I 0 UG -

|

116 Image and Video Compression for Multimedia Engineering

TABLE 5.9
Source Alphabet and Huffman Codes in Example 5.9

Source Symbol Occurrence Probability Codeword Assigned Length of Codeword

S, 0.3 00 >
S, 0.1 101 3
S, 0.2 1] >
S, 0.05 1001 4
S, 0.1 1000 4
S, 0.25 01 >

R, R v
’ N S5.423(0.45) r}suﬁ{“:sgj : .:I
S (0.3) :l_n_ Seaz3(0.45)—
B R B

Se (0.25) Bt

S (03 $,(03)
{inid, S(1.0)

Se "'I:h'?:'t:..': :_ " S(0.25)
5:(020) | S:(0.20)
'$2(00) >S:4(0.15)

r . T

| o R r e 1

] L =] - 1;1.' P i |

d 2 - ¥ = |

(0.10)— .| S,(0.10)
o~ M -y r | -

i e s H"." e z

] . o . il .

" i . = Sy T

1 f kLo *y !

= i s R e

FIGURE 5.1 Huffman coding procedure in Example 5.9.

5.2.2.1 Procedures

In summary, the Huffman coding algorithm consists of the following steps.

1. Arrange all source symbols in such a way that their occurrence probabilities are in a
nonincreasing order.

2. Combine the two least probable source symbols:

* Form a new source symbol with a probability equal to the sum of the probabilities
of the two least probable symbols.
* Assign a binary O and a binary 1 to the two least probable symbols.
. Repeat until the newly created auxiliary source alphabet contains only one source symbol.
4. Start from the source symbol in the last auxiliary source alphabet and trace back to each
source symbol in the original source alphabet to find the corresponding codewords.

(08

5.2.2.2 Comments

First, it is noted that the assignment of the binary 0 and 1 to the two least probable source symbols
in the original source alphabet and each of the first (u — 1) auxiliary source alphabets can be
implemented in two different ways. Here u denotes the total number of the auxiliary source symbols
in the procedure. Hence, there is a total of 2“ possible Huffman codes. In Example 5.9, there are
five auxiliary source alphabets, hence a total of 2° = 32 different codes. Note that each is optimum:
that is, each has the same average length.

Second, in sorting the source symbols, there may be more than one symbol having equal
probabilities. This results in multiple arrangements of symbols, hence multiple Huffman codes.
While all of these Huffman codes are optimum, they may have some other different properties.

IPR2021-00827
Unified EX1008 Page 142

Variable-Length Coding: Information Theory Results (I1) 117

For instance, some Huffman codes result in the minimum codeword length variance (Sayood, 1996).
This property 1s desired for applications in which a constant bit rate is required.

Third, Hulfman coding can be applied to r-ary encoding with > 2. That is, code symbols are
r-ary with r > 2.

5.2.2.3 Applications

As a systematic procedure (o encode a finite discrete memoryless source, the Huffman code has
found wide application in image and video coding. Recall that it has been used in differential
coding and transform coding. In transform coding, as introduced in Chapter 4, the magnitude of
the quantized transform coelficients and the run-length of zeros in the zigzag scan are encoded by
using the Huffman code. This has been adopted by both still image and video coding standards.

5.3 MODIFIED HUFFMAN CODES

5.3.1T MoTIvATION

As a result of Huffman coding, a set of all the codewords, called a codebook, 1s created. It 1s an
agreement between the transmitter and the receiver. Consider the case where the occurrence
probabilities are skewed, i.¢c., some are large, while some are small. Under these circumstances,
the improbable source symbols take a disproportionately large amount of memory space in the
codebook. The size of the codebook will be very large if the number of the improbable source
symbols is large. A large codebook requires a large memory space and increases the computational
complexity. A modified Huffman procedure was therefore devised in order to reduce the memory

requirement while keeping almost the same optimality (Hankamer, 1979).

Example 5.10
Consider a source alphabet consisting of 16 symbols, each being a 4-bit binary sequence. That 1s,

S={s,i=1,2,---,16}. The occurrence probabilities are

p(sl) = p(s'z) =1/4,

p(.g) = p(x_,) == p(sm)z 1/28.

The source entropy can be calculated as follows:

] I l l) : .
=2.| =2 log. — |+14-| ——log, — |=3.404 bits per symbol
H(S) 2[410:,34] (53 082 g P

Applying the Huffman coding algorithm, we find that the codeword lengths associated with
the symbols are: [, = [, = 2, y=4,and [y =ls= " = l,, = 5, where /; denotes the length of the ith

codeword. The average length of Huffman code 1s

16
Ly, = O, p(s,)}, =3.464 bits per symbol

i=]

We see that the average length of Huffman code is quite close to the lower entropy bound. It 18
noted, however, that the required codebook memory, M (defined as the sum of the codeword lengths),

IS quite large:

IPR2021-00827
Unified EX1008 Page 143

LY

118 Image and Video Compression for Multimedia Engineering

16

M=) 1,=73 bits

r=1

This number is obviously larger than the average codeword length multiplied by the number of
codewords. This should not come as a surprise since the average here is in the statistical sense insteac
of in the arithmetic sense. When the total number of improbable symbols increases, the requirec
codebook memory space will increase dramatically, resulting in a great demand on memory space.

5.3.2 ALGORITHM

Consider a source alphabet S that consists of 2* binary sequences, each of length v. In other words,
each source symbol is a v-bit codeword in the natural binary code. The occurrence probabilities
are highly skewed and there is a large number of improbable symbols in S. The modified Huftman
coding algorithm is based on the following idea: lumping all the improbable source symbols into
a category named ELSE (Weaver, 1978). The algorithm is described below.

1. Categorize the source alphabet S into two disjoint groups, S, and S,, such that

5 = {s,\p(.;,.) > QL} (517

S, = {Sf

2. Establish a source symbol ELSE with its occurrence probability equal to p(S,).

. Apply the Huffman coding algorithm to the source alphabet S; with S; = §, U ELSE.
4. Convert the codebook of S, to that of S as follows.

* Keep the same codewords for those symbols in S,.
* Use the codeword assigned to ELSE as a prefix for those symbols in S,.

and

I

plsi) 5?} (5.18)

W

5.3.3 CobeBook MEMORY REQUIREMENT

Codebook memory M is the sum of the codeword lengths. The M required by Huffman coding
with respect to the original source alphabet S is

M= 1=+ 1 (5.19)

ies €5 €5,

where /; denotes the length of the ith codeword, as defined previously. In the case of the modified
Huffman coding algorithm, the memory required M, is

M, = Zlf = zlr' + g g (5.20)

where /- is the length of the codeword assigned to ELSE. The above equation reveals the big
savings in memory requirement when the probability is skewed. The following example is used to
illustrate the modified Huffman coding algorithm and the resulting dramatic memory savings.

IPR2021-00827
Unified EX1008 Page 144

Variable-Length Coding: Information Theory Results (1) 119

]

)

FIGURE 5.2 The modified Huffman coding procedure in Example 5.11.

Example 5.11

In this example, we apply the modified Huffman coding algorithm to the source alphabet presented
In Example 5.10. We first lump the 14 symbols having the least occurrence probabilities together
to form a new symbol ELSE. The probability of ELSE is the sum of the 14 probabilities. That is,
P(ELSE) = 5 - 14 = 1.

Apply Huffman coding to the new source alphabet S; = {s,, 55, ELSE }, as shown in Figure 5.2.
From Figure 5.2, it is seen that the codewords assigned to symbols s,, s,, and ELSE, respectively,
are 10, 11, and 0. Hence, for every source symbol lumped into ELSE, its codeword 1s O followed
by the original 4-bit binary sequence. Therefore, M,, =2 + 2 + | =35 bits, 1.e., the required
codebook memory is only 5 bits. Compared with 73 bits required by Huffman coding (refer to
Example 5.10), there is a savings of 68 bits in codebook memory space. Similar to the comment
made in Example 5.10, the memory savings will be even larger if the probability distribution is
skewed more severely and the number of improbable symbols is larger. The average length of the

modified Huffman algorithm is L= 1.2.24+4-5-14=3.5 bits per symbol. This demonstrates

L

that modified Huffman coding retains almost the same coding efficiency as that achieved by
Huffman coding.

5.3.4 BounDps oN AveraGE CODEWORD LENGTH
[t has been shown that the average length of the modified Huffman codes satisfies the following

condition:

H(S)<L <H(S)+1-plog,p (5.21)

ave

where p = X__ . p(s). It is seen that, compared with the noiseless source coding theorem, the upper

bound of the code average length is increased by a quantity of —p log, p. In Example 5.11 ‘it 1S
seen that the average length of the modified Huffman code is close to that achieved by the Huffman

code. Hence the modified Huffman code is almost optimum.

5.4 ARITHMETIC CODES

Arithmetic coding, which is quite different from Huffman coding, is gaining increasing popularity.

In this section, we will first analyze the limitations of Huffman coding. Then the principle of

arithmetic coding will be iritroduced. Finally some implementation issues are discussed briefly.

IPR2021-00827

Unified EX1008 Page 145

120 Image and Video Compression for Multimedia Engineering

5.4.1 Limitations oF HurkMAN CODING

As seen in Section 5.2, Huffman coding is a systematic procedure for encoding a source alphabet,
with each source symbol having an occurrence probability. Under these circumstances, Huffman
coding is optimum in the sense that it produces a minimum coding redundancy. It has been shown

that the average codeword length achieved by Huffman coding satisfies the following inequality
(Gallagher, 1978).

H(S)<L <H(S)+p_ +0.086 (5.22)

avg mix

where H(S) is the entropy of the source alphabet, and p_ , denotes the maximum occurrence
probability in the set of the source symbols. This inequality implies that the upper bound of the
average codeword length of Huffman code is determined by the entropy and the maximum occur-
rence probability of the source symbols being encoded.

In the case where the probability distribution among source symbols 1s skewed (some proba-
bilities are small, while some are quite large), the upper bound may be large, implying that the
coding redundancy may not be small. Imagine the following extreme situation. There are only two
source symbols. One has a very small probability, while the other has a very large probability (very
close to 1). The entropy of the source alphabet in this case is close to 0 since the uncertainty 1S
very small. Using Huffman coding, however, we need two bits: one for each. That 1s, the average
codeword length is 1, which means that the redundancy is very close to 1. This agrees with
Equation 5.22. This inefficiency is due to the fact that Huffman coding always encodes a source
symbol with an integer number of bits.

The noiseless coding theorem (reviewed in Section 5.1) indicates that the average codeword
length of a block code can approach the source alphabet entropy when the block size approaches
infinity. As the block size approaches infinity, the storage required, the codebook size, and the
coding delay will approach infinity, however, and the complexity of the coding will be out of control.

The fundamental idea behind Huffman coding and Shannon-Fano coding (devised a little earlier
than Huffman coding [Bell et al., 1990]) is block coding. That is, some codeword having an integral
number of bits is assigned to a source symbol. A message may be encoded by cascading the relevant
codewords. It is the block-based approach that is responsible for the limitations of Huffman codes.

Another limitation is that when encoding a message that consists of a sequence of source
symbols, the nth extension Huffman coding needs to enumerate all possible sequences of source
symbols having the same length, as discussed in coding the nth extended source alphabet. This is
not computationally efficient.

Quite different from Huffman coding, arithmetic coding is stream-based. It overcomes the
drawbacks of Huffman coding. A string of source symbols is encoded as a string of code symbols.
Hence, it is free of the integral-bits-per-source symbol restriction and is more efficient. Arithmetic
coding may reach the theoretical bound to coding efficiency specified in the noiseless source coding
theorem for any information source. Below, we introduce the principle of arithmetic coding, from
which we can see the stream-based nature of arithmetic coding.

5.4.2 PrincipLe OF ARITHMETIC CODING

To understand the different natures of Huffman coding and arithmetic coding, let us look at
Example 5.12, where we use the same source alphabet and the associated occurrence probabilities
used in Example 5.9. In this example, however, a string of source symbols s,s,5,5,5s5 is encoded.
Note that we consider the terms string and stream to be slightly different. By stream, we mean a
message, or possibly several messages, which may correspond to quite a long sequence of source
symbols. Moreover, stream gives a dynamic “flavor.” Later on we will see that arithmetic coding

IPR2021-00827
Unified EX1008 Page 146

Variable-Length Coding: Information Theory Results (1) 121

TABLE 5.10

Source Alphabet and Cumulative Probabilities in Example 5.12

Source Symbol Occurrence Probability ~ Associated Subintervals CP
S, 0.3 (0, 0.3) 0
S, 0.1 0.3, 0.4) 0.3
S, 0.2 0.4, 0.6) 0.4
S, 0.05 0.6, 0.65) 0.6
S, 0.1 [0.65, 0.75) 0.65
S 0.25 [0.75, 1.0) 0.75

1s implemented in an incremental manner. Hence stream is a suitable term to use for arithmetic
coding. In this example, however, only six source symbols are involved. Hence we consider the
term string to be suitable, aiming at distinguishing it from the term block.

Example 5.12

The set of six source symbols and their occurrence probabilities are listed in Table 5.10. In this
example, the string to be encoded using arithmetic coding is 5,5,5,5,5:5,. In the following four
subsections we will use this example to illustrate the principle of arithmetic coding and decoding.

5.4.2.1 Dividing Interval [0,1) into Subintervals

As pointed out by Elias, it is not necessary to sort out source symbols according to their occurrence
probabilities. Therefore in Figure 5.3(a) the six symbols are arranged in their natural order, from
symbols s, s,, -+, up to s.. The real interval between O and 1 is divided into six subintervals, each
having a length of p(s,), i = 1,2,---,6. Specifically, the interval denoted by [0,1) — where O is
included in (the left end is closed) and 1 is excluded from (the right end is open) the interval —
1s divided into six subintervals. The first subinterval [0, 0.3) corresponds to s, and has a length of
P(s)), i.e., 0.3. Similarly, the subinterval [0, 0.3) is said to be closed on the left and open on the
right. The remaining five subintervals are similarly constructed. All six subintervals thus formed
are disjoint and their union is equal to the interval [0, 1). This is because the sum of all the
probabilities is equal to 1.

We list the sum of the preceding probabilities, known as cumulative probability (Langdon,
1984), in the right-most column of Table 5.10 as well. Note that the concept of cumulative prob-
ability (CP) is slightly different from that of cumulative distribution function (CDF) in probability
theory. Recall that in the case of discrete random variables the CDF is defined as follows.

——
=1

The CP is defined as
CP(s;) = Zp(ﬂ‘) Sl

where CP(s,) =0 is defined. Now we see each subinterval has its lower end point located at CP(s;).
The width of each subinterval is equal to the probability of the corresponding source symbol. A
subinterval can be completely defined by its lower end point and its width. Alternatively, it 1s

IPR2021-00827

Unified EX1008 Page 147

122 Image and Video Compression for Multimedia Engineering

0 0.3 0.4 0.6 0.65 0.75 1.0
(a)
(0,0.3) @ [0.3.0.4) | [0.4,0.6) A [[075.10
\ [0.6.0.65)— [0.65,0.75)
(b)

i 0.09: ;;:0.12 0.18 0195 0225 \
| | |

® &
0
[0.09,0.12) 93
(c)
0.099 0.102 @ 0.108 0.1095 0.1125
e — \
l | ' 9
0.09 [0.102, 0.108) 0.12
(d)
/ 0.1083 0.1044 0.1056 0.1059 0.1065
o I | o | ®
0
e J@ Lo
[0.1056, 0.1059
(e)
0.10569 0.10572 0.10578 0.105795 0.105825
® | l | e ®

PR [0.105795, 0.105825)

(D)
/ 0.105804 0.105807 0.105813 0.1058145 0.1058175

I | I _.
0.105795 @ 0.1058250

[0.1058175, 0.1058250)

FIGURE 5.3 Arithmetic coding working on the same source alphabet as that in Example 5.9. The encoded
symbol string is S, S, S, S, S, S,.

determined by its two end points: the lower and upper end points (sometimes also called the left
and right end points).

Now we consider encoding the string of source symbols §15,5354855¢ with the arithmetic coding
method.

5.4.2.2 Encoding

Encoding the First Source Symbol

Refer to Figure 5.3(a). Since the first symbol is 5,, we pick up its subinterval [0, 0.3). Picking up
the subinterval [0, 0.3) means that any real number in the subinterval, i.c.. any real number equal
to or greater than O and smaller than 0.3, can be a pointer to the subinterval, thus representing the
source symbol s,. This can be justified by considering that all the six subintervals are disjoint.

Encoding the Second Source Symbol
Refer to Figure 5.3(b). We use the same procedure as used in part (a) to divide the interval [0, 0.3)

Into six subintervals. Since the second symbol to be encoded is §,, We pick up its subinterval [0.09,
0.12).

IPR2021-00827
Unified EX1008 Page 148

R

Variable-Length Coding: Information Theory Results (1) 123

Notice that the subintervals are recursively generated from part (a) to part (b). It is known that
an interval may be completely specified by its lower end point and width. Hence, the subinterval
recursion n the arithmetic coding procedure is equivalent to the following two recursions: end
point recursion and width recursion.

From interval [0, 0.3) derived in part (a) to interval [0.09, 0.12) obtained in part (b), we can
conclude the following lower end point recursion:

=L +W.__ .CP (5.25)

Hew crrent current new

where L., L,,.. represent, respectively, the lower end points of the new and current recursions.,
and the W, and the CP,, denote, respectively, the width of the interval in the current recursion

Tewn

and the cumulative probability in the new recursion. The width recursion is

W, = 11{'1:#:'”! . p(Sf) (526)

flen

where W,,.., and p(s,) are, respectively, the width of the new subinterval and the probability of the
source symbol s, that 1s being encoded. These two recursions, also called double recursion (Langdon,

1984), play a central role in arithmetic coding.

Encoding the Third Source Symbol

Refer to Figure 5.3(c). When the third source symbol is encoded, the subinterval generated above
in part (b) is similarly divided into six subintervals. Since the third symbol to encode is s, its
subinterval [0.102, 0.108) is picked up.

Encoding the Fourth, Fifth, and Sixth Source Symbols
Refer to Figure 5.3(d,e,f). The subinterval division is carried out according to Equations 5.25 and
5.26. The symbols s,, s, and s, are encoded. The final subinterval generated is [0.1058175,
0.1058250).

That is, the resulting subinterval [0.1058175, 0.1058250) can represent the source symbol string
515,5154555¢. Note that in this example decimal digits instead of binary digits are used. In binary

arithmetic coding, the binary digits 0 and 1 are used.

5.4.2.3 Decoding

As seen in this example, for the encoder of arithmetic coding, the input is a source symbol string
and the output is a subinterval. Let us call this the final subinterval or the resultant subinterval.
Theoretically, any real numbers in the interval can be the code string for the input symbol string
since all subintervals are disjoint. Often, however, the lower end of the final subinterval 1s used as
the code string. Now let us examine how the decoding process Is carried out with the lower end

of the final subinterval. _
Decoding sort of reverses what encoding has done. The decoder knows the encoding procedure

and therefore has the information contained in Figure 5.3(a). It compares the lower end point of

the final subinterval 0.1058175 with all the end points in (a). It 18 determined that 0 < 0.1058175 <
0.3. That is, the lower end falls into the subinterval associated with the symbol s,. Therefore, the

Symbol s, is first decoded. _ ‘
Once the first symbol is decoded, the decoder may know the partition of submterva_ls show‘n In
Figure 5.3(b). It is then determined that 0.09 < 0.1058175 < 0.12. That is, the lower end 1s contained
In the subinterval corresponding to the symbol s,. As a result, s, is the s§c0nd decodcq symbol.
The procedure repeats itself until all six symbols are decoded. That is, based on Figure 5.3(c),
it is found that 0.102 < 0.1058175 < 0.108. The symbol s, is decoded. Then, the symbols s,, s,
are subsequently decoded because the following inequalities are determined:

IPR2021-00827

Unified EX1008 Page 149

124 Image and Video Compression for Multimedia Engineering

0.1056 < 0.1058175 < 0.1059
0.105795 < 0.1058175 < 0.1058250
0.1058145 < 0.1058175 < 0.1058250

Note that a terminal symbol is necessary to inform the decoder to stop decoding.

The above procedure gives us an 1dea of how decoding works. The decoding process, however,
does not need to construct parts (b), (c), (d), (e), and (f) of Figure 5.3. Instead, the decoder only
needs the information contained in Figure 5.3(a). Decoding can be split into the following three
steps: comparison, readjustment (subtraction), and scaling (Langdon, 1984).

As described above, through comparison we decode the first symbol s,. From the way
Figure 5.3(b) 1s constructed, we know the decoding of s, can be accomplished as follows. We
subtract the lower end of the subinterval associated with s, in part (a), that is, O in this example,
from the lower end of the final subinterval 0.1058175, resulting in 0.1058175. Then we divide this
number by the width of the subinterval associated with s, 1.e., the probability of s, 0.3, resulting
in 0.352725. Looking at part (a) of Figure 5.3, it 1s found that 0.3 < 0.352725 < 0.4. That 1s, the
number is within the subinterval corresponding to s,. Therefore the second decoded symbol 1s s,.
Note that these three decoding steps exactly “undo™ what encoding did.

