0 Nonstandard Image Coding

In this chapter, we introduce three nonstandard image coding techniques: vector quantization (VQ)
(Nasrabadi and King, 1988), fractal coding (Barnsley and Hurd, 1993: Fisher, 1994: Jacquin, 1993),
and model-based coding (Li et al., 1994).

9.1 INTRODUCTION

The VQ, fractal coding, and model-based coding techniques have not yet been adopted as an image
coding standard. However, due to their unique features these techniques may find some special
applications. Vector quantization is an effective technique for performing data compression. The-
oretically, vector quantization is always better than scalar quantization because it fully exploits the
correlation between components within the vector. The optimal coding performance will be obtained
when the dimension of the vector approaches infinity, and then the correlation between all com-
ponents 1s exploited for compression. Another very attractive feature of image vector quantization
Is that its decoding procedure is very simple since it only consists of table look-ups. However, there
arec two major problems with image VQ techniques. The first is that the complexity of vector
quantization exponentially increases with the increasing dimensionality of vectors. Therefore, for
vector quantization it 1s important to solve the problem of how to design a practical coding system
which can provide a reasonable performance under a given complexity constraint. The second
major problem of image VQ is the need for a codebook, which causes several problems in practical
application such as generating a universal codebook for a large number of images, scaling the
codebook to fit the bit rate requirement, and so on. Recently, the lattice VQ schemes have been
proposed to address these problems (Li, 1997).

Fractal theory has a long history. Fractal-based techniques have been used in several areas of
digital image processing such as image segmentation, image synthesis, and computer graphics, but
only in recent years have they been extended to the applications of image compression (Jacquin,
1993). A fractal is a geometric form which has the unique feature of having extremely high visual
self-similar irregular details while containing very low information content. Several methods for
Image compression have been developed based on different characteristics of fractals. One method
is based on Iterated Function Systems (/FS) proposed by Barnsley (1988). This method uses the
sell-similar and self-affine property of fractals. Such a system consists of sets of transformations
including translation, rotation, and scaling. On the encoder side of a fractal image coding system,
a set of fractals is generated from the input image. These fractals can be used to reconstruct the
image at the decoder side. Since these fractals are represented by very compact fractal transforma-
tions, they require very small amounts of data to be expressed and stored as formulas. Therefore,
the information needed to be transmitted is very small. The second fractal image coding method
is based on the fractal dimension (Lu, 1993; Jang and Rajala, 1990). Fractal dimension is a good
representation of the roughness of image surfaces. In this method, the image 1s first segmented
using the fractal dimension and then the resultant uniform segments can be efficiently coded using
the properties of the human visual system. Another fractal image coding scheme 1s based on fractal
geometry, which is used to measure the length of a curve with a yardstick (Walach, 1989). The
details of these coding methods will be discussed in Section 9.3.

The basic idea of model-based coding is to reconstruct an image with a set of model parameters.
The model parameters are then encoded and transmitted to the decoder. At the decoder the decoded
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FIGURE 9.1 Principle of image vector quantization. The dashed lines correspond to training set generation,
codebook generation, and transmission (if 1t 1s necessary).

model parameters are used to reconstruct the image with the same model used at the encoder.
Therefore, the key techniques in the model-based coding are image modeling, image analysis, and
image synthesis.

9.2 VECTOR QUANTIZATION

9.2.1 Basic PrRINCIPLE OF VECTOR QUANTIZATION

An N-level vector quantizer, Q, is mapping from a K-dimensional vector set {V}, into a finite
codebook, W = {w,, w,, ..., w,}:

0: Vo W (9.1)

In other words, it assigns an input vector, v, to a representative vector (codeword), w from a
codebook, W. The vector quantizer, Q, is completely described by the codebook, W= {w, wa, ...,
wy}, together with the disjoint partition, R = {r,, r,, ..., ry}, where

ri={v: Q(v) = w;} (9.2)

and w and v are K-dimensional vectors. The partition should identically minimize the quantization
error (Gersho, 1982). A block diagram of the various steps involved in image vector quantization
Is depicted in Figure 9.1.

The first step in image vector quantization is the image formation. The image data are first
partitioned into a set of vectors. A large number of vectors from various images are then used (O
form a training set. The training set is used to generate a codebook, normally using an iterative
clustering algorithm. The quantization or coding step involves searching each input vector for the
closest codeword in the codebook. Then the corresponding index of the selected codeword is coded
and transmitted to the decoder. At the decoder, the index is decoded and converted to the corre-
sponding vector with the same codebook as at the encoder by look-up table. Thus, the design
decisions in implementing image vector quantization include (1) vector formation; (2) training set
generation; (3) codebook generation; and (4) quantization.

9.2.1.1 Vector Formation

The first step of vector quantization is vector formation; that is, the decomposition of the 1mages
into a set of vectors. Many different decompositions have been proposed; examples include the
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intensity values of a spatially contiguous block of pixels (Gersho and Ramamuthi, 1982: Baker
and Gray, 1983); these same intensity values, but now normalized by the mean and variance of the
block (Murakami et al., 1982); the transformed coefficients of the block pixels (Li and Zhang,
1995); and the adaptive linear predictive coding coefficients for a block of pixels (Sun, 1984).
Basically, the approaches of vector formation can be classified into two categories: direct spatial
or temporal, and feature extraction. Direct spatial or temporal is a simple approach to forming
\fectors from the intensity values of a spatial or temporal contiguous block of pixels in an image
Oran image scquence. A number of image vector quantizaton schemes have been investigated with
this method. The other method is feature extraction. An image feature is a distinguishing primitive
characteristic. Some features are natural in the sense that they are defined by the visual appearance
of an 1mage, while the other so-called artificial features result from specific manipulations or
measurements of images or image sequences. In vector formation, it is well known that the image
data 1n a spatial domain can be converted to a different domain so that subsequent quantization
and joint entropy encoding can be more efficient. For this purpose, some features of image data,
such as transformed coefficients and block means can be extracted and vector quantized. The
practical significance of feature extraction is that it can result in the reduction of vector size,
consequently reducing the complexity of coding procedure.

9.2.1.2 Training Set Generation

An optimal vector quantizer should ideally match the statistics of the input vector source. However,
iIf the statistics of an input vector source are unknown, a training set representative of the expected
Input vector source can be used to design the vector quantizer. If the expected vector source has a
large variance, then a large training set is needed. To alleviate the implementation complexity
caused by a large training set, the input vector source can be divided into subsets. For example, in
(Gersho, 1982) the single input source is divided into “edge” and “shade” vectors, and then the
Separate training sets are used to generate the separate codebooks. Those separate codebooks are
then concatenated into a final codebook. In other methods, small local input sources corresponding
to portions of the image are used as the training sets, thus the codebook can better match the local
statistics. However, the codebook needs to be updated to track the changes in local statistics of the
Input sources. This may increase the complexity and reduce the coding efficiency. Practically, in
most coding systems a set of typical images is selected as the training set and used to generate the
codebook. The coding performance can then be insured for the images with the training set, or for
those not in the training set but with statistics similar to those in the training set.

9.2.1.3 Codebook Generation

The key step in conventional image vector quantization is the development of a good codebook.
The optimal codebook, using the mean squared error (MSE) criterion, must satisfy two necessary
conditions (Gersho, 1982). First, the input vector source is partitioned into a predecided number
of regions with the minimum distance rule. The number of regions is decided by the requirement
of the bit rate, or compression ratio and coding performance. Second, the codeword or the repre-
sentative vector of this region is the mean value, or the statistical center, of the vectors within the
region. Under these two conditions, a generalized Lloyd clustering algorithm proposed by Linde,
Buzo, and Gray (1980) — the so-called LBG algorithm — has been extensively used to generate
the codebook. The clustering algorithm is an iterative process, minimizing a performance index
calculated from the distances between the sample vectors and their cluster centers. The LBG
clustering algorithm can only generate a codebook with a local optimum, which depends on the
initial cluster seeds. Two basic procedures have been used to obtain the initial codebook or cluster
seeds. In the first approach, the starting point involves finding a small codebook with only two
codewords, and then recursively splitting the codebook until the required number of codewords is
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obtained. This approach is referred to as binary splitting. The second procedure starts with initial
seeds for the required number of codewords, these seeds being generated by preprocessing the
training sets. To address the problem of a local optimum, Equitz (1989) proposed a new clustering
algorithm, the pairwise nearest neighbor (PNN) algorithm. The PNN algorithm begins with a
separate cluster for each vector in the training set and merges together two clusters at a time until
the desired codebook size i1s obtained. At the beginning of the clustering process, each cluster
contains only one vector. In the following process the two closest vectors 1n the training set are
merged to their statistical mean value, in such a way the error incurred by replacing these two
vectors with a single codeword is minimized. The PNN algorithm significantly reduces computa-
tional complexity without sacrificing performance. This algorithm can also be used as an 1nital

codebook generator for the LBG algorithm.

9.2.1.4 AQuantization

Quantization in the context of a vector quantization involves selecting a codeword in the codebook
for each input vector. The optimal quantization, in turn, implies that for each input vector, v, the
closest codeword, w;, 1s found as shown in Figure 9.2. The measurement criterion could be mean
squared error, absolute error, or other distortion measures.

A full-search quantization is an exhaustive search process over the entire codebook for finding
the closest codeword, as shown in Figure 9.3(a). It is optimal for the given codebook, but the
computation is more expensive. An alternative approach is a tree-search quantization, where the
search is carried out based on a hierarchical partition. A binary tree search is shown in Figure 9.3(b).
A tree search is much faster than a full search, but it is clear that the tree search is suboptimal for
the given codebook and requires more memory for the codebook.

Codebook
— |
Input vector
v - ¥ Index k
> |v—v.;(| =Aﬁ‘ n{v—wl} >
Quantization

FIGURE 9.2 Principle of vector quantization.

(a) (b)

FIGURE 9.3 (a) Full search quantization; (b) binary tree search quantization.
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9.2.2  SeverAL IMAGE CODING ScHEMES WITH VECTOR QUANTIZATION

In this section, we are going o present several image coding schemes using vector quantization
which include residual vector quantization, classified vector quantization, transform domain vector
quantization, predictive veclor quantization, and block truncation coding (BTC) which can be seen
as a binary vector quantization.

9.2.2.1 Residual VQ

In the conventional image vector quantization, the vectors are formed by spatially partitioning the
image data into blocks of 8 X 8 or 4 x 4 pixels. In the original spatial domain the statistics of
vectors may be widely spread in the multidimensional vector space. This causes difficulty in
generating the codebook with a finite size and limits the coding performance. Residual VQ is
proposed to alleviate this problem. In residual VQ, the mean of the block is extracted and coded
separately. The vectors are formed by subtracting the block mean from the original pixel values.
This scheme can be further modified by considering the variance of the blocks. The original blocks
are converted to the vectors with zero mean and unit standard deviation with the following con-
version formula (Murakami et al., 1982):

k-1
1
n, = 7 251 (9.3)

J=0

Ij _ (.5'1- ; "”:) (94)

F k)
O, = %2(51 — m‘)h (9.5)

j=0

rd | —

where m;, is the mean value of ith block, o, is the variance of ith block, s; is the pixel value of pixel
J(U=0, ..., K-1)in the ith block, X is the total number of pixels in the block, and x; is the normalized

value of pixel j. The new vector X, is now formed by x; G =0, I, ..., k-1):
Xf . [Iﬂ, Xy sons IKL (96)

With the above normalization the probability function P(X) of input vector X is approximately
similar for image data from different scenes. Therefore, it is easy to generate a codebook for the
new vector set. The problem with this method is that the mean and variance values of blocks have

to be coded separately. This increases the overhead and limits the coding efficiency. Several methods
have been proposed to improve the coding efficiency. One of these methods is to use predictive
coding to code the block mean values. The mean value of the current block can be predicted by
one of the previously coded neighbors. In such a way, the coding efficiency increases as the use

of interblock correlation.

9.2.2.2 Classified VQ

In image vector quantization, the codebook is usually generated using training set under constraint
of minimizing the mean squared error. This implies that the codeword is the statistical mean of the
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region. During quantization, each input vector is replaced by its closest codeword. Therefore, the
coded images usually suffer from edge distortion at very low bit rates, since edges are smoothed
by the operation of averaging with the small-sized codebook. To overcome this problem, we can
classify the training vector set into edge vectors and shade vectors (Gersho, 1982). Two separate
codebooks can then be generated with the two types of training sets. Each mput vector can be
coded by the appropriate codeword in the codebook. However, the edge vectors can be further
classified into many types according to their location and angular orientation. The classified VQ
can be extended into a system which contains many sub-codebooks, each representing a type of
edge. However, this would increase the complexity of the system and would be hard to implement
in practical applications.

9.2.2.3 Transform Domain VQ

Vector quantization can be performed in the transform domain. A spatial block of 4 X 4 or 8 X 8
pixels is first transformed to the 4 X 4 or 8§ x 8 transformed coefficients. There are several ways to
form vectors with transformed coefficients. In the first method, a number of high-order coefficients
can be discarded since most of the energy is usually contained in the low-order coefficients for
most blocks. This reduces the VQ computational complexity at the expense of a small increase in
distortion. However, for some active blocks, the edge information is contained in the high frequen-
cies, or high-order coefficients. Serious subjective distortion will be caused by discarding high
frequencies. In the second method, the transformed coefficients are divided into several bands and
each band is used to form its corresponding vector set. This method is equivalent to the classified
VQ in spatial domain. An adaptive scheme is then developed by using two kinds of vector formation
methods. The first method is used for the blocks containing the moderate intensity variation and
the second method is used for the blocks with high spatial activities. However, the complexity
increases as more codebooks are needed in this kind of adaptive coding system.

9.2.2.4 Predictive VQ

The vectors are usually formed by the spatially consecutive blocks. The consecutive vectors are
then highly statistically dependent. Therefore, better coding performance can be achieved if the
correlation between vectors is exploited. Several predictive VQ schemes have been proposed to
address this problem. One kind of predictive VQ is finite state VQ (Foster et al., 1985). The finite-
state VQ 1s similar to a trellis coder. In the finite state VQ, the codebook consists of a set of sub-
codebooks. A state variable is then used to specify which sub-codebook should be selected for
coding the input vector. The information about the state variable must be inferred from the received
sequence of state symbols and initial state such as in a trellis coder. Therefore, no side information
or no overhead need be transmitted to the decoder. The new encoder state is a function of the
previous encoder state and the selected sub-codebook. This permits the decoder to track the encoder
state if the initial condition is known. The finite-state VQ needs additional memory to store the
previous state, but it takes advantage of correlation between successive input vectors by choosing
the appropriate codebook for the given past history. It should be noted that the minimum distortion
selection rule of conventional VQ is not necessary optimum for finite-state VQ for a given decoder
since a low-distortion codeword may lead to a bad state and hence to poor long-term behavior.
Therefore, the key design issue of finite-state VQ is to find a good next-state function.

