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TABLE 5.9 
Source Alphabet and Huffman Codes in Example 5.9 

Source Symbol Occurrence Probability Codew,ord Assigned Length of Codeword 

s, 
S2 
S3 
s~ 
S.s 
s6 

~-'., 
• t. , 

. j S1 ( 0:.3 ) 
• :!J 

I 
~ · s, ( 0..%5) 
: l 
. ., S3 ( 0.20) 

4 
• , SSA ( 0.1°5 ) 

1 

0.3 
0.1 
0.2 
0.05 
0.1 
0.25 

--~-----.-­• l 

' 

s. ( 0.3·) 

MUS) 
• • 

• 

~f 0.20) 

l • 
~ 

1.... " =· . 7 J 

00 
IO I . 

l l 

1001 
1000 
01 

S1 ( 0.3) 

s, (0.25) 

0, SM IJ ( OAS ,-.., 
1 

• 

FIGURE 5.1 Huffman coding procedure in Exampl e 5.9. 
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5.2.2.1 Procedures 

In summary, the Huffman coding algorithm consists of the following steps. 

I. Arrange all source symbols in such a way that their occurrence probabilities are in a 
nonincreasing order. 

2. Combine the two least probable source symbols: 
• Form a new source symbol with a probability equal to the sum of the probabilities 

of the two least probable s·ymbols. 
• Assign a binary O and a binary I to the two least probable symbols. 

3. Repeat until the newly created auxiliary source alphabet contains only one source symbol. 
4. Start from. the source symbol in the last au~iliary source alphabet and trace back to each 

source symbol in the original sou.rce alphabet to ·find the corresponding codewords. 

s.2 .. 2.2 Comments 

First, it is noted that the a.ssignment of the binary O and I to the two least probable source symbols 
in the original source alphabet and each of the first (u - 1) auxiliary source alphabets can be 
implemented in two different ways. Here u denotes the total number of the auxiliary source symbols 
in the procedure. Hence, there is a total of 211 possible Huffman codes .. In Example 5.9, there are 
five auxiliary source alphabets, hence a total ,of 25 = 32 different codes. Note that each is optimum: 
that is, each has the same average length. 

Second, in sorting the so·urce symbols, there may be more than one. symbol having equal 
probabilities. This results in multiple arrange,ments of symbols., hen.ee multiple Huffman codes . 
While ail of these Huffman eodes are optimum, they may have some other different properties. 
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For instance, sorne Huff111an codes result in tl1e minirnun1 codeword length variance (Sayood, 1996). 
Tt1.is property is desired for appl icalions in \.vhicl1 a constant bit rate is requ.ired. 

Third, Huf fman coding ca,, be applied to r-ary encoding with r > 2. Tt1at is, code symbols are 
r-ary \Vitl1 ,. > 2. 

5.2.2.3 Applications 

As ,1 systemati c procedure to cr1code a ti ni le discrete n1en1oryless source, the Hu ffrnan code has 
found wide application in image and video coding. Recall tl1at it has been used i11 di·fferential 
coding and tr,tnsf'o11n coding. In transfonn coding, as introduced i11 Cl1apter 4, the magnitude of 
the quantized tra11sfo1m cocfficjenls and tl1e run-1engtl1 of zeros in the zigzag scan are encoded by 
usi11g the Huff man code. Tl1i l1as been adopted by both still image and video coding standards. 

5.3 MODIFIED HUFFMAN CODES 

5.3.1 MOTIVATION 

As a result of Huffn1an codi11g, a set of all tl1e code\vords, ca11·ed a codebook, is created. It is an 
agreen1ent between Ll1e transn1itter and the receiver. Co11sider tl1e case where tl1e occurrence 
probabiliti es are skewed, i.e., some are large, while sorne are small. Under tl1ese circumslances, 
the improb able SOL1rce sy111bols take a disproportionately large amount of memory space in tl1e 
codebook. The size of the codebook w.ill be very large if the nu1nber of the improbable source 
symbols is large. A. large codebook requires a large memory space and increases tl1e computatjonal 
complexity. A n1odified Huff,nan procedure was tl1erefore devised in order to reduce tl1e n1en1ory 
requirement wl1i le keeping al most tl1e san1e optimality (Hankarner, I 979). 

Example 5.10 
Co11sider a source alphabet consisting of 16 symbols, eacl1 b.eing a 4-bit binary sequence. That is, 
S == {s,, i == 1,2,· ··,16 } . The occurrence probabilities are 

p(.s·,) = p(.r2 ) = 1/ 4, 

p(s
3

) = p(s4 ) = · · · = p(s,6 ) = 1/ 28. 

The source entropy can be calculated as follows: 

/-/(S) =2 · _ _!_loo. ! +14 · 
4 02 4 

1 I 
- loo 

28 '02 28 
= 3 .404 bit.s· pe,· S) 1111.bol 

Applying the Huffman coding algorith111
1 

we find tl1at the codeword lengths assoc,iated \Vith 
the symbols are : /

1 
= /

2 
= 2, [

3 
= 4, and [4 = /5 = ... = !16 = 5, \Vhere L; denotes the length of the ith 

codeword. The average lengtl1 of Huffn1an code is 
' 

16 

L = t' p(s.)l. = 3.464 bits pe1· S) 1nzbol 
avg ,L..J , 1 

i=l 

We see that tl1e average length o:f HufTman code is quite close to tl1e lower e11tropy bound. It is 
noted, 'however, that the required codebook mer11ory, M (defin.ed as the sum ot· tl1e code,vord lengths), 
is qu,ite large: 
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16 

M = L l; = 73 bi ts 
i =l 

This number is obviou,s·Iy larger tl1an the aver.age codeword lengtl1 multipli·ed by tl1e 11un1ber or 
code\vords. This sl1ould not come as a su1-prise since tl1e average l1ere is in tl1e statistical se11se i nste,id 
of i11 the aritl1metic sense. When tl1e total nun1ber of i111probable sy111bols incre()ses, tl1e reqt1ired 
eodebook n1en1ory space \Viii increase dramatically, res.ulling in a great dem,1nd on men1ory space. 

5.3.2 ALGORITHM 

Consider a source alpl1abet S tl1at consists of 2\' bi11ary seque11ces, each of lengtl1 i,. In otl1er \vords. 
each source sy1nb0I is a v-bit codeword in tl1e 11atural bi 11ary code. Tl1e occurrence probabi Ii ties 
are l1ighly skewed and there is a large nu111ber of improbable sy1nbols in. S. The 111odificd HL1ffn1a11 
codin·g algoritl1m is· based on the follo\ving idea: lun1ping all tl1e in1probable source sy,nbols ir1to 
a category nam·ed ELSE (Wea\1er, 1978). The algoritl1m is described below. 

l. Categorize the source alpl1abet S into tvvo disjoint groups, S1 and S2, sucl1 ll1at 

and 

S= I 
s. p(J'.) > 1 

I I ? \' -· 

I s? = · s. p(s.) ~ -
• I I 2 \' 

2. Establisl) a source symbol ELSE with its occurrence probability equal to p(S2). 

(5 . 17) 

(5. 18) 

3. Apply the Huffman coding algorithn1 to th.e source alphabet S3 with S3 = S1 U ELSE. 
4. Convert the codebook of S3 to that of .S as follo\VS. 

• Keep tl1e same codewords for Ll1ose symbols in S1• 

• Use the codeword assigned to ELSE as a prefix for tl1ose symbols in S2 • . 

5.3.3 CODEBOOK MEMORY REQUIREMENT 

Codebook memory M is the sum of the codeword lengths. The .M required by Huffman, coding 
with respect to tbe original source alphab.et S is 

(5.19) 
ieS ieSi 

whe.r:e f; denotes the len.gth of tl1e ith codew0rd, as de·fined previou-sly. In the cas·e of the modified 
Huffman ood.ing algorithm, the memory req-uired M,,,H is 

• 

(5.2.0) 

where tELS·E is the length of the codewoud assig11e·cl to ELSE. The above equation reveals tl1e ~ig 
sayings in memory Fe.quirement when Che probability is s·kewed. The f0llowing exa,mpJe is used Lo 
illustrate the modified Huffman coding algorithm and the resulting dramatic memory savings. 

IPR2021-00827 
Unified EX1008 Page 144



Variable-Lengtn C.oding: Information Theory Results (11) 

ELSE ~ 
2 

l s, -
4 

1 s, -
4 

ELSE ! 
2 

0 I t-------=- S1.2 -
2 I 

0 

I 

FIGURE 5.2 Tl1e modified Huff111an coding procedure in Exa111ple 5.11. 

Example 5.11 

119 

In this exar11ple, we apply tl1e 111odified Huffmar1 coding algorithm to the source alphabet presented 
in Ex,1m.ple 5. 10. We first lu111p the 14 sy111bols having the least occurre11ce pro.babilities toge.tl1er 
to form a new sy,nbo1 ELSE. The probability of ELSE is the s·u1n of tl1·e l 4 probabilities. That is, 
p(ELSE) = * · 14 = ~-. ~- -

Apply Huffma11 cod,ir1g to the new source alphabet S3 -= { s 1, s2, ELSE}, as sl1own in Figure 5 .2. 
Fron1 Figure 5.2, it is seen that the codewords assigned to syn1bols s1, s2, and ELSE, respectively, 
are 10, 11, and 0. He11·ce, for every source syn1bol lun1ped into ELSE, its codeword is O followed 

• 

by tl1e original 4-bit binary sequence. Therefore, M,,,H = 2 + 2 + I = 5 bits, i.e., tl1e required 
codebook 1nemory is only 5 bits. Co1npared with 73 bits required by Huffman coding (refer to 
Exam·ple 5.10 ), there is a savings of 68 bits in codebook memory space. Similar to the coinn1ent 
made in Example 5.10, the n1en1ory savings \\1ill be ·even larger jf' tl1e probability distribution is 
ske\ved inore severely and the number of in1probable symbols is larger. The average length of the 
modified Huffn1an algorithm is L Lf = ~

4
1 

• 2 · 2 + ~ · 5 · J 4 = 3.5 bits pe,· S) 111i,bol. This demonstrates 
._. (II '.~ .Ill r . - o 

tl1at modified H1.,1.ff1nan coding retains almost tl1e san1e cod.ing efficiency as tl1at acl1ieved by 
Huffman coding. 

5.3.4 BOUNDS ON AVERAGE CODEWORD LENGTH 

It has been shown that the average length of the n1odified Huffman codes satisfies the followjng 
condition: 

H(S) ~ Lavg < H(S) + 1- p log2 p (5.21) 
• 

where p = r.s, e s
2 
/J(:S,). It is seen tl1at, con1pared witl1 tl1e 11oiseles .. s source coding theorem, tl1e upper 

bou·nd of· tl1e code averag.e length is increased by a quantity of -p log2 p. In Example 5.11 it is 
seen tl1at tl1e average Iengtl1 of 1J1e 1nodified Huffmar.1 code is close to that acJ1ieved by the Huftinan 
code. Hence the modified Huffrnan code is aln1ost optin1um. 

5.4 ARITHMETIC CODES 

Arithn1etic coding, whicl1 is quite differe11t fron1 Huffn1ao coding, is gainin,g increasing p0pL1larity. 
In this seotion, we" will first analyze the Jimitatior1s of Huffn1ar1 coding. Then Ll1e principle of 
arith1netic coding will be introduced. Fi11ally some irnplementation ·issues are discussed briefly. 
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5.4.1 . LIMITATIONS OF HUFFMAN CODING 

As seen in Section 5.2, Huffman coding is a systematic procedure t·or e11codi11g a source alpl1abet, 
,vith each source syn1bol having an occurrence probability. U11der tl1ese circun1slances, Huffn1an 
coding is opti1nun1 in the ser1se tl1at it produces a n1inin111111 codi11g redunda ncy. ll l1as been shown 
tl1at the a,,erage codeword lengtl1 acl1ieved by Huffman coding satisfies lhe fol low i 11g inequality 
(Gallagher, 1978). 

H(S) ~ La,•g < H(S) + f)m ux + 0.086 (5.22) 

\Vl'1ere H(S) is the entropy of the source alphabet, and Prrlli:r. denotes the max in1u111 occurrence 
probability in the set of the source symbols . Tl1is inequality in1plies tl1at tl1e upper bot1nd or the 
average codeword length of Huffn1an code is deter111ined by the entropy and tl1e n1axin1urn occur­
rence probability of the source symbols being encoded. 

In the case ,vhere the. probability distribution among source symbols is skc\ved (son1e proba­
bilities are small, \vhile some are quite large), tl1e upper bound may be large, in1plyi11g tf1at tt1e 
coding redundancy may not be small. Imagine the follo\ving extreme situation. Tt1ere c1rc only l\VO 

source symbols. One has a very small probability, \Vl1ile tl1e other has a very large probability (very 
close to 1 ). Tl1e entropy of tJ1e source alphabet in this case is close to O since the uncertainty is 
very small. Using Huffman coding, however, \:Ve need tvvo bits: 011e for eacl1. That is, tl1e average 
codeword length is 1, whicl1 means t11at tl1e redunda11cy is very close to 1. Tl1i. agrees \Vitl1 
Equation 5.22. This inefficiency is due to tl1e fact Ll1at Huffn1a11 coding always encodes a source 
symbol with an integer number of bits. 

The noiseless coding tl1eorem (rev.ie\:ved in Section 5.1) indicates tl1at the average code\vord 
length of a block code can approacl1 the source alphabet entropy \Vhen the block size approaches 
infinity. As tl1e block size approaches infi.nity, tl1e storage required, the codebook size, and the 
coding delay will approach infinity, 110\veve.r, and the complexity of Lhe coding will be out of cont rol. 

The fundame.ntal idea behi·nd Huffman coding and Shannon-Fano coding (devised a little earlier 
than Hu·ffrnan coding [Bell et al., 1990]) is block coding. Tl1at is, some codeword havi11g a,1 integral 
number of bits is assigned to a source symbol. A message may be encoded by cascading tl1e relevant 
codewords. It is the block-based approach that is responsible for the limitations of Huffman codes. 

Another limitation is that when encoding a message that consists of a sequence of source 
symbols, the nth extension Huff man coding needs to enumerate all possible sequences of source 
symbols having the same length, as discussed in coding the ,ith extended source alphabet. This is 
no.t computationally efficient. 

Quite different from Huffman coding, arithmetic coding is streani~based. It overcomes tl1e 
drawbacks of Huffman coding. A string of source symbols is encoded as a string of code symbols . 
Hence, .it .is free of the integral-bits-per-source symbol restriction and is more efficient. Arithmetic 
coding n1ay reach the theoretical b.ound to coding efficiency specified in tl1e noiseless source codir1g 
theorem for any inforrnation source. Below, we introduce the principle of arithmetic coding~ t·rom 
which we can see the stream-based nature of arithmetic coding. 

5.4.2 PRINCIPLE OF ARITHMETIC CODING 

To und.erstand the different natures ot· Huffman coding and arithmetic coding, let us look at 
Example 5.12, where we use the same source alphabet and the associated occurrence probabilities 
used i'n ExampJe 5.9. In this example, however, a string of source symbols s1s2s3.s·4s5s6 is encoded. 
Note that we consider the ter1ns stri11,g and streanz to be slightly different. By stream, we mean a 
message, or possibly seve.ral mes.sages, wh.ich may coHespon.ti to qu,ite a 1011g sequence of source 
sym1bols. ~oreover, stream gives a dynamic ''flav,or;'' Later on we will see that arithmetic coding 
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TABLE 5.10 

Source Alphabet and Cumulative Probabilities in Example 5.12 

Source Symbol Occurr ence Probability Associated Subintervals CP 

SI 0.3 [O. 0.3) 0 
S2 0.1 (0 .3. 0.4) 0.3 
SJ 0.2 [0.4. 0.6) 0.4 
S4 0.05 [0.6. 0.65) 0.6 

S5 0. 1 [0.65. 0. 7 5) 0.65 
S6 0.25 [0.75. I .0) 0.75 

• 

is implemented in an incremental n1anner. Hence stream is a suitable term to use for arithmetic 
coding. In this exa111ple, however, only six source symbols are involved. Hence \Ve consider the 
ter.1n .st,·i,zg to be suitab le, ain1ing at distinguishing it from the term block. 

Example 5.12 
The seL of six source sy1nbols and their occurrence probabilities are listed in Table 5. 10. In this 
exan1ple, the st1-ing Lo be encoded usir1g aritl1meric codi.ng is s 1.s·2s~s4.s·5s6. In tl1e following four 
subsec tions we will use this example to illustrate the principle of arithn1etic coding and decodi.ng. 

5.4.2.1 Dividing Interval [O, 1) into Subintervals 

As pointed out by Elias, it is not necessary to sort out source symbols according to their occurrence 
probabiliti es . Therefore· in Figure 5.3(a) the six symbols are arranged in their natural order, from 
symb ols s 1, s2 , ··· ,u p to s6 . The real interval between O and I is divided into six subintervals, each 
havin g a length of p(s;), i = 1,2,·. -,6. Specifically, the interval denoted by [0, 1) \vhere O is 
included in (the left end is closed) arid 1 is excluded from (the right e·nd is open) the interval -
is divid ed into six subintervals. The first subinterval [O, 0.3) corresponds to s 1 and I1as a length of 
P (s 1), i.e., 0 .3. Sin1ilar]y, the subinterval [O, 0.3) is said to be closed 0 11 tl1e le.ft and open on the 
right . The remaining five subintervals are sin1ilarly constructed. All six subintervals thus forn1ed 
are disj oint and their union is equc1l Lo tlie i11terval [0, 1 ). This is because the su1n of all the 
probabiliti es is equal to I. 

_ We list the sum of the preced,i ng probabi I ities, known as c1111111/ati've p1·obability (Langdon, 
1984) , in tl1e right-n1ost column of Table 5. 10 as \veil. Note tl1at tl1e concept of cumula tive prob­
ability (CP) is slightly diffe rent from that of cun1ulative distribution functio11 (CDF) in probability 
theory . Recall that in the case of discrete randon1 variables the CDF is defined as follows . 

• 
I 

CDF(s;) == L,p(si) (5.23) 

J:: I 

The CP is defined as 

i - 1 

CP(s;)= L,p(sj) (5.24) 

j= I 

where CP(s 1) = O is defined . Now we see eac,h subinterval l1as its lo\ver end point located at CP(s;). 
Tbe width of. each subinterval is equal to tl1e probability of the corresponding sou1·ce symb0l .. A 
sqb'interval can be completely defined by its lower end point and its width. Alternatively, it is 
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(a 

[ 0, 0.3) 

(b) 

I' 

0 

(c) 

0.09 

(d) 

• 
0.102 
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0.3 0.4 0.6 0.65 0.75 

l o.3. o:4>, l o;4, o.6) [ 0.75, 1.0) 

[ 0.6, 0.65) ( 0.65, 0.75) 

0.09 S2 0.12 0.18 0.195 0.225 

[ 0.09. 0.12) 

0.®9 0. 102 0. 108 0.1095 0.1125 

[ 0. 102. 0. 108) 

0. 1083 0.1044 0.1056 0.l059 0.1065 

I 

1.0 

0.3 

0. 12 

• 
0. 108 

----------------1([(>.0 . l 056. 0.J 059 

(e) 
• 0.10569 0.10572 

• I I 
0.1056 

(f) 

,Q.105804 0.105807 . 

O.IOS795 

0.10578 0.105795 0.105825 

I ___. 
• G) 0. 1059 

( 0.105795, 0.105825) 

0.105813 0.1058145 0.1058175 

@ 0.1058250 

[ 0.1058175, 0.1058250) 

FIGURE ·S.t3 Aiiithmetic coding working on the same source alphabet as that in Example 5.9. Tl1e encoded 
symbol srring is s·1 S.2 S3 S4 S5 S6• 

deterrnined by its two end l)Oints: the lower and upper end points .(sometimes also called the left 
and right end peints) . 

Now we consider encoding the string of source symbols s1s2s3s4s5s6 
with the arithmetic coding 

method. 

5.4.2.2 ~ncoding 

Encoding tb.e F:irst Source Symbol 
Refer to Figure 5.3(a). Since the first symbol is Si, .we pjck up its subinterval (0, 0.3). Pic~ng up 
the subinterval [0, 0.3) means that any real number in the subinterval, i.e., any real number equal 
to or greater th·an Cl and smaller than Q.3, c'an be a pointer to the subinterval, thus representing the 
source symbol s1• This can be justified by considering that all the six subintervals are disjoint. 

:EocQdiog .the Second Saurce Symbol 
Refer to Figu .re 5.3(b ). We use the same pfoc.edure as used jn_ part {a) ro div,ide the inter.v-al [O, 0.3) 
into six ·suointervals ~ Sin.ce the seeo,nd symbol t.0 be encoded is s2, we pick up its subinterval [0.09, 
C). J~). 
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. Notice that the subintervals are recursively generated fron1 part (a) to part (b). It is known that 
an interval n1ay be con1pletely specified by its lower end point and width. Hence, the subinterval 
recursion in the arithmetic coding procedure is equivalent to the following two recursions: end 
point recur sion and width recursion. 

From interval [O, 0.3) derived in part (a) lo· interval [0.09, 0.12) obtained in part (b), we can 
c.onclude the follo\.ving lower end point recursion: 

L =L +W · CP 
/I t' ll ' c11r r en1 c11r rt! 11t t1t' 1I' (5.25) 

where L11,.:1r, L,.,,,,."n' represent, respectively, tl1e lower end points of the new and current recursions, 
and the ~ 11,.,1:,i, and Lhc CP,,e11 denote, respectively, tl1e \vidth of the interval in the current recursion 
and the cumulative probabiljty in the new recursion. The width recursion is 

W = W · p(s) 
nt'11· curren t i (5 .26) 

\.vhere W,,e11. , and p (si) are, respectively,. tl1e width of the new subjnterval and tJ1e probability oft.he 
source symbols·; that is being encoded. These two recursions, also called double recursion (Langdon, 
1984 ), play a central role in arithmelic coding. 

Encoding the Third Source Syn1bol 
Refer to fjgur e 5.3(c). When the third source symbol is encoded, the subinterval gerierated above 
in part (b) is similarly divided into six subintervals. Since the third symbol to encode js s3 , its 
subinte1-val [0.102, 0.108) is picked up. 

Encoding the Fourth, Fifth, and Sixth Source Symbols 
Refer to Figure 5.3(d,e,f). The subinterval division is carried out according to Equations 5.25 and 
5.26. The symbols s

4
, s5 , and s

6 
are encoded. The final subinterval generated is [0.1058175, 

0.1058250) . 
That is, the resulting subinterval [0.1058 J 75, 0.1058250) can represent the source symbol string 

s,s2s3s4s5s6 . Note that in this example decimal digits instead of binary digits are used. In binary 
arithmetic coding , lhe binary digits O and 1 are used. 

5.4.2.3 Decoding 

As seen in this exan1ple, for the encoder of arithmetic coding, the input is a source syn1bol string 
and the output is a subi.nterval. Let us call tl1is the final subinterval or the resultant subinterval. 
Theoretically, any real numbers in tl1e interval can be the code string for the ir1put syn1l:>ol string 
since all subint ervals are disjoint. Often, ho\vever, the lower end of the final st1binterval is used as 
the code string. Now let us examine 110w tl1e decoding process is carried out with the lower e11d 
of the final subinterval . 

Decoding sort of reverses what encoding t1as done. The decoder k.nows the encoding procedure 
and therefore has tl1e inforrnatior1 contained in. Figure 5.3(a). It con1pares the lo\ver end point of 
the fin.al subinterval 0.1058175 with all the end points in (a). It is determined that O < 0.1058175 < 
0.3. That is, the lower end falls i11to t11e subinterval associated with the· symbol s,. Therefore, tl1e 
symbol s 1 is first decoded .. 

Once the first symbol is decoded, the decoder may know tl1e· partition of subintervals sl10\vn in 
Figure 5.3(b). It is then d·ete·rn1ii1ed that 0.09 < 0.1058175 < 0. 12. That is, the lower e11d is contained 
in the subinterval corre_sponding to tl1e symbol s2 . As a result, s2 is the second decoded sy1nbol. 

