
In this cl1apter, we introduce three nonstandard image coding tecl1niques: vector quantization (VQ) 
(Nasrabadi arid King, 1988) , fractal coding (Barn.sley and Hurd, 1993; Fisher, 1994; Jacquin , 1993), 
and n1odel-based coding (Li et al., 1994). 

9.1 INTRODUCTION 

The VQ, fractal coding, and n1odel-based coding tecl1niques have not yet been adopted as an jmage 
coding standard . However, due to their unique features tl1ese techniques may find some specia l 
application s. Vector quantization is an effectiv·e technique for performing data compression. Tl1e­
oretically, vector quantization is always better than scalar quantization because it fufly exploits th.e 
correlatio11 between components within the vector. The optimal coding performance will be obtained 
when the dimension of the vector approacl1es infinity, a11d then tl1e correlation between all com­
ponent s is exploited for compression. Another very attractive feature of image vector quantization 
is that its decoding procedure is very sin1ple i11ce it only co11sists of table look-up_s. However, there 
are two n1aj or problen1s vvith image VQ techniques. The first is that the complexity of vector 
quanti zation exponentially increases with tl1e increasing dimensionality of vectors·. Tl1erefore, for 
vector quanti zation it is in1portanl to soJve tl1e proble111 of how to design a practical coding syste111 
which can pro\1idc a reasonable performance under a given cornplexity constraint. The second 
major problen1 o·f image VQ is the need for a codebook, \Vhich causes se\1eral problems in practical 
application such as generating a universal codebook for a large number of images, scaling the 
codebook to fit the bit rate requirement, and so on. Recently, the lattice VQ schemes l1ave been 
proposed to address tl1ese problems (Li, 1997) . 

Fractal theory has a lor1g history. Fractal-based techniques l1ave been used in s-everal areas of 
digital image processi11g such as image segmentation, in1age sy11thesis, and con1puter graph ics, but 
only in recent years have they been extended to the applications of i·mage compression (Jacquin, 
1993). A fractal is a geometric form wl1ict1 l1as tl1e unique feature of l1aving extren1ely high visual 
self-similar irregular details wt1ile containi.ng very lo\v information content. Several n1ethods for 
image compressio r1 have bee.n developed based on different characteristics of fractals. One n1ethod 
is based on Iterated Function Systen1s (/ FS) proposed by Barnsley ( 1988). Tt1is metl1od uses the 
setl·-similar and self-affine property of fractals. Suct1 a syster11 consists of sets of transforn1ations 
including translatio n, rotation, and scalir1g. On the encoder side of a fractal image codjng system, 
a set of fractals is generated from the input in1age. These fractals can be used to recor1struct the 
image at tJ1e decoder side. Since these fractals are represented by very co1npact fractal transfor1J1a­
(1Qns, they require very small amounts of data to be expressed and stored as forn1ulas . Tl1erefore, 
the ihfor111ation needed to be transmitted is very s111all. Tl1e seoond fractal in1age codjn.g method 
is based on tlie fractal dimensio.n (Lu, I 993; Jang and Rajala, 1990). Fractal dimension is a good 
representation of the roughness of image surfaces. In this 111etl1od, tl1e image is first segmented 
usi11g the fractal dimension and tl1en tl1e resultant unif7orn1 segn1ents can be efficiently coded using 
the properties o·f the hu1nan visual system. Another fr,1ctal image coding sche111e is based on fractal 
geornetry, which is used to measure tl1e length of a curve wilh a yardstick (Walach, 1989). The 
details of these codi11g methods will be discussed i11 Sect.ion 9.3. 

The basic id·ea of ·1n0del-based cod.ing is to reconstruct an image \.Vith· a set o·f model paran1eters. 
The model parameters are then encoded and transmitted lo the decoder. At the deeoder tl1e decoded 
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FIGURE 9.1 Principle of image vector quantization. Th e dashed l ines corre pond to training set generalion, 
codebook generation, and transmission (if it is necessary). 

model parameters are used to reconstruct the image vvith the san1e rnodel used at the encoder. 
Therefore, the key techniques in the n1odel-based coding are in1age modeling, image analysis, and 
image synthesis. 

9.2 VECTOR QUANTIZATION 

9.2.1 BASIC PRINCIPLE OF VECTOR QUANTIZATION 

An N-Jevel vector quantizer, Q, is mapping from a K-dimensional vector set { V}, into a finite 
codebook, \¥ = { lV 1, w2, ••• , l-vN}: 

Q: V ~ W (9 .1) 

• 

In other words., it assigns an input vector, v, to a representative vector (codeword), l-V from a 
eodebook, W. The ve.ctor quantizer, Q, is completely described by the codebook, W = { l-V1, ~v2, ·· . , 

}>VJV}, together with the disjoint partition, R = {r1, ,· 2, •. • , ,·N}, where 

r; = { v: Q(v) = l>V; } (9.2) 

and lV and v are k-dimensional vectors. The partition should identically minimize the quantization 
error (Gersho, 1982). A block diagram of the various steps involved in i·mage vector quantization 
is de,picted in Figure 9. I. 

The nrst step in image vector q.uantization is the image f onnation. The image data are first 
partitioneo into a set of vectors. A large number of vectors from various images are then used to 
fo,rm a training set. The training set i~ used to generate a codebook, no11i1ally using an iterative 
clustering algorithm. The quantization or coding step involves searching eacl1 input vector for tile 
closest codeword in the code,book. Then the corresponding index of the selected codeword is coded 
and transmitted to the decoder. At the d.ecoder, the index is decoded and converted to the corre­
sponding vector with the same codeooo.k as at the encoder by look-up table. Thus, the design 
decisions in implementing image vector quantization include ( 1) vector for111ation; (2) training set 
generation; (3) eodebook generation; and (4) quantization. 

9.2.1.1 Vector Formation 

The first s,tep of ve.etar quantization is ·vector formation; that is, the decomposition of th·e im.ages 
into a set of vectors. Many different decompositions ba~e been proposed; exam,p1es include the 
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intensity values of a spatially contiguous block of pi.xels (Gersho and Ramaniuthi, 1982; Baker 
and Gray, 1983); tl1ese same intensity v~1]ues, but now normalized by tl1e mean and variance of the 
block (Murakami et al., l 982); the transforn1ed coefficients of the block pixels (Li and Zhang, 
1995); and the adaptive linear f)redictive coding coefficients for a block of pixels (Sun, 1984). 
Basically, the ,1pproacl1es of vector forn1ation can be classified into two categories: direct spatial 
or temporal, and feature extractior1. Direct spatial or temporal is a simple &pproach to for111ing 
,,ectors from the intensity values of a spatial or temporal contiguous block of pixels in an image 
or an image equence. A nur11be1· of ir11age vector quantizaton schemes have been investigated with 
this method. Tl1e other mett1od is feature extraction. An image feature is a distinguishing primitive 
cl1aracteristic. S0n1e features are n,1tural in tl1e sense that they are defined by the visual appearance 
of an image , while t'he other so-called artificial features result from specific manipulations or 
measuren1er1ts of in1c1ges or image . equences. In vector formation, it is well known that the image 
data in a spat ial domain car, be converted lo a different domain so that subsequent quantization 
and joint entropy encod ing can be more efficient. For this purpose, son1e features of image data, 
such as transformed coefficients and block n1eans can be extracted and vector quantized. The 
practical significa11ce of feature extraction is that it ·can result in tl1e reduct·ion of vector size, 
consequently reducing the complexity of coding procedure. 

9.2.1.2 Training Set Generation 

An optin1al vector quantizer should ideally 1natch the statistics of tl1e input vector source. Ho\vever, 
if the statistics of an input vector source are unknovvn, a training set representative of the expected 
input vector source can be used to design the vector quantizer. If the expected vector source has a 
large variance, ther1 a large trair1ing set is needed. To alleviate the implen1entation complexity 
caused by a large training set t.he input vector so.urce can be divided into .subsets. For example, in 
(Gers ho, 1982) the single input source is d.ivided into ''edge'' and ''shade'' vectors, (ind tl1e11 the 
sepa rate trainir1g sets are used to generate tl1e separate codebooks. Tl1ose separate codebooks are 
then concatenated into a fir1al codebook. In otl1er n1etl1ods, small local input sources corresponding 
to portions of the ir11age are used as the traini11g sets, tl1us the codebook can better n1alch the local 
statistics. However, the codebook needs to be updated to track the changes in local statistics of the 
input sources. This 1nay increase the cor11plexity and reduce the codi11g efficiency. Practically, in 
most codjng sys tems a set of typical images is selected as the training set and used to generate the 
codebook. The coding per·formance can then be ir1sured for the images with the training set, or for 
those not in the training se l but witl1 statistics similar Lo those in the training set. 

9.2.1.3 Codebook Generation 

The key step in cor1ventional in1age vector quantization is the developn1ent of a good codeboo k. 
The optimal codebook, using the n1ean squared error (MSE) criterion, must satisfy two necessary 
conditions (Gersl10, J 9·82). First, the ir1put vector source is partitioned into a predecid·ed nun1ber 
of region s with tl1e 1ninimum dista11ce rule. The nun1ber of regions is decided by the requirement 
of the bit rate, or compression ratio and coding perfor·mance. Second, the codeword or the repre­
sentative vector of this region is tl1e mean value, or the statistical center, of the vectors \Vitl1in the 
region. Under the~e two cor1ditions, a generalized Lloyd clustering algorithm prop.osed by Linde. 
B·uzo, and Gray ( 1980) tl1e so-called LBG algorithm has been extensively used to generate 
the codebook. The clustering algorithn1 is an iterative process, minirnizing a performance inde-x 
calculated fro,n the distances between the sample vectors and their cluster centers. Tt1e LBG 
clustering algoritl1m can only ge11erate a co:debook w.ith a local optin1um, wh.ioh depends on tl1e 
initial cluster seeds . Two basic procedures have been used to obtain the initial codeboo k or cluster 
seeds. In the first approacl,, t11e starting point in,1olves" finding a sn1all codebook \Vith only two 
code,vords, and then recursively splitting the codeboo·k until tl1e required nurnbe-r of codewords is 
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obtained. This approach is referred to as binary splitting. The seco 11d procedure starts \vith initial 
seeds for the required number of codewords, these seeds being generated by preprocessi ng the 
training sets. To address the problem of a local optimum, Equitz (1989) propo sed a new clustering 
algorithm, the pairwise nearest neighbor (PNN) algorithm . The PNN algori thm begins \vith a 
separate cluster for each vector in tl1e training set and n1erges togetl1er l wo clusters at a tirne until 
the desired codebook size is obtained. At the begi11ning of tl1e clustering process, eac l1 cluster 
contains only one vector . In the following process the two closest vector s in the training set are 
merged to their statistical mean value, in such a way th.e error incurred by replaci .ng tl1ese two 
vectors \vith a single codeword is minimized . The PNN algorithm significan tly reduces computa­
tional complexity without sacrificing performance. This algorjthm can also be used as ,in initial 
codebook generato .r for tl1e LBG algorithm. 

9.2.1.4 Quantizati .on. 

Quantization in the context of a vector quantization involves selecting a code\vord in the codebook 
for each input vector. The optin1al quanti ·zation, in turn, in1plies tl1at for each i11put \1ector, i,, tl1e 

closest codeword, iv;, is found as sho\vn in Figure 9.2. The measuren1ent criterion co uld be mean 
squared error , absolute error, or other distortion 1neasures. 

A full-se ·arch quantization is an exhaustive search pro·ces.s over the en lire codebook for finding 
the closest codeword, as sho\vn in Figure 9.3(a). It is optin1al for the given codeboo k, but fhe 
co·mputation is more e.xpen,sive. An alternative approach is a tree-sea rct, qua11tization, wl1ere the 
searc .h is carried out based on a hierarchical partition . A bi.nary tree earcl1 is shown in Figure 9 .3(b ). 
A tree search is much faster than a full search , but it is clear that the tree sea rch. is suboptimal for 
the given cod'ebook an.d require s m.ore memory for the codebook. 

Codebook 

Input vector 
. 
V Index k 

Quantiution 

FIGURE 9 .. 2 Principle of vector quantization. 

(a) (b.) 

FIGURE 9.3 (a~ Full search quantization; (b) binary 1ree search quantization. 
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9.2.2 SEVERAL IMAGE CODING SCHEMES WITH VECTOR QUANTIZATION 

In this section, we arc gojng to preser1t several image coding schernes usjng vector quantization 
\vhich include res idual vector quantization, classified vector quantization, transfonn domain vector 
quantization, predictive vector quan,tization, and block truncation coding (BTC) which can be seen 
as ,1 binary vector quantiz atio11. 

9.2.2.1 Residual VQ 

In L~1e conventional in1age vector quar1tization, the vectors are fom1ed by spatially partitioning the 
image data into blocks of 8 x 8 or 4 x 4 pix~ls. In the original spatial domain the statistics of 
vectors n1ay be ,videly spread in lhe n1ultidimensional vector space. This causes difficulty in 
generating the codeboo k witl1 a finite size and limits the coding perfor r11ance. Residual VQ is 
proposed to alleviate this problem. In resi,dual VQ, the mean O'f tl1e block is extracted and coded 
separately. The vectors are forn1ed by subtracting the block mean from the original pixel values. 
This scheme can be f urlher n1odified by cor1sidering tl1e variance of tl1e blocks. The original blocks 
are converted to the vector5 with zero mean ar1d unit standard deviation with the following con­
version fon11ula (ML1raka111i et al., 1982): 

!· -I 

111. = _!_ ~ S 
I K ~ J 

i=O 

(9.3) 

(9 .4) 

(9.5) 

where I'll; is the mean value of ith block, a,. is lt1e ,,ariance of ith block, si is the pixel value of pixel 
j U = 0, .. . , K-1) in the ith block, K is the total nun1ber of pixels in the block, and J.J is tl1e norn1alized 
value of pixel j. The new vector X; is now f orn1ed by xi U = 0, I, ... , k-1 ): 

(9.6) 

With the above norn1alization the probabilily function P(X) of input vector X is approximately 
sin1ilar for image data from different scenes. Therefore, it is easy to generate a codebook for the 
new vector set. The problem witl1 this method is tl1at the n1ean and variance values of blocks have 
to be coded separately. This increases the overhead and lin1its tl1e coding efficiency. Several methods 
have been proposed to improve tl1e coding efficiency. One of tl1ese methods is to use predictive 
co·ding to code the block n1ean values. T,l1e mean value of the current bloc.k can be predicted by 
one of the previously coded neighbors. In such a ,vay, tl1e coding_ efficien.cy increases as the use 
of i nterblock correlation. 

9.2. ,2.2 Classified VQ 

In image vector quantization, the codebook is usually generated using trainir1g set under constraint 
of minimtz-ing the mean squared error. Tl1is in1plies tl1at the code\vord is the statistical mean of the 
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region. During quantization, each input vector is replaced by its closes t codeword. Tl1erefore, tl1e 
coded images usually suf'fer from edge distortion at very low b·it rates, si11ce edges are sn1oothed 
by the operation of averaging W·itl1 the s111all-sized codebook. To overcon1e this problem , \ve can 

classify t11e training vector set into edge vectors and shade \1ectors (Gersl10, 1982). Two separate 
codebooks can tl1en be ge11erated \vitl1 tt1e two types of training sets. Eacl1 i 11pu L vector can be 
coded by the appropriate codeword in tl1e codebook. However, tl1e edge vectors can be further 
classified into n1any types according to their location and a,1gul ar orientation. The classified VQ 
can be extended into a system wl1icl1 conla·ins n1a11y sub-codebooks , each repre enting a t)1pe of 
edge. However, tl1is would increase the con1plexity of tl1e systern and would be l1nrd to implement 
in prac.tical applications. 

9.2.2.3 Transform Domain VQ 

Vecto·r quantization can be perf onn ed in tl1e transf orrn dorn,1in. A spalial block or 4. x 4 or 8 x 8 
pixels is first transfom1ed to the 4 x 4 or 8 x 8 tra11sfor111ed coefficients. Tl1ere are seve ral ways to 
fom1 vectors witl1 transfor111ed. coefficients. 111 the first 1netl1od, a nun1ber of !1igJ1-orde.r coe fficients 
can be discarded since most of tl1e energy is usually conlained in Lhe lo\v-order coe fficients for 
most blocks. This reduces the VQ computatio11al co111plex i ty at the expe11 e o f c.1 sn1al l increase in 
distortion . However , for some acti\1e blocks, th·e edge inforn1atio11 is contained in tl1e high frequen­
cies, or high-order coefficients. Serious subjective distortion wi 11 be caused by d isct1rd i ng l1igh 
frequencies. In the second method, the transfom1ed coefficie11ts ~ire divided into several bands and 
each band is used to f or1n its corresponding vector set. This method is eq u i \ralen t to the classified 
VQ in spatial domain. An adaptive schen1e is tl1er1 developed by usir1g two kjnds of vector fo11nation 
methods. The first metl1od is used for the b]ocks conlaining the moderate i11tensi ty variation and 
the second n1ethod is used for the blocks \Vith higl1 spatial activities. However, the complexity 
increases as .more codebooks are needed in this kind of adaptive coding system. 

9.2.2.4 Predictive VQ 

The vectors are usually formed by the spatially consecutive blocks . Tl1e consec utive vectors are 
then highly statistically dependent. Therefore, better coding performance can be achieved if the 
correlation between vectors is exploited. Several predi.otive VQ scl1e1nes have bee n proposed to 
address this problem. One 'kind of predictive VQ is finite state VQ (Foster et al., 1985) . The finite­
state VQ is similar to a trellis cod·er. In the finite state VQ, tl1e codebook co11sists of a set of sub­
codebooks. A state variable is then used to specify which sub-codebook should be selected for 
coding the input vector. The infor1nation ·about the state variable must be inferred fron1 the received 
sequence of state symbols and initial state such as in a trellis. coder. Theref ore, no side informa tion 
or no o·verhead need be transmitted to the decoder. The new encoder state is a function of the 
previous encoder state an.d the selectep sub-codebook. This pem1its the decoder to track tl1e encoder 
state if t,he initial con9itiqn is known. The finite-state VQ needs additional memory to store tl1e 
previo .us state, but it takes advantage of correlation between su.ccessive input vectors by choosing 
the appropriate codebook for the given past history. It should be noted that the mini1num distortion 
selection rule of conventional VQ is not neces.sary optimum for finiLe-state VQ for a giv.en decoder 
since a low-distortion codeword may lead to a bad state a.nd hence to poor long-term behavior. 
Th·erefore, the key design issue of finite-state VQ is to find a good next-state t·u11ction. 

Another predictive VQ was proposed by Hang and Woods (1985). In this system, tl1e input 
vector is formed in such a way that tl1e curre.nt pixel i~ as the first elem~nt of the vector a11d the 

. . 
previous inputs as tlie rem·aining elements in tl1e vector. The sy~tem is like a mapping or a recursive 
filter which is used to p.redict the next pixel. The 1napping is implemented by a vect0r quantizer 
lo0k-~p table and pr<>vides the preclictive errors.,. 
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9.2.2.5 Block Truncation Coding 

In tl1e block truncati on code (BTC) (Delp and Mitcl1ell, 1979), an image js first divided into 4 x 4 
blocks. Eacl1 block is ll1en coded i11dividt1ally. The pixels in e.ach block are first converted into two­
level signals by using the first two 111or11ents of the block: 

rz = 111 + a q 

N-q 

N-l 
b = 11i- a 

CJ 

(9.7) 

\Vhere ni is the rnea11 value or tl1e bloc.k cr is Lh.e standard deviation of the block, N is the number 
of total pixels in tl1e block, and q is the nur11ber of pixels which are greater ir1 value thar1 ,n. 
Tl1erefore, eac l1 block can be described by tl1e values of block n1ean, varia11ce, and a binary-bit 
plane whict1 indicates wl1etl1er the pixels have values above or below the block n1ean. Tl1e binary­
bit pla11e ca11 be see11 as a binary vector quar1tizer. lf tt1e n1ean and variance of tl1e block are 
quantized to 8. bits, tl1cn 2 bits per pixel is ncl1ieved for blocks of 4 x 4 pixels. Tl1e convenliona l 
BTC sche111e can be 111odified to increa e the coding efficiency. For example, the block mean can 
be cocJed by a DPCM coder wl1ich exploits tl1e interblock correlation. Tl1e bit plane can be code·d 
\Vith an entropy coder 011 Lhe pattern · (Udpikar and Raina, 1987). 

