
SnapMirror®: File System Based Asynchronous Mirroring
for Disaster Recovery

Hugo Patterson, Stephen Manley, Mike Federwisch, Dave Hitz, Steve Kleiman, Shane Owara

Network Appliance Inc.
Sunnyvale, CA

{hugo, stephen, mikef, hitz, srk, owara}@netapp.com

Abstract
Computerized data has become critical to the survival of
an enterprise. Companies must have a strategy for recov
ering their data should a disaster such as a fire destroy the
primary data center. Current mechanisms offer data man
agers a stark choice: rely on affordable tape but risk the
loss of a full day of data and face many hours or even
days to recover, or have the benefits of a fully synchro
nized on-line remote mirror, but pay steep costs in both
write latency and network bandwidth to maintain the
mirror. In this paper, we argue that asynchronous mirror
ing, in which batches of updates are periodically sent to
the remote mirror, can let data managers fmd a balance
between these extremes. First, by eliminating the write
latency issue, asynchrony greatly reduces the perfor
mance cost of a remote mirror. Second, by storing up
batches of writes, asynchronous mirroring can avoid
sending deleted or overwritten data and thereby reduce
network bandwidth requirements. Data managers can
tune the update frequency to trade network bandwidth
against the potential loss of more data. We present Snap
Mirror, an asynchronous mirroring technology that le
verages file system snapshots to ensure the consistency
of the remote mirror and optimize data transfer. We use
traces of production filers to show that even updating an
asynchronous mirror every 15 minutes can reduce data
transferred by 30% to 80%. We find that exploiting file
system knowledge of deletions is critical to achieving
any reduction for no-overwrite file systems such as
WAFL and LFS. Experiments on a running system show
that using file system metadata can reduce the time to
identify changed blocks from minutes to seconds com
pared to purely logical approaches. Finally, we show that
using SnapMirror to update every 30 minutes increases
the response time of a heavily loaded system only 22%.

1 Introduction
As reliance on computerized data storage has

grown, so too has the cost of data unavailability. A few

SnapMirror, NetApp, and W AFL are registered trademarks of
Network Appliance, lnc.

hours downtime can cost from thousands to millions of
dollars depending on the size of the enterprise and the
role of the data. With increasing frequency, companies
are instituting disaster recovery plans to ensure appropri
ate dat~ availability in the event of a catastrophic failure
or disaster that destroys a site (e.g. flood, fire, or earth
quake). It is relatively easy to provide redundant server
and storage hardware to protect against the loss of phys
ical resources. Without the data, however, the redundant
hardware is of little use.

The problem is that current strategies for data pro
tection and recovery offer either inadequate protection,
or are too expensive in performance and/or network
bandwidth. Tape backup and restore is the traditional ap
proach. Although favored for its low cost, restoring from
a nightly backup is too slow and the restored data is up to
a day old. Remote synchronous and semi-synchronous
mirroring are more recent alternatives. Mirrors keep
backup data on-line and fully synchronized with the pri
mary store, but they do so at a high cost in performance
(write latency) and network bandwidth. Semi-synchro
nous mirrors can reduce the write-latency penalty, but
can result in inconsistent, unusable data unless write or
dering across the entire data set, not just within one stor
age device, is guaranteed. Data managers are forced to
choose between two extremes: synchronized with great
expense or affordable with a day of data loss.

In this paper, we show that by letting a mirror vol
ume lag behind the primary volume it is possible to re
duce substantially the performance and network costs of
maintaining a mirror while bounding the amount of data
loss. The greater the lag, the greater the data loss, but the
cheaper the cost of maintaining the mirror. Such asyn
chronous mirrors let data managers tune their systems to
strike the right balance between potential data loss and
cost.

We present SnapMirror, a technology which imple
ments asynchronous mirrors on Network Appliance fil
ers. SnapMirror periodically transfers self-consistent
snapshots of the data from a source volume to the desti
nation volume. The mirror is on-line, so disaster recov-

USENIX Association FAST '02: Cohference on File and Storage Technologies 117

Microsoft Ex. 1016, p. 1
Microsoft v. Daedalus Blue

IPR2021-00831

118

ery can be instantaneous. Users set the update frequency.
If the update frequency is high, the mirror will be nearly
current with the source and very little data will be lost
when disaster strikes. But, by lowering the update fre
quency, data managers can reduce the performance and
network cost of maintaining the mirror at the risk of in
creased data loss.

There are three main problems in maintaining an
asynchronous mirror. First, for each periodic transfer, the
system must determine which blocks need to be trans
ferred to the mirror. To obtain the bandwidth reduction
benefits of asynchrony, the system must avoid transfer
ring data which is overwritten or deleted. Second, if the
source volume fails at any time, the destination must be
ready to come on line. In particular, a half-completed
transfer can't leave the destination in an unusable state.
Effectively, this means that the destination must be in, or
at least recoverable to, a self-consistent, state at all times.
Finally, for performance, disk reads on the source and
writes on the destination must be efficient.

In this paper, we show how SnapMirror leverages
the internal data structures ofNetApp's WAFL ®file sys
tem [Hitz94] to solve these problems. SnapMirror lever
ages the active block maps in WAFL's snapshots to
quickly identify changed blocks and avoid transferring
deleted blocks. Because SnapMirror transfers self-con
sistent snapshots of the file system, the remote mirror is
always guaranteed to be in a consistent state. New up
dates appear atomically. Finally, because it operates at
the block level, SnapMirror is able to optimize its data
reads and writes.

We show that SnapMirror's periodic updates trans
fer much less data than synchronous block-level mirrors.
Update intervals as short as 1 minute are sufficient to re
duce data transfers by 30% to 80%. The longer the period
between updates, the less data needs to be transferred.
SnapMirror allows data managers to optimize the
tradeoff of data currency against cost for each volume.

In this paper, we explore the interaction between
asynchronous mirroring and no-overwrite file systems
such as LFS-[Rosenblum92] and WAFL. We find that
asynchronous block-level mirroring ofthese file systems
does not transfer less data synchronous mirroring. Be
cause these file systems do not update in place, logical
overwrites become writes to new storage blocks. To gain
the data reduction benefits of asynchrony for these file
systems, it is necessary to have knowledge of which
blocks are active and which have been deallocated and
are no longer needed. This is an important observation
since many conm1ercial mirroring products are imple
mented at the block level.