The procedure repeats itself until all six symbols are dee.oded. That is, based on Figure 5.3(c) , 
it is found that 0.102 < 0.1058175 < 0.108. The syn1bol s3 is decpded. Then, the S) 1r11.bols s4 , s5, s6. 

are subsequently decoded because the following inequalities are determi11ed: 
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0.1056 < 0.1058175 < 0.1059 

0.105795 < 0. 1058175 < 0.1058250 

0.1058145 < 0.1058175 < 0.1058250 

Note that a term.inal syn1bol is necessary to infonn the decoder to stop decoding. 
The above procedure gives us an idea of how decoding works. The decoding process, however, 

does not need to construct parts (b), (c), (d), (e), and (t) of Figure 5.3. Instead, the decoder only 
nee·ds the infot u1ation conta.ined in Figure 5.3(a). Decoding can be split into the following three 
step.s.: co11ipariso,i, ,·eadjustnzetit (subtraction), and scali1zg (Langdon, 1984). 

As described above, through comparison we decode the first syn1bol s 1• From the \vay 
Figure 5.3(b) is constructed, \Ve know the decoding of s2 can. be accon1plished as follows. We 
subtract the lower end of the subinterval associated with s I in part (a), tl1at is, 0 i.n this example , 
from the lower end of the final subinterval 0.1058175, resulting in 0.10 58 175. Tl1en \Ve divide c'his 
number by the width of the subinterval associated \Vith s 1, i .e., the probability of s 1, 0.3 , resulting 
in 0.352725. Looking at part (a) of Figure 5.3, it is found that 0 .3 < 0.352725 < 0.4. Tl1at is , the 
nu.mber is within the subinterval corresponding to s2• Therefore the second decoded symbo l is s1 . 

Note that these three decoding steps exactly ''undo'' what encoding did . 
T0 decode the third syn1bol, we subtract the lo\ver end of the subinterval with .s·2 , 0.3 fron1 

0.352725, obtaining 0.052725. This number is divided b.y the probability of s2 , 0 .1, resulting in 
0.52725. The comparison of 0.527 25 with end points in part (a) reveals that the third decode d 
symbol is s3 • 

In decodjng t'he fourth sympol, \Ve first subtract the lo\ver e11d of the s3's subinterval in part (a), 
• 

0.4 from 0·.52725, getting Q.12725 . Dividing 0.12725 by the probability of s3 , 0.2, . results in 0. 63625. 
Referring to part (a), we decode the fourth symbol as s4 by comparison. 

Subtraction of the lower end of the subinterval of s4 in part (a), 0 .6 , from 0 .63625 leads to 
0.0 .3625. Division of 0.03625 by the probability of s4 , 0 .05 , produces 0.725 . The comparison 
oet\veen Q.725 and the end points in part (·a) de.codes the fifth symbol as s5 . 

Subtracting 0.725 by the lower end of the subinterval associated with s5 in part (a) , 0 .65, gives 
0.075. Dividing . 0.075 by the probability of s5, 0. 1, generates 0.75 . The comparison indicates that 
the sixth decoded symbol is sc,· 

In summary , c0nsidering the way in which parts (b), (c), (d), (e), and (f) of Figure 5.3 are 
constructed, we see that the three steps discussed in the decoding process: comparison., readjustment, 
a:nd scaling, exactly ''undo'' what the encoding procedure has done. 

5.4.2.4 Observations 

Both encoding a.nd decoding involve only arithmetic operations (addition and multiplic ation in 
encoding, suotraction and division in decoding) . This explains the name aritl111zet.it codi,ig. 

We see that an input source symbol string s1s2s3s4s5s6 , via encoding, corres.ponds to a subint erval 
[0.1058175, 0.1058250). Any number in this interval can be used to denote tl1e string 0f the source 
sy·mbols. 

We also observe that arithmetic cooing can be carried out in an inc1·eme11tal 1n.anner. That is, 
sou~€e symbols are fed into the encoder one by one and the fi.nal subinterval is refined continually, 
i.e., the code string is. generated c.ontinually. Furthet 1.nore, it is done in a manner called first ·iii first 
out ·(FlFO). That is, the source symbol encoded first is decoded first. This manner is superior to 
that of last in first ()ltt (LIFO}. This is because FIFO is suitable for adaptation to the statistics o.f 
the S)"mbol string . 

It is obvlaus that the width of the fin·al subinterval becomes smaller and smaller whe.n the le11gth 
of tile sou tce ~ymbol string beco·mes Ja·rger and larg~er. This ca.uses wl1at is known as th.e precision 
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proble111. IL is this problem Ll1at prohibited arithmetic coding fro1n practical usage for quite a long 
period of time. Only after this problem w·as solved in the late 1970s, did arithmetic coding be·come 
an increasingly important coding tecl1nique. 

It is necessa ry to have a ter,nination symbol at the end of an input source symbol string. In 
Ll1is way, an arithn1etic codi11g system is able to know \Vhen to tem1inate decoding . 

Compared witL1 Huffman coding, aritl1metic coding is quite d.ifferent. Basically, Huffman c9ding 
converts e,1ch source symbol into a fixe .d codeword witl1 a11 integral number of bits, while arithmetic 
codi11g converts a source syn1bol stri11g to a code symbol string. To encode the sarne so.urce symbol 
string, Huffman codi ng can be irnp]emented in two different ways. One way is shown in Exan1ple 5.9. 
We construct a fixed codeword for eac h source symbol. Since Huffman coding is instantaneous , 
\Ve ca n cascade the co rrespond ing codewords to form the out put , a l 7-bit code string 
00.101.11. ·100 1. 1000.0 I, where , for easy reading, tl1e five periods are used to indicate dit:ferent 
codeword.s. As vve see that for the san1e source syn1bol string, the final subinterval obtained by 
using aritl1metic codi 11g is [0.1058 175, 0.1058250). It is noted tl1at a decimal in binary number 
system , 0.000110 I l 11111 I 1, which is of 15 bits, is equal to the deci111al jn decimal nun1ber system, 
0.10582 11962, which falls into the final subinterval representin.g the string s1s2s3s4 s5.5'6 • This indi­
cates that, fo.r tl1is examp le, arithn1etic coding is more efficient than Huffamn coding. 

Another way is to forn1 a sixtJ1 extension of the source alpl1abet as discussed in Section 5.1 .4: 
treat ea.ch group of six source syn1bols as a 11ew s·ource symbol; calculate its occurrence pro.bability 
by mult iplying the related six probabilit ies; then apply tl1e Huffman coding algorithn1 to the sixth 
exte11sion of tl1e discrete 1ne n1oryless source. Tl1is is called (l1e sixtl1 exte11sion of Huff111a11 block 
code (ret·er to Section 5.1.2.2). In other words, in order to encode the source string s1s2s3s4s5s6, 

Huffm an coding encodes ,111 of tl1e 66 = 46,656 codewords in tl1e sixth exte11sion ot· the source 
alphabet. Tl1is irnplies a high complexity in implernentation and a large codebook. It is Lherefore 
not efficient. 

Note that we use the decimal fraction in this section. In binary ·arithn1etic coding., \Ve use the 
bin_ary fraction. In (Langdon, 1984) both binary source and code alp11abets are used in binary 
arithmetic coding. 

Similar to the case of Huffman coding, arithmetic coding is also applicable to r-ary encqd ing 
witI1 ,. > 2. 

5.4.3 IMPLEMENTATION ISSUES 

As me11tioned, the final subi11terval resulti11g fron1 arithmetic encoding of a source symb0l String 
becomes smalJer and smaller as the le11gtl1 of tl1e source symbol String increases. That is, the lower 
and upper bou11ds of the final subinterval be·con1e closer and closer. Tl1is causes a growing precision 
problem. It is tl1_is problen1 that prol1ibited aritl11netic c·od.i11g fron1 practical usage for a long period 
of time. This problem has been resolved and the finite precision arill1n1etic is no\v used in aritl1metic 
coding. This advance is due to tl1e incremental irnplementation of arithn1etic coding. 

5.4.3.1 Incremental Implementation 

Recall Exan1ple 5.12. As source syrnbols co1ne in one by orre, the lo\ver and upper ends· of the 
final subinterval get closer and closer. In Figure 5.3, these lower and upper ends in Exan1ple 5. l2 
are listed. We observe ·that after the third symbol, s3, is ·encoded, tl1e resultant subint erval is [0.102, 
0.108). That is, th-e two most significant decimal digits are tl1e sa111e and tl1ey remain the same in 
the encoaing proces s. Hence , we can transmit these two digits without aft·ecti'ng the final code 
string. At·ter the fourth symbol s

4 
is encoded,. the resultant subinterval is [0.J 056, 0.1059). That i.s, 

one more. di.git, 5, can be transmitted. Or we say the cun1ulative output is now .105. After the sixth 
sy·mbol is encoded, the final subi11terval is [0.1058175, 0.1058250). TlJe cuniulative output .is 0.1058. 
Refer to Table 5.11. This important observation reveals that we are able to increm.entally transn1it 
output (the code sy1nbols) and receive i11p·ut (the source syn1bols tl1at need to be e11coded). 

• 

• 
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TABLE 5.11 
Final Subintervals and Cumulative Output in Example 5.12 

Final Subinterval 

Source Symbol Lo,ver End Upper End Cun1ulative Outp ,ut 

s . I 0 0.3 

S~ 0.09 0 .12 --
S3 0. 102 0. 108 0. 10 

S-1 0.1056 0. 1059 0. 105 

Ss 0.105795 0. 105825 0. 105 

s6 0. 1058 175 0.1058250 0. 1058 

5.4.3.2 Finite Precision 

With the incremental n1an11er of trans111issio11 of encoded digits and receptio11 of i111Jut source 
·Sytnbols, it is possible to use finite precision to represent tl1e lower and upper bour1ds of tl1e resultant 
subinterval, which gets closer and closer ·as the length of the source symbol string beco,111cs long. 

Instead of floating-point n1arl1, integer inath is us·ed. The potential problen1s kno\vn as u11derfl0\\1 

and overflow, ho\vever, need to be carefully monitored and controlled (Bell et al.1 199()). 

5.4.3.3 Other Issues 

There are son1e other problems that need to be handled in in1plen1entation of binary arithn1etic 
coding. T\vo of them are listed belo\v (Langdon and Rissanen, 198 1 ). 

Eliminating Multiplication 
The m,ultiplication in the recursive division of subintervals is expensive in l1ardware as \ve11 as 
software. It can be avoided in binary arithmetic coding so as to s implify the implementation of 
binary aritl1metic coding. The ide.a is to approximate tl1e lower end of tl1e interval by tl1e closest 

• 

binary fraction 2-<?, \vhere Q is an integer. Consequently, tl1e multip.Iication by 2-Q becomes a right 
shift by Q bits. A sirnpler approximation to elirninate multiplication is used in the Skew Coder 
(Langdon an_d Ri$sanen, 1982) and the Q-Coder (Pennebaker et al., 1988). 

Carry-Over Problem 
Carry-over takes place in th,e addition required i'n the recursion updating the lo\ver er1d of the 
resultant subinte,rvals. A carry may p1·opc1gate over q bits. If Ll1e q is larger than the number of bits 
in the fixed-length register utilized in finite precision arithmetic, the carry-over problem occurs. To 
block the carry-over problem, a technique known as ''bit stuffing'' is used, in which an additional 
buff er register is utilized. 

For a detailed discussion on the various issue.s involved, readers are referred to (Langdon et al., 
1981, 1982, 1'984; Penne"baker et al., 1988, 1992). Some computer programs of arithmetic coding 
in C language can be found in (Bell el al., 1990; Nelson and Gailley, J 996). 

5.4.4 HISTORY 

The idea of encoding by using cu.rntilative probability in some ordering, ._and' decoding by con1par­
ison of magn·itude of bin·ary fraction, was intFoduced in Shannon's celebrated paper (Shannon, 
l 948). The recursive implementation of arithmetic coding \Vas devised by Elias. Tl:1js unpubJished 
resuJt was first introduced oy Abramson ~~ a note in his book on i11formation tl1eory and coding 
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(Ab.ramso11, 1963). Tl1e result \vas further developed by Jelinek in his book on information theory 
(JeJ111ek, 1968). Tl1e growing precisio11 proble,n prevented arithn1etic coding· fron1 attaining practical 
usage, l1owever. The proposal of usi11g finite precision arithmetic was made independently by Pasco 
(Pasco, 1976) and Rissaner1 (Rissanen, 1976). Practical arithn1etic coding wa.s developed by several 
indepe11de11t groups (Rissane11 a11d Langdon, 1979; Rubin, 1979; Guazzo, 1980). A well'-known 
tutorial paper on aritl1n1etic codi11g appeared in (Langdon, l 984 ). Tt1e tremendous efforts made in 
IBM led to a 11ew fo,m of adaptive bi11ary arithn1etic coding known as the Q-coder (Pennebaker 
et al., 1988). Based 011 tl1e Q-coder, tl1e activities of the international still i1nage coding standards 
JPEG ar1d JBIG combi11ed tl1e best features of the various existing aritl1metic coders a11d developed 
tl1e binary arithmetic coding procedure known as the QM-coder (Pennebaker and Mitchell, 1992). 

5.4.5 APPLI CATIONS 

Arith111etic cod ing is beco.rni ng popular. Note tl1at in text and bile\iel i,nage applications tl1ere are 
011ly l wo SOL1rce S)' 111bols (black and \vhitc), and the occurre11ce probability is skewed. Therefore 
bi11ary aritl1rnclic coc!ir1g acl1ievcs high c·oding eff1cie11cy. It l1as bee,1 successfully applied to bi level 
in1age codir1g (Langdon and Ris ·a,1en, 198 1) and adopted by the international standards for bi level 
• 

1n1age compression, JBIG . It l1as also been adopted by tJ1e internatior1al still jrnage coding standard, 
JPEG. More ir1 tl1is regard i covered i,1 tl1c 11ext cl1apter \vl1en \Ve introduce JBlG . 

5.5 SUMMARY 

So far in this cl1apter, not 111ucl1 l1as been explicitly discussed regarding t'he term variable-lengt11 
codes .. It is known tl1at if source symbols in a sot1rce alpl1abet are equally probable, i.e., tl1eir 
occurrence probabi] i ties are tl1e san1e, tl1en fixed-length codes sucl1 as the 11aturaJ binary code are 
a reasonable cl1oice. Wl1e11 the occurrence probabilities, l1owever, are u11equal, variable-le11gtl1 codes 
should be usecl i,1 order to acl1ieve higl1 coding efficiency. This is one of tl1e restrictions on Ll1e 
n1inimun1 redundancy codes i111posed by Huff111a11. That is, the lengtl1 of Ll1e codeword assigned lo 
a probable source symbol should not be larger than that ass,ociated \Vitl1 a less probable source 
symbol. If tl1e occun·ence probabilities happer1 to be tl1e integral po\vers of 1/2, then choosing tl1e 
codeword length equal to -l og2.p(s;) for a source syn1bol s·; l1aving the occurrence probability JJ(s1) 
results in mi11imun1 redundancy coding. In fact, tl1e average length of the code thus generated is 
equal to the source entropy. 

Huffman devised a systematic procedure to er1code a source alphabet consistir1g of finitely 
many source syn1bols, eacl1 l1avi11g an occurrence probability. It is based on some restrictions 
imposed on tl1e optimum , i11sta11t,111eous codes. By assig11ing codevvords \Vitti varic1ble lengtt1s 
according to variable probabilities of source syn1bols , Huff111a11 coding results i1) 111ir1imun1 redu.11-
dancy codes, or opti1nu1n codes for sl1ort. Tl1ese l1ave foun.d wide applications in image and video 
coding and l1ave been adopted in tl1e inter11ational still i111age coding star1dard JPEG and video 
coding standards H.261, H.263 , and MPEG l a11d 2. 

When so1ne source syrnbols J1ave s111al I probabi I ities and their 11ur11ber is large, the size of tl1e 
codebook of Huffn1an codes \viii require a large me111ory space. Tl~e n16dified Huffm·an coding 
technique en1ploys a special syn1bol to lump all the syn1bols \.Vith small probabilities togetl1er. As 
a result, it can reduce the codebook 1nemory space drastically while retai11ing al111ost tl1e same 
coding efficiency as tl1at acl1ieved by tl1e conventional HL1ffn1an codi11g tecl1nique. 

On tl1e one l1and, Huffman coding. is opti111un1 as a block code for a fixed-source alphabet. On 
the 0ther ha11d, compared with the source entropy (the low.er bound o·f tl1e average codeword le11gth) 
it is not efficie11t when tt1e probabilities of a source alpl1abet are ske\ved \Vith tl1e maximtJm 
pFobabiJity being large. Tl1is is caused by tl1e restriction tJ1at H.uffn1an coding can only assigr1 an 
integral 11'u·n1ber ot· bits to eacl1 codevvord. 
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Another li1nitation .of Huffman coding is that ,it has to en·uinerate and e11code a]l tl1e possible 
groups of ti source symbols in the ,ith extension Huffn1an code , even thougl1 tl1ere may be only 
one su·c11 group tl1at needs to be encoded . 

Aritl1metic coding can overcome the limitation s of Huffman coding because it is stream-oriented 
ratl1er than block-orie ·nted . It translates a stream O'f source sy111bols into a stre,1m of code sy1nbols. 
It can \vork in an incremental n1anner. Tl1at is, tl1e source symbol s are fed into Lhe cod ing system 
one by one and tl1e code syn1bols are output continu ally. In this strean1-orjented \.vay, ari Lh1netic 
codin·g is more efficient. It can approach tl1e lower co.ding bounds set by the noiseless source coding 
theorem for various sources. 

' ~ 

The recursive subinterval division ( equivalently, tt1e dou,ble recursion: t~1e lovler end recursion 
and width recursio11) is the heart o,f arithmetic coding. Several n1easures l1ave been taken in the 
implementation of arithmeti c coding. Tl1ey include the incremental manner, finite prec isior1, and 
the elimination of multiplication. Due to its merit s, binary arithmetic cod ing has bee n adop ted by 
the international bilevel image codin.g standard , JB1G, and still image coding sta11d,Jrd, JPEG . It is 
becoming an increasingly important coding technique. 

5.6 EXERCISES 

5-1. What does the noiseless source codin g theorem state (using your O\vn vvords)? U11der 
what condition does the average code length approacl1 the source entropy? Con1111ent 011 
the method suggested by the noisele ss source coding theorem. 

S-2. What characterizes a block code? Consider another definition of block code in (Blahut, 
1986): a block code breaks the input data strean1 into blocks of fixed length n and encodes 
each block it1to a codeword of fixed length m. Are these t\V O definitions (the one above 
and the one in Section 5. 1, \vhich comes from [Abra111son, 1963)) essentially tl1e sa1ne? 
Explain. 

5-3. Is ~ uniquely decodable code necessarily a prefix condition code? 
5-4. For text encoding, there are only two source symbols for black and white . It is said that 

Huffman coding is not efficient in this application. But it i's known as the optimum cod e. 
ls the.re a contradiction? Explain. 

5-5. A set of source symbols and their occurrence probabilitie s is listed in Table 5.12 . Apply 
the Huffman coding algorithm to encode the alphabet. 

5-6. Find the Huffman code for the source alphabet shown jn Exan1ple 5. 10. 
5-1. c ·onsider a source alphabet S = {s;, i = 1,2, .. ·,32} with p(s 1) = l/4, p (s;) = 3/124, i = 

2,3,·· ·,32 .. Dete11nine the source entropy and the average length of Huffman code if 
applied to the source alphabet. Then apply the mod·ified Huffman coding algorithm. 
Calculate the average length of the modified Huffi:nan code. Compare the cod.ebook 
memory required by Huffman code and the ·modified Huffman c·ode. 

5-8. A source alphabet con·sists of the following four source symbols: s 1, s2, s3 , and s4 , with 
their occurren ·ce pr0babilitie ·s equal to 0.25, 0.375, 0.125, and 0.25, respectively. Applying 
arithmetic coding , as shown in Example 5.12 to the source symbol string s2s1s3s4 , deter­
mine the lower end of the final subinterval. 

5-9. F0r the above ·problem, sl)ow step by $lep how we can decode the original source string 
from the lower eng of the final subinterval. 

5-10. In Problem 5.8, fi,nd the co_deword of the s·ymbol strin.g s2s 1s3s4 by using the fourth 
extension of the Huffman code. Cempare th'e two methods. 

S-11. Dise.uss bow modern arithmetic coding overcam~ t.he growing precision proble1n. 
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TABLE 5.12 

Source Alphabet in Problem 5.5 

Source Symbol Occurrence Probability Codeword Assigned 

s, 0.20 

S2 0. 1·8 

Si 
• 

0. LO 
s 4 0.10 

S5 0.10 

So 0.06 

S1 0.06 
s.x 0.04 
Sy 0.04 

S 10 0.04 

$ 11 0.04 

S 12 0.04 
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As n1entioned at tl1e beginning of Cl1apter 5, we are studying some codeword assig·n1nent (encoding) 
tech11iques in Ch~pters 5 and 6. In tl1is cl1apter, we focus on run-length and dictionary-based coding 
techniques. We first introduce Mc.trkov n1odels as a type of dependent source n1odel in contrast to 
the n1ernoryless source model dis.cussed in Chapter 5. Based on the Markov model, run-length codi11g 
is suitable ·for facsimile encoding. Its princip.le and application to facsimile e11coding are discussed, 
followed by an introductio11 to dictionary-based coding, which is quite different fro111 Huffman and 
arithmetic coding tecl1nic1ues covered in Chapter 5. Two types of adaptive dictionary coding tecl1-
niques, the LZ77 and LZ78 algoritl1n1s, are prese11ted. Finally, a brief su1nmary of and a performance 
comparison between international standard alg.orithms for lossless still image coding are presented. 

S.ince lhe Markov source n1odel, run-length, and dictio11ary .. based coding are the core of this 
chapter, we consider this chapter as a third part of the infor1r1ation theory results presented in the 
book. It is noted, however, that the emphasis is placed on tl1eir applications to in1age and video 
compression. 

6.1 MARKOV SOURCE MODEL 

In tl1e previous chapter we discussed the discrete memoryless source model, in which source 
symbols are assumed to be independent of each. ocher. In other words., the source has zero memory, 
i.e., the previous status does not affect the present o.ne at all. In reality, however, many sources are 
dependent in nature. Nan1ely, the source has n1emory in the sense tl1at the previous status has an 
influence on the present status. F·or instance, as n1e11tioned in Chapter 1, there is an interpix.el 
correlation in digital images. That is, pixels in a digital image are not independent of each other. 
As will 'be seen in this chapter, there is some dependence betw.een characters in text. For instance , 
the letter i, often follows the letter q in English. Tl1er.efore it is necessary to introduce models that 
can reflect this type of dependence . . A Markov so~rce n1odel is often used in thi·s regard. 

6·.1.1 DISCRETE MARKOV SOURCE 

~ere, as in the previous chapter, we denote a source alphabet by S = { s 1, s2 , • • • , u,,,} and the 
occurrence probability by p. An tel1 order Markov source is characterized by the following equation 
of c0nditional probabilities . 

(6.1) 

w.he.rej, il, i2, ... , ii, ... E { 1,2,···,11i·}, i.e., the symbols si, s;1, s;2, ··· , s;,, ··· ate chosen from tl1e 
source alphabet .s. This equation states that the source symbols are not independe .nt of each other. 
The occurrence probability of a source symbol is determined by some of its. previous syn1bols. 
Specifically,_ the probability of si given its history bein·g s;1, s,'1, · ·.· , s,,, · · · (also called the trans'iti~n 
pro,bability), is detern1ined completely by the immediately prevrous l symbols S;1, • • • , s,,. That 1s, 

, 
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P (S2'S,) 

(a) 

s, 

' 

P (Si/S1 ) 

P (S/S 1 ) 

P (S2'S2) 

P'(S/S2) 

{b) 

FIGURE 6.1 State dJagrams of the first-order Markov sources with their source alphabets .having (a) two 

symbols and (b) th(ee symbols. 

' 

the knowledge of the e.ntire sequence of previous symbols is equivalent to that of the l symbols 
imm.ediately preceding the current sy,mbol sj. 

