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Cons equently, this scheme is capable of achievin g high accur acy in moti on es tim ation , and at the 
san1e time it does not cause a large increa se in side information dt1e to the n1otion fie ld segmentat ion . 

Another key issue is how to achieve a recon .structed n1otion field with pixel resolut ion alon g 
moving boundaries _. In order to avoid extra moti on vector s that need to be enco ded and tran smitted, 
the n1otion vector s applied to these segmented region s in the area s of motion d iscontinui ty are 
selected from a set of neighboring motion vectors. As a result , the propose d technique is capable 
of reconstructing discontinuitie s in the motion field at pixel resolution whil e maint ainin g the same 
amount of motion vectors as the conventio 'na.l block matchin g tech11ique. 

A number of algorithm s usin g this type of moti on field segmentatio n tec h·niqL1e have been 
developed and their performance has been tested and evalu ated on some rea l v ideo sequences 
(Orchard, 1993). T\vo of the 40-fr&.me test sequences used were Ll1e ''Tab le Tenni s' ' and the 
''Football ' ' sequence s. The former contain s fast ball motion and can1era zoo min g , while the latter 
contains sm,all object s \Vith relatively moderat e amount s of motion and ca n1era pannin g . Severa l 
propo sed algorithm s \Vere compar ed with conventional block matching in ter1ns of aver age pixe l 
prediction error energy and bits ·per fra1ne required for codin g predic tion error. Fo r the aver~ge 
pixel prediction error energy , the propo sed algorithn1s achieve a significant reducti on, ran gi ng from . . 

--0.7 to -2.8 d.B with respect to the ''Table Tenni s' ' sequence , and from - 1.3 to -4.8 dB \Vith the 
''Football'' sequence . For bits per frame required for codin g prediction error, a reduction of 20 to 
30% was reported. 

11.6.4 OVERLAPPED BLOCK MATCHING " 

All the ·technique s discussed so fru-in this section aim at more re liable motio n e ti mation . As a 
result, they aJso alleviate annoying block artifa cts to a ce rtain extent . In thi ubsect ion \Ve discuss 
a group of tec.hnigue s, ten11ed overla ,pped block matching, deve lo.ped to a·uevi ate or elimin ate block 
artifacts (Watanabe, 1991; Nogaki and Ohta , 1992; Auyeun g et al. 1992) . 

The idea is to reJax the restriction ·of a nonoverlapp ed block partition imp ose d in the bloc k
based model in block matching . After the nonoverl apped, fixed size, small rec tan guJar block 
partition has been . made , each block is enlarged along aU four dire ction s from the cent er of the 
block. Refer to Figure 11.21. Both motion estimation (block rnatchin g) and moti on-comp ensa ted 
prediction are conducted in tb.e same manner as that in block matchin g except for the inclu sion of 

an origina1 non-overlapped block estimated motion vector 

• 

an enlarged . . . . 
·target bloct· a neiglibonng overlapped block 

best matched enlarged · block 

(a) frame-at ta (b) frame at ta-1 

FIGURE 11.21 Overlapped block matching. 
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a \vin?o':' function. That is, a 2-D window function is utilized in order to mainta·in an appropriat'e 
quant1tat1ve level along tl1e overlapped portion. The window function decays towards the bound
aries. In (Nogaki and Ohta, 1992) a sine-shaped window function was used. 

. Next, we use the algoritl1rn proposed by Nogaki and Ohta as an example to specifically illustrate 
this type of technique. Consider one of tl1e enlarged, overlapped original (also known as target) 
blocks, T(x,y), with a dimension of l x l. Assume Ll1at a vector vi is one of the candidate displacement 
vectors under conside.ra~ion. Th.e pr~dicted version of the· target block witl1 vi is denoted by v1, ~ '; 

(.x·, y) .. Tl1us, the pred1ct1on error with v;, Ev, (x, )') can be calculated according to the following 
equat1on 

( 1 I . 8) 

Tl1e window function W(x , y) is applied at tl1is stage as follows, resulting in a window-·operat:ed 
prediction error with v;, WE

11 
• • 
I 

iiV Ev. ( .,r, )1) = E
1
• ( ): , ) ' ) X W ( X, ) ' ) 

I I 

( 11 .9) 

Assume that the MAD is used as the matching criterion. Tl can then be deter1nined as usual by 
using the \vindow-operated prediction error WE"

1 
(x, )'). That is, 

• 

( 11.10) 

The best 1natch, which corresponds to the mir1irnu111 MAD, produces the displace111ent vector v. 
In 111otion-compe11sated prediction, the predicted version of the enlarged target block, P" (x, y) 

is deri\1ed from Lhe frame at ti.t by using estimated vector v. The same wir1dow function W (x, y) 
is used lo generate the fir1al window-operated predicted version of the target block. That is, 

(11.ll) 

It was reported _by Nogaki (l 9·92) that tl1e lur11inance si·gnal of an HDTV sequence was u_sed 
in computer simulation. A block size of 16 x 16 was used for conventional block m.atching, \vl1ile 
a block size of 32 x 32 was employed for tl1e proposed overlapped block. n1atching. T11·e n1axiniun1 
displacement range d w·as taken as d = 15, i.e., fron1 - 15 to + 15 in both the horizontal and vertical 
directions. The simulation indicated a reduction in the power of the prediction error by about 19%. 
Subjectively, it was observed that tl1e blocking edg_es originally existing in tl1e prediction error 
signal with conventional block n1atching was largely removed with the proposed overlapped block 
n1atching technique. · 

11.7 SUMMARY 

By far, bloc_k matching is used. more frequently than any otl1er motion estimation techniqµe in 
motion-compensated coding. By partj.tioning ·a frame into nonoverlapped, equally spaced, fixed 
size, small rectangular blocks and assuming that all the pixels in a block experience the san1e 
translational motion, block matching avoids tl1e djfficulty encountered in motion estin1atio11 qf 
arbitrarily shaped blocks. Consequently, block matching is much sin1p]er and involves less side 
inforrnation compared with moti·on estimation witl1 arbitrarily shaped blocks . 

• 
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Altllou.gl1 tl1is simple n1odel considers translatio11 motion only, otl1er types of 111otions, SLJCh as 
rotation and zoon1in·g of large objects, ,nay be closely approxin1ated by the piece\vise tra.nslation 
of tl1ese s111all blocks, provided that tl1ese blocks are small enougl1. Tl1is i1111Jorta11t observation , 
originally made by 1-ain and Jain, has beer, con(in11ed again and agai11 since tl1en. 

Various issues related to block matcl1ing such as selectio,1 of .block size , matcl1ing criteria , 
searcl1 strategies, 111atching accuracy, and its li1nitatio11s a11d i111pro,,e,11e11ts are discussed in this 
cl1apter. Specifically, a block size of 16 x 16 is used n1ost ofte11. For ,nore accurate n1otio11 esti1nation, 
tl1e size of 8 x 8 is used so111eti111es. Ir1 tl1e latter case, 1.nore accurate n1otion estin1atio11 i obtained 
at tl1e cost of 111ore $ide infom1.ation and l1igl1er computation.al co111plexiL)1• 

Tl1ere are several differe11t types of n1,1tcl1i11g critericl tl1at can be used in l1lock matching. Since 
it ,was s·l10\vn tl1at tl1e differen't criteria ,do 11ot cause sigr1ificant dil'ferences i11 block n1atching, the 
111ean absolute difference is l1ence preferred due to its si111plicity in in1plen1entatio11. 

On the or1e l1and, a full-search procedure delivers good accuraC)' ir1 earcl1ing for the best n1atch. 
011 the other l1and, it requires a large ar11ount of co111putation. 111 order to lo,,,cr computational 
complexity, several fast searching procedures \Vere developed: 2-D logari tl1n1 ic se,lrcl1, coarse- fine 
three-step search, and conjugate direction searcl1, to n<1me a t·e,.v. 

Besides these suboptin1un1 searcl1 procedures, tl1ere are ·on1c otl1cr n1ea Lire developed to 
lo\.ver computation. One of tl1en1 is su'bsampling ir1 the original block. r1nd tl1c co11·elation ,vindo,,,s. 
gy subsampling, tl1e .co111putational burde11 in block rn.atcl1i11g can be reduced dra t ical I y, ,vhi le the 
accuracy of tl1e estimated motior1 vectors n1ay be affected. Tl1erefore, the s·ubsa111pling procedure 
is only recon1mended for tl1e case \Vith a large block size. 

Naturally, the multiresolution structure, a po,verru l con1pu La Li on al configura tion i 11 i n1age pro
cessing, lends itself \vell to a fast search in block matchir1g .. It signif1cantly red.uces tl1e computations 
involved. Thresholding multiresolution block matcl1ir1g furtl1er saves co111putation. 

In terms of matching accuracy, several comnio11 choices are one-pixel 1 half-pixel, and quarter 
pixel aGcuracies. Spatial jnterpolation is usually required for half-pixel and quarter-pixel accuracies . 
That is, a l1igl1er accuracy is achieved \.Vith more co1nputatio11. 

Limitations wilh block matcl1ing tccl1niques are mainly ar1 unreliable n10Lion vector field and 
block artifacts. B·olh are caused by the simple model: each block is assL1111ed to expe rience a uni for 111 
trar1slation. Much efforts have been made to in1prove tl1ese drawbacks. Several tecl1niques tl1ar a.re 
an improvement over the conventional block matching technique are di·scussed in this chap ter. 

111 the l1ierarchical block matching technique a set of different sizes for botl1 the original block 
and the correlation windo\v are used. The first leve·I in tl1e hierarchy with a large wir1dow size and 
a large displacen1ent range determines a rnajor portion of the displacen1ent vector reljability . 1l1e 
success.ive levels \Vith smaller \vindow sizes and sn1aller displacement ranges are capable of 
adaptively estimating motion vectors more loc·ally. 

The multigrid . block matching technique uses multigrid structure , another powerful con1puta
t:ional stru·cture in image processing, to provide a variable size block rnatchin,g. With a split-and
merge strategy, the thresh.olding multigrid block 1nat.ching technique segments an image into a set 
of variabJe size blocks, each of wllich experiences an a.pprox-imately unifo11111notion. A tree structure 
(bin-tree or quad-tree) is used to record tl1e relationship between tl1ese variable size blocks. With 
the flexibility provided through the variable-size n1ethodology, tl1e tl1resholding block 1natcl1ing 
technique is capabl~ of making lhe motion model of the uniform n1otion within each block rnore 
accurate th·an fixe.d-size block n1atching can do. 

As pointed out in Chapter I 0, the ultimate goal of n1otion con1pensation in video coding i .. s to 
ach.ieve a high coding efficiency. In otl1er words, ac,curate true motion estin1ation is not tl1e f1nal 
goal. From this point o·f view, in .the above-mentioned multigrid block matching, the decision of 
splitting a block is made 0nly when the bits us~d to encode extra 1notion vectors involved in tile 
splitting are less than the bits sa·ved from encoding reduced prediction error due to more acc~ra~e 
estimation. To this end,. an ada.ptive entropy criterion is proposed and used jn the optimal multigricl 
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block n1atching technique. Not only is it opli1nal in the sense of bit saving, but it also eliminates 
lhe need for selling a threshold. 

A[)parently the block-based 111odel encounters a more severe problem along moving boundaries. 
To solve tl1e prob]e111, the f)redictive 1norion field segrnentalion te.chnique make the blocks involving 
111oving boundarie s have tt1e n1otion field measured \vitt1 pixel resolution instead of block resolution. 
In. order to save sh,1pe overl1ead, seg111e11tatio11 is can·iGd out backwards, i.e., based on previously 
decoded fra111es. Ir1 order lo avoid a large i11crease of side informati·or1 associated \vith extra motion 
vectors, tl1e 1notio11 vectors applied to these seg1ne nled regions along n1oving botJndaries are selected 
fron1 a set of 11eigl1boring 111otion vectors. As a result, the technique is capable of reconstructing 
discontir1uities i11 the 1notion field at pixel resolution while maintaining tl1e same amount of motion 
\rectors as the conventional block n1atcl1ing tecl1nigue. 

Tl1e last i11.1proven1enl over conventional block 111atching discussed i11 this cl1apter is overlapped 
block matcl1ing. I11 co11trast to dealir1g with blocks independently of eacl1 otl1er, the overlapped 
block n1atcl1i ng tecl1r1 ique enlarges b.locks so as to make tl1em overlap. A window function is tl1en 
constructed and used in both 1notior1 estimation and n1otion compensation. Because it relaxes tl1e 
restriction or a 11or1overlapped block partition imposed by conve11tional block matching, it achieves 
better performance tba11 tl1c conventional block matcl1ing. 

11 .8 EXE RC I SES 

11-1. Refer to Figure 11.2. Jt is s,1id tt1at tl1ere are a total of (2d + I ) x (2d + I ) positions tl1at 
need to be exa111i11ed i11 block matcl1ing \iVitl1 fulJ search if one-pixel accuracy is required. 
How ma11y positions are there that need to be ex_mined in block 1natcl1ing vvith full 
search if hair-pixel and quarter-pixel accuracies are required? 

11.-2. What are the 1wo effects that subsan1pling in tl1e original block and the correlation block 
may bring out? 

11-3. Read Burt ,1nd Adelson ( 1983) or Burt (1984), and explai11 why Lhe pyranud is named 
a fter Gc:1uss. 

11-4. Read Burt and Adelson ( 1983) or Burt ( I 984 ), and explain \vhy a pyran1id structure is 
considered as a powerful co,nputational con.figuration. Specifically, in multireso lutional 
block 1natcl1ir1g, l1ow a11d to \vhal exte.nt does it save computation dran1atically, con1pared 
with tl1e co nven ti 011al block n1atcl1ing techniqu e? You rnay want to refe r to 
Sectior1 1 I .3.7. 

11-5. How is tl1e tl1re-shold dele.1111i11ed in the thresholding mulrjdin1er1sional block 1natching 
technique (refer to Section 11.3.7). It is said tl1at tl1e square root of tl1e MSE value, 
derived fro1n ll1e given PSNR accordi11g to Equation I I .6, is used as an i11itial tl1reshold 
value. Justify tl1e necess ity of the square root operation. 

11-6. Re'fer to Section 11.6.1 or tl1e pa1)er by Bierling ( 1988). State the different requirements 
.in tl1e applications of motior1-c·ompensated i11terpolation and 1notion-compensated cod
ing. Discuss where a full resolution of the tra11slatio11al n1otion vector field may be used? 

11-7. Read the paper Du faux and Mosct1eni ( J 995), and explain the n1ain f'eature of opti111al 
multigrid block matching. State l1ow the adaptive entropy criterion is established. In1ple
rnent the algorithn1 and compare its perforn1ance witl1 tl1at presented 'by CJ1a11 et al. 
( 1990). 

i 1-8. Learn tl1e predict ive moti·on field seg1ne11tatio11 tecl1nique (Orchard, 1993) . Explain hovv 
the -algoritl11ns avoid a large increase in overl1ead due to 111otion field segme11tation. 

11-9. Implement the overlapped block matching algorjthm introduced by N9gaki ( 1992). 
Compare its perfor~mance witl1 tl1al of tf1e co:nver1tio11al bloc.k n1atcl1ing t.ecl1nique. 

IPR2021-00827 
Unified EX1008 Page 273



248 Image and Video Compression for Multir11edia Engineering 

REFERENCES 

Anandan, P. Measurement Visual Motion Frorn Image Sequences, Ph.D. tl1esis, COINS Department, University 
of Massac'husetts, Atnherst, 1987. 

Anuta, P. F. D'igital registration ,of multispectral video itnagery, Soc. Pl1oto-01;t. /12srr1,111. E,zg. 1 .. 7, 168-175, 
1969. 

AU)'eung, C., J. KosmacJ1, M. Orchard, and T. Kalafatis, Overlapped block motion compensation, SPIE Proc. 
\lis11al Co11v111111. !,,,age Process. '92, Boston, MA, Nov. 1992, vol. 18 18. 56 1-571. 

Bierlin,g, M. Displacement estimation by hierarct1icaJ blockmatcl1ing. SPIE P,-oc. \/js1,al Co,111111111. r,,zage 

Process .. 100], 942-951, 1988., 
Brailean, J. Universal Access,ibility a.nd Object-Based Functio11ality, JSCAS T,,ro,·ial or1 NI PEG 4, June 1997, 

Chap. 3.3. 
Brofferio, S. and F. Rocca, lnterframe redundancy reduction of video signals generated by translating objects, 

IEEE Trans. Co,111111,11., COM-25, 448-455, I 977. 
Burt, P.,J. and E. H. Adel&on, The Laplacian pyran1id as a con1pacl image code , IEEE Tra11s. Co,111111,12., COlv1-

31 (4), 532-540, 1983. 
Burt, P. J. Tile pyran1id as a structure for effieient computation. in !v!,,Lci re~;o/1,rio,1 !111c1ge Processi,zg a11d 

A11·a/;1sis, A. Rosenfeld., Ed., Springer-Verlag, New York, 1984, 6. 
Cafforio, C. and F. Rocca, Method for 111easur;ing small displacemenl of television images, IEEE Tra,zs. /, if. 

T/1eory,, IT-22, 573a.579, 1976. 
Chan, M. H., Y. B. Yu, and A. G. Constantinides, Variable size block matchir1g r11otion compensation \V1lh 

applications to video coding. IEEE Proc., 137( 4). 205-212, 1990. 
D,ufaux, F. and M. Kunt, Mu,Jtigrid block n1atching motion estimation vvitl1 an adap.tive loca l mesh refinement, 

SPIE Proc. ~s1,al Co1n11i1,11. /111age Process. '92, I 818, 97-109, 1992. 
Dufaux, F. Multigrid Blook Matching Motion Estimalion for Generic Video Coding, Pl1.D. disse rtation. S\viss 

Federal Institute of Technology, Lausanne, Switzerland, 1994. 
Dufaux. F. an,d F. Moscheni, Motion estimation tecl111iques for digital TY: A revie\V and a ne\.v contribution, 

Proc . IEEE, 83(6), 858-876. 1995. 
Hackbusch, W. and U. Trotte_nbe.rg, Eds., M1,ltigrid Metlzocls, Springer-Verlag, Ne\V York, 1982. 
Haskell, B. G. and J. O'. Limb, Predictive video encod,ing using 111easured subject velocity, U.S. Patent 

3.632,865, January 1972. 
Jain, J. R. and A. K. Jain·, Displacement measurement and its application in interframe image cod ing, IEEE 

Tra11s. Co111n11,,11., COM-29( 12), 1799-1808, 1981. 
Jain,, A. K. Fz1nda,11e111als of Digital /111age Processi11g, Prentice-Hall, Engle\vood Cliffs, NJ. 1989. 
Koga, T., K. Linuma, A. Hirano, Y. lijima, and T. Ishiguro, Motion-compensated inrerframe codi ng for video 

. . 

conferencing, Proc. NTC'81, G5.3. l-G5.3.5, Ne\v Orleans, LA, Dec. 1981. 
Knuth, D. E. Searching and Sorting, T/1e Ari of Co111p1,ter Progra,n111i11g, Vol. 3, Addison-Wesley, Reading, 

MA, 1973 . 
L,imb, J. 0. and J. A. M.urphy, Measuring rhe speed of moving 9bjects from televisio11 signals, IEEE T,·a,is. 

Co111,,1ii,11., COM-23, 474-478, 1975. 
Lin, S., Y. Q. Shi-, and Y.-Q. Zhang, An optical flow-based motion co111pensation algoritl1m for very lo\v bit

rate video coding, Proc. J 997 IEEE /1zt. Co,if. Aco1,stics, Speec/1 Sig rial Pro·cess., 2869-2872, Municll, 
Germany, April J 9,97; Int. J. /111aging S),sf. Tec/1nol., 9(4), 230-237, 1998. 

Moscheni, F., F. Dufaux., and H. Nicolas, Entropy criterion for optimal bit allocation between motion and 
prediction error information, ·in SPIE 1993 Proc. Visz,al Co11z111un. Jr11age Process., 235-242, Cambridge. 
MA:, Nov. l 993. 

Musmann. H. G., P. Pirsc,h, and. H.J. Grallert, Advances in picture coding, Proc. IEEE, 73(4), 523-548, I 985 . 
Netravali, ,A. N. and J. D. Robbins, Motion-comp,ensated television coding: Part I, Bell S;1st. Teclt 1., 58(3), 

6{3,1-670, 1979. 
Nogaki, S. ancl Ohta, M., An overlapped blo_ck motion compensation for high-qualjty motion picture coding. 

Proc. IEEE Int. S,y11zp. Circz,its a,zd Syste111s, vol. I, 184-187., ,San Di~go, 1992. 
Orchard, M. T.' Predictive motion-field segmentation fo.r image sequence coding, IEEE T1·a12s. Ci1·c11ils and 

S)'St. Video Technol . ., 3( I), 54-69, J 993. 
Pratt, W. K. Correlation techniques o.f irnage registraJion, IEEE Tra,zs. Aerasp. Ele~tto,z. Syst., Al!S-10(3). 