9.2.3 LATIICE VQ FOR IMAGE CODING 

In cOn\1entional image vector quantization schemes, tl1ere are several issues, 'vvhi·ch cause s_ome 
difficulties for tl1e practica 'I UJ)plication of i111age vector quantization . The first problern is l.he 
limitati on of vector dirr1ension. Ir l1as been indicated that tl1e coding perfor111ance of vector quan­
Lization increases as tl1e vector din1cnsion while tl1e coding complexity expone11tially increases at 
the san1e ti111e as tl1e increasing vector dimensior1. Therefore, in practice only a srna ll ve.ctor 
dimen sion is possible under tl1e con1plex,ity cor1strai11t. Ar1otl1er important issue ir1 VQ is the need 
for a codebook. Much research effort has gone into findi11g 110w to ge11erate a codeboo k. Ho\vever, 
in practical appljcat ions there is a,1otl1er problem 0f 110\v to scale the ·codebook for vt1rious rate­
distortion requiren1ents. Tl1e codebook ger1erated by LBG-like algorithms witl1 a training set is 
usualJy only suitable for a specified bit rate arid does 11ot l1ave tl1e fle~ibility of codebook scalabil.ity. 
For examp le, a codebook ger1erated for an image \-Vitl1 sn1all resolution may not be suitable for 
in1ages witl1 high reso lution. E\,en for tl1e same spatial resolutio11, different bit rates \vould require 
different codebooks. Additior1ally, the VQ needs a table to specify tl1e codebook and, oo.11sequeritly, 
tl1e con1plexi ty of sloring and searct1ing is too l1igl1 to have a very large table. This furtl1er lin1its 
the coding perfonn ance of image VQ. 

These problems become rnajor obstacles for i1nplen1enting in1age VQ. Rece11tly, an algoritl1n1 
of lattice VQ has been proposed to address tl1ese problen1s (Li et al., 1997) .. Lattice VQ does not 
have the above problems. Tl1e codebook for lattice VQ is sin1ply a collection of la.ttic.e points 
uniforn1ly distributed over the vector space. Scalability can be acl1ieved by scaling the cell size 
associated with every lattice point just like i11 tl1e scalar quantizer by scali11g the quantizatjon step. 
The basic concept of tl1e lattice can be found in (Con\\ray and Slone, 199 l ). A typical lattice VQ 
scheme is ·sf1own in Figure 9.4. There are l\VO steps i11\10J,,ed ir1 tl1e image lattice VQ. The first step 
is to find tl1e closest lattice point for tl1e i11put .vector. Tl1e second step is to label the lattice point, 
i.e., mapping a lattice point to an index. Since lattice VQ does need a codebook, the index assignment 
is based 011 a lattice labeling algo.ritl1m instead of a look-up table such as in conventional VQ. 
Therefore, the key issue of lattice VQ is to develop an efficient lattice-labeling algorithn1. Witl1 this 
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~gorithm the closest lattice point and its correspo.nding index within a finite boundary can be 
obtained by a calculation at the encoder for each input vector. 

At the decoder, 'the index is converted to the lattice point by the same labeling algorithm. The 
vector is then reconstructed with the lattice point. The efficiency o·f a labeling algorithm for lattice 
VQ is measured by how many bits are needed to represent the indices of the lattice points \Vithin 
a finite boundary. We use a two-dimensional lattice to e·xplain the lattice labeling efficiency. A two­
dimensional lattice is shown in Figure 9.5. 

In f'igor.e 9.5, th.ere are seven lattice points. One method used to· label these seven 2-D· lattice 
p.oints is to use their coordinates (x,y) to label each point. If we label x and y separately, we need 
two bits to label three values .of x and three bits to labe] a possible five v.a]ues of y, and need a tQtal 

of five bits. It is clear that three bits are sufficient to label sev·en lattice points. Therefore, different 
labelin.g algerithms may have different labeling efficiency. Several algorithms bav.e been developed 
for multidimensional lattice labeling. In (C.onway, 1983 ), the labeling method assigns an index to 
every lattice point within a Voronoi boundary whe.re the shape of the boundary is the same as the 
shape of Voronoi ceJls. Apparently, for different dimension, th.e bo·un.daries have different shapes. 
In the algorithm proposed in (Laroia, 1993), the same method is used to assign an index to each 
lattice point. Since the boµndaries are defined by the labeling algorithm, this algorithm might not 
aehieMe a 100% labeling eftic,iency for a prespeeified boundary such as a pyramid boundary. _The 
algorithm propo§ed by .Fisclier (1986) can assign an inde~ to every lattice point within a prespecifie.? 
Ryramid bounaary and acliiev,es a 100% labeling efficiency, but this algorithm can, only b.e used 
.for the; zn lanice. ln ,a rec.ently proposed algerithm (Wang et al., 1998), the techn.ical breakthrough 
was o.btained. In thi.s algorithm a labeling m~thod was. developed for Construction-A. and 
aonstroetio:n-B lattiees ~Conw,ay, 198'3), whicnis very useful for VQ with proper vector aimens1o~s, 
such as li, and achieves 100% effiejtncy,. Addi'tioha,lly, these algorithms are used for labeling lattice 
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points with 16 d.in1e11~ions and pro~ide minimum distortion. These algorithms were developed 
based on the relat1onsl11p between lattices and linear block codes. Construction-A and Construction­
B are the two simplest ways to construct a lattice from a binary linear block code C = (n, k, d), 
where n, k, and d are the lengLl1, the dimension, and the minimu,m distance of the code, respectively. 

A Construction-A lattice is defined as: 

A = C+2zn 
// (9 .8) 

~vhere zn i s tl1e ti-dimensional cubic lattice and C is a binary linear block code. There are two ste·ps 
1nvolved for labeling a Construction-A lattice. Tl1e first is to order the lattice points according to 
tl1e binary linear block code C, and then to order lhe lattice points associated with a particular 
nonzero binary codewo.rd. For the lattice points ass.ociated with a nonzero binary code\vord, two 
sub-lattices are considered separately. One sub-lattice consists of a.II the dimensions that have a 
' 'O'' component in tl1e binary codeword and the other consists of all the dimensions that have a ''1 '' 
con1ponent in the binary codeword. The first sub-lattice is considered as a 2Z lattice. while tl1e 
second is considered as a translated 2Z lattice. Therefore, tl1e labeling problem is reduced to labeling 
the Z lattice at the final stage. 

A ConstrL1ction-B lattice is defir1ed as: 

A =C+2D 
ii II 

(9.9) 

where D,, is an ,z-dirnensional Construction-A lattice with tl1e definition as: 

D
11 

= (11,1z -1 , 2) + 2zn (9.10) 

and C is a bi11ary doubly eve.n ti near block code. When ,i is equal to 16, tl1e binary even linear 
block code. associated with A16 is C = ( 16, 5, 8). The method for labeling a Construction-B lattice 
is sin1ilar to the method for labeling a Construction-A lattice \Vith two minor dift'erences. The first 
difference is that for any vector )t = c + 2x, .,t E Z0

, if) ' is a Construction-A lattice point; and x E 

D,,, if )' is a Construction-B lattice point. Tl1e second difference is that C is a binary dou.bly even 
linear block code for Construction-B lattices while it is not necessarily doubly even t·or Construc­
tion-A lattices. In tl1e implement ation of these lattice poir1t labeling algorithn1s, the encoding· and 
decoding functions for lattice VQ l1ave been developed in (Li et al., 1997). For a given input vector, 
an index repre senting the closest lattice point will be found by the e11coding function, and for an 
input index the reconstructed vector will be generated by the decoding .function. In summary, the 
idea of lattice VQ for i111age coding is an important achi·evement i.n eli·n1inating the need for a 
codebook for image VQ. The development of efficient algorithms for lattice point labeling makes 
lattice VQ feasible t'or i.mage coding. 

9.3 FRACTAL IMAG 'E CODING 
• 

9.3.1 MATHE.MATICAL FOUNDATION 

A fractal is a geometric fonn whose irregular details can be represented by some objects with 
dJfferent scale and angle, whicl1 can be described by a set of transfor1nations such as affine 
transformations. Additi_onally, the objects used. to represent the image's · irregular details l1av.e son1e 
form of self-similarity and these objects can be us·ed to represent an image in a sin1ple recursive 
way. An exainple of fractals is the Von Koch curve as shown in Figure 9.6. The fractals can be 
us~d to gen~rate ar1 image. The fractal in1age codi11g that is based on iterated fu11ction systems 
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Eo 

• 

• 

FIGURE 9.6 Construction of the Yon Koch curve. 

(IFS) is tl1e inverse process of image generation \virh fractals. Tl1erefore, tl1e key technology of 
fractal image coding is the generation of fractals with an IFS. 

To explain IFS, \Ve start fron1 the contractive affine transfom1ation. A Lwo-din1ensional affine 
transf onnation. A is defin·ed as follows: 

A 
X 

) ' 

a --
b ,t e 

(9 .1 I ) + 
f 

This is a transfom1a.tion which con.sists of a linear transformation followed by a shift or translation, 
and maps points in the Euclidean plane into ·ne\v points in the another Euclidean plane . We define 
that a transformation is contractive if the distance between two points P1 and P2 in the new plane 
is smaller than their distance in the original plane1 i.e., 

(9.12) 

where s is a constant and O < s < 1. The contractive transformations have the property ·that when 
tl1e contractive transfo1111ations are repeatedly applied to the points in a plane, these points \viii 
converge to a fi:>eed point. A11 iterated functioti systenz (IFS) is clefi,zed as a collectio11 of corzt,·active 
affine transfon11atia11s. A wel'l-know.n example of IFS contains four t·ollowing transformations: 

X 

. 

--
a 

C 

b _.t e 
+ 

d ) I f 
i=l,2,3 , 4. 

This is the IFS of a fer:n leaf, whose parameters -are shown in Table 9 .1. 

(9.13) 

The transfo, ,nation A I is used to g~nerate t_he stalk, the transformation A2 is used to ge.nera~e 
the right leaf, the transformation A3 is used to ge(!erate the left leaf, and the transfor1nation A4 15 

used to generate main fern. A fundamental theorem of fractal geometry is that each IFS defines a 
uniq,ue fractal image. This image is refefcfed to as the attractor of th.e IFS~ In other words, an image 
corresponds tg., the ·attracto.r of an IFS. Now let us ·exp.lain how to gene.rate the image using the IFS. 
Let us suppose that an IFS contains N affine transformations., A1, A2, ••• AN, and eac.h transformation 
has an assoc.iated pro6ability, p1., p2, ••• , P.N, respecti:vely. Suppose that this is a complete set and 
the sum of the probab'.ility equals to I, i.e., 
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TABLE 9.1 
The Parameters of the IFS of a Fern Leaf 

a b C d e f 

A, 0 0 0 0 .16 0 0 .2 

A2 0.2 -0 .26 0.23 0.22 0 0 .2 

A3 -0 .15 0.28 0.26 0 .24 0 0 .2 

A~ 0 .85 0.04 -0 .04 0 .85 0 0 .2 

P1 +p 2 + ... +pt1= l andp ; >Ofori=O, I , ... ,N. (9 . 14) 

The proced ure for generali11g an attractor is as follows. For any given point ( ,t'o, y0) in a Euclidean 
plane, one transformation i11 the IFS according to its probability is selected and applied to this 
point Lo g.e11er,lle a new point (x 1, ) ' 1). Tl1en a11other transfonnation is selected according to its 
probability and applied to the point (x1,)11) to obtain a new point (x2,y2) . This proces s is repeated 
over and over agajn to obtain a long sequence of points: (,t 0,y0), (x1,y1), • •• , (x,,,)1

11) , ••• • According 
to the theory of iterated function systems, these points will converge to an image that is the attractor 
of tt1e given IFS. The above-described procedure is sl1own in the flo\vchart o·f Figure 9.7. With the 
above algori tl1m and the paran1eters i11 Table 9.1, initially the point can be anywl1ere within tl1e 
large square, but after several iterations it will converge onto the fern. The 2-D affine transfo11n·ations 
are extended to 3-D transf onn ations, which can be used Lo create fractal surfaces with the iterated 
function systems. This fraclal surfa.ce can be considered as the gray level or brightne ss of a 2-D 
. • image . 

9.3.2 IFS-BASED FRACTAL IMAGE CODING 

As described in the last sectio 11, an IFS can be used to generate a unique image, which is referred 
to as an attractor of the IFS . In other words, this image can be simply represented by the parameters 
of the IFS. Therefore, if we can use an inverse procedure to generate a set of transfo11nations, i.e.~ 

FIGURE 9.7 Flo\vchart of image generation 
with an IFS. 

No 

Given 
(Xo, Yo) 

Choosck 
(O<k<N) with Pk 

(x1, Y1) 
=A1c((X-0, Yo) 

• 

Plot (x 1, y1) 

Check 
convergence 

Yes 

Stop 

• 
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an IFS fro_m an image, then these transformation s or the IFS can be used to represe nt the approx­
imation of tl1e i111age. Tl1e in1age coding system can use the param eters of tl1e tra11s·formations in 
the IFS instead of the origina.1 image data for storage or transn1iss ion. Since the IFS contains only 
very lin1ited data such as transformation paran1eters, this image codi ng method m a)' ·result in a 
very high con1pression ratio. For example, tl1e fem image is represe nted. by 24 i11regers or 192 bits 
(if eacl1 integer is represented by 8 bits). This nun1ber is n1uch sn1aller than the nun1ber needed to 
represent the fern image pixel by pixel. Now tl1e key issue of tl1e / FS-bas cd fractal image coding 
is to generate the IFS for the given input i1nage. Three ·n1ethods have been propose d to obtain the 

• 

IFS (Lu, 1993). One is the direct method , that directly finds a set of contr~ctive affine transfor1na-
tions from the image based on the self-similarity of the image . The seco nd n1ethod is to partition 
an image into the smaller objects whose / FSs are kno\vn. These / FSs are used to form a library. 
The ·encodjng proced.ure is to look for an IFS fron1 the library for ·each small object. The third 
method is called partitioned IFS (PIPS). In this n1ethod, the image is fir st di,,ided into smaller 
blocks and then the IFS for each block is found by mappin g a larger block into a small block. 

In the direct approach, the image is first p.artitioned into nonoverlapped blocks i11 such a way 
that each block is similar to the whole image and a transformati on can map tl1e whole image to 
the block. The transfo11nation for each individual block may be different. T l1e combin ation of these 
transfer 1nations can be taken as the IFS of the given image. Then n1uch fewer data are required to 
represent the IFS or the transformation s than tb transmit or store the give n imag e in the pixel by 
pixel way. For the second approach , the key issue is ho,v Lo partiti on the gi· en image into objec ts 
whose IFSs are known. The image processing techniques such as color sepa ration, edge detection, 
spectrum analysis, and texture variation analysis can be. used for image partiti oning. Ho·wever, for 
natural image~ or arbitrary images, it may be jmpossible or very difficult to find an IFS \vhose 
attractor perfectly covers the original image. There .fore, for most natural images the partiti oned IFS 
method has been proposed (Lu, 1993). In tl1is method, tt1e transforn1ations do not n1ap tbe \Vhole 
image into small block. For encoding an image, the wl1ole image is first partiti oned into a num·ber 
o.f larger blocks that are referred to as domain blocks. The domain blocks can be overlapped. Then 
the image is. partitioned into a number of smaller blocks that are called as rang e blocks. The range 
blocks do not overlap an.d the sum total o·f the range blocks covers the whole in1age. In the third 
stept a set of contractive transfo1111ations is chosen. Each range block is n1apped into a domain 
block with a searching method and a matching criterion. Th.e combination of the transformations 
is, used to fo1111 a partitioned IFS (PIFS). The parameters of PJFS are transmitted to the decoder .. 
It is noted that no do·main blocks are transmitted . The decoding starts with a fiat background. The 
.iterated process is then applied with the set crf transformations . The recon struct ed in1ag·e is then 
obtained after the process converges. From the above discussion, it is found that there are three 
main design issues involved in the b.lock fractal image coding system. First are partitioning 
techniques which include ran.ge block partitioning and domain block partitioning . As mentioned 
earlier, the domain block i's larger than the range block. Dividing the image into square blocks is 
the simplest partitioning approach. The sec·ond issue is the choice of distortion measurement and 
a searching method. The common distortion measurement in the block fractal image coding is the 
root mean square (R.MS) error. The c,losest match between the range block and transfo1·med domain 
block is found by the RMS distortio·n measurement. The third method is the selection of a set of 
contractive transfo1111ations defined consistently with a partition . 

It is noted that tfie partitioned IFS (Pf FS)-based fractal image coding has several similar features 
with. image vecto .r quantization. Both coding schemes are block-ba ·sed coding schemes and need a 
codebook for encoding. For P,/FS-based fractal image coding the domain blocks can be seen a_s 
fo1·1ning a virtu.al codebo ·ok. One difference is that the fractal image coding· does not need to trans·init 
the codebook data (domain blocks) to the d~coder while VQ does. The second difference is the 
6lock size. For VQ, block size for the code vector and input vector is the same while in PIPS 
fractal coding tbe size of the domain blocl< is different from the size 0f the range blocks. Another 
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differe11ce is Ll1at in fractal image coding the image itself serves as the codebook, while this is not 
true for VQ image coding . 

9.3.3 OTHER FRACTAL IMAGE COOING METHODS 

Besides the IFS-based fractal image coding, there are several other fractal image coding methods. 
One is the segrnentation-based coding scheme using fr-actal dimensions. In this method, the image 
is segrnented into regions based on the properties o·f the human visual system (HVS) . The image 
is segn1ented into the regions, each of these regions is homogeneous in the sense of having sin1ilar 
features by visual pe·rception. Tl1is is different from the traditional image segmentation techniques 
that try to segment an image into regions of constant intensity. For a complicated image, good 
representation of an image needs a large number of small se·gmentatjons. However, in order to 
obtain a high compression ratio, the number of segmentations is limited. The trade-off between 
image quality and bit rate has to be considered. A parameter, fractal dimension, is used as a measure 
to control the trade-off. Fractal dimension is a characteristic of a fractal. It is re1ated to a metric 
property such as the length of a curve and the area of a surface. The fractal dimension can p.rovide 
a good measurement of the perceptual rougl1ness of the curve and surface. For example, i·f we use 
many segment s ot- straight lines to approximate a curve, by increasing the length of the straight 
lines perceptually rougl1er curves are represented. 

