
302 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

12.6 FLOW CONTROL

Flow control is a fundamental paradigm of distributed real-time. In fact, given
that b~al1(dwidth and computational power are finite, it is impossible to guar
antee timeliness if the load flow on the system is not controlled. The role of
real-time flow control is to regulate the global load flow of the system and to
throttle the instantaneous flow of individual source classes in terms of their
arrival pattern (rate and amount of data), so as to preserve the capacity of the
system to exhibit bounded response times.

The control of a periodic flow is a simple task. A sporadic flow, such as
the one produced by sensors of discrete real-time entities, is harder to treat.
In Section 12.1 we have discussed the possibility of a bursty sporadic arrival
pattern being smoothened over a longer interval (see Figure 12.5b), as long as
this is allowed by the service latency requirements of the arriving requests, and
the interval is not greater than the burst period, if one exists. The mechanism
that makes this possible is called rate-based flow control, or rate control, and
helps balance system load without glitches. Credit control is a load control
scheme based on allocating a certain amount of credit units (for example octets)
to sinks (e.g. recipients), per flow of information coming from a source (e.g.
sender or a group of senders). When the credit is over, the recipient refuses to
accept more information. Credit complements rate control in case of sporadic
real-time operation, whenever it is necessary to perform resource reservation
for significant amounts of information of bursty nature.

Flow control is of little use if the average load is misadjusted in the first place.
As such, there are measures which can be considered of implicit flow control,
such as compacting information at the sensor representatives before sending it
to the core of the system, or eliminating redundant messages corresponding to
a same event (e.g. fire alarm), that otherwise generate event-message showers.

12.7 SCHEDULING

Real-time is not about having a lot of bandwidth and computational power,
and even if it were, we would always find ways of exhausting it. Alternatively,
we may think we solve the problem by letting the critical task always get the
processor when needed. But the processor power may have to be shared by
several critical tasks and the problem surfaces again. Even if we think we have
enough power to guarantee the timely execution of our critical task(s), chanees
are we are using it up at the wrong moment. Remember La Fontaine's Fable
of the Hare and the Turtle? Figure 12.8 illustrates this famous tale adapted to
real-time scheduling!.

System TURTLE is a slow system, with relative speed s==l, context switch
delay c==l, scheduling first the task that must finish earlier (this is called earliest
deadline first, and is a sensible real-time scheduling policy that we are going to
study). System HARE is a very fast system, with relative speed s==10, almost

1We owe this example to Gerard LeLann.

Exhibit 2026 Page 319

PARADIGMS FOR REAL-TIME 303

negligible context switch delay c==O.Ol, scheduling first the task that comes first
(this is called first-come-first-served, and is a not so sensible scheduling policy
for real-time). The work presented to either system at time t is: two task
execution requests arrive at approximately the same time t, task A before task
B; task A, execution time Xa==270 relative time units, deadline Da==t+290;
task B, execution time Xb==15, deadline Db==t+28.

TURTLE:

A B A

~ '~1.~;;rffiPJi 1/~dW ~ , ~ ~ "~;j~'wJ. ~i i ,<-- ~. /·~/h / / r. .'. I:://~,.i ········i

t+1 t+16 t+17 t+287

HARE:

Figure 12.8. The Hare and the Turtle Schedulers

Let us analyze how system TURTLE serves the job. Observing the figure, we
see that it starts by releasing A, then switches right after to B, because it has
the earliest deadline, B executes during 15 time units, terminating before the
deadline. Then, it switches to A again, finishing after 270 time units, before
the deadline.

What happens when system HARE serves the job? We see that it starts
serving A immediately it arrives, and A will run to completion, according to
the first-come-first-served policy. The rationale behind the HARE approach is
that the system is so fast that it serves any request "quickly" enough to get
ready for the next. However, A executes in 27 time units (speed of 10), the
context switches in almost negligible time to B, B executes in 1.5 time units,
and ... it misses the deadline by half a time unit!

The lesson to be learned is that real-time is about determinism and guar
antees, rather than speed, and in this context the scheduling paradigm is
concerned with using the available resources in the right way in order to help
the system (its programs, its algorithms) achieve timeliness guarantees.

12.7.1 Types of Scheduling

Scheduling assumes several facets, according to the objectives of the system,
and to the problems posed, such as the load assumptions. Most non real-time
scheduling policies aim at fairness and reasonable performance, in the access
to resources by the several users. Real-time systems, on the other hand, aim at
fulfilling timeliness requirements, if need be in detriment of the performance of
less important tasks. Let us define some terminology before advancing further.
Table 12.1 introduces some generic parameters specifying instants and intervals
(that is, events and durations) related with task execution timing. Figure 12.9
depicts a task execution.

The main classes of real-time tasks are: aperiodic, periodic, and sporadic,
named according to their main pattern of execution request arrivals (see Ar
rival Distributions in Section 12.1). Aperiodic tasks are impossible to treat
deterministically, the best that can be done is service on a best-effort man-

Exhibit 2026 Page 320

304 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Not.

TXmin
TXmax
TWCET
T1ax
Tzive
Ttrgt
Tdead
Tint
Tblk
p
U

Table 12.1.

Designation

trigger instant
deferral time
request instant
min. inter-req. time

min. termin. time
max. termin. time
worst-case exec. time
laxity
earliest term. instant
typo termin. instant
latest term. instant
max. interfere time
max. blocking time
priority
max. utilization factor

Task Execution Timing Parameters

Description

arrival instant of event causing the execution
delay introduced before execution request (offset)
instant of execution request (release)
minimum interval between any two consecutive re-
quests (equals request period TR, for periodic tasks)
minimum elapsed time from request to termin. event
worst-case elapsed time from request to termin. event
maximum task duration in continuous execution
slack time available for execution (Tx max - Tw C ET)
earliest that task may complete, also called liveline
desired instant of completion (targetline)
latest that task may complete, also called deadline
max. time task can be suspended by higher pri. tasks
max. time task can be blocked b).' lower pri. tasks
importance of task w.r.t timing (highest is often 0)
max. percent. of CPU utilization (TWCET/Txmax)

ner. Periodic tasks are the workhorse of static schedule design. Sporadic tasks
serve applications that do not have a regular behavior (request arrival is not
periodic).

Figure 12.9. Task Execution Timings

We say scheduling is static, if all the scheduling plans or scheduling condi
tions are elaborated beforehand. Static scheduling is also called off-line schedul
ing, as it assumes predicting timing variables such as execution times, request
times, resource conflicts, and so forth, and/or assigning static levels of impor
tance to tasks (e.g., fixed priorities). On the other hand, dynamic scheduling,
also called on-line, computes the schedule at run-timje,.~ based on the analysis
of a list of tasks ready for execution.

Fixed-priority scheduling was very common in earlier real-time operating
systems, and is still widely used. With dynamic-priority scheduling, priority
may change during execution, to reflect the varying importance of tasks, e.g.
as deadlines approach.

When the scheduler can interrupt the execution of a task in order to sched
ule a new one, normally of higher priority, we say scheduling is preemptive.

Exhibit 2026 Page 321

PARADIGMS FOR REAL-TIME 305

Otherwise, if tasks once scheduled run to completion, we say the scheduler is
non-preemptive.

Centralized scheduling is performed at a central point, which is normal in
single-processor systems. In distributed systems scheduling, this point would
also become a single point of failure. In consequence, decentralized scheduling
is preferred for distributed systems.

12.7.2 Schedulability

The usual scheduling scenario is that there is a set of N tasks with several
deadlines, to be executed in the processor, over a maximum interval T xmax ,
corresponding to the latest deadline. In a periodic task set, the interval corre
sponds to the least common multiple of the periods. This situation is presented
to the designer or design tool at design time for off-line schedulers, or to the
scheduler itself for on-line or dynamic schedulers. One has to determine if the
schedule is feasible. This action is termed schedulability testing and is an
important step of scheduling. There are three classes of schedulability tests:

• sufficient- passing it indicates that the task set is schedulable

• necessary- failing it indicates that the task set is not schedulable

• exact- passing indicates schedulability; failing indicates non-schedulability

We say a scheduler is optimal, when it always finds a feasible schedule if one
exists. Sufficient or necessary schedulability tests have an error margin but are
simpler than exact ones, and sometimes the only reasonable solution. Obvious
such tests are checking that T xmax - TWCET 2:: 0, or TRmin - TXmax 2::. o.

The simplest tests are utilization-based schedulability tests, which fail if the
schedule will be using the CPU more than a certain percentage. Consider a set
of N periodic tasks, each with an individual utilization factor of TWCET/TR :

the schedulability test expression for this set is E~l (TWCET/TR) :::; Umax ,

where Umax depends on the algorithm being used (ultimately, the CPU cannot
be used more than 100%!).

Utilization-based schedulability tests are go-no-go sufficient tests. An al
ternative approach is the response-time-based test, explained as follows. The
individual WCET of each task is computed. Then, it is used to derive the
actual worst-case termination (or response) time, by adding to the WCET the
total time the task must yield to all other tasks (e.g. higher priority ones) on
account of the scheduling policy, Le., the interference time (Tint). The process
is repeated for each task. The schedulability test finalizes by simply comparing
the computed with the desired maximum termination times. The response
time-based analysis has the advantage of being an exact test, and of giving a
quantitative output.

12.7.3 Static Scheduling

Static or off-line scheduling has to take into account worst-case execution times,
and urgency, resources, causal precedence, synchronization and deadline re
quirements of all tasks involved. The schedule is computed by determining

Exhibit 2026 Page 322

306 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

the exact points in time where each task or code module should be launched
to meet its deadline. Schedulability testing here means: can the schedule be
constructed? Once constructed, the schedule is executed repeatedly, Le., in a
periodic way.

With static schedules, a way of improving schedulability is by using mode
changes. A mode is a well-contained phase of the system operation (e.g., take
off, cruise, landing in a plane) such that only the necessary tasks, resources and
respective requirements are considered for scheduling.

A widely known algorithm for static scheduling of independent periodic tasks
in a single processor is rate-monotonic (Liu and Layland, 1973). It is a pre
emptive algorithm based on fixed or static priorities, with the following addi
tional characteristics:

• optimal when maximum termination time equals period (Txmax = TR)

• all worst-case execution times (TweET) are known

• priorities are assigned in inverse order of the period

The scheduler, exemplified in Figure 12.10, wakes-up at every start of period,
and schedules the highest priority ready task, preempting the running task
if necessary. In the example, we have: task T1 , period TR == 1, duration
TWCET == 0.5; task T2 , TR == 5, TWCET == 1; and task T 3 , TR == 10, TWCET ==
3. When all periods are multiples of the smallest, Umax == 100%, which is
the case of the example, so the schedulability test goes: L::~=l (TWCET /TR) ==
0.5/1 + 1/5 + 3/10 == 1, which means it is OK.

T1 [;3 T2 D T3

5 10 t

Figure 12.10. Rate Monotonic Scheduler in Action

12.7.4 Scheduling of Sporadic Tasks

Testing schedulability is easy for periodic tasks, since the arrival pattern of the
future (period) is known. Attaining and analyzing the schedulability of task
sets where periodic tasks coexist with sporadic tasks is a difficult "task" per se,
because: (a) we may no longer make decisions completely off-line; (b) it may
be hard problem, even when done on-line. Of course, we may consider that
a sporadic task is a pseudo-periodic task whose period is the minimum inter
arrival time (TB »T]). This has the consequence that most of the service
periods are empty, leading to a very low processor utilization.

Another approach is the sporadic server, for patterns where Txmax « T/,
that is, single, rare, but very urgent sporadics (i.e., burst length is NB == 1,
and TB ~ T]). The server task is a periodic task with high priority, scheduled

Exhibit 2026 Page 323

PARADIGMS FOR REAL-TIME 307

in competition with all the other tasks of the system. When it runs, it serves
any pending sporadic request until exhausting its allocated execution time.

The dynamic scheduling approach applies well to task sets containing spo
radic tasks. There is an algorithm based on dynamic priorities which is ad
equate for sporadics, and optimal for periodic tasks. It is called earliest
deadline-first (EDF). When the scheduler wakes-up it evaluates the time-to
deadline of every task, and orders their priorities by the inverse of that value:
the task that has the earliest deadline receives the highest priority. This algo
rithm is very elegant and intuitive, and can achieve a maximum utilization of
Umax = 100%.

Dynamic deadline-oriented algorithms, such as EDF, are very adequate for
scheduling of sporadics, since they adapt the priorities of the task set to newly
requested sporadic tasks.

12.7.5 Resource Conflicts and Priority Inversion

If two or more tasks compete for resources other than the processor itself,
such as a mutual exclusion semaphore or critical section, they become inter
dependent. This happens frequently in distributed systems, so we give a bit
of attention to this problem. In most of these cases the exact schedulability
test becomes an NP-complete problem, that is, it exhibits a computationally
infeasible complexity. However, the computational powerxtime concerned with
finding a schedule should be much lower than the power x time required to run
the tasks themselves. In consequence, on-line scheduling resorts to simpler but
inexact tests that sometimes have consequences.

For example, the scheduling of periodic tasks with or without sporadics may
suffer what is known as priority inversion: a task loses the processor during
a non-negligible and non-desirable amount of time, called blocking time (Tblk),

blocked on a resource held by lower priority tasks. Consider the following
example of a communications and telemetry system:

• A scheduler provides preemptive scheduling based on fixed priorities. The
system has three tasks. Two of them compete for an information channel, a
critical resource accessed in mutual exclusion (mutex semaphor).

• The highest priority task is an information dispatcher task, which takes care
of dispatching all data to and from the channel, so that it does not overrun.

• The lowest priority task is a meteorological data gathering task, running
infrequently with low priority, to publish data on the channel.

• The middle priority task is a communications task, handling system's com
munications. It does not compete for the information channel.

Now the "scene of the crime", depicted in Figure 12.11a:

• 1. The meteo task (L) acquires the mutex and publishes its information.

• 2. The dispatcher task (H) runs: H preempts L, tries to acquire the mutex
and blocks on it, awaiting for the meteo task to release it. L runs again.

Exhibit 2026 Page 324

308 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

• 3. However, in the meantime, the communications task (M) requests ser
vice: M preempts L, and runs to completion.

• Conclusion: H was blocked, first by L then by M through L.

a~q ~rel

H .<:{:{:X~:}::}::}?~??};:::::II

c:JCJ Priority p inherited ..~ Mutex Acquired

't® @ @) @
(b)

H

M

L

et--Tblk---+--i t ~
(a)

~.m Running [',::',:,.',·1 Blockedc=J Suspended

M

Figure 12.11. Resource Conflicts: (a) Priority Inversion; (b) Priority Inheritance

Is this example realistic? You should have replied yes, because this is what
happened with the on-board computer of the NASA Mars Pathfinder probe
that landed on that planet in 1997. Shortly after the Sojourner Rover- the
small autonomous guided vehicle (AGV) released from the probe- started
collecting data, the spacecraft began experiencing total system resets. These
were caused by a watchdog mechanism that reacted to absence of activity from
the (blocked) dispatcher task, and the system was re-initialized. Fortunately,
this recovery strategy was acceptable at that point of the mission, otherwise,
it could have been a catastrophe.

What happened was a classical case of priority inversion, a syndrome identi
fied long ago (Lauer and Satterwaite, 1979), which also occurs with networking
(Peden and Weaver, 1988). Solutions for it were first addressed in (Cornhill
et aI., 1987; Sha et aI., 1990). In order to remedy the problem, the authors
proposed a mechanism which introduces dynamic priority setting to a set of
tasks with initial fixed priorities, called priority inheritance:

• the dynamic priority of a process is the maximum of its initial priority and
the priorities of any process blocked on account of it

With priority inheritance, the Mars Pathfinder scene would be scheduled as in
Figure 12.11b:

• 1. The meteo task (L) runs with priority l, acquires the mutex and publishes

• 2. The dispatcher task (H) runs with priority h: H preempts L, tries to
acquire the mutex and blocks on it, awaiting for the meteo task L, which
runs again inheriting H's priority, h.

• 3. The communications task (M), with priority m, becomes ready for exe
cution: M waits for L, since h (current pri. of L) is higher than m.

• 4. L finishes and releases the mutex unblocking H, which grabs the processor
(h > m), acquires the mutex, and runs to completion. Then, M runs.

• Conclusion: H had the minimum blocking possible: waiting for L to finish.

Exhibit 2026 Page 325

PARADIGMS FOR REAL-TIME 309

12.7.6 Scheduling in Distributed Systems

Some single processor algorithms behave well in distributed systems, but others
are inadequate or have to be enhanced for distributed operation. Processors are
separated by communication links, which themselves are shared and thus have
to be scheduled as well. It is difficult to perform scheduling of these distributed
resources. Some approaches have relied on heuristics for the cooperation of
the distributed system nodes in finding a schedule (Ramamritham et aI., 1989).
Holistic approaches to the problem have also been considered, where a global
scheduling complying with system-wide constraints is constructed from the tim
ing analysis of each module. This has been attempted namely in the embedded
systems area, relying on simplifying assumptions on the communications in
frastructure, and assuming a periodic behavior of the system (Tindell et aI.,
1995; Kopetz et aI., 1989a). On the other hand, the best known examples of
distributed scheduling are the local area network medium access control al
gorithms, e.g., FDDI, Token Bus, Token Ring, CAN. Some of them exhibit
real-time operation, such as the timed-token protocol used in the Token Bus
and FDDI networks, or the priority scheduling based on the frame identifier of
CAN.

Scheduling in distributed systems is still a subject of research. However,
systems are built every day, and apparently, two main approaches can be taken
to scheduling in distributed systems with the current state-of-the-art:

• constructing distributed systems whose hardware works in a lock-step fash
ion, synchronized with the network subsystem also in lock-step (e.g., TDMA)
or bit-synchronized (e.g., CAN), and scheduled in a globally periodic man
ner (e.g., time-triggered cyclic schedules running over TDMA or CAN-like
channels). These systems are normally small-scale hard real-time.

• constructing distributed systems whose hardware choices are dictated by
the availability of existing COTS (commercial off-the-shelf components),
and whose scale and dynamics are dictated by the problem being solved.
These systems have better be designed such that tighter (hard real-time)
schedules are ensured inside each microscopic component (e.g., nodes, net
work), and that the cooperative scheduling of the macroscopic system
ensures the prosecution of the system's timeliness requirements with the
best possible coverage. These systems are normally medium-scale mission
critical real-time.

12.8 CLOCK SYNCHRONIZATION

Observe Figure 12.12a: in the center (dashed line), it depicts a perfect clock,
one that always represents real time. However, it also depicts real hardware
clocks that are not perfect, Le., they deviate from real time by a certain amount
each second, called rate of drift. We studied the properties of global clocks made
of local hardware clocks (see Time and Clocks in Chapter 2) and saw that if
nothing is done, individual clocks will drift apart with the passing of time. The
reader is referred to that section for all basic definitions concerning clocks.

Exhibit 2026 Page 326

310 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Observe how clocks deviate from the perfect clock in Figure 12.12a: the out
side thick dashed lines represent the bound on the rate of drift, a fundamental
assumption for deterministic clock synchronization, since it allows us to predict
the maximum deviation after a given interval. The amount of deviation be
tween any clock and the perfect clock (which follows real time) at a given time,
e.g. at tick tk, is given by drawing a horizontal straight line passing through
tk in the clock time axis: the length of the line segment connecting the two
clock timelines, measured in the real time axis, is the deviation. The current
accuracy of the clock set is given by the maximum such deviation. As we see,
this difference increases as time passes. If the desired accuracy of the clock set
is a, no clock may drift to the outside of the grey band, of width a to either
side of the perfect clock timeline, as depicted in Figure 12.12a. However, we
see that the slowest clock (Cs) will leave the band from tick tk on (point A),
so it should have been re-synchronized before that.

Crt)
clock
time

i'
I

I

(a)

real time t

Crt)
clock
time

(b)

perfect
c~pck

.•....

®

real time t

Figure 12.12. Behavior of a Clock with Time: (a) Accuracy Drift; (b) Precision Drift

Figure 12.12b represents the relative deviation among a set of clocks. The
amount of relative deviation between the same tick tk at any two clocks is found
by drawing a horizontal straight line passing through tk in the clock time axis:
the length of the line segment connecting the clock timelines, measured in the
real time axis, is the deviation. The current precision of the clock set is given
by the deviation between the two outmost clocks. This difference increases
as time passes as well. However, note that their absolute deviation from real
time is irrelevant for determining precision: in the example, the set of clocks
deviated considerably from the perfect clock, nevertheless they kept within
the desired precision 1f until tick tk, where the slowest clock got out of the 1f

envelope (point B), as depicted in Figure 12.12b. Obviously, they should have
been re-synchronized before that.

The process of maintaining the properties of Precision, Rate, Envelope Rate
and Accuracy of a clock set is called clock (re)synchronization. Precision is se-

Exhibit 2026 Page 327

PARADIGMS FOR REAL-TIME 311

cured by internal synchronization, whereas external synchronization secures
both accuracy and precision, since by securing accuracy, it guarantees that pre
cision remains within 1r == 2a. Internal clock synchronization is normally based
on convergence functions, whereby the several clocks attempt to converge to a
same value at the end of the re-synchronization run. External synchronization
is normally based on having all local clocks periodically read from and adjust
to one or more clocks containing an absolute time reference. Figure 12.13 ex
emplifies the latter: clocks are brought together and never deviate more than a
from the perfect clock. With either internal or external clock synchronization,
it often important to maintain the clock set within the envelope of drift from
real time (the thick dashed lines in Figure 12.13). This has to do with securing
the Envelope Rate property. The Rate property will be discussed ahead.

Crt)
clock
time

at real time t
s

Figure 12.13. Clock Synchronization

Clock-Reading Error The precision achieved immediately after the syn
chronization, which we have called Convergence, 6v , is a very important prop
erty of clock synchronization algorithms, since the quality of an algorithm is
measured, amongst other things, by how close it brings the clocks together.
Unfortunately, 6v cannot be made arbitrarily small, and this was defined by a
fundamental result in clock synchronization (Lundelius and Lynch, 1984b):

Basic Clock Imprecision - Given n clock processors on a network with
maximum and minimum message delivery delays T Dmax and T Dmin ,

the convergence of any synchronization function is 6v 2: (TDmax

TDmin)(1 - lin)
The number of processors n is normally large enough that a good working

bound for 6v is ~r == T Dmax - T Dmin . The intuition behind this result is that
in order to synchronize their clocks, processes need to exchange messages. Un
fortunately, the variance in message-passing delays introduces a remote clock
reading error, that is, we never know whether the clock value we have just
received concerns t now - T Dmax or t now - T Dmin .

Exhibit 2026 Page 328

312 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

A second order effect on the quality of synchronization that we neglected
in the expressions above is that after reading and while the synchronization is
in course, clocks continue to drift apart at a rate pp. If the synchronization
algorithm duration is r s, then the additional error in precision caused by this
phenomenon is 2pp r s (observed between by the fastest and slowest hardware
clocks). This can normally be neglected. However, we advise the architect to
always double check this term before deciding to do it.

Reducing the Clock Reading Error We cannot contradict the Basic Clock
Imprecision result, but we can create conditions for achieving a reduced vari
ance in communication delays during the critical steps of the execution of the
algorithm. In essence, trying to get to a ~r' == T.bmax - T.bmin « ~r, such
that tJv ~ ~r' (instead of tJv ~ ~r). To ways of achieving this rely on: trying
synchronization enough times until obtaining a run where the variance of the
messages involved is small (Cristian, 1989; Mills, 1991); canceling the message
delay terms that exhibit greater variance, either algorithmically (Halpern and
Suzuki, 1991; Drummond and Babaoglu, 1993; Verissimo and Rodrigues, 1992),
or through special hardware support (Kopetz and Ochsenreiter, 1987).

12.8.1 Clock Synchronization in Action

A clock synchronization algorithm has the following tasks:

• generating a periodic resynchronization event

• providing each correct process with a value to adjust the virtual clocks

The time interval between successive synchronizations is called the resyn
chronization interval, denoted Ts . At the end of synchronization, clocks are
adjusted so that they become separated by at most tJv . For the sake of conve
nience, the clock adjustment is usually modeled by the start of a new virtual
clock upon each resynchronization event. It can be applied instantaneously, see
the instant t s in Figure 12.13, where the clocks are brought suddenly nearer,
and then start drifting again in the next interval. However, this neatly violates
the Rate property. One clock is even brought backwards, which is unaccept
able. So the alternative is to spread the adjustment over a time interval, by
simulating a clock with a slightly different rate, as exemplified by the dotted
timelines of the clocks after ts: the fast clocks become slower, the slow clocks
become faster, so that they converge. This is called amortization and it is
the way synchronization is usually applied: instead of changing the clock, a
rate correction factor is applied in software when it is read. For a desired pre
cision 7f, the value of the resynchronization interval Ts can be extracted from
the expression 1r == 8v + 2ppTs . Adjusting clocks by changing their values is
called state synchronization. It can be combined with another method, rate
synchronization, which consists of adjusting the rate at which the hardware
clock ticks, and even adjusting the instant (phase) of the ticks. These methods
are employed when ultra accurate synchronization is desired.

Exhibit 2026 Page 329

PARADIGMS FOR REAL-TIME 313

Is clock synchronization a difficult task? The answer is yes, but. Design
ing clock synchronization algorithms in the presence of communication delay
variance and faults is a complex task. However, once deployed, the mission of
the architect is selecting the adequate protocol, and simply using time services
supported by those algorithms. However, she should understand the limitations
of the use of time and timestamps that have been discussed earlier.

12.8.2 Internal Synchronization

Internal clock synchronization algorithms are normally cooperative, where each
process reads the values of every other process, and applies a convergence func
tion to the set of remote readings. At the end, there is agreement on the
adjustment. In what follows, we will use 'clock' and 'processor' interchange
ably. Known internal clock synchronization algorithms are of the agreement
class, and fall essentially into one of three types:

• averaging (AVG)

• non-averaging (NAV)

• hybrid averaging-non-averaging (ANA)

A veraging Clock Synchronization The principle of averaging algorithms,
of which there are many examples (Lamport and Melliar-Smith, 1985; Lundelius
and Lynch, 1984a) is shown in Figure 12.14a. Clocks start a synchronization
run when a number of them reach the end of the period, or resynchronization
interval, before the current precision 1ri - 1 exceeds the allowed worst-case pre
cision. Each clock disseminates its value to all others. The values received
form a clock-readings vector, used as input to a convergence function, which
computes the value to be applied to the new virtual clock launched in the next
period. Assuming that clocks receive the same vector, the same value is applied
at the end of this process to each clock, and the initial convergence or precision
enhancement of the next period, measured by lSi in the figure, is dictated by
the jitter with which this action is performed.

Both forming the clock-readings vector and reaching agreement on the new
clock value can be done in a local manner, or may involve a minimum number
of interactions among a minimum number of clock processors. This depends on
the fault assumptions of clocks, processors and network, with regard to type
(e.g., crash, omissions, value) and number (e.g., how many clocks may fail). The
convergence function itself also depends on these fault assumptions, and may be
based on known functions such as the fault-tolerant average, or the fault-tolerant
midpoint as exemplified in the figure, which consists of selecting the middle
value in the ordered clock-readings vector (see also Resilience in Chapter 7).
As a final note, the precision enhancement of this class of algorithms is directly
affected by: the variance of communication delays; the variance in the execution
duration of the algorithm.