To decode the third symbol, we subtract the lower end of the subinterval with s,, 0.3 from
0.352725, obtaining 0.052725. This number is divided by the probability of s,, 0.1, resulting in
0.52725. The comparison of 0.52725 with end points in part (a) reveals that the third decoded
symbol Is s;.

In decoding the fourth symbol, we first subtract the lower end of the s,’s subinterval in part (a),
0.4 from 0.52725, getting 0.12725. Dividing 0.12725 by the probability of s;, 0.2, results in 0.63625.
Referring to part (a), we decode the fourth symbol as s, by comparison.

Subtraction of the lower end of the subinterval of s, in part (a), 0.6, from 0.63625 leads to
0.03625. Division of 0.03625 by the probability of s,, 0.05, produces 0.725. The comparison
between 0.725 and the end points in part (a) decodes the fifth symbol as s;.

Subtracting 0.725 by the lower end of the subinterval associated with s in part (a), 0.65, gives
0.075. Dividing 0.075 by the probability of s, 0.1, generates 0.75. The comparison indicates that
the sixth decoded symbol is s;.

In summary, considering the way in which parts (b), (c¢), (d), (e), and (f) of Figure 5.3 are
constructed, we see that the three steps discussed in the decoding process: comparison, readjustment,
and scaling, exactly “undo” what the encoding procedure has done.

5.4.2.4 Observations

Both encoding and decoding involve only arithmetic operations (addition and multiplication In
encoding, subtraction and division in decoding). This explains the name arithmetic coding.

We see that an input source symbol string s,5,5;5,555¢, via encoding, corresponds to a subinterval
[0.1058175, 0.1058250). Any number in this interval can be used to denote the string of the source
symbols.

We also observe that arithmetic coding can be carried out in an incremental manner. That 1s,
source symbols are fed into the encoder one by one and the final subinterval is refined continually,
1.e., the code string is generated continually. Furthermore, it is done in a manner called first in first
out (FIFO). That is, the source symbol encoded first is decoded first. This manner is superior to
that of last in first out (LIFO). This is because FIFO is suitable for adaptation to the statistics of
the symbol string.

It is obvious that the width of the final subinterval becomes smaller and smaller when the length
of the source symbol string becomes larger and larger. This causes what is known as the precision

IPR2021-00827
Unified EX1008 Page 150

Variable-Length Coding: Information Theory Results (I1) 125

problem. It is this problem that prohibited arithmetic coding from practical usage for quite a long
period of time. Only after this problem was solved in the late 1970s, did arithmetic coding become
an increasingly important coding technique.

It is necessary (o have a termination symbol at the end of an input source symbol string. In
this way, an arithmetic coding system is able to know when to terminate decoding.

Compared with Huffman coding, arithmetic coding is quite different. Basically, Huffman coding
converts each source symbol into a fixed codeword with an integral number of bits, while arithmetic
coding converts a source symbol string to a code symbol string. To encode the same source symbol
string, Huffman coding can be implemented in two different ways. One way is shown in Example 5.9.
We construct a fixed codeword for each source symbol. Since Huffman coding is instantaneous,
we can cascade the corresponding codewords to form the output, a 17-bit code string
00.101.11.1001.1000.01, where, for casy reading, the five periods are used to indicate different
codewords. As we sce that for the same source symbol string, the final subinterval obtained by
using arithmetic coding is [0.1058175, 0.1058250). It is noted that a decimal in binary number
system, 0.0001 1011111111, whichis of 15 bits, is equal to the decimal in decimal number system,
0.1058211962, which falls into the final subinterval representing the string s,5,5,5,5555. This indi-
cates that, for this example, arithmetic coding is more efficient than Huffamn coding.

Another way is to form a sixth extension of the source alphabet as discussed in Section 5.1.4:
treat each group of six source symbols as a new source symbol; calculate its occurrence probability
by multiplying the related six probabilities; then apply the Huffman coding algorithm to the sixth
extension of the discrete memoryless source. This is called the sixth extension of Huffman block
code (refer to Section 5.1.2.2). In other words, in order to encode the source String §,5,55,545,
Huffman coding encodes all of the 6% = 46,656 codewords in the sixth extension of the source
alphabet. This implies a high complexity in implementation and a large codebook. It is therefore
not efficient.

Note that we use the decimal fraction in this section. In binary arithmetic coding, we use the
binary fraction. In (Langdon, 1984) both binary source and code alphabets are used in binary
arithmetic coding.

Similar to the case of Huffman coding, arithmetic coding is also applicable to r-ary encoding
with r > 2.

5.4.3 IMPLEMENTATION ISSUES

As mentioned, the final subinterval resulting from arithmetic encoding of a source symbol string
becomes smaller and smaller as the length of the source symbol string increases. That 1s, the lower
and upper bounds of the final subinterval become closer and closer. This causes a growing precision
problem. It is this problem that prohibited arithmetic coding from practical usage for a long period
of time. This problem has been resolved and the finite precision arithmetic is now used in arithmetic
coding. This advance is due to the incremental implementation of arithmetic coding.

5.4.3.1 Incremental Implementation

Recall Example 5.12. As source symbols come in one by one, the lower and upper ends of the
final subinterval get closer and closer. In Figure 5.3, these lower and upper ends in Example 5.12
are listed. We observe that after the third symbol, s3, is encoded, the resultant subinterval 1s [0.102,
0.108). That is, the two most significant decimal digits are the same and they remain the same in
the encoding process. Hence, we can transmit these (wo digits without affecting the final code
string. After the fourth symbol s, is encoded, the resultant subinterval is [0.1056, 0.1059). That 1s,
one more digit, 5, can be transmitted. Or we say the cumulative output is now .105. After the sixth
symbol is encoded, the final subinterval is [0.1058175, 0.1 058250). The cumulative output is 0.1058.
Refer to Table 5.11. This important observation reveals that we are able to incrementally transmit
output (the code symbols) and receive input (the source symbols that need to be encoded).

IPR2021-00827

Unified EX1008 Page 151

126 Image and Video Compression for Multimedia Engineering

TABLE 5.11
Final Subintervals and Cumulative Output in Example 5.12

Final Subinterval

Source Symbol Lower End Upper End Cumulative Output
S, 0 0.3 —
S5 0.09 0.12 —
S, 0.102 0.108 0.10
S, 0.1056 0.1059 0.105
Sg 0.105795 0.105825 0.105
¥ 0.1058175 0.1058250 0.1058

5.4.3.2 Finite Precision

With the incremental manner of transmission of encoded digits and reception of input source
symbols, 1t 1s possible to use finite precision to represent the lower and upper bounds of the resultant
subinterval, which gets closer and closer as the length of the source symbol string becomes long.

Instead of floating-point math, integer math is used. The potential problems known as underflow
and overflow, however, need to be carefully monitored and controlled (Bell et al., 1990).

5.4.3.3 Other Issues

There are some other problems that need to be handled in implementation of binary arithmetic
coding. Two of them are listed below (Langdon and Rissanen, 1981).

Eliminating Multiplication

The multiplication in the recursive division of subintervals is expensive in hardware as well as
software. It can be avoided in binary arithmetic coding so as to simplify the implementation of
binary arithmetic coding. The idea is to approximate the lower end of the interval by the closest
binary fraction 2-¢, where Q is an integer. Consequently, the multiplication by 2-¢ becomes a right
shift by Q bits. A simpler approximation to eliminate multiplication is used in the Skew Coder
(Langdon and Rissanen, 1982) and the Q-Coder (Pennebaker et al., 1988).

Carry-Over Problem

Carry-over takes place in the addition required in the recursion updating the lower end of the
resultant subintervals. A carry may propagate over q bits. If the q is larger than the number of bits
in the fixed-length register utilized in finite precision arithmetic, the carry-over problem occurs. To
block the carry-over problem, a technique known as “bit stuffing” is used, in which an additional
buffer register is utilized.

For a detailed discussion on the various issues involved, readers are referred to (Langdon et al.,
1981, 1982, 1984; Pennebaker et al., 1988, 1992). Some computer programs of arithmetic coding
in C language can be found in (Bell et al., 1990; Nelson and Gailley, 1996).

5.4.4 HISTORY

The idea of encoding by using cumulative probability in some ordering, and decoding by compar-
ison of magnitude of binary fraction, was introduced in Shannon’s celebrated paper (Shannon,
1948). The recursive implementation of arithmetic coding was devised by Elias. This unpublished
result was first introduced by Abramson as a note in his book on information theory and coding

IPR2021-00827
Unified EX1008 Page 152

Variable-Length Coding: Information Theory Results (1) 127

(Abramson, 1963). The result was further developed by Jelinek in his book on information theory
(Jelinek, 1968). The growing precision problem prevented arithmetic coding from attaining practical
usage, however. The proposal of using finite precision arithmetic was made independently by Pasco
(Pasco, 1976) and Rissanen (Rissanen, 1976). Practical arithmetic coding was developed by several
independent groups (Rissanen and Langdon, 1979; Rubin, 1979; Guazzo, 1980). A well-known
tutorial paper on arithmetic coding appeared in (Langdon, 1984). The tremendous efforts made in
IBM led to a new form of adaptive binary arithmetic coding known as the Q-coder (Pennebaker
etal., 1988). Based on the Q-coder, the activities of the international still image coding standards
JPEG and JBIG combined the best features of the various existing arithmetic coders and developed
the binary arithmetic coding procedure known as the QM-coder (Pennebaker and Mitchell, 1992).

5.4.5 APPLICATIONS

Arithmelic coding is becoming popular. Note that in text and bilevel image applications there are
only two source symbols (black and white), and the occurrence probability is skewed. Therefore
binary arithmetic coding achieves high coding efficiency. It has been successfully applied to bilevel
image coding (Langdon and Rissanen, 1981) and adopted by the international standards for bilevel
image compression, JBIG. It has also been adopted by the international still image coding standard,
JPEG. More in this regard is covered in the next chapter when we introduce JBIG.

5.5 SUMMARY

So far in this chapter, not much has been explicitly discussed regarding the term variable-length
codes. It 1s known that if source symbols in a source alphabet are equally probable, i.e., their
occurrence probabilities are the same, then fixed-length codes such as the natural binary code are
arcasonable choice. When the occurrence probabilities, however, are unequal, variable-length codes
should be used in order to achieve high coding efficiency. This is one of the restrictions on the
minimum redundancy codes imposed by Huffman. That is, the length of the codeword assigned to
a probable source symbol should not be larger than that associated with a less probable source
symbol. If the occurrence probabilities happen to be the integral powers of 1/2, then choosing the
codeword length equal to -log, p(s,) for a source symbol s; having the occurrence probability p(s,)
results in minimum redundancy coding. In fact, the average length of the code thus generated is
equal to the source entropy.

Huffman devised a systematic procedure to encode a source alphabet consisting of finitely
many source symbols, each having an occurrence probability. It is based on some restrictions
imposed on the optimum, instantancous codes. By assigning codewords with variable lengths
according to variable probabilities of source symbols, Huffman coding results in mimnimum redun-
dancy codes, or optimum codes for short. These have found wide applications In image and video
coding and have been adopted in the international still image coding standard JPEG and video
coding standards H.261, H.263, and MPEG | and 2. | |

When some source symbols have small probabilities and their number is large, the size of the
codebook of Huffman codes will require a large memory space. The modified Huffman coding
technique employs a special symbol to lump all the symbols with small probabilities together. As
a result, it can reduce the codebook memory space drastically while retaining almost the same

coding efficiency as that achieved by the conventional Huffman coding tfechnique.
On the one hand, Huffman coding is optimum as a block code for a fixed-source alphabet. On

the other hand, compared with the source entropy (the lower bound of the average codeword length)
IL is not efficient when the probabilities ol a source alphabet are skewed with the maximum
probability being large. This is caused by the restriction that Huffman coding can only assign an

integral number of bits to each codeword.

IPR2021-00827

Unified EX1008 Page 153

128 Image and Video Compression for Multimedia Engineering

Another limitation of Huffman coding is that it has to enumerate and encode all the possible
aroups of n source symbols in the nth extension Huffman code, even though there may be only
one such group that needs to be encoded.

Arithmetic coding can overcome the limitations of Huffman coding because it 1s stream-oriented
rather than block-oriented. It translates a stream of source symbols into a stream of code symbols.
It can work in an incremental manner. That is, the source symbols are fed into the coding system
one by one and the code symbols are output continually. In this stream-oriented way, arithmetic
coding is more efficient. It can approach the lower coding bounds set by the noiseless source coding
theorem for various sources.

The recursive subinterval division (equivalently, the double recursion: the lower end recursion
and width recursion) is the heart of arithmetic coding. Several measures have been taken 1n the
implementation of arithmetic coding. They include the incremental manner, finite precision, and
the elimination of multiplication. Due to its merits, binary arithmetic coding has been adopted by
the international bilevel image coding standard, JBIG, and still image coding standard, JPEG. It 1s
becoming an increasingly important coding technique.

5.6 EXERCISES

5-1. What does the noiseless source coding theorem state (using your own words)? Under
what condition does the average code length approach the source entropy? Comment on
the method suggested by the noiseless source coding theorem.

S5-2. What characterizes a block code? Consider another definition of block code in (Blahut,
1986): a block code breaks the input data stream into blocks of fixed length n and encodes
each block into a codeword of fixed length m. Are these two definitions (the one above
and the one in Section 5.1, which comes from [Abramson, 1963]) essentially the same?
Explain.

5-3. Is a uniquely decodable code necessarily a prefix condition code?

5-4. For text encoding, there are only two source symbols for black and white. It is said that
Huffman coding 1s not efficient in this application. But it is known as the optimum code.
Is there a contradiction? Explain.

5-5. A set of source symbols and their occurrence probabilities is listed in Table 5.12. Apply
the Huffman coding algorithm to encode the alphabet.

5-6. Find the Huffman code for the source alphabet shown in Example 5.10.

5-7. Consider a source alphabet S = {s, i = 1,2,---,32} with p(s)) = 1/4, p(s;) = 3/124, | =
2,3,--+,32. Determine the source entropy and the average length of Huffman code if
applied to the source alphabet. Then apply the modified Huffman coding algorithm.
Calculate the average length of the modified Huffman code. Compare the codebook
memory required by Huffman code and the modified Huffman code.

5-8. A source alphabet consists of the following four source symbols: s,, s,, 55, and s,, with
their occurrence probabilities equal to 0.25, 0.375, 0.125, and 0.25, respectively. Applying
arithmetic coding as shown in Example 5.12 to the source symbol string s,5,5,5,, deter-
mine the lower end of the final subinterval.

5-9. For the above problem, show step by step how we can decode the original source string
from the lower end of the final subinterval.

5-10. In Problem 5.8, find the codeword of the symbol string s,s,5,5, by using the fourth
extension of the Huffman code. Compare the two methods.
5-11. Discuss how modern arithmetic coding overcame the growing precision problem

IPR2021-00827
Unified EX1008 Page 154

Variable-Length Coding: Information Theory Results (1) 129

TABLE 5.12
Source Alphabet in Problem 5.5

Source Symbol ~ Occurrence Probability Codeword Assigned

0.20
0.18
0.10
0.10
0.10
0.06
0.06
0.04
0.04
10 0.04
0.04
y 0.04

W b Un L0 B L W1
= = D LA B ad k=

Lo
=

L U W

REFERENCES

Abramson, N. Information Theory and Coding, New York: McGraw-Hill, 1963.

Bell, T. C.,, J. G. Cleary, and 1. H. Witten, Text Compression, Englewood, NJ: Prentice-Hall, 1990.

Blahut, R. E. Principles and Practice of Information Theory, Reading, MA: Addison-Wesley, 1986.

Fano, R. M. The transmission of information, Tech. Rep. 65, Research Laboratory of Electronics, MIT,
Cambridge, MA, 1949,

Gallagher, R. G. Variations on a theme by Huffman, /EEE Trans. Inf. Theory, 1T-24(6), 668-674, 1978.

Guazzo, M. A general minimum-redundacy source-coding algorithm, /EEE Trans. Inf. Theory, IT-26(1), 15-25,
1980.

Hankamer, M. A modified Huffman procedure with reduced memory requirement, /EEE Trans. Commun.,
COM-27(6), 930-932, 1979.

Huffman, D. A. A method for the construction of minimum-redundancy codes, Proc. IRE, 40, 1098-1101, 1952.

lelinek, F. Probabilistic Information Theory, New York: McGraw-Hill, 1968.

Langdon, G. G., Jr. and J. Rissanen, Compression of black-white images with arithmetic coding, /EEE Trans.

Commun., COM-29(6), 858-867, 1981.
Langdon, G. G., Jr. and J. Rissanen, A simple general binary source code, IEEE Trans. Inf. Theory, 1T-28,

800, 1982.

Langdon, G. G, Jr.,, An introduction to arithmetic coding, IBM J. Res. Dev., 28(2), 135-149, 1984.

Nelson, M. and J. Gailly, The Data Compression Book, 2nd ed., New York: M&T Books, 1996.

Pasco, R. Source Coding Algorithms for Fast Data Compression, Ph.D. dissertation, Stanford University,
Stanford, CA, 1976.

Pennebaker, W. B., J. L. Mitchell, G. G. Langdon, Jr., and R. B. Arps, An overview of the basic principles of
the Q-coder adaptive binary arithmetic Coder, /BM J. Res. Dev., 32(6), 717-726, 1988.

Pennebaker, W. B. and J. L. Mitchell, JPEG: Still Image Data Compression Standard, New York: Van Nostrand
Reinhold, 1992.

Rissanen, J. J. Generalized Kraft inequality and arithmetic coding, /BM J. Res. Dev., 20, 198-203, 1976.

Rissanen, J. J. and G. G. Landon, Arithmetic coding, /IBM J. Res. Dev., 23(2), 149-162, 1979.

Rubin, F. Arithmetic stream coding using fixed precision registers, /EEE Trans. Inf. Theory, 1T-25(6), 672-675,
1979,

Sayood, K. Introduction to Data Compression, San Francisco, CA: Morgan Kaufmann Publishers, 1996.

Shannon, C. E. A mathematical theory of communication, Bell Syst. Tech. J., 27, 379-423, 1948; 623-656, 1948.

Weaver, C. S, Digital ECG data compression, in Digital Encoding of Electrocardiograms, H. K. Wolf, Ed.,

Springer-Verlag, Berlin/New York, 1979.

IPR2021-00827
Unified EX1008 Page 155

’
R -
1
2
' -
ol | ol Z
L Base F
|
gl -
TR RS .
- ‘,
L T .
S ey _ Ny .
- = |
E I'—_ = [
: l-_l ':L_:I_Iu_ . ,! n T i
A =R : | [‘ - |
B RS o 1 |
A= ‘ | = Ll —— i
I S i me r'-*h |_|TII H IJ— R S L

- 1 ||_1_IE i—’i II—I'_I i~ .'-
l h “m LY irwirss 71

L I -

i, Skt _
n.-nm. ST
8 3 gt

IPR2021-00827
Unified EX1008 Page 156

6 Run-Length and
Dictionary Coding:
Information Theory Results (1)

As mentioned at the beginning of Chapter 5, we are studying some codeword assignment (encoding)
techniques in Chapters 5 and 6. In this chapter, we focus on run-length and dictionary-based coding
techniques. We first introduce Markov models as a type of dependent source model in contrast to
the memoryless source model discussed in Chapter 5. Based on the Markov model, run-length coding
s suitable for facsimile encoding. Its principle and application to facsimile encoding are discussed,
followed by an introduction to dictionary-based coding, which is quite different from Huffman and
arithmetic coding techniques covered in Chapter 5. Two types of adaptive dictionary coding tech-
niques, the LZ77 and LZ78 algorithms, are presented. Finally, a brief summary of and a performance
comparison between international standard algorithms for lossless still image coding are presented.

Since the Markov source model, run-length, and dictionary-based coding are the core of this
chapter, we consider this chapter as a third part of the information theory results presented in the
book. It is noted, however, that the emphasis is placed on their applications to image and video
compression.

6.1 MARKOV SOURCE MODEL

In the previous chapter we discussed the discrete memoryless source model, in which source
symbols are assumed to be independent of each other. In other words, the source has zero memory,
1.e., the previous status does not affect the present one at all. In reality, however, many sources are
dependent in nature. Namely, the source has memory in the sense that the previous status has an
influence on the present status. For instance, as mentioned in Chapter 1, there is an interpixel
correlation in digital images. That is, pixels in a digital image are not independent of each other.
As will be seen in this chapter, there is some dependence between characters in text. For instance,
the letter « often follows the letter g in English. Therefore it is necessary to introduce models that
can reflect this type of dependence. A Markov source model is often used in this regard.

6.1.1 Discrete MARKOV SOURCE

Here, as in the previous chapter, we denote a source alphabet by S = {s,, 55, -** , ‘S,,,] and _the
occurrence probability by p. An [th order Markov source is characterized by the following equation

of conditional probabilities.