Another predictive VQ was proposed by Hang and Woods (1985). In this system, the input
vector i1s formed in such a way that the current pixel is as the first element of the vector and the
previous inputs as the remaining elements in the vector. The system is like a mapping or a recurtf.ivﬁ
filter which is used to predict the next pixel. The mapping is implemented by a vector quantizer
look-up table and provides the predictive errors.
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9.2.2.5 Block Truncation Coding

In the block truncation code (BTC) (Delp and Mitchell, 1979), an image is first divided into 4 x 4
blocks. Each block is then coded individually. The pixels in each block are first converted into two-
level signals by using the first two moments of the block:

q
da=m-+aQ
N—-q
(9.7)

N —1
q

b=m-0 j
\

where m 1s the mean value of the block, o is the standard deviation of the block, N is the number
of total pixels in the block, and ¢ is the number of pixels which are greater in value than m.
Therefore, cach block can be described by the values of block mean, variance, and a binary-bit
plane which indicates whether the pixels have values above or below the block mean. The binary-
bit plane can be seen as a binary vector quantizer. If the mean and variance of the block are
quantized to 8 bits, then 2 bits per pixel is achieved for blocks of 4 x 4 pixels. The conventional
BTC scheme can be modified to increase the coding efficiency. For example, the block mean can
be coded by a DPCM coder which exploits the interblock correlation. The bit plane can be coded
with an entropy coder on the patterns (Udpikar and Raina, 1987).

9.2.3 LatTmice VQ ror IMaGe CODING

In conventional image vector quantization schemes, there are several issues, which cause some
difficulties for the practical application of image vector quantization. The first problem is the
limitation of vector dimension. It has been indicated that the coding performance of vector quan-
lization increases as the vector dimension while the coding complexity exponentially increases at
the same time as the increasing vector dimension. Therefore, in practice only a small vector
dimension is possible under the complexity constraint. Another important issue in VQ is the need
for a codebook. Much research effort has gone into finding how to generate a codebook. However,
In practical applications there is another problem of how to scale the codebook for various rate-
distortion requirements. The codebook generated by LBG-like algorithms with a training set 1s
usually only suitable for a specified bit rate and does not have the flexibility of codebook scalability.
For example, a codebook generated for an image with small resolution may not be suitable for
images with high resolution. Even for the same spatial resolution, different bit rates would require
different codebooks. Additionally, the VQ needs a table to specify the codebook and, consequently,
the complexity of storing and searching is too high to have a very large table. This further limits
the coding performance of image VQ.

These problems become major obstacles for implementing image VQ. Recently, an algorithm
of lattice VQ has been proposed to address these problems (Li et al., 1997). Lattice VQ does not
have the above problems. The codebook for lattice VQ is simply a collection of lattice points
uniformly distributed over the vector space. Scalability can be achieved by scaling the cell size
associated with every lattice point just like in the scalar quantizer by scaling the quantization step.
The basic concept of the lattice can be found in (Conway and Slone, 1991). A typical lattice VQ
scheme is shown in Figure 9.4. There are two steps involved in the image lattice VQ. The first step
1S to find the closest lattice point for the input vector. The second step is to label the lattice point,
l.e., mapping a lattice point to an index. Since lattice VQ does need a codebook, the index assignment
is based on a lattice labeling algorithm instead of a look-up table such as in conventional VQ.
Therefore, the key issue of lattice VQ is to develop an efficient lattice-labeling algorithm. With this
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FIGURE 9.4 Block diagram of lattice VQ.
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FIGURE 9.5 Labeling a two-dimensional lattice.

algorithm the closest lattice point and its corresponding index within a finite boundary can be
obtained by a calculation at the encoder for each input vector.

At the decoder, the index is converted to the lattice point by the same labeling al gorithm. The
vector is then reconstructed with the lattice point. The efficiency of a labeling algorithm for lattice
VQ is measured by how many bits are needed to represent the indices of the lattice points within
a finite boundary. We use a two-dimensional lattice to explain the lattice labeling efficiency. A two-
dimensional lattice is shown in Figure 9.5.

In Figure 9.5, there are seven lattice points. One method used to label these seven 2-D lattice
points is to use their coordinates (x,y) to label each point. If we label x and y separately, we need
two bits to label three values of x and three bits to label a possible five values of y, and need a total
of five bits. It is clear that three bits are sufficient to label seven lattice points. Therefore, different
labeling algorithms may have different labeling efficiency. Several algorithms have been developed
for multidimensional lattice labeling. In (Conway, 1983), the labeling method assigns an index o
every lattice point within a Voronoi boundary where the shape of the boundary is the same as the
shape of Voronoi cells. Apparently, for different dimension, the boundaries have different shapes.
In the algorithm proposed in (Laroia, 1993), the same method is used to assign an index to each
lattice point. Since the boundaries are defined by the labeling algorithm, this algorithm might not
achieve a 100% labeling efficiency for a prespecified boundary such as a pyramid boundary. The
algorithm proposed by Fischer (1986) can assign an index to every lattice point within a prespecified
pyramid boundary and achieves a 100% labeling efficiency, but this algorithm can only be used
for the Z" lattice. In a recently proposed algorithm (Wang et al., 1998), the technical breakthrough
was obtained. In this algorithm a labeling method was developed for Construction-A_and
Construction-B lattices (Conway, 1983), which is very useful for VQ with proper vector dimensions.
such as 16, and achieves 100% efficiency. Additionally, these algorithms are used for labeling lattice
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points with 16 dimensions and provide minimum distortion. These algorithms were developed

based on the relationship between lattices and linear block codes. Construction-A and Construction-

B are the two simplest ways to construct a lattice from a binary linear block code C = (n, k, d),

where n, k, and d are the length, the dimension, and the minimum distance of the code, respectively.
A Construction-A lattice is defined as:

A =C+2Z" (9.8)

where Z" is the n-dimensional cubic lattice and C is a binary linear block code. There are two steps
involved for labeling a Construction-A lattice. The first is to order the lattice points according to
the binary linear block code C, and then to order the lattice points associated with a particular
nonzero binary codeword. For the lattice points associated with a nonzero binary codeword, two
sub-lattices are considered separately. One sub-lattice consists of all the dimensions that have a
“0” component in the binary codeword and the other consists of all the dimensions that have a “1”
component in the binary codeword. The first sub-lattice is considered as a 2Z lattice while the
second is considered as a translated 2Z lattice. Therefore, the labeling problem is reduced to labeling
the Z lattice at the final stage.
A Construction-B lattice is defined as:

A =C+2D, (9.9)
where D, is an n-dimensional Construction-A lattice with the definition as:
D =(nn- ,2)+22" (9.10)

and C is a binary doubly even linear block code. When n is equal to 16, the binary even linear
block code associated with A, is C = (16, 5, 8). The method for labeling a Construction-B lattice
i1s similar to the method for labeling a Construction-A lattice with two minor differences. The first
difference is that for any vector y = ¢ + 2x, x € Z", if y is a Construction-A lattice point; and x €
D,, if y is a Construction-B lattice point. The second difference is that C is a binary doubly even
linear block code for Construction-B lattices while it is not necessarily doubly even for Construc-
tion-A lattices. In the implementation of these lattice point labeling algorithms, the encoding and
decoding functions for lattice VQ have been developed in (Li et al., 1997). For a given input vector,
an index representing the closest lattice point will be found by the encoding function, and for an
input index the reconstructed vector will be generated by the decoding function. In summary, the
idea of lattice VQ for image coding is an important achievement in eliminating the t::eed for a
codebook for image VQ. The development of efficient algorithms for lattice point labeling makes

lattice VQ feasible for image coding.

9.3 FRACTAL IMAGE CODING

9.3.1 MATHEMATICAL FOUNDATION

A fractal is a geometric form whose irregular details can be represented by‘ some objects with
different scale and angle, which can be described by a set of transformations SI:JCh as affine
transformations. Additionally, the objects used to represent the image’s irregu.lar de.talls have stfnc
form of self-similarity and these objects can be used to represent an image in a simple recursive
way. An example of fractals is the Von Koch curve as shown In Figurc. 9.6. Th(.? frar.:tals can be
used to generate an image. The fractal image coding that is based on iterated function systems
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FIGURE 9.6 Construction of the Von Koch curve.

(IFS) is the inverse process of image generation with fractals. Therefore, the key technology of
fractal image coding is the generation of fractals with an /FS.

To explain IFS, we start from the contractive affine transformation. A two-dimensional affine
transformation A is defined as follows:

e

—

Y

e

(9.11)

Lyl te diby] Lf
This is a transformation which consists of a linear transformation followed by a shift or translation,
and maps points in the Euclidean plane into new points in the another Euclidean plane. We define

that a transformation is contractive if the distance between two points P, and P, in the new plane
1s smaller than their distance in the original plane, i.e.,

d(A(R).A(R))<s d(R.R) (612

where s is a constant and 0 < s < 1. The contractive transformations have the property that when
the contractive transformations are repeatedly applied to the points in a plane, these points will
converge to a fixed point. An iterated function system (IFS) is defined as a collection of contractive
affine transformations. A well-known example of /FS contains four following transformations:

i=1234. (9.13)

- e - il

This is the IFS of a fern leaf, whose parameters are shown in Table 9.1.

The transformation A, is used to generate the stalk, the transformation A, is used to generale
the right leaf, the transformation A, is used to generate the left leaf, and the transformation Ay 1S
used to generate main fern. A fundamental theorem of fractal geometry is that each [FS defines a
unique fractal image. This image is referred to as the attractor of the /FS. In other words, an image
corresponds to the attractor of an /FS. Now let us explain how to generate the image using the / {"'S'
Let us suppose that an /FS contains N affine transformations, A, A,, ... Ay, and each transformation

has an associated probability, p,, p;, ..., py, respectively. Suppose that this is a complete sel and
the sum of the probability equals to 1, i.e.,
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TABLE 9.1
The Parameters of the IFS of a Fern Leaf
a b C d e f
A, 0 0 0 016 0 02
A, 0.2 -0.26 0.23 0.22 0 0.2
A, -0.15 0.28 0.26 0.24 0 0.2
A, 085 004 -004 08 0 02
p,+py+..+py=landp,>0fori=0,1, ..., N. (9.14)

The procedure for generating an attractor is as follows. For any given point (x;, y,) in a Euclidean
plane, one transformation in the /FS according to its probability is selected and applied to this
point to generate a new point (x,, y,). Then another transformation is selected according to its
probability and applied to the point (x,,y,) to obtain a new point (x,,y,). This process is repeated
over and over again to obtain a long sequence of points: (X5,Yp), (XY «-or (X,5¥,)s ... According
to the theory of iterated function systems, these points will converge to an image that 1s the attractor
of the given IFS. The above-described procedure is shown in the flowchart of Figure 9.7. With the
above algorithm and the parameters in Table 9.1, initially the point can be anywhere within the
large square, but after several iterations it will converge onto the fern. The 2-D affine transformations
are extended to 3-D transformations, which can be used to create fractal surfaces with the iterated
function systems. This fractal surface can be considered as the gray level or brightness of a 2-D
Image. '

9.3.2 [FS-Basep FractaL IMAGE CODING

As described in the last section, an IFS can be used to generate a unique image, which is referred
to as an attractor of the IFS. In other words, this image can be simply represented by the parameters
of the IFS. Therefore, if we can use an inverse procedure to generate a set of transformations, 1.€.,

Given ]
(x{l: Yu)

v

Choose k
Pt (0<k<N) with py

(K;, YI) u
=Ak((X0. y\ﬂ')

| s

Plot (xy, y1)

= |

No

FIGURE 9.7 Flowchart of image generation

with an /FS. Stop
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an /FS from an image, then these transformations or the /FS can be used to represent the approx-
imation of the image. The image coding system can use the parameters of the transformations in
the /FS instead of the original image data for storage or transmission. Since the /FS contains only
very limited data such as transformation parameters, this image coding method may result in a
very high compression ratio. For example, the fern image 1s represented by 24 integers or 192 bits
(if each integer is represented by 8 bits). This number is much smaller than the number needed to
represent the fern image pixel by pixel. Now the key issue of the /FS-based fractal image coding
1s to generate the [FS for the given input image. Three methods have been proposed to obtain the
IFS (Lu, 1993). One is the direct method, that directly finds a set of contractive affine transforma-
tions from the image based on the self-similarity of the image. The second method 1s to partition
an image into the smaller objects whose /FSs are known. These //Ss are used to form a hbrary.
The encoding procedure is to look for an /FS from the library for each small object. The third
method is called partitioned /FS (PIFS). In this method, the image is first divided into smaller
blocks and then the /FS for each block is found by mapping a larger block into a small block.

In the direct approach, the image is first partitioned into nonoverlapped blocks in such a way
that each block is similar to the whole image and a transformation can map the whole image to
the block. The transformation for each individual block may be different. The combination of these
transformations can be taken as the /FS of the given image. Then much fewer data are required 10
represent the /FS or the transformations than to transmit or store the given image in the pixel by
pixel way. For the second approach, the key issue is how to partition the given image into objects
whose [FSs are known. The image processing techniques such as color separation, edge detection,
spectrum analysis, and texture variation analysis can be used for image partitioning. However, for
natural images or arbitrary images, it may be impossible or very difficult to find an /FS whose
attractor perfectly covers the original image. Therefore, for most natural images the partitioned /FS
method has been proposed (Lu, 1993). In this method, the transformations do not map the whole
image into small block. For encoding an image, the whole image is first partitioned into a number
of larger blocks that are referred to as domain blocks. The domain blocks can be overlapped. Then
the image is partitioned into a number of smaller blocks that are called as range blocks. The range
blocks do not overlap and the sum total of the range blocks covers the whole image. In the third
step, a set of contractive transformations is chosen. Each range block is mapped into a domain
block with a searching method and a matching criterion. The combination of the transformations
is used to form a partitioned /FS (PIFS). The parameters of P/FS are transmitted to the decoder.
It 1s noted that no domain blocks are transmitted. The decoding starts with a flat background. The
iterated process is then applied with the set of transformations. The reconstructed image 1s then
obtained after the process converges. From the above discussion, it is found that there are three
main design issues involved in the block fractal image coding system. First are partitioning
techniques which include range block partitioning and domain block partitioning. As mentioned
earlier, the domain block is larger than the range block. Dividing the image into square blocks 1S
the simplest partitioning approach. The second issue is the choice of distortion measurement and
a searching method. The common distortion measurement in the block fractal image coding is the
root mean square (RMS) error. The closest match between the range block and transformed domain
block is found by the RMS distortion measurement. The third method is the selection of a sel of
contractive transformations defined consistently with a partition.

It is noted that the partitioned /FS (PIFS)-based fractal image coding has several similar features
with image vector quantization. Both coding schemes are block-based coding schemes and need a
codebook for encoding. For PIFS-based fractal image coding the domain blocks can be seen as
forming a virtual codebook. One difference is that the fractal image coding does not need to transmit
the codebook data (domain blocks) to the decoder while VQ does. The second difference is the
block size. For VQ, block size for the code vector and input vector is the same while in PIFS
fractal coding the size of the domain block is different from the size of the range blocks. Another
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difference is that in fractal image coding the image itself serves as the codebook, while this is not
true for VQ image coding.

