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Figure 4.8. Distributed File Models: (a) Download-Upload; (b) Remote Access

are going to briefly review some successful systems, that have answered the
previous questions in different ways.

4.2.1 NFS

'The Network File System (NFS), developed by Sun Microsystems in 1984, was
the first commercial distributed file system. It is a striking example of good
distributed systems design.

The NFS is built using a client-server approach. Servers store files and re­
spond to requests from remote applications that need to access those files. How­
ever, the applications are not requested to contact the server directly. Instead,
file system calls from the application are redirected to a proxy of the remote
service that executes on the client's machine. This proxy is simply called the
NFS client, and it takes care of the interaction with the remote server. This
interaction is performed using SUN's remote procedure call service. The design
decision of using RPC to access the server, along with the strategic option of
making the server's interface public, was one of the reasons that made NFS so
popular. Since the interfaces and the format of the associated messages were
known, it was possible for different companies to develop NFS components for
many different architectures and operating systems.

The use of the client-server approach is made transparent to the client appli­
cation through the addition of a Virtual File System (VFS) layer to the Unix
kernel. The layer introduces an additional level of indirection in the file system
calls. Instead of calling a specific file system primitive, the application calls the
VFS interface that, in turn, calls the NFS client primitives. The VFS allows
the kernel to support several file systems simultaneously, including the NFS
and the native file system.

The NFS server uses a stateless approach, i.e., servers do not keep any state
about open files. Also, servers keep no information about the number and
state of their clients. This means that each request must be self-contained, i.e.,
the server must be able to process the request just looking at its parameters,
without any knowledge from past requests. Since the server remembers nothing,
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it does not lose any relevant information when it crashes. Thus, a stateless
approach has some advantages from the fault tolerance point of view: a server
may crash, recover, pick a new request and continue as if nothing happened (we
postpone a further discussion about fault tolerance issues to the next part of
the book). On the other hand, since the server does not keep state, it is unable
to check if a file is being accessed by one or more clients. This, as we will
see, makes the task of preserving the Unix semantics of file sharing impossible.
Due to this reason, NFS does not support the open primitive (open semantics
require the system to "remember" that the file has been opened). Instead, a
lookup primitive, that provides a handle for a file name is provided.

A partial list of the NFS server interface is presented in Table 4.1. The
reader will notice that read and write calls include an offset parameter. This
is required because the server, being stateless, does not store the file pointer
on behalf of the client. Instead, the file pointer must be stored by the NFS
client and sent explicitly on read and write calls. The cookie parameter in the
readdir call plays a similar role, allowing a client to read a large directory in
pieces (the cookie points to the next directory entry to be read). The lookup
primitive returns a file handle that consists of a pair: a unique file system
identifier, and a unique file identifier. The unique file identifier is made of the
Unix inode1 of the file and a generation number, which is incremented whenever
the inode is re-used. This ensures that identifiers are not reusable, and that
the identifier of a new file cannot be confused with the identifier of a previous
file on the same file system.

Table 4.1. NFS Interface (partial)

Name (parameters) Returns

lookup (dirfh, name)
create (dirfh, name , attr)
remove (dirfh, name)
read (fb, offset, count)
write (fh, offset, count, data)
mkdir (dirfh, name, attr)
readdir (dirfh, cookie, count)

(fb, attr)
(newfh, attr)
(status)
(attr, data)
(attr)
(newfh, attr)
(direntries)

Consider now an application that reads a file, reading only one byte at a
time. If a remote procedure call was to be performed for each byte read, the
performance of the system would be unacceptable. This problem is not specific
of distributed systems, in a centralized system one also avoids performing an
I/O operation for each byte read by caching one or more file blocks in main

1In the Unix file system, files are uniquely identified by a index node, or simply, inode.
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memory. In the NFS a similar approach can be followed, by caching the block
both in the server's memory and in the client's memory. Unfortunately, having
the same data cached in different machines introduces the problem of cache
coherence. In a centralized system, the cache is physically shared by all pro­
cesses. Since a single copy of the cached data exists, the sharing semantics
of a centralized Unix file system is the following: if a process does a write,
the results become immediately visible to all other processes. Clearly this is
very expensive to obtain in a distributed system, since propagating an update
requires at least one remote procedure call. The NFS approach implements a
weaker consistency model that tries to balance consistency with performance
requirements.

When reading a file, the NFS client reads a complete disk block (which is 8
kilobytes in the Unix BSD 4.2 Fast File System). The block is cached in the
client's memory and is considered valid for some amount of time (typically, 3
seconds for files}. Thus, subsequent reads that fall into the same block do not
require a remote access to the server. After this period, a new access must first
check with the server if the cache is still valid. For this purpose, the client also
remembers the "version" it has cached, more precisely, the last time the data
has been updated in the server. If the cache is still valid, it is assumed valid for
another 3 seconds period; if not, the new version of the block is fetched again
from the server.

Writes are executed in a similar manner. Instead of contacting the server
each time a byte is written, the client caches all the writes for some time. The
cache has to be flushed if the file is closed or if a sync call is performed by the
application. Otherwise, updates are sent asynchronously to the server, using
periods of low activity in the client. This task is performed by a Unix daemon,
called the block io daemon (or simply the bio-daemon). The daemon can also
try to optimize reads by performing read-ahead, i.e., requesting in anticipation
the next block of a file being read by an application. To ensure that writes are
guaranteed to be stored on disk when the remote procedure call returns, the
cache on the server operates in write-through mode, i.e., writes are immediately
forced to disk.

So far, we have presented the interaction between a client and a server. We
have not discussed how the client finds the appropriate server in the first place.
The name of the servers storing remote files is configured at each client using
an extension to the Unix mount facility. The mount mechanism allows a file
system to be "attached" to another file system at a given directory, called the
mount point. The NFS mount procedure allows a sub-tree of the server's file
system to be mounted on a specific directory of the client machine (if the client
has no disk, it can be mounted on the root directory of the client machine).
When performing the mount operation the client contacts the server, which
checks access rights and, in case of success, returns to the client a file handle
to the mounted directory. If when translating the textual file name into a file
handle, the NFS client traverses a mount point, it uses the file handle returned
by the mount operation to perform the subsequent lookups.
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4.2.2 AFS

The Andrew File System (AFS) was originally developed at Carnegie-Mellon
University and later became a product of Transarc. The major design goal
of AFS was to achieve scalability in terms of number of clients. Many of the
design decisions behind the development of AFS aimed at overcoming known
limitations of previous systems. For instance, with regard to the NFS file
system described above, it was observed that the cache validation procedure,
where clients inquire the servers about the validity of cached data, could easily
overload the server with too many requests. Furthermore, it was noticed that
most of these requests were unnecessary, given that the majority of files are not
shared and thus, caches are usually valid.

To support their design decisions, the AFS development team made extensive
measurements of file usage on their academic environment. The observations
made at that time and in those environments have shown interesting facts: files
were usually small; reads were much more common than writes and typically
sequential; most files were updated by a single user; and when one file was
accessed it was likely to be accessed again in the near future.

To address these access patterns, and assuming that local disks were available
at client machines, a file system based on whole file caching was proposed, i.e.,
in AFS clients cache complete files (this approach has later been relaxed to
accommodate very large files, by supporting caching of file portions). Once
a file is cached, all read and write accesses are purely local and require no
synchronization with the server. Once closed, the file remains in cache. When
re-opened, the local cache is used whenever possible.

Enough disk space should be reserved in the clients' cache to hold the files
needed for the typical operation of most applications. A daemon process in
the client, called Venus is responsible for managing the AFS cache and for
transferring files from and back to the server. The counterpart of Venus on the
server is called Vice. To the clients, the file system appears seamless, though
some files are local and others shared through Venus. This architecture is
illustrated in Figure 4.9.

AFS supports read-write files accessed in competition by clients, but a RW
file can have several read-only copies hosted at more than one Vice. Whenever
the master file is updated, a release command makes sure that the RO copies
are also updated. The above characteristics make AFS well-suited for a few
classes of applications over file systems:

• shared read-only repositories, with occasional updates (e.g., news, price
lists)- typically using RO copies for wider availability to many readers,
single-client updates;

• shared read-write repositories, with infrequent updates (e.g., cooperative
editing)- competitive few-writer activity, local caches remain valid for long;

• non-shared repositories (e.g., personal files)- single-writer activity, local cache
remains valid wherever user is.
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ClientWS

Figure 4.9. AFS Architecture

The goal of whole file caching is to relieve the server from unnecessary load.
But, if the client should try to limit the interaction with a server to a minimum,
how can it check the validity of data in its cache? The AFS approach consists
in delegating on the server the responsibility for invalidating the client's cache
when some other client updates the same file (actually, this optimization was
only implemented in the second version of AFS).

When Vice gives Venus a copy of a file, it also makes a callback promise,
or CBP. A CBP remains valid until hearing otherwise from Vice. When a file
is changed at Vice, it calls back all clients holding valid CBPs for that file, so
that they cancel the CBP, which invalidates the file cache. When Venus opens
a file, it analyzes the cache. If the file is not in cache, it requests a copy to
Vice. If the file is in cache, it checks the CBP. If the CBP is valid, it opens the
local copy; if not, it requests a current copy to Vice.

The reader will note that there is a window during which a local copy may
be opened that is not the most recent one2 . In order to reduce this risk, an
expiration mechanism exists that supersedes the algorithm described above: a
file is only opened locally if it is less than T since the local Venus has last heard
from Vice concerning this file. That is, if a file is opened after T, the latest
version is downloaded from Vice. A typical value for T is 10 minutes. This
mechanism also recovers from the loss of callback messages.

If the client crashes it may miss one or several callbacks from the server.
Thus, when a client recovers it has to contact the server and determine the

2Erlier versions of AFS checked directly with Vice before opening, instead of the CBP, but
this did not scale well.
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status of all the files it holds, by checking the timestamps of the relevant CBPs
with the file information on the server. To prevent the server from storing
callback information indefinitely, access rights (also called the file tokens) are
only valid for some limited period.

The semantics of AFS is not exactly one-copy. When more than one client
open a file concurrently, the server will hold the state of the last file to be
closed. This form of consistency is however adequate for the example classes
we have enumerated earlier. Furthermore, applications can always superimpose
their synchronization on top of these basic mechanisms.

4.2.3 Coda

The Coda file system is a follow-up of the AFS project at CMU lead by some
members of the AFS development team. The main goals of Coda were to im­
prove reliability and availability vis-a-vis partitioning, and to support nomadic
and mobile computing. This was achieved by whole volume replication, and by
disconnected operation. Coda supports the use of portable computers as file
system clients, and tries to offer what the authors call constant data availability.

Coda can be in one of three states (Figure 4.10). The whole file caching
approach of AFS allows the client to cache in his local disk the files that he
will need while disconnected. Caching files that are going to be needed in
the future is called hoarding. Manual hoarding is possible but the authors have
studied techniques to automate the task of selecting which files to cache. When
the portable computer disconnects from the network, Coda is in the emulation
phase: the user can work on the files cached in the local disk.

The servers containing replicas of a file form its volume storage group or VSG.
Often, only part of the replicas are available (partitioning, disconnection), the
available VSG or AVSG. Opening a file consists of reading it from one of the
AVSG replicas and caching it locally. When the file is closed, it remains valid
at the client, and a copy (reconciliation) is made to all AVSG servers.

Naturally, while disconnected the client is unable to receive any callbacks
from the servers, and this presents an opportunity for conflicting updates on
the same file. When the portable is later reconnected to the network, an auto­
matic file system reintegration procedure is used, as illustrated in Figure 4.10.
The proce'd'ure compares the versions of the client files with those of the server
files and checks for conflicts. When no conflicts are found, the system auto­
matically reconciles both versions of the file system. When conflicts are found,
two versions of the conflicting files are stored and manual intervention of the
user is requested.

4.3 DISTRIBUTED COMPUTING ENVIRONMENT (DCE)

In this part of the book we have referred to a number of technologies that
help in the design and implementation of distributed applications and systems.
Examples of these technologies are remote procedure call services, directory
services, time services, distributed file systems, secuTity systems, etc. For each
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Figure 4.10. Coda Operation

of these services, several commercial products have emerged on the market.
The diversity of technologies, often incompatible, makes the task of integrating
applications made by different developers extremely hard.

The Distributed Computing Environment (DCE) is a standard endorsed
by a consortium of several companies, including major players such as IBM,
former DEC, and Hewlett Packard, under the name of Open System Foundation
(OSF). DCE selects a particular technology for each of the services previously
listed and offers them in an integrated package. The package was initially
supported on Unix but was later ported to other operating systems as well.

Conceptually, there is not much really exciting in DCE, even though some
of its services represent excellent technical solutions. This does not come as
a surprise since DCE adopted standards and technologies that had already
proven their value, some of which are addressed in this book. For instance,
the directory service is based on X.500, the file system is derived from AFS,
the time service is derived from NTP. The merit of DCE is to provide all these
technologies as a coherent set.

Another feature that makes it hard to describe DCE in a few lines, is that
it contains components that operate at different levels of abstraction. DCE is
independent of the platform and operating system, thus these two layers are
somehow outside of the scope of the DCE package. On top of the native op­
erating system, DCE adds a dedicated threads interface. The availability of
threads was felt to be a fundamental requirement for the efficient implementa­
tion of distributed applications (in particular servers), so DCE includes its own
thread package. The thread package, like most of DCE components, has plenty
of options and operational modes, enough to make almost everybody happy.
For instance, three different scheduling policies are supported, priority based,
round robin within the same priority and time-sliced round-robin; three types
of mutexes are available; and so on.

Using the operating system (augmented with the DCE thread interface), the
DCE remote procedure call package is implemented. The main computational
model supported by DCE is client-server and RPC is a fundamental building
block for the remaining services. Like almost every RPC package, DCE RPC
allows server interfaces to be written in an Interface Definition Language and
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provides the compiler to automatically generate client and server stubs from
these interfaces. Each service is identified by a unique identifier. To help pro­
grammers to obtain unique identifiers that are really unique, a unique identifier
generator is also provided (which encodes the location and date of generation).
The RPC package provides optional authentication and encryption (see Secure
Client-Server with RPC in Chapter 18). On top of the DCE RPC service, the
time service, the directory service and the security service are implemented.

The Distributed Time Service (DTS) is an evolution of NTP (see Network
Time Protocol in Chapter 14). Its role is, of course, to keep local clocks syn­
chronized. The service is of paramount importance for many other services.
Among other applications, the global notion of time is used by the file system
to timestamp updates and compare file versions. It is also used by the security
service to check the validity of a credential. An interesting feature of the DCE
time service is that the user is informed of the actual accuracy of the value
provided. DTS uses this information when comparing two dates, to check that
the timestamping error is small enough that they are comparable.

The directory service (names and structure are inspired by X.500, see X.500
in this chapter) is organized as a set of cooperative cells. Each cell manages its
own name space and has a local Cell Directory Server (CDS). To "glue" different
cells, two global directory servers can be used: the DCE Global Directory Server
or the Internet DNS. Cell directory servers interact with the global service to
a Global Directory Agent, that shields the CDS from the details of the GDS or
DNS.

The security server of DCE is based on the Kerberos security server (see
Kerberos in Chapter 19). It manages access rights based on Access Control
Lists and implements authenticated RPCs.

Finally, we can find the DCE file system, called the Distributed File System
(DFS). It contains two main components: a local component, called Episode,
and a global component based on AFS (see AFS in this chapter). In interesting
feature of the DFS is that the file naming service is integrated with the directory
service CDS, so files can be relocated just by updating directory data.

4.4 OBJECT-ORIENTED ENVIRONMENTS (CORBA)

In some sense, CORBA, the Common Object Request Broker Architecture is an
object-oriented DCE. It has also been proposed by a consortium of major indus­
try companies, the Object Management Group (OMG). Essentially, CORBA
also follows a client server approach but at a higher level of abstraction. Instead
of having client processes interacting with server processes, CORBA provides
the basis for having objects interacting with other objects.

The state of a CORBA object is encapsulated by a well-defined interface.
Like in an RPC system, object interfaces are written in an Interface Definition
Language, in this case in CORBA IDL, whose grammar is a subset of C++.
Following object-oriented principles, CORBA IDL supports inheritance, thus
new interfaces can be built by extending previously defined interfaces.
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OMG started by defining the architecture illustrated in Figure 4.11. The
core of the architecture is the Object Request Broker, an abstraction that sup­
ports interaction among objects. The broker is responsible for making sure that
an object can invoke another object, implementing the required protocols to
send the requests and receive the replies. Of course, application programs need
an interface to the broker in order to instantiate objects, create references to
remote objects, issue object invocations and so on. The first CORBA 1.1 spec­
ification defined the CORBA IDL, the IDL mappings to common programming
languages, and the application programming interfaces to the ORB. This al­
lowed to develop application code that was more or less portable through ORBs
from different vendors. The "catch" was that some vendors did include some
non-standard features in their ORBs. These features were added to enhance
the standard ORB functionality, but in practice, these proprietary enhance­
ments prevented seamless portability. Another catch was that protocols and
message formats were not part of the standard. The idea was to give room for
each vendor to pick the most appropriate solution for their target market and
architectures. The less positive aspect of that decision was that ORBs from
different vendors did not inter-operate. This problem was eventually fixed with
the release of CORBA 2.0, that defined a common protocol to be supported by
every ORB, the Internet Inter-ORB Protocol, or simply IIOP (actually, to be
more precise, IIOP is an implementation of a more General Inter-ORB Protocol
(GlOP) over the TCP lIP protocol suite).

Figure 4.11. CORBA Architecture

If you have read the previous section on DCE, you already know that in order
to build useful complex distributed applications you need more than remote
invocations. CORBA has defined an extensive set of services, characterized
by their standard CORBA IDL interfaces. No less than 15 services have been
defined. We can describe some of the most relevant:
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• Naming Service: as in any other system, it keeps associations among names
and object references.

• Persistence Service: defines an interface to store the object state on storage
servers, which can be implemented using traditional file systems or advanced
database systems.

• Concurrency Control Service: provides a lock manager that can be used in
the context of transactions to enforce concurrency control.

• Transaction Service: supports transactions, offering atomic commitment ser­
vices.

• Event Service: allows some components to produce events that are dis­
tributed through an event channel to all interested subscribers.

• Time Service: provides a common time frame in the distributed system.

• Trader Service: allows objects to register their properties and clients to
search for appropriate servers using this information.

Other services include the Life Cycle Service, the Relationship Service, the
Externalization Service, the Query Service, the Licensing Service, and the Col­
lection Service. In addition to these general purpose services, many interfaces
have been standardized for specific business domains.

Of course, it is possible to build applications using just a few of these services.
In fact, none of them is mandatory (but it is hard to build something useful
without the naming service). The basic Corba functionality is pretty "con­
ventional" when compared with an RPC system. The programmer writes the
object interface in IDL. The IDL specification is compiled and a description of
the interface is stored on the Interface Repository. From the IDL specification
both client and server stubs are created for the target programming language
(support for at least C++ and Java is now fairly common). The application
programmer still has to write the actual object code, which is linked with the
server stub and with an Object Adapter. The adapter supports the interface
between the ORB and the object, providing the functionality to register the
object within the ORB, to dispatch requests to the appropriate objects, and to
send back replies.

The most straightforward way to activate an object is to execute it in the
context of a dedicated process (this approach is called the unshared server ap­
proach). This process can be started when the system boots or just when an
invocation is received by the ORB. As long as this process remains active, all
invocations are forwarded to it. However, other policies can be implemented.
For instance, it is possible to create a different process to execute each method.
This approach, called the server-per-method approach is more suitable for state­
less objects, where no shared state needs to be preserved on volatile memory
across invocations.

Corba can be used to develop new applications from scratch. As with DCE,
one advantage of using Corba is that many of the annoying details related
with the implementation of RPC, server and client instantiation, etc, are han­
dled by the ORB. An application built this way will be able to inter-operate
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with any other application adhering to the Corba standards. Additionally,
"transformer" objects can be built to wrap legacy applications, adding Corba­
compliant interfaces to old code. This type of architecture is known as a "Corba
3-tier client-server architecture" and is illustrated in Figure 4.12. Using this
3-tier architecture and Corba IIOP, it is also possible to build powerful appli­
cations for the World-Wide Web, but this is the topic of our next section.

Legacy system

Object Request Broker I

Figure 4.12. Corba 3-tier Architecture

4.5 WORLD-WIDE WEB

In the late 80's, despite the enormous potential and relative maturity of dis­
tributed systems technologies, it was felt among researchers that a "killer ap­
plication" was lacking, one that could show the benefits of distributed systems
in an obvious and indisputable way. The World- Wide Web (known simply by
WWW or the web) was the killer application of the nineties.

It is interesting to observe that the application that had such a big impact in
industry and society was in its inception relatively simple in terms of distributed
systems concepts. It is basically a client-server application: clients, known as
browsers, make requests to WWW servers in order to fetch documents and
launch the execution of commands.

The WWW was created by Tim Berners-Lee and Robert Cailliau, working
at CERN, with the goal of supporting information sharing among physics sci­
entists. We can now say that the system was extremely successful in that task;
it was the genesis of a global infrastructure that supports sharing and dissem­
ination of information at a scale never seen before. The key for this success
relies on the simplicity of its interface. Using a browser, remote information
can be accessed just by clicking a button. Previously, cumbersome and often
arcane sequences of commands had to be issued to achieve the same goal.

Documents in the WWW have a structured impure name called the Uniform
Resource Locator (URL).
The URL has the following format: <protocol>: / / <serveraddr>{/<path>}
where: the first field specifies which protocol must be used to interact with
the server (several protocols are supported, being HTTP the most common);
serveraddr is the address of the server to be contacted; and path indicates
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which document should be fetched (if no name is specified, a document called
index.htrnl is read). Documents may be stored in several formats, from simple
text to audio and video. Some of these formats are recognized and interpreted
by the browser itself. Others are interpreted by companion applications that
can launched by the browser in order to display the document.

Having a simple way to name and access documents is already a major
contribution of the WWW architecture. However, if users were required to
memorize the URL of all documents they were interested in, WWW would not
have been such a big success. The other key factor of success was the use of hy­
permedia documents, which include links to other documents. The browser is
able to interpret and display hypermedia documents in the HyperText Markup
Language (HTML). Additionally, the browser allows the user to activate a link
(typically, by clicking a mouse button) and automatically fetches the document
whose URL is associated with the link. In this way, the user just has to re­
member the URL of the main page of an information repository or site, also
known as the home page, which in turn holds the links for all other relevant
documents (actually, most browsers have a way to store URLs, so that users
do not even need to memorize the URLs of home pages). Today, it is a major
business to provide pages, known as portals with links to useful information on
the web, shops, advertising and much more. From a major portal, and just by
clicking, the user is able to navigate through a huge net of documents, an often
addicting activity also known as surfing the web.

The infrastructure we have just described is extremely useful and efficient,
but it is somehow limited since it only supports the flow of information from
the server to the client. Often, we also want the clients to send information to
the server and request the execution of remote actions. For instance, the user
may want to perform a query on a database, or issue an order when buying
some goods. Thus, the first step to make the web more interactive was to allow
clients to request the execution of programs in the servers. To support that
type of interaction, servers were extended in several,\~:ays, the most common of
which is an interface called the Common Gateway Interface (CGI). The CGI
specifies how the browser indicates which programs should be executed and how
parameters are sent to that program (and results sent back to the browser).
According to this interface, WWW servers are able to launch programs upon
request, which are executed as a separate process in the server machine. These
programs can be binaries written in any programming language. However,
CGIs are often interpreted programs written in popular script languages such
as perl. CGIs can be fully-fledged applications or mere interfaces to other
remote systems, such as database systems, forming a three-tier architecture as
the one illustrated in Figure 4.13.

Typically, eGIs send results back to the clients in the form of HTML doc­
uments. Thus the CGI architecture allows to create web pages in run time.
Pushed to the limit, this same concept allows to create a site where all the pages
are created dynamically used information about format and contents stored in
a database. The advantage of such system is that it simplifies the maintenance
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Figure 4.13. Three-tier WWW Architecture

and update of the pages, and allows pages to be customized according to the
user profile.

Although the CGI concept is very versatile, it is not very efficient, because
creating a new process is an expensive system operation. Often, the task per­
formed by the CGI is extremely simple, for instance adding the time of day
or the number of visitors to an otherwise static page. To avoid the need to
start a new a process to execute these simple actions, most web servers of­
fer extensions that allow some operations to be performed by the server itself,
before sending the page to the client. The degree of complexity of the tasks
performed by the server depends on the expressiveness of the language used to
specify them. These extensions are known by several names, such as Server
Side Includes (SSI), Servlets (which are Java applets executed by the server),
or active server pages (Microsoft proprietary extensions). Some of these exten­
sions support standard interfaces specially designed to support efficient access
to database systems, such as Open DataBase Connectivity (ODBC) and Java
DataBase Connectivity (JDBC)inxxJava DataBase Connectivity (JDBC).

We have just seen how to expand the processing capabilities of the server.
We will now discuss how to expand the capabilities of the client browsers.
It should be noted that today's browsers already have an impressive range
of built-in facilities. However, it is impractical to include in the browser all
the code to handle every possible format of multimedia documents. A way
to make the browsers extensible is to allow new functionality to be attached
dynamically to the browser. These extensions are known as plugins. Plugins
have to be loaded onto the client machine and explicitly installed. To relieve
the users from having to explicitly download and install plugins, the browser
can be extended to accept code that is shipped together with a page.

One way to send code to the client is to send binaries, but this raises sev­
eral problems. To start with, the server must have binaries for the different
architectures where clients execute- an overwhelming task, given the myriad
of architectures where browsers can run. This solution also poses problems to
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the clients- accepting and executing binaries from someone which may be not
fully trusted raises severe security concerns.

An alternative its to allow the client to execute just a small number of
commands, which are included in the page in the form of a script. Using this
approach, the browser has a built-in interpreter of the scripting language. When
parsing a page, the browser looks for scripts and executes them. Since the script
can only execute the commands recognized by the browser, this solution is much
more secure than accepting arbitrary binary code. The problem with scripting
languages is that they are generally limited in the range of functionality they
provide.

The Java language emerged has a excellent tradeoff between pure binary
code and simpler scripting languages. By embedding a Java virtual machine
in the browser, one can insert Java code in a web page. Being a very powerful
language, Java supports the development of complex applications. On the other
hand, the Java virtual machine ensures that the downloaded code does not
violate safety or security constraints. For example, the browser can download
smart graphic interfaces that serve as front-ends to other applications (that
are executed in the server) or even download fully-fledged applications to be
executed locally.

The combination of client side and server side processing turns the WWW
into an environment where a wide range of distributed applications can be
executed.

4.6 GROUPWARE SYSTEMS

The purpose of a groupware system is to support collaboration activities, in­
cluding support for document sharing and exchange, in various formats and
through diverse protocols. Users can be located in different physical locations
and access data using different types of devices, including portable computers.
A key feature of successful groupware systems is the integration of different
data sharing mechanisms, like databases, electronic mail services, shared edi­
tors, replication managers, etc.

A groupware system often plays the role of a central information repository,
a place where all the information required for a business process is held and
can be manipulated. Typically, a groupware system also includes a workflow
engine that keeps track of the document life-cycle. For instance, if a product
order must first be validated by the section manager, the system may ensure
that the order is not issued before being approved. Additionally, the system
may also be configured to raise an exception if the order is not processed by
the manager within 24 hours.

A notable groupware system is Lotus Notes. The major component of Notes
is a hypertext document database that can store and link data coming from
several sources including web pages, mail messages, images, etc. Users can
query for documents using a full text search engine. Versioning capabilities
allow users to update documents and keep track of changes. It is possible to
exchange documents that contain links to other documents. For instance, a
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user can send a mail message to a set of colleagues and include a pointer to a
working version of a document; by following that link, the colleagues will have
access to the most updated version of the document.

Issues such as security, concurrency control, and replication management
become particularly relevant in a context where sharing is the primary con­
cern. Several security mechanisms are integrated in the Notes system, such as:
mutual authentication between users and servers; powerful access control lists
based on roles (like "author", "editor", "designer", among others); encryption
of ~ocuments and communication channels; and the ability to sign documents.

Lotus Notes uses replication to place documents near their users. If an
enterprise has several offices, it is possible to create replicas of a database
in each site. Documents can be updated concurrently in different sites and
the system supports automatic synchronization of replicas, using versioning
control to detect which documents were changed and need to be copied. Clients
can also replicate a portion of the database in their private machine, just to
access data more efficiently or because they need to disconnect. Again, replica
synchronization is performed when connectivity is regained.

An application programming interface allows using the basic Lotus mech­
anisms in the development of complex distributed applications. A set of de­
velopment tools help programmers in this task. The tools include a dedicated
scripting language (LotusScript), a formula language to build filters that can
process documents, and design elements that ease the task of building graph­
ical user-interfaces. As any other successful commercial product, Lotus also
includes a myriad of interfaces to legacy and third-party database and systems,
including, of course, the web.

Lotus can be seen as a good example of what is called different-time-different­
place collaboration. This is probably the most frequent collaboration pattern.
However, some other collaborative activities require a more tightly-coupled
interaction, sometimes known as same-time-different-place or synchronous in­
teraction. Tools for synchronous interaction include dissemination of audio
and video, telepointers (a mechanisms where an user can point to a location
in a document and the other users see the location pointed at), chat windows,
shared drawing tools, etc. Such tools have the same sort of concurrency control
and security requirements than the previous systems but exhibit much more
stringent requirements in terms of connectivity.

4.7 SUMMARY AND FURTHER READING

This chapter gave examples of distributed systems and platforms. We started
with the discussion of distributed name services and distributed file systems.
Then, integrated platforms that include these and other services, such as DCE
and CORBA, were presented. Finally, we briefly surveyed web and collabora­
tive technologies.

More information on the implementation of DNS can be found in (Solomon
et aI., 1982; Bloom and Dunlap, 1986). An analysis of the DNS traffic is
given in (Danzig et aI., 1992). Alternative name server designs can be found
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in (Cheriton and Mann, 1989; Guy et aI., 1990). A survey by Satyanarayanan
on distributed file systems can be found in (Mullender, 1993).

There are several very complete books on DCE and CORBA. The book
of (Shirley et aI., 1994) provides a good introduction to the several DCE compo­
nents. Interesting books on Corba are (Baker, 1997) and (Henning and Vinoski,
1999). A comparison between COM and Corba in given in citePitchard:99.
Naturally, a large number of books about the Internet and the WWW are avail­
able, including the good introductions of (Comer, 1997; Abrams, 1998). For
a short description of many WWW technologies, see (Spainhour and Quercia,
1996) and for a more detailed treatment see (Deitel and Deitel, 2000). Many
books on Lotus notes exist, such as (Lamb and Lew, 1996) and (Haberman
et aI., 2000).

Table 4.2 gives a few pointers to information about some of the systems
described in this chapter. Some of the sites are extremely complete repositories
of distributed systems related software.
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Pointers to Information about Distributed Systems and Platforms

System Class

Internet

Networking

WWW

Parallel
Computing
and
Shared
Memory

DeE

Databases
&
Transacs.

Information
Dissemin.

System

IETF
RIPE
ISOC
CIX
ICANN
lANA
Internet2
Internic
NGI
ISC

Cisco
Lucent
x-Kernel
Triad
Spinglass

WWW
Apache
Netscape
MS-Explorer

MPI
PVM
Parallel Tools
Top500
Spec
ThreadMarks
Alewife
Beowolf
Avalanche

Transarc

Open Group
THOR
TPC
Arjuna

Ninja
Salamander
Globe
W30bjects
Infospheres

Pointers

www.ietf.org
www.ripe.net
info.isoc.org
www.cix.org
www.icann.org
www.iana.org
www.internet2.edu
www.internic.net
www.ngi.gov
www.isc.org

www.cisco.com
www.lucent.com
www.cs.arizona.edu/xkernel/
www-dsg.stanford.edu/triad/index.html
www.cs.comell.edu/Info/Projects/Spinglass/index.html

www.w3.org
www.apache.com
www.netscape.com
www.microsoft.com

www-unix.mcs.anl.gov/mpi
www.csm.ornl.gov/pvm/
www.ptools.org/
www.top500.org
www.spec.org/
www.cs.rice.edu/-willy/TreadMarks/overview.html
cag-www.lcs.mit.edu/alewife
dune.mcs.kent.edu/ -farrell/ equip/beowolf
www.cs.utah.edu/ avalanche/

www.transarc.com

www.opengroup.org
www.pmg.lcs.mit.edu/Thor.html
www.tpc.org
arjuna.ncl.ac.uk

ninja.cs.berkeley.edu
www.eecs.umich.edu/-farnam/projects/collab.html
www.cs.vu.nl/-steen/globe
arjuna.ncl.ac.uk/W30bjects/index.html
www.infospheres.caltech.edu
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Table 4.2 (continued)
Pointers to Information about Distributed Systems and Platforms

System Class System

ORBs OMG
and IONA
other TAO
Object Eternal
Environms. ORBacus

Java IDL
omniORB

DCOM

Multi-user DiamondPark
Applics. Spline

Sametime
NetMeeting
MRObjects
Maverik

Distrib. AFS
file. NFS
Systems Ficus

Coda

Distrib. Amoeba
O.S. QNX

Mach
Sprite
EROS
PLAN 9
GUIDE
Alpha
Angel
Inferno
Grasshopper

Webcasting Marimba
Pointcast
TIBCO
InfoBus
iBus

Pointers

www.omg.org
www.iona.com
www.cs.wustl.edu/-schmidt/TAO.html
beta.ece.ucsb.edu/eternal/Eternal.html
www.ooc.com
www.javasoft.com/products/jdk/idl/index.html
www.uk.research.att.com/omniORB/omniORB.html
www.microsoft.com

www.merl.com/projects/dp/tour/index.html
www.merl.com/projects/spline
www.lotus.com/home.nsf/ welcome/ sametime
www.microsoft.com
www.cs.ualberta.ca/-graphics/mrobjects
aig.cs.man.ac.uk/systems/Maverik/index.html

www.angelfire.com/hi /plutonic/ afs-faq.html
www.ietf.org/rfc/rfc1813.txt
ficus-www.cs.ucla.edu/ ficus
www.coda.cs.cmu.edu

www.cs.vu.nl/pub/amoeba/
www.qnx.com
www.cs.cmu.edu/ afs/ cs.cmu.edu/project/ mach/ public
www.CS.Berkeley.EDV/projects/sprite
www.eros-os.org
plan9.bell-Iabs.com/plan9dist
www-bLimagJr/GVIDE/presguide.html
www.realtime-os.com/alpha.html
www.soLcity.ac.uk/research/sarc/angel
www.vitanuova.com
www.gh.cs.su.oz.au/Grasshopper/index.html

www.marimba.com
www.pointcast.com
www.tibco.com
www.trl.ibm.co.jp/projects/ibr/index_e.htm
www.softwired-inc.com/
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5 CASE STUDY: VP'63- THE

VINTAGEPORT'63 LARGE-SCALE

INFORMATION SYSTEM

This chapter starts a case study that we carry throughout the book: The
VP'63 (VintagePort'63) Large-Scale Information System. An imaginary wine
company owning a traditional and obsolete information system starts a project
aiming at its modernization. The case study is methodically addressed at the
end of each part, so that we progressively improve VP'63. In this part, we start
by making it: modular, distributed and interactive.

5.1 INTRODUCTION

We start our running case study, which we will develop throughout the book.
At the end of each part, we apply the concepts addressed in that part. The
purpose of the case study is to exercise the skills of the architect in developing
an architecture, and ultimately assessing how well the notions discussed in the
book were assimilated. In consequence, we will use the style of a dialogue
inside a team of system architects, and will intentionally not define or refer to
the places where the terms and concepts used have been previously treated in
the book.

An imaginary traditional Portuguese wine company owns an obsolete infor­
mation system. The company management has devised an ambitious strategy
for enhancement of the system in support of current and emerging business, and
has contracted a team to develop an architectural project for that development.
The corporate strategy makers traced the following objectives:

P. Verissimo et al. 
© Kluwer Academic 2001

Distributed Systems for System Architects
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• Seamless business information support system, from shop floor, through of­
fices, to higher management, enabling applications to give coherent and up­
to-date information about the state of the business.

• Coherent document management support system, allowing the design of sim­
ple applications that reliably disseminate persistent information created by
several producers to the whole or groups of enterprise collaborators.

• One-PC-per-employee strategy, adapted to the real circumstances (e.g., rural
workers) ie., at least one-PC-per-employee-group.

• Improved automation of the wine processing facilities, aimed at a better
quality of the core process (wine making) whilst retaining the traditional
ways, and at more effective handling of the ancillary processes (bottling,
corking, labeling, etc.).

• Integrated industrial management support system, allowing the design and/or
installation of multiparty interoperative applications, a prompt, real-time
perception of the shop-floor state from several places in the company, and
an integration with the business information system.

• On-line transactions in two facets: a Web portal oriented towards the wine
culture, featuring historical and informative contents and a virtual wine shop
supporting direct customer-to-business commerce; and a virtual enterprise
network connecting the company to its suppliers and downstream wholesale
clients, supporting business-to-business commerce.

The project received the code name of VintagePort'63 Large-Scale Informa­
tion System, VP'63 in short, and the team will be composed by the authors
and the reader. The case study is methodically addressed at the end of each
part, so that we progressively improve VP'63. Of course, this strict sequence
relates to the book structure. In a real project the architect had better tackle
all the facets concurrently- distribution, fault tolerance, real-time, security,
management- in a spiral of development that clarifies their interdependencies
and eliminates conflicting objectives, until the final architecture.

5.2 INITIAL SYSTEM AND FIRST STEPS

The company has several vineyards in the country, with local offices and pro­
cessing plants in some of them. The central offices are in Porto, the capital
of the famous Port Wine. The information system, like many others of the
earlier generations, is mainframe-based, centralized, without Internet access.
Remote facilities access it through remote login, via virtual terminals on PCs,
connected to the mainframe through leased lines, as exemplified in Figure 5.la.

More recently, some of the larger offices, co-located with the processing
plants, have augmented their computing needs, such that ad-hoc solutions were
put in place. This mostly consisted of installing mid-range servers with local
databases and hosting local support services, both office and production man­
agement. However, this evolution created a potential for inconsistency with
the mainframe system, which in principle must hold a coherent state of the
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business. In fact, this situation can be described as having semi-autonomous
subsystems or islands, now detailed in Figure 5.1b. These islands must perform
periodical explicit state reconciliations with the central mainframe system. It
had been decided that these operations take place during the night, every day,
since they involve stopping the system, making a series of file transfers, and
running consolidating transactions.