3S3-358., J-974. 

IPR2021-00827 
Unified EX1008 Page 274



Block Matcl1i ng 249 

Rocca., F. ancl Zanoletti> S., Bandwidtl1 reduction via movement compensation on a model of the random video 
process, IEEE Trc111s. Co,11111., vol. COM-20, 960-965, Oct. 1972. 

Shi, Y. Q. and X. Xia, A ll1resholdin g n1ultidin1ensional block matching algorithm, IEEE Ttar1s. Cir c1,irs a11cl 
S),st. Video Tec/111ol., 7(2), 437-440, AprjJ 1997. 

Srinivasan, R. and K. R. Rao, Predictive codi ng based on efficient motion estimation, Proc . of/CC, 521-526., 
May 1984. 

T zovaras, D., M. G. Strintzis, and H. Sahinolou. Evaluation of multiresolution block matching · techniques for 
motion and disparity estimati on, Sig11al Process. /111age Co1111r111n., 6, 56-67, 1994. 

Watanabe, H. a11d Singl1al, S., Windo\v ed mo.lion compensation, SPIB, vol. 1605, in Vis1,al Co1111111,11icario11s 

ancl !t1zage P1·ocessi1ig, I 99 I: Vis,~al Co1r11111,11icc1tio1i, 582-589, November 1991. 
Xia, X. and Y. Q. Shi, A thresholdin g hierarchical block matching algorithm, Proc. IEEE 1996 /11t. Sy111p. 

Circ1,its S)1st.
1 

I I, pp. 624-627, Atlanta, GA, M ay 1996; J. Co111p1,1. Sci. Inf. Manage ., l (2), 83-90, 1998 . 

• 

• 

• 

IPR2021-00827 
Unified EX1008 Page 275



• 

• 

IPR2021-00827 
Unified EX1008 Page 276

 
|PR2021-00827

Unified EX1008 Page 276



-, 

--

... 

Pel 

As discussecl in Cl1apler 10, tl1e pel recursive lechnique is 011e of t'l1e three 111ajor ap.proacl1es to 
t\vo-di111ensio nal displacen1ent eslimalion in i111age planes for Lhe signal processi 11g com n1unity. 
Concept ually speak ing, it is one lype of region-1natching tech11ique. In contrast to block n1atcl1.ing 
(\vhicl1 was discussed i11 Ll1e previou s cl1aplcr), it 1·ect11·sivel)' estin1ates displacen1ent vectors for 
ec1c/1 /Ji)~el i11 an i1nctge fra111e. Tl1e displacen1cnl vector of a pixel is estimated by recursively 
minin1izing ,1 no11linear funct ion of Ll1e diss in1ilarity between two certain regions located in two 
consecutive fran1es. Nate ll1al r·egio,, 111eans a group of pixels, but it could be as sn1all as a single 
pixel. Also note tl1~1t tl1e tern1s /Je/ a11Ci /Ji.x:el have tl1e same meaning. Both te1-n1s are used freque11tl.y 
in Lhe field of s ignal and image proces i11g. 

This cl1,1pter is organized ,1s follows . A general descriptio11 of Lhe recursive technique is provided 
in Sec tion 12.1 . So,ne fundan1ental techniques in optin1i,zation are covere d i11 Sectio11 12.2. 

Section 12.3 describe s the Net ravali and R'obbins algoritl1m, tl1·e pioneering work in this catego ry. 
Severa l ott1er typica l pe l recursive algoritl1n1s are inLroduced in Sectio n 12.4. In Sec tion 12.5, a 
perf orn1a11cc co111pariso11 bet wee11 these algorithn1s is made. 

12.1 PROBLEM FORMULATION 

In 1979 Netravali and Robbi 11s published Lhe first pe1 recursive algorithm to estimate displacement 
vector s for n1otion-con1pensated i11terfra1n e in1age cod ing. Netravali and Robbi ns ( 1979) defined a 
quantity , ca lled the displaced frarne difference (DFD), as follo\VS. 

D FD(.,\:, )'; cl.r, d.,·) = !,, ( x, )') - f,, _ 1 ( x - cl_r , )) - cl Y) , ( l 2. 1) 

where the subscript ,z and 11 - l i11dicate two mon1ents associa ted with two success i\1e frar11es b,1sed 
on wl1icl1 mot ior1 vectors are to be estin1ated; .,t ,, ), are coordinate s in image planes, d.\'' ciy are th.e 
t \VO con1por1ents o·f the disp.lace111ent vector, d, along the horizonta l and vertical d~ections . in the 
imag e pla11es, respectively. DFD(.:i:, y; (/x, dy) ca,1 aJs.0. be expressed as DFD(.,r, )'; cl. Wl1enever it 
does not ca use co r1fusion, it can be written as DFD for the snke of brevity . Obviously, if there is 
no error in the estimation, i:e., tl1e est i111ated displtlCe111er1t vector is exac tly ·equal Lo tl1e true motion 
vector, then DFD wil l be zero. 

A nonlin ear functio11 ot· rhe DFD was tl1en proposed as a dissimilarity 1,1eas ure by Netravali 
and Robbin s (1979), which is a square function of fJFD, i.e., DFD2

. 

Netrava li and Robbins tl1us converted disp,lacen1ent estin1ation into a mi11im.iz·ation prob lem. 
That is, each pixel corresponds to a pair of i 11tegers ( .. r, .)'), de11oting i ls spatial position _in tl1e image 
plane. Th erefo re, the DFD is a function of cl. Tl1e estimated disp lacen1er1t \,ector cl = (dx, dy)1: 
wher e ( )T denqtes tl1e tra11spositjor1 of tl1e argL1111ent vector or 111atrix, 9an be detelimined by 
minimi zing tl1e DFD2. This is a typical nonlinear prograrnming problem, on wl1icl1 a large body 
of research l1as been report ed in the literature. In. tl1e 11ext sectio r1, severa l tecl1niques that rely on 
a m·etl1od, calle d desce nt niethod, in optimization are introduced. The Netravali arid Robbins 
algorithm can be applied to a pixel once or iteratively applied several tin1es for displacement 
estimat ion. Then the algarit l1m mo\res to the next pixel. The estin,ated dis-placen1ent vecto r of a 
pixel can be used as a,1 itiitial estin1ate for the next pixel. Tl1is recursion can be carried .out 
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FIGURE 12.1 Thr ee Lypes of recursions: (a) horizontal ; (b) verti cal ; (c) temporal . 

horizontally, vertically, or temporally. By ·te11zpo1·lzlly, we mean that the estimated displaceme nt 
vector can be passed to the pixel of the sam.e spatial position within image planes in a temporally 
neighboring frame. Figure 12.1 illustrates these three different types of recursion. 

12.2 DESCENT METH,QDS 

Consider a nonlinear real-valued function z of a vector variable .x, 

z =f(x), ( 12 .. 2) 

with i e Rn, where Rn represents t'he set of all n-tu.ples of real numbers. The question we face no\v 
is how to find such a vector denoted by x* that the function z is minimized. This is classified as 
an unconstrained nonlinear programming problem. 

12.2.1 flRST-0RDE '.R NECESSARY CONDITIONS 

.AocoJiding to the optimization th eory, if f (x) has continuou$ fi·rst-order partial derivatives, then the 
first-o rder necessary condition s that i* has to satisfy are 

(12.3) 
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\vhere V denot es tl1e grad ient operation with respect to x evaluated at x*. Note that whenever there 
is only one vector variable in the function z to wt1ich the gradient operator is applied, the sign V 
would remain without a subscript, as in Ec1uation I 2.3. Otherwise, i.e., if there is more than one 
vector variable in the function, we will explicitly write o·ut the variable, to which the gradient 
operator is app lied, as a subscript of tt1e sign V. In tl1e component form, Equation 12.3 can be 
expressed as 

aJ(x) = 
0 

dX l 

df(i) = O 
dX 2 

• 
• 
• 

of(x) _ a - o. 
X 

11 

12.2.2 SECOND-ORDER SUFFICIENT CONDITIONS 

• 

( 12.4) 

If F (x) has second-order continuous derivatives, tt1en the second-order sufficient conditions ·for 
F(i *) to reach the n1ir1i1num are knowr1 as 

( 12.5) 

H(x·) > 0, (12.6) 

where H denotes the Hessian n1atrix and is defined as follows. 

a2J(x) a2 f(x) a2 J(x) 
•• • 

0 2 ).: I dx
1
d):2 

ax,a_.,'(,, 
a2J(x) a2 J(.fJ a2 f(x) 

••• ( 12.7) H(i) = d2:r,, ax ax 
• 

d.-t2dX1 
• 

2 n -• • • • 
• • • • 

• • • • a2 f(x) a2 J(x) a·2t(x) 
•• • 

ax ax 
II I dX dX 

II 2 
a2x 

II 

We can thus see that the Hessian matrix consists of all tl1e second-order partial derivatives of fwi th 
respect to the components of .x. Equation 12.6 means tl1at the Hessian matrix H is positive definite. 

12.2.3 UNDERLYING STRATEGY 

Our aim is to derive an iterative procedure for tl1e minimizatio.n. That is, we want to find a sequence 

- - - -x0 , x1, X1, • • ·, X
11

, • • ·, 
( 12.8) 

such that 

( 12.9) 

and the sequen,ce converges to the minin1un1 off (i), f(x*) . 
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. 0 

-k+I .r 

FIGURE 12.2 Descent method. 

A funda111ental underlying strategy for aln1ost al I tl1e descent ,1lgori 111 n1s (LL1er1bcrger, 1984) is 
described next. We start \Vith an initial point in the space; we detern1ine a direction to mO\'e 
according to a certain rule; then \Ve mo,1e along the direction to a relati\,e r11ini111un1 of the function 
z. This minin1um point becomes the initial point for tl1e next itera tion. 

This strategy can be better vjsualized using a 2-D exan1ple, sl1own in Figure 12.2. Tl1ere, x = 
(.,t·1 • • t 2) 1• Several closed curves are referred to as co ,110111· CL11·ve~· or Level c 1,11)es. Tl1at is, each of 
the curves represents 

( 12.10) 

w-itl1 c bein.g a constant. 
Assum.e t'l1at at the ktl1 iteration, \V e have a guess: .rk . For the (k + l)th iteration, \Ve need to 

• F·in,d a search direction, pointed by a vector ook; 
• Dete, 1nine a11 optimal step size a1: \vitl1 a1: > 0, 

such that the next g·uess xk+ i is 

- k+ I - k k - k x = ,r +a ro 

and PT1 satisfies f(x") > f(x"+1). 

In Equation 12.11, .i.k can be viewed as a prediction vector for 
vecto .r, vk. Hence, using the Taylor series expansion, we can have 

( 12. 11) 

j k+I, \.Vhile a k ci)k an updat e 

(12 . 12) 

where (s, /) denotes the inner product between vectors s and t~ and e represents tl1e higher -order 
ter111s in the ex.pansio·n. Consid.er tl1at the incre1nent of ak il:Jk i's sma ll enough and, thus, e car1 be 
ignored. From Equation 12.10, it is obvious that in order to l1ave / (xk+1) < F( .,"ik) \Ve 111ust ha,,e 
(Vf(xk), fJ!&k) < 0. That is, 

( 12.13) 
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Choosing ,l diff erent update vector, i .e., ll1c product of the {if vector and the step size a'·:, results 
i11 a diff erer1t algoritl1111 ir1 i111ple111enting tl1e descent n1etl1od. 

I11 tl1e san1e category of tl1e descent 111etl1od. a variety of tecl111iques have been developed. The 
reader 111ay refer to Lue11berger ( 1984) or the 111a11y other existing books on opt i1n'izati on. Two 
co111n1only used tccl111iqL1es or tl1c dcscc11t n1.etl1oc.t are discussed below. One is call ed the steepest 
de ccn t n1ethod, in wl1 icl1 tl1e sca re!, direction represented by the w vector is chosen to be opposite 
ro tl1nt of tt1e gradie nt vector, and a real parameter of tl1e step size ak is used; the other is the 
Ne\vtor1-Rapl1so11 n1ethod, in wl1ich tl1e u.pdate vector in estin1ation, determined joint ly by the 
enrch dire ctio11 and tl1e step size, is related to the Hessj·an matrix , de.fined in Equation 12.7. The~e 

l\VO tccl1niques ,1rc rurtl1er di scussed i,1 Sections 12.2.5 a11d 12.2.6, respectively . 

12.2.4 CONVERGEN CE SPEED 

Speed or co11vergcnce i ,1n in1portant is uc in discus ing the de cent n1etl1od. IL is utili zed to 
c\,al uate tl1c pcrf'on11ar1cc of di rrcren t algorj tl1ms. 

Order of Convergence As ume a seq.uence of \iectors { ,tk}, \Viti, k = 01 l , · · ·, oo, converges to 
a 111i n i m.u1n denoted by .x*. We say that tl1e convergence is of order JJ i r the fol lowing formu la 
l1olds (Lu e11berger l 984) : 

I-k+I -•1 .\' - .\" 

Q~ liill k-l co - k _ .

1

,, < 00
, 

.t - .,r 
( 12.14) 

\vhere p is posi ti ve, Jin1 denote the li 111it superio r, and I I indi cates the 1nag11itude or norn1 of a 
vector argun1e11t. For the two latter notions, 111ore description s foll o\v. 

T l1e co nce1) l of Lhe lin1it uperior is based on lhe concept of supremum. Hence, let us fir st 
discuss tl1e supremun1. Consider a set or real nun1bers, denoted by Q, 1i1at is bounded ab·ove. Then 
tl1ere n1L1st ex i·Sl a s111allest real nun1ber (J such tl1at for all t~1c real nun1bers i11 tt1e set Q, i .e., q E 

Q, we l1ave Cf~ o. Tl1is real nu111ber o is referred to as tl1e least upper bound or the supre111un1 of 

lhe set Q, and is denoted by 

( 12. I 5) 

No\v tum to a real bounded above sequence ,.k, k = 0, I ,·· ,oo. If s·k = sup { ri: j ~ k}, tl1e11 tl1e sequence 
{sk} converges to a real 11uml)er s*. Tl1is real r1u111ber s* is referred to as tl1e li ·111it superior of tl1e 

sequence { ,.k} and is de11oted by 

(12.16) 

The 111ag,nitude or norrn of a vector x, denoted by lxJ, is d.efined as 

( 12. I 7) 

where (s, t) is. tlie i.nne( product bet\veen tl1e vector s and T. Tl1roughout .tl1is discuss~on, \Vl1e11 \V e 

say vector we ,nean column vector. (Row ,,ectors ca11 ·be J1a11dled accord1.11gly.) Tl1e 111ner product 

is therefore defined as 

s,r =s.r , ( -) - r ( 12.18) 

• 
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\Vith the superscript T indicating tl1e tr~nsposition operator. 
With the definitions of the limit superior and the rnagnitude of n vector ir1troduced, \Ve are no\.v 

in a position to understaod easily tl1e concept of the order of converger1ce defined in Equation 12.14 . 
Sin.ce the sequences generate.d by the descent algorithms behave quite \.veil in ge11eral (Luenberger, 
1984), tl1.e limit superior is rarely necessary. Hence, rougl1ly speak ing, instead of the lirnit superior, 
the lin1it nriay be used in conside,ri11g tl1e speed of convergence. 

Linear Convergence Among tl1e various orders of convergenc.e, tl1e order of unity is of 
importance, and is referred to as linear convergence. Its definilio11 is as follows. If a sequence { ;.x}, 
k = 0,1, ·· ·,oo, COn\1erges tO x* \Vill1 

-J:+I - • 
.,t· - X 

Jim =y<l , k~- - k - • 
.,\ - .,\" 

( 12 . 19) 

the11 w·e say that this sequence con\1erges linear! y with a convergence r~1tio y. Tl1e Ii near co11vergence 
is also referred to as geometric convergence because a linear co11vergent ~eque 11ce \Vitl1 convergence 
ratjo y con.verges to its limit at least as fast as the geomeLric sequences cyk, \\1 itl1 c being a constant. 

12.2.5 STEEPEST DESCENT METHOD 

The steepest descent rnethod, often referred Lo as the grad.ient metl1od, is the oldest and simplest 
one among various techniques in the descent method. As Luenberger pointed out in t1is book , it 
remains the fundamental method in the category for tl1e following t -....vo reaso ns. First, because of 
its simpl,icity, it is usually the first method attempted for solving a ne\v problen1. Tl1is observation 
is very true. As we shall see soon, \Vhen handling the displacen1ent esti111ation as a nonlinear 
programming problem in the pel recursive technique, the first algorithm developed by Netravali 
and Robbins is e·ssentially the steepest descent method. Second, because of the existence of a 
satisfactory analysis for the steepest descent method, it continues to serve as a reference for 
comparing and evaluating various newly developed and n1ore advanced J11ethods. 

Formula - In the steepest descent method, {j:f is cha.sen as 

( 12.20) 

resulting in 

(12.21) 

where the step size ak is a real paramete,r, and, \Vith our rule mentioned before, tl1e sign V here 
denotes a gradient operator with respect to x". Since the gradient vector points to the direction 
along which the function f(i) ha.s greatest increases, it is naturally expected that the selection of 
th.e negative direction of the gradient as the search direction will lead to the steepest descent of 
f(x). This is whe·re the te!tlt steepest desce1·1t originated. 

Convergence Speed It can be shown that if the sequence { .x} is bounded above, then the steepest 
descent method will ,converge to the minimum. Further111ore, it can be shown that tl1e steepest 
desce .nr method is linear convergent. 

Selection of Step Size It is w·orth noting that the sele·ction of the step size d.k has significant 
influence on the perfor111ance of the algorithm. In general, if it is small, it produces an accurat ,e 
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FIGURE 12.3 An illu str ation of effect or selection of step size on minimization perf9rmance. Too small a 
. 

requir es more sreps to reach .. r*. Too large a ,nay cause overshooling . 

estin1ate of x*. But a smaller step size means it wi.11 ta.ke longer for the algorithm to reach the 
minjn1um. Altl1ough a larger step size will make the algorithm converge faster, it ·may lead to an 
estimate with large error. This situation can be demonstrated in Figure 12.3. There, for tl1e sake of 
an easy graphical illustration, x is assumed to be one dimensional. Two cases of too s1nall (with 
subscript I) and too large (witl1 subscript 2) step sizes are sho\vn for con1parison .. 

12.2.6 NEWTON-RAPHSON'S METHOD 

The Newton-Raphson method is the next most popular method among various descent 111ethods .. 

Formula - Consider xk at tl1e kth iteration. The k + 1th guess, .. rk+ r, is the sum of xk and vk, 

- k+I - k - k x =x + v, ( 12.22) 

\Vhere vk is an update vector as shown in Figure 12.4. Now expand the Jrk +I into the Taylor series 
explicitly containing the second-order term. 

• 

!( X k+I )- J(X k) +(VJ.ii)+ f ( H(i k )v. v)+ cp, (12.23) 

where <p denote.s the higher-order terrns, V the gradient, and H the Hessian malrix. lf v is sn1all 
enough, we can ignore the <p. According to the first-order necessary co11ditio11s for xk+r to be;:: the 
minimum, discussed in Section 12.2.1, we have 

• 

FIGURE 12.4 Derivation of the 
Newton-Raph~on method. 

-4 
V 

,( 12.24) 
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,vhere v'\. denotes the grad'ient o·perator witJ1 respect to v. This leads Lo 

- H -1 (-k)nr(-k) \J = - ); VJ ,.\' . ( 12.25) 

Tl1e Ne,vton-Raphs0n 111etl1od is tl1us derived belo\.v. 

f ( x 1.:+1) = f ( x k) - H -1 ( .t k) 'v f ( x k). ( 12.26) 

Anotl1er loose and intuitive \.vay to vie\v the Ne\vton-R apl,son mcth ocl i th ~1l i1., forrnat is imilar 
to tl1e steepest descent n1etl1od, except tl1at tl1e step size ak is 110w cl1osen els H- 1 ( .fk)> tl1e i11verse 
of the Hessian rnatrix evaluated at _rk. 

The idea bel1ind tl1e Ne\vton-R aphson n1ethod is tt1aL tl1e runction bei11g 111ini111ized is approx
imated localJy by a quadratic function and tt1is qu,1drc1tic functio,1 is tt1cn 111i11in1ized. lt is noted 
tl1at an.y f'unction will behave like a quadratic fu11ction \.vl1en it is clo ·e to tl,e n1i11in1un1. Hence, 
the closer to the 1ninimun1, t.he 111ore efficient tt1e Ne'.vton- Rapl1so11 111etl1od. Tl1is is the exact 
opposite of tl1e steepest descent method, whic.11 \vorks more efficiently at tl1c beginning : and less 
efficiently wl1e11 close to the n1inir11um. The price paid witl1 Ll1e Newto11- Rapl1 on n1ethod is the 
extra calculation involved in evaluating the inverse of 'll1e Hessia11 n1atrix at .t k. 