9.3.3 O71HER FrRACTAL IMAGE CODING METHODS

Besides the /FS-based fractal image coding, there are several other fractal image coding methods.
One is the segmentation-based coding scheme using fractal dimensions. In this method, the image
Is segmented into regions based on the properties of the human visual system (HVS). The Image
Is segmented into the regions, each of these regions is homogeneous in the sense of having similar
features by visual perception. This is different from the traditional image segmentation techniques
that try to segment an image into regions of constant intensity. For a complicated image, good
representation of an image needs a large number of small segmentations. However, in order to
obtain a high compression ratio, the number of segmentations is limited. The trade-off between
image quality and bit rate has to be considered. A parameler, fractal dimension, is used as a measure
to control the trade-off. Fractal dimension is a characteristic of a fractal. It is related to a metric
property such as the length of a curve and the area of a surface. The fractal dimension can provide
a good measurement of the perceptual roughness of the curve and surface. For example, if we use
many segments of straight lines to approximate a curve, by increasing the length of the straight

lines perceptually rougher curves are represented.

9.4 MODEL-BASED CODING
9.4.1

In the model-based coding, an image model that can be a 2-D model for still images or a 3-D
model for video sequence is first constructed. At the encoder, the model is used to analyze the
input image. The model parameters are then transmitted to the decoder. At the decoder the recon-
structed image is synthesized by the model parameters, with the same image model used at the
encoder. This basic idea of model-based coding is shown in the Figure 9.8. Therefore, the basic
techniques in the model-based coding are the image modeling, image analysis, and 1mage synthesis
techniques. Both image analysis and synthesis are based on the image model. The image modeling
techniques used for image coding can normally be divided into two classes: structure modeling
and motion modeling. Motion modeling is usually used for video sequences and moving pictures,
while structure modeling is usually used for still image coding. The structure model is used for

reconstruction of a 2-D or 3-D scene model.

Basic CoNCEPT

Input image Jiiage Model To channel
& : Parameter
_ o Amlpis Ll pas | -
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iege Parameter |
< { Synthesis g Decoder

FIGURE 9.8 Basic principle of model-based coding.
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9.4.2 IMAGE MODELING

The geometric model is usually used for image structure description. The geometric model can be
classified into a surface-based description and volume-based description. The major advantage of
surface description is that such description is easily converted into a surface representation that can
be encoded and transmitted. In these models the surface is approximated by planar polygonal
patches such as triangle patches. The surface shape 1s represented by a set of points that represent
the vertices of these triangle meshes. The size of these triangle patches can be adjusted according
to the surface complexity. In other words, for more complicated areas, more triangle meshes are
needed to approximate the surface while for smoothing areas, the mesh sizes can be larger or less
vertices of the triangle meshes are needed to represent the surface. The volume-based description
is a natural approach for modeling most solid world objects. Most existing research work on volume-
based description focuses on the parametric volume description. The volume-based description 1s
used for 3-D objects or video sequences.

However, model-based coding is successfully applicable only to certain kinds of images since
it is very hard to find general image models suitable for most natural scenes. The few successful
examples of image models include the human face, head, and body. These models are developed
for the analysis and synthesis of moving images. The face animation has been adopted for the

MPEG-4 visual coding. The body animation is under consideration for version 2 of MPEG-4 visual
coding.

9.5 SUMMARY

In this chapter three kinds of image coding techniques, vector quantization, fractal image coding,
and model-based coding, which are not used in the current standards, have been presented. All
three techniques have several important features such as very high compression ratios for certain
kinds of images and very simple decoding procedures (especially for VQ). However, due to some
limitations these techniques have not been adopted by industry standards. It should be noted that

recently the facial model face animation technique has been adopted for the MPEG-4 visual standard
(mpeg4 visual).

9.6 EXERCISES

9-1. In the modified residual VQ described in Equation 9.5, with a 4 x 4 block and 8 bits for
each pixel of original image, we use 8 bits for coding block mean and block variance.
We want to obtain the final bit rate of 2 bits per pixel. What codebook size do we have
to use for the coding residual, assuming that we use fixed-length coding to code vector
indices?

9-2. In the block truncation coding described in Equation 9.7, what is the bit rate for a block
size of 4 X 4 if the mean and variance are both encoded with 8 bits? Do you have any
suggestions for reducing the bit rate without seriously affecting the reconstruction quality?

9-3. Is the codebook generated with the LBG algorithm local optimum? List the several
important factors that will affect the quality of codebook generation.

9-4. In image coding using VQ, what kind of problems will be caused by using the codebook
in practical applications (hint: changing bit rate).

9-5. What is the most important improvement of the lattice VQ over traditional VQ 1n practical

application. What is the key issue for lattice VQ for image coding application?
9-6. Write a subroutine to generate a fern leaf (using C).
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Up to this point, what we have discussed in the previous chapters were basic techniques in image
coding, specifically, techniques utilized in still image coding. From here on, we are going to address
the issue of video sequence compression. To fulfill the task, we will first define the concepts of
image and video sequences. Then we address the issue of interframe correlation between successive
frames. Two techniques in exploitation of interframe correlation, frame replenishment and motion-
compensated coding, will then be discussed. The rest of the chapter covers the concepts of motion
analysis and motion compensation in general.

10.1 IMAGE SEQUENCES

In this section the concept of various image sequences is defined in a theoretical and systematic
manner. The relationship between image sequences and video sequences is also discussed.

It is well known that in the 1960s the advent of the semiconductor computer and the space
program swiftly brought the field of digital image processing into public focus. Since then the field
has experienced rapid growth and has entered every aspect of modern technology. Since the early
1980s, digital image sequence processing has been an attractive research area (Huang, 1981a, 1983).
This is not surprising, because an image sequence, as a collection of images, may provide more
information than a single image frame. The increased computational complexity and memory space
assoclated with image sequence processing are becoming more affordable due to more advanced,
achievable computational capability. With the tremendous advancements continuously made in
VLSI computer and information processing, image and video sequences are evermore indispensable
elements of modern life. While the pace and the future of this development cannot be predicted,
one thing is certain: this process is going to drastically change all aspects of our world in the next
several decades.

As far as image sequence processing is concerned, it is noted that in addition to temporal image
sequences, stereo image pair and stereo image sequences also received attention in the middle of
the 1980s (Waxman and Duncan, 1986). The concepts of temporal and spatial image sequences,
and the imaging space (which may be considered as a next-higher-level unification of temporal

and spatial image sequences) may be illustrated as follows.
Consider a sensor located in a specific position in the three-dimensional (3-D) world space. It

generates images about the scene, one after another. As time goes by, the images form a sequence.
The set of these images can be represented with a brightness function g(x,y,t), where x and y are
coordinates on the image planes. This is referred (o as a temporal image sequence. This 1s the basic
outline about the brightness function g(x,y,t) dealt with by researchers in both computer vision,
e.g., Horn and Schunck (1980) and signal processing fields, e.g., Pratt (1979).

Now consider a generalization of the above basic outline. A sensor, as a solid article, can be
translated (in three free dimensions) and rotated (in two free dimensions). It is noted that here the
rotation of a sensor about its optical axis is not counted, since the images generated will remain
unchanged when this type of rotation takes place. So, we can obtain a variety of images when a
sensor is translated to different coordinates and rotated to different angles in the 3-D world space.
Equivalently, we can imagine that there is an infinite number ol sensors in the 3-D world space
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that occupies all possible spatial coordinates and assumes all possible orientations at each coordi-
nate; i.e., they are located on all possible positions. At one specific moment, all of these images
form a set, which can be referred to as a spatial image sequence. When iime varies, these sets of
images form a much larger set of images, called an imaging space.

Clearly, it is impossible to describe such a set of images by using the above-mentioned g(x,y,t).
Instead, it should be described by a more general brightness function,

g(x,y,1,5), (10.1)

where S indicates the sensor’s position in the 3-D world space; i.e., the coordinates of the sensor
center and the orientation of the optical axis of the sensor. Hence S 1s a 5-D vector. That 1s,

5 =(%,%.2.8.7). (10.2)

where x, y, and z represent the coordinates of the optical center of the sensor in the 3-D world
space; and [ and y represent the orientation of the optical axis of the sensor in the 3-D world space.
More specifically, each sensor in the 3-D world space may be considered associated with a 3-D
Cartesian coordinate system such that its optical center is located on the origin and its optical axis
i1s aligned with the OZ axis. In the 3-D world space we choose a 3-D Cartesian coordinate system
as the reference coordinate system. Hence, a sensor with its Cartesian coordinate system coincid_cnl
with the reference coordinate system has its position in the 3-D world space denoted by $ =
(0,0,0,0,0). An arbitrary sensor position denoted by § = (X, y, z, 4, 3) can be described as follows.
The sensor’s associated Cartesian coordinate system is first shifted from the reference coordinate
system in the 3-D world space with its origin settled at (X, y, z) in the reference coordinate system.
Then it is rotated with the rotation angles B and y being the same as Euler angles (Shu and Shi,
1991; Shiet al., 1994). Figure 10.1 shows the reference coordinate system and an arbitrary Cartesian
coordinate system (indicating an arbitrary sensor position). There, oxy and o’x’y’ represent, respec-
tively, the related image planes.

Assume now a world point P in the 3-D space that is projected onto the image plane as a pixel
with the coordinates x; and y, Then, x, and y, are also dependent on t and §. That is, the coordinates
of the pixel can be denoted by x, = x, (1,8) and y, = y, (t, S). So generally speaking, we have

g =g(x,(1.5).y,(1.5).1.5). (103)

As far as temporal image sequences are concerned, let us take a look at the framework of Pratl
(1979), and Horn and Schunck (1980). There, g = g (x, (1), yp (1), t) is actually a special case of
Equation 10.3, i.e., g = g(xp(t, 5 = constant vector), y,(1, § = constant vector), (t, § = constant
vector). In other words, the variation of S is restricted to be zero, i.e., AS = 0. This means the
sensor 1s fixed in a certain position in the 3-D world space.

Obviously, an alternative is to define the imaging space as a set of all temporal image sequ@CBSi
1.e., those taken by sensors located at all possible positions in the 3-D world space. Stereo 11'1.133B
sequences can thus be viewed as a proper subset of the imaging space, just like a stereo pair of
images can be considered as a proper subset of a spatial image sequence.

In summary, the imaging space is a collection of all possible forms assumed by the gt’:ﬂeml
brightness function g (x, y, t, §). Each picture taken by a sensor located on a particular position at
a specific moment is merely a special cross section of this imaging space. Both temporal and spatial
image sequences are special proper subsets of the imaging space. They are in the middle level,

between the imaging space and the individual images. This hierarchical structure is depicted In
Figure 10.2.
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Before we conclude this section, we should discuss the relationship between 1mage sequences
and video sequences. It is noted that the term video is used very often nowadays in addition to the
terms image frames and image sequence. It is necessary to pause for a while to discuss the
relationship between these terms. Image frames and image sequence have been defined clearly
above with the introduction of the concept of the imaging space. Video can mean an individual
video frame or video sequences. It refers, however, to those frames and sequences that are associated
with the visible frequency band in the electromagnetic spectrum. For image frames and image
sequences, there is no such restriction. For instance, infrared image frames and sequences corre-
spond to a band outside the visible band in the spectrum. From this point of view, the scope of
image frames and sequences is wider than that of video frames and sequences. When the visible
band is concerned, the terms image frame and sequence are interchangeable with that video frame

and sequence.
Another point we would like to bring to the reader’s attention is as follows. Though video is

referred to as visual information, which includes both a single frame and frame sequences, In
practice it is often used to mean sequences exclusively. Such an example can be found in Digital

Video Processing (Tekalp, 1995).
In this book, we use image compression to indicate still image compression, and video compression

to indicate video sequence compression. Readers should keep in mind, however, that (1) video can
mean a single frame or sequences of frames; and (2) the scope of image is wider than that of video,

and video is more pertinent to multimedia engineering.

10.2 INTERFRAME CORRELATION

As far as video compression is concerned, all the techniques discussed in the previous chapters are
applicable. By this we mean two classes of techniques. The first class, which is also the most
straightforward way to handle video compression, is to code each frame separately. That 1s,
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Top level
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FIGURE 10.2 A hierarchical structure.

individual frames are coded independently on each other. For instance, using a JPEG compression
algorithm to code each frame in a video sequence results in motion JPEG (Westwater and Furht.
1997). In the second class, methods utilized for still image coding can be generalized for video
compression. For instance, (DCT) transform coding can be generalized and applied to video coding
by extending 2-D DCT to 3-D DCT. That is, instead of 2-D DCT, say, 8 x 8, applied to a single
image frame, we can apply 3-D DCT, say, 8 x 8 x 8, to a video sequence. Refer to Figure 10.3.
That 1s, 8 blocks of 8 x 8 each located, respectively, at the same position in one of the 8 successive
frames from a video sequence are coded together with the 3-D DCT. It was reported that this 3-D
DCT technique is quite efficient (Lim, 1990; Westwater and Furht, 1997). In addition, the DP(_:M
technique and the hybrid technique can be generalized and applied to video compression in a sirm‘I:u'
fashion (Jain, 1989; Lim, 1990). It is noted that in the second class of techniques several successive
frames are grouped and coded together, while in the first class each frame is coded independentl‘)’-

Video compression has its own characteristics, however, that make it quite different from still
image compression. The major difference lies in the exploitation of interframe correlation that
exists between successive frames in video sequences, in addition to the intraframe correlation that
exists within each frame. As mentioned in Chapter 1, the interframe correlation is also referred to
as temporal redundancy, while the intraframe correlation is referred to as spatial redundancy. In
order to achieve coding efﬁciency, we need to remove these redundancies for video compression.
To do so we must first understand these redundancies.

Consider a video sequence taken in a videophone service. There, the camera 1S static most of
the time. A typical scene is a head-and-shoulder view of a person imposed on a backgmf’"d'_ s
this type of video sequence the background is usually static. Only the speaker 1S experiencing
motion, which is not severe. Therefore, there is a strong similarity between successive frames; that
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FIGURE 10.3 3-D DCT of 8 x 8 x 8.

1S, a strong adjacent-frame correlation. In other words, there is a strong interframe correlation. It
was reported by Mounts (1969) that when using videophone-like signals with moderate motion in
the scene, on average, less than one-tenth of the elements change between frames by an amount
which exceeds 1% of the peak signal. Here, a 1% change is regarded as significant. Our experiment
on the first 40 frames of the Miss America sequence supports this observation. Two successive
frames of the sequence, frames 24 and 25, are shown in Figure 10.4.

