- Tolerant Computing
Systems, Munich, Germany. IEEE.

Mazumdar, S. (1996). Inter-domain management between corba and snmp: Web-based
management - corba/snmp gateway approach. In Proceedings of the 7th IEEE Int'l
Workshop on Distributed Systems Operations and Management (DSOM'96), pages
28-30, L'Aquila, Italy.

McGraw, G. and Felten, E. (1997). Java Security, Hostile Applets, Holes and Anti
dotes. John Wiley.

Exhibit 2026 Page 612



REFERENCES 601

Melliar-Smith, P., Moser, L., and Agrawala, V. (1990). Broadcast protocols for dis
tributed systems. IEEE Trans. on Parallel and Distributed Systems, 1(1):17-25.

Menezes, A., Van Oorschot, P., and Vanstone, S. (1999). Handbook of Applied Cryp
tography, 4th ed. CRC.

Merkle, R. (1978). Secure communication over insecure channels. Communications of
the ACM, 21(4):294-299.

Merkle, R. and Hellman, M. (1981). On the security of multiple encryption. Commu
nications of the ACM, 24(7):465-467.

Metcalfe, R. and Boggs, D. (1976). Ethernet: Distributed packet switching for local
computer networks. Communications of the ACM, 19(7).

Meyer, J. (1992). Performability: A retrospective and some pointers to the future.
Performance Evaluation North Holland, 14, 3-4:139-155.

Meyer, J., Muralidhar, K., and Sanders, W. (1989). Performability of a token-bus
network under transient faults. In The 19th Annual IEEE International Symposium
on Fault- Tolerant Computing, Chicago-USA.

Micali, S. (1993). Fair public-key cryptosystems. In Proceedings of the Advances in
Cryptology- CRYP TO '92, pages 113-138. Springer-Verlag.

MIL-STD-1553B (1988). Field Bus Based on MIL-STD-1553B.
Miller, C. (1999). Multicast Networking and Applications. Addison Wesley.
Mills, D. (1991). Internet time synchronization: the network time protocol. IEEE

Transactions on Communications, 39(10):1482-1493.
Minar, N. (1999). A survey of the ntp network. Technical report, MIT.
Mintzberg, H. (1989). Mintzberg on Management, Inside Our Strange World of Or

ganizations. Free Press, MacMillan.
Mishra, S., Peterson, L., and Schlichting, R. (1993). Consul: A communication sub

stracte for fault-tolerant distributed programs. Distributed Systems Engineering,
1(2):87-103.

Mishra, S. and Schlichting, R. (1992). Abstractions for constructing dependable dis
tributed systems. Technical Report TR 92-19, The University of Arizona, Departe
ment of Computer Science, Tucson, Arizona, USA.

MMS (1990). MMS Specification - Part 1: Service definition, Part 2: Protocol speci
fication. International Organization for Standardization.

Mok, A. (1983). Fundamental Design Problems of Distributed Systems for the Hard
Real-time Environment. PhD thesis, MIT, Cambridge-Mass., USA.

Morris/Satyanarayanan, Conner, M., Howard, J., Rosenthal, D., and Smith, F. (1986).
Andrew: a Distributed Personal Computing Environment. Communications of the
ACM, 29(3).

Moser, L., Amir, Y., Melliar-Smith, P., and Agarwal, D. (1994). Extended virtual syn
chrony. In Proceedings of the 14th IEEE International Conference on Distributed
Computing Systems, pages 56-65, Poland.

Moser, L., Melliar-Smith, P., Agarwal, A., Budhia, R., Lingley-Ppadopoulos, C., and
Archambault, T. (1995). The Totem system. In Digest of Papers of the 25th IEEE
Int. Symp. on Fault- Tolerant Computing Systems, pages 61-66.

Mosse, D., Melhem, R., and Ghosh, S. (1994). Analysis of a fault-tolerant multiproces
sor scheduling algorithm. In Digest of papers, the 24th FTCS, IEEE International
Symposium on Fault- Tolerant Computing.

Moy, J. (1994). Multicast routing extension for ospf. Communications of the ACM,
37(8):61-66.

Mullender, S., editor (1993). Distributed Systems, 2nd Edition. ACM-Press. Addison
Wesley.

Exhibit 2026 Page 613



602 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Muller, N. (1997). Improving network operations with intelligent agents. Journal of
Network and Systems Management, 7(3):116-126.

Needham, R. (1993). Cryptography and secure channels. In Mullender, S., editor,
Distributed Systems, 2nd Edition, ACM-Press, chapter 20. Addison-Wesley.

Needham, R. and Schroeder, M. (1978). Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993-999.

Needham, R. and Schroeder, M. (1987). Authentication revisited. Operating Systems
Review, 21(1):7.

Neuman, B. and Stubblebine, S. (1993). A note on the use of timestamps as nonces.
Operating Systems Review, 27(2):10-14.

Neuman, B. and Ts'o, T. (1994). Kerberos: An authentication service for computer
networks. IEEE Communications Magazine, 32(9):33-38.

Neumann, P. (1995). Computer Related Risks. Addison-Wesley.
Neves, N. and Fuchs, W. (1998). RENEW: A tool for fast and efficient implementation

of checkpointing protocols. In Digest of Papers, The 28th IEEE Int'l Symp. on
Fault- Tolerant Computing Systems, Munich, Germany.

Nicomette, V. and Deswarte, Y. (1997). An authorization scheme for distributed
object systems. In Proc. of the IEEE Symp. on Security and Privacy, pages 21-30.

Norton, B. (1994). Integrating network discovery with network monitoring: The nsfnet
method. In Proceedings of the INET'94/JENC5, page 5631 to 5636.

ODP (1987). Proposed Revised Text for the New Work Item on the Basic Reference
Model for Open Distributed Processing. ISO/TC97/SC21 N1889.

Okamoto, T. and Ohta, K. (1992). Universal electronic cash. In Proceedings of the
Advances in Cryptology- CRYPTO'91, pages 324-337. Springer-Verlag.

Oki, B., Pfuelgl, M., Siegel, A., and Skeen, D. (1993). The information bus- an archi-
tecture for extensible distributed systems. ACM SIGOPS, pages 58-68.

OMG (1997a). The Common Object Request Broker: Architecture and Specification.
OMG (1997b). CORBAservices: Common Object Services Specification.
OMNIPoint (1993). Understanding omnipoint, white paper. Technical report.
Otway, D. and Rees, O. (1987). Efficient and timely mutual authentication. Operating

Systems Review, 21(1):8-10.
Ozden, B., Rastogi, R., and Silberschatz, A. (1996). Research issues in multimedia

storage managers. ACM Computing Surveys.
Panzieri, F. and Roccetti, M. (2000). Responsive protocols for distributed multimedia

applications. In Krakowiak, S. and Shrivastava, S., editors, Advances in Distributed
Systems, volume 1752 of LNCS, chapter 7. Springer-Verlag.

Panzieri, F. and Shrivastava, S. (1988). Rajdoot: a remote procedure call mechanism
supporting orphan detection and killing. IEEE, 14(1).

Paris, J.-F. and Sloope, P. (1992). Dynamic management of highly replicated data. In
Procs. of the 11th IEEE Symposium on Reliable Distributed Systems, pages 20-28.

Parkinson, B. and Gilbert, S. (1983). Navstar: Global positioning system- ten years
later. Proceedings of the IEEE, 71(10):1177-1186.

Patterson, D., Gibson, G., and Katz, R. (1988). A case for redundant arrays of in
expensive disks (RAID). In Proc. of the ACM SIGMOn Conference, volume 17,
pages 109-116.

Paul, S. (1998). Multicasting on the Internet and its Applications. Kluwer Academic
Publishers.

Pavlou, G., Liotta, A., Abbi, P., and Ceri, S. (1998). Cmis/p++: Extensions to cmis/p
for increased expressiveness and efficiency in the manipulation of management
information. IEEE Network, pages 10-20.

Exhibit 2026 Page 614



REFERENCES 603

Pease, M., Shostak, R., and Lamport, L. (1980). Reaching agreement in the presence
of faults. Journal of the ACM, 27(2).

Peden, J. and Weaver, A. (1988). The utilization of priorities on token ring networks.
In Proc. of the 13th Conf. on Local Computer Networks, Minneapolis, USA.

Pedone, F., Guerraoui, R., , and Schiper, A. (1998). Exploiting atomic broadcast
in replicated databases. In Proceedings of Europar Conference, number 1470 in
Lecture Notes in Computer Science, pages 513-520. Springer-Verlag.

Peterson, L., Buchholz, N., and Schlichting, R. (1989). Preserving and using con
text information in interprocess communication. ACM Transactions on Computer
Systems, 7(3):217-146.