9.4 MODEL-BASED CODING 

9.4.1 BASIC CONCEPT 

1n the model-ba sed coding, an image model that can be a 2-D model for still images or a 3-D 
model for video sequence is first constructed. At the en·coder, the model is u·sed to analyze the 
input image . The model parameters are then transmitted to the decoder. At the decoder the recon­
structed image is synthesi zed by the model parameters, with the same image model used at the­
encoder. This basic idea of model-based coding is shown in the Figure 9.8. Therefore, the basic 
technique s in the model-based coding are the image modeling, image analysis, and image synthesis 
technique s. Both image analysis an.d s.ynLhesis are based on the image model. The image modeling 
techniques used for image coding can normally be divided into two classes: structure modeling 
and motion modeling . Motion rnodeJing is usua11y used for video sequences and moving pictures , 
while structure modeling is usually used for still image coding. The structure model js used for 
reconstruction of a 2-D or 3-D scene model. 

lnpu • Model To cbao t image Image 
Parameter 

Analysis • Encoder 

oel 

• 

' 

Image 
Model 

· tructed 
From ch Image Model ,, Image Parameter 

Synthesis Decoder -
-

Recons 
aooel 

'' 
I 

FIGURE 9.8 Basic principle of model-based coding. 
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9.4.2 IMAGE MODELING 

Tl1e geon1etric 111odel is usually used for image structure description. Tl1e geo n1etric r11odel can be 
classified i11to a surface-based description and volun1e-based description. The major advantage of 
surface descriplion _is that such description is easily converted into a surface represe11tati.on that can 
be encoded and transmitted . In these models tJ1e surface is approxi111ated by planar polygonal 
patches such as triangle patches. TJ1e s~rfa_ce sJ1ape is represented by a set of poi 11ts tl1at repres.ent 
the vertices o·f these triangle meshl~s. The size of tl1ese triangle patches can be adj usted according 
to the surface complexity. In other \¥ords, for more co111plicated areas , more triar1gle n1eshes are 
needed to approximate the surface \.Vl1ile for sn1oothing areas, tl1e mesh sizes can be larger or less 
vertices of the triangle meshes are needed to represent tl1e surface. The volun1e-based description 
is a natural ap·proacl1 for modeling niost solid \VOrld objects. Most existing researc h work on vo·lume­
based description focuses on tJ1e parametric volun1e description. Tl1e volun1e-based description is 
used for 3-D objects or video sequences. 

Ho\vever, model-bas ed coding is successfully applicable onl)' to cer tain kinds of i1na·ges since 
it is very 'hared to find general i1nage n1odels suitable for n1ost natural scenes. The f e \V successfu l 
examples of image models inc·lude the human face, head, and body. Tl1ese n1odels are dc\reloped 
fo.r Lhe analysis and synth·esis of moving images. Tl1e face ar1imation has been adopted for the 
MPEG-4 visual coding. The body animation is under considera tion for version 2 of MPEG-4 visual 
coding. 

9.5 SUMMARY 

In this chapter three kinds of in1age coding techniques, vector quantization, fractal· image codi ng, 
and model-based coding, which are not used in tl1e current standards, l1ave b.een presented. All 
three techniques have several important features such as very high compres.sion ratios for certain 
kinds of images and very si1nple decoding procedures (especially for VQ). Ho\vever, due to son1e 
limitations these techniques have not been adopted by industry standards. It should be noted that 
re.cently the facial model face animation tec.hnique has been adopted for the .MPEG-4 visual standard 
(mpeg4 vis.ual). 

9.6 EXERCISES 

9-1. In the modified residual VQ described in Equation 9.5, with a 4 x 4 block and 8 bits for 
each pixel of original image1 \Ve use 8 bits for coding block mean and block variance. 
We want to obtain the final Bit rate of 2 bits per pixel. What codebook sjze do we have 
to use for the coding residual, as.suming that \Ve. use fixed-lengtl1 coding to code vector 
indices? 

9-2.!' In the block truoc_ation coding described in Equation 9 .7, what is the bit rate for a block 
size of 4 x 4 if the .mean and variance are. both encoded with 8 bits? D·o you have any 
suggestions for red.ucing the bit rate wjtl1out seriou$ly affecting the reconstruction qualjty? 

9-3. Is the codebook generated with the LBG algorithm local optimum? List the several 
important factors that wilf affect the quality of codebook generation. 

9-4. In image coding using VQ, what kind of problems will be caused by using the codebook 
in gracticJ] applicatiQns (hint: o.hanging bit rate). 

9.-5~ What is the most im:portant improvement of the lattice VQ over traditional VQ in practical 
application. What is the key iss·ue for lattice VQ .for image coding application? 

. . 

9-6. Write a subranrine to generate a fern leaf (using C) . 

• 
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Up to this point , what we l1ave discussed in the previous chapters were basic tecl1niques jn image 
coding, specifi ca lly, technique s utilized in still in1age coding. From here on, we are going to address 
tt1e issue of video sequence compress ion. To fulfill the task, we will first define the concepts of 
in1age a11d video seq uences. Tl1en we address the issue of interframe correlation between successive 
frames. Two tecl1niques in exploitation of interframe c.orrelation , frame replenisl1ment and motion­
compensated coding, will Ll1en be discussed. The rest of the chapter covers the concepts of motion 
analy sis and n1otion cornpensation in general. 

10.1 IMAGE SEQUENCES 

In this section the concept of various image sequences is defined in a theoretical and systematic 
manner . The relation sl1ip between image sequences and video sequences is also discussed. 

It is well .knowr1 that i11 tl1e 1960s the advent of the sem,iconductor computer and the space 
program sw iftly brought the field of digital i1nage processing into public focus. Since then the field 
has experienced rapid growth and has entered every aspect of modern technology. Since the early 
1980s, digital image s.eque11ce processing l1as been an attractive research area (Huang, I 98 la, 1983). 
This is not surprisir1g, because an irnage sequen·ce, as a collection o·f in,ages, may provide more 
info11r1ation than a single image fran1e. The i.ncreased computational complexity a.nd memory space 
associated with image sequer1ce process ing are beco111in·g more affordable due to n1ore ad,vanced, 
achievable computational capability. Wi.th the tren1endous advancements continuously made in 
VLSI computer and information processing, image and video sequences are everrnore indispensable · 
elements of modern life. While th.e pace and the future of this development ca·nnot be predicted, 
one thing is certain: tl1.is process is going to drastically chan.ge a11 aspects of our world i11 the next 
several decades. 

As far as image sequence processing is co.ncer11ed, it is noted tf1at in addition to temporal image 
sequences, ste.reo image pair and stereo image sequences also received attention in the middle of 
the 1980s (Waxrnan and Duncan, 1986). The concepts of temporal and spatial image sequence -s, 
and the imaging space (which may be considered as a next-higher-level u11ification of temporal 
and spatial image sequences) ,nay be illustrated as follows. 

Consider a sensor located in a specific position in the three-dimensional (3-D) world space. It 
generates imc>.ges about the scene, one a.fter another. As time goes by, the i111ages form a sequence. 
The set of these ima.ges can be represented witl1 a brightness function g(x,y,t), ·where x and y are 
coordinates on tl1e i.n1age planes. This js referred to as a ter11po1·al i11zage seqtterice. This is the basic 
outline about the brightr1ess function g(x,y,t) dealt with by researchers in both computer vision, 
e.g., Hom and Schunck (1980) and signal processing fields, e.g., Pratt ( 1979). 

Now consider a generalization of the above basic outline. A sensor, as a solid article, can be 
translated (in three free dimensions) a11d rotated (in two free djmensions). It is noted that here tl1e 
rotation of a sensor about its optical axis is not counted, since the images ·g~nerated will remain 
unch~n·ged when this type of rotatio11 takes place. So, '\Ve can obtain a variet)' of in1ages wl1en a 
sensor is translated to different coordinates and rotated to different angles in the 3-D \VOrld space. 
Equivalently, we can imagine that tl1ere is an infinite number of sensors in tl1e 3-D world space 
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that occupies an possible spatial coordinates and assumes a11 possible o.rientations at each coordi­
nate; i.e., tl1ey are located on all possible positions·. At one specific 1non1ent, all of these images 
for1n a set, ,vhicl1 ca.n be referred to as a S/Jatial i1r1age seqrte11ce. Wl1en time varies, these sets o·f 
images fo11n a much larger set of images, called an i111agir1g spc1ce. 

Clearly, it is impossible to describe such a set of in1ages by using the above-n1entior1ed g(x,y,L). 

Instead, it should be described by a more general brigl1tness function, 

g(x,)·,t,s), ( I 0.1) 

\Vhere s indicates the sensor's position in the 3-D \vorld spac~e; i.e., the coordinates of the sensor 
center and the orientation of the optical axis of the sensor. Hence :--is a 5-D \1ecto r. That is, 

s = (x,_v,z,~. y), ( I 0.2) 

,vhere x, y, and i represent the coordinates of the optical center or tl1e sensor in the 3-D \vorld 
spa.ce; and~ and yrepresent tl1e orientation of the optical axis of t.l1e sensor ir1 the 3-D world space. 
More specifically, each sensor in the 3-D \vorld space 1na)' be considered assoc iated \Vith a 3-D 
Cartesian coordinate system such that jr s opJical center is lo cated on the origin and its optical axis 
is aligned ,vith tbe OZ axis. In the 3-D world space we choose a 3-D Cartesian coordinate system 
as the reference c.oordinate system. Hence, a sensor \vith its Cartesian coord inate system coincidenl -
with the reference coordinate system has its position in the 3-.D \vorld space denoted by s = 
(0,0,0,0,0). An arbitrary sensor positio11 de11oted by s = (x, y, z, a, a) can be described as follO\\'S. 
The sensor's associated Cartesian coordinate S)'Stem is first shifted from the reference coordinate 
system in the 3-D \VOrld' space with its origin settled at (x, y, z) in the reference coo rdinate system. 
Then it is rotated \\rith the rotation angles ~ and y being the ·san1e as Euler angles (Shu and Shi, 
1991; Shi et al., 1994). Figure 10.1 sho\vs the reference co·ordinate systen1 and an arbitrary Cartesian 
coordinate . system (indicating. an arbitrary sensor position). There, OX) ' and 0

1
,'t

1 
) ' ' repres.ent, respec­

tively, the rielated image p.lanes. 
Assume now a world point P in the 3-D space that is projected or1to the in1age plane as a pixel 

with the coordinates Xp and YP-Then, Xp and YP are also, dependent on t and s. That is, the coordinates 
of the pixel can be denoted .by x .P = Xp (t,s) and YP = Yr· (t, s ). So generally speak.ing, \Ve have 

( I 0.3) 

As far as tempo·ral image sequences _are concerned, let us take a look at the fran1ework of Pralt 
(1979), and Horn and .Schun.ck (1980). There, g = g (xp(t), yp(t), t) is actually a special case of 
Equation I 0.3, i .. e., g = g(xp(t,. s = constant vector), )'p(t, s = constant vector), (t, s = constant 
vector)A In other words, the variation of s is restricted to be zero, i.e., ~s = 0. This nieans rhe 
sensor is fixed jn a certa,in position in the 3-D world space. 

Obviously, an alternative is to define the imaging space as a set o.f all temporal image sequences; 
i.e., those taken by sens·ors iocated at all possible positions in the 3-D world space. Stereo image 
sequences can thus be viewe,d as .a proper .subset O'f the ,imaging space, just like a stereo pair of 
im'ages can be considered as a proper suoset of a spatial image sequence. 

In summaey, the imaging spaae is a c·ollection af all possible 'forms assu1ned by the ge.neral 
brightness function g (x, y, t, s ). Eaeh p.ieture itaken by a ,sensoP lo~~ated on a particul~r posilion. at 
a sp~ific moment is merely a special eross· section of this i·m'1gjng space. Both temporal and spatJal 
image sequences ate sp.,ecial proper subsets of the imaging space. Tl1ey are in the midol_e Jev~l, 
between the imaging sgace aod the individu.al images .. This hierarchical structure is depicted in 
Figure I 0.2. 
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Before we conclude this section, w~ should discuss the relationship bet\veen image sequen.ces 
and video sequences. It is noted that the tern1 video is used very often nowadays in addition to the 
terrns i111age franzes and in·iage seqi,e,ice. It is necessary to pause for a \Vhile to discuss the 
relationship between these ter 1.ns. Image frames and image sequence l1ave been defined clearly 
above with the introduction of the concept of tl1e imaging space. Video can mean an individual 
video frame or video sequences. It refers, however, to those frames and sequences that are associated 
with the visible frequency band in the electromagnetic spectrum. For image frames and image 
sequences, there is no such restriction. For instance, infrared image frames and sequences corre­
spond to a band outside the visible band in the spectrun1. From this point of vie\\', the scope of 
image frames and sequences is wider than that of video frames and sequences .. When the visible 
band is conc.erned, fhe ter1r1s image fra11ze and seque1·1ce ·are .interchangeable with that video ft·a11ze 
a11cl seque11.ce. 

Another point we would like to bring to the reader's attention is as follows. Though video is 
referred t.o as visual info11nation., .wJ1ich includes _both a single frame and frame sequences, in 
practice it is often used to mean sequences exclusively. s·uch an exan1ple can be found in Digitt,L 
Video P,·ocessirig (Tekalp, 1995). 

Io this book, we. use i111age co111pressio1i to indicate still in1age con1pressi.on, and video co,1tJJressio1i 
to indicate video sequence compression. Readers should keep in mind, howev·er, that ( 1) video can 
mean a single frame or sequences of frames; and (2) the scope of in1age is wider than that of video., 
and video is ·more pertinent to multimedia engineering. 

10.2 1.NTERFRAME CORRELATION 

As far as video compression is concerned, all the techniques discussed in the previous chaptel7S are 
applicable. By this we n1ean two classes of techniques. The first class, "v·hich is als,o the most 
straightfo .rward way to handle- v,ideo compression, is to _code each fra1ne separately. That is, 
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FIGURE 10.2 A hierarchical structure. 
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indi~idoal frames are coded independently on each other. For instance , using a JPEG compress1on 
·algorithm to code each frame in a 'iideo sequence results. in ,notion JPEG (Westwater and Furh4 
19'91). In the second cJass, tneth.ods utilized for still image coding can be generalized for video 
compression. For instance, (D,CT) transform coding can be ge11eralized and applied to video coding 
by extending 2-D DCT to 3-D OCT. That is, instead of 2-D DCT, say, 8 x 8, applied to a single 
image frame, we can apply· 3-D OCT, say, 8· x 8 x 8, to a video sequence . Refer to Figure l~.3. 
That is, 8 blocRs of 8 x 8 each located, respectively, at the same position in one of the 8 succ_essi, e 
frames fr-0m a video sequence are coded together with the 3-D DCT. lt was reported that this_ 3-D 
D€T technique is quite ·efficient (Lim, 1990; Westwater and Furht, 1997). In ·addition, the DPC?\ri 
technique a.nd the nybrid technique can be generalized and. applied to video compres sion in a sioii_lar 
fashion (Jain, 19..89~ Lim, 1990). It is noted that in the second class of technique s several successi, :e 
fram.es are grouped and eeded together, while in the ·first class each frame is coded independentl_)'· 

Viaeo campr~sion h-as its own characteristics, however, that make it quite different from snll 
imag~ G0mp1ressi0n. The major differenee lies· in the exploitation of interframe correlati_00 that 
·exists b~tween successive frames .in video sequen·ces, in addition to the intraframe correlation that 
e:x:ists with.in eaGb fram~ As mentioned in Chapter 1, the intetframe correlation is also referred to 
a$ t.empor:al redundancy, while the intraframe correlation is referred to as spatial ,~edi1,7tlanc~. ln 
orcler to ac.niev.e covcijng ·efficiency, we need ro .remove these redundancies for video compression. 
To do so we must first understand these (eduodancie-s .. 

Con,s-"u}e.r a vide,o sequenqe taken in a videe>,ph,one service. Th.ere, the camera is statit most of 
the tinie.. A typieal sGene is a heacd-and.s.fio.ulder v·iew of a person imposed on. a bac~gro~d._ 10 

this type 0f video sequenee the background is usuaI1y s.tatic. Only the sp·eaker j~ expenencing 
t.:n h' h • t , t mt. , C .th . . . . b' s··1·,,.o ff·ame..S that mo1:1un, w · 1c , 1s ne seve e. 111ere1ore,, eie 1s a strong si-m1lanty etwe·en succes ,v"' · · · ' 
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FIGURE 10.3 3-D DCT of 8 x 8 x 8 . 

. 
1s, a stron g adjacent-fr,1me correlation. In other words, there is a strong interframe correlation. It 
was repor ted by Mounts ( ] 969) that when using v.ideopho11e-like signa.ls \¥itl1 moderate motion in 
t11e scene , on average, less tl1an 011e-te11th of the elements cl1ange be.twee11 frah1es by an amount 
\Vhich excee d~ l % of the peak sign,11. Here, a I% change is regarded as signifieant. Our experiment 

. . 

on the fir t 40 frames of tl1e Miss An1erica sequence supports th.is observatior1. T\vo successive 
frame s of the sequence . fra1nes 24 and 25, are shown in Figure 10.4. 

Now, con ider a video seql1ence generated io a tele·vision broadca st. It is well known that 
televi sion signa] are generated vvitl1 a scene scanned ir1 a particular n1.anner in order to 1naintain 
a steady picture ·for a hL1111a11 being to view, regardless of whether there is a sce.nery cl1ange or not. 
Thell is, even if there is no cha·nge .fro111 one fra111e to the riext, tl1e scene is still scanned constantly. 
Hence tl1ere is a gre,1t de·al of fra·n1e-to-fran1e co1Telation (Hask.e11 et al. , 1972b; Netravali and Robbins, 
1979). In TV broadcc1sts, tl1e ·camera is n1ost likely not static, and it may be .pa11ned, tilted : and 
zoo med. Fu11hem1ore, 1110re n1ove rnent is involved in the scene. As long as the TV frames are taken 
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FIGURE 1().4 Two fra.mes of the rviiss Ar11erit a seq.ue11ce: (a.) fr~tn1e 24. (b) fra111e 25. 
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densely enough, then n1ost of the time we thi11k the changes between successive frames are due 
mainly to the apparent n1otion of tl1e objects irt tl1e scene that takes place during the frame intervals. 
This. in1plies that there is also a high correlation between sequential frames .. In other words, there 
is an interframe redundancy (interpixel redundancy between pixels in successive frames) . There is 
n1ore correlation between television picture elements along the fran1e-to-frame temporal dimension 
than there is between adjacent. elements in a single frame along the spatial dimension. That is, there 
is generally more interframe correlation than intraframe correlation. Taking ad vantage of the 
interframe correlation, i.e., eliminating or decreasing the uncertainty of successive frames, leads 
to video data compression. This is an.alogous to the case of still image coding vvith the DPCM 
technique, where ,ve can predict part of an in1age by knowing the other part. Novv the knowledge 
of the previous frames can remove the uncertainty of the next frame. In both cases , kno\vledge of 
tl1e past removes the u,ncertainty of the future, leaving Jess actual in fo11nation to be transmitted 
(Kretzmer, 1952). In Chapter 16, we ,vi.11 see that the words ''past'' and '' fuEure'' used here are not 
necessary. They can be changed, respectively, to ''some frames'' and ''son1e other frames'' in 
advanced video coding techniques such as MPEG. There, a frame might be predicted from both 
its previous frames and its future frames. 

At this point, it becomes clear that the second class of techniques (mentioned at the beginning 
of this section), which generalizes techniques originally developed for still image coding and applies 
them to video coding, exploits interframe correlatmo.n. For instance, in the case of the 3·-D OCT 
technique, a strong temporal correlation causes an energy compaction within tl1e low temporal 
frequency region. The 3-D DCT technique drops transfo1111 coe1:ficier1ts assoc iated with high 
temporal frequency, thus achieving data compression. 