1.1 Outline for remainder of paper

We start, in Section 1.2, with a discussion of there
quirements for disaster recovery. We go on in Sections
1.3 and 1.4 to discuss the shortcomings of tape-based re
covery and synchronous remote mirroring. In Section 2,
we review related work. We present the design and im
plementation of SnapMirror in Section 3. In Section 4,
we use system traces to study the data reduction benefits

. of asynchronous mirroring with file system knowledge.
Then, in Section 5, we compare SnapMirror to asynchro
nous mirroring at the logical file level. Section 6, pre
sents experiments measuring the performance of our
SnapMirror implementation running on a loaded system.
Conclusion, acknowledgments, and references are in
Sections 7, 8, and 9.

1~2 Requirements for Disaster Recovery

Disaster recovery is the process of restoring access
to a data set after the original was destroyed or became
unavailable. Disasters should be rare, but data unavail
ability must be minimized. Large enterprises are asking
for disaster recovery techniques that meet the following
requirements:

Recover quickly. The data should be accessible within a
few minutes after a failure.

Recover consistently. The data must be 1n a consistent
state so that the application does not fail during the re
covery attempt because of a corrupt data set.

Minimal impact on normal operations. The perfor
mance impact of a disaster recovery technique should be
minimal during normal operations.

Up to date. If a disaster occurs, the recovered data
should reflect the state of the original system as closely
as possible. Loss of a day or more worth of updates is not
acceptable in many applications.

Unlimited distance. The physical separation between
the original and recovered data should not be limited.
Companies may have widely separated sites and the
scope of disasters such as earthquakes or hurricanes may
require hundreds of miles of separation.

Reasonable cost. The solution should not require exces
sive cost, such as many high-speed, long-distance links
(e.g. direct fiber optic cable). Preferably, the link should
be compatible with WAN technology.

1.3 Recovering from Off-line Data

Traditional disaster recovery strategies involve
loading a saved copy of the data from tape onto a new
server in a different location. After a disaster, the most
recent full backup tapes are loaded onto the new server.
A series of nightly incremental backups may follow the

FAST '02: Conference on File and Storage Technologies USENIX Association

Microsoft Ex. 1016, p. 2
Microsoft v. Daedalus Blue

IPR2021-00831

full backup to bring the recovered volume as up-to-date
as possible. This worked well when file systems were of
moderate size and when the cost of a few hours of down
time was acceptable, provided such events were rare.

Today, companies are taking advantage of the 60%
compound annual growth rate in disk drive capacity
[Growchowski96] and file system size is growing rapid
ly. Terabyte storage systems are becoming common
place. Even with the latest image dump technologies
[Hutchinson99], data can only be restored at a rate of
100-200 GB/hour. If disaster strikes a terabyte file sys
tem, it will be offline for at least 5-10 hours if tape-based
recovery technologies are used. This is unacceptable in
many environments.

Will technology trends solve this problem over
time? Unfortunately, the trends are against us. Although
disk capacities are growing 60% per year, disk transfer
rates are growing at only 40% per year [Grochowski96].
It is taking more, not less, time to fill a disk drive even in
the best case of a purely sequential data stream. In prac
tice, even image restores are not purely sequential and
achieved disk bandwidth is less than the sequential ideal.
To achieve timely disaster recovery, data must be kept
one line and ready to go.

1.4 Remote Mirroring

Synchronous remote mirroring immediately copies
all writes to the primary volume to a remote mirror vol
ume. The original transfer is not acknowledged until the
data is written to both volumes. The mirror gives the user
a second identical copy of the data to fall back on if the
primary file system fails. In many cases, both copies of
the data are also locally protected by RAID. -

The down side of synchronous remote mirroring is
that it can add a lot of latency to VO write operations.
Slower 1/0 writes slow down the server writing the data.
The extra latency results first from serialization and
transmission delays in the network link to the remote
mirror. Longer distances can bloat response time to un
acceptable levels. Second, unless there is a dedicated
high-speed line to the remote mirror, network congestion
and bandwidth limitations Will further reduce perfor
mance. For these reasons, most synchronous mirroring
implementations limit the distance to the remote mirror
to 40 kilometers or less.

Because of its performance limitations, synchronous
mirroring implementations sometimes slightly relax
strict synchrony, to allow a limited number of source I/0
operations to proceed before waiting for acknowledg
ment of receipt from the remote site 1• Although this ap
proach can reduce I/0 latency, it does not reduce the link
bandwidth needed to keep up with the writes. Further,

the improved performance comes at the cost of some po
tential data loss in the event of a disaster.

A major challenge for non-synchronous mirroring is
ensuring the consistency of the remote data. If writes ar
rive out-of-order1at the remote site, the remote copy of
the data may appear corrupted to an application trying to _
use the data after a disaster. If this occurs, the remote
mirroring will have been useless since a full restore from
tape will probably be required to bring the application
back on line. The problem is especially difficult when a
single data set is spread over multiple devices and the
mirroring is done at the device level. Although each de
vice guarantees in-order delivery of its the data, there
may be no ordering guarantees among the devices. In a
rolling disaster, one in which devices fail over a period
of time (imagine fire spreading from one side of the data
center to the other), the remote site may receive data
from some devices but not others. Therefore, whenever
synchrony is relaxed, it is important that it be coordinat
ed at a high enough level to ensure data consistency at the
remote site.

Another important issue is keeping track of the up
dates required on the remote mirror should it or the link
between the two systems become unavailable. Once the
modification log on the primary system is filled, the pri
mary system usually abandons keeping track of individ
ual modifications and instead keeps track of updated
regions. When the destination again becomes available,
the regions are transferred. Of course, the destination file
system may be inconsistent while this transfer is taking
place, since file system ordering rules may be violated,
but it's betterthan starting from scratch.

2 Related Work
There. are other ways to provide disaster recovery

besides restore from tape and synchronous mirroring.
One is server replication.

Server replication is another approach to providing
high availability. Coda is one example of a replicated file
system [Kistler93]. In Coda, the clients of a file server
are responsible for writing to multiple servers. This ap
proach is essentially synchronous logical-level mirror
ing. By putting the responsibility for replication on the
clients, Coda effectively off-loads the servers. And, be
cause clients are aware of the multiple servers, recovery
from the loss of a server is essentially instantaneous.
However, Coda is not designed for replication over a
WAN. If the WAN connecting a client to a remote server

1. EMC's SRDfTM in semi-synchronous mode or Stor

age Computer's Omniforce® in log synchronous mode.