Exhibit 2026 Page 330

314 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Agreement
Protocol

P2-~~~~~~~~ on value.. Ito set clocks
I e.g. with

~~~~~~~---J1 ---"'!; FT midpoint: !--~-

Figure 12.14. Clock Synchronization Algorithms: (a) Averaging; (b) Non-Averaging

Non-Averaging Clock Synchronization Non-averaging algorithms rely
on a different principle: instead of disseminating the value of the clock., .each
clock processor disseminates a control message to signal the end of a period.
Figure 12.14b illustrates the principle. The difference is that in the averaging
class, the message just sends the clock value as input to a function that performs
agreement on the value to adjust the clock with, at some later time. In the
non-averaging class, the message does not carry a value, but itself positions
an event in the timeline meaning that 'it is the start of period i now', e.g.
5:00, on the sender's clock. All the other processors will do the same. Since
some clocks may fail and for example start too early, processors wait for the
k th clock to signal the event, in order to get sufficient evidence that it is 5:00.
The number k is dictated by the failure assumptions (we leave it to the reader
to understand why the example in the figure is resilient to 1 == 1 failures, and
thence k == 21 + 1 == 3, PI'S clock). After seeing this k th time marker message,
processors simply adjust their clocks to 5:00, instead of agreeing on a value,
as in the averaging case. Precision enhancement, measured by lSi in the figure,
depends on the difference between the instants when the several processors
adjust their clocks, dictated by the magnitude and variance of the delivery delay
of the time marker messages and on the assumed faults. Examples of protocols
relying on this principle are (Halpern et ai., 1984; Srikanth, 1987; Drummond
and Babaoglu, 1993).

Averaging-Non-Averaging Clock Synchronization Hybrid averaging
non-averaging (ANA) clock synchronization algorithms combine the advantages
of averaging and non-averaging classes. The principle, depicted in Figure 12.15,
consists of reaching agreement on two issues: (i) the clock that triggers the ad
justment (the NAV type of agreement); (ii) the adjustment value to load the
clocks with (the AVG type of agreement). The algorithm starts by having each
clock processor disseminate a message both to stand as time marker of the end

Exhibit 2026 Page 331



PARADIGMS FOR REAL-TIME 315

Agreement

on the value

®

Figure 12.15. Hybrid Clock Synchronization Algorithms (clock P adjustment - ~p

Ho - H p ; new period clock value - C i == C i - I + ~p)

of period i - 1, and to act as a remote clock-reading request message to all
clocks (H?). Each message marks a point in all processors' timelines, as in
non-averaging algorithms, and at the k th message, all agree that this is a valid
synchronization point. The figure exemplifies PI as triggering the adjustment.
Clock readings may be sent to the requester, as in the figure, or broadcast to
all. This depends on how the agreement on the adjustment value is performed.
Suppose an FT midpoint function is applied to the clock-readings vector, and
thus Ho is selected as the new clock value. Instead of setting the clocks with
this value, adjustments to each individual clock p are determined by comput
ing ~p == H o - H p • Note that the clock-readings vector contains the value of
all clocks when the time marker message (H?) was received. In consequence,
when adjusting the value of each clock for the new period, C i == C i - I + ~p,

we are referring the adjustment to the time marker reception instants. The
precision enhancement <5 i , is indeed determined at that moment, as signalled
in the figure (A), and thus independent of the moment when the adjustment
is applied at each clock (B), and largely insensitive to the rate of drift of the
hardware clocks during the agreement interval, which may be neglected for
most situations. Examples of protocols relying on this principle are (Verissimo
and Rodrigues, 1992; Clegg and Marzullo, 1996).

12.8.3 External Synchronization

External clock synchronization aims at injecting the time of an external refer
ence, the master clock, into all slave clocks of the system. In that sense, clocks
synchronize themselves individually from that reference, rather t,han agreeing
among each other. They either must trust the master, or find fault-tolerant
configurations where several masters can be consulted. Known external clock
synchronization algorithms are of the master-slave class, and the simplest

Exhibit 2026 Page 332



316 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

type relies on dissemination of time by the master. This can be achieved
through radio broadcasting (spread-spectrum like in GPS, or long-wave bea
cons), and is for example the method used to synchronize GPS receiver units.
However, it is seldom convenient, and sometimes not even possible, that all
nodes of a distributed system have a radio receiver.

(a)

Master
clock

\ 1/ I I
~/atCltq )

1Il\<iead rna ter>

p \~--.o... """"",_

I \ I I,.-, ~

I Dmi~ II Dmin~1----"-----Trd---f-----t

~q I I f

(b)

Figure 12.16. Round-Trip External Clock Sync. : (a) Zero-Error; (b) Measuring the Error

Round-Trip Clock Synchronization Most known external clock synchro
nization algorithms are of the round-trip type, whereby they take the initiative
of performing a remote read of the master, receiving its time back and adjusting
their own clocks at that time. Figure 12.16 illustrates the technique for esti
mating the master clock time value at t s ' This involves knowing tr . Short of
knowing Tf or Tb, we estimate tr to be at the midpoint, or half the round-trip
time Trd . Then, Gp(ts ) == GQ(tr ) + Trd /2. Here we can see that only a sym
metric round-trip yields zero error. However, the only run that P can detect
as symmetric is a minimum delay run, where the request and reply messages
have T Dmin duration. P can find this out if it measures T rd == 2TDmin. As a
matter of fact, P can do better, it can determine a bound on the error of any
remote clock read, given by: E == ±(Trd /2 - TDmin ). The scenario is depicted
in Figure 12.16b. Cristian proposed a well-known probabilistic clock synchro
nization protocol, in which, given a target accuracy, the slave makes several
request-reply attempts trying to get a fast enough round-trip that yields the
desired reading error (Cristian, 1989). The protocol is probabilistic, because the
chances of success depend on the distribution of the network delay. This proto
col inspired the Network Time Protocol (NTP) that we discuss in Chapter 14
(Mills, 1991).

Exhibit 2026 Page 333



PARADIGMS FOR REAL-TIME 317

12.9 INPUT/OUTPUT

Input/Output is concerned with all that crosses the computational border of
a system. In real-time systems, this means talking about the perception or
observation of, and the actuation on, the environment. These are performed,
respectively, by sensors and actuators, devices through which the control
system (the real-time computer system) captures and modifies the state of
the controlled system (the physical process system). Besides the functional
aspects of I/O, there is a general concern in industrial systems with making I/O
reliable. A typical example of that concern is a 'trusted' valve used in critical
fluid control, a quad compound represented in Figure 12.17. Distribution is as
desirable for I/O as it is for computation, either for fault-tolerance or because
of the often distributed nature of processes. In this section, we discuss the
input/output paradigm under the functionality, distribution and fault-tolerance
viewpoints.

Figure 12.17. A Classical Mechanical Quad Valve

12.9.1 Observation

Observation is: the act of acquiring and eventually pre-processing the state of
a real-time entity, through one or more sensors. Observations can be made
through several techniques, generally falling into: sampling; polling; latching;
interrupt.

We use sampling when it is possible to decide when to make an observation.
Sampling is normally used to observe continuous entities, which exhibit more or
less predictable variation curves. The frequency of observation is determined by
known control rules. A basic rule-of-thumb is that it should never be less than
twice the frequency of the highest harmonic of the entity's waveform. When
entities exhibit sudden changes, information may be lost. With polling we can
observe the entity in infinite loop. This should only be done during a short
period where some significant changes are expected (this is analogous to the
spinlock in programming), since it ties the processor up. It can be done nor
mally if the sensor has a dedicated micro-controller (what are called intelligent
sensors). Sensing can also be performed by latching significant changes. This is
very appropriate for discontinuous entities, such as, but not only, digital values.
Latches are memory elements that register one or more state changes. They
can be combined with other techniques, such as sampling or interrupts. It is
convenient to use interrupts when entities are sporadic: theirstate changes sel-

Exhibit 2026 Page 334



318 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

dom and at undetermined times. The sensor interrupts the cO!luputer system,
and thus triggers the observation at the appropriate moment.

There are a set of pre-processing functions that improve the quality of ob
servations. Amongst them: low-pass filters cancel glitches (e.g., switch de
bouncing); likelihood or plausibility tests filter out implausible deviations (e.g.,
abnormal air temperature readings); correction curves linearize sensor outputs
(e.g., temperature transducers); composite variables are computed from several
samples or sources (e.g., rates; averages; approximate convergence functions
using sensor replicas or sensors of different physical magnitudes).

12.9.2 Sensor Types

Sensors measure a number of physical magnitudes, through several principles.
A few examples of magnitudes: motion; speed; acceleration; pressure; tem
perature; humidity. Digital sensors are generally on-off: object passing; door
open-shut; end-of-range. Some are sophisticated: pattern; color; shape. Sev
eral principles are used: magnetic field; photoelectric; hall effect; piezoelectric;
image; light (visible, UV, infrared).

When there are not special reliability concerns, the sensor implementation
is simplex single-access, that is, a single chain of elements, from the real-time
entity through the sensor to the computing element. However, if the comput
ing element fails, the sensor is lost. When the process is critical, use of some
redundancy may be considered, in order to achieve reliability and availability.
Figure 12.18a depicts an actively replicated sensor set, feeding a set of com
puting elements. This fully-redundant sensor configuration is characterized by
having each sensor connected to a different representative, desirably in a dif
ferent node. The computing elements receive the same set of values from the
replicated representatives and perform consensus on the final value to be used.

12.9.3 Actuation

Actuation is: the act of issuing and eventually post-processing a command to
change the state of a real-time entity, through one or more actuators. An
actuation can be triggered in several ways: immediate; deferred; periodic.

Immediate actuation is the normal actuation as soon as issued. Deferred
actuation is invoked to be issued after a specified delay, or at a specified time.
Periodic actuation is invoked to be repeated at every T. The last two assume
some processing capability by the actuator.

There are a set of post-processing functions that improve the quality of ac
tuations. The output of actuators can be corrected, through correction curves.
A command may be issued in its final form to a set of replicated actuators.
In this case, replica control functions make sure that every replica receives the
adequate stimulus. For example, making sure that the individual actuators of
the quad valve of Figure 12.17 receive the adequate commands.

Exhibit 2026 Page 335



PARADIGMS FOR REAL-TIME 319

(11111II:,.i:rt)
~ ~

Figure 12.18. (a) A Reliable Sensor; (b) A Reliable Actuator

12.9.4 Actuator Tj~pes

Actuators are of different types, depending on the target of actuation. We may
be talking of such different things as closing a switch, raising a digital boolean
value, opening a valve, or driving a stepping motor. Actuators act on physical
magnitudes of the environment, by means of an electric command. Examples of
actuator driving principles are: electro-mechanical; electro-pneumatic; electro
hydraulic; electronic.

Similar to sensors, the simplest form is the simplex single-drive actuator.
It is used when actuators have outstanding mechanical reliability, or when the
loss of the actuator is not crucial for system operation. Otherwise, this is an
unreliable combination. The fully-redundant actuator is the most dependable
configuration. In the example shown in Figure 12.18b, there are 4 actuators, one
computing element per actuator, residing in different nodes. In this particular
example, the configuration controlling the quad valve ensures that an open or
a close command always work, in the presence of arbitrary behavior of at most
one controller-valve pair. We leave it to the reader to confirm this assertion.

12.9.5 Distributed and Fault-Tolerant I/O

Distributed and fault-tolerant input-output uses some of the techniques for
communication and replication management presented in previous parts of this
book, and the requirements and properties discussed in those contexts apply to
I/O as well. Synchronization of inputs and outputs is most important. That
was left clear in Section 12.4. Firstly, we have the problem of positioning
the time of the observations and actuations at different nodes in the timeline.
Secondly, we have the problem of replication. In multi-access or replicated
inputs, the meaning of two samples of the same real-time entity separated by
an even small interval may be very different. This is also valid for multi-drive
or replicated outputs, for analogous reasons.

The synchrony of distributed observation and actuation can influence the
quality and even the correctness of I/O operations on real-time (RTe) enti-

Exhibit 2026 Page 336



320 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

ties. Steadiness measures the jitter of distributed observations and actuations.
Tightness measures the degree of simultaneity of sampling, and the allowed
skew of replicated actuation commands.

12.10 SUMMARY AND FURTHER READING

This chapter addressed the main paradigms concerning real-time. We began
by introducing ways of specifying timing constraints and of detecting their
violation. Then, the relation between the real-time entity and its computational
representative was defined, namely the duality between time and value. Real
time communication, flow control, scheduling, clock synchronization, and input
output, complete the set of paradigms studied in this chapter.

For further study on failure detection in distributed systems, a formal treat
ment is introduced in (Chandra and Toueg, 1996) for time-free systems. Timing
failure detection is addressed in (Verissimo and Raynal, 2000). On the formal
embodiments of temporal specifications and synchronization, communication
by time, temporal order, real-time causal message delivery, and time lattices,
please read (Lamport, 1984; Kopetz, 1992; Suri et aI., 1994; Verissimo, 1996).

Response-time-based schedulability analysis is detailed in (Sha et aI., 1990),
or (Burns and Wellings, 1996; Audsley, 1993). In (Leung and J., 1982) the
deadline-monotonic algorithm is described, optimal for maximum termination
times smaller than the period. Scheduling of sporadics is further treated
in (Mok, 1983; Sprunt et aI., 1989; Jeffay et aI., 1991). Priority inheritance
blocking is a syndrome avoided by priority ceiling and immediate ceiling pro
tocols, thoroughly described in (Cornhill et aI., 1987; Sha et aI., 1990; Burns
and Wellings, 1996). Further material on scheduling can be found in (Ra
mamritham, 1996a; Burns and Welling, 1996; Audsley, 1993; Buttazzo, 1997)
and (Ramamritham et aI., 1989; Fohler, 1995; Tindell, 1994; Mosse et aI., 1994)
namely for distributed settings.

Formal aspects of clock synchronization are surveyed in (Schneider, 1987).
The special issue published in (RTS Journal, 1997) gives a good account of
current approaches to clock synchronization in open systems. Examples of a
hybrid class of clock synchronization algorithms combining internal and exter
nal clock synchronization are featured in (Verissimo et aI., 1997; Fetzer and
Cristian, 1997b). Further notes about the use of GPS in clock synchronization
can be found in (Dana, 1996). Clock synchronization on embedded systems
and field buses presents unusual problems, addressed in (Ramanathan et aI.,
1990; Kopetz and Ochsenreiter, 1987; Rodrigues et aI., 1998b; Schossmaier
et aI., 1997). Interval clock synchronization, based on the notion of interval
clocks, is discussed in (Marzullo, 1983; Schmid and Schossmaier, 1997).

A generic treatment of sensors and actuators in reactive systems is pre
sented in (Wood, 1991). Paradigms for fault-tolerant sensors are discussed
in (Marzullo, 1990; Kopetz and Verissimo, 1993). The I/O paradigm may be
generalized and extrapolated to generic devices (e.g., gateways, management
information bases), a viewpoint taken in (Powell, 1991; Wood, 1991).

Exhibit 2026 Page 337



13 MODELS OF DISTRIBUTED

REAL-TIME COMPUTING

In this chapter, we aim at providing a global view of what is timely behavior
of a distributed system architecture. The chapter starts by introducing classes
of real-time systems with different timeliness guarantees, setting the stage for
introducing the several frameworks for structuring real-time systems. Then,
it discusses strategies for the several approaches to building an architecture,
where the paradigms presented in the last chapter show their usefulness. The
main models of real-time systems are then presented. From the viewpoint of
timing: partial synchronism; time-triggered; and event-triggered models. From
a functional viewpoint: real-time communication; real-time control; real-time
and active databases; and quality-of-service.

13.1 CLASSES OF TIMELINESS GUARANTEES

It is difficult, if not impossible, to build a real-time system satisfying all sorts
of requirements concerning timeliness. In consequence, we normally devise
our models and systems for specific classes of requirements: hard, soft, and
mission-critical real-time.

Hard Real-time System - system where any failure to meet timeliness
requirements may have a high cost associated

The hard real-time class specifies that the system must always be timely, in
order to avoid costly timing failures (e.g., a slowed down module of a tomato
processing unit causes all tomatoes to be smashed against each other; a slow

P. Verissimo et al. 
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 338



322 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

V(T)

I
i t

-:: I !\~ cost of
! '~d dfi ri ! ~\:::S;ne

T/ive tgrt Tdead \~

(a)

V(T)

Vtr{J{ ..1 ._. _

I ,I;iI
T,;ve Ttgrt

(b)

V(T)

V
lrat

"

V'trat

(c)

Figure 13.1. Time-Utility Curves for Several Real-time Classes: (a) Hard; (b) Soft; (c)
Mission-Critical

robot arm may get stuck under a one-ton press). These systems are also
called time-critical. Figure 13.1a shows a graphical way of defining crit...
icality, through time-utility or time-value functions (Jensen and Northcutt,
1990; Burns and Wellings, 1996). These functions portray the value of the
service as a function of the time at which it is provided, w.r.t. the time at
which it should be provided. We see that not providing the service within the
[liveline;deadline] interval carries a cost. The criticality of the system is given
by the cost of failure versus the benefit of normal operation, measured by how
deep the hatched line goes down (e.g., a stalled engine controller may destroy
valves and cylinder pistons; or a late change in rail crossing points can cause a
train to de-rail).

Soft Real-time System - system where occasional failure to meet time
liness requirements is acceptable

The soft real-time class specifies that the system should often enough be
timely, that is, it can fail to meet timeliness specifications provided that failures
do not occur with too high a probability, or too great a deviation or lateness
degree (see Section 6.2). This is depicted in Figure 13.1b, where we see the
value curve evolving smoothly to and from the targetline as time passes. For
example, the specification of a real-time ticket reservation system might look
like this: any transaction should terminate within 10 seconds for at least 90%
of the times, and within 1 minute in 100% of the times (the latter defines the
allowed lateness degree). Whenever there is a cost associated to an extremely
long delay or omission of the service, this can be represented, as shown in the
hatched line of the figure. Many interactive systems are non real-time systems,
but the truth is that a fair number of them should indeed have been designed
as soft real-time systems, if user requirements were to be respected. How many
times did we have to wait in a long bank counter line, only to hear that "It's
the computer system's fault"?

Exhibit 2026 Page 339



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 323

Mission-Critical Real-time System - system where any failure to meet
timeliness requirements may have a cost associated, and the occa
sional failure to meet those requirements is considered an exception

The class of mission-critical (also called best-effort) systems is designed in
order to guarantee that timeliness requirements are systematically met. How
ever, these systems are normally complex and/or the environment behavior
is not totally specified, such that timeliness cannot be fully guaranteed. The
occasional occurrence of timing faults is tolerated, but should be considered
exceptional. If the service risks being provided near or after the original Tdead
recurrently, because of timing failures, considerable degradation may take place.
The system should provide some means for reconfiguration to a less demand
ing operational envelope where the service, despite having less value (~/rgt)'

may be provided predictably later, thus avoiding timing failures. Figure 13.1c
introduces this notion of dynamics in the time-value function of the service. Ex
amples of systems of this class are air traffic control systems, weapons control
systems, telecommunications intelligent network architectures.

13.2 REAL-TIME FRAMEWORKS

We spend this section analyzing the main frameworks at the disposal of the
architect to build, or build-in, real-time capabilities in distributed systems.
This discussion will refer to material presented in the previous chapters, and
will introduce some of the models we will discuss later in this chapter. Some are
concerned with the synchronism and timing, such as partial synchronism, time
triggered, event-triggered. Others are concerned with the functional models,
such as real-time communication, real-time control, and real-time and active
databases.

13.2.1 Budgeting

All starts by equating the budget of the time-related variables of the system
to be designed. The average load budget derives from the system requirements
(number of real-time entities, individual debit of information to and from the
system, computation and communication costs). Then, it is essential to make
assumptions on the arrival patterns, that is, on how the several load flows are
distributed in the time domain: periodic, sporadic, aperiodic. In complement,
the timeliness requirements are introduced: when, at what pace, how fast, and
with what guarantees, is this load to be processed, and output. We have dis
cussed a few of these issues in Section 12.1. These requirements are introduced
by the necessary match between the environment where the system will run,
and the type of service desired from it. This budget dictates a first approx
imation on the power of the computational and networking resources (MIPS,
throughput, latency), that can be fine-tuned through subsequent design phases.

Exhibit 2026 Page 340



324 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

13.2.2 Synchronism and Timing

Satisfying the timeliness requirements is concerned with choosing the adequate
system model. Whilst the hard-real time class is normally equated with a
full-synchrony model (see Synchronous Models in Chapter 3), more adcCluate
partial synchrony models have emerged that represent well the soft and mission
critical classes, as we are going to discuss in Section 13.4. On the other hand,
choosing time-triggered or event-triggered frameworks implies many subsequent
decisions about the system support, with regard to implementing timeliness,
as we will see in Sections 13.5, 13.6, and 13.7 (e.g., information flow control,
scheduling). As discussed in Section 12.7, periodic scheduling is more easily
analyzed and tested, and is the workhorse of time-triggered system models, that
we address in Section 13.7. However, when the environment does not comply
with periodical operation, the combined scheduling of periodic and sporadic
processes is necessary, as accommodated by the event-triggered model, studied
in Section 13.6.

13.2.3 Networking

Distributed scheduling is still a subject of research, because of its complexity.
For that reason, it is common to separate concerns between network schedul
ing and local scheduling, at least in larger scale systems. This justifies the
importance of real-time networking, as the framework of building and config
uring networks and achieving real-time communication. Most networks have
their own distributed scheduling policies, on top of which communication pro
tocols can be built. Section 12.5 has introduced the real-time communication
paradigm, whose notions will be applied to a real-time communication model
discussed in Section 13.8. For certain applications, it may be necessary to ex
tend the bounded delay requirement on reliable multicast message delivery to
richer paradigms, such as causal or total order.

13.2.4 Input-Output

Input-output, in complement to processing, is the framework dealing with the
boundaries of the system. It is specially concerned with interfacing the en
vironment, whatever architecture it applies to: control, producer-consumer,
client-server. Section 12.9 described the main functional principles and tech
niques of input-output that should guide any implementation. For a matter of
separation of concerns, I/O should be seen as a framework separated from the
processing activities in the core of the system. In the generic real-time system
model that we are going to discuss in Section 13.5, we show that this sepa
ration, desirably equated under the entity-representative paradigm presented
in Section 12.3, is extremely convenient, for correctness, functional, and im
plementation reasons. The time-value paradigm (see Section 12.4) establishes
the correctness conditions for dealing with representations of real-time entities,
such as the time of their values, or their value over time.

Exhibit 2026 Page 341



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 325

13.2.5 Programming

Real-time systems programming is a rich and still evolving framework, since
it currently combines a wealth of notions, such as: concurrency; robustness;
timeliness. Real-time programming is by nature concurrent, and lies on es
sentially two approaches: language or system support. Language support is
granted through language annotations or specialized languages, like Ada (ADA
83, 1983), whose current version is Ada 95 (Bodilsen, 1994), which offer primi
tives that support concurrency under timeliness constraints. These are enforced
by run-time support environments built on top of a real-time kernel. The sys
tem support approach uses programming languages not necessarily designed
with real-time in mind, which may lack built-in concurrency or timeliness en
forcing constructs. These are granted through system libraries supplied as sub
systems of a core real-time kernel. This is the track of the so-called real-time
multitasking executives, so frequently used as a COTS basis to build real-time
systems. The virtues of objects for structuring programs are also useful in a
real-time context (Forestier et aI., 1989). The real-time object paradigm serves
as an encapsulation element. It can be used to represent real-time entities and
computing elements, and provide functional as well as temporal containment,
making it easier to reason in terms of the time-domain correctness of complex
tasks.

13.2.6 System Support

Last but not least is the question of system support. Besides quantitative issues
(e.g. of computational power), the architect must be concerned with qualita
tive issues. To begin with, there is the balance between specially developed
and COTS components. Many critical embedded systems are purposely built.
However, the growing trend for using COTS components applies to real-time
systems as well, specially when the number of non-critical, complex application
specific systems in the soft real-time and mission-critical classes increases. Un
der this perspective, the real-time kernel should accommodate the scheduling
needs equated during the early design stages, not only the scheduling policy,
but also the thread dispatching issues. This reasoning applies to the choice of a
standard LAN or field bus as networking support, which must comply not only
with the raw data throughput and reliability requirements, but also with the
goals for individual frame transmission delay in several urgency classes. This
may require additional software-based mechanisms complementing the native
priority schemes of the chosen network.

13.3 STRATEGIES FOR REAL-TIME OPERATION

The possible strategies to be followed by the architect in real-time system de
sign are conditioned by several factors, such as: class of operation, price, per
formance, available technology. The latter present the architect with a number
of tradeoffs. The main strategies line-up according to the main target of the
system being considered: money-critical, safety-critical, complex large-scale,

Exhibit 2026 Page 342



326 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

quality-of-service. Once agreed on a strategy, the system is conceived along the
guidelines suggested by the frameworks for real-time design just presented.

13.3.1 Money-Critical

We designate a system money-critical, when the stakes involved in the case
of timing failures are high. For example, the control of a process factory,
where failures or errors or delays may cause the malfunction or destruction
of the process line, entailing considerable loss of product or estate. Having
in mind the need for fault tolerance (we have made this statement repeatedly
throughout this part), the real-time specific strategies imposed by this target
class of systems foresee highly regular designs, and belonging to the hard real
time class of system. Systems should be as simple as possible, even at the
cost of versatility, in order to be verifiable. The operation models should be as
regular and predictable as possible, which is achievable when the operation of
the controlled system can be put within pre-specified boundaries (e.g., a batch
process line). This will be further debated in Section 13.9, on real-time control
models. Of course, this strategy suggests choices such as: static scheduling;
periodic processing and communication; sampling I/O. These are materialized
for example in models of the time-triggered type, that we study in Section 13.7.

13.3.2 Safety-Critical

A money-critical system becomes safety-critical when the cost involved in case
of catastrophic failure is incommensurate to the value of the service in normal
conditions. This is related with but not limited to the potential to jeopardize
human lives. These systems belong to the area of control (e.g., nuclear power,
fly-by-wire, drive-by-wire, etc.). The strategy for building safety-critical real
time systems concerns the use of the most demanding combinations of real-time
and fault tolerance techniques, and of structured and formal design and verifi
cation methods (Burns and Wellings, 1995; Sinha and Suri, 1999), bringing the
discussion of the last section to an even higher level. The main difference to
money-critical systems is that safety-critical systems have necessarily to pass a
certification process against standards describing several types of requirements.
The latter imposes such stringent criteria for all phases of system commission
ing, from design to implementation, that it may overshadow decisions based
on technical features. In the sense that catastrophic failure of money-critical
systems also has a lack of safety aspect, even if in moderate terms, the former
are also called safety-related.

13.3.3 Embedded

Today's embedded real-time systems have assumed a distributed nature. In
the measure that embedded distributed real-time applications start being built
on top of virtual-circuit like structures, such as LANs or field buses, the gap
between the desired 'distributed systems' model of the applications and the

Exhibit 2026 Page 343



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 327'

underlying 'networking' model becomes apparent. One such problem is the
effect of the network jitter in the application timings. If analyzed superficially,
it would seem the problem would disappear with more rigid interconnecting
structures, such as physical-circuit or digital-bus ones, such as time-triggered
TDMA networks. However, there is more to an architecture than the net
work. The strategy for modern embedded system design calls for looking at
the complete architecture, what we might call a field-bus distributed sys
tem, where networking, middleware support and applications are seamlessly
integrated and thus no gap exists. If an architectural approach to the problem
is followed, this can be done in most of the existing field buses. Applications
must see an adequate distributed systems support environment in the under
lying infrastructure. The latter must be built with building blocks exhibiting
adequate properties. Finally, the adequate algorithms must be used to intercon
nect these blocks, in order to achieve the desirable reliable real-time behavior
of the whole.

13.3.4 Complex Large-Scale

Whenever a system is complex and/or has a considerable scale, the enforcement
of timeliness requirements may conflict of the lack of assumptions restricting the
behavior of the environment- because of the complexity of the process- and
with weaknesses of the infrastructure- because of its scale. In this case, one
cannot expect to fully predict the evolution of the environment, and as such, the
design strategy of the system cannot be turned to static policies, and regular
behavior. These systems fall to a great extent into the mission-critical of soft
real-time classes. Some will be money-critical in nature, but cannot be designed
by the strategies we proposed above. As a compromise, the strategy to design
these systems suggests choices such as: timing error detection and recovery;
dynamic scheduling; combined scheduling of sporadic and periodic processing
and communication; interrupt-driven I/O. These choices are materialized for
example in models of the event-triggered type, that we study in Section 13.6.
Many architectures of this kind are client-server, which introduces a further
ingredient of non-determinism. The real-time database model, addressed in
Section 13.10, is a representative design strategy for this kind of systems.

13.3.5 Quality-oE-Service

An emerging class of real-time systems is quality-of-service oriented. For ex
ample, video-on-demand, voice-over-IP, visualization and other multimedia ser
vices, of the soft real-time class. These systems are normally structured around
the producer-consumer or client-server architectures. Less important than
avoiding timing failures at all cost, is the limitation of their effect and pro
duction, through adaptation to uncertain timeliness of the environment (vary
ing operation conditions) and uncertain utilization patterns (varying number
of users and of flows). As such, a strategy for this kind of systems should be

Exhibit 2026 Page 344



328 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

based on: dynamic scheduling; combined scheduling of sporadic and aperiodic
events; QoS failure detection and adaptation.

13.4 SYNCHRONISM MODELS REVISITED

We have addressed synchronism in Section 2.6. We have learned that it is
expressed in terms of timeliness properties, and it underlies any mechanism
for securing real-time behavior, since synchronism stipulates that it is possible
to bound action delays (processing and network). There is an obvious relation
between the time and synchronism paradigms: if time is expressed in durations
and positions in the timeline, synchronism bounds the variance and imprecision
with which those durations and positions are established, i.e., the jitter as
defined in Section 12.1. There is also a relationship between the synchronism
and order paradigms, established by the definition of temporal order made in
Section 2.7: if synchronism expresses the steadiness of a protocol, the latter
dictates how fine a temporal order the protocol can implement, that is, how
small the 8t -precedence potential causality threshold (Verissimo, 1996).

13.4.1 Timeliness versus Liveness

We saw in Chapter 1 that it is convenient to formally specify what we wish of
a system in terms of high-level safety and liveness properties. Safety properties
specify that wrong events never take place, whereas liveness properties specify
that good events eventually take place. Take the example specification we used
then:

Pl- any delivered message is delivered to all correct participants

P2- any message sent is delivered to at least one participant

P2 is a liveness property. We know it will happen, but we do not know when.
This is not compatible with our expectations about real-time systems, where
we decided to use time as artifact to guarantee synchronization with the envi
ronment, and all players involved: the user that produces inputs and receives
outputs, the sensor that is read, the actuator that produces an output, the
processor that has to finish a task, the network that has to deliver a message,
the failure detector that detects that something was not done as and when it
should. We learned that this is done by defining timeliness properties: what
ever happens is only correct if done by T, at T, every T, etc. That is, we
are introducing a safety condition. Timeliness properties have in fact a safety
facet, specified by means of time operators or time-bounded versions of tem
poral logic operators (Koymans, 1990; Lamport, 1994). In order to turn our
example specification into a real-time specification, we would augment it with
a timeliness property:

P3- any delivered message is delivered within TDmax from the time of
send request

Exhibit 2026 Page 345



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 329

13.4.2 Partial Synchrony Models

Real-time systems behavior is materialized by timeliness specifications, which
in essence call for a synchronous system model. However, large-scale, un
predictable and unreliable infrastructures are not adequate environments for
synchronous models, since it is difficult to enforce timeliness assumptions. Vi
olation of assumptions causes incorrect system behavior. In alternative, the
asynchronous model is a well-studied framework, appropriate for these environ
ments. This status quo leaves us with a problem: fully asynchronous models
do not satisfy our needs, because they do not allow timeliness specifications;
on the other hand, correct operation under fully synchronous models is very
difficult to achieve (if at all possible) in large-scale infrastructures, typical, for
example, of mission-critical systems, since they have poor baseline timeliness
properties.

What system model to use for applications with timing requirements running
on environments with uncertain timeliness? The question probably has more
than one answer. Recently, approaches have emerged that tolerate partial syn
chrony of the system while securing timeliness properties, or else detecting their
absence, for example, the timed asynchronous (Cristian and Fetzer, 1998), or
the quasi-synchronous (Verissimo and Almeida, 1995) models. These models
rely on the observation of two aspects of real-life environments:

• synchronism is not a homogeneous system property;

• worst-case termination times or delays are much larger than normal ones.

That is, parts of the system or epochs of its operational life can be reliably
considered synchronous. As such, bounds on response time and other variables
can be defined that hold on a subset of the system, or during limited periods
of its operation.

pdf(Tx)

PT~ .-----+-.---f---------.-~

Timing Failure

Zone

Txmin Txnor T~max Txmax

Figure 13.2. Distribution of termination times

Observe Figure 13.2: in real environments, the probability density function
of the time it takes for an activity to complete (e.g., message delivery), rather
than being a step, has a shape similar to the one represented in the figure. In
settings with uncertain timeliness, such as large-scale systems, the worst-case
termination time, TXmax, if it exists, is much higher than the average case
(Tx nor), such that it becomes useless. The assumption of a shorter, artificial

Exhibit 2026 Page 346



330 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

bound T~max' increases the expected responsiveness. In contrast, it increases
the probability of timing failures, since T~max has a non-zero probability of
not holding (1 - PT , ), yielding a timing failure. However, if timing failures

x
are detected when they occur (see Section 12.2), a reliable system can be built
which works synchronously when the environment allows, and reacts in order
to preserve correctness in the presence of timing failures.

Table 13.1. Partially Synchronous Model Properties

• Some of the system properties- processing or message delivery delays, rate
of drift of local clocks, difference between local clocks- have a known bound
• For the others, a known bound may not exist or may be too large

The generic properties of this model are listed in Table 13.1 (see also Ta
ble 3.2 in Chapter 3). Partially synchronous systems offer support for building
mission-critical or soft real-time applications that are dependable, in the sense
that they offer resilience to failure of timing assumptions.

13.5 A GENERIC REAL-TIME SYSTEM MODEL

We present a generic real-time system model that will help us understand other,
specialized models introduced later in this chapter (Kopetz and Verissimo, 1993).
The model is depicted in Figure 13.3, and it relies on the separation between
input-output, communication, and computing.

Figure 13.3. Generic Real-Time System Model: RTe- real-time entity; RTr- representa

tive; CE- computing element

Computing is performed by computing elements (CE), computational enti
ties which process observations of RT entities (RTe), modify the internal state

Exhibit 2026 Page 347



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 331

of the system, and eventually trigger actuations on other RTe's, to modify the
state of the environment. Input-output is performed between the RTe's and
their representatives (RTr) (see Entities and Representatives in Chapter 12).
Representatives assume a crucial role of containment between the physical re
ality and the computer world. RTr's are to RTe's what device drivers are to
normal computers: they hide the complexity and idiosyncrasy of sensors and ac
tuators, and translate that physical reality into variables and structures, which
computers can understand. Once defined the rules and boundaries for the re
lation between an RTe and its representing RTr, the latter can be assumed to
"be the RTe" , inside the computing system. Communication ensures the timely
flow between the computing elements and the input and output representatives,
since we are reasoning in terms of distributed systems.

The value of an RTe E at any instant t, S == E(t), is represented inside the
computer by sr == r(E)(t). The implications of using sr instead of Shave
been studied in Sections 12.3 and 12.4. This separation of concerns simplifies
system design. One step is to ensure that the RTr faithfully represents its
RTe in all situations including assumed faults in the I/O area. Once this
secured, the architect can devote his effort to ensuring that the computing
mechanisms, given correct representations of all input and output RTe's in
terms of computing abstractions, produce correct results. Last but not least,
and given the needs dictated by the above steps, he must see to it that the
communication mechanisms ensure that information flows in a timely manner
between CE's and RTr's.

Particular models may implement specializations of this generic model. The
producer-consumer may be concerned with the observation of real-time data
and its timely processing and storage at one time, and its recovery and timely
rendering at another, in an open-loop fashion. On the other hand, in real-time
control the loop is closed, from observation of the environment, to computation
and actuation, and feedback to the observed input, through the environment.
This model can be activated in a time-triggered fashion, or in an event-triggered
fashion. It is very useful to analyze these apparently contradictory schools
under the same generic model, as we do next.

13.6 THE EVENT-TRIGGERED APPROACH

Figure 13.4 illustrates the architecture and information flow of an event-triggered
(ET) system. The information flow retains an event-like nature up to the center
of the system. This approach adapts well to overload and unexpected events,
either from the same or different representatives.

Event-triggered system - one that reacts to significant events directly
and immediately

13.6.1 Event-Triggered Architecture

In any real-time architecture, it is important to regulate the flow of informa
tion from the periphery (representatives) to the core of the system (computing

Exhibit 2026 Page 348



332 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

~.::::•.:::::::::•.

R::::•.'.Yi:
..

~:

::2.··

...·.

···...·..~..:..•.·.•·;~··::·i.....:
. ...

:il~
Lb~

Figure 13.4. Event-triggered Architecture

elements). This is preferably done using policies adapted to real-time, such as
rate-based flow control, which act at the input representatives, rather than at
the computing elements (see Flow Control in Chapter 12).

The definition of the operational envelope of ET systems (the set of as
sumptions about the behavior of the environment to control) is by nature not
rigid. A beneficial consequence is that they can admit situations where they
are stressed beyond the design-time worst-case workload without falling apart.
Average responsiveness of ET systems is the best possible in general, since an
event gets through and is processed just depending on preemption speed and
communications medium access time. Given the bursty nature of most ET
traffic, priorities play an important role in letting urgent events get through in
a message or event queue.

The dynamics of ET systems is at the same time their weakness and their
strength. The irregular event distributions (sporadics) make predictability hard
to ensure. It is an advantage however, when system complexity and lack of en
vironment knowledge cannot ensure predictability but require versatility, as in
mission-critical operation. Given their dynamic characteristics, the scheduling
of ET systems is not decided a priori: it must be done on-line, will be preemp
tive in most cases, and will be prepared to schedule a computation serving a
sporadic event of extreme importance, immediately it arrives (see Scheduling
Sporadic Tasks in Chapter 12).

The ET approach is also valid under the perspective of critical applications.
Imagine that such a system is processing critical hard real-time tasks, but
sometimes enters overload periods: an ET system can be designed in order to
withstand this extra load, exhibiting what is called graceful degradation. This
prefigures the mission-critical class of operation, which ET systems are very
apt for. In the impossibility of meeting all timeliness requirements, they will
attempt at reducing the cost involved in failing to meet some, for example by
selecting those that would, if not met, lead to catastrophic failure.

Exhibit 2026 Page 349



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 333

The extra complexity put into the design principles of ET systems, a disad
vantage already pointed out, becomes an advantage once the system is designed
and it is necessary to extend it. Because of the provisions to support dynamic
operation, this turns out to be easier. The event-based approach allows selec
tive dissemination of information and allocation of resources.

13.6.2 Event-Triggered Protocols

ET systems are specially devoted to treating sporadic events, which accurately
represent the environment encountered in most real-time problems (see Tem
poral Specifications in Chapter 12). Event-triggered systems, as shown in Fig
ure 13.5, are so to speak 'idle', waiting for something to happen. When an
external event or burst of events occurs (e.g., objects passing under a detector
beam), it is transformed into an event message or message interrupt, which is
sent to the interior of the system, where one or several computing elements
process it, modify the system state, and eventually produce outputs. Note that
messages are processed as they arrive, and so are outputs. This is strict ET
behavior.

P5-----~

I

P2 --~~~1J)J~~t+--t-----'rr-r'--

P3 ---~-~~~~t-----+----4II~~-

P4 ~:------::~~~~/-/--_rII~I/-/--
III

Figure 13.5. Timing Issues in an Event-triggered System

ET systems are said to be susceptible to event showers. However, this would
be a simplistic way of looking at the problem. Note that our model estab
lishes a barrier at the representatives, which can establish measures for filter
ing the redundant and spurious information out of the flow to the computing
elements, neutralizing the 'event shower' effect. In other words, if el is the
leading event carrying information about an alarm situation, the information
carried by the subsequent event shower tail contributes little to the information
already brought by el. The system architect can thus create rules to: compact
successive instantiations of the same alarm at the representatives; discard re
dundant events, either at the representative or upon arrival at the computing
element (by a pre-processor); reserve communication and computing resources
for the forthcoming shower; smoothen the transmission of event bursts to the
computing elements, by using rate-based flow control to space them along the
interval between bursts, when there is enough laxity.

Exhibit 2026 Page 350



334 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Another common idea is that ET systems are unsteady and untight, or in
other words exhibit a high jitter, making them inadequate for more demanding
real-time control applications. This derives from the fact that processing and
outputs are basically event-driven. However, with the assistance of synchro
nized clocks it is very easy to superimpose time-triggered behavior on top of
an event-triggered communications or processing system. This is exemplified
on the far right of Figure 13.5: actuations can be triggered by the clocks, at
a steady (periodic) pace, and tightly at all nodes. In fact, timing of an event
triggered system may be purely timer-driven or clock-less (see Figure 2.10 in
Chapter 2), but it may also be clock-driven, without necessarily being periodic
(see Figure 2.11 in Chapter 2).

13.7 THE TIME-TRIGGERED APPROACH

The architecture and information flow of a time-triggered (TT) system is shown
in Figure 13.6. In TT systems, the information flow is throttled in the pe
riphery of the system, as shown in the figure, because there is a preliminary
transformation from event to state (state of the RTe).

Time-triggered system - one that reacts to significant events at pre
specified instants in time

t
~tr.·..

CO2

Figure 13.6. Time-triggered Architecture

13.7.1 Tim'e-Triggered Architecture

By assumption, there is no such thing as overload in TT architectures. How
ever, one cannot exert 'flow-control' on the environment. This is universally
true, that is, the situation is no different from ET systems in this respect.
So, flow control in TT systems is performed between the environment and the
representative, which only accommodates the information it is prepared to rec
ognize and transform in one period. In order that no overflow occurs at the
representative, the event arrival distribution must be well known. Otherwise,
unexpected but important events may be filtered out. As such, the bounded

Exhibit 2026 Page 351



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 335

demand assumption can be a dangerous one if the environment is not thor
oughly described: a requirement of TT system design. Take the (unfortunate
but realistic) example of a weapons-control system: a TT system designed for
a maximum of 50 incoming enemies will be blind or puzzled when a 51st enemy
arrives.

The crux of the TT approach is to create the conditions to make the system
appear well-behaved enough that events occur in synchrony with the system
clock, and simple enough that only the assumed event distributions occur.
This works for a number of applications, namely in continuous process control.
Once the I/O problem is solved, from then on the system is quite predictable.
If we look at Figure 13.6, we see that events are transformed into state at
the representatives. As a matter of fact, it is as if every representative holds a
piece of the global state, all of which are disseminated to all computing elements
when the start-of-period ticks, in the form of state messages. These messages
contain structured data, the whole of which forms the global state or system
context. In consequence, they are not consumed; instead, each overwrites its
previous instantiation in the global state, like a piece in a puzzle. Going back to
Figure 13.6, the flow between representatives and computing elements pictured
there is periodic and static, and it is always the same amount of information:
the objective is the cooperative refreshment of the global state. In consequence,
resource reservation rather than flow-control is necessary.

TT systems are built as periodic automata, and as such are the perfect match
for periodic events, mostly generated by artificial processes, but that is the case
in a lot of process control settings (discrete or continuous). TT response is thus
cyclical, occurring at pre-specified instants in time. Responsiveness depends on
the system period. Given that the environment is asynchronous with regard to
the system, an event may have a waiting time of one cycle in the worst-case,
half-cycle on average. So, when a very urgent alarm arrives it may have to wait
that long to be served. This is only relevant when the expected service delay for
these urgent sporadic events is of the order of magnitude of the system period
or shorter.

TT systems have other advantages. Given their cyclical and lock-step (in
pulses) evolution they are simpler to test and show correct in the case of, for
example, critical applications. Design for predictability is easily achieved in
TT systems. In consequence, they are excellent for small closed systems con
trolling static environments and repetitive processes, like some manufacturing
cells. Predictability and testability are very important factors of choice when
reliability and safety figures have to be very high. In consequence, it is not sur
prising to see critical problems (nuclear, fly-by-wire or drive-by-wire control,
train control, etc.) addressed by TT systems. On the other hand, they may be
harder to commission for large-scale or often-varying settings.

Scheduling is calculated off-line and it is static. The system still has to
treat several tasks, so the automaton we mentioned before is a multi-tasking
one. However, since we know the evolution of the system a priori, we can also
determine how long the processing steps last, and combine their interleaving

Exhibit 2026 Page 352



336 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

in order that all tasks perform their work by the end of a period. Once this
schedulability exercise is done, the schedule may be cast into the system exec
utive (see Static Scheduling in Chapter 12). Obviously, increasing the number
of nodes, or adding new tasks will require a total redesign of the node slots,
communications, schedule, etc. Mission-critical systems are thus not a field of
preference for TT systems, which cannot handle unexpected events, and can
only handle sporadic bursts if considered at design time, by means of several
predefined operating modes. This means as many pre-tested schedules, and still
leaves open the problem of falling outside the 'outer' operating mode.

13.7.2 Time- Triggered Protocols

Activity in TT is triggered at environment-independent instants, a shown in
Figure 13.7. The period is short enough to match the rate of evolution of the
environment and long enough for the duration of processing.

P3 -_i:H_"

P4 -_:XH_<.Ps -----

~output
I

Figure 13.7. Timing Issues in a Time-triggered System

There is no event shower effect in TT systems. To comply with the cyclical
operation style, events are collected and pre-processed in the periphery of the
system, between periods, as shown in the figure. Note that observations are
made by sampling, and pre-processed so that whatever relevant happened since
the last period at each representative is included in the partial state information
to be sent in state messages to the computational part. At given moments,
these messages are disseminated to the computing elements, which assemble
them in a complete state image of the system. The necessary tasks are then
deterministically scheduled at each node, in order to perform thelilecessary state
transformations and eventually schedule results to be output to representatives.
The are also output at a pre-determined instant, which coincides with the end
of the period. Actuation can be made as steady and tight as allowed by the
precision of the synchronized clocks (mandatory in TT systems).

Flow control would also seem to be a non-problem. Note two things however:
(1) the system is always working as in full load- be the environment 'quiet', or
going through worst-case alarm situations, the information flowing is the same;
and (2) the representative must handle any showers of alarm situations, and the
maximum rate of event arrivals. The messages transactioned between the latter

Exhibit 2026 Page 353



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 337

and the computing elements must always carry enough octets to represent the
maximum I/O information that can be generated in a period in any situation.
The efficiency of use of resources is thus compromised in favor of determinacy
of operation.

Time-triggered communication is mandatory to support the kind of opera
tion depicted in Figure 13.7 for a TT system. In fact, the whole architecture,
including the network, works in pulses. For example, the MARS system, a
pure TT system (Kopetz et aI., 1989a), accesses the network through a TDMA
protocol called TTP, using a slotted access method where each node knows
exactly when and for how long to transmit (see Figure 2.12 in Chapter 2).

13.8 REAL-TIME COMMUNICATION MODELS

When speaking of real-time networks, there are several fields of interest: the
virtual circuit type of network, the realm of medium to large-scale settings; the
physical circuit type, the realm of control networks; and the digital bus type,
the realm of lock-step systems. These types were presented in Chapter 11,
in increasing order of tightness of expectations about real-time behavior. The
timescales involved also span an increasingly finer range, from the second to
the microsecond. The use of specialized protocols and hardware is more re
lated with the digital-bus end of the spectrum, in contrast with the standard
components available for virtual circuit types over open networks.

We are going to develop a real-time communication model based on the def
inition of the paradigm made in Section 12.5. The steps are generic enough
to be useful for design of any of the network types considered. The architect
will have to specialize the implementation of the model according to the ex
pectations of a given type. We discuss structure and configuration (load bud
get, urgency classes, network properties), connectivity enforcement (medium
reliability, redundancy measures), and algorithmics (preventing timing faults,
toleratip.g omission faults).

13.8.1 Configuration and Structure

In order to configure the network, a few points must be taken into account:

• traffic patterns;

• latency classes;

• network sizing and parameterizing.

The designer must be able to model the traffic patterns offered to the net
work by each individual node, falling in the types defined in Section 12.1:
aperiodic, periodic or sporadic traffic. The next step is to perform some traffic
separation in latency classes, corresponding to the classes of urgency in the
system, which translate into a range of successively higher transmission time
bounds. As a general rule, urgent data (critical) and protocol control frames
should be mapped onto the highest network priority. The other traffic should

Exhibit 2026 Page 354



338 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

be distributed by the remaining priorities, according to their relative urgency
and/or importance.

Regardless of the network technology used as the basis for a reliable real-time
network, one important point is not to get tied to a particular implementation,
Le., achieve portability. Abstracting from physical particularities of a network is
thus a good architectural principle. Take a LAN for example. LANs have a set
of common properties, some never stated, which can be extremely helpful for the
construction and proof of correctness of some distributed systems paradigms.
For the sake of example, we describe a set of useful abstract properties of
LAN-type networks, including field buses, in Table 13.2.

Table 13.2. Abstract LAN Properties

Broadcast

Error Detection

Network Order

Full Duplex

Bounded
Omission Degree

Tightness

Bounded
Transmis. Delay

correct nodes receiving an uncorrupted frame transmis
sion, receive the same frame

correct nodes detect any corruption done by the network
in a locally received frame

any two frames received at any two correct nodes, are
received in the same order at both nodes

frames transmitted are also received at the sending node

in a known time interval Trd' omission failures may occur
in at most k transmissions

correct nodes receiving an uncorrupted frame transmis
sion, receive it at real time instants that differ, at most,
by a known interval Ttight

any frame is transmitted by the network within a
bounded delay TTXmax from the send request

The Broadcast and Error Detection properties impose detection of errors
in the value domain, in a broadcast (e.g., the CRC protection mechanism).
Frames not passing the test are simply discarded, usually by the MAC VLSI.
Network Order is the physical order imposed by the mutual exclusion on the
communication medium. The Full Duplex property is only directly supported
by some LAN chipsets, such as the Token-Ring, and the switched Ethernet. It
is also supported by the CAN chipset. The Tightness property measures the
maximum interval between reception instants in different nodes, a function of
the variances of the end-to-end propagation delay and the interrupt processing
time for a frame. Omission errors normally have a physical origin: mechani
cal defects in the cable, EMI corruption of a passing frame, modem synchrony
loss, receiver overrun, transmitter underrun, etc. As such, it is possible to
make probabilistic assumptions about the occurrence of omission errors dur-

Exhibit 2026 Page 355



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 339

ing an arbitrary interval of concern Trd' which boils down to a number k of
successive transmissions hit by omission errors, as per the Bounded Omission
Degree property. The Bounded Transmission Delay property specifies a maxi
mum transmission delay, which is TTXmax in the absence of faults. It is not a
self-contained property of networks, depending on the particular network, its
sizing, parameterizing and loading conditions.

13.8.2 Maintaining Connectivity

Medium reliability is the crucial issue to secure connectivity, and it involves
fault tolerance measures in the networking infrastructure (see Fault- Tolerant
Networks in Chapter 6). Of course, if the whole network is replicated, we have n
paths to each destination, and can mask n-1 medium failures (see the examples
of Figure 6.4 in Chapter 6). However, many real-time networks are simplex
infrastructures that can also be provided of medium connectivity measures.
In essence, we can count on two strategies to maintain connectivity (see the
examples of Figure 6.5 in the same Chapter): space-redundant medium, where
several media are available in parallel; reconfiguring medium, where the medium
breaks-up and reconfigures to a new correct state.

13.8.3 Achieving Bounded Transmission Delay

Enforcing a bounded and known transmission time bound TTXmax (Bounded
Transmission Delay), is not guaranteed per se in a LAN. The load budget and
the separation in latency classes allocated to LAN priorities must be equated
with network throughput, to achieve figures for the transmission delay num
bers. This process is analogous to the discussion of the schedulability tests and
maximum termination time done in Section 12.7.

Each class is scheduled according to the available policy of the network,
either a dedicated scheduling mechanism, such as in special purpose TDMA
networks, or the available fixed priority mechanisms of standard LANs and field
buses, which work by guaranteeing some precedence order or a certain amount
of the channel bandwidth to fulfill latency requirements. Hybrid mechanisms
have been the most successful: building improved schedulers on top of standard
LAN or field bus priority mechanisms.

The network should be parameterized in order to reply to these requirements.
Some LANs, such as the Token Bus, require a setting of several timers in order
to correspond to the load budget and latency class definition just discussed
(Janetzky and Watson, 1986; Gorur and Weaver, 1988). It may sometimes
be discovered at this point that the latency aimed for is not achievable with
the amount of load offered. Then, the load has to be adjusted, in an iterative
procedure. The process is LAN dependent and should not be neglected for a
successful design.

Exhibit 2026 Page 356



340 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

13.8.4 Achieving Bounded Delivery Delay

The bounded omission degree assumption introduced by the Omission Degree
property is paramount for achieving a bounded delivery delay, since it dictates
the level of redundancy needed, either time redundancy (number of repetitions),
or space redundancy (number of network channels or media). Note that without
these reliability assumptions, it is impossible to put a bound on the duration
of the action of getting a message through.

In order to pursue the divide-and-conquer strategy, the architect must now
consider the implementation of an omission-free network infrastructure, for an
omission degree of k, through a choice of fault-tolerance mechanisms. The al
gorithms must also be aware of the measures taken at hardware configuration
time about medium reliability, discussed in the previous section. In Chapter 7
we studied the basic error processing protocols, which point to several alter
natives: (1) space redundancy with error masking; (2) time redundancy with
error masking; (3) time redundancy with error detection/recovery.

Let us assume that up to k errors may occur. The time budget for alternative
1 is transparent to omissions, since at least one frame arrives on one of the
media, in each redundant transmission on all of the (k + l)-plicated networks.
The time budget for alternative 2 has a constant overhead of transmitting not
one but (k + 1) copies of each frame. The time budget of alternative 3 has to
take into account the accumulated durations of the error detection timeouts in
the worst-case runs involving k + 1 retries. Note that if a bounded transmission
delay TTXmax is ensured, then by the Bounded Omission Degree property either
of mechanisms 1-3 achieves message delivery in bounded time despite omission
errors, and in absence of partitioning.

13.8.5 Controlling Partitioning

Let a network be partitioned when there are subsets of the nodes such that
nodes from different subsets cannot communicate with each other1

. Physical
partitioning may occur in a real-time network on account of physical defects:
bus medium failure (cable or tap defect), transmitter or receiver defects, etc.
On the other hand, there can be virtual partitioning, where networks exhibit
glitches in their operation, e.g. congestion in wide-area networks, or inaccessi
bility in LANs or field buses (Verissimo, 1993).

We can prevent physical partitioning (alternative (1) in the last section), or
we can have a glitch of variable duration with medium-only space redundancy
(the solution for alternatives (2) and (3)), or we can reduce but not avoid virtual
partitioning. We had rather address all forms of partitioning in the same way,
and talk about 'controlling', rather than 'preventing'. In consequence, we say
partitioning is acceptable in a real-time network if it is controlled: duration is
bounded and suitably short for the service requirements.

1The subsets may have a single element. When the network is completely down, all partitions
have a single element, since each node can communicate with no one else.

Exhibit 2026 Page 357



discrete
control

MODELS OF DISTRIBUTED REAL-TIME COMPUTING 341

13.8.6 Implementing Flow Control

Sometimes it is necessary to exert flow control on the communication load.
Traditional flow control mechanisms normally used in non real-time commu
nication, such as the sliding-window scheme used in TCP (Comer, 1991), can
delay transmissions for long periods or even arbitrarily. Besides, they are not
appropriate for multicast communication.

Rate control is a real-time flow control policy implementing a rhythmic oper
ation that is equally suited for periodic and sporadic traffic. It aims at matching
the sender's average debit with the recipient's capabilities, without discontinu
ities in traffic flow. The Xpress Transport Protocol (XTP) is a typical exam
ple of protocol using rate control, capable of real-time behavior (XTP, 1998).
Credit and rate control may be combined in XTP.

13.9 REAL-TIME CONTROL

Control is historically the main application of real-time systems. As shown in
Figure 11.3 in Chapter 11, it is concerned with observing selected real-time
entities from a controlled process, and computing whatever corrections and
actions necessary to maintain the process within the pre-specified operational
envelope. The meaning of operational envelope may vary depending on the
type of control:

applies for example to batch processing, and its correct operational
continuous envelope is defined by ensuring that each of a certain number of vari
control abIes stays within a maximum error from their pre-defined values,

the set-points

applies for example to manufacturing, and its correct operational
envelope is defined by ensuring that a pre-defined sequence of ac
tions takes place at the appropriate times, dictated by either a pre
defined static schedule, or in reaction to external events, or both

13.9.1 Architecture of Distributed Control Systems

What is called control loop in computer control is: observing the value of a
read-only real-time entity RTel at a given time; computing the necessary action;
acting on a write-only RTe2 in response to the input; physical feedback from
RTe2 through the environment, eventually changing the state of RTel' which
will be read again, and so forth. A distributed real-time control architecture
has the following building blocks:

• input and output representatives

• computing elements

• reliable multicast or broadcast communication subsystem

Representatives are connected to the real sensors and actuators. A repre
sentative is a driver or task that handles the respective sensor or actuator. In
centralized control, sensors and actuators are normally connected to a single

Exhibit 2026 Page 358



342 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

computing element, or controller in this case, and in consequence representa
tives co-reside with the computing elements. In distributed control, the repre
sentatives of input and output real-time entities may reside at different nodes,
where they mayor not coexist with controllers.

Anyway, it is essential to disseminate the information from sensors to the
several controllers, so that they acquire a common knowledge about the image
of the system and of any events occurring. This is easily achieved through
the synchronous reliable multicast or broadcast protocols that we have studied
in Chapter 2, either under the initiative of representatives, or of controllers.
Supposing that each controller schedules its tasks correctly in reaction to that
information, some controllers will produce outputs to representatives connected
to actuators. Here again, reliable multicast protocols may be used in case
several actions must take place at different actuators in a synchronized way, for
example, in the case of the quad valve studied in Section 12.9.

In algorithmic terms, real-time control implies the solution of essentially
three problems:

• timely and correct observation of real-time entities of the environment

• timely and correct computation of the action to' be executed next

• timely and correct actuation on real-time entities of the environment

The first problem has to do with the way observations are performed. Ob
servations are essentially related with determining a value at a given time or
determining the time at which a given value occurs. Considering that the in
formation gathered from the environment is as accurate as needed in the value
and time domains, the second problem has three facets: the control algorithms
must be logically adequate to the problem; observations must be used correctly
over time, since the state of the RTe may vary after being read; scheduling of
the necessary tasks must ensure the production of results within the required
response times.

The third problem concerns the correct implementation of those results when
they imply actuations, and has to do with the ability to position an action at
a given point in the timeline (see Sections 12.4 and 12.9).

Distribution and replication in control introduce additional problems:

• synchronizing and disseminating observations made at different nodes

• splitting and allocating control tasks to different nodes

• synchronizing actuations made at different nodes

Models that allow splitting tasks of a global computation through different
nodes have been studied in Chapter 3. One can use global time for trigger
ing a synchronized acquisition or actuation. Clock-driven observations allow
synchronizing the acquisition of data from different or replicated sensors. This
way one can determine the order of external events, even if acquired in differ
ent nodes. Clock-driven actuation serves the purpose of accurately positioning
actions on the environment in the timeline, with cooperative or replicated ac
tuators. The steadiness and tightness of the operations influence the results
(see Distributed and Fault-Tolerant I/O in Section 12.9). In general, the time-

Exhibit 2026 Page 359



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 343

liness properties of control actions influence the quality of control, and even its
correctness.

13.9.2 Quality of Control

Logical aspects of the algorithmics notwithstanding, the quality of control is
affected by two time-domain factors: response time and jitter. The response
time affects quality for two reasons: (a) if an RTe varies significantly during
a single control cycle (observing/computing/actuating), when the actuation is
issued the RTe no longer has the value read, producing an error; (b) if the
response time exceeds an absolute bound, for example for discrete actions, a
serious failure may occur. Fixed delays can sometimes be compensated for by
prediction or extrapolation. The remaining error caused by the accumulated
jitter in the several phases of the control cycle cannot: jitter of the observation;
communication and execution time jitter; positioning jitter of the actuation.
We are going to base our analysis of these errors using the time-value paradigm
(see Section 12.4).

Time of a Value Observe Figure 13.8a, depicting a curve made of sensor
observations (Hr(E)) of the value of a real-time entity (H(E)) along time. On
the left half we depict the problem of observing of a value at a predetermined
time Tobs . In the example, we assume a sensor amplitude error bounded by vs ,

and a jitter bounded by (0. Recalling Section 12.4, a consistent observation of a
value at a given time has a value domain error bounded by a known Vo. In this
case, Vo == V s + vo, V o being the maximum equivalent value error caused by (0.
This situation is depicted in the figure: the real value is E a at Tobs ; the reading
suffers the error V s and yields E~; finally, the jitter (0 positions the reading
action too early, yielding E~ read at Tobs - (0' as if it were read at Tobs with an
additional value error of Vo. The alternative perspective of determining the time
at which a predetermined value Vobs occurs may also suffer a maximum error
that is shown on the right of Figure 13.8a: the real event is E b at T val ; however,
its observation is delayed by (s, to when Hr(E) reaches the Vobs threshold (E~),

given the error of vs; the observation receives a later timestamp, Tval + (s + (0'
given the positioning jitter (0. The error in determining the time at which a
given value occurs is thus bounded by To == (s + (0. For discrete entities like
booleans, the effect of the sensor threshold error (the equivalent timing error
(s) can be neglected in the expression of To.

Value over Time We take two control-related examples to illustrate this
issue: the bearing of a ship; the angle of the crankshaft of an engine piston.
There is a vast body of research on computer control algorithmics that this book
does not intend to replace. The derivations discussed here are very simple, and
aim at illustrating the generic problem of use of time-value entities in control,
and its implications in a computerized and distributed context.

Consider an observation (Vi, ti) of a time-value entity E (for now consider it
perfect, that is, Vi == E(ti), neglecting any observation errors). This observation

Exhibit 2026 Page 360



344 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

will be used for some computation that depends on the value of E, e.g., a slight
correction in the helm by the autopilot, or the computation of the ignition point
by the engine controller.

When the result is produced, at some later time tj, a non-negligible amount
of time may have elapsed: the time spent in effectively delivering the obser
vation (TD ), plus the execution time of the action (Tx) (see the figure). This
delay error affects the accuracy of the control action, since it is supposed to
concern the value of E at tj, but was based on its value at ti. Additionally,
the error itself is uncertain, because of jitter: both the delivery time and the
termination time have a variance, and in consequence, tj cannot be determined
accurately. Let us denote the maximum total error due to the execution of the
computation (observation delivery and adjustment computation) as Tx.

V(t)

(a)

Figure 13.8. Time-Value Entities: (a) Time of a Value

If E (t) is not predictable, either because it cannot be represented analyt
ically (e.g., discrete, or too complex), or because the cost of computing the
prediction would be too high, the original observation value must be used in
the computation of the control adjustment. Then, .. the total timing error is
bounded by the maximum response time of the system, Tx = TDmax + TXmax.
However, E(t) is often a predictable function with a small extrapolation error
for some near future time. This happens with most continuous variables, and
opens the way to several optimizations that we do not discuss in detail. In
general terms, it consists of computing a prediction (Vk, tk) of the value of E
for tk > ti and using it instead of (Vi, ti) as input for the computation. This
adjustment cancels part of the Tx error. In order to capture the intuition, note
the simplest of the approximations: to cancel the error due to the fixed part
of the delays. As a first shot, consider making tk = ti + TDmin + TXmin. The
result will be produced at an instant tj anywhere between tk and tk + (d + (t,
respectively the variances of the delivery time and the termination time. In
consequence, the effect of the error is reduced to the jitter terms. Consider
further adding the average jitter, e.g., tk = ti + TDmin + (d/ 2 + TXmin + (t/ 2:

Exhibit 2026 Page 361



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 345

this reduces the effect of the jitter to half, Le. the total timing error becomes
Tx == ±((d + (t)/2. Since tk - Tx S tj S tk + Tx, if we compute the adjust
ment for tk, then neglecting the extrapolation error, the value error Vx will be
bounded by the maximum deviation during Tx.

8(t)

1800 I

Vk =~~:.. ·~.f.Y~::::::::·.::::::::::::::::::::::·.:·.:·.::::::·.::::;:::::::·.:::::::::·.::·.::::::·.:~.:::::i:::::::·.::·.:·:.·t·::··········· i'·

V, =~~: -~;-::-·_··.:-.··..· -.~· ·_·.·.l.·~.···:·.-;~;-;;:-:-~:::l::;;:::::::::::::::::::::::::::::·;···::····· ~ -l :-:~~
~ 14 t

1~·0!'/~:1WtZOI&yv~~%~\\\""'\\'}\+ T...LTJ:r/lJ';; ~T/£'z /1';.. 4('T ~<': X 1 x 1
Dmin Xmin

(b)

Figure 13.8 (continued). Time-Value Entities: (b) Value over Time

Coming back to our examples, we illustrate the first in Figure 13.8b (bearing
of a ship), and leave it to the reader to elaborate on the second. Given the
continuous nature of the real-time entity bearing (B(t)), timing errors trans
late into value errors in the helm correction. Observe the figure: the ship had
a steady bearing of 90° (East) but starts to drift. The current bearing is read
at ti to be 100°, but the adjustment is computed using an extrapolation to
time tk using average delays. If the execution finishes at tk, then the bearing
correction is accurate. However, the termination event may take place at tj
anywhere between tk ± Tx. In the extremes, the maximum error in bearing
correction is attained (±Vx): the autopilot applies a correction to make the
ship come back from a bearing of 140° to 90°; however, for the situation shown
in the figure, the ship will under-correct to 105°, because it is already aiming
at 155° when the correction is applied (tk + Tx), and vice-versa for the other
extreme of the interval.

If the response time gets to be of such magnitude that some boundary con
dition may be crossed before termination, more serious problems than mere
control inaccuracy may occur. An excessive response time compared with the
rate of drift will make the ship successively under-correct and over-correct, fol
lowing an ullstable route. Likewise, if the computation of the ignition point
finishes after the crankshaft reaches the earliest possible ignition point, the
ignition control may miss the ignition point, and even damage the engine.

To conclude, we now introduce the observation-related errors discussed in
the previous section. The maximum timing error of the observation itself is

Exhibit 2026 Page 362



346 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

To == (8 + (0' with a corresponding value domain error bound of Vo ' If the
observation was read from a representative, or a real-time database, it concerns
a past state of the RTe. Recalling Section 12.4, the correctness condition is
temporal consistency: an observation stored at a representative must not be
older than a stipulated bound Ta, called the absolute validity interval. This
interval introduces a value domain error bounded by a known Va' The total
timing error of the control loop in our example, from the instant of observation
to the instant of actuation, is thus bounded by:

Tetl == To + Ta + Tx
This bound on accumulated timing errors translates, for continuous variables,
into a predictable equivalent value error bound:

Vetl == Vo + Va + Vx
Wrapping-up, quality of control implies securing the following, for all RTe's:

• the value stored at the representative must be consistent - this implies
bounding the observation error by a known ~, and must be secured by the
I/O instrumentation, which must be good enough;

• the value stored at the representative must be temporally consistent at all
times, since it gets obsolete with time - this implies bounding the absolute
validity interval of the representative value to a known ~, and must be
secured by the I/O interface, which must refresh often enough;

• a reading from the representative must remain temporally consistent until
used - this implies bounding the response time of the action where the
reading is used, such that the associated timing error Ix is bounded, and
must be handled inside the communications and computational parts. The
error term Ix may be further reduced by using prediction functions;

• when computations concern several RTe's, the concerned observations must
also be mutually consistent, Le., the timestamps of all observations should
fall within a known interval 1m (see Section 12.4).

13.9.3 Distributed Control

The ability to order related input events and to position related output events
in the timeline is crucial for distributed real-time control, since now sensors and
actuators are connected to several controllers with a network in the middle.

Consider the problem of analyzing a stream of events of a failure situa
tion in an electrical power distribution network. Measurements are made by
distributed representatives, which send them to the controllers. The causal
ity relations between events will dictate the correct reconfiguration procedure.
However, if two events that are causally related are inversely ordered, this will
disturb the recovery procedure, and in some cases may worsen the problem.

Likewise, consider the problem of distributed control of the semaphores of a
road crossing. Actuation of the several lights must be synchronized: light must
go green on one side just after the light went red on the other side; pedestrian
lights must change accordingly. The lack of tightness in positioning each related
set of actuation events can cause incorrect behavior, for example, causing both
lights to be green during some time. As for replicated actuators, they should

Exhibit 2026 Page 363



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 347

be exercised at approximately the same time, otherwise either a voting fails, or
it looks like more than one actuation was made.

Distributed Observation Distributed observations receive timestamps from
the local clocks. The meaning of the timestamps versus the effective separa
tion of the observations depends, as we know, on the granularity (g) and the
precision (1r) of the clocks (see Time and Clocks in Chapter 2). The two rele
vant problems introduced by distribution are (Verissimo, 1994): (a) what is the
minimum separation of observation events that can be ordered by a system of
global timestamps; (b) what is the minimum difference between timestamps of
two distributed observations so that their mutual order can be determined.

Observe that these questions are extremely important, since up to now, we
have been able to derive correctness conditions for control considering a con
ceptual timestamping facility common to all entities. Only if we know how to
relate timestamps produced by different clocks at different sites, can we apply
these derivations to distributed control. In consequence, the system must have
a clock subsystem with good enough precision and granularity to address the
application requirements in determining: 8t -precedence- the minimum inter
val to generate causal relations (see Temporal Order in Chapter 2); jitter
the error in positioning distributed events in the timeline or in measuring dis
tributed duration variance (see Timing of Events in Chapter 12).

Consider that the virtual granularity of the clocks is made 9 2: 1r, that is,
coarser than their physical granularity. This granularity condition (Kopetz,
1992) ensures that distributed timestamps of the same event are at most one
tick apart, which looks like a sensible measure. With this approximation,
one can draw interesting conclusions about distributed observations (Verissimo,
1994), listed in Table 13.3.

Table 13.3. Separation, Timestamping and Ordering of Events

• any two events separated by at least 2g are correctly ordered
• any two events separated by at least 9 but less than 2g are never inversely

ordered, but may receive the same timestamp
• any two events separated by less than 9 may receive the same timestamp or

be arbitrarily ordered with consecutive timestamps
• the same event observed at two sites may receive the same timestamp or be

arbitrarily ordered with consecutive timestamps

• events with the same timestamp are always concurrent (not 2g-precedent)
• only events with timestamps separated by at least 2 are guaranteed to be in

their physical order
• only events with timestamps separated by at least 4 are guaranteed to be

2g-precedent

Exhibit 2026 Page 364



348 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Distributed Actuation Distributed actuation is normally concerned with
synchronizing actions in two situations: actuators in different locations; repli
cated actuators. For example, the lack of tightness of a replicated actuation can
transform an exactly-once actuation into several actuations with at-least-once
semantics, and that may be undesirable. Consider actuator granularity, ga, the
interval from command input to completion of the action or until the actuator
is ready for a new command, whichever is longer. During that interval, the
actuator does not respond to further commands (e.g., a discharge laser is un
able to fire again until it recharges). If the actuation points of the replicas are
separated by ga or more, they will be perceived as more than one actuation.
In consequence: the tightness of actuation must be better than actuator granu
larity, T < gao However, it need not be much tighter than ga, so, on the other
hand, this condition removes the general belief that replicated output must
be tightly synchronized. Take the example of the valve quad of Figure 12.17
in Section 12.9: many electric valves have actuation times in the order of the
many hundreds of milliseconds, so replicated valves can support untightness of
this order of magnitude.

13.10 REAL-TIME DATABASES

Real-time databases (RTDB) were born form the need to access, manipulate
and update data with temporal constraints in a structured manner. That is,
essentially what regular databases are about, except that the items of an RTDB
have a time-value nature, and as such, their correctness "degrades" with time.
For an introductory study on time-value entities that helps understanding this
discussion, see Time- Value Duality in Chapter 12.

It is as if we were comparing the storage of bricks (non real-time database)
with the storage of food (RTDB), for sale. If the bricks are intact they maintain
their value practically forever, and we can sell and use them at any time. Food
items decay with time, and as time goes by, they are worth less, until eventually
becoming useless, if not sold in the meantime.

In complement to RTDBs, active databases were born from the need to detect
and react to significant changes in the internal state of the database, triggering
an action in consequence (Berndtsson and Hansson, 1995). This sequence is
called event-condition-action or ECA.

13.10.1 Architecture of RTDB Systems

RTDBs are used: for recovery of values needed for a computation or an opera
tion, in bounded time; for computing on sets of values with temporal validity
(time-value entities), such as sensor observations; for combining these values
with previously stored values in bounded time; for updating values cyclically,
with pre-determined periods. A real-time database architecture has mostly the
same building blocks as a non real-time one:

• transaction manager

• scheduler

Exhibit 2026 Page 365



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 349

• data manager

• data
The differences lie in the way the blocks work. The semantics of trans

actions, the rules for scheduling transactions, and the mechanisms for data
management are oriented to fulfill time constraints, as well as logical. RTDBs
offer transactions that aim at retaining the ACID properties (see Transactions
in Chapter 8): atomicity; consistency; isolation; durability. Obviously, in a
real-time context, this requires re-qualifying some of these definitions with a
few constraining assumptions (Ramamritham, 1996b), in the context of what
have been called real-time transactions. For example, consistency is differ
ent in a temporal context: when we abort a transaction so that the database
remains logically consistent, it may no longer be temporally consistent, if some
items lost their validity because of delay. In essence, an RTDB item is a rep
resentative (r(Ei )) of a real-time entity (Ei ) (see Entities and Representatives
in Chapter 12). The logical correctness of a database item depends on the
observation originating it being consistent (see Time- Value Duality in Chap
ter 12). In temporal correctness terms, real-time databases additionally require
the solution of two problems:

• keeping the value of each individual item consistent with its RTe;

• keeping the values of a collection of items mutually consistent.

The first is achieved by maintaining items temporally consistent. The second
is secured by ensuring that the relevant collection of observations is mutually
consistent. How is this checked? (a) By writing the observation timestamp and
the absolute validity interval together with the item when an update is done
((r(Ei),Ti ,Ta). Then, when the item is used, Tnow must be within Ta from Ti,
for temporal consistency. (b) By checking that all timestamps of the collection
of items about to be used fall within the relevant relative validity interval Tm ,

for mutual consistency. How is this enforced? By ensuring that two conditions
are simultaneously met: refreshing each item before it loses validity, that is,
at most by the end of the absolute validity interval; ensuring that the update
instantsQf all items of a collection always fall within an interval not greater
than the relative validity interval.

In conclusion, an RTDB is consistent at time t, if and only if its items
are consistent. The RTDB must be updated in accordance to the validity
requirements of the several items. Note that enforcing mutual consistency
(often called relative consistency in an RTDB context) may imply tightening
update intervals for individual items as would be defined for enforcing absolute
consistency alone.

13.10.2 Real-Time Transactions

In a client/server style of operation such as provided by RTDBs, there is a prob
lem with guaranteeing all temporal specifications, if no assumptions are made
about when and how often requests can be issued by clients to the database.
In that sense, RTDBs can be designed having in mind the same classes of real-

Exhibit 2026 Page 366



350 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

time discussed earlier: hard, mission-critical, soft, and evennon-real-time, as
far as the coverage of those guarantees is concerned. This has implications
on the internal organization of the transaction manager and scheduler mod
ules. In functional terms, real-time transactions invoked on RTDBs can also
be classified in several types, depending on the action performed:

write-only

update

read-only

an observation is written on the RTDB, possibly overwriting an
existing item with a fresh value (e.g., a temperature)

an item is read, updated, written again (e.g. event counter)

an item is read, possibly for being used in computations, and/or
to be output to an actuator

Real-time transactions have logical as well as temporal correctness crite
ria. Let us exemplify the latter. Consider the following RTe characterizations:
E 1 ,E2 : (temperature,Tr == 50); E3 ,E4 : (pressure,Tp == 10) (the absolute va
lidity intervals TT and Tp were computed based on the shortest time needed
to attain a variation of vr and Vp respectively, in the value of a temperature
and a pressure). Consider further the set S == ({E 1 , E2 , E3 , E4 }, Tm == 5), for
which a relative validity interval Tm is specified. Database items are specified
as Ri == (Vi, Ti , Ti). Now, consider the following situation at instant T == 1800
time units, w.r.t. stored items: R 1 == (147, 1752,50); R 2 == (162, 1755,50);
R 3 == (1088,1751,110); R 4 == (1114,1750,110). The RTDB is absolutely con
sistent, because none of the items has lost its validity, and it is mutually (or
relatively) consistent, because current timestamps are not separated by more
than 5 units of time. Nevertheless, R1 must be updated until T == 1802,in order
to remain absolutely consistent. However, at the moment this is done, the set
loses its mutual consistency. This shows the interdependence of both kinds of
consistency. The remedy lies in bringing the update times of all variables in set
S to within Tm , while ensuring that the update period is not greater than the
shortest absolute validity interval. When items belong to different sets bound
by relative validity specifications, the smallest of the relative validity intervals
should be used for the mechanism above.

13.11 QUALITY-OF-SERVICE MODELS

Quality-of-service models are mainly used to support soft or mission-critical
real-time applications, when there is a need for ensuring an end-to-end data flow
with real-time and reliability guarantees during a mission (radar data capture)
or a session (remote video rendering), but unlike hard real-time systems:

• these guarantees must be negotiated on a need basis, in competition with
other flows, in what forms a contract;

• what is granted by the infrastructure may be less than what was asked for;

• the contracted guarantees may vary during the mission/session, by initia
tive of the infrastructure or of the contractor.

The QoS model finds applicability in producer-consumer applications, such
as those found in real-time instrumentation or telemetry, and in multimedia

Exhibit 2026 Page 367



MODELS OF DISTRIBUTED REAL-TIME COMPUTING 351

capture and rendering. In particular, the concept of QoS adaptation, which
means reviewing the QoS contract as a means to maintain some stability in
the coverage of the received versus expected guarantees, has a generic appli
cation in the field of mission critical real-time systems. It may form the basis
for the formal reasoning about mechanisms such as cost-value functions and
operational envelopes (see Sections 13.1 and 14.5).

110 interface OS processing

OS processing I/O interface t

MAC

MAC

Driver

Driver

Medium

Producer--e~~~~~---------- ..
~ Protocol stack,.- ~

----~~ ~C!.. ~l Medium access
',.---~ ~

~ .~_ \.rMedium propagation

