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FIGURE 2.13 Input-output characteristic of the optimal quantizer for Gaussian distribution with zero mean,
unit vanance, and N = 8.

decision levels are densely distributed in the region having a higher probability of occurrence and
coarsely distributed in other regions. A logarithmic companding technique also allocates decision
levels densely in the small-magnitude region, which corresponds to a high occurrence probability,
but 1n a different way. We conclude that nonuniform quantization achieves minimum mean square
quantization error by distributing decision levels according to the statistics of the input random
variable.

These two types of nonuniform quantizers are both time-invariant. That is, they are not designed
for nonstationary input signals. Moreover, even for a stationary input signal, if its pdf deviates from
that with which the optimum quantizer is designed, then what is called mismatch will take place
and the performance of the quantizer will deteriorate. There are two main types of mismatch. One
is called variance mismalch. That is, the pdf of input signal is matched, while the variance IS
mismatched. Another type 1s pdf mismatch. Noted that these two kinds of mismatch also occur In
optimum uniform quantization, since there the optimization is also achieved based on the inpul
statistics assumption. For a detailed analysis of the effects of the two types of mismatch on
quantization, readers are referred to (Jayant and Noll, 1984).

Adaptive quantization attempts to make the quantizer design adapt to the varying input statistics
in order to achieve better performance. It is a means to combat the mismatch problem discussed
above. By statistics, we mean the statistical mean, variance (or the dynamic range), and type of
input pdf. When the mean of the input changes, differential coding (discussed in the next chapter)
is a suitable method to handle the variation. For other types of cases, adaptive quantization is found
to be effective. The price paid for adaptive quantization is processing delays and an extra storage
requirement as seen below.

There are two different types of adaptive quantization: forward adaptation and backward
adaptation. Before we discuss these, however, let us describe an alternative way to define quanti-
zation (Jayant and Noll, 1984). Look at Figure 2.14. Quantization can be viewed as a (wo-stage
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FIGURE 2.14 A two-stage model of quantization.

process. The first stage is the quantization encoder and the second stage is the quantization decoder.
In the encoder, the input to quantization is converted to the index of an interval into which the
input x falls. This index 1s mapped (o (the codeword that represents) the reconstruction level
corresponding to the interval in the decoder. Roughly speaking, this definition considers a quantizer
as a communication system in which the quantization encoder is on the transmitter side while the
quantization decoder 1s on the receiver side. In this sense, this definition is broader than that for
quantization defined in Figure 2.3(a).

2.4.1 ForwArD ADAPTIVE QUANTIZATION

A block diagram of forward adaptive quantization 1s shown in Figure 2.15. There, the input to the
quantizer, x, 1s first split into blocks, each with a certain length. Blocks are stored in a buffer one
at a time. A statistical analysis is then carried out with respect to the block in the buffer. Based on
the analysis, the quantization encoder is set up, and the input data within the block are assigned
indexes of respective intervals. In addition to these indexes, the encoder setting parameters, derived
from the statistical analysis, are sent to the quantization decoder as side information. The term side
comes from the fact that the amount of bits used for coding the setting parameter 1s usually a small
fraction of the total amount of bits used.

Selection of the block size is a critical issue. If the size i1s small, the adaptation to the local
statistics will be effective, but the side information needs to be sent frequently. That is, more bits
are used for sending the side information. If the size is large, the bits used for side information
decrease. On the other hand, the adaptation becomes less sensitive to changing statistics, and both
processing delays and storage required increase. In practice, a proper compromise between the
quantity of side information and the effectiveness of adaptation produces a good sclection of the
block size.

Examples of using the forward approach to adapt quantization to a changing input variance (to
combat variance mismatch) can be found in (Jayant and Noll, 1984; Sayood, 1996).

Statistical parameters l
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FIGURE 2.15 Forward adaptive quantization.
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FIGURE 2.16 Backward adaptive quantization.

2.4.2 BACKWARD ADAPTIVE QUANTIZATION

Figure 2.16 shows a block diagram of backward adaptive quantization. A close look at the block
diagram reveals that in both the quantization encoder and decoder the buffering and the statistical
analysis are carried out with respect to the output of the quantization encoder. In this way, there
is no need to send side information. The sensitivity of adaptation to the changing statistics will be
degraded, however, since instead of the original input, only the output of the quantization encoder
1s used 1n the statistical analysis. That is, the quantization noise is involved in the statistical analysis.

2.4.3 ApArTIVE QUANTIZATION WITH A ONE-WORD MEMORY

Intuitively, it is expected that observance of a sufficiently large number of input or output (quantized)
data is necessary in order to track the changing statistics and then adapt the quantizer setting In
adaptive quantization. Through an analysis, Jayant showed that effective adaptations can be realized
with an explicit memory of only one word. That is, either one input sample, x, in forward adaptive
quantization or a quantized output, y, in backward adaptive quantization is sufficient (Jayant, 1973).
In (Jayant, 1984), examples on step-size adaptation (with the number of total reconstruction
levels larger than four) were given. The idea is as follows. If at moment ¢, the input sample x; falls
into the outer interval, then the step size at the next moment ¢, will be enlarged by a factor of m,
(multiplying the current step size by m;, m; > 1). On the other hand, if the input x: falls into an
inner interval close to x = O then, the multiplier is less than 1, i.e., m; < 1. That is, the multiplier
m; is small in the interval near x = 0 and monotonically increases for an increased x. Its range
varies from a small positive number less than 1 to a number larger than 1. In this way, the quantizer
adapts itself to the input to avoid overload as well as underload to achieve better performance.

2.4.4 SwitcHED QUANTIZATION

This is another adaptive quantization scheme. A block diagram is shown in Figure 2.17. It consists
of a bank of L quantizers. Each quantizer in the bank is fixed, but collectively they form a bank
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FIGURE 2.17 Switched quantization.

of quantizers with a variety of input-output characteristics. Based on a statistical analysis of recent
iInput or output samples, a switch connects the current input to one of the quantizers in the bank
such that the best possible performance may be achieved. It is reported that in both video and
speech applications, this scheme has shown improved performance even when the number of
quantizers in the bank, L, is two (Jayant and Noll, 1984). Interestingly, it is noted that as L — o,
the switched quantization converges to the adaptive quantizer discussed above.

2.5 PCM

Pulse code modulation (PCM) 1s closely related to quantization, the focus of this chapter. Further-
more, as pointed out in (Jayant, 1984), PCM is the earliest, best established, and most frequently
applied coding system despite the fact that it is the most bit-consuming digitizing system (since it
encodes cach pixel independently) as well as being a very demanding system in terms of the bit
error rate on the digital channel. Therefore, we discuss the PCM technique in this section.

PCM 1s now the most important form of pulse modulation. The other forms of pulse modulation
are pulse amplitude modulation (PAM), pulse width modulation (PWM), and pulse position mod-
ulation (PPM), which are covered in most communications texts. Briefly speaking, pulse modulation
links an analog signal to a pulse train in the following way. The analog signal 1s first sampled (a
discretization in the time domain). The sampled values are used to modulate a pulse train. If the
modulation is carried out through the amplitude of the pulse train, 1t is called PAM. If the modified
parameter of the pulse train is the pulse width, we then have PWM. If the pulse width and magnitude
are constant — only the position of pulses is modulated by the sample values — we then encounter
PPM. An illustration of these pulse modulations is shown in Figure 2.18.

In PCM, an analog signal is first sampled. The sampled value is then quantized. Finally the
quantized value is encoded, resulting in a bit steam. Figure 2.19 provides an example of PCM. We
see that through a sampling and a uniform quantization the PCM system converts the input analog
signal, which is continuous in both time and magnitude, into a digital signal (discretized in both
time and magnitude) in the form of a natural binary code sequence. In this way, an analog signal
modulates a pulse train with a natural binary code.

By far, PCM is more popular than other types of pulse modulation since the code modulation
is much more robust against various noises than amplitude modulation, width modulation, and
position modulation. In fact, almost all coding techniques include a PCM component. In digital
image processing, given digital images usually appear in PCM format. It is known that an acceptable
PCM representation of a monochrome picture requires six to eight bits per pixel (Huang, 1975).
It is used so commonly in practice that its performance normally serves as a standard against which

other coding techniques are compared.

IPR2021-00827

Unified EX1008 Page 75




50 Image and Video Compression for Multimedia Engineering

A1) /\»-\__\
!
b,

0] —
fan \\
B 1 N
fira JES ‘
- h j

N f":’ﬁ Hn-..\ R

i ] ﬁ‘ ( || : : J b
hnnt sl B

0 |

1 0 O O O

FIGURE 2.18 Pulse modulation.

Recall the false contouring phenomenon discussed in Chapter 1, when we discussed texture
masking. It states that our eyes are more sensitive to relatively uniform regions in an image plane.
If the number of reconstruction levels is not large enough (coarse quantization), then some unnatural
contours will appear. When frequency masking was discussed, it was noted that by adding some
high-frequency signal before quantization, the false contouring can be eliminated to a great extent.
This technique is called dithering. The high-frequency signal used is referred to as a dither signal.
Both false contouring and dithering were first reported in (Goodall, 1951).

2.6 SUMMARY

Quantization is a process in which a quantity having possibly an infinite number of different values
is converted to another quantity having only finite many values. It is an important element in source
encoding that has significant impact on both bit rate and distortion of reconstructed images and
video in visual communication systems. Depending on whether the quantity is a scalar or a vector,
quantization is called either scalar quantization or vector quantization. In this chapter we considered
only scalar quantization.

Uniform quantization is the simplest and yet the most important case. In uniform quantization,
except for outer intervals, both decision levels and reconstruction levels are uniformly spaced.
Moreover, a reconstruction level is the arithmetic average of the two corresponding decision levels.
In uniform quantization design, the step size is usually the only parameter that needs to be specified.
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FIGURE 2.19 Pulse code modulation (PCM).

Optimum quantization implies minimization of the mean square quantization error. When the
input has a uniform distribution, uniform quantization is optimum. For the sake of simplicity, a
uniform optimum quantizer is sometimes desired even when the input does not obey uniform
distribution. The design under these circumstances involves an iterative procedure. The design
problem in cases where the input has Gaussian, Lapacian, or Gamma distribution was solved and
the parameters are available.

When the constraint of uniform quantization is removed, the conditions for optimum quanti-
zation are derived. The resultant optimum quantizer 1s normally nonuniform. An iterative procedure
to solve the design is established and the optimum design parameters for Gaussian, Laplacian, and
Gamma distribution are tabulated.

The companding technique is an alternative way to implement nonuniform quantization. Both
nonuniform quantization and companding are time-invariant and hence not suitable for nonstation-
ary input. Adaptive quantization deals with nonstationary input and combats the mismatch that
occurs in optimum quantization design.

In adaptive quantization, buffering is necessary to store some recent input or sampled output
data. A statistical analysis is carried out with respect to the stored recent data. Based on the analysis,
the quantizer’s parameters are adapted to changing input statistics to achieve better quantization
performance. There are two types of adaptive quantization: forward and backward adaptive quan-
tization. With the forward type, the statistical analysis is derived from the original input data, while
with the backward type, quantization noise 1s involved in the analysis. Therefore, the forward
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technique usually achieves more effective adaptation than the backward manner. The latter, however,
does not need to send quantizer setting parameters as side information to the receiver side, since
the output values of the quantization encoder (based on which the statistics are analyzed and the
quantizer’s parameters are adapted) are available in both the transmitter and receiver sides.

Switched quantization is another type of adaptive quantization. In this scheme, a bank of fixed
quantizers is utilized, each quantizer having different input-output characteristics. A statistical
analysis based on recent input decides which quantizer in the bank is suitable for the present input.
The system then connects the input to this particular quantizer.

Nowadays, pulse code modulation is the most frequently used form of pulse modulation due
to its robustness against noise. PCM consists of three stages: sampling, quantization, and encoding.
Analog signals are first sampled with a proper sampling frequency. The sampled data are then
quantized using a uniform quantizer. Finally, the quantized values are encoded with natural binary

code. It is the best established and most applied coding system. Despite its bit-consuming feature,
it is utilized in almost all coding systems.

2.7 EXERCISES

2-1. Using your own words, define quantization and uniform quantization. What are the two
features of uniform quantization?

2-2. What is optimum quantization? Why is uniform quantization sometimes desired, even
when the input has a pdf different from uniform? How was this problem solved? Draw
an input-output characteristic of an optimum uniform quantizer with an input obeying
Gaussian pdf having zero mean, unit variance, and the number of reconstruction levels,
N, equal to 8.

2-3. What are the conditions of optimum nonuniform quantization? From Table 2.2, what
observations can you make?

2-4. Define variance mismatch and pdf mismatch. Discuss how you can resolve the mismatch
problem.

2-5.

What is the difference between forward and backward adaptive quantization? Comment
on the merits and drawbacks for each.

2-6. What are PAM, PWM, PPM, and PCM? Why is PCM the most popular type of pulse
modulation?
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3 Differential Coding

[nstead ol encoding a signal directly, the differential coding technique codes the difference between
the signal itsell and its prediction. Therefore it is also known as predictive coding. By utilizing
spatial and/or temporal interpixel correlation, differential coding is an efficient and yet computation-
ally simple coding technique. In this chapter, we first describe the differential technique in general.
Two components of differential coding, prediction and quantization, are discussed. There is an
emphasis on (optimum) prediction, since quantization was discussed in Chapter 2. When the differ-
ence signal (also known as prediction error) 1s quantized, the differential coding is called differential
pulse code modulation (DPCM). Some issues in DPCM are discussed, after which delta modulation
(DM) as a special case of DPCM 1s covered. The idea of differential coding involving image
sequences 1s briefly discussed in this chapter. More detailed coverage 1s presented in Sections III
and 1V, starting from Chapter 10. I quantization i1s not included, the differential coding is referred
to as information-preserving differential coding. This is discussed at the end of the chapter.