The t\VO techniques specifically develop.ed to exploit interframe redundancy, i.e., frame replen­
ishment and motion-compensated coding, are introduced belo\.V. The for1n er is tl1e early work, while 
the latter is the more popular recent work. 

10.3 FRAME REPLENI.SHMENT 

As mentioned in Chapter 3, frame-to-frame redu11dancy has long been recognized in TV signal 
compression. The first few experiments of a frame sequence coder exploiting interframe redundancy 
may be traced back to the 1960s (Seyler, 1962, 1965 ~ Mounts, 1969) . In (Mounts, 1969) the first 
real demonstration \Vas presented and was te11ned co,zditional reple11ish111erit. This frame replen­
ishment technique can be briefly described as follows. Each pixel in a frame is classified into 
changi11:g or u1icha11ging areas depen.ding on whether or nol the intensity differen.ce between its 
present ·value and it~ previous ,,one (the intensity v.alue at the same position on tl1e previous frame) 
exceeds a threshold. If the difference ·does exceed the threshold, i.e., a sigriificarz.t chan.ge has been 
iJientified, the address and intensity of this pixel are coded· and stored in a bu·ft·er and then transmitted 
to the receiver to reple-nish intensity. For those unchanging pixels, nothing is coded and transmitted. 
Their previous intensities a·re repeated in the receiver., It is noted that the buffer is utilized to make 
the info11nati.on presented to the transmission c.h.annel occur at a smooth bit rate. The threshold is 
to make the average replenishment rate match the channel capacity. 

Since the replenishment technique only encodes tho·se pixels whose intensity value has changed 
significantly betw,een successive frames, its cod.ing efficiency is much higher than the coding 
technigues which encode every pixel of every frame, say, the DPCM technique applied to each 
single fr-ame. In other words, utilizin,g intetframe correlation, the replenishment technique ac.hieves 
a lowe,t bit rate, while ke~ging the ·equivalent reco,nstructed ima·ge quality. 

Much effort had been made to further improve this type of simple replenishment algorithm. 
As mentioned in the discussion ef 3-D DPCM in Chapter 3, for instance, it was soon realized that 
in.tensity values of pixels in a chan,ging area need not b.e transmitted independently of one another. 
lns_t~ad, using botli spatial and temporal neighbors' intensity values to predict the intensity value 
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FIGURE 10.5 Di11y window effe:ct. 

of a chang ing pixe l lead s to rLf rc1,11e-diffe1·e11ce predictive cod ing 'technique. There, the different ial 
signal .is coded instead of the origina l intensity values, thus achieving a lowe r bit rate. For more 
deta il, reader s are referred to Section 3.5.2. Another exa n1ple of the improve ments is that measures 
have bee n tak er1 to distinguish the intensity differen ce caused by 11oise from those associated 'vVith 
chan ging to avo id the di rty window effec t, who se mearring is given in the. next paragrap h. For more 
detai led info r1na tio11 on the, e improvement s over the simple frame rep lenishm ent tecJ1njque, readers 
are re·fe rred to two exce l lent review by H askel l eta!. ( 1972b , 1979). 

Th e main draw·back a socia ted with the fran1e repleni shn1ent tech.nique is that it is diffic ult to 
handle fran1e . equence contain ir1g n1ore rapid cl1anges. Wh en there are more rapid changes, the 
number of pixe ls who se i11tensity values need to be updated increase s. In orde1· to maintain the 
tran smi ssion bit-rat e at a steady and proper leveJ the tbresl1old has to be raised , thus ca.using 111any 
slow chan ge s tl1at car1not show up in the receiver . Thi s poorer reco nstru'ction in the receive r is 
somewl1at analogo us to v1e\ving a scer1e tl1rough a di.rty window. Tl1is is re ferred to as the dirty 
window effect. The resL1lt of one expe riment on tJ1e dirt y window effect is displayed in Figur e l 0.5. 
Fron1 frame 22 to fra me 25 of the 'Miss A1J1erica se,quen ce, ther e are 2 166 pixels (less than l Oo/o 
of tbe total pixel s) tl1at cl1aoge thejr gray level values by n1ore t11an 1 o/o of the peak signal. Wh en 
we only upd ate the gray level values for 25% (randon1ly chosen) of these chang ing pixels, \Ve can 
clearly see the dirty window effec t. When rapid sce ne chan ges exceed a cer tain leve l, buffer 
saturation will result , cau sing picture break11p (Mou11ts, 1969). Motio n-co mpe11sate d codin g~ wl1ich 
is di scusse d below, has been pro ved to be able to provide better perfor mance than the repleni shment 

technique in sjtt1ations with 1·apid c11anges. 

10.4 MOTION-COMPENSATED CODING 

In addition to the frame-differen ce predictive codjng technique (a variant of the fran1e reple11ishment 
technique di scussed above), anotl1er tech11ique: displacement -based predictive coding , was devel­
oped at almo st the same lin1e (Rocca, 1969; Ha skel] and Limb , 1972a). In thi s tech.nique , a n1otion 
model is as sun1ed. That is, the changes betw een success 'ive frames are considered due to the 
transJation of mo v'ihg object s in the image plane s. Displacement vecto1·s of .object s are first esti­
mated. Differential signals betwe en the intensity value of the pjcture elements in the n1oving area s 
a_nd those of thejr counterparts in th,e previou s fran1e, .whicl1 are tran slated by the estimated 
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FIGURE 10.6 T,vo consecutive frames of a video sequen ce. 

displacement, are encoded. Th.i.s approach, ·\vh.ich takes motion i11to account to compress video 
sequen.ces, is referred to as motion-compensated predictive coding . IL l1as been found to be rnuch 
more efficient than the frame-difference prediction technique. 

To understand the above statement, Jet us look at the diagram shown in Figure I 0.6. Assu.me 
a car translating from the rigb.t side to the left side i11 the image planes a l a uniform speed during 
the time interyal bet\veen the two consecutive image frames. Other than this, there are no movements ..... 

or changes in tl1e frames. Under this circumstance, if we k.now the displacen1ent vector of the car 
on the image planes during the tim.e interval between t\ VO consecutive fra1nes, we can then predict 
t.he position of the car in the latter frame from its position in the former frame. One may think that 
if the translation vector is estimated \veil, then so is tl1e prediction of the car position. This i·s true. 
In reality, however, estimation errors occurring in dete1 rnination of the motion vector, which may 
be causea by various noises exi$ting in the frames, may cause the predicted position of the car in 
the latter frame to differ from t:he actual position of the car in the latter frame. 

The above translational model is a very simple one; it cannot accommodate motions or.her than 
translat ,ion, say, rotation, and camera zooming~ Occlusion and disocclu sion of obje cts make the 
situation even more complicated since in the occlusion case some portions of the images may 
disappear, while in the disoccl'usion case son1e newly exposed areas n1ay app ear. Th erefor e, the 
prediction error is almost inevitable. In order to have go·od-quality frames i11 the receiver, \Ve can 
find the prediction error by subtracting the predicted version of the latter frame t·rom the actual 
version o·f latter frame. If we encode both the displacement ve·ctors and the prediction error, and 

• 

transmit these data to the receiver, we may be able to obtain high-quality reconstructed images in 
the receiver. This is because in the recejving end, using the displacement vectors transmitted from 
the transmitter and the reconstructed fo1111er frame, we can predict the latter frame . Adding £!1e 
transmitted predict,ion error to the predicted frame, we may reconstruct the latter frame \VIth 

satisfac ,tory quality. Further1no.re, if .manipulciting the procedure properly, we are able to achieve 
data c0mpression. 

The displacement vectors are referred to as side or overhead information to indicate their 
aucliary natur:e .. It is noted that motion estimation drastically increases the computational c?m­
ple:X:ity o,f the co~ing algoritfim. tn other wo·rds, the higher coding efficiency is obtained in motion­
c.ompensared CG'ding, bot with a higher, eom.putational burden. As we pointed out in Section l ~-.I, 
this is botp te·chnically feasible and ec.onomicall.y desired since-the cost of digital signal processing 
decreas ·es much faster than tfia:t of transmission (Du_bois et al., 1981 ). 

Motion-com ·pensated vioeo aompressi0n has bec_ome a major development in coding. For more 
i)lfor111ati,on, readers s.hould refer to several excellent survey papers (Musroann et al., 1985.; zt,ang 
.et a,l.1 19-95; ,Kunt, 1995~. 

The ·C@mmon practic:e ef motion-cQmpensated eoain·g iR video compress,ion can b.e split. into 
the following_ three stages .. First,. the motio,i, arzalysis stage; .that is, displacement vectors for eitller 
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FIGURE 10.7 Bl_ock diagram of motion-compensated coding . 

every pixel or a -set of pixels in in1age planes from sequential in1ages are estimated. Second , the 
present fra,ne is p1·edicted by using estin1aled n1otion vectors and the previous frame. The prediction 
error is then ca1culated. This stage is called predictio11. a,zd diffe1·e11tic1tio11. The third stage is 
e1icocli11g. Tl1e prediction error (difference bet ween the present . and the predicted present fram.es) 
and the n1otion vec tors are encoded. Through an appropriate n1anipulation, the total amount of data 
for both the n1otior1 vectors and prediction error is expected to be much less than the ra\v data 
existing in tl1e in1age frames thus resulting in data compress ion. A block diagran1 o·f motion-

• 

compen sated cod ing is shown in Figure 10.7. 
Before leavjn g this section, we compare Lhe frame replenishn1ent technique witl1 the n1otion­

compen sated coding techn ique. Qualit atively speaking, we see from tl1e above discussion that the 
replenishment technique is also a kind of predictive coding in nature. This is particularly true if 
we consider the frame-difference predictive technique used in frame replenishment . 'There, it uses 
a pjxel 's intensity value in the previous frame as an estimator of its intensity value in tl1e present 
frame. 

Now let 's look at motion-compen sated codin.g. Consider a pixel on the present frame. Throu gh 
motion analy sis, the motio11-compensated tecl1nique finds its counterpart in the previous frame. 
That is, a pixel in the previous frame is identified sucl1 that it is supposed to translate to the position 
on the present frame of the pixel under co·nsideration during the time interval between successive 
frames. This counterpart's intensity value is usecl as an eslin1ator of that of the pixel un.der 
con,sideration. We can see that the model used for motion-compensated coding is much more 
advanced than that used for frame replenishn1ent, therefore, it achieves a n1uch higher coding 
efficie ncy. A motion-comp ensa ted coding techr1ique that utilized the first pel-recursive algoritJ11n 
for motion est imation (Netraval i and Robbins, 1979) was reported to achieve a bit rate 22 to 50% 
lower tha:n that obtained by sin1ple frarne-difference predict ipn, a version of fran1e repleni-shm·ent. 

The more advanced n1odel utilized in motion-comper1sated coding, on tl1e other h.and , leads to 
higher computational complexity. Conseque11tly1 both tl1e coding efficiency and the co·mputational 
complexity in 1notion-compensated codir1g are l1igl1er than that in frame replenishn1e11t. 

10.5 MOTION ANALYSIS 

As discussed above , we usually conduct motio11 .analysis in video sequence con1pression. There, 
2-D displacement vectors of a pixel or a gr.oup of pixels on image planes are estimated fron1 given 
image frames. Motion analysis can be viewed fro111 a 1nuch broader point of vie\v. It is \Veil knO\Vn 
that the vision systems of both }1un1ans and anirnals observe the outside world to ascertain n1otion 
and to navigate themselves in the 3-D world space. Two groups of scientists study visio11. Scie·ntists 
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:in the first group , including psych opl1ysicists, physicians , and 11europhysiologi ·t stud y hua1an and 
an_imal vision. Their goal is to understand biological visior1 syste1n s their ope ration, feature s , 
and limitation s. Computer scienti sts and electrical en.gi11eers form the eco nd grou.p . As pointed 
out .by Aggarwal and Nandhakumar (1988), their ultimat e goal is to deve lop co mputer vision system s 
\vith the ability to navigate , recognize and track objects, and estin1ate thei r peed and dire ction . 
Each group benefit s from the research results of the other group . T l1e know ledge and results o f 
research in psychophy sics, physiology, and neuropb ysio]ogy have influ ence d th.e de ign of co mput e r 
vision sy sten1s. Sin1ultaneou sly, the research results achieve.d to co mp·uter vi ior1 have provided a 
frame\vork in mo.delin g biolo gical vision sys tems and have helped i11 re medying faults in biolog ical 
vi sio,n sy,stem s. Thi s proces·s \Vill continue to advance researc h in both group. , hence benefitin g 

• 

society . 

10.5.1 8JOL ,OGIC .AL VISION PERSPECTIVE 

In the field of biological visio:n, most scientists consider motion. percep tio n a a l \VO- tep proce s . 
even though there is no ample biologica l evidence to sL1pport this ,,iev (S ingh. 199 1 ). Th e t,vo 
steps are measurement and interpr etation. The firs t step meas ure~ tt1e 2-D n1otion projec ted on the 
imaging surface s. The second step interpr ets the 2-D motion to indu ce tl1e 3- D motion and structure 
on the scene. 

10.5 .2 COMPUTER VISION PERSPECTIVE 

In the field of computer vision, motion analysi s from image seqt1e.nces i traditio nall y pl it into 
two steps . In the first step, intern1ediate variables are derived. By iri te1711ediar e vcL1·iables, \Ve mea n 
2-D tnotion parameter s in image planes . In the seco nd step, 3-0 motion va,riables . say, speed . 
djsplacement , position , and direction , are determin ed . 

Depending on the different inte·rmediate results, all appr oac hes ro r11otio 11 a·naJys is can be 
basically clas sified into two categorie s: feature correspondence and optica l flo,.v. In the fo11ner 
category, a few distinct features are first extracted fron1 ima O'e fram es. Fo r instance, co nsider an 

- . 0 

image sequence containing an aircraft . Two con secutive frame are show n in Figure 10.8. Tl1e head 
and tail of the aircraft, and the tips of its wings may be chosen as fea tur e . Th e co rres pondence of 
these features on successive image fra.mes needs to be establi shed. [n the seco nd tep , 3-D .motio ·n 
can then be analyzed from the extracted feature s and their correspondence in succes s ive fram es . 
In the latter category of approaches ., the inte1n1ediate variable s are opti ca l flow. An opti cal flo\V 
vector is defined as a velocity vector of a pixel on an ima ge frame. An optica l flow field is referred 
to as the collection of the velocity vector s of all the pixel s on the fra,me . In the first step , optical 
flow vectois are detet'Itlined from image sequences as the intermedia te variabl es . In the second 
step, 3-D motion is estimated fro'm optical flow. It is noted that opti cal flo\.v vectors are clo sely 

FIGURE 10 .. 8 Feature extraction and coITespondence from two consecutive frames in a temporal image 
seqµehce. 
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related to displacemer1t vectors in th~1t a velocity vector multiplying by the time interval between 
l\.VO consecutive fra111es results in the corresponding displacement vector. Optical flow and its 
determination will be discussed in detail in Chapter 13. 

It is noted that there is a so-ca lled direc t n1ethod in n1otion analysis. Contrary to tl1e above 
optica l flow appr oach, instead of determining 2-D motion variables, (i.e.> the inte1 rnediate variables), 
prior LO 3-D motion e ·timati on, ll1e direct method attempts to estimate 3-D ·motion without explicit ly 
solving for tl1e intern1ediate variables. In (Huang and Tsai, 1981 b) the equation characterizing 
displacement vectors in the 2-D in1age plane and the equat ion cl1aracterizing motion parameters in 
3-D world space ,1re combir1ed so that tl1e n1otio11 pararneters in 3-D world space can be directly 
derived . This n1etl1od has beer, utilized lo recover structure (object surfaces) in 3-D \vorld space 
as \veil (Negahdaripour n11d Horn, 1987; Horn and Weldon, 1988; Shu and Shi, 1993). The direct 
n1etl1od has certain li111itatio11s. That is, if the geon1etry of obj~cl sL1rfaces is not kno\vn in advance, 
tl1en lhe n1ethod f,1i Is. 

Tl1e feat ure co rrespondence approach is son1eti111es referred to as the discrete approacl1, \vhile 
tl1e optical flow ap[)roach is son1etirnes referred to as the continuous approach. Tl1is is because fhe 
correspondence approacl1 cor1cerns or1l)' tl set of relatively SJ)arse but highly discrin1inatory 2-D 
feature on in1age planes. Tl1e optical f~ow approacl1 is concerned witl1 a dense field of motion 
vectors. 

It has been found that botl1 feature extraction and correspondence establishrnent are not trivial 
tasks. Occlu sio11 and disocc lL1sion which, respectively, cause some features to disappear and some 
featur es to reappear, make featL1re correspondence even more difficult. The development of robust 
technique s to so lve tl1e correspondence problem is an active research area and is still in its. infancy. 
So farl only partial solutions suitable for sir11plistic situations l1ave been developed (Agga rwal and 
Nar1dhakumar, 1988). Hence tl1e feature correspondence approacl1 is rarely used ir1 video compres­
sion . Because of L11is, we will riot discuss this approach any further. 

Motion analysis (sometir11es referred to as rnolion estimation or motio11 interpretation) fron1 
image sequen ces is 11ecessa ry i,1 auton1ated navigation. It has played a central role in the field of 
con1puter vision since tl1e l,1te 1970s and ea1·ly 1980s. A great deal of tl1e papers prese11ted at tl1e 
Interna tional Confere 11ce on Con1puter Yisior1 cover this and related topics. Many \VOrkshops, 
sympo siu1ns, and spec ial sess ions arc organized around this subject (Tl1on1psor1, 1989). 

10.5.3 SIGNAL PROCESSING PERSPECTIVE 

In the field of signal processing, n1otion a'nalysis is n1ainly co11sidered in the context of band\vidt'h 
redu ction and/or data compression in tt1e tra11sn1ission of visual signals,. Tl1eret·ore1 instead of the 
moti on in 3-D world space, only tl1e 2-D motio11 i,1 the in1age plane is ,concerr1ed. 

Because of the real-tin1e nature i,1 visual transn1ission, tl1e motion n1odel cannot be very 
complicated. So far, tl1e 2-D translatior1al model is n1ost frequently assu111ed in the field. In the 2-D 
tran slational rnodel it is assu111ed tl1at the change between a frame and its previous one is due to 
the motion of object s in the frame plane during the time interval betweer1 two consecutive frames. 
In rnany cases, as lo11g as frames are taken densely enough, this assun1ption is valid. By niotion 
atzal),sis we mean the estima tion of translatio11al rnotion either tl1e displacement vectors or 
velocity vectors. W'itl1 this kind of motion analysis, one can apply t11e 111otion-cornpensated, coding 
discussed above, making coding more efficient. 

Basically there are three techniques in 2-D motio11 analysis: correlation, and recursive and 
differential techniques. Philosophically speaking, th,e first two technique s belong to the same group: 
region matching. 