P(Sj‘sil“gﬂ"”'sﬁ’"') = P(Sjlsnisfz'”’rsn)' (6.1)

where j, i1, i2, --- , il, --- € {1,2,---,m}, i.e., the symbols s;, S;;, Si, =« » Sy =+ AI€ chosen from the
source alphabet S. This equation states that the source symbols are not inde;?endf:nt ‘of each other.
The occurrence probability of a source symbol is determined by some of 1ts previous syn*.lg;::;ls.
Specifically, the probability of s; given its history being §;;, Siz» *** » Sipp " (also called the transm?n
probability), is determined completely by the immediately previous / symbols s;;, -*- , §;. That is,

F

131

IPR2021-00827

Unified EX1008 Page 157

Iy

132 Image and Video Compression for Multimedia Engineering

P (S2/S))

P (5//S2)

(a)

P(S)/5)

P(Ssz.) P(S /S3)
P(S/S;) P (Sy/S,)

P (S:/S;)
P (S4S;) P (S4/S;5)

P (SyS;)

(b)

FIGURE 6.1 State diagrams of the first-order Markov sources with their source alphabets having (a) two
symbols and (b) three symbols.

the knowledge of the entire sequence of previous symbols is equivalent to that of the [/ symbols
immediately preceding the current symbol s;. |

An [th order Markov source can be described by what is called a state diagram. A state is a
sequence of (s;,, Sp, -+, §3) with il, i2, ---, il € {1,2,---,m}. That is, any group of / symbols from
the m symbols in the source alphabet S forms a state. When / = 1, it is called a first-order Markov
source. The state diagrams of the first-order Markov sources, with their source alphabets having
two and three symbols, are shown in Figure 6.1(a) and (b), respectively. Obviously, an [th order
Markov source with m symbols in the source alphabet has a total of m' different states. Therefore,
we conclude that a state diagram consists of all the m! states. In the diagram, all the transition
probabilities together with appropriate arrows are used to indicate the state transitions.

The source entropy at a state (s;,, S;, -+, §;) 1S defined as

H(il? 12’ FL If zp i ;]I' 12'.-"5”)10g2 p(SI‘S”,SEZ,”',SH) (6-2)
The source entropy is defined as the statistical average of the entropy at all the states. That 1s,

H(S)= ZP .1* Sig>™ "S5) (Slsmsm” n') (6.3)

IJlI "'If}es‘

IPR2021-00827
Unified EX1008 Page 158

Run-Length and Dictionary Coding: Information Theory Results (111) 133

where, as defined in the previous chapter, S* denotes the /th extension of the source alphabet S.
That is, the summation is carried out with respect to all /-tuples taking over the S'. Extensions of
a Markov source are defined below.

6.1.2 EXTENSIONS OF A DiscRETE MARKOV SOURCE

An extension of a Markov source can be defined in a similar way to that of an extension of a
memoryless source in the previous chapter. The definition of extensions of a Markov source and
the relation between the entropy of the original Markov source and the entropy of the nth extension
of the Markov source are presented below without derivation. For the derivation, readers are referred

to (Abramson, 1963).

6.1.2.1 Definition

Consider an /th order Markov source S = (s, 5,, --*, 5,,} and a set of conditional probabilities p(s;
|Si1s Si2s -5 8,), Where jil, i2, «--, il € {1,2,---,m}. Similar to the memoryless source discussed in
Chapter 5, if n symbols are grouped into a block, then there is a total of m" blocks. Each block
can be viewed as a new source symbol. Hence, these m” blocks form a new information source
alphabet, called the nth extension of the source S and denoted by S”. The nth extension of the /th-
order Markov source is a kth-order Markov source, where k is the smallest integer greater than or

equal to the ratio between [and n. That is,

k=|—]|, (6.4)

where the notation |a| represents the operation of taking the smallest integer greater than or equal
to the quantity a.

6.1.2.2 Entropy

Denote, respectively, the entropy of the /th order Markov source S by H(5), an.d the entropy of the
nth extension of the /th order Markov source, S”, by H(S"). The following relation between the two

entropies can be shown:

H(S")=nH(S) (6.5)

6.1.3 Autorecressive (AR) MoDEL

The Markov source discussed above represents a kind of dependence between source symbols in
terms of the transition probability. Concretely, in determining the transition Probabi_lily of a presrant
source symbol given all the previous symbols, only the set of finitely many immediately preceding
symbols matters. The autoregressive model is another kind of dependent source model that has

been used often in image coding. It is defined below.

[
5; = z a,S; +X;, . (6.6)
k=l

where s; represents the currently observed source symbol, while s wi‘th k=1,2,--+,/ denote the /
preceding observed symbols, a,’s are coefficients, and x; is the current input {0 the model. If / = 1,

IPR2021-00827

Unified EX1008 Page 159

134 Image and Video Compression for Multimedia Engineering

the model defined in Equation 6.6 is referred to as the first-order AR model. Clearly, in this case,
the current source symbol is a linear function of its preceding symbol.

6.2 RUN-LENGTH CODING (RLC)

The term run is used to indicate the repetition of a symbol, while the term run-length 1s used 1o
represent the number of repeated symbols, in other words, the number of consecutive symbols of
the same value. Instead of encoding the consecutive symbols, it 1s obvious that encoding the run-
length and the value that these consecutive symbols commonly share may be more efficient. Accord-
Ing to an excellent early review on binary image compression by Arps (1979), RLC has been in use
since the earliest days of information theory (Shannon and Weaver, 1949; Laecmmel, 1951).

From the discussion of the JPEG in Chapter 4 (with more details in Chapter 7), 1t 1s seen that
most of the DCT coefficients within a block of 8 x 8 are zero after certain manipulations. The DCT
coefficients are zigzag scanned. The nonzero DCT coefficients and their addresses in the 8 X 8
block need to be encoded and transmitted to the receiver side. There, the nonzero DCT values are
referred to as labels. The position information about the nonzero DCT coefficients is represented
by the run-length of zeros between the nonzero DCT coefficients in the zigzag scan. The labels
and the run-length of zeros are then Huffman coded.

Many documents such as letters, forms, and drawings can be transmitted using facsimile
machines over the general switched telephone network (GSTN). In digital facsimile techniques,
these documents are quantized into binary levels: black and white. The resolution of these binary
tone images 1s usually very high. In each scan line, there are many consecutive white and black
pixels, i.e., many alternate white runs and black runs. Therefore it is not surprising to see that RLC
has proven to be efficient in binary document transmission. RLC has been adopted in the interna-
tional standards for facsimile coding: the CCITT Recommendations T.4 and T.6.

RLC using only the horizontal correlation between pixels on the same scan line is referred to
as 1-D RLC. It 1s noted that the first-order Markov source model with two symbols in the source
alphabet depicted in Figure 6.1(a) can be used to characterize 1-D RLC. To achieve higher coding
efficiency, 2-D RLC utilizes both horizontal and vertical correlation between pixels. Both the 1-D
and 2-D RLC algorithms are introduced below.

6.2.1T 1-D Run-LencTH CODING

In this technique, each scan line is encoded independently. Each scan line can be considered as a
sequence of alternating, independent white runs and black runs. As an agreement between encoder
and decoder, the first run in each scan line is assumed 1o be a white run. If the first actual pixel 1s
black, then the run-length of the first white run is set to be zero. At the end of each scan line, there
is a special codeword called end-of-line (EOL). The decoder knows the end of a scan line when it
encounters an EOL codeword.

Denote run-length by r, which is integer-valued. All of the possible run-lengths construct a
source alphabet R, which is a random variable. That is,

R={r:rEO,],2,---} | (6.7)

Measurements on typical binary documents have shown that the maximum compression ratio,
(..., which is defined below, is about 25% higher when the white and black runs are encoded
separately (Hunter and Robinson, 1980). The average white run-length, r,,, can be expressed as

m

hy = 2 r-Py(r) (6.8)

r=I()

IPR2021-00827
Unified EX1008 Page 160

Run-Length and Dictionary Coding: Information Theory Results (111) 135

where m 1s the maximum value of the run-length, and P, (r) denotes the occurrence probability of
a white run with length r. The entropy of the white runs, H,,, is

Hy = “Z Pw(r)logz Fiv(") (6.9)

r=()

For the black runs, the average run-length 7, and the entropy H, can be defined similarly. The
maximum theoretical compression factor {___is

Ny 1
. = 6.10
C’m.u: HW + [_!B ()

Huffman coding is then applied to two source alphabets. According to CCITT Recommendation
T.4, A4 size (210 x 297 mm) documents should be accepted by facsimile machines. In each scan
line, there are 1728 pixels. This means that the maximum run-length for both white and black runs
1s 1728, i.e., m = 1728. Two source alphabets of such a large size imply the requirement of two
large codebooks, hence the requirement of large storage space. Therefore, some modification was
made, resulting in the “modified” Huffman (MH) code.

In the modified Huffman code, if the run-length is larger than 63, then the run-length is
represented as

r=Mx64+T as r>063, (6.11)

where M takes integer values from |, 2 to 27, and M x 64 is referred to as the makeup run-length;
T takes integer values from 0, 1 to 63, and is called the terminating run-length. That is, 1f r < 63,
the run-length is represented by a terminating codeword only. Otherwise, if r > 63, the run-length
Is represented by a makeup codeword and a terminating codeword. A portion of the modified
Huffman code table (Hunter and Robinson, 1980) is shown in Table 6.1. In this way, the requirement
of large storage space is alleviated. The idea 1s similar to that behind modified Huffman coding,
discussed in Chapter 5.

6.2.2 2-D Run-LencTH CODING

The 1-D run-length coding discussed above only utilizes correlation between pixels within a scan
line. In order (o utilize correlation between pixels in neighboring scan lines to achieve higher coding
efficiency, 2-D run-length coding was developed. In Recommendation T.4, the modified relative
element address designate (READ) code, also known as the modified READ code or simply the
MR code, was adopted.

The modified READ code operates in a line-by-line manner. In Figure 6.2, two lines are shown.
The top line is called the reference line, which has been coded, while the bottom line is referred

to as the coding line, which is being coded. There are a group of five changing pixels, a,, a,, a,,
b,, b,, in the two lines. Their relative positions decide which of the three coding modes 1s used.
The starting changing pixel a, (hence, five changing points) moves from left to right anc_i from top
to bottom as 2-D run-length coding proceeds. The five changing pixels and the three coding modes

are defined below.

6.2.2.1 Five Changing Pixels

By a changing pixel, we mean the first pixel encountered in white or black runs when we scan an
Image line-by-line, from left to right, and from top to bottom. The five changing pixels are defined

below.

IPR2021-00827

Unified EX1008 Page 161

136 Image and Video Compression for Multimedia Engineering

by b,

ref. line ®

code line *®

riFy) d) d2

(a) Pass mode

ref. line

code line

ref. line

code line ®

(¢) Honizontal mode

FIGURE 6.2 2-D run-length coding.

ay: The reference-changing pixel in the coding line. Its position is defined in the previous
coding mode, whose meaning will be explained shortly. At the beginning of a coding
line, g, 1s an 1maginary white changing pixel located before the first actual pixel in the
coding line.

a,;: The next changing pixel in the coding line. Because of the above-mentioned left-to-right
and top-to-bottom scanning order, it is at the right-hand side of a,. Since it is a changing
pixel, it has an opposite “color” to that of a,.

a,: The next changing pixel after a, in the coding line. It is to the right of a, and has the
same color as that of a,.

b,: The changing pixel in the reference line that is closest to a, from the right and has the
same color as a,.

b,: The next changing pixel in the reference line after b,.

6.2.2.2 Three Coding Modes

Pass Coding Mode — If the changing pixel b, is located to the left of the changing pixel a,,
it means that the run in the reference line starting from b, is not adjacent to the run in the coding
line starting from a,. Note that these two runs have the same color. This is called the pass coding
mode. A special codeword, “0001”, 1s sent out from the transmitter. The receiver then knows that
the run starting from a, in the coding line does not end at the pixel below b,. This pixel (below b,
in the coding line) is identified as the reference-changing pixel g, of the new set of five changing
pixels for the next coding mode.

Vertical Coding Mode — If the relative distance along the horizontal direction between the
changing pixels a, and b, is not larger than three pixels, the coding is conducted in vertical coding

IPR2021-00827
Unified EX1008 Page 162

Run-Length and Dictionary Coding: Information Theory Results (I11)

TABLE 6.1
Modified Huffman Code Table

(Hunter and Robinson, 1980)

Run-Length White Runs

Black Runs

Terminating Codewords

0O ~J O Lh & W N —-— O

6l
62
63

64

128
192
256

1536
1600
1664
1728
EOL

00110101
000111
0111
1000
1011
1100
[110
1111
10011

01001011
00110010
00110011
00110100

0000110111

010

11

10

011
0011
0010
00011
000101

000000101100
000001011010
000001100110
000001100111

Makeup Codewords

11011
10010
010111
0110111

010011001
010011010
011000
010011011
000000000001

0000001111

000011001000
000011001001
000001011011

0000001011010
0000001011011
0000001100100
0000001100101
000000000001

TABLE 6.2

2-D Run-Length Coding Table

Mode

Pass coding mode
Vertical coding mode

Horizontal coding mode

Note: | xy, I: distance between x; and y;, Xy; > 0: x, is right to y;, x;y; < 0: x; is left to y;.
(x;y,): codeword of the run denoted by x,y; taken from the modified Huffman code.

Under b, in coding line

Conditions Output Codeword
b,a, <0 0001
ab,=0 l
a,b, =1 011
a,b, =2 000011
a,b, =3 0000011
a,b, = -1 010
a,b; = -2 000010
a,b, =-3 0000010

la,b,/ > 3 001 + (ap,) + (a,3,)

Source: From Hunter and Robinson (1980).

Position of New a,

137

IPR2021-00827
Unified EX1008 Page 163

138 Image and Video Compression for Multimedia Engineering

mode. That is, the position of a, is coded with reference to the position ol b,. Seven dilferent
codewords are assigned to seven different cases: the distance between «, and b, equals 0, £1, 2,
+3, where + means a, is to the right of b, while — means a, is to the left of 5,. The a, then becomes
the reference changing pixel a, of the new set of five changing pixels for the next coding mode.

Horizontal Coding Mode — If the relative distance between the changing pixels a, and b, is
larger than three pixels, the coding is conducted in horizontal coding mode. Here, 1-D run-length
coding is applied. Specifically, the transmitter sends out a codeword consisting the following three
parts: a flag “001”; a 1-D run-length codeword for the run from a, to a,; a 1-D run-length codeword
for the run from a, to a,. The a, then becomes the reference changing pixel a, of the new set of
five changing pixels for the next coding mode. Table 6.2 contains three coding modes and the
corresponding output codewords. There, (aya,) and (a,a,) represent 1-D run-length codewords of
run-length a,a, and a,a,, respectively.

6.2.3 ErrecTt oF TrRANSMISSION ERROR AND UNCOMPRESSED IMODE

In this subsection, effect of transmission error in the 1-D and 2-D RLC cases and uncompressed
mode are discussed.

6.2.3.1 Error Effect in the 1-D RLC Case

As introduced above, the special codeword EOL is used to indicate the end of each scan line. With
the EOL, 1-D run-length coding encodes each scan line independently. If a transmission error
occurs in a scan line, there are two possibilities that the effect caused by the error is limited within
the scan line. One possibility is that resynchronization is established after a few runs. One example
1s shown in Figure 6.3. There, the transmission error takes place in the second run from the left.
Resynchronization is established in the fifth run in this example. Another possibility lies in the
EOL, which forces resynchronization.

In summary, 1t 1s seen that the 1-D run-length coding will not propagate transmission error
between scan lines. In other words, a transmission error will be restricted within a scan line.
Although error detection and retransmission of data via an automatic repeat request (ARQ) system
is supposed to be able to effectively handle the error susceptibility issue, the ARQ technique was
not included in Recommendation T.4 due to the computational complexity and extra transmission
time required.

Once the number of decoded pixels between two consecutive EOL codewords is not equal to
1728 (for an A4 size document), an error has been identified. Some error concealment techniques
can be used to reconstruct the scan line (Hunter and Robinson, 1980). For instance, we can repealt

Original e i

coded line 1000 .~ OLL - 01l 0011 ~ 1110 ' 10
3W 48 2w 5B 6W 3B
dl €ITOI

R

Error AL AR o Bl don e = ok i '
contaminated 1000 | 0010 = 1110 + Ol1:"% 1110 = 10+
fine e e A

3w 6B 6W 4B 6W 3B

FIGURE 6.3 Establishment of resynchronization after a few runs.

IPR2021-00827
Unified EX1008 Page 164

Run-Length and Dictionary Coding: Information Theory Results (111)
139

the previous line, or replace the damaged line by

| | a white line, or use g correlation
recover the line as much as possible.

technique to

6.2.3.2 Error Effect in the 2-D RLC Case

From the above discussion, we realize that 2-D RLC is m > ffici

hand. The 2-D RLC is more susceptible to transmission erro?';etl::z{rf:ilecml 111;3;&('313 it il
‘ _ ‘ ; on the other hand.

To p‘revent error propagation, there 1s a parameter used in 2-D RLC, known as the K-factor, which

specifies the number of scan lines that are 2-D RLC coded.

Recommendation T.4 defined that no more than K-1 consecutive scan lines be 2-D RLC coded
after a 1-D RLC coded line. For binary documents scanned at normal resolution, K = 2. For
documents scanned at high resolution, K = 4.

According to Arps (1979), there are two different types of algorithms in binary image coding,
raster algorithms and area algorithms. Raster algorithms only operate on data within one or two
raster scan lines. They are hence mainly 1-D in nature. Area algorithms are truly 2-D in nature.
They require that all, or a substantial portion, of the image is in random access memory. From our
discussion above, we see that both 1-D and 2-D RLC defined in T.4 belong to the category of raster
algorithms. Area algorithms require large memory space and are susceptible to transmission noise.

6.2.3.3 Uncompressed Mode

For some detailed binary document images, both 1-D and 2-D RLC may result in data expansion
instead of data compression. Under these circumstances the number of coding bits 1s larger than
the number of bilevel pixels. An uncompressed mode is created as an alternative way to avoid data
expansion. Special codewords are assigned for the uncompressed mode.

For the performances of 1-D and 2-D RLC applied to eight CCITT test document images, and
issues such as “fill bits” and “minimum scan line time (MSLT),” to name only a few, readers are

referred to an excellent tutorial paper by Hunter and Robinson (1980).

6.3 DIGITAL FACSIMILE CODING STANDARDS

Facsimile transmission, an important means of communication in modern society, is often used as
an example to demonstrate the mutual interaction between widely used applications and standard-
ization activities. Active facsimile applications and the market brought on the necessity for inter-
national standardization in order to facilitate interoperability between facsimile machines world-
wide. Successful international standardization, in turn, has stimulated wider use of facsimile
transmission and. hence, a more demanding market. Facsimile has also been considered as a major
application for binary image compression.

So far, facsimile machines are classified in four different groups. Facsimile apparatuses in
groups 1 and 2 use analog techniques. They can transmit an A4 size (210 X 297 mm) document
scanned at 3.85 lines/mm in 6 and 3 min, respectively, over the GSTN. International standards for
these two groups of facsimile apparatus are CCITT (now ITU) Recommendations T.2 and T.3,
respectively. Group 3 facsimile machines use digital techniques and hence achieve high coding

efficiency. They can transmit the A4 size binary document scanned at a resolution of 3.85 lines/mm
and sampled at 1728 pixels per line in about | min at a rate of 4800 b/sec over the GSTN. The

corresponding international standard is CCITT Recommendations T.4. Group 4 facsimile appara-
tuses have the same transmission speed requirement as that for group 3 machines, but the coding
technique is different. Specifically, the coding technique used for group 4 machines is based on
2-D run-length coding, discussed above, but modified to achieve higher coding efficiency. Hence
it is referred to as the modified modified READ coding, abbreviated MMR. The corresponding
standard is CCITT Recommendations T.6. Table 6.3 summarizes the above descriptions.

IPR2021-00827

Unified EX1008 Page 165

140 Image and Video Compression for Multimedia Engineering

TABLE 6.3 FACSIMILE CODING STANDARDS

Group of Speed Compression Technique
Facsimile Requirement for Analog or CCITT Algorithm
Apparatuses A-4 Size Document Digital Scheme Recommendation Model Basic Coder Acronym
G, 6 min Analog T.2 — — -
G, 3 min Analog T.3 — — —
G, I min Digital T4 |-D RLC Modified Huffman MH
2-D RLC MR
(optional)

G, | min Digital T.6 2-D RLC Modified Hulfman MMR

6.4 DICTIONARY CODING

Dictionary coding, the focus of this section, is different from Huffman coding and arithmetic coding,
discussed in the previous chapter. Both Huffman and arithmetic coding techniques are based on a
statistical model, and the occurrence probabilities play a particular important role. Recall that in
the Huffman coding the shorter codewords are assigned to more frequently occurring source
symbols. In dictionary-based data compression techniques a symbol or a string of symbols generated
from a source alphabet is represented by an index to a dictionary constructed from the source
alphabet. A dictionary is a list of symbols and strings of symbols. There are many examples of this
in our daily lives. For instance, the string “September” is sometimes represented by an index “9,”
while a social security number represents a person in the U.S.