USENIX Association FAST '02: C~nference on File and Storage Technologies 119

Microsoft Ex. 1016, p. 3
Microsoft v. Daedalus Blue

IPR2021-00831

120

is slow or co'ngested, the client will feel a significant per
formance impact. Another difference is that where Coda
leverages client-side software, SnapMirror's goal is to
provide disaster recovery for the file servers without cli
ent side modifications.

Earlier, we mentioned that SnapMirror leverages
file system metadata to detect new data since the last up
date of the mirror. But, there are many other approaches.

At the logical file system level, the most common
approach is to walk the directory structure checking the
time that files were last updated. For example, the UNIX
dump utility compares the file modify times to the time
of the last dump to determines which files it should write
to an incremental dump tape. Other examples of detect
ing new data at the logical level include programs like rd
ist and rsync [Tridgell96]. These programs traverse both
the source and destination file systems, looking for files
that have been more recently modified on the source than
the destination. The rdist program will only transfer
whole files. If one byte is changed in a large database
file, the entire file will be transferred. The rsync program
works to compute a minimal iange of bytes that need be
transferred by comparing checksums of byte ranges. Jt
uses CPU resources on the source server to reduce net
work traffic. Compared to these programs SnapMirror
does not need to traverse the entire file system or do
checksums to determine the block differences between
the source and destination. On the other hand, SnapMir
ror needs to be tightly integrated with the file system
whereas approaches which operate at the logical level are
more general.

Another approach to mirroring, adopted by databas
es such as Oracle, is to write a time-stamp in a header in
each on-disk data block. The time-stamp enables Oracle
to detemline if a block needs to be backed up by looking
only at the relatively small header. This can save a lot of
time compared to approaches which must perform check
sums on the contents of each block. But, it still requires
each block to be scanned. In contrast, Snap Mirror uses
file system data structures as an index to detect updates.
The total amount of data examined is similar in the two
cases, but the file system structures are stored more
densely and consequently the number ofblocks that must
be read from disk is much smaller.

3 SnapMirror Design and Implementation
SnapMirror is an asynchronous mirroring package

currently available on Network Appliance file servers.
Its design goal was to meet the data protection needs of
large-scale systems. It provides a read-only, on-line, rep
lica of a source file system. In the event of disaster, the
replica can be made writable;· replacing the original

source file system.

Periodically, SnapMirror reflects changes in the
source volume to the destination volume. It replicates the
source at a block-level, but uses file system knowledge
to linlit transfers to blocks that are new or modified and
that are still allocated in the file system. SnapMirror does
not transfer blocks which were written but have since
been overwritten or deallocated.

Each time SnapMirror updates the destination, it
takes a new snapshot of the source volume. To determine
which blocks need to be sent to the destination, it com
pares the new snapshot to the snapshot from the previous
update. The destination jumps forward from one snap
shot to the next when each transfer is completed. Effec
tively, the entire update is atomically applied to the
destination volume. Because the source snapshots al
ways contain a self-consistent, point-in-time image of
the entire volume or file system, and these snapshots are
applied atomically to the destination, the destination al
ways contains a self-consistent, point-in-time image of
the volume. Snap Mirror solves the problem or ensuring
destination data consistency even when updates are
asynchronous and not all writes are transferred so order
ing among individual writes cannot be maintained.

The system administrator sets SnapMirror's update
frequency to balance the impact on system performance
against the lag time of the mirror.

3.1 Snapshots and the Active Map File

SnapMirror's advantages lie in its knowledge of the
Write Anywhere File Layout (WAFL) file system and its
snapshot feature [Hitz94], which runs on top ofNetwork
Appliance's file servers. W AFL is designed to have
many of the same advantages as the Log Structured File
System (LFS) [Rosenblum92]. It collects file system
block modification requests and then writes them to an
unused group of blocks. W AFL's block allocation policy
is able to fit new writes in among previously allocated
blocks, and thus it avoids the need for segment-cleaning.
W AFL also stores all metadata in files, like the Episode
file system [Chutani92]. This allows updates to write
metadata anywhere on disk, in the same manner as regu
lar file blocks.

W AFL's on-disk data structure is a tree that points to
all data and metadata. The root of the tree is called thejs
info block. A complete and consistent version of the file
system can be reached from the information in this block.
The fsinfo block is the only exception to the no-over
write policy. Its update protocol is essentially a database
like transaction; the rest of the file system image must be
consistent whenever a new fsinfo block overwrites the
old. This insures that partial writes will never corrupt the

FAST '02: Conference on File and Storage Technologies USENIX Association

Microsoft Ex. 1016, p. 4
Microsoft v. Daedalus Blue

IPR2021-00831

file system.

It is easy to preserve a consistent image of a file sys
tem, called a snapshot, at any point in time, by simply
saving a copy of the information in the fsinfo block and
then making sure the blocks that comprise the file system
image are not reallocated. Snapshots will share the block
data that re!Jlains unmodified with the active file system;
modified data are written out to unallocated blocks. A .
snapshot image can be accessed through a pointer to the
saved fsinfo block.

W AFL maintains the block allocations for each
snapshot in its own active map file. The active map file
is an array with one allocation bit for every block in the
volume. When a snapshot is taken, the current state of the
active file system's active map file is frozen in the snap
shot just like any other file. WAFL will not reallocate a
block unless the allocation bit for the block is cleared in
every snapshot's active map file. To speed block alloca
tions, a summary active map file maintains for each
block, the logical-OR of the allocation bits in all the
snapshot active map files.

3.2 SnapMirror Implementation

Snapshots and the active map file provide a natural
way to find out block-level differences between two in-

. stances of a file system image. Snap Mirror also uses such
block-level information to perform efficient block-level
transfers. Because the mirror is a block-by-block replica
of the source, it is easy to turn it into a primary file server

. . . I
for users, should disaster befall the source.

3.2.1 Initializing the Mirror

The destination-triggers SnapMirror updates. The
destination initiates the mirror relationship by requesting
an initial transfer from the source. The source responds
by taking a base reference snapshot and then transferring
all the blocks that are allocated in that or any earlier snap
shot, as specified in the snapshots' active map files.
Thus, after initialization, the destination will have the
same set of snapshots as the source. The base snapshot
serves two purposes: first, it provides a reference point
for the first update; second, it provides a static, self-con
sistent image which is unaffected by writes to the active
file system during the transfer.