(a) (b)

Figure 5.1. (a) Centralized Mainframe (rlogin); (b) Autonomous Subsystems/'slands (ftp)

5.3 DISTRIBUTED COMPUTING APPROACHES

In what concerned distribution, the team agreed that the strategy for the sys­
tem evolution should be traced along the following lines:

• maintaining centralized business control, whilst allowing the deployment of
distributed services;

• achieving openess, through the use of COTS systems (e.g., Linux and WNT),
protocols (e.g., TCP lIP, HTTP), and infrastructures (e.g., Internet);

• distributing processing activities, for modularity in face of fast changing
business configurations;

• distribution of data repositories for information and resource sharing;

• enhancement with proprietary middleware when applicable;

• distribution should have in mind availability and performance enhancement,
to be addressed in later stages.

Q.1. 1 What should be the evolution in terms of networking infrastructure?
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The networking setting of the company migrated to the Internet. The au­
tonomous islands were already networked internally through local area networks
running TCP lIP, that connected via the leased lines to a special purpose gate­
way from TCP lIP to the mainframe's native communication architecture. In
consequence, all islands have been fitted with routers connected to an ISP via
an adequate link in terms of speed and throughput.

(a) (b)

Figure 5.2. (a) Client-Server; (b) Publisher-Subscriber

On the other hand, the pes hosting the isolated remote terminals ,vere con­
verted to fully working client units capable of performing local computing, and
connecting through the Internet to local services (to be defined), services on
the main system, and other local units. The connection was designed using a
small ISDN dial-up router that allows a small-scale expansion of the number of
remote clients at a facility. The new networking layout can already be perceived
in Figure 5.2a. The application of the WAN-of-LANs principle was deferred to
a later phase, when the installation of a secure VPN will be considered. After
this phase there will be a desirable homogeneity of the architecture amongst
what are now islands and isolated remote client positions. This will be ben­
eficial both in terms of architectural coherence and modularity, and potential
for reconfiguration of the company's information system layout. This was a
requirement from the corporate strategy makers.
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Q .1. 2 What are the adequate paradigms in what concerns the organization of
distributed activities and services in such a company?

The team reflected on the business objectives present and future, traced for
the company by the corporate strategy makers. Two paradigms were seen as
enabling the installation of applications serving the outlined strategy:

• Client-server, enabling: access of remote facilities to central services; access
to services in the autonomous subsystems by the local clients; transactional
access of Web clients, both internal (employees) and external (e-commerce
clients) .

• Publisher-subscriber, enabling: event-based handling of generic management
information in a content-sensitive manner; event-based handling of time sen­
sitive production information, for seamless integration between the produc­
tion management and the general management systems.

Q .1. 3 How should client-server and publisher-subscriber subsystems be set
up?

Figure 5.2a illustrates the client-server set-up for the whole company. The
main database remains at the headquarters in Porto, but the database engine
is provided with a transactional front-end supporting remote queries and up­
dates from the clients residing at the several company facilities in the country.
The operations are essentially the same as supported previously by the closed
mainframe. However, there is a potential for adapting old applications and
writing new applications to take advantage of local client processing power,
instead of loading eveything onto the mainframe. Furthermore, this opens the
way to 3-tier computing from thin Web clients at a later stage.

Figure 5.2b exemplifies how a publisher-subscriber subsystem should be set
up. This concerns support for applications handling the part of the documen­
tal information that requires a push treatment (billboards, memos, and any
changes requiring prompt attention in regulations, price lists, production in­
formation such as stock/orders, etc.). In consequence, the architecture must
allow for several publishers that may be in different facilities. The publish­
ing engine resides in Lisboa, where the company has important administrative
staff offices with a powerful server, which will be adapted to be the publishing
engine. This is a persistent repository which holds the publication rules for
the subscribers. For example, new price lists are disseminated to commercial
department heads, memos are disseminated through the relevant subscription
list, finished production batches are made available as new stock, etc. At least
part of this information can also be made available through front-ends such as
news readers.

5.4 DISTRIBUTION OF DATA REPOSITORIES

The former set-up is still based on a central mainframe database. Given the
increased dependency on the information system, situations of bottleneck on the
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central database may arrive. Besides, parts of the central database were already
shipped every night to the autonomous islands, since their operation was too
intensive to support remote accesses for every operation. This creates a daily
inconsistency that twists the business-centric computational model applications
are supposed to comply with, by definition of the enterprise model. The team
identified a number of potential problems deriving from the analysis above:

• peak situations will become frequent when the main database in Porto will
be overloaded;

• when the main database server in Porto or the connection to it fail, the
whole enterprise operation stops;

• situations of network partitioning in long-haul connections from distant fa­
cilities are more probable;

• there is a potential for conflicting operations over the day between different
autonomous islands, and between the latter and remote clients.

The increased informatics content of the company's information flow shrinks
reaction times and increases the frequency of transactions. In consequence, this
situation may assume a dramatic proportion if nothing is done to address it.

Q.1. 4 How can the performance, availability and consistency problems created
by a centralized database and ad-hoc caches be solved?

All this points to the distribution of the information repository, by means
of a distributed database management system. Fragmentation of the central
database and its distribution by several of the main facilities of the company
is a mandatory step, depicted in Figure 5.3a. This is easy to do since all
main facilites were planned to have high quality access to the Internet. Cri­
teria for fragmentation should pay attention to data importance, functionality
and locality. Criteria for distribution should match the criteria for fragmenta­
tion, placing fragments with local information in the relevant areas, functional
fraglnents with the corresponding department locations, critical fragments in
highly-protected and/or highly-accessible locations, depending on the perspec­
tive of criticality being integrity or availability.

Fragments whose definition deserves special attention are those of the au­
tonomous islands. For performance reasons, information accessed often should
be near each location. Instead of this being done through loosely consistent
caches, the persistent information repositories of the islands should be rede­
fined as fragments of the main database, as illustrated in Figure 5.3b. The
team devoted special attention to the definition of these fragments. If properly
designed, most of the transactions on an island will exhibit the property of lo­
cality, not burdening the main system. A refinement was considered important
though: part of the information resident in the islands databases was read-only
information copied from the database and shipped to and cached in all islands
on a daily basis. That information cannot stay in a single fragment, except
the one at the main database site. The team identified two solutions: (a) in
anticipation to the reformulation of the information flow, part of this infor-
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mation will circulate through the information dissemination subsystems, i.e.,
publisher-subscriber and distributed Web-based file system (to be defined); (b)
in anticipation to the measures to achieve fault-tolerance, where database repli­
cation will be foreseen, at this stage through read-only replicas for performance
reasons.

that the database is depicted whole at the headquarters location in Fig­
ure 5.3b, despite being fragmented elsewhere.

It was also decided to keep a copy of the complete database at the head­
quarters location, as depicted in Figure 5.3b. The consolidated copy is achieved
by periodically reconciling all the external fragments. This was planned in or­
der to facilitate the transparent operation of strategic packages such as data
warehousing, data mining or executive information systems, which require a
full image of the business information system. Some of them are resource and
power hungry, and making them operate on a distributed database would have
a negative effect on performance. This way they can operate on a central
database image without disturbing the performance of the rest of the system.

Public
Data

Network ~

Lisboa,-; (~ l~'M';; .\.•..(- '~"~..~"'

~
... :..j

(a) (b)

Figure 5.3. (a) Fragmentation of Central DB; (b) Consolidation of the Island's DB Frag­
ments
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5.5 DISTRIBUTED FILE SYSTEM ACCESS

Amongst the distributed access to services, the file service access is of paramount
importance. It enables the transparent distribution of file-based applications
and is in itself a reliable way of disseminating information that does not change
too often.

Q .1. 5 What kind of distributed file service is adequate for a geographically
large-scale setting such as VP'63'?

The team specified a large-scale distributed file system (DFS) architecture
with facilities for setting-up read-write (RW) and read-only (RO) files or vol­
umes, distributed by several servers. The file system model, exemplified in
Figure 5.4a, should be of the upload-download type, with server files cached in
local client disks. This overcomes the delay and instability of WAN communi­
cation. Transactional file access to both RO and RW volumes makes it easy
for human or computer clients to use the system as a file-based information
dissemination/archival infrastructure, which can be combined with the event­
based publisher-subscriber mechanisms already described. Replicated RO vol­
umes support long-term publishing: a single writer sporadically modifies files,
and releases them onto all RO copies at the distributed company sites (e.g.,
billboards, general regulations). Alternatively, shared RW volumes support
moderately frequent single- or multiple-writer updates (e.g., global company
phone directory, multiple source FAQs, or price lists, etc.). All of them should
be considered as a logical part of the global information system, as suggested
by the way the main file server is depicted.

Human users, mainly non computer-literate users, should be given access
through the Web in as many situations as possible, given its simplicity. In
addition to the existing 3-tier solutions for database access currently provided
by all DB-engine manufacturers, the team studied the enhancement of the file
access to provide 3-tier Web-based access to the large-scale DFS. This set-up,
depicted in Figure 5.4b, has an enormous scability, but deceiving simplicity: the
core infrastructure of file system servers fuels the DFS client's caches located
strategically in the company infrastructure, as the second level of the hierarchy.
Both servers and caches are the local file systems on which HTTP servers run,
serving pages to the third level of the hierarchy, the HTTP client browsers.
The set-up implies that contents to be disseminated and later browsed from,
be edited in the desired language/format: ascii, html, scripting languages, etc.

Further Issues

The project needs now some refinement, and the reader was assigned the study
of a few questions that were still left to be solved:

Q.1. 6 What routing policies should be used in the application of the WAN­
of-LANs principle to the networking infrastructure of VP'63'?

Q.1. 7 What kind of protocol architecture/stack should be used for enabling
client-server RPC access to the database server?

Exhibit 2026 Page 185



CASE STUDY: VP'63 167

(a) (b)

Figure 5.4. (a) Distributed File System ; (b) Web-based File Access

Q .1. 8 Design the detailed architecture of the publisher-subscriber subsystem
using group communication.

Q.1. 9 Define criteria for fragmentation of the database and location of the
relevant fragments, based on a generic classification of information criticality
and locality.

Q .1. 10 Given that it was once possible to have the autonomous systems work­
ing for a full day completely disconnected, will it be possible to configure the
system so that they are connected to the central system only a few times a day,
reducing the networking costs? Determine a policy for that and its implications
on consistency.

Q.1. 11 The same question above applies to the DFS. Define a policy for use
of a weakly consistent file system that supports disconnected operation, and its
implications on consistency.

Q.1. 12 Consider the transactional DFS studied: (aJ would it easily support a
low read/write ratio with single writer?; (bJ would it get worse with highly
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competitive multiple writers with high read/write ratios?; (c) and with low
read/write ratios?

Q.1. 13 Design the detailed architecture of the 3-tier DFS- Web infrastructure,
including layout and update mechanisms. Suppose that the core DFS service
is hosted in three main servers. Optimize both the freshness of information
updates and the response time of Web page requests from end clients.
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| | Fault Tolerance

Why do computers stop and what can be done about tt?
— Jim Gray, 1986

Contents

6. FAULT-TOLERANT SYSTEM FOUNDATIONS

7. PARADIGMS FOR DISTRIBUTED FAULT TOLERANCE

8. MODELS OF DISTRIBUTED FAULT-TOLERANT COMPUTING

9. DEPENDABLE SYSTEMS AND PLATFORMS

10. CASE STUDY: VP’63

Overview

Part II, Fault tolerance, addresses dependability of distributed systems, that is, how to

ensure that they keep running correctly. It contains the fundamental notions concern-

ing dependability, such as the triad fault-error-failure and provides a comprehensive
treatment of distributed fault tolerance. Chapter 6, Fundamental Concepts of Fault

tolerance, starts with the generic notion of dependability and its associated concepts,
and endswith the introduction of distributed fault tolerance. In fact, distribution and

fault tolerance go hand in hand, since the former requires the latter to keep reliability

at an acceptable level, and the latter is made easier by some qualities of the former,
such as independenceof failure of individual machines. Chapter 7, Paradigms for
Distributed Fault Tolerance, discusses the main paradigms ofthis discipline. After
introductory concepts and notions about fault-tolerant communication, it addresses

issues such as: replication management, resilience and voting, and recovery. Chapters
8 and 9, Models of Distributed Fault-Tolerant Computing and Dependable Systems
and Platforms, show how to incorporate fault tolerance in distributed systems. Ex-

plaining the main strategies for the diverse fault models, its materialization is dis-
cussed for remote operation, diffusion and transactional computing models. Finally,
concrete system examples are given. Chapter 10 continues the case study: making
the VP’63 System dependable.
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FOUNDATIONS

This chapter addresses the fundamental concepts concerning fault tolerance.
It starts by introducing the notion of dependability and discussing why it is
difficult to build dependable systems. The evolution of fault-tolerant computing
is reviewed, from hardware fault tolerance to distributed software-based fault
tolerance. Finally, the chapter introduces the most relevant architectures for
fault-tolerant communication and processing, that are later described in detail
in the subsequent chapters of this part.

6.1 A DEFINITION OF DEPENDABILITY

Compared with simple but nevertheless useful instruments (such as a hammer,
for instance) computer systems seem to be rather fragile artifacts: they often
do not behave as we expect them to, and usually decide to do it at the most
inconvenient moment. This undesired behavior has two main causes. The
first is that computers are complex systems, made of many different hardware
and software components. These components interact with each other in ways
often not predicted by the system designer. It is a challenging task to create the
appropriate architectural constructs to address the mismatches caused by this
complexity (the hammer always seems to work fine, even when everything starts
looking like a nail). The second reason stems from an old rule of engineering,
known as Murphy's Law. Put simply, this law states that if we neglect the
possibility of hazards occurring, they tend to occur in the worst possible manner
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at the worst possible moment. This chapter presents the fundamental notions
required to build dependable computing systems, Le., computing systems that
behave like their users expect.

We say that a system is dependable if it exhibits a high probability of behav­
ing according to its specification. This rather simple statement hides a number
of subtle issues. To start with, it assumes that a comprehensive specification of
the system behavior is available. This requirement is sometimes overlooked: it
is not simple to derive a complete and unambiguous specification of the system
from user requirements that are often fuzzy or implicit. Additionally, a com­
plete specification should not be limited to what the system does but must also
specify the environmental conditions required for the system to provide the de­
sired service. Most people realize that a personal computer is not water-proof
but few people realize what exactly happens when the computer is exposed to
high temperature or heavy dust.

Another ambiguous issue in our definition of dependable system is the no­
tion of high probability. How high is high? This naturally depends on the
purpose of the target computer system: the requirements of a life-supporting
system and of a video-game console are quite different. The consequences of
a failure are much more dramatic in life-supporting systems than in a gaming
machine (even though the resistance of an arcade console to physical damage
needs to be probably higher than that of a medical instrument). The knowledge
of the required degree of dependability is important because, as you may ex­
pect, dependability does not come for free. Paraphrasing Laprie (Laprie, 1992),
dependability is then:

Dependability - the measure in which reliance can justifiably be placed
on the service delivered by a system

Is there a systematic way to achieve such reliance justifiably? To start with,
we must understand what are the impairments to dependability, Le., the po­
tential causes for incorrect behavior. Then, we must learn about the means
to achieve dependability, Le., the techniques that allow us to achieve correct
behavior despite the impairments. Finally, we must devise a way to express the
level of dependability desired and assess whether it was achieved, by defining
dependability attributes. Each of these issues will now be addressed in turn.

6.1.1 Fault, Error and Failure

The impairments to dependability assume three facets: fault, error, and fail­
ure. When the system behavior violates its service specification we say that a
failure occurs. Building dependable systems is about preventing failures from
occurring. However, to be successful, we must understand the process that
leads to failure, which starts with an internal or external cause, called fault.
The fault may remain dormant for a while, until it is activated. For example,
a defect in a file system disk record is a fault that may remain unnoticed until
the record is read. The corrupted record is an error in the state of the system
that will lead to the failure of the file service when the disk is read. The failure
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is thus the externally observable effect of the error. It should be noted that
similar failures can be derived from quite different errors. A screen filled with
strange characters can be the visible result of either a defective video card or a
flawed operating system routine. On the other hand, errors are sometimes not
immediately visible at the system interface. In the disk example, a long time
may elapse before that particular record is read. Such errors are in the latent
state until they are detected and/or they produce a failure. As with failures,
the same error can be caused by different faults. For instance, the disk error
may be due to a physical fault in the disk surface (bad record), but it may also
be due to a misalignment of the disk head.

There is a wealth of fault types, which can be classified along several axes
or viewpoints. There is a fundamental distinction of the phenomenological ori­
gin of faults: physical, generated by physical (hardware) causes; design, when
introduced during the design phase; interaction, when occurring at the inter­
faces between system components, or at the interfaces with the outside world.
Design faults, and some interaction faults, are caused by humans. Faults may
also be classified according to the nature (accidental or intentional, malicious or
not), the phase of creation in the system's life (development or operation), the
locus (internal or external), the persistence (permanent or temporary). A clas­
sification is proposed in (Laprie, 1992). Most relevant to distributed systems
are interaction faults, since they target interactions between distributed com­
ponents. Amongst them, temporary faults assume special relevance: transient
(external) faults mainly affect communication (for instance, electromagnetic
noise due to a spark); intermittent (internal) faults mainly affect concurrent
programs, so typical of distributed systems (for example, races and deadlocks).

System
Component

Figure 6.1. Fault, Error and Failure

The fault, error, and failure definitions can be applied recursively when a
system is decomposed into several components:

fault ~ error ~ failure ~ fault ~ error ~ failure ...

That is, an error inside the system is often caused by the failure of one of its
components, which at system level should be seen as a fault. Figure 6.1 illus­
trates this recursion. Although we should avoid ambiguity when addressing the
mechanisms of failure, it is thus possible to address the same phenomenon as a
(component) failure or a (system) fault, depending on the viewpoint. Likewise,
interactions between components may fail in several ways (e.g., timing failure)
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constituting system-level faults that lead to an erroneous state (e.g., timing er­
ror). Faults may cause other faults. An error may give rise to other errors, by
propagation, and in fact, a failure may be at the end of a chain of propagated
errors.

6.1.2 Achieving Dependability

As we have seen, there is usually a cause-effect chain from a fault to a failure.
To achieve dependability one should break this chain by applying methods
that act at any point in the chain to prevent the failure from occurring. The
source of the chain, the faults, are thus the natural targets of several means to
achieve dependability. These means can be used in isolation or, preferably, in
combination.

The first approach we study is called fault removal. It consists of detecting
faults and removing them before they have the chance of causing an error. Tar­
gets of fault-removal include software bugs, defective hardware, and so forth.
Fault forecasting is the set of methods aiming at the estimation of the proba­
bility of faults occurring, or remaining in the system. Some classes of faults are
easier to detect and remove than others. In consequence, fault forecasting can
be seen as complementing fault removal, by predicting the amount of residual
faults in the system.

Fault prevention, as its name implies, consists of preventing the causes of
errors by eliminating the conditions that make fault occurrence probable during
system operation. For instance, using high quality components, components
with internal redundancy, rigorous design techniques, etc. The combination of
fault prevention and removal is sometimes called fault avoidance, Le., aiming
at a fault-free system.

Of course, not all faults can be prevented from occurring during system
operation, whereas other faults may even be present from the beginning of
operation, having eluded fault removal. In consequence, one must create com­
plementary mechanisms that block the effect of the fault before it generates a
failure. In such case, we say that the system is capable of providing correct
service despite the occurrence of one or more faults or, in other words, that
the system is fault-tolerant (FT). Fault tolerance acts at the stage of error pro­
duction, through mechanisms that are designated by error processing. Upon
identification of an error-producing fault, it is desirable to eliminate it, as soon
as possible, in what is called fault treatment.

6.1.3 Measuring and Validating Dependability

Fault avoidance and fault tolerance are strategies that can help the system
architect to build dependable systems. But how to assess the degree of success
of these strategies, Le., how to measure and validate the degree of dependability
attained by a system? This is expressed through the following attributes:
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the measure of the continuous delivery of correct service

Maintainability the measure of the time to restoration of correct service

Availability

Safety

the measure of the delivery of correct service with respect to
the alternation between correct and incorrect service

the degree to which a system, upon failing, does so in a non­
catastrophic manner

Recall that we have attached a probability to the notion of dependability
as provision of correct service. Several of these metrics of dependability can
be expressed as probabilistic functions. Reliability can be equated with the
probability that the system does not fail during the period of mission of the
system (e.g., a flight). For continuous mission systems (e.g., web servers), re­
liability can also be expressed by the mean time to failure (MTTF) or by the
mean time between failures (MTBF). Finally, reliability can be expressed as
a failure rate probability, for example, 10-9 failures per hour, a typical figure
for safety-critical systems. Another metric of dependability is availability, the
probability of the system being operational at any given time, when it alternates
with failed states. Maintainability is the attribute defining the time needed for
the system to recover from a failure. Given reliability MTBF and maintainabil­
ity MTTR (mean time to repair) of a system, availability can be expressed as
MTBFj(MTBF+MTTR). For the sake of example, Table 6.1 shows the corre­
sponding downtime per year for several availability figures. Worthwhile noting
is the capability of defining a continuum between full service and complete in­
terruption of service, expressed as performability (Meyer, 1992). This attribute
quantifies the capacity of graceful degradation of a system. In other words, it
offers a combined metrics of performance and dependability, which can be seen
as a 'dependability' view of quality of service (see Quality-of-Service Models in
Chapter 13). Another important attribute is safety, which is equated with the
conditional probability of, given a failure, it not being catastrophic. Other at­
tributes that can be considered of dependability are those concerning security,
such as the preservation of confidentiality or integrity. Security is discussed in
Part III of this book.

Given a specification in terms of system dependability attributes, it is impor­
tant to validate whether the latter are attained. The distinction is often made
between building the right system- validation in general terms- and building
the system rightly- verification of the design and implementation- as two
facets of this process. This couple is often referred to as Validation €:J Verifi­
cation, or simply V €:J V (Boehm, 1988). One cannot simply put the system
into operation and measure how often it fails; usually the desired probability of
failure is so low that this approach is infeasible. In the early design phases, the
functional and design specifications of the system should be subjected to design
validation, with the aim of assessing whether the proposed system satisfies the
requirements. Later, the implementation specifications (e.g., algorithms and
protocols) and the implementation itself (e.g., code) should be subjected to
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Table 6.1. Downtime per Year for Several Availability Figures

Availability

90%
99%
99.9%
99.99%
99.999%
99.9999%
99.99999%

I
Down­
time/year

> 1 month
~ 4 days
~ 9 hours
~ 1 hour
~ 5 minutes
~ 30 seconds
~ 3 seconds

IExample Component

Unattended PC
Maintained PC
Cluster
Multicomputer
Embedded System ~PC tech.)
Embedded System special HW)
Embedded System special HW)

implementation validation, to check whether the system is correctly built. For
instance, an automatic tool can check a specification (made in a formal lan­
guage), against system properties (also formally specified); this is called formal
verification. This sort of verification can also be made in implementation code,
by tools that perform exhaustive code walks. Another important class of vali­
dation techniques is dependability evaluation: techniques in this class allow to
quantify the dependability of a system based on the dependability of its compo­
nents. Examples of such validation techniques commonly used in dependability
work are fault-injection and software reliability evaluation. Fault-injection, as
the name implies, consists in artificially generating faults in a target system
and observing the resulting behavior. Software reliability evaluation can be
done using techniques such as statistical trend analysis.

In conclusion, two relevant techniques to achieve dependability are fault re­
moval and fault forecasting which complement each other. The resulting archi­
tecture can then be subject to dependability validation to assess in what extend
the dependability attributes are met. Table 6.2 summarizes the impairments,
means and attributes of dependability that we have just discussed.

Table 6.2. Main Dependability-Related Concepts

Impairments

Faults
Errors
Failures

II Means

Fault Removal
Fault Forecasting
Fault Prevention
Fault Tolerance

Attributes

Reliability
Maintainability
Availability
Safety

6.1.4 Fault Assumptions and Coverage

In order to avoid or tolerate faults we need to understand how, how often, and
for how long they occur. Thus, the first step to building a fault-tolerant system
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is to define the fault model, i.e., the number and classes of faults that need
to be tolerated. Obviously, it is possible to classify faults according to many
different criteria. In this book we are mainly concerned with system faults in
interactions between components, or in other words, faults concerning actions
whose result is observable outside the component, since these are the most rele­
vant in distributed architectures (network messages, input-output observations
and actuation, clock readings, disk reads and writes, etc.).

The most benign classes of faults belong to the omissive fault group. These
faults are characterized by the component not performing some interaction
when specified to. Crash faults occur when a given component permanently
stops operating. Omission faults occur when a given component omits an action
from time to time. Timing faults occur when a component is late performing
an action. The delay between the specified instant for the action to take place
and the actual instant when the action is observed is called the lateness degree.
Note that an omission fault can be seen as a particular case of timing fault, that
exhibits an infinite lateness degree (the action never takes place). Likewise, if
omission degree is the number of successive omission faults, then a crash fault is
a particular case of omission fault, with an infinite omission degree (all actions
after a certain point are omitted).

The assertive fault group is characterized by the component performing some
interaction in a manner not specified. Assertive faults are further divided into
syntactic faults, when the construction of the interaction is incorrect, and se­
mantic faults, when the meaning conveyed by the interaction is incorrect. A
syntactic fault is a semantic fault where the construction is also incorrect. Con­
sider a room temperature sensor interacting with a controller. The output of
the sensor is defined to be a signal sign (+ or-) followed by two numeric digits.
Readings such as "+ab" or "*24" can be marked as erroneous by a syntactic
analyzer (an error detector in fact) while a reading of "-99" can only be de­
tected as incorrect by using the application semantics (for instance, if you know
that the target can never reach that temperature) or through comparison with
redundant information (held by the user, or from other correct components) .
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Figure 6.2. Classes of Interaction Faults

Figure 6.2 illustrates the relationship between the fault classes just described.
When interactions are multi-component (e.g., a multicast transmission), faults
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may affect all concerned components, in which case they are said to be consis­
tent. Otherwise, they are inconsistent (e.g., omission faults at just some of the
recipients) .

Omissive faults occur essentially in the time domain. Assertive faults occur
in the value domain. Inconsistency introduces the space dimension. When these
dimensions can combine, we have arbitrary faults. The arbitrary fault class is
used when one does not wish or cannot make any assumptions on the behavior of
faulty components. Obviously, this should be understood in the context of the
universe of "possible" faults of the concerned operation mode of the component.
We recall that we are interested in interaction faults. Practical systems based on
this baseline assumption normally specify quantitative bounds on the number of
faults, or at least quantify the tradeoffs between the resilience of their solutions
and the number of faults eventually produced (Babaoglu, 1987).

Of course, this behavior seems overly pessimistic, and needless to say, expen­
sive to tolerate. An arbitrary fault can be caused by an improbable but possible
sequence of accidental events, which for example may lead to a catastrophic
failure of a safety-critical system. It can also be caused by the meticulous action
of an intentional and malicious component (an intruder) that deliberately tries
to defeat the system protections. Both cases (safety and security) may justify
the adoption of such a restrictive fault model. A well-known subset of arbitrary
faults are the Byzantine faults after a paper by (Lamport et aI., 1982), that de­
notes inconsistent semantic faults (e.g., sending different messages to different
recipients). A particular case of arbitrary fault occurs in an interaction that
takes place before being expected. Although it might be called an early timing
fault, it is akin to a forged interaction (Powell, 1992). In this book, timing
faults always refer to (omissive) late timing faults.

System interaction faults are immaterial: they take place in the context
of protocols running between components. In fact, they are very appropri­
ately component failures, in the viewpoint of the components suffering them.
Throughout this book, we will use either term- system fault or component
failure- depending on the viewpoint. For example, we will talk about an omis­
sion or timing failure in a communication network component, which leads to
an erroneous state of the communication system that we generically call an
omission or timing error, and may discuss how to make protocols timing or
omission fault-tolerant.

A system tolerating two arbitrary faults is not necessarily better than one
tolerating two omissive faults, and this one not necessarily better than a third
system tolerating one omissive fault. Recall that our purpose is to minimize
the number and the probability of occurrence of failures. If in worst case, the
probability of the system doing more than a single omissive fault was negligible,
then all the three systems would be just as good. In fact, the first two systems
would be over-dimensioned. On the other hand, if we had assumed 'one omissive
fault' and built the third system based on this assumption, it could fail if
two omissive faults or one arbitrary fault occurred. The problematic we are
addressing is generically called coverage of the fault tolerance mechanisms.
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Coverage - given a fault in the system, coverage is the probability that
it will be tolerated

It our context, it all boils down to assumption coverage. The assump­
tion/coverage binomial is a quite important issue in the design of distributed
fault-tolerant systems. When we assume that predicate P will hold with a
coverage Pr, we say that we are confident that P has a probability Pr of hold­
ing. There is an important separation of concerns to be made in system design
(Powell, 1992):

• environmental assumptions - the assumptions concerning the behavior
of the environment where the system will run (which includes the infras­
tructure, networks, hardware, etc.), namely its faulty behavior;

• operational assumptions - the assumptions concerning the behavior of
the system proper, or how the system will run (which includes programs,
algorithms, protocols, etc.), under a given set of environmental assump­
tions.

The environmental assumption coverage (Pre) is then concerned with the
conditional probability of a set of assumptions (1-l) holding- such as clock
rate of drift, network datagram delivery delay, omission error degree, number
of component failures- given any occurrence of a fault f. Likewise, operational
assumption coverage (Pro) is related with the probability that a given algorithm
(A) solves a problem, given the assumed set of environmental assumptions.
Note that in fault-tolerant algorithms, this denotes the coverage of the error­
processing mechanisms. Normally, if the algorithm and its implementation are
proven correct, we expect a coverage Pro == 1. Pre is always an upper bound
on total coverage. These are called deterministic algorithms, in contrast to
probabilistic ones, where Pro < 1. In consequence, given any fault f:

if Pre = Pr{lllf} and Pro = Pr{Alll} then total coverage is
Pro x Pre = Pr{Alf}

For example, we make a set of assumptions 1£ about the environment, say:

Hl- during a reference interval T, at most k omissions occur

H2- the participants are not subjected to partitioning

Then, we design a deterministic reliable multicast protocol A, which has
several properties, for example:

Al- any message delivered to a correct participant is delivered to all
correct participants

A2- any message sent by a correct participant is delivered to at least
one participant

The architect should follow two complementary tracks in designing the sys­
tem: (i) proving that the protocol, based on the set 1l, ensures that every Ai
holds with coverage one; (ii) determining the coverage of every Hi of 1l; (iii)
checking whether the total coverage, which equals the environmental assump­
tion coverage Pre, is satisfactory with regard to the requirements.
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6.1.5 How do computers fail?

An important and useful way of discovering which faults are relevant is to
gather empiric data from systems already in operation. A study on the causes
of system failures in large information systems conducted by Tandem Comput­
ers has been reported by (Gray, 1986). The results are quite interesting, and
still relevant today. In this study, the smallest contributor to system failures
were hardware faults. Most faults (42%) were caused by incorrect system ad­
ministration or human operators (as we said, users do not always understand
the system). Software faults were the second cause of failure (25%). The third
contribution came from environmental causes: mainly power outages, but also
a fire and a flood (disasters do happen!). Other studies confirm these numbers
(Gray and Reuter, 1993; Pfister, 1998).

Several lessons can be extracted from these numbers, and these lessons can
help the system architect in the task of building dependable systems. The
first lesson is that system dependability can be increased by using appropri­
ate administrative and system operating procedures. The second lesson is that
software development methodologies that promote fault prevention and removal
can also significantly increase system reliability. The third lesson is that soft­
ware fault tolerance is a critical aspect in dependable computing. Although
this book presents many useful abstractions for the development of distributed
software, it is not specifically targeted at software engineering. However, the in­
terested reader will find that many of the techniques described in these chapters
can be used to tolerate both hardware and software faults.

6.2 FAULT-TOLERANT COMPUTING

As we have just seen, given the impossibility of avoiding. all faults, one has
to tolerate them in order to achieve dependable computing. Fault-tolerant
computing refers to the techniques that can be used to prevent faults from
generating failures. As you can imagine, there is no single technique that solves
all problems: the most suitable set of techniques needs to be chosen depending
on the classes of faults to be tolerated and the service requirements.

If the end user can easily tolerate a small down-time period, fault-tolerant
techniques must prevent faults from creating an erroneous system response
and support a quick repair of the failed components. Often, the easiest way of
preventing a wrong result from being produced is to shutdown the system as
soon as a safe state is reached. For instance, in a train control system a safe
state can normally be reached simply by stopping all trains. In many other
cases, continuity of service must be provided even in the presence of faults: an
airplane cannot be stopped before landing; the downtime of a Web server may
cause unacceptable loss of revenue. In all cases fault tolerance requires the use
of redundant resources.
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6.2.1 Space, Time and Value Redundancy

The use of redundancy is fundamental to fault tolerance. Redundancy assumes
several facets, qualitative and quantitative. Since drivers do not want to be
stopped on account of a flat tire most cars carry a spare one. Raiders will not
want to be trapped in the middle of the Sahara Desert and so they will carry
not just one but a few spare tires. Professional trucks will mount twin wheels,
because the damaging of a tire while riding is itself unacceptable. In computer
systems, redundancy can be applied in the space, time and value domains, and
as much of it as needed.

Space redundancy consists of having several copies of the same component.
The same information can be stored in several disks, tolerating the loss of one
disk (if disks are placed very far apart, we can even tolerate events such as
floods or fires). Different nodes can compute the same result in parallel to
ensure that, even when one of them crashes, the result is available on time
(active replication). In a distributed system, information can be disseminated
along different network paths, to survive physical media damage.

Time redundancy consists in doing the same thing more than once, in the
same or in different ways, until the desired effect is achieved. A simple exam­
ple of time redundancy is the retransmission of a message in order to tolerate
omissions due to electromagnetic noise or temporary receiver overflow. More
sophisticated examples consist in repeating computations that have aborted
because of temporary software faults (overload, particular interleaving of oper­
ations causing deadlock, etc).

Value redundancy consists in adding extra information about the value of
the data being stored or sent. This extra information is normally control data
in the form of codes that allow the detection, or even the correction, of integrity
errors in the data being stored or transmitted. For instance, a parity bit or
an error correcting code can be added to memory chips or to disk structures,
respectively to detect or detect/correct data corruption. Frame check sequences
or cyclic redundancy checks can be added to the data being transmitted in order
to detect multi-bit corruption by noise. Cryptographic message signatures do
the same in the presence of malicious errors.

6.2.2 Error Processing

Error processing has three facets: error detection, error recovery, and error
masking. Detection is the first step at avoiding failure. Detection can be
performed by several mechanisms, depending on the type of error: hardware
bit-by-bit comparison; error detecting codes and signatures; timeouts or watch­
dogs; syntactic or semantic checks, and so forth. Once detected, an error can
be confined, such that it does not propagate. If there is not enough redundancy
in the system to recover from the error, the component or the system can at
least be shut down, confining the behavior of the system to crash failures. For
example, this characterizes the way self-checking components operate (Carter
and Schneider, 1968; Wakerly, 1978).
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A more effective approach is error recovery, which requires the system to
have enough redundancy to carryon operating despite the error. There are
two main approaches to error recovery. One consists in going back to a correct
state and try to restart the computation from there. It is called backward
error recovery. A crude version of this approach is emblematic of computer
professionals: many jokes exist on the common belief that turning the computer
off and on is the solution to most problems (unfortunately, things such as
memory leaks tend to reinforce this belief). Fortunately, backward recovery
actions need not be so drastic. For instance, detecting a frame corruption
using the Cyclic-Redundancy-Check (CRC) and requesting a retransmission is
a simple, common, and effective form of backward recovery. Another example
consists in performing a computation and checking the result according to some
pre-defined assertions; if the result is incorrect, it is ignored and an alternative
algorithm is tried (this approach is known as recovery blocks (Randell, 1975)).
However, as some of us have already discovered by personal experience, going
back to a correct state is not always as trivial as it may look: (a) the error may
have propagated to other components, making recovery hard if not impossible;
(b) going back may require undoing (aborting) intermediate computations that
may in turn have affected other computations; (c) the computation may have
produced effects outside the system, that cannot be undone by the system
alone. If these problems are not properly addressed, they may leave the system
in an inconsistent state. One common form of backward error recovery involves
progressing by steps in the computation, and storing the system state at the end
of each step. The saved state is called a checkpoint. When an error occurs, the
computation resumes from the latest checkpoint, after re-storing the relevant
state.

The alternative to backward recovery is naturally forward recovery, which
consists in taking corrective measures that cancel or alleviate the effects of
the error. Forward error recovery is often a necessity. In some cases there is
not enough time to go back to a correct state and to restart from there. For
instance, if a message with a sensor reading is lost, it is preferable to wait
for the next reading than to request the retransmission of the reading, which
gets out of date. External actions that are impossible to undo also require
some form of forward recovery when errors occur. For example, if the cash
dispenser breaks just after the notes are handed to the customer but before
the transaction is completed, it can no longer be rolled-back (that would be
backward recovery). Instead, some form of mechanism must allow the customer
and transaction records to be updated later. One form of recovering from crash
failures in components is by reconfiguration, for example, switching over to
a spare component. For example, in a dual-bus LAN, when one medium is
detected failed, message exchange switches over to the other.

Inasmuch as cars have single wheels but trucks have twin wheels, having a
pair of everything in a computer system is only cost-effective for special-purpose
cases where interruption of service, even for brief moments, is not acceptable,
and may even lead to damages far greater than the cost of the replica(s)- note
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Table 6.3.

error detection

error recovery

backward recovery:

forward recovery:

error masking

Error Processing Techniques

detecting the error after it occurs aims at: con­
fining it to avoid propagation; triggering error
recovery mechanisms; triggering fault treatment
mechanisms

recovering from the error aims at: providing cor­
rect service despite the error

the system goes back to a previous state known
as correct and resumes

the system proceeds forward to a state where
correct provision of service can still be ensured

the system state has enough redundancy that
the correct service can be provided without any
noticeable glitcioc

that a pair of something only handles a single omissive fault; other types of
faults require even more redundancy. Anyway, if enough redundancy is added
to the system, errors can be automatically masked and never become visible,
because there will always be a way of providing the correct result. This is
error masking (also called error compensation). For instance, assume tJ~te:tt you
have a communication medium that exhibits omission faults, and you want to
build a system that tolerates a single omission. If you can afford doubling the
bandwidth and transmit every message twice, the error will be always masked.
A similar approach can be used to handle crash failures of a single component:
just use two components and pick the result that is available. If your car has
twin wheels, one of the tires can tear and you can still continue to drive happily
without even noticing the error (the "happy" epithet only applies to readers
not living in the suburbs of a big city).