Pfister, G. (1998). In search of clusters. Second Edition. Prentice Hall.
Pfleeger, C. (1996). Security in Computing, 2nd Edition. Prentice-Hall.
Pimentel, J. (1990). Communication Networks for Manufacturing. Prentice-Hall.
Pleinevaux, P. and Decotignie, J. (1988). Time critical communication networks: Field

buses. IEEE Network, 2(3).
Poledna, S., editor (1995). Fault- Tolerant Real- Time Systems: the Problem of Replica

Determinisuz. Kluwer Academic Publishers.
POSIX (1995). Portable Operating System Interface (POSIX) - Part 1: API C Lan

guage - Real- Time Extensions. ISBN 1-55937-375-X.
Post, M., Shen, C.-C., and Wei, J. (1996). The manager/agency paradigm for dis

tributed network management. In Proceedings of the IEEE Network Operations
and Management Symposium (NOMS'96), pages 44-53.

Postel, J. (1978). Internetwork protocol specification - version 4. Technical Report
IEN-41.

Powell, D., editor (1991). Delta-4 - A Generic Architecture for Dependable Distributed
Computing. ESPRIT Research Reports. Springer Verlag.

Powell, D. (1992). Failure mode assumptions and assumption coverage. In Proc. of
The 22nd IEEE Int. Symp. on Fault- Tolerant Computing Systems, page 386.

Powell, D. (1994). Distributed fault tolerance: Lessons from delta-4. IEEE Micro,
pages 36-47.

Powell, D., Arlat, J., Beus-Dukic, L., Bondavalli, A., Coppola, P., Fantechi, A., Jenn,
E., Rabej'ac, C., and A., W. (1999). GUARDS: A generic upgradable architecture
for real-time dependable systems. IEEE Transactions on Parallel and Distributed
Systems, 10(6):580-599.

Powell, D., Seaton, D., Bonn, G., Verissimo, P., and Waeselynk, F. (1995). The Delta-4
approach to dependability in open distributed computing systems. In Suri, N., Wal
ter, C., and Hugue, M., editors, Advances in Ultra-Dependable Distributed Systems.
IEEE CS Press. Reprinted from Digest of Papers, The 18th IEEE International
Symp. on Fault-Tolerant Computing, Tokyo - Japan, June 1988.

Pras, A., Hazewinkel, H., and van Hengstum, E. (1997). Management of the world
wide web. In Procs. of the SBRC'97, pages 340-345, Sao Carlos, Brazil.

Preparata, F., Metze, G., and Chien, R. (1967). On the connection assignment prob
lem of diagnosable systems. IEEE Trans. on Electronic Computers, 16(6):848-854.

Prodromides, K. and Sanders, W. (1993). Performability evaluation of csma/cd and
csma/dcr protocols under transient faults. IEEE Transactions on Reliability, 42(1):166
127.

Profibus (1991). General Purpose Field Communication System - Part 2, Profibus.
Purimetla, B·.,Sivasankaran, R., Ramamritham, K., and Stankovic, J. (1995). Real

time databases: Issues and applications. In Son, S., editor, Advances in Real- Time
Systems. Prentice-Hall.

Exhibit 2026 Page 615



604 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Quinn, S. (1996). Unix host and network security tools. Technical report, National
Institute of Standards and Technology.

Radestock, M. and Eisenbach, S. (1996). Agent-based configuration management.
In Proceedings of the Seventh IFIP/IEEE International Workshop on Distributed
Systems: Operation and Management.

Rajkumar, R., Gagliardi, M., and Sha, L. (1995). The real-time publisher/ subscriber
interprocess communication model for distributed real-time systems: Design and
implementation. In Proceedings of RTAS'95, the IEEE Real-Time Technology and
Applications Symposium.

Ramamritham, K. (1995). The origin of tcs. In Proceedings of the First ACM In
ternational Workshop on Active and Real- Time Database Systems, pages 50-62,
Skovde,Sweden. Springer-Verlag.

Ramamritham, K. (1996a). Dynamic priority scheduling. In Joseph, M., editor, Real
Time Systems. Prentice Hall.

Ramamritham, K. (1996b). Real-time databases. International Journal of Distributed
and Parallel Databases, 1(2):199-226.

Ramamritham, K., Stankovic, J., and Zhao, W. (1989). Distributed sheduling of
tasks with deadlines and resource requirements. IEEE Transactions on Computers,
38(8):1110-1123.

Ramanathan, P., Kandlur, D., and Shin, K. (1990). Hardware-Assisted Software Clock
Synchronization for Homogeneous Distributed Systems. IEEE Trans. Computers,
C-39(4):514-524.

RAND (1955). A Million Random Digits with 100,000 Normal Deviates. Free Press
Publishers.

Randell, B. (1975). System structure for software fault tolerance. IEEE Transactions
on Software Engineering, SE-1(2).

Raynal, M., Schiper, A., and Toueg, S. (1991). The causal ordering abstraction and
a simple way to implement it. Information Processing Letters, 39(6):343-350.

Redmond, K. and Smith, T. (1980). Project Whirlwind - The History of a Pioneer
Computer. Digital Press.

Reiter, M. (1996). Distributing trust with the rampart toolkit. Communications of
the ACM, 39(4).

Rennels, D. (1984). Fault-tolerant computing - concepts and examples. IEEE Trans
actions on Computers, 33(12):1116-1129.

Ricart, G. and Agrawala, A. (1981). An optimal algorithm for mutual exclusion in
computer networks. Communications of the ACM, 24(1):9-17.

Ricciulli, L. and Shacham, N. (1997). Modelling correlated alarms in network man
agement systems. In Procs. of the Conference on Communication Networks and
Distributed Syst. Modeling and Simulation, CNDS'97, pages 9-16.

Rivest, R. (1992). The MD5 message digest algorithm. Technical Report RFC 1321,
IETF.

Rivest, R. and Shamir, A. (1984). How to expose an eavesdropper. Communications
of the ACM, 27(4):393-395.

Rivest, R., Shamir, A., and Adleman, L. (1978). A method for obtaining digital sig
natures and public-key cryptosystems. Communications of the ACM, 21(2).

Rodrigues, L., Fonseca, H., and Verissimo, P. (1996). Totally ordered multicast in
large-scale systems. In Proceedings of the 16th IEEE International Conference on
Distributed Computing Systems, pages 503-510, Hong Kong.

Exhibit 2026 Page 616



REFERENCES 605

Rodrigues, L., Guerraoui, R., and Schiper, A. (1998a). Scalable atomic multicast. In
Proc. of the Seventh IEEE International Conf. on Computer Communications and
Networks (IC3N'98), pages 840-847, Lafayette, USA.

Rodrigues, L., Guimaraes, M., and Rufino, J. (1998b). Fault-tolerant clocks synchro
nization in can. In Proc. of the 19th IEEE Real-Time Systems Symp.

Rodrigues, L. and Raynal, M. (2000). Atomic broadcast in asynchronous crash-recovery
distributed systems. In Proceedings of the 20th IEEE International Conference on
Distributed Computing Systems (ICDCS'20), pages 288-295, Taipe, Taiwan.

Rodrigues, L., Siegel, E., and Verissimo, P. (1994). A Replication-Transparent Re
mote Invocation Protocol. In Proceedings of the 13th IEEE Symposium on Reliable
Distributed Systems, Dana Point, California.

Rodrigues, L. and Verissimo, P. (1995). Causal separators for large-scale multicast
communication. In Proceedings of the 15th IEEE International Conference on Dis
tributed Computing Systems, pages 83-91, Vancouver, British Columbia, Canada.

Rodrigues, L. and Verissimo, P. (2000). Topology-aware algorithms for large-scale
communication. In Krakowiak, S. and Shrivastava, S., editors, Advances in Dis
tributed Systems, LNCS 1752, chapter 6, pages 127-156. Springer-Verlag.

Rodrigues, L., Verissimo, P., and Rufino, J. (1993). A low-level processor group mem
bership protocol for LANs. In Proc. of the 13th IEEE International Conference on
Distributed Computing Systems, pages 541-550, Pittsburgh, USA.

Rodrigues, L. and Verissimo, P. (1992). xAMp: a Multi-primitive Group Communica
tions Service. In Proceedings of the 11 th IEEE Symposium on Reliable Distributed
Systems, Houston, Texas.

Rom, R. (1988). A reconfiguration algorithm for a double-loop token-ring local area
network. IEEE Transactions on Computers, 37(2).

Romao, A. (1994). Tools for DNS debugging. Technical Report RFC 1713, USc Inf.
S. Inst.