The destination system writes the blocks to the same
logical location in its storage array. All the blocks in the
array are logically numbered from 1 toN on both the
source and the destination, so the source and destination
array geometries need not be identical. However, be
cause WAFL optimizes block layout for the underlying
array geometry, SnapMirror performance is best when
the source and destination geometries match and the op-

timizations apply equally well to both systems. When the
block transfers complete, the destination writes its new
fsinfo block.

3.2.2 Block-bevel Differences and Update
Transfers

Part of the work involved in any asynchronous mir
roring technique is to find the changes that have occurred
in the primary file system and make the same changes in
another file system. Not surprisingly, SnapMirror uses
W AFL's active map file and reference snapshots to do
this as shown in Figure I.

When a mirror has an update scheduled, it sends a
message to the source. The source takes an incremental
reference snapshot and compares the allocation bits in
the active map files of the base and incremental reference
snapshots. This active map file comparison follows the
following rules:

If the block is not allocated in either active map, it is un
used. The block is not transferred. It did not exist in the
old file system image, and is not in use in the new one.
Note that it could have been allocated and deallocated
between the last update and the current one.

If the block is allocated in both active maps, it is un
changed. The block is not transferred. By the file sys
tem's no-overwrite policy, this block's data has not
changed. It could not have been overwritten, since the
old reference snapshot keeps the-block from being re-al
located.

If the block is only allocated in the base active map, it has
been deleted. The block is not transferred. The data it
contained has either been deleted or changed.

If the block is only allocated in the incremental active
map, it has been added. The block is transferred. This
means that the data in this block is either new or an up
dated version of an old block.

Note that SnapMirror does not need to understand
whether a transferred block is user data or file system
metadata. All it has to know is that the block is new to the
file system since the last transfer and therefore it should
be transferred. In particular, block de-allocations auto
matically get propagated to the mirror, because the up
dated blocks of the active map file are transferred along
with all the other blocks.

In practice, SnapMirror transfers the blocks for all
existing snapshots that were created between the base
and incremental reference snapshots. If a block is newly
allocated in the active maps of any of these snapshots,
then it is transferred. Otherwise, it is not. Thus, the des
tination has a copy of all of the source's snapshots.

USENIX Association FAST '02: co;'rl-erence on File and Storage Technologies 121

Microsoft Ex. 1016, p. 5
Microsoft v. Daedalus Blue

IPR2021-00831

122

Block 100
Initial Transfer

Block 100
File System Changes

Block 101 Block 101

Block 102 Block 102

Block 103 Block 103

Block 104 Block 104

Block 105 Block 105

Block 106 Block 106

Base Reference Snapshot
Incremental Reference Snapshot

r····················· ·······-···········-········ ·- -· .. ···

I Active Map Comparison: i Active File System

! added (transferred)
Update Transfer

Block 100
l
j deleted (not transferred) Block 101

'
l.; deleted (not transferred)

, ·unchanged (not transferred)

Block 102

Block 103
;
i unchanged (not transferred) Block 104
; i added (transferred) Block 105

l unused (not transferred)
l••-••oon--•••n•••••• • • •••••

Block 106

Figure 1. SnapMirror's use of snapshots to identify blocks for transfer. SnapMirror uses a base reference snapshot
as point of comparison on the source and destination filers . The first such snapshot is used for the Initial Transfer. File
System Changes cause the base snapshot and theactive file system to diverge (C is overwritten with C', A is deleted,
E is added). Snapshots and the active file system share unchanged blocks. When it is time for an Update Transfer,
SnapMirror takes a new incremental reference snapshot and then compares the snapshot active maps according to the
rules in the text to determine which blocks need to be transferred to the destination. After a successful update, Snap
Mirror deletes the old base snapshot and the incremental becomes the new base.

At the end of each transfer the fsinfo block is updat
ed, which brings the user's view of the file system up to
date with the latest transfer. The base reference snapshot
is deleted from the source, and the incremental reference
snapshot becomes the new base. Essentially, the file sys
tem updates are written into unused blocks on the desti
nation and then the fsinfo block is updated to refer to this
new version of the file system with is already in place.

3.2.3 Disaster Recovery and Aborted Transfers

Because a new fs info block (the root of the file sys
tem tree structure) is not written until all blocks are trans
ferred, Snap Mirror guarantees a consistent file system on
the mirror at any time. The destination file system is ac
cessible in a read-only state throughout the whole Snap
Mirror process. At any point, its active file system
replicates the active map and fsinfo block of the last ref
erence snapshot generated by the source. Should a disas
ter occur, the destination can be brought immediately
into a writable state.

The destination can abandon any transfer in progress
in response to a failure at the source end or a network

partition. The mirror is left in the same state as it was be
fore the transfer started, since the new fsinfo block is
never written. Because all data is consistent with the last
completed round of transfers, the mirror can be reestab
lished when both systems are available again by finding
the most recent common SnapMirror snapshot on both

· systems, and using that as the base reference snapshot.

3.2.4 Update Scheduling and Transfer Rate
Throttling

The destination file server controls the frequency of
update through how often it requests a transfer from the
source. System administrators set the frequency through
a cron-like schedule. If a transfer is in progress when an
other scheduled time has been reached, the next transfer
will start when the current transfer is complete. SnapMir
ror also allows the system administrator to throttle the
rate at which a transfer is done. This prevents a flood of
data transfers from overwhelming the disks, CPU, or net
work during an update . .

FAST '02:. Conference on File and Storage Technologies USENIX Association

Microsoft Ex. 1016, p. 6
Microsoft v. Daedalus Blue

IPR2021-00831

3.3 SnapMirror Advantages and Limitations

Snap Mirror meets the emerging requirements for
data recovery by using asynchrony and combining file
system knowledge with block-level transfers.

Because the mirror is on-line and in a consistent
state at all phases of the relationship, the data is available
during the mirrored relationship in a read-only capacity.
Clients of the destination file system will see new up
dates atomically appear. If they prefer to access a stable
image of the data, they can access one of the snapshots
on the destination. The mirror can be brought into a writ
able state immediately, making disaster recovery ex
tremely quick.