3.1 INTRODUCTION TO DPCM

As depicted 1n Figure 2.3, a source encoder consists of the following three components: transfor-
mation, quantization, and codeword assignment. The transformation converts input into a format
for quantization followed by codeword assignment. In other words, the component of transformation
decides which format of input is to be encoded. As mentioned in the previous chapter, input itself
1s not necessarily the most suitable format for encoding.

Consider the case of monochrome image encoding. The input is usually a 2-D array of gray
level values of an image obtained via PCM coding. The concept of spatial redundancy, discussed
in Section 1.2.1.1, tells us that neighboring pixels of an image are usually highly correlated.
Therefore, it is more efficient to encode the gray difference between two neighboring pixels instead
of encoding the gray level values of each pixel. At the receiver, the decoded difference is added
back to reconstruct the gray level value of the pixel. Since neighboring pixels are highly correlated,
their gray level values bear a great similarity. Hence, we expect that the variance of the difference
signal will be smaller than that of the original signal. Assume uniform quantization and natural
binary coding for the sake of simplicity. Then we see that for the same bit rate (bits per sample)
the quantization error will be smaller, i.e., a higher quality of reconstructed signal can be achieved.
Or, for the same quality of reconstructed signal, we need a lower bit rate.

3.1.1  SimpeLe Pixer-to-Pixer DPCM

Denote the gray level values of pixels along a row of an image as z;, i = 1,--+,M, where M is the
total number of pixels within the row. Using the immediately preceding pixel’s gray level value,
z._1, as a prediction of that of the present pixel, z;, i.e.,

=2, (3.1)

we then have the difference signal
d=2,-%=2-1, (32)
55
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FIGURE 3.1 (a) Histogram of the original “boy and girl” image. (b) Histogram of the difference 1image

obtained by using horizontal pixel-to-pixel differencing. (c) A close-up of the central portion of the histogram
of the difference 1mage.

Assume a bit rate of eight bits per sample in the quantization. We can see that although the dynamic
range of the difference signal 1s theoretically doubled, from 256 to 512, the variance of the difference
signal is actually much smaller. This can be confirmed from the histograms of the “boy and girl”
image (refer to Figure 1.1) and 1its difference image obtained by horizontal pixel-to-pixel differ-
encing, shown in Figure 3.1(a) and (b), respectively. Figure 3.1(b) and its close-up (c) indicate that
by a rate of 42.44% the difference values fall into the range of -1, 0, and +1. In other words, the

histogram of the difference signal is much more narrowly concentrated than that of the original
signal.
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FIGURE 3.2 Block diagram of a pixel-to-pixel differential coding system.

A block diagram of the scheme described above is shown in Figure 3.2. There z; denotes the

sequence of pixels along a row, 4, 1s the corresponding difference signal, and 4, is the quantized
version of the difference, i.e.,

"

d=0(d)=d+e (3.3)

where ¢, represents the quantization error. In the decoder, Z; represents the reconstructed pixel gray
value, and we have

7 =7 +d (3.4)

This simple scheme, however, suffers from an accumulated quantization error. We can see this
clearly from the following derivation (Sayood, 1996), where we assume the initial value z, is
available for both the encoder and the decoder.

as 1=1, d, =z -z,

iy

=d, +e,, (3.5)

Z, =z,+d, =2,+d, +e,, =z te,,

Similarly, we can have

as i=2, z,=z,%e, te,, (3.6)

and, in general,

™

Er’ = zi L qu.j (37)

J=

This problem can be remedied by the following scheme, shown in Figure 3.3. Now we see that
in both the encoder and the decoder, the reconstructed signal is generated in the same way, 1.e.,

Z, =7, +d, (3.8)
and in the encoder the difference signal changes to

d=z.-7 (3.9)

i { -1
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FIGURE 3.3 Block diagram of a practical pixel-to-pixel differential coding system.

Thus, the previously reconstructed 7, , is used as the predictor, z;, i.e.,

2=, (3.10)
In this way, we have
as r=il. dlz-?-a_zu
31=d]+€qll (3.11)

Z, =2, +d, =Zo+di+€q,i =z +e.,

Similarly, we have

d,=d,+e , (3.12)

In general,
Z.=2.%e-. (3.13)

Thus, we see that the problem of the quantization error accumulation has been resolved by
having both the encoder and the decoder work in the same fashion, as indicated in Figure 3.3, or
in Equations 3.3, 3.9, and 3.10.

3.1.2 GeNeraL DPCM SysTems

In the above discussion, we can view the reconstructed neighboring pixel’s gray value as a prediction
of that of the pixel being coded. Now, we generalize this simple pixel-to-pixel DPCM. In a general
DPCM system, a pixel’s gray level value is first predicted from the preceding reconstructed pixels’
gray level values. The difference between the pixel’s gray level value and the predicted value 1s
then quantized. Finally, the quantized difference is encoded and transmitted to the receiver. A block
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FIGURE 3.4 Block diagram of a general DPCM system.

diagram of this general differential coding scheme is shown in Figure 3.4, where the codeword
assignment in the encoder and its counterpart in decoder are not included.

[t 1s noted that, instead of using the previously reconstructed sample, Z;-_;, as a predictor, we
now have the prcdicled version of gz, z;, as a function of the n previously reconstructed
samples, Z. ,, Z, 5, " That 1s,

"‘"I -1 *

' B

i :'f(ff-l'zi-r“'jf—n) (3.14)

Linear prediction, i.e., that the function fin Equation 3.14 1s linear, is of particular interest and
1s widely used in differential coding. In linear prediction, we have

=Y ak, (3.15)

J=1

where a; are real parameters. Hence, we see that the simple pixel-to-pixel differential coding is a
special case of general differential coding with linear prediction, 1.e., n =1 and a, = 1.

In Figure 3.4, d. is the difference signal and is equal to the difference between the original
signal, z;, and the prediction 2,-. That 18,

d, =5 =7, (3.16)
The quantized version of d, is denoted by f}f. The reconstructed version of z; 1s represented

by z,, and
z=%+d (3.17)

{ !

Note that this is true for both the encoder and the decoder. Recall that the accumulation of the

quantization error can be remedied by using this method.
The difference between the original input and the predicted input is called prediction error,

which is denoted by e,. That 1s,

e =z,—% | (3.18)

where the ¢, is understood as the prediction error associated with the index i. Quantization error,
e,, is equal (o the reconstruction error or coding error, e, defined as the difference between the

onglnal signal, z;, and the reconstructed signal, Z;, when the transmission is error free:
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e =dl.—(ﬂll
=(Zi_gi)—(zi—£i) (3.19)
=2,=7; =€

This indicates that quantization error is the only source of information loss with an error-free
transmission channel.

The DPCM system depicted in Figure 3.4 is also called closed-loop DPCM with feedback
around the quantizer (Jayant, 1984). This term reflects the feature in DPCM structure.

Before we leave this section, let us take a look at the history of the development of differential
image coding. According to an excellent early article on differential image coding (Musmann,
1979), the first theoretical and experimental approaches to image coding involving linear prediction
began in 1952 at the Bell Telephone Laboratories (Oliver, 1952; Kretzmer, 1952; Harrison, 1952).
The concepts of DPCM and DM were also developed in 1952 (Cutler, 1952; De¢jager, 1952).
Predictive coding capable of preserving information for a PCM signal was established at the
Massachusetts Institute of Technology (Elias, 1955).

The differential coding technique has played an important role in image and video coding. In
the international coding standard for still images, JPEG (covered in Chapter 7), we can see that
differential coding is used in the lossless mode and in the DCT-based mode for coding DC
coefficients. Motion-compensated (MC) coding has been a major development in video coding
since the 1980s and has been adopted by all the international video coding standards such as H.201
and H.263 (covered in Chapter 19), MPEG 1 and MPEG 2 (covered in Chapter 16). MC coding 1$

essentially a predictive coding technique applied to video sequences involving displacement motion
VECLOTS.

3.2 OPTIMUM LINEAR PREDICTION

Figure 3.4 demonstrates that a differential coding system consists of two major components:

prediction and quantization. Quantization was discussed in the previous chapter. Hence, 1n this

chapter we emphasize prediction. Below, we formulate an optimum linear prediction problem and
then present a theoretical solution to the problem.

3.2.1T FORMULATION

Optimum linear prediction can be formulated as follows. Consider a discrete-time mndom prOLeSS
z. At a typical moment ¢, it is a random variable z,. We have n preweus observations Z,_;, Z;2, ***» Zi-n

available and would like to form a prediction of z;, denoted by z,. The output of the pl‘edlLlOl, ;-,
is a linear function of the n previous observations. That is,

2;‘ = Eajzi—j (3.20)

witha;, j = 1,2,---,n being a set of real coefficients. An illustration of a linear predictor is shown
In Flgure 3.5. As deﬁned above, the prediction error, e, is

e == (3.21)
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FIGURE 3.5 An illustration of a linear predictor.

The mean square prediction error, MSE , is

MSE, = E[(eﬂ)j = E[(z, - é‘,.)z] (3.22)

The optimum prediction, then, refers (o the determination of a set of coefficients a;, j = 1,2,:--,n
such that the mean square prediction error, MSE , 1s minimized.

This optimization problem turns out (o be computationally intractable for most practical cases
due to the feedback around the quantizer shown in Figure 3.4, and the nonlinear nature of the
quantizer. Therefore, the optimization problem is solved in two separate stages. That is, the best
linear predictor is first designed ignoring the quantizer. Then, the quantizer i1s optimized for the
distribution of the difference signal (Habibi, 1971). Although the predictor thus designed is sub-
optimal, ignoring the quantizer in the optimum predictor design allows us to substitute the recon-
structed Z,_; by z; for j = 1,2,---,n, according to Equation 3.20. Consequently, we can apply the

theory of optimum linear prediction to handle the design of the optimum predictor as shown below.

3.2.2 ORTHOGONALITY CONDITION AND MINIMUM MEAN SQUARE ERROR

By taking the differentiation of MSE, with respect to coefficient g;s, one can derive the following
necessary conditions, which are usually referred to as the orthogonality condition:

Ele, 2,;|=0 for j=12wn (3.23)

The interpretation of Equation 3.23 is that the prediction error, e, must be orthogonal to all the
observations, which are now the preceding samples: z,_;, j = 1,2,---,n according to our discussion

in Section 3.2.1. These are equivalent to
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n

R:(m)=2ajR;(m—j) for m=12,---,n (3.24)

J=1

where R._represents the autocorrelation function of z. In a vector-matrix format, the above orthogonal
conditions can be written as

‘R()] [ RO R (1 R(n=1)] [a,
R.(2) R(1 R (0 R(n-2)| |a,
= (3.25)
Rzl Rta—1) Ria} -~ - R(0) | |a,.
Equations 3.24 and 3.25 are called Yule-Walker equations.
The minimum mean square prediction error is then found to be
MSE, = R.(0)- ) a,R()) (3.26)

) =1

These results can be found in texts dealing with random processes, e.g., in (Leon-Garcia, 1994).

3.2.3 SowutioN 1O YULE-WALKER EQUATIONS

Once autocorrelation data are available, the Yule-Walker equation can be solved by matrix Inversion.
A recursive procedure was developed by Levinson to solve the Yule-Walker equations (Leon-G arcia,
1993). When the number of previous samples used in the linear predictor is large, i.e., the dimension
of the matrix is high, the Levinson recursive algorithm becomes more attractive. Note that in the
field of image coding the autocorrelation function of various types of video frames is derived from
measurements (O’Neal, 1966; Habibi, 1971).

3.3 SOME ISSUES IN THE IMPLEMENTATION OF DPCM

Several related issues in the implementation of DPCM are discussed in this section.

3.3.1T Orprimum DPCM SyYSTEM

Since DPCM consists mainly of two parts, prediction and quantization, its optimization should not
be carried out separately. The interaction between the two parts is quite complicated, however, and
thus combined optimization of the whole DPCM system is difficult. Fortunately, with the mean
square error criterion, the relation between quantization error and prediction error has been found:

MSE ~—— MSE (327)
(SoNE 7

where N is the total number of reconstruction levels in the quantizer (O’Neal, 1966; Musmann,
1979). That is, the mean square error of quantization is approximately proportional to the mean
square error of prediction. With this approximation, we can optimize the two parls separately, as
mentioned in Section 3.2.1. While the optimization of quantization was addressed in Chapter 2, the
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optimum predictor was discussed in Section 3.2. A large amount of work has been done on this

subject. For instance, the optimum predictor for color image coding was designed and tested in
(Pirsch and Stenger, 1977).

3.3.2 1-D, 2-D, anp 3-D DPCM

[n Section 3.1.2, we expressed lincar prediction in Equation 3.15. However, so far we have not
really discussed how to predict a pixel’s gray level value by using its neighboring pixels’ coded
gray level values.

Recall that a practical pixel-to-pixel differential coding system was discussed in Section 3.1.1.
There, the reconstructed intensity of the immediately preceding pixel along the same scan line is used
as a prediction of the pixel intensity being coded. This type of differential coding is referred to as
|-D DPCM. In general, 1-D DPCM may use the reconstructed gray level values of more than one of
the preceding pixels within the same scan line to predict that of a pixel being coded. By far, however,
the immediately preceding pixel in the same scan line 1s most frequently used in 1-D DPCM. That
s, pixel A in Figure 3.6 1s often used as a prediction of pixel Z, which is being DPCM coded.

