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Consequently, this scheme is capable of achieving high accuracy in motion estimation, and at the
same time it does not cause a large increase in side information due to the motion field segmentation.

Another key issue is how to achieve a reconstructed motion field with pixel resolution along
moving boundaries. In order to avoid extra motion vectors that need to be encoded and transmitted,
the motion vectors applied to these segmented regions in the areas of motion discontinuity are
selected from a set of neighboring motion vectors. As a result, the proposed technique is capable
of reconstructing discontinuities in the motion field at pixel resolution while maintaining the same
amount of motion vectors as the conventional block matching technique.

A number of algorithms using this type of motion field segmentation technique have been
developed and their performance has been tested and evaluated on some real video sequences
(Orchard, 1993). Two of the 40-frame test sequences used were the “Table Tennis” and the
“Football” sequences. The former contains fast ball motion and camera zooming, while the latter
contains small objects with relatively moderate amounts of motion and camera panning. Several
proposed algorithms were compared with conventional block matching in terms of average pixel
prediction error energy and bits per frame required for coding prediction error. For the average
pixel prediction error energy, the proposed algorithms achieve a significant reduction, ranging from
—0.7 to 2.8 dB with respect to the “Table Tennis™ sequence, and from —1.3 to —4.8 dB with the

“Football” sequence. For bits per frame required for coding prediction error. a reduction of 20 to
30% was reported.

11.6.4 OvVerLAPPED BLOCK MATCHING

All the techniques discussed so far in this section aim at more reliable motion estimation. As a
result, they also alleviate annoying block artifacts to a certain extent. In this subsection we discuss
a group of techniques, termed overlapped block matching, developed to alleviate or eliminate block
artifacts (Watanabe, 1991; Nogaki and Ohta, 1992; Auyeung et al., 1992).

The idea is to relax the restriction of a nonoverlapped block partition imposed in the block-
pased model 1n block matching. After the nonoverlapped, fixed size, small rectangular block
partition has been made, each block is enlarged along all four directions from the center of the
block. Refer to Figure 11.21. Both motion estimation (block matching) and motion-compensated
prediction are conducted in the same manner as that in block matching except for the inclusion of

an original non-overlapped block estimated motion vector

a n¢ighboring non-overlapped block

an enlarged ! :
target block 2 neighboring overlapped block j
l best matched enlarged block
(a) frameatt, (b) frameatt,

FIGURE 11.21 Overlapped block matching.
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a window function. That is, a 2-D window function is utilized in order to maintain an appropriate
quantitative level along the overlapped portion. The window function decays towards the bound-
aries. In (Nogaki and Ohta, 1992) a sine-shaped window function was used.

Next, we use the algorithm proposed by Nogaki and Ohta as an example to specifically illustrate
this type of technique. Consider one of the enlarged, overlapped original (also known as target)
blocks, T(x,y), with a dimension of [ x [. Assume that a vector v, 1s one of the candidate displacement
vectors under consideration. The predicted version of the target block with v, is denoted by v,, E.
(x, y). Thus, the prediction error with v, E, (x,y) can be calculated according to the following
equation

E, (x,y)= P, (x,y)=T(x,y) (11.8)

The window function W(x, y) is applied at this stage as follows, resulting in a window-operated
prediction error with v, WE, .

WE, (1 _}') = Er! (.r,_';r) X W(.r,y) (11.9)

Assume that the MAD is used as the matching criterion. It can then be determined as usual by
using the window-operated prediction error WE, (x, y). That is,

MApzl—lz-i ingh(,r_}:)‘. (11.10)

=] y=I

The best match, which corresponds to the minimum MAD, produces the displacement vector v.

In motion-compensated prediction, the predicted version of the enlarged target block, P, (x, y)
1s derived from the frame at . by using estimated vector v. The same window function W (X, y)
is used (o generate the final window-operated predicted version of the target block. That is,

WP (x,y)= P(x,y) x W(x,y) (11.11)

It was reported by Nogaki (1992) that the luminance signal of an HDTV sequence was used
In computer simulation. A block size of 16 x 16 was used for conventional block matching, while
a block size of 32 x 32 was employed for the proposed overlapped block matching. The maximum
displacement range d was taken as d = 15, i.e., from —15 to +15 in both the horizontal and vertical
directions. The simulation indicated a reduction in the power of the prediction error by about 19%.
Subjectively, it was observed that the blocking edges originally existing in the prediction error
signal with conventional block matching was largely removed with the proposed overlapped block

matching technique.

11.7 SUMMARY

By far, block matching is used more frequently than any other motion estimation technique in
motion-compensated coding. By partitioning a frame into nonoverlapped, equally spaced, fixed
size, small rectangular blocks and assuming that all the pixels in a block experience the same
translational motion, block matching avoids the difficulty encountered in motion estimation of
arbitrarily shaped blocks. Consequently, block matching is much simpler and involves less side
information compared with motion estimation with arbitrarily shaped blocks.
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Although this simple model considers translation motion only, other types of motions, such as
rotation and zooming of large objects, may be closely approximated by the piecewise translation
of these small blocks, provided that these blocks are small enough. This important observation,
originally made by Jain and Jain, has been confirmed again and again since then.

Various issues related to block matching such as selection of block sizes, matching criteria,
search strategies, matching accuracy, and its limitations and improvements are discussed in this
chapter. Specifically, a block size of 16 X 16 1s used most often. For more accurate motion estimation,
the size of 8 x 8 is used sometimes. In the latter case, more accurate motion estimation is obtained
at the cost of more side information and higher computational complexity.

There are several different types of matching criteria that can be used 1n block matching. Since
it was shown that the different criteria do not cause significant differences in block matching, the
mean absolute difference is hence preferred due to its simplicity in implementation,

On the one hand, a full-search procedure delivers good accuracy 1n searching for the best match.
On the other hand, it requires a large amount of computation. In order to lower computational
complexity, several fast searching procedures were developed: 2-D logarithmic search, coarse-fine
three-step search, and conjugate direction search, to name a few.

Besides these suboptimum search procedures, there are some other measures developed 10
lower computation. One of them is subsampling in the original blocks and the correlation windows.
By subsampling, the computational burden in block matching can be reduced drastically, while the
accuracy of the estimated motion vectors may be affected. Therefore, the subsampling procedure
1S only recommended for the case with a large block size.

Naturally, the multiresolution structure, a powerful computational configuration in 1mage pro-
cessing, lends itself well to a fast search in block matching. Tt significantly reduces the computations
involved. Thresholding multiresolution block matching further saves computation.

In terms of matching accuracy, several common choices are one-pixel, half-pixel, and quarter-
pixel accuracies. Spatial interpolation is usually required for half-pixel and quarter-pixel accuracies.
That 1s, a higher accuracy is achieved with more computation.

Limitations with block matching techniques are mainly an unreliable motion vector field and
block artifacts. Both are caused by the simple model: each block is assumed o experience a uniform
translation. Much efforts have been made to improve these drawbacks. Several techniques that are
an improvement over the conventional block matching technique are discussed in this chapter.

In the hierarchical block matching technique, a set of different sizes for both the original block
and the correlation window are used. The first level in the hierarchy with a large window size and
a large displacement range determines a major portion of the displacement vector reliability. The
successive levels with smaller window sizes and smaller displacement ranges are capable of
adaptively estimating motion vectors more locally.

The multigrid block matching technique uses multigrid structure, another powerful computa-
tional structure in image processing, to provide a variable size block matching. With a split-and-
merge strategy, the thresholding multigrid block matching technique segments an image 1nto a sel
of variable size blocks, each of which experiences an approximately uniform motion. A tree structure
(bin-tree or quad-tree) is used to record the relationship between these variable size blocks. With
the flexibility provided through the variable-size methodology, the thresholding block matching
technique is capable of making the motion model of the uniform motion within each block more
accurate than fixed-size block matching can do.

As pointed out in Chapter 10, the ultimate goal of motion compensation in video coding 1s 1O
achieve a high coding efficiency. In other words, accurate true motion estimation is not the final
goal. From this point of view, in the above-mentioned multigrid block matching, the decision of
splitting a block is made only when the bits used to encode extra motion vectors involved in the
splitting are less than the bits saved from encoding reduced prediction error due to more accx_lra_lf:
estimation. To this end, an adaptive entropy criterion is proposed and used in the optimal multigrid
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block matching technique. Not only is it optimal in the sense of bit saving, but it also eliminates
the need for setting a threshold.

Apparently the block-based model encounters a more severe problem along moving boundaries.
To solve the problem, the predictive motion field segmentation technique make the blocks involving
moving boundaries have the motion field measured with pixel resolution instead of block resolution.
In order to save shape overhead, segmentation is carried out backwards, i.e., based on previously
decoded frames. In order to avoid a large increase of side information associated with extra motion
vectors, the motion vectors applied to these segmented regions along moving boundaries are selected
from a set of neighboring motion vectors. As a result, the technique is capable of reconstructing
discontinuities in the motion field at pixel resolution while maintaining the same amount of motion
vectors as the conventional block matching technique.

The last improvement over conventional block matching discussed in this chapter is overlapped
block matching. In contrast to dealing with blocks independently of each other, the overlapped
block matching technique enlarges blocks so as to make them overlap. A window function is then
constructed and used in both motion estimation and motion compensation. Because it relaxes the
restriction of a nonoverlapped block partition imposed by conventional block matching, it achieves
better performance than the conventional block matching.

11.8 EXERCISES

11-1. Refer to Figure 11.2. It is said that there are a total of (2d + 1) X (2d + 1) positions that
need Lo be examined in block matching with {full search if one-pixel accuracy 1s required.
How many positions are there that need to be exmined in block matching with full
search if half-pixel and quarter-pixel accuracies are required?

11-2.  What are the two effects that subsampling in the original block and the correlation block
may bring out?

11-3. Read Burt and Adelson (1983) or Burt (1984), and explain why the pyramid is named
alter Gauss.

11-4. Read Burt and Adelson (1983) or Burt (1984), and explain why a pyramid structure 1s
considered as a powerful computational configuration. Specifically, in multiresolutional
block matching, how and to what extent does it save computation dramatically, compared
with the conventional block matching technique? You may want to refer to
Section 11.3.7.

11-5. How is the threshold determined in the thresholding multidimensional block matching
technique (refer to Section 11.3.7). It is said that the square root of the MSE value,
derived from the given PSNR according to Equation 11.6, is used as an initial threshold
value. Justify the necessity of the square root operation.

11-6. Refer to Section 11.6.1 or the paper by Bierling (1988). State the different requirements
in the applications of motion-compensated interpolation and motion-compensated cod-
ing. Discuss where a full resolution of the translational motion vector field may be used?

11-7. Read the paper Dufaux and Moscheni (1995), and explain the main feature of optimal
multigrid block matching. State how the adaptive entropy criterion 1s established. Imple-
ment the algorithm and compare its performance with that presented by Chan et al.
(1990).

11-8. Learn the predictive motion field segmentation technique (Orchard, 1993). Explain how
the algorithms avoid a large increase in overhead due to motion field segmentation.

11-9. Implement the overlapped block matching algorithm introduced by Nogaki (1992).
Compare its performance with that of the conventional block matching technique.
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2 Pel Recursive Technique

As discussed in Chapter 10, the pel recursive technique is one of the three major approaches to
two-dimensional displacement estimation in image planes for the signal processing community.
Conceptually speaking, it is one type of region-matching technique. In contrast to block matching
(which was discussed in the previous chapter), it recursively estimates displacement vectors for
each pixel in an image frame. The displacement vector of a pixel is estimated by recursively
minimizing a nonlinear function of the dissimilarity between two certain regions located in two
consecutive [rames. Note that region means a group of pixels, but it could be as small as a single
pixel. Also note that the terms pel and pixel have the same meaning. Both terms are used [requently
in the field of signal and image processing.

This chapter is organized as follows. A general description of the recursive technique is provided
in Section 12.1. Some fundamental techniques in optimization are covered in Section 12.2.
Section 12.3 describes the Netravali and Robbins algorithm, the pioneering work in this category.
Several other typical pel recursive algorithms are introduced in Section 12.4. In Section 12.5, a
performance comparison between these algorithms is made.

12.1 PROBLEM FORMULATION

In 1979 Netravali and Robbins published the first pel recursive algorithm to estimate displacement
vectors for motion-compensated interframe image coding. Netravali and Robbins (1979) defined a

quantity, called the displaced frame difference (DFD), as follows.

DFD(_x,y;dI,dJ_) = f'”(.r,y)—j;_l(_r—a'_r,y-dj_), (12.1)

where the subscript n and n — | indicale two moments associated with two successive frames based
on which motion vectors are to be estimated; x, y are coordinates in image planes, d,, d, are the
(WO components of the displacement vector, d. along the horizontal and vertical dij*eclions_ In the
image planes, respectively. DFD(x, y; d,, d,) can also be expressed as DFD(x, y; d. Whenever it
does not cause confusion, it can be written as DFD for the sake of brevity. Obviously, il there is
no error in the estimation, i.c., the estimated displacement vector is exactly equal to the true motion

vector, then DFD will be zero.
A nonlinear function of the DFD was then proposed as a dissimilarity measure Dy Netravali

and Robbins (1979), which is a square function of DFD, 1.e., DFD->.

Netravali and Robbins thus converted displacement estimation into a minimization problem.
That is, each pixel corresponds 1o a pair of integers (x, y), denoting its spatial posilion_in the image
plane. Therefore, the DFD is a function of . The estimated displacement vector d =ids; dﬁ,‘.)"'",
where ( )7 denotes the transposition of the argument vector or matrix, can be determined by
minimizing the DFD?2. This is a typical nonlinear programming problem, on which a large body
of research has been reported in the literature. In the next section, several techniques that rely on
a method, called descent method, in optimization are introduced. The Netravali and Robbins
algorithm can be applied to a pixel once or ileratively applied several times for displacement
estimation. Then the algorithm moves to the next pixel. The estimated displacement vector of a
pixel can be used as an initial estimate for the next pixel. This recursion can be carried out

251

IPR2021-00827
Unified EX1008 Page 277



252 Image and Video Compression for Multimedia Engineering

0—0—0—0—0—0—Q—0 O O 0 O
(x, y)
-—0O—0—0—0—0—L0=0 & Q €& 0
(x+1.y)
oO—O0—0+»0 0 O O O 0 O 0O O
(% y) (xy+1)
O O O Q O 06 0 0 O O O 0O
O O O 0 0 0O 0O O O O O O O
O 0 0 0 0 0 0 0O O O O O O
O © 0 0O 0 0 © 0 0 Q O OO O
l O & 0O 0 O O & 0O O Q0 O O O
(a) Honizontal (b) Vertical

(c) Temporal

FIGURE 12.1 Three types of recursions; (a) horizontal; (b) vertical; (¢) temporal.

horizontally, vertically, or temporally. By temporally, we mean that the estimated displacement
vector can be passed to the pixel of the same spatial position within image planes in a temporally
neighboring frame. Figure 12.1 illustrates these three different types of recursion.

12.2 DESCENT METHODS

Consider a nonlinear real-valued function z of a vector variable X,

2= £(%). (12:2)

with X € R", where R” represents the set of all n-tuples of real numbers. The question we face now
is how to find such a vector denoted by X* that the function z is minimized. This is classified as
an unconstrained nonlinear programming problem.

12.2.1 FirsT-ORDER NECESSARY CONDITIONS

According to the optimization theory, if f(X) has continuous first-order partial derivatives, then the
first-order necessary conditions that x* has to satisfy are

Vf(x") =0, (12.3)
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where V denotes the gradient operation with respect to ¥ evaluated at ¥*. Note that whenever there
1s only one vector variable in the function z to which the gradient operator is applied, the sign V
would remain without a subscript, as in Equation 12.3. Otherwise, i.e., if there is more than one
vector variable in the function, we will explicitly write out the variable, to which the gradient

operator is applied, as a subscript of the sign V. In the component form, Equation 12.3 can be
expressed as

of (¥) 0
ox, .
I _,
| ox, (12.4)
of (%)
L a.l'” —O

12.2.2 SecoND-OrDER SUFFICIENT CONDITIONS

If F(x) has second-order continuous derivatives, then the second-order sufficient conditions for
F(Xx*) to reach the minimum are known as

Vf(%7)=0 (12.5)
and
H(_f') > (0, (12.6)
where H denotes the Hessian matrix and is defined as follows.
(2 f(x)  f(X) 2 f(x)
2.1'| 8,1'13,1'2 axlax"
’f(x) () 9*f(%)
H(:)=| 3xar, o', 01, (127
If(x) () 2*f(%)
| 0x 0x, ox, ox, ajxn !