RTS Journal (1997). The challenge of global time in large-scale distributed real-time
systems, Schmid,U., ed. Special Issue of the Journal of Real- Time Systems, 12(1-3).

Rufino, J., Verissimo, P., and Arroz, G. (1999). A Columbus' egg idea for CAN media
redundancy. In Digest of Papers, The 29th IEEE International Symposium on
Fault- Tolerant Computing Systems, Madison, Wisconsin - USA.

Rufino, J., Verissimo, P., Arroz, G., Almeida, C., and Rodrigues, L. (1998). Fault
tolerant broadcasts in CAN. In Digest of Papers, The 28th IEEE Int'l Symp. on
Fault- Tolerant Computing Systems, Munich, Germany.

Rufino, J. and Verissimo, P. (1992). A study on the inaccessibility characteristics of
ISO 8802/4 Token-Bus LANs. In Proceedings of the IEEE INFOCOM'92 Confer
ence on Computer Communications, Florence, Italy. also INESC AR 16-92.

Ryan, P., Schneider, S., Roscoe, B., Goldsmith, M., and Lowe, G. (2000). The Mod
elling and Analysis of Security Protocols. Addison-Wesley.

Sahai, A. and Morin, C. (1998). Towards distributed and dynamic network man
agement. In Proceedings of the IEEE/IFIP Network Operations and Management
Symposium (NOMS), New Orleans, USA.

Saksena, M., da Silva, J., and Agrawala, A. (1995). Design and implementation of
Maruti-II. In Son, S., editor, Advances in R-T Systems. Prentice-Hall.

Saltzer, J. and Schroeder, M. (1975). The protection of information in computing
systems. Proceedings of the IEEE, 63(9):1278-1308.

Sandberg, R. (1985). The sun network filesystem: Design, implementation and expe
rience. In Proc. of the Summer 1985 USENIX Confer., pages 119-130.

Exhibit 2026 Page 617



606 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Schell, R. (1984). Security kernel design principles. Technical Report 84-2-7, Auer
bach.

Schmid, U. and Schossmaier, K. (1997). Interval-based clock synchronization. Journal
of Real- Time Systems, 12(2):173-228.

Schneider, F. (1987). Understanding protocols for byzantine clock synchronization.
Technical report, Cornell University, Ithaca, New York.

Schneider, F. (1993). Replication management using the state-machine approach. In
Mullender, S., editor, Distributed Systems, 2nd Edition, ACM-Press, chapter 7.
Addison-Wesley.

Schneider, F., Gries, D., and Schlichting, R. (1984). Fault-tolerant broadcasts. Science
of Computer Programming, (4):1-15.

Schneier, B. (1996). Applied Cryptography, 2nd edition. John Wiley.
Schonwalder, J. and Toet, M. (1997). Management of the world-wide web. In Pro

ceedings of the 8th IFIP/IEEE Int'l Workshop on Distributed Systems Operations
and Management (DSOM'97), Sydney, Australia.

Schossmaier, K., Schmid, U., Horauer, M., and Loy, D. (1997). Specification and
implementation of the universal time coordinated synchronization unit (UTCSU).
Journal of Real- Time Systems, 12(3).

Sha, L., Rajkumar, R., and Lehoczky, J. (1990). Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. on Computers, 39:1175-1185.

Shin, K. (1991). Harts: Distributed real-time architecture. IEEE Computer, 24(5):25
35.

Shirley, J., Hu, W., Magid, D., and Oram, A. (1994). Guide to Writing Dce Applica
tions. Number ISBN: 1565920457. O'Reilly & Associates.

Shrivastava, S., Dixon, G., and Parrington, G. (1991). An Overview of the Arjuna
Distributed Programming System. IEEE Software.

Siamwalla, R., Sharma, R., and Keshav, S. (1999). Discovering internet topology. In
Proceedings of the IEEE Infocom '99, pages 21-25.

Silberschatz, A., Galvin, P., and Gagne, G. (2000). Applied Operating System Con
cepts. Number ISBN: 0471365084. Wiley.

Silva, L. and Silva, J. (1992). Global checkpointing for distributed programs. In Procs.
of the 11th IEEE Symp. on Reliable Distributed Systems, pages 155-164.

Sinha, P. and Suri, N. (1999). On the use of formal techniques for analyzing depend
able real-time protocols. In Proc. of the 20th IEEE Real- Time Systems Symp.

Siqueira, F. and Cahill, V. (2000). An open qos architecture for corba applications.
In Proc. of ISORC 2000, the Third IEEE Int'l Symposium on Object-Oriented
Real-Time Distributed Computing, pages 328-335, Newport Beach, USA.

Skeen, D. (1985). Determining the last process to fail. ACM Trans. on Computer
Systems, 3(1).

Slade, R. (1995). Computer Viruses, 2nd edition. Springer-Verlag.
Sloman, M., editor (1994). Network and Distributed Systems Management. Addison

Wesley.
Sloman, M. and Twidle, K. (1994). Domains: a framework for structuring manage

ment policy. In Sloman, M., editor, Network and Distributed Systems Management,
chapter 16. Addison-Wesley.

Solomon, M., Landweber, L., and Neuhengen, D. (1982). The csnet name server.
Computer Networks, 6(3):161-172.

Son, S. (1987). Using replication for high performance database support in distributed
real-time systems. In Proc. of RTSS'87, the 8th IEEE Real-Time Systems Symp.

Exhibit 2026 Page 618



REFERENCES 607

Song, X. and Liu, J. (1992). How well can data temporal consistency be maintained? In
Proceedings of the IEEE Symposium on Computer-Aided Control Systems Design.

Spainhour, S. and Quercia, V. (1996). Webmaster in a Nutshell. O'Reilly.
Spector, A. (1987). Camelot: a distributed transaction facility for Mach and the In

ternet - an interim report. Research paper. CMU-CS-87-129, Carnegie Mellon
University, CS Dept., Pittsburgh, PA, USA.

Speirs, N. and Barrett, P. (1989). Using passive replicates in Delta-4 to provide de
pendable distributed computing. In Digest of Papers, The 19th IEEE International
Symposium on Fault- Tolerant Computing, Chicago-USA.

Sprunt, B., Sha, L., and Lehoczky, J. (1989). Aperiodic task scheduling for hard real
time systems. Real-Time Systems, 1(1):27-60.

Srikanth, T. Kand Toueg, S. (1987). Optimal Clock Synchronization. Journal of the
Association for Computing Machinery, 34(3):627-645.

Stallings, W. (1998). Security comes to snmp: The new snmpv3 proposed internet
standard. The Internet Protocol Journal, 1(3):2-12.

Stallings, W. (1999). Cryptography and Network Security: Principles and Practice,
2nd Ed. Prentice-Hall.

Stankovic, J. (1988). Misconceptions about real-time computing. IEEE Computer.
Stankovic, J. and Ramamritham, K. (1991). The Spring Kernel: A New Paradigm for

Real-time Systems. IEEE Software.
Steiner, J., Neumann, C., and Schiller, J. (1988). Kerberos: An authentication service

for open network systems. In Proc. of USENIX Winter Conference, pages 191-202.
Steiner, M., Tsudik, G., and \Vaidner, M. (1998). CLIQUES: A new approach to

group key agreement. In Proc. 18th IEEE International Conference on Distributed
Computing Systems (ICDCS'98), pages 380-387, Amsterdam.

Stephenson, P. (1991). Fast Causal Multicast. PhD thesis, Cornell Univ.
Steusloff, H. (1981). The impact of distributed computer control systems on software.

Pergamon Press.
Stewart, J. (1999). BGP4. Addison-Wesley.
Stiffler, J. (1978). Fault coverage and the point of diminishing returns. Journal of

Design Automation & Fault Tolerance Computing, 2(4).
Strom, R. and Yemini, S. (1985). Optimistic recovery in distributed systems. ACM

Trans. o~ Computer Systems, 3(3):204-226.
Suri, N., Hughe, M., and Walter, C. (1994). Synchronization issues in real-time sys-

tems. In Proceedings of IEEE, Special Issue on Real Time Systems.
Tanenbaum, A. (1992). Modern Operating Systems. Prentice-Hall.
Tanenbaum, A. (1995). Distributed Operating Systems. Prentice-Hall.
Tanenbaum, A. (1996). Computer Networks. Prentice-Hall, 3rd edition.
TCSEC (1985). Trusted Computer System Evaluation Criteria.
Thomas, R. (1979). A Majority Concensus Approach to Concurrency Control for

Multiple Copy Databases. ACM Transactions on Database Systems, 4(2):180-209.
Thompson, J. (1998). Web-based enterprise management architecture. IEEE Com

munications Magazine, 36(3):80-86.
Tindell, K. (1994). Fixed Priority Scheduling of Hard Real-Time Systems. PhD thesis,

University of York, UK.
Tindell, K. and Burns, A. (1994). Guaranteeing message latencies on Controler Area

Network. In Proc. of the 1st Int'l CAN Conference, Mainz, Germany. CiA.
Tindell, K., Burns, A., and Wellings, A. (1994). Calculating Controller Area Net

work (CAN) message response times. In Proceedings of the IFAC Workshop on
Distributed Computer Control Systems, Toledo, Spain.