Summarizing these concepts in Table 6.3, we conclude with a few remarks:

• in some systems, error detection is just followed by isolation of the failed
component, which implies that the system either gracefully degrades if the
component is not vital, or is shut down if otherwise- self-checking compo­
nents fall into this category;

• error recovery requires error detection, and the two make up the most used
combination of error processing techniques;

• error masking does not require detection because it is applied systematically;

• however, error detection should always be used, such that the faulty compo­
nent can endure fault treatment: isolation, removal, repair.
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6.2.3 Evolution of Fault-Tolerant Computing

A non-exhaustive list of the major milestones in the evolution of fault toler­
ance (FT) in the past few years is given in Table 6.4. The list is necessarily
incomplete, and tries to refer to the works more related to distributed systems.
Fault-tolerant computing is historically associated with control applications. Its
foundations lie in fault-tolerant electro-mechanic and digital design. Progres­
sively, fault tolerance has occupied its place as a prominent design concept to
improve dependability of computing systems in general, and of distributed sys­
tems in particular. Hardware-based fault tolerance was a pioneering concept,
whose basic ideas were introduced by Von Neumann. It relied on hardware
component replication techniques, which consist in using duplicate or triplicate
components that operate in lock-step and whose results are filtered by (hard­
ware) voting components. The idea behind such techniques is that the voting
element, given its simplicity, can be made by design much more robust than the
component being replicated. By construction, replicated components are usu­
ally tightly-coupled, often in the same physical board. Hardware-based fault
tolerance can be an effective way of ensuring that some system component has
a controlled failure mode (for instance, that it only fails by crashing or that
it never exhibits Byzantine behavior). One of the first implementations of the
concept in a computational system was the FTMP (Hopkins et aI., 1978), used
in a flight control system, where components were triplets working in lock-step,
what was called triple-modular redundancy (TMR). However, the approach
also has some obvious disadvantages:

• it does not provide the answer to faults that affect all replicas, such as
catastrophes (e.g., floods or fire) or design errors;

• specialized hardware is not cost-effective and hard to update at the same
pace of Commercial Off-The-Shelf (COTS) components;

• finally, hardware faults are just a small portion of the faults a system is
subjected to, and this portion is becoming less and less significant given the
complexity of today's software.

With the increment in the use of fault tolerance in COluputer systems in gen­
eral, an obvious evolution consisted in resorting to software component repli­
cation. The use of such techniques forms what is called software-based fault
tolerance, whose simplest form mimics the hardware FT approach. Instead
of replicating hardware components, software components are replicated and
their results consolidated by a voter component also built in software. Software­
based fault tolerance can be more cost-effective than hardware-based FT. It is
also simpler to add or remove software replicas than hardware replicas.

Software replicas can have varying granularity, from whole programs (e.g.,
database) to functions (e.g., cryptographic algorithm), and can provide varying
levels of resilience within the same system, achieving what is called incremental
fault tolerance. Besides, they can be executed in the same or separate hardware
modules, which may co-reside (e.g., multiprocessors) or be distributed. This
prefigures a new style of system design that may be called modular fault tol-

Exhibit 2026 Page 202



FAULT-TOLERANT SYSTEMS FOUNDATIONS 185

Table 6.4. . Major Milestones in Fault-Tolerant Computing

1967
1968
1975
1976
1978
1978
1978
1978
1979
1978
1978
1981
1985

1985
1985
1986
1986
1987

Diagnosability in computer systems (Preparata et al., 1967)
Self-Checking component (Carter and Schneider, 1968)
Recovery blocks for software FT (Randell, 1975)
Transactions (Eswaran et al., 1976)
Distributed two-phase atomic commitment (Gray, 1978)
TMR based computer system - FTMP (Hopkins et al., 1978)
N-version programming (Chen and Avizienis, 1978)
Byzantine agreement for FT communic. (Lamport et al., 1982)
Weighted voting for replicated data management (Gifford, 1979)
Distributed software-based FT - SIFT (Wensley et al., 1978)
State machine FT programming model (Lamport, 1978a)
Distributed Atomic Transactions (Lampson, 1981)
Grou~-oriented FT programming model -
ISIS (Birman and Joseph, 1987), AAS (Cristian et al., 1985)
FT distributed-system fieldbus - MARS (Kopetz et al., 1989a)
Commercial FT computers - Stratus (Wilson, 1985)
Commercial FT computers - Tandem (Bartlett et al., 1987)
Commercial LAN with medium FT - FDDI (FDDI, 1986)
Distributed and incremental FT (Powell et al., 1995)

erance: system architects break down the system in software modules, decide
the different levels of replication of each module, and foresee the number and
placement of the necessary hardware modules where software modules will be
installed.

The most obvious use for this modularity is distributed fault tolerance, which
leverages the advantages of modular fault tolerance through the failure inde­
pendence given by geographical dispersion: each replica of a given component
is located in a different node of a distributed system. Modular and/or dis­
tributed FT are the most used approaches today in dependable system design.
The emphasis on component interaction explains why algorithms and protocols
are so relevant in this class of systems, and also why the focus lies on interaction
faults, as discussed earlier. In addition to these important arguments, there is
today a fundamental case in using distributed fault tolerance: existing com­
puting systems are distributed and need to be made dependable. Distributed
FT provides the ground to tolerate several classes of faults:

• hardware faults, since the results of the several replicas are consolidated such
that a correct value is returned, despite the failure of hardware components;

• transient software faults (also called Heisenbugs from the Heisenberg uncer­
tainty principle), since they occur sporadically and are thus normally masked
by redundant execution in different environments;

• disasters, since the geographic dispersion of nodes supported by distributed
FT provides the basis to survive them.

In the case of design faults, simple replication provides little help: errors
will systematically occur in all replicas. In consequence, what is needed is
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that replicas are designed diversely, different system architectures are used, or
execution results are tested against assertions about the desired outcome. For
example, each replica of a given component can be designed and developed
by a different team of programmers. This is one of the main techniques to
achieve software fault tolerance. Software design diversity is rather expensive
(most software products already cost too much, even when a single development
team is involved) and as such it is only employed when the stakes are very
high, such as in safety-critical systems. On the other hand, a characteristic
of distributed fault tolerance is that replicas of a same component can reside
in different hardware and/or operating system architectures, and execute at
different moments and in different contexts. This implicit "diversity" is enough
to tolerate many design faults, especially those hardware or software faults that
lead to an intermittent behavior. It follows that (external) transient faults can
also be tolerated this way.

6.3 DISTRIBUTED FAULT TOLERANCE

When characterizing distributed systems in general (and not necessarily fault­
tolerant) we have mentioned a number of important properties, such as mod­
ularity, support for heterogeneous hardware, incremental growth, etc. These
properties derive from the distributed nature of the system and are not specific
to fault tolerance. However, they are also extremely important when applied
to fault tolerance! We will illustrate this fact with a couple of examples.

An important property for fault tolerance is modularity. Distributed fault
tolerant systems are built of nodes, networks and software components. Failure
assumptions are mainly concerned with the interactions between these hard­
ware and software components. Construction of these systems is based on
modular hardware and software units. A separation of concerns is sought by
attempting at decoupling software units from the hardware units where they
execute, as suggested by Figure 6.3. Fault tolerance is to a large extent achieved
through adequate protocols to govern the interactions between components in
the presence of the assumed failure modes.

Figure 6.3. The Principle of Distributed Fault Tolerance

If the appropriate design techniques are used, either hardware or software
components can be replaced without changing the complete architecture. In
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result of this modularity, different dependability levels can be achieved using
different combinations of components and protocols. A distributed architecture
can thus provide incremental dependability, Le., higher dependability features
can be obtained in an incremental way: by enhancing the more fragile compo­
nents (fault prevention); and/or incrementing the number of replicas of each
component or making them resilient to more severe faults (fault tolerance).
Another advantage of modularity lies in making it easier to build systems that
exhibit graceful degradation: when some components fail, instead of collapsing,
the system continues providing a lower level of service. It is possible to pro­
gressively decrease the degree of dependability of an application, or to preserve
some applications in detriment of others.

Support for heterogeneity is also a key element of distributed fault tolerance.
As we have mentioned before, it allows the use of components with diverse de­
sign and this can help in tolerating design faults. Support for different hardware
also simplifies the evolution of the system, puts less constraints when buying
new hardware, and allows to minimize the financial costs associated with the
use of redundancy. On the other hand, it enhances maintainability, through the
possibility of re-instantiating failed software units in available hardware units
of different makes.

It is also easy to extend some of the fundamental properties of distributed
systems to make them useful for fault tolerance. We will just give one example
using the encapsulation property. Distributed systems allow designers to as­
sume a glass-box view of interconnected black-box components. Remote object
invocation is a simple way of hiding the internal structure of the server from
clients. This property allows the system architect to build modular, possibly
distributed, fault-tolerant subsystems, which she may recursively use as black­
box components with resilient properties at a higher level of abstraction. For
example, a closely-coupled multicomputer may be built with distributed fault
tolerance techniques, and then used as a resilient black-box component of a
wider fault-tolerant distributed system.

We must end this section with a word of caution. Despite all these ad­
vantages, the system architect should never forget that complexity is itself a
potential cause of faults. We have started this chapter by stating that many
faults are due to unexpected or not fully understood interactions between dif­
ferent components of the computing system. Modular and distributed systems
do not· make these interactions any simpler. The KISS rule should be consid­
ered as a rule of thumb by every architect: "Keep It Simple, Stupid!" On the
other hand, rigorous design principles must be followed when building a de­
pendable distributed system. Chapters 7 and 8 will survey the main paradigms
and models than can help the system architect in this task.

6.4 FAULT-TOLERANT NETWORKS

We have just mentioned several advantages of distributed fault tolerance. Be­
fore you go over-enthusiastic about this strategy, remember that there is usually
no such thing as a free lunch. The "catch" here is that distributed components
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need a communication network to interact with each other. Naturally, the com­
munication network should not be a single point of failure itself. Thus, we need
to build fault-tolerant networks too!

The interaction failures that we studied earlier are an adequate represen­
tation of what may go wrong in networks: omissions due to lost messages
(messages can be lost because of noise, lack of clock synchronization, overflow
at the recipient or in a router, etc); timing failures, specially when a single
channel is shared by several nodes; assertive failures, when data is corrupted
along the transmission path.

A belt-and-suspenders approach consists in constructing a fully space-re­
dundant architecture. Each node is connected to the other nodes by more
than one link in parallel. The example illustrated in Figure 6.4a features a
duplicated broadcast bus LAN, where we can see that the complete network
is replicated, including the physical channel and the communication boards.
This architecture tolerates one omissive fault. The actual number of network
replicas will depend on the number and type of assumed faults. Variants may
exist depending on the criticality. For example, the buses may be unidirectional
(single transmitter, multiple receivers), one per node, so that no one node can
disrupt communication by jabbering the channel. This approach would require
four channels for the example in Figure 6.4a. Alternatively, the network may
have the topology of a completely or partially-connected graph of point-to­
point links, where reliability is achieved through store-and-forward transmission
through the several alternative routes, as exemplified Figure 6.4b. Hypercubes
are a common topology in this kind of networks. The fully space-redundant
architecture provides a basis to achieve tolerance of any class of fault. However,
it is very expensive and is only used in extreme cases.

Host

(a)

Host Host

(b)

Figure 6.4. Space-Redundant Network Architecture: (a) Bus; (b) Point-to-Point

For omissive faults, there is also the alternative of using time redundancy,
i.e., to send the same message several times through a simplex (non-replicated)
channel. However, even in this simple case, if components fail permanently
(e.g., crash of an Ethernet hub), or exhibit a large number of errors (e.g., frame
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omission errors due to environmental noise), time redundancy is not enough.
An intermediate approach is depicted in Figure 6.5. The medium-redundant
architecture aims at achieving a non-stop medium and provides an extremely
cost-effective solution to the fault-tolerant communication problem. Replica­
tion is done only for the physical layer components of the architecture (cabling,
modems, codecs, transceivers). The upper layers do not even known that such
redundancy exists, and so any protocols for simplex networks can be used
transparently. Figure 6.5a presents a dual- medium bus architecture, where
transmission is done on both media, but reception is switched over to the alter­
native medium, upon detection of a medium failure, on a per recipient basis, a
shown. On the other hand, Figure 6.5b presents a dual ring architecture. Com­
munication takes place in the primary ring (outer one), which reconfigures if
any of its parts fails and interrupts the ring, by wrapping around the secondary
ring, as shown in the figure.

Host Host Host

Figure 6.5. Medium-Redundant Network Architecture: (a) Bus; (b) Ring

6.5 FAULT-TOLERANT ARCHITECTURES

We have been discussing several concepts related to building fault-tolerant sys­
tems. Let us illustrate how these concepts can be put into practice, by doing
an overview of the main fault-tolerant computing architectures. The detailed
paradigms and mechanisms that make these architectures work will be dis­
cussed in the subsequent chapters.

Figure 6.6 exemplifies two basic architectural approaches for achieving local
availability. Figure 6.6a exemplifies redundant storage, which achieves avail­
ability through disk replication, for example by means of RAIDs (Redundant
Arrays of Inexpensive Disks), redundant disks that provide several levels of reli­
ability. The highest level can guarantee virtually non-stop operation. However,
such architectures do not solve the problem of processor failures. Figure 6.6b
depicts the redundant processor approach, whereby the computer can be pro­
vided with more than one processor module or board, so that it remains avail­
able in the case of one or more processor failures. A dual processor architecture
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provides a comfortable level of availability, and is often seen combined with the
RAID-based redundant storage approach to deploy highly-available servers.

(a) (b)

Figure 6.6. Redundant Architectural Modules: (a) Storage; (b) Processors

These basic architectures remedy the problem of crashing components, but
say nothing about their possible misbehavior. Figure 6.7a illustrates the self­
checking architectural approach for achieving local reliability vs. a wide set
of faults, even assertive ones. The idea underlying the approach is that there
is a component (the checker) which performs surveillance of the unit (which
by the way can be a whole processor). The checker analyzes all operations
and immediately stops the unit when it detects an error, before an erroneous
result is propagated. A unit that is not allowed to do any errors whatsoever
while functioning is said to be fail-silent: it behaves correctly or else fails by
crashing. Now we have guaranteed correctness, but lost availability. Figure 6.7b
depicts a well-known approach to achieve reliable and available processing. N­
modular redundancy, or NMR, is a concept whereby several modules execute
identical steps, in a tightly synchronized (lock-step) manner, so that results can
be compared on a bit-by-bit basis by a voter. As long as there are less than
half failed modules, the unit executes correctly, whether components crash
or produce incorrect results. The example in the figure is a triple-modular
redundant (TMR) architecture, which tolerates one faulty module. Note that
a self-checking unit can also be built out of a 2-MR unit.

These basic concepts can be combined and applied in a broader and dis­
tributed context. For example, the lock-step model is too constraining. How­
ever, the same concept can be applied to distributed replicated processing, as
depicted in Figure 6.8. The foundations of replication as a distributed activity
have been discussed earlier (see Replication in Chapter 3). Based on distributed
fault tolerance, these architectures provide great versatility. As exemplified in
the figure, a number of replicas residing in different sites perform replicated
computations, and interact among themselves through protocols that ensure
resilience to the assumed fault classes (e.g., timing, value, arbitrary, etc.). The
number of replicas required varies according to the fault model: class and num­
ber of faults assumed. For example, in order to tolerate one crash fault, two
replicas are needed and the first result is taken. Tolerating one value fault
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(a) (b)

Figure 6.7. Redundant Architectural Modules: (a) Self Checking; (b) NMR

requires a majority vote between three replicas. If faults are arbitrary, then
at least four replicas are required. Replicas receive inputs, execute processing
steps and produce outputs in the form of messages. This is also called a state
machine model. Unlike lock-step execution, replicas can execute at slightly
different times, and in different ways, if the hosts are heterogeneous. However,
they should produce the same outputs, for a same sequence of inputs.

Figure 6.8. Distributed Replicated Processing Architecture

As suggested in Figure 6.8, different replica groups may communicate among
themselves in order to construct more elaborate distributed computing architec­
tures. Some architectures studied in Part I of this book (see Distributed System
Architectures in Chapter 1) can benefit from such combinations of distributed
fault tolerance techniques in order to become dependable. Figure 6.9 gives two
important examples: client-server and publisher-subscriber. Figure 6.9a exem­
plifies how to render a service dependable. The underlying logical server is in
fact made of two or more replicas. The principle of operation is that client
requests are addressed to all replicas, executed by all, and a consolidated re­
ply is given back to the client. The client need not (should not) even known
that the servers are replicated. This is called replication transparency. The
important notion is that the service remains available despite failing servers.
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Figure 6.9b illustrates a dependable publisher-subscriber system. Recall that
the architecture relies on a network publishing server. This server is a single
point of failure, which is rather awkward given the notion of "bus" purported
by the underlying model. That can be avoided if the server is replicated. The
more widely it is replicated, the more it resembles a bus, in the sense of mak­
ing information reach everywhere and not depending on the failure of a single
component. Information is published to all replicas, for example through multi­
cast. In absence of failures, subscribers may get their information from different
servers that share the publishing load.

(a) (b)

Figure 6.9. Distributed Fault-Tolerant Architectures: (a) Client-Server; (b) Publisher­
Subscriber

6.6 SUMMARY AND FURTHER READING

Fault tolerance is fundamental to building dependable systems, i.e., systems
that we can depend upon. This chapter has reviewed the basic concepts and
terminology underlying dependability, and introduced the fundamental ap­
proaches to fault tolerance. Finally, we have characterized distributed fault
tolerance and addressed the motivations for using the approach, which en­
compass both making distributed systems dependable and making dependable
systems using distribution.

The seminal work on dependability concepts of Laprie, in the context of the
IFIP WG10.4 on Fault Tolerance, is a must read for everyone working in fault
tolerance (Laprie, 1987; Laprie, 1992). Other relevant works include the good
survey of early fault-tolerant systems provided by Rennels (Rennels, 1984),
or the more recent surveys of (Cristian, 1994) and (Mishra and Schlichting,
1992; Powell, 1994). A discussion on failure mode assumptions and assumption
coverage is given in (Powell, 1992). For some works giving a comprehensive
treatment of other aspects of dependability besides distributed fault tolerance,
see (Lee and Anderson, 1990; Jalote, 1994; Laprie, 1998).
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7 PARADIGMS FOR DISTRIBUTED
FAULT TOLERANCE

This chapter discusses the main paradigms concerning fault tolerance in dis­
tributed systems. Namely, the chapter addresses: failure detection, member­
ship, fault-tolerant communication, replication management, resilience and re­
covery. The paradigms are explained in practical terms, by exemplifying the
problems they solve, as well as their limitations.

7.1 FAILURE DETECTION

We have seen previously that one approach to build dependable systems is to
detect an error and later recover from it. Since an error arises from a failure oc­
curring at component level, component failure detection is fundamental to fault
tolerance. Even if the system is able to mask the error, failure detection pins
down the affected component. The failed component can then be disconnected
or repaired, and the desired level of redundancy restored in the system. Failure
detection is also important from a performance viewpoint: if a component is
known to be failed there is no point in wasting resources trying to communi­
cate with it. This section discusses the aspects related to failure detection in
modular and distributed systems. As it will be seen, distributed failure detec­
tion is harder than it might look at first glance. Additionally, accurate failure
detection is impossible in systems where the network can partition.

In order to detect the failure of a given component (the target) we need
another component (the failure detector). We also need some channel between
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the failure detector and the target component such that the behavior of the
latter can be monitored. Thus-, in order to' detect the failure of a component
we need to add two more components to the system, and these components
may also fail!

One of the possible outputs of a faulty failure detector consists in marking a
correct target component as failed. That is why failure detection is a complex
issue. Usually, the failure detector should be constructed in a way such that
it exhibits a much higher reliability than the observed component (it should
be much simpler, or be made of better hardware, or both). Additionally, the
system should be constructed in such a way that the consequences of erroneous
failure detection are less severe than the absence of failure detection. For in­
stance, consider that a signaling system is introduced in a railway system to
prevent train collisions. If because of benign failures in the signaling system
the trains are forced to a brief halt once in a while, this is still a reasonable
price to pay to avoid the loss of human lives (after all, better to arrive later
than never).

Depending on its properties, the channel between the failure detector and
the target can also complicate the task of achieving reliable failure detection.
If the channel is not perfect (i.e., it may lose or delay information), then it
may be difficult, if not impossible, to distinguish the failure of the observed
component from the imperfect behavior of the channel.

7.1.1 Local Failure Detection

Let us start with local failure detection. By "local" we mean failure detection
in an environment where the detector and the target are "close" enough to
establish a "perfect" observing channel. For instance, the failure detector com­
ponent may be in the same machine or even in the same board of the target
component so that reliable communication mechanisms exist (O.S. or HW) to
establish the observation channel.

Examples of local failure detection are self-checking routines, implemented
in software or hardware such as parity checks (in memory, disks or buses).
Guardian components check the validity of the outputs produced by the ob­
served component: for instance, they can check if memory accesses are per­
formed within some pre-defined allowed range. This type of failure detection
is reliable, given that the channel can be considered perfect and the failure
detector is quite simple. Other examples of local failure detectors are watch­
dog components. They test whether a computation progresses within a certain
pace. They can be implemented in software or hardware. A HW watchdog
is a down counter fed by a clock. It is loaded with the equivalent of a time
interval, and the observed process has to reset it before it expires, otherwise a
failure signal is produced. A SW watchdog may be implemented by the O.S.
For instance, a process is instrumented to periodically set a memory position
at certain points in the computation, to show it is making progress. The O.S.
periodically verifies the position and resets it. Whenever it finds the position
not set, it produces a failure indication (the process is late or lost). If the O.S.
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is capable of controlling its timeliness, these failure detectors can be considered
reliable.

However,Bven in a local environment failure detection may be harder than it
looks. Consider the software watchdog we have just mentioned. If the monitor­
ing is not performed by the kernel itself but by another user-level task instead,
that task may not have enough information about the system scheduling deci­
sions to distinguish the failure of a process from a load problem: the machine
may be overloaded and the target process may have been swapped-out and not
scheduled for some time (therefore, unable to update the variable) even though
it is still in a correct state.

7.1.2 System Diagnosis

The previous model considered two different types of system components: the
target components and the failure detectors. One can generalize this model
by considering all components alike: each component plays a dual role in the
system, providing service and testing other components. System diagnosis con­
sists in identifying which system components are faulty based on the results of
tests that components mutually perform on each other. Let us start with the
assumption that the outcome of tests reported by correct components can be
trusted. On the other hand, faulty components may incorrectly report correct
components as faulty (or faulty components as correct). The difficulty here
is that there is no a priori knowledge of which components are faulty, so the
diagnosis has to be performed by analyzing the reports from all components.

(a) (b)

Figure 7.1. System Diagnosis: (a) Symmetric Detection (one faulty); (b) Diagnosis Ring

One way to represent a system for diagnosis purposes is to use a directed
graph, where nodes represent components and edges link observers to observed
nodes, in this direction. The label on the edge is either correct (0) or faulty
(1). Faulty nodes are represented in black and correct nodes in white. Consider
the simple example of Figure 7.1a with just two nodes that observe each other.
In the example both nodes have marked the peer as faulty! Since the arcs in
the Figure are symmetric, without a priori knowledge it is impossible to assess
which is the faulty component. In fact, it has been shown (Preparata et aI.,
1967) that in a system where f components may be faulty we need: n ~ 2/ + 1
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processes to diagnose the fault; and that each component is tested by at least
f other components.

Consider now the example of Figure 7.1b, where alternatively the diagnosis
graph is organized in a ring. If there is at most one faulty process, it can always
be identified, since there are three nodes. The faulty process will have: (i) a
converging edge marked 'faulty'; and (ii) the source node of that edge marked
'correct'. B obeys these conditions, C is still considered correct despite marked
faulty by B (because the latter does not obey (ii)). In order to perform the
diagnosis, the failure detection reports must be collected and analyzed by a
(logically or physically) centralized component, usually a supervisor external
to the system.

7.1.3 Distributed Failure Detection

Distributed failure detection is harder than local failure detection, basically
because it has to rely on message exchange (no shared memory or local inter­
connection buses are available). Thus, the communication channel between the
observer and the target may not be perfect.

In order to focus on the difficulties introduced by distribution we will now
assume that we are attempting to detect the failure of processes. To make
things even simpler, we assume that processes can only fail by crashing and
that the system is synchronous (i.e., delays are bounded). Thus, a process is
correct as long as it provides evidence of activity (by sending or replying to
messages). How this activity is monitored depends on the detection protocol.
It may expect that the observed component periodically sends messages on
the channel, usually called "I'm alive messages" or heartbeats. When these
messages are missing the component is considered failed. Heartbeats are sent
spontaneously, but an alternative form is for the monitored component to wait
for a probe message coming from the failure detector and then reply with the
"I'm alive" message. During periods of activity, message exchanges on behalf of
the computation can be used to perform failure detection; special messages only
need to be sent when the component is in an idle state. Practical systems can
further optimize this process. For instance, if a broadcast channel is available,
heartbeats can be sent in broadcast mode. Alternatively, the processes can
be organized in a logical ring, and exchange heartbeats with their neighbors
(this requires some re-organization in case of failure but minimizes the network
traffic) .

To simplify this even further, let us also assume that the network provides
full connectivity, i.e., any process can send (and receive) messages directly to
(and from) any other process. This is not always the case but allows us to
abstract from the way nodes are connected at the network level. Using this
topology, any process plays the role of an observer (to monitor the activity of
other processes) and a target (i.e., it is monitored by all the other processes).
Thus, instead of a one-to-one relation we have a many-to-many relation. Ideally,
failure detection should be consistent; for instance, if a process fails, it should
be detected as failed by all correct processes in the system. In a seminal work,
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Chandra and Toueg (Chandra and Toueg, 1996) have defined two properties
that help formalizing this intuitive notion of consistency of distributed failure
detection:

Strong Accuracy - a safety requirement, specifying that no correct
process is ever considered failed

Strong Completeness - a liveness requirement, specifying that a fail­
ure must be eventually detected by every correct process

If perfect channels are available, heartbeat exchanges meet strong accuracy
and strong completeness. Such a failure detector is called perfect. If a node
crashes all correct nodes will note the absence of the heartbeat and will detect
the failure.

What happens when the channel that interconnects the processes is not
perfect? One must distinguish the case where the imperfection can be fixed
by some simple protocol, from the case where the imperfection is impossible to
overcome.

The first case is simpler to discuss. Assume that the communication channel
is not perfect but has some mild imperfection, for instance, it makes a small
number k of omissions. The solution to this problem is to transform the im­
perfect channel into a perfect channel using one of the redundancy approaches
described in the previous chapter. For instance, each heartbeat can be re­
transmitted k + 1 times, effectively ensuring that it is observed by all correct
processes.

7.1.4 When Failure Detection is Imperfect

Perfect failure detectors are obviously very convenient. When a process goes
down all the other processes know about it and can coordinate their actions
to implement corrective measures. Unfortunately, it is not always possible to
implement perfect failure detection, and this is the harder case.

There are two major adversaries of perfect failure detection. One is the
lack of bounds on the number and type of faults the communication channel
may give. Imagine that the number of omission faults of a channel between
two processes cannot be bounded. If a process does not receive any heartbeat
message from the other process this may be because the other process is failed
or because the channel has dropped all heartbeats sent so far. Actually, no
type of coordination can be achieved between two processes if the behavior
of the cannel is not restricted in some way. At least, the channel should not
always drop all messages (or all messages of a certain type). Thus, it is usually
assumed that the channels are fair, Le., if a message is sent infinitely often by
a process then it is received infinitely often by its receiver (Lynch, 1996).

A particular case of link failure that prevents any sort of failure detection
occurs when the link crashes and one or several processes become disconnected
from the rest of the network. In this case we say that network partitioning
has occurred and it makes more sense to use the words reachability detection

Exhibit 2026 Page 215



198 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

than failure detection. Note that consistency of reachability information is as
relevant as the consistency of failure detection.

The other adversary of perfect failure detection is the lack of bounds for the
timely behavior of system components (processes or links). If a link can delay
a message arbitrarily, or if a process can take an arbitrary amount of time to
make a processing step, there is no way to distinguish a missing heartbeat from
an "extremely slow" heartbeat. This means that if the system is asynchronous,
perfect failure detection cannot be implemented (see Asynchronous Models in
Chapter 3).

This is a not a comforting conclusion. Distributed systems are complex
enough even with perfect failure detection. Without it, most problems become
much harder. Let us consider for instance the problem of having process A send
a message m to process B over a lossy link. Assume that you define reliable
communication in the following way: as long as A and B remain correct, A will
succeed in sending m to B. A simple positive acknowledgement protocol can
be implemented: A will re-transmit m until it gets an acknowledgement from
B or until B crashes. However, without perfect failure detection, A will never
be sure that B has in fact failed and, in order to meet the specification, it will
have to store and retransmit m forever!

The impossibility of perfect failure detection raises another question: is there
a middle term between perfect failure detection and no failure detection at all?
Chandra and Toueg (Chandra and Toueg, 1996) have defined weaker forms of
the accuracy and completeness properties:

Weak Accuracy - at least one correct process is never considered failed
by all correct processes

Weak Completeness - a failure must be eventually detected by at least
one correct process

Different classes of failure detectors can be defined combining weak and
strong accuracy and completeness properties. Are all these classes useful? Let
us discuss this issue in the context of pure asynchronous systems.

7.1.5 Asynchronous Failure Detection

We have just seen that the asynchrony of the system makes perfect failure de­
tection impossible. Actually, it has been shown that several other problems
requiring some form of coordination, such as consensus, atomic broadcast or
atomic commitment have no deterministic solution in asynchronous systems
subjected to failures. This is known in academia as the FLP result, after a
famous paper, by Fischer, Lynch and Paterson that demonstrated the impos­
sibility result for the consensus problem (Fischer et aI., 1985).

Nevertheless, given that it is often impossible to impose a bound on message
or processing delays, solutions for distributed coordination problems in asyn­
chronous systems have been sought by several researchers. This effort lead to
the following interesting question: what are exactly the minimum synchrony
requirements to solve problems such as consensus? Chandra and Toueg showed
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that consensus can be solved in asynchronous systems augmented with failure
detectors and that the weakest failure detector to solve the consensus problem
has the following two properties (the solution also requires that a majority of
processes are correct, and that no partitioning occurs):

Eventual Weak Accuracy - there is a time after which some correct
process is never suspected by any correct process

Weak Completeness - a failure must be eventually detected by at least
one correct process

A failure detector with these properties is called eventually weak. The reader
should note that this definition only requires weak accuracy to be satisfied at
some point in time. The intuition behind this requirement is that consensus
can be solved if a period of stability is preserved long enough to allow coor­
dination among the processes. Stability is defined in terms of having at least
one correct process that is not suspected by any of the other correct processes.
The intuition behind this is that during the stability period, this process can
act as a coordinator that supports the establishment of consensus.

Naturally, the impossibility results still holds. This means that even a even­
tually weak failure detector cannot be implemented in a pure asynchronous
system. This fact rose several doubts about the practical utility of the model.
On the other hand, most of the algorithms having this model in mind, make
so little assumptions about the systeTh behavior that they never risk violat­
ing safety conditions even when the failure detector does not satisfy the above
properties. For instance, in the algorithm proposed by Chandra and Toueg
(Chandra and Toueg, 1996), if the failure detector does not satisfy its proper­
ties consensus may never be reached, but on the other hand the processes never
take inconsistent decisions.

7.1.6 The Problem of Partitioning

Partitioning is caused by the crash of one or more links that split the network
in disjoint subsets, or partitions. Processes within the same partition are able
to communicate among themselves but unable to communicate with processes
in other partitions. Network partitioning is a serious problem in distributed
systems because it prevents processes in different partitions from coordinating
their activities.

There are two main approaches to address the problem of partitioning. One
is to allow uncoordinated progress in different partitions. When partitioning is
healed, in other words, when partitions merge, processes have to reconcile their
state. Automatic reconciliation is usually very difficult (or even impossible) in
the general case. An alternative approach is to allow progress in one partition
exclusively, the so-called primary partition. The primary partition approach
prevents divergence (see Primary Partition in Chapter 2), but in turn it blocks
all the other system partitions. Several different criteria can be applied to
select the primary partition, one of the simplest being a majority criterion, as
illustrated in Figure 7.2. It should be noted that the network can be partitioned
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in such a way that no primary partition can be identified and the system be
forced to block until the partitions merge.

Figure 7.2. Partitioned Network with Primary Partition (PP)

Link failures are usually detected by timeouts (note however that some par­
ticular types of networks can provide accurate information about the state of
links). This means that partitions can only be detected accurately if there are
bounds on processing/communication delays and on the number of omissions
tolerated. Otherwise, it may be impossible to distinguish a failed link from an
extremely noisy or extremely slow link. It follows that partitions cannot be
accurately detected on pure asynchronous systems. Inaccurate detections may
create what is called a virtual partition. Participating processes behave as if
the system was split, while in fact the links are just slow.

Conceptually, there is little difference between a virtual and a physical parti­
tion, since from the point of view of the participating processes, the two types of
events cannot usually be distinguished. In practical systems, there is usually a
huge difference. Virtual partitions tend to have a short duty cycle, regenerating
rapidly and spontaneously, and may be repetitive. For instance a link can be
temporarily overloaded because of an ongoing bulk-data transfer and regain its
normal latency as soon as the data transfer finishes. However, a router may be
on the verge of thrashing, holding long queues, discarding packets, recovering,
degrading again, and so forth. The problem is that this may generate periods
of instability where links switch from down to up state, forcing the system to
be in permanent reconfiguration.

The application itself can cause this unstable behavior. Consider that for
some reason, a link is so slow that it seems to be down. This creates a virtual
partition in a distributed computation. When the link recovers, the partition
is healed. Processes from either side start a state-transfer procedure to become
mutually consistent. The state being transferred overloads the link and the
virtual partition occurs again, aborting the state-transfer. This decreases the
load on the link, causing the link to recover once more. The state transfer re­
starts, re-initiating the cycle. A behavior very close to this has been observed
in early implementations of the BGP Internet routing protocol (Stewart, 1999).
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The problem has no solution, but practical systems can alleviate these symp­
toms, in essentially two ways. Firstly, by making a best effort to tell physical
partitions from virtual ones, so as to delay failure detection decisions to when
there is a high certainty of actual failure. Quality of service failure detection is
a possible approach along this line (see Section 13.11 in Chapter 13). Secondly,
by devising programming models that accommodate partitioning. This will be
discussed in subsequent sections of this chapter.

7.2 FAULT-TOLERANT CONSENSUS

We have introduced the consensus problem in the Distributed Systems Part
of this book (see Distributed Consensus in Chapter 2). We recall here the
definition of the consensus problem: each process proposes an initial value to
the others, and, despite failures, all correct processes have to agree on a com­
mon value (called decision value), which has to be one of the proposed values.
This problem is of paramount importance in distributed systems, particularly
in fault-tolerant distributed systems, since many problems can be solved using
consensus as a building block, for instance: membership (agreement on who are
the members of a group), ordering of messages (agreement on sequence num­
bers), atomic commitment (agreement on the outcome of a transaction, etc).
It is worth noting that the system diagnosis problem that we have addressed
previously can also be considered a consensus problem, where correct processes
must agree on which processes are faulty (for a deeper survey relating system
diagnosis with the consensus problem see (Barborak et aI., 1993)).

The solution to the consensus problem in a system where no faults occur is
deceptively simple. For instance, consider the following solution: the processes
with the lowest identifier is statically selected as the coordinator and sends
its initial value to all the remaining processes; this value is the outcome of
the consensus! In the absence of faults, this trivial protocol clearly solves the
problem, since every process decides on a value and that value is one of the
initial values. Curiously, it is extremely difficult to "extend" this solution to
tolerate faults, even if a perfect failure detector is available. Let us see why.

To start with, it should be obvious that this solution is inherently non fault­
tolerant since it relies on a single and fixed coordinator. If the coordinator
crashes, the algorithm blocks. Note also that if the coordinator crashes while
disseminating its value, some process may decide while others may remain
blocked. It is tempting to believe that the problem can be simply fixed by se­
lecting another coordinator in case the first one crashes. The updated protocol
could work like this. When the failure of the current coordinator is signalled
to the next process down the line (there is a total order on process identifiers),
this process assumes the role of the coordinator and sends its initial value to
every other process. When the same notification is received by some process
other than the next coordinator, it simply waits for the value from the new
coordinator. Unfortunately, this algorithm only works if the first coordinator
does not crash during the dissemination of its value. Otherwise, some process
may receive the value from the first coordinator (and decide on that value)
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and others from the next coordinator (and decide differently), which violates
consensus. The trick is that a protocol to solve consensus has to prevent a
process from deciding a value while there is no guarantee that this is the only
value that can be decided by other processes, even if faults occur. When one
is sure that a given value is going to be decided (even if not every process has
decided yet), the value is said to be locked.

How can a value be locked? Consider that we add the following rules: when
a process receives the initial value from the coordinator, it changes its initial
value to that of the coordinator. Thus, if that same process later assumes
the role of coordinator it proposes the value it has received from the previous
coordinator (note that this does not prevent a process from proposing its initial
value in the case it did not receive any value from previous coordinator(s)). The
protocol can then be improved as follows. The coordinator sends its value to
every other process. These processes do not immediately decide the value;
instead, they update their initial value and send an acknowledgment back to
the coordinator. When the coordinator receives an acknowledgment from every
non-crashed process, it knows the value is locked. Even if it crashes, the new
coordinator (one of the processes that have acknowledged) will also propose
that same value, as illustrated in Figure 7.3. Of course, at this point only
the coordinator knows that the value has been decided, so it disseminates a
special DECIDED message to inform the remaining processes of that fact. When
DECIDED is received from the coordinator, a process can safely decide on that
value.

decided(a)(c)
p3---+~-+-----.....-~--+--

(b)
p2 --++~--+--+-----"'-~:"1><

p4 (d)

a

Figure 7.3. Fault-Tolerant Consensus (Perfect Failure Detector)

Note that the previous solution only works if failure detection is reliable. As
we have discussed in the previous section on failure detection, in systems where
failure detection is unreliable, namely in fully asynchronous systems, there is no
deterministic solution to the problem (Fischer et aI., 1985). We have also noted
that consensus can be solved in an asynchronous system augmented with an
eventually weak failure detector, as long as a majority of processes do not crash.
We give a brief intuition of a possible solution. The protocol is quite similar to
the protocol we have described above. However, the coordinator simply waits
for a majority of acknowledgments to lock a value. This allows the system to
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make progress as long as a majority of processes can communicate, no matter
whether the remaining processes are crashed or simply slow. On the other hand,
when another process decides to become the coordinator its task becomes more
complicated, since the previous coordinator may have locked a value without
the intervention of the new coordinator. To avoid proposing an inconsistent
value, the new coordinator has to contact a majority of processes in order to
"check" whether a previously locked value exists.