The schedule-based updates mean that SnapMirror
h~ as. much or as little impact on operations as the sys
tem administrator allows. The tunable lag also means
that the administrator controls how up to date the mirror
is. Under most loads, SnapMirror can reasonably trans
mit to the mirror many times in one hour.

SnapMirror works over a TCP/IP connection that
uses standard network links. Thus, it allows for maxi
mum flexibility in locating the source and destination fil
ers and in the network connecting them.

The nature of Snap Mirror gives it advantages over
traditional mirroring approaches. With respect to syn
chronous mirroring, SnapMirror reduces the amount of
-data transferred, since blocks that have been allocated
and de-allocated between updates are not transferred.
And because SnapMirror uses snapshots to preserve im
age data, the source can service requests during a trans
fer. Further, updates at the source never block waiting for
a transfer to the remote mirror.

The time required for a Snap Mirror update is largely
dependent on the amount of new data since the last up
date and, to some extent, on file system size. The worst
case scenario is where all data is read from and re-written
to the file system between updates. In that case, Snap
Mirror will have to transfer all file blocks. File system
size plays a part in SnapMirror performance due to the
time it takes to read through the active map files (which
increases as the number of total blocks increase).

Another drawback of Snap Mirror is that its snap
shots reduce the amount of free space in the file system.
On systems with a low rate of change, this is fine, since
unchanged blocks are shared between the active file sys
tem and the snapshot. Higher rates of change mean that
SnapMirror reference snapshots tie up more blocks.

By design, SnapMirror only works for whole vol
unles as it is dependent on active map files for updates.
Smaller mirror granularity could only be achieved

through modifications to the file system, or through a
slower, logical-level approach.

4 Data Reduction through Asynchrony
An important premise of asynchronous mirroring is

that periodic updates will transfer less data than synchro
nous updates. Over time, many file operations become
moot either because the data is overwritten or deleted.
Periodic updates don't need to transfer any deleted data
and only need to transfer the most recent version of an
overwritten block. Essentially, periodic updates use the
primary volume as a giant write cache and it has long
been known that write caches can reduce I/0 traffic
[Ousterhout85, Baker91, Kistler93]. Still at question,
though, is how much asynchrony can reduce mirror data
traffic for modem file server workloads over the extend
ed intervals of interest to asynchronous mirroring.

To answer these questions, we traced a number of
file servers at Network Appliance and analyzed the trac
es to determine how much asynchronous mirroring
would reduce data transfers as a function of update peri
od. We also analyzed the traces to determine the impor
tance of using the file system's active map to avoid
transferring deleted blocks for WAFL as an example of
no-overwrite file systems.

4.1 Tracing environment

We gathered 24 hours of traces from twelve separate
file systems or volumes on four different NetApp file
servers. As shown in Table 1, these file systems varied in
size from 16GB to 580GB, and the data written over the
day ranged from 1 GB to 140GB. The blocks counted in
tile table are each 4 KB in size. The systems stored data
from: internal web pages, engineers' home directories,
kernel builds, a bug database, the source repository, core
dumps, and technical publications.

In synchronous or semi-synchronous mirroring all
disk writes must go to both the local and remote mirror.
To determine how many blocks asynchronous mirroring
would need to transfer at the end of any particular update
interval, we examined the trace records and recorded in
a large bit map which blocks were written (allocated)
during the interval. We cleared the dirty bit whenever the
block was deallocated. In an asynchronous mirroring
system, this is equivalent to computing the logical-AND
of the dirty map with the file system's active map and
only transferring those blocks which are both dirty and
still part of the active file system.

4.2 Results

Figure 2 plots the blocks that would be transferred
by Snap Mirror as a percentage of the blocks that would

USENIX Association FAST '02: Conference on File and Storage Technologies 123

Microsoft Ex. 1016, p. 7
Microsoft v. Daedalus Blue

IPR2021-00831

124

File System Size Used
Blocks Written

Filer Description Written Deleted
Name (GB) (GB)

(1000's) (%)

Buildl Source tree build space 100 68 7757 69

Cores! Core dump storage 100 72 319 85

Bench Ecco
Benchmark scratch space

87 56 512 91
and results repository

Pubs Technical Publications 32 16 262 59

Users! Engineering home directories 350 292 10803 78

Bug Bug tracking database 16 11 1465 98

Cores2 Maglite Core dump storage 550 400 11956 76

Source Source control repository 50 36 3288 70

Cores3 Core dump storage 255 151 1582 77

Users2
Makita Engineering home directories

580 470 13752 53
and corporate intranet site

Build2 Source tree build space 320 271 34779 80

Users3
Ronco

Engineering home directories 380 323 15103 85

Table 1. Summary data for the traced ftle systems. We collected 24 hours of traces of block alloca
tions (which in WAFL are the equivalent of disk writes) and de-allocations in the 12 file systems listed
in the table. The 'Blocks Written' is the total number of blocks written and indicates the number of
blocks that a synchronous block-level mirror would have to transfer. The 'Written Deleted' colunm
shows the percentage of the written blocks which were overwritten or deleted. This represents the po
tential reduction in blocks transferred to an asynchronous mirror which is updated only once at the end
of the 24-hour period. The reduction ranges from 52% to 98% and averages about 78%.

be transferred by a synchronous mirror as a function of
the update period: 1 minute, 5 minutes, 15 minutes, 30
minutes, 1 hour, 6 hours, 12 hours, and 24 hours. We
found that even an update interval of only 1 minute re
duces the data transferred by at least 10% and by over
20% on all 'bUt one of the file systems. These results are
consistent with those reported for a 30 second write
caching interval in earlier tracing studies [Ousterhout85,
Baker91). Moving to 15 minute intervals enabled asyn
chronous mirroring to reduce data transfers by 30% to
80% or over 50% on average. The marginal benefit of in
creasing the update period diminishes beyond 60 min
utes. Nevertheless, extending the update period all the
way to 24 hours reduces the data transferred to between
53% and 98%- over 75% on average. This represents a
50% reduction compared to an update interval of 15 min
utes. Clearly, the benefits of asynchronous mirroring can
be substantial.