Sometimes in DPCM 1mage coding, both the decoded intensity values of adjacent pixels within
the same scan line and the decoded intensity values of neighboring pixels in different scan lines
arc involved in the prediction. This 1s called 2-D DPCM. A typical pixel arrangement in 2-D
predictive coding 1s shown in Figure 3.6. Note that the pixels involved in the prediction are restricted
to be either in the lines above the line where the pixel being coded, Z, 1s located or on the left-
hand side of pixel Z if they are in the same line. Traditionally, a TV frame 1s scanned from top (o
bottom and from left to right. Hence, the above restriction indicates that only those pixels, which
have been coded and available in both the transmitter and the receiver, are used in the prediction.
[n 2-D system theory, this support is referred to as recursively computable (Bose, 1982). An often-
used 2-D prediction involves pixels A, D, and E.

Obviously, 2-D predictive coding utilizes not only the spatial correlation existing within a scan
ine but also that existing in neighboring scan lines. In other words, the spatial correlation 1s utilized
both horizontally and vertically. It was reported that 2-D predictive coding outperforms 1-D
sredictive coding by decreasing the prediction error by a factor of two, or equivalently, 3dB in
SNR. The improvement in subjective assessment is even larger (Musmann, 1979). Furthermore, the
transmission error in 2-D predictive image coding is much less severe than in 1-D predictive image
coding. This is discussed in Section 3.6.

[n the context of image sequences, neighboring pixels may be located not only in the same
image frame but also in successive frames. That is, neighboring pixels along the time dimension
are also involved. If the prediction of a DPCM system involves three types of neighboring pixels:
those along the same scan line, those in the different scan lines ol the same image frame, and those

a4
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FIGURE 3.6 Pixel arrangement in 1-D and 2-D prediction.
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in the different frames, the DPCM is then called 3-D differential coding. It will be discussed 1n
Section 3.5.

3.3.3 ORDER OF PREDICTOR

The number of coefficients in the linear prediction, n, is referred to as the order o { the predictor.
The relation between the mean square prediction error, MSE,, and the order of the predictor, 7, has
been studied. As shown in Figure 3.7, the MSE, decreases quite effectively as n increases, but the

performance improvement becomes negligible as n > 3 (Habibi, 1971).

3.3.4 AbpAPTIVE PREDICTION

Adaptive DPCM means adaptive prediction and adaptive quantization. As adaptive quantization
was discussed in Chapter 2, here we discuss adaptive prediction only.

Similar to the discussion on adaptive quantization, adaptive prediction can be done In two
different ways: forward adaptive and backward adaptive prediction. In the former, adaptation 1s
based on the input of a DPCM system, while in the latter, adaptation is based on the output of the
DPCM. Therefore, forward adaptive prediction is more sensitive (o changes in local staustcs.
Prediction parameters (the coefficients of the predictor), however, need to be transmitted as side
information to the decoder. On the other hand, quantization error is involved in backward adaptive

prediction. Hence, the adaptation is less sensitive to local changing statistics. But, it does not need
to transmit side information.

MSE,

0.075
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0.070 g Theoretical results

0.065 X Expenmmtal 1“ order pr&dimﬂr
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0.015 } N = e S
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=
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FIGURE 3.7 Mean square prediction error vs. order of predictor. (Data from Habibi, 1971.)
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In either case, the data (either input or output) have to be buffered. Autocorrelation coefficients
are analyzed, based on which prediction parameters are determined.

3.3.5 Erfrect OF TRANSMISSION ERRORS

Transmission errors caused by channel noise may reverse the binary bit information from 0 to 1
or 1 to O with what 1s known as bit error probability, or bit error rate. The effect of transmission
errors on reconstructed images varies depending on different coding techniques.

In the case of the PCM-coding technique, each pixel is coded independently of the others.
Therefore bit reversal in the transmission only affects the gray level value of the corresponding
pixel in the reconstructed image. It does not affect other pixels in the reconstructed image.

In DPCM, however, the effect caused by transmission errors becomes more severe. Consider
a bit reversal occurring 1n transmission. It causes error in the corresponding pixel. But, this is not
the end of the effect. The affected pixel causes errors in reconstructing those pixels towards which
the erroneous gray level value was used in the prediction. In this way, the transmission error
propagates.

Interestingly, 1t 1s reported that the error propagation i1s more severe in 1-D differential image
coding than in 2-D differential coding. This may be explained as follows. In 1-D differential coding,
usually only the immediate preceding pixel in the same scan line 1s involved in prediction. Therefore,
an error will be propagated along the scan line until the beginning of the next line, where the pixel
gray level value is reinttialized. In 2-D differential coding, the prediction of a pixel gray level value
depends not only on the reconstructed gray level values of pixels along the same scan line but also
on the reconstructed gray level values of the vertical neighbors. Hence, the effect caused by a bit
reversal transmission error i1s less severe than in the 1-D differential coding.

For this reason, the bit error rate required by DPCM coding is lower than that required by PCM
coding. For instance, while a bit error rate less than 5 - 10-° is normally required for PCM to provide
broadcast TV quality, for the same application a bit error rate less than 10-7 and 10~ are required
for DPCM coding with 2-D prediction and 1-D prediction, respectively (Musmann, 1979).

Channel encoding with an error correction capability was applied to lower the bit error rate.
For instance, to lower the bit error rate from the order of 10-° to the order of 10~ for DPCM coding
with 1-D prediction, an error correction by adding 3% redundancy in channel coding has been used

(Bruders, 1978).

3.4 DELTA MODULATION

Delta modulation (DM) is an important, simple, special case of DPCM, as discussed above. It has

been widely applied and is thus an important coding technique in and of itself.
The above discussion and characterization of DPCM systems are applicable to DM systems.

This is because DM is essentially a special type of DPCM, with the following two features.

1. The linear predictor is of the first order, with the coefficient @, equal to 1.
2. The quantizer is a one-bit quantizer. That is, depending on whether the difference signal

is positive or negative, the output is either +A/2 or —A/2.

To perceive these (wo features, let us take a look at the block diagram of a DM system and
the input-output characteristic of its one-bit quantizer, shown in Figures 3.8 and 3.9, respectively.

Due to the first feature listed above, we have:

I

(3.28)

€
il
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FIGURE 3.8 Block diagram of DM systems.
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FIGURE 3.9 Input-output characteristic of two-level quantization in DM.

Next, we see that there are only two reconstruction levels in quantization because of the second
feature. That is,

(3.29)

From the relation between the reconstructed value and the predicted value of DPCM, discussed
above, and the fact that DM is a special case of DPCM. we have

ZI_ — Ef + {}f (330)

Combining Equations 3.28, 3.29, and 3.30, we have

e A (3.31)
l 2y =82 if z2.<% |

&N
|

i
L
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FIGURE 3.10 DM with fixed step size.

The above mathematical relationships are of importance in understanding DM systems. For
instance, Equation 3.31 indicates that the step size A of DM is a crucial parameter. We notice that
a large step size compared with the magnitude of the difference signal causes granular error, as
shown in Figure 3.10. Therefore, in order to reduce the granular error we should choose a small
step size. On the other hand, a small step size compared with the magnitude of the difference signal
will lead to the overload error discussed in Chapter 2 for quantization. Since in DM systems it is
the difference signal that is quantized, the overload error in DM becomes slope overload error, as
shown in Figure 3.10. That is, it takes a while (multiple steps) for the reconstructed samples to
catch up with the sudden change in input. Therefore, the step size should be large in order to avoid
the slope overload. Considering these two conflicting factors, a proper compromise in choosing
the step size is common practice in DM.

To improve the performance of DM, an oversampling technique 1s often applied. That is, the
input is oversampled prior to the application of DM. By oversampling, we mean that the sampling
frequency is higher than the sampling frequency used in obtaining the original input signal. The
iIncreased sample density caused by oversampling decreases the magnitude of the difference signal.
Consequently, a relatively small step size can be used so as to decrease the granular noise without
increasing the slope overload error. Thus, the resolution of the DM-coded image 1s kept the same
as that of the original input (Jayant, 1984; Lim, 1990).

To achieve better performance for changing inputs, an adaptive technique can be applied in
DM. That is, either input (forward adaptation) or output (backward adaptation) data are buftered
and the data variation is analyzed. The step size i1s then chosen accordingly. If it i1s forward
adaptation, side information is required for transmission to the decoder. Figure 3.11 demonstrates
step size adaptation. We see the same input as that shown in Figure 3.10. But, the step size is now
not fixed. Instead, the step size is adapted according to the varying input. When the input changes
with a large slope, the step size increases to avoid the slope overload error. On the other hand,
when the input changes slowly, the step size decreases to reduce the granular error.
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FIGURE 3.11 Adaptive DM.

3.5 INTERFRAME DIFFERENTIAL CODING

As was mentioned in Section 3.3.2, 3-D differential coding involves an image sequence. Consider
a sensor located 1in 3-D world space. For instance, in applications such as videophony and video-
conferencing, the sensor is fixed in position for a while and it takes pictures. As time goes by, the
images form a temporal image sequence. The coding of such an image sequence is referred to as
interframe coding. The subject of image sequence and video coding is addressed in Sections 111
and IV. In this section, we briefly discuss how differential coding is applied to interframe coding.

3.5.1 CoNDITIONAL REPLENISHMENT

Recognizing the great similarity between consecutive TV frames, a conditional replenishment
coding technique was proposed and developed (Mounts, 1969). It was regarded as one of the first
real demonstrations of interframe coding exploiting interframe redundancy (Netravali and Robbins,
1979).

In this scheme, the previous frame 1s used as a reference for the present frame. Consider a pair
of pixels: one in the previous frame, the other in the present frame — both occupying the same
spatial position in the frames. If the gray level difference between the pair of pixels exceeds a
certain criterion, then the pixel is considered a changing pixel. The present pixel gray level value
and its position information are transmitted to the receiving side, where the pixel is replenished.
Otherwise, the pixel is considered unchanged. At the receiver its previous gray level is repeated.
A block diagram of conditional replenishment is shown in Figure 3.12. There, a frame memory
unit in the transmitter is used to store frames. The differencing and thresholding of corresponding
pixels in two consecutive frames can then be conducted there. A buffer in the transmitter is used
to smooth the transmission data rate. This is necessary because the data rate varies from region to
region within an image frame and from frame to frame within an image sequence. A buffer in the
receiver is needed for a similar consideration. In the frame memory unit, the replenishment is
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FIGURE 3.12 Block diagram of conditional replenishment.

carried out for the changing pixels and the gray level values in the receiver are repeated for the
unchanged pixels.

With conditional replenishment, a considerable savings in bit rate was achieved in applications
such as videophony, videoconferencing, and TV broadcasting. Experiments in real time, using the
head-and-shoulder view of a person in animated conversation as the video source, demonstrated
an average bit rate of 1 bit/pixel with a quality of reconstructed video comparable with standard
8 bit/pixel PCM transmission (Mounts, 1969). Compared with pixel-to-pixel 1-D DPCM, the most
popularly used coding technique at the time, the conditional replenishment technique is more
efficient due to the exploitation of high interframe redundancy. As pointed in (Mounts, 1969), there
IS more correlation between television pixels along the frame-to-frame temporal dimension than
there is between adjacent pixels within a signal frame. That is, the temporal redundancy is normally
higher than spatial redundancy for TV signals.

Tremendous efforts have been made to improve the efficiency of this rudimentary technique.
For an excellent review, readers are referred to (Haskell et al., 1972, 1979). 3-D DPCM coding is

among the improvements and is discussed next.

3.5.2 3-D DPCM

It was soon realized that it is more efficient to transmit the gray level difference than to transmit
the gray level itself, resulting in interframe differential coding. Furthermore, instead of treating
cach pixel independently of its neighboring pixels, it is more efficient to utilize spatial redundancy
as well as temporal redundancy, resulting in 3-D DPCM.

Consider two consecutive TV frames, each consisting of an odd and an even field. Figure 3.13
demonstrates the small neighborhood of a pixel, Z, in the context. As with the 1-D and 2-D DPCM
discussed before, the prediction can only be based on the previously encoded pixels. If the pixel
under consideration, Z, is located in the even field of the present frame, then the odd field of the
present frame and both odd and even fields of the previous frame are available. As mentioned in
Section 3.3.2, it is assumed that in the even field of the present frame, only those pixels in the lines
above the line where pixel Z lies and those pixels left of the Z in the line where Z lies are used
for prediction.

Table 3.1 lists several utilized linear prediction schemes. It is recognized that the case of element
difference is a 1-D predictor since the immediately preceding pixel is used as the predictor. The
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FIGURE 3.13 Pixel arrangement in two TV frames. (After Haskell, 1979.)

field difference is defined as the arithmetic average of two immediately vertical neighboring pixels
in the previous odd field. Since the odd field is generated first, followed by the even field, this
predictor cannot be regarded as a pure 2-D predictor. Instead, it should be considered a 3-D predictor.
The remaining cases are all 3-D predictors. One thing is common 1n all the cases: the gray levels
of pixels used 1n the prediction have already been coded and thus are available in both the transmitter
and the receiver. The prediction error of each changing pixel Z identified in thresholding process
1S then quantized and coded.

An analysis of the relationship between the entropy of moving areas (bits per changing pixel)
and the speed of the motion (pixels per frame interval) in an image containing a moving mannequin’s
head was studied with different linear predictions, as listed in Table 3.1 in Haskell (1979). It was
found that the element difference of field difference generally corresponds to the lowest entropy,
meaning that this prediction is the most efficient. The frame difference and element difference
correspond to higher entropy. It is recognized that, in the circumstances, transmission error will be
propagated if the pixels in the previous line are used in prediction (Connor, 1973). Hence, the linear
predictor should use only pixels from the same line or the same line in the previous frame when
bit reversal error in transmission needs to be considered. Combining these two factors, the element
difference of frame difference prediction is preferred.