7.3 UNIFORMITY

The fault-tolerant consensus problem can be defined with two distinct flavors:
the uniform consensus and the non-uniform consensus. The uniform consensus
definition states that if two processes decide, they decide the same value. Note
that no distinction is made between faulty and correct process (the property
applies to all processes in a uniform manner). For instance, if a process decides
on a value and later crashes, all the correct processes must also decide on
that same value. The non-uniform flavor is a weaker form of consensus stating
that if two correct processes decide, they decide the same value. This allows
processes that remain correct to decide on a different value than that decided
by a crashed process.

Note the example of non-uniformity in Figure 7.4: suppose p and q crashed
or partitioned after q received m, but before rand s did. This may have
undesirable effects, if processes have stable storage or partitioning may occur:
when q recovers or merges, its state Sm diverges from the state of rand s, Sk.

p

q

r

Recovery
or merge [q,r,s]

S{8m} ,/

o •

Figure 7.4. Non-Uniformity

You may ask yourself why should someone bother with these subtle differ­
ences instead of just using the stronger form of consensus in all cases. The issue
is that protocols that solve non-uniform consensus can be more efficient. Con­
sider for instance the following protocol that relies on perfect failure detectors.

As in the previous section, we -assume that there is a total order on process
identifiers and that the process with the smallest identifier is the coordinator for
consensus. The coordinator sends its value to every process in the system and,
when this value is received, a process decides immediately. If the coordinator
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remains correct, eventually every process receives and decides the same value.
If the coordinator crashes, the next process in the line assumes the role of
the coordinator. The new coordinator asks every other correct process if they
have decided. If at least one correct process has decided, the new coordinator
forwards the value that has been previously decided to every other correct
process. Otherwise, if no decided value is known by the processes that remain
correct, the coordinator decides and disseminates its own initial value (note that
the previous coordinator as well as other crashed processes may have decided
differently) .

Now compare the protocol described above with the protocol that we have
presented in the previous section. While in the non-uniform version a process
may decide as soon as it receives a proposal from the coordinator, in the uni­
form version, this proposal has to be acknowledged by (at least) a majority
of correct processes before being decided. Thus, in all applications where the
state/ actions of crashed processes cannot compromise the correctness of the
system, the non-uniform version of the protocol provides much better perfor­
mance.

7.4 MEMBERSHIP

We have already seen many examples of distributed activities where several
processes cooperate to achieve a common goal. We can refer to the set of
collaborating processes as a process group, which has a membership. We have
introduced the notion of group membership under Consistency, in Chapter 2.
Here, we review the problem and analyze the requirements of membership
protocols in the presence of failures and/or partitioning.

The membership of the group is the set of processes belonging to the group
at a given point in time. A membership service keeps track of the group mem­
bership and provides this information to the group members in the form of
a group view, the subset of members that are mutually reachable at a given
point. The group membership is often dynamic: in response to user demand
or changes in the runtime environment (load, failures, etc) the group can grow,
by letting new processes join the group, or shrink, by letting members leave
the group. Processes may also become involuntarily unreachable because of
failures.

7.4.1 Group Membership

At first glance, the task of providing participants with information about who
belongs to the group may seem rather simple. However, group membership is
as a form of distributed agreement (all group members must agree on what is
the group view) and we know distributed agreement in the presence of faults
is an intrinsically complex problem. Actually, it turns out that even defining
the properties of a group membership service is a difficult task, and several
different types of membership service have been proposed in the literature. We
will discuss the different alternatives in the next few paragraphs. For now,
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let us just state the informal and intuitive definition of consistent membership
information: if the membership of the group remains unchanged and there are
no link failures, all members should obtain the same group view.

Usually, the agreement service is required to remove processes that have
failed from the group view. So the membership information needs to be consis­
tent and accurate. However, as we have seen before, accurate failure detection
can be hard or even impossible to perform. In this case, how should the mem­
bership service behave? Assume that a group member p is suspected (it shows
no activity). If the membership service does not remove p from the group, the
application trusts p to work properly. For instance, the application might be
using a work distribution algorithm where every process contributes with its
share of work. While p remains in the view, other processes will expect it to
do its job.

On the other hand, if the process is removed from the group it will not
participate in the progress of the application and will eventually become de­
synchronized with respect to the other (active) processes. In practice it will
become unable to contribute to the group unless some resynchronization pro­
cedure is executed to update its state. Recovery is something we will discuss
later in this chapter.

The order by which the information is provided to the users is also relevant.
Application code can be made simpler if changes in the group membership
are received in the same order by all members. For instance, if a process is
notified that p has failed, and later that q has also failed, then all other correct
processes should be notified of the failure of p and q in that same order. Note
that membership heavily relies on failure detection. Inaccurate failure detection
may cause membership to have erratic behavior.

7.4.2 Linear Membership

A linear membership service is characterized by enforcing a total order on all
views, i.e., all correct processes receive exactly the same sequence of views, as
illustrated in Figure 7.5. As with the consensus problem, the linear membership
service can be uniform or non-uniform. If it is defined as uniform, the history
of views delivered to a crashed processes is necessarily a prefix of the history
of views delivered to the correct processes.

Figure 7.5. Linear Membership
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In a synchronous system without partitions, linear membership can be easily
enforced. Processes are either correct or crashed. All correct processes can
detect the crashes and can communicate among themselves. Membership just
requires agreement on the content of each view.

In a system subject to network partitions, or in an asynchronous system
where failure detection is unreliable, ensuring a linear membership is more
difficult. For instance, if the system is split in two non-communicating parti­
tions, only one of these partitions, called the primary, may continue to deliver
views. Because of this constraint, the linear membership is also called primary­
partition membership.

What happens to the processes that are not in the primary partition? Three
alternatives are possible. One is to block these processes while the partition
persists and let them catch-up with the others as soon as the partition is healed.
The other is to force these process to crash. Later they can be activated as new
processes and join the system again. The third alternative is to implement a
partial membership service, as described next.

7.4.3 Partial Membership

The primary-partition model is quite intuitive but too restrictive for certain
type of applications. It is often interesting to keep delivering views in both
partitions. Both sides continue to operate and when the partition is healed,
the state is reconciled (in a manner that is usually application-dependent).
Thus the group splits and merges in response to changes in the network con­
nectivity. Views are no longer totally ordered, instead a partial order of views is
provided. It is possible to define different types of partial membership accord­
ing to the amount of overlap that is allowed among views delivered in different
partitions. Of all the possible definitions of partial membership, the strong par­
tial, illustrated in Figure 7.6, is the most intuitive. According to this model,
concurrent views never intersect. In other words, V2 and V~ correspond to two
completely disjoint partitions, which later merge again into V3 . Strong partial
membership supports the virtual synchrony paradigm defined in Chapter 2 (see
Consistency) .

Figure 7.6. Strong Partial Membership
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7.5 FAULT-TOLERANT COMMUNICATION

Fault-tolerant communication is about making sure that two or more processes
can exchange information despite the occurrence of failures in the communica­
tion link or in some of the participating processes. As we have seen before, the
major types of failures that need to be handled are: timing, omission, and value
failures (message corruption). Malicious links can also spontaneously generate
messages. In this section we discuss how these failures can be addressed, both
for point-to-point and for multicast communication.

7.5.1 Reliable Delivery

We will start our study with omissions. From the previous chapter, the reader
should already have a good idea of how communication can be made reliable.
Two main alternatives are available: error masking or error recovery, repre­
sented in Figure 7.7. Error masking can be based on spatial or temporal re­
dundancy. Spatial redundancy consists in deploying several links connecting
the communicating processes (Figure 7.7a). In order to mask k omissions, k+ 1
links should be used. Of course, each message should be sent through all the
links. Temporal redundancy consists in sending the same message several times.
Again, in order to mask k omissions, the message should be sent k + 1 times
(Figure 7.7b). In both cases, duplicates should be discarded at the recipient.
Error masking is appropriate when the assumed number of successive omis­
sions k, also called the omission degree, is small and the need for fast recovery
compensates the waste of bandwidth.

[k=1]
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Figure 7.7. Communication Error Processing: (a) Masking (Spatial); (b) Masking (Tem­
poral); (c) Detection/Recovery

Error detection and recovery is based on acknowledgments and timeouts.
Acknowledgments can be sent whenever a message is received (positive ac­
knowledgment, as in Figure 7.7c) or only when the loss of a message is detected
by the recipient (negative acknowledgment). In the positive acknowledgment
scheme, a message is retransmitted if a confirmation is not received by the
sender before a timeout occurs. In the negative acknowledgement scheme, a
retransmission is requested by the recipient by sending a negative acknowledg-
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ment back to the sender. The former method offers a faster failure detection
with sporadic traffic. The latter minimizes network traffic but requires one of
two things: (a) a stream of numbered messages from the sender to the recipi­
ent, such that the recipient detects the lack of a message if it receives message i
but not message i-I; or (b) a time-triggered lattice such that the recipient
knows it should receive a message at a given time. Error detection and recovery
offers a better usage of network resources (in particular, the negative acknowl­
edgment scheme) since retransmissions just happen when an omission actually
occurs (and in most modern networks, with the notable exception of wireless
communication, omissions are relatively rare).

In most practical systems, a given message is not retransmitted an infinite
number of times: after a pre-defined number of retransmissions, the communi­
cation is aborted in the assumption that either the recipient or the link have
crashed. This is equivalent to implicitly assuming that the system has some
degree of synchrony, but this assumption is not always substantiated. The
necessary steps to implement error/failure detection this way are embodied
in a technique called bounded omission degree (see Real- Time Communication
Models in Chapter 13).

7.5.2 Resilience to Sender Failure

We have just seen how to deal with network omissions. We now discuss the
problem of sender failure. In the case of point-to-point communication this is
relatively easy since it basically is a problem of failure detection. Note that if
the sender crashes before successfully transmitting the message, the message is
lost. Failure detection comes into play just to prevent the receiver from waiting
forever for the missing message.

In multicast communication the failure of the sender is more problematic.
If there are omissions in the link it is possible for a message to be received
just by a subset of the participants. Usually, the sender of the message has
the responsibility for retransmitting it. In such case, the failure of the sender
may leave the system in an inconsistent state. At this point, it is worth to
distinguish three levels of reliability in multicast, illustrated in Figure 7.8:

1. Unreliable multicast. The weakest form of multicast, where no effort is made
to overcome link failures. Basically, multicast is as reliable as the link and the
sender are (if one of these components exhibits a fault, some or all recipients
may lose the message).

2. Best-effort multicast. A multicast where the sender takes some steps to
ensure the delivery of the message, like retrying or repeating. However, if
the sender fails, no reliability can be guaranteed.

3. Reliable multicast. A multicast where the participants coordinate to ensure
that the message is delivered to all correct recipients (as long as it is delivered
to at least one correct recipient). For instance, a recipient takes over a failed
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sender. As with consensus, there is a stronger definition of reliable multicast,
uniform multicast that we will discuss later in this section.

p
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Figure 7.8. Multicast Reliability: (a) Unreliable; (b) Best-effort; (c) Reliable

How can reliable multicast be obtained? Well, we are back to error masking
and error recovery. In an error masking approach, all recipients retransmit
a message as soon as they receive it. Thus, even if the sender fails, each
recipient makes sure the every other recipient also receives the message. If
an error recovery approach is used, recipients keep a copy of the message but
only retransmit the message when the failure of the sender is detected. Of
course, message copies cannot be kept forever since they consume precious
memory resources. Thus, some mechanism must detect when a message has
been delivered to all intended recipients such that its copies can be discarded.
Such a mechanism is usually called a stability tracking protocol.

The error masking approach is more appropriate for systems where accurate
failure detection is impossible (for instance, asynchronous systems). However,
unless channels are assumed to be reliable (an abstraction), the message has
to be retransmitted forever. As we have noted, most systems give up after a
certain number of retransmissions, which implicitly means the failure of the
recipient. Error recovery also assumes that failures can be detected. As a
matter of fact, the multicast reliability is strongly related with the issue of
membership (failure detection and notification).

7.5.3 Tolerating Value Faults

So far, we have been discussing how to tolerate omission faults. However,
messages can also be corrupted during the transmission, so it is also necessary
to tolerate value faults. Fortunately, most of these faults can be detected using
checksums or signatures. Messages corrupted are then simply discarded, and
the value fault transformed into an omission fault, which we know how to
handle.

Checksums do not cope with all the possible value faults. Value faults can
be caused by a faulty sender that produces an error before the checksum is
computed. Semantic faults of this type· can only be tolerated using space re­
dundancy, Le., by comparing the values produced by different sources of the
same logical value. If we have several recipients, it is important to ensure that,
for consistency, the result of the comparison is the same at all correct processes.

Exhibit 2026 Page 227



210 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

In other words, we need to ensure that correct recipients can agree on the out­
come of the comparison. To achieve such goal, a consensus algorithm must be
executed among the recipients.

7.5.4 Tolerating Arbitrary Faults

Arbitrary faults are harder to tolerate. A faulty sender may send conflicting
information to different recipients. Also, if the link exhibits malicious behavior,
it can spontaneously generate a message that is syntactically correct, imperson­
ating a legitimate sender. The problem of reaching consensus in the presence
of arbitrary faults is called Byzantine Agreement after a paper by Lamport,
Shostak, and Pease (Lamport et aI., 1982).
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'~j."'~---o
attack

(a)

messages

received by 8 • traitor

'\;aCk

attack • ~, loyal

retreat

(b)

Figure 7.9. Traitor Sends Conflicting Information

The Byzantine Agreement problem can be formulated as follows. A number
of generals, in face of an enemy army, must decide whether to attack or to
retreat. Most of these generals are loyal to each other (correct) but some are
traitors (faulty). In the presence of favorable conditions, the combined force of
the loyal armies can defeat the enemy. However, unless all loyal generals attack
together, their troops will be defeated. The problem is that loyal generals must
agree on a single binary value (attack/retreat) despite the presence of traitors
that will, maliciously, try to prevent agreement from being reached.

• traitor •

0l 1

.~ •
o0 messages received by A

•~
• 0 •

messages received by 8

Figure 7.10. One Round of Byzantine Agreement (attack:!; retreat:O)
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Assume that the system is synchronous and that the agreement protocol op­
erates in rounds. In each round, generals send messages to every other general.
However, traitors are free to omit some or all messages and to send conflicting
messages to different generals. The initial value proposed by each loyal general
consists of his own assessment of the correct decision: to attack or retreat.
How many traitors are sufficient to prevent agreement? Consider a scenario
with three generals, two of them loyal as illustrated in Figure 7.9. Given the
intuitive notion of majority vote, a correct decision should be possible. We will
see that it is not so. One of the loyal generals, A, wishes to attack, whereas
the other, B, believes that the armies must retreat. Assume that A receives
two retreat messages, one from B and one from the traitor (Figure 7.9a). Since
there is a majority of retreat messages can A safely decide? Unfortunately, the
traitor can send a conflicting message to B supporting A's proposal to attack
(Figure 7.9b). A simple majority would force A to retreat and B to attack!
Another interesting finding is that additional rounds of message exchange do
not provide any help. In fact, it can be proven that at least 31 + 1 processes
are needed to tolerate 1 Byzantine faults so, in our previous example, it is
impossible to ensure that loyal generals always reach agreement.

o

(a)

. maj(O, 1,1)=1

~
~I)~ ••

maj(O, 1,1)=1 maj(O~ 1,1)=1

(b)

Figure 7.11. (a) First and (b) Second Rounds of Byzantine Agreement (partial view,
fa uIty sender)

What happens if we add an additional loyal general to the system? Fig­
ure 7.10 shows a scenario after the first round of messages. Assume that the
loyal generals have pre-agreed that they should follow the majority and, in
case of ties, retreat. As the figure shows, consensus cannot be reached in one
round of messages, even with more processes in the system. In the example,
two loyal generals (B and C) want to attack and another loyal general (A)
wants to retreat (from now on, we replace 'retreat' by 0 and 'attack' by 1 to
simplify the figures). As before, by sending an attack vote to B and a retreat
vote to A, the traitor can force A and B to disagree. However, we now have
enough redundancy in the system to mask the influence of the traitor with an
additional round of messages. For each sender p, the other three remaining
processes exchange the values they have received from p to agree on the value
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sent by p. Let us see why, in this case, an additional round of messages (for
each value proposed) solves the problem. There are two cases:

• The sender of the value is faulty. In this case p can send inconsistent votes
to the loyal processes, as illustrated in Figure 7.11. However, since all the
remaining generals are loyal, after exchanging among them the value received
from the traitor they have exactly the same set of values. If they use a
majority criteria, all correct processes will select the same final value.

• The sender is correct. In this case, p disseminates exactly the same value
to all processes, as illustrated in Figure 7.12. When the remaining three
processes exchange the value received, the two correct processes forward the
value originally sent by p and the faulty process forwards some arbitrary
value. Still, since there is a majority of correct values, the value originally
sent by p will be chosen.

traitor••
/11

(a) (b)

Figure 7.12. (a) First and (b) Second Rounds of Byzantine Agreement (partial view,
correct sender)

Since after this second round of message exchanges every correct process
has obtained exactly the same input from every other process in the system,
correct processes can use a majority function to select the final decision of the
Byzantine agreement. The interesting feature of this solution is that in order
for the correct processes to agree on a common decision, they have first to agree
on the input value provided by each of the processes in the system (correct or
faulty). This recursive approach works because in the second round there is
one less degree of freedom in the system.

Actually, this recursive approach can be extended to tolerate additional
faulty processes. Let us call the complete protocol described above Byzan­
tine(l) and the protocol executed in the second round Byzantine(0). The pro­
tocol Byzantine(l) can be described as follows: first, for each process p, the
remaining processes execute Byzantine(O) to agree on the value proposed by p,
then they use a majority function on the agreed values to select the final deci­
sion. A protocol Byzantine(f) to tolerate 1 faulty processes (in a system with
at least 31 +1 processes) could be described using the same recursion: first, for
each process p, the remaining processes execute Byzantine(f-l) to agree on the

Exhibit 2026 Page 230



PARADIGMS FOR DISTRIBUTED FAULT TOLERANCE 213

value proposed by p, then they use a majority function on the agreed values to
select the final value.

p

q---~---~

m3 (after m1)

Figure 7.13. Causal Hole

7.5.5 Securing Causal Order

In Part I of this book, we have discussed a number of ways to enforce causal
order (see Ordering in Chapter 2). Crash faults can affect these protocols
in different ways. Consider the following example, illustrated by Figure 7.13.
Process p sends a point-to-point message ml to process q, immediately after it
sends another message m2 to process r and then crashes. Message ml is lost
but m2 is received. Assume that there are no other messages involved. Can r
deliver m2? If local criteria are used, the answer is yes. Although ml -t m2, ml

was not sent to r, thus delivering m2 does not violates causal order. However,
if r delivers m2 it will be contaminated: its state will causally depend on a
message that cannot be recovered. A hole in the causal history will be created.
Any subsequent message from r to q will not be delivered (it causally depends
on ml, which cannot be recovered).

To avoid contamination, before delivering m2, a process must be sure that
all preceding messages have been delivered or, at least, that there are enough
copies of the message in the system to ensure its future delivery. Note that
if k + 1 processes have a copy of the message, the message can be recovered
even if k processes fail. Also note that this is the default behavior of a causal
protocol when all the messages are sent to the same set of processes. Stability
tracking protocols are useful to reduce the history to be kept.

7.5.6 Securing Total Order

Enforcing total order requires some form of agreement among the participating
processes. In fact, the problem can be expressed in terms of having the processes
agree by which order the messages should be delivered. As in the consensus
problem, non-uniform and uniform versions of total order can be defined. There
is more than similarity between these two concepts. In fact, it has been shown
that uniform consensus and uniform atomic broadcast are equivalent problems
in different classes of distributed systems. In other words, you can build a
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Sender p:
Initialization

let S be the sequencer;
procedure multicast(m) begin

send UNORDERED(m) to S

Sequencer S:
Initialization

let sn := 0; / / sequence number
upon receive UNORDERED(m) from p

sn := sn+l;
send ORDERED(sn, m) to all recipients

Recipient q:
upon receive ORDERED(sn, m) from S

deliver m;

Figure 7.14. Simple sequencer based total order algorithm

fault-tolerant total order primitive based on a uniform consensus primitive but
you can also build a consensus primitive based on total order.

This last reduction is actually very simple: all processes atomically broadcast
their values and all processes agree on the first value delivered by the underlying
atomic broadcast layer. Alternatively, a deterministic function is applied to the
set of all process values, in order to extract the same value everywhere.

We have already discussed the challenges posed by failures in the agreement
problem. These difficulties also apply to the total order protocols. Consider
for instance the simple sequencer-based algorithm to enforce total order whose
pseudo-code is shown in Figure 7.14. We recall that, in its simpler form, all
processes send their messages to a centralized sequencer site, which then for­
wards them to all recipients. The delivery order is defined as the order by
which messages are sent by the sequencer. When the sequencer fails, a new
sequencer must be elected. However, some messages may have been received
by some processes but not by others. For instance, in Figure 7.15, messages
m1 and m4 are delivered to q and r but not to p. The new sequencer has to
retransmit these messages in the same order to p, otherwise the system will be
contaminated. In order to obtain ordering information, the elected sequencer
must gather information about which messages have been delivered and in
which order (assume that p would be elected as the new sequencer- it could
learn about m1 and m4 through q and r). Since crashed processes cannot be
inquired, the order established by the new sequencer may be different from the
order of delivery in processes that have crashed. This also means that a simple
sequencer algorithm cannot ensure uniform total order.

Enforcing total order using consensus as a building block can be done as
illustrated in Figure 7.16 (we use the algorithm presented in (Chandra and
Toueg, 1996)). Messages are disseminated using an unordered primitive guar­
anteeing that all correct processes will eventually receive all messages sent by
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Figure 7.15. Sequencer-Based Total Order

Sender p:
Initialization

unordered ~ 0 ;
ordered ~ 0 ;
k ~ 0;

procedure total-order-broadcast(m) begin
broadcast UNORDERED(m)

when receive UNORDERED(m) from p
unordered ~ unordered U{m}

when (unordered-ordered) #- 0 begin
k~k+l;

propose (k, unordered-ordered);
wait until decide (k, msg-set);
ordered ~ ordered U msg-set; / / deliver msg-set in some deterministic order

Figure 7.16. Chandra and Toueg's total order algorithm

correct processes (this can be obtained by letting each recipient forward each
message to all other processes). Messages received this way are saved in a bag
of unordered messages. To order messages, each process executes a sequence
of consensus, each consensus orders a set of messages. For consensus number
i, a process p proposes its bag of unordered messages. The result of the i th

consensus is the set of messages which all correct processes agree to assign se­
quence number i to. These messages are removed from the bag of unordered
messages and delivered to the user according to some deterministic rule before
a new round of consensus is started.

The fault tolerance aspects of some previously studied ordering protocols
(see Ordering in Chapter 2) also worthwhile mentioning. The token-site total
ordering method survives f failures by rotating the token and copying relevant
ordering information f + 1 times, before considering a message stable. In ~­

protocols ordering information can be evaluated locally at every recipient. So
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FT concentrates on two aspects: ensuring timely delivery; making clock syn­
chronization fault-tolerant. Exceeding the assumed delivery delay or precision
bounds can make the protocol fall apart.

The reader should also note that protocols providing nonuniform total or­
der may also cause the contamination of the system. Consider for instance a
sequencer-based total order algorithm. The sequencer receives two multicasts
ml and m2 and delivers them by that order. It subsequently multicasts a new
message m3 whose contents depends on the delivery order of ml and m2. The
sequencer then crashes before forwarding the delivery order to the remaining
processes. The surviving processes receive ml, m2 and m3 and decide to deliver
those messages. In a nonuniform algorithm, the new sequencer is free to assign
any order to these messages, for instance: m2 < ml < m3. Unfortunately, the
contents of m3 is now inconsistent with the selected delivery order. A uniform
total order protocol prevents this case from occurring (but at a greater cost).

7.6 REPLICATION MANAGEMENT IN PARTITION-FREE

NETWORKS

In the next few sections we will address a basic technique to provide continuity
of service and/or availability of data: spatial redundancy in the form of replica­
tion. We begin by making strong assumptions about the system: the network
is not subjected to partitions and the processes only fail by crashing.

7.6.1 State Machine

Before proceeding, it is useful to distinguish the behavior of components from
the determinism point-of-view. The state and outputs of a deterministic com­
ponent depend exclusively on its initial state and on the history of commands
that it has processed. A deterministic component, also called a state machine,
has been characterized as follows (Schneider, 1993):

Semantic Characterization of a State Machine- Outputs of a state ma­
chine are completely determined by the sequence of requests it processes, inde­
pendent of time and any other activity in the system.

Figure 7.17a depicts the principle of the state machine. If two components,
executing the same state machine: are started with the same initial state; and
execute exactly the same (totally ordered) sequence of commands; then they
always exhibit the same behavior (as long as they remain non-faulty). It is also
useful to distinguish write commands, that cause the state of the component
to change, from read commands, that do not cause a state update.

On the other hand, the state and behavior of a non-deterministic component
depend not only on the sequence of commands it executes but also on local pa­
rameters that cannot be controlled. Unfortunately, there are many mechanisms
that can cause a non-deterministic behavior: non-deterministic constructs in
programming languages such as the Ada select statement; scheduling decisions;
resource sharing with other processes; readings from clocks or random number
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generators; etc. The state of two non-deterministic replicas is likely to diverge
even when they execute same sequence of inputs.

Between these two extremes it is also useful to define piecewise determinis­
tic components (Strom and Yemini, 1985). The execution of these components
can be decomposed into several deterministic sequences of instructions, inter­
twined with non-deterministic steps, such as the processing of a sporadic event
or message. A state machine where command processing order depends on
non-deterministic events such as urgent message arrivals or internal scheduling
decisions is a piecewise deterministic component, where the granularity of the
sequence is the command.

8
( /----,,~ INPUT

\ /) (disseminated)

j'-l/r;
t:3... rn3 m2

m3 m2
m2 :

OUTPUT..
(a) (b)

Figure 7.17. State Machine: (a) Simplex (b) Active Replication

7.6.2 Active Replication

Active replication is an intuitive technique that can be applied to state ma­
chines. It consists of having several replicas of the same state machine exe­
cuted by different processes. In order to ensure that the state of these replicas
is kept consistent, an atomic multicast protocol must be used to disseminate
the state machine commands. The atomic multicast primitive ensures that all
replicas receive the same commands in the same order, as illustrated in Fig­
ure 7.17b. When the state machine produces an output, all replicas produce
the same result. The consolidation is simple in an omissive fault model: any of
the individual results can be used (remember, no value faults yet).

When active replication is used, replica consistency is preserved implicitly by
the atomic multicast protocol used to distribute commands. No explicit recov­
ery procedure is required when one of the replicas fails: the remaining replicas
will continue to provide service. Of course, the approach has its disadvantages.
It is resource demanding, because each replica requires a full set of resources
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to operate. Also, it requires the use of total order, which is intrinsically less
efficient than weaker communication primitives. With regard to this last point,
it is worth mentioning that only write commands need to be totally ordered:
read commands can simply be causally ordered.

7.6.3 Semi-Active Replication

Active replication can only by applied to state machines. Semi-active repli­
cation is a variant of active replication that can also be applied to piecewise­
deterministic components. Also called leader-follower, the idea is that all repli­
cas execute the commands but a single replica (the leader) is responsible for
making all non-deterministic scheduling decisions and provide this information
to the other replicas (the followers) as illustrated in Figure 7.18a.

P1- LEADER P2- FOLLOWER P1-PRIMARY P2-BA-CKUP

Checkpoint Stmj~

~
~

Execute m1
Execute mu
Execute m2,m3

"OUTPUT OUTPUT

(a) (b)

~
~

Figure 7.18." (a) Semi-Active Replication; (b) Passive Replication

Since the order of execution is defined by the leader, this technique does not
require the use of totally ordered broadcast. Unordered unreliable broadcast
can be used instead: note that the queues of the two replicas have the same
messages, in different orders. Follower replicas log all messages but delay the
processing until the leader sends them the result of its non-deterministic de­
cisions, namely the execution order. For example, note that the leader sends
instruction (executeml), then an urgent message m u arrives and preempts the
foreseen execution sequence (m2' m3). The next instructions from the leader
will thus be to execute m u , and then m2, m3. To avoid inconsistency, every
non-deterministic decision taken by the leader must be disseminated immedi­
ately to the followers. So there is a tradeoff among the degree of consistency,
the degree of non-determinism, and the cost of leader-follower synchronization.
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7.6.4 Passive Replication

Both active and semi-active replication require the replicas to execute com­
mands, and this doubles the resource requirements. Passive replication is more
economic, since only one replica (called the primary) executes commands. The
other replicas, called secondary or backup, remain in idle state, although they
receive and log all commands. Periodically, the primary replica checkpoints its
state in a location that can be read by the backups: it can send its state di­
rectly to to the backup replica(s) (using messages, as shown in in Figure 7.18b)
or save it on a shared repository. All backup replicas clear their logs after a
checkpoint. When the primary fails, one of the backup replicas is elected as a
new primary and resumes operation from the last checkpoint, executing from
the log to catch-up with the state of the primary just before failing. Depending
upon the size of the replica state and upon the frequency of checkpointing,
each checkpoint can include the complete state of the replica or just the up­
dates from the last checkpoint (incremental checkpointing). The reader should
note that there is room for tradeoffs between: size of checkpoint, size of log,
frequency of checkpoints, recovery glitch.

7.6.5 Lazy Replication

Lazy replication (Ladin et aI., 1992) can be seen as a hybrid scheme that mixes
active and semi-active replication. The approach uses semantic knowledge to
distinguish the operations that need to be executed with total order from those
that can be executed in different orders in different replicas.

Clients forward their request to one of the replicas. If the request is an
update that needs to be totally ordered, the replica synchronizes with the other
replicas to establish a total order for that request; all replicas will apply the
update in the same order and the contacted replica will reply to the client. The
reply carries a vector clock that must be returned by the client in subsequent
requests (this ensures that the client sees the updates in an order consistent
with causality, even if it contacts different replicas). Requests that do not
need to be totally ordered are executed in an order that respects causality by
the replica that receives the request. A reply is sent to the client and the
request is forwarded to the other replicas in background (thus, the name of
lazy replication).

7.7 REPLICATION MANAGEMENT IN PARTITIONABLE NETWORKS

All of the replication schemes just discussed assume reliable failure detection.
Besides, replica divergence is not avoided in the case of network partitioning.
We will now present replication schemes that ensure consistent service even
when some replicas become mutually unreachable. These techniques work in
networks where partitions can occur and in systems where replicas can crash
and later recover.
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7.7.1 Static Voting

The idea behind voting is that any given operation should only be allowed to
proceed if a minimum quorum of replicas, or copies, can perform it. Quorums
must be defined in such a way that conflicting operations always intersect in
at least one replica. This common replica is able to make the outcome of the
previous operation available to the replicas executing the new operation. The
most current state can be identified by having each replica maintain a version
number that is incremented every time the data are updated.

The simplest example of a quorum algorithm for managing replicated data
is one where read operations are allowed to read any single copy, and write
operations are required to write all replicas of the object. This read-one write­
all algorithm provides read operations with a high degree of availability at a
very low cost. On the other hand, it severely restricts the availability of write
operations since they cannot be executed after the failure of a single copy.

Weighted voting An extension to the above-mentioned scheme consists in
assigning each copy a number of votes. Quorums are defined based on the num­
ber of votes instead of the number of replicas and the 'Condition that guarantees
overlapping consists in requiring that the sum of quorums for conflicting oper­
ations on an item should exceed the total number of votes for that item. This
technique is the basis for a set of algorithms named majority voting (Thomas,
1979) and weighted voting (Gifford, 1979). Weighted voting is based on the fol­
lowing: given n the total number of votes for an item, and rand w the quorums
required for read and write operations respectively, then it should be 2w > n,
and w + r > n. The intuition behind this can be explained by an example.
Suppose n == 7, r == 4 and w == 4. Then, if a partition containing replicas
summing at least 4 votes is written, only 3 votes are left, not enough to write
divergently in other partitions (first condition). The second condition is simi­
lar, ensuring that one read and one write cannot be made concurrently (in two
partitions), but are serialized regardless of how partitions develop. Namely,
if the write occurs first, then the read is sure to include at least one of the
replicas that have seen the previous write. This replica can update the others,
ensuring sequential consistency of the history of operations. The separation
between number of replicas and number of votes is the key point: a careful
vote assignment taking into account the properties of each individual replica
may yield improved results on the availability of the system. In the example
above, suppose that replica A stored in a node with better reliability and/or
connectivity is given 3 votes, and all other four replicas are given 1 vote: a
partition with A and any other replica secures the majority of votes, allowing
system operation to proceed even if a majority of replicas fail or partition.

Coteries An alternative approach to describing quorums, in particular weighted
quorums, is to use an explicit set of processes, or quorum groups. The collection
of quorum groups used by an operation is called the quorum set. To ensure
overlapping, each group in the quorum set must overlap with every other group
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in that set. A quorum set with such characteristics is called a coterie (Garcia­
Molina and Barbara, 1985) and it can be used to achieve mutual exclusion. The
reason for explicitly invoking an operation on a quorum group is that there are
quorum sets which cannot be defined by voting algorithms. Although quorum
sets are the most generic way to describe coteries, they are expensive: all quo­
rum groups must be stored locally, and a search for the quorum group must
be performed upon every operation. This is significantly more expensive than
voting, where only the local vote and quorum need to be stored (and checked)
at each process. Additionally, the number of quorum set alternatives is so vast
that it is difficult, if not impossible, to choose the most appropriate quorum set
for a given system. Due to this reason, other representations of quorum sets
that are comparable to coteries have been searched.

6········0········6···_··0······6·······.···6
read-quorum write-quorum

Figure 7.19. Grid Read and Write Quorums

Structural representations One of the methods to describe quorum sets is
to use logical structures such as a tree, a grid, etc. Let us give some examples.
The tree quorum algorithm (Agrawal and EI-Abbadi, 1991) organizes replicas in
a logical binary tree. The algorithm tries to find a quorum group by selecting a
path from the root of the tree to anyone leaf. If no such path can be found due
to the inaccessibility of a copy c, that copy must be replaced by two paths, both
starting at children of c (the algorithm is recursive). One problem with this
algorithm is the probability of overloading the root node, since it belongs to all
(failure-free) quorums. Another example is the grid algorithm (Cheung et aI.,
1990), that organizes the replicas in a logical rectangular grid: a read quorum
must contain a node from each column and a write quorum must contain a
read quorum and all the nodes in a column of the grid. In this way conflicting
operations are guaranteed to overlap, as shown in Figure 7.19.

Byzantine Quorum Systems The systems described above are designed to
tolerate benign faults such as crashes or partitions. Thus, the intersection of
quorums for conflicting operations is required to have at least one process. It
is possible to tolerate additional types of faults by using larger intersections.
For instance, quorum systems that are able to mask Byzantine faults can be
constructed by ensuring that quorums contain a majority of correct processes
(Malkhi and Reiter, 1998). For instance, in a read operation, a client can accept
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a value that is returned by at least f + 1 servers (and ignore arbitrary values
returned by faulty servers).

7. 7.2 Dynamic Voting

In the algorithms described above, quorum sets are chosen a priori at system
design time. At run time, a node simply determines the reachable set of sites
before performing an operation, and checks if this group belongs to the quorum
set designated for the operation. In contrast, in a dynamic scheme, quorum
groups can be changed during runtime. The idea is to use information about
the current system configuration (such as which nodes are down) to adapt
the algorithm in order to maximize some performance criteria. Typically, dy­
namic schemes attempt to make the system operate with small read quorums,
since read operations are usually predominant. Consequently, the correspond­
ing write quorums require a larger number of replicas and may become hard to
reach when failures occur. In this case, after a failure the system should switch
to another, more favorable, read and write quorum sets.

Most of the algorithms described in the previous section can be extended to
take reachability information into account. Dynamic variants of voting algo­
rithms are based on similar principles: partitions are identified in some form
and updates are performed on replicas that are in the same partition. For
instance, the weighted dynamic voting algorithm (Davcev, 1989) changes the
majority criteria whenever a network partition is suspected. Whenever this
criterion is changed, the version number of each copy at that point is stored
(this information is called a partition vector). This allows to keep track of
which replicas have participated in the most recent majority; the majority cri­
teria can only be changed when a majority of up-to-date replicas are reachable.
When communication is re-established, partitions are merged using the parti­
tion vector information. Usually,· to avoid degrading the performance of read
operations, a new partition is only installed during write operations (Agrawal
and EI-Abbadi, 1990).

7.8 RESILIENCE

The degree of resilience assumes at least two facets. The first is qualitative,
and concerns the kind of faults to be tolerated, for example: whether or not
the system can partition; or whether time- or value-domain faults are assumed.
The second is quantitative, concerning the number of faults to be tolerated.

7.8.1 When to Compare Results?

Voting and comparison are common activities in fault tolerance paradigms.
In the last section, we studied the use of voting to assure a tradeoff between
consistency and availability: assessing the existence of progress conditions, such
as a quorum or a majority of replicas or votes, in order to let a computation
proceed without the risk of inconsistency.

Exhibit 2026 Page 240



PARADIGMS FOR DISTRIBUTED FAULT TOLERANCE 223

In order to tolerate value faults, different sources of the same "logical" value
must be available in the system, so that their values can be compared, or voted
upon. Of all the techniques discussed so far, only those involving space redun­
dancy, such as active replication, are able to provide tolerance of value faults,
since the outputs are computed by each replica with complete independence
from the other replicas. The correct sources will produce a valid value and
the faulty sources an incorrect value. Voting on these results yields the correct
value by masking the error, or at least allows detecting the error, depending on
the amount of redundancy.