~~~ Receive buffer
~---~ ~

o.z. \ Protocol stack

Figure 13.9. The Quality-of-Service Model

The main characteristics of the QoS model in distributed settings (Aur
recoechea et aI., 1998) are suggested in Figure 13.9:

• end-to-end establishment of QoS guarantees for a given flow- timeliness,
performance, reliability;

• piecewise enforcement of guarantees throughout the path- device, OS and
communications driver scheduling, latency of access and medium through
put, receive buffer handling, flow control and error processing;

• maintenance of guarantees- surveillance of the flow QoS.

The steps towards implementing a QoS model concern QoS specification and
management, and have been typified in (Hutchison et aI., 1994):

• specification and mapping

• negotiation and resource allocation

• admission control

• maintenance, monitoring and policing

• renegotiation and adaptation
QoS specifications are made in terms of parameters falling into different

classes or categories, such as timeliness, or volume, or reliability. Within each
class, QoS is specified with metrics adequate to the magnitudes concerned.
For example: latency, tightness, or jitter specify timeliness; whereas
throughput or BurstLength specify volume; and BER (bit error rate) or MTBF
(mean time between failures), or MTTR (mean time to repair) specify reliability.

Exhibit 2026 Page 368

352 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

A QoS specification consists of a list of parameters and values and intervals
of validity for them, indicating the conditions, the goals and the importance of
each parameter P. A possible specification may be like:

Sampling Period (TS)- the interval over which the value of the param
eter is acquired. For example, if P is a round-trip time, a distribution
function (pdf) is computed with the samples.

Threshold (TH)- the upper or lower acceptable bound on P. A typical
upper bound is for a round-trip duration. A typical lower bound is
for a bandwidth.

Weight (WT)- a measure of the relative importance of parameter P.
A value of 0 would mean that the parameter would not be taken into
account.

A specification is made in abstract terms, which must be mapped on the
infrastructure. When the mapping takes place, the specification may unfold
onto several more detailed sub-specifications. For example, a BER (bit error
rate) requires error counters and local interval clocks (timers). A latency in
message delivery is divided in the partial delays across the message path.

Through negotiation a contract is established with the infrastructure, and
thus the several components involved, in order that there is a guarantee that the
specification will be respected. After a service QoS specification is presented,
components declare the best QoS they can supply for the desired service. De
pending on that response, the management 'contracts' a given level of QoS or
instead reports the end-user (e.g., an application) that the desired QoS cannot
be obtained.

After negotiation, the components try to perform resource allocation in order
to secure the promised support. For example, to reserve a certain amount of
buffers, or to allocate a given level of priority to a given flow, or to redefine
the O.S. schedule of processes. A successful negotiation should be seen as a
promise rather than a firm commitment, which only takes place when admission
control is passed, that is, when the system remains stable after the allocation
of resources to the pending request. Namely, the QoS of other services should
not be affected.

Parameters may have an associated assumed coverage, that establishes the
desired level of guarantee for the service. This is for most applications a statis
tical rather than an instantaneous problem. In other words, it is necessary that
the QoS holds over an integral of time, regardless of small glitches. In real-time
language, this could be described in terms of mission-critical or soft real-time
behavior. This means that maintaining QoS is subject to typical statistical
control problems such as inertia, histeresis and instability.

A special kind of timing failure detectors should be used that understand
this problem. We call them QoS failure detectors, QoS-FD, and they are de
signed to evaluate a number of relevant operational parameters, over an interval
of time (Verissimo and Raynal, 2000). The detector is configured through the
QoS specification issued by the application, which instructs it how t:operform
QoS tests. The detector tests the end-to-end QoS seen in the flow from the

Exhibit 2026 Page 369

MODELS OF DISTRIBUTED REAL-TIME COMPUTING 353

producer to all consumers involved in a distributed application. The value V
of each parameter P of the QoS specification is evaluated by the QoS-FD over
the sampling period T S. The sampled values are tested against the threshold
T H. A variable threshold exceeded, T E, accounts for the percentage of the
sampling periods of P where it fell beyond the bound TH during TS. Besides
providing analog information about individual parameters, the Qos-FD may
provide a boolean notion of QoS failure at a given node, akin to what is pro
vided by crash failure detectors. This indication may be constructed by first
computing a consolidated analog indicator, for each node, which is an average
of the T E's of all parameters P, weighted by the respective WT variables.
Then, define a global threshold for this analog indicator, which when passed
generates a boolean failure indication. These individual failure indications can
be consolidated in vectors, which form the opinion of one node about the oth
ers, or in a matrix, if nodes exchange their vector information, as crash failure
detectors do (Verfssimo and Raynal, 2000). The specification may also contain
the indication of the exception processing to be taken when the specified level
of service is not attained. When the QoS-FD reports a failure, it can forward
useful information to the application or middleware support, such as, for ex
ample, the lateness degree of timing failures, or the current point of the desired
timeliness bound in the variable's pdf (probability density function). This in
formation is precious for the higher layers to decide what to do. Depending on
the system's ability to handle the situation, reaction to a QoS failure may have
several outcomes:

termination- the activity cannot withstand a lower QoS; we say that
the activity is not adaptable;

adaptation- the activity may reduce its requirements on the system, ex
pecting that the offered QoS recovers (e.g., by reducing the refreshing
rate of the scene in a teleconferencing application, or by reducing the
refreshing rate of a radar trace); alternatively, the activity may live
with the degraded QoS, by resorting to adaptation mechanisms using
the own application heuristics (e.g., by passing from color to B&W
rendering in the same teleconferencing application, or by using less
sophisticated target trajectory prediction algorithms);

renegotiation- the activity triggers a renegotiation procedure, trying
to obtain a new but satisfactory balance on QoS, normally by reduc
ing its demand on the affected dimension but trying to recover in an
alternative one (e.g., if bandwidth is stressed but there is spare com
puting power, augmenting the compression factor of the information
transmitted from the remote sites relieves communication at the cost
of more MIPS, but information significance- such as image quality,
or .sensor data accuracy- is maintained)

13.12 SUMMARY AND FURTHER READING

In this chapter, we discussed the main models of real-time distributed com
puting. The first part of the chapter was concerned with providing the sys
tem architect with a comprehensive view about the available architectural

Exhibit 2026 Page 370

354 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

options, frameworks and strategies. The rest of the chapter was devoted to
models of distributed real-time computing addressing concrete functional and
non-functional aspects: event-triggered and time-triggered operation; commu
nication; control; databases; and quality-of-service. We advise the following
works as further reading. A detailed study of real-time programming issues is
done in (Burns and Wellings, 1996). Specifically on real-time object comput
ing, we suggest (Kaiser and Livani, 1998; Yau and Karim, 2000; Becker et aI.,
2000; Siqueira and Cahill, 2000), or (Jensen, 2000; Kalogeraki et aI., 2000).

On the formal specification and verification of the timeliness aspects of real
time designs, we suggest (Koymans, 1990; Lamport, 1994; Sinha and Suri,
1999; Graw et aI., 2000; Bozga et aI., 1998). The relation between order and
synchronism specifications is explained in (Verissimo, 1996). Some researchers
have studied the partial synchrony of systems (Dolev et aI., 1983; Dwork et aI.,
1988) under a time-free perspective. For further study on timed partially syn
chronous models see (Cristian and Fetzer, 1998; Verfssimo and Raynal, 2000).
On programming with partial synchrony see (Almeida and Verissimo, 1996; Fet
zer and Cristian, 1997a; Verissimo et aI., 2000).

For further study of real-time networks see: (Tanenbaum, 1996; Halsall,
1994) about most common standard LANs; or (Pimentel, 1990; Pleinevaux
and Decotignie, 1988) for field buses. Practical details on the definition and
use of abstract network properties in the construction of reliable real-time com
munication protocols are given in (Verfssimo and Marques, 1990; Rufino et aI.,
1998). Studies about network scheduling can further be found in (Tindell and
Burns, 1994; Tindell et aI., 1994; Zuberi and Shin, 1995), or (Tindell et aI.,
1995; Lehoczky, 1998; Tovar et aI., 1999). On medium reliability of real-time
networks, see (Verfssimo, 1988; Rufino et aI., 1999) for buses, or (FDDI, 1986;
Rom, 1988) for rings. Likewise, a few space- and time-redundant approaches
for fault tolerance in real-time communication are described in (Babaoglu et aI.,
1986; Zheng and Shin, 1992; Cristian, 1990; Verfssimo and Marques, 1990; Cris
tian et aI., 1985). Studies and measurements on the performability and inacces
sibility of networks are described in (Meyer et aI., 1989; Rufino and Verfssimo,
1992; Prodromides and Sanders, 1993; Verfssimo et aI., 1997).

Concepts and design of distributed computer control systems are discussed
in (Steusloff, 1981; Fisher, 1990; Bauer et aI., 1991; Wikander, 1998).

A discussion on the issue of fulfilling temporal constraints on RTDBs can
be found in (Ramamritham, 1995; Song and Liu, 1992). For further study
on real-time and active databases, the reader is referred to (Ramamritham,
1996b; Berndtsson and Hansson, 1995; Purimetla et aI., 1995; Korth et aI.,
1996; Ozden et aI., 1996).

In (Jeffay, 1993; Rajkumar et aI., 1995; Kaiser and Mock, 1999) the real-time
producer-consumer model is discussed. For further study on QoS architectures,
the reader is pointed to (Abdelzaher and Shin, 1998; Leslie et aI., 1996; Volg
et aI., 1996). Discussions on the construction of adaptive applications are made
in (Cosquer et aI., 1996; Friday et aI., 1999).

Exhibit 2026 Page 371

14 DISTRIBUTED REAL-TIME

SYSTEMS AND PLATFORMS

This chapter gives examples of systems and platforms for real-time comput
ing, consolidating the matters discussed in the previous chapters. Namely, it
discusses: operating systems; real-time LANs and field buses; time services;
embedded systems; dynamic mission-critical systems; real-time over the Inter
net. In each section, we will mention several examples in a summarized form,
and then will describe one or two the most relevant in detail. Table 14.1 at the
end of the chapter gives a few URL pointers to where information about most
of these systems can be found. The table also points to the IETF Request for
Comments site, where any RFCs cited can also be found.

14.1 OPERATING SYSTEMS

Several real-time operating systems have been deployed in the recent years.
Many assume the form of a real-time multitasking executive, a simplified and
highly-modular kernel, normally working with preemptive scheduling based on
priorities. Most of these systems use fixed priorities. Concurrency is normally
based on synchronization primitives offered by the system support. Typical
functions offered through systems calls are: process management (creation,
deletion, blocking, suspension, scheduling); memory management; synchro
nization and inter-process communication (queues, semaphores, mailboxes).
Interrupt management is often a sophisticated two-level structure: front-end
interrupt handler for immediate processing of an interrupt event; and interrupt

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 372

356 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

task, for more complete processing, scheduled in competition with all others,
with a priority matched with the interrupt level. Amongst the examples of
such kernels, one can enumerate: RTEMS, VxWorks, VRTX32; OS9. Some of
these solutions have fully-fledged user-oriented subsystems, sometimes offering
a UNIX-like interface along with the real-time functionality, such as QNX or
LynxOS.

There are a number of experimental research real-time operating systems,
such as RT-Mach and Spring. The Real-Time Mach (Tokuda et aI., 1990)
incorporated ideas from a previous project, the ARTS distributed real-time
operating system. ARTS is an object-oriented system. A real-time object in
the ARTS context is associated a maximum termination time (time fence), and
an exception handler, for when the fence is jumped over. RT-Mach is called
a resource kernel, Le. one providing resource-centric services that can be used
to satisfy end-to-end QoS requirements. These are normally handled by a QoS
manager sitting on top of RT-Mach, which can make adaptive adjustments to
resources allocated to applications.

The Spring kernel (Stankovic and Ramamritham, 1991) is the operating sys
tem of an experimental distributed real-time system addressing mission-critical
and soft real-time applications. The architecture comprises a network of mul
tiprocessor nodes (SpringNet). All system calls have a bounded WCET, and
tasks perform resource reservation before execution, so that a task, when it
executes, has a predictable WCET. Spring schedules according to a combined
notion of timeliness and importance: critical, essential and unessential tasks.
Spring gives a-priori guarantees to the critical tasks, while dynamically guar
anteeing deadlines of the other arriving tasks.

Other operating systems are not made from scratch, but are rather evolutions
of standard ones, such as the several variations of real-time UNIX (e.g., Solaris
RT), or the real-time Linux (RTLinux). These variants modify UNIX in areas
such as kernel scheduling (turned preemptive and re-entrant), IPC (improved
synchronization), memory and disk management (swap prevention), and I/O
subsystem, in order to achieve timeliness guarantees from an otherwise time
sharing system. Next, we analyze RTLinux with more detail.

14.1.1 Real-Time Linux

RTLinux was developed in the New Mexico Institute of Mining and Technol
ogy, USA, and presented in (Barabanov and Yodaiken, 1997). It is designed
as a real-time kernel on the bare machine, on top of which several real-time
and non real-time tasks may run. Linux itself runs as one of the latter kind.
Linux runs at a non real-time level, with the lowest priority, and it can be
preempted at any time by higher-priority tasks. The basic RTLinux scheduler
is preemptive amongst tasks with fixed priorities. Alternative EDF and rate
monotonic schedulers are also available. It handles sporadic as well as periodic
tasks. RTLinux provides low-level task creation, interrupt handlers, and IPC
through shared memory and queues, for communication between interrupt han-

Exhibit 2026 Page 373

DISTRIBUTED REAL-TIME SYSTEMS AND PLATFORMS 357

dlers and tasks, and Linux processes. RTLinux recursively uses Linux services
when appropriate.

Figure 14.1. RTLinux Architecture

The RTLinux offers simple primitives. The rt_task_init primitive creates
and launches a task, with a given priority. A task may be rendered periodic,
with a pre-defined period, through rt_task...make_periodic. The rt_task_wait
puts a task to sleep. IPC between RTLinux tasks and Linux processes takes
place through FIFO queues, created by rtf _create. Primitives rtf _put and
rtf_get enqueue and dequeue data respectively. However, since real-time tasks
can communicate with Linux processes, it enjoys all the functionality of the lat
ter for'the (non-real-time) activities concerned with person-machine interfacing,
storage, Internet access, etc. However, all communication is non-blocking, so
that RTLinux is never delayed by synchronization or resource contention with
a non real-time (low priority) process. RTLinux traps all external system inter
rupts and enable/disable interrupt instructions, so that Linux cannot disturb
the real-time guarantees, for example by disabling interrupts (which it does
very often).

14.2 REAL-TIME LANS AND FIELD BUSES

We have discussed the role of LANs and field buses in distributed real-time
architectures, in Section 11, and addressed some LAN and field bus scheduling
mechanisms in Section 12.7. The Token Bus LAN has been the most promis
ing real-time LAN. Its timed-token scheduling alows the definition of one hard
real-time and several soft real-time latency classes. However, the tuning of
timers and other parameters is a complex operation, requiring considerable ex
pertise. If not done properly, it can significantly degrade the operation of the
network, and this was probably one of the reasons for the decline in the use of
Token Bus. Several attempts have been made to achieve real-time operation
on Ethernet. Earlier on, a modified Ethernet has been proposed, DCR Eth-

Exhibit 2026 Page 374

358 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

ernet, featuring deterministic collision resolution (Le Lann and Riviere, 1993).
Recent full-duplex switched Ethernet networks open new perspectives for real
time operation, since collisions are avoided, and thus real-time communication
protocols can be designed for this new physical reality of Ethernet.

Field buses are assuming increasing importance in distributed real-time sys
tems. Early field buses such as MIL-STD (MIL-STD-1553B, 1988) or FIP (FIP,
1990) had a centralized structure. FIP (Factory Instrumentation Protocol) is
a field bus oriented to the centralized produced-consumer paradigm, currently
a european standard (EN-50170-3,1996) called WorldFIP. WorldFIP performs
transactions of data buffers and messages, addressed point-to-point, in multi
cast or in broadcast. Data is limited to 128 bytes per frame. In fact, the initial
purpose was to extend I/O cabling from a controller unit (the master node).
It was not until the appearance of decentralized field buses such as Profibus or
CAN that they started emerging as potential support for embedded distributed
systems. Profibus, or Process Field Bus (Profibus, 1991) is a field bus with a
MAC (medium access control) inspired by the Token Bus LAN, currently a
european standard (EN-50170-2,1996). Although Profibus has a decentralized
nature, it recognizes master and slave stations. Master stations are normally
controller nodes, the ones that compete for bus access. Slave stations are pas
sive, normally corresponding to I/O nodes.

14.2.1 CAN - Controller Area Network

CAN is inspired by the Ethernet, and is in fact a carrier sense multi-access
with deterministic collision resolution network. Arbitration of medium access
is done by direct bit-by-bit comparison of the II-bit frame identifiers of the
transmitting stations (see Figure 14.2). Bits can be recessive (zero) or dominant
(one), and if a recessive and a dominant bit are transmitted simultaneously on
the bus, the latter imposes itself to the former on the bus: while transmitting
a frame identifier, each station monitors the bus; if it transmits a recessive
bit, and a dominant bit is monitored, the station gives up transmitting and
starts to receive incoming data; the station transmitting the lowest identifier
goes through and gets the bus. Note that each identifier defines a priority (in
inverse order of the identifier value), and frame transmission scheduling in CAN
is thus by highest priority, on a per station basis.

Bit-by-bit arbitration works because the network works in quasi-stationary
mode, that is, the signal phase is the same throughout the bus length. How
ever, this requires a small length/rate product. The bus length and data rate
are related, and typically, we have 40 meter @ IMbps, or 100 meter @ 50Kbps.
Data is limited to 8 bytes per frame. CAN performs detection and recovers
from a number of errors, such as bit errors, CRC errors, and missing acknowl
edgments. When an error in transmission is detected, an error flag is broadcast
by recipients, the frame is re-transmitted immediately and the previous trans
mission discarded. This achieves an almost atomic broadcast behavior, except
if very rare failure scenarios occur.

Exhibit 2026 Page 375

DISTRIBUTED REAL-TIME SYSTEMS AND PLATFORMS 359

SOF Identifier bits

10 9 8 7 6 5 4 3 2 0

Bus State

Figure 14.2.

14.3 TIME SERVICES

CAN Arbitration

r·····························

Systems have a basic local clock service, offered through a getTime primitive.
This monotonic up-counter allows measuring interval durations. Most systems
offer a timer or alarm service, which counts down from an initial value, nor
mally provided through a startTimer (t imeout) primitive. The timer can be
canceled before it expires (killTimer), otherwise it raises an alarm. In some
systems, the timer launch event can be linked to the automatic execution of a
function in response to the timeout (startTimer (t imeout ,function)). This
is the most precise way of taking an action upon a timeout, since there are no
spurious delays in between.

Increasingly more often, local clocks in a distributed system are synchronized
(see Clock Synchronization in Chapter 12), which gives the getTime primitive
a global meaning: it returns the time at any site in the system, with a difference
bounded by precision 1r. When clocks are externally synchronized to a standard
source, such as UTC, getTime returns a time that is comparable with time in
other external sources (e.g., our wrist watch), with a difference bounded by
accuracyo. This also guarantees precision, since 1r == 20. A facility common in
real-time operating systems is the ability to schedule the execution of functions
at a given future time, such as execAt (hour, funct ion) .

For large-scale systems, several global time services have been deployed
through the recent years. The Berkeley TEMPO system (Gusella and Zatti,
1989) was developed in the context of the UNIX Berkeley effort, for inter
nal synchronization. TEMPO is based on a hybrid agreement master-slave
algorithm. An external hybrid algorithm combining master-slave round-trip
and averaging agreement is presented (Fetzer and Cristian, 1997b). CESIUM

SPRAY is another system that provides external synchronization, based on a hy
brid agreement master-slave synchronization approach (Verfssimo et al., 1997).
The master is the GPS NavStar (Parkinson and Gilbert, 1983) system of satel-

Exhibit 2026 Page 376

360 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

lites, which disseminates its time reference through the slave nodes with GPS
receivers on ground, at least one per LAN. All nodes in each LAN participate
in an averaging-non-averaging clock synchronization algorithm that injects the
GPS time in all other clocks.