We can thus see that the Hessian matrix consists of all the second-order partial derivatives of f'with
respect to the components of x. Equation 12.6 means that the Hessian matrix H is positive definite.

12.2.3 UNDERLYING STRATEGY

Our aim is to derive an iterative procedure for the minimization. That is, we want to find a sequence

(12.8)

xﬂ’xl"rz’...“r”'“.’

such that

£(%)> f(7)> f(%,)>-> f(%,) > (12.9)

and the sequence converges to the minimum of f(%), f(x¥).
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2

FIGURE 12.2 Descent method.

A fundamental underlying strategy for almost all the descent algorithms (Luenberger, 1984) 1s
described next. We start with an initial point in the space; we determine a direction 10 move
according to a certain rule; then we move along the direction to a relative minimum of the function
z. This minimum point becomes the initial point for the next iteration.

This strategy can be better visualized using a 2-D example, shown in Figure 12.2. There, X =
(x,, x,)". Several closed curves are referred to as contour curves or level curves. That is, each of
the curves represents

flx.x)=¢ (12.10)

with ¢ being a constant.
Assume that at the kth iteration, we have a guess: . For the (k + I)th iteration, we need to

* Find a search direction, pointed by a vector @*;
* Determine an optimal step size o* with o > 0,

such that the next guess x**! is

X=X (12.11)

and x**! satisfies f(x*) > f(x*)).
In Equation 12.11, ¥* can be viewed as a prediction vector for ¥**!, while o @" an update
vector, v*. Hence, using the Taylor series expansion, we can have

()= £(34)+(Vf(F*) ot@" ) +e, (12.12)

-

where (s, f) denotes the inner product between vectors § and f; and € represents the higher-order
terms in the expansion. Consider that the increment of o @* is small enough and, thus, € can be

ignored. From Equation 12.10, it is obvious that in order to have f(x*!) < F(x*) we must have
(Vf (x5, o*f®*) < 0. That is,

F(E) < £(%4) = (Vf(%*) ot ) < 0 (12.13)
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Choosing a different update vector, i.c., the product of the @ vector and the step size o, results
in a different algorithm in implementing the descent method.

In the same category of the descent method, a variety of techniques have been developed. The
reader may refer to Luenberger (1984) or the many other existing books on optimization. Two
commonly used techniques of the descent method are discussed below. One is called the steepest
descent method, in which the search direction represented by the @ vector is chosen to be opposite
to that of the gradient vector, and a real parameter of the step size o is used; the other is the
Newton—Raphson method, in which the update vector in estimation, determined jointly by the
search direction and the step size, is related to the Hessian matrix, defined in Equation 12.7. These
two techniques are further discussed in Sections 12.2.5 and 12.2.6, respectively.

12.2.4 CONVERGENCE SPEED

Speed of convergence is an important issue in discussing the descent method. It is utilized to
evaluate the performance of different algorithms.

Order of Convergence — Assume a sequence of vectors { ¥}, with k =0, 1, -+, oo, converges (o
a mimimum denoted by x*. We say that the convergence is ol order p if the following formula
holds (Luenberger, 1984):

0 < 1Mt - ‘<m, (12.14)

where p is positive, lim denotes the limit superior, and | | indicates the magnitude or norm of a
vector argument. For the two latter notions, more descriptions follow.

The concept of the limit superior is based on the concept of supremum. Hence, let us first
discuss the supremum. Consider a set of real numbers, denoted by Q, that is bounded above. Then
there must exist a smallest real number o such that for all the real numbers in the set Q, i.e., g €
Q, we have ¢ < 0. This real number o is referred to as the least upper bound or the supremum of

the set Q, and is denoted by

sup{g:ge Q} or sup_,(q). (12.15)

Now turn to a real bounded above sequence r*, k= 0,1, 0. [f s* = sup{s/: j 2 k}, then the sequence
(s*} converges 1o a real number s*. This real number s* is referred to as the limit superior of the

sequence {r*} and is denoted by

limm=(r"). (12.16)
The magnitude or norm of a vector ¥, denoted by [x|, is defined as
7| = (%, ), (12.17)

where (s, 7) is the inner product between the vector s and 7. Throughout this discussion, when we
say vector we mean column vector. (Row vectors can be handled accordingly.) The mner product

1S therefore defined as

(12.18)
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with the superscript 7 indicating the transposition operator.

With the definitions of the limit superior and the magnitude of a vector introduced, we are now
in a position to understand easily the concept of the order of convergence defined in Equation 12.14.
Since the sequences generated by the descent algorithms behave quite well in general (Luenberger,
1984), the limit superior is rarely necessary. Hence, roughly speaking, instead of the limit superior,
the limit may be used in considering the speed of convergence.

Linear Convergence — Among the various orders of convergence, the order of unity is of
importance, and is referred to as linear convergence. Its definition is as follows. If a sequence { ¥*},
k=0,1,:--,00, converges to x* with

.....-_l'
lim,_ |fi_f.| =y <l (12.19)

— A+ —
r

then we say that this sequence converges linearly with a convergence ratio y. The linear convergence
1S also referred to as geomeltric convergence because a linear convergent sequence with convergence
ratio y converges to its limit at least as fast as the geometric sequences ¢y*, with ¢ being a constant.

12.2.5 Steerest Descent METHOD

The steepest descent method, often referred to as the gradient method, is the oldest and simplest
one among various techniques in the descent method. As Luenberger pointed out in his book, it
remains the fundamental method in the category for the following two reasons. First, because of
its simplicity, it is usually the first method attempted for solving a new problem. This observation
1S very true. As we shall see soon, when handling the displacement estimation as a nonlinear
programming problem in the pel recursive technique, the first algorithm developed by Netravali
and Robbins is essentially the steepest descent method. Second, because of the existence of a
satisfactory analysis for the steepest descent method, it continues to serve as a reference for
comparing and evaluating various newly developed and more advanced methods.

Formula — In the steepest descent method, @ is chosen as

®=-Vf(x"), (12.20)

resulting in

fZ*)= f(3*) - o vr (%), (12.21)

where the step size o* is a real parameter, and, with our rule mentioned before, the sign V here
denotes a gradient operator with respect to x*. Since the gradient vector points to the direction
along which the function f(X) has greatest increases, it is naturally expected that the selection of
the negative direction of the gradient as the search direction will lead to the steepest descent of
f(x). This is where the term steepest descent originated.

Convergence Speed — It can be shown that if the sequence { ¥} is bounded above, then the steepest
descent method will converge to the minimum. Furthermore, it can be shown that the steepest
descent method is linear convergent.

Selection of Step Size — It is worth noting that the selection of the step size o has significant
influence on the performance of the algorithm. In general, if it is small, it produces an accurate
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A f(x)
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FIGURE 12.3 An illustration of effect of selection of step size on minimization performance. Too small o
requires more steps to reach x*. Too large o may cause overshooting.

estimate of X*. But a smaller step size means it will take longer for the algorithm to reach the
minimum. Although a larger step size will make the algorithm converge faster, it may lead to an
estimate with large error. This situation can be demonstrated in Figure 12.3. There, for the sake of
an easy graphical illustration, ¥ is assumed to be one dimensional. Two cases of too small (with

subscript 1) and too large (with subscript 2) step sizes are shown for comparison.

12.2.6 NewTON-RAPHSON'S METHOD
The Newton-Raphson method is the next most popular method among various descent methods.

Formula — Consider ©* at the kth iteration. The k + 1th guess, x¥**', is the sum of x* and ¥¥,
49" (12.22)

where 7* is an update vector as shown in Figure 12.4. Now expand the x¥**' into the Taylor series
explicitly containing the second-order term.

f(,fn«-)_f(,a; )+(Vf,v)+5<H(.1 )v,v>+(p, (12.23)

where ¢ denotes the higher-order terms, V the gradient, and H the Hessian matrix. If v 1s small
enough, we can ignore the ¢. According to the first-order necessary conditions for x**! to be the

minimum, discussed in Section 12.2.1, we have

V.f(7*+7)=Vf(z*)+H(z" )7 =0, (12.24)

FIGURE 12.4 Derivation of the
Newton—Raphson method.
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where V_ denotes the gradient operator with respect to v. This leads to
v =-H"(3*)Vf(x*). (12.25)

The Newton—Raphson method is thus derived below.

f(x") = f(x4)-H" () vr(x*). (12.26)

Another loose and intuitive way to view the Newton—Raphson method 1s that 1ts format 1s similar
to the steepest descent method, except that the step size ¢* 1s now chosen as H™' (x*), the inverse
of the Hessian matrix evaluated at x*,

The idea behind the Newton—Raphson method is that the function being minimized 1s approx-
imated locally by a quadratic function and this quadratic function is then minimized. It is noted
that any function will behave like a quadratic function when it is close to the minimum. Hence,
the closer to the minimum, the more efficient the Newton—Raphson method. This 1s the exact
opposite of the steepest descent method, which works more efficiently at the beginning, and less
efficiently when close to the minimum. The price paid with the Newton—Raphson method is the
extra calculation involved in evaluating the inverse of the Hessian matrix at x*.

Convergence Speed — Assume that the second-order sufficient conditions discussed In
Section 12.2.2 are satisfied. Furthermore, assume that the initial point ¥V is sufficiently close 10
the minimum x*. Then it can be shown that the Newton—-Raphson method converges with an order
of at least two. This indicates that the Newton—-Raphson method converges faster than the steepest
descent method.

Generalization and Improvements — In Luenberger (1984), a genecral class of algorithms 1s
defined as

— k+l

X :f"-a"GVf(E“), (12.27)

where G denotes an n X n matrix, and o a positive parameter. Both the steepest descent method
and the Newton—-Raphson method fall into this framework. It is clear that if G is an n X n identical
matrix I, this general form reduces to the steepest descent method. If G = H and o = | then this
1s the Newton—-Raphson method.

Although it descends rapidly near the solution, the Newton—Raphson method may nol descend
for points far away from the minimum because the quadratic approximation may not be valid there.
The introduction of the o, which minimizes f, can guarantee the descent of f at the general points.
Another improvement is to set G = [(I + H(3%)]"' with { > 0. Obviously, this is a combination of
the steepest descent method and the Newton-Raphson method. Two extreme ends are that the
steepest method (very large C*) and the Newton—-Raphson method (C* = 0). For most cases, the
selection of the parameter C* aims at making the G matrix positive definite.

12.2.7 OTHER METHODS

There are other gradient methods such as the Fletcher—Reeves method (also known as the conjug“fe
gradient method) and the Fletcher-Powell-Davidon method (also known as the variable metric
method). Readers may refer to Luenberger (1984) or other optimization text.

12.3 THE NETRAVALI-ROBBINS PEL RECURSIVE ALGORITHM

Having had an introduction to some basic nonlinear programming theory, we now turn to the pel
recursive technique in displacement estimation from the perspective of the descent methods. Let
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us take a look at the first pel recursive algorithm, the Netravali-Robbins pel recursive algorithm.
[tactually estimates displacement vectors using the steepest descent method to minimize the squared

DFED. That is,

Uy "l 3 a
d*' =d* -~ oV, DFD (x.y.d*). (12.28)

where V ;DFD?(x, y, d*) denotes the gradient of DFD? with respect to d evaluated at d*, the
displacement vector at the kth iteration, and o is positive. This equation can be further written as

d*¥h= g% o L"LDFD(J,}*,J "')VJ DFD(I, Y, d* ) (12.29)

A a result of Equation 12.1, the above equation leads (o

d** =d* - CtDFD(x, y, d"* )VH T (,1' —id. Y~ d}_), (12.30)

where V,  means a gradient operator with respect to x and y. Netravali and Robbins (1979) assigned
a constant of '/lnli O O, i.C., 's"]nzq.

12.3.1 INcLUSION OF A NEIGHBORHOOD AREA

To make displacement estimation more robust, Netravali and Robbins considered an area for
evaluating the DFD? in calculating the update term. More precisely, they assume the displacement
vector is constant within a small neighborhood Q of the pixel for which the displacement is being
estimated. That is,

e e ) O - L
A4 __ R ’ ANl s xg) e
d" =d —Z{ZW"IF E n,.DfD (.1,),,{1 ), (12.31)

iox.v,efd

where i represents an index for the ith pixel (v, y) within € and w, is the weight for the ith pixel
in €. All the weights satisfy the following two constraints.

[ w20 (12.32)
Y =1, (12.33)
liEﬂ

This inclusion of a neighborhood area also explains why pel recursive technique is classified 1nto
the category of region-matching techniques as we discussed at the beginning of this chapter.

12.3.2 INTERPOLATION

It 1s noted that interpolation will be necessary when the displacement vector components d. and
d, are not integer numbers of pixels. A bilinear interpolation technique 1s used by Netravali and

Robbins (1979). For the bilinear interpolation, readers may refer to Chapter 10.

12.3.3  SIMPLIFICATION

To make the proposed algorithm more efficient in computation, Netravali and Robbins also proposed
simplified versions of the displacement estimation and interpolation algorithms in their paper.
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One simplified version of the Netravali and Robbins algorithm is as follows:

d**' =d* - asign{ DFD(x,,d* )|sign{V, £, ,(x~d,.y~d,)}. (12.34)

X0

where sign{s} =0, 1, =1, depending on s =0, s > 0, 5 < 0, respectively, while the sign of a vector
quantity is the vector of signs of its components. In this version the update vectors can only assume
an angle which is an integer multiple of 45°. As shown in Netravali and Robbins (1979), this version
i1s effective.

12.3.4 PERFORMANCE

The performance of the Netravali and Robbins algorithm has been evaluated using computer
simulation (Netravali and Robbins, 1979). Two video sequences with different amounts and different
types of motion are tested. In either case, the proposed pel recursive algorithm displays superior
performance over the replenishment algorithm (Mounts, 1969; Haskell, 1979), which was discussed
briefly in Chapter 10. The Netravali and Robbins algorithm achieves a bit rate which is 22 to 50%
lower than that required by the replenishment technique with the simple frame difference prediction.

12.4 OTHER PEL RECURSIVE ALGORITHMS

The progress and success of the Netravali and Robbins algorithm stimulated great research interests

in pel recursive techniques. Many new algorithms have been developed. Some of them are discussed
In this section.

12.4.1 THe BERGMANN ALGORITHM (1982)

Bergmann modified the Netravali and Robbins algorithm by using the Newton—Raphson method
(Bergmann, 1982). In doing so, the following difference between the fundamental framework of
the descent methods discussed in Section 12.2 and the minimization problem in displacement
estimation discussed in Section 12.3 need to be noticed. That is, the object function f( x) discussed
in Section 12.2 now becomes DFD?(x, y, d). The Hessian matrix H, consisting of the second-order
partial derivatives of the f(x) with respect to the components of ¥ now become the second-order

derivatives of DFD? with respect to d, and d.. Since the vector « is a 2-D column vector now, the
H matrix i1s hence a 2 X 2 matrix. That is,

_aEDFDE(x,y,Ef) aEDFDE(.r,y,&)-
o*d dd dd
= x i 12.35)
5 0’DFD*(x,y,d) ~ 3'DFD*(x,y,d) | |
l_ dd,dd, azd}_

As expected, the Bergmann algorithm (1982) converges to the minimum faster than the steepest
descent method since the Newton—-Raphson method converges with an order of at least two.

12.4.2 THe BERGMANN ALGORITHM (1984)

Based on the Burkhard and Moll algorithm (Burkhard and Moll, 1979), Bergmann developed an
algorithm that is similar to the Newton—Raphson algorithm. The primary difference is that an
average of two second-order derivatives is used to replace those in the Hessian matrix. In this sense,
it can be considered as a variation of the Newton-Raphson al gorithm.
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12.4.3 THe CAFFORIO AND ROCCA ALGORITHM

Based on their early work (Cafforio and Rocca, 1975), Cafforio and Rocca proposed an algorithm
in 1982, which is essentially the steepest descent method. That is, the step size o is defined as
follows (Cafforio and Rocca, 1982):

B 1
[ |Vj:,_| (J: —=a., y— dr)

o : (12.36)

P2
+1

with n? = 100. The addition of 112 is intended to avoid the problem that would have occurred in a
uniform region where the gradients are very small.