Voting is very simple when all correct values must be exactly the same
and can be compared bitwise. For example, in the case of a single assumed
fault and given a vector of values to be compared, a two-element vector (two
replicas) allows detecting an error when the two entries are different, but there
is no recovery, since it is a no-winner situation. A three-element vector allows
masking one error, by deciding for a majority (at least two) of equal values.

7.8.2 Exact and Inexact Agreement

We have discussed how to pick a correct value from a set of values produced
by different replicas. In many fault-tolerant architectures, the consumer of the
value is also replicated, and distributed. This means that, in order to preserve
consistency, all consumer replicas need to select not only a correct value but
also the same correct value. In other words, the consumer replicas need to
agree on the correct value. In omissive failure systems, if all producer replicas
atomically broadcast their values, consumer replicas end up with the same
vector of producer replica values, and thus can do a deterministic comparison,
arriving at the same value. As a matter of fact, this is another way of reaching
consensus through atomic broadcast (see Securing Total Order in Section 7.5).

This task can be further complicated if a faulty source can send different
values to different replicas (byzantine faults). Note that we have already dis­
cussed a means of overcoming this problem. Byzantine Agreement (BA) allows
a value to be reliably distributed through a set of consumer replicas under
such a failure mode (see Tolerating Arbitrary Faults in Section 7.5). If all pro­
ducer replicas execute BA, then an Interactive Consistency (IC) vector is built
(Pease et aI., 1980), with exactly the same content at every consumer replica.
A deterministic comparison on the IC vector will yield the same result at all
replicas.

Exact (bitwise) agreement cannot be reached when two correct replicas can
produce different values. How can this happen? Consider, for instance, that the
vector of values to be compared is the result of analog sensor readings. Then,
any two correct sensors can read values that are slightly different and thus not
comparable bitwise. In consequence, one has to use some "convergence func­
tion" performed on the whole of the vector, in order to pick the "right" value,
which may be neither of the initial values. Besides, in the case of replicated
consumers and value faults, the result of the function may be slightly different
from replica to replica. This is called inexact agreement. Clock synchroniza-
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tion, that we discuss in the Real-Time part of the book, is another example of
inexact agreement.

Several convergence functions exist, and some may be sophisticated and
highly dependent on the application semantics, for instance, when th:c value to
be produced is a captured image. For the sake of example, we will describe a
couple of simple convergence functions for real numbers, that will tolerate up
to 1 faulty values in the vector:

Fault-tolerant Midpoint - selects the midpoint of the values collected
after discarding the f highest and 1 lowest values. Requires at least
2f + 1 values, 3f + 1 with byzantine faults

Fault-tolerant Average - selects the average of the values collected
after discarding the f highest and f lowest values. Requires at least
2f + 1 values, 3f + 1 with byzantine faults

7.8.3 How Many Replicas or Spares?

It is probably worthwhile making a point of the situation in terms of the num­
ber of replicas that are really needed to achieve fault tolerance. This number
dep:ends on the number and type of faults that need to be tolerated. In order
to tolerate f omissive faults, f + 1 replicas are needed. To tolerate 1 value
faults, 21 + 1 replicas are needed, since a majority vote must be made on the
value to return. This number is still valid for distributed replicas with value
faults, provided that the communication subsystem only does omissive faults.
However, it goes up to 3f + 1, in order to tolerate Byzantine faults.

These numbers represent the minimum number of replicas required. The
question now is the following: should we use the bare minimum or should we
use additional redundancy?

7.8.4 The Point of Diminishing Returns

Given available resources, one may be tempted to introduce more redundancy
than strictly required. This may have several benefits. To start with, it may
increase the system reliability, since additional redundancy allows the system
to tolerate additional faults. Also, in several replication schemes, additional
redundancy may provide load balancing, for instance, by executing reads in
parallel on different replicas.

However, additional redundancy also means additional costs and complexity
to ensure consistency. For instance, the algorithm proposed in (Lamport et aI.,
1982) is optimal in the number of rounds (1 + 1) but requires an exponential
number of messages to reach Byzantine agreement (O(n f )). Even load balanc­
ing may not be a universal advantage, since it may penalize some classes of
operations: in a read-one/write-all strategy to replicated data, the availability
of the write operation decreases with the number of replicas.

On the other hand, adding more components means increasing the probabil­
ity of having a component failed at a given point in time. Thus, after a certain
point the introduction of an additional replica may not produce an significant
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increase in the overall sj~stem reliability. It is also important to note that, as
we have seen previously, adding additional components is not the only way to
increase the system reliability. The other alternative is to use better compo­
nents. Using analytical models it is possible to find the point where additional
redundancy is no longer cost effective and components with higher coverage
should be used. This has been called the point of diminishing returns (Stiffler,
1978).

7.9 RECOVERY

Most of the techniques that we have discussed so far try to ensure the avail­
ability of a correct result. In many systems with less stringent requirements, it
is enough to ensure that after a failure the components are able to restart the
computation from a consistent state (ideally, not far from the crashing point).
Even when availability is a primary concern, it is interesting to ensure that not
all of the state is lost in the case where all or some components crash.

Recovery from crashes requires the application state to be saved in stable
storage. Stable storage entails both the notion of persistence, i.e., surviving
the entity creating it, and of reliability, i.e., exhibiting very low probability
of losing or corrupting information. Stable storage is usually implemented on
non-volatile media (disks, or combinations thereof). However, note that a set of
replicated volatile memory repositories can act as a stable storage subsystem.
Resilience (persistence and reliability) is secured by ensuring that at least one
of those replicas remains operational at all times. The reader should note that
passive replication can be seen as a form of "saving state to stable storage".

7.9.1 Stable Storage

Stable storage built from volatile memory is simple and solves several prob­
lems, namely as a medium-term repository, for example for long computations,
or publisher-subscriber message buses. However, it is not the general approach.
This is because truly non-volatile media have a better coverage against unex­
pected events, such as power breakdowns, and other common-mode failures.
How should we build a stable storage device? It is time to apply some of
the concepts we have discussed so far, namely the hierarchical nature of fault­
tolerant systems, now at the disk level.

The simplest form of stable storage would be a disk. But there are a lot of
failures that can affect the information on that disk. Value and space redun­
dancy can be used in order to preserve the consistency of information despite
disk errors. For example, the same information can be stored into two different
disk blocks and a checksum added at the end of each disk block. If a crash
occurs in the middle of a write operation, or if a block is somehow corrupted,
the error can be detected from the invalid checksum, and the "last" value can
be recovered from the other block. The crash of the whole disk can be tolerated
again with space redundancy: the information can be written in two separate
disks (this approach is also called "mirrored disks").
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An interesting technique that increases both the availability and the perfor­
mance of the stable storage consists in using a Redundant Array of Inexpensive
Disks (RAID) (Patterson et aI., 1988). According to this approach, the stable
storage container is made of n storage disks and a parity disk. The information
is scattered among the storage disks and the parity of the n storage blocks is
saved in a correspondent block in the parity disk. If one of the storage disks
fails, its content can be recovered by resorting to the parity information. In the
current implementations, the parity blocks are also scattered uniformly among
all the disks to prevent the parity disk from becoming a bottleneck (this disk
would have to participate in all writes).

7.9.2 Checkpointing

The stable store we just studied can be used to save the state of the components
that need to survive a crash. The state that is saved in stable store is also called
a checkpoint. Upon recovery after having crashed, the component reads the last
checkpoint and resumes operation from there: this operation is called a rollback.
As you can see, the basic idea behind this technique, called checkpoint-based
rollback-recovery, is quite simple, almost too good to be true. However, there
are some difficulties that need to be surmounted to render this technique useful.

A very important point that needs to be taken into account is that compo­
nents do not operate in isolation in a distributed system. They interact with
other components by exchanging messages with them. To the recovering pro­
cess, any messages it sent between the last checkpoint and the crash instant
simply do not exist! In some sense, the recovering process will behave like
someone who has lost his memory after a car accident and is unable to remem­
ber his own wife and children. However, any other component having received
those messages will then be inconsistent, since "apparently" no one sent them.

So what is the solution? Fortunately, there is something that can be done
with a computer program that cannot be done with humans: travel back in
time. Consider the crash and recovery of a component. If all components have
periodically checkpointed their state, we can force them to rollback in such a
way that some past consistent global state is re-established which includes the
recovering process. Thus, recovery requires the search for the earliest consistent
set of checkpoints, called recovery line.

The extensive literature in this area can be classified into three main ap­
proaches for taking checkpoints. The first, called coordinated checkpointing,
consists in having the processes coordinate before taking the checkpoint. The
purpose of coordination is to ensure that the set of checkpoints is consistent
(see Consistent Global States in Chapter 2). The advantage of always taking
consistent checkpoints is that, in the case of crashes, the system only needs
to rollback to the last checkpoint. On the other hand, coordination itself may
introduce some delays in the execution of the application.

Uncoordinated checkpointing avoids coordination costs by allowing processes
to take checkpoints independently from each other. Unfortunately, with unco­
ordinated checkpointing there is no guarantee that a set of consistent check-
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points will exist. We recall that two checkpoints C1 at process PI and C2 at
process P2 are mutually inconsistent if C1 contains the message m sent by PI
to P2 but C2 has no record of sending this message. It is easy to see that this
scenario may repeat itself: the rollback of one process may force the rollback of
another process, which in turn forces the first process to rollback again, and so
on. This phenomenon, called domino effect, may cause the system to rollback
to its initial state (Randell, 1975). The effect is shown in Figure 7.20: PI fails,
and then recovers, rolling back to checkpoint Ca. Evidence of sending message
mi no longer exists, and so, P2 is forced to rollback to checkpoint Cb. However,
this "unsends" message mjand thus P3 is forced to pull back to Ce • We leave it
to the reader to confirm that rollback propagation will bring the system back
to the initial state.

Figure 7.20. Domino Effect

A third technique, also not requiring coordination, is called communication­
induced checkpointing. It avoids the domino effect by requiring components to
checkpoint upon receiving and prior to processing certain messages that may
induce conflicts.

Finally, it is worthwhile mentioning that if the checkpoint is made not to
a local store, but to one or several additional component replicas in different
sites, then it is not necessary to wait for the component to recover after a crash:
recovery may start in one of the replicas immediately the crash is detected. This
is the mechanism underlying passive replication (see Section 7.6).

7.9.3 Logging

Many applications could live with a system that simply checkpoints periodically,
often enough that the rollback delay does not become too large. Nevertheless,
there are some problems that limit the effectiveness of rollback. The most
obvious is when the computation is not fully deterministic: upon recovery the
component is not guaranteed to reproduce exactly the same steps and results
it has produced before the crash. Also, certain actions done since the last
checkpoint may have left a trace outside the subsystem of components involved
in the checkpointed computation. Actuations on the environment or messages
sent out are good examples of what we may call real actions: these cannot be
undone, and rolling back and repeating them may cause inconsistent behavior.
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This problem could be avoided by systematically checkpointing whenever such
an action is performed. However, one of the problems with checkpointing is
that it consumes time. If the component holds a large state, or if the above­
mentioned actions are too frequent, the performance overhead of checkpointing
may become unbearable. Checkpoints may be optimized of course, namely by
selecting the state variables to checkpoint, e.g., by using application semantics
and/or compressing the data to be stored.

However, if the computation is piecewise deterministic (see Section 7.6),
there is a systematic way to minimize the number of required checkpoints,
by logging all non-deterministic events between consecutive checkpoints. The
state of the component can then be reconstructed from the most recent check­
point and the log: the state is first recovered from the checkpoint and then. all
events from the log are replayed in the same order as before the crash. This
technique is called log-based rollback-recovery. This may allow the system to
recover without forcing other components (or the outside world) to rollback.
Three major approaches to log-based rollback-recovery have been proposed:
pessimistic logging, optimistic logging, and causal logging.

Pessimistic logging systems make sure that information about each non­
deterministic event is logged before the event affects the computation. As a
result, when a process crashes and recovers it is guaranteed to execute the
same sequence of events, reaching a state that is consistent with the (internal
or external) aretions performed prior to the crash. Unfortunately, the number of
log operations that are inserted in the process path may represent a significant
performance overhead. To avoid these costs, it is possible to log information
about non-deterministic events asynchronously. This means that the computa­
tion proceeds and the logging is performed later. The idea is that since faults
are not very frequent, all log operations succeed in most cases. Thus, these
protocols are also called optimistic protocols. Unfortunately, once in a while a
process may crash before logging all non-deterministic events. Upon a failure,
the maximum consistent state must be recovered from the last global consistent
checkpoint and from a sub-set of events recorded in the local logs. To achieve
this state, other processes may be forced to rollback to obtain a consistent
global state. In consequence, interaction with the outside world requires ex­
plicit synchronization among processes. The third alternative, causal logging,
keeps track of causal relations among events, retaining most of the advantages
of optimistic logging without making optimistic assumptions. The description
of causal logging is outside the scope of this book (for a survey, see (Elnozahy
et aI., 1999)).

Finally, garbage collection is also an important matter, since both logs and
checkpoints claim resources. Uncoordinated checkpoint protocols identify the
recovery line and dispose of all checkpoints past it. Coordinated checkpoint
protocols dispose of all checkpoints but the most recent. Logs are deleted
immediately a new checkpoint is made.
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7.9.4 Atomic Commitment and the Window of Vulnerability

The last sections have discussed recovery approaches based on actions that
can be rolled back individually. A step forward would be to encapsulate these
actions in sequences that cannot be undone individually, and have the system
automatically guarantee this. Atomic transactions achieve this effect: if a
transaction commits, its effects are durable. A protocol that ensures such
properties is called an atomic commitment protocol (see Distributed Atomic
Commitment in Chapter 2), and what we discuss here is how much we can rely
on such a protocol, in the event of process crashes and recoveries.

Recapitulating, the processes participating in a distributed transaction must
coordinate their actions (and checkpoints) to ensure that a committed transac­
tion is not erroneously aborted upon recovery. The two-phase commit protocol
is one of the most used atomic commit protocols (Figure 7.21). We revisit the
algorithm with more detail. This protocol is coordinated by one of the par­
ticipants. In the first phase, the coordinator sends a PREPARE message to all
other participants. Upon reception of a PREPARE, a process checks if it is ready
to commit the transaction. If the answer is affirmative, it ensures that all the
results are logged in stable storage, appends a prepared entry to the log and
replies OK to the coordinator. Otherwise, it aborts the transaction and replies
with NOTOK. If the coordinator receives an OK from all participants it commits
the transaction. Otherwise the transaction is aborted. A committed/aborted
entry is added to the coordinator log and the log is forced to stable storage.
The coordinator then initiates the second phase, sending a COMMIT/ABORT

message to everybody. Upon reception of the COMMIT/ABORT, each partici­
pant commits/aborts the transaction and sends an acknowledgement back to
the coordinator. To ensure a fast dissemination of the transaction's outcome,
the coordinator retransmits the decision if some acknowledgements are missing.

prepare :commit prepare :abort

coord coord

p1 p1

p2 p2

p3 p3

(a) (b)

Figure 7.21. Two-phase Atomic Commitment Protocol: (a) commit; (b) abort

The two-phase commit protocol is quite simple and efficient. However, it
suffers from a major drawback: if the coordinator fails between the PREPARE

and the COMMIT/ABORT, the remaining participants will be blocked waiting for
the decision! They cannot abort the transaction either, because the coordinator

Exhibit 2026 Page 247



230 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

might have said COMMIT before failing, and a subset of the participants might
have committed and then failed. Only when the coordinator recovers can a safe
decision be taken. These failure scenarios may also take place if the system
partitions.

commitpre-commit

p3
_-..l..'. ~~~~~---~

p1

prepare

coord ~-~""'7""'""---::Ir--r--~--,..-~~-'~"":;>

?

?

commit

p1

p3

p2

prepare

coord ~-~""'7""'""---::Ir+T--'7'!.t..•.•,>

(a) (b)

Figure 7.22. (a) Blocking of Two-phase Commit; (b) Three-phase Commit

A non-blocking solution to the problem exists, and is known as three-phase
commit protocol, exemplified in Figure 7.22b. The idea behind three-phase
commit is to delay the final decision until enough processes "know" which
decision is about to be taken. Namely, between the two initial phases the
coordinator sends a PRE-COMMIT message to all processes and waits for an
additional round of acknowledgements. Only then the COMMIT is sent. The
advantage of this scheme is that even if the coordinator fails before issuing
the commit, the remaining processes may resume the operation since they have
received the PRE-COMMIT message. Three-phase commit is much more resilient
than two-phase commit, at the cost of performance.

The reader might have already noticed that there are similarities between
the atomic commitment problem and the agreement problem. If fact, atomic
commitment can be seen as a form of agreement with some restrictions: all
participants must agree on the outcome of the transaction, with the proviso
that the outcome can only be commit if all participants are ready. Actually,
since we want to prevent failed processes from disagreeing with active processes,
atomic commitment is a variant of uniform agreement. Non-blocking solutions
to the problem of atomic commitment were known before the problem of uni­
form agreement was well understood. As we have already discussed, there are
no deterministic solutions to the (uniform) agreement problem in asynchronous
systems. Thus non-blocking actually means: 'non-blocking as long as a major­
ity of processes remain correct'.

Actually, an elegant way of describing an atomic commitment protocol is to
use consensus as a building block. The protocol can then be rephrased as fol­
lows. The first phase proceeds as before with a minor difference: one participant
is responsible for sending a PREPARE message but responses are multicasted to
all participants. The subsequent phase is decentralized and based on the ex­
ecution of consensus. In order to reach a decision about the outcome of the
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transaction, all participants propose an initial value to consensus. Participants
that collect OK from all other participants propose to COMMIT the transaction.
Participants receiving a NOTOK or suspecting that some other participant has
failed propose to ABORT the transaction. The consensus itself guarantees that
all correct participants agree on the same outcome.

7.9.5 State Transfer

We now consider the case when the component recovers and can be re-integrated
in the replica group in order to re-establish the original number of replicas. The
state of the recovering process has to catch-up with the state of the remaining
replicas. This problem requires specialized protocols, called state-transfer pro­
tocols, whereby one of the active replicas transfers its state to the recovering
one. State transfer poses both practical and conceptual problems.

The more practical problems are concerned with the identification, capture
and physical transfer of the state. For the sake of performance, one should try to
transmit only the variables relevant to the recovering replica. If the replica only
has volatile storage, everything must be transferred. However, it may be able
to load code and read-only tables from disk, and re-initialize the computation.
This minimizes the amount of data to be transferred. Application-specific state­
transfer opens further opportunities for optimization, since the programmer
knows better than anyone else what to transfer. For example, suppose that the
state of a replica depends exclusively on the last n commands it executed: for
instance a component that keeps an average of the last k sensor readings. In
this case, replica integration can be performed just by waiting (after k sensor
readings, the state of the replica is updated).

If replicas checkpointflog to stable storage, the recovering replica can im­
plement incremental transfer, i.e., just transfer the results of the changes made
during the crashed period. This requires the recovering replica to recover first
from the last checkpoint/log in stable storage, and then from the active repli­
cas. These have to take the necessary steps to keep a history of changes since
the failure of a replica is detected, until it recovers.

The conceptual problem is that ideally state-transfer should be performed
with minimal interference with the behavior of the remaining replicas. That
is, active replicas should not be prevented from providing service to clients
while the state is being transferred. The problem with this approach is that
the state is a moving target: it is being changed at the same time it is being
transferred! On the one hand, this may entail incorrect system state transfer.
On the other hand, if the active replicas change their state faster than they are
able to transfer it, the joining replica will never be able to catch-up.

The former problem may be solved by giving priority to state transfer in
detriment of replica computations, which may momentarily slow the computa­
tion down. As for the latter problem, we now describe a simple way to perform
state-transfer in systems where total order is used. The protocol is exemplified
in Figure 7.23. The recovering replica (P3) initiates the procedure by resuming
communication with the replica set. At this point, if the set was using some
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P3 --*
ReCOVery~

Figure 7.23. Recovery with State Tra nsfer

form of group communication, it starts receiving all messages, but still discards
them. Next, it multicasts a request to JOIN the replica group activity, which
triggers a state-transfer operation. This message is delivered in total order to
all replicas, including the joining replica, marking a cut in the global system
state: one of the active replicas (P2) checkpoints its state at this point (Sj),
and sends it to P3 in one or more STATE messages; P3 starts logging any mes­
sages that arrive after the cut, since they follow Sj. New requests from clients
now arrive at all replicas (e.g., mk), and can continue to be processed by all
replicas except the joining one. The joining replica logs all client requests until
it receives the last STATE message. Then, it consumes all pending requests in
the log, in the order by which they were received. At this point, state transfer
is complete, and all replicas are consistent. It should be clearer now why it
may be of interest to slow down the computation a bit during state transfer: if
the log is enormous after state transfer, the recovering replica may take very
long to catch-up. Why is this a problem? Remember that the whole purpose
of recovery was to re-establish the degree of replication, which is only achieved
when transfer is complete.

7.9.6 Last Process to Fail

Assume a replicated computation following an optimistic replication strategy.
As the name implies, availability is the primary concern in this approach, and
so as long as one replica is active the service is not interrupted. Replicas
have some persistent state that survives failures. As replicas start failing, their
persistent state will be made obsolete by the progress of the surviving replicas.
If all fail before anyone of them has the chance to recover, the last replica to fail
has the most up-to-date state. Upon recovery, operation cannot be resumed
before this replica recovers, otherwise the last updates would be lost.

The question is: when a process recovers how can it know that it was the
last process to fail? Let us assume that each replica keeps a version number
that keeps track of the number of changes performed that replica state. If all
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recovering processes compare their version numbers, the one with the highest
version number knows it was the last replica to fail. The problem with ,this
approach is that all replicas need to recover in order to perform the comparison.
It would be more interesting to resume the operation as soon as the last replica
to fail recovers. How to do this?

A solution exists to this problem (Skeen, 1985). Consider that each process
is able to detect the failure of other processes. When process i detects that
some other process j has failed, it adds this information to a local "obituary"
log which is saved in stable storage. The last process to fail is the process that
has registered the death of every other process in its own obituary log.

7.10 SUMMARY AND FURTHER READING

This chapter has discussed the main challenges in achieving correct operation
of a distributed system in the presence of faults. Several basic paradigms were
addressed, such as: failure detection, partitioning, membership and consensus,
agreement and order of message delivery. If these problems are solved, one can
tolerate faults through the use of replication. Replication has several coordi­
nation aspects, which depend on the underlying system model: partition-free
or partitionable; crash or crash-recovery. Resilience and recovery finalized the
paradigms addressed in this chapter.

For further study, a fundamental reference on the problem of failure detection
in asynchronous systems is (Chandra and Toueg, 1996). The QoS aspects of fail­
ure detectors are discussed further in (Verissimo and Raynal, 2000; Chen et al.,
2000). For partitionable programming models, see (Amir et aI., 1993a; Cos­
quer et aI., 1996; Babaoglu et aI., 2000). Partitioning in synchronous systems is
further discussed in Real- Time Communication Models, Chapter 13. More in­
formation on consensus can be found in (Fischer et aI., 1985; Turek and Shasha,
1992). The problem of group membership has been addressed under several sys­
tem models, namely (Birman and Joseph, 1987; Cristian, 1988; Kopetz et aI.,
1989b; Jahanian and MoranJr, 1992), or (Amir et aI., 1992; Golding, 1992; Ro­
drigues et al., 1993).

There is also a huge amount of literature on fault-tolerant communica­
tions, in particular, on fault-tolerant group communication, such as (Amir
et aI., 1993a; Birman and Joseph, 1987; Birman et aI., 1991a; Chang and
Maxemchuck, 1984; Dolev et aI., 1993), or (Kaashoek and Tanenbaum, 1991;
Ladin et aI., 1992; Moser et aI., 1995; Rodrigues et aI., 1996; Rodrigues et aI.,
1998a). Deeper study on fault-tolerant communication paradigms can be found
in (Hadzilacos and Toueg, 1994).

About the state-machine approach, the excellent tutorial of Schneider is rec­
ommended (Schneider, 1993) and for other examples of active and semi-active
replication see (Barrett et aI., 1990; Chereque et aI., 1992). Examples of the
primary-backup approach are given in (Speirs and Barrett, 1989; Budhiraja
et aI., 1993). Improved tree and grid quorum voting algorithms are discussed
in (Kumar and Cheung, 1991). Multidimensional voting techniques have also
been studied as alternative representations for quorum sets (Ahamad and Am-
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mar, 1991). For dynamic variants of grid algorithms, see (Paris and Sloope,
1992), which allows the grid to be re-organized based on reachability infor­
mation. Concerning checkpointing, see (Speirs and Barrett, 1989; Kim and
You, 1990; Wang and Fuchs, 1992; Silva and Silva, 1992), or (Elnozahy and
Zwaenepoel, 1992a; Alvisi and Marzullo, 1993; Alvisi et aI., 1999) for further
study. A portable checkpoint protocol implementation tool, based on MPI, is
described in (Neves and Fuchs, 1998). An excellent and comprehensive survey
can be found in (Elnozahyet aI., 1999).
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8 MODELS OF DISTRIBUTED

FAULT-TOLERANT COMPUTING

This chapter illustrates how the paradigms discussed in the previous chap­
ter can be applied and combined to achieve fault tolerance in an application­
oriented way. The chapter starts by introducing classes of fault-tolerant systems
that make different assumptions about the system properties, from arbitrary to
crash and from asynchronous to synchronous. Then, it discusses strategies for
the several approaches to building a fault-tolerant architecture. The main mod­
els for building fault-tolerant systems are then presented: remote operations,
event services and transactions.

8.1 CLASSES OF FAILURE SEMANTICS

We have discussed in Chapter 6 that failures can be classified according to
many different criteria. We have seen in Chapter 7 that the solution for a given
problem, for instance distributed agreement, strongly depends on the class of
failures the system is subjected to. In this chapter we consider the four main
broad classes of failure semantics (or failure modes): arbitrary, crash, omissive,
and crash-recovery. More refined classes may be derived from the former to
satisfy particular assumption requirements.

8.1.1 Arbitrary Failures or No Assumptions

If you build a system under the assumption that components can fail in an
arbitrary manner, you are walking on the safe side of the road. Of course, you
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still have to forecast how many failures can occur, in order to determine how
much redundancy to use. Likewise, some environmental and/or infrastructural
assumptions are still likely to be made, such as drift of clocks, for example.
Nevertheless, the arbitrary assumption approach strongly reduces the chances
of unexpected failures, because the coverage of the general system tends to
one. Unfortunately, a safer road is also a longer road. Just recall the high
number of nodes, messages and rounds required to solve Byzantine agreement
(see Tolerating A rbitrary Faults in Chapter 7).

On the other hand, assuming arbitrary failures leads to architectures with
the lowest performance/price ratio. Then, when should we choose this model?
To start with, when failures can be catastrophic, and this usually means when
human lives or huge amounts of money may be at stake. The highest possible
coverage is desired for these systems. Secondly, when the system will be under
the threat of malicious attacks. The intruder may manipulate some compo­
nents in an unpredictable way, attempting to defeat the systems defenses. The
arbitrary failure mode implies that rather than trying to guess the intruder's
moves, the system is prepared to tolerate any type of behavior.

8.1.2 Fail-Silence or Crash

On the other extreme of the spectrum, the fail-silence mode, often called crash
mode, assumes that a component works perfectly until the moment when it
suddenly dies, or crashes. It does nothing, good or bad, after crashing. This
is a widely used failure semantics, specially applicable to components such as
processes or processors, which tend to fail in this way. Note that this does
not mean that erroneous events cannot happen internally to the component
before it crashes. It only means that we expect the internal erroneous behavior
associated with the fault never to become visible at the component interface(s).
For instance, the address space of a process may be corrupted in an arbitrary
manner just before a crash due to an address violation exception; it still looks
like a crash if the process does not produce any erroneous output.

The fail-silence assumption simplifies the design of fault-tolerant protocols
(see Fault- Tolerant Communication in Chapter 7), but should be used with
care. Many designers are tempted to postulate that off-the-shelf components
are fail-silent, just because they do look as if they were (most of the times).
However, experiments have shown that the coverage of this assumption is not
very high. In consequence, the system architect should not expect too much
from the dependability of systems built to this assumption, unless specific fault­
prevention measures are embedded in the design of the system components
(e.g., self-checking, wrapping). The level of sophistication of these measures
depends of the desired coverage: from hardware (e.g., parity checks, watchdogs)
to programming (e.g., systematic validation of types, bounds, message fields,
etc.).
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8.1.3 Weak Fail-Silence or Omissive

The fail-silence assumption is a bit too strong since it does not consider fre­
quent failures in the omissive class, such as omissions or timing, which are ex­
tremely common for certain components in distributed systems, and certainly
unavoidable in simplex (non-replicated) networks. The weak fail-silence mode
establishes the following behavior for a component: (a) it is correct, or else
fails by crashing; (b) 'correct' is a non-ambiguous specification of controlled
omissive failures. For instance, a weak fail-silent network component specifica­
tion could be: "during a reference interval, it does at most k omission failures
or else it crashes". This could be read as: "components fail by crashing, but
while alive they may give up to k successive omissions", which happens to be
very appropriate to describe the behavior of most networking components of a
distributed system.

Techniques to tolerate omissive faults are easy to implement, and in conse­
quence, it is little more complex to design weak fail-silent systems than it is
to design their pure fail-silent counterparts. However, the coverage of properly
chosen weak fail-silence assumptions is bound to be higher, for the same sys­
tem complexity. Many practical systems assume a mixture of fail-silent and
weak fail-silent components. Generalizing to less benign failures, whenever a
component exhibits a definable failure mode that is lesser than arbitrary, we
say it is a fail-controlled component.

8.1.4 Crash-Recovery

Most systems assume that components recover sooner or later. With some no­
table exceptions (such as probes sent to remote locations of the solar system),
one can repair or replace failed components. Even in spatial vehicles, some
components can reset and recover, such as in the Mars Rover story (see Re­
source Conflicts and Priority Inversion in Chapter 12). The difference between
the crash and the crash-recovery modes is that in the first model, the recov­
ering component has no memory of its past existence and has to start anew,
whereas in the crash-recovery model the recovering process preserves some of
its old state (e.g., up to the last checkpoint made).

Algorithms for the crash (no-recovery) model are concerned with keeping the
consistency of processes that remain alive and rely on state-transfer mechanisms
to re-integrate recovering components. Algorithms for the crash-recovery model
extend consistency requirements to failed processes. Thus, the later tend to
require the use of the "uniform" versions of distributed algorithms (e.g., uniform
atomic broadcast or uniform consensus, see Consistency in Chapter 2).

8.1.5 Synchronous and Asynchronous Models

Timing assumptions are extremely important in a distributed system because
they are directly related with the problem of accurate failure detection. With
this regard, distributed systems have been classified into synchronous or asyn­
chronous systems, depending on whether or not known bounds on processing,
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communication delays and clock rate of drift exist (see Sections 3.3 and 3.4 in
Chapter 3).

The main issue concerning the choice of model with regard to fault toler­
ance is coverage. Designers frequently postulate a synchrony model (e.g., fully
synchronous) and then go about making their design, focusing on the failure
assumptions and algorithms to handle them. Very often, the design fails not
because some severe fault occurred or too many faults took place, but simply
because the synchrony assumptions of the model were violated and that caused
the algorithm to misbehave (e.g., misuse of timeouts in the fully asynchronous
model, which is in essence time-free; or neglecting timing failures, in the fully
synchronous model). Partial synchrony models are in between the former two,
trying to take the best of both worlds (see Between Synchronism and Asyn­
chronism in Chapter 13). They seem to have an instrument that neither of the
others have: they assume timing failures in the model. This allows to integrate
the synchrony and failure models, making possible a searnless design for fault
tolerance.

8.2 BASIC FAULT TOLERANCE FRAMEWORKS

Fault tolerance frameworks provide the grO'tl'llds for the architect to start the
construction of a fault-tolerant system. This section discusses the several vec­
tors along which the architectural work on distributed system fault tolerance
may develop. Namely: hardware FT; software-based hardware FT; software
FT; communication. In the course of the discussion, it will naturally estab­
lish pointers between the paradigms discussed in the previous chapter, and the
models to be discussed further ahead.

8.2.1 Hardware Fault Tolerance

The aim of hardware fault tolerance is to tolerate hardware faults using hard­
ware mechanisms. It usually consists of having low-level mechanisms to detect
and recover or mask errors. The simplest one is self-checking, which we intro­
duced earlier in this part in Figure 6.7a. Examples of self-checking mechanisms
that can be implemented in an efficient way by hardware are parity bits, verifi­
cation of assertions, checking ranges of memory addresses, etc. When a compo­
nent is detected to be failed it is stopped. In result, either the system is halted
or the system has enough redundancy to continue operating. One approach is
to keep a set of spares aside, and enhance the system with a new component, the
supervisor, which performs a switchover from the failed component to a spare,
in an automatic manner. When the spare is only started after the failure of the
original component is detected, this is called "cold standby", "hot standby"
if otherwise. When the technique is applied to stateless components, the cold
standby can provide service as soon as it is started. For stateful components,
the standby must first "catch-up" with the state of the failed component at the
moment of the failure, the takeover process, which may entail a glitch in the
provision of service.
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A natural evolution of the previous approach consists in having two or more
component replicas operating in parallel. For instance, if three replicas are used,
and their results compared, the unit that compares the results can mask a single
error without any service interruption (when the results differ, the majority is
assumed to be right). This type of architecture, which we have illustrated earlier
in Figure 6.7b, is called Triple-Modular-Redundancy, or simply TMR, and in
this context the comparison unit is called a voter. Voting is usually performed
at the bit level, which also means that the replicated components operate in
lock-step. The TMR architecture can be trivially extended to tolerate more
faults by increasing the number of replicas (N-Modular Redundancy, or simply
NMR).

In a distributed systems context, hardware fault tolerance today should
rather be seen as a means to construct fail-controlled components, in other
words, components that are prevented from producing certain classes of fail­
ures, and then to use these improved components to achieve more efficient
fault-tolerant systems.

8.2.2 Software-Based Hardware Fault Tolerance

Software-based fault tolerance aims at tolerating hardware faults using soft­
ware techniques. Recall that it is the basis of modular FT, which underpins
the main paradigms of distributed fault tolerance. In consequence, it is not
surprising that all paradigms discussed in the previous chapter are pertinent
to this framework. The fault-tolerant computing models that we are going to
address in this chapter do an intensive use of software-based fault tolerance.
The main players are software modules, whose number and location in several
sites of the system depends not from construction constraints, but from the
dependability goals to be achieved.

As we studied in Chapter 7 (see Sections 7.6 and 7.7), a great deal of the re­
dundancy management policies for software-based fault tolerance inherit basic
concepts of hardware fault tolerance, duly generalized, expanded and adapted.
Detecting that a component failed and stopping its operation can also be done
remotely in distributed systems (see Section 7.1). One possible way to detect
a failure is to test the component periodically: this may not prevent the failed
component from producing erroneous results, but it limits the duration of the
abnormal behavior.

Another solution is to force all component outputs through a filter able to as­
sess the correctness of the produced results: if an incorrect output is detected
the component is halted. Spare components and replicas can be adequately
placed in the system to recover from errors. Secondary spares may be called
into operation when the primary fails. Replicas may operate in parallel, in what
is called active replication. Besides providing glitch-free operation in terms of
availability with regard to crash failures, if replicas diverge this means that an
error occurred. A dual configuration may work as a self-checking (albeit dis­
tributed) component, whereas a triple or more can provide continuity of service
with regard to value failures. When components exhibit fail-silent behavior and
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there is a need for sparing resources, computation may be based on a primary
replica, whereas the backups will be in a warm standby state, lagging the state
of the replica. This is passive replication, and the lag is bounded by having the
passive replicas be updated from time to time with the state of the primary.

From what was said in the last section, it is evident that software-based and
hardware-based fault tolerance are not incompatible design frameworks. As
studied in the previous chapter, distributed algorithms that tolerate arbitrary
faults are expensive in both resources and time. For efficiency reasons, the
use of hardware components with enforced controlled failure modes is often
advisable, as a means for providing an infrastructure where protocols resilient
to more benign failures can be used.

8.2.3 Software Fault Tolerance

Software fault tolerance aims at tolerating software faults. It is worth to dis­
tinguish three types of software faults:

• Faults due to particular sequences of events that are difficult to reproduce
(the Heisenbugs). This type of faults can be tolerated by executing the same
code more than once in the same or in different machines.

• Those design faults that may lead all replicas to fail in exactly the same way.
These faults can only be tolerated by using design diversity. Naturally, the
redundancy can be applied in the time or space dimensions, Le., different
versions of the same program can be executed sequentially on the same
machine or in parallel on different machines.

• Faults that are specific to some peculiar hardware or configuration parameter
(e.g., O.S.). This type of faults can be tolerated by executing the same
program on different machines/environments. This case is not very common
since it only has advantages if the software just does environment-specific
errors.

Extensive bibliography has been published on the subject of software fault
tolerance since the pioneering works described in (Randell, 1975; Chen and
Avizienis, 1978). See for example in (Kim and You, 1990; Issarny, 1993; Xu
et aI., 1995), or the survey in (Lyu, 1995).

8.2.4 Fault- Tolerant Communication

Communication is so specific of distributed systems that it prefigures a frame­
work of its own. Several techniques assist the design of fault-tolerant communi­
cation networks, as we saw in Section 7.5. Their choice depends on the answer
to the following question: What are the classes of failures of communication
network components? This is akin to establishing the failure mode assump­
tions, and leads to the selection of the type of redundancy: space, time, or
value.

Assertive errors can be detected using value redundancy, in the form of
message consistency checks, such as CRCs or signatures. Corrupted messages
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can then be dropped, transforming an assertive fault into an omission fault. If
enough redundancy is provided, the errors can be not only detected but also
corrected: the combination with time redundancy, by repetition, recovers or
masks most errors. Some semantic errors require· space redundancy in order
to be masked, namely because they can be made before the insertion of the
consistency check.