TABLE 3.1
Some Linear Prediction Schemes. (After Haskell, 1979).
Original signal (Z)  Prediction signal (Z) Differential signal (d,)
Element difference Z G -G
Field difference Z B+ Ea
2 2
Frame difference Z ig Z-T
Element difference of frame difference Z T+G-S5 (Z-G)-(T-5)
Line difference of frame difference Z T+B-M (Z-B)-(T-M)
Z

Element difference of field difference Bidi [O4W o O+ W
T+ - Zi— 1 o e
2 2 2
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3.5.3 MoTtioN-CoMPENSATED PrepicTive CODING

When frames arc taken densely enough, changes in successive frames can be attributed to the
motion of objects during the interval between frames. Under this assumption, if we can analyze
object motion from successive frames, then we should be able to predict objects in the next frame
based on their positions in the previous frame and the estimated motion. The difference between
the original frame and the predicted frame thus generated and the motion vectors are then quantized
and coded. If the motion estimation is accurate enough, the motion-compensated prediction error
can be smaller than 3-D DPCM. In other words, the variance of the prediction error will be smaller,
resulting in more efficient coding. Take motion into consideration — this differential technique is
called motion compensated predictive coding. This has been a major development in image sequence
coding since the 1980s. It has been adopted by all international video coding standards. A more
detailed discussion is provided in Chapter 10.

3.6 INFORMATION-PRESERVING DIFFERENTIAL CODING

As emphasized in Chapter 2, quantization is not reversible in the sense that it causes permanent
information loss. The DPCM technique, discussed above, includes quantization, and hence 1s lossy
coding. In applications such as those involving scientific measurements, information preservation
1S required. In this section, the following question is addressed: under these circumstances, how
should we apply differential coding in order to reduce the bit rate while preserving information?
Figure 3.14 shows a block diagram of information-preserving differential coding. First, we see
that there is no quantizer. Therefore, the irreversible information loss associated with quantization
does not exist in this technique. Second, we observe that prediction and differencing are still used.
That is, the differential (predictive) technique still applies. Hence it is expected that the variance
of the difference signal is smaller than that of the original signal, as explained in Section 3.1.
Consequently, the higher-peaked histograms make coding more efficient. Third, an efficient lossless
coder is utilized. Since quantizers cannot be used here, PCM with natural binary coding 1s not used
here. Since the histogram of the difference signal is narrowly concentrated about its mean, lossless
coding techniques such as an efficient Huffman coder (discussed in Chapter 5) is naturally a suitable

choice here.

Binary stnng
[nput Z d

i Lossless =
coding

ff
- Prediction
(a) Encoder
QOutput
Binary stnng d, . 7 .
Lossless 5 ' —
" decoding
+ & .
zd'
Prediction =g
(b) Decoder

FIGURE 3.14 Block diagram of information-preserving differential coding.
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As mentioned before, input images are normally in a PCM coded format with a bit rate of
eight bits per pixel for monochrome pictures. The difference signal is therefore integer-valued.
Having no quantization and using an efficient lossless coder, the coding system depicted in
Figure 3.14, therefore, is an information-preserving differential coding technique.

3.7 SUMMARY

Rather than coding the signal itself, differential coding, also known as predictive coding, encodes
the difference between the signal and its prediction. Utilizing spatial and/or temporal correlation
between pixels in the prediction, the variance of the difference signal can be much smaller than
that of the original signal, thus making differential coding quite efficient.

Among differential coding methods, differential pulse code modulation (DPCM) 1s used most
widely. In DPCM coding, the difference signal is quantized and codewords are assigned to the
quantized difference. Prediction and quantization are therefore two major components in the DPCM
systems. Since quantization was addressed in Chapter 2, this chapter emphasizes prediction. The
theory of optimum linear prediction is introduced. Here, optimum means minimization of the mean
square prediction error. The formulation of optimum linear prediction, the orthogonality condition,
and the minimum mean square prediction error are presented. The orthogonality condition states
that the prediction error must be orthogonal to each observation, i.e., to the reconstructed sample
intensity values used in the linear prediction. By solving the Yule-Walker equation, the optimum
prediction coefficients may be determined.

In addition, some fundamental issues in implementing the DPCM technique are discussed. One
issue 1s the dimensionality of the predictor in DPCM. We discussed 1-D, 2-D, and 3-D predictors.
DPCM with a 2-D predictor demonstrates better performance than a 1-D predictor since 2-D DPCM
utilizes more spatial correlation, i.e., not only horizontally but also vertically. As a result, a 3-dB
improvement in SNR was reported. 3-D prediction is encountered in what is known as interframe
coding. There, temporal correlation exists. 3-D DPCM utilizes both spatial and temporal correlation
between neighboring pixels in successive frames. Consequently, more redundancy can be removed.
Motion-compensated predictive coding is a very powerful technique in video coding related to
differential coding. It uses a more advanced translational motion model in the prediction, however,
and 1t 1s covered in Sections III and IV.

Another i1ssue 1s the order of predictors and its effect on the performance of prediction in terms
of mean square prediction error. Increasing the prediction order can lower the mean square predic-
tion error effectively, but the performance improvement becomes insignificant after the third order.

Adaptive prediction 1s another issue. Similar to adaptive quantization, discussed in Chapter 2,
we can adapt the prediction coefficients in the linear predictor to varying local statistics.

The last 1ssue i1s concerned with the effect of transmission error. Bit reversal in transmission
causes a different effect on reconstructed images depending on the type of coding technique used.
PCM 1is known to be bit-consuming. (An acceptable PCM representation of monochrome images
requires six to eight bits per pixel.) But a one-bit reversal only affects an individual pixel. For the
DPCM coding technique, however, a transmission error may propagate from one pixel to the other.
In particular, DPCM with a 1-D predictor suffers from error propagation more severely than DPCM
with a 2-D predictor.

Delta modulation i1s an important special case of DPCM in which the predictor is of the first
order. Specifically, the immediately preceding coded sample is used as a prediction of the present
input sample. Furthermore, the quantizer has only two reconstruction levels.

Finally, an information-preserving differential coding technique is discussed. As mentioned in
Chapter 2, quantization is an irreversible process: it causes information loss. In order to preserve
information, there is no quantizer in this type of system. To be efficient, lossless codes such as
Huffman code or arithmetic code should be used for difference signal encoding.
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3.8 EXERCISES

3-1. Justify the necessity of the closed-loop DPCM with feedback around quantizers. That
s, convince yourself why the quantization error will be accumulated if, instead of using
the reconstructed preceding samples, we use the immediately preceding sample as the
prediction of the sample being coded in DPCM.

3-2. Why does the overload error encountered in quantization appear to be the slope overload
in DM?

3-3. What advantage does oversampling bring up in the DM technique?

3-4. What are the two features of DM that make it a subclass of DPCM?

3-5. Explain why DPCM with a [-D predictor suffers from bit reversal transmission error
more severely than DPCM with a 2-D predictor.

3-6. Explain why no quantizer can be used in information-preserving differential coding, and
why the differential system can work without a quantizer.

3-7. Why do all the pixels involved in prediction of differential coding have to be in a
recursively computable order from the point of view of the pixel being coded?

3-8. Discuss the similarity and dissimilarity between DPCM and motion compensated pre-
dictive coding.
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4 Transform Coding

As introduced in the previous chapter, differential coding achieves high coding efficiency by
utihzing the correlation between pixels existing in image frames. Transform coding (TC), the focus
of this chapter, 1s another efficient coding scheme based on utilization of interpixel correlation. As
we will see in Chapter 7, TC has become a fundamental technique recommended by the international
still image coding standard, JPEG. Moreover, TC has been found to be efficient in coding prediction
error in motion-compensated predictive coding. As a result, TC was also adopted by the international
video coding standards such as H.261, H.263, and MPEG 1, 2, and 4. This will be discussed in
Section V.

4.1 INTRODUCTION

Recall the block diagram of source encoders shown in Figure 2.3. There are three components in
a source encoder: transformation, quantization, and codeword assignment. It is the transformation
component that decides which format of input source is quantized and encoded. In DPCM, for
instance, the difference between an original signal and a predicted version of the original signal is
quantized and encoded. As long as the prediction error is small enough, 1.e., the prediction resembles
the original signal well (by using correlation between pixels), differential coding is efficient.

In transform coding, the main idea is that if the transformed version of a signal is less correlated
compared with the original signal, then quantizing and encoding the transformed signal may lead
to data compression. At the receiver, the encoded data are decoded and transformed back to
reconstruct the signal. Therefore, in transform coding, the transformation component illustrated in
Figure 2.3 is a transform. Quantization and codeword assignment are carried out with respect (0
the transformed signal, or, in other words, carried out in the transform domain.

We begin with the Hotelling transform, using it as an example of how a transform may

decorrelate a signal in the transform domain.

4.1.1 HOTELLING TRANSFORM

Consider an N-dimensional vector z.. The ensemble of such vectors, {z;} s € /, where / represents

the set of all vector indexes. can be modeled by a random vector Z with each of its component z,
i =1, 2, -+, N as a random variable. That 1s,

E=(z|,z3.---,zN)T (4.1)

where T stands for the operator of matrix transposition. The mean vector of the population, mz, 1S
defined as

m, = E[E] = (m!.;n:,'-*,rnh,)r (4_’_}'_)

where E stands for the expectation operator. Note that mz1s an N-dimensional vector with the ith
component, /;, being the expectation value of the ith random variable component In Z.

m,.=E[EJ i=1,2,---,N (4.3)

75

IPR2021-00827

Unified EX1008 Page 101



76 Image and Video Compression for Multimedia Engineering

The covariance matrix of the population, denoted by C, is equal to

.= E[(E — HIE)(E — HIE)T], (4.4)

L

Note that the product inside the E operator is referred to as the outer product of the vector (7 -
ms). Denote an entry at the ith row and jth column in the covariance matrix by ¢, . From

Equation 4.4, it can be seen that ¢;; is the covariance between the ith and jth components of the
random vector z. That i1s,

Ci = [(zj — m*.)(zj —m;)] = Cou(zl.,zj). (4.5)

On the main diagonal of the covariance matrix C., the element ¢,; is the variance of the ith
component of z, z.. Obviously, the covariance matrix C: is a real and symmetric matrix. It is real
because of the definition of random variables. It is symmetric because Cov(z, z;) = Cov(z;, 2

Zj» Z;):
According to the theory of linear algebra, it is always possible to find a set of N orthonormal
eigenvectors of the matrix C;, with which we can convert the real symmetric matrix C; into a fully
ranked diagonal matrix. This statement can be found in texts of linear algebra, e.g., in (Strang, 1998).
Denote the set of N orthonormal eigenvectors and their corresponding eigenvalues of the
covariance matrix C; by Ei and A, i = 1,2,---,N, respectively. Note that eigenvectors are column
vectors. Form a matrix @ such that its rows comprise the N transposed eigenvectors. That 1s,

e W X
(IJz(el,e.,,---,eN) : (4.6)
Now, consider the following transformation:
y = CD(E - ’”z) (4.7)

It is easy to verify that the transformed random vector y has the following two characteristics:

. The mean vector, m, 1s a zero vector. That 1s,

m, =0, (4.8)

2. The covariance matrix of the transformed random vector C- is

I, 0
}“2
C; s (I)CE(I)T — '-. : (49)

This transform is called the Hotelling transform (Hotelling, 1933), or eigenvector transform (Tasto,
1971; Wintz, 1972).

The inverse Hotelling transform is defined as

2= y+m,, (4.10)
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where ®-! is the inverse matrix of ®. It is easy to see from its formation discussed above that the

matrix P is orthogonal. Therefore, we have ®T = ®-'. Hence, the inverse Hotelling transform can
be expressed as

E=¢Tj7+mi. (4.11)

Note that in implementing the Hotelling transform, the mean vector m-and the covariance matrix

C; can be calculated approximately by using a given set of K sample vectors (Gonzalez and Woods,
1992).

K
| e
nm. =— Z 4.12
. = EI ) (4.12)

C.=— Z""T—m m- (4.13)

The analogous transform for continuous data was devised by Karhunen and Loeve (Karhunen,
1947; Loeve, 1948). Alternatively, the Hotelling transform can be viewed as the discrete version
of the Karhunen-Loeve transform (KLT). We observe that the covariance matrix C; is a diagonal
matrix. The elements in the diagonal are the eigenvalues of the covariance matrix C;. That is, the
two covariance matrices have the same eigenvalues and eigenvectors because the two matrices are
similar. The fact that zero values are everywhere except along the main diagonal in C; indicaltes
that the components of the transformed vector y are uncorrelated. That is, the correlation previously
existing between the different components of the random vector z has been removed in the trans-
formed domain. Therefore, if the input is split into blocks and the Hotelling transform is applied
blockwise, the coding may be more efficient since the data in the transformed block are uncorrelated.
At the receiver, we may produce a replica of the input with an inverse transform. This basic idea
behind transform coding will be further illustrated next. Note that transform coding is also referred

to as block quantization (Huang, 1963).

4.1.2 STATISTICAL INTERPRETATION

Let’s continue our discussion of the 1-D Hotelling transform. Recall that the covariance matrix of
the transformed vector y, C=, is a diagonal matrix. The elements in the main diagonal are eigen-
values of the covariance matrix C;. According to the definition of a covariance matrix, these
elements are the variances of the components of vector y, denoted by 63, 0‘.,2, , Osn- Let us
arrange the eigenvalues (variances) in a nonincreasing order. That is, A, 2 ?w 2 --- 2 Ay. Choose
an integer L, and L < N. Using the corresponding L eigenvectors, e, €y ** eL, we form a matrix
® with these L ei genvectors (transposed) as its L rows. Obviously, the matrix @ i1sof L X N. Hence,
using the matrix @ in Equation 4.7 we will have the transformed vector y of L X 1. That is,

y &5(2 - ’”s)' (4.14)

The inverse transform changes accordingly:

Z7’=®"y+m.. (4.15)

Fd|
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78 Image and Video Compression for Multimedia Engineering

Note that the reconstructed vector z, denoted by z’, is still an N X 1 column vector. It can be
shown (Wintz, 1972) that the mean square reconstruction error between the original vector z and
the reconstructed vector z is given by

MSE = ) o_.. (4.16)

This equation indicates that the mean square reconstruction error equals the sum of variances
of the discarded components. Note that although we discuss the reconstruction error here, we have
nol considered the quantization error and transmission error involved. Equation 4.15 implies that
if, in the transformed vector Yy, the first L components have their variances occupy a large percentage
of the total variances, the mean square reconstruction error will not be large even though only the
first L components are kept, i.e., the (N — L) remaining components in the y are discarded.
Quantizing and encoding only L components of vector y in the transform domain lead to higher
coding efficiency. This is the basic idea behind transform coding.