Exhibit 2026 Page 619



608 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Tindell, K., Burns, A., and Wellings, A. (1995). Analysis of hard real-time communi
cations. Real-Time Systems, 9(2):147-171.

Token Bus (1985). Token Passing Bus Access Method.
Tokuda, H., Nakajima, T., and Rao, P. (1990). Real-time mach: Towards a predictable

real-time system. In Proceedings of the USENIX Mach Workshop.
Tovar, E., Vasques, F., and Burns, A. (1999). Adding local priority-based dispatching

mechanisms to p-net networks: A fixed priority approach. In Proceedings of the
11th IEEE Euromicro Conference on Real- Time Systems, pages 175 - 184, York,
England.

Tschichholz, M., Tschammer, V., and Dittrich, A. (1996). Integrated approach to
open distributed management. Computer Communications, (19):76-87.

Turek, J. and Shasha, D. (1992). The many faces of consensus in distributed systems.
IEEE Computer, 25(6):8.

van Renesse, R., Birman, K., and Maffeis, S. (1996). Horus: A flexible group commu
nications system. Communications of the ACM, 39(4):76-83.

Verissimo, P. (1996). Causal delivery protocols in real-time systems: A generic model.
Journal of Real-Time Systems, 10(1):45-73.

Verissimo, P. and Almeida, C. (1995). Quasi-synchronism: a step away from the tra
ditional fault-tolerant real-time system models. Bulletin of the Tech. Commit. on
Operating Systems and Application Environments (TCOS), 7(4):35-39.

Verissimo, P., Rodrigues, L., and Baptista, M. (1989). AMp: A highly parallel atomic
multicast protocol. In Proceedings of the ACM SIGCOM'89 Symposium, pages
83-93, Austin, USA.

Verissimo, P., Rodrigues, L., and Casimiro, A. (1997). Cesiumspray: a precise and
accurate global clock service for large-scale systems. Journal of Real- Time Systems,
12(3):243-294.

Verissimo, P. (1988). Redundant media mechanisms for dependable communication
in token-bus LANs. In Proceedings of the 13th IEEE Local Computer Network
Conference, Minneapolis-USA.

Verissimo, P. (1993). Real-time Communication. In Mullender, S., editor, Distributed
Systems, 2nd Ed., ACM-Press, chapter 17, pages 447-490. Addison-Wesley.

Verissimo, P. (1994). Ordering and Timeliness Requirements of Dependable Real
Time Programs. Journal of Real-Time Systems, Kluwer, 7(2):105-128.

Verissimo, P., Barrett, P., Bond, P., Hilborne, A., Rodrigues, L., and Seaton, D.
(1991). The Extra Performance Architecture (XPA). In Powell, D., editor, Delta-4
- A Generic Architecture for Dependable Distributed Computing, ESPRIT Research
Reports, pages 211-266. Springer Verlag.

Verissimo, P., Casimiro, A., and Fetzer, C. (2000). The timely computing base: Timely
actions in the presence of uncertain timeliness. In Procs. of DSN 2000, the IEEE/IFIP
Int'l Conf. on Dependable Systems and Networks.

Verissimo, P. and Marques, J. (1990). Reliable broadcast for fault-tolerance on lo
cal computer networks. In Procs. of the 9th IEEE Symp. on Reliable Distributed
Systems, Huntsville, Alabama-USA. Also INESC AR/24-90.

Verissimo, P., Melro, S., Casimiro, A., and Silva, L. (1996). Distributed industrial
information systems: Design and experience. In Proceedings of BASYS'96, the 2nd
IEEE/IFI International Conference on Information Technology for Balanced Au
tomation SYStems in Manufacturing.

Verissimo, P. and Raynal, M. (2000). Time, clocks and temporal order. In Krakowiak,
S. and Shrivastava, S., editors, Recent Advances in Distributed Systems, volume
1752 of LNCS, chapter 1. Springer-Verlag.

Exhibit 2026 Page 620



REFERENCES 609

Verissimo, P. and Rodrigues, L. (1992). A posteriori Agreement for Fault-tolerant
Clock Synchronization on Broadcast Networks. In Digest of Papers, The 22nd
IEEE Int'l Symp. on FIT Computing, Boston - USA.

Verissimo, P., Rufino, J., and Ming, L. (1997). How hard is hard real-time communica
tion on field-buses? In Digest of Papers, The 27th IEEE International Symposium
on Fault- Tolerant Computing, Seattle - USA.

Vogels, W., Rodrigues, L., and Verissimo, P. (1992). Fast group communication for
standard workstations. In Proceedings of the OpenForum '92 Technical Conference,
Utrecht, the Netherlands. EurOpen, UniForum.

Volg, C., Wolf, L., Herrtwich, R., and Wittig, H. (1996). Heirat - quality of service
management for distributed multimedia systems. Multimedia Systems Journal.

Wakerly, J. (1978). Error detecting codes, self-checking circuits and applications. North
Holland.

Waldo, J. (1999). Jini technology architectural overview. Technical report, Sun Mi
crosystems.

Wang, Y.-M. and Fuchs, W. (1992). Optimistic message logging for independent
checkpointing in message-passing systems. In Proceedings of the 11th IEEE Sym
posium on Reliable Distributed Systems, pages 147-154.

Watt, A. and Watt, M. (1992). Advanced animation and rendering techniques - Theory
and practice. Addison-Wesley, New York.

Wayner, P. (1993). Should encryption be regulated? Byte.
Wellings, A., Beus-Dukic, L., and Powell, D. (1998). Real-time scheduling in a generic

fault-tolerant architecture. In Proceedings of RTSS '98, the IEEE Real- Time Sys
. tems Symposium, pages 390-398, Madrid, Spain.

Wensley, J. H., Lamport, L., Goldberg, J., Green, M. W., Levitt, K. N., Melliar
Smith, P. M., Shostak, R. E., and Weinstock, C. B. (1978). SIFT: Design and
analysis of a fault-tolerant computer for aircraft control. Proceedings of the IEEE,
66(10):1240-1255.

Wies, R. (1994). Policies in network and systems management - formal definition and
architecture. Journal of Network and Sys. Management, 2(1):63-83.

Wikander, J.and Svensson, B., editor (1998). Real-Time Systems in Mechatronic Ap
p1l'tcations. Kluwer Academic Publishers.

Wilson, D. (1985). The stratus computer system. In Resilient Computing Systems,
pages 208-231.

Wood, M. (1991). Fault-Tolerant Management of Distributed Applications Using a
Reactive System Architecture. PhD thesis, Cornell University, USA.

Wood, M. (1993). Replicated RPC using Amoeba closed group communication. In
Proceedings of the 13th IEEE International Conference on Distributed Computing
Systems, pages 499-507, Pittsburgh, Pennsylvania, USA.

X.509 (1997). Information technology - Open Systems Interconnection- The Directory:
A uthentication Framework.

XTP (1998). The Xpress Transport Protocol Specification. XTP Forum Inc., 1394
Greenworth Place, Santa Barbara, USA.

Xu, J., Randell, B., Romanovsky, A., Stroud, R. Zorzo, A., Canver, E., and von Henke,
F. (1999). Rigorous development of a safety-critical system based on coordinated
atomic actions. In Digest of Papers, The 29th IEEE International Symposium on
Fault-Tolerant Computing Systems, pages 68-75, Madison- USA.

Xu, J., Randell, B., Rubira-Calsavara, C., and Stroud, R. (1995). Toward an object
oriented approach to software fault tolerance. In Recent Advances in Fault- Tolerant
Parallel and Distributed Systems, Computer Society Press, pages 226-233. IEEE.

Exhibit 2026 Page 621



610 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Yau, S. and Karim, F. (2000). Component customization for object-oriented dis
tributed real-time software development. In Proceedings of ISORC 2000, the Third
IEEE International Symposium on Object- Oriented Real- Time Distributed Com
puting, pages 156-163, Newport Beach, USA.

Zeltserman, D. and Puoplo, G. (1998). Building Network Management Tools with
Tcl/Tk. Prentice-Hall.