Refer to Figure I 0.6, wl1ere the rnoving car is tl1.e o'bject under i11vestigation. By 11zotio1i atzal)1sis 
we mean findi11g. the displacement vector, i.e., a vector represer1ting the relative po~itions of the 
car i,n th.e two consecutive frames. With region r11atching, one may co11sider tl1e car (or a portion 
of the car) as a region of interest, a11d seek the best n1atcl1 between the tvvo regio1.1s in tl1e t\vo 

• 
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fran1es: specificalcy, the region in tl1e present frarne and the region i 11 the previoL1s f tame. For 
identifying the best matcl1, t\vb techniques, the · correlation and tl1e recursive metl1ods, differ in 
n1e'tl10dology. Tl1e correlation tech11ique finds the best 111atch by searching the n1axi1n um correlation 
bel\\1ee11 tl1e t\VO regio1)s it1 a .predefi11ed searcl, ra11ge, wl1ile Ll1e recL1rsi,1e tec l1r1ique es t.in1ates the 
best match by re.cursively min,imizing a non,linear n1easure111ent of tl1e dissi 1n ilarities bet\vcen lhc 

• t,vo regions . 
. A couple 0'f con1n1ents are in order. First, it is noted tl1at tl1e 111ost frequ·er1tly used technique 

in 111otion analysis is called block matcl)ing, wl1ich is a type of the correlation tecl1nique. There, a 
vide·o fran1e is divided into 11onoverlapped recta11gular blocks wi tl1 eac l1 block having the same 
size, usually 16 x 16. E'acl1 block thus generated is assurned to 111ove as or1e, i.e., all pixels in a 
block sl1are tl1e same displacement vector. For eacl1 block, we f111d its ·best 1nat cl1 in the previou 
fran1e \Vith correlation . That is, tl1e block i.n Ll1e previous fran1e, \vl1icl1 gi\1cs tl1e n1aximum 
correlation ,, is identified. The relative positio11 of tt1ese t\\ l O best n1atcl1cd blocks produces a dis­
placement vector. Tl1is block matching tecl1nique is sirnp le and very efficient, and \vi ll be discussed 
in detail in C11apter 11. Second, as n1ultin1edia finds n1ore a11d 111orc applications, the regions 
occupjed by arbitrarily-sl1aped objects (no longer alvva)'S rectangular blocks) bcco n1e increas ing!)' 
important in conteht-ba:sed video retrieval and n1a,1ipulalior1. Motio11 n11aly is in tl1is c,1se is dis­
cussed in Chapter 18. TJ1,ird, altl1ougl1 tl1e recursj\,e tecl111ique is categorized as a reg io11 matching 
technique, it 1nay be used for finding displacen1e11t vectors for ir1dividual pixels. 1n fact ll1e recursi,,e 
tecl1nique was ori.ginally developed ·for detem1ining displacen1enc ,,ec tors or pixels and, hence, it 
is called pel-recursive. This technique is discu.ssed in Cl1apter 12. Fourtl1, botl1 correlation and 

· recursive technique s can be utilized for detern1i n ing optical flo\v \rectors. Optica l flow is discussed 
in Chapter 13. 

The tl1ird tec]1nJque in 2-D motion analysis is tl1e differe11tial technique. Tl1is is one of Lhe main 
techniques . utilized in deter111ining optical flow vectors. lt js nan1ed after tl1e ter111 of d ifferentials 
because it uses partial differentiation of an in.tensity function ,vith, respec t to tl1e spatial coo rdinates 
,x and )', as well as the temporal coordinate t. This tecl111ique .is also discussed in Chapter I 3. 

10.6 MOTi .ON COMPENSATIO,N FOR IMAGE 
S.EQUENCE PROCESSING 

Motion a.nalysjs has long bee.n consid·ered a key is.sue in in1age sequence process ing (Huan g, 1981 a~ 
Shi, 1997). Obviously, in an area like automated navigation, motion analysis plays a central role. 
From the dis-c~ussion in this chapter, \Ve see that motion analysis also plays a key role in video data 
com·pression. Speci'fically, we have discussed the cGncept of rnotion-co111pensated video coding in 
Seetion 10.4. In this section \Ve would like to consider n1otion compe .nsat.ion for image sequ ence 
processing, in general. Let us first consider motion-con1pensated interpolati on. Then, \ Ve wi II discuss 
motion-compens ·ated enhancement, restoration, and down-conversion. 

10.6.1 Mo110N-COMPENSATED INTERPOLATION· 

Interpolation is a simple yet efficient and im,portanl method in ima.ge and video compression. In 
image compression, we may o·nJy transmit, say, every other row. We then try to interpolate these 
m_issing ro:ws from the other half of the tra.nsmitted rows in tl1e receiver. In this way, we compress 
the dala to half. Since the interpolation is carried ·out within a frame, it is referred to as S/J(ltial 
interpolati ,on. In video compression, ft>r in:stanee,, in videophone servic·e, instead of transmit.ting 
30 frames, per se-conti, we may choose a lower frame rate, say, IO frame·s per second. In the receiver , 
we-may try to interpolate the dropped frames from the transmitted t·rames . This strategy immediately 
drops the transmitted d.ata ta one third .. Another e.xample is tl1e conversion of a m.otion picture i'nro 
an NTSC (Narional Television System Commission) TV signal. There, every first frame in tile 
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FIGURE 10.9 Weigl1ted linear inlerpolation. 

motion picture is re1)eated three times and the next frame twice, tl1us converting a 24-frame-per­
second 111otio11 picture to a 60-field-per-second NTSC signal. This i.s commonly referred to as 3:2 
pulldown . In tl1ese t,vo examples concer11ing video, interpolation is along tl1e tem.poral din1ension-, 
\Vhich is referred to as ter11po1·c1/ interpolation. 

For basic concepts of zero-order interpolation, bilinear interpolation, and polynon1ial interpo­
lation, readers ar·e referred to signal processing texts, ·ror instance (Lin,, I 990). In ten1p0ral inter­
polati on, tl1e zero-order interpolation 1neans creation o.f a frame by copying its ne~rest fran1e alo11g 
the time din1ension. The conversio11 of a 24-fran1e-per-sec6nd motion picture to a 60-field-per­
second NTSC signal can be classified into this type of interpolation. Weigl1ted linear interpolation 
can be ilJustrate·d with Fjgure I 0.9. 

There, the weights are detern·1ined according to the lengths of tin1e intervals, \vl1icl1 is similar 
to tl1e bilinear in.t.erpolacion 'vvidely used in spatial i11terpolation, except tl1at here only one index 
(along the tirne axes) is used, while two indexes (along t\VO spatial axes) are used in spatial bilinear 
i11terpolation. Tl1at is, 

(10.4) 

If there are one or multiple moving objects existing in successive frames, however, the weighted 
linear interpolation wjll blur the interpolated frames. Taking motion into account in the interpolatio11 
results in motion-compen sated interpolation. In Figure I 0.10, we still use the three frames show·n 
in Figure 10.9 to illustrate the concept of rnotion-compensated jnterpolation. First, mo_tion bet\vee11 
tw0 gi·ve11 frames is estim~ted. Th~t is, the displacement vectors for each pixel are deter1nine.d. 
Seco11d, we choose a frame tl1at is nearer to the frar11e we \va11t to interpolate. Tl1icd, tl1e displacement 
vectors detet1nined in the first step are proportionally converted to tl1e fraine to be created. Eacl1 
pixel in tl1is fran1e is projected via the detern1ined m0tion trajectory to tl1e frari1e chosen in step 2. 
ln tl1·e process o·f motion-compensated interpolation, spatial interpolation i11 tl1e fran1e chosen in 
step 2 us_ually is needed. 

10.6.2 MOTION-COMPENSATED ENHANCEMENT 

It is well known that when an imc1.ge is corrupted by aqditive white Gaussian noise ·(A WGN) or 
bu·rst noise, linea·r low-pass filteri11g, sucl1 as simp]e averaging or no11Iinear low-pass filteri11g, ·sucl1 
as a media11 filter, pe1rforms well in ren1oving the noise. Wl1en flO image sequence is concerned, 
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FIGURE 10.10 tvtotion-compensated interpolati on. 

,ve n1ay apply sucl1 types of filtering along the ten1poral di n1ension to ren10,1e noise. Tl11s is cal led 
temporal filterjn·g. These types of lo\v-pass filtering may blur in1ages an e ffect Lhat 111ay beco me 
quite serious when motion exists in image planes. The enhancen1ent ,vl1ich· takes motion into 
account, is referred to as motion-compensated er1hancemer1t, a11d l1as bee n found very ef ficient in 
temporal filtering (Huang and Hsu, 198 lc). 

·To facilitate the· discussion, \Ve consider simple a\1eragi ng as a n1ean; for noise filtering in \vhat 
follows. It is understood that other filtering techr1iques are possible, and tt1at every thing discussed 
here is applicable there. Instead of simply a,,er~ging 11 success ive image frames in a video sequence , 
motion-compensated temporal filtering \Vil! firs.t analyze tl1e motion ex isling in these frames. That 
is, we estimate the motion of pixels in successive frames first. Tl1en averagi ng \Viii be conducted 
only on those pixels along the same motion trajectory. In Figure 10. 11, tt1ree success ive frames are 
shown and denoted by f (x, y, t 1), f (x, y, t2), and f (x, y, t3) , respec tively. Assume that three pixels. 
denoted b)' (x 1, y,), (x2, Y2), and (x3, y3) , respectively, are identified to be perspective projection s 
of the same object point in the 3.-D \vorld space on the three frar11es. The averaging is then applied 
to these three pixels . It is noted that th.e number of success ive frames, 11, 1nay not necessa rily l1ave 
to be tl1ree. Motion analysis can use any one of the s·everal technique s discussed in Section 10.5. 

I 
I 

y 
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FIGURE 10.1.l Motion.!co·mpensated temporal filtering. 
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Motio11-compcnsated temporal filtering is not necessarily implemented pixelwise; it can also be 
used objeclwise, or regio11wise. 

10.6.3 MOTION-COM ,PENSATED RESTORATION 

Ex~ensjve attention t1as been pa.id to the restoration of full-length feature films. There, typical 
artifacts are due to dirt and sparkle. Early work in the detection of these artifacts ignored motion 
informatio,1 completely. Late motion estin1ation has been utilized to detect these artifacts based on 
tt1e assumptior1 tl1at tl1e artifacts occur occasionally along the temporal dimension. Once the artifacts 
have beer1 found, n1otion-compensated temporal fi I teri ng and/or interpolatjon wil I be used to remove 
tl1e artifacts. 0 11e succe sful algorithm for the detection and removal of anomalies in digitized 
anin1atio11 filn1 can be found in (1a m ct al., 1998). 

10.6.4 MOTION-COMPEN SATED DOWN-CONVERSION 

Here we present one more ex,Jn1ple in wl1icl1 n1otio.n compensation finds application in digital video 
• proce 1ng. 

It is believed ll1at there will be a need Lo do\v11-convert a high definition television (HDTV ) 
ir11age seque11ce for display onto an NTSC 111011itor during the upcorning transition to digital 
television broadcas t. The most straightforward ,tpproac.h is to fully decode the image sequence first, 
then apply a prefi I teri ng and su bsnn1 pl i ng pro·cess to each field of the interlaced sequence. Th is is 
re ferred Lo a a full-re e lution decoder (FRD). Tl1e merit of this approacl1 is the l1igl1 quality 
achieved, ~1hile tl1e drawback is a r1igh cost in terms of the large amount of mernory required to 
store th e refere nce frames. To reduce the required n1emory space, another approacl1 is considered. 
In this approach, tl1e down-conversion is conducted witl1in the decoding loop and is refen·ed to as 
a low-reso lutior1 decoder (LRD ). It can significantly reduce tl1e required memory and still achieve 
a reasonably good picture quality. 

The prediction drift is a n1ajo r type of artifact existing in tl1e do\.vn-conversion. Il is defined as 
the successive blurri,ng of forward-predicted frames with a group of pictures. It is caL1sed mainly 
by non-ideal interpolation of sub-pixel intensities and the loss of l1igl1-frequency data within tile 
block . An optin1al set of filters to perforn1 lo\v-resolution motion compensation t1as been derived 
to effectively 111inin1ize tl1e drift. For details on an algoritl1n1 in tl1e down-conversion utilizing an 
optim al motion cornpensatio11 scl1en1e, readers are referred to Vetro and Sun ( 1998). 

10.7 SUMMARY 

After Section II, sti 11 irnage compression, we sl1j ft our attention to video con1pression. Prior Lo 
Section IV, wl1ere \Ve discuss various video compression algoritl1ms and star1dards, 110,vever, ,ve 
first address the issue of n1otio11 a11al ysis and motion con1pensation i r1 this cl1apter that starts 
Section Ill , 1notion estimaLion and con1pensation. Tl1is is bec~1use video con1pression has its O\vr1 
characteristics, \vhicl1 are different frotn those of sti II image cotnpression. Tl1e n1ai.n difference I ies 
in interframe con·elatior1. 

In this cl1apter, the concept of various irnage sequences is discussed in a broad scope. In doing 
so, a single image , temporal image sequences, and spatial image sequences are all t1nified ur1der 
the concept or in1agi11g sp·ace. Tl1e redundancy between pixels in successive frames is analyzed for 
both videoconferen cing and TV broadcast cases. In tl1ese applic·ations, there is more interframe 
correlation than intraframe correlation, in ge11eral. Tl1crefore, tl1e utilization o.f interfr,1me correla­
tion becon1es a key issue in video compression. 

There are two major technjques in exploitation of interfran1e correlation: fra111e replenishn1ent 
and rnotjon cotnpe11sation. In tl1e conditior1al replenishn1ent technique, only those pixel gray level 
values, whose variation from their counterparts in tl1e previous fran1e exceeds .a tl1resl10ld, are 
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encoded and transn1itted to the receiver. These pixels are called changing pixels . For pixel s other 
tl1an the cl1anging pixels, th,eir gray values are just repeated in the 1·eceiver. Tl1is sin1plest frame 
reple.nishment tecl1nique achieves l1igher coding efficiency than cod i11g encl1 pixel in each frame 
d'ue to the utilization of interframe redundancy. In tl1e 111ore advanced fr a111e re1Jlenishment tech­
niques , ·say, the fran1e-difference predictive coding tecl1nique, bott1 temporal and spatial ne ighboring 
gta)' values of the pixels are used to predict that of a changing pixel. Ir1stead of the intensity values 
of tl1e cl1anging pixels, tl1e prediction error is e11coded and transn1itted. Beca use the variance of 
the prediction error is smaller tl1an that of the intensity values, tl1is n1ore advanced frarne replen­
i.shment technique is more efficient than tl1e conditional replenishn1ent tec hnique. 

The n1ain dra\vback of fran1e replenishment techniques is ass.ociated \Vi lh rapid motion and/or 
intensity variation occurring on the image planes. Under these circumst,1nces, frame rep lenishment 
\Vill suffer ·from the dirty \Vi11dow effect, and even buffer saturation. 

In motion -compensated coding, tl1e 111otion of pixels is f'1rst ar1alyzed . Based on tl1e previous 
fra1ne and the estimated motior1, tJ1e current frame is predicted. The prediction er·ror toge ther \vith 
motion vectors are encoded and transn1itted to tl1e receiver. Due to n1ore accura te pred iction based 
on a motion model , motion-compensated coding achieves higher coding e fficiency comp ared \Vith 
frame replen.ishn1ent. This is conceivable because fran1e replenisl1ment ba -ica lly uses the intensit)~ 
value of a pixel in the previous fran1e to predict that of the pixe l in the ~ ame loca tion in the present 
frame, while tl1e prediction in motion-compensated coding uses motio11 trajec tory. This impli es that 
higher coding efficiency is obtained in motion compensation at the cos t of l1igher con1putational 
con1plexjty. This is technically feasible and economically desired since t11e cos t of digital signal 
processin .g decreases m,uch faster th.an that of transn1ission. 

Because of the real-time requiren1ent in video coding, only a simple 2-D translational rnodel 
is used. There are mainly three types of motion analysis techniques used in n1otion-compensated 
coding. They are block matching, pel-recursion, and optical ftovv. By far, block matching is used 
most frequently. These three techniques are discussed in detail in tl1e follo\ving three chapters. 

Motion compensation is also \videly utilized 111 other tasks of digital video sequence process ing. 
Examples include motion-compensated interpolation, motjon-co1npensated enhancement , n1otion­
compensated restoration, and motion-compensated down-conversion. 

10.8 

10-1. 

10-2. 

10-3. 

10-4. 

10-5. 

10-6. 

10-7. 
I0-8. 

EXERCISES 

Explain the analogy b.etween a stereo image sequence vs. the ima ging sp.ace, and a 
stereo image pair vs . .the spatial image sequence to \Vhich the stere,o image pair belong s. 
Explain why th·e imaging space can be considered as a unifi.cati on of im.age fra.n1es, 
spatial jmage sequences, and temporal image sequences. 
Give the definitions of the following several concepts: image, image sequ<;nce, and 
video. Discuss the relationship between them. 
What feature causes video compression to be qoire different from still i111a.ge compres­
sion? 
Describe the conditional replenishment technique. Why can it achieve higher coding 
efficiency in video coding than those techniques ·encoding each pixel in eacl1 frame? 
Describe the frame-difference predictive coding technique. You may want to refer to 
Sectia .n 3.5.2. 
What is the main drawback ·of frall)e replenishment? 
Both the frame-difference predictive coding ahd motion-compensated . coding are pre­
dictive codings in nature. 
(a) What js the main difference betw.een the two? 
tb) Ex,pl ,ain why motion-compensated coding is usually more efficient. 
(c) What is tfie prlce paid for higl1er coding efficiency with motion-compensated coding? 
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• 

10-9. Motion analy sis is ,1n important task encountered in both computer vision and video 
coding . Wl1,1t is the n1ajor different requircn1ent for motion an<llysis in ll1ese two fields? 

10-10. Work on tl1e first 40 fran1es of a video sequence other tha·n the Miss America sequence. 
Determine, on ar1 average basis, wl1al percentage of the total pixels change their gray ­
level values by rnore tl1an I% of tl1e peak signal between two consec.utive frames. 

10-11. Sj1nilar to tl1e experiment assoc iated with Figure 10.5, do your own experiment to 
observe the dirty wi11dow effect. That. is, work on two successive frames of a video 
sequen ce chosen by yourself, and only update a part of those changing pixels. 

10-12. Take two frames from the Miss America sequence or from another sequenc e of your 
own cl1oice in \vl1ict1 a relatively large arnount of motion is involved. 
(a) Using tl1e we ighted li11ear interpolation defined in Equation I 0 .4, create an inter­

polated frame, which is located in the 1/3 of the time interval from tl1e second frame 
(i.e ., L2 = 1-(/1 + /2) according to Figure I 0.9). 

(b) Using motion-compensated interpolation, create an interpolated frame at the same 
position along the temporal dimension. 

(c) Compare the two interpolated fran1es and make your comment s. 
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As mer1tioned in lhe l)revious chapter, displacement vector rneasurement and its usage in motion 
compensatior1 i11 intcrfran1e coding for a TV signal can be traced back to the 1970s. Netravali and 
Robbins ( 1979) developed a pel-recur ive technique, which estimates the displacement vector for 
each pixel recursively from its neigl1bori11g pixels using an optin1ization method. Limb and Murpl1y 
( 1975 ), Rocca ,lnd Zanoletti ( 1972), Cafforio and Rocca (1976), and Brofferio and Rocca (1977) 
developed techniques for the estimatior1 of displacen1ent vectors of a block of pixels. In tl1e latter 
approacl1, an image i first segn1ented into areas with each having an approxin1ately ur1iform 
trar1slation. Tl1en the motion vector is estimated for each area. The segmentation and motion 
estin1atio11 associated with tl1ese arbit1-ari]y shaped blocks are very difficult. When there are n1ultiplc 
moving areas i11 in1agcs, the situalio11 becor11es rnore challenging. ln addition to motion vectors, 
tl1e sl1ape inforn1ation of tl1e .. e areas needs to be coded. Hence, when moving areas have various 
complicated s.l1apes

1 
i)o.lh computational complexity and codi11g load wi'll increase remarkably. 