4.1.3 GEOMETRICAL INTERPRETATION

Transforming a set of statistically dependent data into another set of uncorrelated data, then
discarding the insignificant transform coefficients (having small variances) illustrated above using
the Hotelling transform, can be viewed as a statistical interpretation of transform coding. Here, we
give a geometrical interpretation of transform coding. For this purpose, we use 2-D vectors instead
of N-D vectors.

Consider a binary image of a car in Figure 4.1(a). Each pixel in the shaded object region
corresponds to a 2-D vector with its two components being coordinates z, and z,, respectively.
Hence, the set of all pixels associated with the object forms a population of vectors. We can
determine 1ts mean vector and covariance matrix using Equations 4.12 and 4.13, respectively. We
can then apply the Hotelling transform by using Equation 4.7. Figure 4.1(b) depicts the same object
after the application of the Hotelling transform in the y,-y, coordinate system. We notice that the
origin of the new coordinate system is now located at the centroid of the binary object. Furthermore,
the new coordinate system is aligned with the two eigenvectors of the covariance matrix C-.

As mentioned, the elements along the main diagonal of C; (two eigenvalues of the C; and
C:) are the two variances of the two components of the y population. Since the covariance matrix

Z

(2) (b)

FIGURE 4.1 (a) A binary object in the z;-z, coordinate system. (b) After the Hotelling transform, the object
is aligned with its principal axes.
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C; 1s a diagonal matrix, the two components are uncorrelated after the transform. Since one variance
(along the y, direction) is larger than the other (along the y, direction), it is possible for us to
achieve higher coding efficiency by ignoring the component associated with the smaller variance
without too much sacrifice of the reconstructed image quality.

It 1s noted that the alignment of the object with the cigenvectors of the covariance matrix is of
importance in pattern recognition (Gonzalez and Woods, 1992).

4.1.4 BAsiS VECTOR INTERPRETATION

Basis vector expansion is another interpretation of transform coding. For simplicity, in this sub-
section we assume a zero mean vector. Under this assumption, the Hotelling transform and its
inverse transform become

5= ®F (4.17)

7= @7y (4.18)

Recall that the row vectors in the matrix ® are the transposed eigenvectors of the covariance matrix
C:. Therefore, Equation 4.18 can be written as

N
=) yE. (4.19)
=1

—b

In the above equation, we can view vector z as a linear combination of basis vectors e;, i =
1,2,---,N. The components of the transformed vector y, y;, i = 1,2,---,N serve as coefficients in the
linear combination, or weights in the weighted sum of basis vectors. The coefficient y, 1= 1,2,---,N

can be produced according to Equation 4.17:

T

y, =87, (4.20)

That is, y, is the inner product between vectors e; and z. Therefore, the coefficient y. can be
interpreted as the amount of correlation between the basis vector e; and the original signal z.

In the Hotelling transform the coefficients y,, i = 1,2,---,N are uncorrelated. The variance of y;

can be arranged in a nonincreasing order. For i > L, the variance of the coefficient becomes
insignificant. We can then discard these coefficients without introducing significant error in the

linear combination of basis vectors and achieve higher coding efficiency.
[n the above three interpretations of transform coding, we see that the linear unitary transform

can provide the following two functions:

|. Decorrelate input data; i.e., transform coefficients are less correlated than the original

data, and |
2. Have some transform coefficients more significant than others (with large variance,

eigenvalue, or weight in basis vector expansion) such that transform coefficients can be
treated differently: some can be discarded, some can be coarsely quantized, and some

can be finely quantized.

Note that the definition of unitary transform is given shortly in Section 4.2.1.3.
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FIGURE 4.2 Block diagram of transform coding.

4.1.5 Procepures oF TrRansFOrM CODING

Prior to leaving this section, we summarize the procedures of transform coding. There are three
steps in transform coding as shown in Figure 4.2. First, the input data (frame) are divided into
blocks (subimages). Each block is then linearly transformed. The transformed version is then
truncated, quantized, and encoded. These last three functions, which are discussed in Section 4.4,
can be grouped and termed as bit allocation. The output of the encoder is a bitstream.

In the receiver, the bitstream is decoded and then inversely transformed to form reconstructed
blocks. All the reconstructed blocks collectively produce a replica of the Input image.

4.2 LINEAR TRANSFORMS

In this section, we first discuss a general formulation of a linear unitary 2-D image transform. Then,
a basis image interpretation of TC is given.

4.2.1 2-D IMAGE TRANSFORMATION KERNEL

There are two different ways to handle image transformation. In the first way, we convert a 2-D
array representing a digital image into a 1-D array via row-by-row stacking, for example. That is,
from the second row on, the beginning of each row in the 2-D array is cascaded to the end of its
previous row. Then we transform this 1-D array using a 1-D transform. After the transformation,
we can convert the 1-D array back to a 2-D array. In the second way, a 2-D transform is directly
applied to the 2-D array corresponding to an input image, resulting in a transformed 2-D array.
These two ways are essentially the same. It can be straightforwardly shown that the difference
between the two is simply a matter of notation (Wintz, 1972). In this section, we use the second
way to handle image transformation. That is, we work on 2-D image transformation.
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Assume a digital image is represented by a 2-D array g(x, y), where (x, y) is the coordinates
of a pixel in the 2-D array, while g is the gray level value (also often called intensity or brightness)
of the pixel. Denote the 2-D transform of g(x, y) by T(u, v), where (i, v) is the coordinates in the
transformed domain. Assume that both g(x, y) and T'(u, v) are a square 2-D array of N X N: i.e.,
0<x,y,u,v<N-1.

The 2-D forward and inverse transforms are defined as

N-1 N-I
T(u,v) =Zzg(x,y)f(x,y,u, v) (4.21)
x=0 y=0
and
N-1 N-I
g(x, y)= 2 Z T(u,v)i(x,y,u,v) (4.22)
u=0 v=0

where f(x, y, u, v) and i(x, y, i, v) are referred to as the forward and inverse transformation kernels,
respectively.
A few characteristics of transforms are discussed below.

4.2.1.1 Separability

A transformation kernel is called separable (hence, the transform is said to be separable) if the
following conditions are satisfied.

f(xyu,v)= fi(x,u) f,(y v), (4.23)

and
i(x, y,1,v) =, (x, 1)y () (4.24)

Note that a 2-D separable transform can be decomposed into two 1-D transforms. That is, a
2-D transform can be implemented by a 1-D transform rowwise followed by another 1-D transform

columnwise. That is,

N-I
Tx)= Y glx) (). @25
y=0
where 0 <x,v<N-1, and
N-1
T(u,v) = 2 T (x,v) f;(x,u), (4.26)
x=0

where 0 < i, v < N — 1. Of course, the 2-D transform can also be implemented in a reverse order
with two 1-D transforms. i.e., columnwise first, followed by rowwise. The counterparts of

Equations 4.25 and 4.26 for the inverse transform can be derived similarly.
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4.2.1.2 Symmetry

The transformation kernel is symmetric (hence, the transform is symmetric) if the kernel is separable
and the following condition is satisfied:

L) =Anw). (4.27)
That is, f, is functionally equivalent to f;.

4.2.1.3 Matrix Form

If a transformation kernel is symmetric (hence, separable) then the 2-D image transform discussed
above can be expressed compactly in the following matrix form. Denote an image matrix by G
and G = {g;;} = {g(i — 1, j - 1)}. That is, a typical element (at the ith row and jth column) in the
matrix G is the pixel gray level value in the 2-D array g(x, y) at the same geometrical position.
Note that the subtraction of one in the notation g(i — 1, j — 1) comes from Equations 4.21 and 4.22.
Namely, the indexes of a square 2-D image array are conventionally defined from O to N-1, while
the indexes of a square matrix are from | to N. Denote the forward transform matrix by F and F =
{fi;} = {fiti—=1,j-1)}. We then have the following matrix form of a 2-D transform:

T=F"GF (4.28)

where T on the left-hand side of the equation denotes the matrix corresponding to the transformed

2-D array in the same fashion as that used in defining the G matrix. The inverse transform can be
expressed as

G=1"TI (4.29)

where the matrix / is the inverse transform matrix and I = {i;,} = {i, (j — 1, k- 1)}. The forward
and inverse transform matrices have the following relation:

[=F" (4.30)

Note that all of the matrices defined above, G, T, F, and | are of N X N.

It is known that the discrete Fourier transform involves complex quantities. In this case, the
counterparts of Equations 4.28, 4.29, and 4.30 become Equations 4.31, 4.32, and 4.33, respectively:

T=F*"GF (4.31)
G=1*"T] (4.32)
= s =TT (4.33)

where * indicates complex conjugation. Note that the transform matrices F and / contain complex

quantities and satisfy Equation 4.33. They are called unitary matrices and the transform is referred
to as a unitary transform.
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4.2.1.4 Orthogonality

A transform is said to be orthogonal if the transform matrix is orthogonal. That is,

F'=F" (4.34)

Note that an orthogonal matrix (orthogonal transform) is a special case of a unitary matrix
(unitary transform), where only real quantities are involved. We will see that all the 2-D image
transforms, presented in Section 4.3, are separable, symmetric, and unitary.

4.2.2 BAsis IMAGE INTERPRETATION

Here we study the concept of basis images or basis matrices. Recall that we discussed basis vectors
when we considered the 1-D transform. That is, the components of the transformed vector (also
referred to as the transform coefficients) can be interpreted as the coefficients in the basis vector
expansion of the input vector. Each coefficient is essentially the amount of correlation between the
input vector and the corresponding basis vector. The concept of basis vectors can be extended to
basis images in the context of 2-D image transforms.

Recall that the 2-D inverse transform introduced at the beginning of this section is defined as

N-1 N-I

g(x,y) = Z Z T(u, v)i(x, y, 1, ) (4.35)

u=0 v=0

where 0 < x, y < N — 1. This equation can be viewed as a component form of the inverse transform.
As defined above in Section 4.2.1.3, the whole image {g(x, y)} i1s denoted by the image matrix G
of N X N. We now denote the “image” formed by the inverse transformation kernel {i(x, y, u, v),0 <
x,y <N -1} asa2-Darray [, of Nx N for a specific pair of (4, v) with O < u, v< N — 1. Recall
that a digital image can be represented by a 2-D array of gray level values. In turn the 2-D array
can be arranged into a matrix. Namely, we treat the following three: a digital image, a 2-D array
(with proper resolution), and a matrix (with proper indexing), interchangeably. We then have

e i(0,0,1,v) i(0,1,u,v) i(0,N —1,u,v) -
i(1,0,u,v) i(1,1,u,v) i(LN—-1Lu,v)
] = 5 5 5 (4.36)
i(N=-1,0,u,v) i(N=1LLuyv) - - i(N-1,N=1uv)

The 2-D array /. is referred to as a basis image. There are N? basis images in total since 0 <

v

u,v < N — 1. The inverse transform expressed in Equation 4.35 can then be written in a collective
form as

N-1 N-I

G=Y > Tuv),,. (4.37)

u=0 v=0

We can interpret this equation as a series expansion of the original image G into a set of N
basis images /. .. The transform coefficients T(u,v), 0 < u, v < N — 1, become the coefficients of

[T U

the expansion. Alternatively, the image G is said to be a weighted sum of basis images. Note that,
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similar to the 1-D case, the coefficient or the weight T(i,v) is a correlation measure between the
image G and the basis image /,, (Wintz, 1972).

Note that basis images have nothing to do with the input image. Instead, it is completely defined
by the transform itself. That is, basis images are the attribute of 2-D image transforms. Different
transforms have different sets of basis images.

The motivation behind transform coding is that with a proper transform, hence, a proper set of
basis images, the transform coefficients are more independent than the gray scales of the original
input image. In the ideal case, the transform coefficients are statistically independent. We can then
optimally encode the coefficients independently, which can make coding more efficient and simple.
As pointed out in (Wintz, 1972), however, this is generally impossible because of the following
two reasons. First, it requires the joint probability density function of the N= pixels, which have
not been deduced from basic physical laws and cannot be measured. Second, even if the joint
probability density functions were known, the problem of devising a reversible transform that can
generate independent coefficients is unsolved. The optimum linear transform we can have results
in uncorrelated coefficients. When Gaussian distribution is involved, we can have independent
transform coefficients. In addition to the uncorrelatedness of coefficients, the variance of the
coefficients varies widely. Insignificant coefficients can be ignored without introducing significant
distortion in the reconstructed image. Significant coefficients can be allocated more bits in encoding.
The coding efficiency is thus enhanced.

As shown in Figure 4.3, TC can be viewed as expanding the input image into a set of basis
images, then quantizing and encoding the coefficients associated with the basis images separately.
At the receiver the coefficients are reconstructed to produce a replica of the input image. This
strategy is similar to that of subband coding, which is discussed in Chapter 8. From this point of
view, transform coding can be considered a special case of subband coding, though transtorm
coding was devised much earlier than subband coding.