Zhang, T. and Covaci, S. (1997). Java-based mobile intelligent agents as network man
agement solutions. In Proceedings of the 8th Joint European Conference (JENC8) ,
pages 12-15, Edinburgh, Scotland.

Zheng, Q. and Shin, K. G. (1992). Fault-tolerant real-time communication in dis
tributed computing systems. In Digest of Papers, The 22nd IEEE International
Symposium on Fault- Tolerant Computing Systems, pages 86-93.

Zimmermann, H. (1980). OSI Reference model - The ISO Model of Architecture for
Open Systems Interconnection. IEEE Transactions on Communications, COM
28(4):425-432.

Zimmermann, P. (1995). The Official PGP User's Guide. MIT Press.
Znaty, S., Genilloud, G., Gaspoz, J.-P., and Hubaux, J.-P. (1995). Networked systems:

Introducing network management models into odp. In Proceedings of the IEEE
Globecom '95, pages 121-126.

Znaty, S. and Hubaux, J.-P. (1997). Telecommunications services engineering: Prin
ciples, architectures and tools. In Procs. of the ECOOP'91, Finland.

Zuberi, K. and Shin, K. (1995). Non-preemptive scheduling of messages on controller
area networks for real-time control applications. In Procs. of RTAS'95, the IEEE
Real-Time Technology and Applications Symp.

Exhibit 2026 Page 622



Index

*-Property, 473
~-protocol,47, 59
8t-precedence, 55, 328
Abstract Syntax Notation One (ASN.1),

534, 561, 578
Access Control List (ACL), 422
Access Control Matrix (ACM), 423
Access control, 383, 421, 435, 477, 479, 500

capability, 422
discretionary, 424
for protection, 435, 463
list, 422
Iuandatory, 424, 472
matrices, 422
mechanisms, 422
models, 422
objects, 422
policy, 424, 463
rights, 422
subjects, 422
subversion, 430
with filters, 496
with proxies, 470, 497

Access rights, 422
Accuracy, 40
Acknowledgment, 33

negative, 207
positive, 207

Actuator, 317-318, 348
Actuators, 285
Ada, 216, 325
Adaptive Intrusion Detection (AID), 575
Address, 22, 133

logical group, 22
point-to-point, 22

Advanced Automation System (AAS), 364
Agent, 550
Agreement, 73, 75, 77, 86

Byzantine, 210
Algorithm

grid, 221
Andrew File System (AFS), 144

file token, 146
callback promise, 145

Aperiodic, 293
Application gateway, 391
Arbiter, 408
Arrival distribution, 323

aperiodic, 293
periodic, 294
sporadic, 294

ARTS, 356
ASAX, 575
Association Control Service Element

(ACSE),551
Association Control Service Elements

(ACSE), 558
Assumption

coverage, 178-179
environment, 179
operational, 179

Asynchronous, 43, 94
systems, 237

At-least-once, 247
At-most-once, 246
Atomic broadcast, 77
Atomic transaction

see transaction, 85
Atomicity, 251
Attack, 380

active, 429
bomb, 430
brute-force, 397, 433, 440
bucket-brigade, 460
chosen-plaintext, 433
cyphertext-only, 432
denial-of-service, 429
dictionary, 431
direct probing, 428
disruption, 429

Exhibit 2026 Page 623



612 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

insider, 463
known-plaintext, 433
man-in-the-middle, 460
modification, 430
passive, 431
penetration, 428-429
prevention, 437, 444
probing, 431
sniffing, 431
snooping, 432
software probing, 428
spoofing, 429, 460
subversion, 428
tolerance, 444

Audit trail, 436
Authentication, 10, 383, 385, 391, 405, 408,

414,417,421,434,442,451,457,463,
470, 475, 477-480, 484, 488-489, 496,
499-500, 506

biometrics, 421
delegation, 420
end-to-end, 420, 456
forwarding, 420, 456
hybrid, 462, 502
mechanisms, 451
mediated, 418, 455, 459, 502
mutual, 418, 453
of channels, 457
password-based, 451, 490, 493
shared secret, 475
shared-secret, 451, 453
signature-based, 451, 453
types, 418
unilateral, 418

Authenticity, 382,405-406,425, 448, 475,
480-481,483

Authorization, 10, 391, 435, 462-463, 477,
500, 502

Automated discovery, 537
Availability, 6, 175, 189, 382, 445
Backup, 219
Banking network, 507
Binding, 22
Bit Commitment, 412
Blind signature, 385, 409, 411, 485, 506
Broadcast, 31
Busy-waiting, 63
Cache, 25, 100

coherence, 82
Caesar cipher, 384
CAFE, 506
Call-back, 115
Capability, 139, 422
Capstone, 417
Cascading aborts, 254
Causal delivery, 51
Certificates, 457

Certification Authority (CA), 435, 458, 502
Certification Authority, 507
Challenge-response, 452
Checkpoint, 106, 182, 219, 226

communication-induced, 227
coordinated, 226
incremental, 219
uncoordinated, 226

Cipher Block Chaining (CBC), 448
residue, 448

Cipher FeedBack (CFB), 448
Cipher, 396, 447

electronic code book, 448
feedback, 448
output feedback, 448

Ciphertext, 396
Cleartext, 396
Client-server, 9, 95
Clipper, 417
Clock synchronization, 39, 310, 456

algorithm, 39
agreement based, 313
amortization, 312
CesiumSpray, 359
external, 40
hybrid, 320
internal, 40
interval, 320
master-slave based, 315
probabilistic, 316
rate-based, 312
round-trip based, 316
TEMPO, 359

Clock, 37
drift, 38
granularity, 38
matrix, 57
vector, 57
accuracy, 39, 310
convergence, 40
drift, 38
envelope rate, 40
global, 37, 39, 46, 359
granularity, 38-39
local, 38, 359
master, 315
precision, 39-40, 310
rate, 40
synchronization, 310, 359
tick, 38
virtual, 39

Clock-driven, 43, 46
Closely-coupled, 5
Cluster, 5
Coda, 146

hoarding, 146
Cold standby, 238

Exhibit 2026 Page 624



Commercial Off-The-Shelf (COTS), 184,
242, 325

Common Criteria for Information
Technology Security Evaluation (CC),
473

Common Gateway Interface (CGI), 152
Common knowledge, 53
Common Management Information Protocol

(CMIP), 545, 551, 557, 578
Common Management Information Service

Entities (CMISE), 551, 557, 578
Common Object Request Broker

Architecture (CORBA), 148
Object Request Broker, 149

Completeness, 464
Computer misuse, 427
Computer Supported Collaborative Work

(CSCW),119
Conditional regions, 64
Confidentiality, 382, 425, 472, 475, 479-481,

488, 499
Configuration

automated discovery, 537
dynamic, 529
management, 536
of distributed systems, 528, 542
planning, 537
static, 529

Confusion, 384
Consensus, 201
Consistency, 6, 299, 343

atomic, 123
mutual, 349
sequential, 124
strong, 124
temporal, 300, 346, 349

Consumer, 61
Contamination, 213
Control

continuous, 341
statistical, 352

Controller Area Network (CAN), 358
Coordination, 95
COPS, 575
Coterie, 221
Courtney, 575
Coverage, 104, 443

assumption, 179
environment, 179
operational, 179

Covert channel, 430
CPM, 575
Crack, 575
Cracking, 451
Cracklib, 574
Credential, 418, 457
Critical region, 62, 82

INDEX 613

Cryptanalysis, 397, 432
Cryptocracy, 379, 421
Cryptography, 396

asymmetric, 401
block cipher, 398
checksum, 405, 439, 476-477
credential, 391
device, 388
hashes, 403
hybrid channel, 449
hybrid envelope, 450
hybrid, 449, 493
key escrow, 417
public-key, 401, 453, 458
signature, 406
stream cipher, 398, 401
symmetric, 398, 459
threshold, 417

Cryptosystem, 397
Cut, 70

inconsistent, 72
strongly consistent, 71
weakly consistent, 72

Cut-and-choose, 409
Data Encryption Standard (DES), 399
Database

active, 348
real-time, 348

De-Militarized Zone (DMZ), 467
Deadlock, 66, 68, 254

avoidance, 69
detection, 69
prevention, 69
resolution, 69

Decryption, 396
Deferral time, 290
Degree of vulnerability, 381, 441
Delegation, 418-420, 435, 456, 546
Delivery time, 44
Delta-4, 262, 364

XPA, 365
DELTASE, 263
Denial-of-service, 429
Dependability, 172, 380, 386

attributes, 172
evaluation, 176
impairments, 172
means, 172, 174
measurement, 174
validation, 174