As mentioned above, we performed the equivalent
of a logical-AND of the dirty map with the file system's
active map to avoid replicating deleted data. How impor
tant is this step? In conventional write-in-place file sys
tems such as the Berkeley FFS [McKusick84], we do not
expect this last step to be critical. File overwrites would

repeatedly dirty the same block which would eventually
only need to be transferred once. Further, because the file
allocation policies of these file system often result to the
reallocation of blocks recently freed, even file deletions
and creations end up reusing the same set of blocks.

The situation is very different for no-overWrite file
systems such as LFS and W AFL, These systems tend to
avoid reusing blocks for either overwrites or new creates.
Figure 3 plots the blocks transferred by SnapMirror,
which takes advantage of the file system's active map to
avoid transferring deallocated blocks, and an asynchro
nous block-level mirror, which does not, as a percentage
ofthe blocks transferred by the synchronous mirror for a
selection of the file systems. Because, most of the file
systems in the study had enough free space in them to ab
sorb all of the data writes during the day, there were es
sentially no block reallocations during the course of the
day. For these file systems, the data reduction benefits of
asynchrony would be completely lost ifSnapMirror were
not able to take advantage of the active maps. In the fig
ure, the ' all other, include deallocated' line represents
these results. There were two exceptions, however.
Build2 wrote about 135 GB of data while the volume had
only about 50GB of free space andSource wrote about

FAST '02: Conference on File and Storage Technologies USENIX Association

Microsoft Ex. 1016, p. 8
Microsoft v. Daedalus Blue

IPR2021-00831

"'0 100
Q)

!::
~
"' 80 = C<l
.t:i
rn
~
u
0 60 :a
~ :::::
·~ 40 ._
0
tl)
0/j
ro 20 't:i
tl)
u
tl)

;::....
0

0

100
"'0
tl)

t:
~
"' 80
~
"' 11
0 60 ::0
~

:§
·;::::
~ 40 ._
0
tl)
0/j
C<l 20 -= tl)
u
tl)

;::....

200

G--£> Bui1dl
G-·· · ·D Coresl
~--~Bench

~·-I> Cores2
x- · -te Cores3
G · - -o Bui1d2

400 600 1000 1200 1400

Update interval (minutes)

(a)

A---A Pubs
4 -c3 Users)
v---v Bug
+-·-+ Source
•- Users2
G·--D Users3

200 400 600 800 1000 1200 1400

Update interval (minutes)

(c)

100

80

60

40

20

0
0 10 20 30 40 50 60

Update interval (minutes)
(b)

80

Update interval (minutes)

(d)

Figure 2. Percentage of written blocks transferred by SnapMirror vs. update interval. These graphs show, for
each of the 12 traced systems, the percentage of written blocks that SnapMirrorwould transfer to the destination mirror
as a function of mirror update period. Because the number of traces is large, the results are split into upper and lower
pairs of graphs. The left graph in each pair (a and c) show the full range of intervals from I minute to 1440 minutes
(24 hours). The right graphs in each pair (band d) expand the region from 1 to 60 minutes. The graphs show that most
of the reduction in data transferred occurs with an update period of as little as 15 minutes, although substantial addi
tiona! reductions are possible as the interval is increased to an hour or more.

13 GB of data with only 14GB of free space. Inevitably,
in these file systems, there was some block reuse as
shown in the figure. Even in these two cases, however,
the use of the active map was highly beneficial. Success
ful asynchronous mirroring of no-overwrite file systems
requires the use of the file system's active map or equiv
alent information.

An alternative to the block-level mirroring (with or
without the active map) discussed in this section is logi
cal or file-system level mirroring. This is the topic of the

"\:~,

next section.

5 SnapMirror vs. Asynchronous Logical
Mirroring

The UNIX dump and restore utilities can be used to
implement an asynchronous logical mirror. Dump works
above the operating system to identifY files which need
to be backed up. When performing an incremental, the
utility only writes to tape the files which have been cre
ated or modified since the last incremental dump. Re-

USENIX Association FAST '02: Conference on File and Storage Technologies 125

Microsoft Ex. 1016, p. 9
Microsoft v. Daedalus Blue

IPR2021-00831

126

] 100
b
~
"' c
<ll 80 b

"' ~
u
0

::0 60
c
~
-~

:;; 40
:.....
0
Q)
OJ)

~ 20
1).)
u
Q)

ll.;

G- -E> Bui1d2, include deallocated

G---E> Build2, omit deallocated
~--A Source, include deallocated

~ Source, omit deallocated

- - All other, include deallocated

200 400 600 800 1000 1200 1400

Update interval (minutes)

Figure 3. Percentage of written blocks transferred with and without use of the active map to
filter out deallocated blocks. Successful asynchronous mirroring of a no-overwrite file system such
as LFS or W AFL depends on the file system's active map to filter out deallocated blocks and achieve
reductions in block transfers. Without the use ofthe active map, only 2 of the 12 measured systems,
would see any transfer reductions-.

File Sys- Size Used(GB) Files Data
Time Rate

System transferred temName (GB) Base End Base End (GB)
(sec.) (MB/s)

Snap Mirror 2.1 140 15.4
Users4 96 63 65 1001131 1054917

logical 493 8.3 4.0

19.7
Users5 192 135 150 5297016 6423984

Snap Mirror 15.3 797

logical 25.2 7200 3.6

Table 2. Logical replication vs. SnapMirror incremental update performance. We measured incremental perfor
mance of SnapMirror and logical replication on two separate data sets. Since SnapMirror sends only changed blocks,
it transfers at least 39% less data than logical mirroring.

store reads such incremental dumps and recreates the
dumped file system. If dump's data stream is piped di
rectly to a restore instead of a tape, the utilities effective
ly copy the contents of one file system to another. An
asynchronous mirroring facility could periodically run
an incremental dun1p and pipe the output to a restore run
ning on the destination. The following set of experiments
compares this approach to SnapMirror.

5.1 Experimental Setup

To implement the logical mirroring mechanism, we
took advantage of the fact that Network Appliance filers
include dump and restore utilities to support backup and
the Network Data Management Protocol (NDMP) copy
command. The command enables direct data copies from
one filer to another without going through the issuing

workstation. For these experiments, we configured dump
to send its data over the network to a restore process on
another filer. Because this code and data path are includ
ed in a shipping product, they are reasonably well tuned
and the comparison to SnapMirror is fair.