,An 1th order Markov source can be described by what is called a state diagranz. A state is a 
sequence of (s;1, s,-i, ···, s;1) with il, i2, ···, il e { 1,2,··A,,rz}. That is, any group of l symbols from 
the ni sy,mhols in the source alphabet S foi;ms a state. W:he.n l = 1, it is called a first-order Markov 
source. The state d·iagrams of the first-order ,Markov so.urces, with their source alphabets having 
two and three symbols, are shown in Figure 6. l(a) and (b), respectively. Obviously, an lth order 
Markov source with ni symbols in the so·uree alphabet has a total of ni 1 different states. Therefore, 
we conclude that a state d'iagram consists of all the m1 states. In the diagram, all the transition 
probabilities t0g~ther with appropriate arrows are used to indicate the state transitions. 

Tihe source entropy at a state (s;1, s,-i, · · ·, su) i's defined as 

m 

H( ~s;1, s;2 , • • • ,s;,) = ~i: p( sils11 ,si2 ,. ··,Su) log2 p( siJs;1, s,2 , • ·, s11) 

i= .1 

(6.2) 

Tlie sourc~ entropy is defined as the statistical av.erage of the ·entropy at all th.e states .. That is, 

H(S) = . L p(s;1 ,s,2,- • • ,s,, )H(~s;1,s;2, ··,Su), 
( s,1 .s;2 ••• ·..r,r )ES! 

• 

(6.3) 
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where, as defined in the previous chapter, S' denotes the lth extension of the source alphabet S. 
That is, the summation is carrjed oul with respect to all /-tuples taking over the S'. Extensions of 
a Markov source are define·d below. 

6.1.2 EXTENSIONS OF A DISCRETE MARKOV SOURCE 

An extension .of a Markov source ca,n be defined in a similar way to that of an extension of a 
memoryless source in the previous c.hapter. The definition of extensions of a Markov source and 
the relatjon between the entropy of the original Markov source and the entropy of the 1ith extension 
of the Markov source are presented below without derivation. For the derivation, readers are referred 
to (Abramson , 1963). 

• 

6.1 .. 2.1. Definition 

Consider an lth order Markov source S = {s1, s2 , · • ·, s,,,} and a set of conditional probabilities p(s1 
Is,,, s,'2, ···, sif), \vherej ,i l , i2, · ··, ii E { 1,2,· ··,,n}. Similar to the memoryless source discussed in 
Chapter 5, if ri symbols are grouped into a block, then there is a total of 11i" blocks. Each block 
can be viewed as a ne\v source syn1bol. Hence, these mn blocks for111 a new infor1r1ation source 
alphabet, called the 11.th extension of the source S and denoted by S11

• The ,zth extension of the lth­
order Markov source is a kth-order Markov source, where k is the smallest integer greater tl1an or 
equal to the ratio between L and ,z. That is, 

k = !_ ' (6.4) 
l l 

where the notation lal represents the operation of taking the smallest integer greater tha·n or equal 
to the quantity a. 

6.1 .2.2 Entropy 

Denote, respectively, the entropy of tl1e lth order Markov source S by H(S), and the entropy of the 
nth extension of the lth order Markov source, S", by H(Sn). The following relation between the two 
entropies can be shown: 

H( S") = ,iH( S) (6.S) 

6.1.3 AUTOREGRESSIVE (AR) MODEL 

The Markov source discussed above represents a kind of dependence between source symbols in 
terms of the transition probability. Concretely, i.n determining the transitjon probability of a present 
source symbol given all the previous symbols, only the set of finitely many immediately preceding 
symbols matters. The autoregressive model is another kjnd of dependent source model that has 
been used often in image coding. It is defined below . 

• 

I 

si = Laksik + xj' 
k=I 

(6.6) 

where s. re.presents the currently observed source syn1bol, while s;k with k = 1,2, · ·,/ denote the I 
precedi~g observed symbols, at's are coe.fficients, and x1 jg the current input to the model ~ If I = l, 

• 
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the n1ode] defined in Equation 6.6 is referred to as Lhe first-order AR 1nodel. Clear ly, in this case, 
lhe current source syn1bol is a linear 1'unction of its preceding syn1bol. 

6.2 RUN-LENGTH CODING (RLC) 

The te11n ,·i,,, is used to indicate the repetit ion of a symbol , \.vl1ile tl1e tenn r1,11-ler1gtl1 is used to 
represent the number of repeated sy1nbols, in otl1er words, the nun1ber of consecutive sy111bol of 
the same value. lnstead of encoding the consecutive symbols, it is obv ious tl1ctt encodi11g the run­
]ength and tl1e value that th·ese consecuti\1e symbol s co1nrhonly share may be more e ff1cicnt. Acto rd­
ing to an excellent early review on binary image con1pression by Arps ( 1979), RL.C ha bee11 i11 use 
since the earliest days of in·forn1ation tl1eory (Sl1annon and We,1ver, 1949; Laen1mel, 1951 ). 

From the discu ssion of the JPEG in Cl1apter 4 (with more details in Chapter 7), it is see n tl1at 
most of tl1e OCT coefficient s ,vithin a block of 8 x 8 are zero ,1fter certain 111an.ipulatio11 . The DCT 
coefficients are zigzag scanned. Tl1c nonzer o OCT coefficients and their add re ~ cs in tl1e 8 x 8 
block need to be encoded and transmitted to the receiver side. There, the nonzero DCT value are 
referred to as labels. The position inforn1ation about tl1e nonzero OCT coefficie nts is repre ented 
by the run-le11gth of zeros between tl1e nonzero OCT coe fficients in the zigzag scar1. Tl1c label 
and the run-length of zeros are then Huffn1a11 coded. 

Many docu1nents such as letters, forn1s1 a11d drawing s can be trans111 i tted using facs imile 
machines over the general svvitched telephone network (GSTN). In digital f,1csi111ile techr1iques, 
these docun1enls are quantized into bi nary levels: black ,ind vvt1i te. Tl1e reso lution of I l1esc bi nary 
tone images is usually very high. In each sca11 line, tl1ere are many consecuti,1e ,vhitc and black 
pixels, i.e., many alternate white runs. and black runs.Th erefore it is not surprising to see that RLC 
l1as pro,ven to be efficient in binary docun1ent transmiss ion. RLC has been adopted in tl1e ir1terna­
tional stan.dards for facsimile coding: the CCITI Recomn1endations T.4 a11d T.6. 

RLC using only the horizontal correlation between pixels on the same scar, li11e is referred· to 
as 1-D RLC. It is noted that the first-order Mark o,, source model wiLh two symbols in the source 
alphabet depicted in Figure 6.1 (a) can be used to characterize 1-0 RLC . To achieve l1igher cocling 
efficiency, 2-D RLC utilize s botl1 horizo ntal and vertical correlation bet'vvce11 pixels. Both tl1e l~.D 
and 2-D RLC algorithms are introduced below. 

6.2.1 1-D RUN-LENGTH CODING 

In this technique , each scan line is encoded independently. Each scan line can be considered as a 
sequence of alternating, independe11t wl1ite runs and black runs. As an agreen1ent between encode r 
and decoder, the first run in each scan line is assumed to be a white run. If the first actual pixe l is 
b]aek, then the run-length of the first wt1ite run is sel to be zero. At the end of eacl1 scan li11e, tl1ere 

· is a special codeword called end-of-line (EOL). Tt1e decoder knows tl1e end of a scan line whe11 it 
encounte .rs an EOL codeword. 

Denqte r·un-lengrh. by ,·, which is integer-valued . All of the possible run-lengtl1s cons truct a 
source alphabet R, \vhich is a random variable . Thal is, 

, 

R={r:,·eO,l,2 ,···} (6 .7) 

Measurements on t_y·pical binary documents . l1ave shown that the maximum compression rati o, 
Smax, which is defined below, is about 25o/o higher wh.en the white and black runs are encoded 
separately (Hunter a.nd ·Robinson, 1980). The average white run-length, r\v, can be expressed as 

n1 

~v =Lr· Piv(,·) (6.8) 
r=O 
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\Vl1er~ n1. is tl1~ 1naxin1um val Lie of the run-le11gth, and, P1v(1·) denotes tl1e occurrence probability of 
a wt11te run with ler1gth ,·. Tl1e entropy of Lt1e white runs, H~v, is 

Ill 

H~v = -L, ~v(,·) log2 ~y(t·) (6.9) 
r::O 

For the bJa,ck run , the average run-length r8 and the entropy H8 can be defined si1nilarly. The 
maxin1um theore tica l con1pression fncLor r is ':> n1:ix 

(6 .10) 

Huffman coding i.' tl1en applied to t\"'0 source alphabets. According to CCITT Recon1mendation 
T.4, A4 size (2 10 x 297 mm) docu1nenls sl1ould be accepted by facsin1ile machines. In each scan 
line, tl1ere are 1728 pixels . Tl1is means that the maxi1num run-length for both wl1ite and black runs 
is 1728, i.e., ,,i = 1728. Two source alpl1abets of suct1 a large size imply the requireme11t of two 
large code books, l1ence the requiren1ent of large storage space. Therefore, son1e modification was 
made, resulting ir1 the ''111odified'' Huf'f1n,1n (MH) code. 

In tl1e modified Huffc11a11 code, if the run-length is larger than 63, then the run-lengtJ1 is 
represe nted as 

,. = M x 64 + T CIS /' > 63, (6 .1 l) 

\Vhere M takes integer values fron1 1, 2 to 27, and M x 64 is referred to as tl1e n1akeup run-length; 
T takes integer values from 0, I to 63, and is called tl1e terminating run-lengtl1. That is, if,.~ 63, 
the rLJn-length is reprc. ented by a ter111inating code\vord only. Other\vise, if,.> 63, tl1e run-length 
is represen ted by a 111akeup codeword and a tenn inating code\.vord. A portion of tl1e modified 
Huffm an code tab le (Hur1ter and Robinson, 1980) is sl1own in Table 6.1. In this way, the rec1uireme nt 
of large storage space is alleviated. Tl1c idea is similar to tl1at behind modified Huftinan codi,ng, 
discussed in Cl1apter 5. 

6.2.2 2-D RUN-LENGTH CODING 

TlJe J-D run-length coding discussed above only utilizes correlatio11 belween pixels within a scan 
line. 1n order to utilize corre lation between pixels in neigl1boring scan Jines to achieve higher coding 
efficiency, 2-D run-l e11gtl1 coding was developed. In Recom.n1endatio11 T.4, the 1nodified rel,1tive 
element address designate (READ) code, also k-11own as the rnodified READ code or simply tl1e 
MR code, was adopted. 

The modified READ code o·perates in a line-by-li11e mariner. In Figure 6_.2, two lines are sho\.vn. 
The top line is ca'lled the reference li11e, whicl1 has beer1 coded, wl1ile tl1e bottorn line is referred 
to as the coding line, which is being coded. There are a group of five cl1anging pixels, a0 , c,1, a2 , 

b,, b1 , in the two lines. Tl1eir relative positions decide wl1icl1 of tl1e three codir1g n10,des is used. 
The starting cl1anging pixel c,

0 
(hence, five changing poi11ts) moves t·ro1n left to rigl1t and fro1n top 

to bottom as 2-D run-le11gtl1 coding proceeds. Tl1e five changing pixels and the three coding modes 
are defined below. 

6.2.2.1 Five Changing Pixels 

By a cl1anging pixel, we mean tl1e first pixel encoµn_tered i11 'vvhite or black runs \vl1en \VC scan an 
image line-by-line, fro111 left to right, a11d fron1 top to bolton1. T.he five changing pixeLs are defi:necl 
below. 
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ref. line 

code line 

ref. line 

code Jlne 

ref.Jine 

codeliile 

Image and Video Compressi,on for Multimedia Engineering 

(a) Pass mode 

• 

(b) Vertical .mode 

• 

(c) Horizontal mode 

FIGURE 6.2 2-D run-length coding . 

a0: The re·ference-changing pixel in the coding line. Its position is defined in the previou s 
coding mode, whose meaning will be ex·pJained shortly. At the beginning of a coding 
line, a0 is an imaginary White changing .pixel located before the first actual pixel in the 
coding line. 

a 1: The next changing pixel in the codin.g line. Becaus ·e of the above-mentioned left.,to-right 
• 

and top..:to-bottom scanning order, it is at the right-hand side of a0 . Since it is a changing 
pixel, it has an opposite ''colo_r'' to that of a0• 

a 2: The n.ext ehangin ·g pixel after a1 in the coding line . It is to the right of a 1 and has the 
sam~ color as that of a0 • 

b 1: The changing pixel in the reference line that is closest to a0 from the right and has the 
same color as a 1• 

b2 : The next changing pixel in the reference line after b1• 

6 .. 2.2.2 Three Coding Mode-s 

Pass ~oding Mo.de If the cb.anging pixel b2 is located to the left of the changing pixel a 1, 

it means that the run in the reference line starting from b,1 is not adjacent to the run in the coding 
tine starting from a 1• Note that these two runs have the same color. This is called the pass codin .g 
mode. A special codeword, ''0001 '', is sent out from the transmitter. The receiver then knows that 
the ni JJ ~tatting from a0 in the G.oding lin.e does n.ot end at the P'ixe'l below b2• This pixel (below b2 

in the coding Ji·ne) is identified as the referen .ce-c.hanging pixel a0 of the new set of five changing 
pixels for the ne~f coding mode. 

Vertical Coding Mode I'f the relative distance along the h_orizontal (\irectio.n between the 
changing pixels a 1 and b 1 is not larger than three pixels, the coding is conducted in vertic ·~l coding 
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TABLE 6.2 

TABLE 6.1 
Modified Huffman Code Ta.hie 
(Hunter and Robinson, 1980) 

Run-Length White Runs Black Runs 

Terminating Codewords 

0 00110101 00001101 l I 
I 000111 010 
2 0111 I I 

3 1000 JO 
4 1011 011 

5 1100 0011 

6 1110 0010 

7 l l l l 00011 
• 

8 10011 000101 
• • • • • • • • • • • • 

60 01001.011 000000 I O 1 I 00 

61 00110010 000001011010 

62 00110011 00000 J I 00 I l 0 

63 00110100 00000 I I 00 I 1 I 

Makeup Codewords 
64 I I O I I 000000 1 I I I 
128 10010 000,011001000 

192 

256 
• • • • 

1536 
1600 

1664 
. 

1728 
EOL 

.010111 

0110111 
• • • • 

010011001 

010011010 

011000 

0100 I. IO 11 

000000000001 

OOOOJlOOIOOt: 
000001 0 I 1 0 I I 

• • • • 

0000001011010 

0000001011011 . . 

0000001100100 

000000 J 100 I OJ 

000000000001 

2-D Run-Length Coding Table 

Mode 

Pass coding 1node 
Vertical coding mode 

Conditions Output Codeword 

b2a1 < 0 0001 

a1b1 = O I 

Position of New a0 

l)nder bi in coding line 
a, 

a1b1 = 1 Ol l 

a1b1 = 2 000011 

a1b1 = 3 0000011 

a1b1 = -I 010 

a1b1 = -2 000010 

a1b1 = -3 0000010 

Horizontal coding mode la1b11 > 3 00 I + (a(jfi1) + (a1a2) a, 
• 

N(Jte :· I x
1
yJ I: distance bet-we.en x1 and y1, x1yJ > 0: x1 is right to y1, X1Y; < 0: x1 is left ,to YJ· 

(x
1
y
1
): codeword of the.ran den9ted by x1yJ taken fro1n the 111od1fied Huff1l)aq cod~. 

S<JUtl·e: From Hunter and Robinson (J 9.80) . 
• 
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mode. Tl1at is, the position of a, is co·ded with reference to the position of b1• Seven different 
cod.e,vords are assigned to seven different cases: the distance bet ween a I a11d b I equa ls 0, ±I , ±2, 
±3, wl1ere + n1eans a I is to the rigI1t of b 1, wl1i le - means a I is to the left o1' b 1• Tl1e a I then beco111es 
the reference changing pixel a0 of the new set of five cl1anging pixels for tl1e next oodi11g n1ode. 

H.orizontal Coding Mode If tl1e relative distance betwee11 the changing pixels a I and b I is 
larger tl1an tlrree· pixe-Is, the coding is conducted ir1 horizontal coding mode. Here , 1-D ru11-ler1gth 
coding is appljed. Specifically, tl1e transmitter sends out a codeword co11sisting the .followi11g three 
parts: .a flag ''00 I ''; a 1-D ru11-le11gth codeword for tl1e run fro1n a0 to a,; a 1-D run-lengtl1 codeword 
for the run from a 1 to a 2. The a2 then becon1es the reference changing pixel a0 of tl1e ne\v set of 
five changing pixels for the next coding n1ode. Table 6.2 cor1tains three coding 111odes and the 
corresponding output codewQrds. There, (a0a 1) an·d (a 1a2) represent 1-D run-lengtl1 codewords of 
run-lengtl1 a0a I and a I a2 , respectively. 

6.2.3 EFFECT OF TRANSMISSION ERROR AND UNCOMPRESSED MODE 

In this subsection , effect of transn1ission error in the 1-D and 2-D RLC cases and unco111pressed 
mode are discussed. 

6.2.3.1 Error Effect in the 1-D RLC Case 

As introduced above, the specia l codewo.rd EOL is .used to indicate the end of eacl1 scan line. With 
the EOL, 1-D run-length coding encodes each scan line independently. If a tra11smis . ion error 
occurs in a scan line, there are two possibilities that the e.ffect caused by tl1e error is lin1ited witl1in 
the scan line. One possibility is, that res)11zclz1·011izatio11 is established after a few ru11s. One exam ple 
is shown in Figure 6.3. There, the trµnsmission error takes place i11 tl1e second run fro111 the left. 
Resynchronization is established in the fiftl1. ru11 in this example. Another possibil.ity lies in the 
E.OL, which forces res.yncl1roruzation. 

In summary, it. is seen that the 1-D run-le·ngth coding \viii not propagate transmiss ion error 
between scan lines. In other \Vords, a transmission error will be restricted within a scan line. 
Although error detection and retran·smission of data via an automatic repeat request (ARQ ) system 
is supposed t0 be able to effectively handle the error susceptibility issue, the ARQ technique was 

• 

not included in Recommendation T.4 due to the computational complexity and extra transmission 
time required. 

Once the number of decoded pixels between two consecutive EOL codewords is not equal to 
J 728 (for an A4 size document), an errQr has been identified. Some e,,,·o,· coticeal11ie11t technique s 
can be used to reco.nstruct the scan line (Hunter and Robinson, 1.980). For instance, we can repeat 
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FIGURE 6.3 Establishment of resynchroniz.ati0n after a few runs. 
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tl1e previous li11e, or rep·l,1ce the da111aged line by a white line O . 
. . ' r use a correlation t h · recover the I111e as mucl1 as possible. ec n1que to 

6.2.3.2 Error Effect in the 2-D RLC Case 

Fron1 tl1e abo·ve discussion, w·e realize that 2-D RLC is more efficient th 1 D RLC . . . . an - on the one 
hand. Tl1e 2-D RLC 1s 111ore susceptible to trans1n1ss1on errors than the 1 D RLC th h h d. . . . · - on e ot er . an . 
To p~·event error propa~at1on, ~here 1s a parameter u.sed 1n 2-D RLC, known as the K-fczctor,.· which 
spec1fies the nun1ber of scan Lines tl1at are 2-D RLC coded. 

Recomm endation T.4 defi11ed that no more th·an K-1 consecutive scan lines be 2-D RLC coded 
after a 1-0 RLC coded Li11e. For binary documents scanned at normal resolution,. K = 2. For 
documents scanned at higl1 resolution, K = 4. 

According to Arps ( 1979 ), there are two different types of algorithms in binary in1aoe codino 
0 b> 

raster algorithms ar1d a,·ect algoritl1ms. Raster algorithms only operate on data within one or two 
raster scan lines. They are l1enc_e n1ainly 1-D in nature. Area algorithms are truly 2-D in nature. 
They require that all, or a substantial portion, of the image is in random access n1en1ory. From our 
discussion above, we see that both 1-D and 2-D RLC defined in T.4 belong to the category of raster 
algorithms. Area algorithm s require large memory spa·ce and are susceptible to transmission noise . 

• 

6.2.3.3 Uncompressed Mode 

For some detailed binary docurnenl in1ages, both 1-D and 2-D RLC may result in data expansion 
instead of data compression. Under these circumstances the nu111ber of codi11g bits is larger than 
the number of bi level pixels. An uncompressed n1ode js created as an alternative 'livay to avoid data 
expansion. Special codewords are assigned t~or tl1e uncompressed mode. 

For the perfor1na11ces of ·1-D and 2-D RLC applied to eight CCITI test document in1age.s, a11d 
issues such as '' fill bits'' a11d ''minin1un1 scan line time (MSLT),'' to name only a fe\v, readers are 
ret·erred to an excellent tutorial paper by Hunter and Robinson (1980). 

6.3 DIGITAL FACSIMILE CODING STANDARDS 
• 

Facsimile transmission, an important 111eans of communication in modern society, is often used as 
an example to de1nonstrate the 1nutual interaction between widely used applications and Standard­
ization activitie s. Active facsimile applications and the 111arket brought on the necessity for inter-
_national standardization in order to facilitate interoperability between facsirnile machines world­
\Vide. Succe ssful intern.ational standardization, in turn, has stimulated 'liVider use of facsimile 
transmis sion and, hence, a more demanding market. Facsimile has also been considered as a major 
application for binary image compression. 

S0 far, facsin1ile n1achines are classified in foLtr different groups. Fa·cs.imile apparatuses in 
groups I and 2 use analog tecl1niques. They can lransn1it an A4 size (210 x 297 mn1) document 
scanned at 3.85 lines/min in 6 and 3 n1in, respectively, over the GSTN. International standards for 
these two groups of facsimile apparatus are CCITT (110w ITU) Recomme11dations T.2 and T.3, 
respectively. Group 3 facsi111i.le n1achines use digital tecl1niques and hence achieve high coding 
efficiency. They can transmit the A4 size binary docun1ent sca11ned at a resolution of 3.85 li11es/rn·m 
and sampled at 1728 pixels per line in about J min at a rate of 4800 b/sec over the GSTN. The 
corresponding internati.onal stan.d.ard i·s CCITI Recommendations T.4. Group 4 facsin1ile appara­
tuses have the S?me trans1nissio11 speed requiren1ent as that (or group 3 macl1ines·, but tl1e c9ding 
technique is different. Specifically, tl1e coding technique used for group 4 macl1ines is based 011 

2-D rwn-lengtl1 eoding, discussed abo.ve, but n1odified to achieve higher coding ef'nciency. Hence 
it is referred to as the modified n1odified READ coding, abbreviated MMR. The corresponding 
standard is CCITI Recon1mendati011s T.6. Table 6.3 summarizes tl1e above descriptio11s. 

• 
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TA.BLE 6.3 FACSIMILE CODING STANDARDS 

Group of Speed Compression Technique 

Facsimile Requiren,ent for Analog or CCIIT Algorithm 
Apparatuses A-4 Size Document Digital Scheme Recommendatio .n Model Basic Coder Acronym 

' 

G 6 min Anal og T.2 -I 

G2 3 min Analo g ·T.3 -
G3 l min Dig .iral T.4 1-D RLC Modified rluff111an MH 

• 2-,D RLC MR 
(optionnl) 

G.a I 111in Digital T.6 2-D RLC Modifie<.I l~uff man MMR 

6.4 DICTIONARY CODING 

Dictionary coding, the focus of tl1is section, is differe·nt from Huffman coding and arith111etic coding, 
dis_cu.ssed in the previous chapter. Both Huffman and arithmetic cod'ing techniques are based on a 
statistical model, and the occurrence probabilities play a particular important role. Recall that in 
the Huffman coding the shorter codewords are assigned tQ 1nore frequently occ·urri11g source 
symbols. In dictionary-based data compression techniques a symbol or a string of symbols generated 
from a source alphabet is represented by an index to a dictionary constructed from the source 
alphabet. A dictionary is a list of symbols and strings of symbols. There are many examples of this 
in our daily lives. For instance, the string ''September'~ is sometimes represented by an index ''9 ,1' 
while a social secui;ity number represents a person in the U.S. 

Dictionary coding is widely u·sed in te.xt coding. Consider Englisl1 text coding. The source 
alphabet includes 26 English letters in botl1 lower and upper cases, numb.ers, various punctuation 
marks, and th~ space bar. Huffman or arithmetic coding treats each sy1nbol based on its occurrence 
probability. That is, the source is modeled as a me1noryless source. It is \vell known, l1owever, that 
this, is not true in many app1icatio·ns. In text coding, stri,ctu,·e or coritext plays a significant role. 
As me·ritioned earlier, it is v·ery likely that the letter u ap.pea.rs after the letter q. Likewise , it is likely 
that the word ''conceme .d'' will appear after ''As far as the weather is.'' The strategy of the dictionary 
coclin.g is to build a dictionary that contains frequently occurring symbols and string of symbols. 
When a symbol or a string is encountered and it is contained in the ct·ictionary, it is encoded with 
an index to th·e dictionary. Otherwise, if not in the dictionary, the symbol or the string of symbol s 
is encoded in a less efficient manner. 