In contrast, tl1e blo·ck 111atching technique \Vl1icl1 is the focus of this cl1apter, is simple, 
straight forward, and yet very efficient. It has been by far the 111ost popularly uti I ized motion 
est in1ation technique in video coding. In fact. it l1as bee,1 adopted by all t11e international video 
coding standards: ISO, MPEG- 1 and MPEG-2, and ITU H.261, and H.263. These standards will 
be introduced in detail in Cl1apters 16, 17, and 19, respectively. 

It is intere ting to note tl1at even nowadays, \,Vith tl1e tre1nendous advancen1ents in multimedi ,1 
engineering , objec t-based and/or content-based n1anipulation of audiovisual inforn1ation is still very 
den1anding, particularly in audiovisual data storage, retrieval, arid distribution. The applications 
includ.e digital library, video on den1and, audiovisual databases, and so on. Tl1eref6re, the coding 
of arbi trarily sl1aped object l1as attracted great research attention these days. It has been ir1cluded 
in tl1e MPEG -4 activities (Brailean, 1997), and will be discussed ·in Chapter 18. 

In Ll1is cl1apter various a pects of block matching are addressed. Tl1ey include the cor1cept and 
algoritl1m, matching criteria , searching strategies, limitations, and new improvements. 

11.1 NONOVERLAPPED, EQUALLY SPACED, FIXED SIZE, 

SMALL RECTANGULAR BLOCK MATCHING 

To avoid the .kind of difficulties encountered i11 motion estimation and n1otio11 compensat ion witl1 
arbitrarily shaped blocks, the block 1natcl1ing tecl1niqu,e was proposed by Jain and J ai11 ( 1981) based 
on the following simple motion model. 

An image is partitioned into a set of nonoverlapped, equally spaced, fixed size, s·n1all rectangular 
blocks; and the translation n1otion wit11in eacl1 block is assur11ed to be uniform. Althougl1 tl1is simple 
model considers tra11slatio11 n1otior1 or1I y, otl1er types of motions, such as 1·otation and zooming of 
large objects, rnay be closely approxin1ated by tl1e piecewise translation of tl1ese s1nall blocks 
provided that these blocks are smf1ll enougl1. This observation, originally made by Jain and Jain, 
has been confi1111ed again and again since tl1en. 

Displacen1ent vectors for tl1ese blocks are estin1ated by fin·ding tl1eir best rnatcl1_ed counterparts 
in the previous frame. In tl1is manner, motion estin1ation is significantly easier tl1an that for 
arbitrarily shaped blocks. Si11ce the n1otion of each blqck is described by only one displacement 
vector, the side infor1nation on n1otlon vectors decreases. Furtl1ern1ore, the rectangular sl1ape 

• 

221 

IPR2021-00827 
Unified EX1008 Page 247



• 

222 Image and Video Compression for Multimeclia Engineering 

' 

" 

. the best block qiatching 

q ----- - - - -,, .. 
f ' 

q (Xo.Yo. 
• 

p (~Yo) 
• 

. 

p • ' ' . ·x. V 

q 
.,,. 

' (x, y) I 

• I 
(x1,Y,) 

p 
• 

(x,,y,) 

L 
. 

' 

._ __ ,__ ____ ___. displacement vector 

I correlation window 

An original block 

(a) lo frame (b) iu.1 frame 

FIGURE II.I Block n1atchi11g. 

in·for111ation is known to both the encoder and the decoder, a11d hence does not need to be encoded, 
\vhicl1 saves both com,putation load and side infom1ation. 

Th.e block size needs to be chosen properly. In general, the smal !er Ll1e bloc.k size, the 1nore 
accurate is tl1e approximation. It is apparent, bo\vever, that tl1e smaller block size leads to 111ore 
motion vectors being estimated and encoded, \vhic.11 means an increase in botl1 con1pulation and 
side infom1ation. As a compromise, a size of 16 x 16 is considered to be a good choice. (This has 
been specified in international \1ideo coding standards such as H.26 1, H .263, and MPEG-1 and 
MPEG-2.) Note that for finer estirnalion a block size of 8 x 8 is someLi111cs tised. 

Figure 11. l is utilized to illustrate the block n1atching tecl1nique. In Figure 11.1 (a) an in1age 
frame at moment tn is segmented into nonoverlapped p x q rectar1gular blocks. As mentioned abo, ,e, 
in comm-on practice, square blocks of p = q = t6 are used most often. Co11sider 011e of the blocks 
centered at (x, y)~ It is assun1ed that the block is translated as a whoJe. Co11seque11tly, only one 
displacement vector needs to be e.slimated for this block. Figure 11.1 (b) shows the previous frame : 
the frame at moment t0 • 1• In order to ·estimate the displacement vector, a rectangular search \vindo,v 
is opened in the frame t,,_1 and centered at the pixel (x, y) . Consider a pixel in the search \vindo\v, 
a rectangular correlation window of tl1e same size p x q is opened with the pixel located i11 its 
Genter. A certain type of similarity measure (correlation) is calc.ulated. After this n1atcl1ing proces s 
has been c·ompl'eted for all candidate pixels in· the searcl1 window, the correlation windo\v corre­
sponding to the largest similarity becon1es the best match of the block u11der consid·eration in frame 
tn. The relative positi·on bet,veen these two blocks (the block and its best match) gives the displace ­
ment vector. This is shown in Fig.ure 11.1 (b ). 

The size of the search window is dete·rmioed by the size of tJ1e correlation window and the 
maximum possible displacement along four directions: upward, downward, rightward, and left\v-ard . 
In E'igure 11.2 these four q.uantities are assumed to be the same and are denoted by d. Note that cl 
is estimated fro.m a priori knowledge about the tran,slation r11otion, wl1icl1 includes tl1e largest 
possible m.otion sp.eed and the temporal interval between two. consecufive frames , i_.e., t,, - t"_,. 

11.2 MATCHING CRIJERIA 

Blo~k matchiflg belongs to image matching ~nd can be viewed fto111 a wider perspective. In n1any 
i,mage processing tasks, we need to examine two in1ages or two portions of images on a pixel-by.-pixel 
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FIGURE 11.2 Search \Vindo\v and correlation \VindO\V. 

basis. Tl1ese two in1ages or t \.VO image regions ca11 be selected fron1 a spatial image sequence, i.e., 
from l\.VO fran1es taken at tl1e san1e time with two different sensors ai1ning at tl1e same object, or 
from a ternporal i1nage sequence, i.e., fron1 two frarnes taken at two di·fferen.t mon1ents by the same 
sensor. The purpose of the examination is to derenni11e the similarity bet\veen the t\vo images or 
t\vo portions of im,1ges. Exa n1ples of tl1is type of application include in1age registration (Pratt, 
197 4) and template n1atcl1i ng (Jain, 1989). Tl1e f on11er deals with spatial registration of images, 
wl1ile the latter extracts and/or recognizes an object in an image by rnatching the object template 
and a certa in area of tl1e image. 

Tl1e sjn1ilarity n1easure, or correl,:1tio11 1neasure, is a key ele111ent in the n1atching process. Tl1e 
basic correlation .measure between two in1ages t,, and t

11
_

1
, C (s, t), is defined as follows (Anuta, 1969). 

(11.1) 

This .is also referred to as a norn1al ized t wo-din1ensional c,ross-correlation .function (Musmann et al., 

1985). 
Instead of fi11ding the maxin1um similarity or correlation, an equivalent but yet more co·mpu­

tationally efficient way of block 111atcl1ing is to find the n1inimum dissimilarity, or matcl1ing error. 
The dissimilarity (somet.in1es referred to as· the e1·ror, distortion, or d'istar1ce) bet\veen two images 
t,, and t"_ 1, D (s, t) is defi11ed as follows. 

JJ q 

D(s,t)= l ~ ~ M(J,
1
(j,k),[

11
_ 1(j+s,k+t)), 

{111 k,,,J, k,,,J 
j=I k=-1 

( 11.2) 

where M(u,v) is a metric that measures the dissin1ilarity between the two arguments u and v. The 
D (s, t) is also referred to as the matching criterion or tl1e D valµes. 

In tl1e ·literature there are several types of matching criteria, an1011g \Vl1ic'l1 tl1e rnea.n squa1·e 
error (MSE) (Jain and :Jain, 1981) antl mea11 absolute difference (MAD) (Koga et al., 1981) are 
used most O'ften. It is noted tl1at .tl1e su111 of the squared difference (SSD) (.Ana11da,1, 1987) or the 
sum of the squared error (SSE) (Chan et al., 1990) is esse11tially the sa1ne as MSE. Tl1e n1ean 
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absolure difference is sometin1es referred to as tl1e 1nean absolute error (MAE ) i11 the literature 
(Nogaki and Ol1ta, 1972). 

In the MSE matching criterion, the dissimiJarity m.etric M (u,. v) is defined as 

M(i~, v) = (,, - v)2 . ( 11.3) 

In the MAD, 

M ( ti, v) = !Lt - vi. ( 11.4) 

Obviously, both criteria are. simpler than the normalized two-di1nensional cross-co rrelation measure 
defined in Equation 11. 1 . 

Before proceeding to the next section, a comn1ent on the selection of tl1e dissin1ilarity measure 
is due. A study based on experin1ental \Vorks reported that the n1alchi11g criterion does not signif­
icantly affect the search (Srinivasan, 1984). Hence, tl1e MAD is preferred due to its si111plicity in 
implementation (Musmann et al., 1985). 

11.3 S.EARCHING PROCED.U.RES 

The searching strate.gy is another important issue to d.eal with in block n1.atching. Several searching 
strategies are discuused below. 

11.3.1 FULL SEARCH 

Figure 11.2 shows a search \vindow, a correlation windo·w, and their sizes. In searching for the best 
match, ilie correlation window is moved to each candidate position vvitl1in the searcl1 windb\V. That 
is, there are a total (2 d+ 1) x (2 d+l) positions that need to be examined. The minimum dissi1nilarity 
gives the best n1atch. Apparently, this full search procedure is brute force in nature. While the full 
search d·eliv,ers good accuracy in searching for tli.e best rnatcl1 (thµs, good accuracy in motion 
estimatio·nJ, a large amount of computation is involved. 

In o.rder to lower computa.tipnal complexity, several fast searching procedures have been 
developed. 'ifhey are introduced below. 

11.3.2 2-D LOG·ARITHMIC SEA.RCH 
• 

Jain and Jain (1981) developed a 2-D logarithmic searching procedure. Based on a 1-D logarithmic 
search procedure (Knuth, 1973), the 2:-D procedure successively reduces the search area, thus 
reducing the computational burden. The first.steps computes the matching criteria for five points 
in tlie search window. These five points are as follows: the central point of the search windo\v and 
the fo·ur points surrounding 'it, \Vith each being a midpoint between the centraf point and one of 
the four bou·ndaries 0f the window. Among these five points, the one corresponding to the minimum 
dissimilarity is picked as t.he }Vinner. In the· ne·xt step, surrounding th.is winner, another set of five 
points are selected in a similar fashion to, that in the first step, with the dista·nces between · tl1e five 
points remaining unchanged. The ex·c.eption takes place when either a central point of a set of five 
points or a boundary point of the search w'indow gives a minimum D value. I.n tbese circumstances, 
the d'istances between the fi'le points need to. be reduced. The procedure· continues until the final 
step, in which a set of candidate points are located in a 3 x 3 2-D gr.id. Figure 11.3 demonstrates 
two cases 0f the proeedure. Figure l l .3(a) sh·ows that the minimum D value .rakes pJa.ce on a 
.boundaty, while Figure 11.3~6) shows tbe minimum D valu·e in the central position .. 
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FIGURE 11.3 (a) A 2-D loga·ritlJmic search procedure. Po,ints at (j, k+4), G+2, k+2), (j+2, k+4), and U+ I , 
k+4 .) are found to give the minimum dissimilarity in steps 1, 2, 3, and 4, respectively. (b) A 2-D ]ogarithmic 

· search procedure. Points at (j, k-2), (j+2, k-2), and G+2, k-1) are found to give the n1inimum dissim·il,1rity i11 

steps 1, 2, 3, and 4,. respectively. 

A convergence proof o·f the proce·dure is presented. by Jain and Jain ( 1981), under tl1e assumption 
that ,the dissimilarity monotonically increases ·as the searcl1 point moves away from the point 
corresJ:>onding to the mini.mun1 dissimilarity. 

IPR2021-00827 
Unified EX1008 Page 251



Image and Video Co1npression for Mult irneciia Engineering 

k-6 k-4 k-2 k+2 lc+4 k+6 

j-6 

... 
j-4 \. I ' '.J I -

. 

. 
J 1,..., ' \ I J I 

/ 

j+2 

j+4 

..... , 2< ':? • l ... .,,..... / 
,.... / )"V 3 )' \ 

':r' "' 
..... 

f j ~ 

' I ' 2 3 . 
I J 2, I ...... ~ - ~ - . 

' 
: 3 

. JH.) ' -- ,;/ -
....... 

j+6 . l ' - .2/ 2 

' 

FIGURE 11.4 Three-step1 search procedure. Points U+4, k-4), U+4, k- 6), ,lnd U+5, k-7) give the min imum 
dissimilarity in steps 1, 2, and 3, respectively. 

11.3.3 COARSE-FINE THREE-STEP SEARCH 

Another impQrtant work on the b]ock matching technique was completed at almost the san1e time 
by Koga et al. (1981). A coa~se-fi.ne thre.e-step procedure was developed for fast searching. 

The three-step searc.h is very similar lo the 2-D logarithm searcl1. There are, l1owever, three 
main differences between the two procedures. First, each ste.p in the three-step searcl1 con1pares a 
set of nine points that for111 a 3 x 3 2-D grid structure. Second, the distances between the points in 
the 3, x 3 2-D grid structure in the three-step search decrease monotonically in steps 2 and 3. Third, 
a total of only three step·S are carried otit . Obviously, these three items are different from the 2-D 
logarithm.ic search described in Section 11.3.2. An illustrative example of the three-step search is 
sho\vn in Figure ] 1.4. 

11.3.4 CONJUGATE D 'IRECTION SEARCH 

The c.onjug~te direction search is another fast search a]gorithm that was develo.ped by Srinivasan 
and Rao (1984) .. In prineiple, the procedure con·sists o.f two parts. In the first part, it finds the 
minimum dissimilarity aleng the horizon.ta} directjon with the vertical coordinate fixed at an initial 
position. In the second part, it finds the minimum D value along the vertical direction \.Vith the 
norizontal coordinate fixed in the position detennined in the first part. Starting with the vertical 
direction followed 'by the horizontal direction is, of course, functionally equivalent . It was reported 
that this search procedure wo.rks quite effic.iently (Srinivasan and Rao, 1984 ). 

E'.i_gure 11.5 illus.trate·s ,the princ.1p]e of the conjugate direction search. In this exaoip1e, eacl1 

ste~ involves a oomp,arison between three testir:ig points. If a point assumes the minimum D value 
c©mpared with b.o~th of it,S t:w,o immediate neig.hoors (in one direction), tl1eo it is considere.d to be 
the best match along this direction, and the s'ear~h along another direction is started. Spec1fi~ally, 
the procedure starts to compare the D ,valu~s _for fttree points G, k-1 ),, G, k), ~nd G: k+ 1 ). I~ the D 
value of point (j, k-1) appeaus lo be the m1nLmum among the thre.e, then points (j, k-2), (j, k-1 ), 
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FIGURE 11.5 Conjugate direclion search. 

and U, k) are examined . The procedure continues, finding point U, k-3) as the best match along 
tl1e horizont al direct ion since its D value is smaUer than that of points U, k-4) and U, k-2) . The 
procedure is then conducted along the vertical directi.on. In this exampl"e the best matching is finally 
found, at point U+2, k-3) . 

11 .3.5 SUBSAMPLING IN THE CORRELATION WINDOW 

In the evaluation of the n1atching criterion, eitl1er MAD or MSE, all pixels within a correlatio n 
window at the t

11
_ 1 frame and an origir1al block at the t,, fran1e are inv·olved in the computation. Note 

that the correlation window and the original block are tl1e ·same size (refer to Figure 11. 1 ). In order 
to further reduce the computaLional effort, a subsa1npling inside tl1e window and tl1e block is 
perfor1ned (Bierling, 1988). Aliasing effects can be avoided by using lo\.v-pass filtering. For instance, 
only every second pixel, both horizontally and verlically in.side the window and the block, is taken 
• 

into account for the evaluatio11 of tl1e 1natching criterion. Obviously, by using this subsamp ling 
technique, the computational burden is· reduced by a factor of 4. Since 3/4 of the pixels witl1in the 
window and the blotk ate not involved in tl1.e 111.atching con1putation, l1owever, the use of sucl1 a 
subsampling procedure may affect the accuracy of the estimated motion vectors, especially in the 
case of smal l-size blocks. Tl1erefore, the subsampling tecl1nique is recon1mended 011ly t·or those 
cases with a large enough block size so that the n1atcl1ing accuracy will not be serious ly affected. 
Figure 11.6 shows an exan1ple of 2 x 2 subsa1npl ing applied to both an orig inal block of 16 x 16 
at the t,, frame and a correlation window of the san1e size at tl1e t,1• 1 frame. 

11 .. 3.6 MULTIRESOLUTION BLOCK MAT CHING 

lt is well known that a multiresolution structure, also known ·as a pyramid structure, is a very· 
powerfu.I computat ional configuration for various image processing tasks. To save con1putation in 
block matching, it is natura_l to resort to the pyra111id structure. ln fact, the multiresolution technique 
has been regarde.d as one of tl1e most efficient metl1ods in block n1atol1ing (Tzovaras et al., 1994). 
In a named top-down multiresolution cecI1nique, a typical Gaussian pyramid. is forn1ed first. 
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an original block 

' . 

a correlation window 

(a) AJJ. original block of l 6x 16 in frame at t 0 (b) A corre lation window of l 6x l 6 in frame at t 

FIGURE 11.6 An example of 2 x 2 subsampling in tl1e origi11al block and correla tion ,vindo\v fo{ a fast 
search. 

Before divin·g into further description, let us pause here to give those reade rs who have not been 
exposed to the Gaussian pyramid a. she.rt introduction to the con·cept. For tl1ose \Vho kn O\V the 
concept, this p.aragraph can be skipped. B'riefty speaking, a Gaussian pyramid can be understood 
as a set of images witl1 di_fferent resolutions related to a·n original image i11 a certain \vay. Tt1e 
original image has the l1ighest resolution and is considered as the lowest level, sornetimes call ed 
the bottom level, in the set. From the bottom level to the top level, tl1e reso lution decreases 
monotonically . Specifically, bet\veen two consecutive le\rels, tl1e upper level is l1alf as large as tl1e 
lower level in both horizontal and vertical directions. The upper level is generated by applying a 
lo\v-pass filter (which has a group O'f \veights) to the ]ow.er level, foil owed by a 2 x 2 subsan1p1ing. 
That is, each pixel in the uppe.r le·vel .is a weighted average of so111e pixels in tt1e lower ]e\iel . In 
gen_eral, this iterative procedure of generating a level in tl1e set is equivalent to convolving ,1 s.pecific 
weight function with the original image at the bottom level followed by an appropriate subsampling , 
Under certain condjtions, these weight ftJnctions can closely approximate the Gauss1ar1 probability 
density func.tion, \Vhich is \vhy the pyramid is named after Gauss. (For a detailed discussion, readers 
are referred to Burt and Adelson [ 1983, 1984].) A Gaussian pyramid structure is depicted in 
Figure 11.7. Note that the Gaussian pyramid depic . .ted in Figure 11.7 resembles a so-ca lled quad­
tree structure ,in which each node has four children nodes. In the simplest quad-tree pyran1id, each 
pixel in an upper leveJ is assigned an average value ot· its corresponding four pixels in the next 
lower level. 