Dictionary coding is widely used in text coding. Consider English text coding. The source
alphabet includes 26 English letters in both lower and upper cases, numbers, various punctuation
marks, and the space bar. Huffman or arithmetic coding treats each symbol based on its occurrence
probability. That is, the source is modeled as a memoryless source. It is well known, however, that
this is not true in many applications. In text coding, structure or context plays a significant role.
As mentioned earlier, it is very likely that the letter u appears after the letter g. Likewise, it is likely
that the word “concerned” will appear after “As far as the weather is.” The strategy of the dictionary
coding is to build a dictionary that contains frequently occurring symbols and string of symbols.
When a symbol or a string is encountered and it is contained in the dictionary, it is encoded with
an index to the dictionary. Otherwise, if not in the dictionary, the symbol or the string of symbols
1s encoded in a less efficient manner.

6.4.1 FormMuULATION OF DictioNnARY CODING

To facilitate further discussion, we define dictionary coding in a precise manner (Bell et al., 1990).
We denote a source alphabet by S. A dictionary consisting of two elements is defined as D = (P, C),
where P is a finite set of phrases generated from the S, and C is a coding function mapping P onto
a set of codewords.

The set P is said to be complete if any input string can be represented by a series of phrases
chosen from the P. The coding function C is said to obey the prefix property if there is no codeword
that is a prefix of any other codeword. For practical usage, i.e., for reversible compression of any
input text, the phrase set P must be complete and the coding function C must satisfy the prefix property.

6.4.2 CATEGORIZATION OF DIcTIONARY-BASED CODING TECHNIQUES

The heart of dictionary coding is the formulation of the dictionary. A successfully built dictionary
results in data compression; the opposite case may lead to data expansion. According to the ways

IPR2021-00827
Unified EX1008 Page 166

Run-Length and Dictionary Coding: Information Theory Results (111) 141

in which dictionaries are constructed, dictionary coding techniques can be classified as static or
adaptive.

6.4.2.1 Static Dictionary Coding

In some particular applications, the knowledge about the source alphabet and the related strings of
symbols, also known as phrases, is sufficient for a fixed dictionary to be produced before the coding
process. The dictionary is used at both the transmitting and receiving ends. This is referred to as
static dictionary coding. The merit of the static approach is its simplicity. Its drawbacks lie in its
relatively lower coding efficiency and less flexibility compared with adaptive dictionary techniques.
By less flexibility, we mean that a dictionary built for a specific application is not normally suitable
for utilization in other applications. -

An example of static algorithms occurring is digram coding. In this simple and fast coding
technique, the dictionary contains all source symbols and some frequently used pairs of symbols.
In encoding, two symbols are checked at once to see if they are in the dictionary. If so, they are
replaced by the index of the two symbols in the dictionary, and the next pair of symbols is encoded
in the next step. If not, then the index of the first symbol is used to encode the first symbol. The
second symbol is combined with the third symbol to form a new pair, which is encoded in the next
step.

The digram can be straightforwardly extended to n-gram. In the extension, the size of the
dictionary increases and so does its coding efficiency.

6.4.2.2 Adaptive Dictionary Coding

As opposed to the static approach, with the adaptive approach a completely defined dictionary does
not exist prior to the encoding process and the dictionary is not fixed. At the beginning of coding,
only an initial dictionary exists. It adapts itself to the input during the coding process. All the
adaptive dictionary coding algorithms can be traced back to two different original works by Ziv
and Lempel (1977, 1978). The algorithms based on Ziv and Lempel (1977) are referred to as the
LZ77 algorithms, while those based on their 1978 work are the LZ78 algorithms. Prior to intro-

ducing the two landmark works, we will discuss the parsing strategy.

6.4.3 PARSING STRATEGY

Once we have a dictionary, we need to examine the input text and find a string of symbols that
matches an item in the dictionary. Then the index of the item to the dictionary is encoded. This
process of segmenting the input text into disjoint strings (whose union equals the input text) for
coding is referred to as parsing. Obviously, the way to segment the input text Into strings is not unique.

In terms of the highest coding efficiency, optimal parsing is essentially a shortest-path problem
(Bell et al., 1990). In practice, however, a method called greedy parsing is used most often. In fact,
it is used in all the LZ77 and LZ78 algorithms. With greedy parsing, the encoder searches for the
longest string of symbols in the input that matches an item in the dictionary at each coding step.

Greedy parsing may not be optimal, but it is simple In its implementation.

Example 6.1 |
Consider a dictionary, D, whose phrase set P = {a, b, ab, ba, bb, aab, bbb}. The codewords assigned

to these strings are C(a) = 10, C(b) = 11, C(ab) = 010, C(ba) = 0101, C(bb) = 01, C(abb) = 11,
and C(bbb) = 0110. Now the input text is abbaab.. il -
Using greedy parsing, we then encode the text as C(ab).C(ba).C(ab), which 1s a 10-bit string:
010.0101.010. In the above representations, the periods are used to indicate the division of s§gmeqts
In the parsing. This, however, is not an optimum solution. Obviously, the following parsing will

be more efficient, i.e., C(a).C(bb).C(aab), which is a 6-bit string: 10.01.11.

IPR2021-00827

Unified EX1008 Page 167

142 . Image and Video Compression for Multimedia Engineering

6.4.4 Supincg WinDOW (LZ77) ALGORITHMS

As mentioned earlier, LZ77 algorithms are a group of adaptive dicuonary coding algorithms rooted
in the pioneering work of Ziv and Lempel (1977). Since they are adaptive, there is no complete
and fixed dictionary before coding. Instead, the dictionary changes as the input text changes.

6.4.4.1 Introduction

In the LZ77 algorithms, the dictionary used is actually a portion of the input text, which has been
recently encoded. The text that needs to be encoded is compared with the strings of symbols in
the dictionary. The longest matched string in the dictionary is characterized by a pointer (sometimes
called a roken), which is represented by a triple of data items. Note that this triple functions as an
index to the dictionary, as mentioned above. In this way, a variable-length string of symbols 1s
mapped to a fixed-length pointer.

There is a sliding window in the LZ77 algorithms. The window consists of two parts: a search
buffer and a look-ahead buffer. The search buffer contains the portion of the text stream that has
recently been encoded which, as mentioned, is the dictionary; while the look-ahead buffer contains
the text to be encoded next. The window slides through the input text stream from beginning (o
end during the entire encoding process. This explains the term sliding window. The size of the
search buffer is much larger than that of the look-ahead buffer. This is expected because what 1s
contained in the search buffer is in fact the adaptive dictionary. The sliding window 1s usually on

the order of a few thousand symbols, whereas the look-ahead buffer is on the order of several tens
lo one hundred symbols.

6.4.4.2 Encoding and Decoding

Below we present more details about the sliding window dictionary coding technique, 1.e., the
LZ77 approach, via a simple illustrative example.

Example 6.2

Figure 6.4 shows a sliding window. The input text stream is ikaccbadaccbaccbaccgikmoabe. In
part (a) of the figure, a search buffer of nine symbols and a look-ahead buffer of six symbols are
shown. All the symbols in the search buffer, accbadacc, have just been encoded. All the symbols
in the look-ahead buffer, baccba, are to be encoded. (It is understood that the symbols before the

1 klaccbadacc baccbalccgikmoabecee

S N S
~" g
Search buffer of size 9 Look-ahead buffer
of size 6

(a) Tnple: <6, 2, C(c) >

ikacc[badaccbac cbaccglikmoabcc

(b) Triple: <4, 5, C(g) >

ikaccbadaccbaccbnccg[ikmuablcc

==

(c) Triple: <0, 0, C(i) >

FIGURE 6.4 An encoding example using LZ77.

IPR2021-00827
Unified EX1008 Page 168

Run-Length and Dictionary Coding: Information Theory Results (I1) 143

search buffer have been encoded and the symbols after the look-ahead buffer are o be encoded.)
The strings of symbols, ik and ccgikmoabce, are not covered by the sliding window at the moment.

At the moment, or in other words, in the first step of encoding, the symbol(s) to be encoded
begin(s) with the symbol b. The pointer starts searching for the symbol b from the last symbol in
the search buffer, ¢, which is immediately to the left of the first symbol b in the look-ahead buffer.
It finds a match at the sixth position from b. It further determines that the longest string of the
match i1s ba. That is, the maximum matching length is two. The pointer is then represented by a
triple, <i,j,k>. The first item, “1”, represents the distance between the first symbol in the look-ahead
buffer and the position of the pointer (the position of the first symbol of the matched string). This
distance is called offser. In this step, the offset is six. The second item in the triple, *“j”, indicates
the length of the matched string. Here, the length of the matched string ba is two. The third item,
k", 1s the codeword assigned to the symbol immediately following the matched string in the look-
ahead buffer. In this step, the third item is C(c), where C is used to represent a function to map
symbol(s) to a codeword, as defined in Section 6.4.1. That is, the resulting triple after the first step
1S: <6, 2. Cle)s.

The reason to include the third item “k” into the triple is as follows. In the case where there
1S no match in the search buffer, both “i”" and “j” will be zero. The third item at this moment is
the codeword of the first symbol in the look-ahead buffer itself. This means that even in the case
where we cannot find a match string, the sliding window still works. In the third step of the encoding
process described below, we will see that the resulting triple is: <0, 0, C(1)>. The decoder hence
understands that there is no matching, and the single symbol / is decoded.

The second step of the encoding is illustrated in part (b) of Figure 6.4. The sliding window has
been shifted to the right by three positions. The first symbol to be encoded now is ¢, which is the
left-most symbol in the look-ahead buffer. The search pointer moves towards the left from the
symbol c. It first finds a match in the first position with a length of one. It then finds another match
In the fourth position from the first symbol in the look-ahead buffer. Interestingly, the maximum
matching can exceed the boundary between the search buffer and the look-ahead buffer and can
enter the look-ahead buffer. Why this is possible will be seen shortly, when we discuss the decoding
process. In this manner, it is found that the maximum length of matching is five. The last match
is found at the fifth position. The length of the matched string, however, is only one. Since greedy
parsing is used, the match with a length five is chosen. That is, the offset is four and the maximum
match length is five. Consequently, the triple resulting from the second step is <4, 5, C(g)>.

The sliding window is then shifted to the right by six positions. The third step of the encoding
is depicted in Part (c). Obviously, there is no matching of / in the search buffer. The resulting triple
Is hence <0, 0, C(i)>.

The encoding process can continue in this way. The possible cases we may encounter in the
encoding, however, are described in the first three steps. Hence we end our discussion of the
encoding process and discuss the decoding process. Compared with the encoding, the decoding is
simpler because there is no need for matching, which involves many comparisons between the
symbols in the look-ahead buffer and the symbols in the search buffer. The decoding process IS
illustrated in Figure 6.5. _

In the above three steps, the resulting triples are <6, 2, C(c)>, <4, 5, C(g)>, and <0, 0, C(1)>.
Now let us see how the decoder works. That is, how the decoder recovers the string baccbaccgi

from these three triples. | |
In part (a) of Figure 6.5, the search buffer is the same as that in part (a) of Figure 6.4. That is,

the string accbadacc stored in the search window is what was just decoded. | |

Once the first triple <6, 2, C(c)> is received, the decoder will move the decoding pointer frcinm
the first position in the look-ahead buffer to the left by six positions. That is, the pointer will point
to the symbol b. The decoder then copies the two symbols starting from b, 1.¢., ba, into the look-
ahead buffer. The symbol ¢ will be copied right to ba. This is shown in part (b) of Figure 6.5. The
window is then shifted to the right by three positions, as shown in part (c) of Figure 6.5.

IPR2021-00827

Unified EX1008 Page 169

144 Image and Video Compression for Multimedia Engineering

uccbndac%_J l

(a) Search buffer at the beginning

accbadac%ba

(b) After decoding <6, 2, C(c) >

bédac%bac

(c) Shifting the sliding window

badac?/ébaccbactcg

(d) After decoding <4, 5, C(g) >

h\\\\\\‘\\x
o
=
g
0
o
<L
g
g

oQ

(e) Shifting the sliding window

%\baccbaccgij Il

(f) After decoding <0, 0, C(i) >

FIGURE 6.5 A decoding example using LZ77.

After the second triple <4, 5, C(g)> is received, the decoder moves the decoding pointer from
the first position of the look-ahead buffer to the left by four positions. The pointer points to the
symbol c. The decoder then copies five successive symbols starting from the symbol ¢ pointed by
the pointer. We see that at the beginning of this copying process there are only four symbols
available for copying. Once the first symbol is copied, however, all five symbols are available. After
copying, the symbol g is added to the end of the five copied symbols in the look-ahead buffer. The
results are shown in part (c) of Figure 6.5. Part (d) then shows the window shifting to the right by
SIX positions.

After receiving the triple <0, 0, C(i)>, the decoder knows that there is no match and a single
symbol i 1s encoded. Hence, the decoder adds the symbol i following the symbol g. This 1s shown
in part (f) of Figure 6.5. |

In Figure 6.5, for each part, the last previously encoded symbol ¢ prior to the receiving of the
three triples is shaded. From part (1), we see that the string added after the symbol ¢ due to the
three triples is baccbaccgi. This agrees with the sequence mentioned at the beginning of our
discussion about the decoding process. We thus conclude that the decoding process has correctly
decoded the encoded sequence from the last encoded symbol and the received triples.

6.4.4.3 Summary of the LZ77 Approach

The sliding window consists of two parts: the search buffer and the look-ahead buffer. The most
recently encoded portion of the input text stream is contained in the search buffer, while the portion
of the text that needs to be encoded immediately is in the look-ahead buffer. The first symbol in
the look-ahead buffer, located to the right of the boundary between the two buffers, is the symbol

IPR2021-00827
Unified EX1008 Page 170

Run-Length and Dictionary Coding: Information Theory Results (111) 145

or the beginning of a string of symbols to be encoded at the moment. Let us call it the symbol s.
The size of the search buffer is usually much larger than that of the look-ahead buffer.

In encoding, the search pointer moves to the left, away from the symbol s, to find a match of
the symbol s in the search buffer. Once a match is found, the encoding process will further determine
the length of the matched string. When there are multiple matches, the match that produces the
longest matched string is chosen. The match is denoted by a triple <i, j, k>. The first item in the
triple, “i”, is the offset, which is the distance between the pointer pointing to the symbol giving
the maximum match and the symbol s. The second item, “j”, is the length of the matched string.
The third item, “k”, is the codeword of the symbol following the matched string in the look-ahead
buffer. The sliding window is then shifted to the right by j+1 positions before the next coding step
takes place.

When there is no matching in the scarch buffer, the triple is represented by <0, 0, C(s)>, whcre.

C(s) is the codeword assigned to the symbol 5. The sliding window is then shifted to the right by
one position.

The sliding window is shifted along the input text stream during the encoding process. The
symbol s moves from the beginning symbol to the ending symbol of the input text stream.

At the very beginning, the content of the search buffer can be arbitrarily selected. For instance,
the symbols in the search buffer may all be the space symbol.

Let us denote the size of the search buffer by SB, the size of the look-ahead buffer by L, and
the size of the source alphabet by A. Assume that the natural binary code is used. Then we sce that
the LZ77 approach encodes variable-length strings of symbols with fixed-length codewords. Spe-
cifically, the offset “i” is of coding length | log, SB |, the length of matched string “j” is of coding
length ‘ log, (SB + L) | and the codeword “k” 1s of coding length \ log, (A) |, where the sign [a |
denotes the smallest integer larger than a.

The length of the matched string is equal to | log, (SB + L) ‘ because the search for the maximum
matching can enter into the look-ahead buffer as shown in Example 6.2.

The decoding process is simpler than the encoding process since there are no comparisons
involved in the decoding.

The most recently encoded symbols in the search buffer serve as the dictionary used in the
LZ77 approach. The merit of doing so is that the dictionary is well adapted to the input text. The
limitation of the approach is that if the distance between the repeated patterns in the input text
stream is larger than the size of the search buffer, then the approach cannot utilize the structure to
compress the text. A vivid example can be found in (Sayood, 1996).

A window with a moderate size, say, SB + L < 8192, can compress a variety of texts well.

Several reasons have been analyzed by Bell et al. (1990).

Many variations have been made to improve coding efficiency of the LZ77 approach. The LZ77
produces a triple in each encoding step; i.e., the offset (position of the matched string), the length
of the matched string, and the codeword of the symbol following the matched string. The trans-
mission of the third item in each coding step is not efficient. This is true especially at the beginning
of coding. A variant of the LZ77, referred to as the LZSS algorithm, improves this inefficiency.

6.4.5 LZ78 ALGORITHMS
6.4.5.1 Introduction

As mentioned above, the LZ77 algorithms use a sliding window of fixed size, and both the search
buffer and the look-ahead buffer have a fixed size. This means that if the distance between two
repeated patterns is larger than the size of the search buffer, the LZ77 algorithms cannot work
efficiently. The fixed size of both the buffers implies that the matched string cannot be longer lf:lElI'l
the sum of the sizes of the two buffers, placing another limitation on coding efficiency. Increasing
the sizes of the search buffer and the look-ahead buffer seemingly will resolve the problem. A close

IPR2021-00827

Unified EX1008 Page 171

146 Image and Video Compression for Multimedia Engineering

look, however, reveals that it also leads to increases in the number of bits required to encode the
offset and matched string length, as well as an increase in processing complexity.

The LZ78 algorithms (Ziv and Lempel, 1978) eliminate the use of the sliding window. Instead,
these algorithms use the encoded text as a dictionary which, potentially, does not have a fixed size.
Each time a pointer (token) is issued, the encoded string is included in the dictionary. Theoretically,
the LZ78 algorithms reach optimal performance as the encoded text stream approaches infinity. In
practice, however, as mentioned above with respect to the LZ77, a very large dictionary will affect
coding efficiency negatively. Therefore, once a preset limit to the dictionary size has been reached,
either the dictionary is fixed for the future (if the coding efficiency 1s good), or 1t 1s reset to zero,
1.e., 1l musl be restarted.

Instead of the triples used in the LZ77, only pairs are used in the LZ78. Specifically, only the
position of the pointer to the matched string and the symbol following the matched string need to
be encoded. The length of the matched string does not need to be encoded since both the encoder
and the decoder have exactly the same dictionary, i.e., the decoder knows the length of the matched
string.

6.4.5.2 Encoding and Decoding

Like the discussion of the LZ77 algorilhms,‘we will go through an example to describe the LZ78
algorithms.

Example 6.3

Consider the text stream: baccbaccacbcabecbbace. Table 6.4 shows the coding process. We see
that for the first three symbols there is no match between the individual input symbols and the
entries 1n the dictionary. Therefore, the doubles are, respectively, <0, C(b)>, <0, C(a)>, and
<0, C(c)>, where 0 means no match, and C(b), C(a), and C(c) represent the codewords of b, a, and
¢, respectively. After symbols b, a, ¢, comes ¢, which finds a match in the dictionary (the third
entry). Therefore, the next symbol b i1s combined to be considered. Since the string ¢b did not
appear before, it is encoded as a double and it is appended as a new entry into the dictionary. The
first item in the double is the index of the matched entry ¢, 3, the second item is the index/codeword
of the symbol following the match b, 1. That is, the double is <3, 1>. The following input symbol
IS a, which appeared in the dictionary. Hence, the next symbol ¢ is taken into consideration. Since
the string ac 1s not an entry of the dictionary, it is encoded with a double. The first item in the
double is the index of symbol a, 2; the second item is the index of symbol ¢, 3, i.e., <2, 3>. The
encoding proceeds in this way. Take a look at Table 6.4. In general, as the encoding proceeds, the
entries 1n the dictionary become longer and longer. First, entries with single symbols come out,
but later, more and more entries with two symbols show up. After that, more and more entries with
three symbols appear. This means that coding efficiency is increasing.

Now consider the decoding process. Since the decoder knows the rule applied in the encoding,
It can reconstruct the dictionary and decode the input text stream from the received doubles. When
the first double <0, C(b)> is received, the decoder knows that there is no match. Hence, the first
entry in the dictionary is b. So is the first decoded symbol. From the second double <0, C(a)>,
symbol a is known as the second entry in the dictionary as well as the second decoded symbol.
Similarly, the next entry in the dictionary and the next decoded symbol are known as ¢. When the
following double <3, 1> is received. The decoder knows from two items, 3 and 1, that the next
two symbols are the third and the first entries in the dictionary. This indicates that the symbols ¢
and b are decoded, and the string cb becomes the fourth entry in the dictionary.