6.4.1 FORMULATION OF DICTIONARY CODING 

To ·facilitate further discussion, we define dictionary coding in a precise manner (Bell et al., 1990). 
We denote a source alphabet by S. A dictionary consisting of two elements is defined as D = (P, C), 
where P is a finite set of phrases gene.rated from the S, and C is a coding function mapping P onto 
a set of codewords. 

The set P is said to be cornple.te jf any input string can be represented by a series of phras-es 
chosen from the P. The coding function C is said to obey the prefix property it· there is no codeword 
that is a prefix of any other codeword. For practical usage, i.e., for re'lersible compression of any 
input text, the phrase set P must be complete and the coding function C must s·atisfy tl1e prefix property. 

6.4.2 CAT[GORIZAT.ION OF D1q1 _0NARY-BASED CODING TECHNIQUES 

The heart of dictionary coding is the fortnulation of the dictionary. A successfully buift dicti-onary 
results in data c0mpression; .the opposi'.t_e case may lead to data e-xpansion. According t.o the ways 

-

IPR2021-00827 
Unified EX1008 Page 166



• 

Run-Length and Dictionary Codin g: Info rmation Tl1eory Result s (111) 141 
• • 

in which dictionar ies are constructed, dictionary coding techniques can be classified as static or 
adaptive . 

6.4.2.1 Static Dictionary Coding 
. 

In son1e particular applications, ll1e knowledge about tl1e source alphabet and the related strings· of 
syn1bols, also knowr1 a.s pl1rases, is sufficient for a fixed djction.ary to be produced, before tl1e coding 
process. The dictionary is used at botl1 the transrnitting and receiving ends. This is referre-d to as 
static dictionary coding. The n1crit of tl1e static approach is its simplicity. Its drawbacks lie in its 
relatively lower coding efficiency ar1d less flexibility compared with adaptive dictionary techniques . 
By less flexibility, we 1nean tl1al a dictionary built for a specific application is not normally suitable 
for utilizatior1 in otl1er applications. . 

An exan1ple of static algorithms occurring is clig1·a"i coding. In this simp'le and fast coding 
techniqu e, the dictionary contains all source syn1bols and some frequently used pairs of symbols. 
In encoding , two symbols are checked at once to see if they are in the dictionary. If so, they are 
replaced by the index of the two symbols in the dictionary, and the next pair of symbols is encoded 
in the next step. If not, then the index of tl1e first symbol is used to encode the first symbol. The 
second symbol is combined witl1 the tl1itd symbol to form a new pair, which is encoded in the next 
step. 

The digram can be straightforwardly exte.nded to 11.-g1·a11z. ln tl1e extension, the size of the 
dictionary increases and so does its coding efficiency. 

6.4.2.2 Adaptive Dictionary Coding 
• 

As opposed to the static approach, with the adaptive approach a complete ly defined dic(ionary does 
• 

hot exist prior to the encod ing process and the dictionary is not fixed. At the 'beginning of coding , 
only an initial dictionary exists. It adapts itself to the input during the coding process . All the 
adaptive dictionary coding algorith1ns can be traced back to t\VO di'fferent original works by Ziv 

· and Lernpel ( 1977, 1978). Tl1e algorilhms based on Ziv and Lempe! ( 1977) are referred to as the 
LZ77 algoritl1rns, while those based on their 1978 work are the LZ78 algoritt1ms. Prior to intro­
ducing the two landmark works, we will discuss the parsing strategy. 

6.4.3 PARSING STRATEGY 
• 

Once we have a dictionary, we need to exarnine the input text and find a string of symbols that 
matches an item in the dictionary. The_n the index of the item to tl1e dictio.nary is encoded. This 
process of segmenting the input text into disjoint strings (whose union equals the input text) for 
coding is referred to as parsi11g. Obvious]y, the way to segment the input text into strings is not unique. 

In terms ot· the highest coding.efficiency, optimal parsing is essentially a shortest-path problem 
(Bell et al., J 990). In practice, l1owever, a method called g,·eecly parsing is used most often. In t·act, 
it is used in all the LZ77 and LZ78 a'lgoritl1ms. Witl1 greedy parsing, the encoder searcl1es for the 
longest string ot· syn1bols in the inpu't that matches an item in tl1e dictionary at each coding step. 
Greedy pa.rsing may not be optimal, but it is sin1ple ir1 its implementation . 

• 

Example 6.1 
Consider a dictionary, D, whose pJ1rase set P = { a, b, ab, ba, bb, aab, bbb}. The codewords assigned 
to these strings are C(a) = IO, C(b) = 11, C(ab) = 010, C(ba) = 0101, C(bb) = 01, C(abb) = 1 l., 
and C(bbb) = 0110. Now the input text is abbc1ab . . 

Us,ing greedy parsing, we then encode the text as C(ab).C(bc,).C(ab), which is a IO-bit string : 
010 .0101.0 IO. In the above representations, the periods are used to indicate the division of segments 
in the parsing. This, however, is not an optimum solution. Obviously, tne following parsing will 
be more efficient, i.e., C(a).C(bb).C(aab), which is a 6-bit string: 10.01.11. 

• 

• 

• 

• 
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6.4.4 Stl .DING WIND .OW (LZ77) ALGORITHMS 

As mentioned earlier, LZ77 algorithn1s are a group of adaptive dictionary coding algoritl1111s rooted 
in the pioneering work .of Ziv and Lempel (1977 ). Since tl1ey are adaptive, there is no complete 
and fixed dictionary bet·ore coding. Instead , the dictionary changes as tl1e input text char1ges. 

6.4.4.1 ln·troduction 

In the LZ77 algorithms, the dictionary used is actually a portion of the input text, wl1icl1 has bee11 
recently encoded . The text that needs to be encoded is compared with the stri11gs of symbols in 
the dictionary . The longest mat ched sLring in the dictio11ary is character ized by a poi,1 te,· (someti rnes 
called a toke11), which is represented by a triple of data iten1s. Note that rhis triple functions as an 
index to the dictionary , as mention ed above. In this way, a variable- length string of syrn bols is 
mapped to a fixed-length pointer. 

There is a sliding window in the LZ77 algoritl1ms. The window consists of two JJarts: a searc l1 
buffer and a look-ahead buffer. The search buffer contains the portion o.f the text strea111 thaL l1as 
·recently been encoded wl1ich, as mentioned , is the dictionary; \vhi le t'he look-aJ1ead buffer con tni ns 
tJ1e text to be encoded next. The window slides tl1rough the input text strea1n fro111 beg inning to 
end during the entire encoding process. This explains the tern, sfi{li,ig \Vindo\v. The size of the 
search buffer is muc.h larger than that of the look-ahead buffer. Tl1is is expected beca use what is 
contained in the search buffer is in fact the adaptive dictionary. The sliding window is usually on 
the order of a fe\v thousand symbol s, \Vl1ereas the look-al1ead buffer is on the order of several tens 
to one hundred symbol s. 

6.4.4.2 Encoding and Decodi·ng 

Below we present more detail s about the sliding window dictionary coding techniqu e, i.e., the 
LZ77 aRproach, via a simpl e illustrative example. 

Example 6.2 
Figure 6.4 s·hows a sliding window. The input text stream is ikaccbadaccbczccbaccgik,1ioc1bc. 111 

• 

part (a) of the figure, a search buffer of nine symbol s and a look-ahead buffer o·f six sy"J11bols are 
sho·wn. All the ·symbols in the search buffer, accbadacc, have ju st been encoded. All tl1e symbols 
in the look-ahead buffer, baecba, are to be encoded. (It is understood that tl1e symb ols before tt1e 

i kl a c c b a d a c cl b a c c b al c c g i k m o a b c c 
'-...._ ______ ,-1\.. ___ ___ .1 

"V" V 

Search buffer of size 9 Look-ahead buffer 
of size 6 

(a) Triple: < 6, 2, C(c) > 

i k a c cf b a d a c c b a c I c b a. c c g I i k m o a b c c 

(b) q'riple: < 4, 5,, C(g) > 

i Jc a c c ·b a d a c c( b a c c b a c c g J i· k m o a g c. c 

(c) Triple:. < 0, 0, C(i) > 

FIGURE 6.4 An enc;oding example usi,ng LZ77 . 

• 

• 

• 
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searcl1 buff er have been encoded and the symbols after the Jook-ahead buffer are to be encoded.) 
The strings· of syn1bols, ik and ccgik1r1oc1bcc, are not covered by tl1e sliding window at tl1e moment . 

At the rnomenl, or in other words, ir1 ll1e first step of encoding, the s·ymbol(s) to be encoded 
begin(s) with tI1e symbol b. The pointer starts searching for the symbol b from the las-t symbol in 
the search buffer, c, whict1 is i1nn1ediately to the left of the first symbol b in the look-ahead buffer. 
It fir1ds ,1 rnatcl1 at the sixth position from b. It further determines that the longest string of the 
n1atcl1 is ba. Th at is, the 1naxin1un1 1natching length is two. T'he pointer is then represented by a 
triple, <i ,j,k>. The first item, '' i' ', represents the distance between the first symbol in tl1e look-ahead 
buffe r ar1d the posjtion of tl1e poir1ter (the posi.tior1 of tl1e first symbo l of the 1natcl1ed string). This 
distance is ca lled offset. In this step, the offset is six. The second iten1 in the triple, ''j~', indicates 
the length of tl1e 111atcl1ecJ string. Her e, tl1e le11gth of the n1atched string ba is two. The third item, 
''k'', is the codewo rd assig ned to the symbol immediately follo\ving tl1e matcl1ed string in tJ1e look­
a11ead buffer. In tl1is step, the tl1ird ite111 is C(c), \Vl1ere C is used to represent a· function to map 
symbo1(s) to a code \vord, as defi ned in Section 6.4. 1. That is, the resulting triple after the first step 
is: <6, 2, C(c)> . 

The reaso 11 to i11clude the tl1ird item '' k" into the triple is as follows. In the case \.vhere there 
is no 111atch in tl1e search buffer, both "i'' and ''j" will be zero. The third item at this n1omer1t is 
the code\vord of the first syn1bol in the look-ahe,1d buffer itself. This n1eans that e\1en in tl1e case 
where \.Ve can11ot find a 1natch string, the sliding window still works. ln the tl1ird step of tl1e encoding 
process described below, we will see that l11e resulting triple is: <0, 0, C(i)>. Tl1e ·decoder l1ence 
understands tl1at there is no r11atc!-1ing, and the sir1gle sy111bol i is decoded. 

The second step or the encodi11g is illustrated in part (b) of Figure 6.4. TJ1e slidi11g window has 
been shifted to tl1e right by three positions. The first symbol l9 be encoded now is c, \vhich is the 
le ft-mo st syr11bol in the look-ahead buffer. Tl1e search pointer moves lo\.vards tl1e left from the 
symbol c. It first finds a n1atch in tl1e first position with a ler1gth of one. It t.hen finds another match 
in the fqurth position from the first syn1b0I in the look-al1ead buffer. Interestingly, the maxin1u111 
matcl1ing can exceed the boundary between the search buffe r and the look-ahead buffer and can 
enter the look-ahead bL1ffer. Why this is possible will be seen shortJy, \vhen \Ve discuss the decoding 
process. In this mar1ner, it is found that tl1e n1axi111urri lengtl1 of n1atcl1ing is five. Tl1e last 111atch 
is t·ound at the fiftl1 pos ition. The length of the n1atcl1ed string , however, is only one. Since greedy 
p_arsing is used, the matcl1 with a length five is cl1oser1. That is., the o·ffset is four and the n1aximum 
match length is five. Consequently, the triple resulting from tl1e second step is <4, 5, C(g)>. 

The sliding window is ther1 sl1ifted to tl1e rigl1t by six positions. The tl1ird step 01· tl1e e11coding 
is depicted in Part (c). Obviously ., there is no matcl1ir1g of i in tl1e searct1 buffer. The resulting triple 
is hence <0, 0, C(i)>. 

The encoding process can co11tinue in this way. The possible cases \Ve may encounter in the 
encodin ·g, however, are described in the first three steps. Hence we end our discussio11 of- the 
encoding process and discuss tl1e decoding proc.ess . Compared with the encoding , the decoding is 
simpler because tl1ere is no need for n1atchir1g, wl1ich involves n1any compaciso11s bet\.veen tl1e 
syn1bols in tl1e Jook-ahead buffer and t,he sy111bols i11 tl1e search buffer. The decoding pr0cess is 
illustrated in Figure 6.5. 

In tl1e above tl1ree steps, tl1e resu lting triples are <6, .2, C(c)>, <4, 5, C(g)>, and <0, 0, C(j)>. 
Now let us s·ee how the decoder works. Tl1at is, ho\V tl1e decoder recovers tl1e string baccba.c·cgi 
from these three. triples. . 

In part (a) of Figure 6.5, tl1e searcl1 bttffer is cl1e sar11e as tl1at i11 part (a) of Figure 6.4. That is, 
the string accbadacc stored in the searcl1 window is wl1at \vas just decoded. 

Once the first triple <6, 2, C(e)> is received, the decoder will move rl1e decoding pointer fron1 
the first position in the look-al1ead buffer to the left by six positions ,. Tl1at is, tl1e poi11ter will point 
to the symbol b. Tl1e decoder tl1en copie? tl1e t\VO syn1bols starting from b, i.e., ba, into the look­
ahe·ad buffer. Tl1e synibol c will be copied rigl1t t0 ha. This is ·sh6\vn in part (b) of Figure 6.5. Tl1e 
window is th-en -shifted to tl1e-right by tl1ree positions, as sl1own in part (c) of Figure 6.5. 
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I a c c b a d a c ~I I j I I J j 

• 

(a) Search buffer at the beginning 

(b) After de~oding < 6, 2, C(c) > 

• 

(c) S.hifting the sliding window 

(d) After decoding < 4, 5, C(g) > 
• 

~ [ b . a c c b a c c g j j J I J I J 

(e) Shifting the sliding window 

(f) After decoding < 0, 0, C(i) > 

FIGURE 6.5 A decoding example using LZ77 . 

• 

After the secon·d triple <4, 5, C(g)> is receive.ct, the decoder moves the decoding pointer from 
the first position of the look-ahead buffer to the left by four po-sitions. The pointer points to the 
symbol c. The decoder the.n copies five successive symbols starting from the symbol c pointed by 
the pointer. We s·ee that at the beginning of this, copying process there are only four symbols 
available fo'r copying. Once the first symbol is copied, how·ever, all five symbols are available. After 
copying, the symbol g is added to the end of the five copied symbols in the look-ahead buffer. The 

. . 
re·stJlts are shown in part (c) of Fjgure 6.5. Part (d) then shows the window shifting to the right by 
six positions. 

After receiving the .triple <0, 0, C(i)>, the decoder knows that there is no match .and a single 
symbol i is encoded. Hence, the decoder adds the symbol i following the symbol g. This is stiown 
in part (f) of Figure 6.5. 

In Frgure 6.5., for each part, the last ptevious]y encoded symbol c prior to the receiving of the 
three triples is shaded. From part (J), we see that the string added after the symbol c due to the 
three . triples is baccbac-cgi. This agrees with the sequence mentioned at the beginnin .g of our 
diseu -ssion ab0 ,ut the decoding · process. We th.us con0lude that the decoding process has correctly 
decoded the encoded sequence from the last enc9ded symbol and the received triples. 

6.4.4.3 Summary of the LZ77 Approach 
• 

The slitling window consists of two p·arts: the $eatch buffer and the look-ahead buffer. The most 
recently encoded portion of the input tex't stream is contained in the search buffer, while the portion 
of the te~t that ,needs t0 be encoded immediately is in the look-ahead buffer. The first symbol jn 

• 

the· loak-ahead buffer~ loeated to the right of tke Boundary between the two buffers, i,s the symbol 
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or the beginning o·f a string of symbols to be encoded at the moment. Let us call it che symbol s. 
The size of the search buffer is usually much larger than that of the Look-a.head buffer. 

In encoding , the search poi11ter moves to the left, away from the symbol s, to find a match of 
the symbo l s in tl1e search buft'er. Once a match is found, the encoding process will further ct·etermine 
the length of the n1atched string. When there are multiple matches, the match that produces the 
longest matched string is chosen. The match is denoted by a triple <i, j, k>. The first item in the 
triple, ''i '', is the offset, wl1icl1 is the distance bet we.en the pointer pointing to the symbo l giving 
tl1e maximum match and th.e symbol !l. Tl1e second item, ''j'~, is the length of the matche.d string. 
The tl1ird iten1, '' k'', is the codeword of the symbol following the matched string in the lo0k-ahead 
buffer. The sliding window is then shifted to the right by j+ 1 positions before the next coding step 
takes place . 

When there is no matching in the search buffer, the triple is ·represented by <0, 0, C(s)>, where 
C(s) is the codewor·d assigned to the symbol s. The sliding window is then shifted to the right by 
one position. 

The slidin g wi11dow is st1ifted along the i11put text stream during the enc.oding process. The 
symbo l s n1oves fro·m the beginning syn1bol to the ending symbol of the input text stream. 

At the very begi11ning1 the conten.t of the search buffer can be arbitrarily selected. For instance, 
the symbol s in the searcl1 buffer may all be the space symbol. 

Let us denote tl1e size of the search buffer by SB, the size of the look-ahead buffer by L, and 
the size of the source alphabet by A. Assume that the natural binary code is used. Then we see that 
the LZ77 approa.ch encodes variable-lengtl1 strings of syn1bols with fixed-length codewords. Spe­
cifically, the offset '' i '.' is of coding length I 1og2 SB I, the length of matched string ''j'' is of codi.ng 
length j Iog2 (SB + L) j, and the codeword "k'' is of coding length I Iog2 (A) I, where th,e sign fa l 
denotes the sn1allest integer larger than a. 

The length o·f the matched string is equal to log2 (SB+ L) because the searc.h for the maximun1 
matching can enter into the look-ahead buffer as shown in Example 6.2. 

The decoding process is simpler tl1an the encodir1g process since tl1ere are no · comparisons 
involved in the decoding. 

The most recently encoded symbols in the s·earch buffer serve as the dictionary used in tl1e 
LZ77 approach. Tl1e 1nerit of doing so is that the diclionary is well adapted to the input text. T'.he 
linut ation of the approach is that if tl1e distance between the repeated patterns in the input text 
stream is larger than tl1e size of the search buffer, then the approach cannot utilize the structure to 
compress the text. A vivid exan1pJe can be found in (Sayood, 1996). 

A window with a moderate size, say, SB + L ~ 8192, can compress a variety of texts well. 
Several reasons have been analyzed by Bell et al. ( 1990). 

Many variations have been made to jmprove c.oding efficiency of the LZ77 approach. The LZ77 
produces a triple in e.ach encoding step; i.e., the offset (positio_n o'f the matched string), the length 
of the matched string, and the codeword of tl1e symbol f o)lowing the matched string . The trans­
mission of the tl1ird item in each coding step is not efficient. Thjs is tru·e especially at the beginning 
of coding. A variant of the LZ77, referred to as the LZSS algorithm, improves tl1is inefficiency. 

6.4.5 LZ78 ALGORITHMS 

6.4.5.1 Introduction • 

As mentioned above, the LZ7.7 algorithms use a sliding wind·O\V of fixed size, and both t11e search 
buffer and the look-ahead buffer l1ave a fixed size. This means tl1at if tl1e distance between t\V O 

repeated patterns is larger than the size of the seai"ch buffer, tl1e LZ77 algorithn1s cannot \vork 
effic,iently. The fixed size of both the buffers in1plies that the matcl1ed string cannot be longer tha11 
the sum of the sizes of the two buffers, placing anotl1er limitation on coding efficiency. Increasjng 
the sizes· of the seareh buffer and tl1e look,-a}1ead buffer seemingly will resolve th·e proble1n. A close 

• 
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100k, l1owe,,er, reveals t11at it also leads to increases in the number of bits required to encode the 
offset and matcl1ed string length, as well as an incre·ase. in processing complex.ity. 

Tl1e LZ78 algorithms (Ziv and Lempe!, 1978) elin1inate the use of the slidin g· window. Instead, 
tl1ese algoritl1ms use the encoded text as a. dictionary which, potentially , does not have a fixed size. 
Each time a pointer (token) is i.ssued, tl1e encoded string is included in tl1e dictio11ary. Theoretically, 
tl1e·LZ78 algo.rilhms reach optin1al per·forn1ance as the e11coded te.xt stream approaches infinity. In 
_practice, hov.,ever, as .n1entioned above witl1· respect to the LZ77, a very large dictio11ary \viii affect 
coding e-fficiency negatively. Tl1erefore, once a preset limit to the dictionary size l1as been re,1ched, 
either the dictionary is fixed for the future (if tl1e coding efficiency is good), or it is reset Lo zero, 
i.e., it must be restarted. 

Instead of the triples used in the LZ77 , only pairs are used in tl1e LZ78. Specifica lly, on I y tl1e 
position of the pointe.r to tl1e 1natched string and the syn1bol follo\ving the matcl1ed string need to 
be encoded. The lengtl1 of tl1e matcl1ed string does not need to be encoded si nee botl1 the encoder 
and the decqder have exactly the same dictionary, i.e.,. the decoder kno\vs the le11gth of tl1e n1atched 

• strmg. 

6.4.5.2 Encoding and Decoding 
• 

Like the discussion of lh-e LZ77 algorithms, we \Vilt go through an example to describe the LZ78 
algorithms. 

Example 6.3 . 
Con-sider tl1e text strean1: baccbaccc1cbcabc_cbbacc. Table 6.4 sl10\vs the coding process. We see . 
that for the ·first three symbols there is no match bet \Veen the individual input syrnbols and the 
entries m the dictionary. Therefore, tl1e doubles are, respectively, <0, C(b)>, <0, C(a)>, and 
<0, C'(c)>, \Vhere O means no match, and C(b), C(a), and C(c) represent the codewords o·f b., a, an~ 
c, respectively. After symbols b, a, c, comes c, which finds a matcl1 .in the dictionary (tbe third 
entry). Therefore, the next symbol b is combined to b.e considered. Since the string cb did not 
appear before,. it is encoded as a double and it is appended as a new entry into the dict ionary. The 
first item in the double is the index of the matched entry c, 3, the second item is the index/codeword 
of the symbol follo\ving the match b, 1. That is, the double is <3, l> . The following input symbol 
is a, which appeared in the dictionary. He·nce, the next symbol c is taken into consideration. Since 
the string ac is not an entry of the dictionary, it is encoded with a double . The first item in the 
double is the ind,ex of symbol a, 2; the second item is the index of symbol c, 3, i.e., <2, 3>. The 
encoding proceeds in this way. Take a look at Table 6.4. In general, as the encoding proceeds, the 
entries in the dictionary become longer and longer. First, entries with single symbols come out, 
but later, more and m·ore e.ntr,ies \Vith two symbols sho\.v up. After that, more and more entries with 
three symbols appear. This means that codin,g efficiency is increasing. 

N0w co.nsider the decoding process. Since the decoder knows the rule applied in the encodin .g, 
it can reconstruct the dictionary and decode the input text stream from the received double s. Wl1en 
the first double ~O, C(b)> is recejved, the dee.oder knows that there is no match. Hence , tl1e first 
entry in the diction_ary is b. So is the first decoded symbol. From the second double <0, C(a)> , 
symbol a is known as the second entry in the dictionary as well as the second decoded sy1nbol. 
Similarly, the next entry in the dictionary and the next decoded sy.1nbol are known as c. Wh~n the 
following d_ou.b]e <3, I> is received. The decoder knows from two items, 3 and I, that the next 
two symbols are the· third and the first entries in tl1e dictionary. Tl1is indicates that the symbols c 
and b are decoded, and the string cb becomes the fourth entry in the djctiooary. 