Omissive errors are extremely common and they form the bulk of the body
of research in FT communication. Timing errors are mainly addressed through
three schools of thought: the one that seeks at preventing their visibility at
system level, normally related with hard real-time systems design; the one that
attempts at recovering from or masking them, sometimes with application help,
akin to mission-critical systems design; and the one that gets rid of them, by
assuming that the system is time-free, related with asynchronous systems design
(see Real- Time Communication in Chapter 12 for the former two). Omission
errors are classically addressed by time redundancy. Space redundancy by full
replication is only used when either the glitch associated to recovery or the
bandwidth overhead generated are not desired.

Finally, some network components can crash permanently. This may occur
at the interface between the node and the medium (for instance, a malfunc­
tioning Ethernet card) or at the medium itself (a broken cable, a broken re­
peater, etc). The effect of a component crash on the overall network heavily
depends on the topology of the network, technology used, medium access pro­
tocol, location of the error, etc. It may disconnect a node, a partition, or the
complete network. As for omissions, the chosen policy depends on the desired
quality of service: full redundancy by duplication or n-plication of all network
components; or medium-only redundancy, either by reconfiguring or replicated
medium components.

8.3 FAULT TOLERANCE STRATEGIES

There are several factors affecting the choice of strategy to design a fault­
tolerant system, such as: classes of failures (Le., aggressiveness of environment);
cost of failure (Le., limits to the assumed risk); performance/price ratio; avail­
able technology (i.e., limits on the FT constructs available). We line up be­
low the strategies we feel as most important. Once a strategy defined, design
should progress along the guidelines suggested by the several fault-tolerant
design frameworks just presented. Strategic issues are: redundancy policies
between fault prevention and fault tolerance; types of faults tolerated (Le.,
hardware or software faults); level of service provided (i.e., glitch-free or recov­
erable operation). We are going to discuss the main strategic issues concerned
with fault tolerance in distributed systems: fault tolerance vs. fault avoidance;
tolerance of design faults; perfect non-stop operation; reconfigurable operation;
recoverable (fail-fast) operation; fail safe vs. fail operational.
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8.3.1 Fault Tolerance versus Fault A voidance

Fault avoidance, in its facets of fault prevention and fault removal, is an impor­
tant part of resilient system design, aiming at amplifying component reliability.
Given the complementary nature of fault tolerance (FT) and fault avoidance
(FA), how much emphasis should be put on each in relative terms? Is it better
to use highly reliable (but also highly expensive) components? Or should we
use several copies of less reliable components and pay the overhead of complex
fault-tolerant protocols?

The good mix of FT and FA has to do with two issues: the number, and
the severity of faults. In terms of the number, the answer lies basically on the
expected length of the mission versus the expected reliability of the components
used, for a given amount of redundancy. For a given reliability, the number of
spares should not go beyond the point of diminishing returns, and this dictates
the balance. The issue is also relevant when space, power-consumption or
performance reasons discourage the use of large amounts of replication.

However, the touchstone of the FT/FA balance lies in the nature of faults,
vis-a-vis the efficiency of the associated replica consistency protocols. We have
seen in Chapter 7 how costly protocols tolerating arbitrary faults can be, with
regard to protocols tolerating omissive or even certain kinds of assertive faults.
Based on the quality of service to be provided by the system, and on a pre­
liminary elaboration of failure mode assumptions about the environment and
infrastructure, the architect should lay down her strategy, starting with the
definition of the architecture and the choice of components. Then, the evalua­
tion of the coverage of assumptions may dictate successive iterations through
this process until a balance between coverage and effectiveness is obtained. A
cost-effective approach has been to rely on Commercial Off-The-Shelf (COTS)
components. Very often, COTS do not offer the desired level of confidence in
their behavior. In such a case, fault tolerance may recursively be applied at
sub-system level, enhancing those COTS components in order that a controlled
failure mode is obtained of the final ensemble, with high enough coverage. This
recursive use of fault tolerance to build the component effectively classifies as
fault prevention at the interface of the component, when seen at the outer
system level.

8.3.2 Tolerating Design Faults

Most of the design faults in mature systems, software or hardware, are tran­
sient faults. As such, many fault-tolerant systems that use replication or time
redundancy (repetition or re-execution) become tolerant of design faults, since
subtle design faults tend to be activated only in some scenarios which are hard
to reproduce. This is a valid strategy for all but highly-critical systems. In this
case, one has to rely on design diversity which is naturally extremely expensive.
In the limit, the architect will point to the development of N code versions, each
produced by a different team, which will execute in as many distinct hardware
platforms, in active replication. Note that it is usually harder to build a sys-

Exhibit 2026 Page 260



MODELS OF DISTRIBUTED FAULT-TOLERANT COMPUTING 243

tem using diverse components, because of problems such as conversion between
different machine representations of equivalent values.

8.3.3 Perfect Non-stop Operation?

Is there such thing as perfect non-stop operation? This notion is in the eye
of the beholder, that is, the service user, and so a careful answer will be "in
principle, yes" .

The ideal fault-tolerant system masks all errors in such a way that the user
is never aware of their effect. Note that the masking approach is expensive, and
is eligible when the cost of fault tolerance is negligible compared to the cost of
service interruption. It is thus the strategy for life- or money-critical systems,
such as flight control or air traffic control, on the safety and availability facets,
respectively. Fault tolerance is something like virtual memory: it requires
better hardware and slows down the execution a bit, but it is hard to live
without it.

Network omissions and some software Heisenbugs can be masked using time
redundancy. The most straightforward approach to mask crash failures is to
use active replication, for example under the diffusion or event-based model,
which we address in Section 8.5. It should be noted that in some cases even
backward recovery is adequate, if the recovery glitch is short enough to go
unnoticed. Sometimes when we use the Web, our network connection is so slow
that we wouldn't notice the server crashing and recovering.

In partitionable or pure asynchronous systems, perfect non-stop operation is
not achievable unless in some very specific cases where the application semantics
imposes little consistency requirements (recall the FLP impossibility result!).
Thus, if non-stop operation is required it is necessary to invest on redundant
network architectures (that minimize the probability of partition) and time­
controlled environments (to ensure the required synchrony).

8.~.4 Reconfigurable Operation

Active replication is expensive and as such many services resort to cheaper
redundancy management schemes, based on error recovery instead of error
masking. This alternative approach can be characterized by the existence of a
visible glitch. The underlying strategy, which we may call reconfigurable oper­
ation, is normally addressed at availability-oriented services, such as transac­
tional databases, web servers, etc., normally accessed through remote operation
primitives, such as studied in Section 8.4.

Several techniques may be used, and the typical replication management
schemes fall in the semi-active and passive classes (see Section 7.6). These
techniques imply an omissive failure mode, and are normally used to handle
crash failures of components. !he failure of a component triggers a reconfigu­
ration procedure that automatically replaces the failed component by a correct
component. During reconfiguration the service may be temporarily unavailable
or suffer some performance degradation, whose duration depends on the policy
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used. For example, the take-over of a passive backup when the primary fails
produces a glitch composed of the detection and the reconfiguration latencies.
Reconfigurable operation is very complex in asynchronous systems, because it
is impossible to have accurate failure detection and one risks to have multiple
components playing the role of "primary", if the adequate algorithms are not
used (see Section 7.7).

8.3.5 Recoverable Operation

Consider that a component sometimes crashes but recovers after some time. A
fault-tolerant design can be obtained under these circumstances, if a set of pre­
conditions hold. Firstly, the duration of recovery must be known and bounded,
and short enough for the application's needs. Secondly, the crash must not
give rise to incorrect computations. This may achieved through several tech­
niques, amongst which we name checkpointing into stable storage and logging
executions past the last checkpoint, as studied in Section 7.9. In distributed
computations, NVRAM may provide the support for logging last moment state
and achieving consistency of recoverable remote operations (see Section 8.4).
Recoverable exactly-once operation can be achieved with atomic transactions,
which we address in Section 8.6.

This strategy concerns applications where at the cost of a noticeable tem­
porary service outage, the least amount of redundancy is used. Architectures
have evolved in order to grant a reduced recovery latency, in what are also
called fail-fast systems. The strategy also serves long-running applications,
such as scientific computations, where availability or reliability concerns are
not as demanding as in interactive applications. However, the duration of the
computation is such that the probability of a failure jeopardizing the whole
computation requires attention.

8.3.6 Fail-Safe or Fail-Operational

In certain situations, it is necessary to provide for an emergency action to be
performed in case the redundancy within the system is no longer enough (spare
,exhaustion) or is not adequate for the faults occurring (assumption coverage).
In this case, rather than letting the system evolve to a potentially incorrect situ­
ation, which in critical systems may entail a catastrophic failure, it is preferable
to shut the system down at once, what is called a fail-safe behavior.

This strategy, important to safety-critical systems, may complement other
strategies concerning the regular behavior of the system. As a variation, instead
of halting at once certain applications may require that the system performs
an orderly shut down routine before halting. In this case, it is required that no
matter the situation that causes the need for shut down, the system have the
capability of performing the orderly shut down routine, as part of its nature of
being a fail-safe system.

In special cases, the fail-safe nature of a system is not obtained by stopping
it at all. Indeed, in some cases, that would be a catastrophic outcome, as in the
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case of a flying airplane with engine problems. In these situations, there must
be contingency plans for the system to be put in a mode where it continues
operating despite having failed the provision of its intended service. This should
be achieved at least until a safe stop is possible. We call these systems fail­
operational.

8.4 FAULT-TOLERANT REMOTE OPERATIONS

Remote Procedure Calls (RPCs) or Remote Method Invocations (RMIs) are a
well established method of providing a reasonable degree of distribution trans­
parency to the application programmer. Basically, RPCs are based on a client­
server architecture. Communication is supported by a simple message exchange
protocol that operates in a request-reply fashion. In this section we discuss the
fault-tolerant issues related with the implementation of fault-tolerant RPC ser­
vices.

8.4.1 Reliability of Remote Operations

An RPC architecture has mainly three macroscopic components, namely: the
client, the network and the server. Of course, each of these components can
fail. To illustrate the main issues regarding fault tolerance in RPC systems we
first assume a relatively benign (and common) failure mode: clients and servers
can fail by crashing and the network can crash and/or lose messages.

What is desired of the server is that it executes requests once, and only
once. This desirable semantics is called exactly-once, but we will see that
it is unreachable in the case of remote operations with RPC in the presence
of failures, and we will have to accept weaker semantics. The several failure
scenarios and possible remedies are illustrated in Figure 8.1. We will refer to
them in the discussion below.

r~\ DISCONNECTED
~'[)~

rePI~~
~ ,b::::::::::::::::::::::::.-------
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(2)

(b)

Figure 8.1. Remote Operations: (a) Network Failures; (b) Remedies

Network omissions may affect either the request sent from the client to
the server or the reply sent back by the server to the client (Figures 8.1.1a
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and 8.1.2a). These two faults are indistinguishable from the client point of
view; in any case, what it can observe is the absence of the desired reply.
Well, this protocol was too simple, and thus we consider enhancing it, in the
way shown in Figures 8.1.lb and 8.1.2b: the request is acknowledged, and this
remedies the first problem, since the client can timeout on the acknowledgment
and repeat the request; for the second problem, the client periodically enquires
the server with an "are you alive?" heartbeat message, which the server replies
with the RPC result if it had already finished.

So far so good, but the server may fail. See Figures 8.1.lc and 8.1.2c,
depicting two distinct situations: the server fails before executing the service
in the former, and after executing it in the latter. Although the enhanced
protocol detects server failure through the aya heartbeat, the two situations
are indistinguishable from the client viewpoint. Worse, it may even happen
that the request arrives, it is executed, the ack is lost and then the server
fails: the client still thinks that the request did not make it to the server. In
short, the client may identify similar syndromes for different failures. Is this a
problem?

Intuitively, if the client does not have a result, it makes sense for it to re-issue
the request until a reply is received or until some pre-defined number of retries
has been exceeded. However, this uncertainty leaves the client in suspense:
"Did my Pizza order succeed or should I buy a Burger?". The problem of
having the client re-issue the request is that the server may receive several
copies of it. In the case of the Pizza order, the client may not be willing to pay
for four Pizzas when she did order just one (no pizza is that good), so discarding
the duplicate requests to ensure only one execution seems like a wise decision.

However, enforcing this behavior introduces a non-negligible amount of over­
head. Requests must be stamped with some unique identifier and the server
must store the identification of previous requests. Additionally, the server must
also store the replies it has produced in the past, in order to send them back
to the clients when requested. Even if clients make their requests one at a time
(which means that the server just has to keep the reply to the last request from
each client) this may still be a significant overhead when a server has many
clients.

An additional problem will definitely drive us away from exactly-once se­
mantics: all that was said above works while the server does not fail. Consider
a simple server, with no stable storage: it is amnesic after it recovers, and thus
it cannot know which requests it has executed (recall that the client does not
know either). There are only two alternatives: either execute request repeti­
tions, or do nothing.

If by all means re-execution must be avoided, then a recovering server cannot
execute request repetitions. This discipline combined with duplicate elimina­
tion happens to be the strongest semantics that can be achieved with RPC
remote operations, called at-most-once: it does what its name implies, and
thus, maybe nothing ends-up being executed, or worse, something is partially
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executed. Some researchers further distinguish the first situation, calling it
zero-or-once behavior.

(1 )
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Figure 8.1 (continued)
Remote Operations: (a) Server Failures; (b) Logging to Non-Volatile Store

The effectiveness of at-most-once semantics can be enhanced by making
servers state-full. If they preserve their state in persistent memory, they can
reconstruct it upon recovery before resuming service. This has severe perfor­
mance impact, and thus a practical implementation consists in using NVRAM1

rather than disk, just to keep request identifiers and their execution state. This
reduces the window of ambiguity concerning request execution state.

Yes, we said reduce, not cancel. See Figures 8.1.1d and 8.1.2d, depicting two
very distinct situations taking place after the server executes the request: it
fails before logging it in the former, and after logging it but before informing
the client, in the latter. We leave it to the reader to understand that there is
no way out of this ambiguity, except by using another paradigm.

State-full servers and at-most-once behavior not only consume more re­
sources but may also exhibit poor performance. This overhead should be
avoided whenever there is no significant disadvantage in executing the same
request more than once. For instance, consider a server that provides clients
with the value of the room temperature. Executing the same request several
times has no negative effect other than consuming resources on the server ma­
chine.

Requests that can be executed several times and produce equivalent results
are said to be idempotent, and the corresponding semantics is called at-Ieast­
once. This is so convenient that is often worthwhile designing the application
in such a way that all requests have this property. In this case, servers are

1Non-Volatile RAM.

Exhibit 2026 Page 265



248 DISTRIBUTED SYSTEMS FOR SYSTEM ARCHITECTS

much simpler and faster, since they are not required to keep any state about
past requests. In consequence, they have no state to lose when they crash. For
this reason, they are said to be stateless. Stateless servers can recover after a
crash and continue providing service as if nothing happened.

Client failure is less critical from the point of view of data consistency, but
still deserves some comments. If a client fails, this is only a problem if the
server has given the client the exclusive right to use some resources, in the
course of execution of a previous request. In a fault-tolerant system, to assign
resources to a component that may fail and whose failure cannot be reliably
detected is generally a bad idea. A more conservative approach is to lease (Gray
and Cheriton, 1989) the resources for some fixed amount of time and require
to client to re-acquire the resources periodically. Another downside of having
clients whose crash goes unnoticed is that their last wishes may keep the servers
busy computing responses that nobody will ever read. These computations are
called orphans, and the problem may be solved with a facility called orphan
detection (Panzieri and Shrivastava, 1988).

8.4.2 Building Reliable Client-Server Systems

So far we have discussed the issue of data consistency and operation correctness
in Remote Procedure Call systems, in the presence of failures. We often want·
more than that: we also want availability. If modular fault tolerance is used, the
issues concerned with building a reliable client-server system are incremental
to the principles of building basic C-S systems discussed in Client-Server with
RPC, Chapter 3.

It is time to apply the replication techniques that we have studied in pre­
vious chapters. A very intuitive way of offering high availability in an RPC
system consists in constructing a fault-tolerant server using the replicated state­
machine approach. The client broadcasts the reply to the group of servers using
a primitive that enforces agreement and order. An atomic multicast protocol
is particularly well suited for the job. All replicas process the request and send
back a reply to client. According to the types of faults being tolerated, the
client can pick the first reply or wait for a majority of similar results. The
servers can be themselves clients of other servers. Since the server is replicated,
different copies of the same request will be produced which need to be combined
in a single correct request (again, using voting) before being processed by the
servers.

The actively replicated state-machine approach is the most intuitive way of
building reliable client-server systems using replicated RPCs. However, it is
not the only one. All the other schemes discussed before, namely the semi­
active and passive replication schemes can be used (and have been used) to
build fault-tolerant C-S servers.
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8.5 FAULT-TOLERANT EVENT SERVICES

Sometimes, it is more convenient to express an application in terms of event
notifications than through request-reply interactions. As we have seen in Part
I of this book, event-based systems, like their RPC based counterparts, have
three main components: the event producers, or publishers, the communication
media, or channel, and the event consumer or subscriber. Two variants of the
architecture can be found: volatile channel systems (where the messages can be
consumed as they cross the channel and discarded afterwards) and persistent
channel systems (where the messages are kept by the system until consumed
by their recipients). Fault-tolerant techniques can be applied to both systems.

8.5.1 Volatile Channel Architectures

In event based systems, when a notification is produced it is usually with the
aim of being processed by some other component interested in the event. The
processing associated with the event may be rather simple, such as storing a
sensor reading in a log, or complex, such as shutting down the system in a
graceful manner after an alarm has been fired. In such systems, fault tolerance
means: (i) ensuring that the desired event is produced; (ii) that it is reliably
delivered to the consumer; and (iii) ensuring that there is a consumer ready to
process the event.

+++
III ack
ii;
ii;
;;;

i!fr.-:-7"":~~--:-:-:-J
--t--t---'-----.,..;.";--j::::::::::::::::::::::::::::

if--+---'---r----;::::::::::::::::::::::::::::
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II ~-;-;-;-;~~
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----------------
-----, .--
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Figure 8.2. Replicated Channel: (a) No Failures; (b) Exactly-once Execution

In order to ensure that the event is produced, replication should be used.
For instance, if a sensor reading must be available, one has to replicate the
sensor. In order to ensure that the event is processed, one can also replicate
the subscribers. As before, to keep the replicas consistent, the replicated­
state machine approach can be used. Naturally, this requires the use of group
communication in order to ensure the all events are delivered in total order to all
consumers. In terms of failure semantics, note that it is quite straightforward
to achieve exactly-once behavior with the state machine model fed by reliable
group communication. Observe Figure 8.2: in the no-failure situation we have
all three replicas execute the request; three replicas survive 2 failures and deliver
the service exactly-once, as shown.
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8.5.2 Persistent Channel Architectures

Persistent channel publisher-subscriber architectures are similar in many re­
spects to volatile channel architectures. However, since the channel stores the
events for later retrieval, the architecture does not require the publishers and
the subscribers to be active at the same time in order to exchange notifications.
On the other hand, the channel is much more than just a communication media,
it is a storage media that needs to preserve the messages in a reliable way.

Figure 8.3. Fault-Tolerant Publisher-Subscriber

One way to describe the persistent channel abstraction is to consider the
channel as a fault-tolerant server that can be accessed by publishers and sub­
scribers. In some sense, the "channel server" implements some form of stable
storage that is fault-tolerant, namely to crashes. The channel can be imple­
mented as a replicated set of servers, using techniques described earlier. This
can be done either through non-volatile storage, or through replicated volatile
storage (see Recovery in this Chapter). Figure 8.3 exemplifies the principle: the
message channel is at least capable of recoverable operation without losing data.
Since it is replicated, it can also achieve non-stop operation given a sufficient
degree of replication. Publishers and subscribers can access the server using
one or several IPC primitives (message passing, RPC, group communication).

8.6 TRANSACTIONS

This section describes a number of relevant issues regarding the implementation
of transactional systems. The concept of concurrent transaction has been in­
troduced in Part I of the book (see Concurrency and Atomicity in Chapter 2).
We begin by summarizing the most important notions, before we delve into the
implementation decisions concerning transactional systems.

Most applications have sequences of operations that are only useful ifexe­
cuted as a whole. Consider for example a bank transfer that withdraws money
from one account and deposits the same amount in another account. If this
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sequence is interrupted by some reason (for instance, a failure) someone will
lose money (either the money is withdrawn and never deposited or vice-versa).
At the application level, recovery can be greatly simplified if some underly­
ing mechanism guarantees the atomicity of failure of a sequence of operations.
Atomic transactions are such indivisible sequences of operations: either all op­
erations in the sequence are successfully executed, or none is executed. We say
that a transaction commits its results when it successfully terminates; otherwise
we say that the transaction aborts. Transactional systems must have some way
to delay the effects of the transaction until the transaction commits (Le., they
keep the intermediate results in a log, also called the redo log). Alternatively,
operations may be allowed to take effect immediately, as long as the system
has a way to undo these effects, in the case the transaction aborts (what is
called an undo log). Note that if another transaction reads a value produced
by a transaction that is later aborted, what is called a dirty read, the second
transaction must abort too (it has "seen" results that, for all practical effects,
"did not happen"!).

Clearly, transactions are easier to implement in systems where the semantics
of the operations are simple and well understood. For instance, if all operations
are reads and writes in data items, it is almost straightforward to construct
a redo log (containing the new data values) and/or an undo log (containing
the old data values). In fact, databases are the ideal field of application of
transactions. In systems that perform external actions, also called real ac­
tions, enforcing transactional semantics is much more complex and sometimes
impossible.

The atomicity and indivisibility of the transactions also have another facet:
concurrency in the access to the same data by different transactions should be
"hidden" from the transaction programmer. This preserves the intuitive notion
that the transaction is indivisible and executes as a single atomic instruction.
Also, it is well known that concurrent programming is by no means a trivial
task, which is handled automatically by the transactional system. Getting
concurrency control out of the way of the application programmer is by itself an
effective way of improving code reliability and guaranteeing data consistency.
Finally, the effects of the transactions should not be lost, or in other words,
must be durable. Of course, how much durable depends on the applications
needs. There is a range of progressively more fault-tolerant approaches: the
results are stored on disk; on redundant disk arrays; or in several different disks
on different locations.

Collectively, the "Atomicity, Consistency, Isolation, and Durability" prop­
erties are also known as the ACID properties of transactions.

8.6.1 Transaction System Architecture

Transaction systems are generally composed of three components, namely: the
Transaction Manager, the Scheduler and the Data Manager. A generic block
diagram of a transaction system architecture is depicted in Figure 8.4, showing
the interaction between the several modules.
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Transaction ~
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Figure 8.4. Transaction System Architecture

procedure Deposit (inout Account a, in Amount v)
begin

Amount x;

x = a.read ();
x = x + v;
a.write (x);

end Add;

Figure 8.5. Deposit transaction

The Transaction Manager ensures the interface with the application code,
adding transaction identifiers to the application requests and forwarding them
to the appropriate node. The Scheduler is responsible for concurrency control;
it executes, rejects or delays the operations to enforce concurrency control. The
Data Manager is itself composed of two sub-components: the Recovery Man­
ager and the Cache Manager. The Recovery Manager is responsible for the
resilience of the data accessed by the transaction; it manages the physical me­
dia, the recovery logs and applies the recovery procedures. The Cache Manager
is responsible for moving data between the stable storage and the faster volatile
memory.

8.6.2 Concurrent Transactions

Those that have experience with concurrent programming are quite familiar
with the problems that can occur when several threads of control concurrently
access a shared data structure. Transactions are no exception and also require
the use of some form of concurrency control.

Let us give a couple of simple examples of problems that may occur if concur­
rency control is not enforced. Consider the transaction of Figure 8.5 that adds
a certain amount to a given account. Consider now that the target account
"my_account" has an initial value of zero and that two concurrent transactions
Tl and T2 execute deposit (my_account, 10) and deposit (my_account, 20)
respectively. If transactions are executed one at a time, the final result will be
30 in my_account has you would probably expect. However, we want transac­
tions to execute concurrently, but unfortunately, the interleaving of instructions
illustrated by Figure 8.6 results in a final value of 20, as if only one of the trans­
actions was executed. This particular problem is known as the "lost update"
problem.
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Tl xl =my_account.read (); II reads 0
T2 x2 = my_account.read (); II reads 0
Tl xl = xl + 10; II xl = 10
T2 x2 = xl + 20; II x2 = 20
Tl my_account.write (xl); II my_account = 10
Tl my_account.write (x2); II my_account = 20

Figure 8.6. Lost Update Problem

Other similar problems can occur. Consider the same example. A transac­
tion withdraws a given amount from one account and deposits the same amount
in another account. If another transaction tries to compute the sum of both
accounts, and accesses the first account after the withdrawal and the second ac­
count before the deposit has been made it will find that some money is missing.
This problem is known as the inconsistent retrieval problem.

Enough for the problems! Something needs to be done to prevent these
scenarios from occurring, and this something is called concurrency control.
The goal should be to allow as much concurrency as possible. Of course, we
could prevent the concurrent execution of transactions by using a global lock on
all data (for instance, on the complete database). The resulting performance
of the system would be worse than deplorable. Typically, many transactions
access unrelated data items and can be executed concurrently without any
type of restrictions. What is needed is a mechanism that allows transactions
to execute concurrently as long as they produce the same results has if they
were executed in (some) serial order. This correctness criterion is known as
serializability.

A huge body of theory exists on concurrency control for databases and, in
particular, on enforcing serializability. Here we will just address one of the
simplest (and popular) mechanisms: locking. Locking uses two types of locks:
shared locks and exclusive locks. Whenever a transaction accesses a data item
it locks that item: if the transaction accesses the item for reading it acquires
a shared lock (other read locks can be granted); if the transaction accesses the
item for writing it acquires an exclusive lock (no one else can grab this item).
Only shared locks are compatible. If at least one of the locks is an exclusive lock
the locks are incompatible, as illustrated in Table 8.1. If the item is already
locked by another transaction, the transaction must check first if the locks are
compatible; if they are not compatible, the transaction must wait until the
previous lock is released in order to acquire its lock.

Locks cannot be released as soon as the operation completes; this would be
almost as good as not having locks at all (just try to add an acquire immediately
before and a release immediately after every item access on Figure 8.6). It has
been shown that if a transaction does not release any lock before acquiring all
the locks it needs, serializability can be enforced. This is known as two-phase
locking (2PL), because the locks are first acquired (this phase is also called the
growing phase) and later released (this phase is called the shrinking phase).
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Table 8.1. Lock Compatibility

Lock Types

shared
exclusive

Shared

I
compatible

incompatible

Exclusive

incompatible
incompatible

We have already noted that if a result from a transaction that later aborts
is seen by another transaction, that second transaction also needs to abort.
This rule can easily be applied in a recursive manner. If a third transaction
sees an intermediate result from the second transaction, the third transaction
will have to abort too. This phenomenon is known as cascading aborts or
sometimes, by the more visual name of domino effect. Cascading aborts are
not a positive feature, since they require work to be undone and this means poor
resource usage. A way to prevent cascading aborts is to prevent intermediate
results from being visible before the transaction terminates. When locking is
used, this can be achieved simply by holding all the locks until the transaction
commits or aborts; this restriction to the two-phase locking rule is so popular
that deserves a name of its own: strict two-phase locking.

Locking is simple but not exempt from disadvantages. One of the problems
with locking is that it may cause deadlocks. Consider for example a transac­
tion Tl that transfers an amount from account A to account B and another
transaction T2 that transfer an amount from account B to account A. IfTl
locks the account A and T2 locks the account B, none of the transactions will
be able to make progress. Many different strategies can be used to prevent,
avoid and detect deadlocks (see Coordination in Chapter 2). The most simple
strategy is to define a maximum waiting time for a lock to be released. If this
timeout expires a deadlock is assumed and the transaction is aborted.

8.6.3 Distributed Transactions

Distributed transactions are simply transactions that access items on different
nodes of a distributed system. Distributed transactions can be built using the
mechanisms developed for centralized transactions. A generic block diagram of
a distributed transaction system architecture is depicted in Figure 8.7, showing
the interaction between all TM modules, which competitively launch transac­
tions, and local Scheduler modules, which must ensure that the distributed
transaction is scheduled correctly at every site.

In fact, a distributed transaction can be described as a collection of several
sub-transactions, each individual sub-transaction being initiated on each node
visited by the distributed transaction. The local transactional mechanisms on
each site will guarantee that each individual sub-transaction either executes
completely or aborts. Since locking is a local concurrency control mechanism,
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Le., locks are associated with individual data items, it can be used to enforce
serializability of distributed transactions.

. . . . . .
Ischeduler I-- ~--Gatabaa

Transaction
request. ~

Transaction ~
request ~

----... ~,....--+ Ischeduler I __~-- Database

Transaction ~

request. ~_ Ischedulerl __~__~

Figure 8.7. Distributed Transaction System Architecture

Distributed transactions have nevertheless a unique feature that is not present
in centralized transactions. All the participating nodes need to agree on the
outcome of the transaction. Thus, nodes participating in a distributed trans­
action need to execute an atomic commitment protocol. These protocols have
been discussed earlier (see Recovery in Chapter 7).

8.6.4 Transactions and Replicated Data

Replication can improve the availability of data and can also improve the system
performance, by putting data closer (in terms of communication delays) to its
user. A transaction system that supports access to replicated data should
support replication transparency. This means that the several replicas of the
data should look just like a single copy to their users. This is called one­
copy equivalence and the corresponding correctness criteria is called one-copy
serializability.

One intuitive way of making several replicas look like a single copy is to keep
all the replicas with exactly the same value. In other words, when one replica
is updated, all replicas are updated. Since all the replicas always have the same
value, when a read is performed you just need to read a single replica (this is
also called the write-all, read-one approach). At this point, you probably recall
the state machine of Section 7.6.2 as a general technique to maintain consistent
replicas. We will now ask you to put aside the state-machine approach for some
moments, and to think of how to maintain replica using exclusively transac­
tional mechanisms. In terms of transactions, updating all the replicas means
including the writes to different replicas within the same transaction. Thanks
to the all-or-nothing property of transactions, this will ensure that either all
replicas are updated (if the transaction commits) or none is (the transaction is
aborted).
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In a system where replicas never fail, the write-all approach works fine, at
least from a consistency point of view. Of course, the performance of this
approach is highly dependent on the number of replicas and on the communi­
cation efficiency. However, if a replica fails the system comes to a halt, since
not all replicas can be updated. Fortunately, we have already presented solu­
tions for this problem (see Replication Management in Partitionable Networks
in Chapter 7). Let us just recall some of the paradigms that can be applied
to this problem: weighted voting, coteries, structural representations and dy­
namic voting. These solutions will preserve one-copy serializability even in the
presence of partitions. Note that write quorums should always intersect among
themselves and with read-quorums. This means that conflicting operations al­
ways intersect in at least one replica. This replica can detect the conflict using
a local concurrency-control mechanism (such as locking).

Suppose now that you are in an environment where network partitions (real
or virtual) are very unlikely. In such cases, when a replica does not respond this
means that the replica is crashed. Voting can be too penalizing, since in order
to increase the availability of writes it reduces the performance of reads (which
can no longer be done from a single replica). Why not just try to keep all
available copies updated and forget about the crashed replicas? This approach
is known as write-ali-available copies approach. Of course, one has to be careful
with recovering replicas because these replicas are out-of-date. Thus, recovered
replicas cannot be read until they are brought up-to-date.

Does the available replicas approach really work? The answer is yes if special
care is taken in dealing with crashes. Consider the following scenario. There are
two data items A and B with different initial values, say A == 50 and B == 100.
Consider that a transaction TI sets B :== A and a transaction T2 sets A :== B.
The final outcome depends on the order by which TI and T2 are serialized. If TI

is serialized before T2 both A and B will be set to 50. If T2 is serialized before
T I both A and B will be set to 100. In any case, the final value of A should be
the same of B. Suppose now that there are two copies of each account, denoted
AI, A2 , B I and B 2 and that Al and B 2 fail during the concurrent execution of
TI and T2 • Now, let us look at what happens if transactions execute as follows:

1. Transaction T I reads Al

2. Transaction T 2 reads B2

3. Al and B 2 crash

4. Transaction T I updates just B I because B 2 has crashed

5. Transaction T2 updates just A2 because Al has crashed

The final amount of the remaining replicas will be different (in fact, this
execution swaps the values of A and B)! What went wrong? The problem is
that the transactions were operating with different sets of available replicas:
TI did read Al but T2 only wrote A2 . In order for available replicas to work
properly, crashes need to be serialized with data accesses. This should not come
as a surprise since we have already discussed the concept on virtual synchrony
(see Consistency in Chapter 7) and the relevance of ordering failure information
with regard to application messages.
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This brings us back to the state-machine approach. Are transactions and
state machines incompatible methods of managing replicated data? Not really.
Actually, they can be seen as complementary methods. Transactions guarantee
the atomicity of sequences of operations; this is an aspect that is not addressed
by the state-machine approach. Replicated state machines put emphasis on
replica consistency; although transactional mechanisms can also address this
issue they can be improved with the lessons learned from building state ma­
chines.

Imagine that two concurrent transactions and T1 and T2 try to lock a repli­
cated data item. Unless special care is taken, the lock requests may arrive in
different orders to the two replicas. Thus, one replica can be locked by T1 and
the other by T2 . This would result in deadlock. The replicated state-machine
solution to this problem would be to use an atomic multicast primitive, ensuring
that both replicas receive the same lock request in the same order, preventing
the deadlock from occurring. Recent work has shown that the use of ordered
group communication primitives can improve the performance of replicated
database management systems (Pedone et aI., 1998; Kemme et aI., 1999).

8.6.5 Building Transactional Systems

Systems where the users submit transactions and wait for the outcome of
the transaction are called On-Line Transaction Processing systems (OLTP for
short). Transactional systems can be used to build OLTP applications but also
to build applications that operate off line or in batch mode.

An example of a batch transaction processing system is the system that
processes check payments. Checks issued by bank A and deposited in bank B
during the day are sent in batch to the issuer at the end of the day (usually,
through some third party clearinghouse to avoid the need for each bank to
contact every other bank directly). Bank A will then debit the appropriate
accounts and/or register exceptions such as lack of funds. Again, the results of
the transactions are sent back in batch to bank A (usually, one or more days
after) which in turn will credit the accounts where the checks were deposited.

On the other hand, some operations performed with a debit card on an
automatic teller machine require OLTP support. Operations such as reading
the account balance require the execution of a distribution transaction that,
ultimately, needs to contact the computing system of the issuing bank. Building
OLTP systems raises many challenges which are not limited to fault tolerance.
These systems are usually very large in terms of users and volume of data and
must be able to withstand a very large number of transactions per second.
This requires a clever design in terms of operating system constructs (how
the transactional system is decomposed into processes and threads), memory
management (the hierarchy from disk to CPU cache) and communications (to
ensure that enough bandwidth is available). Obviously, these systems also pose
enormous challenges in terms of security but these issues will be dealt with in
Part IV of this book.
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Disaster recovery is often considered as a must-do item in a large enterprise
information system. The idea is to have contingency plans, should a major
disaster occur that would severely degrade the operational capability of the
information system, namely its public presence, mainly through the OLTP op­
erations. However, there is a misunderstanding: what disasters are we talking
about- informatics2 disasters (computer blowing-up, disks failing, backups
lost)? Or real disasters (major floods, massive power outages, large-scale fires,
earthquakes)?

Many companies devote (expensive) contingency plans to both kinds. How­
ever, it seems that the first ones can and should be avoided by technical, run­
time measures. Fault tolerance is failure avoidance. Tolerance of faults that
can yield catastrophic effects is disaster avoidance. Distributed fault toleraulce
is just about the paradigm to handle serious faults that can have a geograph­
ical dependency. In reality, it only makes sense to make contingency plans for
the events that cannot be avoided, such as environmental disasters with global
proportions. Very often, it is better to prevent than to remedy.

8.7 SUMMARY AND FURTHER READING

This chapter discussed how to apply the paradigms presented in Chapter 7
to build fault-tolerant systems. It departs from a systematization of failure
classes and how these impact the approaches to fault tolerance, both in terms
of techniques chosen and in terms of the service provided. Detailed evaluation of
failure assumption coverage of hardware and software components can be found
in (Iyer and Joshi, 1985; Madeira and Silva, 1994; Arlat et aI., 1990; Carreira
et aI., 1998; Maxion and Olszewski, 1998). See (Kopetz et aI., 1989a; Powell,
1991) for systems built to the strong and weak fail-silence assumptions.

Then, we have focused on three of the major constructs to build reliable dis­
tributed applications: remote operations, event based systems and transaction
systems. We discussed the application of the paradigms discussed eralier to
build these types of systems. Additional readings in reliable remote invocation
systems can be found in (Cooper, 1985; Liskov et aI., 1987; Panzieri and Shri­
vastava, 1988; Rodrigues et aI., 1994). Fault-tolerant event-channels have been
presented in (Oki et aI., 1993; Felber et aI., 1997). Naturally, there is a huge
bibliography on transactions, from which two books emerge as fundamental
references: (Bernstein et aI., 1987; Gray and Reuter, 1993).

2 "Informatics" is a word of european origin getting increased acceptance in the community
of computer users and developers. It is used to denote in general terms all that is related
with use of computers and networks in information processing, access and manipulation.
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PLATFORMS

This chapter gives some examples of dependable systems and platforms. When­
ever possible, paradigms and models previously studied are pointed to the
reader. The overview of each system is concise and the selection is subjec­
tive but tries to illustrate each class of approaches using concrete case studies
that we find representative of that class. Namely, we discuss: distributed fault­
tolerant systems, transactional systems, cluster architectures, and how to make
legacy systems dependable. In each section, we will mention several examples
in a summarized form, and then will describe one or two the most relevant in
detail. Table 9.1 at the end of the chapter gives a few VRL pointers to where
information about most of these systems can be found.

9.1 DISTRIBUTED FAULT-TOLERANT SYSTEMS

9.1.1 Tandem and Stratus

Tandem (now belonging to Compaq) and Stratus are two companies that have
specialized in building fault-tolerant systems. Solutions offered by these com­
panies include a combination of hardware and software fault tolerance that offer
reliability and continuous availability. The products that achieve higher degree
of reliability use proprietary hardware and software (including specialized op­
erating systems). We will focus on some of their most innovative architectures.

Stratus was the first company to introduce a processor architecture that used
duplication at the level of CPU, I/O and communication hardware. In this
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architecture, a CPU server with crash failure semantics is obtained using a pair
of microprocessors that execute in lock-step and whose results are compared. To
offer availability, CPU servers are replicated using the state-machine approach;
in this way a pair of CPU servers may mask the crash of single server. At the
memory level, a two-bit detection/ one-bit correction coding is used to build a
memory unit with crash failure semantics.