12.4.4 TuHe WALKER AND RAO ALGORITHM

Walker and Rao developed an algorithm based on the steepest descent method (Walker and Rao,
1984; Tekalp, 1995), and also with a variable step size. That is,

o= 5 (12.37)
2|V, \(x—d,y-d,)
where
( BT L R
{Vﬂ,_,(x—d_,‘,,y—dv)r= o, (2 ajjo d,) y o, (x ajﬂ) d,) Mo
\ ‘ 2 X 4 J

It is observed that this step size is variable instead of being a constant. Furthermore, this variable
step size is reverse proportional to the norm square of the gradient of f,_, (x — d,, y — d,) with
respect 1o x, y. That means this type of step size will be small in the edge or rough area, and will
be large in the relatively smooth area. These features are desirable.

Although it is quite similar to the Cafforio and Rocca algorithm, the Walker and Rao algorithm
differs in the following two aspects. First, the o is selected differently. Second, implementation of
the algorithm is different. For instance, instead of putting an 12 in the denominator of ¢, the Walker

and Rao algorithm uses a logic. ‘
As a result of using the variable step size 0, the convergence rate is improved substantially.
This implies fast implementation and accurate displacement estimation. It was reported that usually
one to three iterations are able to achieve quite satisfactory results in most cases. _
Another contribution is that the Walker and Rao algorithm eliminates the need to transmit

explicit address information to bring out higher coding efficiency.

12.5 PERFORMANCE COMPARISON

A comprehensive survey of various algorithms using the pel recursive technique can be found 1n
a paper by Musmann, Pirsch, and Grallert (1985). There, two performance features are compared
among the algorithms. One is the convergence rate and hence the accuracy Gf dlsplacem-em
estimation. The other is the stability range. By stability range, we mean a range starting from which
an algorithm can converge to the minimum of DFD?, or the true displacement t.rector. | |
Compared with the Netravali and Robbins algorithm, those improved algorithms dlscus‘.fsed In
the previous section do not use a constant step size, thus providing better adaptation to local image
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TABLE 12.1
Classification of Several Pel Recursive Algorithms

Category | Category Il
Algorithms Steepest Descent Based Newton-Raphson Based

Netravali and Robbins  Steepest descent

Bergmann (1982) Newton-Raphson

Walker and Rao Variation of steepest descent

Cafforio and Rocca Varniation of steepest descent

Bergmann (1984) Variation of Newton—Raphson

statistics. Consequently, they achieve a better convergence rate and more accurate displacement
estimation. According to Bergmann (1984) and Musmann et al. (1985), the Bergmann algorithm
(1984) performs best among these various algorithms in terms of convergence rate and accuracy.

According to Musmann et al. (1985), the Newton—Raphson algorithm has a relatively smaller
stability range than the other algorithms. This agrees with our discussion in Section 12.2.2. That
1S, the performance of the Newton—Raphson method improves when i1t works in the area close (o
the minimum. The choice of the initial guess, however, is relatively more restricted.

12.6 SUMMARY

The pel recursive technique is one of three major approaches to displacement estimation for motion
compensation. It recursively estimates displacement vectors in a pixel-by-pixel fashion. There are
three types of recursion: horizontal, vertical, and temporal. Displacement estimation is carried out
by minimizing the square of the displaced frame difference (DFD). Therefore, the steepest descent
method and the Newton—Raphson method, the two most fundamental methods in optimization,
naturally find their application in pel recursive techniques. The pioneering Netravali and Robbins
algorithm and several other algorithms such as the Bergmann (1982), the Cafforio and Rocca, the
Walker and Rao, and the Bergmann (1984) are discussed in this chapter. They can be classified
into one of two categories: the steepest-descent-based algorithms or the Newton—Raphson-based
algorithms. Table 12.1 contains a classification of these algorithms.

Note that the DFED can be evaluated within a neighborhood of the pixel for which a displacement
vector is being estimated. The displacement vector is assumed constant within this neighborhood.
This makes the displacement estimation more robust against various noises.

Compared with the replenishment technique with simple frame difference prediction (the first
real interframe coding algorithm), the Netravali and Robbins algorithm (the first pel recursive
technique) achieves much higher coding efficiency. Specifically, a 22 to 50% savings in bit rate
has been reported for some computer simulations. Several new pel recursive algorithms have made
further improvements in terms of the convergence rate and the estimation accuracy through replace-
ment of the fixed step size utilized in the Netravali and Robbins algorithm, which make these
algorithms more adaptive to the local statistics in image frames.

12.7 EXERCISES

12-1. What is the definition of the displaced frame difference? Justify Equation 12.1.

12-2. Why does the inclusion of a neighborhood area make the pel recursive algorithm more
robust against noise?

12-3. Compare the performance of the steepest descent method with that of the Newton—Raph-
son method.

IPR2021-00827
Unified EX1008 Page 288



Pel Recursive Technique 263

12-4. Explain the function of n* in the Cafforio and Rocca algorithm.

12-5.  What is the advantage you expect to have from the Walker and Rao algorithm?

12-6. What is the difference between the Bergmann algorithm (1982) and the Bergmann
algorithm (1984)?

12-7. Why does the Newton-Raphson method have a smaller stability range?

REFERENCES

Bergmann, H. C. Displacement estimation based on the correlation of image segments, IEEE Proceedings of
International Conference on Electronic Image Processing, 215-219, York, U.K., July 1982.

Bergmann, H. C. Ein Schnell Konvergierendes Displacement-Schitzverfahrenfiir die Interpolation von Fernse-
hbildsequenzen, Ph.D. dissertation, Technical University of Hannover, Hannover, Germany, February
1984.

Biemond, J., L. Looijenga, D. E. Bockee, and R. H. J. M. Plompen, A pel recursive Wiener-based displacement
estimation algorithm, Signal Processing, 13, 399-412, December 1987.

Burkhard, H. and H. Moll, A modified Newton-Raphson search for the model-adaptive identification of delays,
in Identification and System Parameter ldentification, R. Isermann, Ed., Pergamon Press, New York,
1979, 1279-1286.

Cafforio, C. and F. Rocca, The differential method for image motion estimation, in /mage Sequence Processing
and Dynamic Scene Analysis, T. S. Huang, Ed., Berlin, Germany: Springer-Verlag, New York, 1983, 104-124.

Haskell, B. G. Frame replenishment coding of television, a chapter in Image Transmission Techniques, W. K.,
Pratt, Ed., Academic Press, New York, 1979.

Luenberger, D. G. Linear and Nonlinear Programming, Addison Wesley, Reading, MA, 1984.

Mounts, F. W. A video encoding system with conditional picture-clement replenishment, Bell Syst. Tech. J.,
48(7), 2545-1554, 1969.

Musmann, H. G., P. Pirsch. and H. J, Grallert, Advances in picture coding, Proc. IEEE, 73(4), 523-548, 1985.

Netravali, A. N. and J. D. Robbins, Motion-compensated television coding: Part I, Bell Syst. Tech. J., 58(3),
631-670, 1979.

Tekalp, A. M. Digital Video Processing, Prentice-Hall, Englewood Cliffs, NJ, 1995.

Walker, D. R. and K. R. Rao, Improved pel-recursive motion compensation, /[EEE Trans. Commun., COM-

32, 1128-1134, 1984.

IPR2021-00827
Unified EX1008 Page 289



-y

|
-.
|

= A TTTE .

ity o vl e

ol ) e -
= B R

i - ST T R

I v 5 i

rll .

_.. tF_E"l_ -
| .-ii-v.h-.ru' = SR

C g d N R o i ' |

‘""Ej""-‘l' R

IPR2021-00827
Unified EX1008 Page 290



3 Optical Flow

As mentioned 1n Chapter 10, optical flow is one of three major techniques that can be used to
estimate displacement vectors from successive image frames. As opposed to the other two displace-
ment estimation techniques discussed in Chapters 11 and 12, block matching and pel recursive
method, however, the optical flow technique was developed primarily for 3-D motion estimation
in the computer vision community. Although it provides a relatively more accurate displacement
estimation than the other two techniques, as we shall see in this and the next chapter, optical flow
has not yet found wide applications for motion-compensated video coding. This is mainly due to
the fact that there are a large number of motion vectors (one vector per pixel) involved, hence, the
more side information that needs to be encoded and transmitted. As emphasized in Chapter 11, we
should not forget the ultimate goal in motion-compensated video coding: to encode video data with
a toral bit rate as low as possible, while maintaining a satisfactory quality of reconstructed video
frames at the receiving end. If the extra bits required for encoding a large amount of optical flow
vectors counterbalance the bits saved in encoding the prediction error (as a result of more accurate
motion estimation), then the usage of optical flow in motion-compensated coding is not worthwhile.
Besides, more computation is required in optical flow determination. These factors have prevented
optical flow from being practically utilized in motion-compensated video coding. With the continued
advance in technologies, however, we believe this problem may be resolved in the near future. In
fact, an initial, successful attempt has been made (Shi et al., 1998).

On the other hand, in theory, the optical flow technique is of great importance in understanding
the fundamental 1ssues in 2-D motion determination, such as the aperture problem, the conservation
and neighborhood constraints, and the distinction and relationship between 2-D motion and 2-D
apparent motion.

In this chapter we focus on the optical flow technique. In Section 13.1, as stated above, some
fundamental issues associated with optical flow are addressed. Section 13.2 discusses the differential
method. The correlation method is covered in Section 13.3. In Section 13.4, a multiple attributes
approach is presented. Some performance comparisons between various techniques are included

In Sections 13.3 and 13.4. A summary is given in Section 13.5.

13.1T FUNDAMENTALS

Optical flow is referred to as the 2-D distribution of apparent velocities of movement of intensity
patterns in an image plane (Horn and Schunck, 1981). In other words, an optical flow field consists
of a dense velocity field with one velocity vector for each pixel in the image plane. If: we know
the time interval between two consecutive images, which is usually the case, then velocity vectors
and displacement vectors can be converted from one to another. In this sense, optical flow is one

of the techniques used for displacement estimation.

13.1.1 2-D MortioN AnND OrricaL FLow

In the above definition, it is noted that the word apparent is used and nothing about 3-D motion
In the scene is stated. The implication behind this observation is discussed in this subsection. We
start with the definition of 2-D motion. 2-D motion is referred to as motion in a 2-D 1mage pla.me
caused by 3-D motion in the scene. That is, 2-D motion is the projection (con?monly perSpeCL‘we
projection) of 3-D motion in the scene onto the 2-D image plane. This can be illustrated by using

265
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FIGURE 13.1 2-D motion vs. 3-D mouon.

a very simple example, shown in Figure [13.1. There the world coordinate system O-XYZ and the
camera coordinate systems o-xyz are aligned. The point C is the optical center ol the camera. A
point A, moves to A,, while its perspective projection moves correspondingly from a, to a,. We
then see that a 2-D motion (from a, to a,) in image plane 1s invoked by a 3-D motion (from A, 0
A,) 1In 3-D space. By a 2-D motion field, or sometimes image flow, we mean a dense 2-D motion
field: One velocity vector for each pixel in the image plane.

Optical flow, according to its definition, is caused by movement of intensily patterns in an
image plane. Therefore 2-D motion (field) and optical flow (field) are generally different. To support
this conclusion, let us consider the following two examples. One is given by Horn and Schunck
(1981). Imagine a uniform sphere rotating with a constant speed in the scene. Assume the luminance
and all other conditions do not change at all when pictures are taken. Then, there is no change in
brightness patterns in the images. According to the definition of optical flow, the optical flow is
zero, whereas the 2-D motion field is obviously not zero. At the other extreme, consider a stationary
scene; all objects in 3-D world space are still. If illuminance changes when pictures are taken in
such a way that there is movement of intensity patterns in image planes, as a consequence, optical
flow may be nonzero. This confirms a statement made by Singh (1991): the scene does not have
to be in motion relative to the image for the optical flow field to be nonzero. It can be shown that
the 2-D motion field and the optical flow field are equal under certain conditions. Understanding
the difference between the two quantities and the conditions under which they are equal is important.

This understanding can provide us with some sort of guide to evaluate the reliability of
estimating 3-D motion from optical flow. This is because, in practice, time-varying image sequences
are only what we have at hand. The task in computer vision is to interpret 3-D motion from time-
varying sequences. Therefore, we can only work with optical flow in estimating 3-D motion. Since
the main focus of this book is on image and video coding, we do not cover these equality conditions
here. Interested readers may refer to Singh (1991). In motion-compensated video coding, it 1S
likewise true that the image frames and video data are only what we have at hand. We also, therefore,
have to work with optical flow. Our attention is thus turned to optical flow determination and 1S
usage 1n video data compression.

13.1.2 APERTURE PROBLEM

The aperture problem is an important issue, originating in optics. Since it is inherent in the local
estimation of optical flow, we address this issue in this subsection. In optics, apertures are openings
in flat screens (Bracewell, 1995). Therefore, apertures can have various shapes, such as circular,
semicircular, and rectangular. Examples of apertures include a thin slit or array of slits in a screci.
A circular aperture, a round hole made on the shutter of a window, was used by Newton (0 stuq}/
the composition of sunlight. It is also well known that the circular aperture is of special interest In
studying the diffraction pattern (Sears et al., 1986).
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Roughly speaking, the aperture problem in motion analysis refers to the problem that occurs
when viewing motion via an aperture, i.c., a small opening in a flat screen. Marr (1982) states that
when a straight moving edge is observed through an aperture, only the component of motion
orthogonal o the edge can be measured. Let us examine some simple examples depicted in
Figure 13.2. In Figure 13.2(a), a large rectangular ABCD is located in the XOZ plane. A rectangular
screen EFGH with a circular aperture is perpendicular to the OY axis. Figure 13.2(b) and (c) show,
respectively, what 1s observed through the aperture when the rectangular ABCD is moving along
the positive X and Z directions with a uniform speed. Since the circular opening is small and the
line AB 1s very long, no motion will be observed in Figure 13.2(b). Obviously, in Figure 13.2(c)
the upward movement can be observed clearly. In Figure 13.2(d), the upright corner of the rectangle
ABCD, angle B, appears. At this time the translation along any direction in the XOZ plane can be
observed clearly. The phenomena observed in this example demonstrate that it is sometimes
impossible to estimate motion of a pixel by only observing a small neighborhood surrounding it.
The only motion that can be estimated from observing a small neighborhood is the motion
orthogonal to the underlying moving contour. In Figure 13.2(b), there is no motion orthogonal 10
the moving contour AB; the motion is aligned with the moving contour AB, which cannot be
observed through the aperture. Therefore, no motion can be observed through the aperture. In
Figure 13.2(c), the observed motion 1s upward, which is perpendicular to the horizontal moving
contour AB. In Figure 13.2(d), any translation in the XOZ plane can be decomposed into horizontal
and vertical components. Either of these two components is orthogonal to one of the two moving
contours: AB or BC.

A more accurate statement on the aperture problem needs a definition of the so-called normal
optical flow. The normal optical flow refers to the component of optical flow along the direction
pointed by the local intensity gradient. Now we can make a more accurate statement: the only
motion in an image plane that can be determined is the normal optical flow.

[n general, the aperture problem becomes severe in image regions where strong intensity
gradients exist, such as at the edges. In image regions with strong higher-order intensity variations,
such as corners or textured areas, the true motion can be estimated. Singh (1991) provides a more
elegant discussion on the aperture problem, in which he argues that the aperture problem should
be considered as a continuous problem (it always exists, but in varying degrees of acuteness) instead

of a binary problem (either it exists or it does not).

13.1.3 I-Posep INVERSE PROBLEM

Motion estimation from image sequences, including optical flow estimation, belongs in the category
of inverse problems. This is because we want (o infer motion from given 2-D images, which is the
perspective projection of 3-D motion. According to Hadamard (Bertero et al., 1983), a mathematical

problem is well posed if it possesses the following three characteristics:

1. Existence. That is, the solution exists.

2. Uniqueness. That is, the solution is unique.
Continuity. That is, when the error in the data tends toward zero, then the induced error

in the solution tends toward zero as well.