Now, consider a video sequence generated in a television broadcast. It is well known that
television signals are generated with a scene scanned in a particular manner in order to maintain
a steady picture for a human being to view. regardless of whether there is a scenery change or not.
That is, even if there is no change from one frame to the next, the scene is still scanned constantly.
Hence there is a great deal of frame-to-frame correlation (Haskell et al., 1972b; Netravali and Robbins,
1979). In TV broadcasts, the camera is most likely not static, and it may be panned, tilted, and
zoomed. Furthermore, more movement is involved in the scene. As long as the TV frames are taken
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FIGURE 10.4 Two frames of the Miss America sequence: (a) frame 24, (b) frame 25.
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densely enough, then most of the time we think the changes between successive frames are due
mainly to the apparent motion of the objects in the scene that takes place during the frame intervals.
This implies that there is also a high correlation between sequential frames. In other words, there
is an interframe redundancy (interpixel redundancy between pixels in successive frames). There is
more correlation between television picture elements along the frame-to-frame temporal dimension
than there is between adjacent elements in a single frame along the spatial dimension. That 1s, there
is generally more interframe correlation than intraframe correlation. Taking advantage of the
interframe correlation, i.e., eliminating or decreasing the uncertainty of successive frames, leads
to video data compression. This is analogous to the case of still image coding with the DPCM
technique, where we can predict part of an image by knowing the other part. Now the knowledge
of the previous frames can remove the uncertainty of the next frame. In both cases, knowledge of
the past removes the uncertainty of the future, leaving less actual information to be transmitted
(Kretzmer, 1952). In Chapter 16, we will see that the words “past™ and “future” used here are not
necessary. They can be changed, respectively, to “some frames” and “some other frames” in
advanced video coding techniques such as MPEG. There, a frame might be predicted from both
its previous frames and its future frames.

At this point, it becomes clear that the second class of techniques (mentioned at the beginning
of this section), which generalizes techniques originally developed for still image coding and applies
them to video coding, exploits interframe correlation. For instance, in the case of the 3-D DCIT
technique, a strong temporal correlation causes an energy compaction within the low temporal
frequency region. The 3-D DCT technique drops transform coefficients associated with high
temporal frequency, thus achieving data compression.

The two techniques specifically developed to exploit interframe redundancy, i.e., frame replen-

ishment and motion-compensated coding, are introduced below. The former is the early work, while
the latter 1s the more popular recent work.

10.3 FRAME REPLENISHMENT

As mentioned in Chapter 3, frame-to-frame redundancy has long been recognized in TV signal
compression. The first few experiments of a frame sequence coder exploiting interframe redundancy
may be traced back to the 1960s (Seyler, 1962, 1965; Mounts, 1969). In (Mounts, 1969) the first
real demonstration was presented and was termed conditional replenishment. This frame replen-
ishment technique can be briefly described as follows. Each pixel in a frame is classified Into
changing or unchanging areas depending on whether or not the intensity difference between s
present value and its previous one (the intensity value at the same position on the previous frame)
exceeds a threshold. If the difference does exceed the threshold, i.e., a significant change has been
identified, the address and intensity of this pixel are coded and stored in a buffer and then transmitted
to the receiver to replenish intensity. For those unchanging pixels, nothing is coded and transmitted.
Their previous intensities are repeated in the receiver. It is noted that the buffer is utilized to malfe
the information presented to the transmission channel occur at a smooth bit rate. The threshold 1s
to make the average replenishment rate match the channel capacity.

Since the replenishment technique only encodes those pixels whose intensity value has changed
significantly between successive frames, its coding efficiency is much higher than the coding
techniques which encode every pixel of every frame, say, the DPCM technique applied to 'eaCh
single frame. In other words, utilizing interframe correlation, the replenishment technique achieves
a lower bit rate, while keeping the equivalent reconstructed image quality. _

Much effort had been made to further improve this type of simple replenishment algorithm.
As mentioned in the discussion of 3-D DPCM in Chapter 3, for instance, it was soon realized that
intensity values of pixels in a changing area need not be transmitted independently of one another.
Instead, using both spatial and temporal neighbors’ intensity values to predict the intensity value
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FIGURE 10.5 Dirty window effect.

of a changing pixel leads to a frame-difference predictive coding technique. There, the differential
signal is coded instead of the original intensity values, thus achieving a lower bit rate. For more
detail, readers are referred to Section 3.5.2. Another example of the improvements is that measures
have been taken to distinguish the intensity difference caused by noise from those associated with
changing to avoid the dirty window effect, whose meaning is given in the next paragraph. For more
detailed information on these improvements over the simple frame replenishment technique, readers
are referred to two excellent reviews by Haskell et al. (1972b, 1979).

The main drawback associated with the frame replenishment technique 1s that it is difficult to
handle frame sequences containing more rapid changes. When there are more rapid changes, the
number of pixels whose intensity values need to be updated increases. In order to maintain the
transmission bit-rate at a steady and proper level the threshold has to be raised, thus causing many
slow changes that cannot show up in the receiver. This poorer reconstruction in the receiver is
somewhat analogous to viewing a scene through a dirty window. This 1s referred to as the dirty
window effect. The result of one experiment on the dirty window effect is displayed in Figure 10.5.
From frame 22 to frame 25 of the Miss America sequence, there are 2166 pixels (less than 0%
of the total pixels) that change their gray level values by more than 1% of the peak signal. When
we only update the gray level values for 25% (randomly chosen) of these changing pixels, we can
clearly see the dirty window effect. When rapid scene changes exceed a certain level, buffer
saturation will result, causing picture breakup (Mounts, 1969). Motion-compensated coding, which
1S discussed below, has been proved to be able to provide better performance than the replenishment

technique in situations with rapid changes.

10.4 MOTION-COMPENSATED CODING

In addition to the frame-difference predictive coding technique (a variant of the frame replenishment
technique discussed above), another technique: displacement-based predictive coding, was devel-
oped at almost the same time (Rocca, 1969; Haskell and Limb, 1972a). In this technique, a motion
model is assumed. That is, the changes between successive frames are considered due to the
translation of moving objects in the image planes. Displacement vectors of .objects are first esti-
mated. Differential signals between the intensity value of the picture elements in the moving areas
and those of their counterparts in the previous frame, which are translated by the estimated
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(a) 7, (b) ¢,
FIGURE 10.6 Two consecutive frames of a video sequence.

displacement, are encoded. This approach, -which takes motion into account to compress video
sequences, is referred to as motion-compensated predictive coding. It has been found to be much
more efficient than the frame-difference prediction technique.

To understand the above statement, let us look at the diagram shown in Figure 10.6. Assume
a car translating from the right side to the left side in the image planes at a uniform speed during
the time interval between the two consecutive image frames. Other than this, there are no movements
or changes in the frames. Under this circumstance, if we know the displacement vector of the car
on the image planes during the time interval between two consecutive frames, we can then predict
the position of the car in the latter frame from its position in the former frame. One may think that
if the translation vector is estimated well, then so is the prediction of the car position. This is true.
In reality, however, estimation errors occurring in determination of the motion vector, which may
be caused by various noises existing in the frames, may cause the predicted position of the car In
the latter frame to differ from the actual position of the car in the latter frame.

The above translational model is a very simple one; it cannot accommodate motions other than
translation, say, rotation, and camera zooming. Occlusion and disocclusion of objects make the
situation even more complicated since in the occlusion case some portions of the images may
disappear, while in the disocclusion case some newly exposed areas may appear. Therefore, the
prediction error is almost inevitable. In order to have good-quality frames in the receiver, we can
find the prediction error by subtracting the predicted version of the latter frame from the actual
version of latter frame. If we encode both the displacement vectors and the prediction error, aqd
transmit these data to the receiver, we may be able to obtain high-quality reconstructed images in
the receiver. This is because in the receiving end, using the displacement vectors transmitted from
the transmitter and the reconstructed former frame, we can predict the latter frame. Adding l-hB
transmitted prediction error to the predicted frame, we may reconstruct the latter frame ’s"ﬂih
satisfactory quality. Furthermore, if manipulating the procedure properly, we are able 10 achieve
data compression. |

The displacement vectors are referred to as side or overhead information to indicate their
auxiliary nature. It is noted that motion estimation drastically increases the computational com:
plexity of the coding algorithm. In other words, the higher coding efficiency is obtained in motion-
compensated coding, but with a higher computational burden. As we pointed out in Section IQ-L
this is both technically feasible and economically desired since the cost of digital signal processing
decreases much faster than that of transmission (Dubois et al., 1981).

Motion-compensated video compression has become a major development in coding. For more
information, readers should refer to several excellent survey papers (Musmann et al., 1985; Zhang
et al., 1995; Kunt, 1995). |

The common practice of motion-compensated coding in video compression can be SP’it_'"m
the following three stages. First, the motion analysis stage; that is, displacement vectors for either
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FIGURE 10.7 Block diagram of motion-compensated coding.

cvery pixel or a set of pixels in image planes from sequential images are estimated. Second, the
present frame is predicted by using estimated motion vectors and the previous frame. The prediction
error is then calculated. This stage is called prediction and differentiation. The third stage is
encoding. The prediction error (difference between the present and the predicted present frames)
and the motion vectors are encoded. Through an appropriate manipulation, the total amount of data
for both the motion vectors and prediction error is expected to be much less than the raw data
existing in the image frames, thus resulting in data compression. A block diagram of motion-
compensated coding is shown in Figure 10.7.

Before leaving this section, we compare the frame replenishment technique with the motion-
compensated coding technique. Qualitatively speaking, we see from the above discussion that the
replenishment technique is also a kind of predictive coding in nature. This is particularly true if
we consider the frame-difference predictive technique used in frame replenishment. There, it uses
a pixel’s intensity value in the previous frame as an estimator of its intensity value in the present
frame.

Now let’s look at motion-compensated coding. Consider a pixel on the present frame. Through
motion analysis, the motion-compensated technique finds its counterpart in the previous {rame.
That is, a pixel in the previous frame is identified such that it is supposed to translate to the position
on the present frame of the pixel under consideration during the time interval between successive
frames. This counterpart’s intensity value i1s used as an estimator of that of the pixel under
consideration. We can see that the model used for motion-compensated coding is much more
advanced than that used for frame replenishment, therefore, it achieves a much higher coding
efficiency. A motion-compensated coding technique that utilized the first pel-recursive algorithm
for motion estimation (Netravali and Robbins, 1979) was reported to achieve a bit rate 22 to 50%
lower than that obtained by simple frame-difference prediction, a version of frame replenishment.

The more advanced model utilized in motion-compensated coding, on the other hand, leads to
higher computational complexity. Consequently, both the coding efficiency and the computational
complexity in motion-compensated coding are higher than that in frame replenishment.

10.5 MOTION ANALYSIS

As discussed above, we usually conduct motion analysis in video sequence compression. There,
2-D displacement vectors of a pixel or a group of pixels on image planes are estimated from given
image frames. Motion analysis can be viewed from a much broader point of view. It is well known
that the vision systems of both humans and animals observe the outside world to ascertain motion
and to navigate themselves in the 3-D world space. Two groups of scientists study vision. Scientists
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in the first group, including psychophysicists, physicians, and neurophysiologists study human and
animal vision. Their goal is to understand biological vision systems — their operation, features,
and limitations. Computer scientists and electrical engineers form the second group. As pointed
out by Aggarwal and Nandhakumar (1988), their ultimate goal 1s to develop computer vision systems
with the ability to navigate, recognize, and track objects, and estimate their speed and direction.
Each group benefits from the research results of the other group. The knowledge and results of
research in psychophysics, physiology, and neurophysiology have influenced the design of computer
vision systems. Simultaneously, the research results achieved in computer vision have provided a
framework in modeling biological vision systems and have helped in remedying faults in biological
vision systems. This process will continue to advance research in both groups, hence benehting
society.

10.5.1 BioLocicaL ViISION PERSPECTIVE

In the field of biological vision, most scientists consider motion perception as a two-step process,
even though there is no ample biological evidence to support this view (Singh, 1991). The two
steps are measurement and interpretation. The first step measures the 2-D motion projected on the

1maging surfaces. The second step interprets the 2-D motion to induce the 3-D motion and structure
on the scene.

10.5.2 CompruTter VISION PERSPECTIVE

In the field of computer vision, motion analysis from image sequences is traditionally split Into
two steps. In the first step, intermediate variables are derived. By intermediate variables, we mean
2-D motion parameters in image planes. In the second step, 3-D motion variables, say, speed.
displacement, position, and direction, are determined.

Depending on the different intermediate results, all approaches to motion analysis can be
basically classified into two categories: feature correspondence and optical flow. In the former
category, a few distinct features are first extracted from image frames. For instance, consider an
iImage sequence containing an aircraft. Two consecutive frames are shown in Figure 10.8. The head
and tail of the aircraft, and the tips of its wings may be chosen as features. The correspondence of
these features on successive image frames needs to be established. In the second step, 3-D motion
can then be analyzed from the extracted features and their correspondence in successive frames.
In the latter category of approaches, the intermediate variables are optical flow. An optical flow
vector is defined as a velocity vector of a pixel on an image frame. An optical flow field is referred
to as the collection of the velocity vectors of all the pixels on the frame. In the first step, optical
flow vectors are determined from image sequences as the intermediate variables. In the second
step, 3-D motion is estimated from optical flow. It is noted that optical flow vectors are closely

L

FIGURE 10.8 Feature extraction and correspondence from two consecutive frames 1n a temporai Image
sequence.
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related to displacement vectors in that a velocity vector multiplying by the time interval between
two consecutive frames results in the corresponding displacement vector. Optical flow and its
determination will be discussed in detail in Chapter 13.

It is noted that there is a so-called direct method in motion analysis. Contrary to the above
optical flow approach, instead of determining 2-D motion variables, (i.¢., the intermediate variables),
prior to 3-D motion estimation, the direct method attempts to estimate 3-D motion without explicitly
solving for the intermediate variables. In (Huang and Tsai, 1981b) the equation characterizing
displacement vectors in the 2-D image plane and the equation characterizing motion parameters in
3-D world space are combined so that the motion parameters in 3-D world space can be directly
derived. This method has been utilized to recover structure (object surfaces) in 3-D world space
as well (Negahdaripour and Horn, 1987; Horn and Weldon, 1988; Shu and Shi, 1993). The direct
method has certain limitations. That is, if the geometry of object surfaces is not known in advance,
then the method fails.

The feature correspondence approach is sometimes referred to as the discrete approach, while
the optical flow approach 1s sometimes referred to as the continuous approach. This is because the
correspondence approach concerns only a set of relatively sparse but highly discriminatory 2-D
features on image planes. The optical flow approach is concerned with a dense field of motion
VECLors.

[t has been found that both feature extraction and correspondence establishment are not trivial
tasks. Occlusion and disocclusion which, respectively, cause some features to disappear and some
features to reappear, make feature correspondence even more difficult. The development of robust
techniques to solve the correspondence problem is an active research area and 1s still in its infancy.
So far, only partial solutions suitable for simplistic situations have been developed (Aggarwal and
Nandhakumar, 1988). Hence the feature correspondence approach is rarely used in video compres-
sion. Because of this, we will not discuss this approach any further.

Motion analysis (sometimes referred to as motion estimation or motion interpretation) from
Image sequences is necessary in automated navigation. It has played a central role in the field of
computer vision since the late 1970s and early 1980s. A great deal of the papers presented at the
International Conference on Computer Vision cover this and related topics. Many workshops,
symposiums, and special sessions are organized around this subject (Thompson, 1989).

10.5.3 SicNAL PROCESSING PERSPECTIVE

In the field of signal processing, motion analysis is mainly considered in the context of bandwidth
reduction and/or data compression in the transmission of visual signals. Therefore, instead of the
motion in 3-D world space, only the 2-D motion in the image plane is concerned.