Tandem developed a set of products for high-reliability transaction process­
ing called the Guardian 90 system. The set includes a single operating system
that offers transactions in the kernel and supports the parallel execution of pro­
cess pairs on duplicated hardware. In the process pair approach, each active
process has a backup process associated to it. All actions of the active process
are checkpointed to the backup such that, in the case of failure of the active,
the backup can continue the operation. In terms of hardware, the Guardian
executes on top of a fully duplicated architecture. The hardware is configured
to ensure the existence of two disjoint paths from terminals to servers. Today,
Tandem offers a wide range of solutions combining the process-pair approach
and hardware redundancy (lock-stepped microprocessors).

The pressure for competitive solutions even if offering lower levels of reli­
ability lead many companies to explore an alternative track, applying their
expertise to enhance commercial off-the-shelf components (COTS), using mod­
ular (software-based) fault tolerance techniques. Target markets are high­
reliability, high-availability versions of servers based on commercial operating
system "standards" such as Unix and WindowsNT /2K.

9.1.2 The Isis family

Isis (Birman and van Renesse, 1994) started as a research project at Cornell
University that focused on the use of process groups to build reliable distributed
applications. The core of the Isis system was an innovative set of group member­
ship and reliable communication primitives, enforcing different ordering prop­
erties including causal and totally ordered multicast. Isis was also the first
system to introduce the important concept of virtual synchrony. The main ser­
vices offered by ISIS were: ISIS Toolkit (basic protocols); Reliable Distributed
Objects (object interface to groups); Distributed News (a publisher-subscriber
facility); Reliable NFS (non-stop NFS); Distributed Resource Manager (load
balancing and coarse-grain distributed parallelism). The architecture of ISIS is
depicted in Figure 9.1.

Isis was later supported commercially by a startup company called Isis Dis­
tributed Systems (IDS), later acquired by Stratus. The combination of a profes­
sional support and a competitive pricing to universities helped to disseminate
the project results and made Isis a reference system in the area of group com­
munication.

The launch of IDS did not terminate the research on group communication
at Cornell. Different generations of protocols that improved previous work have
been developed. The design of Isis involved with the experience gained with the
usage of the system in large-scale "real-life" scenarios. Eventually, the system
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Figure 9.1. ISIS Architecture

was completely redesigned, leading to the development of Horus (van Renesse
et aI., 1996), a system with the same aims but with a completely different ar­
chitecture, with emphasis on modularity, protocol composition, operation in
partitionable environments, and security. The latest generation of the system
is called Ensemble, a group communication system written in the ML program­
ming language with a number of innovative features, such as support for formal
validation of protocols (Hayden, 1998).

9.1.3 Arjuna

Arjuna (Shrivastava et aI., 1991) is a distributed fault-tolerant system that in­
tegrates several soft'vtare-based fault tolerance techniques. Originally developed
at the University of Newcastle upon Tyne (UK), it is now commercially sup­
ported by Arjuna Solutions Ltd. Arjuna is a distributed platform, consisting of
libraries, stub compilers, run-time mechanisms and services (protocols, servers)
that support the development of fault-tolerant applications using programming
languages such as C++ and Java. The project was started in 1987 and the first
public release of Arjuna code was distributed in 1991.

Maybe the most important fault-tolerant mechanism supported by Arjuna is
nested transactions. Using Arjuna, the programmer can build objects that are
persistent and distributed. Object methods are invoked using remote procedure
calls in the context of transactions. The system manages the state of the object,
bringing the object to main memory (what is called activating the object) and
later saving its new state when the transaction commits. Concurrency control
is managed by Arjuna to ensure that the execution of concurrent transactions is
serializable. Today, the system includes a CORBA Object Transaction Service.
Object replication was also added to Arjuna, allowing different replicas of a
given object to be maintained in different servers. To simplify the management
of replica consistency, a multicast communication layer and group management
services were added to the system.
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Arjuna is an example of a research project that was able to incorporate ideas
from previous transactional systems, such as Argus (Liskov, 1985) and Avalon
(Eppinger and Spector, 1991), and group oriented systems such as Isis (Birman
and Joseph, 1987) in a comprehensive prototype that reached the maturity to
migrate to the commercial arena.

9.1.4 Delta-4

The Delta-4 (Powell, 1991) architecture was aimed at the development of fault­
tolerant distributed systems, offering a set of support services implemented
using a group-oriented approach. An object-oriented application support envi­
ronment provides separation of concerns: it allows building applications with
incremental levels of fault tolerance, while the non-functional properties con­
cerned with achieving dependability are secured transparently from the appli­
cations programmer. Black-box commercial applications can also be rendered
fault-tolerant without change, through special transformer objects (wrappers).
The architecture was designed and developed by a consortium of several Euro­
pean corporations, institutes and universities, under the ESPRIT research pro­
gramme. Delta-4 stands for "Definition and Design of an Open Dependable
Distributed Architecture". To the authors' knowledge, Delta-4 was one of the
first architectures to integrate, at all levels, modular and distributed fault tol­
erance concepts, namely relying on the emerging group communication and
membership technologies. An excellent perspective on Delta-4 is offered by
Powell (Powell, 1994).

A Delta-4 system consists of a number of computers (possibly heterogeneous)
connected by a reliable communications system. The application programs
consist of software components distributed among the system's nodes. A given
component may be replicated, its copies being executed on different machines.
Each machine consists of a hosting node and a Network Attachment Controller
(NAC). NACs are dedicated communication boards where a reliable communi­
cation system is executed, supporting reliable multicast communication among
computational entities. The NACs are the single hardware component spe­
cific of the Delta-4 architecture: collectively, they implement a reliable group
communication abstraction under a fail-silent assumption. On top of it, host­
ing nodes may have any behavior, even fail-uncontrolled (Le., arbitrary). The
combination of the hosting node with the NAC forms a network node. The Lo­
cal Executives l (LEXs) of the host machines can also be heterogeneous. Each
NAC runs a real-time kernel as the execution environment. The host may run
any operating system, e.g., UNIX. It may also run a real-time O.S. in the real
time version of Delta-4, the XPA (see Dynamic Systems in Chapter 14).

The modular architecture of Delta-4 is represented in Figure 9.2. The dis­
tributed software running on the nodes can be classified as follows:

1 Name given to the local execution environment, usually an operating system or a real-time
kernel.
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MESSAGE

Figure 9.2. Delta-4 Architecture

• The communications software executed on the NACs; the communications
system of the architecture is named the Multicast Communication System,
offering multi-point reliable connections.

• The system administration software, managing the computational elements
(including the communication system), which is executed partially in the
host computer and partially in the NAC.

• The Applications Support Environment, named DELTASE, that supports
the development of distributed applications. DELTASE was designed ac­
cording to emergent standards such as the ODP model2 (ODP, 1987) and
closely followed the work of other organizations involved in the standardiza­
tion process, namely the ANSA (ANSA, 1987) architecture3 .

• The user software, composed of several components, potentially developed
using different programming languages, that interact through Remote Ser­
vice Requests.

The Multicast Communications System (MCS) was designed using an OS14

like layered architecture. Delta4-XPA used a simplified high-performance ver­
sion (see Dynamic Systems in Chapter 14). The main layers of the communi­
cation architecture are:

• Membership and Multicast local-area communication.

• Reliable Transport Service, offering reliable multi-point connections.

• Replication Management, a key element for implementing the fault tolerance
techniques of the architecture. This level coordinates the communication
among replicated access points, guaranteeing the message delivered to all
addressed points and filtering duplicated messages. This component can
execute error detection and error compensation protocols when needed.

2 Open Distributed Processing.
3 Advanced Networked Systems Architecture.
40pen Systems Interconnection.
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• Session and Presentation multi-point services.

The services of the Multicast Communication System are used to support
three fault tolerance techniques: Active replication; Passive replication; Semi­
Active replication.

Active replication as implemented by MCS supports both fail-silent and fail­
uncontrolled hosts, by providing non-voting or voting algorithms, respectively.
Failure detection is also passed on to System Administration (for example, for
cloning the replica in another node). In the second technique, passive replica­
tion, a component may be replicated but only one copy remains active, periodi­
cally sending a snapshot of its own state to the remaining copies. This approach
can only be applied to fail-silent components. Finally, semi-active replication
leaves the initiative to a designated replica, the leader, which processes input
messages, generates replies, and instructs the followers to execute the same
steps in the same order, without producing outputs. This technique allows fast
error recovery, and accommodates some non-determinism not allowed by active
replication.

In the Delta-4 architecture, the complexity of all fault-tolerant mechanisms is
hidden from the application programmer by the support environment DELTASE,
in what constituted a pioneering object-oriented transparently fault-tolerant
middleware, featuring characteristics such as the provision of incremental and
configurable degrees of replication and fault resilience. On the other hand,
these techniques are complemented by a powerful system administration com­
ponent, responsible for diagnosing system faults and triggering the appropriate
fault treatment operations, such as automatic reconfiguration, cloning, and so
forth.

9.1.5 The Information Bus

The Information Bus (TIB) (Oki et aI., 1993) is a commercial product developed
by Teknekron Sotfware Systems, Inc, a company co-founded by Dale Skeen.
It consists of a distributed environment for the development of fault-tolerant
applications based on the publisher-subscriber model.

The Information Bus supports an event-driven communication model, where
publishers inject data objects on the bus tagged with a subject string. Sub­
scribers register the subjects they are interested in with the system, and sub­
sequently receive a copy of data objects associated with these subjects. Events
can be published with different quality-of-service requirements. The weaker
semantics is reliable delivery, which guarantees that messages are delivered
only once in FIFO order as long as the network does not suffers a partition
and both the publisher and the subscriber do not crash. The stronger guaran­
teed delivery ensures delivery regardless of failures; in this case the message is
logged in non-volatile storage before being sent and retransmitted until a reply
is received.

The Information Bus also offers an RPC mechanism with at-most-once se­
mantics in the presence of failures. To establish the binding between the client
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and the server, the underlying publisher-subscriber service is used. The client
publishes an inquiry searching for servers. The relevant servers publish an
advertisement with address information to allow the client to establish a point­
to-point connection.

In order to integrate legacy applications with the Information Bus, one has
to build dedicated software modules, called adapters, which are able to con­
vert the data objects used in the Bus into representations understood by those
applications. Today, Teknekron Software Systems is called TIBCO and offers
different products that exploit the concept of reliable publish-subscribe inter­
action.

9.2 TRANSACTIONAL SYSTEMS

9.2.1 eIeS

The Customer Information Control System (CICS), was originally developed by
IBM in 1968 to support the interaction of terminals with mainframe computers.
In the original CICS model, each terminal sends input messages to a server on
the mainframe, which invokes a program to process the message. The server
was actually a single operating system process in whose address space both
CICS and all its applications execute. Making CICS execute in user space,
along with that fact that CICS makes no use of peculiar operating system
features, made the system extremely portable. On the other hand, executing
all services in the same address space also made the system very vulnerable to
software faults in any of the involved applications.

CICS integrates a wide range of services, including presentation services
(that take care of data-format translations), session services (that allows pro­
grams to open, and later close, channels to other programs or devices), stor­
age services (with different semantics), file services, transaction management,
journal management, recovery management (for transaction abort, shutdown,
restart and recovery from tape), program management (linking, loading and
execution), thread management, authorization and authentication.

Distributed transaction processing is also supported by CICS since transac­
tion submitted to a given CICS system can be routed to another CICS system or
invoke remote operations on other systems. The interacting CICS systems can
be located on the same machine or in different machines. The reason for hav­
ing more than one CICS in the same machine is to improve fault-containment.
In this case, remote invocations are performed efficiently using shared mem­
ory. If CICS are on different machines, communication can be performed using
IBM's transactional communication service LU6.2 which offers several qualities
of service, the stronger of which supports ACID properties across distributed
transactions.
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9.2.2 Encina

Encina is an OLTP System originally built by Transarc, a company founded
in 1989 by Alfred Spector. Encina is an evolution of previous work by Spector
at Carnegie Mellon University on transactional systems (Eppinger and Spector,
1991) and was designed in the framework of the Distributed Computing En­
vironment (DCE) of the Open Software Foundation. Encina uses other DCE
services as building blocks, such as the DCE RPC for implementing remote pro­
cedure calls and Kerberos for authentication and encryption. Transarc became
a subsidiary of IBM in 1994, and Encina is now part of the IBM's transaction
processing products, TXSeries[tm], that also includes CICS and the distributed
file system AFS.

To simplify the task of building distributed applications with transactional
semantics using the C programming language, Encina includes a specialized
programming environment called Transactional-C. This environment includes
a number of extensions to the C programming language, such as directives to
express concurrency (supported in run-time by a thread package) allowing C
programmers to launch concurrent sub-transactions in an elegant way. With
the advent of the OMG architecture, Encina was enhanced to support the
development of C++ servers and C++ or Java clients running on the Orbix
object request broker.

9.3 CLUSTER ARCHITECTURES

Cluster is a designation that has been used to describe a family of systems
with quite diverse characteristics. In general terms, a cluster is an integrated
collection of machines that, to some extent, can be managed has a whole and,
sometimes, can be interfaced by the external nodes as a single machine. Clus­
ters have been built to offer high processing power (as a cheap alternative to
expensive specialized multiprocessor architectures) or to offer higher availabil­
ity, usually by providing a convenient way to restart a service on a different
cluster node when a crash occurs. Most hardware and software vendors have
cluster products, including Sun, Compac, HP, IBM, Microsoft, etc. A complete
book can be written and has been written just about clusters (Pfister, 1998) so
we will concentrate on features related to fault tolerance.

The key aspect of clusters, from the availability point-of-view, is that they are
made of several processing nodes and several storage nodes interconnected by
some high speed link. It is possible to have each storage node statically assigned
to each processing node. However, storage nodes are frequently shared among
processing nodes, either by making the storage nodes interface the network
or by using dual-port disks. These alternatives are illustrated in Figure 9.3.
Alternative (c) has received enormous interest recently, given the need for huge
amounts of storage to be offered in a shared and distributed way. Products
emerging under this technology are called Storage Area Networks (SAN).

It is possible to develop applications that make use of the existing redun­
dancy to run in non-stop or reconfigurable modes. Examples of the latter are

Exhibit 2026 Page 284



DEPENDABLE SYSTEMS AND PLATFORMS 267
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(a) (b) (c)

Figure 9.3. Storage in Cluster Architectures: (a) Non-shared; (b) Local sharing; (c)

Network sharing

fault-tolerant versions of file systems, such as the Highly Available NFS (HA­
NFS) (Bhide et aI., 1991), or of database servers such as the ones available
from vendors such as Oracle or Informix. However, clusters are often used in
recoverable mode. Nodes are used for load sharing, individually running "stan­
dard" applications unaware of cluster facilities. The cluster software allows
the application to be launched on any computing node. If a crash occurs, the
application goes down, and cluster management facilities are able to launch the
application in another node of the cluster.

Services provided by the cluster software and hardware usually include fail­
ure detection services, reliable communication services, event managers that are
able to provide each member of the cluster with information about the cluster
status (for instance, to distribute load information), configuration managers
(where administrators may specify dependencies among applications and loca­
tion policies), load balancing managers, fail-over managers, etc. With regard to
failure detection it is worth noting that the use of dedicated networks to connect
the cluster nodes increases the synchrony of the system and, therefore, renders
failure detection easier. Nevertheless, most clusters that use a primary-backup
approach exploit specific hardware interfaces, like the SCSI challenge-defense
protocol, to ensure that two nodes cannot simultaneously consider themselves
as primary.

9.4 MAKING LEGACY SYSTEMS DEPENDABLE

Most of the examples described in the previous sections used the approach of
constructing a fault-tolerant system or toolkit from scratch. Clearly, this is
the most effective approach to optimize the efficiency of solutions. However,
the system architect is often challenged with the task of making legacy systems
dependable without re-implementing existing applications (a task that may not
be feasible because of timing or cost constraints).
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One of the most successful approaches to deal with legacy systems consists in
building a new interface to the legacy component. The new interface is respon­
sible for intercepting inputs and outputs and manipulating these interactions
to make them suitable to implement a given fault-tolerant strategy. Consider
for instance that you have a legacy system that behaves like a state machine. In
this case, the system can be made fault-tolerant by replicating the component.
This means that the interface must intercept the inputs and multicast them in
total order to all replicas. The outputs must also be intercepted and combined
in a single output. The approach is illustrated in Figure 9.4.

(a)

(b)

(c)

-0

Figure 9.4. Interfacing Legacy Systems

This approach has been used successfully in many systems under different
names, such as transformers in the Delta-4 project, adapters in the TIB ap­
proach, wrappers (Birman, 1996), or metaobjects (Fabre et aI., 1995). There are
many ways of implementing wrappers. If the component interacts with other
components through message passing, it obviously becomes easier to make the
interposition. If all interactions are performed using some standard RPC-like
mechanism it becomes even simpler. For instance, CORBA (OMG, 1997a)
components can be wrapped by generic components using dynamic invoca­
tion facilities (Felber et aI., 1996). Otherwise some other operating system or
language-specific techniques may be used. For instance, specialized dynami­
cally linked libraries may be provided to intercept all the system calls made by
a given component. Alternatively, specialized language libraries or specialized
language run-time environments can be provided to support the component
execution.

It should be noted that sometimes it is feasible to alter the way the clients
interact with the servers. In such case fault-tolerant features can be embedded
in the client protocol, for instance enhancing clients with the ability to multicast
requests to a group of servers. At first glance this may look a bit intrusive but
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there is a general tendency to make legacy applications available through new
interfaces, such as web browsers, even when no fault tolerance concerns are
involved. Additionally, technologies such as Jini (Waldo, 1999) allow the client
to dynamically download the right interface from the name server.

On the other hand, if it is not affordable to change clients, the wrapper
must make the fault-tolerant features fully transparent for the client proto­
col. Consider for instance the case where the client uses the UDP protocol to
communicate with the server and that a primary-backup scheme is selected to
make the server fault-tolerant. In case of failure of the primary, the backup
must be able to impersonate the IP address of the primary such that the client
continues to use exactly the same address as before. Of course, migrating an
TCP connection without disruption requires a bit more work.

9.5 SUMMARY AND FURTHER READING

This chapter has given concrete examples of research and commercial fault­
tolerant systems. The number of systems cited was necessarily small and many
excellent systems were not mentioned. For access to downloadable software or
further reading, Table 9.1 gives a few pointers to information about some of
the systems described in this chapter.

In terms of fault-tolerant systems coming from industry, documentation on
the concepts underlying the Advanced Automation System prototype (Cristian,
1994; Cristian et aI., 1996) and the Parallel Sysplex Cluster (Bowen et aI.,
1997a; Bowen et aI., 1997b) are definitely worth reading. For detailed material
on cluster architectures, see (Pfister, 1998).

Group communication systems have been a field of very reach research. In
addition to the work at Cornell, many other groups have developed long and
solid work on the area. We list some of the most relevant systems: Transis
(Amir et aI., 1993a), Totem (Moser et aI., 1995) and the associated concept of
extended virtual synchrony (Moser et aI., 1994), Psync (Peterson et aI., 1989)
and Consul (Mishra et aI., 1993), NAVTECH (Rodrigues and Verissimo, 1995;
Rodrigues et aI., 1996), Relacs (Babaoglu et aI., 1994) and RMP (Callahan and
Montgomery, 1996).

For further work on object-oriented fault-tolerant middleware, see (Fabre
et aI., 1995). Other relevant systems are Manetho (Elnozahy and Zwaenepoel,
1992b; Elnozahy and Zwaenepoel, 1992a) and Harp (Liskov et aI., 1992). One
of the pioneer works on transaction systems was Argus (Liskov, 1985) devel­
oped at MIT by Barbara Liskov, whose most recent creation is THOR (Liskov
et aI., 1999). Fault-tolerant transactional systems based on coordinated atomic
actions are described in (Xu et aI., 1999).
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Table 9.1. Pointers to Information about Fault Tolerant Systems and Platforms

Class of System

IETF RFCs

OMG
IEEE-IFIP

Message Buses

Group
Communication

Checkpointing

Transactional
systems

Fault-tolerant
Systems

Validation
and
Verification

Tools

Clusters
and
Commercial
Platforms

System

(FT-CORBA)
(Dependab. )

TIBCO
iBus

ISIS
HORUS
Ensemble
Relacs
Transis
Totem
Phoenix
xAMp
Spread

Manetho
Libckpt
Egida

Argus
THOR
Arjuna

Eternal
Electra
Cactus
OGS
Filterfresh

LAAS
Critical
Ballista
ULTRASAN
Orchestra
Kronos
PVS

IBM
TANDEM
STRATUS
Microsoft
Compaq

Pointers

www.rfc-editor.org

www.omg.org
www.dependability.org

www.tibco.com/
www.softwired-inc.com/

www.cs.comell.edu/Info/Projects/ISIS
www.cs.comell.edu/Info/Projects/Horus
www.cs.comell.edu/Info/Projects/Ensemble
www.cs.unibo.it/projects/relacs
www.cs.huji.ac.il/labs/transis
beta.ece.ucsb.edu/totem.html
lsewww.epfl.ch/projets/phoenix
www.navigators.dLfc.ul.pt /
www.spread.org

www.cs.cmu.edu/-mootaz/manetho.html
www.cs.utk.eduj-plank/plank/www/libckpt .html
www.cs.utexas.edu/users/lorenzo/lft.html

www.pmg.lcs.mit.edu
www.pmg.lcs.mit.edu/Thor.html
arjuna.ncl.ac.uk

beta.ece.ucsb.edu/eternal/Eternal.html
www.softwired-inc.com/people/maffeis/electra.html
www.cs.arizona.edu/cactus
lsewww.epfl.ch/OGS
wwwl.bell-Iabs.com/org/11356/

www.laas.fr
www.criticalsoftware.com
www.cs.cmu.edu/-koopman/ballista
www.crhc.uiuc.edu/PERFORM
www.eec~.umi~h.edu/RTCL/projects/orchestra
www-venmag.lmag.(r
pvs.csl.srLcom

www.research.ibm.com
www.tandem.com
www.stratus.com
research.microsoft .com
www.compaq.com/enterprise/highavailability.html
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DEPENDABLE

This chapter takes the next step in our case study: making the VP'63 (Vin­
tagePort'63) Large-Scale Information System dependable. Increased reliance on
computers for day-to-day operation on the one hand, and greater geographical
dispersion of the system on the other, have raised concerns about the impact of
service outages or even severe failures on the business results. In consequence,
part of the study concerns the enhancement of the reliability and availability
of the VP'63 system.

10.1 FIRST STEPS TOWARDS FAULT TOLERANCE

The reader should recall that this is the next step of a project implementing a
strategic plan for the modernization of VP '63, started in Chapter 5, and con­
tinued in the Case-Study chapters of each part of this book. The reader may
wish to review the previous part, in order to get in context with the project.

The development strategy laid out will impose a growing dependence of the
business on the computing infrastructure. The most important facet of the
desired dependability of the services provided by VP'63 is thus availability.
Whilst it is desirable that the system does not fail often (reliability), it should
also exhibit small glitches, remaining operational for a very high percentage of
its life time.

The client-server front-end to the database is already fragmented. This
is a first step at independence of failure, as recalled in Figure ID.la: local
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transactions will not be affected by the failure of servers of the other fragments.
However this is not enough to guarantee overall availability, since operation
related with that fragment stalls.

On the other hand, the publisher-subscriber infrastructure is based on a
single-location server (Lisboa) which, once down, stalls the whole service, as
depicted in Figure IO.lb. This is a severe availability impairment.

The 3-tier DFS-Web architecture has already a few aspects enhancing avail­
ability: RO file or volume replicas are accessible by any client, and so the initial
objective of performance also serves availability, since upon failure of the local
RO copy, the client can fetch a remote one. This may eventually be extended
to replication of RW files or volumes, with a DFS that support this feature.

Public
Data

Network f€Dl
Lisboa 'T

- ~-~m--~

~""~
Publisher

(a) (b)

Figure 10.1. Failure Scenarios: (a) Fragmented DB; (b) Pub-Sub System

10.2 FAULT-TOLERANT CLIENT-SERVER DATABASE

Q.2. 1 What can be done to improve the availability of the database server?

One possible answer is to go for a replicated distributed database server. All
fragments are now replicated in other sites. The team decided to use a level
of replication of n == 2 for the first prototype, since in normal environments,
with a fair maintainability, known statistics show that availabilities in excess
of two nines can be achieved. Since the database is fragmented by enough sites
(see the initial situation in Figure 5.3a), it is not necessary to allocate extra
machines to achieve fault tolerance.

The modular fault tolerance principle is used, cross-allocating fragment repli­
cas to sites containing other fragments, as shown in Figure IO.2a. However, tests
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have shown that the risk of network partitioning is non-negligible in the links
off the main inter-city connections. This can make the replica pairs diverge.

Q.2. 2 What can be done to address partitioning of the database replicas?

If fragments are replicated at least in triplets, the primary-partition consis­
tency criterion can be used, preventing divergence by allowing progress only in
a partition with the majority of replicas.

Q.2. 3 Considering that the DBMS used allowed modular fragmentation and
replication, will there be situations where it makes sense to allocate different
redundancy levels to different fragments?

In the course of this observation, it was also decided to group crucial data
in a main fragment (MF) and replicate it in the main site and all islands,
increasing the level of redundancy of this data. This configuration study will
later be extended to other data.

(a) (b)

Figure 10.2. Fault Tolerance: (a) Client-Server Database; (b) Publisher-Subscriber

10.3 FAULT-TOLERANT DATA DISSEMINATION

Q.2. 4. What can be done to improve the availability of the pub-sub server?

With a simplex server, the initial situation depicted in Figure 5.2b, the whole
dissemination system stops when the server is down. Plus, data may be lost,
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unless there is a transactional interface between publishers and server, and the
latter has persistent storage.

A possible solution is to set up a replicated publisher-subscriber server. This
may also have the benefit of improving the performance of the scheme since
subscribers get in general nearer the information bus materialized by the pub­
lishing server. Figure lO.2b shows the architecture: data are published through
all replicas, subscribers get data from one of them. In fact, the load of dissem­
ination to the subscribers can be distributed by the publishing servers.

10.4 FAULT TOLERANCE OF LOCAL SERVERS

The efforts described so far were aimed at achieving fault tolerance of the
global services, taking advantage of replication at other facilities. This entails
two consequences: (a) undesirable service degradation as seen locally (e.g.,
when clients in an island have to fetch from a remote database copy due to
failure of the local server); (b) unacceptable local execution glitches during
reconfiguration (e.g., in a production process controller).

Two instances of the problem were identified: the main publishing/subscribing
server in Lisboa, and the production control and management server in the main
wine processing facility. The idea is to increase the reliability figures for the re­
lated servers, that is, taking steps to prevent failure of these components. The
team has considered the utilization of either or combinations of highly-available
units and clustered computers. Highly-available units are classic approaches,
with embedded multiprocessors, redundant power supplies and RAID disks.
Clustered computers over a fast LAN offer the advantage of modularity and
use of COTS components, being in turn more complex to manage.

Further Issues

These issues need some refinement now, and the reader was assigned the study
of a few questions that were still left to be solved:

Q.2. 5 Study concrete measures based on highly-available or clustered comput­
ers to achieve "non-stop" operation of the Lisboa pub/sub server.

Q.2. 6 Consider an island DB fragment: study a scheme for doing local repli­
cation of that fragment, for local availability in case of one failure.

Q.2. 7 Study a quorum replication scheme that ensures the continued opera­
tion of the main DB fragment when both Porto and Lisboa are up and connected.

Q.2. 8 Study a replication scheme guaranteeing that a copy of the whole database
exists in Porto. The extra fragment copies: can be read-only; need not be up­
dated as timely as the others.

Q.2. 9 Define and justify the necessary communication semantics (e.g. order­
ing, reliability) between: publishers and publishing server replicas; server and
subscriber groups.
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I want a real-time system where I can log on.
— Alan Burns

Contents

11. REAL-TIME SYSTEMS FOUNDATIONS

12. PARADIGMS FOR REAL-TIME

13. MODELS OF DISTRIBUTED REAL-TIME COMPUTING

14. DISTRIBUTED REAL-TIME SYSTEMS AND PLATFORMS

15. CASE STUDY: VP'63

Overview

Part III, Real-Time, discusses how to ensure that systems are timely, under a number

of circumstances, including faults, overload, uncertainty. It is especially concerned
with real-time in distributed systems. Chapters 11 and 12, Fundamental Concepts
of Real-Time and Paradigms for Real-Time, address the fundamental notions and
misconceptions about real-time, in a distributed context. The main paradigms are

presented, in a comparative manner when applicable, such as synchronism versus

asynchronism, or event- versus time-triggered operation. Chapter 12 further ad-
dresses issues such as: real-time networks, real-time processing, real-time commu-

nication, clock synchronization, and input-output. Chapters 13 and 14, Models of

Distributed Real-Time Computing and Real-Time Systems and Platforms, show how
to achieve timeliness of distributed systems in the several real-time classes— hard,

soft or mission-critical— and models— time-triggered and event-triggered. Chapter
14 gives examples of distributed real-time systems in several settings. Chapter 15
continues the case study, this time about making the VP’63 System timely.
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FOUNDATIONS

This chapter addresses the fundamental concepts concerning real-time, start­
ing with the definition real-time and clarifying a few current misconceptions. It
traces the evolution of real-time computing towards distribution and discusses
its relation with fault-tolerance. Finally, the most relevant architectural ap­
proaches to real-time in networks and distributed systems are introduced, to
be detailed in the subsequent chapters of this part.

11.1 A DEFINITION OF REAL-TIME

Intuitively, real-time systems are systems that deal with time. This probably
means "doing things on time". But what is time anyway? And... which time
exactly? The systems' time? The users' watch time? In fact, one of the
fundamental problems in real-time systems design is how to relate the several
dimensions of time in a distributed system: time amongst the several sites;
time between a site and its users (human and other); time between the system
and the environment; time between a controller and the controlled system.
When thinking about how to address these problems, we face important issues
concerning real-time and distributed systems:

• modeling the interaction between the computer and the real world (an oven
is not a computer);

• maintaining temporal accuracy of measurements (the temperature of the
oven 30 minutes ago may be useless now);

P. Verissimo et al. 
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• accommodating important load versus finite resources (a 10Mbaud real-time
network is useless for 20Mbaud loads);

• recognizing deadlines and urgency (an urgent message to be delivered within
the next 10 milliseconds should not stay at the tail of a long queue of non­
urgent messages);

• tolerating faults (no deadlines were ever met by a crashed RT computer).

When the role of time is misunderstood, a few misconceptions may arise
about what a real-time system is. We will address and clarify the most common
ones, after attempting at defining a real-time system.

For the treatment of the Real-Time Part, it is assumed that the reader is
familiar with most of the distributed systems paradigms discussed in Chapter 2,
and definitely with the material developed in Sections 2.5, 2.6, and 2.7 of that
chapter. We will be using the acronym RT to mean 'real-time' in this part.

11.1.1 What is a Real-Time System?

Let us try and answer this question in a precise way. What dictates the 'real­
time problem' is the need to synchronize our actions with the environment.
The environment has its own pace, and thus we have to make our system
adapt to this pace, and react according to the evolution of the environment.
This proves more difficult than it looks, and justifies real-time as a research area
of its own right. By convention, real-time (with slash) is the keyword chosen
to designate this area. Do not confuse with the abstraction real time, the
(unobservable) universal time reference, the same everywhere in the system,
also called newtonian time, that marks the passage of time (see Times and
Clocks in Chapter 2). We find as examples of real-time systems: oveneontroller;
manufacturing cell; fly-by-wire controller; traffic lights control system; air traffic
control system; multimedia computer game system; command, control and
communication systems.

Real-time System - system whose progression is specified in terms of
timeliness requirements dictated by the environment

This generic definition implies several corollaries that have been used as alter­
native definitions of real-time system. For example, a real-time system is a
system where the correctness of a computation is defined both in terms of the
logical results and the time at which they are provided. On the other hand,
timeliness requires synchrony (see Section 2.6): a real-time system can be seen
as a system that has the capacity of executing actions within pre-specified in­
tervals. In fact, real-time can be seen as the body of principles and techniques
for specifying and building synchronous systems. As a final corollary, a real­
time system is a system that provides at least one real-time service. That is,
although RT and non-RT services may coexist in the same system, one single
RT service is all it takes for requiring the system to have real-time behavior.
Examples of real-time services are: to read a sensor cyclically; to activate a
valve at a precise instant; to reply to a request or deliver a message in bounded
time; or to execute a task within a given interval.

Exhibit 2026 Page 295



REAL-TIME SYSTEMS FOUNDATIONS 279

There are several classes of real-time systems, because the kind of con­
straints put by matching the environment to the timeliness requirements vary.
The existence of the classes is justified by the fact that different architectures
and paradigms address different problems in each class, and it is difficult if not
impossible, to address all of them with a single architecture. In consequence,
real-time system architects are used to distinguishing between:

• hard real-time systems, where timing failures are to be avoided
- example: on-board flight control system (fly-by-wire);

• soft real-time systems, where occasional timing failures are accepted
- example: on-line flight reservation system;

• mission-critical real-time systems, where timing failures should be avoided
and occasional failures are handled as exceptional events
- example: air-traffic control system.

How is timeliness specified in real-time systems'? We learned that timeliness
is essentially about bounding delays. In this part, we are going to see that
this may have several facets. Namely, the real-time systems community often
uses terms with a specific meaning: deadline, liveline, targetline, release time,
slack, laxity, jitter, latency, delay, etc. Whenever it is the case, we will try to
establish the mapping onto corresponding terms in distributed systems.

A distributed real-time system is a particular instance of real-time sys­
tem, with two major characteristics:

• timeliness guarantees have to be provided over a system of sites intercon­
nected by a network- which is harder to do;

• once provided, timeliness guarantees can be associated to other attributes,
such as modularity, geographical separation, failure independence, load bal­
ancing, and others discussed in Chapter 1- which is an additional advan­
tage.

Some issues concerning the architecture and functionality of distributed sys­
tems assume new dimensions under a real-time perspective, which we address
throughout this part:

• time-related aspects of fundamental concepts and paradigms (e.g., synchrony,
time and order across multiple sites);

• models enforcing timeliness (e.g., time-triggered or event-triggered);

• scheduling (e.g., distributed and dynamic);

• communications (e.g., real-time networks and protocols);

• input-output (e.g., multiple sensor and actuator handling);

• dependability (e.g., replicated sensors, actuators and controllers).

A class of systems intimately related with real-time are the embedded
systems, also called application-specific systems, where individual components
have specific tasks or assignments. It is essentially a black-box system, made
on purpose for an application. Embedded systems can be specially made from
scratch, or they can be integrated with modular components such as OEM
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board families, or even from COTS! components such as PC CPU boards
and peripherals. Although some authors consider them so, embedded systems
are not always real-time systems. Nevertheless, they are real-time or at least
interactive for their great majority, and as such a great deal of what is written
about embedded systems concerns real-time.

11.1.2 Misconceptions about Real-Time

Despite the evolution and visibility of real-time (RT) computing over the past
few years, a number of misconceptions about real-time still persist. There is a
very complete compilation of them in (Stankovic, 1988), of which we extract
the main examples:

• RT is ad-hoc design, assembly programming, interrupts, and so forth;

• RT systems are automata, pre-programmed and static;

• RT is about having enough speed, and ever-increasing MIPs and Mbauds
will solve all "performance" problems;

• RT deadlines do not make sense, since they will be missed because failures
occur, messages get lost, software has bugs, etc.

Real-time is currently much more than a collection of clever hardware and
firmware engineering principles. If final system enhancements may benefit from
ad-hoc tuning, the fact is that real-time systems design obeys a systematic that
goes from architecture to programming languages, and algorithms.

The realm of static RT systems represented by PLCs, PID controllers and
similar devices is but one of the facets of today's real-time systems. The "real­
time systems where one can log on" , many of them distributed, have pervaded
the scene of interactive systems, simply because user demand has required more
predictable systems in the time domain.

Many people still equate 'real-time' with 'performance'. However, real-time
is not about performance, but about predictability. It is about "within 100
seconds" and not about "as fast as possible". If all actions are executed within
99 seconds each by system Slow, it performs excellently, though on average
more than 100 times slower than system Fast, which executes most actions
below the second. But we had not asked for that had we? Furthermore, speed
will not solve all problems. The more resources we have, the more we will
spend. The Wintel2 saga is the best example available today. The point is
about scheduling resources correctly so that deadlines are met. If system Fast
executes one thousand actions below one second, and then takes 101 seconds
to execute just one action, it will have failed.

Finally, a word about reliability: all systems fail, so the fact that mea­
sures are taken to secure timeliness specifications in normal operation does not

1 Commercial Off The Shelf.
2 Acronym to denote the folkloric notion that the more powerful Intel PCs become, the more
power-hungry Microsoft software gets.
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exempt the designer from either designing for the worst-case situation, or en­
dowing the system with the necessary mechanisms to tolerate faults when they
happen.

11.1.3 Evolution of Real-Time Computing

A few of the major milestones in the evolution of real-time systems in the
past few years are enumerated in Table 11.1. Real-time in scientific terms
probably started with the exploratory transatlantic navigations in the fifteenth
century, with the combined use of existing knowledge on astronomy, cartogra­
phy, and mechanics. Determining coarse points in the sun's movement, such
as noon, evolved to measuring the minute accurately, around 400 years ago,
followed later by the second, with the appearance and evolution of the chrono­
graph (Boorstin, 1983). More recently atomic clocks, e.g. in the GPS NavStar
navigation system (Parkinson and Gilbert, 1983), yield clock accuracies of the
10-7th of a second.

Real-time in the realm of electronics started with control systems, made of
hard-wired relay or digital systems. Then, early real-time computing systems
appeared, in the form of dedicated computers for fixed-base applications, most
of them military, such as SAGE or Whirlwind (Redmond and Smith, 1980). Op­
erating systems evolved in order to provide support for development of generic
real-time applications.

The advent of microprocessors opened the way for small and cheap embedded
control units, modularly built around families of standard form-factor cards,
relying on firmware-based real-time multitasking kernels (see Section 14.1). Mi­
croprocessors also gave a push to the development of black boxes such as PLCs
(programmable logic controllers) and PID (proportional, integral, differential)
process controllers, aimed at replacing relay and analog electronics with more
versatile (programmable and settable) modules. The PLC normally polls the
sensors and issues commands to the actuators based on some control program.