We omit the next two doubles and take a look at the double <4, 3>, which is associated with
Index 7 in Table 6.4. Since the first item in the double is 4, it means that the maximum matched
string is cb, which is associated with Index 4 in Table 6.4. The second item in the double, 3, implies
that the symbol following the match is the third entry c. Therefore the decoder decodes a string
cbe. Also the string cbe becomes the seventh entry in the reconstructed dictionary. In this way, the

IPR2021-00827
Unified EX1008 Page 172

Run-Length and Dictionary Coding: Information Theory Results (I11) 147

TABLE 6.4
An Encoding Example Using the LZ78 Algorithm
Index Doubles Encoded Symbols

l <0, Cb) > b

2 < (0, C(a) >

3 <0, Cc) > C

4 <3, 1> cb

5 <2 3> ac

6 <3, 2> ca

7 <4 3> cbe

8 <2 s ab

9 <3, 3> cC

10 <Il, 1> bb

11 <5 3> ace

decoder can reconstruct the exact same dictionary as that established by the encoder and decode
the input text stream from the received doubles.

6.4.5.3 LZW Algorithm

Both the LZ77 and LZ78 approaches, when published in 1977 and 1978, respectively, were theory
oriented. The effective and practical improvement over the LZ78 by Welch (1984) brought much
attention to the LZ dictionary coding techniques. The resulting algorithm is referred to the LZW
algorithm. It removed the second item in the double (the index of the symbol following the longest
matched string) and, hence, it enhanced coding efficiency. In other words, the LZW only sends the
Indexes of the dictionary to the decoder. For the purpose, the LZW first forms an initial dictionary,
which consists of all the individual source symbols contained in the source alphabet. Then, the
encoder examines the input symbol. Since the input symbol matches to an entry in the dictionary,
Its succeeding symbol is cascaded to form a string. The cascaded string does not find a match in
the initial dictionary. Hence, the index of the matched symbol is encoded and the enlarged string
(the matched symbol followed by the cascaded symbol) is listed as a new entry in the dictionary.
The encoding process continues in this manner.

For the encoding and decoding processes, let us go through an example to see how the LZW
algorithm can encode only the indexes and the decoder can still decode the input text string.

Example 6.4

Consider the following input text stream: acchadaccbaccbacc. We see that the source alphabet is
S={ab,cd,). The top portion of Table 6.5 (with indexes 1,2,3,4) gives a possible initial dictionary
used in the LZW. When the first symbol a is input, the encoder finds that it has a match in the
dictionary. Therefore the next symbol ¢ is taken to form a string ac. Because the string ac is not
in the dictionary, it is listed as a new entry in the dictionary and is given an index, 5. The index
of the matched symbol a, 1, is encoded. When the second symbol, ¢, is input the encoder takes
the following symbol ¢ into consideration because there is a match to the second input symbol ¢
in the dictionary. Since the string cc does not match any existing entry, it becomes a new entry in
the dictionary with an index, 6. The index of the matched symbol (the second input symbol), c, 1S
encoded. Now consider the third input symbol ¢, which appeared in the dictionary. Hence, the
following symbol 4 is cascaded to form a string cb. Since the string ¢b is not in the dictionary, it
becomes a new entry in the dictionary and is given an index, 7. The index of matched symbol ¢, 3,

1S encoded. The process proceeds in this fashion.

IPR2021-00827

Unified EX1008 Page 173

148 Image and Video Compression for Multimedia Engineering

TABLE 6.5
An Example of the Dictionary Coding

Using the LZW Algorithm

Encoded

Index Entry Input Symbols Index

1 a]

2 b > Initial dictionary

3 C

4 d |

5 ac a |

6 cC c 3

7 cb C 3

8 ba b 2

9 ad a i

10 da d 4

11 acc a,c 5

12 cba c,b 7

13 accb a,C.C [1

14 bac b,a, 8

15 CC... C.e..

Take a look at entry 11 in the dictionary shown in Table 6.5. The input symbol at this point is
a. Since it has a match in the previous entries, its next symbol ¢ is considered. Since the string ac
appeared in entry 5, the succeeding symbol ¢ is combined. Now the new enlarged string becomes
acc and it does not have a match in the previous entries. It is thus added to the dictionary. And a
new index, 11, is given to the string acc. The index of the matched string ac, 5, is encoded and
transmitted. The final sequence of encoded indexes is 1, 3, 3,2, 1, 4, 5, 7, 11, 8. Like the LZ78,
the entries in the dictionary become longer and longer in the LZW algorithm. This implies high
coding efficiency since long strings can be represented by indexes.

Now let us take a look at the decoding process to see how the decoder can decode the input
text stream from the received index. Initially, the decoder has the same dictionary (the top four
rows in Table 6.5) as that in the encoder. Once the first index 1 comes, the decoder decodes a
symbol a. The second index is 3, which indicates that the next symbol is ¢. From the rule applied
in encoding, the decoder knows further that a new entry ac has been added to the dictionary with
an index 5. The next index is 3. It is known that the next symbol is also ¢. It is also known that

the string cc has been added into the dictionary as the sixth entry. In this way, the decoder
reconstructs the dictionary and decodes the input text stream.

6.4.5.4 Summary

The LZW algorithm, as a representative of the LZ78 approach, is summarized below.

The initial dictionary contains the indexes for all the individual source symbols. At the beginning
of encoding, when a symbol is input, since it has a match in the initial dictionary, the next symbol
is cascaded to form a two-symbol string. Since the two-symbol string cannot find a match in the
initial dictionary, the index of the former symbol is encoded and transmitted, and the two-symbol
string is added to the dictionary with a new, incremented index. The next encoding step starts with
the latter symbol of the two.

In the middle, the encoding process starts with the last symbol of the latest added dictionary
entry. Since it has a match in the previous entries, its succeeding symbol is cascaded after the
symbol to form a string. If this string appeared before in the dictionary (i.e., the string finds a

IPR2021-00827
Unified EX1008 Page 174

i

Run-Length and Dictionary Coding: Information Theory Results (I11) 149

match), the next symbol is cascaded as well. This process continues until such an enlarged string
cannot find a match in the dictionary. At this moment, the index of the last matched string (the
longest match) is encoded and transmitted, and the enlarged and unmatched string 1s added into
the dictionary as a new entry with a new, incremented index.

Decoding is a process of transforming the index string back to the corresponding symbol string.
In order to do so, however, the dictionary must be reconstructed in exactly the same way as that
established in the encoding process. That is, the initial dictionary is constructed first in the same
way as that in the encoding. When decoding the index string, the decoder reconstructs the same
dictionary as that in the encoder according to the rule used in the encoding.

Specifically, at the beginning of the decoding, after receiving an index, a corresponding single
symbol can be decoded. Via the next received index, another symbol can be decoded. From the
rule used in the encoding, the decoder knows that the two symbols should be cascaded to form a
new entry added into the dictionary with an incremented index. The next step in the decoding will
start from the latter symbol among the two symbols.

Now consider the middle of the decoding process. The presently received index is used to
decode a corresponding string of input symbols according to the reconstructed dictionary at the
moment. (Note that this string is said to be with the present index.) It is known from the encoding
rule that the symbols in the string associated with the next index should be considered. (Note that
this string is said to be with the next index.) That is, the first symbol in the string with the next
index should be appended to the last symbol in the string with the present index. The resultant
combination, i.e., the string with the present index followed by the first symbol in the string with
the next index, cannot find a match to an entry in the dictionary. Therefore, the combination should
be added to the dictionary with an incremented index. At this moment, the next index becomes the
new present index, and the index following the next index becomes the new next index. The decoding
process then proceeds in the same fashion in a new decoding step.

Compared with the LZ78 algorithm, the LZW algorithm eliminates the necessity of having the
second item in the double, an index/codeword of the symbol following a matched string. That 1s,
the encoder only needs to encode and transmit the first item in the double. This greatly enhances

the coding efficiency and reduces the complexity of the LZ algorithm.

6.4.5.5 Applications

The CCITT Recommendation V.42 bis is a data compression standard used in modems that connect
computers with remote users via the GSTN. In the compressed mode, the LZW algorithm 1s
recommended for data compression.

In image compression, the LZW finds its application as well. Specifically, it 1s utilized 1n the
graphic interchange format (GIF) which was created to encode graphical images. GIF is now also
used to encode natural images, though it is not very efficient in this regard. For more information,

readers are referred to Sayood (1996). The LZW algorithm is also used in the UNIX Compress
command.

6.5 INTERNATIONAL STANDARDS FOR LOSSLESS STILL
IMAGE COMPRESSION

In the previous chapter, we studied Huffman and arithmetic coding techniques. We also brieﬂ.y
discussed the international standard for bilevel image compression, known as the JBIG. In this
chapter, so far we have discussed another two coding techniques: the I'Ull-]l?.l‘llgth and dic%ionm"y
coding techniques. We also introduced the international standards for facsilmle‘ campresmo_n, In
which the techniques known as the MH, MR, and MMR were recomme_nded. All c?t these techniques
involve lossless compression. In the next chapter, the international still image coding stanfia::rd J FTEG
will be introduced. As we will see, the JPEG has four different modes. They can be divided into

IPR2021-00827
Unified EX1008 Page 175

150 Image and Video Compression for Multimedia Engineering

two compression categories: lossy and lossless. Hence, we can talk about the lossless JPEG. Belore
leaving this chapter, however, we briefly discuss, compare, and summarize various techniques used
in the international standards for lossless still image compression. For more details, readers are
referred to an excellent survey paper by Arps and Truong (1994).

6.5.1 LossLess BiLevel Stitt IMAGE COMPRESSION

6.5.1.1 Algorithms

As mentioned above, there are four different international standard algorithms falling into this
category.

MH (Modified Huffman coding) — This algorithm is defined in CCITT Recommendation
T.4 for facsimile coding. It uses the 1-D run-length coding technique followed by the “modified”
Huffman coding technique.

MR (Modified READ [Relative Element Address Designate] coding) — Defined in CCITT
Recommendation T.4 for facsimile coding. It uses the 2-D run-length coding technique followed
by the “modified” Huffman coding technique.

MMR (Modified Modified READ coding) — Defined in CCITT Recommendation T.6. It 1s
based on MR, but 1s modified to maximize compression.

JBIG (Joint Bilevel Image experts Group coding) — Defined in CCITT Recommendation
T.82. It uses an adaptive 2-D coding model, followed by an adaptive arithmetic coding technique.

6.5.1.2 Performance Comparison

The JBIG test image set was used to compare the performance of the above-mentioned algorithms,
The set contains scanned business documents with different densities, graphic images, digital
halftones, and mixed (document and halftone) images.

Note that digital halftones, also named (digital) halftone images, are generated by using only
binary devices. Some small black units are imposed on a white background. The units may assume
different shapes: a circle, a square, and so on. The more dense the black units in a spot of an image,
the darker the spot appears. The digital halftoning method has been used for printing gray-level
images 1n newspapers and books. Digital halftoning through character overstriking, used to generate
digital images 1n the early days for the experimental work associated with courses on digital image
processing, has been described by Gonzalez and Woods (1992).

The following two observations on the performance comparison were made after the application
of the several techniques to the JBIG test image set.

1. For bilevel images excluding digital halftones, the compression ratio achieved by these
techniques ranges from 3 to 100. The compression ratio increases monotonically in the
order of the following standard algorithms: MH, MR, MMR, JBIG.

2. For digital halftones, MH, MR, and MMR result in data expansion, while JBIG achieves
compression ratios in the range of 5 to 20. This demonstrates that among the techniques,
JBIG is the only one suitable for the compression of digital halftones.

6.5.2 Losstess MULTILEVEL STitL IMAGE COMPRESSION

6.5.2.1 Algorithms

There are two international standards for multilevel still' image compression:

JBIG (Joint Bilevel Image experts Group coding) — Defined in CCITT Recommendation
T.82. It uses an adaptive arithmetic coding technique. To encode multilevel images, the JIBG
decomposes multilevel images into bit-planes, then compresses these bit-planes using its bilevel

IPR2021-00827
Unified EX1008 Page 176

Run-Length and Dictionary Coding: Information Theory Results (111) 151

image compression technique. To further enhance the compression ratio, it uses Gary coding to
represent pixel amplitudes instead of weighted binary coding.

JPEG (Joint Photographic (image) Experts Group coding) — Defined in CCITT Recom-
mendation T.8 1. For lossless coding, it uses the differential coding technique. The predictive error
Is encoded using either Hulfman coding or adaptive arithmetic coding techniques.

6.5.2.2 Performance Comparison

A set of color test images from the JPEG standards committee was used for performance compar-
ison. The luminance component (Y) is of resolution 720 x 576 pixels, while the chrominance
components (U and V) are of 360 x 576 pixels. The compression ratios calculated are the combined
results for all the three components. The following observations have been reported.

I. When quantized in 8 bits per pixel, the compression ratios vary much less for multilevel
images than for bilevel images, and are roughtly equal to 2.

2. When quantized with 5 bits per pixel down to 2 bits per pixel, compared with the lossless
JPEG the JBIG achieves an increasingly higher compression ratio, up to a maximum of
29%.

3. When quantized with 6 bits per pixel, JBIG and lossless JPEG achieve similar compres-
s1on ratos.

4. When quantized with 7 bits per pixel to 8 bits per pixel, the lossless JPEG achieves a
2.4 to 2.6% higher compression ratio than JBIG.

6.6 SUMMARY

Both Huffman coding and arithmetic coding, discussed in the previous chapter, are referred to as
variable-length coding techniques, since the lengths of codewords assigned to ditferent entries In
a source alphabet are different. In general, a codeword of a shorter length 1s assigned to an entry
with higher occurrence probabilities. They are also classified as fixed-length to variable-length
coding techniques (Arps, 1979), since the entries in a source alphabet have the same fixed length.
Run-length coding (RLC) and dictionary coding, the focus of this chapter, are opposite, and are
referred to as variable-length to fixed-length coding techniques. This is because the runs in the
RLC and the string in the dictionary coding are variable and are encoded with codewords of the
same fixed length.

Based on RLC, the international standard algorithms for facsimile coding, MH, MR, and MMR
have worked successfully except for dealing with digital halftones. That is, these algorithms result
In data expansion when applied to digital halftones. The JBIG, based on an adaptive ari[hme%ic
coding technique, not only achieves a higher coding efficiency than MH, MR, and MMR for
facsimile coding, but also compresses the digital halftones effectively.

Note that 1-D RLC utilizes the correlation between pixels within a scan line, whereas 2-D RLC
utilizes the correlation between pixels within a few scan lines. As a result, 2-D RLC can -Dbtain
higher coding efficiency than 1-D RLC. On the other hand, 2-D RLC is more susceptible to
transmission errors than 1-D RLC. | |

In text compression, the dictionary-based techniques have proven to be efficient. All the Eld:‘ﬁlp[l*’e
dictionary-based algorithms can be classified into two groups. One is based on a work by Ziv and
Lempel in 1977, and another is based on their pioneering work in 1978. They are called the LZ77
and LZ78 algorithms, respectively. With the LZ77 algorithms, a fixed-size wind?}v slides through
the input text stream. The sliding window consists of two parts: the search buffer and the look-
ahead buffer. The search buffer contains the most recently encoded portion of the input text, while
the look-ahead buffer contains the portion of the input text to be encoded immediately. For the
symbols to be encoded, the LZ77 algorithms search for the longest match in the search buffer. The

IPR2021-00827

Unified EX1008 Page 177

152 Image and Video Compression for Multimedia Engineering

information about the match: the distance between the matched string in the search buffer and that
in the look-ahead buffer, the length of the matched string, and the codeword of the symbol following
the matched string in the look-ahead buffer are encoded. Many improvements have been made in
the LZ77 algorithms.

The performance of the LZ77 algorithms is limited by the sizes of the search bulfer and the
look-ahead buffer. With a finite size for the search buffer, the LZ77 algorithms will not work wel
in the case where repeated patterns are apart from each other by a distance longer than the size of
the search buffer. With a finite size for the sliding window, the LZ77 algorithms will not work wel
in the case where matching strings are longer than the window. In order (o be efficient, however,
these sizes cannot be very large.

In order to overcome the problem, the LZ78 algorithms work in a different way. They do not
use the sliding window at all. Instead of using the most recently encoded portion of the input text
as a dictionary, the LZ78 algorithms use the index of the longest matched string as an entry of the
dictionary. That is, each matched string cascaded with its immediate next symbol i1s compared with
the existing entries of the dictionary. If this combination (a new string) does not find a match in
the dictionary constructed at the moment, the combination will be included as an entry in the
dictionary. Otherwise, the next symbol in the input text will be appended to the combination and
the enlarged new combination will be checked with the dictionary. The process continues until the
new combination cannot find a match in the dictionary. Among the several variants of the LZ78
algorithms, the LZW algorithm is perhaps the most important one. It only needs to encode the
indexes of the longest matched strings to the dictionary. It can be shown that the decoder can
decode the input text stream from the given index stream. In doing so, the same dictionary as that
established in the encoder needs to be reconstructed at the decoder, and this can be implemented
since the same rule used in the encoding is known in the decoder.

The size of the dictionary cannot be infinitely large because, as mentioned above, the coding
efficiency will not be high. The common practice of the LZ78 algorithms is to keep the dictionary
fixed once a certain size has been reached and the performance of the encoding is satisfactory.
Otherwise, the dictionary will be set to empty and will be reconstructed from scratch.

Considering the fact that there are several international standards concerning still image coding
(for both bilevel and multilevel images), a brief summary of them and a performance comparison
have been presented in this chapter. At the beginning of this chapter, a description of the discrete

Markov source and its nth extensions was provided. The Markov source and the autoregressive
model serve as important models for the dependent information sources.

6.7 EXERCISES

6-1. Draw the state diagram of a second-order Markov source with two symbols in the source
alphabet. That 1s, § = {s|, s,}. It is assumed that the conditional probabilities are

6-2. What are the definitions of raster algorithm and area algorithm in binary image coding?
To which category does 1-D RLC belong? To which category does 2-D RLC belong?

6-3. What effect does a transmission error have on 1-D RLC and 2-D RLC, respectively?
What is the function of the codeword EOL?

IPR2021-00827
Unified EX1008 Page 178

Run-Length and Dictionary Coding: Information Theory Results (111) 153

6-4. Make a convincing argument that the “modified” Huffman (MH) algorithm reduces the
requirement of large storage space.

6-5. Which three different modes does 2-D RLC have? How do you view the vertical mode?

6-6. Using your own words, describe the encoding and decoding processes of the LZ77
algorithms. Go through Example 6.2,

6-7. Using your own words, describe the encoding and dccodmg processes of the LZW
algorithm. Go through Example 6.3.

6-8. Read the reference paper (Arps and Truong, 1994), which is an excellent survey on the
international standards for lossless still image compression. Pay particular attention to
all the figures and to Table |.

REFERENCES

Abramson, N. Information Theory and Coding, New York: McGraw-Hill, 1963.

Arps, R. B. Binary Image Compression, in /Image Transmission Techniques, W. K. Pratt (Ed.), New York:
Academic Press, 1979.

Arps, R. B. and T. K. Truong, Comparison of international standards for lossless still image compression,
Proc. IEEE, 82(6), 889-899, 1994.

Bell, T. C., J. G. Cleary, and I. H. Witten, Text Compression, Englewood Cliffs, NJ: Prentice-Hall, 1990.

Gonzalez, R. C. and R. E. Woods, Digital Image Processing, Reading, MA: Addison-Wesley, 1992.

Hunter, R. and A. H. Robinson, International digital facsimile coding standards, Proc. IEEE, 68(7), 854-867,
1980.

Laemmel, A. E. Coding Processes for Bandwidth Reduction in Picture Transmission, Rep. R-246-51, PIB-
187, Microwave Res. Inst., Polytechnic Institute of Brooklyn, New York.

Nelson, M. and J.-L. Gailly, The Data Compression Book, 2nd ed., New York: M&T Books, 1995.

Sayood, K. Introduction to Data Compression, San Francisco, CA: Morgan Kaufmann Publishers, 1996.

Shannon, C. E. and W. Weaver, The Mathematical Theory of Communication, Urbana, IL: University of lllinois
Press, 1949.

Welch, T. A technique for high-performance data compression, /EEE Trans. Comput., 17(6), 8-19, 1984,

Ziv, J. and A. Lempel, A universal algorithm for sequential data compression, [EEE Trans. Inf. Theory, 23(3),

337-343, 1977. |
Ziv, J. and A. Lempel, Compression of individual sequences via variable-rate coding, IEEE Trans. Inf. Theory,

24(5), 530-536, 1978.

IPR2021-00827

Unified EX1008 Page 179

IPR2021-00827
Unified EX1008 Page 180

Section Il

Still Image Compression

IPR2021-00827
Unified EX1008 Page 182

V4 Still Image Coding
Standard: JPEG

In this chapter, the JPEG standard is introduced. This standard allows for lossy and lossless encoding
of still images and four distinct modes of operation are supported: sequential DCT-based mode,
progressive DCT-based mode, lossless mode and hierarchical mode.