Because of the real-time nature in visual transmission, the motion model cannot be very
complicated. So far, the 2-D translational model is most frequently assumed in the field. In the 2-D
translational model it is assumed that the change between a frame and its previous one is due to
the motion of objects in the frame plane during the time interval between two consecutive frames.
In many cases, as long as frames are taken densely enough, this assumption is valid. By motion
analysis we mean the estimation of translational motion — either the displacement vectors or
velocity vectors. With this kind of motion analysis, one can apply the motion-compensated coding
discussed above, making coding more efficient.

Basically there are three techniques in 2-D motion analysis: correlation, and recursive and
differential techniques. Philosophically speaking, the first two techniques belong to the same group:
region matching.

Refer to Figure 10.6, where the moving car is the object under investigation. By motion analysis
we mean finding the displacement vector, 1.e., a vector representing the relative positions of Fhe
car in the two consecutive frames. With region matching, one may consider the car (or a portion
of the car) as a region of interest, and seek the best match between the two regions in the two
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frames: specifically, the region in the present frame and the region in the previous frame. For
identifying the best match, two techniques, the correlation and the recursive methods, differ in
methodology. The correlation technique finds the best match by searching the maximum correlation
between the two regions in a predefined search range, while the recursive technique estimates the
best match by recursively minimizing a nonlinear measurement of the dissimilarities between the
(WO regions.

A couple of comments are in order. First, it 1s noted that the most frequently used technique
in motion analysis is called block matching, which is a type of the correlation technique. There, a
video frame is divided into nonoverlapped rectangular blocks with each block having the same
size, usually 16 X 16. Each block thus generated is assumed to move as one, i.e., all pixels in a
block share the same displacement vector. For each block, we find its best match in the previous
frame with correlation. That is, the block in the previous frame, which gives the maximum
correlation, is identified. The relative position of these two best matched blocks produces a dis-
placement vector. This block matching technique is simple and very efficient, and will be discussed
in detail in Chapter 11. Second, as multimedia finds more and more applications, the regions
occupied by arbitrarily-shaped objects (no longer always rectangular blocks) become increasingly
important in content-based video retrieval and manipulation. Motion analysis in this case is dis-
cussed in Chapter 18. Third, although the recursive technique is categorized as a region matching
technique, it may be used for finding displacement vectors for individual pixels. In fact the recursive
technique was originally developed for determining displacement vectors of pixels and, hence, 1
is called pel-recursive. This technique is discussed in Chapter 12. Fourth, both correlation and
recursive techniques can be utilized for determining optical flow vectors. Optical flow is discussed
in Chapter 13.

The third technique in 2-D motion analysis is the differential technique. This is one of the main
techniques utilized in determining optical flow vectors. It is named after the term of differentials
because it uses partial differentiation of an intensity function with respect to the spatial coordinates
x and y, as well as the temporal coordinate 1. This technique is also discussed in Chapter 13.

10.6 MOTION COMPENSATION FOR IMAGE
SEQUENCE PROCESSING

Motion analysis has long been considered a key issue in image sequence processing (Huang, 19812;
Shi, 1997). Obviously, in an area like automated navigation, motion analysis plays a central role.
From the discussion in this chapter, we see that motion analysis also plays a key role in video da_la
compression. Specifically, we have discussed the concept of motion-compensated video coding In
Section 10.4. In this section we would like to consider motion compensation for image sequence
processing, in general. Let us first consider motion-compensated interpolation. Then, we will discuss
motion-compensated enhancement, restoration, and down-conversion.

10.6.1 MoTION-COMPENSATED INTERPOLATION

Interpolation is a simple yet efficient and important method in image and video compression. In
image compression, we may only transmit, say, every other row. We then try to interpolate these
missing rows from the other half of the transmitted rows in the receiver. In this way, we compre.SS
the data to half. Since the interpolation is carried out within a frame, it is referred to as SPa{‘al
interpolation. In video compression, for instance, in videophone service, instead of lransmil-ung
30 frames per second, we may choose a lower frame rate, say, 10 frames per second. In the receivet,
we may try to interpolate the dropped frames from the transmitted frames. This strategy imm edia_lel)'
drops the transmitted data to one third. Another example is the conversion of a motion picture Info
an NTSC (National Television System Commission) TV signal. There, every first frame in the
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FIGURE 10.9 Weighted linear interpolation.

motion picture is repeated three times and the next frame twice, thus converting a 24-frame-per-
second motion picture to a 60-field-per-second NTSC signal. This is commonly referred to as 3:2
pulldown. In these two examples concerning video, interpolation is along the temporal dimension,
which is referred to as temporal interpolation.

For basic concepts of zero-order interpolation, bilinear interpolation, and polynomial interpo-
lation, readers are referred to signal processing texts, for instance (Lim, 1990). In temporal inter-
polation, the zero-order interpolation means creation of a frame by copying its nearest frame along
the time dimension. The conversion of a 24-frame-per-second motion picture to a 60-field-per-
second NTSC signal can be classified into this type of interpolation. Weighted linear interpolation
can be illustrated with Figure 10.9.

There, the weights are determined according to the lengths of time intervals, which is similar
to the bilinear interpolation widely used in spatial interpolation, except that here only one index
(along the time axes) is used, while two indexes (along two spatial axes) are used in spatial bilinear

Interpolation. That is,

f():,y,r): = f(,r,}?,fl)—i- | f():,y,fz) (10.4)

e b <t

If there are one or multiple moving objects existing in successive frames, however, the weighted
linear interpolation will blur the interpolated frames. Taking motion into account in the interpolation
results in motion-compensated interpolation. In Figure 10.10, we still use the three frames shown
in Figure 10.9 to illustrate the concept of motion-compensated interpolation. First, motion between
two given frames is estimated. That is, the displacement vectors for each pixel are determined.
Second, we choose a frame that is nearer to the frame we want to interpolate. Third, the displacement
vectors determined in the first step are proportionally converted to the frame to be created. Each
pixel in this frame is projected via the determined motion trajectory to the frame chosen in step 2.
In the process of motion-compensated interpolation, spatial interpolation in the frame chosen in

step 2 usually is needed.

10.6.2 Mo1ioN-COMPENSATED ENHANCEMENT

It is well known that when an image is corrupted by additive white Gaussian noise (AWGN) or

burst noise, linear low-pass filtering, such as simple averaging or nonlinear low-pass filtering, such
as a median filter, performs well in removing the noise. When an image sequence 1s concerned,

IPR2021-00827

Unified EX1008 Page 241



216 Image and Video Compression for Multimedia Engineering

S(x,p.1,) S(x,p.t)

&

B

{Ill;l,‘ (Xg. Vel

FIGURE 10.10 Motion-compensated interpolation.

we may apply such types of filtering along the temporal dimension to remove noise. This is called
temporal filtering. These types of low-pass filtering may blur images, an elffect that may become
quite serious when motion exists in image planes. The enhancement, which® takes motion 1nto
account, is referred to as motion-compensated enhancement, and has been found very efficient 1n
temporal filtering (Huang and Hsu, 1981c¢).

To facilitate the discussion, we consider simple averaging as a means for noise filtering in what
follows. It is understood that other filtering techniques are possible, and that everything discussed
here is applicable there. Instead of simply averaging n successive image frames in a video sequence,
motion-compensated temporal filtering will first analyze the motion existing in these frames. That
IS, we estimate the motion of pixels in successive frames first. Then averaging will be conducted
only on those pixels along the same motion trajectory. In Figure 10.11, three successive frames are
shown and denoted by f (x, y, t,), f (x, y, t,), and f (x, y, 1), respectively. Assume that three pixels,
denoted by (x,, y,), (X5, ¥,), and (x5, y3), respectively, are identified to be perspective projections
of the same object point in the 3-D world space on the three frames. The averaging is then applied
to these three pixels. It is noted that the number of successive frames, 1, may not necessarily have
to be three. Motion analysis can use any one of the several techniques discussed in Section 10.5.

.p.'I\['rlr .J"'IJ
1 i

Py Jf (x1. 1)

FIGURE 10.11 Motion-compensated temporal filtering.
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Motion-compensated temporal filtering is not necessarily implemented pixelwise; it can also be
used objectwise, or regionwise.

10.6.3 MoTION-COMPENSATED RESTORATION

Extensive attention has been paid to the restoration of full-length feature films. There, lypical
artifacts are due to dirt and sparkle. Early work in the detection of these artifacts ignored motion
iInformation completely. Late motion estimation has been utilized to detect these artifacts based on
the assumption that the artifacts occur occasionally along the temporal dimension. Once the artifacts
have been found, motion-compensated temporal filtering and/or interpolation will be used to remove
the artifacts. One successful algorithm for the detection and removal of anomalies in digitized
animation film can be found in (Tom et al., 1998).

10.6.4 MoTmioN-CoMPENSATED DowN-CONVERSION

Here we present one more example in which motion compensation finds application in digital video
processing.

It 1s believed that there will be a need to down-convert a high definition television (HDTV)
image sequence for display onto an NTSC monitor during the upcoming transition to digital
television broadcast. The most straightforward approach is to fully decode the image sequence first,
then apply a prefiltering and subsampling process to each field of the interlaced sequence. This is
referred to as a full-resolution decoder (FRD). The merit of this approach is the high quality
achieved, while the drawback is a high cost in terms of the large amount of memory required to
store the reference frames. To reduce the required memory space, another approach is considered.
In this approach, the down-conversion is conducted within the decoding loop and is referred to as
a low-resolution decoder (LRD). It can significantly reduce the required memory and still achieve

a reasonably good picture quality.
The prediction drift is a major type of artifact existing in the down-conversion. It is defined as
the successive blurring of forward-predicted frames with a group of pictures. It is caused mainly
by non-ideal interpolation of sub-pixel intensities and the loss of high-frequency data within the
block. An optimal set of filters to perform low-resolution motion compensation has been derived
to effectively minimize the drift. For details on an algorithm in the down-conversion utilizing an

optimal motion compensation scheme, readers are referred to Vetro and Sun (1998).

10.7 SUMMARY

After Section II, still image compression, we shift our attention to video compression. Prior to
Section 1V, where we discuss various video compression algorithms and standards, however, we
first address the issue of motion analysis and motion compensation in this chapter that starts
Section III, motion estimation and compensation. This is because video compression has its own
characteristics, which are different from those of still image compression. The main difference lies
In interframe correlation. |
In this chapter, the concept of various image sequences is discussed in a broad Scope. In doing
S0, a single image, temporal image sequences, and spatial Image sequences are all. unified unc!er
the concept of imaging space. The redundancy between pixels in SUCCEsSIve IFHI}IGS 1S :e.ln_nlyzed for
both videoconferencing and TV broadcast cases. In these applications, there is more interframe
correlation than intraframe correlation, in general. Therefore, the utilization of interframe correla-

tion becomes a key issue in video compression. _ |
There are two major techniques in exploitation of interframe correlation: frame replenishment

and motion compensation. In the conditional replenishment technique, only those pixel gray level
values, whose variation from their counterparts in the previous frame exceeds a threshold, are
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encoded and transmitted to the receiver. These pixels are called changing pixels. For pixels other
than the changing pixels, their gray values are just repeated in the receiver. This simplest frame
replenishment technique achieves higher coding efficiency than coding each pixel in each frame
due to the utilization of interframe redundancy. In the more advanced frame replenishment tech-
niques, say, the frame-difference predictive coding technique, both temporal and spatial neighboring
gray values of the pixels are used to predict that of a changing pixel. Instead of the intensity values
of the changing pixels, the prediction error is encoded and transmitted. Because the variance of
the prediction error is smaller than that of the intensity values, this more advanced frame replen-
ishment technique is more efficient than the conditional replenishment technique.

The main drawback of frame replenishment techniques is associated with rapid motion and/or
intensity variation occurring on the image planes. Under these circumstances, frame replenishment
will suffer from the dirty window effect, and even buffer saturation,

In motion-compensated coding, the motion of pixels is first analyzed. Based on the previous
frame and the estimated motion, the current frame is predicted. The prediction error together with
motion vectors are encoded and transmitted to the receiver. Due to more accurate prediction based
on a motion model, motion-compensated coding achieves higher coding efficiency compared with
frame replenishment. This is conceivable because frame replenishment basically uses the intensity
value of a pixel in the previous frame to predict that of the pixel in the same location in the present
frame, while the prediction in motion-compensated coding uses motion trajectory. This implies that
higher coding efficiency is obtained in motion compensation at the cost of higher computational
complexity. This is technically feasible and economically desired since the cost of digital signal
processing decreases much faster than that of transmission.

Because of the real-time requirement in video coding, only a simple 2-D translational model
is used. There are mainly three types of motion analysis techniques used in motion-compensated
coding. They are block matching, pel-recursion, and optical flow. By far, block matching is used
most frequently. These three techniques are discussed in detail in the following three chapters.

Motion compensation is also widely utilized in other tasks of digital video sequence processing.
Examples include motion-compensated interpolation, motion-compensated enhancement, motion-
compensated restoration, and motion-compensated down-conversion.

10.8 EXERCISES

10-1. Explain the analogy between a stereo image sequence vs. the imaging space, and a
stereo image pair vs. the spatial image sequence to which the stereo image pair belongs.

10-2. Explain why the imaging space can be considered as a unification of image frames,
spatial image sequences, and temporal Image sequences.

10-3. Give the definitions of the following several concepts: image, 1mage sequence, and
video. Discuss the relationship between them.

10-4. What feature causes video compression to be quite different from still image COMPres-
sion?

10-S. Describe the conditional replenishment technique. Why can it achieve higher coding

efficiency in video coding than those techniques encoding each pixel in each frame?

10-6. Describe the frame-difference predictive coding technique. You may want to refer to
Section 3.5.2.

10-7. What is the main drawback of frame replenishment?

10-8. Both the frame-difference predictive coding and motion-compensated coding are pre-
dictive codings in nature.

(a) What is the main difference between the two?

(b) Explain why motion-compensated coding is usually more efficient. |
(c) What is the price paid for higher coding efficiency with motion-compensated coding?
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10-9. Motion analysis is an important task encountered in both computer vision and video
coding. What is the major different requirement for motion analysis in these two fields?
10-10. Work on the first 40 frames of a video sequence other than the Miss America sequence.
Determine, on an average basis, what percentage of the total pixels change their gray-
level values by more than 1% of the peak signal between two consecutive frames.
10-11. Similar to the experiment associated with Figure 10.5, do your own experiment to
observe the dirty window effect. That is, work on two successive frames of a video
sequence chosen by yourself, and only update a part of those changing pixels.
10-12. Take two frames from the Miss America sequence or from another sequence of your
own choice in which a relatively large amount of motion is involved.
(a) Using the weighted linear interpolation defined in Equation 10.4, create an inter-
polated frame, which is located in the 1/3 of the time interval from the second frame
(re., [, =1 (I, + 1,) according to Figure 10.9).
(b) Using motion-compensated interpolation, create an interpolated frame at the same
position along the temporal dimension.
(¢) Compare the two interpolated frames and make your comments.
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As mentioned in the previous chapter, displacement vector measurement and its usage in motion
compensation in interframe coding for a TV signal can be traced back to the 1970s. Netravali and
Robbins (1979) developed a pel-recursive technique, which estimates the displacement vector for
each pixel recursively from its neighboring pixels using an optimization method. Limb and Murphy
(1975), Rocca and Zanoletti (1972), Cafforio and Rocca (1976), and Brofferio and Rocca (1977)
developed techniques for the estimation of displacement vectors of a block of pixels. In the latter
approach, an image s first segmented into areas with each having an approximately uniform
translation. Then the motion vector 1s estimated for each area. The segmentation and motion
estimation associated with these arbitrarily shaped blocks are very difficult. When there are multiple
moving areas in images, the situation becomes more challenging. In addition to motion vectors,
the shape information of these areas needs to be coded. Hence, when moving areas have various
complicated shapes, both computational complexity and coding load will increase remarkably.