It is worth mentioning an alternative way to define basis images. That is, a basis image with

indexes (i, v), 1, of a transform can be constructed as the outer prc:rducr of the uth basis vector, b,,,
and the vth basis vector, b of the transform. The basis vector, b

inverse transform matrix I (Jayant and Noll, 1984). That is,

.» 18 the uth column vector of the

I =bh" (4.38)

4.2.3 SuUBIMAGE SiZzE SELECTION

The selection of subimage (block) size, N, is important. Normally, the larger the size the more
decorrelation the transform coding can achieve. It has been shown, however, that the Lorreiauon
between image pixels becomes insignificant when the distance between pixels becomes large, e.g., it
exceeds 20 pixels (Habibi, 1971a). On the other hand, a large size causes some problems. In qdnplwe
transform coding, a large block cannot adapt to local statistics well. As will be seen later in this
chapter, a transmission error in transform coding affects the whole associated subimage. Hence a
large size implies a possibly severe effect of transmission error on reconstructed images. As will be
shown in video coding (Section III and Section IV), transform coding is used together with motion-
compensated coding. Consider that large block size is not used in motion estimation; subimage sizes
of 4, 8, and 16 are used most often. In particular, N = 8 is adopted by the international still image
coding standard, JPEG, as well as video coding standards H.261, H.263, MPEG 1, and MPEG 2.

4.3 TRANSFORMS OF PARTICULAR INTEREST

Several commonly used image transforms are discussed in this section. They include the discrete
Fourier transform, the discrete Walsh transform, the discrete Hadamard transform, and the discrete
Cosine and Sine transforms. All of these transforms are symmetric (hence, separable as well),
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FIGURE 4.3 Basis image interpretation of TC (Q: quantizer, E: encoder, D: decoder).

unitary, and reversible. For each transform, we define its transformation kernel and discuss its basis
Images.

4.3.1 Discrere Fourier TransrForm (DFT)

The DFT is of great importance in the field of digital signal processing. Owing to the fast Fourier
transform (FFT) based on the algorithm developed in (Cooley, 1965), the DFT is widely utilized
for various tasks of digital signal processing. It has been discussed in many signal and image
processing texts. Here we only define it by using the transformation kernel just introduced above.

The forward and inverse transformation kernels of the DFT are

f(xy,u,v)= %exp{-— 27 (xu + yv)/N} (4.39)

and

i(x,y,u,v) = —;’-ex;){ﬂn (xu+ yv)/N} (4.40)
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Clearly, since complex quantities are involved in the DFT transformation kernels, the DFT 1s
generally complex. Hence, we use the unitary matrix to handle the DFT (refer to Section 4.2.1.3).
The basis vector of the DFT b, is an N X | column vector and is defined as

97

~ 1 = Jeill = 2 [ (N =1
b =——|1ex ( 271:-—),3)( ( 2TE-—-),---,6:( ?.Tt( ] (4.4])
« = IN P J N P J N P[J N _

As mentioned, the basis image with index (u,v), I, is equal to b,bl. A few basis images are
listed below for N = 4.

Ty = 1)
| l I
Pt (4.42)
ST i | 1 1
1 s i . B
1 j =1 =)
1 I
= Lt J . (4.43)
411 j =1 =j
sy o =k i) /
(1 l - =)
pe e, <7 - (4.44)
= 4| -] l —] I
Nl i R ER )
T =i it DO S
o= | (4.45)
41-=1 1 —j
\J IS =
4.3.2 Discrere WALsSH Transrorm (DWT)
The transformation kernels of the DWT (Walsh, 1923) are defined as
1 n—I
f(‘;("r Y, U, v) = _.N_.H[(__1)!’.’(-‘]#;:-1-.‘[”)(__UP;‘(.’*']P;:-I-.:{"}] (446)
i=0
and
i(x,y,u,v)= f(x,y,u,v). (4.47)

where n = log, N, p;(arg) represents the ith bit in the natural binary representation of the arg, the
oth bit corresponds to the least significant bit, and the (n-1)th bit corresponds to the most significant
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FIGURE 4.4 When N = 4: a set of the 16 basis images of DWT.

bit. For instance, consider N = 16, then n = 4. The natural binary code of number 8 1s 1000. Hence,
Po(8) = p,(8) = p,(8) = 0, and p;(8) = 1. We see that if the factor 1/N is put aside then the forward
transformation kernel is always an integer: either +1 or —1. In addition, the inverse transformation
kernel is the same as the forward transformation kernel. Therefore, we conclude that the imple-
mentation of the DWT is simple.

When N = 4, the 16 basis images of the DWT are shown in Figure 4.4. Each corresponds (o a
specific pair of («, v) and is of resolution 4 X 4 in the x-y coordinate system. They are binary
images, where the bright represents +1, while the dark —1. The transform matrix of the DWT is
shown below for N = 4.

(4.48)

N | —
|
I

U N e

4.3.3 Discrete HADAMARD TrANSFORM (DHT)

The DHT (Hadamard, 1893) is closely related to the DWT. This can be seen from the following
definition of the transformation kernels.

n

f (I’ ¥, U, 1;) — T:/.H[(_I)M'Lr]ﬂ;{u)(_ I)P{(.’")M{VJ] (4#49)

i=0

and

i(x, y,u, V)= f(x v) (4.50)

where the definitions of n, i, and p,(arg) are the same as in the DWT. For this reason, the term
Walsh-Hadamard transform (DWHT) is frequently used to represent either of the two transforms.
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When N is a power of 2, the transform matrices of the DWT and DHT have the same row (or
column) vectors except that the order of row (or column) vectors in the matrices are different. This
is the only difference between the DWT and DHT under the circumstance N = 2". Because of this
difference, while the DWT can be implemented by using the FFT algorithm with a straighttorward
modification, the DHT needs more work to use the FFT algorithm. On the other hand, the DHT
possesses the following recursive feature, while the DWT does not:

el 4
F, = (4.51)
= TRk =L
and
® g
= (4.52)
|_FN "FN_

where the subscripts indicate the size of the transform matrices. It is obvious that the transform
matrix of the DHT can be easily derived by using the recursion.

Note that the number of sign changes between consecutive entries in a row (or a column) of
a transform matrix (from positive to negative and from negative to positive) is known as sequency.
It 1s observed that the sequency does not monotonically increase as the order number of rows (or
columns) increases in the DHT. Since sequency bears some similarity to frequency in the Fourier

transform, sequency is desired as-an increasing function of the order number of rows (or columns).
This 1s realized by the ordered Hadamard transform (Gonzalez, 1992).

The transformation kernel of the ordered Hadamard transform is defined as

N-

|
f(-’f,)‘;“n p) — _}J_H[(_])P,Lt}d,[u](_l)f:,{:-‘)lfrh-}] (453)

i=0

where the definitions of i, p;(arg) are the same as defined above for the DWT and DHT. The 4, (arg)
is defined as below.

du(arg) = bn—l(arg)

d,(arg)=b,_(arg)+ b, ,(arg) (4.54)

d,_(arg) = b (arg)+ by(arg)

The 16 basis images of the ordered Hadamard transform are shown in Figure 4.5 for N = 4. It
is observed that the variation of the binary basis images becomes more frequent monotonically
when u and v increase. Also we see that the basis image expansion is similar to the frequency
expansion of the Fourier transform in the sense that an image is decomposed into components with

different variations. In transform coding, these components with different coefficients are treated
differently.

4.3.4 Discrere CosiNE TRANSFORM (DCT)

The DCT is the most commonly used transform for image and video coding.
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FIGURE 4.5 When N = 4: a set of the 16 basis images of the ordered DHT.

4.3.4.1 Background

The DCT, which plays an extremely important role in image and video coding, was established by
Ahmed et al. (1974). There, 1t was shown that the basis member cos[(2x + )un/2N] is the uth
Chebyshev polynomial 7,(€) evaluated at the xth zero of 7 (€). Recall that the Chebyshev poly-
nomials are defined as

T.(€)=1/+2 (455)

T

e = cos[k cos™ (E_,)] (4.56)
where T, (&) is the kth order Chebyshev polynomial and it has k zeros, starting from the /st zero
to the kth zero. Furthermore, it was demonstrated that the basis vectors of 1-D DCT provide a good
approximation to the eigenvectors of the class of Toeplitz matrices defined as

3 l 0 pz pN—l‘

p | o pN-E

p:‘- p l . a'a pﬂ_j, 5 (4.57)
-pN-l pN-E pN-'i l |

where 0 < p < 1.

4.3.4.2 Transformation Kernel

The transformation kernel of the 2-D DCT can be extended straightforwardly from that of 1-D
DCT as follows:
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FIGURE 4.6 When N = 8: a set of the 64 basis images of the DCT.
| 2x+ um (2y+1)vm
flx,y,u,v)=Clu)C(v COS[( cos| — 4.58
(x.3.109) = Clw)C(v)cos 2 = (4.58)
where
i
1
\fﬁ fO?‘ =0
Clu)= = (4.59)
\[ﬁ for u=12,---,N-1
i(x, y,u,v) = f(x,y,u,v). (4.60)

Note that the C(v) is defined the same way as in Equation 4.59. The 64 basis images of the DCT

are shown in Figure 4.6 for N = 8.

4.3.4.3 Relationship with DFT

The DCT is closely related to the DFT. This can be examined from an alternative method of defining
the DCT. It is known that applying the DFT to an N-point sequence gy (n), n = 0,1,---,N — 1, 18

equivalent to the following:
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|. Repealing gy (n) every N points, form a periodic sequence, g, (n), with a fundamental
period N. That is,

gy(n)= Zgﬂ(n —iN). (4.61)

| ==—oo

2. Determine the Fourier series expansion of the periodic sequence g, (n). That is, determine
all the coefficients in the Fourier series which are known to be periodic with the same
fundamental period N.

3. Truncate the sequence of the Fourier series coefficients so as to have the same support
as that of the given sequence gy (n). That is, only keep the N coefficients with indexes
0,1,---,N — 1 and set all the others to equal zero. These N Fourier series coefficients form
the DFT of the given N-point sequence gy (n).

An N-point sequence gy (n) and the periodic sequence gy (1), generated from gy (n), are shown
in Figure 4.7(a) and (b), respectively. In summary, the DFT can be viewed as a correspondence
between two periodic sequences. One is the periodic sequence gy (n), which is formed by period-
ically repeating g, (n). The other is the periodic sequence of Fourier series coefficients of gy (n).

The DCT of an N-point sequence is obtained via the following three steps:

l. Flip over the given sequence with respect to the end point of the sequence to form a 2N-
point sequence, g,y (1), as shown in Figure 4.7(c). Then form a periodic sequence g,y (1),
shown in Figure 4.7(d), according to

Zon() =) g,y(n=2iN) (4.62)

| = =—a0

2. Find the Fourier series coefficients of the periodic sequences g,y (n).
3. Truncate the resultant periodic sequence of the Fourier series coefficients to have the

support of the given finite sequence g,(n). That is, only keep the N coefficients with
indexes 0,1,---,N — | and set all the others to equal zero. These N Fourier series coeffi-

cients form the DCT of the given N-point sequence gy(n).

A comparison between Figure 4.7(b) and (d) reveals that the periodic sequence gy (n) is not
smooth. There usually exist discontinuities at the beginning and end of each period. These end-
head discontinuities cause a high-frequency distribution in the corresponding DFT. On the contrary,
the periodic sequence g,y (n) does not have this type of discontinuity due to flipping over the given
finite sequence. As a result, there is no high-frequency component corresponding to the end-head
discontinuities. Hence, the DCT possesses better energy compaction in the low frequencies than
the DFT. By better energy compaction, we mean more energy is compacted in a fraction of transform
coefficients. For instance, it is known that the most energy of an image is contained in a small
region of low frequency in the DFT domain. Vivid examples can be found in (Gonzalez and Woods,
1992). In terms of energy compaction, when compared with the Karhunen-Loeve transform (the
Hotelling transform is its discrete version), which is known as the optimal, the DCT is the best
among the DFT, DWT, DHT, and discrete Haar transform.

Besides this advantage, the DCT can be implemented using the FFT. This can be seen from
the above discussion. There, it has been shown that the DCT of an N-point sequence, gy(n), can
be obtained from the DFT of the 2N-point sequence g,y(n). Furthermore, the even symmetry
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(d) Formation of a periodic sequence with a fundamental period of 2N (DCT)

FIGURE 4.7 An example to illustrate the differences and similarities between DFT and DCT.

in g,y (n) makes the computation required for the DCT of an N-point equal to that required for the
DFT of the N-point sequence. Because of these two merits, the DCT is the most popular image
transform used in image and video coding nowadays.

4.3.5 PerrORMANCE COMPARISON

In this subsection, we compare the performance of a few commonly used transforms in terms of
energy compaction, mean square reconstruction error, and computational complexity.

4.3.5.1 Energy Compaction

Since all the transforms we discussed are symmetric (hence separable) and unitary, the matrix form
of the 2-D image transform can be expressed as T = FT GF as discussed in Section 4.2.1.3. In the
1-D case, the transform matrix F is the counterpart of the matrix @ discussed in the Hotelling
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transform. Using the £, one can transform a 1-D column vector Z into another 1-D column vector y.
The components of the vector y are transform coefficients. The variances of these transform
coefficients, and therefore the signal energy associated with the transform coefficients, can be
arranged In a nondecreasing order. It can be shown that the total energy before and after the
transform remains the same. Therefore, the more energy compacted in a fraction of total coefficients.
the better energy compaction the transform has. One measure of energy compaction is the transform
coding gain Gy, which is defined as the ratio between the arithmetic mean and the geometric mean
of the variances of all the components in the transformed vector (Jayant, 1984).