Convergence Speed Assurne tl1at the second-o .rder suf11cient co nditio n · di scussed in 
S.ection 12.2.2 are satisfied. Furtl1ermore> assume tl1at tl1e ir1itial point x0 i ~ suff·icie 11tly close to 
the minimun1 x*. Then it can be s.ho\vn that the Newton-Raph son r11etl1od con erge vvitl1 an order 
of at least two. This indicates that the Ne\¥l011-R.aphso11 111ethod con\ierges f<lSter tl1a.n the steepest 
descent method .. 

Generalization and Improv·ements - In Luenberger ( 1984), ,1 ge11eral class or algoriLhn1s is 
defined as 

- k+I - k I.: cn:r(-k) ,\" = X -a V X , ( 12.27) 

\Vhere G denotes an 11 x 11 matrix, and a k a positive paran1eter. Both the steepest descent n1ethod 
and the Newton-Raphson 1nethod fall into tJ1is fran1e'.vork. It is clear Lhat if C is an 11 x 11 idenLical 
matrix I , this general fonn reduc·es to the steepest desce11t method. If C = H and a = l then t11is 
is the Newton-Raphson method. 

Althoug_h it descends rapidly near the solution, Lhe Newto11-Rapt1son metl1od may not descend 
for points far away from Lile mirumum because the quadratic approximation n1ay not be valid tl1ere. 
The introducti.on of the ak, which minin1izes J, can guarantee the descent off at the general points . 
Another improvement is to set C = [l;kJ + H( .xk)J-1 with t;, ~ O. Obviously> tl1is is a co,nbination of 
the ste·epest descent method an.d the Newton~Raphson method. Two extren1e e11ds are that the 
steep.est m.eth0d (very large t;,t) and the Newton-Raphson n1ethod (sk = 0). For most cases, the 
selection of the parametet t;,J.:. aims at making the G matrix positive definite. 

12.2.7 OTHER METHODS 

There are other gradient methods such as the Fletcher-Reeves method (also known as the co11jugate 
• 

g.radient n1ethod) and the FJetcher-Powell-Davidon method (also known as the variable metric 
method). Readers may re1·er to Luenberger ( 1984) or other optin1izatior1 text. 

12.3 THE NETRAVALI-ROBBINS PEL RECURSIVE ALGQR .fTHM 

Having had an -introduction to some basic nonlin.ear programming tl1eory, we now turn to tl1e pel 
recursive technique in displacement estimatio.n from Lhe perspective of the desce11t methods. Let 
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us tak e a look ,1t tl1e- rirst pel recursive algori tl1n1, the Netraval i- Robbi ns pel recursive algorithm. 
It actually esti111ates clis.place111e11t vectors using the steepest descent 1nett1od to mi11imize tf1e squared 
DFD . Tl1at is, 

-, k+ I _ - k J 2 ( - k) 
G - ti - - av _ DFD ~t,y,d , 

2 " 
( 12.28) 

\vl1ere "v,jDFD 1(x, )', dk) de11otes tl1e gradient of DFD 2 witl1 respect to cl evaluated al cJ,k, the 
displa cen1c11t vector at tl1e ktl1 iteratio11, and a is positive. This equation can be further written as 

-1 k+ I -i k DFD( d-k)n . ( -k) u = c.. - a .. x, )', va DFD ;r, )', d . ( 12.29) 

A a. result of Ec1u,1tion 12.1, the above eqL1ation leads Lo 

d 1:+i = d k - aDFD(x, ),, d 1.-)v.r.y J,,_
1 
(x - cl.r, y - rl_

1
. ) , ( 12.30) 

\vl1ere V.(, Y mcc1ns a gradient operator wi tl1 respect to x and)'. Netraval i and Robbins ( 1979) assigned 
a constant of 1/102,1 to a , i.e., 1/1024. 

12.3.1 INCLUSION OF A NEIGHBORHOOD AREA 

To make dis[Jlaceme nt est in1,1tion 111ore robLtSl, Netravali and Robbir1s considered an· area for 
eva]uating tl1e DF D 2 in calculnti11g tt1e update terr11. More precisel}', tl1ey assume tl1e ct·isplaceme nt 
vector is const,1nt witl1i11 a srn,111 neighborhood Q of tl1e pixel for wl1ich the disp'laceme nt is be.ing 
esti111ated. TL1at is, 

d k+I = d k -f av ,i I IV;DFD2
( x,y, ;d k ). 

i,.t . I' ,E0 
J 

(12.31) 

\Vhere i represe11ts an index for the itl1 pixel (.,\", ),) witl1in Q, and lv, is tl1e weight for the itl1 pixel 
in n . All the weigl1ts satisfy the following two constraints. 

\ V. ~ 0 
I 

I \V, = I . 
ien 

( 12.32) 

( 12.33) 

This inclusion of a neighborl1ood area also explains why pel recursive technique is classified i11to 
the category of region-matcl1ing tech11iques as we discussed at tJ1e begir1ning of tlris chapter. 

12.3.2 INTERPOLATION 

It is noted that ir1terpolation .will be necessary wl1en tl1e displace111ent vector componer1ts clx and 
t/ Y are not integer r1umbers of pixels. A bilinear i,11terpolation tecl1nique is used by Netravali and 
Robbins ( I 979). For the bilinear i11terpolation, re,1ders may refer to Cl1apter I 0. 

12.3.J SIMPLIFICATION 

To 1nake the proposed algorirhrn 111ore efficient in comp~tation, Netravali and Robbins also p.roposed 
sjmp]ified versions of the· displacen1ent estimatio11 ar1d i11terpolation algorithms in tl1eir paper . 

• 
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One simplified version of the Netravali and Robbins algorith111 is as follows: 

d t+i = d k - a sig11{ DFD( x,, d k) }s·ig11{ Vx .. , J,,_
1 ( ,\ · - cl_i, )' - d.r)}, ( 12.34) 

,vhere sig11 { s} = 0, 1, -1 , depending on s = 0, s > 0, s < 0, respective I y, while tl1e sign of a vector 
quantity is the \'t}cto·r of signs of its con1ponents. 111 tl1is version the update vectors can only assume 
an angle wl1ich is an integer multiple of 45° . As sl1own in Netravt1li ar1d Robbins ( 1979), this version 
·is effective. 

12.3.4 PERFORMANCE 

The perfo1111ance of the Netravali and Robbins algorithn1 has been e\1~1luated using computer 
simulation (Netravali and Robbins, 1979). Two video sequences witl1 diff erent amou nts and dift'erent 
types of motion are tested. In either case, the proposed pel recursive algorithm displays superior 
perfo1111a·nce over the replenisl1ment algorithn1 (Mounts, 1969; Haskell, L 979), whicl1 was discussed 
briefly in Chapter 10. The Netravali and Ro.bbins algorithm acl1ieves a bit rate \Vhich is 22 to 50o/o 
lo\ver than that required by tl1e replenishment technique with the sin1ple frame di fferer1ce prediction . 

12.4 OTHER PEL RECURSIVE ALGORITHMS 

The progress and success of the Netravali and Robbins algorithm stimulated great resea rch interests 
in pel recu.rsive techniques. Many new algorjthrns have been developed. S0n1e of then1 are discussed 
in this section .. 

12.4.1 THE BERGMANN ALGORITHM (1982) 

Bergmann modified the Netravali and Robbins algoritl1m by us.ing ll1e Newton-Raphson n1ethod 
(Bergmann, 1982). In doing so, the follo\ving difference between the fundamen tal frame,vork of 
the descent methods discussed in Section 12.2 and the minimization problem in displacement 
estimation discussed in Section l 2.3 need to be noticed. Tl1at is, the object function J( .x) discussed 
in Section 12.2 now becomes DFD 2(x, )', d). Th.e Hessian matrix H , co.nsisting of the second-order 
partial derivatives of the f(x) · ,vitl1 respect to th·e components o,f .x now beco1ne the second-order 
derivatives of DFD 2 \Vith respect to clx and d, .. Since the vector cf is a 2-D colun1n vector now, the 
H matrix is hence a 2 x 2 matrix. That is, · 

H= 

a-DFD- x,) ',d ., ' ( -) 
:\2 . (:} d 

.{ 

o2 DFD 2(x,y,J) 
ddydd.r 

o2 DFD 2
( x, ) 1, ci) 

ad.rad\' 
• 

a2 DFD 2(x, )', ci) . 
a2d 

)' 

( 12.35) 

As expected, the Bergmann algorithm ( 1982) converges to the minimum 1:aster than the steepest 
desce11t method since the Newton-Raphson method converges with an order o·f at least two . 

12.4.2 THE BERGMANN ALGORITHM (1984) 
• 

Based on the Burkhard a.nd Moll algorithm (Burkhard and Moll, J 979), Bergm.ann developed an 
algorithm that is similar to the N·ewton-Raphs-on algorithm. The primary difference ·is tJ1at an 
average of two second-order derivatives is used to replace tnose in the Hessian matrix. In this sense, 
it can be considered as a variat1on of tl1e Newton-Rapbson algorithm. 

• 
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12.4.3 THE CAFFORIO AND ROCCA ALGORITHM 

~ased on th~ir e~rly wor~ (Cafforio and Rocca, J 975), Cafforio and Rocca proposed an algorithm 
i_n 1982, which 1s essentially tt1e steepest descent method. That is, the step size a is defined as 
follows (Cafforio and Rocca, 1982): 

( 12.36) 

with 112 = J 00. The addition of T]2 is intended to avoid the problem that would have occurred in a 
uniform region where the gradients are very small. 

12.4.4 THE WALKER AND RAO ALGORITHM 

Walker and Rao developed an algorithm based on the steepest descent method (Walker and Rao, 
1984 ; Tekalp , 1995), and also with a variable step size. That is, 

where 

I 
a= 2 I 

2 VJ,,_ 1 ( x - dx, y - cl.I') 

2 

V+ (.,r-d y-d) = J,,_, .r ' )' 

2 

of,,_, (x -d x, y-d,.) 
ad.r 

V/,,_1 ( X - d.t, )1 
- d)') 

+ 
ad,. 

• 

( 12.37) 

2 

• (12.38) 

It is observed thal tl1is step size is variable instead of being a constant. Furthermore, this variable 
step size is reverse proportional to the nonn square of the gradient of f,,_1 (.t - d.t, y - d,.) -with 
respect to x, )'. That means this type of step size will be small in the edge or rough area, and will 
be large in the relatively smooth area. These features are desirable. 

Although it is quite similar to the Cafforio and Rocca algorithm, the Walker and Rao algorithm 
differs in the following two aspects. First, the a is seJe·cced differently. Second, implementation of 
the algorithm is different. For instance, instead of putting an 112 in the denominator of a, the Walker 
and Rao algorithm uses a logic. 

As a result of using the varjable step size a, the convergence rate is improved substantially. 
This implies fast implementation and accurate displacement estimation. It was reported that usually 
one to three iterations are able to achieve quite satisfactory results in n1ost cases. 

Another contribution is that the Walker and Rao algorith1n eliminates the need to transmit 
explicit address information to bring out higher coding efficiency. 

12.5 PERFORMANCE COMPARISON 

A comprehensive survey of various algorithms using the pel recursive tecl1nique can be t·ound in 
a paper by Musm.ann, Pirsch , and Grallert ( 1985). There, two per·formance features are compared 
among the algorithms . One is the convergence rate and hence the accuracy of displacement 
estimation. The other is the stability range. By stability range, we mean a range starting from which 
an algorithm can converge to the minimum of DFD2, or the true displacement vector. 

Co1npared with the Netravali and Robbins algorithm, those improved algorithms disc.ussed in 
the previous section do not use a constant step size, thus providing better adaptation to local image 
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TABLE 12.1 
Classification of Several Pel Recursive Algorithms 

Category I 
Algorithms Steepest Descent Based 

Netravali and Robbins Steepest descent 

Berg,nann ( 1982) 
Walker nnd Rao 

Caffori .o and Rocca 
Berg ,nann ( 1984) 

Variation of s1eepest d.cscent 

Variation of steepest desGcnt 

Category 11 
Newton - Raphson Based 

Ne\vton- l{a.phson 

Variation t">f Ne,vton-R aphson 

statistics. Consequently, tl1ey achieve a better convergence rate and n1ore accurate displacement 
estimation . According to Bergmann ( 1984) and Musmann et nl. ( I 985), the Bergmann algorithm 
(1984) perfom is best among tl1ese various algoritl1ms in tem1s of co11vergence rate and accuracy. 

A.ccording to Mus1nann et a] . ( 1985), the Ne\:vton- Raphson algorithn1 has n rel·1ti\1e ly sn1aller 
stability range than tl1e other algorithn1s. Tl1is agrees \vith our discu -io11 in Sectio n 12.2.2. That 
is, the performan ce of the Ne\vton- Rapl1son metl1od improves \\1l1en it works in the area close lo 
the minimun1. The cl1oice of the initial guess, l10\Ve\Jer, is relatively n1ore re ' lricted. 

12.6 SUMMARY 

The pel recursjve technique is .one of three major approac.l1es to displacement estirnation for moti on 
compensation. It recursively estimates displacen1ent ve·ctors in a pixel-by-pixe l fashion. Tl1ere are 
tt1ree types of recursion: horizontal, vertical, and ten1poral. Displacement estin1ation is carried out 
by n1inimizing. lt1e square o,f the displaced fran1e difference (DFD). Theref ore, the steepes t descent 
method and the Newton- R.aphson n1ethod, tl1e two 1nost fundarner1tal methods in optimization, 
naturally find their application in pel recursive techniques. Tl1e pioneering Netraval i and Robbins 
algorithm and several other algorithms sueh as the Bergmann ( 1982), the Cafforjo and Rocca . tl1e 
Walker and Rao) and the Bergmann ( 1984) are discussed in this chapLer. Tl1ey can be classified 
into one of Lwo cate·gories: the steepest-descent-based algorithms or the Ncwton-R aphson-b ased 
algorithms. Table 12. l contains a classification of these algoritt11ns. 

Note that tJ1e DFD can be evaluated \Vithin a neigt1borhood of rl1e pixel t·or whjch a displacement 
vector is being estimated. The displacement vector is assumed co11stant withi11 this neighborhood. 
This makes the di,splacement estimation more robust against various 11oises. 

Compared with the replenishment technique \Vith sirnple frame difference prediction (the first 
real interframe co.ding algorithm),, tl1e Netravali and Robbins algorithm (ll1e first pel recursi\1e 
te·chnique) achieves much higher coding efficiency. Specificall.y, a 22 to 50o/o savings in bit rate 
l;i.as been repo·rted for some con1puter simulations . Several new pel recursive algoritl1ms t1ave rnade 
furth.er improvements in ter1ns of the convergence rate and the estimatio11 accuracy through replace
ment of the fixed step size utilized in the Ne.trav,il·i and Robbins algorithm , wl1ich 111ake tl1ese 
~gorithms more adaptive Lo the local statistics in image fran1es. 

12.7 EXERCISES 

12-1. What is the definition Gf the displaced frame difference? Justify Equation 12.1 . 
12-2. Why does the inclusion of a neighborhood area make the pel recursive algorithm more 

robust against noise? 
12-3. Com.pare the perforn1-ance of the steepest descent method with that of the Newton-Rapl1-

S·On method. 
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Explain tl1e function of 112 in tl1e Cafforio and Rocca algorithm. 
What is the advantage you expect lo have from the Walker and Rao algorith·m? 

12-4. 
12-5. 
12-6. Wf1at is tl1e cliffere11ce between the Bergmann algori th1n (1982) ,1nd the Bergmann 

algo rithm ( 1984)? 
12-7. Wl1y does tl1e Newton- Raphson method l1ave a smaller sta.bility range? 
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As mention ed in Chapter 10, optical flow is one of three n,ajor tecl1niques that can be used to 
estimate displacement vectors from successive image frames. As. opposed to the other two displace
ment estin1ation techniques discussed in Chapters 1 L and 12, block m-atching and pel recursive 
·method, l1owever, tl1e optical flow technique was developed primarily for 3-D motion estimation 
in tJ,e computer vision. community. Although it provides a relalive·ly more accurate displacement 
estimation than the other two techniques, as we shaJI see in this and tl1e next chapter, optical flow 
has not yet foL1nd wide applications for n,otion-compensated video coding. This is 1nainly due to 
the fact tl1at there are a large number c)f motion vectors (one vector per pixel) involved, l1ence, the 
n1ore side ir1fonn ation that needs to be encoded an·d transmitted. As empl1asized i11 Chapter 11, \Ve 
should not f:orget the ultimate. goal in motion-con1pensated video coding: to encode video data with 
a total bit rate as low as possible, while 1naintaining a satisfactory qua:.Iity ot· reconstructed vid,eo 
frames at the receiving end. If the extra bits required for encoding a large a.mount of optical flo\v 
vectors counterbalance the bits saved in encoding the predi_ction error (as a rest1lt of more accurate 
n1otion estin1ation), then the usage o:f optical flow in rriotion-compe11sated coding is not worthwhile. 
Besides, more co1nputation is required in Optical flow determination . These factors have prevented 
optical flow fro111 being practically utiljzed in motion-compensated video coding. With the continued 
advance in tecl1nologies, however, we believe this problem may be. resolved in tl1e near future. In 
fact, an initial , success.ful attempt has been made (Shi et al., 1998). 

On tl1e otl1er l1and, ir1 theory, tl1e optical flow technique is of great i1nportance in understanding 
the fundan1enLaJ issues in 2-D motion determination, sucl1 as tl1e aperture problem, tl1e conservation 
and neigl1borhood constrai11ts, and tl1e distinction and relationsl1ip between 2-D 1norion and 2-D 
apparent motion. 

In this chapter we focus on the optical flow technique. I.n Section 13.1, as stated above, some 
fundamental issues associated with optical flow are addressed. Section 13.2 discusses the differe11tial 
method . The correlation n1ethod is covered in Section 13.3. In Section 13.4, a multiple attributes 
approach is presented. Some perforn1ance con1parisons between various techniques are included 
in Sections I 3.3 and 13.4. A s.un1mary is given in Section 13.5. 

13.1 FUNDAMENTALS 

Optical flow is referred to as the 2-D distribution of apparent velocities of n1ovement of intensity 
patterns in an irnage plane (Horn and Scl,unck, 1981 ). In other words, an optical flow field consists 
of a dense. velocity field with one velocity vector for each pixel in tl1e image plane. If \Ve know 
the tirne interva l between two consecutive images, which is usually tl1e case, tl1en vel"ocity vectors 
and displacement vectors can be converted. from one to another. In this sense, optical flow is one 
of the techniques used for displacement esti1nation. 

13.1.1 2-D -MOTION AND OPTICAL FLOW 

In tl1e above definition, it is noted tl1at tl1e word appare 11t is used and nothing about 3-D motio11 
in the scene is stated . The in1plication behind this observation is diseussed in this subsection. We 
star t with tl1e definition of 2-D mot,ion. 2-D motion is referred to as motion in a 2-D in1age plane 
caused .by 3-D motior, in the· scene. Tl1at is, 2-D 1no_tion is the projection (con11nonly perspective 
projection) o·f 3-D n1otion in tl1e scene onto the 2-D in1age plane. This can be illustrated by usi11g 

265 
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y, y 

C z, z 

f 

Ai 

A1 

FIGURE 13.1 2-D 111otion v . 3-D 111otion. 

a vef)' simple example, sh6\vn in Figure 13. l . There the world coordin ale y ten, 0- X Y2 and the 
camera coordinate systen1s o-J.) 'Z are aligned. The point C is tl1c opt ical center or tl1e ca111era, A 
point A 1 moves to A 1, ,vhile its perspective projection moves correspondi r1g ly from a I to a1. \Ve 
then see th.a.ta 2-D n1otion (fron1 a 1 to a2) in .image plane is invoked by a 3-D rnotio n (from A 1 LO 
A2) in 3-D space . By a 2-D motion field, or sometir11es i111age (lo\v, \,\1e r11e(111 a de11se 2-D moti on 
field: One velocity vector for each p.ixel jn the image plane. 