=

Inverse problems usually are not well posed in that the solution may not exist. In the example
discussed in Section 13.1.1, i.e., a uniform sphere rotated with illuminance fixed, the solution to
motion estimation does not exist since no motion can be inferred from given images. The aperture
problem discussed in Section 13.1.2 is the case in which the solution to the motion may not be unique.
Let us take a look at Figure 13.2(b). From the given picture, one cannot tell whether the straight line
AB is static, or is moving horizontally. If it is moving horizontally, one cannot tell the moving speed.
In other words, infinitely many solutions exist for the case. In optical flow determination, we will
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(a)

=t C

FIGURE 13.2 (a) Aperture problem: A large rectangle ABCD is located in the XOZ plane. A rectangular
screen EFGH with a circular aperture is perpendicular to the OY axis. (b) Aperture problem: No motion can
be observed through the circular aperture when the rectangular ABCD is moving along the positive X directit:m.
(c) Aperture problem: The motion can be observed through the circular aperture when the ABCD 1s moving
along the positive Z direction. (d) Aperture problem: The translation of ABCD along any direction in the XOZ

plane can be observed through the circular aperture when the upright corner of the rectangle ABCD, angle B,
appears in the aperture.

see that computations are noise sensitive. That is, even a small error in the data can produce an
extremely large error in the solution. Hence, we see that the motion estimation from image sequences
suffers from all three aspects just mentioned: nonexistence, nonuniqueness, and discontinuity. The
last term 1s also referred to as the instability of the solution.
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[t is pointed out by Bertero et al. (1988) that all the low-level processing (also known as early
vision) in computational vision are inverse problems and are often ill posed. Examples in low-level
processing include motion recovery, computation of optical flow, edge detection, structure from
stereo, structure from motion, structure from texture, shape from shading, and so on. Fortunately,
the problem with early vision 1s mildly ill posed in general. By mildly, we mean that a reduction
of errors 1n the data can significantly improve the solution.

Since the early 1960s, the demand for accurate approximates and stable solutions in areas such
as optics, radioastronomy, microscopy, and medical imaging has stimulated great research efforts
In inverse problems, resulting in a unified theory: the regularization theory of ill-posed problems
(Tikhonov and Arsenin, 1977). In the discussion of optical flow methods, we shall see that some
regularization techniques have been posed and have improved accuracy in flow determination.
More-advanced algorithms continue to come.

13.1.4 CrassiricatioN ofF OpTicaL FLow TECHNIQUES

Optical flow 1n image sequences provides important information regarding both motion and struc-
ture, and 1t 1s useful in such diverse fields as robot vision, autonomous navigation, and video coding.
Although this subject has been studied for more than a decade, reducing the error in the flow
estimation remains a difficult problem. A comprehensive review and a comparison of the accuracy
of various optical flow techniques have recently been made (Barron et al., 1994). So far, most of
the techniques in the optical flow computations use one of the following basic approaches:

* Gradient-based (Horn and Schunck, 1981; Lucas and Kanade, 1981; Nagel and Enkel-
man, 1986: Uras et al., 1988: Szeliski et al., 1995; Black and Anandan, 1996),

* Correlation-based (Anandan, 1989; Singh, 1992; Pan et al., 1998),

» Spatiotemporal energy-based (Adelson and Bergen, 1985; Heeger, 1988; Bigun et al.,
1991),

* Phase-based (Waxman et al., 1988; Fleet and Jepson, 1990).

Besides these deterministic approaches, there is the stochastic approach to optical flow com-
putation (Konrad and Dubois, 1992). In this chapter we focus our discussion of optical flow on the
gradient-based and correlation-based techniques because of their frequent applications in practice
and fundamental importance in theory. We also discuss multiple attribute techniques in optical flow
determination. The other two approaches will be briefly touched upon when we discuss new

techniques in motion estimation in the next chapter.

13.2 GRADIENT-BASED APPROACH

It is noted that before the methods of optical flow determination were actually developed, optical
flow had been discussed and exploited for motion and structure recovery from image sequences in
computer vision for years. That is, the optical flow field was assumed to be available in the sfudy
of motion recovery. The first type of methods in optical flow determination is referred to as gradient-

based techniques. This is because the spatial and temporal partial derivatives of intensity function
are utilized in these techniques. In this section, we present the Horn and Schunck algorithm. It is

regarded as the most prominent representative of this category. After the basic concepts are pre-
sented, some other methods in this category are briefly discussed.

13.2.1 THe HoOrRN AND ScHUNCK METHOD

We shall begin with a very general framework (Shi et al., 1994) to derive a brightness time-
Invariance equation. We then introduce the Horn and Schunck method.
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13.2.1.1 Brightness Invariance Equation

As stated in Chapter 10, the imaging space can be represented by

flxy:4,5) (13.1)

where § indicates the sensor’s position in 3-D world space, i.e., the coordinates of the sensor center
and the orientation of the optical axis of the sensor. The § is a 5-D vector. That is, s where (x, y, z,
B, ¥), where x, y, and z represent the coordinate of the optical center of the sensor in 3-D world
space; and B and 7y represent the orientation of the optical axis of the sensor in 3-D world space,
the Euler angles, pan and tilt, respectively.

With this very general notion, each picture, which is taken by a sensor located on a particular
position at a specific moment, is merely a special cross section of this imaging space. Both temporal
and spatial image sequences become a proper subset of the imaging space.

Assume now a world point P in 3-D space that is perspectively projected onto the image plane
as a pixel with the coordinates x, and y,. Then, x, and y, are also dependent on r and s. That s,

f = F(x(6,5).7,(1,5),1.5). (13.2)

If the optical radiation of the world point P is invariant with respect to the time interval from 7, 10
t,, we then have

Flmalts® ralbod 5. ) = Hlxo8,5) 7, (85, 0.5 ). (13.3)

This 1s the brightness time-invariance equation.
At a specific moment ¢,, if the optical radiation of P is isotropical we then get

f('rp(flrgl)*J"P(fl*Ei)I]*i): f('rp(flif-s)}}lp(fl,fz),fl..;:)+ (13.4)

This is the brightness space-invariance equation.
If both conditions are satisfied, we get the brightness time-and-space-invariance equation, 1.€.,

f(‘rP(rl'El)’yP(rl‘EI)’!I‘Ei):f(xp(rzrfz)a}"p(fyfg)a [:‘3‘.:)‘ (13.5)
Consider two brightness functions f (x (¢, 5), y (¢, §),t, §) and f(x (t + A, 5 + As), y (t + Af, 5 +

AS), t + At, s + As) in which the variation in time, At, and the variation in the spatial position of
the sensor, AS, are very small. Due to the time-and-space-invariance of brightness, we can get

f(x(6,5),3(1,5),0,5) = f(x(t + A1, 5 + AF), y(t + A1, 5 + As), 1 + A1, 5 + AS). (13.6)

The expansion of the right-hand side of the above equation in the Taylor series at (f, §) and the
use of Equation 13.5 lead to

oS I I gfe w00 ¥ OF Yoo o (13.7)
(axu+ayv+ar)m+[axu +ay1 +a§ Ay +e=0,
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where

ox A 0 _ A Oy
— Vé'——}—" uséa_x! uséa

u=—, : - .
ot dt S dJs

I[f AS =0, i.e., the sensor is static in a fixed spatial position (in other words, both the coordinate

of the optical center of the sensor and its optical axis direction remain unchanged), dividing both

sides of the equation by Ar and evaluating the limit as At — 0 degenerate Equation 13.7 into

o ALY,

—ut—vt=—={, 13.8
ox ayu ot (13.8)

[f Ar = 0, both its sides are divided by As, and As — 0 is examined. Equation 13.7 then reduces to

I A
S 5V +55=0 (13.9)

When Ar =0, i.e., al a specific time moment, the images generated with sensors at different spatial
positions can be viewed as a spatial sequence of images. Equation 13.9 is, then, the equation for
the spatial sequence of images.

For the sake of brevity, we will focus on the gradient-based approach to optical flow determi-
nation with respect to temporal image sequences. That is, in the rest of this section we will address
only Equation 13.8. It is noted that the derivation can be extended to spatial image sequences. The
optical flow technique for spatial image sequences is useful in stereo image data compression. It
plays an important role in motion and structure recovery. Interested readers are referred to Shi et al.
(1994) and Shu and Shi (1993).

13.2.1.2 Smoothness Constraint

A careful examination of Equation 13.8 reveals that we have two unknowns: « and v, i.e., the
horizontal and vertical components of an optical flow vector at a three-tuple (x, y, 1), but only one
equation to relate them. This once again demonstrates the ill-posed nature of optical flow determi-
nation. This also indicates that there is no way to compute optical flow by considering a single
point of the brightness pattern moving independently. As stated in Section 13.1.3, some regular-
ization measure — here an extra constraint — must be taken to overcome the difficulty.

A most popularly used constraint was proposed by Horn and Schunck and 1s referred to as the
smoothness constraint. As the name implies, it constrains flow vectors to vary from one to another
smoothly. Clearly, this is true for points in the brightness pattern most of the time, particularly for
points belonging to the same object. It may be violated, however, along moving boundaries.
Mathematically, the smoothness constraint is imposed in optical flow determination by minimizing
the square of the magnitude of the gradient of the optical flow vectors:

2 7 2
) (du) (ov) , [ov 13.10
(_E)_A—J +(a},) +(ax] +(ay]. ( )

It can be easily verified that the smoother the flow vector field, the smaller these quantities. Actually,
the square of the magnitude of the gradient of intensity function with respect to the spatial
coordinates, summed over a whole image or an image region, has been used as a smoothness
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measure of the image or the image region in the digital image processing literature (Gonzalez and
Woods, 1992).

13.2.1.3 Minimization

Optical flow determination can then be converted into a minimization problem.

The square of the left-hand side of Equation 13.8, which can be derived from the brightness
time-invariance equation, represents one type of error. It may be caused by quantization noise or
other noises and can be written as

2 _ | Y af 13.11
eb—[axunt—a v+ ar] (13.11)

The smoothness measure expressed in Equation 13.10 denotes another type of error, which is

SEN E[_axf o) 3,12
E’"[ax] +[a}l)+ o + ol (13.12)

The total error to be minimized is

82=2 Ze§+uzaf
| _  (13.13)
2 2 2 2
Zz ——-u+—-—v+a—f +0° (%] - L +(93-) + Q_v] :
ot ox dy dx dy _

where o 1s a weight between these two types of errors. The optical flow quantities # and v can be
found by minimizing the total error. Using the calculus of variation, Horn and Schunck derived
the following pair of equations for two unknown u« and v at each pixel in the image.

[ 2 SR 4 b I
*f,;“-i-frf:vv-a V U ft-fl:’ (13.14)
fl_f;_u+ﬁv=azvzv—j;,ﬁ ’

where

u %
Viu= o2 + 5
(13.15)
v 9%
Viy =
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13.2.1.4 Iterative Algorithm

Instead of using the classical algebraic method to solve the pair of equations for u and v, Horn and

Schunck adopted the Gaussian Seidel (Ralston and Rabinowitz, 1978) method to have the following
iterative procedure:

o fr[fj*+}gﬁ*+ﬁ1

W =y -
2 2 2
(x+f;+f_r

(13.16)
k )ﬁ,[fﬁ‘#ﬁﬁ‘#ﬁ]

:F _ =
2 2 2
o "'f.: +fy

k
w+l

i ]

where the superscripts k and & + 1 are indexes of iteration and #«, v are the local averages of « and
v, respectively.
Horn and Schunck define u, v as follows:

= —é—{u(x,y-i- I) +u(x,y-— 1) + u(x -+ l,y) +- u(x— l,y)}

+é{u(.x— I, y— 1)+u(x—l,y+1)+u(.r+1,y—- 1)+u(x+],y+l)}

V= Elg'{v(x, y+1)+v(xy=1)+v(x+1y)+v(x-1, 3”)}

(13.17)

.,.%{p(x_]1),_])+u(x—-1,y+1)+u(x+],y—l)+v(.x+1,y+1)}.

The estimation of the partial derivatives of intensity function and the Laplacian of flow vectors
need to be addressed. Horn and Schunck considered a 2 x 2 X 2 spatiotemporal neighborhood,
shown in Figure 13.3, for estimation of partial derivatives f,, f,, and f,. Note that replacing the first-
order differentiation by the first-order difference is a common practice in managing digital images.
The arithmetic average can remove the noise effect, thus making the obtained first-order differences
less sensitive to various noises.

The Laplacian of « and v are approximated by

Vi =1i(x,y)—u(x,y)
(13.18)

Vi =1(x,y)—v(x,y).

Equivalently, the Laplacian of « and v, V*(«) and V?*(v), can be obtained by applying a 3 X 3 window

operator, shown in Figure 13.4, to each point in the # and v planes, respectively.
Similar to the pel recursive technique discussed in the previous chapter, there are two different

ways to iterate. One way is to iterate at a pixel until a solution is steady. Another way 1s to iterate
only once for each pixel. In the latter case, a good initial flow vector 1s required and is usually

derived from the previous pixel.
13.2.2 Mobiriep HorRN AND SCHUNCK METHOD

Observing that the first-order difference is used to approximate the first-order differentiation in
Horn and Schunck’s original algorithm, and regarding this as a relatively crude form and a source
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(x, y, t+1) (x, y+1, t+1)

(x+1l,y t+1) / (x+1,y+1,1+1)

f :.-L‘:-l-{[f(x-i—l.J-‘,r)—f(,r,y,r)]ﬂr[f(.r+ Ly t+1)— fx,v.r+ l)]

H A+ Ly+L0) - fayn)]+[fx+ Ly +Le+1) = f(xy+ Le+1)]}
5= %{[f(x,}% 1.!)—f(-r,_}'..r)]+ [f(x +Ly+1,1)— f(x+ l._’f.:‘_)]

+[f(I,_V+LI+ 1)—f(x._v,f+l)]+[f(_r+ L_'*.-‘+ .1+ 1]"*f(-1‘ + 1, y,t+ 1)]}

f= i{[f(x,y,H—1)—f(.r,y,r)]+[f(.1'+ Ly, t+1)— f(x+ l'sf)]

+[f(.1’,y+1,r+1)—f(x,y+l,r)]+[f(_r+l,y+I,r+l)—~f(-r+ I,_}r—f—l,r)]}
FIGURE 13.3  Estimation of f,, f,, and f,.

of error, Barron, Fleet, and Beauchemin developed a modified version of the Horn and Schunck
method (Barron et al., 1994).

It features a spatiotemporal presmoothing and a more-advanced approximation of differentia-
tion. Specifically, it uses a Gaussian filter as a spatiotemporal prefilter. By the term Gaussian ﬁlff.’r,
we mean a low-pass filter with a mask shaped similar to that of the Gaussian probability density
function. This is similar to what was utilized in the formulation of the Gaussian pyramid, which
was discussed in Chapter 11. The term spatiotemporal means that the Gaussian filter is used for
low-pass filtering in both spatial and temporal domains. _

With respect to the more-advanced approximation of differentiation, a four-point central dif-
ference operator is used, which has a mask, shown in Figure 13.5.

As we will see later in this chapter, this modified Horn and Schunck algorithm has achieve.d
better performance than the original one as a result of the two above-mentioned measures. T}_us
success indicates that a reduction of noise in image (data) leads to a significant reduction of no_lse
in optical flow (solution). This example supports the statement we mentioned earlier that the ill-
posed problem in Jow-level computational vision is mildly ill posed.
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FIGURE 13.4 A 3 x 3 window operation for estimation of the Laplacian of flow vector.

T E—

12

12

FIGURE 13.5 Four-point central difference operator mask.

13.2.3 THe Lucas AND KANADE METHOD

Lucas and Kanade assume a flow vector is constant within a small neighborhood of a pixel, denoted

by €2. Then they form a weighted object function as follows.

Y sy

(x,y)eQ

where w(x, y) is a window function, which gives more

of (x, )

ox

surrounding portion of the neighborhood Q.

The flow determination thus becomes a problem of a leas 0 e
constraint. We observe that the smoothness constraint has been implied in Equ

I+

of (x,y.1) o of (x, 1)

v

the flow vector is assumed to be constant within Q.

ot

—

=]

(13.19)

weight to the central portion than the

t-square fit of the brightness invariance

ation 13.19, where
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FIGURE 13.6 Oriented-smoothness constraint.

13.2.4 THE NAGEL METHOD

Nagel first used the second-order derivatives in optical flow determination in the very early days
(Nagel, 1983). Since the brightness function f(x, y, ¢, §) i1s a real-valued function of multple
variables (or a vector of variables), the Hessian matrix, discussed in Chapter 12, is used for the
second-order derivatives.