I O
N

G = (4.63)
( N-] v
[[o
\i=0

A larger G indicates higher energy compaction. The transform coding gains for a first-order
autoregressive source with p = 0.95 achieved by using the DCT, DFT, and KLT was reported in
(Zelinski and Noll, 1975; Jayant and Noll, 1984). The transform coding gain afforded by the DCT
compares very closely to that of the optimum KLT,

4.3.5.2 Mean Square Reconstruction Error

The performance of the transforms can be compared in terms of the mean square reconstruction
error as well. This was mentioned in Section 4.1.2 when we provided a statistical interpretation for
transform coding. That is, after arranging all the N transformed coefficients according to their
variances in a nonincreasing order, if L < N and we discard the last (N — L) coefficients to reconstruct
the original input signal z (similar to what we did with the Hotelling transform), then the mean

square reconstruction error is

N
MSE, = E[l.-21°]= ) o, (4.64)

i=L+]

where z’ denotes the reconstructed vector. Note that in the above-defined mean square reconstruc-
tion error, the quantization error and transmission error have not been included. Hence, it i1s
sometimes referred to as the mean square approximation error. Therefore it is desired to choose a
transform so that the transformed coefficients are “more independent” and more energy is concen-
trated in the first L coefficients. Then it is possible to discard the remaining coefficients to save

coding bits without causing significant distortion in input signal reconstruction.
In terms of the mean square reconstruction error, the performance of the DCT, KLT, DFT,

DWT, and discrete Haar transform for the 1-D case was reported in Ahmed et al. (1974). The
variances of the 16 transform coefficients are shown in Figure 4.8 when N = 16, p = 0.95. Note
that N stands for the dimension of the 1-D vector, while the parameter p is shown in the Toeplitz
matrix (refer to Equation 4.57). We can see that the DCT compares most closely to the KLT, which
IS known to be optimum.

Note that the unequal variance distribution among transform coefficients has also found appli-
cation in the field of pattern recognition. Similar results to those in Ahmed et al. (1974) for the

DFT, DWT, and Haar transform were reported in (Andrews, 1971). |
A similar analysis can be carried out for the 2-D case (Wintz, 1972). Recall that an image

g(x, y) can be expressed as a weighted sum of basis images /,,. That 1s,
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FIGURE 4.8 Transform coefficient variances when N = 16, p = 0.95. (From Ahmed, N. et al., /EEE Trans.
Comput., 90, 1974. With permission.)

N-1 N-I

G=> Y T(uv)l, (4.65)

u=0 v=0

where the weights are transform coefficients. We arrange the coefficients according to their variances
in a nonincreasing order. For some choices of the transform (hence basis images), the coefficients

become insignificant after the first L terms, and the image can be approximated well by truncating
the coefficients after L. That is,

N=-1 N-] L

G= zzT(u, VI, & = EZT(H, I | (4.66)

u=0 v=0 =0 v=0
The mean square reconstruction error is given by

N=]

MSE,= ) Eﬁip (4.67)
L

A comparison among the KLT, DHT, and DFT in terms of the mean square reconstruction error
for 2-D array of 16 X 16 (i.e., 256 transform coefficients) was reported in (Figure 5, Wintz, 1972).
Note that the discrete KLT is image dependent. In the comparison, the KLT is calculated with
respect to an image named “Cameraman.” It shows that while the KLT achieves the best perfor-
mance, the other transforms perform closely.

In essence, the criteria of mean square reconstruction error and energy compaction are closely
related. It has been shown that the discrete Karhunen transform (KLT), also known as the Hotelling
transform, is the optimum in terms of energy compaction and mean square reconstruction error.
The DWT, DHT, DFT, and DCT are close to the optimum (Wintz, 1972; Ahmed et al., 1974);
however, the DCT is the best among these several suboptimum transforms.

IPR2021-00827
Unified EX1008 Page 120



Transform Coding 95

Note that the performance comparison among various transforms in terms of bit rate vs.
distortion in the reconstructed image was reported in (Pearl et al., 1972; Ahmed et al., 1974). The
same conclusion was drawn. That 1s. the KLT is optimum, while the DFT, DWT, DCT. and Haar
transforms are close in performance. Among the suboptimum transforms, the DCT is the best.

4.3.5.3 Computational Complexity

Note that while the DWT, DHT, DFT, and DCT are input image independent, the discrete KLT
(the Hotelling transform) is input dependent. More specifically, the row vectors of the Hotelling
transform matrix are transposed eigenvectors of the covariance matrix of the input random vector.
S0 far there is no fast transform algorithm available. This computational complexity prohibits the
Hotelling transform from practical usage. It can be shown that the DWT, DFT, and DCT can be
implemented using the FFT algorithm.

4.3.5.4 Summary

As pointed out above, the DCT is the best among the suboptimum transforms in terms of energy
compaction. Moreover, the DCT can be implemented using the FFT. Even though a 2N-point
sequence 1s nvolved, the even symmetry makes the computation involved in the N-point DCT
cquivalent to that of the N-point FFT. For these two reasons, the DCT finds the widest application
In 1mage and video coding.

4.4 BIT ALLOCATION

As shown in Figure 4.2, in transform coding, an input image is first divided into blocks (subimages).
Then a 2-D linear transform is applied to each block. The transformed blocks go through truncation,
quantization, and codeword assignment. The last three functions: truncation, quantization, and
codeword assignment, are combined and called bit allocation.

From the previous section, it is known that the applied transform decorrelates subimages.
Moreover, it redistributes image energy in the transform domain in such a way that most of the
energy is compacted into a small fraction of coefficients. Therefore, it is possible to discard the
majority of transform coefficients without introducing significant distortion.

As a result, we see that in transform coding there are mainly three types of errors involved.
One is due to truncation. That is, the majority of coefficients are truncated to zero. Others come
[rom quantization. (Note that truncation can also be considered a special type of quantization).
Transmission errors are the third type of error. Recall that the mean square reconstruction error
discussed in Section 4.3.5.2 is in fact only related to truncation error. For this reason, it was referred
lo more precisely as a mean square approximation error. In general, the reconstruction error, i.e.,
the error between the original image signal and the reconstructed image at the receiver, includes

three types of errors: truncation error, quantization error, and (ransmission error.
There are two different ways to truncate transform coefficients. One is called zonal coding,

while the other is threshold coding. They are discussed below.

4.4.1 ZonaL CoDING

In zonal coding, also known as zonal sampling, a zone in the transformed block 1s predefined
according to a statistical average obtained from many blocks. All transform coefficients in the zone
are retained. while all coefficients outside the zone are set to zero. As mentioned in Section 4.3.5.1,
the total energy of the image remains the same after applying the transforms discussed there. Since
it is known that the DC and low-frequency AC coefficients of the DCT occupy most of the energy,
the zone is located in the top-left portion of the transformed block when the transform coordinate
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FIGURE 4.9 Two illustrations of zonal coding.

system is set conventionally. (Note that by DC we mean u = v = 0. By AC we mean « and v do
not equal zero simultaneously.) That is, the origin is at the top-left corner of the transformed block.
Two typical zones are shown in Figure 4.9. The simplest uniform quantization with natural binary
coding can be used to quantize and encode the retained transform coefficients. With this simple
technique, there is no overhead side information that needs (o be sent to the receiver, since the
structure of the zone, the scheme of the quantization, and encoding are known at both the transmitter
and receiver.

The coding efficiency, however, may not be very high. This is because the zone is predefined
based on average statistics. Therefore some coefficients outside the zone might be large in magni-
tude, while some coefficients inside the zone may be small in quantity. Uniform quantization and
natural binary encoding are simple, but they are known not to be efficient enough.

For further improvement of coding efficiency, an adaptive scheme has to be used. There, a two-
pass procedure is applied. In the first pass, the variances of transform coefficients are measured or
estimated. Based on the statistics, the quantization and encoding schemes are determined. In the
second pass, quantization and encoding are carried out (Habibi, 1971a; Chen and Smith, 1977).

4.4.2 THResSHOLD CODING

In threshold coding, also known as threshold sampling, there is not a predefined zone. Instead,
each transform coefficient is compared with a threshold. If it is smaller than the threshold, then it
1S set to zero. If it 1s larger than the threshold, it will be retained for quantization and encoding.
Compared with zonal coding, this scheme is adaptive in truncation in the sense that the coefficients
with more energy are retained no matter where they are located. The addresses of these retained
coefficients, however, have to be sent to the receiver as side information. Furthermore, the threshold
1s determined after an evaluation of all coefficients. Hence, it was usually a two-pass adaptive
technique.

Chen and Pratt (1984) devised an efficient adaptive scheme to handle threshold coding. It is a
one-pass adaptive scheme, in contrast to the two-pass adaptive schemes. Hence it is fast in imple-
mentation. With several effective techniques that will be addressed here, it achieved excellent results
in transform coding. Specifically, it demonstrated a satisfactory quality of reconstructed frames at
a bit rate of 0.4 bits per pixel for coding of color images, which corresponds to real-time color
television transmission over a 1.5-Mb/sec channel. This scheme has been adopted by the interna-
tional still coding standard JPEG. A block diagram of the threshold coding proposed by Chen and

Pratt is shown in Figure 4.10. More details and modification made by JPEG will be described in
Chapter 7.
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FIGURE 4.10 Block diagram of the algorithm proposed by Chen and Pratt (1984).

4.4.2.1 Thresholding and Shifting

97

The DCT is used in the scheme because of its superiority, described in Section 4.3. Here we use
C(u,v) to denote the DCT coefficients. The DC coefficient, C(0,0), is processed differently. As
mentioned in Chapter 3, the DC coefficients are encoded with a differential coding technique. For
more details, refer to Chapter 7. For all the AC coefficients, the following thresholding and shifting

are carried out:

#

Cluv)-T if Cluv)>T

=
Gliv) 0 if  Clu,v)<T

A

(4.68)

where T on the right-hand side is the threshold. Note that the above equation also implies a shit't?ng
of transform coefficients by 7 when C(u, v) > T. The input-outpul characteristic of the thresholding

and shifting is shown in Figure 4.11.

Figure 4.12 demonstrates that more than 60% of the DCT coefficients normally _fa!l below a
threshold value as low as 5. This indicates that with a properly selected threshold value it is possible
to set most of the DCT coefficients equal to zero. The threshold value is adjusted by the teedback

from the rate buffer, or by the desired bit rate.
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FIGURE 4.11 Input-output characteristic of thresholding and shifting.
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FIGURE 4.12 Amplitude distribution of the DCT coefficients.

4.4.2.2 Normalization and Roundoff
The threshold subtracted transform coefficients C(u,v) are normalized before roundoff. The nor-

malization i1s implemented as follows:

Cow

0y C.(u,v)

i, v

(4.69)

where the normalization factor I', , is controlled by the rate buffer. The roundoff process converts
floating point to integer as follows.

N lem)+05] i Cp(uv)20
R[Cm(ﬂ, V)] b Cm(u, 1-’) = _Cm(u, V) —0.5 if CTN(u, v) <0

| =

(4.70)
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FIGURE 4.13 Input-output characteristic of (a) normalization, (b) roundoff.

where the operator |_r_j means the largest integer smaller than or equal to x, the operator [ x ] means
the smallest integer larger than or equal to x. The input-output characteristics of the normalization
and roundoff are shown in Figure 4.13(a) and (b), respectively.

From these input-output characteristics, we can see that the roundoff is a uniform midtread
quantizer with a unit quantization step. The combination of normalization and roundoff is equivalent
to a uniform midtread quantizer with the quantization step size equal to the normalization factor
I, .. Normalization is a scaling process, which makes the resultant uniform midtread quantizer
adapt to the dynamic range of the associated transform coefficient. It is therefore possible for one
quantizer design to be applied to various coefficients with different ranges. Obviously, by adjusting
the parameter T, , (quantization step size) a variable bit rate and mean square quantization error
can be achieved. Hence, the selection of the normalization factors for different transform coefficients
can take the statistical feature of the images and the characteristics of the human visual system
(HVS) into consideration. In general, most image energy is contained in the DC and low-frequency
AC transform coefficients. The HVS is more sensitive to a relatively uniform region than to a
relatively detailed region, as discussed in Chapter 1. Chapter 1 also mentions that, with regard to
the color image, the HVS is more sensitive to the luminance component than to the chrominance
components.

These have been taken into consideration in JPEG. A matrix consisting of all the normalization
factors is called a quantization table in JPEG. A luminance quantization table and a chrominance

quantization table used in JPEG are shown in Figure 4.14. We observe that in general in both tables
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(a) Luminance quantization table (b) Chrominance quantization table

FIGURE 4.14 Quantization tables.

the small normalization factors are assigned to the DC and low-frequency AC coefficients. The
large I's are associated with the high-frequency transform coefficients. Compared with the lumi-
nance quantization table, the chrominance quantization table has larger quantization step sizes for
the low- and middle-frequency coefficients and almost the same step sizes for the DC and high-
frequency coefficients, indicating that the chrominance components are relatively coarsely quan-
tized, compared with the luminance component.

4.4.2.3 Zigzag Scan

As mentioned at the beginning of this section, while threshold coding is adaptive to the local
statistics and hence 1s more efficient in truncation, threshold coding needs to send the addresses
of retained coefficients to the receiver as overhead side information. An efficient scheme, called
the zigzag scan, was proposed by Chen and Pratt (1984) and is shown in Figure 4.14. As shown
in Figure 4.12, a great majority of transform coefficients have magnitudes smaller than a threshold
of 5. Consequently, most quantized coefficients are zero. Hence, in the 1-D sequence obtained by
zigzag scanning, most of the numbers are zero. A code known as run-length code, discussed in
Chapter 6, is very efficient under these circumstances to encode the address information of nonzero
coefficients. Run-length of zero coefficients is understood as the number of consecutive zeros In
the zigzag scan. Zigzag scanning minimizes the use of run-length codes in the block.