To compare logical mirroring to SnapMirror, we
first established and populated a mirror between two fil
ers in the lab. We then added data to the source side of
the mirror and measured the performance of the two
mechanisms as they transferred the new data to the des
tination file system. We did this twice with two sets of
data on two different sized volumes. For data, we used
production full and incremental dumps of some home di
rectory volumes . Table 2 shows the volumes and their
sizes. The full dump provided the base file system. The
incremental provided the new data,

FAST '02: Conference on File and Storage Technologies USENIX Association

Microsoft Ex. 1016, p. 10
Microsoft v. Daedalus Blue

IPR2021-00831

We used a modified version of restore to load the in
cremental data into the source volume. The standard re
store utility always completely overwrites files which
have been updated; it never updates only the changed
blocks. Had we used the standard restore, SnapMirror
and the logical mirroring would both have transferred
whole files. Instead, when a fi!e ,on the incremental tape
matched an existing file in both name and inode number,
the modified restore did a block by block comparison of
the new and existing files and only wrote changed blocks
into the source volume. The logical mirroring mecha
nism, which was essentially the standard dump utility,
still transferred whole files, but Snap Mirror was able to
take advantage of the fact that it could detect which
blocks had been rewritten and thus transfer less data.

For hardware, we used two Network Appliance
F760 filers directly connected via Intel GbE. Each uti
lized an Alpha 21164 processor running at 600 MHz,
with 1024MB of RAM plus 32MB non-volatile write
cache. For the .tests run on Users4, each filer was config
ured with 7 FibreChannel-attached disks (18GB, 10k
rpm) on one arbitrated loop. For the tests run on Users5,
each filer was configured with 14 FibreChannel-attached
disks on one arbitrated loop. Each group of7 disks was
set up with 6 data disks and 1 RAID4 parity disk. All
tests were run in a lab with no external load.

5.2 Results

The results for the two runs are summarized in Table
2 and Figure 4. Note that in the figure, the two sets of
runs are not rendered to the same scale. The 'data scan'
value for logical mirroring represents the time spent
walking the directory structure to find new data. For
SnapMirror, 'data scan' represents the time spent scan
ning the active map files . This time is essentially inde
pendent of the number of files or the amount new data
but is instead a function of volume size. The number was
determined by performing a null transfer on a volume of
this size.

The most obvious result is that logical mirroring
takes respectively 3.5 and 9.0 times longer than Snap
Mirror to update the remote mirror. This difference is
due both to the time to scan for new data and the efficien
cy ofthe data transfers themselves. When scanning for
changes, it is much more efficient to scan the active map
files than to walk the directory structure. When transfer
ring data, it is much more efficient to read and write
blocks sequentially than to go through the file system
code reading and writing logical blocks.

Beyond data transfer efficiency, SnapMirror is able
to transfer respectively 48% and 39% fewer blocks than
the logical mirror. These results show that savings from

-~~-

600

500

......
V) 400 '0
c
0
u
Q) 300 !!2.
Q)

E 200 i=

100

0'---
SnapMirror

Vi'
'0
c
8
Q)

!!2.
Q)

E
i=

• logical

6000

4000

2000

0 '--="'--
SnapMirror logical

Users4 UsersS

Figure 4. Logical replication vs. SnapMirror incre
mental update times. By avoiding directory and inode
scans, SnapMirror's data scan scales much better than
that oflogical replication. Note: tests are not rendered on
the same scale)

transferring only changed blocks can be substantial com
pared to whole file transfer.

6 SnapMirror on a loaded system
To assess the performance impact on a loaded sys

tem of running SnapMirror, we ran some tests very much
like the SPEC SFS97 [SPEC97] benchmark for NFS file
servers.

In the tests, data was loaded onto the server and a
number of clients submitted NFS requests at a specified
aggregate rate or offered load. For these experiments,
there were 48 client processes running on 6 client ma
chines. The client machines were 167 MHz Ultra-I Sun

. workstations running Solaris 2.5 .1, connected to the
server via switched IOObT ethemet to an ethemetNIC on
the server. The server was a Network Appliance F760 fil
er with the same characteristics as the filers in Section
5.1. The filer had 21 disks configured in a 320GB vol
ume. The data was being replicated to a remote filer.

6.1 Results

After loading data onto the filer and synchronizing
the mirrors, we set the SnapMirror update period to the
desired value and measured the request response time
over an interval of 60 minutes. Table 3 and Figure 5 re
port the results for an offered load of 4500 and 6000 NFS
operations per second. In the table, SnapMirror data is
the total data transferred to the mirror over the 60 minute

USENIX Association FAST '02: Conference on File and Storage Technologies 127

Microsoft Ex. 1016, p. 11
Microsoft v. Daedalus Blue

IPR2021-00831

128

Load Update CPU Disk SnapMirror
(ops/s) Interval busy busy data (MB)

base 66% 34% 0

1 min. 93% 50% 12817
4500

15 min. 74% 43% 6338

30min. 69% 40% 2505

base 87% 54% 0

1 min. 99% 67% 13965
6000

15 min. 94% 62% 8071

30 min. 91% 60% 3266

Table 3. SnapMirror Update Interval Impact on Sys
tem Resources. Dunng SFS-like loads, resource con
sumption diminishes dramatically when SnapMirror
update intervals increase. Note: base represents perfor
mance when SnapMirror is turned off.

lo~~~~~~~~~~G~---:~~4~5~0~0~o~p~s~/s~
.IJ,....-....,

8

6 G_with SnapMirror

---------4
base ----------

5 10 15 20 25 30

Update interval (minutes)

Figure 5. SnapMirror Update Interval vs. NFS re
sponse time. We measured the effect of SnapMirror on
the NFS response time of SFS-like loads. By increasing
SnapMirror update intervals, the penalty approaches a
mere 22%.

run.

Even with the Snap Mirror update period set to only
one minute, the filer is able to sustain a high throughput
ofNFS operations. However, the extra CPU and disk
load increases response time by a factor of two to over
three depending on load.

Increasing the SnapMirror update period to 30 min
utes decreases the impact on response time to only about
22% even when the system is heavily loaded with 6000
ops/sec. This reduction comes from two major effects.
First, each SnapMirror update requires a new snapshot

and a scan of the active map files. With less frequent up
dates, the impact of these fixed costs is spread over a
much greater period. Second, as the update period in
creases, the amount of data that needs to be transferred to
the destination per unit time decreases. Consequently
SnapMirror reads as a percentage of the total load de
creases.