·We omit ,the .next two doubles and take a look at the double <4, 3>, which is associated with 
] ndex 7 in Table 6.4. SinGe the first item in the double is 4, it means that the m.aximum matched 
string is cb, w·hich is assoGiated with Index 4 in Table-.6.4. The seaond item in the double, 3, implies 
that the symbol following the match is the third entry c. Therefore the decoder decodes a string 
cbc. Also the string coc becomes the seventh entry in the reconstructed dicti_onary. In this way, the 

• 
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TABLE 6.4 

An Encoding Example Using the LZ78 Algorithm 

Index Doubles Encoded Symbols 

I < 0, C(b) > b 
2 < O. C(a) > a 
3 < o. C(c) > C 

4 < 3, I > cb 
5 < 2, 3 > UC 

6 < 3, 2 > ca 
7 < 4, 3 > cbc 
8 < 2. 1 > ab 
9 < 3, 3 > cc 

10 < I, I> bb 

I l < 5, 3 > ace 

decoder can recons truct th·e exact same dictio11ary as that established by the encoder and decode 
the i.nput text stream from the received doubles. 

6.4.5.3 LZW Algorithm 

Both the LZ77 and LZ78 approaches , when published in 1977 and 1978, respecti·vely, \Vere theory 
oriented. Tl1e effective and practical in1provement over the LZ78 by Welch (1984) brought muc.h 
attention to the LZ dictionary coding techniques. The resulting algorithm is referred to the LZW 
algorithm. It ren1oved the second item in the double (the index of the symbol following the longest 
matcl1ed string) and, he.r1ce, it enhanced coding efficiency. In other words, the LZW only sends the 
indexes o·f the dictionary to the decoder. For tJ1e purpose, the LZW fir-st forrns an initial dictionary, 
which consists of all the indjvidual source symbols contained in the source alphabet. Then; the 
encoder examines the input symbol. Since tl1e input symbol matches co an entry in the dictionary, 
• 

its succeeding symbol is cascaded to fom1 a slring. The cascaded string does not find a match in 
the initial dictionary . Hence, the index of the m~tched sym.bol is e11coded and the enlarged string 
(the matched symbol followed by the cascaded syn1bol) is listed as a new ·entry in tl1.e dictionary . 
The encoding process continues in tl1is manner. 

For the encoding and decoding processes, let us go tl1rough an example to see ho\v the LZW 
algorithm can encode only the indexes and tl1e decoder can slill decode the input text string. 

Example 6.4 
Consider the fo1Jowing input text stream: accbadaccbaccbacc. We see that the sourc.e alphabet is 
S = { a,b,c,d,}. The top portio11 of Table 6.5 (witl1 i11dexes 1,2,],4) gives a possible initial dictionary 
used in the LZW. Whe11 the first symbol a is i11put, the -encoder finds that it l1as a match in the 
dictionary. Therefore the next symbol c is· taken to fbnn a strir1,g c1c. Because tl1e strin·g ac is not 
in the dictionary , it is listed as a new entry in tl1e ·dictionary and is given an index, 5. The index 
of the matched symbol a, I, is encoded. When the secor1d sy111bol~ a, is input the e·ncoder takes 
the f0Ilowi11g symbol c into consi.deration because tl1ere is a rnat.ch to the second input symbol .c 
in lhe dictionary . Since tl1e st1·i ng cc does not match a11y existir1g entry, it becomes a ne\v entry in 
the dictionary with an index, 6. The index of tl1e matcl1ed symbol (the second input sy,111.bol), c, is 
encoded. Now consider tl1e tt1ird inpt1t symbol c, \vhicl1 appeared in ll1e dicti.onary. Hence, the 
following symbol b is cascaded to form a string cb·. Since the strir1g cb is not in the dictionary, it 
becomes a new· entry in the dictionary and is given an index, 7. The index of matcl1ed syn1bol c, 3, 
is encoded. The process proceeds i11 this fasl1ion. 
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TABLE 6.5 
An Example of the Dictionary Coding 

• 

Using the LZW Algorithn, 

Index Entry Input Symbols 

1 a 
2 b 

Initial diclionnry. 
3 C 

4 d 

-.) ae a 
6 cc C 

7 cb C 

8 ba b 
9 nd a 

10 da d 

I 1 ace a,c 
12 cba c,b 
13 accb a,c,c 
14 . bac b,a, 
15 cc ... c,c •... 

Encoded 
Index 

I 
3 

3 
2 

I 
4 

5 

7 

1 1 

8 

Take a look at entry 1 ·1 in the dictionary shown in Table 6.5. The input symbol at lhis point is 
a. Since it has a match in the previous entries, its next symb·ol c is considered. Since the string ac 
appeared in entry 5, the succeeding symbol c is combined . No\v the new enlarged string become s 
ace and it ·does not have a match in the previous entries. It i.s thus added to the diction·ary. And a 

new index, 1 I, is given to the string acc. The index of the matched string ac, 5, is encoded and 
transmitted. The final s.equence of encoded indexes is I, 3, 3, 2, ·1, 4, 5, 7, 11, 8. Like the LZ7.8, 
the entries in the dictio.Aary become longer and longer in· the LZW algorithm. This implies higl1 
coding efficiency since long strings ean be represented by indexes. 

Now let us take a look at the d·ecoding process to see how the decode·r can decode the input 
text s.tream from the received index. Initially, the decoder has the same dictionary (tl1e top four 
rows in Table 6.5) as that in the enc.oder. Once the first index 1 comes, the decoder de·codes a 
sy·mbo] a. The second index is 3, which indicates that the n.ext symbol is c. From the rule applied 
i,n ~ncoding, the decoder knO\VS further that a new entry ac l1as been adde.d to the dictionary with 
an ·index 5. The next index is 3. It is kno\Vn that the next symbol is also c. It is also known that 
tbe string cc has been added into the diction~ry as the sixth ent.ry. In thi$ way, tl1e decoder 
reconstructs the dictionary and d.eeodes the input text s~ream. 

6.4.5.4 Summary 

The LZW algorithm, as a representative of the LZ78 approach, is summarized below. 
Th.e initial dictionary contains the indexes for all the individual source symbols. At the beginning 

of encoding, when a symbol is input, since 1t has a match in the initial dictionary, the next symbo l 
is cascaded to fonm a tw0-symb0I stri:ng. Si.nee th.e two-symbol string cannot find a n1atch in the 
init·ial d.ictionary, the inaex of the f0rmer symbol is, encoded and tr::ansmitted, an.d the two-symb01 
string is adde.d to the djc~tiooary with a new, incremented index. The next encoding step start$ with 
the latter ·symb,ol af the two. 

In th.e middle, th.e e·ncodin:g pliocess starts with the last symbol of the latest added dictionary 
entry. Since it has a match in the previ0us entries, its succ.eeding symbol is cascaded after the 
symbol to form a string . If this suing appeaced before in the dictionary (i.e., the string finds a 
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match), the next symbol is cascaded as well. This process continues until sucl1 an enlarged s.tring 
cannot fi11d a rnatch in the dictio11ary. Al this moment, the index of the last matched string (the 
longest mat ch) is encoded and Lra11smitted, and tl1e enlarged and unmatched string is added into· 
the dictionary as a r1ew entry witl1 a new, incremented index. 

DeGoding is a process of transforming tl1e index string back to the corresponding syn1bol string. 
In order to do so, l1owever, the dictionary must be reconstructed in exactly tl1e same way as that 
establisl1ed in tl1e encoding process. That is, the initial dictionary is constructed first in the same 
way as tl1at in tl1e encoding. Wl1en decoding Ll1e in·ctex string, tl1e decoder reconstructs the same 
dictionary as tl1at i1J the encoder according to tl1e rule used in the encoding. 

Specifically , at tl1e beginning of the decodin.g, after receiving an index, a corresponding single 
syn1b0I can be decoded. Via tl1e next received index, another symbol can be decoded. From the 
rule used in the e11coding, the decoder knows that the two symbols should be cascaded to fo1 rn a 
new entry added i11ro the dictionary \Vitl1 an incrernented index. Tl1e next step in the decoding will 
start from tl1e latter syn1bol arnong the two symbols. 

Now consider the middle of the decoding process. Tl1e prese11tly received index is used to_ 
decode a correspondi11g string of input symbols according to the reconstruc'ted dictionary at the 
mon1ent. (Note tl1c1t tl1is strir1g is said to be witl1 the present index.) It is kno\vn from the encoding 
rule tl1at the syn1bols in the strir1g ztssociated with tl1e next index sl1ould be considered. (Note that 
this string is sfiid to be with tl1e 11ext index.) That is, the first symbol in tl1e string witl1 the next 
index shou ld be appended to tl1e last syn1bo] in the string with tl1e present index. The re~ultant 
combinatior1, i.e., tl1e string \Vitl1 tl1e present index followed by the first symbol in tl1e string witl1 
tJ1e next index, canr1ot find a matcl1 to an entry in tl1e dictionary. Therefore, tl1e combination should 
be added to tl1e dictionary witl1 ,1n incre-n1ented i11dex. At this moment, lhe next index bec,omes the 
new present index, a11d tl1e index following the next index becomes the new next index. The decoding 
process tl1e.11 proceeds i11 tl1e san1e fasl1ion in a 11ew decoding step. 

Con1pared with tl1e LZ78 algorithn1, the LZW algorjtl1n1 eliminates tl1e r1ecessily of l1aving the 
scc,ond iten1 in the double, an index/codeword of tl1e symbol follo\ving a matcl1ed string. Tl1at is, 
the e11coder only needs to encode and transn1it tl1e first itern in the double. Tl1is greatly enha11ces 
the coding efficiency and reduces the complexity oJ· the LZ algorith1n. 

6.4.5.S Applicat"ions 

The CCIIT Recon1men·dation V.42 .bis is a da.ta compressio_11 standard used i11 modems tl1at connect 
• 

com,puters with re·n1ote users via the GSTN. tn tl1e con1pressed tnode, the LZW algoritl1n1 is 
recommend ed for data con1pressio11. 

In in1age compress ion, tl1e LZW finds its applicatio11 as well. Specifically, it is t1tilized i11 the 
graphic i_ntercl1ange for1nat (GIP) which was created to encode grapl1ical in1ages. GIF is 110w also 
used to e.ncode 11tltural images, tl1ougI1 it is not very efficient in tl1is regard. For mo.re i11l:onnation, 
readers are referred to Sayood ( 1996). Tlie LZW a1goritlun is also used in the UNIX Compress 
command. 

6.5 INTERNATIONAL STANDARDS FOR LOSSLESS STILL 

IMAGE COMPRESSION 

In the previous cl1apter, we studied Huffman an,d arithn1etic codjng techniques. We a.Isa briefly 
discussed tl1e international standard for bi1eve1 in1age compression, known as the JBIG. In this 
chapter, so far we have discussed anotl1er two coding techniques: the ru11-length and d 1ictionary 
coding techniqu.es. We also introduced the international standards for facsimile co1npression, in 
which the techniques known as the MH, MR, and MMR were recon1mended .. AIJ of these techniques 
involve lossless com_pression. In tl1e next chapter, the international still in1age codi11g· stahd~1rd JPEG 
w.ill be 

1

introduced. A s we will see, tl1e JPEG l1as four d.ifferent modes . TI1ey ca11 be divided into 
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two con1pression categories: lossy and lossless. Hence, we ca11 ralk about tl1e lossless JPEG . Before 
leavi11g tl1is cl1apter, l1owever, \Ve briefly discuss, comJJare, a11d sun1n1arize variou.s tecl1niques used 
in tl1e international standards for 'lossless still in1age con1pressio11. For n1ore det,li Is, reade rs are 
referred to an excellent survey paper by A1-ps and Truong ( 1994). 

6.5.1 LOSSLESS BILEVEL STILL IMAGE COMPRESSION 

6 .. s .1.1 Algorithms 

As n1entioned above, there are four different international standard algoritl1n1s falli11g i1.1to this 
category. 

l\1H (Modified Huffman coding ) T11is a]goritl1r11 is ·defined in CCITT Recon1n1.endation 
T.4 for facsimile coding. It uses l11e 1-D r_un-length coding tecl1niquc follo\.ved by tl1e ''111od.ified'' 
Huffn1an coding technique. 

MR (Modified READ [Relative Element Address Designate] ·coding) Defir1ed i11 CClIT 
Recommendation T.4 for facsimile coding. _It uses tl1e 2-D rur1-ler1gtl1 codi11g tech11ique follo\ved 
by the ''modified'' Huffman coding tecl1nique. 

MMR (Modified Modified READ coding) Defi11ed in CCITT Recon1n1er1d,1tio11 T.6. It is 
based on MR, but is n1odified to maximize con1pression. 

JnIG (Joint Bilevel Image experts Group coding) Defi11ed in CCIIT Recon1n1e11dation 
T.82. It u,ses. an adaptive 2-D coding n1odel, followed by an adaptive arithn1etic coding tecl1nique. 

6.5.1.2 Performa,nce Comparison 

The JBIG test im.age set was used to compare tl1e p.erforn1ar1ce of tl1e above-n1e11tioned algorithn1s. 
The set contains scanned business docu1nents \Vith different densities, gr,1pJ1ic i111ages digita l 
halftones, and mixed (document and l1alftone) in1ages. 

Note that digital l1aJftones, also nan1ed (digital) halftone i1nages, are generated by using o.nly 
binary devices. Some small black units are in1p6sed 0 11 a \vhite background . The units 1nay assume 
di.fferent shapes: a circle, a square, and so on. Tl1e more dense the black units in a spot or an image, 
the d.arker .tl1e spot appears. The ,digital half'to.ning method has been used for printir1g gray-level 
in1ages in newspapers and books. Digital halftoning through character overstriking, used to generate 
digital images in the early days for the experimental work associated ·with courses on digital i1nage 
processing, has been described by Gonzalez and Woods ( 1992). 

The following l\.VO observations on the perfor111anc·e comparison were made after tl1e application 
of th.e several techniq.ues to the JBIG test image set. 

1. For· bilevel images excluding digital halftones, the compression ratio achieved by tl1ese 
techniques ranges from 3 to 100. The compression ratio increases monotonically in the 
order of the following standard algorithms: MH, MR, MMR, JBIG. 

2. For digital halftones, MH, MR, and MMR re~ult in data expansion, while JBIG achieves 
compression ratios jn tbe range of 5 to 20. This demonstrates that among the tecl1niques, 
IBIG is the only one suitable for the compression of digital halftones . 

• 

6.5.2 LossLES.S Mur11LEVEL Sr1LL IMAGE CoMPREss10N 

6.5.2.1 Algortthrns 

Trnere are two international standards for multilevel s-ti]I' image compression: 

• 

JBIG (Joint Bilevel Image exp.erts GFoup coding) - Defin.ed in CClTT Recommendation 
T.82. It uses an adaptive arithmetic coding technique. To encode n1ultilevel images; the JI.BG 
decomposes mullile:vel imag~s into bit-planes,, then compresses these bit-·planes using its bilevel 
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irnage con1pressior1 tecl1nique. To 1·urtl1er enhance the compression ratio, it uses Gary cod.ino to 
represent pixel amplitude s instead of weigl1ted binary coding. 

0 

JPEG (Joint P.hotographic (image) Experts Group coding) Defined in CCIIT Recom-
~nendatior1 T.8 l . For lossless codir1g, jt uses tl1e differential coding technique. Tl1e predictive error 
1s encoded usi r1g ei tl1er Hu rfn1an coding or adaptive aritl1metic coding tecl1niques. 

6.5.2.2 Perforn,ance Comparison 

A set of co lor tes t i n1ages fron1 the JPEG standards co1nrniltee wa's used for perfor1nance compar­
ison. Th~ lumi11ance cor11ponent (Y) is of rcsolutio11 720 x 576 pixels, w.hile the chrominance 
components (U and V) are of 360 x 576 (Jixels. Tl1e cor11pression ratios calculated are the GOrnbi·ned 
results for all tl1e tl1ree compor1er1ts. Tl1e followir1g observalio11s have been reported. 

I . Wl1en c1uantized i11 8 bits per pix.el, tl1e co111pression ratios vary n1uch less for n1ultilevel 
images tl1an for bilevel in1ages, and are rougl1tly equal to 2. 

2. Wl1en qut111tized \Vitl1 5 bits per pixel do\.vn to 2 bits per pixel, compared, \Vitl1 tl1e lossless 
JPEG tl1e JBI G achieves an increasingly higl1er cor11pression ratio, up to a rnaximu111 of 
29 % . 

3. Wl1en quantized wit~1 6 bits per pixel, JBIG and lossless JPEG acl1ieve simi lar co1npres-
• • s1or1 ratios. 

4. When qua11tized with 7 bits per pixel to 8 bits per pix·el, the loss.less JPEG achieves a 
2.4 to 2.6 o/o higher compression ratio tl1an JBIG. 

6.6 SUMMARY 
• 

Both Huff n1a11 coding and aritl1n1etic coding, discussed in the previous cl1apter, are referred to as 
variable -length coding tecl1niques, since the lengtl1s of code\.vords assigned to different entries in 
a source alphabet are different. In general, a codeword of a shorter length is assigned to ar1 entry 
\Viti, l1igl1er occurrence probabilities. Tl1ey are also classified as fixed-Jength to variabJe-le11gth 
coding techniqu es (Arps, 1979), si11ce the entries i11 a source alpl1abet have the satJ1e fixed lengtl1. 
Run-length coding (RLC) and dictionary codi11g, tl1e focus of ll1is cl1apter, are opposite, and are 
referred to as variable-length lo fixed-length codi11g tecl1niq·ues. Tl1is is. because the runs i11 the 
RLC and tl1e string in the dictionary coding are variable a11d are encoded w.itJ1 code\vords of the 
san1e fixed length. 

Based on RLC , tl1e internatior1al standard algorithn1s for facsin1ile coding, MH, MR, and MMR 
have worked successfully except for dealing witl1 digital l1alftones. That is, these algorithn1s result 
in data expansion wl1en applied to digital l1alJ'tones. Tl1e JBIG, based on an adaptive aritl1n1etic 
coding technique, not only achieves a l1igl1er codir1g efficiency tl1an MH, MR, and MMR for 
facsimile coding, bL1t also con1presses tl1e digital halftones effectively. 

Note that 1-0 RLC utilizes tl1e correlation between pixels \Vithi11 a scan line, whereas 2-0 RLC 
utilizes the con·elation between pixels witl1i11 a few scan lines. As a result, 2-0 RLC can. obta.in 
higher coding efficiency tl1an J-0 RLC . On tl1e otl1er hand, 2-D RLC is n1ore susceptible to 
transmission errors than 1-D RLC. 

In text compression, the dictionary-based tecl1niques have prove11 to be efficie11t. All the adaptive 
dictionary-based algorithm s can be classified into t\VO groups. One is based on a work by Ziv and 
Len1pe1 in 1977 , and another is based on tl1eir pior1eering work in 1978 . They are called, the LZ77 
and LZ78 algorith1ns, respective]y. Witl1 tl1e LZ77 algorithms, a fixed-size window slides througl1 
the input text stream. The sliding window consists of two parts: the search buffer and the look­
ahead buffer. The search buffer contains tl1e most rece11tly encoded portion of the input text, whi'le 
the look-ahead buffer contains tl1e portion of tJ1e input text to be encoded imr11ediately. Fo.r tl1e 
symbo ls to be encoded, the LZ77 algoritl1n1s searcl1 for tl1e lo11gest n1atcl1 i.n the search buffer. The 
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intbn11a1i011 about ll1e n1atcl1: Ll1e distan0e between the 1natched string in tl1e search buffer arid tl1at 
in tl1e look·--al1ead buffer, tl1e length of Ll1e 111atcl1ed. string, and tl1e codeword of tl1e sy111bol following 
the matched string in the I0·ok-al1ead buffer are encoded . Many improven1ents have bee11 111ade in 
the LZ77 alg9ritJ1ms. 

T11e perforn1ance of the LZ77 algoritl11ns is lir11ited b)' the sizes of tl1e seqrcl1 buffer and tl1e 
look-al1ead buffer. Witl1 a finite size for tl1e searcl1 burrer, the LZ77 algorithr11s \viii not work \vell 
in tl1e case \vl1ere repeated patterns are apart fro111 eacl1 other by a distance lor1ger tl1an tl1e size of 
tl1e searcl1 buffer. With a finite size for the sliding \,Vindo\v, the LZ77 algoritl1111s vvill not work well 
in tl1e case \vhere matching strings are longer than tl1e \vindow. In order to be efficient, ho\vever, 
these sizes. cannot be very large. 

In order to overcome the problem, the LZ78 algoritl1ms \,York in a different vvny. They do nol 
use tl1e sliding \vindo,v at all. Instead of using the most recently encocled portion or l~1e i11put text 
as a di.ctio11ary, Lhe·LZ78 algoritl1ms use tl1e index of tl1e longest n1tltched stri11g as an entry of the 
dictionary. That is, each n1atcl1ed string cascaded \Vitl1 its imn1ediate next yn1bol is cor11parcd \\1ith 
tlie existi11g entries of the dictionary. If this con1bi nation (a 11e\v stri 11g) does not fi nd a 111atcl1 in 
the d.ictionary constructed at the moment, tl1e combination will be included as an entry in the 
dictionary. Otl1er,vise, the next syn1bol in the input text will be appe11ded to tl,e co,nbination a11d 
the enlarged ne\v con1b.ination will be checked ,vith the dictio11ary. Tl1e process co,1Li11ues until tl1e 
new c0mbination cannot find a n1atcl1 in tl1e dictio11ary. An1ong the several varia·nts of tl1e LZ78 
algorithms, tlle LZW algorithm is perhaps Lhe 1nost important one. le only needs lo encode tl1e 
indexes of the longest matched strings to the dicLionary. It can be sl1own that tl1e decoder can 
decode the input text stream from the given index stream·. In doing so, the san1e dictionary as that 
established in the en·coder needs to be reconstructed at tl1e decoder, and tl1is can be i111plen1ented 
since the same rule used in tl1e encoding is known .in tl1e decoder. 

Tl1e size of the di·ctionary cannot be infinitely large because, as mentior1ed above, Ll1e coding 
efficiency will not be high. The cominon practice of the LZ78 algorithms is to keep the dictionary 
fixed once a ce.rlain size has been reached and the perfom1ance of the encoding is satisfactory. 
Otherwise, the dictionary will be set to em"pty and will be reconstructed from scratcl1. 

Consid·ering the fact tJ1at there are several interna.Lional standards concerning still image coding 
(for both bilevel and n1ultilevel images), a brief summary of the1n and a performance comparison 
have been presented in this cl1apter. Al the beginning of this chapter, a description of the discrete 

• 

Markov source and its 11th extensions was provided. The Markov source an.d the autoregressive 
model serve as important models fo"r the dependent infor111ation sources. 

6.7 EXERCLSES 

6-1. Draw the state diagram of a second-order MarkoY source with .two symbols in the source 
alphabet. That is, S = { s 1, s2 }. 1J is ·assumed that tl1e conditional probabilities are 

6 .. 2. W.faat ate the definitions of raster algorilhm and area algoritl1m in binary image coding? 
To whicn earegory do·es l-D RLC belong?.' To ·whicl'} category does 2-D RLC belong? 

6-3. Wfiat effect does a transmissfon error have on 1-D RLC and 2:-D RLC, respectively .? 
'What is the t·unction of the C(ldeword EQ·L? 
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6-4. Make a convincing argument that the ''modified'' Huffman (MH) algorithm reduces the 
requirement of large storage space. 

6-5. Which three different modes does 2-D RLC have? How do you view the vertical mode? 
6-6. Using your own words, describe the encoding and decoding processes of the LZ77 

algorithn1s. Go through Exan1ple 6.2. 
• 

6-7. Using your own words, describe the encoding and decoding processes of the LZW 
algorithm. Go through Exan1ple 6.3. 

6-8. Read the reference pape r (Arps and Truong, l 994 ), which is an excellent survey oh the 
internat ional standards, for lossless still irnage con1pression. Pay particular atte·ntion to 
all the figures and to Table l . 
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Standard: PEG 

In tl1is chapter, tl1e JPEG standard is introduced. This standard allows for Lossy and lossless encodin o 
of still images and four distinct modes 01· operation are supported: sequential DCT-based mod;, 
progressive DCT-based n1ode, lossless 111ode a11d hi~rarchical n1ode. 