Optjcal flo\v, according to its definition, is caused by movement of' i 11ter1si I y patterns in an 
image plane. Therefore 2-D motion (field) and optical fl o\v (field) are ge.ncral ly di ff erenL. To suppon 
this co.nclusion , let us consider the follo\ving two exan1ples. Orie is gi\1e11 by Horn and Schunck 
(198 I). I111agine a unifom1 spl1ere rotating with a constant speed ir1 tl1e scene. A ssun1e the lun1inance 
and all otl1er conditions do not change al all \Vl1c;n pictures are taken. T l1en, Ll1ere is no ct1ange in 
brigh.tness patterns jn Ll1e in1a-ges .. Accordi11g lo the definiti on of optic,11 flow, the optica l flo,v is 
zero, \Vhereas the 2-D n1otiori field is obvious} y not zero. At the other ex trc111e, consider a stationary 
scene; all obje cts in 3-D ,vorld space are still . ff illuminancc cl1ange · \vl1en pi ctures are taken in 
sucl1 a \Vay tl1at there is movement of intensity patterns in in1age planes, as a co nsequence, opt ica l 

flo\v may be nonzero. This confinns a staten1ent made by Singh ( 199 1 ): Ll1c scene does not ha,·e 
to be in motion relative to the image for the optical Bow fie ld to be 11onzero. IL can be s.ho,vn lhat 
the 2-D motion field and the optical flow field are equal under cert ai,1 co 11diti o 11 . U·nders tanding 
the difference between the t\VQ quantities and the conditions under whi ct1 Ll1cy are equal is imporcant. 

This un.d.erstanding can provide us \Vith son1e sort of guid e to eva luate Ll1e reliability of 
estimating 3-D motion frorn optical flow. This is because., in practi ce, Li n1e-vary i ng i r11age sequences 
are only \vhat \Ve have at hand . Tl1e task in con1puter vision is to interprcl 3-D n1otion from time
varying sequences . Therefore, we can only work with optic.:,1l flow in esti111ating 3-D motion. Since 
the main focus of this book is on in1age and video codin.g, we do not cove r Ll1ese equa.lity condition s 
here . Interested readers may ref er to Singh ( 1991 ) . 1n rnotion-compensated video codin g, it is 
likewise true that the image frame~ and video data are on1y what \ve have at hand. We also , therefore, 
have to \Vork \vith optical flq,v. Our attention is thus turned to optical no\v detem1 ination and its 
usage in video data compression . 

13.1.2 APERTURE PROBLEM 

The ape.rture problem is an important issue~ originating in optics. Si11ce it is inherent in the local 
• 

estimation of optieal flo\v, \Ve address this issue. in tl1is subsection. In opti cs, aperture s are open1s1gs 
in flat screens (B·racewe11, 1995). Therefore, aperlµres can l1ave various sl1ape s, sucl1 as circular, 
semicircular, and rectangular . Exa.mples of apertures include a lhin slit or array of slits i11 a screen. 
A circular aperture., a round hole made on the shutter of a window , \Vas used by Newtor1 to study 

• 

the co.mposition of sunlight. It is also well known that tl1e circular apertur e is or special interest in 
studying the diffraction pattern (Sears et ~l., 1986). 
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Rougl1ly speuking, the aperture problem in n1otion analysis refers to the proble1n tl1at occurs 
whe11 viewing 111otior1 via an aperture, i.e., a srnall opening in a flat screen. Marr (1982) states that 
wt1en a traigl1t 111oving edge is observed through a,., aperture, only the componen t ot· motion 
ortl1ogo 11al to tl1e edge can be n1easL1red. Let u.s exa1ni11e some simple examples depicted in 
Figµre I 3.2. In Figure l 3.2(a), a large rectangular ABCD is located in the XQZ plane. A rectangular 
screen EFG/-1 witl1 a circular aperture is perpendicular to tl1e OY axis. Figure I 3.2(b) and (c) sl1ow, 
resr)ectively, wh,1t is observed tl1rough tl1e aperture when tl1e rectangular ABCD is moving along 
tl1e pos itive) ( a11d Z directio11s \vitl1 a uniforrn speed. Since the circular opening is small and the 
line AB is very long, no n1otion will be observed in Figure I 3.2(b). Obviously, in Figure 13.2(c) 
the L1pward 111overnent car1 be observed cJearly. In Figure l 3.2(d), the uprigl1t corner of the rectangle 
ABCD , ar1gle B, appears. At Lhi Lin1e ll1e tra11slation along any direction in the XOZ plane can be 
obse r\1ed clearly. Tl1e pl1enon1ena observed in this example dc111onstrate that it is son1etin1es 
in1possible lo esti111atc motion of a pixel. by 011ly observing a sn1all ncighborl1ood surrounding it. 
Th e on·ly n1otio.r1 that can be estin1ated fro,n observing a small neighborhood is tl1e n1otion 
orthogo nal to tl1e underlying n1oving co11tour. In Figure I 3.2(b), tl1ere is no n1otion ortl1ogonal to 
tl1e mc)ving contour AB; tl1e motion is aligned \Vith tl1e n1oving contour AB, \vhich cannot be 
observed tl1rough the aperture. Therefore, no motion can be observed tl1rougl1 the aperture. In 
Figure I 3.2(c), tl1e observed 111otion is up\vard, whicl1 is perpendicular to the horizontal n1oving. 
contour AB. In Figure ! 3.2( d), any tran lation in the XOZ plane can be decomposed into horizontal 
and vertica l co111ponents. Eitl1cr of these t\VO con1poner1ts is ortl1ogonal to one of the two n1oving 
contours: AB or BC. 

A more accurate tatcmenl on the aperture problen1 needs a definition of the so-called normal 
optic,11 flow. ·Tt1e nor,nal optica l now refers to tl1e con1ponent of optical f~O\V along the direction 
pointed by the local inten iry gradient. No\iv we can make a more accurate staten1ent: the only 
motion in an i,nnge plane that ca,, be determi11ed is the nor,nal optical tlow. 

In general, the aperture problem becon1es severe in image regions wl1ere strong intensity 
gradients exist, such a. at the edges. In i,nage regions \Vith strong higher-order intensity variations, 
such as corners or textured areas, the true motion can be estimated. Singh ( 1991) provides a n1ore 
elegan t discussion on tl1e aperture problern, i11 wl1ich he argues that the aperture problem sl1ould 
be considered as a continuous proble1n (it alv,iays exists, but in varying degrees of acuteness) instead 
of a binary problen1 (either it exists or it does nol). 

13.1.3 ILL-POSED INVERSE PROBLEM 

Motio11 esumation from image seque11ces, including optical flow estimat ion, belongs in tl1e c·ategory 
of inverse problems. Tl1is is because we \Vant to i11fer motion fro1n given 2-D i111ages, \vhich is tl1e 
perspective projection of 3-D motion. According to Hadan1ard (Bertero et al., I 988), a ma.tl1ematical 
problem is w·ell posed if it possesses the following three cl1aracter istics: 

1. Existence. That is, tlie solution exists. • 

2. Uniquen ess. That is, tl1e solut ion is unique. 
3. Continuity. Tl1at is, when the error in the data tends to,vard zero, tl1en the induced error 

in the solution tends toward zero as well. 

Inverse problems usually are not well posed in that che solution n1ay not exist. In the example 
discus sed in Section 13.J .1, i.e., a uniform sphere rotated witl1 illuminance fixed, the solution to 
motion eslimatior1 do,es not exist si11ce no motion can be infe1Ted from given images. The aperture 
problem discussed in Sectio,1 13. I .2 is the case in wl1icl1 tl1e solution to the motio11 may not be unique. 
Let us take a look at Figure 13.2(b). Fron, the given picture, 011e cannot tell whetl1er tl1e straight line 
AB is static, or is .moving l1orizontally. If' it is n1oving horizontally, 011e cannot tell the moving speed. 
~n other words, infinitely many solutions exist for ilie case. ln optical flO\V dete11nination, \Ve \viii 
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FIGURE 13.2 (~) Aperture prol>lem: A large rec;tangle ABCD is located in the XOZ plane. A rectangular 
screen EFGH with a circular aperture is perpen.dicular to the OY axis. (b) Aperture problem: No motion can 
beobserved thro~gb the circular aperture when the rectangular ABCD is moving along the positive X direction. 
(c) Ap.erture p.Fohlem: The motion can be observed througl:t the circular aperture when the ABCD is moving 
aJoJ1,g the positi~e Z d.irection. (d) Aperture problem: The translation of ABCD along any direct.ion in the XOZ 
plane can be observed through th·e circular aperture wl1en the upright corner of the rectangle ABCD, angle B, 
~ppears in the aperture. 

see that computations are noise sensitive. That is; even a small error in the data can produce an 
extremely Jar.ge error in. the solution. Hence, we see that the motion estimati0n from image sequences 
s·uffers from all three aspects just mentioned: nonexi$tence, nonuniqueness, and discon,tinuity. The 
last te11n is also referred . to as the instability of the solution. 
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It is point ed out by Be.rtero et al. ( I 988) that all the low-level processing (also known as early 
vision) ir1 comp utational vjsio r1 are inverse problems and are often ill posed . Exa1nples in low-level 
proce ss ing i11clude motion recovery, con1putation of optical flow, edge detection , structure from 
stereo, struc ture fron1 n1otion, structure from texture, shape from shading, and so on. Fortunately, 
tl1e probl e1n with ear ly vision is mildly ill posecl in general. By rtziltiL)1, we n1ean tl1at a reducti on 
of errors in the data ca11 sig11ific,1ntly in1prove the solution . 

Since the ear ly 1960s, tl1e den1and for accurate approximates and stable solutions in areas such 
as optics, radioastronomy, 1nicroscopy, and medical i111aging l1as sti1nulated great resea rch efforts 
in inverse problems, resu.lting in a unified theory: the regularization theory of ill-posed problems 
(Tikhonov and Arser1in, I 977) . 111 tl1e discussion of opt ical flow n1erhods, we st1all see that some 
regulari zatjon techniques have been posed and have improved accuracy in flow detern1ination. 
More-advan ced algorith ms continue to come. 

13.1.4 CLA SSIFICATION OF OPTICAL FLOW TECHNIQUES 

Opti ca l now ir1 image sequences provides in1portant inforn1ation regarding bolh motion and struc
ture , and it is use ful in SL1cl1 diverse fields as robot vision, autonomous navigation , and video coding. 
Although thi subject has bee11 studied for more than a decade, reducing the error in the flo\v 
estin1ation ren1ains ll difficu lt problem. A comprehensive review and a comparison of the accuracy 
of various optical flow tecl1niques h~ve recently been made (Barron et al., 1994). So far, most of 
the techniqu es in the optical flow compu tations use one of tl1e follo\V'ing basic approacl1es: 

• Gradi ent-based (Hor 11 and Schunck, 198 1; Lucas and Kanade, I 981; Nagel and Enkel
n1an, I 986; Uras et al ., 1988; Szeliski et al., 1995; Black and .Anandan , 1996), 

• Corr elation-b.ased (Ananda11, 1989; Singl1, 1992; Pan et al., l 998), 
• Spatiotempo ral energy -based (Adelson and Bergen, 1985; Reeger, 1988; Bigun et al., 

199 1 ), 
• Phase-ba sed (Waxman et al., 1988; Fleet and Jepson, 1990). 

Besides these deterrninistic approacl1es, there is the stochastic approach to optical flow com
putati on (Konrad and Duboi s, I 992). In this chapter we focus our discussi ·on of optica l tlow on the 
gradient-based and correlation-based tech11iques because of tl1eir frequent applications in practi ce 
and funda_ment al irnportance jn theory. We also discuss n1ultiple attribute techoi.que·s in optical flow 
deter111ination. The other two appro-aches will be briefly touched upon when we discuss rie\v 
technique s in motion estimatio11 in the next chapter. 

13.2 GRADIENT-BASED APPROACH 

It is noted that before the methods of optic·al flow deterr11ination were actually developed , optical 
flow had been discussed and exploited for motion and structure recovery from image sequences in 
computer vision for years. That is, tl1e optical flow field was assumed to be available in the study 
of motion recovery. The first type of n1etl1ods in optical flow deter111ination is referred to as gradien.t
based techniques . This is because the _spatial and ten1poral partial derivatives of intensity t·unction 
are utilized in these techniqu es. In this section, we present the Horn an<;:I Schunck algorithm . It js 
regarded as the most prominent representative of this category. After the basic concepts are pre
sented, some other methods in tl1is· category are briefly discussed. 

13.2.1 THE HORN AND ScHUNCK METHOD 

We shall begin with a very general framework (Shi et al., 1994) to derive a brightness tin1e
invariance equation . We then introduce the -H·orn and Schunck method. 
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13.2.1.1 ·Brightness Invariance Equation 

As stated in Chapter 10, the imaging space can be represented by 

f(x,) 1, t,s ), (13 . l) 

\vhere s indicates the sensor 's position in 3-D \vorld space, i.e., the coord inates of the se nsor center 
and the orientation of th.e optica1 axis of the sensor. Tl1e si s a 5-D vector. That is, s vvl1ere (x , y. z, 
~. y), \\1here x, y, and z represent the coordinate of tl1e optical center of the sensor in 3-D \Vorld 
space; and ~ and y re.present tl1.e orientation of the optjcal axis of the ser1sor in 3-D \vorld space, 
the Euler angles, pan and tilt, respectively. 

With tl1i.s very general notion, each picture, which is taken by a sensor loca ted on a parti cular 
position at a specific moment, is merely a special cross section of this imaging space. Both temporal 
and spatial image sequences become a proper subset of the imaging space. 

Assume now a \VOrld point Pin 3-D space that is perspectively projec ted onto the in1age plane 
as a pixel with the coordinates Xp and ) 'p · Then, Xp and YP are also dependent on t and s. That isl 

( 13.2) 

If the optical radiation of the \Vorld poi·nt Pi s invariant with respecL to the time interval fron1 r, to 
r,, \Ve then ha,,e -

(13.3) 

This is tl1e brightne_ss time-invariance ·equation. 
At a specific moment t 1, if t.l1e optical radiation of P is isotropical we then get 

( 13.4) 

This is the brigl1tness space-invarian ce equation . 
It' botl1 conditions are satisfied, ,ve gee tl1e brightness tin1e-and-space-in\ 1ariance equation, i.e., 

( I 3.5) 

Consider two brightness functions f (x (t, .s), y (t, s), t, s) ::1nd J (~r (t + flt , s + fl s), )' (r + 6.t, s + 
Das), t + 6.t, s + fls) in whicl1 the v,1riation in time, flt, and the variation in the spatial position of 
the sensor, 6. s, are very srnall. Due to the ti1ne-and-space-in\rariance o.f brightne ss, \Ve can get 

f(x(r, s),>,(t,s), ,, s) = J(x(t + 61,s + Af), )'(, + 61, s + &·), c + flr , s + ns). CI 3.6) 

The· expansion of tl1e rigl1t-hand side of the ttbo,{e cc1u,ltio11 i11 tl1e Ta)1 lor series at (t, s) · and the 
use of Equation 13.5 lead tc> 

cJf ll + Of V + cJf 
v.:, vy a, .. 6t+ Af +c= O, ( 13.7) 
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If !1s = 0, i.e., the sensor is static in a fixed sp,ltia1 position (in other words, both the coordinate 
o_f tl1e opt-ical center of the se11sor and its optical axis direction remain unchanged), dividing both 
sides of the eqt1ation by 6t and evaluating the limit as 6t ~ O degenerate Equation 13.7 into 

at of at 
-L t+ v+ = 0. ax d)1 di 

( 13.8) 

If 6/ = 0, both its sides are divided by 6 s, and t1s ~ 0 is examined. Equation 13.7 then reduces to 

c)f _ c)f _ cJF 
_'J_ l l s + 'J Vs + 'J = 0. 
a.r d)' as ( 13.9) 

When tJ.t = 0, i.e., at a speci fie tin1e moment, the images generated \Vi th sensors at different spatial 
pos itions can be viewed as a spatial sequence of in1ages. Equatior1 I 3.9 is, tl1en, tl1e equation for 
the spaLial sequence of irnagcs. 

For the s,1ke of brevity, \Ve will focus on the gradient-based approacl1 to optical flow detertni
nation witl1 respect to temporal image sequences. That is, in the rest of tl1is section we \Viii add,ress 
only Equati on 13.8. It is noted that tl1e derivation t ·an be extended to spatial image sequences. The 
optica l flow technique for spat i,1.I image sequer1ces is useful in stereo image data compression. Jt 
plays an in1portant role i 11 motion and structure recovery. Interested readers are referred to Sl1i et al. 
( 1994 ) and Shu a11d Shi ( 1993). 

13.2.1.2 Smoothness Constraint 

A carefu.l exami 11ation of Equation 13.8 re¥eals tl1at we l1ave t\VO unkno\vns: 1, and v, i.e., tt1e 
hori zontal and vertica·I components of an optical flo\v vector at a tl1ree-t upl~ (.t, y, t), .but onJy one 
equatio11 to relate the1n. Thi s once again demonstrates the iJJ-posed nature of optical flo\v detern1i
nati on. This also indicates that there is no \Vay to con1pute optical flovv by considering a single 
point of the brightn ess pattern moving indeper1dently. As stated ir1 Section 13. 1.3, so111e regular-
izat ion measure l1ere an extra constraint tnust be taken to overcome tl1e dif(iculty. 

A most po1Jularly used constrai11t \vas proposed by Horn a11d Scl1unck and is referred to as tl1e 
smoo tl1ness constrai11t. As the nan1e imp I ies, it constrains Oo\v vectors to vary fro111 one Lo another 
smoothly. Clearly, this is true for points in tl1e brightness pattern ,nost of tl1e ti111e, particularly for 
point s belonging to tl1e san1e object. It may be violated, ho\vever, along 111oving boundari es. 
Mathematic ally, the smoothness constraint is i1nposed in optical flo\v determination by n1inin1izi11g 
the square of tl1e magr1itude of tl1e gradie.r1t of tl1.e optical flow vectors: 

2 a,., 
dx + 

2 a,., 
d)' 

+ 

., 
dv -

+ a .. '( 
2 

dV 
d)' 

• (13.10) 

It can be easily verified that the smootl1er the flo\v vector field, tl1e smaller tl1ese quantitie s. Actually, 
the square of the n1agni.tude of the gradient of intensity function \Vith respect to the spatial 
coordinates, summed over a \vhole in1age or an in1age region, has been used as a sn1oothness 
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m.easure of the irt1age or tl1e image region in tl1e digital image process ing literature (Gonzalez and 
Woods, 1992). 

13.2.1.3 Minimization 

Optical fto,v delermination can then be conve·rted into a mi11irnization problem .. 
The squ·are of the left-hand side of Equation I 3.8, \Vhich can be derived from the brightness 

tin1e-invariance equation, represe.nts one type o·f error. It rnay be caused by quantization noise or 
other noises and can be written as 

£2 = 
b 

al' at ar 
_ 'J_ lt + V + _'J_ 

ax d)' dt 

2 

• (13.11) 

The smoothness measure expressed in Equation 13. l O denotes another type of error, which is 

2 
E = s 

a1, 2 
dll 

2 av 2 

+ + + OX ay ax 

The to-tal error to be minimized is 

X J 

2 a1 at a1 
., 

=L.·L ai, -+ (X2 ll + V + + 
dX dy di dX 

.t )' 

., 
av -

dy 
• (13.12) 

2 2 
(13.13) 

2 dv au av 
d) I 

+ dx 
+ 

c)y ' 

where a is a weight between these two types of errors. The optical flow quantities Lt and v can be 
found by minimizing the total error. Using the calct1lus of variation, Horn and Schunck derived 
the following pair of equations for two u-nknown i, and v at each pixel in the image. 

where 

df 
!,. = d , 

X. 

a 
J, - 'f . 

I - df' 

V2 denotes the Laplacian operator. The Laplacian operator of .it and v are defined below. 

(13.14) 

(13.15) 

• 
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13.2.1.4 Iterative Algorithm 

Instead of using the classical algebraic metl1od to solve the pair of equations for u and v, Hom and 
~chu~ck adopted tl1e Gaussian Sei·del (Ralston and Rabinowitz, 1978) method to have the following 
,1terat1ve procedure: 

f 'u*+f.v*+J,] k+ I - k .r J .r )' · r ll -= u - ____,.__ __ ..:_ _ ___:!. 

a2 +J,2 +J,2 
X )' 

(13.16) 

where tl1e superscripts k and k + I are i11dexes of iteration and ,,, v are the local averages of L.t and 
v, respectively . 

Horn and Schunck define tt, ii as t·ollows: 

U = ~ { u(x, y +I)+ u(x,y-1) + u(x + 1, y) + u(x-1,y)} 

+ 
1
~ {u(x -1, y -1)+ u(x-1,y + l)+ u(x + l,y-1)+ u(x + 1,y + t)} 

V = i{ v(x,y + 1) + v(x,y -1) + v(x + 1,y) + v(x-1,y)} 

+ 
1 
~ { v(x- l,y-1)+ v(x-1,y + l)+ v(x+ 1,y-1) + v(x + l,y + I)}. 

(13 .17) 

The estimation of the p·artial derivatives of intensity function and th·e Laplacian of flow vectors 
need to be addres sed. Horn and Schunck considered a 2 x 2 x 2 spatiotemporal neighborhood, 
shown in Figure 13.3, for estimation of partial derivatives.fx,.f,., and!,. Note tl1at replacing the first
order differentiation by the first-order difference is a common practice in n1anaging digital images. 
The arithmeti c average can remove the noise effect, thus n1aking the obtained first-order differences 
less sensitive to various noises. 