7 Conclusion
Current techniques for disaster recovery offer data

managers a stark choice. Waiting for a recovery from
tape can cost time, millions of dollars, and, due to the age
ofthe backup, can result in the loss of hours of data.
Failover to a remote synchronous mirror solves these
problems, but does so at a high cost in both server perfor
mance and networking infrastructure.

In this paper, we presented SnapMirror, an asyn
chronous mirroring package available on Network Ap
pliance filers. SnapMirror periodically updates an on
line mirror. It provides the rapid recovery of synchro
nous remote mirroring but with greater~flexibility and
control in maintaining the mirror. With SnapMirror, data ·
managers can choose to update the mirror at an interval
of their choice. Snap Mirror allows the user to strike the
proper balance between data currency on one hand and
performance and cost on the other. ·

By updating the mirror periodically, Snap Mirror can
transfer much less data than would a synchronous mirror.
In this paper, we used traces of 12 production file sys
tems to show that by updating the mirror every 15 min
utes, instead of synchronously, SnapMirror can reduce
data transfers by 30% to 80%, or 50% on average. Updat
ing every hour reduces transfers an average of 58%. Dai
ly updates reduce transfers by over 75%.

Snap Mirror benefits from the W AFL file system's
ability to take consistent snapshots both to ensure the
consistency of the remote mirror and to identify changed
blocks. It also uses the file system's active map to avoid
transferring deallocated blocks. Trace analysis showed
that this last optimization is critically important for no
overwrite file systems such as WAFL and LFS. Of the 12
traces analyzed, 10 would have seen no transfer reduc
tions even with only update after 24 hours.

SnapMirror also leverages block level behavior to
solve performance problems that challenge logical-level
mirrors. In experiments comparing SnapMirror to dump
based logical-level asynchronous mirroring, we found
that using block-level file system knowledge reduced the
time to identify new or changed blocks by as much as
two orders of magnitude~ By avoiding a walk of directory
and inode structures, SnapMirror was able to detect
changed data significantly more quickly than the logical

FAST '02: Conference on File and Storage Technologies USENIX Association

Microsoft Ex. 1016, p. 12
Microsoft v. Daedalus Blue

IPR2021-00831

schemes. Furthermore, transferring only changed blocks,
rather than full files, reduced the data transfers by over
40%. Asynchronous mirror .updates can run much more
frequently when it takes a short time to identifY blocks
for transfer, and only the necessary blocks are updated.
Thus, SnapMirror's use of file system knowledge at a
block level greatly expands its utility.

Snap Mirror fills the void between tape-based disas
ter recovery and synchronous remote mirroring. It dem
onstrates the benefit of combining block-level and
logical-level mirroring techniques. It gives system ad
ministrators the flexibility they need to meet their varied
data protection requirements. at a reasonable cost.

8 Acknowledgments
The authors wish to thank Steve Gold, Norm Hutch

inson, Guy Harris, Sean OMalley and Lam lzlan for
their generous contributions. We also wish to thank the
reviewers and our shepherd, Roger Haskin, for their
helpful suggestions.

9 References
[Chutani92] S. Chutani, et. al. The Episode File System.

Proceedings of the Winter 1992 USENIX Confer
ence, San Francisco, CA, January 1992. pp. 43-60.

[Baker9l] M. Baker, J. Hartman, M. Kupfer, L. Shirriff,
J. Ousterhout. Measurements of a Distributed File
System. Proceedings of the 13th Symposium on Op
erating System Principles. Uctober 1991. pp. 198-
212.

[EMC] EMC Symmetrix® Remote Data Facility. http://
www .emc.com/.

[Growchowski96] E.G. Grochowski, R.F. Hoyt. Future
Trends in Hard Disk Drives. IEEE Transactions on
Magnetics, V32. May 1996. pp. 1850-1854.

[Hitz94] D. Hitz, J. Lau, M.A. Malcolm. File System De
sign for an NFS File Server Appliance. Proceedings
USENIX Winter 1994 Conference. pp. 235-246. ht
tp: //www.netapp.com/tech library/3002.html

[Hutchinson99] N.C. Hutchinson, S. Manley, M. Feder
wisch, G. Harris, D. Hitz, S. Kleiman, S. O'Malley.
Logical vs. Physical File System Baclrup. Proceed
ings Third Symposium on Operating System Design
and Implementation. February 1999.

[Kistler92] J.J. Kistler, M. Satyanarayanan. Disconnect
ed Operation in the Coda File System. ACM Trans
actions on Computer Systems,' l 0(1). February
1992.

[Kistler93) J.J. Kistler, Disconnected Operation in a Dis
tributed File System. Technical Report CMU-CS-
93-156. School of Computer Science, Carnegie
Mellon University, 1993 . ht1J?://www.cs.cmu.edu/
afs/ cs .cmu.edu/proj ect/ cod aN!' eb/ docs-coda. html

[McKusick84] M.K. McKusick, W.J. Joy, S.J . Leffler,
R.S. Fabry. A Fast File System for UNIX. Transac
tions on Computer Systems 2,3. August 1984. pp.
181-197 .

[Ousterhout85] J.K. Ousterhout, H. DaCosta, D. Harri
son, J.A. Kunze, M. Kupfer, J.G. Thompson, "A
Trace-Driven Analysis of the UNIX 4.2 BSD File
System," Proceedings of the lOth Symposium on
Operating Systems Principles (SOSP), Orcas Island,
WA, December, 1985, pp. 15-24.

[Rosenblum92] M. Rosenblum, J.K. Osterhout. The De
sign and Implementation of a Log-structured File
System. ACM Transactions on Computer Systems,
Vol.IO, No.1 (Feb. 1992), pp. 26-52.

[SPEC97] The Standard Performance Evaluation Corpo
ration. SPEC SFS97 Benchmark. http://
www.spec.org/osg/sfs97 /.

[Storage] Storage Computer Corporation,Omniforce©
~oftware. http://www.storage.com/ ·

[Tridgell96] A. Tridgell, P. Mackerras. The rsync algo
rithm. Department of Computer Science Australian
National University. TR-CS-96-05.

USENIX Association FAST '02: C~nference on File and Storage Technologi~s 129

Microsoft Ex. 1016, p. 13
Microsoft v. Daedalus Blue

IPR2021-00831