7.1 INTRODUCTION

Still image coding is an important application of data compression. When an analog image or
picture is digitized, each pixel is represented by a fixed number of bits, which correspond to a
certain number of gray levels. In this uncompressed format, the digitized image requires a large
number of bits to be stored or transmitted. As a result, compression become necessary due to the
limited communication bandwidth or storage size. Since the mid-1980s, the ITU and ISO have
been working together to develop a joint international standard for the compression of still images.
Officially, JPEG [jpeg] is the ISO/IEC international standard 10918-1; digital compression and
coding of continuous-tone still images, or the ITU-T Recommendation T.81. JPEG became an
International standard in 1992. The JPEG standard allows for both lossy and lossless encoding of
stlll images. The algorithm for lossy coding is a DCT-based coding scheme. This is the baseline
of JPEG and is sufficient for many applications. However, to meet the needs of applications that
cannot tolerate loss, e.g., compression of medical images, a lossless coding scheme is also provided
and 1s based on a predictive coding scheme. From the algorithmic point of view, JPEG includes
four distinct modes of operation, namely, sequential DCT-based mode, progressive DCT-based
mode, lossless mode, and hierarchical mode. In the following sections, an overview of these modes
1s provided. Further technical details can be found in the books by Pennelbaker and Mitchell (1992)
and Symes (1998).

In the sequential DCT-based mode, an image is first partitioned into blocks of 8 X 8 pixels.
The blocks are processed from left to right and top to bottom. The 8 X 8 two-dimensional Forward
DCT is applied to each block and the 8 x 8 DCT coefficients are quantized. Finally, the quantized
DCT coefficients are entropy encoded and output as part of the compressed image data.

In the progressive DCT-based mode, the process of block partitioning and Forward DCT
transform is the same as in the sequential DCT-based mode. However, in the progressive mode,
the quantized DCT coefficients are first stored in a buffer before the encoding 1s performed. The
DCT coefficients in the buffer are then encoded by a multiple scanning process. In each scan, the
quantized DCT coefficients are partially encoded by either spectral selection or successive approx-
imation. In the method of spectral selection, the quantized DCT coefficients are divided into multiple
spectral bands according to a zigzag order. In each scan, a specified band is encoded. In the method
of successive approximation, a specified number of most significant bits of the quantized coefficients
are first encoded and the least significant bits are then encoded In subsequent scans.

The difference between sequential coding and progressive coding is shown in Figure 7.1. In
the sequential coding an image is encoded part by part according to the scanning order, while 1n
the progressive coding the image is encoded by a multiscanning process and in each scan the full
image is encoded to a certain quality level.

As mentioned earlier, lossless coding is achieved by a predictive coding scheme. In this scheme,
three neighboring pixels are used to predict the current pixel to be coded. The prediction difference

157

IPR2021-00827

Unified EX1008 Page 183

Image and Video Compression for Multimedia Engineering
158

(b) Progressive coding

FIGURE 7.1 (a) Sequential coding. (b) progressive coding.

is entropy coded using either Huffman or arithmetic coding. Since the prediction 1s not quantized.
the coding is lossless.

Finally, in the hierarchical mode, an image is first spatially down-sampled to a multilayered
pyramid, resulting in a sequence of frames as shown in Figure 7.2. This sequence of frames 1s
encoded by a predictive coding scheme. Except for the first frame, the predictive coding process
1s applied to the differential frames, i.e., the differences between the frame to be coded and the
predictive reference frame. It is important to note that the reference frame is equivalent to the
previous frame that would be reconstructed in the decoder. The coding method for the difference
frame may use the DCT-based coding method, the lossless coding method, or the DCT-based
processes with a final lossless process. Down-sampling and up-sampling filters are used in the
hierarchical mode. The hierarchical coding mode provides a progressive presentation similar to the
progressive DCT-based mode, but is also useful in the applications that have multiresolution

requirements. The hierarchical coding mode also provides the capability of progressive coding to
a final lossless stage.

FIGURE 7.2 Hierarchical multiresolution encoding.

IPR2021-00827
Unified EX1008 Page 184

Still Image Coding Standard: JPEG

> Image Forward
Input Partitioning DCT
Image

159

| 3 Zig-zag

Reordering

Quantization

=

T

N Entrt}?y
Encoding

Compressed
Image Data

»

T

Quantization
Tables

Table

Specification

FIGURE 7.3 Block diagram of a sequential DCT-based encoding process.

FIGURE 7.4 Partitioning to 8 x 8 blocks.

7.2 SEQUENTIAL DCT-BASED ENCODING ALGORITHM

/

@ e %0 o9 o
® ®© 2 & 00 © 0O
® 009 00 00
o000 00 0o
e o9® ¢ o0 00
® 0 00 ¢ 0
o0 o0 00
o © 00 00 00

7
=

g

The sequential DCT-based coding algorithm is the baseline algorithm of the JPEG coding standard.
A block diagram of the encoding process is shown in Figure 7.3. As shown in Figure 7.4, the
digitized image data are first partitioned into blocks of 8 x 8 pixels. The two-dimensional forward
DCT is applied to cach 8 x 8 block. The two-dimensional forward and inverse DCT of 8 x 8 block

are defined as follows:

EDCT- S lccii o (2:’+I)HII:COS (2j+1)vr
: = — §.. COS
15 4 ¢ PI“ .] 16 16
=0 j=
i+ 1ur _ (2j+1)vr
[DCT: L= — CC'S cas COS 7.1
e for u,y=0
C”C..'—'*ﬁ ruy =
| otherwise

where s;; 1S the value of the pixel at position (/) in the block, and S, is the transformed («,v) DCT

coefficient.

IPR2021-00827
Unified EX1008 Page 185

Image and Video Compression for Multimedia Engineering
160

1$ﬁLEx:1-r:1p|es of Quantization Tables Used by JPEG
16 i”_L"} 16 |24 [40 {51 |6l 17 {18 124 [47 199 [99 |99 |99
12 |12 | 14 Tl? |26 |58 |60 |SS 18 |21 |26 [66 |99 |99 |99 |99
14 |13 [16 [24 |40 |57 169 |56 24 126 |56 [99 |99 |99 |99 |99
14 17 |22 |29 |51 |87 |80 |62 47 |66 |99 199 |99 [99 | 99 | 99
18 |22 |37 |56 |68 [109 103 | 77 | 99 199 199 [99 [99 [99 |99 | 99
|24 |35 |ss |64 | 81 1104 |113 | 92 99 199 199 199 199 |99 |99 |99
149 |64 |78 |87 [103 |121 |120 | 10l 99 199 199 |99 [99 |99 |99 |99
72 (92 | 95 | 98 {112 [100 [103 | 99 99 199 [99 [99 |99 |99 |99 | 99
Luminance quantization table Chrominance quantization table

After the forward DCT, quantization of the transformed DCT coefficients is performed. Each
of the 64 DCT coefficients is quantized by a uniform quantizer:

Sqm, = round (%] (7.2)

where the S, is the quantized value of the DCT coefficient, S,,, and Q, . is the quantization step
obtained from the quantization table. There are four quantization tables that may be used by the

encoder, but there is no default quantization table specified by the standard. Two particular quan-
tization tables are shown in Table 7.1.

At the decoder, the dequantization is performed as follows:

R‘f”" = Sqmi X Qn- (73)

where R, is the value of the dequantized DCT coefficient. After quantization, the DC coefhicient,
Sq00» 18 treated separately from the other 63 AC coefficients. The DC coefficients are encoded by
a predictive coding scheme. The encoded value is the difference (DIFF) between the quantized DC
coefficient of the current block (S,,) and that of the previous block of the same component (PRED):

DIFF = S, — PRED (7.4)

The value of DIFF i1s entropy coded with Huffman tables. More specifically, the two’s com-
plement of the possible DIFF magnitudes are grouped into 12 categories, “SSSS”. The Huffman
codes for these 12 difference categories and additional bits are shown in the Table 7.2.

For each nonzero category, additional bits are added to the codeword to uniquely identify which
difference within the category actually occurred. The number of additional bits is defined by “SSSS”
and the additional bits are appended to the least significant bit of the Huffman code (most significant
bit first) according to the following rule. If the difference value is positive, the “SSSS” low-order
bits of DIFF are appended; if the difference value is negative, then the “SSSS” low-order bits of
DIFF-] are appended. As an example, the Huffman tables used for coding the luminance and
chrominance DC coefficients are shown-in Tables 7.3 and 7.4, respectively. These two tables have
been developed from the average statistics of a large set of images with 8-bit precision.

IPR2021-00827
Unified EX1008 Page 186

Still Image Coding Standard: JPEG 161

TABLE 7.2

Huffman Coding of DC Coefficients

SSSS DIFF Values Additional Bits
O =
-1,1 0,1
-3-223 00,01,10,11
~7,....-4.4,.. .7 000,...,011,100,.,111
-15,...,-8.8....,15 0000,.,0111,1000,...,1111
-31,....~-16,16,....31 00000,...,01111,10000,..., 11111

-127,...,-64,64,...,127
-23)5,...,~128,128,...,255

=31 1,:..;=256,256,...,511
-1023,...,-512,512,...,1023
-2047,...~-1024,1024,...,2047

TABLE 7.3
Huffman Table for Luminance

DC Coefficient Differences

Category Code Length Codeword

0 2 00

l 3 010

2 3 011

3 3 100

4 3 101

5 3 110

6 4 1110

7 S 11110

8 6 111110
9 7 1111110
10 8 11111110
I 9 [11111110

In contrast to the coding of DC coefficients, the quantized AC coefficients are arranged to a

zigzag order before being entropy coded. This scan order is shown in Figure 7.5.
According to the zigzag scanning order, the quantized coefficients can be represented as:

Z7(0) = See ZZ(1) = Seors ZZ(2) = Sqigy -++» ZZ(63) = Sgpy. (7.5)

Since many of the quantized AC coefficients become zero, they can be very efficiently encoded
by exploiting the run of zeros. The run-length of zeros are identified by the nonzero coefficients.
An 8-bit code ‘RRRRSSSS’ is used to represent the nonzero coefficient. The four least significant
bits, ‘SSSS’, define a category for the value of the next nonzero coefficient in the zigzag sequence,
which ends the zero run. The four most significant bits, ‘RRRR’, define the run-length of zeros in
the zigzag sequence or the position of the nonzero coefficient in the zigzag sequence. The composite
value, RRRRSSSS, is shown in Figure 7.6. The value ‘RRRRSSSS’ = ‘11110000’ 1s defined as
ZRL, “RRRR” = “1111” represents a run-length of 16 zeros and “SSSS” = “0000" represents a
zero amplitude. Therefore, ZRL is used to represent a run-length of 16 zero coefficients followed

IPR2021-00827

Unified EX1008 Page 187

162

Image and Video Compression for Multimedia Engineering

TABLE 7.4
Huffman table for chrominance

DC coefficient differences

Category Code Length Codeword
0 2 00
I 2 Ol
2 2 10
3 3 110
4 . 1110
S S 11110
6 6 111110
7 7 111110
8 8 11111110
9 9 [T11T1110
10 10 ITIL111110
11 Il [ILITT11110
DC
£
Z 7] /

FIGURE 7.5 Zigzag scanning order of DCT coefficients.

. |

SSSS

0

10

15 |

s

EOB
N/A
N/A
N/A
ZRL

Composite values

FIGURE 7.6 Two-dimensional value array for Huffman coding.

by a zero-amplitude coefficient, it is not an abbreviation. In the case of a run-length of zero
coefficients that exceeds 15, multiple symbols will be used. A special value ‘RRRRSSSS’ =
‘00000000’ is used to code the end-of-block (EOB). An EOB occurs when the remaining coefficients

in the block are zeros. The entries marked “N/A” are undefined.

IPR2021-00827
Unified EX1008 Page 188

Still Image Coding Standard: JPEG | 163

TABLE 7.5
Huffman Coding for AC Coefficients
Category (SSSS) AC Coefficient Range
| -1,1
2 -3,-2,23
3 ~7,...,44,....7
4 -15,...,-8.8,...,15
5 -31,...~16,16,...,31
6 ~63,...,-32,32,...,63
7 -127,...-64,64,...,127
8 -255,...,-128,128,...,255
9 -511,...,-256,256,...,511
0 -1023,.,-512,512,...,1023
I

-2047,...,-1024,1024,...,2047

' The composite value, RRRRSSSS, is then Huffman coded. SSSS is actually the number to
indicate “category” in the Huffman code table. The coefficient values for each category are shown
in Table 7.5.

Each Huffman code is followed by additional bits that specify the sign and exact amplitude of
the coefficients. As with the DC code tables, the AC code tables have also been developed from
the average statistics of a large set of images with 8-bit precision. Each composite value is
represented by a Huffman code in the AC code table. The format for the additional bits is the same
as 1n the coding of DC coefficients. The value of SSSS gives the number of additional bits required
to specity the sign and precise amplitude of the coefficient. The additional bits are either the low-
order SSSS bits of ZZ(k) when ZZ(k) is positive, or the low-order SSSS bits of ZZ(k)-1 when
ZZ(k) is negative, Here, ZZ(k) is the kth coefficient in the zigzag scanning order of coefficients
being coded. The Huffman tables for AC coefficients can be found in Annex K of the JPEG standard
Upeg) and are not listed here due to space limitations.

As described above, Huffman coding is used as the means of entropy coding. However, an
adaptive arithmetic coding procedure can also be used. As with the Huffman coding technique, the
binary arithmetic coding technique is also lossless. It is possible to transcode between two systems
without either of the FDCT or IDCT processes. Since this transcoding is a lossless process, it does
not affect the picture quality of the reconstructed image. The arithmetic encoder encodes a series
of binary symbols, zeros or ones, where each symbol represents the possible result of a binary
decision. The binary decisions include the choice between positive and negative signs, a magnitude
being zero or nonzero, or a particular bit in a sequence of binary digits being zero or one. There
are four steps in the arithmetic coding:ﬁ initializing the statistical area, initializing the encoder,

terminating the code string, and adding restart markers.

7.3 PROGRESSIVE DCT-BASED ENCODING ALGORITHM

In progressive DCT-based coding, the input image is first partitioned to blocks of 8 X 8 pixels. The
two-dimensional 8 x 8 DCT is then applied to each block. The transformed DCT-coefficient data
are then encoded with multiple scans. At each scan, a portion of the transformed DCT coefficient
data is encoded. This partially encoded data can be reconstructed to obtain a full image size with
lower picture quality. The coded data of each additional scan will enhance the reconstructed image
quality until the full quality has been achieved at the completion of all scans. Two methods have
been used in the JPEG standard to perform the DCT-based progressive coding. These include

spectral selection and successive approximation.

IPR2021-00827

Unified EX1008 Page 189

164 Image and Video Compression for Multimedia Engineering

In the method of spectral selection, the transformed DCT coefficients are first reordered as a
zigzag sequence and then divided into several bands. A frequency band is defined in the scan header
by specifying the starting and ending indexes in the zigzag sequence. The band containing the DC
coefficient is encoded at the first scan. In the following scan, it is not necessary for the coding
procedure to follow the zigzag ordering.

In the method of the successive approximation, the DCT coefficients are hrst reduced iIn
precision by the point transform. The point transform of the DCT coefficients 1s an arithmetic shift
right by a specified number of bits, or division by a power of 2 (near zero, there is slight difference
in truncation of precision between an arithmetic shift and division by 2, see annex K10 of [jpeg]).
This specified number is the successive approximation of bit position. To encode using successive
approximations, the significant bits of the DCT coefficient are encoded in the first scan, and each
successive scan that follows progressively improves the precision of the coefficient by one bit. This
continues until full precision is reached.

The principles of spectral selection and successive approximation are shown in Figure 7.7. For
both methods, the quantized coefficients are coded with either Huffman or arithmetic codes at each
scan. In spectral selection and the first scan of successive approximation for an image, the AC
coefficient coding model is similar to that used in the sequential DCT-based coding mode. However,
the Huffman code tables are extended to include coding of runs of end-of-bands (EOBs). For
distinguishing the end-of-band and end-of-block, a number, n, which is used to indicate the range
of run length, is added to the end-of-band (EOBn). The EOBn code sequence is defined as follows.
Each EOBn is followed by an extension field, which has the minimum number of bits required to
specify the run length. The end-of-band run structure allows efficient coding of blocks which have
only zero coefficients. For example, an EOB run of length 5 means that the current block and the
next 4 blocks have an end-of-band with no intervening nonzero coefficients. The Huffman coding
structure of the subsequent scans of successive approximation for a given image is similar to the
coding structure of the first scan of that image. Each nonzero quantized coefficient is described by
a composite 8-bit run length-magnitude value of the form: RRRRSSSS. The four most significant
bits, RRRR, indicate the number of zero coefficients between the current coefficient and the
previously coded coefficient. The four least significant bits, SSSS, give the magnitude category of
the nonzero coefficient. The run length-magnitude composite value is Huffman coded. Each Hufl-
man code 1s followed by additional bits: one bit is used to code the sign of the nonzero coefficient
and another bit is used to code the correction, where “0” means no correction and “1” means add
one to the decoded magnitude of the coefficient. Although the above technique has been described
using Huffman coding, it should be noted that arithmetic encoding can also be used in its place.

7.4 LOSSLESS CODING MODE

In the lossless coding mode, the coding method is spatially based coding instead of DCT-based
coding. However, the coding method is extended from the method for coding the DC coefficients
in the sequential DCT-based coding mode. Each pixel is coded with a predictive coding method,
where the predicted value 1s obtained from one of three one-dimensional or one of four two-
dimensional predictors, which are shown in Figure 7.8.

In Figure 7.8, the pixel to be coded is denoted by x, and the three causal neighbors are denoted
by a, b, and c. The predictive value of x, Px, is obtained from three neighbors, a, b, and c in the
one of seven ways as listed in Table 7.6.

In Table 7.6, the selection value 0 is only used for differential coding in the hierarchical coding
mode. Selections 1, 2, and 3 are one-dimensional predictions and 4, 5, 6, and 7 are two-dimensional
predictions. Each prediction is performed with full integer precision, and without clamping of either
the underflow or overflow beyond the input bounds. In order to achieve lossless coding, the
prediction differences are coded with either Huffman coding or arithmetic coding. The prediction

IPR2021-00827
Unified EX1008 Page 190

Still Image Coding Standard: JPEG 165

Image
8 E

— - _
: L]

| = |] Block reordenng

1 FDCT
L 1 |
[e _> I___D

8x8

/Cocfﬁn:imrs zig-zag reordering

and represented by 8 bits

0
|
2
. sending
a ||
£ 16 e
0
MSB_,
LSB
Spectral selection Successive approximation
/Scnding
Sending
0 0
151’ scan lSI scan
Sending
l
2
Sending _
l .
62
. 63 i
2nd scan 7654 MSB
2nd scan : :
' L
' 1 |
2
Sending Sending
61 :
62 62
63 63 (LSB)
Wy 6th scan

FIGURE 7.7 Progressive coding with spectral selection and successive approximation.

difference values can be from O to 2'6 for 8-bit pixels. The Huffman tables developed for coding
DC coefficients in the sequential DCT-based coding mode are used with one additional entry to
code the prediction differences. For arithmetic coding, the statistical model defined for the DC
coefficients in the sequential DCT-based coding mode is generalized to a two-dimensional form in
which differences are conditioned on the pixel to the left and the line above.

IPR2021-00827
Unified EX1008 Page 191

166 Image and Video Compression for Multimedia Engineering

| | 1

FIGURE 7.8 Spatial relationship between the pixel to be coded and three decoded neighbors.

TABLE 7.6
Predictors for Lossless Coding
Selection-Value Prediction
0 No prediction (hierarchical mode)
l Px =a
2 Px =0
3 Pxi=c
4 PX = a+b-¢

Px = a + ((b-¢)/2)*
Px = b + ((a-c)/2)?
Px = (a+b)/2

~J O Wn

* Shift nght arithmetic operation.

7.5 HIERARCHICAL CODING MODE

The hierarchical coding mode provides a progressive coding similar to the progressive DCT-based
coding mode, but it offers more functionality. This functionality addresses applications with multi-
resolution requirements. In the hierarchical coding mode, an input image frame is first decomposed
to a sequence of frames, such as the pyramid shown in Figure 7.2. Each frame is obtained through
a down-sampling process, i.e., low-pass filtering followed by subsampling. The first frame (the
lowest resolution) 1s encoded as a nondifferential frame. The following frames are encoded as
differential frames, where the differential is with respect to the previously coded frame. Note that
an up-sampled version that would be reconstructed in the decoder is used. The first frame can be
encoded by the methods of sequential DCT-based coding, spectral selection, method of progressive
coding, or lossless coding with either Huffman code or arithmetic code. However, within an image,
the differential frames are either coded by the DCT-based coding method, the lossless coding
method, or the DCT-based process with a final lossless coding. All frames within the image musl
use the same entropy coding, either Huffman or arithmetic, with the exception that nondifferential
frames coded with the baseline coding may occur in the same image with frames coded with
arithmetic coding methods. The differential frames are coded with the same method used for the
nondifferential frames except the final frame. The final differential frame for each image may use
a differential lossless coding method.

In the hierarchical coding mode, resolution changes in frames may occur. These resolution
changes occur if down-sampling filters are used to reduce the spatial resolution of some or all
frames of an image. When the resolution of a reference frame does not match the resolution of the
frame to be coded, a up-sampling filter is used to increase the resolution of the reference frame.
The block diagram of coding of a differential frame is shown in Figure 7.9.

IPR2021-00827
Unified EX1008 Page 192

Still Image Coding Standard: JPEG

Input frame
+

> @ p Encoding

Coded
Differential

Up-sampling ¢

FIGURE 7.9 Hierarchical coding of a differential frame.