7.1 INTRODUCTION 

SLill in1age codir1g is a11 i1nporta11l application of dat:a co111press ion. When an analog image or 
picture is digitized , eac t1 pixel is represented by a fixed number of bits, wl1ich correspond to a 
certai11 11un1ber of gray levels. In tl1is uncompressed fonnat, the digitized in1age requires a large 
number of bits to be stored or transmitted. As a result, compression become necessary due to the 
lin1ited con1rnu11icacion bandwidth or storage size. Since tl1e mid- l 980s, the ITU and ISO have 
beer1 workin g togetl1er to develop a joint internaLionaJ standard for tl1e compress ion of still images. 
0 fficia l I y, JPEG Upeg] is the ISO/JEC internatio11al standard 109 18- 1; digital con1pression and 
cod.ing· of continu ous-tone still i,nages, or tl1e ITU-T Recom111endation T.8 1. JPEG became an 
int_er11ational standard i,1 I 9·92. Tl1e JPEG standard allows for both lossy and lossless encoding of 
still i1nag·es. The algorith111 for lossy coding is a OCT-based coding scheme. This is the baseli.ne 
of JPEG and is sufficient for many applicalion·s. However, to meet tl1e needs of applications that 
cannot tolerate loss, e.g., compress ion of n1edical images,. a lossless coding schet11e is also provided 
aI1d is based on a predictive coding scheme. From tl1e algo·rithmic point of vje\:v, JPEG includes 
four distinct modes of operation, namely, sequential DCT-based mode , progressive DCT-based 
mode, loss less mode, and hierarcl1ical 111ode. In the follo\vir1g settio ns, an overview o·f tl1ese n10des 
is provid ed. Furtl1er technical detai ls can be found in tJ1e books by Pennelbaker and Mitchell (1992) 
and Syme s ( 1998). 

In the seque ntial OCT-based n1ode, an i111age is first partitioned into blo·cks of 8 x 8 pixel s. 
Th e blocks are processecl from left to right and top to bottom. The 8 x 8 two-dimen sional Forward 
DCT is applied to each block and the 8 x 8 DCT coefficients are quantized. Finally, tl1e quantized 
DCT coefficients are entropy encoded ar1d output as part of the con1pressed image data. 

In the progressive DCT-based 1node, the process of block partitioni11g and Forward DCT 
tran sform is tl1e same as ir1 tl1e sequential DCT-based 111ode. However, in the p1·ogress ive n1ode, 
the qu.antized DCT coe fficier1ts are first stored in a buff.er before tl1e encoding is performed. Tl1e 
DCT coefficient s in tl1e buffer are then encoded by a multiple scanning process. In each sc,1n, the 
quantized DCT coeffic ients are partial1y encoded by eitl1er spectral selection or successive approx­
imation . In the metl1od of spectra l selection, the quantized DCT coefficients are divided into multiple 
spectral bands according to a zigzag ord_er. In each scan, a specified . band is encoded. In tl1e method 
of successive approximation, a specified numbe.r of n1ost significant bits of the quantized coefficients 
are first encoded and tl1e least sig11ificant bits are then encoded in subsequent scans. 

The difference betwee·n seque11tial coding and progressive coding is shown in Figure 7.1. In 
the sequential coding an image is e11coded part by part acco.rding to tl1e scanning order, while in 
the progressiv e coding the image is encod~d by a 111ultiscanning process and in each scan the full 
'image is encoded to a certa in quality level. 

As me11tioned earlier, Joss.less coding is achieved by a predictive coding sc11eme. In this scheme, 
three ne'ighboring pixels are used to predict the curre11t pixel to be coded. The prediction difference 
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(a) Sequential coding 

• ~· 1 • 

EB EBL-----

(b) Progressive ~oding 

FIGURE 7.1 (a) Sequential coding. (b) progressive oding. 

is entropy coded using either Huffman or arithmeti c coding. Since the predictio,1 i not quantized, 
the codin·g is lossless. 

Finally, in the hierarchical n1ode, an image is first spatially down- ampled to a multilaJ ered 
pyra1nid, resulting in a sequence of frames as sho\vn in Figure 7 .2. Tl1i equence_ of frame~ i 
encoded by a predictive coding scheme. Except for the first frame, the predictive coding proce 
is applied to the differential .frames, i.e.~ the differences between the fran1e to be coded a11d the 
predictive reference frame. It is important to note that th.e reference fra1ne i equivalent to the 
prev,ious fram·e 'that would be reconstructed in the decoder. The coding method for the di ff ere nee 
frame may use the OCT-based coding method, the lossless coding method or the DCT-ba. ed 
processes with a final lossless· process. Down-sampling and up-san1pljng filters ,1re used in the 
hierarchical mode. The hierarchical coding mode provide s a progress ive pre sentation sin1jlar to the 
progressive OCT-based mode, but is also useful in the application s that .have multireso lutio11 
requirements. The hierarchical coding m,ode also provides the capability of progressive coding to 
a final lossless stage. 

\, 

\ 

• 

FIGU,RE 7.2 Hier·archica.1 multiresolut'ion encodin.g. 

• 
• 
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FIGURE 7.3 Block diagra,n of a sequential OCT-based encoding proces.s. 

-
~ 

Soo So1 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • 

S10 • • • • • • • • S11 

FIGURE 7.4 Partitioning co 8 x 8 blocks. 

7.2 SEQUENTIAL OCT-BASED ENCODING ALGORITHM 

• 

The seque11tial DCT-based codi 11g algorithrn is th.e baseline algoritl1111 of the JPEG coding standa.rd. 
A block di agra1n of Lhe encodir1g proc.ess is shown in Figure 7.3. As sl10\.v11 in Figure 7.4, the 
digjtized image data are fir st pa1·titioned ir1LO· blocks of 8 x 8 pixels. Tl1e two-di111.ensional forward 
DCT is applied to eacf1 8 x 8 block. The two-din1ensional for\vard and inverse OCT of 8 x 8 block 
are defir1ed as follows: 

FDCT: 

IDCT: 

J L7 L7 
(2i+1)1,1t (2j+1)v1t S = - C C s .. cos cos...;,__....;__ 

II\ ' 4 II V lj l 6 I 6 
i=O j =O 

I L7 L7 
(2i + l)c,1t (2} + l)v1t s = - C C S cos cos...;,__......;__ 

ij 4 II I ' Ill ' 16 l 6 
11=0 11=0 

1 
CC = .Cf 

II V '\J·L 

J 

jOJ ' Ll,.l' = 0 

ot/1e1i,vise 

• 

• 

(7.1) 

where s;1 is the value of the pi~eJ at position (i,j) in t11e block, and S,,.,. is the transt·o1111ed (it, v) DCT 
ceefficie nt . 
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TABLE 7.1 
Two Examples of Quantization Tables Used by JPEG 

C 

)6 1 1 lO 16 24 40 51 61 17 l 8: 24 47 99 99 99 99 

)2 12 14 J.9 26 S8 60 ss 18 21 26 66 99 99 99 99 

14 13 16 24 40 S7 69 56 24 26 5.6 99 99 99 99 99 

14 17 22 29 SI 87 80 62 47 66 99 99 99 99 99 99 

18 22 37 S6 68 109 103 77 99 99 99 99 99 99 99 99 
' 

24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99 

49 . 64 78 87 103 121 120 IO 1 99 99 99 99 99 99 99 99 

72 92 95 98 112 100 103 99 99 99 99 99 99 99 99 99 

L11m,inance quantization table Cbromioaoce q11antization table 

After the forward D.CT, quantizatio11 of the transforn1ed DCT coefficients is perfor111ed. Each 
of the 64 DCT coefficients is quanti zed by a unif 01 rn quantizer: 

s 
S = ,·oi,nd 111

• · 
quv 

~II ' 

(7.2) 

where the Sq111• is the quantized value of the OCT coefficient, Suv, and Q,,
11 

js the quantization step 
obtained fr0m the quantization table . There are four quanti zation tables that n1ay be used by the 
encoder, but there is no default quantiz:ation table specified by the standard. Two particular quan­
tization tables are shown in Table 7. I. 

At the decoder, the dequantization is performed as follows: 
. 

R =S xn 
quv quv ~11 · 

(7.3) 

where Rq11, . is the value of the dequantized DCT coefficien,t. After quanLizaLion, the DC coefficie nt , 
Sq00, is treated separately from the other 63 AC coefficients. The DC coefficients are encoded . by 
a predictive coding scheme. 'The encoded value is the difference (DIFF) between the quantized DC 
coe.fficient of the current block (Sq00) and that of the previous block of the same component (PRED): 

DIFF = Sq00 - PREP (7 .4) 

The value of DIFF is entropy coded with Huffman tables . ,More specifically, the two's com­
plement of the possible DJFF magnitudes are grouped into 12 categories, '' SSS.S''. The Huffman 
codes for these 12 difference categories and additional bits are sho·wn in the Table 7 .2. 

For ,each nonzero category, additional bits are added t0 the codeword to uniquely ide11tify wl1icJ1 
difference within the category actually occu·rted. The number of additional bjts is defined by ''SSSS'' 
and the additional bits are appe.nded to the least sign.ificant bit of the Huffman code c·most significant 
bit first) according to the following rule. If the difference value is positive, the ''SSSS'' )ow-order 
'bits of DIFF are appended; if the difference value is negative., then the ''SSSS'' low-order bits of 
DIFF-1 are appended. As an e"ampJe, .the Huffman, tables used for codin.g tl1e luminance and 
.ebrominance DC coefficients are shown 1n Tables 7.3 and 7.4, respectively. These two tables have 
been dev.eleped from the average statistics .of a large ~et of images with 8-bit precision. 
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TABLE 7.2 
Huffman Coding of DC Coefficients 

SSSS DIFF Values 

0 0 
l -JI I 

2 -3,-2,2 ,3 

3 -7 .... ,-4,4 .... ,7 

4 - 1 5, • , . , -8 , 8, " • I l 5 
5 -3 1, ... . - 16,16, .. . ,31 

6 - 63, . .. -32 ,32 .. . . 63 
7 

8 

9 
10 

I l 

- 127 .. .. ,- 64,64, . .. , 127 

- 255; .. . ,- 128, 128, .. . ,255 

-51 I, ... . -2 56,256, .. . ,51 I 

- I 023, .. . ,-5 12,512, .. . , I 023 
-204 7 .. .. , - 1024. l 024, ... ,2047 

TABLE 7.3 

Additional Bits 

-
O. I 
00,0 I. I 0, I I 

OOO, .. . ,Ol l,100,.,111 

0000,.,0l I I, 1000, .. . , l I JI 

00000 •.. . ,0J I LI. I0000 .. ..• 11111 

... ~' ... 

. ... ' .. . 

• • • • t • • • 

.... ' ... 

.... ' ... • 

•• •• • •• • 

Huffman Table for luminance 
DC Coefficient Differences 

. Category Code Length Codeword 

0 2 00 

I 3 010 

2 3 011 

3. 3 JOO 

4 3 IOI 

5 3 I I 0 

6 4 11 I 0 

7 5 I I J 10 

8 6 111110 

9 7 1111110 

10 8 11111110 

I I 9 111111110 

161 

In co.ntrast to the coding of DC coefficients, the quantized AC coefficients are arranged to .a 
zigzag order before being entropy coded. Th.is scan order is sho\vn in Figure 7.5. 

According to the zigzag_ scanning order, che quantized coefficients can be represented as: 

ZZ(O) = Sqoo, ZZ(l) = Sqo.i, ZZ(2) = Sq1o, .. .. , ZZ(63) = Sq71· (7.5) 

Since many of the quantized AC coefficients become zero, they can be very efficiently encoded 
by exploiting the run of zeros. TI1e run-lengtl1 of zeros are identified by the nonzero coefficje.nts. 
An 8-bit code 'RRRRSSSS' is used to represent the nonzero coefficient. The four least significant 
bits, 'SSSS', define a category for tl1e value of the next nonzero coefficient in the zigzag sequence, 
·which ends the zero run. The four 1116st significant bits, 'RRRR', define the run-length of zeros in 
the zigzag sequence or the position of tl1e nonzero coefficient i't1 the zigzag sequence. The con1posite 
value, RRRRSSSS, is shown in Figure 7.6. The value 'RRRRSSSS' = '11110000' is defined as 
ZRL, ''RRRR'' = '' 1111 '' represents a run-length of 16 zeros and ''SSSS'' = ''0000'' represents a 
zero amplitude. Therefore, ZRL is wse,d to represent a run-length of 16 zero coefficients follo,ved 
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RRRR 

• 

TABLE 7.4 
Huffman table for chrominance 
DC coefficient differences 

Category Code Length Cod.eword 

Q 2 00 

L 2 OJ 

2 
.., 10 -

3 3 110 

4 4 I 110 

5 5 11110 

6 6 111110 

7 7 IIIJJIO 

8 8 llllllJO 

9 9 111111110 

10 10 1111111110 

11 11 11111111110 

• 

DC 

• 

FIGURE 7.5 Zigzag scanning order of OCT coefficients. 

ssss 
' 

• 0 l 2 9 10 ' 

• 

0 E0B 
• NIA 
• NIA Composite values 

NIA 
15 ZRL 

- -• 

• 

FIGORE 7.6 Two-dimensional value array for Huffman coding. 

• 

11, 

, , 

by a zero-amplitude ce.efficienl, it is not an abbreviatio,1. I~ the case of a run-lengfh of ze·ro 
eeeffieients that exceeds 15, multiple symbols will be used. A special value "'RRRRSSSS' = 
~00000000' is used to code the en.d-of-block (EOB). An EOB occurs when the.remaining coefficients 
·m the bleck: are zeros. The entries marked ''N/A" are undefined. 

• 
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TABLE 7.5 

Huffman Coding for AC Coefficients 

Category (SSSS) AC Coefficient Range 

J - I I • 

2 -3,-2,2,3 

3 -7, . . . ,-4,4 , ... ,7 

4 - 15 .. .. ,-8,8 , .. . , 15 

• 5 -3 1, .. .. - 16,16, .. . ,31 
6 -6 3, ... ,- 32,32, .. . ,63 

7 - 127 .. .. ,- 64, .64, .. . , 127 
8 - 255 .... • - 128. 128, ... ,255 

9 -5 11, .. . ,-256,256 ... . ,51.1 
10 - 1023 .. ,-512 ,512, . . . ,1023 

I 1 -204 7, . ... - 1024, l 024 ... . ,2047 

· The composite value, RRRRSSSS, is then Huffman coded. SSSS is actually the number to 
indicate ''ca tegory,, in the Huffn1an code table. Tl1e coefficient values for each category are shown 
in Table 7 .5. 

Each Huffman code is followed by additional bits that specify the sign a11d exact amplitude of 
the coefficients. As with the DC code tables, tl1e AC code tables have also been developed from 
the average statistics of a large set of images with 8-bit precision. Each composite value is 
repres·ented by a Huffman ·code in the AC code table. The format for the a.dditional bits is tl1e same 
as ir1 the coding of DC coefficients. The value of SSSS gives the nur11ber of additional bits required 
to speci·fy the sig11 arid precise an1plitude of the coefficient. The addiLional bits are eitl1er the low­
order SSSS bits of ZZ(k) when ZZ(k) i.s positive, or the ]ow-order SSSS bits of ZZ(k)-1 when 
ZZ(k) is negative. Here, ZZ(k) is the ktlz coefficient in the zigzag scanning order of coefficients 
being coded. The Huffn1an tables for AC coefficients can be found in Annex K of the JPEG standard 
(jpeg) and are noL 1i-sted here due to space liI11itations. 

As described above, Huff man coding is used as the means of entropy coding. However, an 
adaptive arithmetic coding procedure can also be used. As with the Huffn1an coding tecl1nique, the 
binary arithn1etic coding technique is also lossless. It is possible to transcode bet.ween two systen1s 
without either of the FDCT or IDCT processes. Since .this transcoding is a lossless process, it does 
not affect t~1e picture quality of tl1e reconstructed in1age. The arithn1etic encoder e11codes a series 
of binary symbols, zeros or ones, where each syn1bol represents the possible result of a binary 
decision. The bina1~y decisions ir,clude tl1e cho'ice between positive and neg~tive signs, a magnitude 
being zero or 11onzero, or a particular bit in a sequence of binary digits· being zero or one. There 
are t·our steps ir1 the arithmetic coding:· initia.lizir1g the statistical area, initializing the encoder, 

• 

ter1ninating the code stri-ng, and adding restart markers. 

7.3 PROGRESSIVE DCT-BASED ENCODING ALGORITHM 

In progressjve DCT-based coding, the input in1age is first partitioned to blocks of 8 x 8 pixels. The 
two-dimension .al 8 x 8 DCT is then applied to each block. The transformed DCT-coefficie11t data 
are then encoded \Vith multiple scans. At each sc·an, a portion of tl1e tra11sformed OCT coefficie11t 
data is encoded. Tl1is partially encoded data can be reconstructed to obtain a t·utl image size \Vith 
lower picture quality. Tl1e coded data of eacl1 addition.al scan will enl1an.ce the reconstructed i1nage 
quality until the full quality has been achieved at the completion of all sca11.s. Two 1nethods have 
been used in the JPEG standard to perforn1 tl1e DCT-based progressive coding. These include 
spectral selection and successive approximation. 
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1n the method of spectral selection, the transfom1ed DCT coefficients are first reordered as a 
zigzag sequence and then divided into several bands. A frequency band is defined in the scan l1eader 
by specifying the starting and ending in.dexes in the zigzag sequence. The band containing tl1e DC 
coefficient is encoded at the first scan. In the following scan, it is not necess,1ry ·for the coding 
procedure to follow the zigzag ordering. 

In the n1ethod of the successive approximation, the DCT coefficients are first reduced in 
precision by the point transfor111. The point transfom1 of the OCT coef·ficients is an arithmetic shift 
right by a specified nun1ber of bits, or division by a power of 2 (near zero, there is sligl1t difference 
in truncation of precision bet\veen an arithmetic shift and division by 2, see annex Kl O of LJpeg]). 
This specified number is the successive approxin1ation of bit position. To encode using success ive 
approximations, the significant bits o·f the OCT coefficient are encoded in the first scan, and each 
successiv.e scan that follows progressively in1proves the precision of the coefficient by one bit. This 
continues until full precision is reached. 

The principles of spectral selection and successive approximation are shown in Figure 7. 7. For 
both methods, the quantized coefficients are coded with either Huffn1an or aritt1metic codes at each 
scan. In speclral selection and th.e first scan of successive approximation for ar1 i 111,1ge, tJ1e AC 
coefficient coding n1odel is similar to that used in the sequential OCT-based coding mode. Ho\vever, 
the Huffman code tables are extended to include coding of runs of end-of-bands (EOBs). :For 
distinguishing the end-of-band and end-of-block, a number, n, which is used to indicate the range 
of run Length, is added to the end-of-band (E0Bn). The EOBn code sequence is defined as follows. 
Each EOBn is followed by an extension field, which has the minimum number of bit.s required to 
specify the run length. The end-of-band run structure allows efficient coding of blocks wl1ich have 
only zero coefficients. For example,. an EOB run of length 5 means that the current block and the 
next 4 blocks have an end-of-band with no intervening nonzero coefficients. The Huff n1an coding 
structure of the subsequent scans of successive approximation for a given image is similar to the 
eoding structure of the first scan of that image. Each nonzero quantized coefficient is described by 
a composite 8-bit run length-m.agnitude value of the form: RRRRSSSS. Tl1e four n1ost significant 
bits, RRRR, indicate the number of zero coefficients between the current coefficient and the 
previously coded coefficient. The four least significant bits, SSSS, give the magnitude catego ry of 
the nonzero coefficie.nt. The run length-magnitude composite value is Huffman coded. Each Huff­
man code is follo\ved by additional bits: one bit is used to code tl1e sign of the nonzero coefficient 
and anoth.er bit is used to code the correction, where ''O'' means no correction and ''l '' means add 
one to the decoded magnitude of th.e coefficient. Although the above technique has been described 
using Huffman coding, it should be noted that arithmetic encoding can also be used in its place. 

7.4 LOSSLESS CODING MODE 

In the lossless coding mode, the coding method i.s spatially b·ased coding instead of OCT-based 
coding. However, the coding m.ethod is extended from the method for coding the DC coef'ficients 
in the sequential OCT-based coding mode. Each pixel is coded with a predictive coding rnetl1od, 
where the predicted value is obtained from one of three one-dimensional or one of four two­
djmensional predictors, . which are shown in Figure 7.8. 

In Figure 7.8, the pixel to be coded is denoted by x, an·d the three causal neighbors are denoted 
· b.y a, b, and c. The predictive value of x, Px, is obtained from three neighbors, a, b, and c in the 

one o-f seven ways as ·listed in Table 7.6. 
In Table 7.6, the selection value O is only used for differential coding in the hierarchical coding 

mode. Selections 1, 2, and 3 are one-dimensional prediction.sand 4, 5, 6, and 7 are two-dimensional 
predietions. Each prediction is perforrned with full integer precision, and without clamping of either 
the underflow or overflow beyond the input bounds. In order to achieve lossless coding, the 
pred.iction d'ifferene.es are coded with either Huffman coding or arithmetic coding. The prediction 
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difference values can be from O to 216 for 8-bit pixels. The Huffman tables developed for coding 
DC coefficients in the. sequential DCT-based coding mod·e are used with one additional entry to 
code the prediction differences. For arithmetic coding, the statistical model defined for the DC 
coefficients in the sequential DCT-based coding mode is generalized to a two-din1,ensional fo11n in 
which differences are conditioned on the pix.el to tl1e left and the line above . 

• 
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FIGURE 7.8 Spatial relationship between rl1e pixel to be coded ancl lhr ee ciecoded neighbor s. 

• 

TABLE 7.6 
Predictors for Lossless Coding 

Sele-ction-Value Prediction 

• 

0 No predicli on. (hierarchical mode,) 

l Px = a 

2 Px = b 

3 Px = c 
4 Px = a+b-c 

5 Px = a + ((b-c)/2)~ 

6 
7 

Px = b + ((a-c)/2) 3 

Px = (a+b)/2 

" Shift right arithmetic operation. 

7.5 fflERARCHICAL CODING MODE 

The hie~archical coding mode provides a progressive coding si.milar to the progressive OCT-based 
coding mode, but it offers more functionality. This functionality addresses applicatio11.s with 111ulti­
resolution requirements. In the hierarcl1ical coding mode, an input image frame is first dec~mposed 
to a sequ.ence of fran1es, sucl1 as the pyramid sho\vn in Figure 7 .2. Eacl1 frame is obtained tl1rough 
a down-samplin ·g process, i.e., lo,v-pa-ss filtering follo\ved by subsampling. The first frarne (tl.1e 
lowest resolution) is encoded as a nondiff~erential f rarne. The following frames are encoded as 
differential frames, \vhere the differential is with respect to the previously coded frame. Note that 
an up-sampled version that \vould be reconstructed in the dec,oder is used. The first frame can be 
~ncoded by the methods of sequential OCT-based coding, spectral selection, method of progressive 
coding, or lossles,s coding with either Huffman code or arithmetic code. However, within an i1nage, 
the differential frames are either coded· by the OCT-based cod.ing method, the lossless coding 
method, or the OCT-based process witl1 a final lossless coding. All frames within the image n1ust 
u.se the same entropy coding, either Huff1nan or arithmetic, with the exception tJ1at .nondi fferenti·al 
fra_mes c.oded with the baseline coding may occur in the same image with frames coded with 
arithmetic coding meth.ods. The dift·erential frames a_re coded with the same method used for the 
no.ndirffe:ren.t.ial fr,am_es exeept the final frame. The fina] differential frame for each image may use 
a differenti.al lossless coding method. 

In the hierarchiaal coding mode, resolution changes in frames 1n.ay occur. These resolution 
ehanges 0ecur if down-sampling filters are used to reduce the s,patial resolution of some or all 
frames of an image. When the resolution of a reference frame cl.oes not matoh tl1e resolution of the 
frame t© be coded, a up.~sam.pling filter .is used to increase the resolution of the reference frame. 
The block diagram of codfng of a differential frame is shown in Figure 7.9. 
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The up-sa111pling. filter i11creases the spatial resolution by a factor of l\VO in both horizontal and 
vertical dire ctio11s by usi11g bilinear interpolation of (\VO neigl1boring pixels. The up-sampling with 
bilinear interpoJation js consistent with tl1e down-san1plin.g filter that is used for the generation of 
down -sampled frames. It shouJd be noted that tl1e hierarchical codi11g mode allows one to improve 
the quality o.f the reco nstructed frames at a given spatial resolution . 