In contrast, the block matching technique, which is the focus of this chapter, i1s simple,
straightforward, and yet very efficient. It has been by far the most popularly utilized motion
estimation technique in video coding. In fact, it has been adopted by all the international video
coding standards: ISO, MPEG-1 and MPEG-2, and ITU H.261, and H.263. These standards will
be introduced in detail in Chapters 16, 17, and 19, respectively.

[t is interesting to note that even nowadays, with the tremendous advancements in multimedia
engineering, object-based and/or content-based manipulation of audiovisual information is still very
demanding, particularly in audiovisual data storage, retrieval, and distribution. The applications
include digital library, video on demand, audiovisual databases, and so on. Therefore, the coding
of arbitrarily shaped objects has attracted great research attention these days. It has been included
in the MPEG-4 activities (Brailean, 1997), and will be discussed in Chapter 18.

[n this chapter various aspects of block matching are addressed. They include the concept and
algorithm, matching criteria, searching strategies, limitations, and new improvements.

11.1  NONOVERLAPPED, EQUALLY SPACED, FIXED SIZE,
SMALL RECTANGULAR BLOCK MATCHING

To avoid the kind of difficulties encountered in motion estimation and motion compensation with
arbitrarily shaped blocks, the block matching technique was proposed by Jain and Jain (1981) based
on the following simple motion model.

An image is partitioned into a set of nonoverlapped, equally spaced, fixed size, small rectangular
blocks: and the translation motion within each block is assumed to be uniform. Although this simple
model considers translation motion only, other types of motions, such as rotation and zooming of
large objects, may be closely approximated by the piecewise translation of these small blocks
provided that these blocks are small enough. This observation, originally made by Jain and Jain,
has been confirmed again and again since then.

Displacement vectors for these blocks are estimated by finding their best matched counterparts
in the previous frame. In this manner, motion estimation is significantly easier than that for
arbitrarily shaped blocks. Since the motion of each block is described by only one displacement
vector, the side information on motion vectors decreases. Furthermore, the rectangular shape
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FIGURE 11.1 Block matching.

information is known to both the encoder and the decoder, and hence does not need to be encoded,
which saves both computation load and side information.

The block size needs to be chosen properly. In general, the smaller the block size, the more
accurate is the approximation. It is apparent, however, that the smaller block size leads to more
motion vectors being estimated and encoded, which means an increase in both computation and
side information. As a compromise, a size of 16 X 16 is considered to be a good choice. (This has
been specified in international video coding standards such as H.261, H.263, and MPEG-1 and
MPEG-2.) Note that for finer estimation a block size of 8 X 8 is sometimes used.

Figure 11.1 1s utilized to illustrate the block matching technique. In Figure 11.1(a) an image
frame at moment ¢, is segmented into nonoverlapped p X g rectangular blocks. As mentioned above,
In common practice, square blocks of p = g = 16 are used most often. Consider one of the blocks
centered at (x, y). It is assumed that the block is translated as a whole. Consequently, only one
displacement vector needs to be estimated for this block. Figure 11.1(b) shows the previous frame:
the frame at moment t_,. In order to estimate the displacement vector, a rectangular search window
Is opened in the frame ¢, | and centered at the pixel (x, y). Consider a pixel in the search window,
a rectangular correlation window of the same size p X g is opened with the pixel located in 1S
center. A certain type of similarity measure (correlation) is calculated. After this matching process
has been completed for all candidate pixels in the search window, the correlation window corre-
sponding to the largest similarity becomes the best match of the block under consideration in frame
t,- The relative position between these two blocks (the block and its best match) gives the displace-
ment vector. This 1s shown in Figure 11.1(b).

The size of the search window is determined by the size of the correlation window and the
maximum possible displacement along four directions: upward, downward, rightward, and leftward.
In Figure 11.2 these four quantities are assumed to be the same and are denoted by d. Note that d
is estimated from a priori knowledge about the translation motion, which includes the largest
possible motion speed and the temporal interval between two consecutive frames, 1.€., L, = lu.1-

11.2 MATCHING CRITERIA

Block matching belongs to image matching and can be viewed from a wider perspective. In m-::'m)’
Image processing tasks, we need to examine two Images or (wo portions of images on a pixel-by -pixel
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FIGURE 11.2 Search window and correlation window.

basis. These two images or two image regions can be selected from a spatial image sequence, i.e.,
from two frames taken at the same time with two different sensors aiming at the same object, or
from a temporal image sequence, 1.¢., from two frames taken at two different moments by the same
sensor. The purpose of the examination is to determine the similarity between the two images or
two portions of images. Examples of this type of application include image registration (Pratt,
1974) and template matching (Jain, 1989). The former deals with spatial registration of images,
while the latter extracts and/or recognizes an object in an image by matching the object template
and a certain area of the image.

The similarity measure, or correlation measure, is a key element in the matching process. The
basic correlation measure between two images ¢, and t,.,, C (s, t), is defined as follows (Anuta, 1969).

P q
(k) G+ s,k +1)
I)= z;ﬂ ZL—:{-}C(] )f I( | "
P q ) ) I q | r 2
\/zj=| k:tﬁ'(‘;'k) \/zjzl Z;.=|ﬁ*-l(j+5‘k+r)

This is also referred (o as a normalized two-dimensional cross-correlation function (Musmann et al.,
1985).

Instead of finding the maximum similarity or correlation, an equivalent but yet more compu-
tationally efficient way of block matching 1s Lo find the minimum dissimilarity, or matching error.
The dissimilarity (sometimes referred to as the error, distortion, or distance) between (wo 1mages

t,and ¢t ., D (s, t) is defined as follows.

D(s,t) = mzzM ”_]A L I(J+.s.-A+r)) (11.2)

j=l k=l

where M(u,v) is a metric that measures the dissimilarity between the two arguments u and v. The
D (s, t) is also referred to as the matching criterion or the D values.

In the literature there are several types of matching criteria, among which the mean square
error (MSE) (Jain and Jain, 1981) and mean absolute difference (MAD) (Koga et al., 1981) are
used most often. It is noted that the sum of the squared difference (SSD) (Anandan, 1987) or the
sum of the squared error (SSE) (Chan et al., 1990) 1s essentially the same as MSE. The mean
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absolute difference is sometimes referred to as the mean absolute error (MAE) in the literature
(Nogaki and Ohta, 1972).
In the MSE matching criterion, the dissimilarity metric M (u, v) is defined as

M(u,v) = (u—-v)°. (11.3)

In the MAD,

M(u,v)=u—v|. (11.4)

Obviously, both criteria are simpler than the normalized two-dimensional cross-correlation measure
defined in Equation 11.1.

Before proceeding to the next section, a comment on the selection of the dissimilarity measure
is due. A study based on experimental works reported that the matching criterion does not signif-

icantly affect the search (Srinivasan, 1984). Hence, the MAD is preferred due to its simplicity In
implementation (Musmann et al., 1985).

11.3 SEARCHING PROCEDURES

The searching strategy is another important issue to deal with in block matching. Several searching
strategies are discuused below.

11.3.1 FuLL SEArCH

Figure 11.2 shows a search window, a correlation window, and their sizes. In searching for the best
match, the correlation window is moved to each candidate position within the search window. That
1s, there are a total (2 d+1) X (2 d+1) positions that need to be examined. The minimum dissimilarity
gives the best match. Apparently, this full search procedure is brute force in nature. While the full
search delivers good accuracy in searching for the best match (thus, good accuracy In motion
estimation), a large amount of computation is involved.

In order to lower computational complexity, several fast searching procedures have been
developed. They are introduced below.

11.3.2 2-D LOGARITHMIC SEARCH

Jain and Jain (1981) developed a 2-D logarithmic searching procedure. Based on a 1-D logarithmic
search procedure (Knuth, 1973), the 2-D procedure successively reduces the search area, thus
reducing the computational burden. The first steps computes the matching criteria for five points
In the search window. These five points are as follows: the central point of the search window and
the four points surrounding it, with each being a midpoint between the central point and one of
the four boundaries of the window. Among these five points, the one corresponding to the minimum
dissimilarity is picked as the winner. In the next step, surrounding this winner, another set of five
points are selected in a similar fashion to that in the first step, with the distances between the five
points remaining unchanged. The exception takes place when either a central point of a set of five
points or a boundary point of the search window gives a minimum D value. In these circumstances,
the distances between the five points need to be reduced. The procedure continues until the final
step, in which a set of candidate points are located ina 3 x 3 2-D grid. Figure 11.3 demonstrates
two cases of the procedure. Figure 11.3(a) shows that the minimum D value takes place on @
boundary, while Figure 11.3(b) shows the minimum D value in the central position.
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FIGURE 11.3 (a) A 2-D logarithmic search procedure. Points at (j, k+2), (G+2, k+2), (j+2, k+4), and (J+1,
k+4) are found to give the minimum dissimilarity in steps 1, 2, 3, and 4, respectively. (b) A 2-D logarithmic
' search procedure. Points at (j, k-2), (j+2, k-2), and (j+2, k-1) are found to give the minimum dissimilarity in
steps 1, 2, 3, and 4, respectively.

A convergence proof of the procedure is presented by Jain and Jain (1981), under the assumption
that the dissimilarity monotonically increases as the search point moves away from the point

corresponding to the minimum dissimilarity.
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FIGURE 11.4 Three-step search procedure. Points (j+4, k-4), (j+4, k-6), and (j+5, k-7) give the minimum
dissimilarity in steps 1, 2, and 3, respectively.

11.3.3 CoArse-FINE THREE-STEP SEARCH

Another important work on the block matching technique was completed at almost the same time
by Koga et al. (1981). A coarse-fine three-step procedure was developed for fast searching.

The three-step search is very similar to the 2-D logarithm search. There are, however, three
main differences between the two procedures. First, each step in the three-step search compares a
set of nine points that form a 3 x 3 2-D grid structure. Second, the distances between the points in
the 3 X 3 2-D grid structure in the three-step search decrease monotonically in steps 2 and 3. Third,
a total of only three steps are carried oult. Obviously, these three items are different from the 2-D

logarithmic search described in Section 11.3.2. An illustrative example of the three-step search 1S
shown in Figure 11 .4.

11.3.4 CoNJuGATE DIRECTION SEARCH

The conjugate direction search is another fast search algorithm that was developed by Srinivasan
and Rao (1984). In principle, the procedure consists of two parts. In the first part, it finds the
minimum dissimilarity along the horizontal direction with the vertical coordinate fixed at an initial
position. In the second part, it finds the minimum D value along the vertical direction with _1he
horizontal coordinate fixed in the position determined in the first part. Starting with the vertical
direction followed by the horizontal direction is, of course, functionally equivalent. It was reported
that this search procedure works quite efficiently (Srinivasan and Rao, 1984).

Figure 11.5 illustrates the principle of the conjugate direction search. In this example, each
step involves a comparison between three testing points. If a point assumes the minim-um D value
compared with both of its two immediate neighbors (in one direction), then it is consic ere.d to be
the best match along this direction, and the search along another direction is started. Sq hecifically,
the procedure starts o compare the D values for three points (j, k-1), (j, k), and G k+1). If 1:2311;)
value of point (J, k—1) appears to be the minimum among the three, then points (J, k-2), 0, K=1)s
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FIGURE 11.5 Conjugate direction search.

and (j, k) are examined. The procedure continues, finding point (j, k-3) as the best match along
the horizontal direction since its D value is smaller than that of points (j, k—4) and (j, k=2). The
procedure is then conducted along the vertical direction. In this example the best matching is finally

found at point (j42, k-3).

11.3.5 SuBsampPLING IN THE CORRELATION WINDOW

In the evaluation of the matching criterion, either MAD or MSE, all pixels within a correlation
window at the t, , frame and an original block at the ¢, frame are involved in the computation. Note
that the correlation window and the original block are the same size (refer to Figure 11.1). In order
to further reduce the computational effort, a subsampling inside the window and the block i1s
performed (Bierling, 1988). Aliasing effects can be avoided by using low-pass filtering. For instance,
only every second pixel, both horizontally and vertically inside the window and the block, is taken
Into account for the evaluation of the matching criterion. Obviously, by using this subsampling
technique, the computational burden is reduced by a factor of 4. Since 3/4 of the pixels within the
window and the block are not involved in the matching computation, however, the use of such a
subsampling procedure may affect the accuracy of the estimated motion vectors, especially in the
case of small-size blocks. Therefore, the subsampling technique is recommended only for those
cases with a large enough block size so that the matching accuracy will not be seriously affected.
Figure 11.6 shows an example of 2 x 2 subsampling applied to both an original block of 16 X 16
at the r, frame and a correlation window of the same size at the ¢, , frame.

11.3.6 MULTIRESOLUTION BLOCK MATCHING

It is well known that a multiresolution structure, also known as a pyramid structure, is a very
powerful computational configuration for various image processing tasks. To save computation in
block matching, it is natural to resort to the pyramid structure. In fact, the multiresolution technique
has been regarded as one of the most efficient methods in block matching (Tzovaras et al., 1994).

In a named top-down multiresolution technique, a typical Gaussian pyramid 1s formed first.
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FIGURE 11.6 An example of 2 x 2 subsampling in the original block and correlation window for a fast
search.

Before diving into further description, let us pause here to give those readers who have not been
exposed to the Gaussian pyramid a short introduction to the concept. For those who know the
concept, this paragraph can be skipped. Briefly speaking, a Gaussian pyramid can be understood
as a set of images with different resolutions related to an original image in a certain way. The
original image has the highest resolution and is considered as the lowest level, sometimes called
the bottom level, in the set. From the bottom level to the top level, the resolution decreases
monotonically. Specifically, between two consecutive levels. the upper level 1s half as large as the
lower level in both horizontal and vertical directions. The upper level i1s generated by applying a
low-pass filter (which has a group of weights) to the lower level, followed by a 2 x 2 subsampling.
That 1s, each pixel in the upper level is a weighted average of some pixels in the lower level. In
general, this iterative procedure of generating a level in the set is equivalent to convolving a spectfic
weight function with the original image at the bottom level followed by an appropriate subsampling.
Under certain conditions, these weight functions can closely approximate the Gaussian probability
density function, which is why the pyramid is named after Gauss. (For a detailed discussion, readers
are referred to Burt and Adelson [1983, 1984].) A Gaussian pyramid structure is depicted 1n
Figure 11.7. Note that the Gaussian pyramid depicted in Figure 11.7 resembles a so-called quad-
tree structure in which each node has four children nodes. In the simplest quad-tree pyramid, each
pixel in an upper level is assigned an average value of its corresponding four pixels in the next
lower level.