An oriented-smoothness constraint was developed by Nagel that prohibits imposition of the
smoothness constraint across edges, as illustrated in Figure 13.6. In the figure, an edge AB separates
two different moving regions: region 1 and region 2. The smoothness constraint is imposed in these
regions separately. That is, no smoothness constraint is imposed across the edge. Obviously, 1t
would be a disaster if we smoothed the flow vectors across the edge. As a result, this reasonable
treatment effectively improves the accuracy of optical flow estimation (Nagel, 1989).

13.2.5 THe Uras, Girosi, VErri, AND TOrRRE METHOD

The Uras, Girosi, Verri, and Torre method is another method that uses second-order derivatives.
Based on a local procedure, it performs quite well (Uras et al., 1988).

13.3 CORRELATION-BASED APPROACH

The correlation-based approach to optical flow determination is similar to block matching, covered
in Chapter 11. As may be recalled, the conventional block-matching technique partitions an 1mage
into nonoverlapped, fixed-size, rectangular blocks. Then, for each block, the best matching in the
previous image frame is found. In doing so, a search window is opened in the previous frame
according to some a priori knowledge: the time interval between the two frames and the maximum
possible moving velocity of objects in frames. Centered on each of the candidate pixels in the
search window, a rectangle correlation window of the same size as the original block is opened.
The best-matched block in the search window is chosen such that either the similarity measure is
maximized or the dissimilarity measure is minimized. The relative spatial position between these
two blocks (the original block in the current frame and the best-matched one in the previous frame)
gives a translational motion vector to the original block. In the correlation-based approach to optical
flow computation, the mechanism is very similar to that in conventional block matching. The only
difference is that for each pixel in an image, we open a rectangle correlation window centered on
this pixel for which an optical flow vector needs to be determined. It is for this correlation window
that we find the best match in the search window in its temporal neighboring image frame. This
is shown in Figure 13.7. A comparison between Figures 13.7 and 11.1 can convince us about the
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FIGURE 13.7 Corrclation-based approach to optical flow determination.

above observation. In this section, we first briefly discuss Anandan’s method, which is pioneer
work in this category. Then Singh’s method is described. His unified view of optical flow compu-
tation 1s introduced. We then present a correlation-feedback method by Pan, Shi, and Shu, which
uses the feedback technique in flow calculation.

13.3.1 THE ANANDAN METHOD

As mentioned in Chapter 11, the sum of squared difference (SSD) 1s used as a dissimilarity measure
in (Anandan, 1987). It is essentially a simplified version of the well-known mean square error
(MSE). Due to its simplicity, it is used in the methods developed by Singh (1992), and Pan, Shi,
and Shu (1998).

[n the Anandan method (Anandan, 1989), a pyramid structure 1s formed, and 1t can be used
for an efficient coarse-fine scarch. This is very similar to the multiresolution block-matching
techniques discussed in Chapter 11. In the higher levels (with lower resolution) of the pyramid, a
full search can be performed without a substantial increase in computation. The estimated velocity
(or displacement) vector can be propagated to the lower levels (with higher resolution) for further
refinement. As a result, a relatively large motion vector can be estimated with a certain degree of
accuracy.

Instead of the Gaussian pyramid discussed in Chapter 11, however, a Laplacian pyramid is used
here. To understand the Laplacian pyramid, let us take a look at Figure 13.8(a). There two consec-
utive levels are shown in a Gaussian pyramid structure: level &, denoted by f*(x, y), and level & + 1,

f4Y(x, y). Figure 13.8(b) shows how level k + I can be derived from level & in the Gaussian pyramid.

That is, as stated in Chapter 11, level k£ + 1 in the Gaussian pyramid can be obtained through low-
pass filtering applied to level &, followed by subsampling. Figure 13.8(¢c), level kK + 1 is first
interpolated, thus producing an estimate of level &, f*(x, y). The difference between the original
level k and the interpolated estimate of level k generates an error at level £, denoted by e*(x, y). If
there are no quantization errors involved, then level &, f*(x, y) can be recovered completely from
the interpolated estimate of level &, f"(x, y), and the error at level &, eX(x, y). That 1s,

iy

FAy) =1 (xy)+e(x,). (13.20)

With quantization errors, however, the recovery of level &, f*(x, y) is not error free. It can be shown
that coding f*(x, y) and e*(x, y) is more efficient than directly coding f*(x, y).
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FIGURE 13.8 Laplacian pyramid (level k in a Gaussian pyramid). (a) Two consecutive levels in a pyramid
structure. (b) Derivation of level k + 1 from level K. (¢) Derivation of error at level & in a Laplacian pyramid.
(d) Structure of Laplacian pyramid.

A set of images e*(x,y), k = 0, 1, ..., K — | and fX(x, y) forms a Laplacian pyramid.
Figure 13.8(d) displays a Laplacian pyramid with K = 5. It can be shown that Laplacian pyramids
provide an efficient way for image coding (Burt and Adelson, 1983). A more-detailed description
of Gaussian and Laplacian pyramids can be found in Burt (1984) and Lim (1990).

13.3.2 THE SINGH METHOD

Singh (1991, 1992) presented a unified point of view on optical flow computation. He classified
the information available in image sequences for optical flow determination into two categories:
conservation information and neighborhood information. Conservation information is the informa-
tion assumed to be conserved from one image frame to the next in flow estimation. Intensity 1s an
example of conservation information, which is used most frequently in flow computation. Clearly,
the brightness invariance constraint in the Horn and Schunck method is another way to state this
type of conservation. Some functions of intensity may be used as conservation information as well.

IPR2021-00827
Unified EX1008 Page 304



Optical Flow 279

In fact, Singh uses the Laplacian of intensity as conservation information for computational sim-
plicity. More examples can be found later in Section 13.4. Other information, different from
intensity, such as color, can be used as conservation information. Neighborhood information is the
information available in the neighborhood of the pixel from which optical flow is estimated.

These two different types of information correspond to two steps in flow estimation. In the first
step, conservation information is extracted, resulting in an initial estimate of flow vector. In the
second step, this initial estimate is propagated into a neighborhood area and is iteratively updated.
Obviously, in the Horn and Schunck method, the smoothness constraint is essentially one type of
neighborhood information. Iteratively, estimates of flow vectors are refined with neighborhood
information so that flow estimators from areas having sufficient intensity variation, such as the
intensity corners as shown in Figure 13.2(d) and areas with strong texture, can be propagated into
areas with relatively small intensity variation or uniform intensity distribution.

With this unified point of view on optical [low estimation, Singh treated flow computation as
parameter estimation. By applying estimation theory to flow computation, he developed an esti-
mation-theoretical method to determine optical flow. It i1s a correlation-based method and consists
of the above-mentioned two steps.

13.3.2.1 Conservation Information

In the first step, for each pixel (x, y) in the current frame f,(x, y), a correlation window of (2/ + 1) X
(21 + 1) is opened, centered on the pixel. A search window of (2N+1) X (2N+1) 1s opened 1n the
previous frame f,_, (x, y) centered on (x, y). An error distribution of those (2N + 1) X (2N + 1) samples
are calculated by using SSD as follows:

I
Q(fi,t!):22[};(.1'4—3,_3*-!-!)—f”_l(x—u+3,y—v-i-r)]' -N<u,v<N. (13.21)

s==] 1==]

A response—distribution for these (2N + 1) X (2N + 1) samples is then calculated.

R (u,v)= g TEka): (13.22)

¢

where B is a parameter, whose function and selection will be described in Section 13.3.3.1.
According to the weighted-least-square estimation, the optical flow can be estimated 1n this
step as follows:

Z Z R (u,v)u

i

i 2 2 R (u,v)

Z 2 R (1, v)v
Y]

Assuming errors are additive and zero-mean random noise, We can also find the covariance matrix
associated with the above estimate:

(13.23)
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13.3.2.2 Neighborhood Information

(13.24)

After step 1, all initial estimates are available. In step 2, they need to be refined according to
neighborhood information. For each pixel, the method considers a (2w + 1) x (2w + 1) neighborhood
centered on it. The optical flow of the center pixel is updated from the estimates in the neighborhood.
A set of Gaussian coefficients is used in the method such that the closer the neighbor pixel to the
center pixel, the more influence the neighbor pixel has on the flow vector of the center pixel. The
weighted-least-square based estimate in this step is

Z z R (1, v )

i

il 2 2 R (u,v)

z 2 R (u,v)v
- Zz R (u,v) |

and the associated covariance matrix is

ER u v u —-H)E ZR”(ut,vi)(uj—fT)(u*-—F)\

!

ZR" u v ZR ", ”;

S = ! (13.26)

| ZR"(“H*’f)(“f—“)(w—v) > Rl )
2w z

(13.25)

where 1 << (2w + 1)
In implementation, Singh uses a 3 x 3 neighborhood (i.e., w = 1) centered on the pixel under
consideration. The weights are depicted in Figure 13.9.

13.3.2.3 Minimization and lterative Algorithm

According to estimation theory (Beck and Arnold, 1977), two covariance matrices, expressed In
Equations 13.24 and 13.26, respectively, are related to the confidence measure. That is, the recip-
rocals of the eigenvalues of the covariance matrix reveal confidence of the estimate along the
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FIGURE 13.9 3 x 3 Gaussian mask.

direction represented by the corresponding eigenvectors. Moreover, conservation error and neigh-
borhood error can be represented as the following two quadratic terms, respectively.

(u-u) s'(u-u,) (13.27)

(U-T) s u-0), (13.28)

where U = (u, v), U .= (u, v), U= (u, v).
The minimization of the sum of these two errors over the image area leads to an optimal
estimate of optical flow. That is, find («, v) such that the following error is minimized.

ZZI_(U-— v) st (u-u)+(U-T) S,;'(U-—U)J. (13.29)

An iterative procedure according to the Gauss—Siedel algorithm (Ralston and Rabinowitz, 1978)
1s used by Singh:

k4l _[e-1 o1 sy + 57Uk
U =[s7+8;' ][0, + 5T s

Note that U, S. are calculated once and remain unchanged in all the iterations. On the contrary, U
and S, vary with each iteration. This agrees with the description of the method in Section 13.3.2.2.

13.3.3 THe PAN, SHI, AND SHU METHOD

Applying feedback (a powerful technique widely used in automatic control and many other fields)
to a correlation-based algorithm, Pan, Shi, and Shu developed a correlation-feedback method to
compute optical flow. The method is iterative in nature. In each iteration, the estimated optical flow
and its several variations are fed back. For each of the varied optical flow vectors, the corresponding
sum of squared displaced frame difference (DFD), which was discussed in Chapter 12 and which
often involves bilinear interpolation, is calculated. This useful information is then utilized in a
revised version of a correlation-based algorithm (Singh, 1992). They choose to work with this
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FIGURE 13.10 Block diagram of correlation feedback technique.

algorithm because it has several merits, and its estimation-theoretical computation framework lends
itself to the application of the feedback technique.

As expected, the repeated usage of two given images via the feedback iterative procedure
improves the accuracy of optical flow considerably. Several experiments on real 1mage sequences
in the laboratory and some synthetic image sequences demonstrate that the correlation-feedback
algorithm performs better than some standard gradient- and correlation-based algorithms in terms
of accuracy.

13.3.3.1 Proposed Framework

The block diagram of the proposed framework 1s shown in Figure 13.10 and described next.

Initialization — Although any flow algorithms can be used to generate an initial optical flow
field 1 = (u°, v°) (even a nonzero initial flow field without applying any flow algorithm may work,
but slowly), the Horn and Schunck algorithm (Horn and Schunck, 1981), discussed in Section 13.2.1
(usually 5 to 10 iterations) is used to provide an appropriate starting point after preprocessing
(involving low-pass filtering), since the algorithm is fast and the pmblem caused by the smoothness
constraint is not serious in the first 10 to 20 iterations. The modified Horn and Schunck method,
discussed in Section 13.2.2, may also be used for the initialization.

Observer — The DFD at the kth iteration is observed as f, (%) - f,, (¥ — it*), where f, and f,,
denote two consecutive digital images, x = (x, y) denotes the spatial coordinates of the pixel under
consideration, and «* = (1%, v*) denotes the optical flow of this pixel estimated at the kth iteration.
(Note that the vector representation of the spatial coordinates in image planes is used quite often
in the literature, because of its brevity in notation.) Demanding fractional pixel accuracy usually
requires interpolation. In the Pan et al. work, the bilinear interpolation is adopted. The bilinearly
interpolated 1mage is denoted by f, ;.

Correlation — Once the bilinearly interpolated image is available, a correlation measure needs 1o
be selected to search for the best match of a given pixel in £, (X) in a search area in the interpolated
image. In their work, the sum-of-square-differences (SSD) is used. For each pixel in f,, a correlation
window W, of size (2/ + 1) X (2 + 1) is formed, centered on the pixel.

The search window in the proposed approach is quite different from that used in the correlation-

based approach, say, that of Singh (1992). Let u be a quantity chosen from the following five
quantities:

ue{u"’ —-lu",u" ——l—u",u“,u“ +iu*,“* +l.u'=}_ (13.31)
2 4 4 2
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Let v be a quantity chosen from the following five quantities:

k ] ko k l no_k k I X K I ‘
ve{v —Ev v —zw VLY -I-Zv v +5v‘}. (13.32)

Hence, there are 25 (i.e., 5 x 5) possible combinations for (¢, v). (It 1s noted that the restriction of
the nonzero initial flow field mentioned above in part A comes from here). Note that other choices
of variations around (u«*, v*) are possible. Each of them corresponds to a pixel, (x—u, y—v), in
the bilinearly interpolated image plane. A correlation window is formed and centered in this pixel.
The 25 samples of error distribution around (u*, v*) can be computed by using the SSD. That is,

/
Euv) =Y z(f()f(>))

v=—/ 1==]

(13.33)

The 25 samples of response distribution can be computed as follows:

R (u,v)= g PR (13.34)

where 3 is chosen so as to make the maximum R_among the 25 samples of response distribution
be a number close to unity. The choice of an exponential function for converting the error distribution
into the response distribution is based primarily on the following consideration: the exponential
function is well behaved when the error approaches zero and all the response distribution values
are positive. The choice of B mentioned above is motivated by the following observation: in this
way, the R values, which are the weights used in Equation 13.35, will be more effective. That is,
the computation in Equation 13.35 will be more sensitive to the variation of the error distribution

defined in Equation 13.33.
The optical flow vector derived at this correlation stage is then calculated as follows, according

lo the weighted-least-squares estimation (Singh, 1992).

n _Z“ Z..R"(”’F)” | _Z” Z..Rf(“‘v)”
Wk (x,y) = z z TP vi(x,y) = Z Z ), (13.35)

Propagation — Except in the vicinity of motion boundaries, the motion vectors associated with
neighboring pixels are expected (o be similar. Therefore, this constraint can be used to regularize

the motion field. That is,

o (3)= 0 Y (ki + i) ()= ) D i) (x+iny+ ), (13.36)

I==W J=—W o 22 ekl

ask shown in Figure 13.9 is chosen as the

this mask, the velocity of various
ng Lo their distance from the pixel:
he optical flow field as well.

where w,(i, j) is a weighting function. The Gaussian m
weighting function w, (i, j) used in our experiments. By using
pixels in the neighborhood of a pixel will be weighted accord!

the larger the distance, the smaller the weight. The mask smooths 1

: : - .~ distribution with a single
Cony e ssumption of the symmetric response dis : :
ergence Under the assump Y ergence of the correlation-

maximum value assumed by the ground-truth optical flow, the conv
feedback technique is justified by Pan et al. (1995).
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13.3.3.2 Implementation and Experiments

Implementation — To make the algorithm more robust against noise, three consecutive images
In an image sequence, denoted by f|, f5, and f;, respectively, are used to implement their algorithm
instead of the two images in the above principle discussion. This implementation was proposed by
Singh (1992). Assume the time interval between f, and f, i1s the same as that between f, and f;.
Also assume the apparent 2-D motion is uniform during these two intervals along the motion
trajectories. From images f; and f5, (1%, v?) can be computed. From (u*, v*), the optical flow estimated
during the kth iteration, and f; and f;, the response distribution, R (u*, v*), can be calculated as

N

.