Client

Client
node

G
~.tum.;s;t? .. d ~~
~ ~ 5(2)

~.um._'0 / ~

888
Figure 14.3. The NTP System with Server Hierarchy (S(i) - Stratum i), and detail of
Client Synchronization from a Remote Server

14.3.1 Network Time Protocol

The Network Time Protocol (RFC 1119) is the most widely deployed time
service and protocol (Mills, 1991). It has been serving as the time reference
for Internet nodes. The NTP Time Synchronization Service is a complex hy
brid structure, inspired by Cristian's master-slave round-trip synchronization
protocol (see Figure 12.16 in Chapter 12), which combines master-slavedissem
ination and round-trip with AVG agreement for synchronization of the server
tree, with master-slave round-trip for client synchronization. The system is
implemented as a hierarchical structure of masters spread across the Internet,
as depicted in Figure 14.3. The masters supply UTC time, and synchronize the
slaves (clients) with an accuracy that is probabilistic and depends on the sta
bility of transmission times on the Internet, to and from the master. The NTP
protocol currently offers some protection against spoofing of time datagrams,
through authentication. It also offers interfaces for correcting the rate of drift
of hardware clocks, if such mechanisms exist on the client or server computers.

Master clock servers are organized in descending order of intrinsic accuracy
in the hierarchy. The stratum 1 servers are always directly connected to a
UTC source of known accuracy, such as a GPS receiver. The strata below,
2 to n, synchronize themselves to servers of the immediately higher stratum.
The inter-server synchronization can be round-trip, but when good quality
accuracy is desired, servers can perform symmetric message exchanges, whereby
servers of the same stratum or adjoining strata improve their synchronization
through agreement-based adjustments. A third and simple scheme is available,
obtaining good accuracies when servers are connected through a high-speed,
low-delay link, by simply multicasting the time and doing a fixed correction on
the (small) delay. At the time of this writing, the NTP system is reported to

Exhibit 2026 Page 377

DISTRIBUTED REAL-TIME SYSTEMS AND PLATFORMS 361

have around 175,000 active hosts, of which over two hundred servers belong to
the public infrastructure of NTP on the Internet (Strata 1 and 2), and has been
reported to grant clients average accuracies in the order of the several tens of
milliseconds (Minar, 1999).

The Distributed Time Service (DTS) of the DCE platform (see DeE in
Chapter 4) is inspired by the same philosophy of the NTP system. The DTS is
both available for users and for internal use of other services. For example, the
protocols of the Kerberos authentication service of DCE rely on the existence of
global time. The DTS format is : 1999-12-31-23: 59: 30.456+01: 001000.125
The first field indicates date, followed by the time, down to the millisecond
(23 : 59 : 30 .456). The time differential factor field (+01: 00) indicates the de
viation of the relevant time zone from the Greenwich meridian zone (longitude
zero). DTS (such as NTP) is capable of estimating how accurate it is running,
this is given by the inaccuracy term, 1000.125, which would indicate in this
case a worst-case accuracy of ±125 milliseconds.

14.4 EMBEDDED SYSTEMS

Embedded systems normally have a static character, are small-scale, and are
used for hard real-time applications. They are often time-triggered.

A number of experimental systems have been developed in the past few
years. Maruti-II (Saksena et aI., 1995) is a distributed time-triggered real-time
system. The computational model of Maruti is organized around elementary
programming units that are connected to one another in acyclical unidirec
tional graphs, through a configuration language, forming execution threads.
Schedulability of the threads is analyzed off-line. MAFT (Kieckhafer et aI.,
1988) and FTPP (Harper et aI., 1988) are fault-tolerant real-time systems spe
cially designed for safety critical embedded applications. They are based on
communication systems resilient to arbitrary failures while securing timeliness
requirements, and thus take a fully synchronous byzantine agreement approach
and cyclic scheduling. GUARDS (Wellings et aI., 1998; Powell et aI., 1999) is a
generic fault-tolerant computer architecture based on commercial off-the-shelf
(COTS) hardware and software components. The architecture is configurable
in two axes: in terms of different fault-tolerance strategies based on modular
physical redundancy; and in terms of different integrity levels, allowing the
co-existence of sub-systems of different criticality.

14.4.1 Mecl1atronic Architectures

Mechatronics is the integration of electronic and computational technologies on
devices that were originally mechanical. Since they contribute to component
integration, they are often used in small embedded systems. Examples are: the
control devices of an automatic photographic or video camera; active car break
ing or suspension devices; "intelligent actuators" , such as robot manipulators.
The advantages of mechatronic are manifold:

• reliability- integration reduces the weak points of interconnections

Exhibit 2026 Page 378

362 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

• simplicity- less moving/mechanical parts

• economy- lower price

• miniaturization- computer/electronics replacing cumbersome apparatuses;

• quality- better parametric quality, such as precision, responsiveness, etc.

Figure 14.4. Mechatronic Architecture

The architecture of a typical mechatronic system is depicted in Figure 14.4.
Note the integration between the computational, the I/O and the physical
parts. The mechanical embodiment comprises all the mechanical parts, func
tional and encapsulation, and is connected to the control part through sensors
and actuators, organized in two modules (observation and actuation). The
communications module implements the abstraction of a miniature field bus
interconnecting the sensors and actuators to the microcomputer assembly. Fi
nally, the microcomputer can be hooked to a person-machine interface, when
one exists.

14.4.2 The MARS System

MARS (MAintainable Real-time System) (Kopetz et aI., 1989a) is an experi
mental distributed fault-tolerant hard real-time system for critical applications.
Recently, an industrial prototype version called TTA (Time Triggered Archi
tecture) has been implemented, with functionality incorporated in silicon with
a view of applications in mass production areas such as automotive electronics.

The MARS architecture is oriented to testability of the proper operation of
the system in the design phase. In order to help achieve this objective, MARS is
based on the principle of resource adequacy, and follows a time-triggered (TT)
activation discipline. Communication is performed by a specialized TDMA pro
tocol called TTP (Time Triggered Protocol) (Kopetz and Grunsteidl, 1993).
I/O pre-processors ensure that input events are transformed into state mes
sages that are forwarded to the computing elements and instantiated as fresh
copies of system state, overwriting previous ones. Periodic tasks then act at
pre-defined moments on this newly updated state, proceeding without any ex
ternal communication or synchronization until the production of output state

Exhibit 2026 Page 379

DISTRIBUTED REAL-TIME SYSTEMS AND PLATFORMS 363

messages to tasks in other components, or command messages to the actua
tors. MARS follows a systematic software design methodology based on static
(off-line) scheduling. Since there are no synchronization points, the maximum
execution time of the tasks is easily determined by off-line code analysis.

FTU

mill Passive Component 0 Active Component

Figure 14.5. The MARS Architecture

The MARS architecture, shown in Figure 14.5, is organized around the clus
ter concept. A cluster can be decomposed into a set of Fault Tolerant Units
(FTUs) interconnected by a replicated real-time communication channel that
runs the TTP protocol. A Fault Tolerant Unit is normally composed of two
replicated computer elements operating in active redundancy under the fail
silent model, backed-up by a shadow component: as long as anyone of the
components of a FTU is operational, the FTU is considered operational; the
shadow acts as a hot-swap spare. A fault-tolerant clock synchronization service
and a fault-tolerant membership service are integrated with the TTP protocol.

14.5 DYNAMIC SYSTEMS

Dynamic systems normally reflect the need for versatility and adaptability of
large and complex real-time systems. Scheduling is dynamic, and the systems
normally address mission-critical or soft real-time applications. They are often
event-triggered.

HARTS (Shin, 1991) is an experimental real-time distributed system, based
on a multicomputer cluster, interconnected by point-to-point links. Its oper
ating system HARTOS allows hard and soft operation to coexist. HARTOS
schedules groups of periodic tasks with the same priority, and schedules preemp
tively groups of different priorities. Processes can change priorities dynamically.
HARTOS relies on reliable real-time communication and global time services
for interacting with the other nodes. The ALPHA system (Jensen and North
cutt, 1990) also features dynamic priorities based on the time-utility principle.
ALPHA is specially devoted to mission-critical systems, where scheduling de
cisions must comply with the uncertainty about the environment, yet provide
the best possible timeliness assurances.

Exhibit 2026 Page 380

364 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

14.5.1 The Advanced Automation System

The Advanced Automation System (AAS) was developed by IBM for air traf
fic control (Cristian et aI., 1996). The system architecture, comprises several
modules or clusters, whose components are networked by replicated Token
Ring LANs. Figure 14.6 depicts the structure of an Area Control Computer
Complex (ACCC), which supports the air traffic control functions. Clusters
are interconnected to each other through a replicated backbone Token Ring,
to each they connect by a Communication Gateway Subsystem, composed of
replicated bridges. Radar sensor data is time-sensitive and must get to the
central processors with real-time requirements. These must process the infor
mation, display it and help the operator make decisions. All these operations
are time-critical.

Figure 14.6. Advanced Automation System - Snapshot of a Cluster Network

Besides the functional modules, several services help achieve non-functional
properties of AAS: topology and route managers, maintaining an accurate im
age of the current state of the network and its links; service availability manager,
controlling the availability of the crucial AAS services, by means of failure detec
tion, promoting passive replicas, re-inserting recovered units, etc.; global avail
ability manager, controlling the state of all hardware and software components
of the system. These services depend on a suite of lower-level fault-tolerant
services: atomic broadcast; group membership; and synchronized clocks. The
AAS protocols are clock-driven, and triggered either by time or events. The
atomic broadcast and group membership protocols are of the ~-protocolclass,
where messages are delivered after a ~ time on the local clock. The commu
nication system is diffusion based, with space channel redundancy. Different
levels of channel redundancy (up to four) are used in the different parts of AAS.

14.5.2 The Delta4-XPA System

Delta-4 is a system based on distributed fault tolerance (Powell, 1991). It has a
modular architecture relying on software based fault tolerance, where compo
nents interact via reliable group communication and replication management

Exhibit 2026 Page 381

DISTRIBUTED REAL-TIME SYSTEMS AND PLATFORMS 365

protocols (see Distributed Fault-Tolerant Systems in Chapter 9). Delta4-XPA,
the Extra Performance Architecture of Delta-4, also described in (Powell, 1991),
addresses the realm of mission-critical applications. XPA aims at implement
ing hard and soft real-time designs under an unbounded-demand perspective,
that is, recognizing that a complete definition of the operational envelope is not
possible, or that the definition imposed by design has a linlited coverage. This
requires the architecture to have some form of graceful degradation ability. In
other words, while the system would normally act as a hard real-time one in
the presence of the "foreseen" environmental and computational constraints,
it would adapt to "unforeseen" situations - working in modes that are pro
gressively less effective, precise, reliable, etc. - without abruptly falling apart.
XPA can thus be described as a hard real-time system with graceful degradation.

Group Management Layer

Time
II Group

II
Communication

(xAMp)

Abstract Network Layer
(physical + MAC + firmware)

Figure 14.7. The Delta4-XPA Architecture

The architecture of XPA, depicted in Figure 14.7, comprises nodes intercon
nected through a LAN-based real-time communication subsystem, providing a
suite of reliable group communication primitives called xAMp (Rodrigues and
Verfssimo, 1992), and a fault-tolerant global timebase of synchronized clocks
(Verfssimo and Rodrigues, 1992). The main policy for handling replication at
the group management layer is leader-follower, a semi-active replication man
agement mechanism that allows consistent replica preemption. XPA schedules
under a combined notion of importance, the measure of the consequences of a
computation not meeting its deadline, and urgency, the notion of approaching
deadline. Scheduling is thus priority-based among classes of tasks ranked by
importance, and then earliest-deadline-first inside each class.

14.6 REAL-TIME OVER THE INTERNET

The emergence of the multimedia era in Internet has encouraged a lot of re
search with the objective of achieving real-time communication guarantees on
that uncertain infrastructure. Multimedia is intimately related to dissemina
tion and conferencing, and as such the IP multicast subset of the Internet,
the Mbone, was the field for early experiments on real-time over the Internet.
Real-Time over the Internet is anyway associated with the notion of QoS speci
fication, and of resource reservation. Ferrari does an extensive analysis of ways

Exhibit 2026 Page 382

366 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

of specifying client requirements for real-time communication quality of service,
on open networks (RFCl193).

Efficient stream protocols appeared, such as ST2 (RFC1819), aiming at
achieving end-to-end real-time communication through resource reservation.
ST2 works at the same level of, and in complement to IP, but is connection
oriented. ST2 application areas are real-time transport of multimedia data,
such as: digital audio and video packet streams, and distributed simulation
and gaming. The ST2 communication model includes: a flow specification
to express user real-time requirements; a setup protocol to establish real-time
streams based on the flow specification; a data transfer protocol for the trans
mission of real-time data over those streams. ST2 is composed of two protocols:
ST for the data transport; and SCMP, the Stream Control Message Protocol,
for all control functions. Though ST2 supports multicast, it does not support
the notion of group communication and management, which helps the construc
tion of multiparty multimedia applications, such as in (Panzieri and Roccetti,
2000).

The Resource ReSerVation Protocol, RSVP, is a resource reservation setup
protocol for Internet (RFC2205). RSVP is an Internet control protocol that
provides receiver-initiated setup of resource reservations for multicast or unicast
data flows, to be later used by transport protocols such as RTP. The RSVP
protocol is used to ensure a specified QoS over a unidirectional data flow: it lets
the sending host request the necessary resources, and it lets routers propagate
the QoS requests along the route to the destination. QoS reservation is made
by the recipients, and is propagated in the reverse data path back to the sender,
which consolidates the requests of the several recipients.

RTP, the Real-Time Transport Protocol (RFC1889), provides end-to-end
network transport of real-time data. It is accompanied by a control protocol
(RTCP) to allow monitoring of the data delivery. RTP and RTCP are designed
to be independent of the underlying transport and network layers. Applications
typically run RTP on top of UDP. RTP can rely on low-level protocols such as
ST2 to provide timeliness guarantees. RTP is complemented with companion
standards defining how to specify the profiles and encoding rules for the several
types of payload real-time data. With regard to security of the data flows,
namely its confidentiality, RTP will use underlying services such as IPsec (see
Extranets aVfllrJ, Virtual Private Networks in Chapter 19).

14.7 SUMMARY AND FURTHER READING

This chapter gave examples of systems and platforms for distributed real-time
computing. The objective of the chapter was to relate the notions learned
throughout this Part with existing products and systems. We reviewed operat
ing systems, real-time LANs and field buses, time services, embedded systems,
and dynamic mission-critical systems. We finalized with an overview of proto
cols related with real-time on the Internet.

For further reading, Table 14.1 gives a few pointers to information about
some of the systems described in this chapter. Detailed insight on the practical

Exhibit 2026 Page 383

DISTRIBUTED REAL-TIME SYSTEMS AND PLATFORMS 367

design and SW/HW integration of real-time systems is given in (Laplante,
1997). Thorough discussions on real-time UNIX and Linux design issues are
done in (Furht et aI., 1991) and in the RTLinux links of Table 14.1. Real
time CORBA is an emerging OMG technology at the time of this writing,
comprising: fixed priority scheduling, control over ORB resources for end-to
end predictability, and flexible communications. Real-time Java is receiving
a great deal of interest, because of its potential for embedded applications.
POSIX defines an important standard for a UNIX-based real-time programming
API (POSIX, 1995).

On CAN scheduling, see further (Tindell and Burns, 1994; Tindell et aI.,
1994). On subtle CAN failure modes and CAN atomic broadcast, see (Rufino
et aI., 1998). CANopen is a set of technologies and recommendations for inter
operability of CAN designs.

A recent survey on the NTP Time Service gives useful details on its cur
rent set-up and performance (Minar, 1999). Details on DCE-DTS can be
found in (Lockhart Jr., 1994). Further material on AAS, Delta4-XPA, and
MARS/TTA can be found in (Cristian, 1994; Speirs and Barrett, 1989; Kopetz,
1997). Amongst other interesting practical real-time systems we suggest look
ing at (Hachiga, 1992; Hedenetz, 1998; Heiner and Thurner, 1998).

Mechatronics is treated comprehensively in (Bradley et aI., 1991; Wikander,
1998). Material on distributed industrial systems, such as Computer Integrated
Manufacturing (CIM) and Supervisory Control and Acquisition (SCADA), can
be found in (Beekmann, 1989; Verissimo et aI., 1996), and some of the pointers
in Table 14.1. In (MAP, 1985; CNMA, 1993; MMS, 1990; ISODE, 1993) the
main relevant standards are described.

Exhibit 2026 Page 384

368 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 14.1. Pointers to Information about Real-Time Systems and Platforms

Sys. Class

RFCs

OMG
RTJ
JC-RTJ
RT-INFO
IEEE-CS

On Time

and

Real-Time

Real-Time
Executives
and O.S.'s

(experim.)

Real-Time
Executives
and O.S.'s
(commerc.)

Real-Time
Networks
and
F. Buses

Time
and
Clock
Services

RT DB's

Real-Time
Platforms

Industrial
Platforms

System

(IETF)

RT-CORBA)
Sun RT-JAVA)
J-Consort.)
RT Encyclopaedia)
RT Systems)

RTEMS
RTLinux

Alpha
RT-Mach
Spring

VxWorks
QNX
LynxOS
VRTX32
OS-9

GPIB
PROFIBUS
WorldFIP
CAN

XTP

Time Services

Time Sync SW

Time Sync HW
NTP
NTP CookBook
NTP Public Servers
GPS

RTDB

Maruti-II
HARTS
GUARDS
ACQUA
MARS/TTA

MAP/MMS
FactoryLink
FactorySuite
LabView

Pointers

www.rfc-editor.org/

www.omg.org
www.rtj.org
www.j-consortium.org
www.realtime-info.be/encyc
cs-www.bu.edu/pub/ieee-rts

www.britannica.com/clockworks
www.ubr.com/clocks
www.newscientist.com/nsplus/insight/time
www.real-time.org
tycho.usno.navy.millctime.html
www.auto.tuwien.ac.at/ProjectsISynUTCItime.html

www.rtems.com
www.realtimelinux.org
www.rtlinux.org
www.realtimelinux.orglCRAN
www.aero.polimLit/projects/rtai
www.ittc.ukans.edu/kurt
www.realtime-os.com/alpha.html
www.cs.cmu.eduIafsIcsIprojectIart-51www
www-ccs.cs.umass.edu/rts/spring.html

www.vxworks.com
www.qnx.com
www.lynx.com
www.mentorg.com/embeddedIvrtxos
www.microware.com

www.nLcom/gpib
www.profibus.com
www.worldfip.org
www.canopen.com
www.ems-wuensche.com
www.ca.sandia.govIxtp/forum.html
dancer.ca.sandia.govIpub/xtp4.0

tycho.usno.navy.millctime.html
www.boulder.nist.gov/timefreq
www.eecis.udel.edu/-ntp/software.html
www.ubr.com/clocksI timeswI timesw.html
www.eecis.udel.edu/-ntp/hardware.html
www.eecis.udel.edu/-ntp
www.umich.edu/-rsug/services/ntp.html
www.eecis.udel.edu/-mills/ntp/servers.htm
www.gpsworld.com
www.gpsy.com/gpsinfo

www.eng.ucLedu/ece/rtdb/rtdb.html

www.cs.umd.edu/projects/maruti
www.eecs.umich.edu/RTCL/harts
www.cs.york.ac.uklrts/ guards
www.crhc.uiuc.edu/PERFORM
www.vmars.tuwien.ac.at

icawww.epfl.ch/MMS
www.USDATA.com/solution/factorylink.html
www.Wonderware.com/products/factorysuite71.htm
www.nLcom

Exhibit 2026 Page 385

15 CASE STUDY: MAKING VP'63

TIMELY

This chapter continues the case study that we have been carrying throughout
the book: The VP'63 (VintagePort'63) Large-Scale Information System. The
wine company has planned to automate some of its industrial facilities and
needs to guarantee two objectives: to implement distributed real-time control
and automation of some units such as wine processing and bottling/corking;
to incorporate the real-time supervisory, control and acquisition (SCADA) into
the global enterprise resource planning and information system, under a CIM
perspective.

15.1 FIRST STEPS TOWARDS CONTROL AND AUTOMATION

The reader should recall that this is the next step of a project implementing a
strategic plan for the modernization of VP '63, started in Chapter 5, and con
tinued in the Case-Study chapters of each part of this book. The reader may
wish to review the previous parts, in order to get in context with the project.

Generalized networking does not exist, and the situation of the company's
industrial facilities can be described as being in the stage of islands of automa
tion. That is, even when there is some local networking inside a cell, there
is not a seamless interconnection and information flow in the whole industrial
plant. In the factory floor, and specially inside the islands of automation, the
company has introduced ad-hoc automation during the course of the years, to
solve localized problems or improve certain processes. Devices are wired di-

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System
Exhibit 2026 Page 386

370 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

rectly to the controllers, except for a few more recent units, where devices are
wired to the PLC through a proprietary field bus. The degree of computerized
control still lies on PLC (programmable logic controller) technology and relay
logic programming, as exemplified in.a bottling/corking cell in Figure 15.la.

15.2 DISTRIBUTED SHOP-FLOOR CONTROL

There are essentially two areas in the factory or shop floor: the continuous
control part of the problem, which concerns wine processing; the discrete control
part, which concerns activities like bottling and corking and labeling. The team
identified the following problems in the current setting:

• imprecise continuous control leads to lesser quality batches, and also makes
it impossible to regularize crops with different attributes in order to achieve
predictable characteristics of the company's blends;

• imprecise discrete control leads to a high percentage of rejects in quality
control (e.g. imperfect filling, labeling and corking);

• generally, but more so in the discrete processes, the rigid hard-wired and
hard-coded systems make it difficult and slow to change anything in the
process, although the requirement for flexibility is ever growing.

Q. 3. 1 How to evolve towards a flexible support architecture for distributed
real-time shop-floor control?

The team devised a strategic development plan consisting of designing a
pilot distributed control system, to test and assess the new technologies. After
a sucessful pilot phase, the results will be extended to the whole of the industrial
facilities. A bottling and corking cell was elected for this sub-project.

Essentially, the cell consists of three modules: conveyor, f iller and corker.
The labeling module was omitted for simplicity. The conveyor belt brings
empty bottles into the cell, passes them in succession under the filler, under
the corker and then out of the cell to the packaging cell. The filler fills the
bottle with wine from a tap connected through a pipe system to the wine
tanks. The corker consists of a cork insertion press, with its own cork feed
ing subsystem, which presses the compressed cork into the bottle. The system
has a few sensors: bottle-arrived-at-filler, bottle-arrived-at-corker,
filler-flow-meter. Additionally, it has the following actuators: belt (start,
stop), tap (open, close), press (down,up).

The prototype cell architecture is depicted in Figure 15.1, where the team
applied known notions on distributed real-time architectures. One computing
element per module (conveyor, filler, corker) processes the relevant state evolu
tion. The sensor and actuator representatives are materialized by drivers that
handle the relevant controllers. Given the cell simplicity, computing elements
and representatives were distributed by three physical nodes. Each node hosts
a computing element. Sensors and actuators relevant to a module were placed
with the node hosting the relevant computing element. This is mainly for the
sake of wiring organization, since the information from sensors is disseminated

Exhibit 2026 Page 387

CASE STUDY: VP'63 371

to all computing elements, so that they all have a common knowledge of the
system state. Outputs to actuator representatives are also disseminated. This
way further changes in topology do not require a reconfiguration of the IPC.
Protocol choice and configuration should obey the hard real-time needs of this
type of discrete control operation.

(a) (b)

Figure 15.1. (a) Ad-hoc Computer Control; (b) Distributed Control of a Flexible Manu
facturing Cell

15.3 INTEGRATION OF THE INDUSTRIAL SYSTEM

There are essentially two points to address in response to the corporate strategic
plan:

• achieving a seamless industrial information flow between production man
agement and shop-floor devices, in both directions (commands down, state
image up)- this is now impossible because there is no global networking
nor distributed information support;

• swifter interconnection of the industrial production information and the busi
ness information- achieving the first objective is a pre-condition to this one.

Q. 3. 2 How to evolve towards an integrated industrial information system ar
chitecture?

Islands are not interconnected. Recipes and manufacturing orders have often
to be inserted by hand in the shop-floof controllers.

Supervisory (SCADA) systems for different processes are proprietary, and
having their own closed databases, making it impossible to dialogue with other
subsystems and re-use their information. On the other hand, high-level applica
tions (production management and control, maintenance management, quality
control) run isolated, without an integrated connection to the business man
agement system. In consequence, the business image of the complete enterprise
has normally outdated information concerning the industrial facilities.

Exhibit 2026 Page 388

372 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

The team devised a plan for re-organizing the industrial facilities according
to the CIM paradigm:

• design of an integrating networking infrastructure based on open protocols,
TCP/IP for the matter, interconnecting all islands, with communication
gateways to the office-level networking infrastructure;

• selection and installation of an open distributed SCADA platform providing
a global image of the distributed processes to be shared by the high-level
applications, and provision of a standard means of conveying commands and
instructions from the latter to the shop-floor units;

• adaptation of existing applications or selection/installation of new applica
tions capable of hooking to the open platform;

• design of a mechanism supporting the information flow between the indus
trial information system and the business information system.

The system architecture of a production unit is based on integrated network
ing between all cells, and a connection to the enterprise information system,
which depends on the technology of the latter. Each cell is provided with a
cell controller, where an instance of the distributed SCADA platform resides.
Communication between devices and cell controllers, and between the latter
and high level applications is ensured by the MMS factory communication
standard, so that the VMD (virtual manufacturing device) paradigm can be
used.

Cell controllers hold up-to-date copies of the cell state, and can replicate
these images in other instances of the platform, namely those accessed by
industrial applications. Conceptually, there is a seamless hierarchy of state
freshness, from what may be called a real-time image, to a historical image.
Real-time images are captured through the VMD event or polling interfaces,
and held in volatile state in the cell controller. Their correct capture involves
maintaining a real-time QoS stream between devices and the VMD. Historical
images serve archival purposes, and hold the statistical memory of the process
in persistent memory. They do not have real-time constraints, although they
are often stored together with the timestamp of the sampling instant.

The other facet, that is, how orders, commands and instructions come from
high-level applications to the shop-floor, is implemented through the VMD
client-server interfaces. Devices, considered as VMDs, essentially dialogue with
upper layer applications by acting as servers receiving commands in the form
of client-server RPCs invoked by the industrial applications (e.g., modification
of set-points in controllers, loading of new discrete control programs, loading
of new continuous control recipes, loading of batch manufacturing orders etc.).

Further Issues

These issues need some refinement now, and the reader was assigned the study
of a few questions that were still left unsolved:

Exhibit 2026 Page 389

CASE STUDY: VP'63 373

Q.3. 3 Would model would be more adequate for the continuous and for the
discrete control cells respectively, time-triggered or event-triggered?

Q. 3. 4. What measures should be taken to ensure the availability of the bot
tling/corking process implemented by the cell architecture just studied?

Q.3. 5 Are there safety issues in any of the production cells? If yes, money
critical or safety-critical?

Q.3. 6 Consider the remote applications visualizing shop-floor state images:
in what way are they QoS-sensitive?

Q. 3. 7 Could the distributed CIM platform take advantage from the generic
distributed services put in place during the first phases (distribution and fault
tolerance) of the project? How and which services?

Exhibit 2026 Page 390

Exhibit 2026 Page 391

IV Security

If you think cryptography is the solution to your problem, then you do not un-
derstand cryptography, and... you do not understand your problem.

— Roger Needham

Contents

16. FUNDAMENTAL SECURITY CONCEPTS

17.SECURITY PARADIGMS

18 MODELS OF DISTRIBUTED SECURE COMPUTING

19 SECURE SYSTEMS AND PLATFORMS

20 CASE STUDY: MAKING VP’63 SECURE

Overview

Part IV - Security, addresses security of distributed systems, that is, how to ensure

that they resist intruders. Security is paramountto the recognition of open distributed
systems as the key technology in today’s global communication and processing sce-
nario. This part contains the fundamental notions concerning security, and provides

a comprehensive treatment of the problem of security in distributed systems. Chap-

ter 16, Fundamental Security Concepts, discusses the fundamental principles, such

as the notions of risk, threat and vulnerability, and the properties of confidentiality,

authenticity, integrity and availability. Chapter 17, Security Paradigms, treats the

most important paradigms, such as: cryptography, digital signature and payment,
secure networks and communication, protection and access control, firewalls, audit-

ing. Chapters 18 and 19, Models of Distributed Secure Computing, and Secure Sys-
tems and Platforms, consolidate the notions of the previous chapters, in the form of

models and systems for building and achieving: information security, authentication,
electronic transactions, secure channels, remote operations and messaging, intranets

and firewall systems, extranets and virtual private networks. Chapter 20 continues

the case study, this time: making the VP’63 System secure.

Exhibit 2026 Page 391

16 FUNDAMENTAL SECURITY

CONCEPTS

This chapter addresses the fundamental concepts concerning security. It starts
by defining what security is: the reasons leading to insecurity, the types of
computer misuse, and the evaluation of the risk associated with both the vul
nerabilities of computers and the threats to which they are exposed. Then,
it explains the foundations of secure computing, and traces the relationship
between distribution and security, on the one hand, and fault tolerance and
security, on the other hand. Next, it analyzes the behavior of the intruder,
in an attempt to illustrate to the reader both the motivations for attack, and
the techniques and procedures normally used to perform that attack. Finally,
the most relevant architectural and technological approaches to security in net
works and distributed systems are introduced, to be detailed in the subsequent
chapters of this part.

16.1 A DEFINITION OF SECURITY

In order to understand security, we must first understand what are the impair
ments to security. As with fault tolerance, we can only assure correct behavior
of systems, if we understand why and how they fail in the first place. Two of
the things that make this field a challenging one are that: the direct causes
of failure are faults (attacks) maliciously made by humans; and those are very
often made possible by unintentional faults (vulnerabilities) made by designers,
who are also humans... and humans are unpredictable.

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System
Exhibit 2026 Page 392

378 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

16.1.1 Insecurity, People and Computers

People and computers have a curious relationship: from an initial militant mis
trust, at work and at home, people tend to evolve to an almost blind trust on the
machines' abilities to solve problems, and to an overwhelming dependency on
computers to hold important information and perform important tasks. Alas,
this trust and dependency are frequently not supported on any technical evi
dence. We have seen that this may have serious consequences when accidental
faults occur (see Fault- Tolerant Computing in Chapter 6). It can have even
more serious ones in result of malicious faults caused by other people- the
intruders- on the computer systems people- the legitimate users- so hap
hazardly use. We will spend sometime analyzing the situation from the human
viewpoint, and will extract a few morale quotes, that we emphasize in italics.

Perhaps most of the problems with computer insecurity can be attributed
to social factors, more precisely, to the fact that informatics evolved so fast
that social rules have not accompanied it. To give an example, people tend to
minimize the importance of the information that computers hold: they rarely
think of preserving the privacy of their own information, and tend to do the
same with information entrusted to them, e.g., professionally. However, are
these people irresponsible? Not necessarily: many of them methodically lock
everything inside their desk's drawers and office lockers, while leaving the whole
disk of their PC within the reach of a few thumbscrews. This happens be
cause their behavior codes with regard to computer-based information are still
imperfect, if compared to other media.

Insecurity is as concerned with technical deficiencies as with people's attitudes.

On the other hand, most of the hackers are juveniles who consider that
invading another person's computer, stealing a password, or eavesdropping on
computer networks is part of an innocent game, and in fact a proof of their
intellectual superiority over other youths or grown-ups, who for instance have
such naive passwords as snoopy, or do not have their servers protected with
the latest patch against the latest discovered vulnerability. In fact, most of
these hackers have never thought that there is little difference, in ethical terms,
between what they do and: invading another person's house, even if the door
is not locked; stealing a key to a personal drawer; listening to private phone
conversations, and so forth. The fact is that the ethics of informatics is not part
of the basic education. That is, the rights to integrity and privacy of property
and personal information are recognized in terms of the traditional icons (real
estate, cars, lockers, telephones, etc.), but not so much with computers, disk
files, and network bits.

However, the irresponsibility of the young and sometimes inept hackers does
not make their actions less serious. The amount of information available today
on the Net, for example, whole Web pages full of recipes for exploiting vul
nerabilities in computer systems of all makes and brands, spreads the base of
potential hackers. It is not too paranoid to speculate that behind an everyday
thicker curtain of amateur hackers, people with a real interest in severing com
puter security- computer criminals, radical groups, terrorists- can act with
an increased degree of impunity.

Exhibit 2026 Page 393

FUNDAMENTAL SECURITY CONCEPTS 379

Since this book is mainly devoted to university students, we cannot refrain
from addressing two words at the informaticians-to-be whose passion by com
puters is addressed at other people's computers. The first is that most employ
ers will not be very eager to hire a computer science or engineering graduate
with a record for computer-related crimes. The second is that there is a fan
tastic difference between a mechanical engineer, who is able to design and build
a car, and a car thief, who is only able to break into the car. Of course, the
latter is an expert on alarms, car door and steering wheel locks, which make,
say, one hundredth of the important parts of a car. Guess who has the most
comprehensive and creative activity?

Insecurity is quantitatively caused to a great extent by the actions of people who
must be educated about the seriousness of their deeds.

Security costs money. If a security case is well made, it should normally
cost less than the losses arising from rare but devastating incidents. However,
such as with fault tolerance, it is very difficult to persuade people to invest on
a system attribute whose effect they will rarely or never see. It is much easier
to authorize an investment on making the system "perform faster", because
that is palpable, than on making the system "be secure". (This 111essage is
dedicated to chief information or technology officers and other people with
similar decision power). If you pay a security guard (or have an insurance),
and there is never' an attempt to rob your house, after a few years you start
wondering why you are throwing all that money away. After you fire the guard
(or cancel the insurance), you are finally robbed, and you lose ten times more
than what you had paid until now, but that was a human reaction, do not be
demoralized.

It is better to invest than to spend.

The general insecurity reaction to the first serious incident is no less human:
close everything, resort to very restrictive emergency policies, like for example
disconnecting from the network, and invade the place with all sorts of new
bureaucratic rules. Again, an old saying in action: "locking the stable door
after the horse has bolted". This is very frequently complemented with a bit of
burying-head-in-the-sand, such as pretending nothing happened, not making a
complaint, not requiring the services of computer security specialists. More
over, since the pressure to be on-line is enormous these days, it can be decided,
many often in the worst possible way, to buy "something to take care of the
pirates", preferably "something that has cryptography inside". In 90% of the
cases, the innocent target of this frenzy is a firewall, that mysterious panacea
for all security incidents. Shortly after, and with great surprise, the system is
attacked again. Sometimes because unprotected direct modem dial-up connec
tions from behind the firewall remained active, sometimes because the intruders
were already behind the firewall: they worked there. No technology works per
see Organization security requires a systemic approach, as many other archi
tectural problems in computer systems do: analyze the problem; establish the
requirements and/or the policy; specify the functionality; select the enabling
technologies.

Cryptocracy (a form of technocracy) is enemy of good systems practice.

To end with, if there was a special advice we would give to beginners in this
domain, it would be: in any security case, always use your knowledge on how

Exhibit 2026 Page 394

380 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

humans behave (the good and the bad). There is a well-known saying about the
fundamental problems being those that remain no matter how much hardware
or software you put or take: in security, what remains are humans and their
values.

16.1.2 Vulnerability, Attack and Intrusion

Hackers exploit weaknesses in operating systems, applications, network soft
ware, and so forth. Reckless users or administrators may introduce other
weaknesses, because of the way they configure or run the systems. Illustra
tive examples of weaknesses are: world-accessible files; accounts with default
password or without one; easily guessed passwords; stack overflow and other
low-level bugs; windows of vulnerability in the execution of certain system calls;
cleartext remote logins; unprotected programs with root privileges; forgotten
protocol ports; lack of authentication of most communication protocols.

Hackers also do social engineering, which is a way of exploiting human
weaknesses. Social engineering is the art of extracting secrets from people
with their unwitting consent, and it can do more for a hacker in five minutes
than a fortnight of methodic probing. An example of social engineering that
became folkloric is the following: a hacker phones a company's system operator
pretending he works for the Telecom company, alleging that there is a problem
with one of the company's lines that connects a given server to the outside; he
says that in order to perform tests he will need a login and password into the
server; he even asks the operator to remain on-line and report if the operation
was successful. It is surprising to find out how fashionable variants of this story
are.

Vulnerability - non-malicious fault or weakness in a computing or com
munication system that can be exploited with malicious intention

It is interesting to define vulnerability in terms of dependability: vulnera
bility is a non-malicious design or configuration fault that can be activated to
introduce malicious faults and/or errors in that system. It is constructive to
establish a parallel between fault tolerance and security, since after all both
are facets of the same objective of dependability: achieving justified reliance in
the operation of systems vis a vis the occurrence of faults, be they malicious
(security) or not (fault tolerance). The resulting cross-fertilization may result
in new ways of looking at either field.

Threat- potential of attack on computing or communication systems

The closest analogy to threat in dependability is the definition of hostility of
the environment, that is, the potential of the environment to introduce faults
(e.g., electromagnetic radiation).

Attack - malicious intentional fault introduced in a computing or com
munication system, with the intent of exploiting a vulnerability in
that system

Exhibit 2026 Page 395

FUNDAMENTAL SECURITY CONCEPTS 381

An attack may be successful or unsuccessful. The latter can happen because
the system was not vulnerable to that attack (or, what is equivalent, the attack
was perpetrated by an inept hacker). When successful, an attack may generate
errors in that system. Attacks on computer systems (hacking) assume several
forms, more or less disruptive or destructive, such as attempting to: penetrate
a firewall or a computer, introduce viruses, damage resources, eavesdrop for
information theft or privacy violation.

Intrusion - erroneous state resulting from a successful attack on a com
puting or communication system

If nothing is done, the intrusion will result in the failure of the security
mechanisms. Alternatively, the erroneous state characterizing the intrusion
may be detected and fought back with countermeasures, or it may be masked
if the system has enough defenses to resist the intrusion. In fact, these are
underlying techniques of what we may call intrusion tolerance. The process
of security failure, depicted in Figure 16.1, has an obvious analogy with the
fault-error-failure sequence studied in the Fault Tolerance Part of the book.

Sacker ---........
attack

..... (fault)

o~~.....---...
intrusion

(fault)

intrusion
prevention

error• rfailure
intrusion
tolerance

Figure 16.1. Vulnerability, Attack and Intrusion

The effects of intrusions, depending on the intention (and the skill) of the at
tackers, can take several forms, such as: interception and fraud in an electronic
payment or home banking system; forging of electronic banking transfers; pen
etration of a company's information system for industrial espionage; or of a
hospital's database, to disclose sensitive information about patients or use it
for blackmail; destruction of a government's database, by a group of radicals;
"bombarding" of a company's commercial server, in order to bring it down, for
sabotage; fraud in the GSM mobile phone system, for free calling; breaking of
an electronic wallet system, for counterfeiting digital money; and so forth.

Either the level of threat or the degree of vulnerability alone do not measure
how secure a system is. In fact, consider the following two example systems,
system Vault and system Sieve, whose degree of vulnerability and level of threat
we have quantified for the sake of example. System Vault has a degree of vulner
ability Vvault == 0.1, and since it has such high resilience, its designers have put
it to serve anonymous requests in the Internet, with no control whatsoever to
whoever tries to access it, that is, subject to a high level of threat, tvault == 100.

Exhibit 2026 Page 396

382 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

System Sieve, on the other hand, is a vulnerable system, Vsieve == 10, and in
consequence, its designers have safeguarded it, installing it behind a firewall,
and controlling the accesses made to it, in what can be translated to a level of
threat of tsieve == 1. Now consider the product threat x vulnerability: with the
imaginary values we attributed to each system, it equates to the same value in
both systems (10), although system Vault is a hundred times less vulnerable
than system Sieve. The correct measure of how secure a system is depends as
much on the number and severity of the flaws of the system (vulnerability) as
on the potential of the attacks it may be subjected to (threat). This measure is
called risk, and it is very important since it explains that one cannot ascertain
the level of security of system or product from the catalogue alone.

Risk - combined measure of the level of threat to which a computing or
communication system is exposed, and of the degree of vulnerability
it possesses

16.1.3 Security Properties

We have discussed until now what makes systems insecure, how they can be
attacked, and what is the effect of insecurity. Now, we are ready to understand
what we would like of a system, in order to consider it secure. We would like
it to preserve our information from the eyes of intruders. We would like to be
sure that whoever is dialoguing with us at the other end of the line is really who
she says she is. We would like to avoid that someone changes or destroys our
information. Finally, we would like to avoid that someone brings our system
down on purpose. We may not always need all these attributes simultaneously,
and some of them are not even achievable with the same techniques. These
are good reasons for understanding as precisely as possible what we mean by
security:

Confidentiality

Integrity

Authenticity

Availability

the measure in which a service or piece of information is
protected from unauthorized disclosure

the measure in which a service or piece of information is
protected from illegitimate and/or undetected modification

the measure in which a service or piece of information is
genuine, and thus protected from personification or forgery

the measure in which a service or piece of information is
protected from denial of authorized provision or access

Confidentiality is concerned with protecting information and computing and
communication services from the eyes of intruders. Privacy is the default form
of confidentiality for private information and communication. The simplest
approach to ensure confidentiality is physical isolation, for example, locking a
computer, or using networks which make tapping difficult, such as fiber optic
media. However, this is not always possible or convenient, so we are going to
study methods based on encryption, which ensures that although the intruder
has access to the information, it is unintelligible to him.