Deterministic component, 216
Dictionary, 431

attack, 451
Different-time-different-place, 155
Diffie-Hellman, 401
Diffusion, 384
DigiCash, 505

Exhibit 2026 Page 625



614 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Digital bus, 284
Digital cash, 392, 410, 482, 505

divisibility, 411
properties, 411
transferability, 411
untraceability, 411

Digital pseudonyms, 415
Digital Signature Algorithm (DSA), 408,

416, 438
Digital Signature Standard (DSS), 408
Digital signature, 383, 418, 476-477, 499

authentication, 451, 453-454, 475,
479-480

blind, 385, 409, 411, 485, 506
certificate, 415, 435, 457, 493, 507
checksum-based, 405
dual, 508
mediated, 408
message-digest, 494
message-digest-based, 407
multiple, 408
notary, 408
properties, 404
public-key, 406, 479
repudiation, 408
signing, 406, 449

Disaster recovery, 258
Disconnected operation, 146
Discrete control, 341
Discretionary Access Control (DACC), 424
Distributed architectures

3-tier client-server, 14
client-server, 13
diskless and X-terminal, 13
event-based, 16
mobile code, 15
mobile/nomadic sites, 15
network computer, 14
remote access, 11
thin client, 14

Distributed Authentication Security Service
(SASS), 502

Distributed Computing Environment
(DCE), 147, 361, 573

Distributed file system, 139
Distributed Management Environment

(DME),572
Distributed Shared Memory (DSM), 9, 64,

95, 123
owner, 126

Distributed system services
administration, 10
authentication, 10
brokerage, 10
directory, 539
file, 10
name, 10, 539

networking, 10
registration, 10
remote invocation, 10
security, 10
time, 10

Distributed system, 4
architecture, 11
field- bus, 327
real-time, 279
transparency, 7

Distributed
access, 11, 13
atomic commitment, 86
availability, 100
clustering, 92
common knowledge, 105
concurrent processing, 9
coordination, 95, 101, 104
decentralization, 101
duration, 37
events, 37
file system, 9
files, 11
integration, 101
memory, 11
modularity, 100
multipeer, 17
network computing, 14
performance, 100
publisher-subscriber, 17
replication, 95, 100, 106
shared memory, 9
sharing, 95, 99, 105

Distribution
code shipping, 98
concurrent, 98
data shipping, 98
sequential, 98
transparency, 544
transparent, 98
visible, 98

Domain Name Server (DNS), 134
resolver, 135
authoritative server, 135
labels, 134

Domino effect, 227
Doorknob rattling, 432
Double spending, 412
Downsizing, 8
Duration, 36
E-comm, 502
E-mail, 481

anonymity, 481
non-repudiation, 481
order, 481

Electronic Code Book (ECB), 448
Electronic

Exhibit 2026 Page 626



commerce, 392, 459, 502, 506
mail, 426
payment, 392
shopping, 503
transaction, 481
wallet, 415

Embedded system, 279, 361
EMV'96, 504
Encapsulation, 532
Encrypt-Decrypt-Encrypt (EDE), 439, 448
Encryption, 396

end-to-end, 389, 499
extra-strong, 508
link, 388, 499
physical circuit, 388-389
with a private key, 406

Entity-representative, 296
Environment, 285
Error masking, 340
Error, 172

compensation, 183
detection, 181, 340
latent, 173
masking, 183
observation, 299
processing, 174
recovery, 182, 340
timing, 298
value, 298

Ethernet-DCR, 358
Ethics, 378
Event channel, 150

subscribers, 150
Event, 17, 37

concurrent, 50
discriminator, 523
filter, 523
message, 333
pre-processing, 523
report, 523
services, 573
shower, 523

Event-condition-action, 348
Exactly-once, 245
Execution time, 291
Extranet, 90, 497
Factory Instrumentation Protocol (FIP), 358
Fail-controlled, 237, 239
Fail-fast, 244
Fail-operational, 245
Fail-safe, 244
Fail-silence, 190, 236

weak, 237
Failure detector

QoS, 352
Failure, 172

arbitrary, 235

INDEX 615

component, 178
crash, 102, 190, 236, 295
crash-recovery, 237
detection, 102, 193

crash, 102
timing, 296

detector
accuracy, 197-199
completeness, 197-199
perfect, 197

fail-silence, 236-237
omissive, 295
timing, 295

Fair channel, 197
Fair cryptosystem, 417
Fairness, 303
Fault tolerance, 174, 380, 386

distributed, 185
hardware-based, 184
incremental, 184
modular, 185
software, 186
software-based, 184

Fault, 172
arbitrary, 178
assertive, 177
avoidance, 174
Byzantine, 178
consistent, 178
crash, 177
dormant, 172
forecasting, 174, 176
inconsistent, 178
interaction, 173
intermittent, 173
malicious, 380
model, 177
omission, 177
prevention, 174
removal, 174, 176
semantic, 177
syntactic, 177
timing, 177
transient, 173
treatment, 174, 183

Fault-injection, 176
Fault-tolerant communication, 301
Feedback, 285
Field buses, 327, 358
FIFO channel, 28
File transfer protocol, 9
File, 139

close, 140
handle, 139
pointer, 139
write, 139
open, 139

Exhibit 2026 Page 627



616 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

read, 139
unique file identifier, 139

Filter, 61
Firewall, 391

adaptive proxy, 468
application gateway, 470
bastion, 466
circuit gateway, 470
dual-homed, 467
dynamic packet filter, 468
packet filter, 467-468
properties, 466
proxy, 468, 470
screened-host, 467
screened-subnet, 467
single-level, 466
split gateway, 472
stateful packet filter, 468
two-level, 467

Flow control, 302, 332
credit-based, 302
rate-based, 302, 332

Formal verification, 176
Fortezza, 489
FTPP, 361
FW-1, 495
Gateway, 547
Gauntlet, 496
General Inter-ORB Protocol (GlOP), 149
Global Positioning System (GPS), 41, 316,

360
Global state, 5-6

consistent, 226
Graceful· degradation, 6, 100, 175
Granularity, 18

physical, 292
virtual, 292

Group, 31
attached sender, 120
closed, 33, 120
communication, 32
invisible, 32
membership, 32

linear, 76
service, 74
view, 74

open, 33
roles, 33
view, 32, 204

accuracy, 32
consistency, 32
linear, 205
partial, 206

visible, 32
Group-oriented, 95
Guardian, 194, 415
GUARDS, 361

Hacker, 378
Handoff, 457
HARTS, 363
Hash, 451
Hazard, 429
Heartbeats, 196
Hidden channels, 54
Hot standby, 238
HP OpenView, 570
Hummer, 576
Hybrid cryptographic envelope, 480
Hybrid cryptography, 475
Hypermedia, 152
HyperText Markup Language (HTML), 152
HyperText 'Iransfer Protocol (HTTP), 487
Imprecision, 292
Information Technology Security Evaluation

Criteria (ITSEC), 473
Information

flow, 331
modification, 432
theft, 432

Information-pull, 17
Information-push, 17
Initialization vector, 448
Input/output, 317, 362

actuation, 318
observation, 317

Insecurity, 378
Integrity, 382, 404-406, 425, 445, 448, 472,

476->477,479-480,488,499,574
Interactive, 96
Interface Definition Language (IDL), 112
Interface, 532
International Data Encryption Algorithm

(IDEA),415
Internet Inter-ORB Protocol (IIOP), 149
Internet Protocol Security Architecture

(IPsec), 498
Internet, 90, 429, 431

secure e-mail, 488
security, 509, 573
tunnel, 476

Interposition, 396
Intranet, 90, 495
Intruder

profile, 387
Intrusion, 6, 381

campaign, 429
categories, 432
cost of, 441
countermeasures, 444
detection, 436, 444
IDS, 444
masking, 444
prevention, 437
tolerance, 381, 386, 437

Exhibit 2026 Page 628



IPsec, 498
ISS, 575
Java Card, 504
Java, 154
Jitter, 291, 327-328
Kerberos, 148, 456, 500
Key Distribution Center (KDC), 434, 457,

459
Key, 396

attack on, 431, 433
by numbers, 439
decryption, 397
distribution, 421, 457
encryption, 397
escrow, 385, 417
exchange, 402, 475
key-encrypting, 439, 450
keystream, 400
long-term, 439, 457
passphrase-derived, 494
password-derived, 462, 502
private, 401
public, 401
rollover, 439
secret, 398, 406
session, 449, 457, 460, 475, 489, 492,