) I
R:(:.Jt,vk)=cxm —BZ Z[fz(x+s,y+r)—fl(.x—u" 5,y =V +!)] > (13.37)

s==1 1=-1

Similarly, from images f; and f,, (—u*, —v*) can be calculated. Then R_(—u*, —v*) can be calculated as

,1

.1
-

' I
R;(~u"',—u") = eXp? —Bz E[fz(xwts,yww)-—-ﬁ(,r —1f s, y+ v+ r)] > (13.38)

s=—1 1=-]

The response distribution R (1%, v*) can then be determined as the sum of R’ (1%, v¥) and R (—u*,—v*).
The size of the correlation window and the weighting function is chosen to be 3 x 3, e, [ = 1,
w = 1. In each search window, 3 is chosen so as to make the larger one among R" and R_ a number
close to unity. In the observer stage, the bilinear interpolation is used, which i1s shown to be faster
and better than the B-spline in the many experiments of Pan et al.

Experiment I — Figure 13.11 shows the three successive image frames f,, f5, and f; about a square
post. They were taken by a CCD video camera and a DATACUBE real-time image processing
system supported by a Sun workstation. The square post is moving horizontally, perpendicular to
the optical axis of the camera, in a uniform speed of 2.747 pixels per frame. To remove various
noises to a certain extent and to speed up processing, these three 256 X 256 images are low-pass
filtered and then subsampled prior to optical flow estimation. That is, the intensities of every
16 pixels in a block of 4 X 4 are averaged and the average value is assigned to represent this block.
Note that the choice of other low-pass filters is also possible. In this way, these three images are
compressed into three 64 x 64 images. The “ground-truth” 2-D motion velocity vector is hence
known as u“ = —-0.6868; v¢ = 0.

To compare the performance of the correlation-feedback approach with that of the gradient-
based and correlation-based approaches, the Horn and Schunck algorithm is chosen to represent
the gradient-based approach and Singh’s framework to represent the correlation-based approach.
Table 13.1 shows the results of the comparison. There, [, w, and N indicate the sizes of the correlation
window, weighting function, and search window, respectively. The program that implements Singh’s
algorithm 1s provided by Barron et al. (1994). In the correlation-feedback algorithm, ten iterations
of the Horn and Schunck algorithm with 0. = 5 are used in the initialization. (Recall that the & 1S
a regularization parameter used by Horn and Schunck, 1981). Only the central 40 x 40 flow vector
array 1s used to compute u,., which is the root mean square (RMS) error in the vector magnitudes
between the ground-truth and estimated optical flow vectors. It is noted that the relative error In
Experiment I is greater than 10%. This is because the denominator in the formula calculating the
RMS error is too small due to the static background and, hence, there are many zero ground-truth
2-D motion velocity vectors in this experiment. Relatively speaking, the correlation-feedback
algorithm performs best in determining optical flow for a texture post in translation. The correct
optical flow field and those calculated by using three different algorithms are shown in Figure 13.12.
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FIGURE 13.11 Texture square (a). Texture square (b). Texture square (c).

TABLE 13.1
Comparison in Experiment |
Gradient-Based Correlation-Based Correlation-Feedback

Techniques Approach Approach Approach
13.3.3.3 Conditions  [freration no. = 128 [teration no. = 25 Iteration no. = 10

L= =2 w=2 Iteration no. (Horn) = 10

N=4 l=1l.w=1l.N=35

" 56.37% R0.97% 44.56%

cImor

Experiment II — The images in Figure 13.13 were obtained by rotating a CCD camera with
respect to the center of a ball. The rotating velocity is 2.5° per frame. Similarly, three 256 X 256
images are compressed into three 64 x 64 images by using the averaging and subsampling discussed
above. Only the central 40 x 40 optical vector arrays are used to compute . Table 13.2 reports
the results for this experiment. There, Uy, [, w, and N have the same meaning as that discgs§ed
in Experiment I. It is obvious that our correlation-feedback algorithm performs best in determining

optical flow for this rotating ball case.
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FIGURE 13.12 (a) Correct optical flow field. (b) Optical flow field calculated by the gradient-based
approach. (c) Optical flow field calculated by the correlation-based approach. (d) Optical flow field calculated
by the correlation-feedback approach.

Experiment III — To compare the correlation-feedback algorithm with other existing techniques
in a more objective, quantitative manner, Pan et al. cite some results reported by Barron el al.
(1994), which were obtained by applying some typical optical flow techniques to some imz}ge
sequences chosen with deliberation. In the meantime they report the results obtained by applying
their feedback technique to the identical image sequences with the same accuracy measurement as
used by Barron et al. (1994).

Three image sequences used by Barron etal. (1994) were utilized here. They are named
“Translating Tree,” “Diverging Tree,” and “Yosemite.” The first two simulate translational camera
motion with respect to a textured planar surface (Figure 13.14), and are sometimes referred to as
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FIGURE 13.12 (continued)

“Tree 2-D” sequence. Therefore, there are no occlusions and no motion discontinuities in these
two sequences. In the “Translating Tree” sequence, the camera moves normally to its line of sight,
with velocities between 1.73 and 2.26 pixels/frame parallel to the x-axis in the image plane. In the
“Diverging Tree” sequence, the camera moves along its line of sight. The focus of expansion is at
the center of the image. The speeds vary from 1.29 pixels/frame on left side to 1.86 pixels/frame
on the right. The “Yosemite” sequence is a more complex test case (see Figure 13.15). The motion
in the upper right is mainly divergent. The clouds translate to the right with a speed of 1 pixel/frame,
while velocities in the lower left are about 4 pixels/frame. This sequence 1s challenging because
of the range of velocities and the occluding edges between the mountains and at the horizon. There
is severe aliasing in the lower portion of the images, causing most methods to produce poorer
velocity measurements. Note that this synthetic sequence is for quantitative study purposes since
its ground-truth flow field is known and is, otherwise, far less complex than many real-world outdoor

sequences processed in the literature.
The angular measure of the error used by Barron et al. (1994) is utilized here, as well. Let

image velocity i = (i, v) be represented as 3-D direction vectors,
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FIGURE 13.13 A rotating ball in three different frames — a, b, ¢. The rotating velocity is 2.5 per frame.

TABLE 13.2
Comparison in Experiment i
Gradient-Based Correlation-Based Correlation-Feedback
Techniques Approach Approach Approach
Conditions [teration no. = 128 Iteration no. = 25 Iteration no. = 10
a=3S5 {=2.w=2 [teration no. (Horn) = 10
N=4 I=1l.w=1l,N=5

Uerror 65.67% 55.29% 49.80%

~ 1

VE —_— (H’vil)' (13.39)

[ g
Vu +v +1

The angular error between the correct image velocity V and an estimate Vf IS Y = across (V.+ Ve)
It 1s obvious that the smaller the angular error g, the more accurate the estimation of the optical
flow field will be. Despite the fact that the confidence measurement can be used in the correlation-
feedback algorithm, as well, Pan et al. did not consider the usage of the confidence measurement
in their work. Therefore, only the results with 100% density in Tables 4.6, 4.7, and 4.10 in the
Barron et al. (1994) paper were used in Tables 13.3, 13.4, and 13.5, respectively.
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FIGURE 13.15 A frame of the “Yosemite " sequence.

Prior to computation of the optical flow field, the “Yosemite™ and “Tree 2-D" test sequences
were compressed by a factor of 16 and 4, respectively, using the averaging and subsampling method
discussed earlier.

As mentioned by Barron et al. (1994) the optical flow field for the “Yosemite™ sequence 1s
complex, and Table 13.5 indicates that the correlation-feedback algorithm evidently performs best.
A robust method was developed and applied to a cloudless Yosemite sequence (Black and Anandan,
1996). It is noted that the performance of flow determination algorithms will be improved if the
sky is removed from consideration (Barron et al., 1994; Black and Anandan, 1996). Still, 1t 1s clear

IPR2021-00827
Unified EX1008 Page 315



290

Image and Video Compression for Multimedia Engineering

TABLE 13.3

Summary of the “Translating Tree” 2-D Velocity Results

Techniques Average Error, ©  Standard Deviation, °  Density, %
Horn and Schunck (original) 38.72 27.67 100
Horn and Schunck (modified) 2.02 2.27 100
Uras et al. (unthresholded) 0.62 0.52 100
Nagel 2.44 3.06 100
Anandan 4.54 3.10 100
Singh (step 1, [ =2, w = 2) |.64 244 100
Singh (step 2, 1 =2, w =2) 1.25 3.29 100
Correlation feedback (=1, w=1) 1.07 0.48 100
TABLE 13.4
Summary of the “Diverging Tree” 2-D Velocity Results
Techniques Average Error, °©  Standard Deviation, ©°  Density, %
Hom and Schunck (original) 12.02 11.72 100
Horn and Schunck (modified) 2.55 3.67 100
Uras et al. (unthresholded) 4.64 3.48 100
Nagel 2.94 3.23 100
Anandan (frames 19 and 21) 7.64 496 100
Singh (step 1,/ =2, w = 2) 17.66 14.25 100
Singh (step 2, I =2, w=2) 8.60 5.60 100
Pan, Shi, and Shu(/=1,w=1) 5.12 2.16 100

TABLE 13.5

Summary of the “Yosemite” 2-D Velocity Results

Techniques

Horn and Schunck (original)
Horn and Schunck (modified)
Uras et al. (unthresholded)
Nagel

Anandan (frames 19 and 21)
Singh (step 1,1 =2, w = 2)
Singh (step 2, [ =2, w=2)
Pan, Shi, and Shu(/=1, w=1)

Average Error, °

32.43

11.26
10.44
11.71
15.84
18.24
13.16

193

Standard Deviation, °

30.28
16.41
15.00
10.59
13.46
17.02
12.07

6.72

Density, %

100
100
100
100
100
100
100
100

that the algorithm in the Black and Anandan (1996) paper achieved very good performance In terms
of accuracy. In order to make a comparison with their algorithm, the correlation-feedback al gorithm
was applied to the same cloudless Yosemite sequence. The results were reported In Table 13.6,
from which it can be observed that the results obtained by Pan et al. are slightly better. Tables 13.3
and 13.4 indicate that the feedback technique also performs very well in translating and diverging

lexture post cases.

Experiment IV — Here, the corrclatiﬁﬁ-feedback algorithm is applied to a real sequence nan’_lﬂd
Hamburg Taxi, which is used as a testing sequence by Barron et al. (1994). There are four moving
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TABLE 13.6

Summary of the cloudless “Yosemite” 2-D Velocity Results

Techniques Average Error, °  Standard Deviation, °  Density, %
Robust formulation 4.46 421 100
Pan, Shi, and Shu (/= 1, w= 1) 3.79 3.44 100

FIGURE 13.16 Hamburg Taxi.

objects in the scene: a moving pedestrian in the upper left portion, a turning car in the middle, a
car moving toward right at the left side and a car moving toward left at the right side. A frame of
the sequence and the needle diagram of flow vectors estimated by using ten iterations of the
correlation-feedback algorithm (with ten iterations of the Horn and Schunck algorithm for initial-
1zation) are shown in Figures 13.16 and 13.17, respectively. The needle diagram is printed in the
same fashion as those shown by Barron et al. (1994). It is noted that the moving pedestrian in the
upper left portion cannot be shown because of the scale used in the needle diagram. The other
three moving vehicles in the sequence are shown very clearly. The noise level is low. Compared
with those diagrams reported by Barron et al. (1994), the correlation-feedback algorithm achieves
very good results.

For a comparison on a local basis, the portion of the needle diagram associated with the area
surrounding the turning car (a sample of the velocity fields), obtained by 50 iterations of the
correlation-feedback algorithm with five iterations of the Horn and Schunck algorithm as initial-
1zation, is provided in Figure 13.18(c). Its counterparts obtained by applying the Horn and Schunck
(50 iterations) and the Singh (50 iterations) algorithms are displayed in Figure 13.18(a) and (b),
respectively. It is observed that the correlation-feedback algorithm achieves the best results among

the three algorithms.

13.3.3.4 Discussion and Conclusion

Although it uses a revised version of a correlation-based algorithm (Singh, 1992), the correlation-
feedback technique is quite different from the correlation-based algorithm (Singh, 1992) in the
following four aspects. First, different optimization criteria: the algorithm does not use the iterative
minimization procedure used in (Singh, 1992). Instead, some variations of the estimated optical
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FIGURE 13.17 Needle diagram of flow field of Hamburg Taxi sequence obtained by using the correlation-
feedback algorithm.

flow vectors are generated and fed back. The associated bilinearly interpolated displaced frame
difference for each variation is calculated and utilized. In essence, the feedback approach utilizes
two given images repeatedly, while the Singh method uses two given images only once (i, and v,
derived from the two given images are only calculated once). The best local matching between the
displaced image, generated via feedback of the estimated optical flow, and the given image IS
actually used as the ultimate criterion for improving optical flow accuracy in the iterative process.
Second, the search window in the algorithm is an adaptive “rubber” window, having a variable size
depending on (u*, v*). In the correlation-based approaches (Singh, 1992), the search window has
a fixed size. Third, the algorithm uses a bilinear interpolation technique in the observation stage
and provides the correlation stage with a virtually continuous image field for more accurate motion
vector computation, while that of Singh (1992) does not. Fourth, different performances are achieved
when image intensity is a linear function of image coordinates. In fact, in the vicinity of a pixel,
the intensity can usually be considered as such a linear function. Except if the optical flow vectors
happen to have only an integer multiple of pixels as their components, an analysis by Pan (1994)
shows that the correlation-based approach (Singh, 1992) will not converge to the apparent 2-D
motion vectors and will easily have error much greater than 10%. Pan (1994) also shows that the
linear intensity function guarantees the assumption of the symmetric response distribution with a
single maximum value assumed by the ground-truth optical flow. As discussed in Section 13:3.3.1,
under this assumption the convergence of the correlation-feedback technique is justified.

Numerous experiments have demonstrated the convergence and accuracy of the correlation-
feedback algorithm, and usually it i1s more accurate than some standard gradient- and correlation-
based approaches. In the complicated optical flow cases, specifically in the case of the “Yosemite”
image sequence (regarded as the most challenging quantitative test image sequence by Barron et al.
(1994), it performs better than all other techniques.
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FIGURE 13.18 A portion of the needle diagram obtained by using (a) the Horn and Schunk algorithm,
(b) the Singh algorithm, and (c) the correlation-feedback algorithm.

13.4 MULTIPLE ATTRIBUTES FOR
CONSERVATION INFORMATION

As stated at the beginning of this chapter, there are many algorithms in optical flow computation
reported in the literature. Many more new algorithms continue to be developed. In Sections 13.2
and 13.3, we introduced some typical algorithms using gradient- and correlation-based approaches.
We will not explore various algorithms any further here. It is hoped that the fundamental concepts
and algorithms introduced above have provided a solid base for readers to study more-advanced
techniques.

We would like to discuss optical flow from another point of view, however: multiple image
attributes vs. a single image attribute. All of the methods we have discussed so far use only one
kind of image attributes as conservation information in flow determination. Most methods use
intensity. Singh’s method uses the Laplacian of intensity, which is calculated by using the difference
of the Gaussian operation (Burt, 1984). It was reported by Weng, Ahuja, and Huang (1992) that
using a single attribute as conservation . formation may result in ambiguity in matching two
perspective views, while multiple attributes, which are motion insensitive, may reduce ambiguity
remarkably, resulting in better matching. An example is shown in Figure 13.19 to illustrate this
argument. In this section, the Weng et al. method is discussed first. Then we introduce the Xia and
Shi method, which uses multiple attributes in a rramework based on weighted-least-square estima-

tion and feedback techniques.