Exhibit 2026 Page 397

FUNDAMENTAL SECURITY CONCEPTS 383

Authenticity is concerned with guaranteeing the origin of a service request,
a piece of data or a message, or the identity of a service provider or the creator
of a piece of information. Intruders may wish to pretend they are someone
else, as part of the attack on a system, for example for getting access to other
people's information, or to forge the identity of the creator of a document. This
is avoided by authentication. Malicious users may also pretend they did not do
something they did do, for example, denying they signed a check with which
they paid some goods. Avoiding it is called non-repudiation. For a piece of
data, authenticity is recognizing the creator's signature, even if he denies. For
a recipient, authenticity is being certain that a message signed by a sender was
really sent by him, and that the sender cannot deny to have sent it. Key to
ensuring authenticity is a technique that we will study called digital signature.
Authenticity is not considered as a first order property by several authors, and
is defined by some as being the 'integrity' of some meta-information concerning
the identity of the object.

Integrity is concerned with avoiding or detecting the modification of infor
mation or messages, including service interactions, with malicious intent. The
easiest way to secure integrity is to use some form of checksum, although with
cryptographic resilience, to detect modification. We will study techniques to
perform these checks based on secure hashes and message digests. However,
sometimes we also require prevention of modification, if we fear a radical at
tack trying to erase our whole information system. Short of using redundancy
techniques such as the ones we studied in the Fault Tolerance part of this book,
the best solution, and one widely used in security, is not letting the intruders
get anywhere near the information. We will also study protection techniques
based on access control.

Availability is concerned with ensuring that information and computing or
communication services remain accessible to authorized users, despite what are
normally called denial-of-service attacks. These attacks may be performed for
reasons such as sabotage, vandalism, terrorism and politics. Availability, such
as integrity, can be procured with techniques based on protection. However,
static access control has very little effect on denial-of-service attacks, as recog
nized in (Lampson, 1993). The reason is that an attack may come by the same
channels as authorized users, such as bombing a Web server with legitimate
requests in order to bring it down. Reactive (dynamic) access control based on
intrusion detection, such as yielded by some firewall systems, may help miti
gate the problem, for example by selectively blocking requests originating from
a suspicious machine.

Availability may also be achieved by means of techniques based on redun
dancy management, that is, fault tolerance. The idea is to replicate the service,
possibly in several places, making the intruder's life more difficult, since he has
to attack all replicas in order to bring the service down. However, these tech
niques are not such a definite solution as they are for accidental faults. The'
reason is that for most of the latter it is possible to define a fault model, bounded
both in type of behavior and maximum number of faults supposed to occur, and

Exhibit 2026 Page 398

384 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

build systems that can provably be available while that fault model holds. In
the case of malicious intentional faults, we do not know yet how to put a bound
on the type and number of attacks, since they are human-driven and depend
on non-technological factors such as the persistence, time, and intelligence of a
hacker l

.

16.1.4 Evolution of Secure Cornputing

Security is a very old activity. Before computers, people would already use
ciphers to send secret messages. Among the first, we can count the Caesar
cipher, used by the Romans. It was a substitution cipher, which worked by
replacing each letter of the message with the letter 3 positions ahead in the
alphabet, wrapping around from Z to A. Very naive, it worked well since there
were not many cryptanalysts around at that time. A transposition or permuta
tion cipher is yet another technique that works by shuffling the order of letters.
A common transposition method would be to write the plaintext line by line, in
a sheet of fixed character length per line, and then get the ciphertext by reading
it column by column. Doing this twice would significantly increase robustness.
It was reportedly used in World War II by the resistance, who would encode
and decode their messages by hand.

Shannon launched the basis for cryptography, enunciating two fundamental
principles: confusion and diffusion. Confusion is the property whereby it be
comes extremely difficult for an intruder to find out the relationship between
the plaintext and the ciphertext. The rationale behind it is to eliminate re
dundancies and statistical patterns. Substitution generally contributes well to
create confusion. Diffusion is the property that dissipates the information pat
terns throughout the text, so that a single bit change should reflect itself in
many places of the ciphertext. Current systems are a mix of the application of
these two principles.

World War II brought the intensive use automated encryption/decryption,
by means of mechanical devices, or rotor machines, such as the Enigma
machine of the Germans. The principle of operation was based on substitutions,
and permutations implemented by a mechanical wheel. One machine might
have several rotors, the output of one wired to the input of the next. The
Enigma was broken by the Allies, using computing resources. This is a historical
example of a principle that is still true and haunts every cryptographic system:
no matter how good a system is, it takes every year less time to break it by
brute-force. Very important milestones for secure computing, still valid today,
were erected after the war. We enumerate a few in Table 16.1.

The public key principle was one of the most important discoveries in cryp
tography, generally attributed to Diffie and Hellman. Merkle did contemporary
work that also ranks him among the asymmetric cryptography pioneers. A re
cent announcement credits John Ellis, a cryptographer working for the British

1In fact, this may also prove difficult for software design faults.

Exhibit 2026 Page 399

FUNDAMENTAL SECURITY CONCEPTS 385

Table 16.1. Major Milestones in Secure Computing

1972
1973
1975
1976
1978
1978
1982
1988
1990
1994

Reference monitor protection model (Lampson, 1974; Anderson, 1972)
BeLa Formal security model (Bell and LaPadula, 1973)
DES- First widely used symmetric crypto algorithm (DES, 1977)
Public key cryptography principle (Diffie and Hellman, 1976)
RSA- First widely used asymmetric crypto algorithm (Rivest et aI., 1978)
Mediated authentication/key distribution (Needham and Schroeder, 1978)
Blind signature for non-traceable digital cash (Chaum, 1983)
Kerberos- Widely used KDC authentication service (Steiner et aI., 1988)
PGP- Public domain strong cryptography system (Zimmermann, 1995)
ECash- First commercial non-traceable digital cash sys. (DigiCash, 1994)

government, for the invention of the public key cryptography principle a few
years before Diffie and Hellman. This work was kept secret and never published
until now.

Security in informatics2 has long left the exclusive realm of the military and
governmental institutions. Nowadays, networking and distribution on open sys
tems have become the major paradigms for supporting information processing.
Confronted with the need to work under the level of threat of environments
such as the Internet, designers, vendors and users have become aware that the
way to go can no longer be by reducing the threats to systems. Instead, the
design of systems must be improved and adequate techniques incorporated, in
order to reduce their vulnerabilities and achieve an acceptable risk of operation.
This is why expressions such as 'public key cryptography', 'DES', 'digital cash',
have become vox populi.

Generalized use of cryptography has made some governments nervous about
the possibility of people having completely confidential communications and
files, unlike what exists today with telephone communications and hard pa
per files, that can be disclosed under a warrant. In trying to preserve this
metaphor, key escrow encryption systems were proposed. The system is a
normal cryptographic system, except that the key is also deposited with a gov
ernment agency. In special cases, namely a suspicion of crime, the key can be
obtained from the agency by the competent authorities, which are then able to
tap communications or decrypt files.

The use of cryptography has few restrictions in most countries, with the
notable exceptions of France in Europe, and the prohibition of exporting strong
cryptography products in the U.S.A. (Koops, 1999), partially lifted in the end of
1999. The near future will witness the increment of awareness by private users
about the security risks of open distributed computing. This will give a great
push for the proliferation of commercial systems incorporating cryptography.

2 "Informatics" is a word of european origin getting increased acceptance in the community
of computer users and developers. It is used to denote in general terms all that is related
with use of computers and networks in information processing, access and manipulation.

Exhibit 2026 Page 400

386 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Most probably, it will contribute to an evolution of the attitude of authorities
with regard to security.

16.1.5 Distribution and Security

One of the oldest rules of security is to distribute the power and the knowledge
about crucial issues, so that no single person can control and misuse that power
or knowledge. We all remember the tales about the doors with three locks, and
the secret map that was cut into several pieces. With the advent of computers,
and since they were essentially centralized machines, the computer, as a unit
of intrusion, became a single point of failure. Since it was not convenient to
tear a mainframe in pieces, that ability of splitting the control of a secret was
lost for a while, until distributed systems came into play.

Distributed systems, on the other hand, have presented some shortcomings
in the transition from centralized ones. First, instead of being held in a central
physical point, critical data was spread by several sites. Secondly, these sites
were forced to exchange information through networks whose physical access
cannot be controlled completely. These are detrimental factors to the baseline
security of distributed systems.

However, distributed systems bring back the possibility of distributing con
trol and knowledge. The fact that data reside in several sites may be used in
one's favor, if spread in a way that the intruder must break into several sites to
retrieve useful information. Cryptography has taught us how to securely send
information over insecure networks. In conclusion, with the adequate tech
niques, distribution presents the systems architect with a powerful framework
to achieve very high levels of security, and materialize back the metaphors with
which we started this section.

16.1.6 Fault Tolerance and Security

Dependability is the justifiable reliance on the operation of a system. From that
viewpoint, achieving reliance on the presence of accidental or of malicious faults
are two faces of a same coin. Vulnerabilities of the system are non-malicious
design or configuration faults that the intruder exploits to induce other faults of
malicious nature, or attacks. This combination aims at achieving an intrusion
on the system. The resulting erroneous state, if not handled, may lead to
a security failure of the service that the system is supposed to provide (e.g.,
communication confidentiality, database integrity, etc.). Besides the conceptual
analogy, there is a chance for using techniques of either field in a complementary
way. In essence, intrusion detection and recovery, or intrusion masking, can
be seen as techniques for achieving intrusion tolerance. Some fault-tolerant
protocols use cryptographic signatures as a means for tolerating value faults.
Byzantine agreement techniques, used in ultra-dependable systems to mask
arbitrary errors, also have applicability in security.

Exhibit 2026 Page 401

FUNDAMENTAL SECURITY CONCEPTS 387

16.2 WHAT MOTIVATES THE INTRUDER

As we have seen, behind the several possible security-related failures in a com
puter system, there is a human brain. It is difficult to establish a regular model
for malicious faults, as we have done for example with accidental faults when
studying dependability (see Fault-Tolerant Computing in Chapter 6). It is also
not obvious how we award probability distributions to human decisions, for
example, it would be surprising to discover that hackers' successful attempts at
installing exploits in an operating system follow a Poisson curve. Short of such
a formal framework, we may nevertheless try to understand what motivates the
intruder: the hacker of computer systems, or the phreaker of telecommunication
systems, in security lingo.

The first interesting thing to learn about intruders is the "why". The moti
vations of hackers vary: curiosity; collecting trophies; free access to computa
tional and communication resources; bridging to other machines in a distributed
system; damaging or sabotaging systems, for criminal, mercenary or political
reasons; stealing information for own use or for sale, such as software, commer
cial or industrial secrets, etc. The "how" depends on the hacker's ability and
on the system to be penetrated. Generally, he takes the following steps:

Exploration of
vulnerabilities

Access to
the system

Control of
the system

Deletion
of traces

Continued
stealth access

Exploration of
new targets

Finding weak points in the computer system (e.g., accounts
without password; vulnerable configurations or drivers
present; accessible password file)

Making a plan of attack (e.g., matching dictionary words to
password file entries; attack system driver with malicious
program to get an account; eavesdrop on login/password
pairs on the network)

Controlling all system resources, by becoming root user after
attacking the system's security mechanisms with malicious
programs (e.g., malicious script securing root access; racing
a penetration program against a legitimate system call)

Concealing activity during intrusion campaign (e.g., disguis
ing himself while logged in, erasing system logs after logout)

Perpetuating access to the machine in a stealthy manner
(e.g., Trojan horses or backdoor programs that can be acti
vated by special codes or sequences, abandoned accounts)

Looking for new trophies (e.g., channels leading to other ma
chines; access information in personal files; eavesdropping
from the intruded machine)

Talking about the tools used, it is typical to find a hacker sitting on a good
PC, behind a fast modem. Many hackers use blue-boxes and other "colored"
boxes, which are devices to confuse the billing electronics of telephones and
allow the hackers to call for free. "Software tools", in the form of attack pro
grams, called "exploits" in hacker lingo, abound in the Internet, exchanged in
Internet Relay Chat systems (IRC) or published in Web pages.

Exhibit 2026 Page 402

Host

IWJ5

388 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

16.3 SECURE NETWORKS

Security in networks starts with physical protection. One of the major threats
today is eavesdropping on networks. Technology can give a hand here, since
for example, fiber optic cables are very difficult to tap without notice and in
practical terms they do not radiate.

Figure 16.2. Physical Circuit Encryption

The latter attribute is important, since today it is possible to detect en
ergy radiated by the passing bits on network cables, at considerable distances.
However, while measures can be taken inside premises to make physical tapping
difficult, wiretapping in large-scale networks is almost impossible to avoid. In
consequence, we had better look elsewhere for network security: communication
encryption. There are different levels at which encryption can be performed,
in terms of the OSI model. Encryption can be done at the lowest layers, Phys
ical and Data Link, or the higher layers, such as Network (e.g., Internet IP),
Transport, Presentation, Application, or even by the user.

Physical circuit encryption, also called link encryption, is adopted when the
idea is to encrypt all traffic passing through a link between two points. As
shown in Figure 16.2, a physical link is connected by a pair of cryptographic
devices, and all cleartext (non-encrypted data) going through that route is
encrypted, that is, converted to ciphertext (denoted by zigzag lines), which is
decrypted by the corresponding device at the other end. Encryption is done
at the Physical or Data Link layers, either in software or in hardware, but this
approach is most convenient for hardware-based encryption. As shown in the
top of Figure 16.2, this approach is specially suited for linking hosts via long
haul leased lines. Physical circuit encryption applies strictly to a link between
two points. In consequence, if there are routers in the middle, then the data
has to be decrypted, so that the router can analyze the routing information,
and then routed via another link, where it is encrypted again, as shown in the
bottom of the figure. Typically, each pair of devices over a link shares one key.

Exhibit 2026 Page 403

FUNDAMENTAL SECURITY CONCEPTS 389

Figure 16.3. Virtual Circuit Encryption

Physical circuit encryption requires a large number of encryption devices,
and a large number of encryption/decryption operations in routes with many
hops. Alternatively, one can resort to virtual circuit encryption, also called end
to-end encryption, where encryption is performed on a per traffic flow basis,
at the higher layers of the architecture. Not only can encryption be selective,
because of the multiplexing existing at these layers, but it can also be preserved
until the final destination. This is because the headers of the lower communica
tion layers are appended to the encrypted data, instead of being embedded in
it, like it is done in physical circuit encryption. This is exemplified in the top of
Figure 16.3, where the encapsulation of encrypted data is shown by a rectangle
enveloping the zigzag line. Encapsulation is removed and inserted again in the
course of normal processing of communication functions at each hop, but the
zigzag line remains intact. For example, encryption can be done at the Net
work or Transport layers, and only for certain destination domains, addresses
or ports. The Network protocol header (e.g., IP) is inserted after encryption,
and in consequence, the data can remain encrypted throughout its way. Virtual
circuit encryption can also be performed higher up, such as the Presentation
or Application layers, or even by the user process itself. Email communication,
for example, has provisions for encryption. Virtual circuit encryption is the
most used approach, and is normally performed in software. However, nothing
prevents it from being performed in hardware between the user and the host,
as is the case with applications relying on intelligent smart cards. Physical
and virtual circuit encryption can be combined in order to achieve higher levels
of security. The principle exemplified in Figure 16.3 can be used to build an
encrypted link between two facilities of a same organization. The respective
endpoints are connected by a cryptographic stream encapsulated in a network
protocol, with the sole purpose of carrying (tunneling) the data through the
network between these two endpoints. This principle can be extended to sev-

Exhibit 2026 Page 404

390 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

eral endpoints in a pair-wise manner, to create what are called virtual private
networks, or VPNs, in a secure way.

Figure 16.4. Reference Monitor

16.4 SECURE DISTRIBUTED ARCHITECTURES

This section gives an overview of the main architectures for distributed systems
security. Conventional operating systems have protection mechanisms based
on facilities implemented in hardware by the underlying microprocessors. Nor
mally these provide for a number of layers of privilege for executing instructions
and accessing resources, and also virtual and separate address spaces, or even
full virtual machines executing in complete isolation over the same hardware
(Tanenbaum, 1992). Operating systems then offer a higher-level of protection
centered in their resources, such as files and network devices. Users have differ
ent rights of access to different resources, and may even have private resources.

Figure 16.5. Security Server

In secure systems, the concern about protection is taken one step further:
it is delegated on an entity, called reference monitor, such that all requests to

Exhibit 2026 Page 405

FUNDAMENTAL SECURITY CONCEPTS 391

protected resources are addressed for authorization to that entity (Figure 16.4).
The reference monitor is normally a secure part of the operating system kernel.
In distributed systems, an authentication and authorization server, or security
server, must perform that task for interactions between machines accessing
resources that are distributed in a network. As a consequence, the gatekeeper
function of the reference monitor is done in a virtual and distributed way, as
illustrated in Figure 16.5. Although all machines we see may be physically
interconnected by the same network, logically the clients on the left side can
only access the system servers on the right side after granted permission by the
security server. They have to authenticate themselves and get an authorization
to access a given resource. The reason why this "virtual gate" works is that this
dialog is cryptographic, and the authorizations take the form of cryptographic
credentials that the system servers analyze.

Figure 16.6. Firewall

A simpler form of protection that in a way extends the principle of the
reference monitor for centralized systems is the firewall. It acts by physically
interposing a barrier between an outside system and an inside system. Although
the protected inside system may be a distributed system, for the firewall it is
a hard-core in terms of security, that is, a security perimeter (all the bad guys
are out and the good guys are in). In consequence, all requests coming from
the outside system to resources in the inside system must pass through the
firewall, as depicted in Figure 16.6. This model is weaker than the reference
monitor model, since its access rules are less precise and normally directed
to communication protocols (block or allow traffic to given ports, addresses,
protocols, etc.). A special form of firewall function called application gateway
can implement more sophisticated protection, but in an application-dependent
form. On the other hand, in terms of network traffic, the firewall is more
versatile, since it also allows protection to traffic from the inside to the outside.

Implementing secure remote operations is fundamental in open systems. The
problem, as exemplified in the top of Figure 16.7, is achieving security of in
teractions between a client terminal and a server. A sniffer, a machine that

Exhibit 2026 Page 406

392 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Figure 16.7. Secure Remote Operations: Normal, and with Tamperproof Devices

listens to everything that passes on a network, may read all the information,
including passwords and sensitive information, for later misuse. As we see in
the figure, secure remote operation architectures include some form of virtual
circuit encryption (see Figure 16.3), which encrypts either all the communica
tion, or just sensitive parts, in an end-to-end manner, so that eavesdropping
does not succeed. These architectures are used in a variety of situations over
insecure environments like the Internet, such as plain remote logins, client
server computations, Web HTTP server accesses, or electronic commerce. In
this latter application, the level of security may be increased if, as exemplified
in the bottom of Figure 16.7, the cryptographic channel is established between
the server and a tamperproof device representing the user. The latter repre
sents a good solution when the client machine is not trusted. These devices are
for example: boxes with secure micro-controllers that read a card and execute
cryptographic protocols, or intelligent smart cards themselves able to execute
cryptographic protocols.

There are several variants of electronic payment architectures. The most
promising are the ones centered around digital cash. As Figure 16.8 exempli
fies, the relevant parts of the architecture are: a banking network; and tam
perproof devices, also called wallets or purses. Digital cash is generated by
the client's bank and loaded into the client's smart card (a tamperproof device
of its own right) by means of a cryptographic protocol ran between the smart
card and the bank server. This can be done in an ATM machine, for exam
ple. What is interesting in this architecture, in contrast to the ones presented
before, is that not everything happens inside a connected network. The client
takes her card to a merchant and pays completely off-line, again by running
a cryptographic protocol that unloads digital cash to the merchant's terminal,

Exhibit 2026 Page 407

FUNDAMENTAL SECURITY CONCEPTS 393

ATM

~ Tamperproof
~~ Device

Figure 16.8. Electronic Payment

Client's
Bank

a tamperproof device that is not connected permanently as well. Later, the
merchant deposits the money in his bank. The role of the banking network is
to consolidate these electronic transactions, making the money flow between
the several participants- in this example, from the client's account to the
merchant's account.

16.5 SUMMARY AND FURTHER READING

This introductory chapter discussed the fundamental concepts concerning se
curity, and introduced terms such as: vulnerability, threat, intrusion, security
hazard, confidentiality, integrity, authenticity, availability, sniffer, physical and
virtual circuit encryption, secure tunnel, reference monitor, security server, fire
wall, tamperproof device. During the following chapters, we will discuss them
in greater depth. For more introductory level material, the reader should see
the introductions of (Pfleeger, 1996; Kaufman et aI., 1995). Pfleeger also does
an extensive discussion on legal and ethic issues (Pfleeger, 1996). Kaufman et
aI. (Kaufman et aI., 1995) and Abrams et al. (Abrams et aI., 1995) give fairly
complete glossaries of security terms. Stallings provides an interesting reading
on security in networked and distributed systems (Stallings, 1999).

Exhibit 2026 Page 408

17 SECURITY PARADIGMS

This chapter discusses the main paradigms concerning security. An exhaustive
description of all the major algorithms concerned would require a whole book's
length in order not to be shallow. Instead, we will motivate each paradigm
in a problem-solving manner, exemplified when applicable with one or two
chosen algorithms that are analyzed with the necessary detail. Throughout the
chapter, we are going to discuss: trusted computing bases, cryptography, digital
signature, digital cash, authentication, protection, and secure communication.

17.1 TRUSTED COMPUTING BASE

Most of the paradigms to achieve security that we describe below require some
form of computation. One might ask where is this computation supposed to
take place, in order for it to be immune to hackers in the first place. The
Trusted Computing Base (TCB) is the paradigm whereby it is possible
to build a computing nucleus that is immune to intrusion, even if submersed
in hackers attacks, or even if incorporated in a system built by hackers. A few
other building blocks are based on its existence: reference monitors, firewalls,
and authentication servers.

17.1.1 Specification of a TCB

A Trusted Computing Base (TCB) is that part of the system, comprising hard
ware, firmware and software, which is responsible for supporting the security

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System
Exhibit 2026 Page 409

396 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

mechanisms used to protect the system, such as authentication, access control,
auditing. The specification of a TCB must secure a few desirable properties:

Interposition

Shielding

Validation

the TCB position is such that no direct access to protected
resources can be made bypassing the TCB

the TCB construction is such that it itself is protected from
unauthorized access

the TCB functionality is such that it allows the implemen
tation of verifiable security policies

The TCB is a subset of the operating system, it has total control of the
hardware it runs on, and no other software runs in a more privileged level.
In consequence, Interposition means that nothing can detour the TCB to ac
cess system resources. Note that we are not saying that everything has to go
through the TCB, but that the access to any resource can be controlled by the
TCB, so that it can implement whatever functions necessary to control access.
These functions depend on what sort of security policy is being enforced by
mechanisms built on top of the TCB, what sort of attacks it is trying to resist,
etc.

Shielding means that nothing should intrude the TCB. By construction, the
TCB must be impervious to accesses to its own structures, other than by the
authorized users, normally the security administrators. Again, all depends on
the proper design of the TCB.

Finally, Validation means that the TCB functionality should be simple enough
in order for the security mechanisms materializing the security policy in the
computer system to be formally specifiable and verifiable.

The above-mentioned properties do not imply that a TCB cannot be fooled
into doing wrong things: you should note the separation of concerns between
the enabling architecture for protection (the TCB) and the protection mech
anisms themselves (authentication, authorization, auditing). If the latter are
improperly designed or else follow an improper security policy (or the absence
of one), then security hazards can happen in spite of a correct TCB.

17.2 BASIC CRYPTOGRAPHY

Cryptography is a mandatory paradigm in security. Modern computer cryp
tography relies on a cryptographic algorithm or cipher, and a key or pair of
related keys. The original data, cleartext or plaintext, passes through the algo
rithm and generates ciphertext. This is called encryption, and it is a function
of an encryption key. The role of the key is to parameterize the algorithm,
such that for the same cleartext, encrypting it with two even slightly different
keys yields drastically different ciphertexts. The reverse operation, called de
cryption, recovers the original cleartext from the ciphertext, by running the
algorithm again, with a decryption key. In some systems, the encryption and
decryption keys are equal.

Exhibit 2026 Page 410

SECURITY PARADIGMS 397

We will use the following notation: EKl a (M) to mean "encrypt M with
encryption key Kl related to a" (a may denote the key owner, or a session, or
a message). Similarly for decryption: DK2a (C), where K2 is the decryption
key. If there is no ambiguity, we will omit indices, for example EKa (M). As in
all security textbooks, we will use the classic players for our metaphors: Alice
and Bob, the good guys, helped when needed by Carol and Dave. Mallory and
Eve, the bad guys. Trent, a mediator, or trusted third party. It is usual to use
principal to designate any participant in a security protocol. We will use both
words interchangeably.

Table 17.1. Basic Attributes of a Cryptosystem

• given a pair of encryption/decryption keys Kl and K2, if
EKl(M) = C, then DK2(C) = M and thus DK2(EKl(M)) = M

• given EKl(M), without K2 it is infeasible to recover M
• given M and EKI (M), it is infeasible to recover Kl
• given Kl, it is infeasible to recover K2 and vice-versa
• if keys are equal, Kl = K2 = K, first three statements still apply

Kl==K2==K, the cryptosystem is symmetric and the above statements still
apply. if Kl==/==K2, the cryptosystem is assymmetric, and given Kl it is
infeasible to obtain K2, and vice-versa.

The strength of the cryptosystem defined as above lies not on the algo
rithm's secrecy, but on the secrecy and quality of the keys. The algorithm
can and should be public domain. A proprietary secret algorithm does not give
users any guarantees about its robustness or seriousness, since the principles on
which it relies are not known. Furthermore, if put in public domain, it will be
exhaustively tested by the academic community, so that as years go by, either
it ends up being broken (we say it is cryptanalyzed) or the confidence in it
increases. However, the algorithm must be such that if an intruder does not
have the key, he cannot obtain useful information from the cyphertext. In fact,
this can be put in the form of more concrete attributes, listed in Table 17.1.

Infeasible does not mean impossible. Actually, by testing all possible com
binations of keys, plaintexts, ciphertexts, etc., one may impair some of the
premises above. This is a brute-force attack, and keys should be made long
enough that the computational cost and/or time involved make this attack im
practical. A word of caution about the cryptographic protocols based on an
algorithm: the way the algorithm is used should not introduce vulnerabilities.
Unfortunately, this may sometimes happen.

There are two major classes of algorithms in modern cryptography: sym
metric and asymmetric. The names derive from the fact that the former relies
on a secret key used in both operations of encryption and decryption, whereas
the latter relies on two different keys, one used for encryption and the other for
decryption. Another relevant building block is secure hashing, which has the

Exhibit 2026 Page 411

398 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

property that it cannot be tampered with, and interesting uses, such as creating
unique "fingerprints" of texts or messages. In what follows, we discuss these
three building blocks with more detail, emphasizing the aspects that matter
to a systems architect. For a deeper study of cryptography, the reader should
refer to the remarkably clear and complete book of Schneier (Schneier, 1996).

17.3 SYMMETRIC CRYPTOGRAPHY

Symmetric cryptography is characterized by the fact that there is only one
key, which is kept secret, and instances of it have to be shared between both
ends of a channel. In general: K1 == K2 == K, and thus if EK(M) == C,
then DK(C) == M and thus DK(EK(M)) == M. If a key is shared by two
participants, like A and B depicted in Figure 17.1, it is also usual to denote it
by K ab .

The security of this approach relies on K being kept secret by both partic
ipants. This presents several problems. One is of self-containment: a new key
must go through some secure channel to both participants (or at least from one
to the other). Practical solutions involve alternative channels such as person
to-person or paper mail. However, the latter are not interesting if keys need to
be exchanged frequently, in which case fast and secure means to distribute and
exchange keys must be used. For example, by combining cryptosystems, we can
use one to deliver the keys of the other. The other problem is of robustness: a
key compromise at either end compromises the whole channel. A third prob
lem is related with scale: key management becomes worrying for large systems.
For example, since one key is needed for each pair of participants, in order to
support arbitrary communication among 10 participants 45 keys are· required,
and this number goes up to almost 5000, for 100 participants. On the bright
side, symmetric encryption algorithms are relatively fast.

Figure 17.1. Symmetric Cryptography

There are two types of symmetric ciphers: block ciphers and stream ciphers.
The block algorithms encrypt one block of data at a time (e.g., 64 bits). The
stream algorithms process the cleartext one bit (or byte) at a time. A widely
used block cipher is DES, the Data Encryption Standard (DES, 1977).

Exhibit 2026 Page 412

SECURITY PARADIGMS 399

17.3.1 Data Encryption Standard

The DES was developed for the U.S. government and standardized in 1977.
The DES algorithm is based on an iterative application of substitution and
permutation functions, for 16 cycles. Substitutions achieve Shannon's paradigm
of confusion, whereas the permutations, or transpositions, provide for another
Shannon paradigm, diffusion.

The algorithm is quite simple and elegant. It is a block cipher, of 64-bit
length. The key is 56 bits long. It works as outlined in Figure 17.2. The input
is permuted initially. Then 16 equal iterations follow. Each round receives
the result of the previous as input. The block is divided in two halves, one of
the halves (R i - 1) is combined with a 48-bit sub-key generated from the 56-bit
DES key (one different sub-key is generated per round), and then XORed with
the other half (Li - 1), yielding Ri . Ri is concatenated with Li (equal to Ri - 1 ,

giving the 64-bit result of the round. After the 16 rounds, a final permutation
is performed, which is the inverse of the initial permutation. An interesting
property of DES yields a very simple decryption procedure: if the ciphertext
is run through DES in the same way as encryption is done, with the same key,
the cleartext is obtained. The only condition is that the sub-keys are used in
the reverse order.

Inverse Initial Permutation

Figure 17.2. DES - Data Encryption Standard

DES is quite fast, and specially amenable to hardware implementations.
It is one of the most used algorithms today, and no fundamental weakness
was discovered so far. However, the 256 search space of the 56-bit key length
is a current source of worry. It is believed to have been chosen because it
corresponded, around 1977, to a computational power within the reach of the

Exhibit 2026 Page 413

400 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

u.s. government security agency (NSA), but no one else, to break the cipher by
brute force. However, advances in computational power have currently placed
that power in the hands of too many organizations and people. Despite this
proviso, DES is a very robust algorithm, if used in the adequate mode.

17.3.2 One-Time Pads

A one-time pad is the best representative of the stream cipher type of symmetric
encryption. It is the only really unbreakable cipher. It is based on having a
truly random, never-ending sequence of characters, bytes or bits, depending on
what we want to encrypt, which we combine, one-by-one, with our plaintext
stream. The original one-time pad idea applied to characters (Kahn, 1967):
the pad was a stripe of truly random characters that were added modulo 26 to
the plaintext stream of characters. In computers, the pad is binary, and it is
XORed with the plaintext in transmission. In reception, it is XORed again with
the ciphertext, yielding the original text. Since the pad is random and used
only once, there is no information for the cryptanalist to withdraw. One-time
pads can be a very useful building block, so they deserve a few comments:

• security relies on the secrecy of the pad, which must, as with any symmetric
cipher, be distributed to both ends of the channel;

• security relies on the randomness and uniqueness of the pad: non-random
sequences and reuse introduce weaknesses;

Keystream Keystream

(M,

Figure 17.3. Stream Cipher

Real-life one-time pads are only possible if generated and distributed in
advance. This has its uses, but for encryption of computer communication
links, stream ciphers must be produced in real time, in the way shown in
Figure 17.3. Hardware box A produces a stream (called keystream) that looks
like random, and XORs it with the incoming plaintext stream. However, it
cannot be random, since box B must produce exactly the same sequence, in
the same phase, so that, when XORed again with the ciphertext, it recovers
the plaintext. Of course, such a device will always produce the same sequence
when turned on, becoming susceptible to attacks. In consequence, keystream

Exhibit 2026 Page 414

SECURITY PARADIGMS 401

generators have keys, and the output is a function of the key, as shown in
the figure. Stream ciphers are susceptible to bit errors that desynchronize the
ciphertext stream. The quality of such a system is dictated by how much it
resembles a random-number generator.

17.4 ASYMMETRIC CRYPTOGRAPHY

In asymmetric cryptography there is a pair of keys, the public key and the
private key. Because of this fact, it is also called public key cryptography.
Each participant owns such a pair of keys. Only the private key need be secret,
the public key is handed away to anybody wishing to send the participant an
encrypted message. As depicted in Figure 17.1, participant B gave participant
A her key, or published it in a name server (or in a newspaper ad, why not?). A
uses B's public key K Ub to encrypt M and send it. Only the pair of the public
key, private key Krb' can decrypt the message. In consequence, in our notation:
if EKub(M) == C, then DKrb(C) == M and thus DKrb(EKub(M)) == M.

The security of this approach relies on K r being kept secret. This presents
two advantages with regard to symmetric cryptography. The first is that there
is no need for key exchange with secrecy: every participant generates keys and
publishes the public one. The second is that a channel can only be compromised
in one end, that is, the end of the key owner. The scale of key management
is also better than for symmetric cryptography, since one public key is needed
per participant. In consequence, for 100 participants we need only 100 keys.
The down side is that asymmetric cryptography is 1000 (HW implementations)
to 100 (SW implementations) times slower than symmetric. Key distribution
deserves a word of caution: if a public key is not received in first hand from its
owner, then it must be ensured that it is authentic. A key repository may be
tampered with, and when fetching Alice's key, we might unwittingly be getting
Mallory's key, who had in the meantime penetrated the key/name server as part
of an attack against our interaction with Alice (see more on this in Section 18.6).

Figure 17.4. Asymmetric Cryptography

17.4.1 Diffie-Hellman

The first asymmetric algorithm published was the secret number computa
tionDiffie-Hellman algorithm (Diffie and Hellman, 1976). It owes its security to
the difficulty of calculating discrete logarithms to invert exponentiations in a
finite field, or the difficulty of factoring numbers that result from the product

Exhibit 2026 Page 415

402 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

of large primes. The objective is to arrive at a shared secret number without
ever passing it over a communication medium. As depicted in Figure 17.5,
Alice (A) and Bob (B) only do public communication. To arrive at the shared
secret number K, they execute the same procedure. They both agree on public
numbers n, a large prime (e.g., 512 bits), and m, which can be small, and whose
properties with regard to n are omitted here (see (Diffie and Hellman, 1976)
or (Schneier, 1996) for details). Then, Alice generates a secret large random
number X a, performs Ya = m Xa mod n, and sends Ya to Bob. Bob does the
analogous computation, using Xb and sending Yb to Alice. Finally, they both
compute the same number K, since

secret Xat tsecret Xb

ya ="y<a mod n ya

yb yb = "y<b mod n

K= Yb Xa modn K= ya Xb modn

K K

Figure 17.5. Diffie-Hellman

Diffie-Hellman does neither encryption nor authentication. D-H's obvious
utility is to create shared secret keys to be used in symmetric cryptography
(see more on this in Sections 17 and 17.11), and it is very effective at doing it.

17.4.2 RSA

RSA, published in 1978., owes the name to its inventors, Rivest, Shamir and
Adleman (Rivest et aI., 1978). It was the first widely used asymmetric encryp
tion algorithm. Its security relies on the trapdoor one-way junction concept,
that is, a function that is not reversible (one-way) unless a secret is known
(trapdoor). In the approach followed, this boils down to the difficulty of fac
toring numbers that result from the product of large primes, such as in the
Diffie-Hellman algorithm.

A prior step consists in generating the key pair. The key length is variable (a
typical size is 1024 bits). Alice selects two secret random large prime numbers
p and q, of equal length, and computes n = p.q. Then she selects a random
encryption key e, such that e and (p - l)(q - 1) are relatively prime. Finally,
she computes the decryption key d = 1/e mod ((p - 1) (q - 1)). For the user,
K rb = (d, n) is the private key, which must be kept secret, and K Ub = (e, n) is
the public key, which Alice publishes or sends to people.

Exhibit 2026 Page 416

SECURITY PARADIGMS 403

RSA is not a block cipher, but cleartext M is divided in blocks of size smaller
than n that are encrypted one at a time. The ciphertext is the concatenation
of the encrypted blocks. The algorithm itself is quite easy to understand. The
encryption and decryption of one block is outlined in Figure 17.6. To encrypt
a message for Bob (B), Alice (A) fetches Bob's public key (e, n), and performs
Ci == mi mod n. Decryption is similar: Bob, using his private key, (d, n),
computes mi == c1 mod n.

~n d,n

~ A B ~
m~1 miemodn ~ admodn ~m/

enayption decryption

Figure 17.6. RSA- Rivest-Shamir-Adleman

RSA is slow compared to DES, but it is very secure. The variable key length
allows it to accompany technology evolution. A 1024-bit key is believed to
be extremely secure, given the enormous search space, but nothing prevents
anyone from encrypting with a much longer key (and much slower...), say for
extremely sensitive documents.

There are no known serious or feasible vulnerabilities to RSA itself. However,
protocol flaws such as poorly chosen encoding of messages may open the door
to some kinds of attacks. RSA Data Security proposed a standard to address
this issue. It is called PKCS (Kaliski, 1993), and it is a set of documents with
guidelines for encoding and setting-up structures for using RSA correctly and
without vulnerabilities.

17.5 SECURE HASHES AND MESSAGE DIGESTS

Hash functions are compression functions. One-way functions are non-reversible
functions. A very useful building block in cryptography is a one-way hash
function, a function that is easy to compute, compressing a text to a block
of fixed length (typically 128 bits), but very difficult to reverse. In that sense,
it is also called a secure hash or Message Digest (MD) algorithm. We use
the following terminology: the digest or hash value of M is hm == H(M). The
security of a message digest lies on the fact that it is not reversible. We are
more specific about the necessary properties in Table 17.2.

The first property is helpful for using hashes as representatives of documents
without revealing those documents. The second and third are useful in signing
texts: they state that a hash uniquely represents a given text, and no one can
produce another text that hashes to the same value and say it was the previous
text instead. They are also useful to checksum messages, in order to check if
they were tampered with: if no one can produce a message that hashes to the
same value as the original one, then any changes in a message after a digest
was performed are detectable.

Exhibit 2026 Page 417

404 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 17.2. Basic Attributes of a Secure Hash

• given hm , it is infeasible to recover M such that hm = H(M)
• given M, it is infeasible to find M' such that H(M) = H(M')
• it is infeasible to find a pair (M, M') such that H(M) = H(M')

Most secure hash algorithms work in the way exemplified in Figure 17.7: they
digest a message recursively block by block, using the digest of the previous
block as input to the next round. Secure hashes or message digests have a
number of uses, for example, to fingerprint a text maintaining its privacy, to
compress a text that is going to be signed, or to check the integrity of a block
of data.

17.5.1 MD5

MD5, for Message Digest, was invented by Rivest (Rivest, 1992), who produced
the whole series of MDi's. It is the direct successor of MD4, and is more secure
and a bit slower than its predecessor. MD5 processes the text in 512-bit blocks
(64 bytes), and produces a fixed-length output of 128 bits (16 bytes). MD5
operation is exemplified in Figure 17.7. The text is padded to a multiple of 512
bits, with a length field inserted in the pad. The algorithm makes four passes
at each block, taking as inputs the 128-bit digest of the previous block and the
current 512-bit block, and mangling them in different ways.

igest igest • • • igest~ Mo~ I

b Message (previously padded) I
51~ I I I I I I

~~
...~ 128 bits

Figure 17.7. Message Digest Algorithm

17.6 DIGITAL SIGNATURE

In this section, we discuss several forms of signatures in latus sensus: message
authentication codes, message integrity checks and digital signatures. Let us
introduce some terminology: given a pair of keys K1 and K2 belonging to
principal A, signature of A is SKI (M) and verification of A's signature is
VK2(M). When there is no ambiguity, we may use Sa(M) and Va(M). If a
symmetric approach is used, then Kl = K2 = K but the signature process
becomes more complex. The obvious utility of signatures is more or less the
same as in real life, but let us be a bit more formal and characterize what is a
correct digital signature, that is, a well-formed and not-revoked signature:

Exhibit 2026 Page 418

Authenticity

U nforgeability

Integrity

N on-reutilization

Non-repudiation

SECURITY PARADIGMS 405

a correct signature uniquely identifies a principal, and
only that principal

a correct signature was made by its owner deliberately

a correct signature on a document ensures that it cannot
be changed without that being noticed

the whole or part of the signed document cannot be
reused in another document

a correct signature cannot be denied by the owner of the
signature (key)

These properties emulate what we would desire of paper signatures. Ac
tually, some of these properties can be violated in hand-made signatures. In
computers, we have to be even more careful, since a computer file is vapor
ware compared with the hardness of a paper signature. Authenticity stipulates
that the signature unmistakably identifies a given principal. That is, people
can recognize Sa as being Alice's signature. However, Mallory might imitate
Alice's signature, so it must also have the property of unforgeability, which
ensures that if we are facing Alice's signature, it was really made by her de
liberately, because no one else could forge it. Once a document is signed, it
cannot be changed, at least without that being noticed. That property is called
integrity. Suppose Mallory did cut-and-paste of Alice's signature from a legit
imate document file to a document forged by him? This would be quite easy
with ASCII files. In consequence, we know that it must be avoided by stip
ulating the non-reutilization property. In addition, now we know that digital
signatures are not made in ASCII. Sometimes, our problem is not with Mal
lory forging a signature, but with Mona, who disguises herself, buys expensive
jewelry, but later denies saying that someone stole her check wallet on that
day. Non-repudiation is the property that ensures that the signer cannot deny
having put her signature on a particular document. The fact that the signer
can accept this property follows from the previous properties. As an exercise,
deduce that a signed document obeying the first four properties must be a
legitimate, unaltered document deliberately signed by the signature owner.

17.6.1 Cryptographic Checksums

Checksums are small fixed-length strings that are used to check the integrity of
messages or files. Hashes give good checksums, like network packet CRC (cyclic
redundancy check), but unlike checking against accidental bit errors, a mere
hash is not enough against a deliberate attack: Mallory changes the message
and then recomputes the hash (which is public). A cryptographic checksum
(CC) is a non-forgeable hash, in a sense, a form of signature of a message,
that depends on a key. We use the following terminology to differentiate from
plain hashes: the CC of M is HK(M). CCs make sense when a message
does not require encryption but integrity must be safeguarded. They may also
authenticate messages exchanged between two users. They separate protection

Exhibit 2026 Page 419

406 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

from encryption: when a message is encrypted, it is naturally protected, but
after decryption at the recipient, the protection is lost. Having CCs of sensitive
files stored in disk would for example foil virus or Trojan horse invasion.