Frame
Memory

g —

>

167

The up-sampling.filter increases the spatial resolution by a factor of two in both horizontal and
vertical directions by using bilinear interpolation of two neighboring pixels. The up-sampling with
bilinear interpolation is consistent with the down-sampling filter that is used for the generation of
down-sampled frames. It should be noted that the hierarchical coding mode allows one to improve

the quality of the reconstructed frames at a given spatial resolution.

7.6 SUMMARY

In this chapter, the still image coding standard, JPEG, has been introduced. The JPEG coding
standard includes four coding modes: sequential DCT-based coding mode, progressive DCT-based
coding mode, lossless coding mode, and hierarchical coding mode. The DCT-based coding method
IS probably the one that most of us are familiar with; however, the lossless coding modes in JPEG
which use a spatial domain predictive coding process have many interesting applications as well.
For each coding mode, entropy coding can be implemented with either Huffman coding or arithmetic

coding. JPEG has been widely adopted for many applications.

7.7 EXERCISES

7-1. What is the difference between sequential coding and progressive coding in JPEG?
Conduct a project to encode an image with sequence coding and progressive coding,

respectively.

7-2. Use the JPEG lossless mode to code several images and explain why different bit rates

are obtained.

7-3. Generate a Huffman code table using a set of images with 8-bit precision (aproximately
2~3) using the method presented in Annex C of the JPEG specification. This set of
images is called the training set. Use this table to code an image within the training set
and an image which is not in the training set, and explain the results.

7-4. Design a three-layer progressive JPEG coder using (a) spectral selection, and (b) pro-
gressive approximation (0.3 bits per pixel at the first layer, 0.2 bits per pixel at the second

layer, and 0.1 bits per pixel at the third layer).

REFERENCES

Digital compression and coding of continuous-tone still images. Requirements and Guidelines, ISO-/IEC

International Standard 10918-1, CCITT T.81, September, 1992. ‘
Pennelbaker, W. B. and J. L. Mitchell, JPEG: Still Inage Data Compression Standard, Van Nostrand Reinhold,

New York, 1992,

Symes, P. Compression: Fundamental Compression Techniques and an Overview of the JPEG and MPEG

Compression Systems, McGraw-Hill, New York, 1998.

IPR2021-00827
Unified EX1008 Page 193

‘-ﬁa—n‘l'h.- 8"

L RS
“"li".ﬂ[l .Ll"_ ,:J '
“F"r R
= Lt gy

:-'.'-:- r
||l -.1

IPR2021-00827
Unified EX1008 Page 194

8 Wavelet Transform
for Image Coding

During the last decade, a number of signal processing applications have emerged using wavelet
theory. Among those applications, the most widespread developments have occurred in the area of
data compression. Wavelel techniques have demonstrated the ability to provide not only high coding
efficiency, but also spatial and quality scalability features. In this chapter, we focus on the utility
of the wavelet transform for image data compression applications.

8.1 REVIEW OF THE WAVELET TRANSFORM

8.1.1 DeriNiTION AND COMPARISON WITH SHORT-TIME FOURIER TRANSFORM

The wavelet transform, as a specialized research field, started over a decade ago (Grossman and
Morlet, 1984). To better understand the theory of wavelets, we first give a very short review of the
Short-Time Fourier Transform (STFT) since there are some similarities between the STFT and the
wavelet transform. As we know, the STFT uses sinusoidal waves as its orthogonal basis and i1s
defined as:

4+ oo

Flw,t)= | f(t)w(t—1)e™ ™ dt (8.1)

—

where w(t) is a time-domain windowing function, the simplest of which is a rectangular window
that has a unit value over a time interval and has zero elsewhere. The value T is the starting position
of the window. Thus, the STFT maps a function f{t) into a two-dimensional plane (®,7). The STFT
iIs also referred to as Gabor transform (Cohen, 1989). Similar to the STFT, the wavelet transform
also maps a time or spatial function into a two-dimensional function in a and T (w and T for STFT).

The wavelet transform is defined as follows. Let f{r) be any square integrable function, i.e., it
satisfies:

j:\ £ de < oo (8.2)

The continuous-time wavelet transform of f{(t) with respect to a wavelet y(¢) is defined as:

wiat)= [0 83

where a and T are real variables and * denotes complex conjugation. The wavelet is defined as:

a

e o0

169

IPR2021-00827

Unified EX1008 Page 195

170 Image and Video Compression for Multimedia Engineering

The above equation represents a set of functions that are generated from a single function, y(z),
by dilations and translations. The variable T represents the time shift and the variable a corresponds
to the amount of time-scaling or dilation. If a >1, there is an expansion of y(r), while iIf 0 < a < 1,
there is a contraction of y(r). For negative values of a, the wavelet experiences a time reversal 1n
combination with a dilation. The function, y(#), i1s referred to as the mother wavelet and it must
satisfy two conditions:

1. The function integrates to zero:

J?(:)m -0 | (8.5)

Ty

2. The function is square integrable, or has finite energy:

r, w|(r)

"

*dt < oo (8. 6)

The continuous-time wavelet transform can now be rewritten as:

o+ D
"

W(a,t)= | f(t)w . (1)d! (8.7)

=Ty

In the following, we give two well-known examples of y(#) and their Fourier transforms. The
first example is the Morlet (modulated Gaussian) wavelet (Daubechies, 1990),

("—'J“‘mu):
Y(w)=+2me 2 (8.8)
and the second example is the Haar wavelet:
(1 0<r<1/2
y=<-1 1/2<t<1
0 otherwise (8.9)

=iz smz(m/fi)
W)= 2
y() = je o/

From the above definition and examples, we can find that the wavelets have zero DC value.
This is clear from Equation 8.5. In order to have good time localization, the wavelets are usually
bandpass signals and they decay rapidly towards zero with time. We can also find several other
important properties of the wavelet transform and several differences between STFT and the wavelet
transform.

The STFET uses a sinusoidal wave as its basis function. These basis functions keep the same
frequency over the entire time interval. In contrast, the wavelet transform uses a particular wavelet
as its basis function. Hence, wavelets vary in both position and frequency over the time interval.
Examples of two basis functions for the sinusoidal wave and wavelet are shown in Figure 8.1(a)
and (b), respectively.

The STFT uses a single analysis window. In contrast, the wavelet transform uses a short time
window at high frequencies and a long time window at low frequencies. This is referred to as
constant Q-factor filtering or relative constant bandwidth frequency analysis. A comparison of the

IPR2021-00827
Unified EX1008 Page 196

Wavelet Transform for Image Coding 171
3.5 - 5 - - .
SNNRRRID]1 r1qn[1nqﬂ|1 | ol]
EL] 3 <4
SRR AR AR AR AR RARY i
o A { |
05tk 4
0 4
D5 « T
o 50 100 150 20 20 0 800 800 1000 1200 1400
(a) (b)
FIGURE 8.1 (a) Two sinusoidal waves, and (b) two wavelets.
& : A _ .
Constant Bandwidth Relative Constant Bandwidth
Bl 1 1 1
N
A | | | \ 1 > | | | | =
F 2F 3F 4F SF F 2F 4F 8F
(a) ©)
FIGURE 8.2 (a) Constant bandwidth analysis (for Fourier transform), and (b) relative constant bandwidth

analysis (for wavelet transform).

Frequency
A&

Time

STFT

Frequency

s

Time

—

Wavelet Transform

FIGURE 8.3 Comparison of the STFT and the wavelel transform in the time-frequency plane.

constant bandwidth analysis of the STFT and the relative constant bandwidth wavelet transform 1s

shown in Figure 8.2(a) and (b), respectively.

This feature can be further explained with the concept of a time-frequency plane, which 1s

shown in Figure 8.3,

As shown in Figure 8.3, the window size of the STFT in the time domain is always chos?:n to
be constant. The corresponding frequency bandwidth is also constant. In the wavelet _transtorm,
the window size in the time domain varies with the frequency. A longer time window 1s used for

IPR2021-00827
Unified EX1008 Page 197

172 Image and Video Compression for Multimedia Engineering

a lower frequency and a shorter time window is used for a higher frequency. This property is very
important for image data compression. For image data, the concept of a time-frequency plane
becomes a spatial-frequency plane. The spatial resolution of a digital image 1s measured with pixels,
as described in Chapter 15. To overcome the limitations of DCT-based coding, the wavelet transform
allows the spatial resolution and frequency bandwidth to vary in the spatial-frequency plane. With
this variation, better bit allocation for active and smooth areas can be achieved.

The continuous-time wavelet transform can be considered as a correlation. For fixed a, it 1s
clear from Equation 8.3 that W(a,1) 1s the cross-correlation of functions f(r) with related wavelet
conjugate dilated to scale factor a at time lag t. This 1s an important property of the wavelet
transform for multiresolution analysis of image data. Since the convolution can be seen as a filtering
operation, the integral wavelet transform can be seen as a bank of linear filters acting upon f(1).
This implies that the image data can be decomposed by a bank of filters defined by the wavelet
transform.

The continuous-time wavelet transform can be seen as an operator. First, it has the property of
linearity. If we rewrite W(a,t) as W, _[f(?)], then we have

W, [af(t)+Bg(t)] =W [f()]+B W, [g(V)] (8.10)

where & and 3 are constant scalars. Second, it has the property of translation:
W [f(1=2)|=W(a,t-2) (8.11)

where A is a time lag.
Finally, 1t has the property of scaling

W, | f(t/o)] = W(ajo,1/ax) (8.12)

8.1.2 Discrete WAVELET TRANSFORM

In the continuous-time wavelet transform, the function f(¢) is transformed to a function W(a,1)
using the wavelet y(z) as a basis function. Recall that the two variables a and 1 are the dilation
and translation, respectively. Now let us to find a means of obtaining the inverse transform, 1.c.,
given W(a,b), find f(z). If we know how to get the inverse transform, we can then represent any
arbitrary function f(#) as a summation of wavelets, such as in the Fourier transform and DCT that
provide a set of coefficients for reconstructing the original function using sine and cosine as the
basis functions. In fact, this i1s possible if the mother wavelet satisfies the admissibility condition:

C= dw (8.13)
- |0

where C is a finite constant and W(w) is the Fourier transform of the mother wavelet function y(7).
Then, the inverse wavelet transform is

—-W(a 1)y, (t)dadt (8.14)

C.L ~ |a|’

IPR2021-00827
Unified EX1008 Page 198

Wavelet Transform for Image Coding 173

The above results can be extended for two-dimensional signals. If f(x,y) is a two-dimensional
function, its continuous-time wavelet transform is defined as:

W(a T ‘[j flxy)w, s, (x, y)dxdy (8.15)

where T, and T, specify the transform in two dimensions. The inverse two-dimensional continuous-
time wavelet transform is then defined as:

’(y _CJ‘_MJ. I *H'W(HT o 4)th (.I }’)dﬂd’f d'f (8]6)

where the C is defined as in Equation 8.13 and y(x,y) is a two-dimensional wavelet

l x—T. Y—1T,
\‘I”HTJTJ.("ra)I):_ [=~y P }] (8.17)

g "\ a

For image coding, the wavelet is used to decompose the image data into wavelets. As indicated
in the third property of the wavelet transform, the wavelet transform can be viewed as the cross-
correlation of the function f(r) and the wavelets . (). Therefore, the wavelet transform is equivalent
to finding the output of a bank of bandpass filters specified by the wavelets of y,(f) as shown in
Figure 8.4. This process decomposes the input signal into several subbands. Since each subband
can be further partitioned, the filter bank implementation of the wavelet transform can be used for
multiresolution analysis (MRA). Intuitively, when the analysis is viewed as a filter bank, the time
resolution must increase with the central frequency of the analysis filters. This can be exactly
obtained by the scaling property of the wavelet transform, where the center frequencies of the
bandpass filters increase as the bandwidth becomes wider. Again, the bandwidth becomes wider
by reducing the dilation parameter a. It should be noted that such a multiresolution analysis is
consistent with the constant Q-factor property of the wavelet transform. Furthermore, the resolution
limitation of the STFT does not exist in the wavelet transform since the time-frequency resolutions

in the wavelet transform vary, as shown in Figure 8.2(b).

» V-9 I > i1
l -7 J
- > Ta =0 > —» ¥a.,7)
Iy,
1 (-1
- > Ta v(Z—)¢ » J —» ¥a.7)

FIGURE 8.4 The wavelet transform implemented with a bank of filters.

IPR2021-00827

Unified EX1008 Page 199

174 Image and Video Compression for Multimedia Engineering

For digital image compression, it is preferred to represent f(¢) as a discrete superposition sum
rather than an integral. With this move to the discrete space, the dilation parameter a in Equation 8.10
takes the values a = 2% and the translation parameter T takes the values T = 2*/, where both k and
[are integers. From Equation 8.4, the discrete version of vy, (f) becomes:

k

— e—

v, (1)=2 2y(27"1-1) (8.18)
Its corresponding wavelet transform can be rewritten as:

4 oo

W(k,l)= J f(r)w,,(r)dt (8.19)

—ae

and the inverse transform becomes:

f)=> Zd(k-,z)z'%w(z-’*:—z) (8.20)

k==—o0]=—0c

The values of the wavelet transform at those a and 7T are represented by d(k,/):
d(k,1) = W(k,1)/C (8.21)

The d(k,[) coefficients are referred to as the discrete wavelet transform of the function f(r) (Dau-
bechies, 1992; Vetterli and Kovacevic, 1995). It is noted that the discretization so far is only applied
to the parameters a and T; d(k,/) is still a continuous-time function. If the discretization 1s further
applied to the time domain by letting t = mT, where m is an integer and T is the sampling interval
(without loss of generality, we assume T = 1), then the discrete-time wavelet transform is defined as:

W, (k1) = Zf(’”)‘l’:;(m) (8.22)

Hl = —taD

Of course, the sampling interval has to be chosen according to the Nyquist sampling theorem
so that no information is lost in the process of sampling. The inverse discrete-time wavelet transform
1s then

+oa +co k
flm)="> Y d(k,)2 T y(2 m~1) (8.23)

In==oo | =—oo

8.2 DIGITAL WAVELET TRANSFORM FOR IMAGE COMPRESSION

8.2.1 Basic CoNcerT OF IMAGE WAVELET TRANSFORM CODING

From the previous section, we have learned that the wavelet transform has several features that are
different from traditional transforms. It is noted from Figure 8.2 that each transform coefficient In
the STFT represents a constant interval of time regardless of which band the coefficient belongs
to, whereas for the wavelet transform, the coefficients at the course level represent a larger time

IPR2021-00827
Unified EX1008 Page 200

Wavelet Transform for Image Coding’ 175

Input

: 2-D Wavelet ‘ et
thage transform for Coding of 1stream
> image —® Quantization ——{ quantized —P»
decomposition coefficients

FIGURE 8.5 Block diagram of the image coding with the wavelet transform coding.

Interval but a narrower band of frequencies. This feature of the wavelet transform is very important
for image coding. In traditional image transform coding, which makes use of the Fourier transform
or discrete cosine transform (DCT), one difficult problem is to choose the block size or window
width so that statistics computed within that block provide good models of the image signal
behavior. The choice of the block size has to be compromised so that it can handle both active and
smooth areas. In the active areas, the image data are more localized in the spatial domain, while
in the smooth areas the image data are more localized in the frequency domain. With traditional
transform coding, it is very hard to reach a good compromise. The main contribution of wavelet
transform theory is that it provides an elegant framework in which both statistical behaviors of
image data can be analyzed with equal importance. This is because that wavelets can provide a
signal representation in which some of the coefficients represent long data lags corresponding to
a narrow band or low frequency range, and some of the coefficients represent short data lags
corresponding to a wide band or high frequency range. Therefore, it is possible to obtain a good
trade-off between spatial and frequency domain with the wavelet representation of image data.
To use the wavelet transform for image coding applications, an encoding process is needed
which includes three major steps: image data decomposition, quantization of the transformed
coefficients, and coding of the quantized transformed coefficients. A simplified block diagram of
this process is shown in Figure 8.5. The image decomposition is usually a lossless process which
converts the image data from the spatial domain to frequency domain, where the transformed
coefficients are decorrelated. The information loss happens in the quantization step and the com-
pression is achieved in the coding step. To begin the decomposition, the image data are first
partitioned into four subbands labeled as LL,, HL,, LH,, and HH,, as shown in Figure 8.6(a). Each
coefficient represents a spatial area corresponding to one-quarter of the original image size. The
low frequencies represent a bandwidth corresponding to 0 < | @ | < /2, while the high frequencies
represent the band /2 < | o | < 1. To obtain the next level of decomposition, the LL, subband is
further decomposed into the next level of four subbands, as shown in Figure 8.6(b). The low
frequencies of the second level decomposition correspond to 0 < | @ | < m/4, while the high
frequencies at the second level correspond to 7/4 <| @ |< /2. This decomposition can be continued

LL; HL;
LL; HL, - L a5
LH, |HH)>
| | |
LH) HH LH| HH
J
L T

(b)

FIGURE 8.6 Two-dimensional wavelet transform. (a) First-level decomposition, and (b) second-l?vel
decomposition. (L denotes a low band, H denotes a high band, and the subscript denotes the number of the

level. For example, LL, denotes the low-low band at level 1.)

IPR2021-00827

Unified EX1008 Page 201

176 Image and Video Compression for Multimedia Engineering

to as many levels as needed. The filters used to compute the discrete wavelet transform are generally
the symmetric quadrature mirror filters (QME), as described by Woods (1991). A QMF-pyramid
subband decomposition is illustrated in Figure 8.6(b).

During quantization, each subband is quantized differently depending on its importance, which
is usually based on its energy or variance (Jayant and Noll, 1984). To reach the predetermined bit
rale or compression ratio, coarse quantizers or large quantization steps would be used to quantize
the low-energy subbands while the finer quantizers or small quantization steps would be used to
quantize the large-energy subbands. This results in fewer bits allocated to those low-energy sub-
bands and more bits for large-energy subbands.

8.2.2 EmBepDED IMAGE WAVELET TRANSFORM CODING ALGORITHMS

As with other transform coding schemes, most wavelet coefficients in the high-frequency bands
have very low energy. After quantization, many of these high-frequency wavelet coefficients are
quantized to zero. Based on the statistical property of the quantized wavelet coefficients, Huffman
coding tables can be designed. Generally, most of the energy in an image is contained in the low-
frequency bands. The data structure of the wavelet-transformed coefficients is suitable to exploit
this statistical property.

Consider a multilevel decomposition of an image with the discrete wavelet transform, where
the lowest levels of decomposition would correspond to the highest-frequency subbands and the
finest spatial resolution, and the highest level of decomposition would correspond to the lowest-
frequency subband and the coarsest spatial resolution. Arranging the subbands from lowest to
highest frequency, we expect a decrease in energy. Also, we expect that if the wavelet-transformed
coefficients at a particular level have lower energy, then coefficients at the lower levels or high-
frequency subbands, which correspond to the same spatial location, would have smaller energy.

Another feature of the wavelet coefficient data structure is spatial self-similarity across sub-
bands. Several algorithms that have been developed to exploit this and the above-mentioned
properties for image coding. Among them, one of the first was proposed by Shapiro (1993) and
used an embedded zerotree technique referred to as EZW. Another algorithm is the so-called set
partitioning in hierarchical trees (SPIHT) developed by Said and Pearlman (1996). This algorithm
also produces an embedded bitstream. The advantage of the embedded coding schemes allows an
encoding process to terminate at any point so that a target bit rate or distortion metric can be met
exactly. Intuitively, for a given bit rate or distortion requirement a nonembedded code should be
more efficient than an embedded code since it has no constraints imposed by embedding require-
ments. However, embedded wavelet transform coding algorithms are currently the best. The addi-
tional constraints do not seem to have deleterious effect. In the following, we introduce the two
embedded coding algorithms: the zerotree coding and the set partitioning in hierarchical tree coding.

As with DCT-based coding, an important aspect of wavelet-based coding is to code the positions
of those coefficients that will be transmitted as nonzero values. After quantization the probability
of the zero symbol must be extremely high for the very low bit rate case. A large portion of the
bit budget will then be spent on encoding the significance map, or the binary decision map that
indicates whether a transformed coefficient has a zero or nonzero quantized value. Therefore, the
ability to efficiently encode the significance map becomes a key issue for coding images at Very
low bit rates. A new data structure, the zerotree, has been proposed for this purpose (Shapiro, 1993).
To describe zerotree, we first must define insignificance. A wavelet coefficient is insignificant with
respect to a given threshold value if the absolute value of this coefficient is smaller than this
threshold. From the nature of the wavelet transform we can assume that every wavelet transformed
at a given scale can be strongly related to a set of coefficients at the next finer scale of similar
orientation. More specially, we can further assume that if a wavelet coefficient at a coarse scale 1S
insignificant with respect to the preset threshold, then all wavelet coefficients at finer scales are
likely to be insignificant with respect to this threshold. Therefore, we can build a tree with these

IPR2021-00827
Unified EX1008 Page 202

Wavelet Transform for Image Coding
177

L;
- HL;
HL,;
LA HH,
LH HH,
>

FIGURE 8.7 (Left) Parent-children dependencies of subbands; the arrow points from the subband of the
parents to the subband of the children. At top left is the lowest-frequency band, (Right) The scanning order
of the subbands for encoding a significance map.

parent-child relationships, such that coefficients at a coarse scale are called parents, and all coef-
ficients corresponding to the same spatial location at the next finer scale of similar orientation are
called children. Furthermore, for a parent, the set of all coefficients at all finer scales of similar
orientation corresponding to the same spatial location are called descendants. For a QMF-pyramid
decomposition the parent-children dependencies are shown in Figure 8.7(a). For a multiscale wave-
let transform, the scan of the coefficients begins at the lowest frequency subband and then takes
the order of LL, HL, LH, and HH from the lower scale to the next higher scale, as shown in
Figure 8.7(b).