IPR2021-00827
Unified EX1008 Page 319



294 Image and Video Compression for Multimedia Engineering

e | | |I. [ Tll: I R J' -
.................. F . > 2 Hi® a = . & 0& Kb owon I
.............. Ry 25 L :
.................... - . =
.......... i " * o i

% . }i‘ - s =g ¥ & 200000 @ T g & g 9§ = = "
- '
+-'|-: ----------- L-l iiiiiiiiii * . L
w » a P . '@ @ 8 0 . s a i t - - " -
e L e b & w e LA g i Bk e s sieTa e - S T

r e emiifie o 2 = i Y
= 0 g m g ®y s Fe by oy " - = s =
- - .'{. L .1_ ,,,,,, - e -

Finrs: = §idig wrwoh : . - -
e a0 R B el Ay R e e Ry B RA P & & =
- i F - = :
...... . -
------ i o = o= -
= . [ ; e TRl I L [ s f e
L r o L . .
Fl F . )
........ .
Iq- ........ i !
....... =SEal | i & » 3 - g B % @ -
5 " I [ O i e -  ®a # P eos & . F —y
& . tel by, L% ’ N
. B T O e e S o o e e e S e s 5 ok
i ll " % % % o8 @ & L"lllih- ...... —
L o b iii‘nt.ini\\.\ ------- .y oy = =
: v 1 L0 ST TR Jvin wiew a g i Sy 4
e T R T W e :ll\‘ Li\..-..._, 2 V4
T TSN . W T Y AP O S § l ‘hxﬁ..._r_‘
' Ilh\h\tltt\.\-.un."n\ ‘L\.Hhhk\,,.
yNC L AT v e N b i s, Y W G
b i-tllillll'.._.,\.utq.uﬂ-.."h.‘i\ T Ty e -
FRTSRY A B BN T Pt o o, S, | \."‘y"‘tﬁ. uuuuuu
..... rll-l-l_.'t{“-.m‘-.\.\ ' ~AT -
iifulflilitrﬁ‘h\\-\ \ {'L-._,, \
st dredn ieennenh NN NEN ¥ ey ¥  dhanvne &
................... P A ‘-\.\.mh'-.\.\i W B S T T T
-Jtt-u-ahnhh\-\. 1 L 8, 5, SN S SR S S o T L
i--u\yhhh'ﬁ"n"l‘a\ I-'hh'\.'h.-.-.-..u.
. ,--.-nhhh‘\\\h\-'ﬁ\‘l\\htuun =
mad  a s mw owoa T oamis miwww W \\\‘ﬂ\\\\r\\\\hi

- - -Inh!-"}‘\‘l\\-\\\. iiiiii -
= e ok biay FEUN eaNewEs 55
F e s A e AR R R e A =
- o F 5 a U TR R T l'l‘i. ..........

- * ] i | it L b %% = s % =
iiiii i L I- B vl s » % s & &
& " 8 on " »
......
o il & i
1 ] 1 | { 1 |

(b)

FIGURE 13.18 (continued)

13.4.1 THe WENG, AHUJA, AND HUANG METHOD

Weng, Ahuja, and Huang proposed a quite different approach to image point matching (Weng et al.,
1992). Note that the image matching amounts to flow field computation since it calculal;s a
displacement field for each point in image planes, which is essentially a flow field if the ume
interval between two image frames is known.

Based on an analysis indicating that using image intensity as a single attribute is not enough
in accurate image matching, Weng, Ahuja, and Huang utilize multiple attributes associated x’f'ilh
images in estimation of the dense displacement field. These image attributes are motion 1nsensitive,
i.e., they generally sustain only small change under motion assumed to be locally rigid. The image
attributes used are image intensity, edgeness, and cornerness. For each image attribute, the algorilhl‘n
forms a residual function, reflecting the inaccuracy of the estimated matching. The matching 1S
then determined via an iterative procedure to minimize the wei ghted sum of these resid ual functions.
In handling neighborhood information, a more-advanced smoothness constraint is used to take care
of moving discontinuities. The method considers uniform regions and the occlusion issue as *‘»vellu

In addition to using multiple image attributes, the method is pointwise processing. There IS‘I"IO
need for calculation of correlation within two correlation windows, which saves computation
dramatically. However, the method also has some drawbacks. First, the edgeness and cornerncss
involve calculation of the spatial gradient, which is noise sensitive. Second, in solving for minimi-
zation, the method resorts to numerical differentiation again: the estimated displacement vectors
are updated based on the partial derivatives of the noisy attribute images. In a word, the compula-
tional framework heavily relies on numerical differentiation, which is considered to be impraclical
for accurate computation (Barron et al., 1994).
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FIGURE 13.18 (continued)

o O
= @
- @

FIGURE 13.19 Multiple attributes vs. single attribute. (a) With intensity information only, poiqts D, E and
F tend to match to points A, B, and C, respectively. (b) With intensity, edge and corner information points D
and E tend to match points B and C, respectively.

On the other hand, the Pan, Shi, and Shu method, discussed in Section 13.3.3 in the category
of correlation based approaches, seems to have some complementary features. It IS ccfr@la_tic?n-
based. It uses intensity as a single attribute. In these two aspects the Pan et al.tmelhod 1S 1nferior
to the method by Weng, Ahuja, and Huang. The feedback technique and the weighted least-:c,quare
computation framework used in the Pan et al. method are superior, however, :.?mn!)ared with the
method by Weng et al. Motivated by the above observations, an efficient, I‘nul‘uattnbutej feedback
method was developed by Xia and Shi (Xia and Shi, 1995; Xia, 1996), and 1s discussed in the next
subsection. It is expected that more insight into the Weng, Ahuja, and Huang method will become

clear in the discussion as well.
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13.4.2 Tue Xi1A AND SHI METHOD

This method uses multiple attributes that are motion insensitive. The following five attributes are
used: image intensity, horizontal edgeness, vertical edgeness, contrast, and entropy. The first three
are used by Weng et al. (1992) as well, and can be considered as structural attributes, while the
last two, which are not used by Weng et al. (1992), can be considered as textural attributes according
to Haralick (1979).

Instead of the computational framework presented by Weng et al. (1992), which, as discussed
above, may not be practical for accurate computation, the method uses the computational framework
of Pan (1994; 1998). That is, the weighted-least-squared estimation technique used by Singh (1992)
and the feedback technique used by Pan (1994; 1998) are utilized here. Unlike in the Weng et al.
(1992) method, subpixel accuracy is considered and a confidence measure is generated in the
method.

The Xia and Shi method is also different from those algorithms presented by Singh (1992) and
Pan et al. (1995; 1998). First, there is no correlation in the method, while both Singh (1992) and
Pan et al. (1995; 1998) are correlation based. Specifically, the method is a point-wise processing.
Second, the method uses multiple attributes, while both Singh (1992) and Pan et al. (1995; 1998)
use 1mage intensity as a single attribute.

In summary, the Xia and Shi method to compute optical flow is motivated by several existing
algorithms mentioned above. It does, however, differ from each of them significantly.

13.4.2.1 Multiple Image Attributes

As mentioned before, there are five image attributes in the Xia and Shi method. They are defined
below.
Image Intensity — The intensity at a pixel (x, y) in an image f, (x, v), denoted by A, (x, ¥), 1.8.,
Ai(x, ) = f.(x, ¥). |
Horizontal Edgeness — The horizontal edgeness at a pixel (x, y), denoted by A, (x, y), 18
defined as

A (x,y)= ] g;*}’), (13.40)

1.e., the partial derivative of f (x, y) with respect to y, the second component of the gradient of
intensity function at the pixel.

Vertical Edgeness — The vertical edgeness at a pixel (x, y), denoted by A, (x, y), 1S defined as

A (x,y)= afgz,y), (13.41)

1.e., the first component of the gradient of intensity function at the pixel. Note that the partial
derivatives in Equations 13.40 and 13.41 are computed by applying a Sobel operator (Gonzalez
and Woods, 1992) in a 3 X 3 neighborhood of the pixel.

Contrast — The local contrast at a pixel (x, y), denoted by A, (x, y), is defined as

AC(I,)’)=2(f—j)2 C,'_j: (1342)

i.jes

where S is a set of all the distinct gray levels within a 3 X 3 window centered at pixel (x,_y)- Cij
specifies arelative frequency with which two neighboring pixels separated horizontally by a distance
of 1 occur in the 3 X 3 window, one with gray level i and the other with gray level J.
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Entropy — The local entropy at a point (x, y), denoted by A_ (x, y), is given by

Ar(xi.)’) = _z P log Pis

=Y

(13.43)

where § was defined above, and p, is the probability of occurrence of the gray level i in the 3 x 3
window.

Since the intensity is assumed to be invariant to motion, so are the horizontal edgeness, vertical
edgeness, contrast, and entropy.

As mentioned above, the intensity and edgeness are used as attributes in the Weng et al.
algorithm as well. Compared with the negative and positive cornerness used in the Weng et al.
algorithm, the local contrast and entropy need no differentiation and therefore are less sensitive to
various noises in original images. In addition, these two attributes are inexpensive in terms of
computation. They reflect the textural information about the local neighborhood of the pixel for
which the flow vector is to be estimated.

13.4.2.2 Conservation Stage

In the Xia and Shi algorithm, this stage is similar to that in the Pan et al. algorithm. That is, for a
flow vector estimated at the kth iteration, denoted by («*, v*), we find its 25 varnations, (i, v),
according to

i k k k k)
i lu o U i
uelu” ———,uk ———,u‘, Hl p— Hk ==
2 4 4 2|
(13.44)
i Lk vk Ul. vk i
YV EX Pk —_—— vk ——t uk, vk R — v* r—
2 4 2
For each of these 25 variations, the matching error is computed as
E(u,v) = r2(x,y,u,v)+r2 (x, y,1,v) + rp (x, you,v) +1f (X 3,0,9) + 1y (x,y,1,9),  (13.45)
11 B -"’i, ,y, ' "1'}; ,}, ] A\ y 7y AK' B G Ren Ar L B Bt L

where ry , ry , 1y, 1y, 1y denote the residual function with respect to the five attributes, respectively.
The residual function of intensity is defined as

(x._”,y—u)=fﬂ(,r,y)—_ﬁ,_l(x—u,y—v), (13.46)

I -1

Iy (x,y,u,v)=A (x,y)—A

where £, (x, y), f.., (x, y) is defined as before, i.e., the intensity function at ¢, and ¢, ,, respectively;

A, A; . denote the intensity attributes on f, and f,.,, respectively. |

It is observed that the residual error of intensity is essentially the DFD discussed in Chapter 12.
The rest of the residual functions are defined similarly. When subpixel accuracy is required, spatial
interpolation in the attribute images generally is necessary. Thus, the flow vector estimation 1S now
converted to a minimization problem. That is, find « and v at pixel (x, y) such thi:l[ the matching
error defined in Equation 13.45 is minimized. The weighted least-square method (Singh, 1992; Pan

et al., 1998) is then used. That is,

R(u,v) = e PE) (13.47)
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2 2 R(u,v)u Z z R(1e,v)v

k+l v k

0. = W = .
Z z R(u,v) Z R(u,v)

Since the weighted least-square method has been discussed in detail in Sections 13.3.2 and 13.3.3,
we will not go into more detail here.

(13.48)

13.4.2.3 Propagation Stage

Similar to what was proposed in the Pan et al. algorithm, in this stage Xia and Shi form a window
W of size 2w + 1) x (2w + 1) centered at the pixel (x, y) in the image {, (x, y). The flow estimate
at the pixel (x, y) in this stage, denoted by (%!, v¥*'), is calculated as a weighted sum of the flow
vectors of the pixel within the window W.

w W
W = 2 2 wl[j;(.r, v),f.(x+s,y+ I)]-uf*'(-r+ S, y+1)

J=—w [=—Ww

(13.49)

pH = Z Z w][f"(,r, y), f(x+s,y+ f)] v (x+ s,y +1),

S=—-w I=—w

where w,[.,.] is a weight function. For each point in the window W, a weight is assigned according
to the weight function. Let (x + s, y + 1) denote a pixel within the window W, then the weight ol
the pixel (x + s, y + 1) 1s given by

wi[ £(x.y). £, (x+s:y+1)] = e+|f,(x.) "(} (x+s,y+1) I

where € is a small positive number to prevent the denominator from vanishing, ¢ is a normalization
constant that makes the summation of all the weights in the W equal 1.

From the above equation, we see that the weight is determined based on the intensity difference
between the pixel under consideration and its neighboring pixel. The larger the difference 1n the
intensity, the more likely the two points belong to different regions. Therefore, the weight will be
small in this case. On the other hand, the flow vector in the same region will be similar since the
corresponding weight is large. Thus, the weighting function implicitly takes flow discontinuity Into
account and is more advanced than that of Singh (1992) and Pan et al. (1994; 1998).

13.4.2.4 Outline of Algorithm

The following summarizes the procedures of the algorithm.

1. Perform a low-pass prefiltering on two input images to remove various noises.

2. Generate attribute images: intensity, horizontal edgeness, vertical edgeness, local con-
trast, and local entropy. Those attributes are computed at each grid point of both images.

3. Set the initial flow vectors to zero. Set the maximum iteration number and/or estimation
accuracy.

4. For each pixel under consideration, generate flow variations according to Equation 13.44.
Compute matching error for each flow variation according to Equation 13.45 and trans-
form them to the corresponding response distribution R using Equation 13.47. Compute
the flow estimation u¢, v¢ using Equation 13.48.
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5. Forma (2w + 1) X (2w + |) neighborhood window W centered at the pixel. Compute the
weight for each pixel within the window W using Equation 13.50. Update the flow vector

using Equation 13.49.

6. Decrease the preset iteration number. If the iteration number is zero, the algorithm returns

with the resultant optical flow field. Otherwise, go to the next step.

7. If the change in flow vector over two successive iterations is less than the predefined
threshold, the algorithm returns with the estimated optical flow field. Otherwise, go to

step 4.

13.4.2.5 Experimental Results

To compare the method with other methods existing in the literature, similar to what has been done
by Pan etal. (1998) (discussed above in Section 13.3.3), the method was applied to three test
sequences used by Barron et al. (1994): the “Translating Tree” sequence, the “Diverging Tree”
sequence, and the “Yosemite” sequence. The same accuracy criterion 1s used as that by Barron
et al. (1994). Only those results reported by Barron et al. (1994) with 100% density are listed in
Tables 13.7, 13.8, and 13.9 for a fair and easy comparison. The Weng et al. algorithm was imple-

mented by Xia and Shi and the results were reported by Xia and Shi (1995).

TABLE 13.7

Summary of the “Translating Tree” 2D Velocity Results

Techniques

Average Error, °

Standard Deviation, °

Density, %

Horn and Schunck (original) 38.72 27.67 100
Horn and Schunck (modified) 2.02 2.27 100
Uras et al. (unthresholded) 0.62 0.52 100
Nagel 2.44 3.06 100
Anandan 4.54 3.10 100
Singh (step |, n =2, w=2) |.64 2.44 100
Singh (step 2, n =2, w = 2) |.25 3.29 100
Pan, Shi,and Shu (n=1,w=1) .07 0.48 100
Weng, Ahuja, and Huang .81 2.03 100
Xi1a and Shi 0.53 0.52 100
TABLE 13.8

Summary of the “Diverging Tree” 2D Velocity Results

Techniques

Horn and Schunck (original)

Horn and Schunck (modified)
Uras et al. (unthresholded)

Nagel

Anandan

Singh (step |, n=2, w=2, N=4)
Singh (step 2, n =2, w=2, N=4)
Pan, Shi, and Shu (n=1,w= 1)
Weng, Ahuja, and Huang

Xia and Shi

Average Error, ©

32.43
11.26
10.44
[1.7]
15.84
18.24
13.16

7.93

8.41

7.54

Standard Deviation, °©

30.28
16.41
15.00
10.59
13.46
17.02
12.07

6.72

8.22

6.61

Density, %

100
100
100
100
100
100
100
100
100
100

IPR2021-00827
Unified EX1008 Page 325



300 Image and Video Compression for Multimedia Engineering
TABLE 13.9
Summary of the “Yosemite” 2D Velocity Results
Techniques Average Error, ° Standard Deviation, °  Density, %
Horn and Schunck (onginal) 12.02 11.72 100
Horn and Schunck (modified) 2.55 3.67 100
Uras et al. (unthresholded) 4.64 3.48 100
Nagel 2.94 3.23 100
Anandan (frame 19 and 21) 7.64 496 100
Singh(step l,n=2, w=2 N=4) 17.66 14.25 100
Singh (step2,n =2, w=2, N=4) 8.60 5.60 100
Pan, Shi,and Shu (n=1,w=1) 5012 2.16 100
Weng, Ahuja, and Huang 8.01 9.71 100
Xia and Shi ‘ 4.04 3.82 100

13.4.2.6 Discussion and Conclusion

The above experimental results demonstrate that the Xia and Shi method outperforms both the Pan,
Shi, and Shu method and the Weng, Ahuja, and Huang method in terms of accuracy of optical flow
determined. Computationally speaking, the Xia and Shi method is less expensive than the Pan et al.,
since there is no correlation involved and the correlation is known to be computationally expensive.