MAC/Signature

Message

Message

Figure 17.8. Generating and Appending a Signature or MAC to a Message

Cryptographic checksums may be implemented in several ways, and take
several names: Message Integrity Code or message integrity check (Linn, 1993),
or Message Authentication Code (MAC), depending on whether they are secur
ing integrity or authenticity, respectively. A simple way of generating a MAC
is the following: Bob hashes the message, with say MD5, and then encrypts
the hash with any symmetric algorithm, say DES, obtaining a MAC. The block
diagram of this scheme is explained in Figure 17.8, considering that EK is a
symmetric block cipher with secret key K.

An alternative and very simple method is based on hashing only, dispensing
with encryption. It only depends on Alice and Bob sharing a secret key K (not
an encryption key, just a secret key): Bob computes the length L of message
M, and concatenates L, M, and K; then he computes the message digest,
obtaining HK(L, M, K). The approach is very fast and it is secure with a
resilient message digest algorithm.

Cryptographic checksums secure the unforgeability and integrity properties.
The above methods have the key distribution problem typical of symmetri,c
approaches. By using public key cryptography the key distribution problem is
minimized, while also providing an elegant method for true digital signature.

17.6.2 Signing and Verifying

A very interesting additional result of asymmetric cryptography is that en
crypting with a private key or decrypting first (then encrypting) is equivalent
to signing. Although there are public key signature algorithms, if an encryption
algorithm is used for signing, then: signature by A is Sa (M) == D Kra (M) and
verification of A's signature is Va(M) == EKua (M). The principle is depicted
in Figure 17.9.

There is no problem in doing the operations in reverse order. Note that
when Alice encrypts M with her private key getting S, she produces something
unique and unforgeable, since her key is secret. On the other hand, anyone can
verify Alice's signature: when Bob receives S supposedly signed by Alice, he
fetches Alice's public key, and decrypts S, which could only have come from
Alice. It is not as simple as that though: if Bob does not know what he is

Exhibit 2026 Page 420

SECURITY PARADIGMS 407

Figure 17.9. Asymmetric Digital Signature

expecting to verify, he can be fooled. Consider the following: Mallory can send
a piece of data to Bob, pretending it is a signed document coming from Alice;
under certain circumstances, Mallory may even construct a ciphertext that
makes some sense when Bob verifies it; this is forging, and it is undesirable.
Any encryption algorithm can be used to sign, but there are reasons, of both
efficiency and security, to be careful about the structure of the signed document
and/or to use specialized signature algorithms.

It is not efficient to run an algorithm on a whole text just to sign it. Imagine
it is a 10 MByte contract! The message digests that we have studied solve the
problem, yielding a message-digest public-key signature protocol. The principle
can be understood by looking again at Figure 17.8, but considering now that
EK is a public key (asymmetric) cipher, and K is the private key of the signer.
The protocol is explained in Figure 17.10, where Alice wants to send a signed
text M to Bob.

Action

1 A hm = H(M)
Sm = Sa(hm)

2 A-+B II (M, Sm)

3 B hm = H(M)
Vm = Va(Sm)
(vm = hm)?

Description

Alice computes the message digest and signs the 128
bit digest with her key

She sends both the text and the signature to Bob

Bob verifies the signature using the following proce
dure: he hashes the message; then he verifies the sig
nature using Alice's public key; if the result is equal,
then M is ok, and was signed by Alice

Figure 17.10. Message-digest Public-key Signature

Let us discuss now the effectiveness of digital signatures in real-life appli
cations. For example, Bob cannot reuse the signature to append in another
document, but he can reuse the whole document (it is a file!). This is not
convenient if it is a bank check or digital note. In order to completely assure
the non-reutilization property when the whole document cannot be reused, the
document should include unique sequence numbers, timestamps and/or expiry

Exhibit 2026 Page 421

408 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

dates before it is signed. The verification process will include checking if the
sequence number exists, if the expiry date was not exceeded, etc.

There is another problem, concerning repudiation, that also exists with
hand-made signatures and negotiation protocols (e.g., credit cards). It is ex
plained as follows: Bob signs a document at 3:00pm. Then he later complains
to the police that someone early that morning stole the diskette where he held
a copy of the private key, and gives forged evidence that this might have hap
pened as early as 12:00am. In consequence, he denies all signatures that he
made since 12:00am, including the document in question. There will always
be a window of uncertainty in these operations. In other words, it is a fun
damental problem: it can be reduced, but it cannot be eliminated, unless the
model is changed. In fact, we can eliminate it if we timestamp and certify all
transactions, but that requires on-line access to a mediator.

The security of public-key signature with one-way hashing lies on two facts
besides the resilience of the signature and hashing algorithms: the secrecy of
the signer's key, both physical and in terms of length (e.g., 1024 bits yield an
enormous search space); unfeasibility that another message has the same hash
as the original one (e.g., 128 bits yields a probability of 2-128). This signature
approach has the authenticity, unforgeability, integrity, non-reutilization and
non-repudiation properties. In that sense it is a fully-fledged signature.

There is an additional advantage in the message-digest public-key signature
scheme explained above, which concerns multiple signature. Suppose that the
contract of our last example was to be signed by n principals. Instead of doing
n whole-text signatures, each principal signs a copy of hm , and the signed text
is (M, s~, ... , s~). Each signature can be verified separately.

Still another advantage is for notary purposes: Alice wants to archive a
document with a notary, who dates it and certifies that Alice produced it before
that date. In the classical procedure, the notary would have to see and copy the
document, and that can be inconvenient. With this method, the notary only
certifies the digest of the document, and so Alice can keep the privacy of her
document and only reveal it if it is ever necessary to prove that the certification
corresponds to it. The probabilities that there is another meaningful text that
hashes to the same value are negligible.

Signing with symmetric cryptography is worthwhile mentioning. Since a
symmetric key would have to be shared between two principals that do not
trust each other (the signer and the verifier), this cannot be done directly, but
rather through an arbiter. This is obviously bothersome.

17.6.3 DSA

The Digital Signature Algorithm (DSA) (DSS, 1994) is an asymmetric algo
rithm for signing. Most of the market used RSA for signature until the Digital
Signature Standard (DSS), featuring DSA, came out in 1994.

We will give an overview of the protocol, skipping the details. The signer
has a long-term pair of keys: a private key Kr chosen at random and a public
key K u computed from some public numbers and the private key. The key

Exhibit 2026 Page 422

SECURITY PARADIGMS 409

length is variable from 512 to 1024. For each signature, a new pair of keys is
generated, let us call them single-use keys: private K rs chosen at random and
public Ku s computed from the public numbers and the private key. A text
M is previously hashed and then signed with a function using Krs , Ku s , and
Kr. The signed text is (M,sm,Ku s), where Sm is the signature, and Ku s the
public single-use key for that text. The security of DSA relies on: generation
of "good" public numbers; Kr being kept secret; and Krs not being reused.

17.6.4 Blind Signature

Blind signatures were invented by Chaum (Chaum, 1983), with the purpose
of authenticating an object without revealing the identity or whereabouts of
its owner. If the object is digital money, this provides for untraceability, a
desirable property that real money has, but is very difficult to achieve with
digital money, without impairing other properties (see Section 17.7).

orignal
text

blinding blind
sifl1ature

sifl1ed
text

Figure 17.11. Generating a Blind Signature

The metaphor behind the blind signature concept is illustrated in Figure 17.11.
The problem is the following: Alice has a document to be signed by Trent, but
she does not want Trent to read it. She puts the document inside an envelope
with carbon paper lining, and asks Trent to sign the envelope on the outside.
The signature prints on the document as well because of the carbon paper. Al
ice opens the envelope and has the document signed by Trent. The algorithm
is described in Figure 17.12. Alice wants Trent to sign document M for her.
Trent has public and private keys u and r, and public modulus n. It works
because the blinding and signing operations are commutative.

This completely blind signature is uncomfortable for Trent, since he does
not know if Alice is giving him something nasty to sign (such as "lowe Al
ice a million EURO"). A. protocol combining blind signature with a cut-and
choose technique introduces faiirness in the process. The protocol, shown in
Figure 17.13, is a generalization of the protocol of Figure 17.12. The cut-and
choose metaphor is explained as follows:

Cut-and-Choose - Alice and Bob have a bucket full of fish that they
caught, to divide in half. Alice divides the fish in two piles (cutting)
and Bob blindly picks one of them (choosing). Bob thinks this is
fair because his odds of getting the best pile are 50%. On the other
hand, Alice should make the division fair, since she has no advantage

Exhibit 2026 Page 423

410 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Action Description

1 A M == Mku modn Alice prepares document M, and blinds it, obtaining M,
by multiplying by a quantity depending on the blinding
factor (random number k) and Trent's public key (u)

2 T s(M) == S(M) == Trent signs the blinded document M
(MkU)T mod n ==
MTk mod n

3 A SQ!) Alice unblinds SCM), obtaining document M signed by

S(M)jk Trent with r

M T modn

Figure 17.12. Blind Signature Protocol

in cheating by making one pile bigger than the other- her odds are
50% as well.

III Action Description

10
III

A-+B Alice prepares p blinded forms of notes of value V, blinds each of them
with a different blinding factor and sends them to Bob, the banker

20 III B Bob selects p - 1 forms, asks Alice for their blinding factors, removes
the blinding factors from the forms, and verifies they request V

30

III
B-+A Bob signs the remaining note form, N, hands it to Alice and debits

V from Alice's account

40
III

A Alice removes the blinding factor from note N, but Bob's signature
remains on it. She can spend it in a shop now

Figure 17.13. Basic Digital Cash Minting Protocol

The chances that the last copy of the note form contains something different
are 1 in p, and of course, this probability can be made as small as wished, since
it is dictated by the number of blinded copies Alice has to generate. By the
properties of digital signatures, Bob can later recognize his signature and is
bound to it, even if he has never seen the text that he signed.

17.7 DIGITAL CASH

Digital cash is the materialization of the" money" metaphor onto computer and
digital systems. It is an enabling paradigm for emerging technologies that will
certainly play an extremely important role in the near future, such as digital

Exhibit 2026 Page 424

SECURITY PARADIGMS 411

payment systems, electronic transactions and electronic commerce. Digital
cash depends on a number of cryptographic principles that we have already
discussed, namely digital signatures, and very specially blind signatures.

17.7.1 Properties of Digital Money

Perhaps the two most frightening nightmares about digital money are: for
the user, that it evaporates somewhere inside a network or computer; for the
authorities, that someone discovers how to counterfeit it. This is nothing that
could not happen with real money though: it could burn under the mattress in
a house fire or evaporate in the bank under a depression; it can be counterfeited
with several degrees of perfection.

It is extremely important however, to formalize a set of properties for the
digital money concept. Something against which algorithms, protocol and
system designs can validated. The following desirable properties, almost sic
from (Okamoto and Ohta, 1992), comprehensively define digital money:

Independence

Uniqueness

U ntraceability

Off-line Validity

Transferability

Divisibility

properties of digital money do not depend on its location

digital money items cannot be copied or reused

digital money items cannot be traced

digital money items have standalone value

digital money items can be transferred between users

digital money items can be subdivided

The independence property stipulates that digital money does not get less
secure when pieces get out of the user's wallet and into the merchant's termi
nal, for example. Uniqueness stipulates that you cannot counterfeit money by
copying an item or by reusing it. Untraceability is a very important property,
though many existing systems do not provide it: it guarantees, such as with
real money, that one cannot trace where the money was spent or who spent it.
Off-line validity assures that money can be spent without need for connection
to any central system. Transferability and divisibility ensure that users can
pay things or give money to each other, instead of only to the merchant, and
that pieces can be subdivided into smaller ones.

Existing digital cash systems fulfill only some of the properties, while an
experimental system proposed in (Okamoto and 0 hta, 1992) satisfies them
all. The need for particular properties and the impact of their absence will be
discussed further in Section 18.11.

17.7.2 Generating and Using Digital Cash

To introduce a digital cash payment system, we will use as our point of depar
ture, the cash minting protocol using blind signatures and cut-and-choose that
we studied in Figure 17.13. After Alice has note N (step 40 of Figure 17.13)

Exhibit 2026 Page 425

412 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

she goes on and spends it at Mike's shop. The basic protocol for payment with
digital cash is shown in Figure 17.14.

III Action Description

50 III A-+M Alice spends N in Mike's shop

60 I" M Mike the merchant checks Bob's signature

70 III M-+B If everything is Ok, he accepts payment and sends N to Bob

80 III B Bob checks the signature and credits V to Mike's account

Figure 17.14. Basic Digital Cash Payment Protocol

This protocol lets Alice or Mike reuse the note, although they cannot forge
it. This is called double spending, and a simple modification addresses the
problem. It consists of having Alice concatenate each form of note with a
random uniqueness string (Un). Bob now also verifies that the Un strings are
all different, when unblinding the forms. The note finally gets back to Bob,
after Alice bought her merchandise. Bob, besides checking the signature, also
checks that Un does not exist yet in his "spent" database list. If it does, then
there has been double spending. There is a final problem to be solved: double
spending is indeed detected, but the guilty may either be Alice or Mike, that
is, there is an imperfect detection. One possible remedy would be for Mike
to ask Alice to write a random non-erasable identity string (Id) on N. Then,
Bob compares the identity string in the database record with the one in the
note: if it is the same, Mike is the guilty one, if not, it is Alice. However, Alice
could have forged the Un random number generation, giving the same identity
string in the second time, to frame Mike. In consequence, this remedy and the
previous one are only safe for on-line spending.

Off-line operation requires more sophisticated techniques to create I d, shown
in the final protocol in Figure 17.15, where we consolidate the protocols of
Figures 17.13 and 17.14 and show the modified or added lines in bold. Recall
that Un is a uniqueness string randomly generated, long enough that there are
no two notes with the same Un. Before we proceed, let us introduce two more
cryptographic operations:

Secret Splitting - division of an item M of data in two parts such that
either of them alone reveals no knowledge about M; joining of the
two is a public operation that reveals M

Bit Commitment - processing of an item M of data such that M can
no longer be changed and the result reveals no knowledge about M;
M can be publicly revealed when the owner reveals a secret

Detail on the two can be found in (Schneier, 1996). The preparation of the
I d strings in step 10 is the following: I d is an ASCII string revealing Alice's

Exhibit 2026 Page 426

SECURITY PARADIGMS 413

III Action Description

10 A-tB Alice prepares p blinded forms of notes of value V, concate-
nates each form with one uniqueness string (Un) and p identity
strings (Id), such that for each one, Idj == IdjL IIdjR' and sends
them to Bob, the banker

20 III B Bob unb,linds p - 1 forms and verifies that they request V

21 III B Bob also verifies that the Unstrings are all different and that
the I d strings identify Alice

30 III B-tA Bob signs the remaining form, N, hands it to Alice and debits V from
Alice's account

40 III A Alice removes the blinding factor from note N

50 III A-tM Alice spends N in Mike's shop

60 III M Mike the merchant checks Bob's signature

52 M,A Mike gives Alice a binary selection string (8s) of length p and
requests Alice to reveal either I dj L or I dj R of each of the p
Id strings of N, depending of the value (0 or 1) of Ss in that
position

70 III M-tB If everything is Ok, he accepts payment and sends N to Bob

80

III
B Bob checks the signature, checks that the Un string does not

exist yet in his "spent" database list, inserts the Un and I d
strings in the list and credits V to Mike's account

Figure 17.15. Robust Digital Cash Payment Protocol

identity completely; I d is secret splitted in two halves I djL and I djR ; each one
is bit committed. This ensures that: Alice cannot change them; only the two
halves reveal Alice's I d. If the Unstring exists, there is a problem. Then Bob
checks the I d string: if it is the same, Mike is guilty, if not, it is Alice. Let us
understand why:

If they are the same, it can only be because either Mike copied the note, or
Alice forged two identical notes. However, if Alice spends the note again, the
new merchant will give her a different selection string 5s. It is almost impossible
that the two notes look the same (probability 2-P), even if Alice wanted to,
trying to frame Mike. On the other hand, if they look different, could it be
Mike trying to forge a slightly different note and reuse it, framing Alice? That
is impossible, since only Alice can reveal other sections of the I d string. In
consequence, if they are different, definitely Alice is cheating. Furthermore,
Alice must have revealed I djL to one merchant and I djR to another, in at least
one of the p I d strings, and can thus be identified by Bob.

So finally, we have a protocol whereby Alice can anonymously spend her
digital cash off-line without any fear of tracing, unless she cheats. However,

Exhibit 2026 Page 427

414 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

the protocol provides adequate safeguards to the merchant and the bank, by
detection of fraud. Recall that the security of this protocol lies in the blind
signature privacy, and in the very low probabilities: of Alice cheating the bank
(l/p, for p initial note forms); of there existing two equal Un strings (2- L , for
an L-bit length); and of there existing two identical selection strings (2- P , for
a p-bit length).

17.7.3 Payment with Tamperproof Devices

There are two problems with the previous protocols: people can still cheat,
although they are detected and prosecuted; eavesdroppers and spoofers can
defraud the scheme if they have physical access to the devices involved.

Wallet (Tamperproof Device)

secureChannel

Figure 17.16. The Guardian Concept

The obvious way to avoid this problem is to give Alice and the merchant
tamperprooj devicestamperprooj device where they store bank notes, and which
are capable of running a secure end-to-end protocol. This way, Alice or Mike
cannot tamper with the devices, and an intruder cannot penetrate the secure
channel. It is possible to conceive a secure off-line payment system this way.
Let us sketch a simple protocol for payment with tamperproof devices (e.g.,
smart-cards) :

1. Bob the banker has a public/private key pair (Termu , Term r) and a pub
lic/private key pair (Noteu , N ote r) to generate 1 E URO notes; Bob pro
duces Alice's wallet and Mike's terminal, and stores the N oteu and Term r

keys in the terminal; he also stores Termu in Alice's wallet;

2. Alice loads her wallet with a sum in notes produced and signed by Bob with
Note r , say at an ATM (another tamperproof device);

3. Alice connects her wallet to Mike's terminal, and wants to pay a purchase;

4. The wallet authenticates the terminal with the Termu key and both establish
a secure channel; the wallet transfers a sum V in notes to the terminal,
which the latter validates with the N oteu key;

5. The terminal later uploads the notes to the bank, and Bob checks his sig
nature, verifies the note number against a "spent" list, and credits Mike.

This is secure because the devices are trusted by the bank not to cheat, are
supposedly tamperproof, and only connect to an alien device after authentica
tion. Note that step 5 is a double check for an eventual fraud, but it implies
that Bob recorded the note number upon its generation and most probably,
Alice's identity as having purchased the note. When the note comes back, it

Exhibit 2026 Page 428

SECURITY PARADIGMS 415

may have recorded the place where it was spent, and so Alice's steps can be
traced. If the wallet, for example a smart-card, is trusted only by the bank who
issued it, Alice cannot be sure that her privacy will be safeguarded. If on the
other hand, it is trusted by Alice alone, then the bank or the merchant may
question its security.

17.7.4 Payment with Guardians

The solution lies in the guardian or observer concept (Chaum, 1992): the elec
tronic wallet consists of a tamperproof device whose processor is trusted by
the user. The wallet processor executes the protocols, but needs the coopera
tion of another element, the guardian, trusted by the bank. Their relative po
sition and interaction, as illustrated in Figure 17.16, is such that: the guardian
cannot tamper with the protocol execution; the guardian cannot communicate
with the outside; the processor cannot progress with the protocol execution
without the repeated assistance of the guardian. Alice trusts the processor
and knows that the guardian cannot disturb its operation, nor reveal secrets
to the outside without the processor noticing. The bank trusts the guardian
and only accepts operations in which the guardian has partaken. This is called
multi-party security. We can make our protocol sketch evolve to payment using
tamperproof devices with guardians:

1. Alice has a wallet with Gus, the guardian from Bob the banker;

2. Alice loads her wallet in the bank with notes of value V;

3. Gus loads a down counter with V, which it decrements at each payment;

4. Bob generates a pair of public-private signature keys, hands the private one
to the care of Gus, and gives the public one to Alice's wallet;

5. When Alice spends a note N, her wallet has Gus sign the note, after which
it decrements the counter;

6. Alice hands the note N to Mike the merchant (Mike has Gus's public key).
Mike checks the signature;

7. Mike sends N to Bob, who checks the signature again and pays Mike.

The protocol above is just a sketch: it is too simple and naive, since anyone
can generate a pair of keys and simulate Gus operation near Mike. Alice can
do double spending. Besides, the protocol is sensitive to Gus being broken
into. The solution lies in having Alice and Gus cooperate to generate a blinded
signature book containing totally anonymous signature key certificates called
digital pseudonyms, each of which will serve to validate one and only one
spending. A full discussion, and working protocols can be found in (Brands,
1995) and (Chaum, 1992).

17.8 OTHER CRYPTOGRAPHIC ALGORITHMS AND PARADIGMS

Encryption and Digest Algorithms

IDEA, International Data Encryption Algorithm (Lai, 1992) deserves our atten
tion because it is currently one of the most promising symmetric algorithms,

Exhibit 2026 Page 429

416 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

it is widely used and has been extensively analyzed during the past few years,
without any fundamental weaknesses discovered. The most relevant protocol
using it is PGP (see Section 19.1). It is patented and can be licensed for
commercial applications. It is a block cipher of 64-bit blocks.

RC4 is a symmetric stream cipher with variable key size, widely used in sev
eral protocols. One example is the SSL protocol (see Section 19.1). Although
it is proprietary (RSA Data Security), its sources became public domain on
the Usenet years ago. RC4 has a special export status if it uses a reduced key
length, which was up to 40 bits long during many years. Although becom
ing fragile, this was attractive to U.S. companies willing to export their secure
systems. They only have to modify the protocol to use a reduced key length.
What is strange is why this would be attractive to buyers in countries where
there are few or no restrictions to cryptography, in detriment of alternative
cryptographically-stronger products. Certainly, a different attitude would help
liberalize cryptography. Merkle's Knapsack was really the first asymmetric en
cryption algorithm, but suffered a series of cryptanalysis that compromised its
success (Merkle, 1978). EI Gamal (EIGamal, 1985) is an asymmetric encryp
tion and signature algorithm which inspired DSA. The main differences are
in performance, DSA being significantly faster. The Secure Hash Algorithm
(SHA), was proposed as a standard to be use together with the DSA signature
standard. It produces a 160-bit hash, and makes five passes over each block,
so it is in principle more secure against attacks than MD5, which has a 128-bit
output and makes four passes. It is however slower than MD5.

Random Number Generators

Random numbers are a very important building block in cryptography. Operat
ing systems sometimes do not have really random number generators: they have
a period and other deterministic characteristics, and although good enough for
most of our uses, they do not resist cryptanalysis. This is worrying if the se
curity of a given algorithm depends on true randomness. Some applications,
like physical circuit or link encryption (see Section 16.3), require that both
ends have devices such as shown in Figure 17.3: they cannot be really random
otherwise they could not be synchronized, but they have to look like producing
random sequences. These are called cryptographically secure pseudo-random
numbergenerators. A good quick test of a secure sequence is that it should
not be compressible. Techniques for generating good randoms are detailed
in (Schneier, 1996).

Steganography

Steganography is an old paradigm for concealing data. It existed before com
puters, but it can assume very sophisticated forms when computer technology
is available. It is based on hiding information under an apparently normal or
innocent piece of data. Historical examples include: invisible ink; markings
on paper, only visible under a certain light angle; tiny punctures on letters of

Exhibit 2026 Page 430

SECURITY PARADIGMS 417

a printed sheet; and so forth. Steganography is not alternative to cryptogra
phy. Cryptography obscures the content of a message, but not the message,
which reveals a notion of importance or secrecy to outsiders, because of being
encrypted. Steganography conceals the existence of the very message, in order
that outsiders do not even know that communication is taking place. In con
trast, when the coding is discovered, both the existence of the message and its
contents are revealed.

Key Escrow

Free use of strong cryptography has raised fears that underground forces such
as terrorists, organized crime and so forth could make use of it to conceal their
activities. In the U.S.A., this lead to a proposal of an escrow encryption sys
tem for use by the general public, where the keys of the users would be copied,
split between two state agencies and safely stored in databases. The system
would normally preserve confidentiality, but under a court warrant requiring the
cooperation of both agencies, the key could be surrendered to the authorities,
which would then be able to tap communications or decrypt files. These rules
were defined in an Escrowed Encryption Standard (EES) (EES, 1994). The
algorithm initially proposed for the system was a symmetric algorithm called
Skipjack whose structure remained secret, and which would only be available
through tamperproof hardware devices, of which at least two prototypes were
produced, called Clipper and Capstone. Later, a more reasonable proposal
took form, in what was called fair cryptosystem by its inventor (MicaH, 1993).
The basic ideas of the method are the following: it relies on resilient public-key
cryptography; it lets users generate their own keys pairs; the private key is split
in n parts and handed to several official agencies, with an algorithm that guar
antees that the key can only be reconstructed by having at least k ~ n parts.
The latter condition prefigures what is called threshold cryptography.

17.9 AUTHENTICATION

Authentication is the process of proving the identity of a principal A, or that of
proving that B acts on behalf of A. Real systems solve several facets, stronger
or weaker, of this problem. For example, Alice may prove her identity as creator
of a document by signing it, or as an authorized user of a service through a
password. A machine Threepeeo may prove its identity to another machine by
its address. These are examples of one-way authentication. What if Alice does
not trust the server? Then, the server must also authenticate itself to Alice.
This is called mutual authentication.

When Alice sits on Threepeeo, she delegates the authentication process on
it, to execute the login program on the server. What happens if Threepeeo
has been tampered with, or someone stole Alice's password? Or, what if some
other machine impersonates Threepeeo's address? How can Alice or Threepeeo
unequivocally prove their identity? Alice could use her cryptographic signature
in the process of authentication. A PIN-protected tamperproof smart card Ar-

Exhibit 2026 Page 431

418 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

toodeetoo, personal to Alice, may prove its identity and indirectly that of Alice.
The relationship established between Alice and Threeepeeo or Artoodeetoo are
forms of what is called delegation. However, what if Alice lends Artoodeetoo
to someone, or loses it together with the PIN? Or else, she lets her private key
be stolen?

This section will discuss answers to these questions.

17.9.1 Types of Authentication

There are three basic types of authentication, depicted in Figure 17.17:

Unilateral

Mutual

Mediated

authentication is based on principal A authenticating itself
to principal B

authentication is based on principals A and B mutually au
thenticating themselves

authentication is based on principal A being authenticated
to principal B by a mediator T, whom they both trust

I'm Alice,
here are my credentials

I~----'I
Unilateral Authentication

Mutual Authentication

I'm Alice,
here are my credentials

And who are you?

I'm Bob,
and here are my
credentials too.

Figure 17.17. Authentication Types: (a) Unilateral; (b) Mutual

Unilateral authentication is the simplest form of authentication. A principal
A (Alice in Figure 17.17a) has to produce credentials that accredit her with
principal B (Bob). The term credential is used here in a free manner. In fact,
it may take several forms, as we will see in Section 18.5. It can be a password,
a signature or a cryptographic seal on one or more messages, or the proof of
knowledge of any of those. Unilateral authentication is characterized by the
fact that at the end of the protocol, Bob (often a server) believes it is Alice
who is dialoguing with it, whereas Alice (often a user) can never be sure that

Exhibit 2026 Page 432

SECURITY PARADIGMS 419

she is really talking to Bob. In certain situations, this is inappropriate, and
mutual authentication should be used. Essentially, as Figure 17.17b suggests,
both principals follow similar steps to persuade one another of their identities.
At the end of the process, both Alice and Bob are mutually sure that they are
talking to one another.

In other cases, namely in distributed systems, principals are capable of per
forming pair-wise mutual authentication, as defined in the previous paragraph.
More precisely, all principals are capable of performing mutual authentication
with a distinguished principal, a mediator. Each newcomer in the system must
"learn" how to authenticate to the mediator. In turn, the mediator is capable of
performing authentication (unilateral or mutual) between any two principals in
the system. This scheme is obviously attractive for high-level authentication in
open distributed systems. As suggested in Figure 17.17c, Trent already knows
Alice and Bob, but they do not necessarily know, or trust, each other. Alice re
quests Trent to introduce her to Bob. Trent hands credentials to both, that will
allow Alice and Bob to perform an exchange similar to that of Figure 17.17b,
and get authenticated.

I~

~

.all
Mediated Authentication V

Figure 17.17 (continued). Authentication Types: (c) Mediated

17.9.2 Delegation

Another challenge to security related with distributed systems, is that they are
modular, and geographically dispersed. In consequence, an end-user needs to
have a few devices perform operations, many often in remote machines, on her
behalf. The principle to achieve this correctly, that is, to authenticate other
devices to act on one's behalf, is called delegation.

Consider the following, picking again our example from the beginning of
this section: Alice is trying to login from her PC Threepeeo onto a department
server S. Most of the time, all Alice does is type in her username and pass
word. Threepeeo takes care to perform all the necessary calculations and run
the necessary protocol steps. So, when Alice sits on Threepeeo, she actually
delegates the authentication process on it, to execute the login program on the
server.

Exhibit 2026 Page 433

420 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

The first problem is: what if Threepeeo has been tampered with? Threepeeo
will do all sorts of inconvenient things using Alice's name and account, and it
is hard for Alice to say she did not. This problem is caused by the fact that
Alice delegated her full privileges in the organization on her computer account,
without restriction and forever. For example, Alice is organically untitled to
access the department's CD-ROM recorder, but technically, it is Alice's account
on Threepeeo that has that right, always. If Alice would delegate properly, by
issuing specific authorizations for specific actions, during a specific time, then
she would have a powerful mechanism for secuTely having devices do actions
on her behalf, with a much narrower window of vulnerability. Moreover, they
could forward the permission to other devices, if the latter would still respect
the conditions of the delegation. This is the principle of specific delegation, and
has to do with what Alice authorizes others to do.

The second problem is: What if someone or something impersonates Alice or
Threepeeo and issues (forges) or forwards a delegation to the wrong place, with
a wrong content? This may cause trouble and will be problematic for Alice.
This problem happens when the delegation techniques used by Alice do not
allow her to unequivocally prove her identity, that is, authenticate herself. If
Alice would authenticate properly, by issuing delegation certificates that have
standalone validity, that is, remain as secure during their useful life as they
were when they left Alice's hands, this problem would be highly mitigated.
Use of cryptographic authentication protocols is paramount here. This is the
principle of authentication forwarding, and has to do with ensuring that it is
Alice who authorizes others to do things. It is the only secure way to forward
a delegation.

A final problem remains, and it is: What if someone is still capable of forg
ing the original certificate? This may cause a lot of trouble and it will be even
harder for Alice, since as mechanisms get more sophisticated, Alice will have
more trouble proving that they have been tampered with. The first explana
tion would be that the cryptography involved had been broken. The problem
is however more complex than that, it has to do with what we might call the
end-to-end authentication problem, and may occur even under the doubtful as
sumption that the cryptographic certificate were absolutely secure after issued.
The certificate might have been forged because someone stole Alice's keys or
passwords, and there is little one can do about it. Alternatively, the forgery
might have taken place somewhere between Alice's keyboard and the certifi
cate file writing, because someone might have tampered with Alice's machine
in order to perform a sophisticated impersonation attack. The situation can
be improved by reducing the vulnerabilities of that tiny end path from Alice,
the person, and her first delegation, the device that issues certificates. The
protected tamperproof device Artoodeetoo where Alice enters a PIN or a pass
word and which issues the certificate or cooperates with her machine for that
purpose, is a good advance. It is practically end to end, so nothing can get in
the middle. Of course, Alice could lose Artoodeetoo, with her PIN written on
the back. Well, then we would need serious end-to-end stuff. Short of implant-

Exhibit 2026 Page 434

SECURITY PARADIGMS 421

ing a computer chip into Alice's brain, some advanced biometrics technology
such as iris scanning can help, because it is still difficult for Alice to lend or
lose her eyes. However, there is no definitive "cryptocratic" solution, because
you should not forget the comments in Section 16.1: more than technology, the
behavior of humans is central to achieving security.

17.9.3 Key Distribution

These are the basic authentication paradigms. Before concluding, let us intro
duce a problem related with authentication: key distribution. Cryptographic
protocols need keys to operate, genuine keys have to get to the participants,
and sometimes these keys are established just for one session. In some cases,
it is convenient to combine key exchange with authentication, to avoid imper
sonation and forgery attacks.

Key distribution in general is a paradigm crucial to any cryptosystem, the
has two facets. In fact, in all the protocols we have just discussed, we have con
sidered that long-term key distribution had already taken place, that is, the keys
were already with their legitimate owners and users. This includes long-term
secret keys shared between two principals or public/private key pairs used for
the purpose of signature and authentication. Another facet of the key distribu
tion problem is what is called short-term key exchange, this particular facet of
key distribution being understood as the ad hoc, frequent and on-line exchange
of keys for temporary use, e.g., with the purpose of setting-up a temporary
session or communication channel. These keys are called session keys. This
is obviously a sensitive issue, since, recalling our introductory notions on risk,
it is an operation subject to a very high level of threat. In consequence, any
vulnerabilities in the protocols will be highly exposed.

The long-term key distribution problem is the bootstrap problem of most
cryptographic systems, from authentication to communication systems. All
must start with the first shared key or pair of asymmetric keys. Long-term
public keys may be distributed by the owner to the people she interacts with,
via some trusted off-line mechanism. After a few keys are in place, they can
be used to sign new key files, which we call certificates, in a transitive signing
chain of mutual trust. This is used for example in PGP (see Section 19.1).
Public key certificates can travel securely over the network. Exchanging shared
secret keys for symmetric cryptography is a harder problem. Unlike public key
distribution, secret keys in transit not only risk corruption but also disclosure.
The "primordial secret" has to be sent by some other means, for example a
combination of mail, telephone, and fax. After that, principals can exchange
new keys under the cover of this first key.

17.10 ACCESS CONTROL

Access control is concerned with validating the access rights of users to resources
of the system. It can be seen at different levels. One may control the access
of end users to database records, control the access of users and programs to

Exhibit 2026 Page 435

422 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

files, or control the access of program instructions to segments and pages of
a computer system. The first type of control is implemented by the database
management system, the second by the operating system and the third by the
microprocessor. There are several approaches to access control, and systems in
general possess some form of such control. The advances in computer security
have contributed to a sophistication of access control mechanisms and protec
tion models. In what follows we present the main access control mechanisms:
access control lists; capabilities; access control matrices. Mechanisms are used
to implement access control models, which essentially reflect a specification of
how principals should access computer resources.

A protection domain is the set of resources that lie under the realm of an
access control mechanism. They could for example be the O.S. resources de
picted in Figure 16.4. The several ways resources can be accessed are called
access rights: read, write, execute, lookup, create, delete, truncate, append,
insert. Resources are generically called objects: pages, files, processes, devices.
The entities trying to access are called subjects: humans, programs.

17.10.1 Canonical Access Control Mechanisms

The most popular access control mechanism, used by many operating systems,
is the access control list or ACL. The ACL mechanism is defined by the
following:

• each object has a list (ACL) of the subjects that may access it;

• each element of the list is a pair (subject, rights), where: subject is an I d of
a user, a process, or a group; and rights is the enumeration of the access
rights granted to this subject on that object, usually a bit mask (e.g., xrwd
for UNIX, i.e. execute, read, write, delete);

• the ACL is protected by the system against unauthorized modification.

Among the advantages of the ACL approach, we note that the access control
of an object is centralized in a single structure. Besides, when many subjects
share the object, they are simply grouped in specific or generic groups (e.g.,
world in UNIX is "all subjects"). However, in security terms, grouping can
present a vulnerability, since it hides access rights of individual subjects and
is thus prone to granting access rights to the wrong subject, for example when
increasing the access rights of a group. On the other hand, discriminating every
subject's rights would be impracticable, since it would soon overload the ACL.
Another well-known access control mechanism is the capability. The capability
mechanism takes a different approach from the ACL one:

• each subject has a list of the objects of a protection domain which it may
access;

• each entry of the list is a capability: a pair (object,rights) , where: object
is the I d of a resource; and rights is the enumeration of the access rights
granted to that subject on this object, usually a bit mask;

• the capability is protected by cryptography against unauthorized modifi
cation or forging.

Exhibit 2026 Page 436

SECURITY PARADIGMS 423

Compared with ACLs, capabilities are oriented to subjects rather than to
objects. For that reason, they do not exhibit the problems of ambiguity of
subject access rights and of overloading: a subject must have a capability for
any object it wishes to access; and only has capabilities for the objects it
accesses. Besides, since a capability is protected, it can be securely transferred
or copied to other subjects, yielding delegation of access rights. Note that
capabilities do not reside permanently with the subjects, they are requested to
a control entity when necessary. This entity has a central list of subjects versus
access rights to objects, which may be an ACL, or an access control matrix,
that we discuss below.

17.10.2 Access Control Matrix

A formal model of access control (Lampson, 1974) requires a more complete
statement of access rights, in the form of an access control matrix or ACM. The
ACM mechanism is defined by the following:

• each subject has a list of the objects of a protection domain which it may
access;

• each object of a protection domain has a list of subjects that may access it;

• these two lists form a matrix where each entry is a triple (subject, object, rights),
where: subject is an I d of a user or process; object is the I d of a resource;
and rights is the enumeration of the access rights granted to the subject on
the object;

• the ACM is protected by the system against unauthorized modification.

An access control matrix will normally be sparse, since subjects have on
average access to few objects. A simple example is shown in Table 17.3. Objects
are the financial, the personnel, the stock and production files of the information
system of an organization. The general manager only has read access to all files.
Although she is the most important officer, she does not need to have greater
rights in order to perform her function. This feature is very important, and
is called the least privilege rule (Saltzer and Schroeder, 1975). Another very
important rule in protection of information is the need-to-know rule: regardless
of his position in the organization hierarchy, a subject should only be given
access to the information needed to perform his work. The example follows
this rule in general: the managers only have rights over the objects related to
their functions. In consequence, a subject should be given the least amount of
rights to the least number of objects possible in order to perform her job.

Searching a column of the matrix of the figure is equivalent to searching
the ACL of an object for the rights of a given subject. Searching a row of the
matrix is equivalent to finding the capability of a subject for a given object.

17.10.3 Discretionary Access Control

Until now, we said nothing about the form that the ACL, capability, or ACM
may take. Who defines what a subject can do with the objects she creates or
owns? Most systems do not impose any a priori restriction on such definitions.

Exhibit 2026 Page 437

424 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 17.3. The Access Control Matrix

Subjects

\I
II finance

Objects

personnel stock production

General Mgr. II r
Finance Mgr. rwcd
Production Mgr.

r
r
rw

r
r
rw

A subject can give whate~er access rights she decides to the objects she creates
or controls. We say these systems where control is subject-based follow a dis
cretionary access control (DA CC) policy, which is essentially a lack of policy for
that matter. Note that this does not imply any lack of quality or effectiveness
of the access control mechanisms just discussed, we are now at a slightly higher
level of discussion: what are the rules to fill in the access control tables, that
is, to decide which objects subjects or groups of subjects may access, and in
what manner. The set of these rules is called the access control policy.

Consider subject s and object 0. In a DACC policy, the access rights r
granted to s on °solely depend on an ad hoc strategy F of the administrator
or the owner of 0, towards s, decided on a case-by-case manner:

DACC: (s,o,r) = F(s,o)

The DACC policy as defined by F can change dynamically, and can vary at
the administrator's or owner's will. Discretionary access control is obviously
the policy followed by most commercial-grade operating systems and database
management systems.

17.10.4 Mandatory Access Control

Discretionary access control makes it impossible to enforce an access control
policy, since access rights may change dynamically according to the current
rights and the will of the users. If there is no formal and automatic way to
check access control of authorized users, there is also no way to control malicious
software, such as Trojan horses. A more restrictive policy is required, where
users are not allowed to change access rights of objects, even if they own them,
if that change is against some highly defined access control policy. We say these
systems follow a mandatory access control (MACC) policyl.

In order to follow a MACC policy, each subject or object must have a static
security class or label (also called classification or clearance). Consider subject
s with security class C(s), and object 0, with security class C(o). The access

IThe acronyms used are normally DAC and MAC, but we wish to avoid any confusion with
other terms such as Message Authentication Code, MAC.

Exhibit 2026 Page 438

SECURITY PARADIGMS 425

rights r granted to s on °solely depend on a static strategy F, which is a
deterministic function of the security classes of both, and not of the particular
subject or object. In consequence, the owner of °cannot change the access
rights for s, if that violates the access control policy rules:

MACC: (s,o,r) == F(C(s),C(o))

Now that you have understood the difference in level of abstraction between
access control mechanism and access control policy, we may introduce an even
higher level of abstraction: the security policy. A security policy is the top, hu
man level, set of rules to enforce security in an organization. We are obviously
interested in computer-supported organizations. A security policy dictates,
amongst other things, the access control policy, that is, the rules to form F,
which in turn will be implemented by the access control mechanisms. The
access control policy is either a MACC or a DACC policy, or a MACC pol
icy complemented by a DACC policy. This whole strategy is concerned with
protection models, that will be studied in Section 18.7.

Figure 17.18. Secure Channel

17.11 SECURE COMMUNICATION

In an analogy with reliable communication, secure communication means en
suring that two or more principals (users, machines, protocols), communicate
with security, despite the occurrence of malicious faults (attacks). There are
essentially two ways of achieving secure communication over insecure media:
secure channels and secure envelopes.