The zerotree is defined such that if a coefficient itself and all of its descendants are insignificant
with respect to a threshold, then this coefficient is considered an element of a zerotree. An element
of a zerotree is considered as a zerotree root if this element is not the descendant of a previous
zerotree root with respect to the same threshold value. The significance map can then be efficiently
represented by a string with three symbols: zerotree root, isolated zero, and significant. The isolated
zero means that the coefficient is insignificant, but it has some significant descendant. At the finest
scale, only two symbols are needed since all coefficients have no children, thus the symbol for
zerotree root is not used. The symbol string is then entropy encoded. Zerotree coding efficiently
reduces the cost for encoding the significance map by using self-similarity of the coefficients at
different scales. Additionally, it is different from the traditional run-length coding that 1S used In
DCT-based coding schemes. Each symbol in a zerotree is a single terminating symbol, which can
be applied to all depths of the zerotree, similar to the end-of-block (EOB) symbol in the JPEG and
MPEG video coding standards. The difference between the zerotree and EOB is that the zerotree
represents the insignificance information at a given orientation across different scale layers. There-
fore, the zerotree can efficiently exploit the self-similarity of the coefficients at the different scales
corresponding to the same spatial location. The EOB only represents the insignificance information

over the spatial area at the same scale.
In summary, the zerotree-coding scheme tries to reduce the number of bits to encode the

significance map, which is used to encode the insignificant coefficients. Therefore, more bits can
be allocated to encode the important significant coefficients. It should be emphasized that this
zerotree coding scheme of wavelet coefficients is an embedded coder, which means that an encoder

can terminate the encoding at any point according to a given target bit rate or target distortion
metric. Similarly, a decoder which receives this embedded stream can terminate at any point to

reconstruct an image that has been scaled in quality.
Another embedded wavelet coding method is the SPIHT-based algorithm (Said and Pearlman,

1996). This algorithm includes two major core techniques: the set partitioning sorting algorithm
and the spatial orientation tree. The set partitioning sorting algorithm is the algorithm that hierar-
chically divides coefficients into significant and insignificant, from the most significant bit to the
least significant bit, by decreasing the threshold value at each hierarchical step for constructing a
significance map. At each threshold value, the coding process consists of two passes: the sorting

IPR2021-00827

Unified EX1008 Page 203

178 Image and Video Compression for Multimedia Engineering

FIGURE 8.8 Relationship between pixels in
the spatial orientation (ree.

pass and the refinement pass — except for the first threshold that has only the sorting pass. Lel
c(s,j) represent the wavelet-transformed coefficients and m is an integer. The sorting pass involves
selecting the coefficients such that 27 < |c(i,j)| < 2!, with m being decreased at each pass. This
process divides the coefficients into subsets and then tests each of these subsets for significant
coefficients. The significance map constructed in the procedure is tree-encoded. The significant
information is store in three ordered lists: list of insignificant pixels (LIP), list of significant pixels
(LSP), and list of insignificant sets (LIS). At the end of each sorting pass, the LSP contains the
coordinates of all significant coefficients with respect to the threshold at that step. The entries in
the LIS can be one of two types: type A represents all its descendants, type B represents all its
descendants from its grandchildren onward. The refinement pass involves transmitting the mth-
most significant bit of all the coefficients with respect to the threshold, 27!,

The 1dea of a spatial orientation tree is based on the following observation. Normally, among
the transformed coefficients most of the energy is concentrated in the low frequencies. For the
wavelet transform, when we move from the highest to the lowest levels of the subband pyramid
the energy usually decreases. It is also observed that there exists strong spatial self-similarity
between subbands in the same spatial location such as in the zerotree case. Therefore, a spatial
orientation tree structure has been proposed for the SPIHT algorithm. The spatial orientation tree
naturally defines the spatial relationship on the hierarchical pyramid as shown in Figure 8.8.

During the coding, the wavelet-transformed coefficients are first organized into spatial orientation
trees as in Figure 8.8. In the spatial orientation tree, each pixel (i,j) from the former set of subbands
s seen as a root for the pixels (27, 2j), (2i+1, 2j), (2i,2j+1), and (2i+1, 2j+1) in the subbands of the
current level. For a given n-level decomposition, this structure is used to link pixels of the adjacent
subbands from level n until to level /. In the highest-level n, the pixels in the low-pass subband are
linked to the pixels in the three high-pass subbands at the same level. In the subsequent levels, all
the pixels of a subband are involved in the tree-forming process. Each pixel is linked to the pixels
of the adjacent subband at the next lower level. The tree stops at the lowest level.

The implementation of the SPIHT algorithm consists of four steps: initialization, sorting pass,
refinement pass, and quantization scale update. In the initialization step, we find an integer n =
Llagz(maxm{|c(i,j)|})]_ Here | | represent an operation of obtaining the largest integer less than
c(i,j)|. The value of m is used for testing the significance of coefficients and constructing the
significance map. The LIP is set as an empty list. The LIS is initialized to contain all the coefficients
in the low-pass subbands that have descendants. These coefficients can be used as roots of spatial
trees. All these coefficients are assigned to be of type A. The LIP is initialized to contain all the
coefficients in the low-pass subbands.

In the sorting pass, each entry of the LIP is tested for significance with respect to the threshol'd
value 2". The significance map is transmitted in the following way. If it is significant, a “17 18
transmitted, a sign bit of the coefficient is transmitted, and the coefficient coordinates are moved
to the LSP. Otherwise, a “0” is transmitted. Then, each entry of the LIS is tested for finding the
significant descendants. If there are none, a “0” is transmitted. If the entry has at least one significant
descendant, then a “1” is transmitted and each of the immediate descendants are tested for signif-
icance. The significance map for the immediate descendants is transmitted in such a way that if it

IPR2021-00827
Unified EX1008 Page 204

Wavelet Transform for Image Coding 179

is significant, a “1" plus a sign bit are transmitted and the coefficient coordinates are appended to
the LSP. If it is not significant, a “0” is transmitted and the coefficient coordinates are appended
to the LIP. If the coefficient has more descendants, then it is moved to the end of the LIS as an
entry of type B. If an entry in the LIS is of type B, then its descendants are tested for significance.
If at least one of them is significant, then this entry is removed from the list, and its immediate
descendants are appended to the end of the list of type A. For the refinement pass, the mth-most
significant bit of the magnitude of each entry of the LSP is transmitted except those in the current
sorting pass. For the quantization scale update step, m is decreased by 1 and the procedure is
repeated from the sorting pass.

8.3 WAVELET TRANSFORM FOR JPEG-2000
8.3.1 INTrRODUCTION TO JPEG-2000

Most image coding standards so far have exploited the DCT as their core technique for image
decomposition. However, recently there has been a noticeable change. The wavelet transform has
been adopted by MPEG-4 for still image coding (mpeg4). Also, JPEG-2000 is considering using
the wavelet transform as its core technique for the next generation of the still image coding standard
0Upeg2000 vm). This is because the wavelet transform can provide not only excellent coding
efficiency, but also good spatial and quality scalable functionality. JPEG-2000 is a new type of
image compression system under development by Joint Photographic Experts Group for still image
coding. This standard is intended to meet a need for image compression with great flexibility and
efficient interchangeability. JPEG-2000 is also intended to offer unprecedented access into the
image while still in compressed domain. Thus, images can be accessed, manipulated, edited,
transmitted, and stored in a compressed form. As a new coding standard, the detailed requirements
of JPEG-2000 include:

Low bit-rate compression performance: JPEG-2000 is required to offer excellent coding
performance at bit rates lower than 0.25 bits per pixel for highly detailed gray-bits per
level images since the current JPEG (10918-1) cannot provide satisfactory results at this
range of bit rates. This is the primary feature of JPEG-2000.

Lossless and lossy compression: it is desired to provide lossless compression naturally in the
course of progressive decoding. This feature is especially important for medical image
coding where the loss is not always allowed. Also, other applications such as high-quality
image archival systems and network applications desire to have the functionality of lossless

reconstruction.

Large images: currently, the JPEG image compression algorithm does not allow for images
greater than 64K by 64K without tiling.

Single decomposition architecture: the current JPEG standard has 44 modes; many of these
modes are for specific applications and not used by the majority of JPEG decoders. It is
desired to have a single decomposition architecture that can encompass the interchange

between applications.
Transmission in noisy environments: it is desirable to consider error robustness while design-

ing the coding algorithm. This is important for the application of wireless communication.
The current JPEG has provision for restart intervals, but image quality suffers dramatically
when bit errors are encountered.

Computer-generated imagery: the current JPEG is optimized for natural imagery and does

not perform well on computer-generated imagery or computer graphics. |
Compound documents: the new coding standard is desired to be capable of compressing both

continuous-tone and bilevel images. The coding scheme can compress and decompress
images from 1 bit to 16 bits for each color component. The current JPEG standard does

not work well for bilevel images.

IPR2021-00827
Unified EX1008 Page 205

180 Image and Video Compression for Multimedia Engineering

Progressive transmission by pixel accuracy and resolution: progressive transmission that
allows images to be transmitted with increasing pixel accuracy or spatial resolution is
important for many applications. The image can be reconstructed with different resolutions
and pixel accuracy as needed for different target devices such as in World Wide Web
applications and image archiving.

Real-time encoding and decoding: for real-time applications, the coding scheme should be
capable of compressing and decompressing with a single sequential pass. Of course,
optimal performance cannot be guaranteed in this case.

Fixed rate, fixed size, and limited workspace memory: the requirement of fixed bit rate allows
the decoder to run in real time through channels with limited bandwidth. The limited
memory space is required by the hardware implementation of decoding.

There are also some other requirements such as backwards compatibility with JPEG, open
architecture for optimizing the system for different image types and applications, nterface with
MPEG-4, and so on. All these requirements are seriously being considered during the development
of JPEG-2000. However, it is still too early to comment whether all targets can be reached at this
moment. There is no doubt, though, that the basic requirement on the coding performance at very
low bit rate for still image coding will be achieved by using wavelet-based coding as the core
technique instead of DCT-based coding.

8.3.2 VEerIFICATION MobpeL ofF JPEG-2000

Since JPEG-2000 is still awaiting finalization, we introduce the techniques that are very likely to
be adopted by the new standard. As in other standards such as MPEG-2 and MPEG-4, the verifi-
cation model (VM) plays an important role during the development of standards. This is because
the VM or TM (test model for MPEG-2) is a platform for verifying and testing the new techniques
before they are adopted as standards. The VM is updated by completing a set of core experiments
from one meeting to another. Experience has shown that the decoding part of the final version of
VM is very close to the final standard. Therefore, in order to give an overview of the related wavelel
transform parts of the JPEG-2000, we start to introduce the newest version of JPEG-2000 VM
(jpeg2000 vm). The VM of JPEG-2000 describes the encoding process, decoding process, and the
bitstream syntax, which eventually completely defines the functionality of the existing JPEG-2000
COmpression system.

The newest version of the JPEG-2000 verification model, currently VM 4.0, was revised on
April 22, 1999. In this VM, the final convergence has not been reached, but several candidates have
been introduced. These techniques include a DCT-based coding mode, which 1s currently the
baseline JPEG, and a wavelet-based coding mode. In the wavelet-based coding mode, several
algorithms have been proposed: overlapped spatial segmented wavelet transform (SSWT), non-
overlapped SSWT, and the embedded block-based coding with optimized truncation (EBCOT).
Among these techniques, and according to current consensus, EBCOT is a very likely candidate
for adoption into the final JPEG-2000 standard.

The basic idea of EBCOT is the combination of block coding with wavelet transform. First,
the image is decomposed into subbands using the wavelet transform. The wavelet transform is not
restricted to any particular decomposition. However, the Mallat wavelet provides the best compres-
sion performance, on average, for natural images; therefore, the current bitstream syntax is restricted
to the standard Mallat wavelet transform in VM 4.0, After decomposition, each subband 1s divided
into 64 X 64 blocks, except at image boundaries where some blocks may have smaller sizes. EVFF)'
block is then coded independently. For each block, a separate bitstream is generated without utilizing
any information from other blocks. The key techniques used for coding include an embedded quad-
tree algorithm and fractional bit-plane coding.

IPR2021-00827
Unified EX1008 Page 206

Wavelet Transform for Image Coding 181

B;p Bim B,‘” Bf”

FIGURE 8.9 Example of sub-block partitioning B | B! B’ B/
for a block of 64 x 64.

The idea of an embedded quad-tree algorithm is that it uses a single bit to represent whether
or not each leading bit-plane contains any significant samples. The quad-tree is formed in the
following way. The subband is partitioned into a basic block. The basic block size is 64 x 64. Each
basic block is further partitioned into 16 X 16 sub-blocks, as shown in Figure 8.9. Let o/(B}) denote
the significance of sub-block, B/ (k is the kth sub-block as shown in Figure 8.9), in jth bit plane of
ith block. If one or more samples in the sub-block have the magnitude greater than 2/, then
G/(B;) = 1; otherwise, 6/(B}) = 0. For each bit-plane, the information concerning the significant
sub-blocks is first encoded. All other sub-blocks can then be bypassed in the remaining coding
procedure for that bit-plane. To specify the exact coding sequence, we define a two-level quad-tree
for the block size of 64 x 64 and sub-block size of 16 x 16. The level-1 quads, Q![k], consist of
four sub-blocks, B!, B?, B>, B from Figure 8.9. In the same way, we define level-2 quads, Q2[k],
to be 2 x 2 groupings of level-1 quads. Let o/(Q! [k]) denote the significance of the level-1 quad,
Q/[k], in jth bit-plane. If at least one member sub-block is significant in the jth bit-plane, then
c/(Q![k]) = 1; otherwise, c/(Q![k]) = 0. At each bit-plane, the quad-tree coder visits the level-2
quad first, followed by level-1 quads. When visiting a particular quad, Q/[K](L = 1 or 2, it is the
number of the level), the coder sends the significance of each of the four child quads, /(QF[k)),
or sub-blocks, ¢/(B/'), as appropriate, except if the significance value can be deduced from the
decoder. Under the following three cases, the significance may be deduced by the decoder: (1) the
relevant quad or sub-block was significant in the previous bit-plane; (2) the entire sub-block 1s
insignificant; or (3) this is the last child or sub-block visited in QF[k] and all previous quads or
sub-blocks are insignificant.

The idea of bit-plane coding is to entropy code the most significant bit first for all samples in
the sub-blocks and to send the resulting bits. Then, the next most significant bit will be coded and
sent, this process will be continued until all bit-planes have been coded and sent. This kind of
bitstream structure can be used for robust transmission. If the bitstream 1s truncated due to a
transmission error or some other reason, then some or all the samples in the block may lose one
or more least significant bits. This will be equivalent to having used a coarser quantizer for the
relevant samples and we can still obtain a reduced-quality reconstructed image. The idea of
fractional bit-plane coding is to code each bit-plane with four passes: a forward significance
propagation pass, a backward significance propagation pass, a magnitude refinement pass, and a
normalization pass. For the technical details of fractional bit-plane coding, the interested readers

can refer to the VM of JPEG-2000 (jpeg2000 vm). | il
Finally, we briefly describe the optimization issue of EBCOT. The encoding optimization

algorithm is not a part of the standard, since the decoder does not need to know how the encoder
generates the bitstream. From the viewpoint of the standard, the only requirement from the decoder

to the encoder is that the bitstream must be compliant with the syntax of the standard. However,
from the other side, the bitstream syntax could always be defined to favor certain coding algorithms

for generating optimized bitstreams. The optimization algorithm described here 1s jusliﬁ‘ed only if
the distortion measure adopted for the code blocks is additive. That is, the final distortion, D, of

the whole reconstructed image should satisfy

IPR2021-00827
Unified EX1008 Page 207

182 Image and Video Compression for Multimedia Engineering

D= DT (8.24)

where D, is the distortion for block B; and T; is the truncation point for B,. Let R be the total number
of bits for coding all blocks of the image for a set of truncation point 7;, then

R=) R (8.25)

where R* are the bits for coding block B,. The optimization process wishes to find the suitable set
of T: values, which minimizes D subject to the constraint R < R, .. R, . 1S the maximum number
of bits assigned for coding the image. The solution is obtained by the method of Lagrange
multipliers:

L= (R"-AD") (8.26)

where the value A must be-adjusted until the rate obtained by the truncation points, which minimize
the value of L, satisfies R = R,,.. From Equation 8.26, we have a separate trivial optimization
problem for each individual block. Specially, for each block, B;, we find the truncation point, 7;,
which minimizes the value (R — AD["). This can be achieved by finding the slope turning points
of rate distortion curves. In the VM, the set of truncation points and the slopes of rate distortion
curves are computed immediately after each block is coded, and we only store enough information
to later determine the truncation points which correspond to the slope turning points of rate distortion
curves. This information is generally much smaller than the bitstream which is stored for the block
itself. Also, the search for the optimal A is extremely fast and occupies a negligible portion of the
overall computation time.

3.4 SUMMARY

In this chapter, image coding using the wavelet transform has been introduced. First, an overview
of wavelet theory was given, and second, the principles of image coding using wavelel transform
have been presented. Additionally, two particular embedded image coding algorithms have been
explained, namely, the embedded zerotree and set partitioning in hierarchical trees. Finally, the

new standard for still image coding, JPEG-2000, which may adopt the wavelet as its core technique,
has been described.

8.5 EXERCISES

8-1. For a given function, the Mexican hat wavelet.

I, forl)<],

0, otherwise

f(f)={

Use Equations 8.3 and 8.4 to derive a closed-form expression for the continuous wavelet
transform, ().

8-2. Consider the dilation equation
0() =2) h(k)g(21-k)
k

IPR2021-00827
Unified EX1008 Page 208

Wavelet Transform for Image Coding 183

How does @(7) change if h(k) is shifted? Specifically, let g(k) = h(n-[)
u(t) = ﬁZg(k)u(Zr — k)
k

How does u(r) relate to ¢(r)?

8-3. Let @,(r) and @,(r) be two scaling functions generated by the two scaling filters A (k) and
hy(k). Show that the convolution j,(t)* j.(1) satisfies a dilation equation with £ (k)*
h, (k)IN2.

8-4. In the applications of denoising and image enhancement, how can the wavelet transform
improve the results?

8-5. For a given function

0 1<0
f(t)=4t 0<r<]
L 21

show that the wavelet transform of f(r) will be

2f(b+~ |- £(b)- f(b+a)
W(a,b)=sgn (2)

Z
where sgn(x) is the signum function defined as
-1 t<0
sgn(x)=<41 >0
0 =0

REFERENCES

Cohen, L. Time-Frequency Distributions — A Review, Proc. I[EEE, Vol. 77, No. 7, July 1989, pp. 941-981.

Daubechies, 1. Ten Lectures on Wavelets, CBMS Series, Philadelphia, SIAM, 1992.

Grossman, A. and J. Morlet, Decompositions of hard functions into square integrable wavelets of constant
shape, SIAM J. Math. Anal., 15(4), 723-736, 1984.

Jayant, N. S. and P. Noll, Digital Coding of Waveforms, Englewood Cliffs, NJ: Prentice-Hall, 1984.

jpeg2000 vm, JPEG-2000 Verification Model 4.0 (Tech. description), sc29wg01 N1282, April 22, 1999.

mpeg4, ISO/IEC 14496-2, Coding of Audio-Visual Objects, Nov. 1998.

Said, A. and W. A. Pearlman, A new fast and efficient image codec based on set partitioning in hierarchical

trees, IEEE Trans. Circuits Syst. Video Technol., 243-250, 1996. |
Shapiro, J. Embedded image coding using zerotrees of wavelet coefficients, /EEE Trans. Signal Process.,

3445-3462, Dec. 1993. _ |
Vetterli, M. and J. Kovacevic, Wavelets and Subband Coding, Englewood Cliffs, NJ: Prentice-Hall, 1995.

Woods, J., Ed., Subband Image Coding, Kluwer Academic Publishers, 1991.

IPR2021-00827
Unified EX1008 Page 209

-. h_l " T & '_._’" |':'__"
ot h#l BN | L ~I I_'J|!"|
. 1 B
aaider) Wi e "_-"'"#

* ol
1

& | ‘L"..
4 e .-'.r

IPR2021-00827
Unified EX1008 Page 210