The Laplacian of Lt and v are approximated by 

(13.18) 

Equivalently ·, the Laplacian of 1.t and v, V2(i1) and v'2(i1), can be obtained by applying a 3 x 3 \Vindo\v 
operator, shown in Figure I 3.4, to eacl1 point in the '" and v plane~, respectively. 

Similar to Lhe pel recursive tecl1nique discussed in the previpus chapter, there are l\VO different 
ways to iterate. One way is to iterate at a pixel u11til a solution is Steady. Another \Vay is to iterate 
only once for each pixel. In the latter case, a good initial flow vector is required and is usually 
derived fro1n the previous pixel. 

13.2.2 MoD1F1ED HoRN AND ScHUNCK METHOD 

Observing that the first-order difference is used to. approximate the first-order differe11tiation in 
Horn and Scl1unck's original algoritl1m, and regarding this as a relatively crude t·oi:n1 and a soucce 

• 
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t 

J-----+-Y 

(x. y, t+J) (.'(, y+ 1, t+ 1) 
X 

(x+l , y, t+J) {.'t:+/,J,+l,t+I) 

(x. y, l} . y+ I , t) 

I 
(x+ I . y , ) {x+l,y+ 1.t) 

!, = ! {[J(x + l,y,t)- f(x,y,t)] + [f(x + l,y,t + 1)- f(x ,y. r + 1)] 

+ [ f ( X + 1, Y + 1, 1) - f ( .t, y. 1)] + [ f ( X + l, )' + ] , / + 1) - f ( .r, ) ' + J . f + 1 ) ] } 

J;, = ±{[J(x,y + l.t)- f(x,y t)] +[f(x + I y+ I t )- J(x + l,y,t) J 

+ [ f ( X, )1 + 1, t + 1) - f ( X, ) 1 t + l) J + [ f ( X + I , y + 1. t + J ) - f ( X + 1, ) i, I + 1 ) ] } 

J, = -i-{[J(x,y,t + 1)- f(x,y,r)] +[f(x + l,y,t + 1)- f(x + I, y,1)] 

+ [ f ( X, Y + 1, l + 1) - f ( X, y + ], t)] + [ j ( X + l, y + 1, l + 1) - f ( X + 1, y + 1, l) ]} 

FIGURE, 13.3 Estimation of .l~ ]; .. and J,. 

of error, Barron, Fleet, and Beauchemin developed a modified version of the Horn and Schunck 
method (Barron et al., 1994). 

It features a spatiotemporal presmoothing and a more-advanced approximatjon of differentia 
tion. Specifically, it uses a Gaussian filter as a spatiotemporal prefilter. By, the ter,m Gai,ssia11 filt~r, 
we mea·n a. IQ\v-pass filter with a mask shaped similar to that of the Gaussia n probability density 
function . This is similar to what was utilized in the formulation of the G-aussian pyramid, which 
was discussed in Chapter 11. The ter1n spc1tioterriporal means that the Gau ssian filter is used for 
low-pass filtering in both spatial and t~mporal domains . . 

With respect to the more-advanced approxjmatio .n of differentiation , a ·four-point central dif-
ference operator is used,. which has a mask, shown in Figure 13 .5. . 

As we will see later in this chapter, this modified Horn and S·chunck algorithm has ach1eve_d 
better perfo1111ance than the origjnal one as a result of the two above-mentioned measures. This 
success indicates that a ·reduction of noise in image (data) leads to a sign ificant reduction of no~se 
in optical flow (solution). This example supports the statement we mentioned earlier that the iJ1 .. 
posed problem in low-level computatioeal vision is mildly jll posed. 
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J 
+ 

1 2 
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-v(x,) 1) 

FIGURE 13.4 A 3 x 3 \vindow operation for estimation of the Laplacian of no\v vector. 

1 8 8 • 1 -- - -- -
12 12 0 12 12 

FIGURE 13.5 Four-point central difference operator 1nask. 

13.2.3 THE LUCAS .AND KANADE METHOD 

275 

Lucas and Kanade assun1e· a flow vector is constant \Vithin a s1nall neighborhood of a pixel, denoted 
by n. Tl1en they forn1 a weighted object f ur1ctio11 as fo'IJows. 

L \iV2(~t, ) ') 

(.r,y)en 

., 
cJ+(x )' t) a+(x )' t) cJJ(~t, )I, () -
_'J__;...._,_, ~ ll + 'J 1 

• ' \I + 1 a~t dv di 
(13.19) 

where w(x, y) is a window function, which gives 111ore \.veigl1t to tl1e central portion than the 
surrounding portion of the neighborl1ood .Q. . . . 

The flow determination thus becon1es a problen1 of a lea-st-square·fit of the brightness invariance 
constraint. We observe that the smoothness constraint h·as been j·mpJied in Equation 13· 19> where 
the flow vector is assui11ed to be co11stant withi11 .Q. 
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FIGURE 13.6 Orient ed-sn1oothness cons tr aint . 

13.2.4 THE NAGEL METHOD 

Nagel first used the s·econd-order derivatives jn optical flO\V deter111inn.tion in tf1e very early days 
(Nagel, 1983). Since tl1e brigl1tn·ess function f( ,r, )', t, s) is a real-va·1ued function of 1nultiple 
variables (or a vector of variables), the Hessian matrix, discussed jn Cl1apter 12, is used for the 
second-order deriv·atives. 

An oriented-smootl1ness constraint was developed by Nagel that prol1ibils imposition of the 
smoothness conslraint across edges, as illustrated i11 Figure 13.6. In Ll1e figure, an edge AB separates 
t\vo different mo\1ing regions: region 1 and region 2. Tl1e smootl1ness const raint is i111posed in these 
region·s separately. That is, no sn1ootl1ness constraint is ir11posed across tl1e edge. Obviously, it 
would be a disaster if ,ve smoothed the flo,v vectors across the edge . As a result, this reasonable 
treatment effectively improves tl1e accuracy of optical tl o,v esti n1,1t ion (N age!, 1989) . 

13.2.5 THE URAS, GIROSI, VERRI, AND T OR'RE METHOD 

The Uras, Girosi, Verri, and Torre method is anoth.er n1etl1od th;.1t uses second-order deri, ,ati,,es. 
Ba·sed on a local proc.edure, it perfo11ns quite ,ve) I (Uras et al., 1988). 

13.3 CORRELATION-BASED APPROACH 

The co·rrelation-based approach to optical flo,v detennination is similar to block matcl1ing, covered 
in Chapter 11. As ma·y be recalled, the conventional block-matchi11g technique partitions an image 
into, nonoverlapped , fixed-size, rectangular blocks. Then, for each block, the best n1atchi ng in the 
previous image frame is found. In doing so, a search window is opened in tl1e previous frame 
according to some a priori knowledge: the time interval between tl1e two frames and the maximum 
possible moving velocity of objects in frames. Centered on eacl1 of the candida te pixels i·n the 
search windo\v, a rectangle correlation window of the same size as tl1e origina l block is opened . 

• 

The best--matched block in the search window is chosen such that either tl1e sin1ilarity measure 1s 
maximized or the dissimilarity measure is minimized. The relative spatia l position between these 
two blocks (the original block in the current fram.e and the best-n1atched one in tl1e prevjous fran1e) 
gives a translational motion vector to the original bloc·k. In the correlation-based approach to optical 
flow comp·utation, the mechanisn1 is ve·ry similar to that iri conventional block n1atching. Tl1e only 
difference is that for each pixel in an in:iage, we bpen a rectangle correlation window centered on 
this pixel for which an optical flow vector needs to be determined. It is for tl1is correlation windO\\' 
that we find the best match in the search wind·ow in its temporal neighboring image frame. This 
is shown i:n Figure 13.7. A comparis_on bet\veen Figures 13.7 and l l . ·1 can convince us about the 
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FIGUI{E 13.7 Correlation-b ased a1Jproach to opti cal flO\¥ determination. 
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above observ,1tion. 111 tl1is seclion, we first briefly discuss Ar1andan's n1.etl1od, wl1icl1 is pior1eer 
\VOr .k in tl1is category. Tl1en Si11gh's 111ethod is described. His u11ifi·ed vie\v of optical flow comp u
tation is introduced. We tl1en present a correlation-fc.edbac.k metl1od by Pan, Shi, and Shu, whicl1 
uses tbe feedback tecl1nique in flow calculation . 

13.3.1 THE ANANDAN METHOD 

As 1nentioned in Ct1apter 11, the sum of squared difference (SSD) is used as a dissimilarity measure 
in (Anandan , 1987). It is es. cntially a simplified version of tl1e well-kno\.vn r11ean square error 
(MSE) . Dt1e Lo i Ls simplicity, it is used i 11 tl1e n1ethods developed by Si ngl1 ( I 992), ,1nd Pan, Shi, 
and S11u (1998). 

In tl1e Annnda11 rnetliod (Anandan, 1989), a pyran1id structure is formed, and it can be used 
for an efficient coarse-fine search. This is very si111ilar to the nJultiresolution block-111atchi11g 
techniq ues di cussed jn Chapter 11. In tlie t1igher levels (with lo\~,er resolution) of the pyra1nid, a 
full search ca ,1 be pert·o1111ed without a substantial increase in computation . The estin1ated velocity 
(or displacement) vector can be prorJagated to tl1e lower levels (with higher resolulion) for furtl1er 
refinement. As a result, a rel'atively large motion vector can be estin1ated with a certain degree of 
accuracy. 

Instead of the Gaussian pyra111id discussed in Ct1apter J I, ho\vever, a Laplacia11 pyramid is used 
here. To understand t}1e Laplacia11 pyra1r1id, let us take a look at Figure l 3.8(a). There t\.VO consec
utive levels ,lre sl1own in a Gaussia11 pyra111id structure: le\1el k, denoted by Jk (x, )1

), and level k + l, 
fk+ 1(x, ) '). Figure l 3.8(b) shows J10\v level k + 1 can be deri,1ed from level kin the Gaussia,1 pyramid. 
Tl1at is, as s.tated i r1 Cl1apter 11, level k + J in the Gaussia11 p)1ramid can be obtained through low
pass filtering applied to level k, followed by subsampling. Figure 13.8(c), le,,el k + 1 is first ,.. 

interpolated, lhus producing an esti1nate of Ie,,el k, fk(). ·, )'). The difference between the original 
level k and the interpolated estjmate of level k generates an error at level k, denoted by ek(.r, ) 1

). lf 
there are no quantization errors involved, tl1en level k, /k(;r, )') can be recove·red completely from 
the interpolated estimate of level k, j1:(x, )'), and tl1e error at level k, ek(-'-', )1

). That is, 

f k ( ,Y, )') = j k ( .i\· 1 )I) + ek ( X 1 )I), (13.20) 

With quantization errors, however, tl1e recovery of le\rel k,fk(x, )') is not error free. It ca11 be shown 
that coding j1: (x, y) and e" (x, )') is n1ore ef(icie11t than directly coding fk (x, )1

). 
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Level k+I : ,.._, (x,y) __ _ ,....._,,___ 
(a) 

I Level k+J _. fh ' (x . y) Level k+J 
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Level k 

' 

Level k: f k (; X, y) 
Levelk 

e (x. y) 

error at 
* 

rk (x. ,v)-Inter [ ff../ {x, y) J = e. (x. y) 

(b ) (c) 

r' (x. y) 

l e J (x, y) 

\ 
e 1 (x, y) I (d) 

I 
e 1 {.t, y) 

e o (:c, y) 

FIGURE 13'.8 Laplacian pyramid (level kin a Gaussian pyramid). (a) T\vo consecutive levels in a pyramid 
structure. (b) Derivatio ,n of level k + l from level K. (c) Derivation of error at level k in a Laplacia.n, pyramid. 
(d) Structure. cf LapJacian pyramid . 

A set of ima.ges e"(x, ) '), k = 0, I , ... , K - L and JK(x, ) 1) forms a Laplacian pyramid. 
Figure l 3.8(d) displays a Laplacian pyramid with K = 5. It can be shown that Laplac:·ian pyramids 
provide an efficient way for image coding (Burt and Adelson, 1983). A more-detailed description 
of Gaussian and Laplacian pyramids can be found in Burt (1984) and Lim ( 1990). 

13.3.2 THE SINGH METHOD 
• 

Singh (1991, 1992) presented a unified point of view on optical flow computation. He classified 
• 

the info11nation available in image sequences for optical flow determination into two categories: 
conservation, infor111ation and neighborhood infor1nation. Conservation i.nforn1ation is the informa
tion assumeo to be co·nserved from one image frame to the next in flow estimation. Intensity is an 
exarr,l'p'le of conservation inforn1ati0n, which is used most frequently in flow c.omputation. Clearl~, 
the br.ightness invar,iance c,onstraint in the Horn and Schunck method is another way to state tl11s 
type of con.servat.ion. Some functions of intensity m·ay be used as conservation inf:om1ation as ,veil . 

• 

• 

• 
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In fact, Sj11gl1 uses the Laplacian of intensity as conservation information for computational sim
plicity. More exa1nples can be found later in Section 13.4. Other inf6r111ation, different from 
inte11sity, st1cl1 as co lor, ca11 be used as conservation information. Neighborhood informati.on is the 
i11for111atio11 available in the neigl1borl1ood of tl1e pixel from which optical flow is estimated. 

Tl1ese two different types of i11forn1atior1 correspond to two steps in flow estimation. In tl1e first 
step, conservation inforn1atio11 is extracted, resulti11g in an initial estimate of flow vector. In tl1e 
second step, this i11itial estirne1te is prOptlgated into a neighborl1ood area and is iter~1tively updated. 
Obviously, i11 t~1e Hor11 and Scl1unck 1nethod, tl1e s1nodtl1ness constraint is essentially one type of 
neigl1borhood i11forn1atio11. I teratively, esti111ates of now vectors are refined with neigl1borhood 
i11for111atio11 so tl1at llow estimators fron1 areas l1aving sufficient intensity variation, such as the 
intensity corr1ers as sl1own in Figure I 3.2(d) c1nd areas witt1 strong texture, can be propagated into 
areas with rel,llively small intensity variation or uniform intensity distribution. 

Witl1 tl1is unified point of view on optical flo"v estimation, Singh treated flow computation as 
parameter estirna tion. By applying eslin1ation theory to flo'vv comp_utation, he developed an esti
r11atio11-theoretical 111ctl1od to deter,n ine optical flo\v. It is a correlation-based method and consists 
of tl1e above- men tioncd two steps. . 

13.3.2.1 Con servation Information 

In (he first tep1 for each pixel (x, _y) i11 the current ·frar11ef, 1( .. t, ) '), a correlation \vir1do\v of (2/ + I) x 
(2l + 'I) is opened, centered on tl1e pixel. A se,1rct1 wi 11dow of (2N+ 1) x (2N+ I ) is opened ir1 the 
previo us frclmefi ,.

1 
(~t, .Y) centered on (..\·, )'). An error distribution of those (2N + 1) x (2N + I) samples 

are ca lculated by using SSD as fol lows: 

l i 

E C ( li , \I) = I I [ !,, ( ·"· + S', ) ! + t ) - !,,-1 ( X - t{ + S , ) 1 - \J + t)] 
2 

- N ~ ll , V ~ N. ( 13.2 1) 

s=- 1 l= - 1 

.A response-d istri but ion for tl1ese (2N + 1) x (2N + 1) san1ples is t11en calculated. 

(13.22 ) 

where ~ is a paran1eter, whose functio11 and selection will be described in Section J 3.3.3. 1. 
Accordino to the weiol1ted-least-square estin1ation, tl1e optical flow ca11 be estimated in tl1is 

0 0 

step as follows: 

11 V 

LI Rc.(rt, i1)v 

v,. = I. I R,.(u, v) · 
II V 

( 13.23) 

Assuming errors are additive and zero-n1ean ra·ndom ,noise, we can also find tl1e co,,ariance n1atrix 

asso,ciated with tl1e above estimate: 
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II \' II \I 

11 I' 

LL R,(lt, \1)( V - \Jc)
1 • ( 13.24) s = 

C 

IJ I' 

LL Rc(tl,V )(.tt - rte){ V - V,) 
II I• II I ' 

II V It I ' 

13.3.2.2 Neighborhood Information 

After step 1, all initial esti111ates are available. In step 2, they need lo be refined accordi ng Lo 
neighborhood . information . For each pixel, the 111ell1od co11siders a (2l v + 1) x (2lv + I ) 11eigl1borhood 
centered on it. The optical flow of the center pixel is upd,1ted fror11 the estimc1te ~ in the 11eighborhood . 
A set of Gau ssian coefficients is used in the r11ethod sucl1 that tl1e close r tl1e neigl1bor pixel to the 
center pixel, tl1e 111ore influence the neighbor pixel has on tl1c fl o\v vector of tl1e center pixel. T11e 
\veighted-l east-square . based est.in1ate in tl1is step is 

LL R/1 (tt, V ),, 

Li= II I' 

LLR ,,(r,.,v) 
II I' 

LL R11(1,, v)v 
V = . IJ V 

LL R
11
(1,, v) ' 

II I' 

and the associated covariance matrix is 

L R,;(l-l;, v;)(i,, - u)2 LR,,(i,;, v;)(i,; -u)(\,,. -v) 
• 

' L R,1(1,,., v;) 
• 

' s = 
C LR,, (1,,., v, )(i,,. - u)( vi - v) 

• 

' 
LR,,(,,;, V;) 

• 
I 

where 1 ~ i $; (2w + 1)2. 

, 
I 

L Rn(lt;, \1,.) 
. 
I 

L R,,(i,;, v; )( v,. - v)2 

• 
I 

L R,,(i,,., v£) 
• 

' 

( 13.25) 

' 
( J 3.26) 

In implementation, Singh uses a 3 x 3 neighborhood (i.e., 111 = 1) centered on the pixel under 
·consid~ration. The weights are depicted in Figure l3.9. 

13.3.2.3 Minimization and lterat.ive Algorithm 

Accotdin ·g to es.timat1o·n theory (Beck and Arnold, 1977), two covariance matrices, expressed in 
Equations 13.24 and 13.26, respectively, are related tb the confidence measure. Tl1at is, the rec.ip
rocals of the eigenvalues of the covarlance matrix reve.al confidence of the estimate along the 
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( 0.25x0.25 ) ( 0.5x0.25) ( 0.25x0.25 ) 
1 1 1 - - -
16 8 16 

( 0.Sx0.25) ( 0.5x0.5) ( O.Sx0.25) 
I l l - - -
8 4 8 

( 0.25><0.25 ) ( 0.5x0.25) ( 0.2Sx0.2S ) 
1 1 1 - - -

16 8 16 

FIGURE 13.9 3 x 3 Gaussiar1 mask. 

direction represented by the co·rresponding eigenvectors. Moreover, conservation e.rror and .neigh
borhood error can be represented as tl·1e following L\VO quadratic terms, respectively. 

(u - u )r s-1 (u - u ) 
C' <" C 

• 

(13.27) 

(13 .28) 

where U = (111 v), Uc = (1,c, vc), U = (rt, v). 
The minin1jzation of tl1e sum of tl1ese l\VO errors over the in1age area leads to an opti111al 

estimate of optical llo\v. That is, find (Lt, v) sucl1 tl1at the following error is minin1ized. 

( 13.29) 

.l" \ ' 
• 

An iterative procedure according to tl1e Gauss-Sie del algorithm (Ralston and Rabino\vitz, 1978) 
is used by Singh: 

uk+I =[s-1 +s-1]-1 [s-iu +s-iuk] 
C II C ·c- II 

(13.30) 

u0 = u. 
(' 

-
Note that Uc, Sc are calculated once and re111ain un.cl1anged in all the iteratio.11s. On the contrary, U 
and S,, vary with each iteration. Tl1is agrees with tl1e descript.io11 of tl1e method in Section 13.3.2.2 .. 

13.3.3 THE PAN, Sf·l'I, AND SHU METHOD 

Applying feedbac.k (a powerful technique widely used in automatic control and many otl1er fields) 
to a couelation-based algorithm, J?an, Shi, and Sl1u developed a correlation-feedback method to 
compute optical flow. Tl1e me,thod is iterative in nature. Irl eac.h iteration, the estin1ated optical flo\v 
and its several variations are fed back. For eact1 of the varied optical flow vectors, the corresponding 
sum of squared aispla.ced fran1.e difference (DFD), \vhicl1 was discussed in CJ1apter 12 and which 
often involves bilinear interpolation, is calculated. This useful info.rination is then utilized ir1 a 
revised versio11 ot· a cofrelation-based algorilhn1 (Si11gl1, 1992)~ Tl1ey cl10.ose t·o ,:vork \Vilh this 

• 
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Ii l v' ut.; uc 
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-
& 

/2 u• J 

Obse,;vcr 

UO VO 

Initialization 

Ii 

. 