Indeed, a sufficient condition to achieve secure communication, is that prin
cipals are capable of building a secure channel between them. The channel is
an abstraction that can be realized physically (see Figure 16.2) or virtually
(see Figure 16.3). Observe Figure 17.18. Suppose A and B are connected by a
pipe as shown, so that the pipe goes directly from A's mouth to B's ear, with
no bifurcation. The pipe is completely opaque, so that no one can see what it
carries. Finally, the pipe's material is also hard, so that no tool can penetrate
it, inject or suck things from the inside, without that being noticed. That's
a secure channel, and in fact the attributes we have just exemplified can be
translated into the following properties:

authenticity - what B receives was sent by A, who cannot deny;

confidentiality - only B reads what A sent;

integrity - what A sent cannot be altered without detection.

Exhibit 2026 Page 439

426 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Figure 17.19. Secure Envelope

A secure channel is so to speak a form of immediate communication, and
applies to the traditional forms of computer communication or telecommuni
cation links, such as local area network protocols, TCP lIP, X.25, an so forth.
By contrast, we identify a form of deferred communication, where it is desired
to secure messages whose delivery is sporadic and deferred in time. Electronic
mail is a perfect example of this. In that case, messages must have standalone
security, that is, be wrapped in a secure envelope, which should enjoy the same
security properties of the secure channel above: authenticity; confidentiality;
integrity. Figure 17.19 depicts the principle of the secure envelope. A message
is signed, put inside an opaque envelope, and the envelope is sealed. The whole
packet has standalone security while traveling through an insecure medium: it
cannot be changed without that being noticed (integrity); it cannot be read
(confidentiality); and once opened, the signature can be verified (authenticity).

17.12 SUMMARY AND FURTHER READING

This chapter discussed the main paradigms concerning security. It addressed
basic concepts of security, such as the trusted computing base and the founda
tions of modern cryptography. A detailed study was made of the main cryp
tographic paradigms: symmetric and asymmetric cryptography; secure hashes
and message digests; digital signature; and digital cash. Authentication, access
control, and secure communication complete the set of paradigms studied in
this chapter. A remarkable text on secure channels, simultaneously simple and
comprehensive, is Needham's chapter in (Needham, 1993). Additional crypto
graphic protocols can be found in (Schneier, 1996; Ryan et aI., 2000; Menezes
et aI., 1999). A reference publication for real random numbers is the Rand
Corporation million-number table (RAND, 1955). For an in depth discussion
on digital cash properties, see (Okamoto and Ohta, 1992). Digital cash and
guardians are detailed in (Brands, 1995), (Chaum, 1992), and (Boly et aI.,
1994). For further material about steganography, see (Wayner, 1993). A com
prehensive treatment of authentication is found in (Kaufman et aI., 1995).
(Pfleeger, 1996) and (Abrams et aI., 1995) do a thorough study of protection
and access control mechanisms and security policies. The principles of intrusion
tolerance, as opposed to prevention, are laid down in (Deswarte et aI., 1991).
For discussions on secure group communication see (Schneier, 1996; Reiter,
1996). Another challenging problem is maintaining keys in a group communi
cation system, where members enter and leave (Steiner et aI., 1998).

Exhibit 2026 Page 440

18 MODELS OF DISTRIBUTED

SECURE COMPUTING

This chapter aims at providing the architect with a global view of the problem
of security, by showing where the paradigms learned in the previous chapter, fit
in the several models of distributed secure computing. It starts by discussing
the main classes of malicious faults and errors expected in computer systems,
and in distributed systems in particular- that is, attacks and intrusions. Then,
it equates the main frameworks and strategies for building secure systems- au
thentication, secure channels and envelopes, protection and authorization, and
auditing- as a form of bridging from the detail of paradigms to the global view
provided by models. Finally, specific models for distributed secure computing
are prese:r}1ted.

18.1 CLASSES OF ATTACKS AND INTRUSIONS

18.1.1 Computer Misuse

Not all types of security-related incidents are perpetrated by hackers (nonusers)
through sophisticated techniques. We have already discussed the importance of
negligence or occasional abuse of authorized users. Computer misuse designates
actions and attitudes, by users and nonusers, aimed at impairing the security
of computer systems. Abrams et al. introduce a comprehensive classification of
computer misuse with increasing degree of severity and sophistication (Abrams
et aI., 1995):

P. Verissimo et al.
© Kluwer Academic 2001

Distributed Systems for System Architects
Exhibit 2026 Page 441

428 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Human
error

Abuse of
authority

Direct
probing

Software
probing

Penetration

Subversion

Accidental human mistake of an authorized user causing a vul
nerability that may lead to intrusion. For example, giving
world read/write permissions to a confidential file, or creating
an account without password

Intentional action of an authorized user abusing the authority
granted by his activity. For example, a bank teller setting-up
schemes of bogus transactions that leak a few cents each time
to his personal account

Attack made by an unauthorized user (or nonuser) to a system
by means of passively exploiting existing vulnerabilities with
the aim of intrusion. E.g., entering through a forgotten account
with default password, or using a stolen or guessed password

Attack made by a nonuser to a system by means of passively ex
ploiting existing vulnerabilities with the help of specially built
malicious software, with the aim of intrusion. For example,
use of a Trojan horse that pretends to be the login program,
logging inadvertent users while it steals all their passwords

Attack made by a nonuser to a system by means of actively ex
ploiting existing vulnerabilities in the protection mechanisms
of the system, normally with the help of specially built mali
cious software, with the ahn of intrusion. E.g., sending a ma
licious HTTP request that confuses the HTTP server, leading
it into giving an anonymous intruder total (root) control

Attack made to a system, either at design or runtime, by de
signers, or by authorized or unauthorized users, by means of
covert and methodical undermining of the protection mecha
nisms of the system, with the aim of continued intrusion. For
example, by modifying operating system programs in order to
introduce trapdoor that covertly perpetuate the intrusion

Human error and abuse of authority have little to do with computer tech
nology, since a computer can hardly tell whether a legitimate user is using or
abusing it. In fact, current solutions to this kind of misuse lie with ensuring
users behave as they should, by means of inspection and auditing. Probing,
whether manual or automated with the help of software, involves the discovery
and/or direct use of vulnerabilities of the system. The attacker passively ex
ploits the way certain functions are wrongly configured, or turned off, or else
uses information obtained by other means (this is akin to a burglar entering
a facility with a stolen key, pretending to be a legitimate user). Penetration
bypasses the protection mechanisms, questioning their effectiv~ness. In conse
quence, it is an active and very aggressive attack against the implementation
of the system's security policy (this is akin to the same burglar entering the
facility, disabling the alarm, and guessing the safe combination). Subversion
is the ultimate attack. It can be made either at design time- by one of the
engineers, or at distribution time- by inserting malicious patches in down-

Exhibit 2026 Page 442

MODELS OF DISTRIBUTED SECURE COMPUTING 429

loadable code, or at runtime- after a successful intrusion. For example, the
latter can be done by replacing crucial operating system programs- such as
login, remote login, password change, auditing and monitoring, command line
editor- with a complete kit of malicious programs with trapdoors and Trojan
horses. Very often, a computer system is threatened at different times and in
a pre-planned sequence. In generic terms, this is an intrusion campaign, and
its consequence for the targeted organization is a security hazard. In general
terms, intruders use a combination of the described types of computer misuse,
combining human related misuse with attacks exploiting different vulnerabili
ties. Technically, it is usual to separate attacks between active and passive, with
regard to the kind of interaction between the intruder and the target system.

18.1.2 Active Attacks

Active attacks are characterized by aggressive attempts to penetrate the sys
tem, disrupt its operation, and/or steal, modify or destroy data. Attacks may
be directed at networks, machines, services or information.

Spoofer

Figure 18.1. Spoofing Attack

For example, penetration attacks may be directed at an internal network
by breaking through a firewall, or at a host, by defrauding its access control
mechanisms, and stealing information. Penetration may instead be directed at
a specific protocol, to gain control of the interaction, such as a horne banking
transaction. Spoofing is a specific form of such an attack, whereby a malicious
host intercepts communications between two participants, changing its contents
dynamically. The modification may take several forms: insertion/deletion or
replay of \vhole messages, on-the-fly modification of message content. This last
form is depicted in Figure 18.1. This attack can be used to penetrate crypto
graphic communication, or to append malicious software to downloaded pro
grams. A well-known attack on Internet protocols is address spoofing, whereby
source addresses of IP packets are modified to make them look like they are
coming from somewhere else. The attack may be prepared by a previous attack
on a DNS server that modifies a whole set of (name,address) pairs.

Disruption attacks are addressed at resources, for example communications
jamming or bringing an operating system down. These attacks may be directed
at specific services, hence the name denial-of-service attacks. A typical such
attack is email spamming, whereby email servers are flooded with phony mes-

Exhibit 2026 Page 443

430 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

sages, to the point of being brought down. Modification attacks concern the
contents of information repositories, e.g., databases, by modifying or destroying
them. Specific Web-based services have also been attacked lately as a form of
sabotage. These are either disruptive attacks, or modification attacks addressed
at the content of the pages.

Attacks can be made either directly or through malicious software, such
as viruses, worms, bombs, trojan horses and trapdoors. A virus is a software
module that is appended to genuine programs. When the program executes, the
virus is activated and performs the planned attack, often a mix of penetration,
modification and disruption. Viruses, besides attacking the system, try to
reproduce themselves, by infecting other programs in the machine.

A worm, unlike a virus, is an autonomous program which in general per
forms penetration attacks. Worms, once arrived at a host, install themselves
taking advantage of vulnerabilities of the victim O.S., and prepare the assault
of the next host. Besides migrating, they can copy themselves like viruses do.

A bomb is a disruption attack consisting of inserting a malicious software
module inside a program or a system that perform some useful function, such
as a database server. When activated, it will do something destructive, from
blocking the server to deleting the database. The detonator is built by modi
fying the original program or O.S. configuration, so that the bomb is fired by
a logical condition (logic bomb) or at a given date (time bomb). Bombs have
been used very often for blackmailing companies.

A Trojan horse, or trojan for short, is a program that replaces legitimate
system or user programs, and performs attacks on the system. Its name derives
from the fact that it also executes the function that the original program was
supposed to, in order not to be detected. A trapdoor is a special kind of
trojan, normally a software module inserted inside a system, either during or
after design, in order to subvert the access control mechanisms and let non
authorized users in.

A trapdoor is a piece of code inserted in a software module, either during or
after design, providing a means of accessing a system other than the usual access
procedure. A special kind of trojan consists of an access control mechanism
with a trapdoor inserted, in order to let non-authorized users in.

A covert channel is a subtle form of information-theft attack. It consists
of an indirect communication channel outside the reach of the access control
mechanisms, which can be used to disclose information to an unauthorised user
through a non-detectable means. A primitive channel would consist of having
the leaking program encode the leaked information inside digital pictures served
by a Web server on the same host (we briefly mentioned the underlying tech
nique, called steganography, in Section 17.8). These channels are sometimes
extremely subtle and strange, such as having the leaked information encoded
as a pattern of disk usage (rythm of access, pattern of allocation), to be read
and decoded by any non-privileged program in the same host.

Exhibit 2026 Page 444

MODELS OF DISTRIBUTED SECURE COMPUTING 431

18.1.3 Passive Attacks

In general, we term passive attacks those which, unlike active attacks, do not
require an explicit action against the security mechanisms of systems or the
integrity of their information. The hacker merely uses what is within reach,
sometimes materialized or made possible by human error, or abuse of authority,
such as reading files incorrectly open to the world, or logging in with a guessed
password. Typical passive attacks are reading attacks, often aimed at gathering
information for planning an active attack, for example, following the execution
of a protocol, or logging login/password pairs passing on a network.

Probing, to explore basic system vulnerabilities, is the basis of many pas
sive attack techniques. Internet IP discovery and port scanning is the basic
technique to unveil vulnerabilities of networked installations. Password guess
ing is the basic technique against hosts using password authentication. The
same idea applies to key guessing, for cryptographic protocols. These attacks
are normally addressed at an encrypted form of the password or key, e.g., such
as found in a password file, by exhaustively trying off-line the possible combi
nations, until a match is found with the encrypted item. This is called off-line
guessing, and practical attacks are made with programs that test combinations
of a glossary of probable words to be used by the password or key owner. Such
a dictionary attack includes dictionaries of the language, and personal infor
mation that may be grabbed, for example, from the subject's Web page. These
programs are as useful to hackers as they are to system managers, who may
detect poor passwords and instruct the owners to change them. A popular such
tool is the crack for UNIX.

Alice Bob
Sniffer
~ ...

!~~
....f ~.

Figure 18.2. Sniffing Attack

Sniffing is the typical passive attack on a network, whereby the intruder
exploits the broadcast nature of propagation of a medium, such as wireless
communications or local area networks. The attack over a LAN is depicted in
Figure 18.2, where the sniffer is a machine whose LAN adapter is configured
to receive all the passing frames (promiscuous reception). Information received
is filtered and stored in disk, to be used later. Sniffers are normally network
management and debugging tools, such as tcpdump for the Internet. However,
if misused, they become very nasty artifacts, because of their stealth nature: it
is very hard to trace a sniffer, since it is absolutely passive.

Exhibit 2026 Page 445

432 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

File or database snooping is a passive attack directed at stored data, very
frequently enabled by erroneous configurations and other vulnerabilities such as
default passwords or wrong access permissions, easily discovered by methodical
but discreet probing, also called doorknob rattling.

Although less destructive than active attacks in appearance, passive attacks
are much more difficult to trace, exactly because of their frequently stealth
nature, and are very often the first line of a final active attack.

18.1.4 Intrusions

In terms of effect, the results of successful attacks to computer and commu
nication system components fall into one of the following general intrusion
categories:

Resource
Theft

Resource
Disruption

Information
Theft

Information
Modification

Unauthorized use of computational or communication re
sources

Malicious disturbance of the service provided by computa
tional or communication resources

Unauthorized interception, disclosure and/or use of informa
tion such as data and/or software, in computing or commu
nication systems

Unauthorized disturbance of the content of information in
computing or communication systems, by alteration, dele
tion, and/or forging

This classification emphasizes two important issues: the separation between
computing or communication resource security, addressed by the first two, and
information security, addressed by the last two; and the separation between
stealing and disturbing.

These distinctions are important in defining strategies, since different organi
zations may have different policies about the relative importance of information
versus resource security, or confidentiality versus integrity and availability. It is
also important because different techniques apply to each category of intrusion.

18.1.5 Attacking a Cryptographic System

Let us analyze now specific attacks to cryptographic systems, which can take
several forms: attacks on the algorithm; attacks on the messages; attacks on
the keys; attacks on the protocol.

Any or all of these attacks can obviously be combined in an intrusion cam
paign against a cryptographic system. The algorithm is a crucial component of
the crypto system. One of the main reasons why algorithms should be public is
in order for cryptologists to know its structure, test its security, and eventually
build trust on it, if it is not broken, or cryptanalyzed. Attacks on algorithms
normally follow a few known patterns, or a combination thereof, based on what
the cryptanalyst knows. In a cyphertext-only attack, the attacker only has ac-

Exhibit 2026 Page 446

MODELS OF DISTRIBUTED SECURE COMPUTING 433

cess to encrypted material. This is the basic attack, but yields very little to
work with for resilient algorithms. The attacker needs more information to be
effective, for example, he can manage to get hold of cyphertext blocks of which
he knows the plaintext (for example, by acting as a legitimate user). This is
known as a known-plaintext attack. Getting more sophisticated, he may try
to manipulate the cryptosystem such that it encrypts selected blocks of data,
and then collect the corresponding cyphertext. This is called a chosen-plaintext
attack. This material will serve to look for vulnerabilities that invalidate one or
more of the rule-of-thumb properties of a good cryptosystem listed in Table 17.1
of Section 17.2.

Attacks on messages have to do with the attacker playing with cipher blocks
in transit in a secure channel or envelope, by changing, replaying or reordering
whole blocks. The reuse of a signed text or digital cheque, or the forging of a
financial transaction using blocks of genuine transaction, are examples of such
attacks. Ciphers should be strengthened with information used only once, that
is called nonce, such as time, sequence numbers and random quantities.

Attacks on keys have two facets. The first addresses the fundamental limit of
computational ciphers, which is the feasibility of making a brute-force attack,
by testing all possible combinations. The second facet has to do with guessing
attacks. Long keys may render the first attack infeasible, but a cryptosystem
can fall long before that limit is reached, given a poor choice of keys. Keys are
susceptible to dictionary attacks as are passwords. Even brute-force attacks
may become fast enough, if the key owner uses a subset of the character space
(e.g., lowercase, alphabet/only), since the search space is decreased.

A crypto system is materialized by a protocol. This protocol may have logic
vulnerabilities, that have nothing to do with the algorithm but with the way
it is implemented in a real system. The attacker studies the protocol, and
performs active attacks with the aim of confusing it and cause it to take wrong
decisions, such as surrendering a shared secret key, or letting the attacker into
a server without completing his authentication. For example, a spoofing attack
can undermine an otherwise correct crypto system. The types of attacks
described show that a cryptosystem does not live just on a good algorithm. In
fact, a system using an unbreakable algorithm may fall under naive message
formats, poorly chosen keys, or protocol bugs. In consequence, an architect
should always have a systemic view towards solving security problems.

18.2 SECURITY FRAMEWORKS

After discussing the possible threats to system security, we spend this section
analyzing the main frameworks with which the architect can work in order to
build secure systems, introducing some of the models addressed later in this
chapter, such as authentication and key distribution with key distribution cen
ters and certification authorities, hybrid cryptography for secure channels and
envelopes, or protection via discretionary or mandatory access control policies.

Exhibit 2026 Page 447

434 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

18.2.1 Secure Channels and Envelopes

Secure channels and secure envelopes are basic paradigms of secure communica
tion studied in Section 17.11. They form a framework for setting-up distributed
processing services with security, such as remote sessions, file transfer, RPC,
Web servers, email, messaging services, on-line transactions, and so forth.

Secure channels are normally set up for regular communications between
principals, or communications that last long enough for the concept of connec
tion to make sense. For instance, file transfers or remote sessions, among the
ones just mentioned. They live on a resilience/speed tradeoff, because they are
on-line, and may use combinations of physical and virtual encryption. Secure
channels adopt per-session security, and normally use symmetric communica
tion encryption, which provides the best performance, but requires attention
in terms of resilience. Practical protocols should protect their keys, and reveal
as little as possible about the communication channel that may be useful for a
cryptanalist.

Secure envelopes are used mainly for sporadic transmissions, such as email.
They resort to per-message security and may make use of a combination of
symmetric and asymmetric cryptography (also called hybrid) as a form of im
proving performance, especially for large message bodies. However, they are
not so susceptible to the resilience/speed tradeoff, given their deferred nature.
This is relevant for ultra-sensitive communication, where longer keys and asym
metric encryption may be used, to increase resilience of the ciphertext.

Section 18.4 is going to discuss practical issues of cryptographic protocols.
Section 18.10 addresses the establishment of secure channels and the generation
of secure envelopes, and continues building on top of that, presenting models for
remote sessions, remote client-server with procedure call, and electronic mail.

18.2.2 Authentication

There are three forms of authentication paradigm, as studied in Section 17.9,
and they make sense in different situations. Essentially, unilateral or mutual
authentication are chosen depending on how important it is, for each principal,
to identify its peer with certainty. There will be systems where authentication
is compounded with the service itself, such as a centralized system with remote
and distributed access. Unilateral authentication by password is the most used.
However, when threats are expected, some form of cryptography should be
envisaged. It is then common to provide users with a secret key shared with
the server, so that they can execute such a protocol, performing either unilateral
or mutual authentication. When there are several services and many users, this
becomes impractical. Then, mediated authentication is one solution, where a
distinguished service is created just for the purpose of authentication: a key
distribution center (KDC). Now, users only share secrets with the KDC, and
when they wish to authenticate to other services or users, they use its mediation.
In large systems, an alternative may be to provide users and services with
public/private key pairs, so that every public key can be found in a specialized

Exhibit 2026 Page 448

MODELS OF DISTRIBUTED SECURE COMPUTING 435

server, a certification authority (CA), that provides key certificates signed by
it. Powerful asymmetric signature and encryption protocols can then be used
for authentication, key distribution and long-term encryption.

A remaining issue is the significance of a given authentication process: who is
being authenticated? When we request a call-back number in a computer dial
up, we believe that the number represents a user. When we use link encryption,
we just trust the secure channel between the link extremities, not what is
beyond the link. However, when we use virtual circuit encryption, we trust an
end-to-end secure channel, for example between a client program and a server
program. When we provide the user with authentication gadgets, such as smart
cards or biometric devices, this is because we do not trust the client program to
stand for the user at all times: the host can be intruded, an intruder can logon
impersonating the user. We have just discussed delegation, that we will address
together with authentication and key distribution in Sections 18.5 and 18.6.

18.2.3 Protection and Authorization

Protection, a fundamental framework in secure computing, is about restricting
the access to and use of information and programs, to authorized users. As
such, the central paradigm is authorization. The access control and trusted
computer base (TCB) concepts form the underlying basis on which to build
protection models. Access control, that we studied in Section 17.10, is per
formed by assessing the rights of subjects to access objects, those rights being
defined by access control lists or matrices, or by capabilities. Normal operating
systems however, do not provide the adequate guarantees of trustworthiness
to run sensitive access control mechanisms. The TCB, that we introduced in
Section 17.1, provides the necessary notion of secure, tamperproof base.

One fundamental model for protection is the reference monitor (RM) model,
based on running all access control functions on a TCB, and obliging all re
quests for system resources to go through the RM. The RM does not necessarily
stipulate how access control to objects should be given to subjects. However,
in order to fulfill high-level security policies in a verifiable way, access control
mechanisms should not be configured by users or administrators at their own
will, which is how they are often implemented, but instead dictated by access
control policies (sets of rules), such as the statement that "an unclassified sub
ject cannot read from a top-secret object". The former and the latter policies
are called respectively discretionary and mandatory access control policies.

Despite what we just said, protection (taken in a broad sense) starts with
good architectural procedures. Physical separation by architecture and topol
ogy of the network is the first step to protecting a distributed system. Secondly,
machine protection, further reducing the level of threat by reducing the expo
sure of services, for example, by putting restrictions on remote access, dial-up,
or the way administrators perform sensitive services. Firewalls come next, as
a means to enforce both physical and logical separation, since containment is
achieved at both architectural and protocol levels. These measures can be fur
ther refined through the separation of concerns between machine protection

Exhibit 2026 Page 449

436 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

and data protection. It should still be difficult for an intruder that breaks into
a machine, to further get to users' or services' data. This has to do with the
logical architecture of services and applications, and the adequate use of dis
tribution, fragmentation, replication and cryptography. All these notions will
be expanded in Sections 18.7, 18.8 and 18.9, where we will study models for
protection of systems, from architecture, including firewalls, to formal models.

18.2.4 Auditing and Intrusion Detection

Logging system actions and events, or in other words, performing an audit
trail of the system, is a good management procedure, and is routinely done in
several operating systems. It allows a posteriori diagnosis of problems and their
causes, by analysis of the logs. Audit trails are a crucial framework in security.
Not only for technical, but also for accountability reasons, it is very important
to be able to trace back the events and actions associated with a given time
interval, subject, object, service, or resource. Furthermore, it is crucial that all
activity can be audited, instead of just a few resources. Finally, the granularity
with which auditing is done should be related with the granularity of possible
attacks on the system. Since logs may be tampered with by intruders in order
to delete their own traces, logs should be tamperproof, which they are not in
many operating systems. A broader perspective on this subject is provided by
intrusion detection systems (IDS) (Debar et aI., 1999). An IDS system is

a supervision system that follows and logs system activity, in order to detect
and react against attacks and intrusions, preferably in real-time, that is, with
low latency.

18.3 STRATEGIES FOR SECURE OPERATION

Strategy is conditioned by several factors, such as: type of operation, accept
able risk, price, performance, available technology. Technically, besides a few
fundamental tradeoffs that should always be made in any design, the strategy
of the architect for the design of a secure system develops along a few main
lines that we discuss in this section.

18.3.1 Fundamental Tradeoffs

There are a few fundamental tradeoffs to be considered by the systems architect:

• cost vs. effectiveness

• performance vs. security

• robustness vs. lifetime

• degree of vulnerability vs. level of threat

• cost of securing vs. cost of intruding

• prevention vs. tolerance of attacks

• prevention vs. detection of modification

• detection/recovery vs. prevention of fraud

Exhibit 2026 Page 450

MODELS OF DISTRIBUTED SECURE COMPUTING 437

• cost of security vs. cost of breaking

The cost versus effectiveness tradeoff may be patent for example in how far
goes the effort to implement a real TCB, since there is a spectrum of alter
natives from purposely made, high-coverage security kernels, to adapted, and
necessarily more fragile, commercial operating systems. Security can mean
adverse performance in several instances. For example, robustness of a crypto
graphic channel depends on the key length, but the longer the key, the slower
the channel. Asymmetric cryptography is deemed more robust than its sym
metric counterpart, however it is much slower, by approximately three orders
of magnitude (see Table 18.1). The cost versus effectiveness tradeoff yields to
the need for performance when both speed and robustness are required, im
plying the use of cryptographic hardware, versus software-based cryptography,
inexpensive and robust, but much slower (see Table 18.1 for typical speed-up
factors). On the other hand, robustness of a channel is inversely proportional
to its lifetime, since more material can be revealed to an attacker. Long-lasting
channels should refresh their context regularly (e.g. keys).

The degree of vulnerability of system components cannot be reduced ar
bitrarily. In other words, vulnerability removal must be balanced with the
reduction of the level of threat the system is subjected to, in order that the
risk of operation remains acceptable. Reducing the level of threat is the path
of preventing attacks, whereby the system gets protected from certain attacks.
Attack prevention is advised for long-term secrets, that is, information that
must remain confidential for a long time. In this case, even a cyphertext-only
attack presents a risk if one is not certain that it will resist a brute-force analysis
during the lifetime of the confidential information. However, most of the time
acceptable risk does not imply absolute intrusion-free operation, the cost of
which may be overwhelming. Instead, it is acceptable for the cost of intruding
to be significantly higher than the value of the service being offered. This may
justify the use of weaker but faster, cheaper or simpler cryptosystems, for ex
ample. However, this approach has its limitations: it is impossible to guarantee
that all attacks are prevented, given the unpredictable nature of attackers; it is
sometimes not possible to prevent attacks at all, given the open nature of some
applications. So, we better seek for an alternative to vulnerability removal plus
attack prevention, which we may call intrusion prevention. Essentially, this
means admitting that attacks will take place and lead to intrusions, what we
might call intrusion tolerance. The latter consists of letting the system be at
tacked and intruded upon, but providing it with the means to resist and avoid
failure of the security properties.

Which properties to secure represents another class of tradeoffs. For ex
ample, integrity can mean prevention of modification, or its detection. The
latter is ensured with cryptographic techniques. However, the former requires
protection, and sometimes redundancy. Computer fraud has legal implications
that make the tradeoff between detection/recovery and prevention a delicate
one. Fraud prevention may reveal itself cumbersome (more complex and slower

Exhibit 2026 Page 451

438 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Table 18.1. Figures of Merit of Several Cryptosystems

1/ Variants

Algorithm II
DES
DES
3DES
IDEA
RSA ener
RSA deer
RSA sign
RSA ver
DSA sign
DSA ver
MD5
SHA

SW: Speed(PrjKey)

1.2Mb/s !66M4/56b)
9.3Mb/s 100M5/56b)
0.4Mb/s 66M4/56b)
2.4Mb/s 66M4/128b)
5Kb/s (66M4/512b)
320Kb/s (66M4/512b)
0.16s !S2/512bj0.02s S2/512b
0.20s S2/512b
0.35s S2/512b
5.9Mb/s (66M4/-)
2.6M/s (66M4/-)

HW: Speed(PrjKey)

512Mb/s !32M/56b)
640Mb/s -/56b)
214Mb/s -/56b)
177Mb/s 25M/128b)
220Kb/s (-/512b)

315Mb/s (-/-)
253Mb/s (-/-)

protocols), whereas fraud detection is followed by a recovery process which
normally takes place outside the system and is thus lengthy.

Table 18.1 gives some useful insight on what is behind some fundamental
tradeoffs just discussed. Speeds of cryptographic material are presented (either
in Mb/s or sec.), differentiating between types of algorithms, and hardware and
software implementations for several key lengths (main sources: (Garfinkel and
Spafford, 1997; Lampson, 1993; Schneier, 1996)). Processor codes are in the
form xMy, where x is speed in MHz and y is: 4- i486; 5-iPentium; S2- SUN
Spare II. Key lengths in bits. We have tried as much as possible to harmonize
figures, and ended up using the today obsolete 66MHz i486 (66M4). However,
we compare with DES figures for the 100MHz Pentium (100M5), to give you an
idea of the evolution. We would have to review the book every 6 months to cope
with technical progress. It should be easy to extrapolate to faster machines,
if you have good comparative benchmarks at hand. Look for computation
intensive ones. RISe architectures, for example, do remarkably well because of
pipelining and internal parallelism: note that the speed-up in DES from 66M4
to 100M5 is almost 8 times, quite a bit higher than the clock speed-up.

18.3.2 On Keys and Passwords

Keys and passwords are the most fragile components of a secure system, and
we know a system breaks by its weakest link. So, this section gives a few hints
on their correct use. We will use 'key' to denote both key and password here,
unless a distinction is necessary.

A brute-force attack is the ultimate barrier on a key or password. A pool
of 200 hardware chips featuring 256M encryptions/sec. will break a 56-bit key
(e.g. DES) block cipher in 2 weeks. To make things worse, hardware speed
and power are going up at an incredible pace. However, that time goes up to

Exhibit 2026 Page 452

MODELS OF DISTRIBUTED SECURE COMPUTING 439

an unfeasible 2 x 1020 years, if the key length is 128 bits (e.g. IDEA). Long
term asymmetric keys provide even more credible protection. For example, a
1024-bit key cipher is un-attackable just by brute-force if the key is random.

A key is weak if it has redundant information. This has the effect of reducing
its equivalent length. For example, a 56-bit key using only lowercase letters and
digits "shrinks" to around 40 bits. The attack exemplified above would succeed
after a dangerously short 20 seconds. If keys have lexical content, they become
amenable to dictionary attacks, which can make an attack even faster. (Please,
do not use "dowjones" or "dragonball" for a key or password). Incidentally, 40
bits is the key length of several U.S. commercial encryption products (e.g., the
export version of U.S.-made SSL), derived from the export restrictions. These
were partially lifted in the end of 1999 (e.g., full Netscape and PGP are now
freely exportable). The restrictions have been partially lifted. For example,
SSL can now work with 128-bit cryptography all over the world.

How to generate a good key or password then? Good cryptographic systems
have resorted to the passphrase stratagem. A passphrase is a long, intelligible
sentence, known only to the user. When the user enters it, the system applies a
cryptographic checksum to it, generating a high quality key or password. A rule
of thumb for practically random content is one passphrase letter per password
bit, but shorter phrases are normally enough. For example,

"My dear friends, who on earth would believe this is my passphrase?"
might yield after hashing something like the 54-bit hexadecimal quantity

E6C1 OA9B 894E 03AF
a good albeit hard to memorize password

Keys can be strengthened by combination. Long asymmetric keys may pro
tect shorter but faster symmetric keys, the former being called key-encrypting
keys. Practical protocols will perform key rollover as a routine, that is, change
session keys often, even during a session. The robustness of fixed key-length
ciphers (e.g. DES, IDEA) can be increased to approximately twice by running
the protocol three times, which is known as encrypt-decrypt-encrypt. Finally,
keys should be made both to the measure of the attacks they must withstand
and to the lifespan of the data they are to protect. Keys may be long- or short
term. Data may be long- or short-lived. A key should be planned to resist
an attack that can be made during its lifetime. There are a few exceptions: a
short-term key protecting long-lived data inherits the lifetime of the data; the
lifetime of a long-term key protecting long-lived data, or protecting short-term
keys that protect long-lived data, must be an upper bound of all data lifetimes.
Some of these issues will be detailed in Section 18.4.

18.3.3 Vulnerability versus Threat

A four-digit PIN is not a weak password if it is to be keyed in by hand at an
ATM, validated by a token such as a card. A brute-force attack on the 104

possible combinations is practically infeasible with this technology: it would
take too long; it would be too conspicuous; the machine would confiscate the
card after a number of attempts. However, suppose that the technology was

Exhibit 2026 Page 453

440 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

directly transposed to an environment where the card would be read in a PC
and the card Id together with the PIN would be submitted via a network to the
bank. Then we would have an extremely fragile system, because: an automated
program would be able to test all the combinations very fast; and do it remotely,
under the cover of anonymity, without any possibility of physical action on the
hacker or the card.

What did we want to show with this example? It showed that vulnerabilities
are sensitive to the level of threat. It also stressed a more fundamental issue
that we had not mentioned yet. Security existed long before the widespread
use of computers and communication facilities. There is a risk that proce
dures that were perfectly safe in a manual, electrical or mechanical world will
completely fall apart in the high-speed world of modern computers and the
pervasive Web of network links. A classical example of the modern era is the
DES cryptographic algorithm: the U.S. authorities, when it was introduced in
1977, imposed a key length which they believed could be cracked by brute-force
(testing approximately 1016 combinations of the 56 bits of the key) only by their
own powerful machinery, and no one else's, for many years to come. Today,
that task is within the reach of amateurs with good computational resources.
So, beware of technological changes.

Level of threat and degree of vulnerability are not precise quantitative mea
sures, but awareness of these two facets is a fundamental strategic issue: the
architect must balance her design options in order to achieve the desired risk
of operation. We can give examples of what may go wrong when one of the
terms is not taken into consideration, leading to a false impression of security:

Example 1: Many mainframe-based OLTpl systems rely on private networks
of point-to-point leased lines. We have found many often, among architects of
these systems, a false feeling of security of the leased line (wrongly assumed low
level of threat), which can be tapped and intercepted as any other. However, this
feeling relaxes the requirements on security of the user-to-database interaction
(high degree of vulnerability), leading to a high risk of operation.

Example 2: The Secure Sockets Layer (SSL) protocol reportedly ensures se
cure client-server interactions between browsers and WWW servers. Users have
tended to accept that the interactions are secure (assumed low degree of vulner
ability), without quantifying how secure. Netscape's implementation of the SSL
protocol was broken because of a bug that allowed to replicate session keys and
thus decrypt any communication. The corrected version was then broken at
least twice through brute-force attacks on the export version (at that time, the
only one available to companies outside the U.S.A.), which used short (40-bit)
keys. Several companies have built their commerce servers around SSL, some
of them to perform financially significant transactions such as home banking.
Some of these servers, because of the assumption of low vulnerability, were put
on the Internet for spontaneous transactions with few or no restrictions to prob
ing and access anonymity. Financial value and openess foreshadow a situation
of high level of threat, leading once more to a high risk of operation.

1 On-Line Transaction Processing.

Exhibit 2026 Page 454

MODELS OF DISTRIBUTED SECURE COMPUTING 441

No feasible system is 100% risk-free or secure. The level of threat and degree
of vulnerability can be made to decrease in an asymptotic-like manner, where
the limit is, respectively, a useless or an extraordinarily expensive system. Here
is a good question an architect would like to see answered- "What is the right
balance?":

• There is no universal answer, but the level of threat is mostly dictated by
the type and function of the system in question: Does it have to stand on
the Internet or can it be behind a firewall? Must accesses be completely
anonymous or can have clients identify themselves?

• The degree of vulnerability is dictated by the hardware and software used,
and their configuration: Will a normal operating system be used, or a
security-hardened one? Will strong or weak cryptography be used? Will
strong authentication be made, or just o.s. access control?

A useful figure to equate the risk related with the operation of a given
system is an estimate of the cost to intrude it under given conditions. For
instance, when Netscape released the above-mentioned second version of the
SSL implementation, they reported that it would cost at least USD10,000 to
break an Internet session, in computing time. The cost of intruding a system
versus the value of the service being provided allows the architect to make a risk
assessment. Someone who spends 10000 EUR02 to break into a system and
get 100 EURO worth of bounty, is doing a bad business. Unfortunately, these
estimates may fail: shortly after Netscape's announcement, a student using
a single but powerful desktop graphics workstation, broke the export version
for just USD600. However, what went wrong here was not the principle and
the attitude of Netscape, just the risk assessment they made, which was too
optimistic. These estimates may also fail when values other than economic are
at stake, such as political, for a potential attacker.

18.3.4 Open System Security Policies

The main vulnerabilities of open distributed systems lie in:

• Networks:

• bugs of communication protocols

• broadcast or wireless nature of networks

• openess to anonymous access

• the human element (administrator and user)

• Hosts:

• bugs of the O.S. and widespread application software

• wrong configurations (backdoors)

• human element (administrator and user)

2The EURO is the currency of the European Union. It is worth approximately one USD.

Exhibit 2026 Page 455

442 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

There is a major threat to current operation of open systems, which is the
general lack of strong authentication in current network and O.S. technology,
leading to impersonation threats that can undermine the best cryptosystem,
or the most conservative access control policy. In detail, the main threats to a
networked system are the possibility of: scanning for resource and vulnerability
discovery; eavesdropping with sniffers; active attacks with spoofers. On the
other hand, the main threats on hosts are: the wide availability of exploits for
almost any O.S.; automated penetration attacks such as viruses and trojans;
dictionary attacks on passwords. A security policy, informal as it may be, is
the key to securing any system. We suggest and discuss here a simple strategy
for implementing a single-level security policy for an open system:

• selecting the system components;

• evaluating their vulnerabilities;

• adjusting threats to the desired risk according to a security policy;

• checking whether the right balance was achieved;

• iterate once more if not;

• implement the policy.

The 4P policies are simple enough to be understood and implemented
without much effort. They divide the strategies for protection into four possible
choices, one of which is selected as the policy for the system in question. The
4P policies are3 :

Paranoid

Prudent

Permissive

Promiscuous

all is forbidden

all that is not explicitly allowed is forbidden

all that is not explicitly forbidden is allowed

all is allowed

A paranoid policy is very simple to implement, because it means to com
pletely isolate the system. It would be the implicit policy of enterprises in the
old days. However, short of specific critical subsystems in an organization, it is
not applicable to a whole organization in these times of connectivity and ope
ness. The promiscuous policy is also simple to implement, because it lies in not
making any access restrictions. It used to be the implicit policy of academic
organizations in the old days of an "academic" and friendly Internet. It is
doubtful that an organization's system following the promiscuous policy would
survive long enough to do anything useful in these times of hackers and threat.
The prudent and permissive policies will be the main workhorses in configuring
the majority of systems. The prudent policy assumes that everything is for
bidden unless explicitly allowed. It is the most difficult to implement, but the
most effective. The difficulty lies in the nuisance it presents to users until it
is tuned, if that state is ever reached. Its implementation consists of denying

3The credit for these mnemonic designations is attributed to BBN Cambridge.

Exhibit 2026 Page 456

MODELS OF DISTRIBUTED SECURE COMPUTING 443

all accesses by default, and explicitly opening all the desired accesses in what
ever desired modes, one by one. Until the system stabilizes, users experience
difficulty in accessing services not specified, which would normally be allowed
in a more permissive configuration. The permissive policy assumes that every
thing is allowed unless explicitly forbidden. It is simple to implement, based
on allowing all accesses by default, and selectively deny a number of accesses
listed in a first specification of 'don'ts'. It is normally tuned at the cost of
suffering attacks and closing the respective backdoors or suspicious accesses. A
real system will normally be divided in subsystems, to which different policies
may be allocated. Additionally, the starting point of the implementation of
either the prudent or permissive policies may be a semi-allowed or semi-denied
state, depending on the viewpoint.

18.3.5 Is a TCB Implementable?

The most effective protection or cryptographic mechanism can be defeated by
a vulnerability, not in itself, but in the O.S. of the host if it is supposed to
run securely that is, in a trusted computing base (TCB). The approaches to
implement a TCB fall into two classes:

security kernel- designing an operating system kernel intended to be
secure from the start and building the rest of the O.S. around it;

security enhancement- starting with an existing operating system and
designing security in, by retrofitting or simply configuring the O.S.

The central question is coverage, exactly in the same sense that it was studied
in Section 6.2 of the Fault Tolerance part: the probability with which the TCB
properties hold. The security kernel approach is the only road to achieving
extremely high coverage of the TCB properties: interposition, shielding, and
validation. Alternatively, an operating system designer may select an existing
operating system and improve it by retrofitting security into it, getting what is
called a security-enhanced kernel. A milder form of security enhancement that
does not involve source code modification is achieved by configuring an existing
commercial operating system.

When attacks just take the form of probing, direct or by software, or the
risk of sporadically successful penetration attacks (for unlikely) is accepted, a
security-enhanced system will be adequate. Then, the choice between retrofitted
or configured kernels depends on the balance between: price, performance, and
accepted risk. Configured kernels may represent an adequate solution when:
assets are of moderate value and removal of vulnerable functions does not com
promise effectiveness of the service; or for protecting a first rampart, like a
firewall, when there are complementary measures, such as intrusion detection.
For systems which, despite the high value of the assets at stake, have to endure
a high level of threat, such as open financial transactional servers, retrofitted
kernels may be a sensible decision, in order to keep the risk of operation at
acceptable levels. The security kernel approach for a TCB is definitely the
solution to consider when the system holds very sensitive data and may be
subjected to attacks at the level of penetration or subversion.

Exhibit 2026 Page 457

444 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

18.3.6 Preventing Attacks

The TCB concept attempts at eliminating vulnerabilities. It is part of a preven
tion strategy: if vulnerabilities disappear, attacks cannot be successful. This
is feasible for very focused components, implementing critical functions, but is
hardly a good strategy for the whole of the system. However, we can special
ize the strategy to preventing attacks, the next step down the ladder, Le., the
malicious faults that take advantage from vulnerabilities. This has two facets:
not letting attacks be produced; not letting them cause intrusions.

The first approach concerns all techniques for placing the system or the
desired components out of the reach of attacks, that is, the direct reduction of
the level of threat. For example, placing a sensitive database behind a firewall,
without access from the outside. The second approach has to do with letting
the attack be done, detecting it and acting after it is performed and before it
succeeds in causing an intrusion. For example: by defusing a time bomb or
deleting a virus before they are activated; by detecting scanning from a suspect
host and blocking that host.