• 

7.6 SUMMARY 

In this cl1apter, the still in1age coding standard, JPEG, has been i·ntroduced. The JPEG coding 
standard include s four codi11g n1odes: sequential DCT-ba.sed coding mode, progressive DCT-based 
codin g mode, loss le ·s coding 1node, and hierarcl1ica] coding n1ode. T.he DCT-based coding n1etl1od 
is probably the one Lhat most of us are fan1iliar with; however, the lossless coding modes in JPEG 
whicl1 use a spatial domain predictive codi11g process l1ave rnany interesting applications as well. 
For e,1ch codir1g 111ode, entropy coding can be in1p,Ien1enled will1 either Huffman coding or ari.th111etic 
codin g. JPEG has been widely adopted for many applications. 

7.7 EXERCISES 

7-1. Wliat is tl1e difference bet\veen sequential coding and progressive coding in JPEG? 
Conduct a project to encode an image witl1 sequence coding and progressive coding, 
'respectively. 

7-2. Use tl1e JPEG 1.ossless 111ode to code several i111ages and explain why different bit rates 
are obtai11ed. 

7-3. Generate a Huffman code table using a set ot· in1ages with 8-bit precision (aproximately 
2-3 ) using the metl1od presented ir1 Annex C of the JPEG specification. This set of 
images is called the training sel. Use Ll'1is table to code an in1age \Vitl1in the training set 
and an image wl1ich is not in tl1e trai11ing set, and explain the results. 

7-4. Design a three-layer progressive JPEG coder using (a) spectral selection, and (b) pro­
gressive approx.imation (0.3 bits per pixel at the first layer, 0.2 bits per pixel at the second 
layer, and 0.1 bits per pixel al the tl1ird layer). 
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avelet Transform 

During the last decade, a number of signal processing applications have emerged using wavele.t 
theory . Amo11g tl1ose applications, the most widespread developments have occurred in the -area of 
data compr ess ion. Wavelet techniques have demon.straled the ability to provide not only high coding 
efficiency , but also spatial and qualjty scalability features. In this chapter, we focus on the utility 
of the wavelet rransforrn for image data compression applications . 

8.1 REVIEW OF THE WAVELET TRANSFORM 

8.1.1 DEFINITION AND COMPARISON WITH SHORT-TIME FOURIER TRANSFORM 

The wavelet transform, as a specialjzed research field, starte:d over a decade ago (Grossman and 
Morlet, 1984) . To better understand the theory of wavelets, we first give a very short review of the 
Sl1ort-Time Fourier Transfonn (S'IFI' ) si11ce there are some sin1ilarities between the S'I'FI' and the 
\vavelet transforn1. As we know, the STFT uses sinusoidal waves as its orthogonal basis and "is 
defined as: 

F(ro,t) = f(t)w(t-t)e -jwdt (8.1) 

where l-v(t) is a time-domain windowing function, the sin1plest of wl1ich is a rectangular window 
that has a unit value over a time interval and has zero elsewhere . The value 't i.s the starting position 
of the wjndow. Thus , the STFT maps a function fl!) into a two-dimensional plane (co;t). The s·1·p1· 
is also referred to as Gabor transform (Coheni 1989). Si1nilar to the S'IFI', the wavelet transform 
also maps a time or spatial function into a two-dimensional funetiocD in a and t (co and 't for S'l'Ff). 
The wavelet transform is defined as follo\vs. Let j(t) be any square integrable function, i.e., it 
satisfies: 

'+oo ? 

lf(t) -dt < 00 (8.2) 
-00 

The continuous-time wavelet transform of fit) with respect to a wavelet \Jf(t) is defined as: 

+oo l ! - 't 
W(a,1:)= f(t)!LJ'V* dt 

~ -vial a 
(8.3) 

\Vhere a and 't are real variables and * denotes complex conjugation. T11e wavelet is de.fined as: 

(8.4) 

169 
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• 

The .above equ,ation represents a set of fu11ctio_ns that are generated from a single function, \V(t), 
by dilations and translati0ns. The varia.ble 'C represents tl1e time sl1ift and tl1e variab_le a corresp_onds 
to -the amount of time-scaling or dilation. If a> 1, there is an expansion of '4/(t), wl1ile if O <a< 1, 
there is a contracJion of 'V(t). For negative values 'of a, the wavelet experiences a tin1e reversal in 
con1bination \Vith a dilation. The function, 'V(t), is referred to as the 1nolher wavelet a11d it must 
satisfy two conditions: 

l. The function integrates to zero: • 

+-

'V ( t) c It= 0 (8.5) 
-

2. The function is square integra.ble, or has finite energy: 

+oo . ., 
wl(r) -dt < oo (8. 6) 

-
The co.ntinuous-time wavelet transfo1 in can now be rewritten as: 

• 
• 

(8.7) 
-00 

In the follo\ving, we give two well-known examples of 'tf(t) and tl1eir Fourier transforms. The 
first ex.ample is the Mo·riet (mo·dulated Gaussian) wavelet (Daubechies, 1990) , 

( Cll-<i>o )2 

\J! ( ro) = .J2ii. e i 

and the second example is th·e Haar \vavelet: 

1 0 ~ t ~ 1/2 

-'V- -I 1/2 ~ t ~ I 

0 otl1e1wi5·e 

(8.8) 

(8:9) 

F·rom the abc;>,ve definition and examples, we can find that the wavelets I1ave zero DC value. 
This is c1ea.r from Equation 8.5. In order t0 have go.od time localization, the wavelets are usually 
bandpass signals and they decay rapidly towards zero with time. We can also find several ·otl1er 

, 

impor,tant pr.operties of th·e wavelet transfo11n· an·d several differences between ST.FT an·d the wavelet 
transf 011n. 

Tiie STFf U$es a sinusoidal wave ·as its basis function. These basis functions keep the same 
frequeney over toe entire rime interval. In contrast, the waveiet tt.ansform uses· a partjcular wavelet 
as its basis function. Hence, wavelets ·vary in both position and frequency ov·ex th.e time interval. 
Examples of two basis functions for the sinusoi.dal wave and wavelet are shown in Figure 8. I (a) 
anii (b}.1 res.pectively. 

The S'I'FI' us·es a single analysis window. In ·contrast, the wavelet transfotm uses a sl1ort time 
wind·ow at high frequencies and a long time window at low frequencies. This is referred to as 
censtant Q-.factot filtering 0r relative co.nstant bandwidth .fr;equency analysis. A comparison of the 

• 
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FIGURE 8.2 (a) Constant bandwidth analysis (for Fourier transfonn), ar1d (b) relative constant bandwidth 
analysis (for wavelet transform). 
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I , 

. 

T ~e Time 

STF f Wavelet Transform 

FIGURE 8.3 Comparison of the STFf and the \Vavelet transform in tl1e time-frequency plane. 

constant bandwidth analysis ot· the STFf and the relative constant bandwidtl1 wavelet transt·orm is 

shown in Figure 8.2(a) and (b), respe·ctively. 
This ·featu .re can be furth er explained witl1 the concept of a ti1ne-frequen cy plane, which is 

shown in Figure 8.3. 
As shown in .Figure 8.3, the window size of the STFr in the time domain is always chosen to 

be constant. The corresponding frequency bandwidth is ats·o constant. In the wavelet tran ,storr11, 
the window sjze in the time domain varies with the frequency. A longer tin1e window is used for 
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a lower frequency and a sl1orter time window is used for a higher frequency. Tl1is property is very 
important for in1age data. compression. For image data, tl1e concept of a tin1e-frequen cy plane 
becomes a spatial-frequency plane. The spatial resolution of a digitaJ jmage is measur ed with pixels, 
as described in Chapter 15. To overcom·e the limitations of OCT-based coding , ilie wavelet transf:orm 
allows the spatial resolution and frequency bandwidth to vary in the spatial-frequen cy plane. With 
this ,,ariation, better bit allocation for active a.nd smooth areas can be achieved . 

The continuous-time wavelet transform can be considered as a correlati on. f or fixed a, it is 
clear from Equation 8.3 that W(a, 't) is the cross-corre,lation o.f functions /(t) witl1 related wavelet 
conjugate d·ilated to scale factor a at time lag 't. This is an i111portant property of the wavelet 
tran.sfor111 for multiresolution analysis of in1age data. Since the convoluti on can be seen as a filtering 
operation, the integral wavelet trans.form can be seen as a bank of linear filters actir1g upon f(r ). 
This implies tha.t the image data can be decon1posed by a bank of filters defined by the wavelet 
transforn1. 

The continuous-time wavelet transforn1 can be seen as an operator. First, it has the property of 
linearity. lf we rewrite W(a, 't) as Wutif (t)], then we have 

Wa1 [ af( t) + ~g( t)] = a.Wat[ f( t)] + ~ Wat[g( t)] (8. 10) 

wh.ere a and ~ are constant scalars. Second, it l1as the property of translation: 

(8.11 ) 

where A is a time lag. 
Fi:nally, it has the property of scaling 

W:~[f(t/a)] = W(a/a, -c/a) (8. 12) 

8.1.2 DISCRETE WAVELET TRANSFORM 

In the continuous-time wavelet transform, the function /(t) is transforrned to a functi'on W(a, 't) 
using the wavelet 'V(t) as a basis function. Rec·atl that the two variables a and 't are the dilation 
and translatien, respectively. Now let us to find a m-eans of obtaining the inverse transform, i.e., 
given W(a,b), find f(t). If we know how to get the inverse transform, we can then repre sent any 
arbitrary functionJ(t) as a summation of wavelets, such· as in the Fourier transforrn and DCT that 
provjde a set of coeffic.ienrs for reconstructing the original function using sine and cosine as the 
basis functions. In fact, this is possible if the mother wavelet satisfies the admissibiJjty condition : 

C= 
+oo lo/( (0 )12 

------------dw-
- lwl 

(8.13) . 

w.here C is a finite constant and '-P(ro) i:s the Fourier transform of the mother wavelet function 'lf(t). 

Then, the inverse wavelet transforrn is, 

1 +.oo 

f(t)=-
C, -

(8.14) 
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The .above results can be extended for two-dimensional signals. If ./(x,y) is a two-dimensio·nal 
function, its continuous-time wavelet transform is defined as: 

+oo +-

w( a, 1:x, 'ty) = f( X, y )\V ;,ti:ti, (x, )1)dxdy 
-00 -00 ' 

(8.15) 

where 'tx and 't y specify the transform in two dimensions. The inverse t\vo-dirnensional continuous­
tim.e wavelet transform is tl1en defin·ed as: 

I +co +co +co l 
f(x,y)=c - - - laf w(a,t .,,1:)')'Vm,,,(x,y)dad1:,dt ,, (8.16) 

where the C is defined as in Equation 8. I 3 a11d \V(X,)1) is a two-dimensional wavelet 

'V "',' , (x, y) = ~ 'V 
X - 't y-'t) , 

.{ (8.17) ) 

a a 

For image coding, the wavelet is used to decompose the image data into wavelets. As indicated 
in the third property of the wavelet transform, the wavelet transfo11n can be viewed as the cross­
correlation of the function f (t) and the wavelets 'V(Jt(t). Therefore, the wavelet transfor111 is equivalent 
to finding the output of a bank of bandpass filters specified by tl1e wavelets of 'Vai(t) as shown in 
Figure 8.4. This process decomposes the inpu.t signal into several subbands . . Since each subband 
can be further partitioned, the filter bank implementation ot' the wavelet transform can be used for 
multi.resolution ana lysis (MRA). Intuitively, when the analysis is viewed as a filter bank, the time 
resolution must increase with the central frequency of tl1e analysis filters. This can be exactly 
obtained by the scaling property of the wavelet transt·onn, where tl1e cente.r frequencies of the 
bandpass filters increase as the bandwidth becon1es wider. Again, the bandwidth becomes wider 
by reducing the dilation parameter a. It should be noted that such a multiresolution analysis is 
consistent with the constant Q-factor property of the wavelet transfo11n. Furthermore, the resolution 
limitation of the S1'FI' does not exist in the wavelet transform since the time-frequency resolutions 
in the wavelet transfor1n vary, as shown in Figure 8.2(b). 

~ 

lJl(t--r) • J .. 'l'(J, T) 

I 1-f f 
• K"'ca ) • .. I 

f(t) 
• 
• 
• 

-

l /-t I • K"'(am ) ~ .. 'l'(a .. 1) 

-

FIGU.RE 8.4 The wavelet transform implement~d \Vith a bank of filters .. 
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f'or digital image co.mpression, it is preferred to representf(t ) as a discrete superpositio11 sum 
rather than, an integral. With this move to the discrete space, the dilation param,eter c, in Equation 8.10 
takes the ·values a = 2k and the translation paramete.r 't takes tl1e values 't = 2k[, wl1ere botl1 k and 
l are integers. From Equation 8.4, the discrete version ·of 'Vat(t) becomes: 

k· 

. 'V kl(t) = 2 -2 tv( 2-k t - t) (8.18) 

Its corresponding wavelet transfor 111 can be re'\vritten as: 

+oo 

W(k,,l)= f(t)'V;,(r)dt (8.19) 
--

and the inverse transfer f11 becomes: 

+oo +oo J.: 

1(1) = LI d(k-.1)2-2 'V( 2-k, -,) (8.20) 
J.: =--I =-oo 

The ·values o·f the wavelet transfo11n at those a and 't are represented b)' ci(k, L): 

d(k,l) = W(k,l)/C (8.2 1) 

The d(k,[) coefficients are referred to as the disc.rete wavelet transform of the function f(t) (Dau­
bechies, 1992; Vetterli ,and Kovacevic, 1995). It is noted that the discretization so far is only applied 
to the parameters a_ and -r; d(k,l) is still a continuous-time function. If the discretization is further 
applied to the time domain by letti.ng t = 111T, \Vhere 111 is an integer and Tis the samp.ling interval 
(without loss of generality, we assume T = 1 ), th.en the discrete-lime wavelet transfor111 is defined as: 

+-

~(k,l) = L1(,1z)\Jf:,(,n) (8.22) 

,n=-

Of cou:rse, tbe 'Sampling interval has to be chosen according to the Nyquist sampling tl1eorem 
so th.at no infor111ation is lost in. the process_ of sampling. The inverse discrete-time wavelet transform 
is then 

8.2 

8.2 .. 1 

+- +- k 

1(,11)= L Ld(k,1)2,..2'V(2--·k,11-1) 
,n t: -oo / =--oo 

OIGl1:AL WAVEIJE~ TRANSFORM FOR IMAGE COMPRESSl'ON 
" 

BASIC G0NCEPT O.F IMAGE WAVELET TRANSFORM CODING 

(8 .23) 

From the ,grevious section, we ,have lear-ned that the wavelet t.ransf0m1 has several f ea tu res that are 
different frem traditional transfor:rns . . It is noted from .Figure 8.2 that each transt·orm coefficient in 
tbe STITT represents a con,stant interval of time regardless 0.f which band tbe coe.fficient belongs 
to, -whereas for the wavelet tran,s·for,1n, the c.oeffici~nts at the course level ·represent a larger tim.e 

IPR2021-00827 
Unified EX1008 Page 200



Wavelet Transform for Image Coding · 

Input 
• image 

2-1) Wavelet 
transform for 

• unage 
decomposition 

Quantization 
Coding of 
quantized 

coefficients 

bit.stream 

FIGU.RE 8.5 Block diagran1 of the in1age coding wiLl1 the wavelet transform coding. 

175 

interval but a narrower band of frequencies. This feature of the \Vavelet transt·orm is very important 
for in1age coding. ln traditi onal irnage transfom1 coding, whicl1 makes use of the Fourier transform 
or discrete cosine transform (OCT), one difficult problen1 is to choose the bloc.k size or \vindow 
\Vidth so that statistics co·mputed witl1in that block provide good models of the image signal 
behavior. Tl1e cl1oice of the block size l1as to be compro1nised so th·at it can handle botl1 active and 
smooth areas. In tl1e active areas, the i1nage data are more localized in the spatial domain, \.vhi1e 
in the sn1ooth areas the in1age data are more localized in the frequency domain . With traditional 
transforr11 coding , it is very l1ard to reacl1 a good compromise. The main contri.bution of waveJet 

. 
transform theory is Ll1at it provides an elegant fran1ework in \Vhich botl1 statistical bel1aviors of 

image d~1ta can be analyzed with equa l i111portan·ce. This is because that wavelets can. provide a 
signa l repre se11tatio11 i11 which some or the coefficients represe11t Ion·g data lags corresponding to 
a na1·row ba:nd or low frequency range , and so1ne of the coefficients represent short data lags 
correspondin g to a wide ban.d or hjgh frequency range. Therefore, it is p.ossible to obtai11 a good 
tra.de-off betwee 11 spatial and frequency domain witl1 tl1e wavelet representation of image data. 

To use Lhe wavelet transform for image coding application s, an encodi11g process is needed 
whicl1 include s three major steps: image data decomposition, quantization of tl1e transforrned 
coefficients, and coding of tl1e quantized transformed coefficients . A sin1plified block diagram of 
this proces s is shown in Figure 8.5. The ir11age decompo sition is usually a los·sless process \.vhicl1 
converts the in1age data fr6n1 the spatial domain to frequen~y domain , where the transformed 
coeffici ents are decorrelated. The in formation loss happens jn the quanti zation step and the con1-
pression is achieved in tl1e coding step. To beg·in tl1e decomposition, the image data are first 
partitioned into four subb ands labeled as LL 1, J/L 1, LH 1, a11d HH 1, as sho\vn in Figure 8.6(a). Eacl1 
coefficient represents a spatial area correspo11ding to one-quarter of tl1e original i111age s.ize. Tl1e 
low frequencies represent a bandwidth corresponding to O < I ro I < rr12, while tlle higl1 frequencies 
represent the band rc/2 < I ro I < n. To obtain tl1e r1ext level of decon1position, the LL, 'subband is 
further decompo sed into the next level of four subbands, as sl10\vn in Fig.ure 8.(j(b). The low 
frequencies of ti1e second level decornpositior1 correspond to O < I ro I < n/4, while the high 
frequencies at the second level correspond to rc/4 < I ro I< rc/2. This decomposition C·an be continued 

U2 Fili 

U1 HL1 - HL1 

' 
lH2 HH2 

. 

LH1 HHJ LH1 HH1 

I ,'. -

(a) (b) 

FIGURE -8.6 1\vo-di mensional wav·elet t.ransfoi::n1. (a) First-level decornposition, and (b) second.-leve) 
dec.omposjtion. (L denotes a low band, H denotes -a high ba11d, and the subscript denotes the nu1nber of the 
levelA For exa""mple, LL 1 denotes the l9w-low band at level J .• ) 
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to as many levels as needed. The filters used to compute the discrete wavel et tran sform are generally 
tl1e symmetric quadrature mirror filters (QMF), as described by Woods ( 1991 ) . A QMF-pyramid 
sul)band deco1nposition is illustrated in Figure 8.6(b). 

During quantization, each subband is quantized differently depending on its importance, which 
is usually based on its energy or variance (Jayant and Noll, 1984). To reac h the predeter1r1ined bit 
rate or c0mpression ratio, coarse quantizers or large quantizati on steps would be used to quanti ze 
the low-energy subbands while the finer quantizers or small quanti zatio,1 steps would be used to 
quanti ,ze the large-energy subbands. This results in fe\.ver bit s allocated to those lo\v-e nergy sub ­
bands and more bits for large-energy subbands . 

8.2.2 EMBEDDED IMAGE WAVELET TRANSFOR.M CODING ALGORITHMS 

As \Vith other transform coding schemes, most wavelet coeffic ients in the l1i gl1-freq uency bands 
have ve.ry Io,v energy. After quantization, many of these high-freq uency wave let coe fficients are 
quantized to zero. Based on the statistical property of Lhe quantized wavelet coe fficients , Huffman 
coding tables can be designed. Generally, most of the energy in an in1age is co ntained in the ]o\V­
frequency bands. The data structure of the wavelet-tran sformed coe fficients is suitable to exploit 
this statistical property. 

Consider a multilevel decomposition of an image witl1 the disc rete \.vave let tran sfom1, where 
the lo·,vest levels of decomposition would correspond to the high es t-freq uency subb and s and the 
finest spatiaJ resolution, and the highest level of decomposition would co rres pond to the lowest ­
frequency subband and the coarsest spatial resolution. Arran ging the subb ands fron1 lowest to 
highest frequency, we expect a d.ecrease in e.nergy. Also, we expect that if the wavelet -tran sfor111ed 
coefficients at a particular level h·ave lower energy, then coefficient s at the lower levels or high­
freq .uency subbands, which correspond to the same spatial location , would have smaller energy . 

Another feature of the wavelet coefficient data structure is spatial self-s imila1ity across sub­
bands. Several algorithms that have been developed to exploit this and the above-mentioned 
properties fo·r image coding. Amon_g them, one of the first was proposed by Shapiro ( 1993) and 
used an embedded zerolree technique referred to as EZW. Another algorithm is the so-called set 
partitjoning in hierarchical trees (SPIHT) developed by Said and Pearlman ( 1996). This algorithm 
als9 produG·es an embedded bitstream. The advantage of the embedd ed coding schemes allows an 
encoding process to te11ninate at any point so that a target bit rate or distortion metric can be met 
exactly. Intuitively, for a given bit rate or distortion requirement a nonembedded code should be 
more efficient than an embedded code since it has no constraints imposed by embedding reqµire­
ments. However, embedded \vavelet transform coding algorithms . are currently the best. The ad'di­
tional con .straints do not seem to have deleterious effect. In the following, we introduce the t\VO 

embedded c.oding algorithms: the zerotree coding and the set partitioning in hierarchical tree coding . 
As with DCT-based coding, an important aspect of wavelet-based coding is to code the positions 

of those coefficients that will be transmitted as nonzero values. After quan.tization the probability 
of the zero symbol must be extremely high for the very· low bit rate case. A large portion of the 
bit budget will then be spent on encoding the significance map, or the binary decision map that 
indicates whether ·a transfo11l1ed coefficient has a zero or nonzero quantized value. Therefore, the 
ability to efficie ,ntly encode the significance map becom.es a key issue for coding images at very 
low bit rates. A new dgta Structure, the zerotree, has been proposed t·or this purpose (Shapiro, I 99~). 
To deseribe zerotree, we first ,mu.st define ,insignificance. A wavelet coefficient is insignificant with 
respe ·ct to a given threshold value if the absolute value of this coefficient is smaller than this 
threshold. From the nature of the wavelet tran~form we can assume that every wavelet transformed 
at a given scale can be strongly related to a set of coefficients at the next finer scale of similar 
orientation. Mo.re specially, we can further assume that if a wavelet coefficient at a coarse scale is 
insig ,nificant , with respect to the preset threshold then all wavelet coefficients at finer scales are . , ' . ' ' ~ 

likely to be insignificant with respect to this threshold. Therefore, we can build a tree with these 
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FIGURE 8.7 (Left) Parent-children dependencies of subbands; the arrow points from the subband of the 
p~rents to lhe subba nd of the cl1ildren. At top left is the 1.owest-frequency band. (Right) The scanning order 
of the subb ands for encoding a significance map. · 

parent-cl1ild relationships, such ll1at coefficients at a coarse scale are ca.lied p.arents, and all coef­
ficients correspondi ng to the same spacial location ·a-t the next finer scale of similar orientation are 
called childrer1. Furlhem1ore, t·or a parent, the set of all coefficients at all finer scales of simil·ar 
orieAtation correspo 11ding to Ll1e same spatial location are called descendants. For a QMF-pyramid 
decon1position the parent-cl1ildren dependencies are show11 in Figure 8.7(a). For a multisc·ale wave­
let transfom1, the scan of the coefficients begins at the lowest frequency st1bband and then takes 
the order of LL, HL, LH, a·nd HH from the lower scale to the next higher scale, as show·n in 
Figur e 8.7(b). 