FIGURE 13.10 'Block diagran1 of correlation feedback te.chr1ique. 

algorithm be·cause it has several merits, and its esti1nation-theoretical cor11putation fra1nework lends 
itself to the application of the feedback technique. 

As expected, the repeated usage of l\vo given images via the feedback iterative proced ure 
improves the accuracy of optical flow considerably. Several experime11ts on real in1age sequences 
in the laboratory and some synthetic image sequences demonstrate that the correlation-feedback 
algorithm perfor1ns better than some standard gradient- and correlation-based algorithms in te1111s 
of accuracy. 

13.3.3.1 Proposed Framework 

The block diagram o.f the proposed frame\vork is sl1own in Figure 13. l O and described next . 

Initialization Although any flow algorithms can be us·ed to generate an ir1iLial opt ical flo.,¥ 
field 'lt0 = (1., 0

, V·0 ) (even a nonzero initial flo,v field without applyi·ng any flow algorith rn 111ay ,vork , 
but slow]y), .the Horn an_d Schunck algorithm (Horn and Scl1unck, 198 1 ), discussed in Sect ion 13.2. l 
(usually 5 to 10 iterations) is used to provide an appropriate starting point after preprocessing 
(involving lo\v-pass filtering), since the algorithm is fast and the prob'lem cau,sed by tf1e srnoothness 
co.nstraint is not se·rious in the first IO to· 20 iterations. Tl1e n1odi fied Horn and Schunck method, 
discussed in Section 13.2.2, may also be used for the initialization. 

Observer The DFD at the kth iteration is observed as J,, (x) - J,,.1 (x - £ik), vvhere f,, and fn-1 

denote two consecutive digital images, x = (x, )') denotes tl1e spatial coordinates of the pixel under 
consideration, and u" = (i,k, vk) denotes the optical flow of this pixel estirna.ted at tl1e kth iteration. 
(Note that the vector represe11tation of the spatial c.oordinates in image planes is used quite often 
in the literature, because of its brevity in notation.) Demanding fractio.nal pixel accuracy usually 
requires inte'rpolation. In the Pan et ·al. work, the bilinear interpolation is adopted. The bi linearly 

A 

interpolated image is denoted by f,,._1• 

Correlation Once the bilinearly interpolated image js available, a correlation n1easure needs to 
be selected to search for the best ·match of a given pixel inf,, (x) in ·a search area in the interpolated 
image. In their work, the sum-of-square-differences (SSD) is used .. For each pixel infn, a correlation 
window WC of size (2/ + I) x (2/ + l) is formced, centered on the pixel. 

The se·arch win·dow in the proposed approach is quite di'fferent from that used in the correJati~n
based approach, say, that of Singh (1992). Let u be a quantity chosen t·rom the followjng fi,,e 
quantities: 

UE (13.31) 
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Let v be a qua11tily cl1osen frorn tl1e following five quanlilies: 

k I k 1.: I II x k I k l: I "' 
VE V - -v , v - -v V V +-v V +-v 2 4 ) I 4 I 2 • ( 13.32) 

He11ce, tl1ere are 25 (i.e., 5 x 5) possible con1binations for (1,, v). (IL is noted that the restriction of 
tl1e nonzero initial flow field me11tioned above ir1 part A comes frorn l1ere). Note ll1at other choices 
of variations around (11.k, vk) are possible. Each of lhem corresponds to a pixel, ( .. t- tl, )' - v), in 
tl1e bilin early interpolated image plane. A correlation windo\v is forined and centered ir1 tl1·is pixel. 
Tl1e 25 sarn1)les of error distribution around (uk, vk) can be computed by using the SSD. That is, 

I I 

E(t,,v)= L, L,(1,,( .. r+ .Y,)1 +t)- },,_,(~t-11+ s,),- v+1))
2
. ( 13.33) 

, =-/ I =-I 

The 25 sa mples of re. ponse distribution can be computed a-s follows: 

• 

R (. ) _ -P£ (11.,·) 
c ,, , v - e , (13.34) 

w.here P is chose,, so clS to n1ake tile n1axin1u111 Re among tl1e 25 san1ples of response distribution 
be a numb er close to unity. The choice of an exponential function for converting tl1ee rror distribution 
into tl1e response distributio,1 is based primarily on the follo\ving consideration: the exponential 
function is well bel1aved when ll1e error approaches zero and all tl1e response distribution values 
are pos itive. The cl1oice of p mentioned above is motivated by tl1e follo\ving observation: in this 
way, the R" values, which are tl1e weights used in Equat ion 13.35, will be more effective. That is, 
the comput alio n in Equatio,n 13.35 \viii be rnore sensitive to the variation of the error distribution 
defined in Ec1uation 13.33. 

Tl1e opti cal flow vector derived at this correlatio11 stage is tl1e11 calculated as follows, according 
to the weighted-lea st-squares estim.ation (Singh, 1992). 

k L,,, L,
1
• Rc (,,, v )v 

. R('(,,, V 
. II I ' 

( 13.35) 

Propagation Except in the vicinity of n1otion boundaries, tl1e ,notion vectors associated w_ith 
neighboring pixels are expected lo be sin1ilar. Therefore, this constraint can be used to regularize 
the motion field. That is, 

• 

1 ~ H' 1r II ' l 

u••1(x,y) = L, L, w,(i,J)u:(x+ i,y+ J), vH'(x,y) = L, L, w,(i,J)u:(x +i,y+ J), ( 13.36) 

• "' =-11 -' • , -- 11• 
1=- 11· j :-11 · I 

. . k I i 1 Fi oure I 3 9 is chose11 as th.e where 1iv1(i J) is a weiol1ting function. Tl1e Gaussian n1as s ,own 1 ~ • 
1 

. t· . 
, 

0 
. B . this ,nask the ve oc1ty o \1ar1ous 

weighting function i,v 1(i J) used in our exper1111ents. Y using . ' . f . ti . 
1
. 

pixels in the neighborh;od of a pixel will be weighted according to their _dista;ce ~o~ 1
e pt~e · 

the laroer the dista11ce tl1e smaller tl1e \Veigl1t. Tl1e i11ask srnootl1s the optrcal ow e as \Ve • 
0 - ' 

. . . onse distribution ,vith a single 
Convergence Under the assumption of the sy1n111etr1c resp f th correlation-
maximum value assu1ned by tl1c ground-truth optical flow, the convergence O e 
feedback technique is justified by Pan et al. (1995). 
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13.3.3.2 Implementation and Experiments 
• 

Implementation To make tt1e algorithn1 more robust against noise, three consecutive images 
in an i1nage sequence , denoted by / 1,J;, andf 1 , respectively, are used to implement lheir algorithm 
instead of tJ1e two images in the above principle discussion. This in1plementation was p roposed by 
Singh (199·2). Assume the tin1e interval between / 1 an.d / 2 is the sa1ne as tl1at between f 2 and / 3 • 

Also-assume the apparent 2-D motion is unifonn during these two intervals along the motion 
trajectories. From images/ 1 andf 2, (11", v 0

) can be computed. Fro1n ( L1k, vk), the optical flo\N estimated 
during the kth iteration, and / 1 and Ji, the response distribution, Rc+(1,k, vk), can be· calcul,1ted as 

I I "' 2 -~ I,. I,.[ .t;(x+s,)1 +t)- J;(x - 1tk +S,)1 -'Vk +r)] • ( 13.37) 
S=-1 1=-/ 

Similarly, from images/ 3 and/ 2, (-1 ,k, - \1k) can be calculated. Then R; (-1tk, - \'k) can be ca lculated as 

I I ,.. 2 

R;(-i,k,-v1:)=exp -~ I,. I,.[ J2(x+S,)J+t)- f1(x - ,,k +s,)1 + vk +r)] ( 13.38) 

s= - 1 t= - 1 

The response distribution Rc(i,1:, vk) can then be determir1ed as the su111 of R;(1,k, vk) and R;(- ttk,- i;k). 
The size of the correlation win·do\v and the \Veighting function is chosen lo be 3 x 3 , i.e., I = l , 
w = 1. In each search window, ~ is chosen so as to make the larger one a111ong R(+. and R; a number 
close to unity. In the observer stage, the bilinear interpolation is used, \.Vhich is sho\vn to be faster 
and better than the B-spline in the 1nany experiments 01· Pan et al. 

Experin1ent I F.igu·re 13. 11 sho\VS the three successive in1age fran1es/ 1,f 2 , and/, about a square 
posL They \.Vere taken by a CCD video camera and a DATACUBE real-time image processing 
system supported by a Sun \vorkstation. The square post is moving horizontally, perpendicular to 
the optical axis of the camera, in a unifonn speed of 2.747 pixels per frame. To ren1ove \1arious 
noises to a certain extent and to speed up processing, these tl1ree 256 x 256 in1ages are low-pass 
filtered and then subsampled prior to optical flow estimation. That is, the intensities of every 
16 pixels in a block of 4 x 4 are averaged and the average value is assigned to represent this block. 
Note that the choice of other low-pass filters is also possible. In th.is way, these three images are 
compre-ssed into three 64 x 64 images. T.he ''ground-trutl1,, 2-D motion velocity vector is hence 
known as {' " = -0 .6868; v" = 0. 

To ,compare the performance of the correlation-feedback approac.h with that of the gradient
based and correlation -based approaches, the Hom and Schunck algorithm is chosen to represent 
the gradient-ba.sed approach and Si.ngh's framework to represent the correlation-based approach. 
Table 13.1 s.hows the results of the comparison. There, l, ~v, and N indicate the sizes of the correlation 
window, weighting function, and search window, respectively. The program that in1plemenls Singh 's 
algorithm is provided by Barron et al. (1994) . In the correlation-feedback algorithm, ten itera.tions 
o-f the Horn and Schunck algorithm with a= 5 are used in the initialization. (Recall that the a is 
a regularization parameter used by Horn and Schunck, 1981 ). Only the central 40 x 40 flow vector 
array is used to compute i,c rror, which is the root m.ean square (RMS) error in tl1e vector magnitudes 

• 

between the ground- truth and estimated optical flow vecto.rs. It is noted that the relative error an 
Experiment I is greater than 10%. This is beca.use the deno1ninator i11 tl1e formula calculating tl1e 
RMS error is too small due to the static background and, hence, there are many zero ground-trutll 
2-D motion velocity vectors in this experiment. Relatively speaking, the correlation -feedback 
aJgorithm performs best in dete11nining optical flow for a texture post in translation . The correct 
,optical flow field and tho,5e calculated by using three different algorithms· are shown in Fig·ure 13.12. 
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FIG URE 13.11 Tex lure quare (a). Texture qt1are (b). Texture quare (c). 

TABLE 13.1 
Comparison in Experiment · I 

Techniques 

13.3.3.3 Conditions 

/,terror 

Gradient-Based 
Approach 

It erat ion 110. = 128 

0. = 5 

56.37o/o 

Correlation-Based 
Approach 

lt erc111011 110. = 25 
/ = 2, IV :;: 2 

N =4 
80.97o/o 

Correlation-Feedb·ack 
Approach 

lt eratio,1 no. = 10 
/rerari o,1 no. (Hor,,) = l 0 

I= l, IV= l . N = 5 
44,.56% 

285 

Experiment II The images in Figure 13.13 were obtained b)' rotating a CCD camera with 
respect to the center of a ball. The rotating velocity is 2.5° per fran1e. Similarly, three 256 x 256 
images are compressed into three 64 x 64 i1nages by using the averaging and subsan1pling discussed 
above. Only th.e central 40 x 40 optical vector arrays are used to compute z,crror· Table 13.2 reports 
the results for this experiment. There, '"error, l, ~v, and N have the same meanin .g as that discL1ssed 
in Experiment I. It is obvious that our correlation-feedback algorithm perforins best in determin ing 
optical flow for this rotating ball case. 
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FIGURE 13.12 (a) Correct optical flo\v fie.Id. (b) Optical flo,v field calculated by the gradient-based 
approach. (c) Optical flo,v field ,calculated by the correlation-based approach. (d) Optical flow field calculated 
by the correlation-feedback approach . 

Experiment ID To compare the correlat.ion--fee.dback algorithm witl1 other existing techniques 
in a mote objective, quantitative manner, ·Pan et al. cite some results reported by Barron et al. 
(1994), which were obtained by applying some typical .optical flow techniques to some image 
se<rJuences chosen with deliberation. In the meantime they report the results obtained by applying 
their feedback teAchnique to the identical image. sequences with the-.sam.e accuracy measurement as 
use'd by Barron et al. (.1994). 

Three image sequences used by Barr0n et al. ( 1994) were utilized here. They are named 
'"Uranslating Tree:' ''Di~er~ing 'Tree," and· ''Yosemite." The first two simulate translational camera 
mQti.0n with respect to a textured planar .surface (FiguFe 13.14), and are sometimes referred to as 
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FIGURE 13.12 (continued) 

''Tree 2-D'' sequence. Therefore, tl1ere are no occlusions and no motion discontinuities in these 
two sequences. In the ''Translatir1g Tree'' sequence, the camera n1oves norn1ally to its line of sight, 
\vith velocities between I . 73 and 2.26 pixels/fran1e parallel lo tl1e ,r-axis in tl1e image plane. In tl1e 
''Diverging Tree'' sequence, tl1e cam.era n1oves along its line of sigl1t. Tl1e focus of expa11sio11 is at 
the center of the image. Tl1e speeds vary ·from 1.29 pixels/fran1e on left side to 1.86 pixels/fra1ne 
on the rigl1t. The ''Yose1nite'' seqt1.ence is a 111ore co.n1plex test case (see Figure 13. 15). Tl1e 1notion 
in the upper right is n1ainly divergent. Tl1e clouds translate to the right \Vieira speed of l pixel/frame, 
while velocities in the lower left are about 4 pixels/frame. Tl1is sequence is cl1allenging because 
of the range of velocities and tl1e occluding edges between tl1e r11ountains and at the l1orizon. There 
is severe aliasi11g in the lower portion of the i1na:ges, causing most n1et]1ods to ·produce poorer 
velocity measurements. Note that tl1is synthetic sequence is for quantitative study purposes si11ce 
its ground-truth flow field is known and is, otherwise, far less co111plex tl1an ma11y real-\vorld outdoor 
setjuenc.es processed i11 tl1e literature. 

The a·ngular meas.ure of the error used by Barro11 et al. ( 1994) is utilized here, as \Veil. Let 
image velocity ii == (t,, v) be represe11ted as 3-.D direction vectors, 
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• 

1 ., 

i 
I 

FIGURE 13.13 A. rotating ball .in three different frar11es - a, b. c. The rotatin g velocity is 2.5° per fran1e. 

TABLE 13.2 
Comparison in Experiment 11 

Gradient-Based 
Techniques Approach 

Condition s Iteration 110. = 128 

a=5 

llcrror 65.67o/o 

Correlation-Based 
Approach 

Iteration no. = 25 

/ =? ,v-? -, ' - -
N =4 
~5.29% 

Correlation-Feedback 
Approach 

lteratio,, 110. = 10 
ltera.tion 110. (Hor11 ) = I 0 

I= l , \.V= l , N = 5 

49.80% 

- 1 
V = ,'1 2 ., .(u, v,l). (13.39) 

Lt +v- + 1 

The anigular ·error betw.ee:n the correct image velocity V and an estimate Ve is 'VE = across ( V c · Ve). 
It is obvious that the smaller the angular .en::or 'VE, the more accurate the estimation of the optical 
flow field will be. Despite the fact that the confidence measurement can be used in the correlation
feedback algorithm, as well, Pan et al. did n.ot consider the u·sage of the confidence measurement 
in their work~ Therefore, only the results with 100% density in Tables 4 .6, 4.7, and 4 .10 in the 
Barro.n et al. (1994) paper were used ·in Tables 13.J, 13.4, and 13.5, respectively. 

• 
• 

IPR2021-00827 
Unified EX1008 Page 314



• 

Optical Flow 

' 
I 

• 

60 • 

BO 

100 

120 · • 

• ·.: . 
20 40 60 BO 100 1 4() 

FIGURE 13.14 A frame of the "Tree 2-D 1
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FIGURE 13.15 A fran1e of the "Yosen1ite" sequence. 
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Prior to computati .on of the optical flow field , the ''Yosemite'' and ('Tree 2-D'' tes t sequence s 
were compre ssed by a factor of 16 and 4, respectively·, using the averaging and sub sampling method 
discussed earlier. 

As mentioned by Barron et al. (1994) the optical flow field for the '' Yosemite '' sequen ce is 
complex , and Table 13.5 indicates that the correlation-feedback algoritl1m evidently perforrns best. 
A robu st method was developed and applied to a cloudle ss Yosemite sequence (Black and Ana.ndan 
1996). It is noted that the pe1formance of flow determination algorithn1s will be improved if the 
sky is removed fron1 consider .ation (Barron et al., 1994; Black and Anandan , L 996 ). Still, it is clear 
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TABLE 13.3 
Summary of the ''Translating Tree'' 2-D Velocity Results 

Techniques Average Error, 0 Standard Deviation, 0 Density , 0/o 

Hom and. Schunck (original) 38.72 27.67 100 

Horn, and Schunck (modified) 2.02 2.27 100 

Urns et al. (unthresholded) 0 .62 0.52 100 

Nagel 2.44 3.06 100 

Anandan 4.54 3. 10 100 

Singh (step l, I = 2. ,v = 2) 1.64 2.44 JOO 

Singh (step 2. I = 2, ,v = 2) 1.25 3.29 100 

Correlation feedback (/ = l. \V = l) 1.07 0.48 100 

TABLE 13.4 
Summary of the ''Diverging Tree'' 2-D Velocity Results 

Techniques Average Error, 0 Standard Deviation , 0 Den sity, 0/o 

Hom and Schunck. (original) 12.02 J l .72 JOO 
. 

100 Horn and Schu.nck. (modifie.d) 2.55 3.67 

Uras et al. (unthresholded) 4.64 3.48 JOO 
Nagel 2.94 3.23 100 
Anandan (frames 19 and 21) 7.64 4.96 100 

Singh (step l, I ·= 2, ,v = 2) 17.66 14.25 JOO 
. 

Singh (step 2, I = 2, ,v = 2) 8.60 5.60 100 

Pan, Shi, and Shu(/= l, \V = I) 5.12 2. 16 JOO 

TABLE 13.5 
Summary of the ''Yosemite'' 2-D Velocity Results 

Techniques Average Error, 0 Standard Deviation, 0 Density, 0/o 

Hom and Schunck (original) 32.43 30.28 100 

Hom ·and S·chanck (modifi·ect) 11.26 16.41 JOO 
Urns et al. (unthresh·olde.d) I 0 .. 44 15.00 100 

Nagel 11.71 10.59 100 

Anandan (frames 19 and 21) 15.84 13.46 100 

Singh. (step I. I = 2, ,v = 2) '18.24 17.02 100 
Singh (step 2, I = 2, ,v = 2) I 3.16 12.07 JOO 
Pan. Shi~ and Shu (/ = 1-. ,v = I) 7.93 6.72 100 

that ·the algorithm in the Black andAnandan (1996) paper achieved very good perfor111ance inter rns 
0f accuracy. In order to make a comparison with their algorithm, the correlation-feedback algorithm 
was applied to the same cloudJe.ss Yosemite sequence. The results were reported in Table 13.6, 
from whieh ·it can be observ·ed that the results obtained by Pan et al. ar.e slightly better. Tables 13.3 
a.nd 13 .. 4 indicate that the feedback technique also performs very well in translating and diverging 
te~ture po.st eases. 

. 

Experiment IV Here, the correlation-feedback algorithm is applied to a real sequence named 
Hamburg 'f:axi, w·liich is used as a testing sequence by Barron et al. ( 1994). There are four moving 
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TABLE 13.6 

S.urnmary of the cloudless ''Yosemite'' 2-D Velocity Results 

Technic1ues Average Error, 0 Standard Deviation, 0 Density, o/o 

Robust f ormulaLio.n 4.46 4.2 1 100. 
Pao, Shi. and Shu (/== I , \ V == I ) 3.79 3.44 100 

FIGURE 13.16 Hamburg Taxi. 

object s in. tJ1e scene: a 1novi ng pedesu·ian in the upper left portion, a turning car ir1 the middle, a 
car movin.g toward right at the left side and a c·ar moving tow·ard left at the right side. A frame of 
the sequen ce and the needle diagram of flow vectors estimated by using ten iterations of the 
correlation-feedback aJgorithm (with ten iterations of the Horn and Schunck algorithm for initial
ization) are shown in Figures 13.16 and 13.17, respectively. The needle diagram is printed in the 
san1e fashion as those shown by Barro11 et al. ( 1994). It is noted that the moving pedestrian in the 
upper left portion cannot be shown because of the scale used in the needle diagran1. The other 
three moving vehicles in the sequence are shown very clearly. The noise level is lo\v. Compared 
with tl1ose diagram s reported by Ba,Ton et al. ( J 994 ), the correlation-feedback algorithm achieves 
very good rest1lts. 