-Now let's return to our discussion on the top-down multiresolution tec.hnique . . After a Gaussi~n 
·pyramid bas been constructed, motion search ranges are allocated among the different pyramid 
levels. Block matching is initiated at th.e lo\vest resolution level to obtain an initial estimation of 
motion vectors. These computed ·motion vectors ar~ then propagated to the next higher resol~tion 
level, where they are correc.red and then propagate·d to the next level. This procedure continues 
until the highest resolution level is r~ached. As a result, a large amount of computation can be 
s.aved. Tzovaras ·et al. (1994) showed t.hat a two-level Gaussian pyramid outperforms a tl1ree-level 
pyramid. Compared with fulJ s~arch block matching, the top-down multiresolution block searcll 
.saves up to 67% of comp·utations without seriously affe.cting the quality of the reconstru cted in1~ges. 

In conclusi0n ·, it has been demonstrated that.multiresoluti0n i,s indeed an efficient co111putat1onal 
structu;:e in block matching. This once ·again confilims the high computational efficiency of ttle 
multiresolurion structure. - ' ' 
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FIGURE 11.7 Gaussian pyramid structure. 
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With the n1ultireso lution technique discussed above, the computed motion vectors at any inter1ne­
diate pyramid level are projected to the next higher resolutio-n leve]. In reality, some computed 
motion vectors at the lower resolution levels may be inaccurate and have to be further refined, 
while others may be relatively accurate and able to provide satisfactory motion compensation for 
the corresponding block. From a computation-saving point of view, for the latter class it may not 
be worth propagating the motion vectors to the next higher resolution level for further processing. 

Motivated by the above observation, a new 1nultiresolution block matching metho.d with a 
thresholding technique was developed by Shi and Xia ( 1997). The thresl1olding technique prevents 
those blocks, whose estimated n1otion vectors provide satisfactory motion compensation, from 
further process'ing, thus saving a lot of computation. In what follows, this technique is presented 
in detail so as to provide readers with an insight to both multiresolution block matching and 
thresholding multiresolutjon block matching techniques. 

Algorithm Let /;,(x, y) be the frame of an image sequence at current n1oment ,i. First, two 
Gaussian pyramids are formed, pyramids tz and ti - 1, from image frames /;,(x, y) . and f,,_1 (x, )1), 

respectively. Let the levels of the pyramids be denoted by /, l = 0, 1, ... , L, where O is tl1e lowest 
resolution level (top level), L is the ful I resolution level (bottom level), and L+ I is the total number 
of layers in the pyram.ids. If (i, j) are the coordinates of the upper-left corner of a block at level l 
of pyramid ,i, the block is re·ferred to as block (i, j)~. The l1orizontal and vertical dimensions of a 
block at Iev:e] / are denoted by b~ and b~, respectively~ Like the variable block size m·ethod (refer 
lo Method 1 in Tzovaras et al. [ J994]), -the size of the block in this \vork varies with the pyramid 
levels. That is, if the size of a block at level l is b!, tl1en the size ot· the block at level l + 1 becomes 
2b1 x 2b~. The variable block size method is used because it gives more efficient motion estimation 
than th.e fixed block size method. Here, the matching criterion used for motio,n e.stimation is the 
MAD because it does not requi·re multiplication and performs sin1ilar lo the MSE . The MAD 
between blo·ck (i, j) 1b~ of the current frame and block (i + v;{., j + vy)1b~_1 of the previous fran1e at 
level l can be calculated as 
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b1.- I b~.-1 
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, 1· + I'll+ v' ). 
(. ') " ,. b b J n ,, _ ,. \' I ) - •. X . 

~ n . 
,r .r k= O 111=0 

( 11.5) 

\vhere V 1 = (v~, v~) is one of the candidat e·s of tl1e motion vector of block (i, j) ~, v.[, v_/ are the two 
con1ponents of the motion vector along the x and y directions, respecli vely. 

A block diagram of the algorithm is shown in Figure l 1.8. The threshold in terms of MAD 
needs to be dete11nined in advance according to the accuracy requirement of the motio n estin1ation. 
Deter1nining tl1e threshold is dis.cussed below in Part B of tl1is subsection. Gau ss ian pyramids are 
fo(111ed for two consecutive frames of an irnage sequence fron1 \vhicl1 motio11 es1imalio11 is des ired. 
Block matching is tl1en perform ed at the top level \Villi the full-search scl1eme. Tl1e es timated 
,motion \lectors are cl1ecked to see if tl1ey provide s_atisfaclory n1otion co n1pensat io11. If tl1e accuracy 
requirem.ent is met, then the motion vectors ,viii be direct ly transforn1ed to tl1e bottom level of tl1e 
pyramid. Other\vise, the motion vectors will be propagated to the 11ext highe r resol ution level for 
further refinement. This thresholding process is discussed below in Part C of this subsec tjon. The 
algorithm continues in tl1is fashion unti 1 either the tJ1reshold has been satisfied or the bot torn level 
has b·een reached . The skipping of some inter1nediate-level calculations provides for co n1putational 
saving. Experin1·.ental \vork with quite different motion complexities den1onstrates tl1al the .proposed 
algoritl1n1 reduces the processing tirne from 14 to 20o/o, while maintaining aln1ost the san1e quality 
in tl1e reconstructed in1age co·n1pared \vitl1 tl1e fastest existing ,nultireso lut ion block matcl1ing 
algorith ·m (Tzovaras et al., 1994). 

Low pas~ filtering 
and subsampling 

Low pass ftltering 
and subsampling 

f.ra·mc n-1 

• 

y 

Block matcning 

Satisfying 
threshold 
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Block matching 

Satisfying 
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N 

Block matching 

1-4------ ,@?' 

Motion field 

Low pass fillering 
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Low pass filtering 
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FIGURE 11.8 Block diagram for,·a three.-level tl1resbole multires0lurion block 111atcl1ing. 
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TABLE 11.1 
Parameters Used in the Experiments 

Parameters at Level 

Search range 

Block size 

Thresholding value 

Search range 

Block size 

Thresholding value 

Search range 

Bl ock size 

Thresholding value 

Low Resolution Level Full Resolution Level 

Miss America 

3x3 lxl 

4x4 8x8 
2 None (nol applicable) 

Train 

4x4 
4 x 4 
3 

Football 
4x4 
4x4 
4 

I x I 

8x8 
None (not applicable) 

I X I 

8x8 
None (nol applicable) 
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Threshold Deter1nination The MAD accuracy criterjon is used in this work for the sake of 
saving computations. Tl1e threshold value l1as a direct imp.act on the performance of the proposed 
algorithm. A small thresl1old val.ue can in1prove tl1e reconstructed image gt.Ja]ity at tl1e expense of 
increased con1putatio11al et·fort. On tl1e otl1er l1and, a large threshold value can redu.ce the compu­
tational con1plexity, but the quality of tl1e reconstructed in1age may be degraded. One possible way 
to dete1mine a thresl1old value, whicJ1 was used in many experiments by Shi and Xia ( 1997.), is as 
follows. 

The peak signal-to-noise ratio (PSNR) is con11no11ly used as a n1easure of the. quality · of the 
reconstructed image . As introduced in Cl1apter 1, it is. defined as 

2552 

PSNR=10loo 
b)O NISE 

( I 1.6) 

From the given required PSNR , one can find the necessary MSE value. A square root of tl1is 
MSE value can b·e chosen as a tl1resh0Id value, whicl1 is applied to tl1e first two in1ages fro1n tl1e 
sequence. If tl1c resulting PSNR and required processing tin1e are satisfactory, it is tl1en used for 
the rest of tl1e seque .11ce. Otherwise , tl1e threshold can be slightly adjusted accordi11gly and applied 
to th~ second and tl1ird images to cl1eck the PSNR and processi11g ti1ne. It was reported in nun1erous 
experin1ents that this adjusted tl1resJ1old value was accurate enougl1, and that tt1ere was no need for 
further adjustn1ent. As sl1own i11 T,1ble J 1.1, 1l1e tl1reshold values Ltsed for tl1e ''Miss America,'' 
''Train," and ''Football'' sequences (tl1ree sequences l1aving quite different ,notion complexities) are 
2, 3, and 4, respectively. They are all determined in this fasJ1jon a11d give satisfa .ctory performance, 
as shown in the three rows 1narked ''New Metf1od (TH=2)/' '{Ne\v Metl1od (TH=3)'' and ''Ne\v 
Method (1:H=4)," respectively, in Table 11 .. 2. Tl1at is, the PSNR experiences or1ly abo.ul 0.1 dB loss 
and the processing time decreases drastically. In :1l1e experin1ents, the tl1resf1old value of 3, i.e., tl1e 
average value of 2, 3, and 4, was also tried. Refer t1b the three rows n1arked ''New MetI1od (TH=3 ')'' 
in Table l J .2. It is noted tl1at tl1is average tl1resl10ld value 3 l1as already given s,1tisfactor)1 perfor­
mance for all tl1ree sequen·ces. Specifically,. for tl1e ·'Miss America'' sequer1ce, si.nce the criteJ·i011 
increases friom, 2 to 3, the PSNR loss increases fron1 0.11 to 0.48 dB, flnd tl1e reduction in processing 
time i·n·creases fr,om 20 to 38o/o. For the ''Football'' seque11ce, since tI1e criterion decreases fro111 
4 to 3., th,e BSNR loss decreases fron1 0.08 to 0.05 dB, and the redu·ction ir1 processing ti1ne decreases 

• 

• 

• 
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from 14 to 9o/o. Obviou.sly, for th.e ''Train' ' sequence, the criterion, as well ,1s tl1e performance, 
ren1ain.s tl1e same. One can therefore conclude that the threshold determination may not require 
mucl1 computation at all. 

Thresholding . Motion vectors estimated at each pyrarr1id level will be checke d to see if they 
provide satisfactory motion compensation. Assume V' (i, j) = ( v -~-, v _(.) is the estimated motion vector 
for block (i, j) 1 n at ]evel / of pyran1id _11. For th.resholding, V' ( i , } ) should be directly projected to 
the bottom level L. The corresponding motion vector for the same block at tl1e bottom level of 
pyramid 11 will be VL (2<1..-1> i,2<L-t) j ) , and is given as 

( 11.7) 

The MAD bet\veen the block at the bottom pyramid level of tl1e current frame and i ls counterpart 
in the previous frame can be determined according to Equation 11.5, where tl1e motion vector is 
VL = VL (2<L-1> i,2<1..-1> j ). This computed MAD value can be compared with the predefined threshold. 
If this MAD value is less than the threshold, the computed n1otion vector VL (2 CL-t) i ,2 t lr-l) JJ will 
be assigned to block (2(L-I> i,2<L-n j)!i" al level L in tl1e currer1t fran1e and r110Lion estin1ation for this. 
block will be stopped . If not, the estimated motion vector V' (i, j ) at level / will be propagated to 
level l + 1 for further refinement. Figure 11.9 gives an illustration of the above tt1resholding process . 

Experiments To verify the effectivenes_s of the proposed algoritl1m, extensive experin1ents have 
been conducted. The perfo111)ance of the new algorithm is evaluated and compa red with that of 
Method I, one of the most efficient multiresolution block matching methods (Tzova ras et al. , 1994) 
in te1111s of PSNR, error image entropy, motion vector entropy, the number of blocks stopped a.t 
the top level vs. the total number of blocks, and processing time. The nu1nbe r of blocks stopped 
at the top level is the nlllmber of blocks \Vithheld from further pro·cessing, whi le the total number 
of blocks is the number of blocks existing at the top level. It is noted that tl1e total number of 
blocks is the same for each level in the pyramid. Tl1e processing time is the sum of tl1e total number 
of additions involved in the evaluation of the MAD and tl1e thresholding operation. 

In the experiments, t\vo-level pyramids are used since they give better performance for motion 
estimation purpose:s (Tzovara.s et al., 1994). The algorithn1s are tested on three vjdeo sequences 
,vith different motion c.omp1exities, i.e., the ''Miss America," ' 'Train," and ''Football." The ''Mis s 
America'' sequence has a sp_eaker impose-d on a static background and contain.s less motion. The 
''Train'' sequence has more detai] and contains a fast-moving object (train). The 20th frame of the 
seq·uence is shown in Figure 11.10. The ''Football', sequence contains the most compli cated motion 

Pyramid 
n-1 

Estimation of motion vector 
of a block at ievel r 

Calculation of the MAD of 
the block at level. L 

Pyramid 
n 

Projection of 
the block and 
its estimated 
motion vector 
at level L 

FIGURE 11.9 The t_hresholding process. 
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FIGURE 11.10 The 20th fra,ne of the "Train" sequence. 

FIGURE 11.11 The 20t h frame in the "Football11 sequence. 

compared with the other two sequences. The 20t11 frame is shown in Figure 11.11. Table 1 I .1 is 
the list of implementing para111eters used in tJ1e experi111ents. Tables 11 .2 a_nd 11.3 give the perfor­
mance of the proposed algorithm con1pared with Method J . In all three cases , the motion estimation 
has a half-pixel accuracy, the n1eaning of wl1ich will be explained in the next sectio11. All perfor­
mance 1neasures listed there are averaged for the first 25 fran1es of the testing sequences . 

. Each frame of the ''Miss America'' sequence is of 360 x 288 pixels. For convenience , only the 
ce.ntral portion , 320 x 256 pixels, is processed. Using tl1e operatio11al paran1eters listed in Table 11. l 
(with a criterion valt1e of 2.), 38o/o o,f the total blocks at tl1e top level satisfy the predefined criterion 
and are not propagated to the bottom level. The processing time needed by the proposed algorithrn 
is 20% les.s than Method ·1, while the PSNR, the error image en.tropy, an.cl tl1e vector entropy are 
almost the same. Compared witl1 Method J, an extra amount of comput ation (arot1nd 0.16 x l06 

• 
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TABLE 11.2 
Experimental Results (I) 

PSNR 
(dB) 

Error Image­
Entropy 

(bits per pixel) 

Image and Vid eo Compr ession fo r MLJltin1edi a Eng ine ering 

Vector Entropy 
(bits/vector) 

Block Stopped at 
Top Level/ Total Blo ck 

Processing Times 
(No. of 

Additions, 1 O') 

Miss America Sequence 

~-1elhod I (Tzovaras 38.91 3.311 6.02 0/ 1280 10.02 

et al .. 1994) 

New method {TH=2) 38.79 3 .319 5.65 487/ 1'280 8.02 

Ne~v method (TH= 3) 38.43 3.340 5 .45 67911280 6. 17 

Train Sequence 

~ 1elhod I (Tzovaras 27.37 4.692 6.04 0/2560 22.58 

el al.. 1994) 

Ne\v method (TH=3) 27.27 4.788 5.65 l 333/ 2560 18.68 

Football Sequence 
~1ethod I (Tzo varas 24.26 5.379 7.68 0/3840 30.06. 

et al., 1994) 
Ne\v method (TH=4) 24.18 5.483 7.58 1464/3840 25 .90 

Ne\v method (TH=3) 24.21 5.483 7.57 1128/3840 27. 10 

additions) is conducted on the thresholding operation, but a large computational savings (around 
2.16 x I 06 additions) is achieved by \Vitl1holding from further processing those blocks \vhose MAD 
values at the full resolution level are Jess than the predefined accuraC)' criterion. 

The frames of the ''Train'' s·equence are 720 x 288 pixels, and only tt1e central portion, 640 x 
256 pixels. is processed. Using the operational paran1ete.rs listed in Table I 1. 1 (\vith a criterion 
\'alue of 3), about 52% o·f the tota.1 blocks are stopped at the top level. Tl1e process ing time is 
reduced about l 7o/o by the ne\v algorithm, con1pared \vith Method J . Tl1e PSNR, the error image 
entropy, and the vector entropy are almost the same. 

The frame.s of the ''Football'' sequence are 720 x 480 pixels, and only the central portion, 
640 x 384 pixels, is processed. Using the operational parameters listed in Table 11. l (with a criterion 
value of 4), about 38% of the total blocks are stopped at the top level. The process ing time is about 
14% Jess than that required by Method 1, whjle the PSNR , the error image entropy, and the vector 
entropy are almost the sam.e. 

As discussed, the experiments with a single accuracy criterion of 3 also produce similarly good 
perf or 1r1ance for the three different image sequences. 

In summary, it is clear that with the three different testing sequences , the thresholding multi­
resolution block matching algorithm works faster than the fastest existing top-down ·multiresolution 
block matching algorithm while achieving almost the same quality of the reconstructed image. 

11.4 MATCHIN 'G ACCURACY 

Apparently., the two components of the displacement vectors obtained using tl1e technique described 
above are an .integer multiple of pixels. This is referred to as one-pixel accuracy. If a higher accurac)t 
is desired, i.e., the components of the displacement vectors n,ay be a n·on-integer multiple of pixels, 
then spatial interpolation is required. Not only will more con,putation . be invoJ ved., but also ~ore 
bits will be required to fepresent mq,tion vectors. The gain is a m·ore accurat e motion estimation, 
hence less prediction er.ror. In practice, half-pixel or quarter-pixe.l accuracy are two widely utiljzed 
aceuracies other than one-pixel acc,uracy .. 
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11.5 LIMITATIONS WITH BLOCK MATCHING TI:CHNIQUES 

A lth.ot.1gh very sin1plet sLr,tighLforward , and efficient, hence, uti l ized n10 t w idely in v ideo codin g 
rl1e block matcl1ir1g rnor ion co 111pen arion techniqu e h,1s its drawbacks. First, it has a11 Ltnreliable 
motior1 vector field with re pcct to the tr L1e n1otion in 3-D world space. ln partict il,tr, it ha 
un aci fac tory n1ot1on e~·ti t11,1tion and compe 11 atior1 along .mov ing bot1ndaries. Second it cat1 e 
block artifact . T hird , it r1eed to ha11dle . ide inf orn1atio.n. Tl1.at 1 , it need to encode and transmit 
1notio11 vector- a an overhead to Lhe receivi11g er1d, thu. making it diffic uJc to use smal ler bloc.k 
ize to achieve l.1ig l1er cltcura )' in moti on estin1ation. 

All these .dr '-1wback , ,1re dLic to it • iLnple 111oclel : eacl1 block iL assumed to experience a t1niform 
tra.11 lation a11cl tl1c motion ve ~tors of partition ed block are e Li.1nated independer1tly of eacl1 other. 
Unreli.able n1oti or1 e ri ,11at1on. pc1rricL1lar ly along rno·vi og boundari e . . cau e r11ore prediction error, 
l1ence redL1ced cocli11g ef li c ie,1cy. 