501-502
signature, 407
tradeoffs, 437

Keyrings, 493
Knapsack, 416
Latency, 285
Layer Management Entities (LME), 551
Leader election, 67
Leader-follower, 218
Lease, 248
Least privilege, 423
Level of threat, 381, 441
Linearizability, 124
Liveness, 328
Load balancing, 100
Local Area Network (LAN)

real-time, 357
Lock, 62
Lock-step, 78
Locking

two-phase, 253
Logdaemon, 576
Long-term key distribution, 421, 457
Loosely-coupled, 5
MAFT, 361
Mailbox, 129
Maintainability, 175
Malicious software, 430
Management Information Base (MIB), 523,

534, 560
Management

INDEX 617

accounting, 536
agent, 545
architecture, 524
automated discovery, 537
centralized, 544, 547
configuration, 535-536
console, 524
control, 520
decentralized, 544, 550
directory, 536, 539
distributed systems, 523, 541, 544
distributed, 543, 549
domain, 533, 554
fault, 535
functions, 522
information flow, 520
information structure, 523, 550, 560
integrated, 544, 549, 569
interface, 532
islands, 548
layer, 551
life cycle, 520
log control, 523
managed object, 531
manager, 531, 545
monitoring, 535, 538-539
name, 536, 539
network, 524
performance, 536, 538
planning, 537
platform middleware, 571
platform, 543, 569, 571
policies, 519
policy, 543
security, 536
strategic, 549, 572
systems, 519
tactical, 549
tool, 562
tools, 543
web-based, 549

Manager
mid-level, 546, 559

Mandatory Access Control (MACC), 424
MARS, 337, 362
Maruti-II, 361
Mechatronics, 361
Medium

reconfiguring, 339
space-redundant, 339

Meet-in-the-middle, 448
Membership

service, 204
Merlin, 575
Message Authentication Code (MAC), 406
Message bus, 95, 129

persistent, 129

Exhibit 2026 Page 629



618 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

volatile, 129
Message Digest (MD), 403-404
Message Integrity Check (MIC), 406, 476
Message

pull, 130
push, 130
interrupt, 333

Message-digest public-key signature, 407
Micro-kernel, 119
Micropayment, 506
MIL-STD, 358
Millicent, 506
Minimal Cost Steiner Tree, 33
Misuse

abuse of authority, 428
human error, 428

Mobile agent, 550
Models

asynchronous, 94, 102
partially synchronous, 324, 329
quasi-synchronous, 329
real-time, 330

computing element, 330
synchronous, 94, 103, 324
time-free, 102
timed asynchronous, 329

Mondex, 505
Multi-party, 415
Multicast, 31

best-effort, 208
exclusive, 34
inclusive, 34
ordering, 32
reliability, 32
reliable, 208
uniform, 209
unreliable, 208

Multicomputer, 5
Multiple signature, 408
Multiprocessor, 5
Mutex, 64
Mutual exclusion, 61-62,69, 82
N-Modular Redundancy (NMR), 190, 239
Name, 21, 133

attribute, 21, 133
composite, 137
context, 22
distinguished, 137
impure, 22
primitive, 22
pure, 22
relative distinguished, 137
resolution, 22
reverse resolution, 24
server, 25
service, 23, 133
unique identifiers, 21

unique, 21, 137
X.500, 137

Need-to-know, 423, 463
Needham-Schroeder, 455
Netlog, 576
Netman, 576
Network Address Translation (NAT)), 469
Network architecture

medium-redundant, 189
space-redundant, 188

Network computing, 14
Network File System (NFS), 141

bio-daemon, 143
read-ahead, 143
write-through, 143

Network Management (NM), 524
Network Time Protocol (NTP), 148, 316,

360
Network

abstract properties, 338
congestion, 340
fault-tolerant, 188
inaccessibility, 340
partitioning, 100
partitions, 79
WAN-of-LANs, 93

Non-repudiation, 405
Non-reutilization, 405
Non-stop, 189
Nonce, 433, 455
Notary, 408
Notification, 28, 531
Object Management Group (OMG), 148
Object, 531

managed, 531
real-time, 325
self-managed, 552
services, 573

Obligation, 464
Observer, 415
Off-line guessing, 431
Omission faults, 301

bounded omission degree, 208,340
Omission

degree, 207, 535
On-Line Transaction Processing (OLTP),

257
One-copy equivalence, 84, 255
One-copy serializability, 255
One-time pad, 400
One-time passwords, 452
One-way encryption, 451
One-way hash function, 403
Open DataBase Connectivity (ODBC), 153
Open Distributed Processing (ODP), 263,

545, 552
Open System Foundation (OSF), 147

Exhibit 2026 Page 630



Open Systems Interconnection (OSI), 388,
545

Order, 328
causal, 52
FIFO, 50
logical, 52
physical, 49
potential causal, 49
temporal, 55
total, 53

Orphans, 248
Output FeedBack (OFB), 448
Overload, 295
Padding, 447
Partial order, 5
Participant, 92
Partition, 199

healed, 79
primary, 80
healed, 199
instabili ty, 200
physical, 340
primary, 206
vector, 222
virtual, 200, 340

Partitioning, 340
Parts per million, 38
Passphrase, 439, 494
Password guessing

off-line, 451
on-line, 451

Password, 387, 417, 420, 431, 433, 438, 462,
479, 501-502

authentication, 451, 493
by numbers, 439
cracker, 575
file, 452
one-time, 452, 490

Payment gateway, 507
Performability, 175
Performance, 303
Periodic, 294, 303
Permutation, 384
Physical circuit, 283
Plaintext, 396
Planning, 537
Platform middleware, 571
Policy

4P,442
access control, 424
paranoid, 442
permissive, 442
promiscuous, 442
prudent, 442

Portmapper, 574
Precedence, 49
Pretty Good Privacy (PGP), 493

INDEX 619

Primary, 219
Primitive

blocking and non-blocking, 43
Principal, 397
Priority

inheritance, 308
inversion, 307

Probe, 561
Probing, 431
Process history, 17
Process

group, 204
Producer, 61
Producer-consumer, 17
Profibus, 358
Promiscuous reception, 431, 562
Protection, 462

domain, 422
Protocol

certified, 446
adjudicated, 446
arbitrated, 446
self-enforcing, 446
types, 445

Proxy, 109
Public Key Infrastructure (PKI), 458, 481
Publisher, 249
Quality of Service (QoS), 175, 536, 538

specification, 351, 538
Quasi-synchronous, 329
Quorum, 220

group, 220
set, 220
tree, 221

R,384
Radius, 500
Random number

generator, 416
nonce, 455
pseudo, 416

RC4, 416
Reachability

detection, 197
Reactive system, 290
Read-down, 473
Read-up, 473
Real time, 36
Real-time communication

rate control, 332
Real-time system, 278

distributed, 279
embedded, 279
money-critical, 326
safety-critical, 326
safety-related, 326

Real-Time Transport Protocol (RTP), 366
Real-time, 278

Exhibit 2026 Page 631



620 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

architectures
client-server, 287
control, 285
producer-consumer, 286

best-effort, 323
classes, 279, 321
communication, 300

flow control, 302
latency, 301
priorities, 301
rate control, 302
urgency, 301

database, 287, 348
entity, 296, 349
event shower, 294, 333
event-triggered, 292, 331, 333-334
field buses, 358
graceful degradation, 332
hard, 279, 321, 326
interactive, 322
Linux, 356
mission-critical, 279, 323, 327, 332
multitasking executive, 325, 355
object, 325
operating system, 355
predictability, 332
representative, 296, 349
responsiveness, 332
soft, 279, 322, 327
time-critical, 322
time-triggered, 292, 334-336
time-utility function, 322, 363
time-value function, 322
transaction, 349

Recovery
backward, 182
forward, 182

Redundancy, 6, 181
distributed, 190
N-modular, 190
processor, 189
space, 181
storage, 189
time, 181
value, 181

Redundant Arrays of Inexpensive Disks
(RAID), 189

Reference monitor, 390, 464
Reference, 23
Reliability, 4, 6, 175

software, 176
Remote access, 96
Remote execution, 9
Remote Method Invocation (RMI), 245
Remote Network Monitoring (RMON),

560-561

Remote Operation SErvice and Protocol
(ROSE), 551, 558

Remote Procedure Call (RPC), 9, 108, 245
.polling, 115
binding, 113
conversational, 115
linearization, 109
marshaling, 109
server stub, 109

Remote session protocol, 9
Replica determinism, 78
Replication, 32, 95

active, 106, 217, 264
hardware, 184
passive, 106, 264
semi-active, 218, 264
software, 184