Now let’s return to our discussion on the top-down multiresolution technique. After a Gaussiz_m
pyramid has been constructed, motion search ranges are allocated among the different pyramid
levels. Block matching is initiated at the lowest resolution level to obtain an initial estimation of
motion vectors. These computed motion vectors are then propagated to the next higher reso]}llion
level, where they are corrected and then propagated to the next level. This procedure continues
until the highest resolution level is reached. As a result, a large amount of computation can be
saved. Tzovaras et al. (1994) showed that a two-level Gaussian pyramid outperforms a three-level
pyramid. Compared with full search block matching, the top-down multiresolution block search
saves up to 67% of computations without seriously affecting the quality of the reconstructed imflges-

In conclusion, it has been demonstrated that multiresolution is indeed an efficient computational
structure in block matching. This once again confirms the high computational efficiency of the
multiresolution structure.
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FIGURE 11.7 Gaussian pyramid structure.

11.3.7 THRESHOLDING MULTIRESOLUTION BLOCK MATCHING

With the multiresolution technique discussed above, the computed motion vectors at any interme-
diate pyramid level are projected to the next higher resolution level. In reality, some computed
motion vectors at the lower resolution levels may be inaccurate and have to be further refined,
while others may be relatively accurate and able to provide satisfactory motion compensation for
the corresponding block. From a computation-saving point of view, for the latter class it may not
be worth propagating the motion vectors to the next higher resolution level for further processing.

Motivated by the above observation, a new multiresolution block matching method with a
thresholding technique was developed by Shi and Xia (1997). The thresholding technique prevents
those blocks, whose estimated motion vectors provide satisfactory motion compensation, from
further processing, thus saving a lot of computation. In what follows, this technique 1s presented
In detail so as to provide readers with an insight to both multiresolution block matching and

thresholding multiresolution block matching techniques.

Algorithm — Let f,(x, y) be the frame of an image sequence at current moment 7. First, two
Gaussian pyramids are formed, pyramids n and n — 1, from image frames f,(x, y) and f,_,(x, y),
respectively. Let the levels of the pyramids be denoted by /, /=0, 1, ..., L, where 0 is the lowest
resolution level (top level), L is the full resolution level (bottom level), and L+1 1s the total number
of layers in the pyramids. If (i, j) are the coordinates of the upper-left corner of a block at level /
of pyramid n, the block is referred to as block (i, j).. The horizontal and vertical dimensions of a
block at level / are denoted by b} and by, respectively. Like the variable block size method (refer
to Method | in Tzovaras et al. [1994]), the size of the block in this work varies with the pyramid
levels. That is, if the size of a block at level / is b}, then the size of the block at level [ + 1 becomes
2b; X 2b!. The variable block size method is used because it gives more efficient motion estimation
than the fixed block size method. Here, the matching criterion used for motion estimation is the
MAD because it does not require multiplication and performs similar to the MSE. The MAD
between block (i, j)'b! of the current frame and block (i + v,, j + v,)'by_; of the previous frame at

level / can be calculated as
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b1 by~

MAD['_J}: ("i= vf) = b,'* l 5 z z|f"f(f+k,j+m) _f”f_l(;-+ kv, j+m+ v':,)

v Y k=0 m=0

(11.5)

where V! = (v}, v;) is one of the candidates of the motion vector of block (i, j)y, vi, v/ are the two
components of the motion vector along the x and y directions, respectively.

A block diagram of the algorithm is shown in Figure 11.8. The threshold in terms of MAD
needs to be determined in advance according to the accuracy requirement of the motion estimation
Determining the threshold is discussed below in Part B of this subsection. Gaussian pyramids are
formed for two consecutive frames of an image sequence from which motion estimation is desired
Block matching is then performed at the top level with the full-search scheme. The estimated
motion vectors are checked to see if they provide satisfactory motion compensation. If the accuracy
requirement is met, then the motion vectors will be directly transformed to the bottom level of the
pyramid. Otherwise, the motion vectors will be propagated to the next higher resolution level for
further refinement. This thresholding process is discussed below in Part C of this subsection. The
algorithm continues in this fashion until either the threshold has been satisfied or the bottom level
has been reached. The skipping of some intermediate-level calculations provides for computational
saving. Experimental work with quite different motion complexities demonstrates that the proposec
algorithm reduces the processing time from 14 to 20%, while maintaining almost the same quality
in the reconstructed image compared with the fastest existing multiresolution block matching
algorithm (Tzovaras et al., 1994).

- - Block matching - L
Y

Low pass filtering Low pass filtening
and subsampling and subsampling

) fe Block matching -

l

Y & -
Low pass filtering ?;rns h:" 13 Low pass filtening
and subsampling S and subsampling
* i :

----------------

FIGURE 11.8 Block diagram for a three-level threshold multiresolution block matching.
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TABLE 11.1
Parameters Used in the Experiments

Parameters at Level Low Resolution Level Full Resolution Level

Miss America

Search range 3x3 | x|
Block size 4 x4 8 x8
Thresholding value 2 None (not applicable)
Train
Search range 4 x4 I x|
Block size 4 x4 g x8
Thresholding value 3 None (not applicable)
Football
Search range 4 x4 | x 1
Block size 4 x4 8 x 8
Thresholding value 4 None (not applicable)

Threshold Determination — The MAD accuracy criterion is used in this work for the sake of
saving computations. The threshold value has a direct impact on the performance of the proposed
algorithm. A small threshold value can improve the reconstructed image quality at the expense of
increased computational effort. On the other hand, a large threshold value can reduce the compu-
lational complexity, but the quality of the reconstructed image may be degraded. One possible way
to determine a threshold value, which was used in many experiments by Shi and Xia (1997), is as
follows.

The peak signal-to-noise ratio (PSNR) is commonly used as a measure of the quality of the
reconstructed image. As introduced in Chapter 1, it 1s defined as

255°

PSNR =10log,, VISE (11.6)

From the given required PSNR, one can find the necessary MSE value. A square root of this
MSE value can be chosen as a threshold value, which is applied to the first two images from the
sequence. If the resulting PSNR and required processing time are satisfactory, 1t 1s then used for
the rest of the sequence. Otherwise, the threshold can be slightly adjusted accordingly and applied
o the second and third images to check the PSNR and processing time. It was reported in numerous
experiments that this adjusted threshold value was accurate enough, and that there was no need for
further adjustment. As shown in Table 11.1, the threshold values used for the “Miss America,”’
“Train,” and “Football” sequences (three sequences having quite different motion complexities) are
2, 3, and 4, respectively. They are all determined in this fashion and give satisfactory performance,
as shown in the three rows marked “New Method (TH=2),” “New Method (TH=3)" and “New
Method (TH=4),” respectively, in Table 11.2. That is, the PSNR experiences only about 0.1 dB loss
and the processing time decreases drastically. In the experiments, the threshold value of 3, 1.e., the
average value of 2, 3, and 4, was also tried. Refer to the three rows marked “New Method (TH=3)"
in Table 11.2. It is noted that this average threshold value 3 has already given satisfactory perfor-
mance for all three sequences. Specifically, for the “Miss America” sequence, since the criterion
increases from 2 to 3, the PSNR loss increases from 0.12 to 0.48 dB, and the reduction in processing
time increases from 20 to 38%. For the “Football” sequence, since the criterion decreases {rom
4 10 3, the PSNR loss decreases from 0.08 to 0.05 dB, and the reduction in processing time decreases
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from 14 to 9%. Obviously, for the “Train” sequence, the criterion, as well as the performance,
remains the same. One can therefore conclude that the threshold determination may not require
much computation at all.

Thresholding — Motion vectors estimated at each pyramid level will be checked to see if they
provide satisfactory motion compensation. Assume V' (i, j) = (v}, v{) is the estimated motion vector
for block (i, j)!, at level / of pyramid n. For thresholding, V' (i, j) should be directly projected to
the bottom level L. The corresponding motion vector for the same block at the bottom level of
pyramid n will be V£ (2¢4- j2(1-0 /) and 1s given as

vH(24, 2 j) =20V, j) (11.7)

The MAD between the block at the bottom pyramid level of the current frame and its counterpart
in the previous frame can be determined according to Equation 11.5, where the motion vector is
VL= VL (WD {2(-D /) This computed MAD value can be compared with the predefined threshold.
If this MAD value is less than the threshold, the computed motion vector V& (240 (2040 j) will
be assigned to block (24 1,24-) )L at level L in the current frame and motion estimation for this
block will be stopped. If not, the estimated motion vector V' (i, j) at level / will be propagated to
level I + 1 for further refinement. Figure 11.9 gives an illustration of the above thresholding process.

Experiments — To verify the effectiveness of the proposed algorithm, extensive experiments have
been conducted. The performance of the new algorithm is evaluated and compared with that of
Method 1, one of the most efficient multiresolution block matching methods (Tzovaras et al., 1994)
in terms of PSNR, error image entropy, motion vector entropy, the number of blocks stopped at
the top level vs. the total number of blocks, and processing time. The number of blocks stopped
at the top level is the number of blocks withheld from further processing, while the total number
of blocks is the number of blocks existing at the top level. It is noted that the total number of
blocks is the same for each level in the pyramid. The processing time is the sum of the total number
of additions involved in the evaluation of the MAD and the thresholding operation.

In the experiments, two-level pyramids are used since they give better performance for motion
estimation purposes (Tzovaras et al., 1994). The algorithms are tested on three video sequences
with different motion complexities, i.e., the “Miss America,” “Train,” and “Football.”” The “Miss
America” sequence has a speaker imposed on a static background and contains less motion. The
“Train” sequence has more detail and contains a fast-moving object (train). The 20th frame of the

sequence is shown in Figure 11.10. The “Football” sequence contains the most complicated motion

Pyramid Pyramid Pyramid
n-1 n level
Estimation of motion vector
of a block at level |

‘g —~—— ﬂ 1

Projection of

the block and

its estimated

motion vector

at level L

Calculation of the MAD of *
the block at level L

"""""
i F O e

JJJJJJ

FIGURE 11.9 The thresholding process.
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FIGURE 11.10 The 20th frame of the “Train™ sequence.
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FIGURE 11.11 The 20th frame in the “Football™

sequence.

compared with the other two sequences. The 20th frame is shown in Figure 11.11. Table I1.1 1s
the list of implementing parameters used in the experiments. Tables 11.2 and 11.3 give the perfor-
mance of the proposed algorithm compared with Method 1. In all three cases, the motion estimation
has a half-pixel accuracy, the meaning of which will be explained 1n the next section. All perfor-
mance measures listed there are averaged for the first 25 frames of the testing sequences.

Each frame of the “Miss America” sequence is of 360 x 288 pixels. For convenience, only the
central portion, 320 x 256 pixels, is processed. Using the operational parameters listed in Table 11.1
(with a criterion value of 2), 38% of the total blocks at the top level satisfy the predefined criterion
and are not propagated to the bottom level. The processing time needed by the proposed algorithm
1S 20% less than Method ‘1, while the PSNR, the error image entropy, and the vector entropy are
almost the same. Compared with Method 1, an extra amount of computation (around 0.16 x 10°
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TABLE 11.2
Experimental Results (1)

Processing Times
Block Stopped at (No. of
Top Level/Total Block Additions, 10°)

Error Image
PSNR Entropy
(dB)  (bits per pixel)

Vector Entropy
(bits/vector)

Miss America Sequence

Method | (Tzovaras 38.91 3311 6.02 0/1280 10.02
et al., 1994)

New method (TH=2) 38.79 3319 5.65 487/1280 8.02

New method (TH=3) 38.43 3.340 545 679/1280 6.17

Train Sequence

Method 1 (Tzovaras 27.37 4.692 6.04 0/2560 22.58
et al., 1994)

New method (TH=3) 27.27 4.788 5.65 1333/2560 18.68

Football Sequence

Method | (Tzovaras 24 .26 5.379 7.68 (/3840 30.06
et al., 19949)

New method (TH=4) 24.18 5.483 7.58 1464/3840 25.90

New method (TH=3) 24 2] 5.483 7.57 | 128/3840 27.10

additions) is conducted on the thresholding operation, but a large computational savings (around
2.16 x 10° additions) is achieved by withholding from further processing those blocks whose MAD
values at the full resolution level are less than the predefined accuracy criterion.

The frames of the “Train” sequence are 720 x 288 pixels, and only the central portion, 640 X
256 pixels, is processed. Using the operational parameters listed in Table 11.1 (with a criterion
value of 3), about 52% of the total blocks are stopped at the top level. The processing time 1s
reduced about 17% by the new algorithm, compared with Method 1. The PSNR, the error image
entropy, and the vector entropy are almost the same.

The frames of the “Football” sequence are 720 x 480 pixels, and only the central portion,
640 x 384 pixels, is processed. Using the operational parameters listed in Table 11.1 (witha criterion
value of 4), about 38% of the total blocks are stopped at the top level. The processing time 1S about
14% less than that required by Method 1, while the PSNR, the error image entropy, and the vector
entropy are almost the same.

As discussed, the experiments with a single accuracy criterion of 3 also produce similarly good
performance for the three different image sequences.

In summary, it is clear that with the three different testing sequences, the thresholding mult-
resolution block matching algorithm works faster than the fastest existing top-down multiresolution
block matching algorithm while achieving almost the same quality of the reconstructed image.

11.4 MATCHING ACCURACY

Apparently, the two components of the displacement vectors obtained using the technique described
above are an integer multiple of pixels. This is referred to as one-pixel accuracy. If a higher accuracy
is desired, i.e., the components of the displacement vectors may be a non-integer multiple of pixels,
then spatial interpolation is required. Not only will more computation be involved, but also more
bits will be required to represent motion vectors. The gain is a more accurate motion estimation,
hence less prediction error. In practice, half-pixel or quarter-pixel accuracy are two widely utilized
accuracies other than one-pixel accuracy.
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11.5 LIMITATIONS WITH BLOCK MATCHING TECHNIQUES

Although very simple, straightforward, and efficient, hence, utilized most widely in video coding,
the block matching motion compensation technique has its drawbacks. First, it has an unreliable
motion vector held with respect to the true motion 1in 3-D world space. In particular, it has
unsatistactory motion estimation and compensation along moving boundaries. Second, 1t causes
block artitacts. Third, 1t needs to handle side information. That 1s, it needs to encode and transmit
motion vectors as an overhead to the receiving end, thus making it difficult to use smaller block
size to achieve higher accuracy in motion estimation.

All these drawbacks are due to its simple model: each block is assumed to experience a uniform
translation and the motion vectors of partitioned blocks are estimated independently of each other.
Unre

iable motion estimation, particularly along moving boundaries, causes more prediction error,
hence reduced coding ethiciency.