13.5 SUMMARY

The optical flow field is a dense 2-D distribution of apparent velocities of movement of intensity
patterns in image planes, while the 2-D motion field can be understood as the perspective projection
of 3-D motion in the scene onto image planes. They are different. Only under certain circumstances
are they equal to each other. In practice, however, they are closely related in that image sequences
are usually the only data we have in motion analysis. Hence, we can only deal with the optical
flow in motion analysis, instead of the 2-D motion field. The aperture problem in motion analysis
refers to the problem that occurs when viewing motion via an aperture. Specifically, the only motion
we can observe from local measurement is the motion component orthogonal to the underlying
moving contour. That is another way to manifest the ill-posed nature of optical flow computation.
In general, motion analysis from image sequences is an inverse problem, which is ill posed.
Fortunately, low-level computational vision problems are only mildly ill posed. Hence, lowering
the noise in image data leads to a possible significant reduction of errors in flow determination.

Numerous flow determination algorithms have appeared over the course of more than a decade.
Most of the techniques take one of the following approaches: the gradient-based approach, the
correlation-based approach, the energy-based approach, or the phase-based approach. In addition
to these deterministic approaches, there is also a stochastic approach. A unification point of view
of optical flow computation is presented in Section 13.3. That is, for any algorithm in optical {low
computation, there are two types of information that need to be extracted — conservation infor-
mation and neighborhood information.

Several techniques are introduced for the gradient-based approach, particularly the Horn and
Schunck algorithm, which is a pioneer work in flow determination. There, the brightness invariant
equation is used to extract conservation information and the smoothness constraint is used (0 extract
neighborhood information. The modified Horn and Schunck algorithm shows significant error
reduction in flow determination, because of a reduction of noise in image data, which confirms the

mildly ill-posed nature of optical flow computation.
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Several techniques are discussed for the correlation-based approach. The Singh algorithm is
given emphasis due to its estimation-theoretical framework. The Pan, Shi, and Shu algorithm, which
applies the feedback technique to the correlation method, demonstrates an accuracy enhancement
in flow estimation.

Section 13.4 addresses the usage of multiple image attributes vs. that of a single image attribute
in the flow determination technique. It is found that the use of multiple motion-insensitive attributes
can help reduce the ambiguity in motion analysis. The application of multiple image attributes to
conservation information turns out to be promising for flow computation.

Some experimental works are presented in Sections 13.3 and 13.4. With Barron et al.’s recent
comprehensive survey of various existing optical flow algorithms, we can have a quantitative
assessment on various optical flow techniques.

Optical flow finds application in areas such as computer vision, image interpolation, temporal
filtering, and video coding. In computational vision, raising the accuracy of optical flow estimation
Is important. In video coding, however, lowering the bit rate for both prediction error and motion
overhead, while keeping certain quality of reconstructed frames, is the ultimate goal. Properly
handling the large amount of velocity vectors is a key issue in this regard. It is noted that the optical
flow-based motion estimation for video compression has been applied for many years. However,
the high bit overhead and computational complexity prevent it from practical usage in video coding.
With the continued advance in technologies, however, we believe this problem may be resolved in
the near future. In fact, an initial, successful attempt has been made and reported by Shi et al.
(1998). There, based on a study that demonstrates that flow vectors are highly correlated and can
be modeled by a first-order autoregressive (AR) model, the discrete cosine transform (DCT) is
applied to flow vectors. An adaptive threshold technique is developed to match optical flow motion
prediction and to minimize the residual errors. Consequently, this optical flow-based motion-
compensated video coding algorithm achieves good performance for very low bit rate video coding.
[t obtains a bit rate compatible with that obtained by an H.263 standard algorithm, which uses
block matching for motion estimation. (Note that the video coding standard H.263 is covered in
Chapter 19.) Furthermore, the reconstructed video frames by using this flow-based algorithm are
free of annoying blocking artifacts. This effect is demonstrated in Figure 13.20. Note that
Figure 13.20 (b) has appeared in Figure 11.12, where the same picture is displayed in a larger size

and the blocking artifacts are hence clearer.

13.6 EXERCISES

13-1. What is an optical flow field? What is a 2-D motion field? What is the difference between

the two? How are they related to each other?

13-2. What is an aperture problem? Give two of your own examples.

13-3. What is the ill-posed problem? Why do we consider motion analysis from image
sequences an ill-posed problem? |

13-4. Is the relationship between the optical flow in an image plane and the velocities of
objects in 3-D world space necessarily obvious? Justify your answer.

13-5. What does the smoothness constraint imply? Why is it required?

13-6. How are the derivatives of intensity function and the Laplacian of flow components

estimated in the Horn and Schunck method? -
13-7. What are the differences between the Horn and Schunck original method and the

modified Horn and Schunck method? What do you observe from these differences?

13-8. What is the difference between the smoothness constraint proposed by Horn and
Schunck and the oriented smoothness constraint proposed by Nagel? Provide comments.
13-9. In your own words, describe the Singh method. What is the weighted-least-square

estimation technique?
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FIGURE 13.20 (a) The 21st original frame of the Miss America sequence: (b) the reconstructed 21st frame
with H.263; (c) the reconstructed 21st frame with the proposed algorithm.

13-10. In your own words, describe conservation information and neighborhood information.
Using this perspective, take a new look at the Horn and Schunck algorithm.

13-11. How is the feedback technique applied in the Pan et al. algorithm?

13-12. In your own words, tell the difference between the Singh method and the Pan et al.
method.

13-13. Give two of your own examples to show that multiple image attributes are able to reduce
ambiguity 1in image matching.

13-14. How does the Xia and Shi method differ from the Weng et al. method?

13-15. How does the Xia and Shi method differ from the Pan et al. method?
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4 Further Discussion

and Summary on
2-D Motion Estimation

Since Chapter 10, we have been devoting our discussion to motion analysis and motion-compen-
sated coding. Following a general description in Chapter 10, three major techniques — block
matching, pel recursion, and optical flow — are covered in Chapters 11, 12, and 13, respectively.

[n this chapter, before concluding this subject, we provide further discussion and a summary.
A general characterization for 2-D motion estimation, thus for all three techniques, is given in
Section 14.1. In Section 14.2, different classifications of various methods for 2-D motion analysis
are given in a wider scope. Section 14.3 is concerned with a performance comparison among the
three major techniques. More-advanced techniques and new trends in motion analysis and motion
compensation are introduced in Section 14.4.

14.1 GENERAL CHARACTERIZATION

A few common features characterizing all three major techniques are discussed in this section.

14.1.1 APeRTURE PROBLEM

The aperture problem, discussed in Chapter 13, describes phenomena that occur when observing
motion through a small opening in a flat screen. That is, one can only observe normal velocity. It
Is essentially a form of ill-posed problem since it is concerned with existence and uniqueness issues,
as illustrated in Figure 13.2(a) and (b). This problem is inherent with the optical flow technique.
We note, however, that the aperture problem also exists in block matching and pel recursive
techniques. Consider an area in an image plane having strong intensity gradients. According to our
discussion in Chapter 13, the aperture problem does exist in this area no matter what type of
lechnique is applied to determine local motion. That is, motion perpendicular to the gradient cannot
be determined as long as only a local measure is utilized. It is noted that, in fact, the steepest
descent method of the pel recursive technique only updates the estimate along the gradient direction

(Tekalp, 1995).

14.1.2 IL-Posep INVERSE PROBLEM

In Chapter 13, when we discuss the optical flow technique, a few fundamental issues are raised. It
is stated that optical flow computation from image sequences is an inverse problem, which is usually
ill-posed. Specifically, there are three problems: nonexistence, nonuniqueness, and instability. That
is, the solution may not exist; if it exists, it may not be unique. The solution may not be stable in

the sense that a small perturbation in the image data may cause a huge error in the solution.
Now we can extend our discussion to both block matching and pel recursion. This is because
both block matching and pel recursive techniques are intended for determining 2-D motion from

Image sequences, and are therefore inverse problems.

305
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14.1.3 CoNSERVATION INFORMATION AND NEIGHBORHOOD INFORMATION

Because of the ill-posed nature of 2-D motion estimation, a unified point of view regarding various
optical flow algorithms is also applicable for block matching and pel recursive techniques. That is,
all three major techniques involve extracting conservation information and extracting neighborhood
information.

Take a look at the block-matching technique. There, conservation information is a distribution
of some sort of features (usually intensity or functions of intensity) within blocks. Neighborhood
information manifests itself in that all pixels within a block share the same displacement. If the
latter constraint 1s not imposed, block matching cannot work. One example 1s the following extreme
case. Consider a block size of 1 X 1, 1.e., a block containing only a single pixel. It is well known
that there 1s no way to estimate the motion of a pixel whose movement is independent of all 1ts
neighbors (Horn and Schunck, 1981).

With the pel recursive technique, say, the steepest descent method, conservation information
1s the intensity of the pixel for which the displacement vector is to be estimated. Neighborhood
information manifests itself as recursively propagating displacement estimates to neighboring pixels
(spatially or temporally) as initial estimates.

In Section 12.3, it is pointed out that Netravali and Robbins suggested an alternative, called
“inclusion of a neighborhood area.” That is, in order to make displacement estimation more robust,
they consider a small neighborhood Q of the pixel for evaluating the square of displaced frame
difference (DFD) in calculating the update term. They assume a constant displacement vector within
the area. The algorithm thus becomes

—

d* =3"'-—-%(IVJ ZwiDFDE(I,y,;d*), (14.1)

(,x.yEQ

where i represents an index for the ith pixel (x, y) within Q, and w;, is the weight for the ith pixel
in £2. All the weights satisfy certain conditions; i.e., they are nonnegative, and their sum equals 1.
Obviously, in this more-advanced algorithm, the conservation information is the intensity distribu-
tion within the neighborhood of the pixel, the neighborhood information is imposed more explicitly,
and 1t 1s stronger than that in the steepest descent method.

14.1.4 QOccLusioN AND DisoccLusIiON

The problems of occlusion and disocclusion make motion estimation more difficult and hence more
challenging. Here we give a brief description about these and other related concepts.

Let us consider Figure 14.1. There, the rectangle ABCD represents an object in an image taken
at the moment of ¢, ,, f (x, y, t,.,). The rectangle EFGH denotes the same object, which has been
translated, in the image taken at f, moment, f (x, y, ¢,). In the image f (x, , t,), the area BFDH 1s
occluded by the object that newly moves in. On the other hand, in f (x, y, t,), the area of AECG
resurfaces and is referred to as a newly visible area, or a newly exposed area.

Clearly, when occlusion and disocclusion occur, all three major techniques discussed in this
part will encounter a fatal problem, since conservation information may be lost, making motion
estimation fail in the newly exposed areas. If image frames are taken densely enough along the
temporal dimension, however, occlusion and disocclusion may not cause serious problems, since
the failure in motion estimation may be restricted to some limited areas. An extra bit rate paid for
the corresponding increase in encoding prediction error is another way to resolve the problem. It
high quality and low bit rate are both desired, then some special measures have to be taken.

One of the techniques suitable for handling the situation is Kalman filtering, which is known
as the best, by almost any reasonable criterion, technique working in the Gaussian white noise case
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An objectat t The objectatt

FIGURE 14.1 Occlusion and disocclusion.

(Brown and Hwang, 1992). If we consider the system that estimates the 2-D motion to be contam-
inated by Gaussian white noise, we can use Kalman filtering to increase the accuracy of motion
estimation, particularly along motion discontinuities. It is powerful in doing incremental, dynamic,
and real-time estimation.

[n estimating 3-D motion, Kalman filtering was applied by Matthies et al. (1989) and Pan et al.
(1994). Kalman filters were also utilized in optical flow computation (Singh, 1992; Pan and Shi,
1994). In using the Kalman filter technique, the question of how to handle the newly exposed areas
was raised by Matthies et al. (1989). Pan et al. (1994) proposed one way to handle this 1ssue, and
some experimental work demonstrated its effectiveness.

14.1.5 Ricip AND NONRIGID MOTION

There are two types of motion: rigid motion and nonrigid motion. Rigid motion refers to motion
of rigid objects. It is known that our human vision system is capable of perceiving 2-D projections
of 3-D moving rigid bodies as 2-D moving rigid bodies. Most cases in computer vision are concerned
with rigid motion. Perhaps this is due to the fact that most applications in computer vision fall into
this category. On the other hand, rigid motion is easier to handle than nonrigid motion. This can

be seen in the following discussion.
Consider a point P in 3-D world space with the coordinates (X,Y, Z), which can be represented

by a column vector v:

v =(X,Y,2). (14.2)

Rigid motion involves rotation and translation, and has six free motion parameters. Let R denote
the rotation matrix and 7 the translational vector. The coordinates of point P in the 3-D world after

the rigid motion are denoted by v’. Then we have
v =Rv+T. Uket-2)

Nonrigid motion is more complicated. It involves deformation in addition to rotation and translation,
and thus cannot be characterized by the above equation. According to the Helmholtz theory

(Sommerfeld, 1950), the counterpart of the above equation becomes
v ' =Rv+T+ Dy, (14.4)

where D is a deformation matrix. Note that R, 7, and D are pixel dependent. Handling nonrigid
motion, hence, is very complicated.
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In videophony and videoconferencing applications, a typical scene might be a head-and-
shoulder view of a person imposed on a background. The facial expression 1s nonrigid in nature,
Model-based facial coding has been studied extensively (Aizawa and Harashima, 1994; Li et al.,
1993; Arizawa and Huang, 1995). There, a 3-D wireframe model is used for handling rigid head
motion. L1 (1993) analyzes the facial nonrigid motion as a weighted linear combination of a set of
action units, instead of determining D v directly. Since the number of action units 1s limited, the
compuatation becomes less expensive. In the Aizawa and Harashima (1989) paper, the portions 1n
the human face with rich expression, such as lips, are cut and then transmitted out. At the receiving
end, the portions are pasted back in the face.

Among the three types of techniques, block matching may be used to manage rigid motion,
while pel recursive and optical flow may be used to handle either rigid or nonrigid motion.

14.2 DIFFERENT CLASSIFICATIONS

There are various methods in motion estimation, which can be classified in many different ways.
We discuss some of the classifications in this section.

14.2.1 DETERMINISTIC METHODS VS. STOCHASTIC METHODS

Most algorithms are deterministic in nature. To see this, let us take a look at the most prominent
algorithm for each of the three major 2-D motion estimation techniques. That is, the Jain and Jain
algorithm for the block matching technique (Jain and Jain, 1981); the Netravali and Robbins
algorithm for the pel recursive technique (Netravali and Robbins, 1979); and the Horn and Schunck
algorithm for the optical flow technique (Horn and Schunck, 1981). All are deterministic methods.
There are also stochastic methods in 2-D motion estimation, such as the Konrad and Dubois
algorithm (Konrad and Dubois, 1992), which estimates 2-D motion using the maximum a posteriori
probability (MAP).

14.2.2 SpaTiAL DOMAIN METHODS vs. FREQUENCY DOMAIN METHODS

While most techniques in 2-D motion analysis are spatial domain methods, there are also frequency
domain methods (Kughlin and Hines, 1975; Heeger, 1988; Porat and Friedlander, 1990; Girod,
1993; Kojima et al., 1993; Koc and Liu, 1998). Heeger (1988) developed a method to determine
optical flow in the frequency domain, which is based on spatiotemporal filters. The basic idea and
principle of the method is introduced in this subsection. A very new and effective frequency method
for 2-D motion analysis (Koc and Liu, 1998) is presented in Section 14.4, where we discuss new
trends in 2-D motion estimation.

14.2.2.1 Optical Flow Determination Using Gabor Energy Filters

The frequency domain method of optical flow computation developed by Heeger is suitable for
highly textured image sequences. First, let us take a look at how motion can be detected 1n the
frequency domain.

Motion in the spatiotemporal frequency domain — We initiate our discussion with a 1-D case.
The spatial frequency of a (translationally) moving sinusoidal signal, ®,, is defined as cycles per
distance (usually cycles per pixel), while temporal frequency,®,, is defined as cycles per time unit
(usually cycles per frame). Hence, the velocity of (translational) motion, defined as distance per
time unit (usually pixels per frame), can be related to the spatial and temporal frequencies as follows.

v=Q,/0. . (14.5)
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