Th e block ru·t i facL., do not Cclu ·e severe perceptual degradatioc1 to tl1e l1un1an vi ual ~ystem 
1-IVS) wher1 tilt: t t ai lt1ble cocling bit rate is ,1dcqL1ately J1igh . Th,i :is becau e. witl1 a l1igl1 bit rate~ 

a ' uffi cie nt t_\IT1<)t111t of tl1e 1nc)tior1-cor11pen ated pred1ctic)11 error can be rrar1smitted to tl1e receiv ing 
end. hen e i1111)rovi11g tl1e ul1JeL·ti,,e t~L1al eff ecL LO. L1cl·1 an. exten.t that the block artifact do not 
nppear tt ) be c1n11oy ing. H t)\: e er, v l1e11 tl1e a ,1ilc1ble bit rate i. low, particularly lovver tha11 64 kbps, 
the arti facts becc)n1e i:-;unl ly unplea:un t. 111 Figure l I, 12, a reconstructed frame of the '' Mi 
A111erica " ~eqt1e11cc at a low bi t rate i. ~howr1. Ob iou ly, blc>c.k artifacts are very ar1110yi ng, 

FIGURE .l 1.12 T lie 2 1st reconstructed frame of the ·'l\lliss A1r1ericn" seqt1ence LtSi.ng a codec fol lo,ving 

H.263. 
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especially \Vl1.ere the n1outh and hair are involved. The sequence was code d and decoded by using 
a codec follo·\ving ITU-T Recommendations H.263, a,1 jnternational standard in \Vhich block 
matching is utilized for motion estin1ation. 

The assumption that motion within eacl1 block is uniforrn requires a small block size such as 
16 x 16 and 8 x 8. A small block size leads to a large number of motion vectors, however, resulting 
in a large overhead of side inforn1ation. A study by Chan et al. (1990) indicated that 8 x 8 block 
ma.tching, perforrns much better than 16 x 16 in ten11.s of d,ecoded image qual icy due to better motio n 
estimation and compensation. The bits used for encoding 1notion vectors, however, increase sig­
nificantly (about four tin1es), wl1ich may be prohibitive for very low bit rate cod ing since the tota l 
bit rate needed for both predict.ion error and motion vectors rnay exceed the available bit rate . Ic 
is noted that when the coding bil rate is quite Jowl say, on the order of 20 k.bps, Ll1e side inforrnation 
becomes co.n1patiple \Vith the 111ai 11 inf orrnation (prediction error) (Lir1 e t al. 1997). 

Tren1endous research efforts have been n1ade to overco111e the limitations of block-matching 
techniques. Some improvements have been achieved and are discussed next. It should be kept in 
mind, however, that block matching is still by far tl1e nios t popular and efficie11t ·motion estimation 
and compensation technique utilized for video coding, and it has been adopted to r use by various 
intern·ational coding standards. In other words, block matching is the most appropriate technique 
in the framework of first-generation video coding (Dufaux and Mosche11i, 1995). 

11.6 NEW IMPROVEMENTS 

11.6.1 HIERARCHICAL BLOCK MATCHING 

B ierling ( 1988) developed the hierarchica.l search based on the following t \VO obser\1ations. On the 
on.e hand, for a reJatively large displacement, accurate block n1atching require s a relatively large 
block size. This is conceivable if one considers its opposite case: a large displacement with a sma.il 
correlation window. Under this circumstance, tl1e search range is large. Therefore the probability 
of finding multiple matches is high, resulting in unreliable motion estimation. On the other hand, 
a large block ·size may violate the assumption that all pixels in the block sha.re the same displacement 
ve,ctor. Hence a relatively small block size is required i.n order to meet the assumption . These 
observations shed light on the problem of using a fixed block size, which may lead to unreliable 
motion estimation. 

To ·satisfy these t\VO contradicting requirements simultaneously, in a hierarchical search proce­
dure a set of differe,nt sizes of blocks and correlation windows is utilized. To facilitate the discussion. ,. 

consider a three-level hierarchical block-matching a]oorithm in which three block-matchin g pro-
o ' 

cedures are conducted, each with its own parameters. Block matching is first conducted with res·pect 
to the largest siz.e of blocks and correlation w-indows. Using the estin1ated disp'lacement vector as 
an initial veetor at the second level, a new search is carried out with respect to the second largest 
size of blocks and correlation windows. The third search procedure is carried out similarly, bas~d 
o·n the results of tne second se'arch. An example with three correlation windows is illustrated in 

Figure 11. 13. It is noted that the r:esultant displacement vector is the sum of the three displa cenient 
vectors deter1ni,ned by three searches~ 

The parameters in these three levels are listed in Table I 1.4. The algorithm is described belo\V 
with an explanation of the various parameters in Table 11.4. Prior to each bloc.k matching, a separate 
low-pass filter is applied to the wl1ole image in order to achieve reliable block matching. The Jo\v­
pass filtersin,g used is simply a local averaging. That is, the gray yalue of every pixel is replaced _by 
the mean value of the gray values of all pixels within a square area centered a.t the pixel to \Vh~ch 
the mean value is assigned. In calculating .the matc.hing criterion D value, a subsampling · is applied 
to the original block and the correlation windo:w in order to save computation, which was discussed 
i.n Section 11.3.5. 

IPR2021-00827 
Unified EX1008 Page 262



• 

Block Matching 

(a) frame ti (b) frame ti-I 

FIGURE 11.13 Hierarchical block matching. 

TABLE 11.3 
Experimental Resu Its (11) 

Frames Tested 

"Miss Arnerica" seque nce 

(TH= 2) 

' 'Train" sequence 

(TH= 3) 

"FootbaJl" sequence 

(TH= 4) 
• 

Total Blocks Stopped 
at Top level 

(O/o) 

38 

52 

38 

Saved· Processing Time Compared 
with Method l in Tzovaras et al. (1994) 

(O/o) 

20 

17 

14 

237 

In the first level, for every 8th pixel horizontally and vertically (a step size of 8 x 8), blo_ck 
matching is conducted with the maxi1num displacement being ±7 pixels, a correlation window _size 
of 64 x 64, and a subsamp]ing factor of 4 x 4. A 5 x 5 averaging low-pass filter is applied prior 
to first level block matcl}ing. Second-lev·el ·block matching is conducted with respect to every 4th 
pixel horjzontally and vertically (a step size of 4 x 4). Note tha.t for a pixel whose displacement 
vector estimate has not been deterrnined in first-level block matching, an average of the four nearest 
neighboring estimates will be taken as its estin1ate. All the paran1eters for the second level are 
listed in Table 11.4. One thing that needs to be empl1asized is that in block match~ng a~ this level 
the search window should be displaced by the estimated displacen1ent vecto~ obtain:d in the first 
level. Third-level block matching is dealt with accordingly for every 2nd pixel horizontally and 
V . t· JI ( · • · 1- d · rr.able 11 4 In each of the er 1ca y a step size of 2 x 2). The d1 fferent parameters are 1ste 1n .1, • • 

three levels, the three-step search discussed in. Section I 1.3.3 is utilized. . 
E . - . . · 1·0 n due to the usa0 e of a x.pe.r1mental work has demonstrated a more reliable motion est1n1a 1 0 

. 

. . . . . · dow The first level with a 
set of different sizes for both the original block and the correlation win · d. 1 I · . · . . · ortion of the 1sp acemenl 
arge window size and a large displacement range detern11nes a maJor P d" 1 ent rancres 

. . . . . d smaller 1sp acem o vector reliably. The sutcess '1ve levels with smaller window sizes an ' 
are capable of adaptively estimatin.g motion vectors rnore locally. . h 1 els respectively. 

F . d n the t ree ev , 
tgure 11.14 shows a portion of an image with pixels p(ocesse 1 . 1 els 50 that a motion 

IL is noted that it is possible to apply one more interpolation after these _tllree etvor field is usefu1 in 
. motion vec . 

vector field o-f full resolution is available. Such a full-resolution · 

• 
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TABLE 11.4 
Parameters Used in a Three-Level Hierarchical Bloc.k Matching 

. 
Hierarchical Maxin1um Correlation 

Level Displacement Window Size Step Size LPF Window Size Subsan,pling 

l ±7 pel 64x64 8 
2 ±3 pel 28 X 28 4 
3 ± 1 pel I 2 X 12 2 

S011rce: Data from Bierling ( 1988). 
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FI-CURE 11.14 A portion of an image with pixels processed in all three levels. 

• 

such applications as motion-compensated interpolation in the context of videophony. There, in 
order to maintain a lo\v bit rate some frames are skipped for transmiss ion. At the. receiving end 
these s.kipped frames need to be inte:rpolated. As discussed in Chapter I 0, motion-compensated 
interp0lation is able to produce better frame quality than that achievable by using weighted linear 
interpolatien. 

11 .. 6.2 MULTIORID BLOCK M ~tCHING 

M,w)tigrid tfieory was developed originally in, m:athematics (r{ackbusch and Trottenberg, 198~)- It 
is a useful co:mputational structure in image processing bes,ides the mult iresolutio·n one describ~d 
in Section 11.3.6. A diagram with three different levels used to illustrate a mul tigrid struclure is 
shown in Figure 11.15. Although it i's also a hjeiarchicai structure, each level within the hierarchy 

• 
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/-1 

I 

/+ l 

FIGURE 11.15 11 luslration of a tl1ree-level hierarchical structure. 

is of the san1e resoluti on. A few algoritll1ns based on 111ultigrid structure have been developed in 
order to improve the block-n1atcl1ing techniq.uc. Two advanced methods are introduced below. 

Thresl1olding Multigrid Block Matching Realizing tl1at the sin1ple block-based motion model 
(assun1ing a L1niforr11 ,notion within a fixed-size block) in the block matching technique causes 
Se\,eral dra\vbacks, Cl1an et al. ( 1990) proposed a variable· size block n1atching technique. The main 
idea is using a split-a11d-merge strategy with a multigrid structure in order to seg1nent an image 
• 

1nto a set of variable size blocks, eacl1 of wl1icl1 has an approxim,1tely uniform ,notion. A binary 
tree (also known as bin-tree) structure is used to record the relationship betweer1 these blocks of 
different sizes. 

Specifically, ztn i111age frame is initially split into a set of square blocks by cutting tl1e image 
alternately horizo11tally and vertically. With respect to each block thus generated, a block rr1atching 
is performed i11 conjunction wjtb its previous frame. Tl1en the n1,1tching accuracy in tenn s of the 
sum squared error is con1pared witl1 a preset threshold. If it is s111aller than or equal to the tl1reshold, 
the block remai11s unchanged in tl1e wl1ole J)rocess and tl1e estin1ated motio11 vector is final. 
Otherwi se, the block \viii be split into two blocks, and a new run of block matcl1ing is conducted 
for each of tl1ese t\vo cl1ildren blocks. Tl1e process continues until ejther the estimated vector 
satisfies a preset accuracy requiren1ent or tl1e block size has reached a predefined n1ini1num. At 
this point, a 111erge process is proposed by Cl1an et al. Neigl1boring blocks under tl1e san1e inter­
mediate n·odes i.n tl1e bin-tree are checked to see if tl1ey can be n1erged, i.e., if the merged bJock 
can be approximated with adequate accuracy by a block i·n tl1e reconstructed previous frarne. It is 
noted tl1at the .merge operation ,nay be optional depending on the specific application. 

A block diagra1n o·f n1ultigrid block 111atcl1ing .is sl10\vn in FigL1re 11.16. Note tl1al it is sin1ilar 
to that show11 in Figure 11.8 for tl1e tl1resholding multiresolution block matcl1ir1g discussed i11 
S_ection 11.3.6. This observation reflects· the similarities between 111ultigrid a11d n1ultiresolution 
structures: both are l1ierarcl1ical in nature and tl1e sp'litting ar1d n1erging can be easily performed . 
An example o·f an image deco111posiLion and its con·espo.nding bin-tree are sho"vn i11 Figure 11.17. 

It was reported by Chan et al. (1990) 1}1at, with respect to a picture of a co111puter n1ouse and 
a coin, the. proposed variable size block 111atchi11g acl1ieves up to a 6-dB in1proven1ent in SNR and 
about 30o/o reduction in required bits co111pared with fixed-size ( 16 x 16) block matcl1ing. For several 
typical videoconfere11cing sequ·ences, tl1e proposed algorithm constantly performs better tl1an the 
fixed-size block matching technique in terms of i.1npro\1ed SNR of reconstructed frames "vitl1 the 
sam.e bit rate . 

A simi1.ar algoritl1m was reported by Xia ar1d Sl1i ( 1996) \vhere a <1uad-tree-baseo segmentation 
is used. The thr~sholding tecl1nique is si111i lar to that used by Sl1i and Xia ( 1997) and tl1e emphasis 
is plaee cd on the reduction of co1nJ)UtaLional complexity. le \¥as found tl1at for tl1e head-sl1oulder 
type of videophony sequences the tl1resl1qldi11g m·ultigrid block 111atcl1i11g algoritl1111 perfor111s better 

• 
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Initializ.atio,n with an intermediate level in 
the multigrid 

Block matching 

ls the preset 
aecuracy criterion 

satisfied? 

N 

Does the olock size . 

reach a preset 
minimum? 

N 

Splitting the block 
(binary or quaternary) 

Completion of matching for the 
block 

FIGURE 1·'1.16 F:Iow chart of multigrid block matching. 

than the thresholdrng multires.olution block matching algorithm. For video sequences that contain 
more complicated. ·details and motion, however, the perfor1r1ance comparison turns out to be 
rever.sed. 

A few remark·s can be made as a eonclusion for the thresholdjng technjque. Although it needs 
to encode and transmit the bin-tree or quad-tree as a portio.n of side infon11ation, and it has to 

resolve the pres.et thres.hold issue, overall, the propos.ed algorithms achieve better performance 
com.pared with fixed;.si.ze block matching. With the flexjbility provided through the variable-size 
methodology, the propose.d approach is capable of making the model of the uniform motion within 
e-aeh block more accurate than fixed-size block matchin.g can do. 

Optimal Multigrid Block Matching As pointed out in Chapter 10, the ultimate goal of motion 
estimation and motion compensation in the context of video coding is to provide a high code 
efficiency in real time. In other words, accurate true motion estimation is not the final goal, although 
accurate motion estimation is certainly desired. Trus point was presented by Bierling ( 1988) as 
well. 'There, tne ctifferent reg·uirements with respect to motion-compensated coding and motion.­
compensated interpolation were discussed. ·While the former req·uires motion vector esti~ation 
leading to minimum prediction error and at the same time a l,o.w a.mount of motion vector 1n~or­
matien, the latter reijuires acturate estimation of true vectors and a high resolution of tne motion 

vec'ter field. d 
This point was very much. em.pn._a~iz~ by Dufaux and Mosch'enj ( 1·995). T?ey clearly ~tate 

that in the context of video. coding, est1mat1on of tru.e motion in 3-D world space 1s not the ulumate 
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FIGURE 11.17 Thresl1olding multigrid block 1natching. 

goal. Instead, motion estimation sl1ould be able to provide good temporal prediction and at the 
same time require low overhe,ad infom1ation. In a word, the total amount of information that needs 
to be encoded should be minimized. Based on this observation, a 1nultigrid block matching technique 
with an a·dvanced entropy criterion was proposed. 

Since it belongs to the category of thresholding multigrid block m~tching, it sl1ares n1any 
similarities with those of Chan et al. ( 1990) and Xia and Shi (1996). It also bears so1ne resen1blance 
to thresholding multiresolution block matcl1ing (Sl1i and Xia., 1997). Wl1at really distinguisl1es this 
approach from other algorithms is its segmentation decision rule. Instead of a preset tl1reshold, tl1e 
algorithm works with an adaptive entropy criterio11, whicl1 aims at ,controlling th~ seg.mentation in 
order to achieve an optin1al solution in such a way tl:1at tI1e total number of bits needed for 
representing . both the prediction error and n1otion 0verhead is minin1ized. The decision of splitting 
a block is made only when the extra motion o.ve.rhead involved in the splitting is Jower tl1an the 
ga.in obtained from less prediction error due to n1ore accurate n1otion estin1ation. Not only is it 
optimal in the sense of bit saving, but it also elir11inates the need for setting a tl1reshold. 

The number of bjts needed for encoding motion information can be estin1ated in a straigl1tfor­
w.ard manner. As far as the prediction error is concerned, tl1e bits required can be represented by 
a total entropy of the prediction erro.r, whicl1 can be esti1nated by using an analytical expression 
presented by Dufaux (1994) and Moscheni et al. ( 1993). Note that tl1e eoding cost for quad-tree 
segm·enratio.n inform,atioh is negligiole compared with tl1at used for encodi.ng prediction errer and, 
motion veet0rs .and, hence, rs 0111itted in d.ete.t111ining tl1e criterion .. 
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FIGURE 11.18 The 20th frame of the --FJo\ver Gi.1rden·· sequence. 

In ad.dition to this entro,py criterion, a rr1ore adva11ced procedure i. adopted in the algorithm 
for do\vn-projecting the n1otion vectors bet\.veen two cor1 .. ecuti e grjd. in the coar e-to-fine iterati e 
refinen1ent process. 

Both qualitative and quar1titative assessment in experin1ent den1on~trarc it: good performance. 
It ·was reported that, when the PSNR is fi xed, the bit rate saving for the . eqL1ence ,;Flower Garden·· 
is from 10 to 20 %, for ''Mobile Calendar'1 fro1n 6 to J2o/o. and for ' ·TalJle Tenni ·· up to 8o/o. Thi 
can be translated into a gain in the PSNR rat1ging fron1 0.5 to 1.5 dB. Subjec ti ely. the \risual 

quality isjmproved greatly. In particular, 111oving edges becon1e n1·uch l1arper. Figure I 1.18, 11.J 9. 
and 11.20 sho\v a frame from "'Flower Garden," ·Mobile Calendar.'' and ··Table Tenni ., sequence · 
re$pective1y. 

11.6.3 PREDICTIVE MOTl ·ON FIELD SEGMENTATION 

. 
A.s pointed at the beginning of Section 11.5, the block-based n1odeL. which assumes consLant motion 
within each block, leads to unreliable motion estimation and compe11sa.tion. This block effect 
becomes more obvious. and severe for motion-discontinuous areas in image frames. Tl1is is because 
there are two or thore regions in a block in the areas, each having a di·fferent 1notion. Using one 
motion vecto,r to represent and co1npensate for the whole block results in a significant prediction 

• error increase . . . 

Orchard (1993) pro·posed a predictive motiot1 field segmentation technique to improve n1otion 
estimation an.d compensation along boundaries of moving objects. Significant improvement in the 
accuracy of the motion,-compensated frame was achieved through relaxing the restrictive block­
based model alon,g moving boundaries. That is, for those blocks involving moving boundaries , the 
motio.n field assumes pixel resolution instead of block resolution. 

• • 
Two key issues have to be. resolv~d in order to realize the idea. One is the segmentauon issue. 

It is known that the segmentation information is need.ed at the receiving end for motion compen­
satjon. This gjve-s rise tQ a large inGrease in side infor111ation. To maintain almost the same an1ount 
of coding cost as the c0nventional block matching technique, the m.otion fieJ~ segmentatjoo was 
proposed to be conducted bas~ed on prev·iously decoded frames. This schen1e is based on the 
following obseWration: the shape of a moving object does· not ch·an.ge from frame to frame. 
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FIGURE 11.19 The 20tl1 fran1e of the ' 'Mobile and Calendar'' sequence. 

FIGURE 11.20 The 20tl1 fra111e of the "Table Tennis·· sequence. 

This segmeJ1tation is similar to the pel recursive technique (\vhich will be discussed i11 detail 
in the next chapter) in the sense that both techniques operate bact.. .. vc11¥ls: based on previously • 

decode'd frames. The segmentation is different fron1 the pel recu1·sive metl1od in that it only uses 
prev·iously decoded frame.s to p1·edict the shape of discontinuity in the motion field~ not tl1e \vhoJe 
motion field itself. Motion vectors are still estimated t1sing tl1e current fran1e at the e11coder. 
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