The block artifacts do not cause severe perceptual degradation to the human visual system
(HVS) when the available coding bit rate is adequately high. This is because, with a high bit rate.
a sufficient amount of the motion-compensated prediction error can be transmitted to the receiving
end, hence improving the subjective visual effect to such an extent that the block artifacts do not
appear to be annoying. However, when the available bit rate 1s low, particularly lower than 64 Kbps,
the artifacts become visually unpleasant. In Figure 11.12, a reconstructed frame of the “Miss
America’ sequence at a low bit rate 1s shown. Obviously, block artifacts are very annoying,

. - CER A S Y TR 3 a1 codec ¢ no
FIGURE 11.12 The 2Ist reconstructed frame of the “Miss America  sequence using codec following

H.263.
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especially where the mouth and hair are involved. The sequence was coded and decoded by using
a codec following ITU-T Recommendations H.263, an international standard in which block
matching is utilized for motion estimation.

The assumption that motion within each block 1s uniform requires a small block size such as
16 x 16 and 8 x 8. A small block size leads to a large number of motion vectors, however, resulting
in a large overhead of side information. A study by Chan et al. (1990) indicated that 8 x 8 block
matching performs much better than 16 X 16 in terms of decoded 1image quality due to better motion
estimation and compensation. The bits used for encoding motion vectors, however, increase sig-
nificantly (about four times), which may be prohibitive for very low bit rate coding since the total
bit rate needed for both prediction error and motion vectors may exceed the available bit rate. It
is noted that when the coding bit rate is quite low, say, on the order of 20 kbps, the side information
becomes compaltible with the main information (prediction error) (Lin et al., 1997).

Tremendous research efforts have been made to overcome the limitatons of block-matching
techniques. Some improvements have been achieved and are discussed next. It should be kept in
mind, however, that block matching is still by far the most popular and efficient motion estimation
and compensation technique utilized for video coding, and it has been adopted for use by various
international coding standards. In other words, block matching i1s the most appropriate technique
in the framework of first-generation video coding (Dufaux and Moscheni, 1995).

11.6 NEW IMPROVEMENTS

11.6.1T HierarcHICAL BLock MATCHING

Bierling (1988) developed the hierarchical search based on the following two observations. On the
one hand, for a relatively large displacement, accurate block matching requires a relatively large
block size. This is conceivable if one considers its opposite case: a large displacement with a small
correlation window. Under this circumstance, the search range is large. Therefore the probability
of finding multiple matches is high, resulting in unreliable motion estimation. On the other hand,
a large block size may violate the assumption that all pixels in the block share the same displacement
vector. Hence a relatively small block size is required in order to meet the assumption. These
observations shed light on the problem of using a fixed block size, which may lead to unreliable
motion estimation.

To satisfy these two contradicting requirements simultaneously, in a hierarchical search proce-
dure a set of different sizes of blocks and correlation windows is utilized. To facilitate the discussion,
consider a three-level hierarchical block-matching algorithm, in which three block-matching pro-
cedures are conducted, each with its own parameters. Block matching is first conducted with respect
to the largest size of blocks and correlation windows. Using the estimated displacement vector as
an initial vector at the second level, a new search is carried out with respect to the second larges!
size of blocks and correlation windows. The third search procedure is carried out similarly, base‘:d
on the results of the second search. An example with three correlation windows is illustrated 1n
Figure 11.13. It is noted that the resultant displacement vector is the sum of the three displacement
vectors determined by three searches.

The parameters in these three levels are listed in Table 11.4. The algorithm is described below
with an explanation of the various parameters in Table 11.4. Prior to each block matching, a separalc
low-pass filter is applied to the whole image in order to achieve reliable block matching. The low-
pass filtering used is simply a local averaging. That is, the gray value of every pixel is replaced by
the mean value of the gray values of all pixels within a square area centered at the pixel 10 wthh
the mean value is assigned. In calculating the matching criterion D value, a subsampling 1S applied

to the original block and the correlation window in order to save computation, which was discussed
in Section 11.3.5.
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(a) frame t; (b) frame t;.|

FIGURE 11.13  Hierarchical block matching.

TABLE 11.3

Experimental Results (I1)

Total Blocks Stopped Saved Processing Time Compared
at Top Level with Method 1 in Tzovaras et al. (1994)

Frames Tested (%) (%)
"Miss America” sequence 38 20

(TH =2)
“Train" sequence 52 17

(TH = 3)
“Football” sequence 38 14

(TH = 4)

In the first level, for every 8th pixel horizontally and vertically (a step size of 8 X 8), block
matching is conducted with the maximum displacement being £7 pixels, a correlation window size
of 64 x 64, and a subsampling factor of 4 x 4. A 5 x 5 averaging low-pass filter is applied prior
to first level block matching. Second-level block matching is conducted with respect to every 4th
pixel horizontally and vertically (a step size of 4 x 4). Note that for a pixel whose displacement
vector estimate has not been determined in first-level block matching, an average of the four nearest
neighboring estimates will be taken as its estimate. All the parameters for the second le:n.rel are
listed in Table 11.4. One thing that needs to be emphasized is that in block matchi'ng ::‘ll‘ this le‘vel
the search window should be displaced by the estimated displacement vector obtamf.:d in the first
level. Third-level block matching is dealt with accordingly for every 2nd pixel horizontally and
vertically (a step size of 2 x 2). The different parameters are listed In Table 11.4. In each of the
three levels, the three-step search discussed in Section 11.3.3 1S utilized.‘ ;

Experimental work has demonstrated a more reliable motion estimation due to lhc-; US‘}ge’ '?h f:
set of different sizes for both the original block and the correlation windo\:v. The ?]rsil'?quc:;en‘t
large window size and a large displacement range determines a major portion c_*f [l € lbgni[ TR0
vector reliably. The successive levels with smaller window sizes and smaller displacem g
are capable of adaptively estimating motion vectors more locally. levels, respectively.

Figure 11.14 shows a portion of an image with pixels processed 1" o !hrrevels soithm a motion
It is noted that it is possible to apply one more interpolation after thes ‘lhree cm s
vector field of full resolution is available. Such a full-resolution mouen vee

—————
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TABLE 11.4
Parameters Used in a Three-Level Hierarchical Block Matching
Hierarchical Maximum Correlation
Level Displacement Window Size  Step Size  LPF Window Size Subsampling
1 +7 pel 64 x 64 8 $x5 4 % 4
2 +3 pel 28 x 28 4 5% 5 4 x4
3 +1 pel 12 % 12 2 3 x 3 2 x 2
Source: Data from Bierling (1988).
(. g {32\ Fish 7
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processed in each processed in processed in level 3
of three levels levels 2 and 3

FIGURE 11.14 A portion of an image with pixels processed in all three levels.

such applications as motion-compensated interpolation in the context of videophony. There, In
order 10 maintain a low bit rate some frames are skipped for transmission. At the receiving end
these skipped frames need to be interpolated. As discussed in Chapter 10, motion-compensated

interpolation is able to produce better frame quality than that achievable by using weighted linear
interpolation.

11.6.2 MuLTIGRID BLOCK MATCHING

Multigrid theory was developed originally in mathematics (Hackbusch and Trottenberg, 1982). It
is a useful computational structure in Image processing besides the multiresolution one describ&"d
In Section 11.3.6. A diagram with three different levels used to illustrate a multigrid structure 1S
shown in Figure 11.15. Although it is also a hierarchical structure, each level within the hierarchy
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FIGURE 11.15 [llustration of a three-level hierarchical structure.

s of the same resolution. A few algorithms based on multigrid structure have been developed 1n
order to improve the block-matching technique. Two advanced methods are introduced below.

Thresholding Multigrid Block Matching — Realizing that the simple block-based motion model
(assuming a uniform motion within a fixed-size block) in the block matching technique causes
several drawbacks, Chan et al. (1990) proposed a variable size block matching technique. The main
Idea is using a split-and-merge strategy with a multigrid structure in order to segment an image
Into a set of variable size blocks, each of which has an approximately uniform motion. A binary
tree (also known as bin-tree) structure is used to record the relationship between these blocks of
different sizes.

Specifically, an image frame is initially split into a set of square blocks by cutting the image
alternately horizontally and vertically. With respect to cach block thus generated, a block matching
s performed in conjunction with its previous frame. Then the matching accuracy in terms of the
sum squared error is compared with a preset threshold. If it is smaller than or equal to the threshold,
the block remains unchanged in the whole process and the estimated motion vector is final.
Otherwise, the block will be split into two blocks, and a new run of block matching is conducted
tor each of these two children blocks. The process continues until either the estimated vector
satisfies a presel accuracy requirement or the block size has reached a predefined minimum. At
this point, a merge process is proposed by Chan et al. Neighboring blocks under the same inter-
mediate nodes in the bin-tree are checked to see if they can be merged, 1.e., if the merged block
can be approximated with adequate accuracy by a block in the reconstructed previous frame. It is
noted that the merge operation may be optional depending on the specific application.

A block diagram of multigrid block matching is shown in Figure 11.16. Note that it is similar
to that shown in Figure 11.8 for the thresholding multiresolution block matching discussed In
Section 11.3.6. This observation reflects the similarities between multigrid and multiresolution
structures: both are hierarchical in nature and the splitting and merging can be easily performed.
An example of an image decomposition and its corresponding bin-trec are shown in Figure 11.17.

It was reported by Chan et al. (1990) that, with respect to a picture of a computer mouse and
a coin, the proposed variable size block matching achieves up to a 6-dB improvement in SNR and
about 30% reduction in required bits compared with fixed-size (1 6 % 16) block matching. For several
typical videoconferencing sequences, the proposed algorithm constantly performs better than the
fixed-size block matching technique in terms of improved SNR of reconstructed frames with the

same bil rate.
A similar algorithm was reported by Xia and Shi (1996) where a quad-tree-based segmentation

1S used. The thresholding technique is similar to that used by Shi and Xia (1997) and the emphasis

is placed on the reduction of computational complexity. It was found that for the head-shoulder

Ltype of videophony sequences the thresholding multigrid block matching algorithm performs better
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FIGURE 11.16 Flow chart of multigrid block matching.

than the thresholding multiresolution block matching algorithm. For video sequences that contain
more complicated details and motion, however, the performance comparison turns out to be
reversed.

A few remarks can be made as a conclusion for the thresholding technique. Although it needs
to encode and transmit the bin-tree or quad-tree as a portion of side information, and it has (o
resolve the preset threshold issue, overall. the proposed algorithms achieve better performance
compared with fixed-size block matching. With the flexibility provided through the variable-size

methodology, the proposed approach is capable of makin g the model of the uniform motion within
each block more accurate than fixed-size block matching can do.

Optimal Multigrid Block Matching — As pointed out in Chapter 10, the ultimate goal of motion
estimation and motion compensation in the context of video coding is to provide a high code
efficiency in real time. In other words, accurate true motion estimation is not the final goal, although
accurate motion estimation is certainly desired. This point was presented by Bierling (1988) as
well. There, the different requirements with respect to motion-compensated coding and motion-
compensated interpolation were discussed. While the former requires motion vector estimation
leading to minimum prediction error and at the same time a low amount of motion vector infOl‘-
mation, the latter requires accurate estimation of true vectors and a hi gh resolution of the motion
vector field. ‘

This point was very much emphasized by Dufaux and Moscheni (1995). They clearly §1ated
that in the context of video coding, estimation of true motion in 3-D world space is not the ultimate
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(a) An example of a decomposition
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(b) The corresponding bin-tree
FIGURE 11.17 Thresholding multigrid block matching.

goal. Instead, motion estimation should be able to provide good temporal prediction and at the
same time require low overhead information. In a word, the total amount of information that needs
to be encoded should be minimized. Based on this observation, a multigrid block matching technique
with an advanced entropy criterion was proposed.

Since it belongs to the category of thresholding multigrid block matching, it shares many
similarities with those of Chan et al. (1990) and Xia and Shi (1996). It also bears some resemblance
to thresholding multiresolution block matching (Shi and Xia, 1997). What really distinguishes this
approach from other algorithms is its segmentation decision rule. Instead of a preset threshold, the
algorithm works with an adaptive entropy criterion, which aims at controlling the segmentation in
order to achieve an optimal solution in such a way that the total number of bits needed for
representing both the prediction error and motion overhead is minimized. The decision of splitting
a block is made only when the extra motion overhead involved in the splitting is lower than the
gain obtained from less prediction error due to more accurate motion estimation. Not only is it
optimal in the sense of bit saving, but it also eliminates the need for setting a threshold.

The number of bits needed for encoding motion information can be estimated in a straightfor-
ward manner. As far as the prediction error is concerned, the bits required can be represented by
a total entropy of the prediction error, which can be estimated by using an analytical expression
presented by Dufaux (1994) and Moscheni et al. (1993). Note that the coding cost for quad-tree
segmentation information is negligible compared with that used for encoding prediction error and
motion vectors and, hence, is omitted in determining the criterion.
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FIGURE 11.18 The 20th frame of the “Flower Garden™ sequence.

In addition to this entropy criterion, a more advanced procedure 1s adopted in the algornthm
for down-projecting the motion vectors between two consecutive grids in the coarse-to-fine iterative
refinement process.

Both qualitative and quantitative assessments in experiments demonstrate its good performance.
It was reported that, when the PSNR 1is fixed. the bit rate saving for the sequence “Flower Garden™
1s from 10 to 20%, for “Mobile Calendar” from 6 to 12%. and for “Table Tennis™ up to 8%. This
can be translated into a gain in the PSNR ranging from 0.5 to 1.5 dB. Subjectively. the visual
quality 1s improved greatly. In particular, moving edges become much sharper. Figures 11.18, | 1.19,

and 11.20 show a frame from “Flower Garden.” “Mobile Calendar.” and “Table Tennis™~ sequences.
respectively.

11.6.3 Prebictive MoTION FIELD SEGMENTATION

As pointed at the beginning of Section 11.5, the block-based model, which assumes constant motion
within each block, leads to unreliable motion estimation and compensation. This block effect
becomes more obvious and severe for motion-discontinuous areas in image frames. This 1s because
there are two or more regions in a block in the areas, each having a different motion. Using one
motion vector to represent and compensate for the whole block results in a significant prediction
eITor 1ncrease.

Orchard (1993) proposed a predictive motion field segmentation technique to improve motion
estimation and compensation along boundaries of moving objects. Significant improvement in the
accuracy of the motion-compensated frame was achieved through relaxing the restrictive block-
based model along moving boundaries. That is, for those blocks involving moving boundaries, the
motion field assumes pixel resolution instead of block resolution.

Two key issues have to be resolved in order to realize the idea. One is the segmentation issue-
It is known that the segmentation information is needed at the receiving end for motion cOmpen-
sation. This gives rise to a large increase in side information. To maintain almost the same amount
of coding cost as the conventional block matching technique, the motion field segmentation was
proposed to be conducted based on previously decoded frames. This scheme is based on the
following observation: the shape of a moving object does not change from frame to frame.
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FIGURE 11.20 The 20th frame of the “Table Tennis™ sequence.

This segmentation is similar to the pel recursive technique (which will be dxs:l:ussed ul ic::ll;ﬂ
in the next chapter) in the sense that both techniques operate chhmrds: bz?se h(m'tpri 11 use)sf
decoded frames. The segmentation is different from the Qel recursive metl.wd N (tj 'at 1t Se ):v o
previously decoded frames to predict the shape of discontu}mty in the motion field; not th !
motion field itself. Motion vectors are still estimated using the current frame at the encoder.
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