Distribution appeared in the form of interconnection of the above-mentioned
components over real-time LANs, such as Token-bus (Token Bus, 1985), or ~he

so-called field buses, simplified LANs which are a kind of digital system over a
long wire, such as (CAN, 1993). MAP, the Manufacturing Automation Protocol
(MAP, 1985), despite its shortcomings, was a major cultural breakthrough,
bringing real-time networking into the shop-floor. In its first steps, distribution
in computerized control was mostly concerned with replacing point-to-point
cabling, through field buses: the central unit executed an automaton which read
information from and sent commands to remote units on a polled, synchronized
basis. More recently, we have witnessed an evolution towards using field buses
as support for distributed control systems, supported by paradigms such as
client-server, state-machine, or producer-consumer.

Distribution penetrated in the real-time arena for several reasons:

• geographical separation- the nature of most real-time control problems is
distributed;
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Table 11.1. Major Milestones in Real-Time Computing

1947
1957
1973
1982
1983
1983
1984
1985
1985
1987
1987
1988
1990
1989
1989
1991
1993
1993

Early RT systems (Whirlwind) (Redmond and Smith, 1980)
Early RT systems (SAGE) (Redmond and Smith, 1980)
Rate Monotonic Scheduling (Liu and Layland, 1973)
Early COTS multitasking executives (VRTX,RMX)
NavStar GPS (Parkinson and Gilbert, 1983)
Ada Programming Language (ADA 83, 1983)
Basic Imprecision of clock synch. (Lundelius and Lynch, 1984b)
Early RT LANs (Token Bus, 1985)
Manufacturing Automation Protocol (MAP, 1985)
Priority Inheritance (Cornhill et aI., 1987)
Real-Time Databases (Son, 1987)
Early Field Buses (MIL-STD-1553B, 1988)
Early Field Buses (FIP, 1990)
Round-trip Clock Synchronization (Cristian, 1989)
Network Time Protocol (Mills, RFCl119)
Non-centralized Field Buses (Profibus, 1991)
Non-centralized Field Buses (CAN, 1993)
Deterministic (DCR) Ethernet (Le Lann and Riviere, 1993)

• decentralization- many of these problems involve interacting clusters with
local autonomy;

• parallelism, load balancing, replication- desirable system characteristics
come as artifacts of distribution.

Distributed real-time systems evolved along three main axes. Embedded control
and field-bus distributed systems are mainly devoted to computerized control,
and essentially try to use distributed systems techniques in low-level networks
and simplified nodes. Large-scale mission-critical systems resort to dynamic
techniques in order to secure deadlines under the uncertain circumstances en­
countered in the complex environments they normally address. Soft real-time
systems represent today a great part of the interactive systems, namely multi­
media rendering and conferencing systems on the Internet, and try to ensure
timeliness specifications in a probabilistic way, namely through QoS negotiation
and adaptation techniques.

11.1.4 Real-Time and Fault Tolerance

It is hard to think seriously about real-time without considering fault tolerance.
We defined real-time system as one whose progression is specified in terms of
timeliness requirements dictated by the environment, because the real world
does not wait. However, it does not wait either in normal situations or in
faulty situations. In consequence, ensuring timeliness in fault-free situations is
complementary to ensuring it under faulty situations.

For example, suppose a worst-case message delivery time analysis for a time­
critical LAN that only takes into account medium access schedulability, that
is, how frame transmissions are distributed in time among the several nodes.
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Figure 11.1. Physical Circuit

If omission faults are not taken into account, then the calculated bound will
be exceeded when faults occur. If those faults are not tolerated, it will even be
impossible to calculate the real bound. Even under a soft real-time perspective,
we need availability to fulfill probabilistic deadline assurances. "As soon as the
computer is up again" may not be compatible with the specification "any trans­
action should terminate within 10 seconds for at least 90% of the times, and
within 1 minute in 100% of the times" with which we exemplified soft real-time
systems requirements earlier. In dependability terminology, reliable real-time
means tolerating or preventing timing faults, according to a pre-defined fault
model. During this part, we will have the opportunity to see a few examples of
the symbiosis between real-time and fault tolerance. It is thus expected that
the reader has been exposed to relevant materials in the Fault Tolerance Part,
for example, Chapter 6 and the first part of Chapter 8.

11.2 REAL-TIME NETWORKS

The first step towards setting up a distributed real-time architecture is pro­
viding the system with adequate networking structure, capable of exhibiting
real-time behavior. Several network architectures serve this purpose.

A primordial structure with real-time properties is the physical circuit
type of network. Real-time behavior, as depicted in Figure 11.1, is achieved
by guaranteeing a physical path between any two endpoints, normally a com­
bination of wires, repeaters, and switches. For example, the capabilities of
telecommunications circuits for carrying real-time data are often forgotten :
permanent leased lines or switched circuits such as digital telephone, ISDN
or GSM. This avoids the sharing problems, such that the latency is virtually
constant and equal to the propagation delay between the two points. A com­
plementary problem is ensuring that the individual load does not exceed the
throughput of the link. Physical circuits have been used to structure early dis-
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Figure 11.2. (a) Digital Bus; (b) Virtual Circuit

tributed real-time systems, namely in the fault-tolerant area (see Section 6.4),
often resorting to special-purpose networks such as graphs of point-to-point
links, or single-sender broadcast links. On the other hand, there are examples
of remote control and interactive telemedicine systems built over ISDN-based
computer telephony.

Another structure with real-time properties is what we might call digital
bus type of network. Its philosophy was inherited from the centralized digital
systems era, when the need arose to extend the geographical reach of con­
trol systems. Typical instantiations of the digital bus network structure are
early instrumentation or field buses based on the master-slave principle, such
as GPIB (IEEE-488.2) , MIL-STD (MIL-STD-1553B, 1988), or FIP (FIP, 1990).
TDMA-based structures are also examples of digital-bus networks (Kopetz and
Grunsteidl, 1993). As suggested in Figure 11.2a, real-time behavior is ensured
because although the medium is shared there is no uncertainty-causing con­
tention, since it is shared on a pre-determined basis: a master polls all slaves;
or a global clock determines the transmission slot for every node. Again, it is
necessary to ensure that the global load does not exceed the throughput of the
medium.

In the past few years, a number of real-time LANs have appeared, some
of them standardized such as Token-bus (Token Bus, 1985), others proprietary
such as DCR-Ethernet (Le Lann and Riviere, 1993). Field buses have also
evolved toward a decentralized nature, emulating existing fully-fledged LANs,
such as Profibus (Profibus, 1991), or CAN (CAN, 1993). These networks ex­
hibit ring or bus shared media topologies, decentralized clocking and control,
and prefigure the most common real-time network structure today, the virtual
circuit, of the frame switching type. Real-time behavior must be achieved
through a sharing policy, implemented by medium access control mechanisms,
which ensure that a virtual path is established for each packet transmission,
as suggested in Figure 11.2b. Unlike non real-time LANs, which privilege fair-
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ness of medium sharing, these mechanisms aim at letting through the most
important (with higher priority) frames ahead of the others, controlling the
maximum amount of time each node transmits, and/or bounding the interval
between successive transmission opportunities for each node. These mecha­
nisms aim at controlling the latency observed by each frame. Complementary
to this, it is always necessary to match the total load offered by all nodes to
the maximum throughput achievable by the medium.

Figure 11.3. Real-Time Control Architecture

11.3 DISTRIBUTED REAL-TIME ARCHITECTURES

This section gives an overview of the main architectures for distributed real­
time systems. One such architecture is the one supporting real-time control
(real-time started with control systems). The main components of the archi­
tecture, as depicted in Figure 11.3, are the controlling system, which is the
computational part, and the controlled system, the physical system under con­
trol, which we will call environment, for simplicity. It is very important to
understand the behavior of the controlled system, since several communica­
tion and interaction paths go through it, as shown in the picture. These are
called feedback paths. The points of contact between the controlling system
and the environment are the sensors and the actuators. The control activity
takes place by having the sensors acquire the state of the environment (e.g.,
the temperature of an oven, or the flow in a pipe). That information is sent
to the computing elements of the distributed control system where it is pro­
cessed, and then the reply is issued in the form of commands to the actuators
(e.g., open the burner throttle to increase the temperature, close a valve to

decrease the flow). The environment reacts to these stimuli and provides feed­
back as if it sent 'messages' to the sensors, closing the loop we see in the figure.
Timeliness requirements are expressed differently, depending on the kind of
control. Discrete control requires individual actions to be taken in bounded
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time, in response to events from the environment or from the controlling sys­
tem (e.g., taking a robot's arm from under a 1 ton press before it comes down).
Continuous control requires that a variable is maintained within an allowed
value interval, although this translates, other aspects solved (such as sensing
errors), to timeliness requirements: correcting it periodically, often enough to
compensate for slow steady state variations; correcting it sporadically, quickly
enough after disturbances (e.g., maintaining the temperature of an oven, both
in steady state and after doors are opened and new, cold materials inserted).
Most hard real-time systems are devoted to control and thus follow this archi­
tecture, where the main timeliness issue is to ensure that all the control loops
are served frequently enough and/or sporadics are treated quickly enough.

Figure 11.4. Real-Time Producer-Consumer Architecture

Another relevant architecture is the one supporting real-time producer­
consumer. It is concerned with supplying information (data, messages) from
one or more producers to one or more consumers, such that the throughput,
or the latency, or both, are kept within pre-specified bounds. As depicted in
Figure 11.4, data is originated in the producers (e.g., images from a digital
camera), then processed by the distributed computing elements of the archi­
tecture (e.g., compressed and encoded, and/or stored), and finally delivered
to the consumers, which absorb it. By absorption, we mean that there is no
special timeliness concern associated with the information once arrived at an
end consumer, that is, we might consider the consumer to be an infinite sink.
Furthermore, note that in this example, data not only has to arrive at an av­
erage minimum rate (throughput), but also at a steady pace, which implies an
upper bound for the instantaneous delivery latency of each message. Compet­
ing producers sending to the same set of processing nodes further complicate
the issue, since it is necessary to ensure the throughput and latency properties
for the whole flow. Multiple consumers just require the ability of the system to
multicast the information to them in real-time. Observe that for certain appli­
cations, such as video-on-demand, the producer-consumer path is only relevant
from the storage server to the consumer client, since the contents have been
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generated and recorded beforehand. There are hard real-time applications con­
structed on this kind of architecture, which normally imply totally deterministic
flows from producer to consumer, such as in embedded multimedia processing
systems. There are also soft real-time instantiations of the producer-consumer
architecture, where constraints can be relaxed, such as Internet sound and video
rendering.

Figure 11.5. Real-Time Client-Server Architecture

Finally we analyze the real-time client-server architecture. Several real­
time applications require the ability to execute remote commands or services
and eventually return results, all of this in bounded time. A classical example
of operations on this kind of architecture are transactions on real-time database.
As shown in Figure 11.5, clients issue competitive requests to the server (e.g.,
dial-time request of the translation from a free-toll number to the actual sub­
scriber number). Both the scheduling of the request for execution and the
execution itself should take place in bounded time (e.g., the successful telecom­
munications database lookup). The result (e.g., the called party number) is
returned to the client. Soft real-time applications are readily built on a client­
server architecture. The more demanding hard real-time or mission-critical
classes may face difficulties with traditional client-server technologies: to the
lack of determinism of the arrival pattern of competing client requests, one has
to add the potential lack of determinism of most multi-threaded programming
approaches on the server side (see Section 3.6 on the basic characteristics of the
client-server model). As such, real-time client-server architectures (and namely
RT databases) are normally designed in a way that constrains these sources of
non-determinism.

11.4 SUMMARY AND FURTHER READING

This introductory chapter discussed the fundamental concepts concerning real­
time in distributed systems. Concepts and terms were introduced, such as:
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real-time system; hard, soft and mission-critical real-time. The main real-time
network and distributed system architectures were introduced, to be further
debated in the following chapters. Namely, we divided real-time networks into
three large type groups: the physical-circuit, digital-bus, and virtual-circuit
groups. Finally, we discussed the real-time control, producer-consumer, and
client-server real-time architectures. Relevant surveys on research in the area
can be found in (IEEE-RT, 1994).
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This chapter discusses the main paradigms concerning real-time in distributed
systems, in the viewpoint of the system architect. Namely, the chapter ad­
dresses: specifications for describing timeliness; timing failure detection; the
real-time entity-representative relation; the time-value duality of real-time en­
tities; real-time communication; flow control; scheduling; clock synchronization;
input-output. We explain these paradigms in practical terms, giving examples
of the problems they solve and of their limitations.

12.1 TEMPORAL SPECIFICATIONS

The representation of temporal specifications is of extreme importance in real­
time systems. Several things have to be described, specified, or quantified, when
dealing with real-time paradigms: the timing of events related with the exe­
cution of real-time communication and computation actions (e.g., deadlines);
the patterns of arrival of events (e.g., sporadic); the definition of triggering
conditions (e.g., time lattices). We assume the reader to be familiar with basic
notions about time and synchrony (see Time and Clocks and Synchrony in
Chapter 2).

12.1.1 Timing of Events

Real-time researchers and developers name several timing variables in particu­
lar ways that sometimes depend on the context. Before learning these specific
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terms, let us analyze what we need to specify and to measure, in general terms,
in real-time systems. Real-time systems are in essence reactive or responsive.
Most of what they do is related with responding to events produced by the
environment and by human users.

Response Time - the interval that mediates between the occurrence of
an input event and the occurrence of the first related output event

For example, the interval between the arrival of a train-passing sensor
reading and the output of the close-gates actuator command. The maxi­
mum and the minimum response times are relevant variables of a real-time
system. The first, because it measures the capability of handling the dynamics
of controlled processes: slow systems cannot control fast changing processes
adequately. The second, because together with the first, it measures the vari­
ance of the speed of the computer response: quality of control is affected by
the latter (Kopetz, 1997).

Real-time systems must respond according to pre-specified timings. The
basic thing about timing is being able to specify action durations and event
positions or timestamps in the timeline. For example: within TA from tA to
mean that an action will be performed with a maximum duration of TA, starting
at tAo In general terms, let us call them specifications of timed actions.

Timed Action - the execution of some operation, such that its termi­
nation event should take place within an interval TA from a reference
real time instant tA

Figure 12.1. Termination Time: (a) (omputations; (b) (o~f1l't\munication

We start by analyzing the termination time, that is, the duration of comple­
tion of an action. Figure 12.1a shows the execution of computations. Note that
the execution of an action may be complex, as depicted in the diagram of the
figure: made of several elements or tasks that take place in several sites. Tasks
are invoked for execution and run when scheduled. The essential timing spec­
ifications are: deferral time (To I I ), the delay introduced before the execution
is requested, also called offset; termination time (Tx), the difference between
the termination (or end) and request (or start) event timestamps (resp. te and
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ts) in the timeline; execution time (TET), which accounts for the duration of
the computation in continuous execution (may be shorter than the termination
time), in this case the sum of durations Ta, T b , Te, and T d . Figure 12.1b on
the other hand shows the execution of a communication action. The figure
depicts the split into the four parts that account for the termination time of a
transmission: the set-up time (Tset ) is spent preparing the frame for transmis­
sion, from the time it is handed from the user buffer to the operating system;
access time (Taee ) is the time the frame spends waiting to be transmitted; the
time spent by the frame in transit is the propagation time (Tprp ); finally, the
reception time (Tree) is the time spent in transferring the frame to the recipient
buffer. The delivery time TD is the difference te - ts in the timeline, and is
computed from the sum of the components described above.

Let us consider now how to position the instant of completion of an action
on a desired point of the timeline, say tAo In the case of those actions that
consist of nothing else but generating an output event, this may be specified
by scheduling the execution of a short-lived, negligible duration action at tA,
with the help of a clock. In order to achieve the same for an action that has a
non-negligible and constant duration TA, it must start at (tA - TA), which we
specify by requiring that the action terminates within -TA from ·tA.

There are natural timing errors in the execution of timed actions. These
errors are normally called jitter in real-time lingo, and derive from fundamen­
tal limitations of the support infrastructure, such as non-determinism of the
software, scheduling, faults, clocks, etc.

Jitter - the uncertainty about the instant of completion of a timed ac­
tion, taking the form of variance in the duration of its execution or
of imprecision in the positioning of its termination event

iii

TA te
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t
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t

Figure 12.2. Jitter: (a) Variance; (b) Imprecision

Consider the duration specification that an action terminates exactly after
TA from tA, that is, assuming a constant delay TA (e.g. if it takes exactly 2
seconds for a labeling machine head to come down right over an arriving part,
the former may be commanded to start coming down 2 seconds before the part
arrives, for speed improvement). Assume that the execution of the action has
some jitter, which shows up in this case as a variance in the termination time
(e.g., the head may arrive too late or too soon sometimes, causing incorrect
labeling) depicted in Figure 12.2a. The correct specification to recognize this
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fact should be "te within ( from tA +TAmin", where ( is the action jitter, such
that TAmax == TAmin + (. Then, either the labeling system accommodates the
jitter, or another solution must be found.

Consider now the positioning specification of an action completion event eA
in the timeline "eA at tA". As exemplified by Figure 12.2b, jitter shows-up as
an imprecision in the positioning of the event. In fact, in order to be correctly
equated, the specification should read "eA within ± ~ from tA ", where ( is the
action jitter. Then, either this imprecision is supposedly small enough to be
acceptable, or else another solution must be found.

12.1.2 Triggering Timed Actions

There are essentially two ways of triggering timed actions in real-time systems.
The event-triggered approach makes the system react upon the occurrence
of an input event. As Figure 12.3a exemplifies, reaction of the system is imme­
diately triggered by the event arrival, and the subsequent response issued. The
system reacts as the input is made, and with the timing given by the speed
of response. In the time-triggered approach, depicted in Figure 12.3b, the
system reacts upon the command of a clock. Regardless of when an input event
arrives, it is processed at the next input point dictated by the clock. Likewise,
outputs are also synchronized by the clock, as shown in the figure, no matter
how fast they are produced. Timed actions of different kinds can be combined.
For example, input events served in an event-triggered manner, but outputs
synchronized by a clock. Note that in consequence, the output jitter of an
event-triggered action is given by the execution time variance, where~s in a
time-triggered action it is given by the imprecision of the clock.

"'-a1
8 2 b1 ~ "'-a1 i a2 jb1 b2 ~Illi I- -I -, I- ;. III •

2 3 4
I t

(a) (b)

Figure 12.3. Triggering Timed Actions (ai -+ ai+l, bi -+ bi+1): (a) Event-triggered;
(b) Time-triggered

Time lattices (see Figure 1.8 in Chapter 1) are powerful constructs to
synchronize the triggering of simultaneous timed actions, to facilitate the mea­
surement of their duration, and to tell the ordering of distributed events. Con­
trolled by clocks, the same physical tick of the clock at every site marks what
we call a microtick (Kopetz, 1997), a global tick of the lattice. Recall that
events are ordered by the physical granularity (gp) of the clock, which is often
so fine that it orders events that have no causal relation (see Temporal Order
in Chapter 2). This problem is attenuated if we construct the lattice around a
global clock with an artificially coarser virtual granularity (gv). Time is now
marked in macroticks spaced by gv, and all events in a gv interval between two
ticks are considered concurrent.
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12.1.3 Arrival Distributions

We said that the evolution of a real-time system is dictated by the environment.
This means that'the system receives inputs from the environment, and then
has to react according to what is expected, and when expected. We spent the
last sections analyzing how to specify and trigger this response.

But what about the inputs themselves? Can we process an undefined amount
of information per time unit? Of course not, systems have a limited process­
ing capability. In consequence, all variables that we have analyzed, such as
response time or termination time, depend on the load on the system. Can
we predict and/or bound the amount of information that arrives at the system
input? Only in some cases. This is why we have defined classes of real-time
systems: (a) the determinism of the system with regard to time depends on the
predictability of the inputs received from the environment; (b) the predictabil­
ity (or determinism) of the environment depends on the class of application.
Systems handling regular and deterministic arrival patterns are simpler, but
have to cope with the potential lack of coverage of those assumptions. Systems
accepting irregular and uncertain distributions are closer to physical reality,
but are more difficult to design and prove correct.

~typ

Figure 12.4. Example Probability Density Function of Event Inter-arrival Times TI

In Figure 12.4 we depict a probability density function that could model
the inter-arrival intervals of events produced repetitively by a source. Such
a distribution has a zone (in the center) where events are distributed more
or less every T1typ . However, there is no limit to the amount and frequency
of information that may arrive to the system on certain occasions, since the
distribution intersects the Y axis. We call such distributions aperiodic. It is
not hard to see that aperiodic distributions are not ideal to achieve real-time
behavior because response time is conditioned to the amount of information
input per time unit, of which aperiodic distributions offer no guarantees.

On the other hand, if events arrive in a known maximum amount at known
points of the timeline, Le., in a regular fashion, it is easy for the system to
behave deterministically, and for response and termination times to be precisely
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Figure 12.5. Discrete Arrival Distributions: (a) Periodic; (b) Sporadic

determined. In Figure 12.5a we depict such a distribution, with the obvious
name of periodic, of period T.

Sometimes the designer must achieve deterministic behavior, but she can­
not model the environment so regularly, because the latter is rather unpre­
dictable, with irregular arrival patterns, such as event-triggered message de­
liveries and task execution requests from sensor events. A more sophisticated
discrete arrival pattern represents this behavior, the sporadic pattern, which
assumes that input information arrives irregularly in bursts, but has a few
crucial bounds. Figure 12.5b (top) graphically shows the several parameters
involved:

• burst period (TB)- minimum delay between the start of two consecutive
bursts, a known lower bound

• burst length (NB)- maximum amount of information submitted in one
burst (e.g., number of events, number of bytes), a known upper bound

• inter-arrival time (TI)- minimum separation between two consecutive
events, a known lower bound

A sporadic arrival distribution is normally treated under a short-term per­
spective: sporadic requests have to be served within the inter-arrival time (TI),
and an amount up to N B of such requests must be handled without resource
disruption. This is adequate for example for emergency events. However, a
sporadic distribution is one that has long-term regularity, and as such it can
be mapped onto a periodic distribution. This is adequate for treating sporadic
events that are generated by periodic tasks, and also the so-called event show­
ers. As a matter of fact, under these conditions N B/TB gives the rate of a
periodical distribution where we would have spread the event arrivals through­
out the period interval, as the bottom of Figure 12.5b suggests.

In conclusion, the real-time system architect should not forget that arrival
distributions are mere artifacts to represent the environment behavior. They
serve to separate concerns, and prove that given a problem and an event distri­
bution, there are paradigms solving the problem for that distribution. However,
the importance of the other part of the job should not be minimized, as it is
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sometimes the hardest one: to prove that the environment is faithful to the
distribution we chose to model it. Nothing could go more wrong than a wrong
set of assumptions (see Failure Assumptions and Coverage in Chapter 6).

12.1.4 Utilization Factor

Another way of determining whether time is enough is in relative terms.

Utilization Factor - measure of the percentage of useful work time of
a resource, over elapsed time

For example, an utilization factor of 70% is often pointed out as a good
CPU time-loading figure for microprocessor based control systems (Laplante,
1997). It means that during a period of lOOms, the processor is executing
useful instructions during 70ms. Put the other way around, it also measures
whether the CPU has enough power to handle a set of tasks: if 3 tasks each
with a duration of 40ms on a given CPU have to complete within lOOms, the
CPU utilization factor becomes 120%, which means it is overloaded.

Communication resources are also measured in terms of channel utilization
factor. An utilization factor of 85% on a 10Mb/s Token-bus LAN means that
during the period of a second, the channel is letting 8.5 megabits through. The
maximum utilization factor (10 megabit per second in this case) is also called
maximum throughput.

12.2 TIMING FAILURE DETECTION

Note that hard real-time systems are designed in terms of preventing timing
failures. However, controlled timing failures are allowed in mission critical or
soft real-time systems. In consequence, the measures to be taken by real-time
systems in response to timing failures vary according to the class of opera­
tion: orderly fail-safe shutdown; recovery or compensation; reconfiguration by
adaptation to less stringent deadlines. Whatever the solution, timing failures
should be detected. In fact, we are concerned with late timing failures (e.g.,
the missed deadline or late message syndrome) which are the most general type
of omissive failure (see Fault Assumptions and Coverage in Section 6.1). So,
more precisely, a timing failure is:

Timing Failure - Given the execution of a timed action specified to
terminate until real time instant te , timing failure is the occurrence
of the termination event at a real time instant t~, te < t~ ~ 00. The
amount of delay, Ld = t~ - te , is the lateness degree

What do we need to know about a timing failure in a real-time system? We
need to detect it in bounded time, Le., in a timely manner. We must detect
all relevant late actions as timing failures, Le., in a complete manner. We must
avoid detecting timely actions as failures, Le. in an accurate manner. Recall
that we have already discussed crash failure detectors (see Section 7.1), having
characterized the quality of detection according to two essential properties,
completeness and accuracy. We should be able to characterize timing failure
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Figure 12.6. Timing Failure Detection in Action

detectors according to a similar reasoning. We must however introduce the
time dimension, in order to define both the failure and when it is detected.
The following defines the desirable properties of a timing failure detector
(TFD), assuming that any timed action has an observable termination event e,
specified to occur until real time instant te :

Timed Strong Completeness - There exists TTF Drna~ such that a tim­
ing failure in any timed action is detected within TTFDrna~ from te

Timed Strong Accuracy - There exists TTFDrnin such that any timed
action that terminates at p before te - TTF Drnin is considered timely

The properties of the failure detector are illustrated in Figure 12.6. Note that
'timed' in both properties specifies that there is an upper bound (TTFDrna~) on
detection latency, and a lower bound (TTF Drnin) on detection accuracy.

12.3 ENTITIES AND REPRESENTATIVES

There is a fundamental paradigm that has to do with the relation between
elements of the environment and their computational representation, the entity­
representative paradigm (Kopetz and\terfssimo, 1993). This relation is more
important than meets the eye, and if neglected, the possibility of separation
of concerns in the conception of parts of the real-time systems is diminished.
That would be a bad architectural principle.

A real-time entity (RTe) is an element of the environment, such as a fluid
valve or the temperature of an oven, with a behavior which may be time­
dependent and a state the system is supposed to acquire or modify, described
by continuous or discrete values, e.g.: 150 meter/sec; open/closed. The state of
RTe's can be read or written to, but not both. Consider the example of a valve.
We should define a write-only RTe valve_actuator representing the valve ac­
tuator, whose state can be positioned to one of open Iclosed, by actuator­
dependent procedures (e.g., commands, control registers, etc.). Then, if we
would at the same time wish to monitor the state of the valve, we should de­
fine a valve_sensor read-only RTe, whose state might take one of the values
open Iclosed.

The representative (RTr) of a real-time entity is an element of the com­
putational system through which the latter observes or acts on the state of
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the real-time entity in the environment. Representatives offer an interface
tractable by the other elements of the computational system, and resort to
sensors and actuators as a means of handling the RTe's they represent. They
can assume several forms: an integrated intelligent sensor controller; the driver
of a stepping motor; a computer process controlling PC I/O boards; an A/D
(analog-to-digital) conversion acquisition module.

V(t)

open close open close

(a) (b)

Figure 12.7. Real-Time Entity-Representative Relationship: (a) Discrete Entities; (b)
Continuous Entities

Note that the state of a real-time entity is not accurately reflected in its
representative at all times during system evolution: the temperature of an
oven and its measure at a sensor representative differ with sensor accuracy
and, more importantly, with time; a valve actuator representative may have
been instructed to shut, but the valve itself may remain open because of a
failure. The problem is amplified by distribution and replication, since one can
get divergent readings of the same RTe by different sites. A correct design
should address these problems (see Chapter 13).

For the sake of understanding the relation of an entity E with its representa­
tive r(E), consider the evolution of the state of E with time as a non-observable
sequence of states along the timeline. Then, consider the evolution of the state
of r(E), composed of a sequence of observations or actuations, depending on
whether it is a read-only or a write-only RTe, respectively. The real-time entity­
representative relation is represented in Figure 12.7, where the curves of E(t)
and r(E)(t) are represented respectively as H(E) and 1-lr (E). In essence, a
representative emulates its real-time entity with an error in the value of state,
or in the time of state changes, or in both.

Figure 12.7a illustrates ll(E) and Hr(E) for a write-only boolean RTe (e.g.
valve). The exemplified window of discrepancy between the RTr inside the
computer system (1-lr (E)) and the actual RTe (H(E)) has a fixed part, the ac­
tuation delay, and a variable part (in gray) because of the jitter of positioning
the command. In faulty situations, the discrepancy may be so large that the
relation is no longer valid, unless measures to ensure fault tolerance are taken:
in the last actuation, the RTr says open, whereas the valve got stuck at closed.
Figure 12.7b illustrates an analog read-only RTe. Against the curve of 1-l (E),
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we depict Hr(E), which exemplifies the discrepancy between the RTe and its
representative. What happens may be explained by three factors: a delay in
reading the state of E (execution time); the jitter of that reading (variance in
execution time); and the magnitude error of the reading itself (sensor inaccu­
racy). Dashed line V(E) shows what would be the situation if only a fixed
delay error component d existed.

The entity-representative relation is an important architectural paradigm.
Representatives hide the complexity of the physical reality, transforming it
into representations tractable by computers. For the real-time computer sys­
tem, r(E) is E. This transformation can be extremely useful, provided that
the resulting errors are definable and/or bounded. The paradigm allows a
separation of concerns in the design of real-time systems:

• definition of the real-time entities - response to the environment part of
the requirements specification

• definition of the representatives - specification of the computational entities
representing the environment;

• definition of the input/output - specification of the reliable and timely
observation of, and actuation on, the state of RTe's;

• definition of the control - specification of the reliable and timely processing
of the information supplied by input representatives and production of
responses to output representatives.

12.4 TIME-VALUE DUALITY

Consider the specification of an action: "at real time instant TA, produce a
result of value VA". Upon execution, the action will produce a value VA at real
time tA, for storage, use, or other. For example, delivering a message, or storing
an observation. Producing a late correct value yields a timing error. Likewise,
producing a timely incorrect value yields a value error (see Section 6.2).

Now assume that the specification concerns the state of a real-time entity
E, whose value depends on time, V == E(t). The relevant action specification
becomes: "at real time instant TA, produce a result of value VA == E(TA)". For
example, determining the position of an engine crankshaft. Producing VA =I VA
at tA == TA yields a value error IVA - VAl, on time (e.g., an erroneous position
of the crankshaft at time TA is returned). Likewise, producing VA == VA at
tA > TA would just yield a timing error.

Would it? Recall that by specification the value returned at tA must be
E(tA). However, what was returned was E(TA) (e.g., the value of a past
position of the crankshaft). So, in this situation, the timing error causes a
value error, since the "correct" value returned concerns the value of the entity
in the past. If the timing error is ItA - TAl, the corresponding value error is
IE(tA) - EeTA)I·

Essentially, a time-value entity is such that there are actions on it whose
time-domain and value-domain correctness are inter-dependent. This paradigm
consolidates notions addressed in the context of a number of problems in dif­
ferent areas of computing, such as computer control, I/O sensing, real-time
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databases, or clock synchronization (Kopetz, 1997; Poledna, 1995; Marzullo,
1990; Ramamritham, 1995; Lamport and Melliar-Smith, 1985). There are two
problems to solve if correct operation of a system using time-value entities is
sought:

• ensuring the correct observation of both an instantaneous value of the entity
and its positioning in the timeline, that is, the tirne of a value, which assumes
two facets:

observing the value at a given time - e.g., the angle 50/-lsecs past the
lower position of the crankshaft, a switch position at 5:00
-observing the time at which a given value occurs - e.g., when is the
crankshaft at 5 degrees to the top position, whenever a switch closes

• ensuring the correct use of such an observation past the time it is made, that
is, the value over time

The first problem is equated with the error in observing the time of a value,
Le., the observation error. For an observation (r(Ei)(ti), Ti) of the value of
an RTe Ei at ti receiving timestamp Ti, the observation error in the value
domain is given by Vi == /(Ei(Ti) - Ei(ti)) + (Ei(ti) - r(Ei)(ti))I. The first term
in parentheses is the effect of the timing error in positioning the observation,
supposedly at Ti but in fact made at tie The second is caused by the error
of the observation apparatus (sensor module). Simplifying, we get an intuitive
Vi == IEi(Ti ) - r(Ei)(ti)l: we expect the value of Ei at Ti , but we get an
approximation of the value (r(Ei )), measured approximately (ti) at Ti . For
observing the time at which a given value occurs, and in fact the sensible way to
observe discrete entities (i.e. ones whose value jumps abruptly, say from logical
one to zero), we should use a time domain metrics. The observation error in
the lime domain would then be (i == ITi - til: E i assumed a given value at ti,
but the system logs it as having happened at Ti . The error accounts for the
positioning error (jitter), and the time-domain effect of the sensor value error.
Since determining the exact error of each observation is not feasible, we may
instead work with an upper bound:

• Given a known Va, we say that an observation (r(Ei)(ti), Ti) is consistent
in the value domain, if and only if Vi ~ Va

• Likewise, given a known ~, we say that the observation is consistent in
the time domain, if and only if (i ~ ~

The problem can be generalized to the values of a set of RTe's at a given in­
stant, e.g., needed for performing computations to derive a composite variable.
If the relevant observations all have bounded errors referred to that instant,
the total error of the computation is bounded:

• Given a known Vm and a set of observations of RTe's, we say they are
mutually consistent in the value domain, if and only if there is an instant
t m such that each observation (r(Ei)(tm ), Ti) is consistent w.r.t. Vm

It is a sufficient condition for a set of observations to be mutually consistent,
that they are consistent, and that the timestamps of all observations fall within
a known interval Tm (Le., Vi,j ITi - Til ~ Tm ). The latter is also called the
relative validity interval in the context of databases (Ramamritham, 1995; Song
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and Liu, 1992), and is also related with the notion of accuracy interval in the
context of replicated sensor observations (Marzullo, 1990).

The second problem we stated is concerned with using a value while it is
still valid. In order to solve this problem, we must bound the response time or
the termination time of the action that follows the observation (unexpected or
programmed) of a time-value entity. The action can be performed later than
the observation time, but not too late or unpredictably later, because this may
imply performing an incorrect action. Assume bound Va for the maximum
acceptable error accumulated by an observation over time, depending on the
application in view and on the dynamics of the observed time-value entity (in
order to separate concerns, we neglect the observation error and define Ti as
the instant of reference):

• Given a known Va, we say that an observation (r(Ed, Ti) is temporally
consistent at ta 2: Ti if and only if IEi(ta) - Ei(Ti)1 ~ Va

In complement to the "instantaneous" consistency property of the observa­
tion instant, this property captures the evolution of consistency with time, a
characteristic of time-value entities. In fact, temporal consistency can be se­
cured if an interval Ta can be defined such that the variation of the value of
the RTe within that interval is at most Va. In other words, an observation is
temporally consistent within Ta from Ti . This interval is also called absolute
validity interval for databases (Ramamritham, 1995; Song and Liu, 1992), or
temporal accuracy interval for control (Kopetz, 1997).

The time-value paradigm is at the heart of practically all real-time designs. It
gives a common explanation to phenomena that have been addressed separately,
such as temporal constraints in R/T databases, dynamics of computer control,
and even clocks. In fact, clocks are interesting time-value entities: the value
of a clock, c(t), is a value established at a given time, which represents time
itself. As an exercise, the reader may wish to find out the analogies between
the properties of time-value entities and those of clock systems.

12.5 REAL-TIME COMMUNICATION

Real-time communication is related with achieving a few fundamental attributes:

• known and bounded message delivery delay

• deterministic time-domain behavior

• recognition of urgency classes in the overall traffic

• reliability of medium connectivity

Depending on the type of architecture, these are achieved in different ways,
but whatever the techniques, the real-time communication paradigm can be
expressed in generic terms:

Real-Time Communication - the achievement of bounded and known
message delivery delays, in the presence of disturbing factors such as
other real-time traffic, variable load, or faults

This generic definition suggests a few things. Firstly, that it is necessary
to transmit frames (network-level information packets) in bounded time, given
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the interference of other traffic. Some of it will be competing for the channel
on an equal foot, but clearly not all frames have the same importance, or
urgency class, a parameter that allows some frames to get through ahead of
others. Practical communication systems hardware (e.g., LANs) provides this
distinction through priorities. Besides, channel scheduling should encompass
the fact that load may not be steady, which means that the latency bounds
should be achieved under variable throughput, known to be a difficult goal.

Another issue suggested by the definition is that it is necessary to get
the message (user-level information packet) through despite faults. Real-time
touches reliability in this point. It is of little use guaranteeing schedulability of
individual frames on the network without thinking what is the final time bud­
get to get a message across. This encompasses the use of mechanisms studied
in Chapter 7, to detect, recover or mask transmission errors.

The discussion above suggests one of possible strategies for realizing the
real-communication paradigm, a divide-and-conquer strategy breaking down a
solution in a number of conditions to be fulfilled:

1. computing the load budget and defining urgency classes- defining
urgency classes and allocating worst-case load patterns to each

2. ensuring connectivity- providing the adequate measures to ensure reli­
ability of the network medium, and control partitioning

3. preventing timing faults- enforcing a bounded time from request to
actual transmission of a single frame, given the worst-case load conditions
assumed, in absence of faults

4. tolerating omission faults- ensuring that a message is delivered despite
the occurrence of omissions

5. controlling the flow of information- ensuring that the offered load is
such that the desired throughput and latency are secured

The conditions presented above are sufficient to achieve the real-time com­
munication requirement. Condition 1 makes the basic assumptions about the
environment. Condition 2 encompasses the initial discussion about how to
achieve medium reliability. Both conditions have to meet the requirements of
the application in mind. Condition 3 makes sure that any frame is sent within
a known time bound, even if it does not arrive. Condition 4 ensures that a
message is delivered in the presence of omission faults. A time bound as per
Condition 4 is calculated as a function of the assumed maximum number of
omissions during the protocol execution, the use or not of space redundancy,
as per Condition 2, and the time bound on individual transmissions as per
Condition 3, if time redundancy is used. Condition 5 addresses the need for
matching the actual load presented by the environment, assumed initially by
Condition 1, with the capabilities of the system. A real-time communication
model implementing this strategy in presented in Real- Time Communication
Models in Chapter 13.

Exhibit 2026 Page 318