For a compari son 011 a local basis, the portion of the needle diagran1 associated with the area 
surrounding the turning car (a sample of the velocity fields), obtained by 50 iterations of the 
correlation-feedback a·lgorithm witl1 five iterations of the Hom and Schunck algorithm as initial
ization, is provided in Figure 13.18(c). Its counterparts obtained by applying the Horn and Schunck 
(50 iterations) and tl1e Singh (50 iterations) algorithms are displayed in Figttre l 3.18(a) and (b), 
respectively. It is observed that the correlation-feedb.ack algorithm achieves the best results among 
the three algorithms. 

13.3.3.4 Discussion and Conclusion 

Althou.gh it uses a revised version of a correlation-based algoritl1m (Si11gh, 1992), the co1Telation
feedback technique is quite different fron1 the correlat ion-based algorithn1 (Sing.h, 1992) in the 
following four aspects. First, different oprin1izatio11 criteria: the algo.rithn1 does not t1se tl1e iterative 
minimiza.tion procedure used in (Singh, 1992). Instead, some varj.ations of the estimated optica l 
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FIGURE 13.17 N.eedle diagram of flow field of Hamburg Taxi sequence obtained by usir1g the correlation
feedback algorithm . 

flow vectors are generated and fed back. The associated bilinearly interpolated displaced frame 
difference for each variation is calculated and utilized. In essence, the feedback approach utilizes 
two given im-ages repeatedly, while the Singh method uses two given images only once (i,c and vc 
de.rived from the two given images are only calculate·d once). The best local matching between the 
displaced image, generated via feedback of the estimated optical flow, and the given image is 
actually used as the ·ultimate criterion for improving optica] flow accuracy in the iterative process. 
Second, the search window in the algorithm is an adaptive ''rubber'' window, having a variable size 
depending 0n (i,*, vk). In the correlation-based approaches (Singh, 1992), the search window has 
a fixed size. Third, the a]gorithm uses a bilinear interpolation technique in the observalio11 stage 

• 

and provides the correlation stage with a virtually continuous image field for more accurate motion 
vector computa.tion, while that of Singh ( 1992) does not. Fourth, different p.erfor111an.ces are achieved 
when :image intensity is a linear function of image coordinates. In fact, in the vicinity of a pixel, 
the intensity can usually be considered as such a linear ·function. Except if the optical flow vectors 
hap.pen to have only an integer multiple of pixels as their components, an analysis by Pan (1994) 
shows that the correlatio ·n .. based approach (Singh,. 1992) will n.ot converge to the apparent 2-D 
motio.n. vectors and will easily have error much greater than 10%. Pan (1994) also sl1ows that the 
linear intensity funetion guarantees the assu·mption of the s.ymmetric response distribution with a 
·Single maximum value assumed by the groun,d-truth optical flow. As discussed in Section 13.3.3.1, 
under this assumption the conv·ergence of the correlation-feedback technique is justi,fied. 

Nume·ro.us exp.eriments have demonstrated the convergence and a·ccuracy of the corre lation
feeaback alg0rithm, and usually it is more accurate than some standard gradient- and correlation
based approaches. In the complicated optical flow cases, spe,cifically in the cas·e ot· the ''Yosemite'' 
image sequence (regarded as the most ehalJenging quan.tita_tive test image sequence by Barron et al. 
(1994), Jt performs better tha,n all other techniques. 

• 
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FIGURE 13.18 -A portion of the needle diagram obtained by using (a) the Hom and Schunk algorithm. 

(b) tl1e Singh algorithm, and (c) the correlation-feedback algorithm. 

13.4 MULTIPLE ATTRIBUTES FOR 
C_ONSERVATION INf .QRMATION 

As stated at the beginning of this ch.apter, tl1ere are many algoritl1ms in optical flow computati,on 
reported in the literature. Many more new algorit_l1ms continue to be" developed. In Sections 13.2 
and 13.3, we introduced some typical algorithms using gradient- and correlation..,based appr-oaches. 
We Will not explore various algorithms any further here. It is hoped that the fundamental concepts 
and algorithms introduced above have provided a solid base for readers to study m.ore;..advanced 

techniques. 
We would like to discuss optical fl.ow from anot,her point of view, however: multiple image 

.attributes vs. a single image attribute. All o:f the methods we have discussed so far use on\y one 
kin'd o·f image attributes as conservation information in flow dete1tninat~on. Most methods use 
intensity; Singh's metI1od uses the Laplacian of intensity, which is calculated by usin_g the clifferen_ce 
of the Gaussian operation (Burt, 1984). It was re_ported .by Weng, Ahuja, and Huang (1992) that 
u·sing a single attribute as conservation infonnation may result in ambigu'i~y in matching two 
perspect'ive views, while multiple attributes, wl1ich are motion insensitive-, may reduce ambiguity 
remarkably; resultin·g in better mat,chin:g. An example is shown in Figt}_re 13.19 to illustrate this 
a-tgument. In this se·ction, the We.ng et al. method is discussed first. Then. we introduce the Xia and 
Shi method, whiGh uses n1ultiple attributes in a ·framework bas·ed 0n weighted-least-square e_stima-

tion and feedback techniques. • 
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FIGlJRE .13.18 (continued) 

13.4.1 THE WENG, AHUJA, AND HUANG METHOD 

• 

Weng, Ahuja, and Huang proposed a quite different approach to image p·oint 111atching (Weng et al., 
1992). Note that the image matching amounts to flow field computation since it calculates a 
displacement field for each point in image planes, which is essentially a flow field if the tin1e 
interval .between tw0 image frames is known. 

Based on an analysis indicating that using image intensity as a single altribute is not enoug.h 
in acc.urate image matching, Weng, Ahuja, and Huang utilize multiple attributes associated witt1 

images in estimation of the dense displacement field. These image attrjbules are motion insensitive; 
i.e., tl1ey generally sustain only small chang¢ under motion assumed to be locally rigid. The image 
a.ttributes used are image intensity, edgeness, and cornerness. For eacb image attribute , the algorithn1 

forms a residual function.,. reflecting the inaccuracy of the estimated m·atcl1ing. The matching is 
th·en determined via·an iterative ·procedure to minimize the weighted sum of these residual functions. 
In ha.ndli.i;ig neighberhood . info1111ation, a more-advanced smoothness constrainl is used to take care 
of moving discon;tinµities. The method consider.s unif 01..10 regions and the occlusion issue as ,veil . 

In ~ddition to, using multiple image attributes, t'he n1eth·od is. pointwise process·i11g. Tl1ere is_ 110 

need for calculation of correlation ,vithin two correlation wind.ows, which saves computation 
draqia.tic.ally~ However1 the method "1ls.o bas same drawbacks. First, the edgeness and corner~e~s 
involve ·calculatioh of the spati·al gradient, which is noise sensiti~e. Sec0nd, in solving ·for n1in1m1-
zation, the method res.arts to n.umeric .. al d,ifferentiation again: the esti1nated displacen1ent vectors 
ace updated based on the partial derivatives of. the n0isy ·attribute im.a.ges. In a· w.0rd, the comp~ta
tional framew.o.rk h:eav.ily relies o·n numerioal dififerentiation, which is considered to be impractical 
f.t>F accuiate com·putation (Barr0n et ·al., 1994). 
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FIGURE 13.18 (continued) 
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FIGURE 13.19 Multiple attributes vs. single attribute. (a) With intensity information only, points D, E, and 
F tend to matcl1 to points A, 8 , and C, respectively. (b) With i11tensity, e.dge and corner infor tnation points D 
an,d E tend to match poi_nts B arid C, respectively. 

On the other hand, the Pan, Sl1i, and ,Sl1u method, discu.s.sed in Section 13.3.3 i11 the c.ategory 
of correlation based approaches, seem·s to ha, ,e some con1plen1entary features. It is correlation
based. It uses intensity as a single attribute. I11 these t'vvo aspects the Pan e.t al. metl1od is i11ferior 
to the metl1od by Weng, Al1uja, ar1d_ Huang. Tl1e fe·edback techniqt1e and tl1e \Veigl1ted least-sq uare 
complitati ,on fra1nework used in. the Pan et al. 111ethod are superio r, however, co·n1pared \iVith the 
metl1od by We·ng et al. Motivated by tl1e ,above observat i·ons, a11 efficient, multiattribute feedback 
method was developed by Xia and St1i (Xia and Sl1i, 1995; Xia, l 996), and is discussed in the next 
subsectio .n. It is e.xpected that more insight into the Weng, Al1uja, and Huang method \Viii becon1e 
clear in the discussion as well. 

• 
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13.4.2 THE XIA AND SHI METHOD 

This method use·s 1nultiple attributes that are motion insensitive. Tt1e followin.g five attributes are 
us·ed: image inten.sity, horizontal edgeness, vertical edgeness, contrast, and e11tropy. The first three 
are u-sed by Weng et al. (1992) as w~ll, and can be considered as structural attributes, while the 
last two, which are not used by Weng et al. (1992), can be considered as textural altribL1tes according 
t.o Haralic.k (I 979). 

Instead of tl1.e computational framework presented by Weng et al. ( 1992 ), wl1ich, as discussed 
above, may not be practical for accurate computation, the method uses the computatior1al frame\vork 
of Pan ( 1994; 1998) . That is, the weighted-least-squared estimation technique used by Singh ( 1992) 
and the feedback technique used by Pan ( 1994; 1998) are utilized he·re. Unlike in the Weng et al. 
( 1992) method, subpixel accuracy is considered and a confidence measure is generated in the 
method. 

The Xia and Shi n1ethod is also difJ~erent from those algorithms presented by Si11gh ( 1992) and 
Pan et al. ( 1995; 1998). First, there is no correlation in the n1ethod, \viii le-botl1 Si ngt1 ( 1992) and 
Pan et al. (1995; 1998) are correlation based. Specifically, the method is a point-wise processing. 
Second , the n1ethod uses multiple at.tribu.tes, whi.le both Singl1 ( 1992) and Pan et al. ( 1995; 1998) 
use image intensity as a single attribute. 

In summary, the Xia and Shi method to compute optical flow is 1noti\1ated by several existing 
algorithms mentioned above. It does, .ho\vever, differ from each of the1n significantly. 

13.4.2.1 Multiple Image Attributes 

As mentioned before, there are five image attributes in the Xia and Sl1i method. They are defined 
below. 

Image Intensity The intensity at a pixel (x, )') jn an image f,, (x, y), denoted by A; (x , y), i .e., 
A; (x, y) = In (x, y). 

Horizontal Edgeness T.he horizontal edgeness at a pixel (x, y), denoted by A1, (x, y) , is 
defined as 

A (x )') == of (x,)1
) 

h . ' 0)' , 
( 13.40) 

• 

i.e., the partial derivative off (x, y) with respect to y, the second component of the gradient of 
intensity function at the pixel . 

Vertical Edgen .ess The vertical edgeness at a pixel (x, y), denoted by A ,. (x , y) , is defined as 

(13.41) 

i.e., the first component of the gradient of intensity function at the pixel. Note that the parrial 
derivatives in Equations 13.40 and 13.41 are compu.ted by applying, a Sobel operator (Gonzalez 
and Woods, 1992) in a 3 x 3 netghborhood of the pi~el. 

Contrast The local centrast at a .pixel (x, y) , de.note·d by A,. (x, y), is defined as 

Ac: (x,y) =" (i- j)2 
C .. , L I,} 

(13.42) 

i,jeS 

where S is- a set of all the ijistinct gray levels within a 3 x 3 window centered at pixel (x, y). C;j 
spe~ifies a relative frequency with which two ne.ighboring pixels separated horizontally by a dis tance 
of I occur in the 3 ·x 3 win.dow, one with gr:ay level i and the o·ther with gray level j . 

• 
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Entropy - The local entropy at a point (..l', y), denoted by A" (x, y), is given by 

At'(x,y) = -L,pi log P;, ( 13.43) 
leS 

• 

where S was defined above, and p1 is tl1e probability of ·occurrence of the gray level i in the 3 x 3 
window. 

Since the intensity is assumed to be invariant to motion, so are the I1orizontal edgeness, vertical 
e.dgeness, contrast, and entropy. 

As 111er1tioned above, the intensity and edgeness are used as attributes in the Weng et al. 
alg·orithm as well . Comµ·ared with the negative and positive cornerness used in the We.ng et al. 
algorithm, the local contrast and entropy need no differentiation and therefore are less sensitive to 
various noises in original in1ages. In addition, these two attributes are inexpensive in terms of 
computation. Tl1ey reflect tl1e textural information about the local neighborho.od o.f the pixel for 
which the flow vector is to be estimated . 

13.4.2.2 Conservation Stage 

In the Xia and Shi algorithm, this stage is similar to that in the Pan et al. algorithm. Tl1at is, for a 
flow vector est im.ated at the kth iteration, denoted by (1.,11., vk), we find its 25 variations, (1,, v), 
according to 

/.t E 
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J; ll k u k k (,I k ll 
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For each of these 25 variations, Lhe matching error is con1puted as 

E( 1,, i,) = rA2 (x, y, tl, v) + ,·A2 
( x, y, 1.,, v) + ,-~ ( x, )', c,, v) + 11 ( .,t, ) ', Lt, v) + 1-; ( x, )', ct, v), 

1 /J 1 1• ' 'r C 

(13.45) 

where ,A;' rA
1
,, rA

1
, , rA,• t",i, denote the residual :function with respect to the five attributes, respectively. 

The residual function of intensity is defined as 

rt\ (x, Y,Lt, ·v) = A;n ( X' y )- A;n- i ( X - Lt, ) 1 
- V) = !,, (.>:, )1 

)- J,,_, ( X - tl, y - V)' (13.46) 

where J,, (x, ) '), fn-i (x, y) is defined as before, i.e., the inte11Sity function at t,, and t,,.1, respectively; 
A;n, A;,,_

1 
denote the intensity attributes on J,, and fn_,, respectively. . . . . 

It is observed that the residual error of intensity is essentially the DFD discussed 1n Chapter 12. 
The rest of the residual functions are defined similarly. Wl1en subpixel accuracy is required, spatial 
interpolation in the attribute images g~nerally is necessary. Thus, tl1e flow vector estin1ation is no,v 
converted to a minimization problem. That is, find ,, and v at pixel (x, )') such that the _n1atching 
error defined .in Equation 13.45 is minimized. The weighted least-square metl1od (Sing.h, 1992; Pan 
et al., 1998) is then used. Tl1at is, 

R( ) _ -~£(11,1•) 
ll, V - e ( 13.47) 
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( 13.48 ) 

II I' IJ I ' 

Since tl1e \veigl1ted. least-square metl1od has been discussed in detail in Sections 13.3.2 and 13.3.3, 

\Ve \vill not go into n1ore detail here. 

13.4.2.3 Propa.gation Stage 

Similar to \vhat ,vas proposed in tl1e Pan et al. algorithm, in this stage Xia and Sl1i fonn ,l \vindO\-\' 
\¥ of Size (2lv + 1) x (2l-v + 1) centered at the pixel (.t, )') i11 tl1c i1nage f0 (.r, ) 1). Tl1e flo\v estimale 
at the pixel (x, ) ') in this stage, denoted by (,_,k+1, vk+1), is calculated as a weighted sun1 of the flo\,,( 
vectors of the pixel within the \Vindo\v vV. 

II ' \ .I ' 

1,t +i = I L,i v1[fn(.t,) '),f, (,t +s ,)1 +t)] ·11:+1(.r+ s,) ' + r) 

( 13.49) 
ht u• 

vt + i =II iv,[f,(x,)1),J,,( .. r + s,)1 +t)]·v;+1(.r+s,) ·+1), 

where lv 1[., . ] is a \veight function. For each point in tl1e wir1do\v \¥, a \Veig!1t is nssigned acco rding 
to the \VeigI1t function . Let (.,t + s, )' + t) denote a pixel within the \vindo\v W~ th en the \Veight of 
the pixel (x + s, )' + t) is given by 

w1[J,,(x,y),f,,(x+s;y+r)]= f( ) ~( )I' 
£+ X ,) ' - .. r+s ,)1+t 

II II 

( 13.50 ) 

where Eis a smal] positive number to prevent the denominator fron1 vanishing, c is a nom1alization 
constant that makes the summation of all th,e weights in the W equal 1. 

From the above equation, we see that the \veight is determined based on tl1e intensity differenc e 
between the pixel under consideration and its neighboring pixel. The larger tl1e difference in tl1e 
inte.nsity, the more likely the two points belong to different regions. Therefo re, the weight \Viii be 
small in this case . On the other hand, the flow vector in the same region will be similar since the 
corresponding weight is large. Thus, the weighting function implicitly takes flow discontinuity into 
account and is more advanced than that of Singh ( 1992) and Pan et al . ( 1994; 1998). 

13.4.2.4 Outline of Algorithm 

The followin ·g summarizes the proce_dures of the algorithm. 

I. Perforr11 a low-pass pre-filtering on two input images to remove various noises. 
2. Generate attribute images: intensity, horizontal edgeness, vertical edgeness, local con 

trast, and local entropy. These attribute-s are computed at eacl1 grid point of both in1ages. 
3. Set che initial flow vectors to zero. Set the maximum iteration nun1ber and/or estimation 

accuracy. 
4. For each pixeJ U'nder consideration, generate flow v·ariati0ns according to Equation I 3.44. 

Compute matching error for each flow variatio.n according to Equation J 3.45 and trans
form them ttJ the eorrespcJnding response di'stributi.on R using Equation 13.47. Compute 
the flow estimaticJn u'·, v'" using Equation 13.48. 
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5. For1n a (2yv + I) x (2yv + I) neighborhood \vindow W centered at the pixel. Compute the 
weig l1t for each pixel within the window W using Equation 13.50 . Update the Oo\v vector 
using Equ ation 13.49. 

6. Dec rease the prese t iteration nu111ber. If the iteration number is zero, the algorithm returns 
with tl,e resulta11t optical flow field. Otl1erwise, go to the next step. 

7. If tl1e ch,111ge in flow vector over two successive iterations is less than the predefined 
tl1resl1old, tl1e algori tl1n1 returns wi ti, tl1e estirnated optical flow field. Otl1erwise, go to 
step 4 . 

13.4.2. 5 Experi n1ental Resu Its 

To con1pare the n1ethod witl1 otl1cr n1ethods existing in the literature, similar to what l1as been done 
by Par1 et al. ( 1998) (discussed above in Section 13.3. 3), the n1etl1ocJ was applied to ll1ree test 
sequer1ces used by Barror1 et al. ( 1994): the 1'Trans lating Tree" sequence, the "Diverging Tree'' 
sequence, and tl1e 'Yosen1ite', sequence. The same accuracy criterion is used as that by Barron 
et al. (1994). Only tl1ose results reported by Barron et al. ( 1994) \vith 100% density are listed ir1 
Tabl,es 13. 7, 13. 8, and 13.9 for a fair ,1nd easy comparison. The Weng et al. algorithm was imple
mented by Xia a·nd Sl1i and the results were reported by Xia and Shi ( 1995). 

TABLE 13.7 
Summary of the ''Translating Tree'' 2D Velocity Results 

Techniques Average Error, 0 Standard Deviation, 0 Density, 0/o 

Horn and Schunck (o ri gi nal) 38.72 27.67 100 

H orn and Schunck (mo dified) 2.02 2 .27 100 

Ur as et al. ( linchresholded) 0.62 0.52 JOO 

Nagel 2.44 3.06 100 

Anandan 4.54 3.10 100 

Sin gh (s tep 1. 11 = 2. u 1 = 2) 1.64 2.44 100 

Sin gh (step 2 . n = 2, ": = 2) I ? -, _ ) 3.29 100 

Pan, Shi . and Shu ( 11 = I , iv= I ) 1.07 0.48 100 

Weng. Ahu ja, and Huang 1.8 l 2.03 100 

Xia and Shi 0.55 0.52 100 

TABLE 13.8 
Summary of the ''Diverging Tree'' 2D Velocity Results 

Average Error, 0 Standard Deviation, 0 Density, 0/o 
Techniqu es 

Horn and Schunck (orig.inal) 32.43 30.28 100 
1.00 

Horn and Schunck (n1odifi ed) 11.26 16.41 
100 

Uras et al. (unthresholded) 10.44 I 5.00 
100 

Nagel l l . 7 1 10.59 
100 

15.84 13.46 Anando.n . 