Reply, 28
Request, 28
Resource ReSerVation Protocol (RSVP), 366
Resource

disruption, 432
reservation, 335
theft, 432

Response time, 345
Responsive system, 290
Rightplacing, 8
Rightsizing, 8
Risk, 382, 440
Rollback, 69, 226
RT-Mach, 356
Run, 17
S/Key, 490, 576
Safety, 175, 328
Salt, 452
Same-time-different-place, 155
Satan, 575
Scan-detector, 575
Scheduling, 303, 356

deadline-monotonic, 320
earliest-deadline-first, 307
EDF, 302
FCFS, 303
interference, 305
mode change, 306
off-line, 335
on-line, 332
optimal, 305
preemptive, 332
priority inheritance, 308
rate-monotonic, 306, 356
static, 335
testing, 305
timed token, 309

Second, 36
Secondary, 219
Secret number computation, 401

Exhibit 2026 Page 632



Secret Splitting, 412
Secure Electronic Transactions (SET), 506
Secure Hash Algorithm (SHA), 416
Secure Shell (SSH), 492
Secure Sockets Layer (SSL), 441, 488
Secure

channel, 425
communication, 425
envelope, 426, 481
hash, 403
tunnel, 476

Security, 6, 175
policy, 425
class, 424
classifications, 463
clearance, 424
enhancement, 443
gateway, 498-499
hazard, 429
kernel, 443
label, 424
measures, 536
multi-level, 463
perimeter, 391, 463
policy, 396, 442, 463, 536
server, 391, 477
single-level, 463
standalone, 426

Security-enhanced kernel, 443
Self-checking, 190, 194, 236
Self-protection, 464
Semaphore, 64
Sensor, 285, 317, 539
Sequencers and event counters, 64
Serializability, 83, 253
Server Side Includes(SSI), 153
Server

stateless, 141,247
Servlets, 153
Session keys, 421
Sharing, 95
Shielding, 396
Short-term key exchange, 421, 457
Signature, 406
Simple Network Management Protocol

(SNMP), 448, 545, 559
Simple Security Property, 473
Site, 92
Skipjack, 417
Smart cards, 392, 504
SMI, 550
Snapshot, 19, 70
Sniffer, 391, 564, 575
Sniffing, 431
Snooping, 432
Social engineering, 380
Space redundancy, 340

INDEX 621

medium-only, 340
Space-like, 50
Space-time, 18
Spinlock, 63
Spoofing, 429
Sporadic, 294
Spring, 356
ST2, 366
Stability tracking, 209
State machine, 53, 78, 191, 216
State message, 336
State

reconciliation, 79
divergence, 79
inconsistent, 71

State-transfer
protocol, 231
incremental, 231

Steganography, 416, 430
Strategy

distribution, 97
fault tolerance, 241
real-time, 325
security, 436

Structure of Management Information
(SMI), 523, 560

Stub, 109
compiler, 112

Subject-based addressing, 130
Substitution, 384
Supervisor, 238
Swatch, 576
Switchover, 182, 238
Synchronism, 43, 324, 328

steadiness, 44, 320
tightness, 44, 320

Synchronous, 94
systems, 237

Synchron~43, 319
partial, 329

System diagnosis, 195
System

application-specific, 279
architecture, 522
asynchronous, 43
configuration, 519, 528
embedded, 279
responsive, 119
synchronous, 43, 278

Systems Management Application Processes
(SMAP),552

TACACS, 500
Takeover, 238
Tamperproof device, 392, 414
Task

aperiodic, 303
sporadic, 303

Exhibit 2026 Page 633



622 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Tcpdump, 431, 576
Tcpwrapper, 574
Temporal consistency, 300, 346
Temps Atomic International (TAl), 41
Termination time, 290
Test-and-set, 63
Thrashing, 123
Threat, 6, 380, 442
Three-phase commit, 230
Throughput, 285, 295
Tiger, 575
Tightly-coupled, 5
Time Division Multiple Access (TDMA), 47
Time lattice, 18, 292
Time redundancy, 340
Time Triggered Protocol (TTP), 362
Time, 328

absolute, 38
access, 291
actions, 290
chain, 36
clock, 37
duration, 36-37, 290
external, 38
global, 37
internal, 38
interval, 36
newtonian, 37, 278
propagation, 291
real, 36
reception, 291
response, 300, 302
set-up, 291
termination, 290, 300
time-free, 102
timeline, 36
timer, 37
timestamp, 36, 290

Time-free, 102
Time-like, 50
Time-triggered, 48
Time-value entity, 298, 348

validity interval, 299
Timed asynchronous, 329
Timeline, 36
Timeliness, 44, 278, 323, 328
Timeout, 38
Timer-driven, 46
Timers, 37
Timestamp, 18, 36
Timing faults, 301
Tools

help desk, 567
integrated management, 566
META, 565
monitoring, 564
protocol analyzer, 563

SW packages, 565
tester, 563
trouble ticket system, 568

Transaction, 83
abort, 85
commit, 85
abort, 251
ACID properties, 251
atomic, 251
cache manager, 252
commit, 251
concurrency control, 251-252
consistency, 251
data manager, 251
dirty read, 251
distributed, 86
durable, 251
inconsistent retrieval, 253
indivisible, 251
lock, 253
log, 86

redo, 251
undo, 251

lost update, 252
recovery manager, 252
scheduler, 251
transaction manager, 251

Transformer, 547
Transparency, 7
Transport Layer Security (TLS), 487
Transposition, 384
Trapdoor one-way function, 402
Trapdoor, 428, 430
Triple-Modular-Redundancy (TMR), 239
Tripwire, 574
Trojan horse, 430
Trojan, 575
Trusted Computer System Evaluation

Criteria (TCSEC), 473
Trusted Computing Base (TCB), 395
Trusted third party, 446, 458, 477, 481
Tunnel, 90, 389, 476
Two-phase commit, 86, 229
Unforgeability, 405
Uniform Resource Locator (URL), 151
Uniformity, 203
Universal Time Coordinated (UTe), 41, 360
Untraceability, 409
Validation, 175, 396
Variance, 291-292
Verification, 406
Virtual circuit, 284
Virtual File System (VFS), 141
Virtual Private Network (VPN), 8, 390, 497
Virtual synchrony, 76
Virus, 430
Voter, 239

Exhibit 2026 Page 634



Voting, 220
majority, 220
multidimensional, 233
weighted dynamic, 222
weighted, 220

Vulnerability, 380, 441
removal, 437

Watchdog, 194
Weakness, 380
Workstations, 11
World-Wide Web (WWW), 151

browser, 151

portals, 152
Worm, 430
Wrapping, 236
Write-all

read-one, 255
Write-all-available, 256
Write-down, 473
Write-up, 473
Xinetd, 574
Zero-or-once, 246

INDEX 623

Exhibit 2026 Page 635



About the Authors

Paulo Verissimo Paulo Verissimo is a professor of the Department of Informatics, Univer
sity of Lisboa Faculty of Sciences. He leads the Navigators research group, at the University
of Lisboa. He has been in the coordinating team of several major national projects in in
formatics, and headed the participation of the group in several CEC ESPRIT projects. He
belonged to the Executive Board of the CABERNET- ESPRIT Network of Excellence. Paulo
Verissimo is a member of Ordem dos Engenheiros, IEEE and ACM. He has served as pro
gram co-chair of the (ex-FTCS/DCCA) IEEE DSN 2001 conference and on the programme
committees of several other conferences (IEEE, AFCET, ACM), and is an associate editor for
the Telecommunications Systems Journal (Baltzer). He is author of more than 80 refereed
publications in international scientific conferences and journals, and over a 100 technical re
ports. He is co-author of four books in distributed systems and dependability. He organised
and lectured in the LISBOA'92 Advanced Course on Distributed Systems, and was director
of the 3rd European Seminar on Advances on Distributed Systems, ERSADS 99.

Luis Rodrigues Luis Rodrigues graduated (1986), has a Master (1991) and a PhD (1996)
in Electrotechnic and Computers Engineering, by the Instituto Superior Tecnico de Lisboa
(1ST). He is Assistant Professor at Department of Informatics, University of Lisboa Faculty of
Sciences. Previously he was at the Electrotechnic and Computers Engineering Department
of Instituto Superior Tecnico de Lisboa (he joined 1ST in 1989). From 1986 to 1996 he
was a member of the Distributed Systems and Industrial Automation Group at INESC.
Since 1996, he is a senior researcher of the Navigators group and a founding member of
the LASIGE laboratory at University of Lisboa. He participated and contributes to several
national and international projects such as, Delta-4, Estimulo, Broadcast, GODC, etc. His
current interests include fault-tolerant and real-time distributed systems, group membership
and communication, and replicated data management. He has more than 40 publications in
these areas. He is a member of the Ordem dos Engenheiros, IEEE and ACM.

Exhibit 2026 Page 636