The zerotree is defined such tha.t if a coefficient itself and all of its descendants are insignificant 
\Vith respect to a thre.shold, then this coefficient is consid.ered an element of a zerotre·e. An element 
of a zerotree is considered as a zerotree root if this element is not the descendant of a previous 
zerotree root with respec t to the same threshold value. The significance map can then be efficiently 
represented by a string with tt1ree symbols: zerotree root, isolated zero, and significant. The isolated 
zero mean s that the coefficient is insignificant, but it has some significant descendant. At the finest 
scale, only two syn1bols are needed since all coefficjents have no children, tl1us the symbol for 
zerotree root is. not used. The symbol string is then entropy encoded. Zerotree coding efficiently 
redu ces the cost for encoding the significance map by using self-similarity of the coefficients at 
different scales. Additionally , it is different fror11 the trad.itional run-len.gtl1 coding that is used in 
DCT-based coding scl1emes. Ea.ch· symbol in a zerotree is a single terminating symbol, which can 
be applied to all depths of the zerotree, similar to. the end-of-block (BOB) symbol in the JPEG and 
MPEG video coding standards. The differer1ce between the zerotree and EOB is that tl1e zerotree 
represents the insignjficance information at a given orientation ·across di'fferent scale layers. There­
fore, the zerotree .can efficiently exploit the self-similarity of tJ)e coefficients at tl1e different scales 
corresponding to the san1e spatial location. The EOB only represents the insignificance inf or ,nation 
over the sp.atial area at the same scale. 

In summary, the zerotree-coding scheme tries to reduce. the number of bits to encode tJ1e 
significance map, which is used to encode the insignificant coefficients. Tl1erefore, more bits can 
be allocrtte-d to encode tl1e important significant coefficients. It should be empl1asized that thi'S 
zerotree coding scheme of wavelet coefficients is an en1bedded coder, whicl1 means that an encoder 
can ter1ninate the encoding at any point according to a given target bit rate or target distortion 
metric. Simil arly, a decoder which receives this embedded stream can term·inate at any point to 
recons .truct an image that has been scaled jn quality. 

Another ernbedded wavelet coding method is the SPIHT-based ·algorithm (Said and Pearlman, 
1996). This algorithm in.eludes two m~jor core tecl1niques: the set partitioning sorting algorithm 
and the spatial o.rientation tree. The set partitioning sorting algorithm is the algorithm that hierar­
chically divides coefficie.nts into si.gnificant and insignificant, from the most significa11t bit to the, 
least sign,ificant bit, by decreasing tl1e threshold value at each hierarchical step for co,nstructing a 
significance map. At each threshold va]ue, the codin.g process consists of two passes: the sorting 
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FIGURE 8.8 Relationship bet\veen pixels in 
the spatial orientation tree. 
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pas-s and tl1e refinement pass except for th,e first threshold that l1as 011ly the sorting pass. Let 
c(i,J) represent the ,vavelet-transfom1ed coefficients and 11i is ar1 integer. The sorting pass involves 
selecting the coefficients such tl1al 2,n .~ [c(i,j) j ~ 2,n+t, \Vith 111 being decreased at e,1ch pass. This 
process divides the coefficients into subsets and tl1en tests each of these subsets for significant 
coefficients. Th.e significance map constructed in the procedure is tree-e11coded. Tl1e significant 
infor1,11ation is store in three ordered lists: list of insignificant pixels (LIP), list of significant pixels 
(LSP), and list of insignificant sets (LIS ). At tl1e end of eacl1 sor tir1g pass, the LSP contains tl1e 
coordinates of all significant coefficie11ts with respect to tt1e threshold at that step. The entries in 
the LIS can be one of two ty·pes: type A represents all ils descendants, type B represents all its 
descendants from its grandchildren on\vard. The refinement pass invol,,es t1·a11smitt ing the 111th ­

most significant bit of all the coefficients with respect to the threshold, 2,1.1+1• 

The idea of a spatial orientation tree is based on the following observation . Non nally , an1ong 
the transfo1 med coefficients most of the energy is concentrated in the low frequencies. For the 
wavelet transfor111, when we move from the highest to the lo\vest levels of the subband pyramid 
th,e energy usually decreases. It is also observed that there exists stror1g spat ial self-s imilarity 
between subbands in the same spatial location such as in the zero tree case. The ref ore, a spatial 
o·rientation tree structure has been proposed for the SPIHT algorithm. The spatial orientation tree 
natu·rally defines the Spatial relationship on the hierarchical pyramid as sho\vn in Figure 8.8. 

During the coding, the \Vavelet-transformed coe·fficients are first organized into spatial orientation 
trees as in Figure 8.8. Irt the spatial orientation tree, eacl1 pixel (i,j ) from the fom1er set of subbands 
is seen as a root for the pixels (2i, 21), (2i+ l, 2J), (2i,2j+ I ), and (2i+ 1, 2}+ I ) in the subba nds of the 
current level. For a given n-level decomposition, this structure is used to link pixe'ls of the adjacent 
subband.s from level ri until to level J. In the highest-level ,i, the pixels in the low-pass subband are 
linked to, the pixels in the three. h-igh-pas_s subbands at the same level. In the subseque nt levels, all 
the pixels of a s.ubband are involved in the tree-forming process. Each pixel is linked to the pixels 
of the adjacent subband at the next lower level. The tree stops at the lowest level. 

The implementation of the· SPIHT algorithm consists of four steps: initialization, ·sorting pass, 
refinement pass, and quantization scale update. In the iniLiali.zation step, we find an integer nz = 
L10g2.(maxc;.,1{ Jc(i,j)I} )J. Here L J represent an operation of obtaining the larg-est integer less than 
lc(i,j)I. The value of 11i is used for testing th.e significance of coefficients and constructing the 
significance map. The LIP is set as an em.pty list. The LIS is initialized to contain all the coefficients 
in the low-pass subbands that have descendants. These coe.fficients can be used as roots of spatial 
trees. All these coefficients are· assigned to be of .type A. The LIP is jnitialized to contain all the 
coefficients in the low-pass subbaAds. 

In the sorting .pass, each entry of the LIP is tested for significance with respect to the threshol.d 
value 2n,. The significance map is ~ransmitted in the following wa,y. If it is significant, a ''I'' is 
transmit .ted1 a sign bit of the c0efficient is. transmitted, and the· coefficient coordinates are moved 
to the LSP. Otherwise, a '~O'' is transfl'.litted. Th·en, each entry of the LIS is tested for finding tlle 
significant descendants. If there are n~ne, a ''O'' is transmitted .. If the entry has at least one signi~ca_nt 
descenda .nt, then a '' ·t '' is transmitted and eac.h 0f the immediate descendants are tested t·or s1gnif:. 
icance. The s.ignifieance map for the immediate descendants 'is transmitted in such a. way that if it 
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is sig11ific,1nt, ,1 '' I'' plus a sig11 bit ,1re transn1itted a11d the coefficient coordin·ates are app·ended to 
the LSP. If it is not significa11t, a ' ·01

' is transmitted and the coefficient coordinates are appended 
to the LIP. If' tl1e coefficie11t l1as more descendants, then it is moved to the end of the LIS as an 
entry of type B. If an entry in tt1e LIS is of type B~ then its descendants are tested for significance. 
If at least 011e of then, is significant, then this entry is removed fron1 the list, and its immediate 
descendants are appe11ded to the end of the list of type A. For tl1e refinement pass~ the 1rith-most 
significant bit of the magnitude of eacl1 entry of tl1e LSP is tra11smitted except those in the current 
sorting pass. For tl1e quantiz,1tion scale update step, ,,z is decreased by J and the procedure is 
repeated from tl1e sorti n.g pass. 

8.3 WAVELET TRANSFORM FOR JPEC-2000 

8.3.1 INTRODU CTION TO JPEC-2000 

Most in1age codjng standards so far l1ave exploited the OCT as their core techniqt1e for image 
decomposition. However, recenLly tl1ere l1as been a noticeable change. Tl1e wavelet transform I1as 
been adopted by MPEG-4 for still i,nage coding (1npeg4). AJso, JPEG-2000 is considering using 
the wavelet transforn1 as its core tecl1nique for the next generation of the still image coding standard 
(jpeg2000 vm). Tl1is is because the \,Vavelet transfo1m can provide not only excellent coding 
efficiency, but also good spatial and quality scaJable functionality. JPEG-2000 is a new type of 
in1age compressior1 system under developn1ent by Joint Photographic Experts Group for still image 
codin g. This standard is intended to meet a need for image compression witl.1 great flexibility and 
efficient interchangeability. JPEG-2000 is also intended to offer unprecedented access· ihto the 
image while still in compressed domain. Thus, in1ages can be accessed, manipulated , edited, 
tra11smitted, and stored in a compressed form. As a new coding standard, tt1e detailed requirement s 
of JPEG- 2000 i11clude: 

Lo~v bit-rate co111p1·essiorz perfo1·111a1ice: JPEG-2000 is required to offer excellent coding 
perform ance at bit rates lower tl1an 0.25 bits per pixel for highly detailed gray-bits per 
level images since tl1e current JPEG ( l 0918-1) cannot provide satisfactory results at this 
range of bit rates. This is the primary feature of JPEG-2000. 

Lossl ess a11d Loss)' co111p1·essio11.: it is desired to provide lossless compressio n naturally in the 
c_ourse of progressive decoding. Tt1is 1·eature is especially important for medical image 
codi ng_ where the loss is not alway.sa llowed. Also, other applications sucl1 as high-quality 
image archiva l systerns and network applications desire to have tl1e functionality of lossless 
reconstructior1. 

La,·ge i111ages: currently, the JPEG image compression algorithm does not allo\v for in1ages 
greater tl1an 64K by 64K witl1out tiling. 

Si,zgle deco11iposition a.rchitecll.t 1·e: the current JPEG standard has 44 modes; many of these 
modes are for specific applications and not us.ed by the n1ajority of JPEG decoders. 1t is 
desired to have a single decomposition architecture that can encon1pass ll1e interchange 
between applications. 

T1·a,is11zissio11 irz 1zois)' e11vi1·011r11.e11ts: it is desirable to oons.ider error robustness \vhile design­
ing the coding algoritl1rn. This is important for the application of wireless communication. 
The current JPEG has provision ·for restart intervals,. but image quality suffers dran1atically 
when bit errors are encountered. 

Co11zpi,ter -ge1ie1·ated i111age1)1: the current JPEG. is optimized for natural imagery and does 
not perform well on cornpuier-generated imagery or computer graphics. 

Co1rzpou11d doci,nze,its: the new coding sta11dard is desired to be capable of compressing both 
continuous-to .ne and bilevel i1nacres. The codino scl1eme can compress ar1d decompres s . . .. 0 0 

image·s from J bit to 16 bit.s for each color compone11t. The current JPEG sta11dard does 
not work well for bilevel jrnages. 
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Progressi've tra11s111issio11 by pi..tel acc111·ac)1 a11d resol,,tio,z: progressive trans111ission that 
allo,vs images to be transmitted with increasing pixel accuracy or spati ,ll resolution is 
important for many applications. Tl1e image can be reconstructed witl1 different reso lutions 
and pixel accuracy as needed for different target devices such as jn World Wide Web 
applications and image archiving. 

Rea/-ti111.e e11codi12g a11d decodi11g: for real-time applications, the codir1g sct1eme should be 
capable ot· compressing and decon1pressi ng vvi th a single seq uen ti al pass. Of course, 
optimal performance cannot be guaranteed in tl1is case. 

Fixed rate,fi :'Ced size, a,zd li11zited lvorkspace 111e111ory: the requiren1ent of fixed bit rate allo\vs 
the decoder to run in real time through channels \vith limited band\.vidtl1. The limited 
memory space is required by the l1ard\vare imple1nentation of decod ing. 

There are also some other requirements such as backwards co111pntibility \Vith JPEG , open 
architecture t·or optimizing the system for different image types a11d app I ications, i r1 terface with 
MP·EG-4, and so on. All these requirements are seriously being co11sidered during tl1e developme .nt 
of JPEG-2000 . However, it is still too early to con1n1enl \Vl1ether all targets can be reacl1ed at this 
moment. There is no doubt, though, that the basic requirement or1 the ·odi ng performan ce at very 
lo\v bit rate for still image coding \viii be achieved by using ,vavelet-ba ed coding as the core 
technique instead of DCT-based coding. 

8.3.2 VERIFICATION MODEL OF JPEG-2000 

Since JPEG·-2000 is still a\vajting finalization, \Ve introduce the techniques tt1at are very likely to 
be adopted by the new standard. As in other standards sucl1 as MPEG-2 and MPEG-4 , the verifi­
cation model (VM) plays an important role during the development or standards. This is because 
the VM or TM (test model for MPEG-2) is a platform for verifying and testing ll1e new techniques 
before they are adopted as standards. The VM is updated by completing a set of core experimenLS 
from one meeting to another. Experience 11as shovvn that the decoding pa-rt of tl1e final version of 
-vM is \'ery close to the final standard. Therefore, in order to give an overview of the related wavelet 
transfo1 in parts of the JPEG-2000, \Ve start to ir1troduce the newest version of JPEG- 2000 V tvf 
Upeg2000 vm). The VM of JPEG-2000 describes the encoding process, decodi r1g process, and the 
bitstream syntax, ,vhich eve·ntually completely defin·es the functionality of the existing JPEG-2000 

• comp.ress1on system. 
The newest version of the JPEG-2000 verification 111odel, current ly VM 4.0, was revised on 

April 22, 1999. Irr this VM, the final convergence has not been reached, but severa l candidates ha\'e 
been introduced. These techniques include a OCT-based coding mode, whicl1 is currentl)1 the 
baseline JPEG, and a wavelet-based 'coding mode. In the \Vavelet-based coding mode , several 
algorithms have been proposed: overlapped spatial segmented wavelet transform (SSWT), non­
overlapped SSWT, and the embedded block-based coding with optimized truncation (EBCOT). 
Among these techniques, and acc,ording to current consensus, EBCOT is a very like ly candidate 
for adoption into the final JPEG-2000 standard. 

The basic idea of EBCOT is the combinatjon ot· block coding with wavelet transform. First 
the image is decomposed into subbands using the wavelet transfor111. The wavelet transform is not 
restricted to any particular decomposition. However, the Mallat wavelet provides t.he best cornpres­
sjo.n perfo11nance, ©n average, for natural images; there.fore, the current bitstrean1 syntax is restricted 
~o the standard Mallat wavelet transfor1n in VM 4.0. After decomposition, each subband .is divided 
into 64 x 64 blocks, except at image boundaries where some blocks may have smaller sizes. Ev~f)' 
block is then coded independently. Fore·ach bio·ck, a·separate bitstream is generated without utilizing 
any infor111ation from other blocks. The key techniques used for coding include an embedded quad­
tree algorithm and fractional bit-plane coding . 
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FIGURE 8.9 Example of s,ub-block partitioning 
for a block of 64 x 64. 
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The idea of an e1nbedded quad-tree algorithm is that it uses a single bit ro represent \Vl1ether 
or r1ot eacl1 leading bit-plane contai11s any significant samples. The quad-tree is forn1ed in the 
followir1g way. Tl1e subband is partitioned into a basic block. The basic block size is 64 x 64. Eacl1 
basic block is further partitioned into J 6 x 16 sub-·blocks, as shown in Figure 8 .. 9. Let a i (B,~) denote 
the significance of sub-block, B,"(k is the ktl1 sub-block as shown in Figure 8.9), in jth bit plane of 
itt1 block . 11· one or more samples i11 the sub-block l1ave tl1e magnitude greater tl1an 21, then 
a l(B,~) = I ; otherwise, a 1(Bf) = 0. For each bit-plane, the information concerning tl1e significant 
sub-blocks is fir t encoded. All otl1er sub-blocks can then be bypassed i11 the ren1aining coding 
procedure for tl1at bit-plar1e. To specify the exact coding sequence, we define a t\VO-level quad-tree 
for the block size of 64 x 64 and sub-block size of 16 x 16. The level-1 quads, Q/ [kJ, consist of 
four sub-bl ocks, B/, B,~. 8j3, Bt from Figure 8.9. In the sa111e \vay, we define leve.1-2 quads, Q,J[k], 
to be 2 x 2 groupings of level- I quads. Let oi(Qf [k]) denote the significance of the level-I quad, 
Qf [k], in jth bit-plane. If at least one member sub-block is significant in the jth bit-plane, then 
a i(Q/[k]) = I ; otherwise, a i(Q/ [k]) = 0. At each bit-pla.ne, the quad-tree coder visits the level-2 
quad first, followed by lev.el-1 quads. When visiting a particular quad, Q;L[k](L = 1 or 2, it is the 
number of the level), the coder sends tl1e significance of each o-f the four child quads, ai(Q;L[k]), 
or sub-blocks , a i(B{), as appropriate, except jf the significance value can be deduced from the 
decoder . Under the follo\ving t.l1ree cases, tl1e significance may be deduced by the decoder: ( 1) the 
relevant qtiad or sub-block \Vas significant in tl1e previous bit-plane; (2) the entire sub-block is 
insigr1ificant ; or (3) this is the last child or sub-block visited in Q;L[k] and all previous quads or 
sub-blocks are insign ificant. 

The idea of bit-plane coding is to entropy code the most sig11ificant bit first for all sam_ples in 
the sub-block s and Lo send the resultir1g bits. Then, the next most significant bit will be coded and 
sent, this process will be continued until all bit-planes have b.een coded and sent. This kind of 
bitstrean1 structure can be used for robust transmission. If the bjtstream is truncated due to a 
transmission error or some other re,1son, tl1en som·e or all the samples in the block may lose one 

• 

or more lea st significant bits. This will be equivalent to having used a coarser quantizer for the 
relevant samples and we can still obtain a reduced-quality reconstructed image. The idea of 
fractional bit-plane coding is to code each bit-plane vvitt, four passes : a for\vard significan.ce 
propagation pass, a backward significance propagation pass, a n1ag11itude refinen,ent pass, and a 
normaliz ·ation pass. For the tecl1nical details ot' fractional bit-plane coding, tl1e interested readers 
can refer to the YM 01~ JPEG-2000 Upeg2000 vn1). 

Finally, we briefly descrjbe tt1e· optimization issue of EBCOT. The encoding optimization 
algorithm is nol a part of tl1e standard, since the decod.er does 11ot n.eed to kno\v ho\v the encoder 
generates the bitstream. Fro1n the viewpoint df the standard, tl1e only requirement fron1 the decoder 
to the encoder is that the b.itstream n1ust be compliant ,vith the syntax of the standard. Ho\vever, 
from t.he other side, th·e bitstrearn s·y.ntax could alwcays be defined to favor certai11 coding algorithms 
for generating optimized b·itstreams. Tl1e optimization algoritl1m described 'here is justified 011ly if 
the distortion measure adopted t·or tl1e code blocks is add1itive. Tl1a1 is, rhe final distortion, D, ot· 
the whole reconstructed image should satisfy 

• 
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(8.24) 

where D,. is the distortion for block B1 and T; is tl1e tru11catio11 point for B;. Let R be the total number 
of bils for coding. all blocks of the ima:ge for a set of tru11cation poi nl 7,., tl1en 

(8.25) 

\Vh~re R;' are tl1e bits for coding block B;. Tl1e opti1nization process wist1es to find the suitable set 
9f ~ val1:1es, \Vl1icI1 minin1izes D subject to the constraint R ~ R,,,ax· R·11,, L'( is tl1e n1axim.u.m number 
of bits assigned for coding the image. Tl1e solution is obtained by the n1ethod of Lagrange 
multipljers: 

(8.26) 

,vhere the value A must be,adjusted t1ntil tl1e rate obta:ined by the tru11c.ation J)Oi11ts, \Vl1icl1 111ir1i1nize 
the value of L, satisfies R = R,

11
a.r· Fron1 Equation 8.26, we have a separa te trivial optimization 

problem for each individua1 block. Specially, for each bJock, B;, we find the trur1cation point, . T;, 
which minimizes the value (Rf; - tvD;'). This can be achieved by findi11g tl1e slope turning points 
of rate disto-rtion curve-s. In the VM, the set of truncation p.oi11ts a11d the slopes of rate distortion 
cur,,es are con1puted imm-ediately after each bl·ock is coded, a11d we only store enough infor1nation 
to later detem1.ine tl1e truncation points which correspond to tl1e slope turning points of rate distortion 
curves. This infor111alion is generally much smaller tl1an the bitstrean1 wl1ich is stored for the block 
itself. Also, the searcl1 for the optimal A is extremely fast and occupies a negligible portion of the 
overall computatio ·n time. 

8.4 SlJMMARY 

In this chapte~, image coding using the wavelet transform has been introduced. First, an overvie,v 
of \Vavelet theory ,vas given, and second, the principles of i1nage coding using wavelet transfonn 
have been presented. Additionally, two particular embedded i111age coding algorithms l1ave been 
explained, namely, the embed.ded zerotree and set partitioning in hierarchical trees. Finally, the 
new sta.ndard fot still image coding, JPEG-2000, \vhich may a·dopt tl1e wavelet as its core technique, 
has been described. 

8.5 EXERCISES 

8-1. For a given function, the Mexican hat wavelet 
-. ' ' 

f(t) = l, for ltl ~ 1, 
0, o.t/1 e r1-v is e 

Use Bqt1ations 8.3 a.nd 8.4 to deriY-e a clesed-ferm eX'.pression for the continuous wavelet 
transfor1n, · 'V ub(t). 

8-2. Cohsider the dilatie_n equation 

<p{t) = 41L, h( k )<p(2t - k) 
k 

• 
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How does <p(t) change if h(k) is shifted? Specifically, let g(k) = h(1i-l) 

i,.(t) = ~L,g(k)i,(2t-k) 
J.: 

How does tt(t) relate to cp(t)? 

8-3. Let <p0 (t) and <pb(t) be lwo scaling functions generated .by the two scaling fi.lters li"(k) and 
t1b(k). Show Ll1at the co11volutio11 ja(t)* jb(l) satisfies a dilation equation with /i

0
(k)* 

hb(k)I-V2. 
8-4. In tl1e appJi.cations of denoising and in1age enl1anceme11t, how can the wavelet transform 

improve lhe results? 
8-5. For a given function 

0 t < 0 

f(t)= t O~t<l 

I t ~ 1 

sho\v that tl1e wavelet transform of f(t) will be 

a 
2f b+- - f(b)- f(b+a) 

W ( a, b) = s gn ----=c.....-
2
--"---fal--=la=-I ---

wl1ere sgn(x) is the signum function defined as 

-1 I< 0 

sgn(x)= I t>O 

0 t= 0 

REFERENCES 

Cohe11, L. Ti1ne-Frequency Distributions -A Rev.ie\v, Proc. IEEE, Vol. 77, No. 7, July l989., pp. 941-981. 
Daubechies, I. Te11 lecr1,res 012 Wavelets, CB'MS Series, Pl1iladelpl1ia, SIAM, 1992. 
Grossman, A. and J. Mori et, Decornpositions of hard ·functions i11to square integrable \Vavelets of constant 

shape, SIAM 1. Matlz. A11al., 15(4), 723-736, 19.84. 
Jayant, N. S. and P. Noll, Digital Co<li,ig of wa,1efor111s; Engl~\VOOd Cliffs, NJ: Prentiee-Hall, I 984. 
jpeg2000 vtn, JPEG-2000 Verificati9n Model 4.0 (Tech. description), sc29wg01 NJ282, April 22, 1999. 
mpeg4. ISO/IEC 144.96-2, Coding of Audio-Visual ~bjects_, Nov. I 998. 
Said, A. and W. A. Pearlrnan, A ne\v fast and efficient i1nage codec based on set partitioning in l1ierarehical 

trees, IEEE Trai'zs. Ci,r:uits S)'SI. Vicleo Tec/1110/., 243-250. 1996. 
Shapiro, J. E1n.bedded i1nage coding using zerotrees of \Vavelet coefficie11rs, IEEE T,·a11s. Sig11al P,·ocess., 

3445-3462, Dec. 1993. 
Yetterli, ·M. and J. Kovacevic, Wavelets a11cl S11b.ba11tl Co<li11g, Englewood Cliffs, NJ: Prentice-l-Iall, I 995. 
Woods, J., Ed., s,~bband /111age Codi11g, Kluwer Ac.ademic Publishers, 1991. 

IPR2021-00827 
Unified EX1008 Page 209



• 

• 
• 

• 

• 

IPR2021-00827 
Unified EX1008 Page 210

+lLe

| y SN Bh ee
ei 5 aie Ki, vs —s B. Jy =
= deg ci i1 i _* : ba ? -

ni aedtee) Wat Ineoatacise i
|awe .

a !

re
i nm : 2

 
IPR2021-00827

Unified EX1008 Page 210