Singh (seep I , 11 = 2, ,v = 2. N = 4) 18.24 17.02 100 
. 100 

Singh (step 2, ,i = 2, iv = 2. N = 4) 13.16 12.07 
JOO 

7.93 6.72 Pan·. Shi. and Shu (11 = l, ,v = I) 
100 

8.4 I 8.22 Weng, Ahuja, and Huang 
100 

7.54 6.61 Xia and Shi 

• 
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TABLE 13.9 
Summary of the ''Yosemite'' 20 Velocity Results 

Techniques Average Error, 0 Standard Deviation, 0 Density, 0/o 

Horn and Schunck (o·nginal) 12.02 11 72 100 
Born and Schunck (111odified) 2.55 3.67 100 
Uras et al . (tinthresholded) 4.64 3.48 100 
N~gel 2.94 3.23 JOO 
A.nandan (f ron1e 19 and 21) 7.64 4.96 100 
Singh (step .I, 11 = 2, ,v = 2, N = 4) 17.66 

' 
14.25 100 

Singh (slep 2, 11 = 2, "' = 2, N = 4) 8.60 5.60 100 
Pan, Shi, and Shu (11 = I, ,v = I) 5.12 2. 16 100 
\.Veng. Ahuja •. and Huang 8.0 I 9.7 1 100 
Xia and Shi • 4.04 3.82 100 

13.4.2.6 Discussion and Conclusion 

The above experimental results demo11strate that the Xia and Sl1i 111ethod outperforms botl1 the Pan, 
Shi, and Shu method and the Weng, Ahuja, and Huang method in terms of accuracy of optical ftO\v 
deterrnined. Computationally speaking, tl1e Xia and Shi 111etl1od is less expensive tl1an the P,1n et al., 
since there is no correlation involved and the ca1Telation is known to be computt1tionally expensive. 

13.5 SUMMA.RY 

The optical flow field is a dense 2-D distributio11 of apparent velocities of movemenL of intensity 
patterns in in1age planes, \Vhile the 2-D n1otion field can be understood as the perspective projection 
Of 3.-D motion in the s.cene-onto image planes. They are different. Only under certa in circumstances 
are they equal to e·ach ot~er. I11 practice, however, tl1ey are closely re1ated in that image sequences 
are usually the only data we have in motion analysis. Hence, we can only deal with the optical 
flow in motion analysis, instead of the 2-D motion field. The aperture proble111 in n10Lion analysis 
·refers to the problem that occurs when viewing motion via an aperture. Specifically, Lhe only motion 
we can observe from local measurement is the motion component ortl1ogonal to the u.nderlying 
m0ving contour. That is another way to manifest the ill-posed nature of optical flow computation . 
In, general, motion analysis from image sequences is an inverse problem, wl1ich is ill posed . 
Fortunately, low-level computational vision pr·oblems are only mildly ill posed. Hence, lowering 
the noise in imag·e data leads to a possible significant reduction of errors in flow determination . 

Numerous flow determination algorith.ms have appeared over tl1e course of more tha11 a decade. 
Most of the techniques take one of the following approaches : the gradient-based approach, tl1e 
cortelation-based approach, the energy-based approach, or the phase-based approach. In addition 
to these cl-ete.r111inistic approacl1es, there is also a stochastic approacl1. A unification point of view 
of optical flow c0mputation is presented in Section 13.3. That is, for any algorith1n in optical flow 
comput .ation, there are two typ·e·s of information that need to be extracted conservation infor
mati0n and neighborhood infQrn1ation. 

Sev.eral techniques are introduced for the gradient-based a_pproach, particularly the Horn and 
Schunck algorithm, w.hich is .a pioneer work in flow determination. Tl1ere, the brightness invariant 
equation is used to extract conservation i'nfo.rmation a11d the smoothness constraint is used to extract 
ne:ighhovbood in.forrnatjon. The modified Ho.rn and Scl1unck algorilh1n shows significant error 
reduction in flow deter111ination, because of a reduction of noise in image data, w11ich confirms the 
mildly ill-·posed n·ature of: optical flow computation. 
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Several techniques are discussed for tl1e correlation-based appro.ach. The Singh algoritl1m is 
given empha sis ·due to its estin1a.tion-theoretical framework. The Pan, Shi, and Shu algoritl1n1, which 
applies tl1e feedba~k technique to the correlation metl1od, den1onstrates an accuracy enhancement 
i 11 flow esti111ation. 

Sectio11 13.4 addresses tl1c usage o·f multiple image attributes vs. that of a single image attribute 
i11 Ll1e flow detern1ination tecl1nique. IL is found tl1at the use of multiple motion-insensitive attributes 
can help reduce tl1e ctmbiguity in n1otion analysis. The application of n1ultiple image attributes to 
conservation information turns out lo be promisi11g for flow con1putation. 

Some experi1nental works ,1re presented in Sections 13.3 and 13.4. Wicl1 Barron et al.'s recent 
con1prehensive survey of varioL1s existing optical Row algorithms, we can have a quantitative 
assessment on various optical flow techniques. 

Optical flow finds application in areas such as computer vision, image interpolation, temporal 
filtering, and video coding. In computational vision, raisi11g tl1e accuracy of optical flow estimation 
is in1portant. In video coding! however, lowering tl1e bit rate for botl1 prediction error and motion 
overhead, wl1ile keeping certai11 quality of reconstructed frarnes, is the ultimate goal. Properly 
handling the large amounL of velocity vectors is a key issue in tl1is regard. It is note·d that the optical 
llow-based motio11 esti111ation for video compression has been applied for n1any years. However, 
the high bit overl1ead and computational complexity prevent it from practical usage in video coding. 
Wi.th tl1e continued advance in tecl1nologies, however, \Ve believe this problen1 may be resolved in 
the near future . In fact, an, initial, successful attempt has been made and reported by Shi et al. 
( 1998). Tl1ere, based on a study that de,nonstrates that flow vectors are highly correlated and can 
be modeled by a first-order autoregressive (AR) model, the discrete cosine transfor 111 (DCT) is 
applied to flow vectors .. An adaptive threshold technique is developed to match optical flow motion 
prediction and to n1inirnize the residual errors. Consequently, this optical flow-based motion
compens ated video coding algorithm acl1ieves good performance for very low bit rate video coding . 
It obtain s a bit rate c.omp.atible with tl1at obtained by an H.263 standard algorithn1, which uses 
block matching for motion estin1ation. (Note that the video coding standard H.263 is covered in 
Chapter 19.) Further,nore, tl1e reconstructed video frames by using this flow-based algoritl11n are 
free ot· annoying blocking artifacts. This effect is demonstrated in Figure 13.2·0. Note that 
Figure 13.20 (b) has ?ppeared in Figure 11.12, \vhere the same picture is displ.ayed in a larger size 
and the bloc.king artifacts are hence clearer. 

13.6 EXERCIS-ES 

13-1. What is an optical flow field? Wl1at js a 2-D n1otion field? What is tl1e difference between 
the two·? How are tl1ey related to each otl1er'? 

13-2. Whal is an aperture problem? Give two of your own examples . 
13-3. What is the ill-posed problem? Wt1y do we consider n1otion analysis from image 

se.quences ar1 ill-posed problem? 
1-3-4. ls the relationship between the optical flow in an image plane and the velocities of 

objects in 3-D world space necessarily obvious? Justify your ans\.ver. 
13-5. What does the smoothness constraint imply? Why is it required? 
13-6. How are the derivatives of intensity function and the Laplacian of flow components 

estimated in the Horn and. Schunck metl1od?' 
13-7. What are the differences between the Horn and Schunck original method and the . . 

modified Horn and Schunck method? What do you observe fron1 these differe-nces? 
13-8. What is the difference between tl1e smoothness constraint proposed by Horn and 

Schunck and tl1e oriented smootl1n~ss constra.in.t proposed by N"1gel? Provide comme11ts. 
13,-9. In your own words, describe the Singh metl1od. Wl1at is the weighted-least -square 

estjmation technique? 
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FIGURE 13.20 (a) The 2 1st original fraame of the Miss A 111erica sequence; (b) the recon true led 2 1st f ran1e 
with H.263 ; (c) the reconstructed 2 1st frrune \vith the proposed algorithm . 

13-10. In your own \vord s, describe conservatjon inforn1ation and neighborhood infonnatj on. 
Using this per spectiv e, take a new look at the Horn and Schun ck algorithm . 

13-11. How is the feedback techniq ue applied in the P an et al . algori thm? 
13-12. In your own word s, tell the differ ence betw ee n the Singh n1ethod and, the Pan et a l . 

method. 
13-13. Give two o,f your own examples to show that multiple image attribute s are able to red.uce 

ambiguity in image matching. 

13-1.4. How does the Xia and ' Shi method differ from the Weng et al . meth od? 

13-15. How does the Xia and Shl m.ethod diff er from the P an et al. met hod? 
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Further Discussion 

2-D Motion Estimation 

Since Chapter 10, we have been devoting our discussion to motion analysis an.d motion-compen
sated codir1g. Following a general description in CI1apter 10, three major tech11iques block 
matching, pel recursion, and optical flow are covered in Chapters 11, 12, and 13, res pee ti vely. 

Ir1 this chapter, before concluding this subject, we provide furtl1er discussion and a summary. 
A general characterization for 2-D motion estimation, tl1us for all three techniques, is given. in 
Section 14. I. In Section 14.2, different classifications of various methods for 2-D motion analysis 
are given in a wider scope. Section 14.3 is concerned \Vith a perforrnance comparison among the 
three major techniques. More-advanced tecl1niques and ne\v trends in motion analysis and n1otion 
compen sation are introduced in Section 14.4. 

14.1 GENERAL CHARA.CTERIZATION 

A few con1mon features characterizi11g all tl1ree rnajor techniques are discussed in tllis section. 

14.1 .1 APERTURE PROBLEM 

The aperture problem, discussed i.n Chapter 13, describes phenomena tl1at occur when observing 
motion tl1rough a small opening in a flat screen. Tt1at is, one can only observe nonnal velocity. It 
is essentially a form of ill-posed proble111 since il is concerned \vith existence and uniqueness issues, 
as illustrated in Figure l 3.2(a) and (b). This problem is inherent \Vith the optical flo\v technique. 

We note, ho\vever, that tl1e aperture probler11 also exists in block matcl1ing and pel recursive 
techniques. Consider an arecl in an in1age plane having strong intensity gradients. According to our 
discussion in Chapter 13, th·e aperture problem doe-s exist in this area no matter what type of 
technique is applied to determine local n1otior1. That is, r11otion perpendicular to the gradient cannot 
be deter rr1ined as long as only a local measure is utilized. It js noted that, in t·act, the steepest 
descent n1ethod of the pel recursive tecl1nique only updates the esti111ate along the gradient direction 
(Tekal p, 1995). 

· 14.1.2 ILL-POSED INVERSE PROBLEM 

In Chapter 13, when we discuss the optical flow tecl1nique, a few fundatne.ntal issues are raised. It 
is stated tl1at optical flow computation from in1age sequences is a·n invers-e pr,oble1n, wl1ich is usually 
ill-posed. Specifically, tl1ere a·re three problen1s: nonexistence, nonuniqueness, and instability. Tl1at 
is, tl1.e solution may not exist; if it exists, il n1ay not be unique. The solution m-ay not be stable in 
the sense that a small perturbation in tl1e in1age data may cause a huge error in the solution. 

Now we can extend our discussion .to botl1 block matchi11g ana pel recursio11. This is because 
both block n1atching and pel recursive techniques are intended for detern1ining 2-D n1otio11 fron1 
image sequences, a11d are tl1erefore inverse problems. 
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14.1.3 CONSERVATION INFORMATION AND NEIGHBORHOOD INFORMATION 

Because of the ill-posed nature of 2-D motion estimation, a unified point of view regarding various 
optical flo\v algo.rithms is also applicable for block matcl1ing and pel recursive tech11iques. That is, 
all tl1ree m.ajor techniques involve extracting conservation info11nation a11d extracting ·neighborhood 
infom1ation. 

Take a look at the block-111atcl1ing Lecl1nique. There, conservation information is a distribution 
of some sort of features (usually intensity or ·functions of inlensity) 'vvitl1i11 blocks. Neigl1borl1ood 
infor1nation 01anifests itself in tl1at all pixels vvithin a block sl1are tl1e sa111e displacen1e11t. If the 
latter con,strai11t is no.t imposed, block 1natchi11g can11ot. work. One exan1ple is the following extren1e 
case: Consider a block size of 1 x 1, i.e., a block containi11g only a single pixel. It is we:11 known 
that there is no way to estin1ate the motio11 of a pixel whose n1oven1ent is indepencle11L of all its 
neighbors (Horn and Schunck, J 981)·. 

With the ,pel recursive tecl1nique, S·ay, the steepest descent melhod, co11servation i.nforr11ation 
is the intensity of the pixel t·or which the displace1nent vector is to be estin1ated. Neigl1borhood 
info11nation manifests itself as recursively propagating displaceme11t estin1ates to neighbori11g pixels 

• 

(spatially or temporally) as initial estimates. 
In Section 12.3, it is pointed out tl1at Netravali and Robbins suggested a11 al Lernati ve, cal le·d 

"
4inclusion of a neighborhood area." Tl1at is, i11 order to make displacement esti n1atio11 ,nore robust , 
they consider a small neighborhood .0. o·f the pixel for evaluati11g the square of displaced fran1e 
differ.e.nce (DFD) in calculating the upda.te ter111. They assume a constant d.isp]acemenl vector \vithin 
the area . The algorithm thus becomes 

d- k+1 = d- k _ _.!_a"- L DFD2( d- k ) V ~Vi . X , ) ', ; , 
2 ti 

(14. 1) 
i_t ,y eQ. 

where i represents an index for the ith pixel (x, ) ') within Q, and lV; is the weight for the ith pixel 
inn. All the W·eights satisfy certain conditions; i.e., they are nonnegative, a.nd their sum equals 1. 
Obviously, in this more-advanced algorithm, the conservation inforn1atio11 is the intensity distribu
tion within the neighbo(hood of the pixel, the neighborhood informatio11 is imposed more explicitly , 
and it is stronger than that in lh.e steepest descent method. 

14.1.4 OCCLUSION AND DISOCCLUSION 

The problems o,f occlusion and disocclusion make motion estimation more difficult and hence more 
ch:alJenging. Here we give a brief description about these and other related concepts. 

Let u.s. consider Figure 14.1. There, the rectan.gle ABCD represents an object in an image taken 
at the moment of t11_,, f (x, )', !11• 1) . The rectangle EFGH denotes the same object, which has been 
translated, in the image taken at t,, moment, f (x, y, t,,). In the image f (x, y, t11), the area BFDH is 
occluded by the object that oe:wly moves in. On the other hand, inf (x, y, t,,), the area of AECG 
resurfaces and is .referted to .as a new.ly visible area, or a newly exposed area . 

C.learly" when occlusion a11d disocc.lu-sion occ.ur, all three major techniques discussed in this 
gart w.ill enGou.nte1~ a fatal p:roblem, si11ce conservation information may be lost, r11aking motion 
estimation fail in th·e new,Jy exposed. areas. If image frames are taken den,sely enough along tl1e 
temporal dimensjon, however, occlusion and di-socclusion may not cau:5e serious problems ., since 
the· failure in motion estimation may bre restricted. to some limited areas. An extra bit rate paid for 
the corresponding increase in en.coding prediction error is another way to resolve tl1e problem. It· 
higb quality and low bit rate are both desired, then ~Orne special measures have to be taken. 

One of the techniques suitable for handlipg the sittJ&tion is Kalman filtering, which is k.n0wn 
as the best, b·y alm·ost an.y reasonable criterion, technique working in the Gaussian white .noise case 
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FIGURE 14.1 Occlusion and disocclusion. 

(Brown and Hwang , 1992). If we consider the system that estimates the 2-D motion to be contam
inated by GaL1ssia11 white noise, we can use Kalman filtering to increase th,e accuracy of 11;1.otion 
estimation, particularly along motion discontinuities. It is powerful in doing incremental, dynamic, 
and real-time estimation . 

In estimating 3-D motion, Kalman filtering was applied by Matthies et al. (1989) and Pan et al. 
(1994) . Kaln1an filters were also utilized in optical flow computation (Singh, 1992; Pan and Shi, 
1994). In using the Kal1nan filter technique, the question of .how to handle th,e newly exposed areas 
was raised by Mattl1ies et al. ( 1989). Pan et al. (1994) proposed one way to handle this issue, and 
some exper imental work demo11strated. its effectiveness. 

14.1.5 RIGID AND NONRIGID MOTION 

There are two types of motion: rig.id motion and nonrigid motion. Rigid motion refers to motion 
·of rigid objects. It is known that our human vision system is capable of perceiving 2-D projections 
of 3-D moving rigid bodies as 2-D moving rig.id bodies. Most cases in co.111put.er vision are concerned 
with rigid motion. Perhaps this is due to the fact that most applications in co111puter vision fall into 
this category. On the other hand, rigid motion is easier to handle tha11 nonrigid motion. This can 
be seen in the following discussion . 

Cons.ider a point Pin 3-D world space with the coordinates (X,Y, Z), \Vl1ich can be represented 
by a column vector v: 

(14.2) 

Rigid motion involves rotation and translation, and has six free motion parameters . Let R denote 
the rotation matrix and T the translational vector. The coordinates of point Pin the 3-D world after 
the rigid motion are denoted by v'. Then we have 

-, R- T V = V + . (14.3) 

Nonrigid motion is more complicated. It involves deformation in addition to,,rotation and translation, 
and thus cannot be characterized by the above equation. According to the Helmholtz theory 
(Sommetfeld, 1950), the cot1nterpart of the above eqt1ation becomes 

v'=Rv+T+Dv, (14.4) 

where D is a deformation matrix . Note that R~ T, and D are pixel dependent. Handling nonrigid 

motioll, hence, is very complicated. 
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In videophony and videoconferencing applications, a typical scene n1ight be a head-and
shoulder vie\v of a person imposed on a background . Tl1e facial expressio n is nonrigid in nature. 
Model-based facial coding has been studied extensively (Aizawa and Harasl1in1a, l 994~ Li et al., 
1993; Ariza\va and Huang, 1995). There, a 3-D wireframe model is used for t1andling rigid head 
motion. Li ( 1993) analyzes the facial nonrigid motion as a weighted Ii near comb ination of a set of 
acrio11 ,,nits, instead of deter,nining D v directly . Since the nun1ber or act ion units is limited, the 
compuatation becomes less expensive. In the. Aizawa and Harasl1i111a ( 1989) p,1per, the portio11s in 
the human face with rich expression, such as lips, are c1,r and then tra11smitted out. At the receiving 
end, the portions are pasted back in the face. 

An1ong the three types of tecl1niques, block matching may be used to n1anage rigid rnotion, 
while pel recur-sive and optical flow may be used to l1andle either rigid or nonrigid n1otion. 

14.2 DIFFERENT CLASSIFICATIONS 

There are various metl1ods in n1otio11 estimation , \vhicl1 can be classified in n1any different \vays. 
We discuss some of the classifications in this section. 

14.2.1 DETERMINISTIC METHODS VS. STOCHASTIC METHODS 

Most algorithn1s are detern1inistic in nature. To see this, let us take a look at the rnost pron,i nent 
algorithm ·for each of the three 1najor 2-D n1otion estin1ation techniqu es. Tl1at is, the Jair1 and Jain 
algorithm for the block matching technique (Jain and Jain , 198 1); the Netravali and Robbins 
algorithm for the pel recursive technique (Netravali and Robbins, 1979); and the Horn and Scl1unck 
algorithm for the optical flo\v technique (Horn and Scl1unck, 1981 ). Al] arc dcten11inistic methods . 
There are also stochastic methods in 2-D motion estj111ation, such as the Konrad and Dubois 
algorithm (Konrad and Dubois , 1992), \vhich estimates 2-:D 1notior1 using tl1e n1aximurn a po srerio 1·i 

probability (MAP)~ 

14.2.2 SPATIAL DOMAIN METHODS vs. FRE.QUENCY DOMAIN METHODS 

While most techniques in 2-D motion analysis are spatial domai11 methods, there are also frequency 
domain methods (Kughlin and Hines , 1975; Heeger, J 988; Porat and Fried lander, 1990; Girod, 
1993; Kojima et al., 1993; Koc and Liu, 1998). Reeger (1988) developed a n1ethod to deter1nine 
optical flow in the frequency don1ain, wl1ich is based on spatiote.mporal filters. The basic idea and 
principle of the method is introduced in this subsection. A very new and effective frequency method 
for 2-D motion analysis (Koc and Liu, 1998) is presented in Section I 4.4, where we discuss new 
trends in 2-D motio,n estimation. 

14.2.2.1 Optical Flo,w Determination Using Gabor Energy Filters 

The freq,uency domain method of optical flow computation developed by Heeger .is suitable for 
highly textured image sequences. First, let us take a look at how motion can be detected in the 
frequency domain. 

Motion in th·e spatiotemporal frequency do.main We initiate our discussion with a 1-D case ·. 
The spatial 'frequency of a (tran.slationally) moving sinusoidal signal, w.c, is defined as cycles per 
distance (usually cycles per pixel), whil'e temporal frequency,ro,, is defined as cycles per time unit 
(usually cycles per frame). Hence, the velocity of (translational) motion, defined as distance per 
time un,it ~usually pixels per frame), can be related to the spatial and ten1poral frequencies as follows. 

V = ro,/ro.r. ( J 4.5) 
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