18.3.7 Detecting and Reacting to Intrusion

The prevention strategy is not always adequate. In this case, we must redefine
the strategy to act one degree further down the ladder: attacks will be there,
and cause intrusions. We can: detect, recover from, or mask intrusions. In
fault tolerance terms, we might call this strategy attack tolerance. Tolerance
and prevention are often used in combination.

Intrusion detection is a well known field. Intrusion detection systems (IDS)
aim at detecting attacks and intrusions. They are based on native logging
mechanisms of O.S.s and networks, and on specific instrumentation (sensors
and actuators) placed wherever appropriate in the system, such as network
sniffers, and system-call interceptors. Depending on the type of IDS, its de
tectors may be sensitive to different stimuli. Some are based on learning the
patterns of attacks, and using a knowledge base of known attacks to detect
them. Others learn the normal behavior modes of the system, and base intru
sion detection on the occurrence of anomalies in that behavior. The latter are
more adaptive, both to the evolving behavior of the system, and to new attacks,
since they do· not have to know attacks at all. Subsequent to detection, there
is reaction, which may go from event alarms to automated or semi-automated
countermeasures. Countermeasures take several forms, and are specific of the
kind of attack and the make of the IDS. They may involve sanitizing attacked
components (neutralizing viruses and Trojan horses), or neutralizing outside
attackers, by barring their way in a firewall, for example.

Detection is not always accurate, or fast enough. The risk is for intrusions
to take place that may cause failure before being detected. In this case, there
is room for more sophisticated techniques involving intrusion masking. The
principle is based on providing the system with redundancy such that in the
presence of intrusions it continues to work correctly. For example, if a file is

Exhibit 2026 Page 458

MODELS OF DISTRIBUTED SECURE COMPUTING 445

encrypted, fragmented and scattered through several hosts, the intrusion of one
such host will not reveal the file, regardless of whether the intrusion is detected
or not (Deswarte et aI., 1991). Threshold cryptography is also resilient to a
number of malicious participants.

Past the real-time reaction to an attack, there is often the need to repair
the system: removing the remnants of the attack (e.g., deleting Trojan horses,
which may involve formatting disks); hole-plugging or removing the vulnera
bility that caused the attack (e.g., an account with a broken password). These
actions are also called fault treatment in a fault tolerance sense.

18.3.8 A voiding Disruption

Disruption attacks attempt at damaging data or causing denial of service. They
affect the properties of integrity and availability. It is generally recognized that
availability and integrity preservation are hard to achieve. Integrity preserva
tion may start with attack prevention by limited physical separation. Next, it
requires access control. However, replication should be used in order to tolerate
successful attacks, that may damage some but not all the replicas.

On the other hand, the classical techniques of access control and cryptog
raphy provide little help against denial of service attacks. Some of them are
external, and may come from spoofed hosts, making countermeasures extremely
difficult. Authentication plays a role here, because it allows filtering out and
even fight back the malicious external users. In consequence, this also suggests
that allowing completely anonymous accesses to public servers favors denial-of
service attacks. Replication, inasmuch as it is used for availability with respect
to accidental faults, may also yield positive results, if set up in a way that
common-mode attacks to all replicas are prevented.

18.4 USING CRYPTOGRAPHIC PROTOCOLS

We studied four main cryptographic building blocks: symmetric encryption;
asymmetric encryption; secure hash; and signature. Their functionality serves
different purposes. Their relative speed also varies quite a lot: if we wanted
to give a gross estimate of their relative performance, we would say that if
asymmetric algorithms run at speed 1, then signature ones also run at speed 1,
while symmetric run at up to speed 1000, and hashes run at speed 3000. Com
bined in several ways, they yield protocols that perform a number of interesting
functions.

18.4.1 Protocol Types

Cryptographic protocols use and combine cryptographic algorithms in several
forms. Generally speaking, there are two basic protocol,types, depicted in Fig
ure 18.3, with regard to the approach taken to enforce correct behavior in the
presence of malicious faults or attacks:

Exhibit 2026 Page 459

446 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Self-enforcing

Trusted
third-party

adjudicated:

arbitrated:

certified:

in which correct behavior is guaranteed by the protocol, which
ensures trust among the participants

in which correct behavior is guaranteed by a third party, which
builds trust among the participants; trusted-third-party pro
tocols assume three facets, depending on when trust is built:

in which correct behavior is guaranteed a posteriori, by an
adjudicator who in case of a fault will determine the responsible
participant (s), by analyzing information (evidence) collected
during the execution of the protocol; the participants trust that
whatever may go wrong will be corrected by the adjudicator

in which correct behavior is guaranteed during the execution,
by an arbiter who ensures that the protocol executes correctly
by participating of every execution; the participants trust that
whatever might go wrong is prevented from happening by the
arbiter

correct behavior is guaranteed a priori, by a certification au
thority who will issue and provide participants with certificates
appropriate to build trust between them; the participants trust
that nothing may go wrong that is guaranteed by the certifi
cation authority

In essence, a self-enforcing protocol, depicted in Figure 18.3a, guarantees
that the properties of the service are achieved solely by the mutual interactions
between the principals. Whatever faults occur, they are tolerated from within
the protocol. That is, the protocol is a error-containment domain, hence its
name. Since nothing comes free, the complexity normally migrates to the
underlying algorithms.8 ~ Self-Enforcing Protocol •G

Figure 18.3. Protocol Types: (a) Self-Enforcing

The other two types both have in common the fact that they resort to the
assistance of what is called a trusted third party (TTP). A TTP is an en
tity which is trusted by all principals to perform its functions correctly and
impartially. As such, typical functions of a TTP are: adjudication, arbitra
tion, and certification. Depending on the type of TTP, we call TTP-protocols
adjudicated, arbitrated, or certified, as depicted in Figure 18.3b.

The decision about which one to use lies in the answer to the following
questions: can we afford an incorrect behavior at all? Can we build trust
beforehand (off-line), or do we need to watch every execution (on-line)? If a
country's court system is efficient, we may go ahead in a business, knowing
that if something goes wrong, we will be compensated. However, if it is slow

Exhibit 2026 Page 460

MODELS OF DISTRIBUTED SECURE COMPUTING 447

e· Adjudicated Protocol 08 b
Alee 1Il ~O

~ Fault! Fault! ~

Icml~:::·.:·.·: (A~~;~~r) :.·:::::4}k-1cml

Certified Protocol

Figure 18.3 (continued)
Protocol Types: (b) Trusted-Third-Party- adjudicated; arbitrated; certified

and unreliable, perhaps we had better not be cheated and take all necessary
precautions: if we believe in the credentials our partners present, that is enough;
otherwise, we should have someone trusted by both follow the negotiation.

Technically speaking, adjudicated protocols take the first approach, perform
ing fault tolerance with long error latency in error recovery, whereas arbitrated
and certified protocols take the second, performing fault prevention. There is
a substantial difference in overhead between them: arbiters must always be
on-line and thus they are a bottleneck and a single point of failure; certifi
cation authorities act prior to the execution of the protocol, and thence they
may even be off-line, if certificates are obtained beforehand; adjudicators act in
background and only when one of the parties suspects anything. The only con
stant overhead for the latter is the collection of evidence during the execution
of the protocol.

18.4.2 Block Cipher Modes

There are several modes to use block ciphers. We will present them using DES
as an example, but they can be applied to any block cipher. At first sight, the
obvious way to use DES would be: to break the cleartext in 64-bit (or 8-byte)
chunks; to do padding with some pattern to fill in the last block if the text is

Exhibit 2026 Page 461

448 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

not a multiple of 64 bits; to encrypt the blocks one at a time and concatenate
the result. This is called the Electronic Code Book (ECB) mode. ECB mode
is susceptible to analysis and replay attacks, since an 8-byte cleartext chunk
always encrypts to the same cyphertext.

The systematic solution is to make blocks depend on one another. Cipher
Block Chaining (CBC) applies feedback to a block cipher: the plaintext of
block i is XORed with ciphertext of block i-I and then encrypted. This
way, Mallory cannot cut and paste a message arbitrarily. However, this is not
perfect yet: he can still analyze/replay whole messages- such as encrypted
password messages- because with CBC, two identical messages get the same
ciphertext. The solution is to encrypt a block of random data as the first block,
called Initialization Vector (IV). The initial difference propagates to the whole
message because of the feedback and so the same message never yields the same
ciphertext twice.

Interestingly enough, block ciphers can be implemented as stream ciphers, in
a mode called Cipher Feedback (CFB) , which allows encryption of an arbitrary
stream of bits. Output Feedback (OFB) is yet another streaming block cipher,
with interesting properties. It uses DES to generate a pseudo one-time pad, by
feeding it with the ciphertext of the previous block (starting with IV).

MACs can be generated with Block Chipers. There is a standard MAC
protocol, ANSI X9.9 (ANSI X9.9, 1986), which uses the CBC residue approach:
the message is encrypted by DES in CBC mode, but only the last block is used
as a 64-bit hash (see Section 18.4). The recipient verifies in the same way.
Internet protocols, such as SNMP, use the HMAC protocol (RFC2104).

18.4.3 Double and Triple Encryption

It is generally believed that encrypting more than once with different keys
improves the security of a block cipher. This is not always so, and in fact
for DES double encryption (C = EKb(EKa(M))) would be much like using a
57-bit key, because of an attack known as meet-in-the-middle (Merkle and
Hellman, 1981). However, triple encryption technique works, and can be very
robust with a subtlety: the middle operation is decrypt, using two keys in
the following manner: C = EKa (DKb(EKa (M))). It is called Encrypt-Decrypt
Encrypt (EDE). If a single key is n bits, the equivalent key length is 2n. DES is
an obvious candidate: a 112-bit 3DES sidesteps worries discussed earlier about
the fragility of DES.

18.4.4 Signing and Encrypting

When transmitting a document it may be desirable to enforce both authentic
ity and integrity on one hand, and confidentially on the other hand. This is
achieved by signing and encrypting. Now, how should it be done? Sign then
encrypt? Encrypt then sign? If we encrypt first, we will be signing something
unintelligible. This is not very wise. Besides, it is cryptographically vulnerable
(Anderson and Needham, 1995).

Exhibit 2026 Page 462

MODELS OF DISTRIBUTED SECURE COMPUTING 449

The protocol can be derived from the message-digest public-key signature
protocol (see Figure 17.10). Alice wants to send a signed and confidential
message M to Bob. The protocol is explained in Figure 18.4.

II Action

1 A hm = H(M)
Sm = Sa(hm)

4 B hm = H(M)
Vm = Va(Sm)
V m = hm ?

Figure 18.4.

Description

Alice computes the message digest and signs the 128
bit digest with her key

Alice encrypts both the signature and the message
with Bob's public key, and sends it to Bob

Bob decrypts first with his private key

Bob verifies the signature using the following proce
dure: he hashes the message, then runs Va on the
signature; if the result is equal, then M is ok, and was
signed by Alice

Public-key Signature and Encryption

A public key protocol such as RSA can be used for both functions, encryption
and signature. It is even tempting to use the same keys. However, there are
attacks that can take advantage of these vulnerabilities, so care must be taken
on how to design and use the protocol. Good sense advises: not to use the same
keys for signing and encrypting; if possible, not to use the same algorithm for
signing and encrypting; sign before encrypting, and in any case, never put the
user in a position of signing unknown things.

18.4.5 Hybrid Cryptography

Nothing could be more wrong than considering that symmetric and asymmetric
cryptography are alternative or competitive encryption approaches. In fact,
they are complementary, and there is a current trend to associate symmetric
cryptography with payload encryption, and asymmetric cryptography with key
and signature encryption, in what is called hybrid cryptography. We are going
to study two examples of approaches used in most current systems: hybrid
cryptographic channels and envelopes. Alice and Bob can execute symmetric
encryption/decryption, although they don't currently share any key. They also
rely on public cryptography: Alice has private key Kra , Bob has Alice's public
key Kpa, and vice-versa for Krb and Kpb.

Let us look at how the first protocol could work. Alice and Bob wish to
communicate and will establish a hybrid cryptographic channel for the purpose:
a secure channel where the session key for the channel is exchanged by public
key cryptography, and communication is done with symmetric cryptography
using the session key. The protocol is explained in Figure 18.5. Signing may
appear to be ·an overkill, but in fact it foils attacks by impersonation: anyone

Exhibit 2026 Page 463

450 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

"
Action Description

1 B

II
Sm = Sb(Kss) Bob generates a random key K ss and signs it with his

private key

2 B-+A

II
Ea(sm) Bob further encrypts the signed session key with Al-

ice's public key, and sends it to Alice

3 A
II

8 m Alice retrieves the signed key 8 m by decrypting with
Da(Ea(sm)) her private key

4 A

II

Vm = Vb(Sm) Alice verifies Bob's signature with his public key, re-
Vm OK? trieving K ss

K ss = Vm

51 A,B
II

use K ss Alice and Bob communicate with symmetric encryp-
tion using K ss as the key

Figure 18.5. Hybrid Cryptographic Channel

could encrypt something for Alice. This very simple protocol explains the
principle of hybrid cryptographic channels. More sophisticated short-term key
exchange protocols with public-key and hybrid cryptography will be studied in
Section 18.6.

Message

Figure 18.6. Hybrid Cryptographic Envelope

The second approach, that we call hybrid cryptographic envelope, uses the
key-encrypting key principle: the message is encrypted with symmetric cryp
tography, and the encryption key goes along with the envelope, encrypted by
public-key cryptography. This second protocol is depicted in Figure 18.6. Alice
wishes to send sporadic messages to Bob, and for that purpose, she wraps them
in a hybrid cryptographic envelope. Alice generates a random symmetric key,

Exhibit 2026 Page 464

MODELS OF DISTRIBUTED SECURE COMPUTING 451

encrypts the message with it, and then encrypts the session key with Bob's
public key and concatenates it with the message.

18.5 AUTHENTICATION MODELS

In Section 17.9 we addressed the authentication paradigm. We understood that
there are essentially three types of authentication: unilateral- principal A au
thenticates itself to principal B; mutual- principals A and B mutually authen
ticate themselves; mediated- principal A is authenticated to B by principal T,
whom they both trust. These types are implemented through essentially three
mechanisms for authentication of a principal A with a principal B:

Password

Shared-secret

Signature

authentication is based on A submitting to B a unique pair
(username, password) that B recognizes

authentication is based on A proving to B that A knows a
secret K that they and no one else share, without showing
the secret

authentication is based on A proving to B to have signed
something using its digital signature S, that no one else can
produce

In what follows, we discuss several fully-fledged authentication models, which
are essentially instantiations of the several authentication types materialized
with combinations of the mechanisllls just described. We analyzed them under
the light of two groups of threats: reading of the authentication service state;
eavesdropping on remote interactions.

18.5.1 Password-based Authentication

The simplest way to authenticate an authorized user in a system is password
based authentication. The problem is the following: a principal A submits a
pair (username, password) to an authentication service S, and the pair should
uniquely identify it. However, this method is not very secure. The intruder
may read the state of S, so the password file should be protected: by obscuring
its contents, for example by replacing the password with its hash or with a
cryptographic checksum depending on the password, so that it cannot be re
versed (one-way encryption); by making it difficult for the intruder to read the
password file (shadowing). Even so, the intruder can decipher the password
of a user by guessing, what is also called cracking in hacker lingo. He can try
them directly, exhaustively or by selecting probable passwords, called on-line
password guessing, which is infeasible if passwords are long enough. Else, he
can do off-line password guessing, if he gets access to the hashed password file.
He runs each candidate password through the hash algorithm and checks if the
result is the same as in the password file. The attack can be made quicker by
using a dictionary to base the search on (usual words in the language, words
related with the user, her working field and her organization, etc.). This is
called a dictionary,attack, and it is surprising how many passwords can be

Exhibit 2026 Page 465

452 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

guessed in a normal organization. This is why the password creation, change
and deletion procedures discussed in Section 18.3.2 are important, in order to
harden the passwords against guessing.

The second problem with password authentication is that it is very insecure
when login is remote. The password is submitted in cleartext, and so an eaves
dropper may read it and reuse later. Compared to the trouble of cracking a
password file, this is a lot easier, and only requires that the hacker controls one
machine in a network, so beware of what has become a very common threat.
Since eavesdropping or sniffing on a network can go unnoticed, there is no rem
edy for this but changing the approach: encrypting whatever is exchanged or
exchanging only public or trivial things. Later in this section we will learn how
to do more resilient authentication exchanges.

Password File Protection An interesting technique for password file pro
tection is employed by UNIX and other systems. The generic mechanism works
as follows:

1. the 8-character (7-bit ASCII) password is converted into a 56-bit key to
be used in a DES-derived encryption function called crypt; crypt is also
parameterized with a 12-bit salt value, a randomized quantity that makes
two entries of the same password always look different;

2. crypt is a cryptographic checksum algorithm: it starts using an all-zero
block as input, uses the result as the input of the next round, and performs
25 rounds, using the key and the salt;

3. the result is translated to an ii-character printable ASCII string, and the
password entry of a user in the password file becomes the triplet (userld,
salt, string);

4. when a user logs in, she supplies (userld, password),. the operating system
indexes the password file with userld and grabs (salt, string);

5. the cryptographic checksum is performed on (salt, password) and the result
compared with string. If they match, the user is authenticated.

One-Time Passwords Systems offering one-time passwords (OTP) change
the password each time it is used. In consequence, this approach is of the
"exchanging trivial things" type: the plaintext passwords the eavesdropper sees
passing are useless by the time he collects them. Existing one-time password
systems fall in the class of the challenge-response systems: the authenticator
sends a challenge in the form of "give me password number x"; the user should
reply with the appropriate password. Passwords may be computed interactively
by the user upon receiving the challenge, which requires that her machine can
run the computation or that she is assisted by a device such as a pocket
calculator password generator. Else, a (challenge,passworcf) list, with all the
passwords corresponding to every challenge, is given in advance to the user.

The essential property of the mathematical function used to compute the
challenge is that the password should be deduced neither from the challenge
nor from past passwords. It would seem that one-way hashes would be ex
tremely appropriate for this. Lamport invented a function for a one-time pass-

Exhibit 2026 Page 466

MODELS OF DISTRIBUTED SECURE COMPUTING 453

word scheme (Lamport, 1981) based on generating a sequence of n passwords
by hashing a password n times. Of course, the system must start from password
Pn and work backwards, to avoid that password Pn+l is deduced from password
Pn by simply hashing one more time. In conclusion, note that one-time pass
words are resilient against both reading penetration and eavesdropping. One
inconvenience of the scheme is that passwords eventually get exhausted, requir
ing the process to be re-initiated. This however is not a problem for short-term
use (e.g., during trips). The S/Key system, discussed in Section 19.1, is an
example of OTP system.

18.5.2 Shared-Secret Authentication

The approach of "encrypting whatever is exchanged" is appropriate for long
term use. Shared-secret authentication is one such example, where principal
A (Alice) and authenticator S (Stuart) share a secret known only to both of
them, let us call it K as . They perform cryptographic interactions so that S
is persuaded that its peer knows K as . At this point, S believes that it is A
on the other end, since only A could know the secret. We sketch the two
basic mechanisms for doing it. Actually, mechanism (a) can use either true
encryption or a cryptographic checksum (one-way encryption):

• a) Alice sends userld; Stuart sends challenge "if you are Alice, encrypt X
for me"; Alice sends response Eas(X), which S checks;

• b) Alice sends userld; Stuart sends challenge "if you are Alice, decrypt
Eas(X) for me"; Alice sends response X

18.5.3 Signature-based Authentication

Yet another "encrypting what is exchanged" approach, signature-based authen
tication uses public-key cryptography. Principal A (Alice) has private key Kra ,

and authenticator S (Stuart) has A's public key Kpa. They perform crypto
graphic interactions so that S is persuaded that its peer knows the pair of Kpa.
At this point, S believes that it is A on the other end, since only A could know
the private pair of Kpa. There are essentially two mechanisms for doing it:

• a) Alice sends userld; Stuart sends challenge "if you are Alice, sign X for
me"; Alice sends response Sa(X), which S verifies with Alice's public key;

• b) Alice sends userld; Stuart sends challenge "if you are Alice, decrypt
Ea(X) for me"; Alice decrypts with her private key and sends response X.

18.5.4 Mutual Authentication

We have been discussing how to authenticate principal A to principal S. How
ever, what if someone impersonates S and cheats on A? The solution to that
problem is mutual authentication. None of the mechanisms discussed so far
allows mutual authentication, but that can be achieved by enhancing the same
mechanisms.

Exhibit 2026 Page 467

454 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Shared-secret Mutual Authentication Shared-secret mutual authentica
tion can be derived from the unilateral mechanism, by having S authenticate
to A in the same way. The principle is explained in Figure 18.7.

"
Action Description

1 A--+S " (A) Alice sends userld

2 S--+A " (Xs) Stuart sends his challenge X s for Alice to encrypt

3 A--+S II (Eas(Xs),Xa) Alice sends the encrypted challenge in response to-
gether with her challenge X a

4 S--+A
II

(Eas(Xa») Stuart in turn sends the encrypted response to Alice's
challe~ge

5 A,S Both believe they're talking to each other

Figure 18.7. Shared-secret Mutual Authentication

This protocol is only vulnerable to Mallory impersonating Stuart to collect
material to do a key guessing attack, which is difficult per se. Moreover, the
feasibility of this attack depends on the strength of the cipher used.

Mutual Authentication by Signature Signature-based mutual authenti
cation can also be derived from the unilateral protocol, by having S authenti
cate to A in the same way. The modified protocol is explained in Figure 18.8.

Action Description

1 A--+S II (A,Xa) Alice sends userld and challenge for Stuart to sign

2 S--+A (Xs, Ss(Xa») Stuart sends his challenge Xb for Alice to sign, and
signs Alice's challenge

3 A--+S II (Sa(Xs») Alice sends the signed challenge in response

4 A,S II Both believe they're talking to each other

Figure 18.8. Mutual Authentication by Signature

Alice believes it is Stuart on the other end, because she could verify his
signature on her challenge. Only Stuart could have signed the challenge. Stuart
believes it is Alice on the other end, exactly for the same reasoning applied to
Alice's signature.

Exhibit 2026 Page 468

MODELS OF DISTRIBUTED SECURE COMPUTING 455

18.5.5 Mediated Authentication

Alice shares a secret Kat with arbiter Trent (so does Bob with Kbt), and can
authenticate herself to Trent (so can Bob) in the sense of our discussion on
shared-secret authentication. The problem now is to extend this to authen
tication of Alice to Bob and vice-versa, mediated by Trent. The principle of
mediated authentication protocols is the following:

1. Alice sends her Id and Bob's to Trent, requesting an authenticated session;

2. Trent arranges for a shared secret key Kab to be distributed to both: to
Alice, encrypted with her key Kat, and to Bob, encrypted with his key Kbt;

3. Trent also ensures that it is distributed in a way that at the end of this
process, they are mutually authenticated in the sense of the shared-secret
principle (see Figure 18.7), where Kab is the shared secret.

Action Description

1 A--tT II (A,B,Xa) Alice sends her and Bob's Id and nonce X a to Trent

2 T II Kab Trent generates a key Kab for Alice to share with Bob

3 T--tA (Ea(Xa, B, K ab , Trent sends Alice, encrypted with Alice's key: her
ticket= nonce back, Bob's Id; the shared key. Also under

Eb(Kab, A))) the encryption goes a credential or ticket to Bob, en-
crypted with Bob's key, containing Alice's Id and the
shared key

4 A-tB " (Eb(Kab, A)) Alice sends the ticket to Bob

5 B--tA (Eab(Xb)) Bob retrieves the shared key, encrypts his nonce with
it, and sends it to Alice

6 A--tB (Eab(Xb - 1)) Alice retrieves and decrements the nonce, and sends it
back encrypted with the shared key

7 A,B Both believe they're talking to each other

Figure 18.9. Original Needham-Schroeder Authentication Protocol

Nonce-based Authentication Let us have a look at the basic Needham
Schroeder protocol (Needham and Schroeder, 1978), depicted in Figure 18.9.
Recall that nonce is a quantity that is used only once. Sequence or random
numbers or timestamps, are nonces. Nonce X a in (1) tries to reassure Alice
that she's addressing Trent, since he uses it in his reply (3) back to Alice. B
in (3) reassures Alice that the shared key is meant for her connection to Bob,
and no one else. The ticket cannot be seen by anyone but Bob, and reassures
him that the shared key is meant for his connection to Alice. The nonce X b

sent in (5) and sent back decremented by Alice (6) proves to Bob that Alice
knows K ab .

Exhibit 2026 Page 469

456 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Authentication based on Synchronized Clocks The Kerberos authen
tication protocol (Neuman and Ts'o, 1994) is depicted in Figure 18.10. It is
very simple, and relies on roughly the same reasoning as the former protocol to
achieve authentication. However, it further relies on principals having synchro
nized clocks to test each other's timestamps and detect replay attacks, within a
window whose size depends on the precision of the clocks (see Time and Clocks
in Chapter 2). Alice tests Trent's timestamp in (3) to see that it is current.
Bob tests Alice's timestamp Ta in (4). Alice tests her incremented timestamp
Ta + 1, which could only have come from the current interaction with Bob,
since Alice sent message (4) at time Ta , protected with the shared key. The
Kerberos Security Service (see Section 19.4) uses this protocol.

Action

1 A~T II (A,B)

2 T
II Kab

3 T~A (Ea(keyld, B),
ticket==
Eb (keyld, A))

4 A~B

II
(Eab(A, Ta),
Eb (keyld, A))

5 B~A

I

(Eab(Ta + 1))

6 I A,B

Figure 18.10.

Description

Alice sends her and Bob's Id to Trent

Trent generates a shared key Kab for Alice to share
with Bob, and assembles a keyld, containing the key,
its expiry time T x , and the current timestamp Tt

Trent sends Alice: (i) the keyld and Bob's Id, en
crypted with Alice's key; (ii) a ticket to Bob, encrypted
with Bob's key, containing the keyld and Alice's Id

Alice sends Bob the ticket together with her Id and
current timestamp, encrypted with K ab

Bob retrieves the shared key and the timestamp, in
crements the latter, encrypts it with the shared key,
and sends it to Alice

Both believe they're talking to each other

Kerberos Authentication Protocol

18.5.6 Distributed Authentication

The several levels of indirection in a distributed system render the problem
of authentication a complex one. That is, the authentication models we have
just studied must incorporate delegation, and that is hard to do in face of:
autonomy, scale, heterogeneity.

Distributed authentication is about authenticating a channel along which
there. is a user who sits at a host that sends messages on behalf of her through a
network that carries messages on behalf of the host, and so forth. It is difficult
to ensure that the basic principles of delegation in such an environment are
followed correctly (see Delegation in Section 17.9) such as specific delegation,
authentication forwarding, or end-to-end authentication.

Exhibit 2026 Page 470

MODELS OF DISTRIBUTED SECURE COMPUTING 457

Lampson et al. (Lampson, 1993) introduced a logic of authentication and
delegation of channels in distributed systems:

• A says s - e.g., it is true that A produces statement (requests) (read m)

• A speaks for B - for example, a terminal represents whoever sits at it,
Le., (Ka speaks for A)

• handoff: A says B speaks for A - what defines the delegation, Le., A
delegates on secure channel B

• credential: proof that (A speaks for B) - what proves the delegation, i.e.,
that user A delegates on host B the access to critical data owned by A; to
that purpose, A gives a credential to B, maybe a password typed at the
terminal, or a card swiped through the terminal card reader

A more complex delegation would be: if C speaks for A, and C says
(Kab speaks for A), then K ab speaks for A. In other words, if a secure (and
authentic) channel from A sends a message with a session key Kab for a third
principal B to speak with A, then any message to B encrypted with K ab speaks
for A. That is, A delegated in C, and C announced that A delegated in K ab .

18.6 KEY DISTRIBUTION APPROACHES

In Section 17.9, we have explained that key distribution has two facets: long
term key distribution, that puts in place all the keys necessary for system boot
strap and long-term use; and short-term key exchange, that exchanges the keys
necessary for temporary use, such as message or email deliveries, or interactive
sessions. Remember that we called these keys session keys.

The long-term key distribution problem is mostly concerned with distribu
tion of public key certificates. Short-term key exchange mainly addresses shared
secret keys for symmetric cryptography. Ad hoc distribution of public keys is
not practical for large systems, composed of unknown users, so we will study
a dedicated, "official" service, specializing in supplying public key certificates,
called Certification Authority (CA). Likewise, managing pair-wise keys in
a large system is an insurmountable challenge. In consequence, we will study
a specialized service, called a Key Distribution Center (KDC), which sig
nificantly eases the task of further exchanging keys in the system.

We start by addressing the general long-term key distribution problem, and
then we discuss short-term key exchange, where we will consider, when nec
essary, that some form of long-term shared secret or asymmetric key pair is
already in place.

18.6.1 Certification Authorities (CA)

In open distributed systems, for example those working over the Internet, there
may be a large number of participants, who do not trust and may even not know
each other. Since public key cryptography is crucial for digital signatures and
these are a powerful form of authentication, an obvious solution to this problem
is to provide certificates containing a participant's name and its signature. It
is only natural for this name-to-key translation to follow a principle similar

Exhibit 2026 Page 471

458 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

to the name or directory service in distributed systems (see Naming and Ad
dressing in Chapter 2). The server is a trusted third party (jaIled Certification
Authority (CA)), and besides a well-known address as the name service, it
has a well-known public key. The CA signs every certificate it issues, and its
signature can be verified by any participant. Other functions of the CA are
the revocation of certificates, and the distribution of certificate revocation lists
(CRLs).

Public Key Infrastructure
(Certification Authority Tree)

~CUK= KUK,SROOT(KuK)

mmm.mm' 1__1
\\~ CA =KA,S1(KA) J~ Cs= KS,S2(Ks)

KROOT~ 8 K
en (~i~\~~~~~_<~~_P_T~~_1~~_~~I~~~(M_S_G~)_>~~~~.Bob ~~T

g~ 0 g~

Figure 18.11. Public Key Infrastructure

Certificates are inherently secure to travel over the network, since they can
neither be modified nor forged. The CA can work off-line, or have a very
restricted interface (e.g., email, Web) to ease a tamperproof design. However,
a CA may also be used to provide on-line proofs of identity. In a large-scale
system such as the Internet, the CA's can form a hierarchy. Infrastructures for
CA hierarchies are being standardized, the collective initiative is designated
as the Public Key Infrastructure (PKI) and one such standard' is the X.509
from the lTD (X.509, 1997). They work such that the CAs of the next level
down have their public key certified (signed) by the root CA, and so forth down
the hierarchy, such as represented in Figure 18.11, where part of an imaginary
European X.509-like PKI is shown, with each CA keeping the certificates of all
CAs in the chain up to the root.

The PKI is the primary support for wide use of public key cryptography: as
defined by the X.509 standard, a certificate is a digital document that binds a
public keyt'O the identity or another attribute of its principal. As shown in Fig
ure 18.11, a key certificate is normally composed of the identity of the principal,
its public key, the timestamp of creation and validity, everything signed by the

Exhibit 2026 Page 472

MODELS OF DISTRIBUTED SECURE COlVIPUTING 459

issuing authority, and verifiable with the public key of the latter. Imagine that
Alice in Portugal wishes to perform some operation with Bob in the UK, such
that her public key is required- e.g., to have Bob encrypt things for her, or to
check her signature. Alice has previously requested her certificate to CAl on
the left, whose X.500 Distinguished Name is in fact {CAROOT ,CApT, CAl},
and in consequence, she keeps a chain of certificates {KROOT' CPT, Cl , CA},
which she sends Bob, alone or as part of one of the several public-key protocols
available4 . PKIs have been receiving great attention given their importance for
electronic commerce. The way they are being deployed today is however not
exempt from risks, as pointed out by Ellison & Schneier (Ellison and Schneier,
2000).

18.6.2 Key Distribution Centers (KDC)

A key-exchange mechanism for symmetric cryptography requires the distribu
tion of one key per pair of participants. This is not practical, since it requires
a very large amount of keys (n (n - 1) /2) and establishing trust among an
unnecessarily large number of pairs of people, namely in a large-scale system.

If key distribution is centralized in a special service, then only n keys, for
n principals, will be required. This service is performed by a trusted third
party called a Key Distribution Center (KDC). The initial bootstrap process
of exchanging the first key may be part of the off-line process of registering the
new user. After that, everything goes through the KDC.

The KDC presents several disadvantages. The first is that it is a serious
single point of failure, for two reasons: once compromised, it can impersonate
anyone to anyone; and if it crashes, everything stops. Secondly, it is a bottle
neck, because unlike CAs, it will be used on-line and in the critical path of the
execution of protocols. Like CAs, KDCs can be interconnected. The Kerberos
Security Service (see Section 19.4) exemplifies a KDC.

18.6.3 Short-term Key Exchange

Key-exchange with KDC Although key exchange may be performed with
pair-wise symmetric cryptography, such a mechanism is not practical, since it
requires a very large amount of keys. A more practical solution is to consider
that in real-life systems, Alice and Bob do not trust each other, but each of
them trusts a third party, which can be a KDC as we have discussed earlier.
This is a good characterization of an open distributed system. Alice and Bob
use a mediated authentication mechanism such as the ones described in Sec
tion 18.5.5, to have their key distributed by the KDC.

4The Distinguished Name is a unique name in the hierarchy that identifies a principal. It
is composed by concatenating the names of the hierarchy above the principal, such as done
with DNS names. We wanted to emphasize this aspect by showing that the lower CAs in PT
and UK can have equal names.

Exhibit 2026 Page 473

460 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

Key-exchange with Diffie-Hellman Assume that Alice and Bob wish to
exchange a session key K ss , and rely on the Diffie-Hellman algorithm to create
it without having to exchange secret values. According to the basic algorithm
(see Figure 17.5), Alice and Bob exchange their public numbers Ya and Yb, and
compute the same Kss. Now suppose that just before they exchange numbers,
Mallory gets in the middle and instead gives Alice Ybm, and Bob Yam. This
situation is depicted in Figure 18.12, and the effect is that instead of Alice
and Bob sharing some key K ss , Alice and Mallory end up sharing a key K w ,

different from that shared by Mallory and Bob, K z • However, Bob and Alice
do not know that. If Mallory is fast enough that he can decrypt a message M
coming from Alice and re-encrypt it to Bob on-the-fly, and vice-versa, the attack
will go unnoticed. Needless to say that Mallory can leisurely study Alice's and
Bob's interactions and prepare something worthwhile (suppose Bob was Alice's
home banker).

Alice Mallory

Figure 18.12. Man-in-the-Middle Attack

Bob

Mallory's attack is called a man-in-the-middle attack, or bucket-brigade at
tack. It belongs to the class of spoofing attacks, by impersonation in this case.
The attack succeeds because D-H is a key exchange protocol without authen
tication. Next, we will see how to protect a D-H exchange with signatures or
encryption.

Key-exchange with Public-Key Cryptography Alice and Bob wish to
exchange a session key K ss , but now they rely on public cryptography: Alice
has private key Kra, Bob has Alice's public key Kpa, and vice-versa for Krb
and Kpb. They can mutually authenticate themselves, as in the protocol of
Figure 18.8.

One possibility could be to use one of the simple key-exchange nleehanisms
proposed for hybrid cryptography in Section 18.4.5: Bob generates a random
key K ss and sends it to Alice encrypted with her public key, Ea(Kss); or Bob
further signs the encrypted session key with his private key, Sb(Ea(Kss)). The
first approach would fail under a spoofing attack by impersonation. The second
is robust, but a moderate problem is that it still is sensitive to read penetration
attacks. If Mallory reads Alice's or Bob's state (i.e. K ralb), he can decode past
conversations.

Exhibit 2026 Page 474

MODELS OF DISTRIBUTED SECURE COMPUTING 461

Let us look at a more resilient protocol, depicted in Figure 18.13. This pro
tocol can be seen as an enhanced variant of the encryption version (b) of the
signature-based authentication mechanisms discussed in Section 18.5, adapted
to mutual authentication and with the challenges encrypted since they are used
in key generation. At the end, they can use both (now secret) challenges to
generate a secret session key. More sophisticated operations than XOR can
be envisaged. In fact, this is a modified version of the original public-key
Needham-Schroeder authentication protocol (Needham and Schroeder, 1978).
That protocol was recently shown to fall under a combined impersonation at
tack through Id spoofing and man-in-the-middle (Lowe, 1995). Step 2 has the
fix w.r.t. the original: B's Id goes in the message.

1 A---+B

2 B---+A

3 A---+B
4 A,B
5 A,B

Action

II I

Description

Alice sends Id and challenge to Bob, encrypted with
his public key

Bob decrypts X a , sends Id and challenge Xb together
with X a to Alice, encrypted with her public key

Alice sends Bob's challenge back, encrypted

Both believe they're talking to each other

Both have two secret numbers with which to generate
a shared secret key

Figure 18.13. Key-exchange with Public-Key Cryptography

Another protocol, this one based on enhancing the 'key-exchange with Diffie
Hellman' mechanism just discussed, is explained in Figure 18.14. The protocol
takes the best of two worlds: it relies on the robustness of the Diffie-Hellman
mechanism to derive a secret key without exposing any communication with it;
it relies on signatures to authenticate the principals involved. Each principal
starts the D-H mechanism (see Figure 17.5), and before exchanging their public
numbers (Ya , Yb), they sign and identify the relevant messages. They can then
generate K ss according to the D-H algorithm, with the guarantee that they
are really talking to one another. Compared to the simple signed scheme that
we gave in the beginning of this section, where the key is generated by one
principal who signs and encrypts it, and then sends it to the other principal,
this is more robust, since it is no longer sensitive to read penetration attacks.
This is an excellent key exchange scheme.

Key-exchange with Hybrid Cryptography Now Alice wishes to exchange
a session key K as with Stuart, using another protocol class, combining sym
metric and asymmetric cryptography. The EKE (Encrypted Key Exchange)
protocol of Bellovin and Merritt (Bellovin and Merritt, 1992) is an example.

Exhibit 2026 Page 475

462 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

II Action Description

1 A-+B
II

(Sa (A, Ya») Alice sends Id and D-H number to Bob, signed with
her private key

2 B-+A
II

(Sb(B, Yb») Bob sends Id and D-H number to Alice, signed with
his private key

3 A,B II Both believe they're talking to each other

4 A,B
II

K ss Both have the two D-H numbers with which to gener-
DH(Ya,Yb) ate a shared secret key

Figure 18.14. Key-exchange with Signed Diffie-Hellman

It has several variants and is specially suited for when authentication and key
exchange depend on a user password and are thus vulnerable to guessing at
tacks. The basic protocol is explained in Figure 18.15. Alice has password P,
and there is password-derived secret key K p , shared by Alice and Stuart; she
also has an asymmetric key pair (Kua,Kra).

Action

1 A-+S II (Ep(A, Kua»)
2 S-+A (Ep(Ea(Kas »)

3 A,S II K as
4 A,S

II

Description

Alice sends Id and KUa to Stuart, encrypted with K p

Stuart generates session key K as , encrypts it with Al
ice's public key, further encrypts with K p , and sends
the result to Alice

Alice retrieves K as

They may proceed with mutual authentication (e.g.,
steps 1-3 of Fig. 18.13)

Figure 18.15. Encrypted Key-exchange

The resilience against guessing attacks comes from the fact that the infor
mation collected by the eavesdropper is practically useless: to test the guesses,
he would have to break a double (symmetric-asymmetric) encryption. The pro
tocol used in DASS (see Section 19.4) is another example of key-exchange with
hybrid cryptography.

18.7 PROTECTION MODELS

Ensuring that an authorized principal, and only it, can access data or a service:
that is what protection is generically about. Subjects may be explicitly identi
fied (authentication before authorization) or implicitly assumed (e.g., address-

Exhibit 2026 Page 476

MODELS OF DISTRIBUTED SECURE COMPUTING 463

based authorization). There may be one or more levels of protection. The sys
tem may provide single-level security, where a security perimeter is defined, and
all the entities inside the perimeter are considered benign. Alternatively, when
protection against insider attacks is desired, the need-to-know rule is enforced
and several classes of access control are defined, in what is called multi-level
security. Protection may impact all resources or just a few of them, that is, all
system operations mayor not go through a reference monitor. Access control
rules may be implemented in an ad hoc manner or according to some formal
rule set, that is, the system may follow a discretionary or a mandatory access
control policy, in which case the policy is normally dictated by a formal se
curity policy model. Underlying architectural measures further strengthen the
protection mechanisms. These are the several facets of the protection problem,
that we study in the next few sections.

18.7.1 Authorization

Authorization of access for a principal mayor not assume previous authenti
cation, since in some forms of interaction, the user is authorized access simply
because she is in a particular situation (such as sitting in front of a given ter
minal, knowing the secret phone number of a dial-up connection, or having an
given IP source address or port). In others, authentication has been performed
previously, and the user gets an object (e.g., a cryptographic credential) that
proves authorization without revealing identity (see Section 18.5).

In order to be able to be automated, and also verifiable, authorization must
be dictated by a security policy. A security policy consists of specifying: the
security classification of users (subjects), that is, their ranking in terms of
the sensitivity of information they can access; the access classification of data,
system services, resources in general (objects), that is, the sensitivity of these
resources, in terms of the organization activity; and the access control policy.

The access control policy is the specification of the way subjects can access
objects, according to each other's classification, the sensitivity of the objects in
terms of confidentiality or integrity, and the use of the least privilege and need
to-know principles. Common security classifications are, in increasing order
of sensitiveness: unclassified, restricted, confidential, secret, top secret. These
originated in the military and although usable in other settings, commercial
applications may follow a more suitable hierarchy: public, proprietary, internal.
In the end, we may see the security policy translated into the triples (s, 0, r)
that form the access control mechanism (see Section 17.10), by following the
rules dictated by the classifications and the access control policy.

18.7.2 Reference Monitor Model

We have already discussed access control. However, for it to be effective under a
system perspective, a few additional questions arise: Does access control apply
to all subjects and objects or only to some? Are the rules deterministic or can

Exhibit 2026 Page 477