0 1 .y
sl 7
, .
5
7 ad
| |
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4
g

FIGURE 4.15 Zigzag scan of DCT coefficients within an 8 x 8 block.
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4.4.2.4 Huffman Coding

101

Statistical studies of the magnitude of nonzero DCT coefficients and the run-length of zero DCT
coefficients in zigzag scanning were conducted in (Chen and Pratt, 1984). The domination of the
coefficients with small amplitudes and the short run-lengths was found and is shown in Figures 4.16

and 4.17. This justifies the application of the Huffman coding to the magnitude of nonzero transform
coefficients and run-lengths of zeros.
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4.4.2.5 Special Codewords

Two special codewords were used by Chen and Pratt (1984). One 1s called end of block (EOB).
Another is called run-length prefix. Once the last nonzero DCT coefhicients 1n the zigzag 1s coded,
EOB is appended, indicating the termination of coding the block. This further saves bits used 1n

coding. A run-length prefix is used to discriminate the run-length codewords from the amplitude
codewords.

4.4.2.6 Rate Buffer Feedback and Equalization

As shown in Figure 4.10, a rate buffer accepts a variable-rate data input from the encoding process
and provides a fixed-rate data output to the channel. The status of the rate buffer 1s monitored and

fed back to control the threshold and the normalization factor. In this fashion a one-pass adaptation
1s achieved.

4.5 SOME ISSUES

4.5.1 Ereect OF TRANSMISSION ERRORS

In transform coding, each pixel in the reconstructed image relies on all transform coefficients n
the subimage where the pixel is located. Hence, a bit reversal transmission error will spread. That
1S, an error in a transform coefficient will lead to errors in all the pixels within the subimage. As
discussed 1n Section 4.2.3, this 1s one of the reasons the selected subimage size cannot be very
large. Depending on which coefficient is in error, the effect caused by a bit reversal error on the
reconstructed image varies. For instance, an error in the DC or a low-frequency AC coelficient may
be objectionable, while an error in the high-frequency coefficient may be less noticeable.

4.5.2 REeCONSTRUCTION ERROR SOURCES

As discussed, three sources: truncation (discarding transform coefficients with small variances),
quantization, and transmission contribute to the reconstruction error. It is noted that in TC the
transform 1s applied block by block. Quantization and encoding of transform coefficients are also
conducted blockwise. At the receiver, reconstructed blocks are put together to form the whole
reconstructed 1mage. In the process, block artifacts are produced. Sometimes, even though it may
not severely affect an objective assessment of the reconstructed image quality, block artifacts can
be annoying to the HVS, especially when the coding rate is low.

To alleviate the blocking effect, several techniques have been proposed. One is to overlap blocks
in the source 1mage. Another is to postfilter the reconstructed image along block boundaries. The
selection of advanced transforms is an additional possible method (Lim, 1990).

In the block-overlapping method, when the blocks are finally organized to form the recon-
structed image, each pixel in the overlapped regions takes an average value of all its reconstructed
gray level values from multiple blocks. In this method, extra bits are used for those pixels involved
in the overlapped regions. For this reason, the overlapped region is usually only one pixel wide.

Due to the sharp transition along block boundaries, block artifacts are of high frequency 1n
nature. Hence, low-pass filtering is normally used in the postfiltering method. To avoid the blurring
effect caused by low-pass filtering on the nonboundary image area, low-pass postfiltering is only
applied to block boundaries. Unlike the block-overlapping method, the postfiltering method does
not need extra bits. Moreover, it has been shown that the postfiltering method can achieve better
results in combating block artifacts (Reeve and Lim, 1984; Ramamurthi and Gersho, 1986). For
these two reasons, the postfiltering method has been adopted by the international coding standards.
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4.5.3 ComrarISON BetTween DPCM anD TC

As mentioned at the beginning of the chapter, both differential coding and transform coding utilize
interpixel correlation and are efficient coding techniques. Comparisons between these two tech-
niques have been reported (Habibi, 1971b). Take a look at the techniques discussed in the previous
chapter and in this chapter. We can see that differential coding is simpler than TC. This is because
the linear prediction and differencing involved in differential coding are simpler than the 2-D
transform involved in TC. In terms of the memory requirement and processing delay, differential
coding such as DPCM is superior to TC. That is, DPCM needs less memory and has less processing
delay than TC. The design of the DPCM system, however, is sensitive 10 Image-lo-image variation,
and so is its performance. That is, an optimum DPCM design is matched to the statistics of a certain
image. When the statistics change, the performance of the DPCM will be affected. On the contrary,
TC i1s less sensitive to the variation in the image statistics. In general, the optimum DPCM coding
system with a third or higher order predictor performs better than TC when the bit rate is about
two to three bits per pixel for single images. When the bit rate is below two to three bits per pixel,
TC is normally preferred. As a result, the international still image coding standard JPEG is based
on TC, whereas, in JPEG, DPCM is used for coding the DC coefficients of DCT, and information-
preserving differential coding is used for lossless still image coding.

4.5.4 Hysrip CoDING

A method called hybrid transform/waveform coding, or simply hybrid coding, was devised in order
to combine the merits of the two methods. By waveform coding, we mean coding techniques that
code the waveform of a signal instead of the transformed signal. DPCM is a waveform coding
technique. Hybrid coding combines TC and DPCM coding. That is, TC can be first applied rowwise,
followed by DPCM coding columnwise, or vice versa. In this way, the two techniques complement
cach other. That is, the hybrid coding technique simultaneously has TC’s small sensitivity to variable
image statistics and DPCM’s simplicity in implementation.

Worth mentioning is a successful hybrid coding scheme in interframe coding: predictive coding
along the temporal domain. Specifically, it uses motion-compensated predictive cadin‘g. That is,
the motion analyzed from successive frames is used to more accurately predic't a frame. The
prediction error (in the 2-D spatial domain) is transform coded. This hybrid coding scheme has
been very efficient and was adopted by the international video coding standards H.261, H.263, and

MPEG 1, 2, and 4.

4.6 SUMMARY

In transform coding, instead of the original image or some function of lhe‘ original image in the
spatial and/or temporal domain, the image in the transform domain is quar‘mzed E_lﬂd encoded. The
main idea behind transform coding is that the transformed version of the image is less cc:ﬁrrellated.
Moreover, the image energy is compacted into a small proper subset of trflnsforn? coefﬁme{lls. r
The basis vector (1-D) and the basis image (2-D) provide a meaningful 1nl:?r;;lre:jatton ot‘
transform coding. This type of interpretation considers the original image (o be a weighted sum 0

' R which is essentiall
basis vectors or basis images. The weights are the transform coefficients, EBC!’ gl‘ hi s einhtz
- - L J ] e'
a correlation measure between the original image and the corresponding basis imag WCIE

are less correlated than the gray level values of pixels in the original i{nage. F';‘:he:?:::l;?:gdh;;;
a great disparity in variance distribution. Some weights have large varlﬂncej' ?:e | ua{ntize i A
finely quantized. Some weights have small energy. They are l:eminﬂd aTq' Eosodi:nqefﬁciencf is
vast majority of weights are insignificant and discarded. In this way: 2 ;_lg ¥ vefy s
achieved in transform coding. Because the quantized nonzero coefficients NAve «
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probability distribution, they can be encoded by using efficient variable-length codes. In summary,
three factors: truncation (discarding a great majority of transform coefficients), adaptive quantiza-
tion, and variable-length coding contribute mainly to a high coding efficiency of transform coding.

Several linear, reversible, unitary transforms have been studied and utilized in transtform coding.
They include the discrete Karhunen-Loeve transform (the Hotelling transform), the discrete Fourier
transform, the Walsh transform, the Hadamard transform, and the discrete cosine transform. It 1s
shown that the KLT is the optimum. The transform coefficients of the KLT are uncorrelated. The
KLT can compact the most energy in the smallest fraction of transform coefficients. However, the
KLT is image dependent. There is no fast algorithm to implement it. This prohibits the KLT from
practical use in transform coding. While the rest of the transforms perform closely, the DCT appears
to be the best. Its energy compaction is very close to the optimum KLT and it can be implemented
using the fast Fourier transform. The DCT has been found to be efficient not only for sull images
coding but also for coding residual images (predictive error) in motion-compensated interframe
predictive coding. These features make the DCT the most widely used transform in image and
video coding.

There are two ways to truncate transform coefficients: zonal coding and threshold coding. In
zonal coding, a zone is predefined based on average statistics. The transform coefficients within
the zone are retained, while those outside the zone are discarded. In threshold coding, each transform
coefficient is compared with a threshold. Those coefficients larger than the threshold are retained,
while those smaller are discarded. Threshold coding is adaptive to local statistics. A two-pass
procedure is usually taken. That is, the local statistics are measured or estimated in the first pass.
The truncation takes place in the second pass. The addresses of the retained coefficients need to
be sent to the receiver as overhead side information.

A one-step adaptive framework of transform coding has evolved as a result of the tremendous
research efforts in image coding. It has become a base of the international still image coding
standard JPEG. Its fundamental components include the DCT transform, thresholding and adaptive
quantization of transform coefficients, zigzag scan, Huffman coding of the magnitude of the nonzero
DCT coefficients and run-length of zeros in the zigzag scan, the codeword of EOB, and rate buffer
feedback control.

The threshold and the normalization factor are controlled by rate buffer feedback. Since the
threshold decides how many transform coefficients are retained and the normalization factor is
actually the quantization step size, the rate buffer has direct impact on the bit rate of the transform
coding system. Selection of quantization steps takes the energy compaction of the DCT and the
characteristics of the HVS into consideration. That is, it uses not only statistical redundancy, but
also psychovisual redundancy to enhance coding efficiency.

After thresholding, normalization and roundoff are applied to the DCT transform coefficients
In a block; a great majority of transform coefficients are set to zero. A zigzag scan can convert the
2-D array of transform coefficients into a 1-D sequence. The number of consecutive zero-valued
coefficients in the 1-D sequence is referred to as the run-length of zeros and is used to provide
address information of nonzero DCT coefficients. Both the magnitude of nonzero coefficients and
run-length information need to be coded. Statistical analysis has demonstrated that a small mag-
nitude and short run-length are dominant. Therefore, efficient lossless entropy coding methods such
as Huffman coding and arithmetic coding (the focus of the next chapter) can be applied to magnitude
and run-length.

In a reconstructed subimage, there are three types of errors involved: truncation error (some
transform coefficients have been set to zero), quantization error, and transmission error. In a broad
sense, the truncation can be viewed as a part of the quantization. That is, these truncated coefficients
are quantized to zero. The transmission error in terms of bit reversal will affect the whole recon-
structed subimage. This is because, in the inverse transform (such as the inverse DCT), each
transform coefficient makes a contribution.
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In reconstructing the original image all the subimages are organized to form the whole image.
Therefore the independent processing of individual subimages causes block artifacts. Though they
may not severely affect the objective assessment of reconstructed image quality, block artifacts can
be annoying, especially in low bit rate image coding. Block overlappling and postfiltering are two
effective ways to alleviate block artifacts. In the former, neighboring blocks are purposely over-
lapped by one pixel. In reconstructing the image, those pixels that have been coded more than once
take an average of the multiple decoded values. Extra bits are used. In the latter technique, a low-
pass filter is applied along boundaries of blocks. No extra bits are required in the process and the
effect of combating block artifacts is better than with the former technique.

The selection of subimage size is an important issue in the implementation of transform coding.
[n general, a large size will remove more interpixel redundancy. But it has been shown that the
pixel correlation becomes insignificant when the distance of pixels exceeds 20. On the other hand,
a large size is not suitable for adaptation to local statistics, while adaptation is required in handling
nonstationary images. A large size also makes the effect of a transmission error spread more widely.
For these reasons, subimage size should not be large. In motion-compensated predictive interframe
coding, motion estimation is normally carried out in sizes of 16 x 16 or 8§ X 8. To be compatible,
the subimage size in transform coding is normally chosen as 8 x 8.

Both predictive codings, say, DPCM and TC, utilize interpixel correlation and are efficient
coding schemes. Compared with TC, DPCM is simpler in computation. It needs less storage and
has less processing delay. But it is more sensitive to image-to-image variation. On the other hand,
TC provides higher adaptation to statistical variation. TC is capable of removing more interpixel
correlation, thus providing higher coding efficiency. Traditionally, predictive coding is preferred 1f
the bit rate is in the range of two to three bits per pixel, while TC is preferred when bit rate is
below two to three bits per pixel. However, the situation changes. TC becomes the core technology
in image and video coding. Many special VLSI chips are designed and manufactured for reducing
computational complexity. Consequently, predictive coding such as DPCM Is only used in some
very simple applications.

In the context of interframe coding, 3-D (two spatial dimensions and one temporal dimension)
transform coding has not found wide application in practice due to the complexity in computation
and storage. Hybrid transform/waveform coding has proven to be very efficient in interframe coding.
There, motion-compensated predictive coding is used along the temporal dimension, while trans-
form coding is used to code the prediction error in two spatial dimensions.

4.7 EXERCISES

4-1. Consider the following eight points in a 3-D coordinate system: (0,0,0)7, (1,0,0)7, (0,1,0)7,
(0,0,1)7, (0,1,17, (1,0,D7, (1,1,0)7, (1,1,1)T. Find the mean vector and covariance matrix

using Equations 4.12 and 4.13.

4-2. For N = 4, find the basis images of the DFT, /,, when (a) u =0, v =0; (b) u = LiaVeiss
0; (c) u=2,v=2;(d)u=3,v=_2 Useboth methods discussed in the text; 1.e., the
method with basis image and the method with basis vectors.

4-3. For N = 4. find the basis images of the ordered discrete Hadamard transform when (a) u =
0,v=2;(b)u=1,v=3(c)u=2 v=3; (d) u = 3, v = 3. Verify your results by

comparing them with Figure 4.5. | _
4-4. Repeat the previous problem for the DWT, and verify your results by comparing them

with Figure 4.4.

4-5. Repeat problem 4-3 for the DCT and N = 4.
4-6. When N = 8. draw the transform matrix F for the DWT, DHT, the order DHT, DFT, and

DCT.
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4-7. The matrix form of forward and inverse 2-D symmetric image transforms are expressed
in texts such as (Jayant and Noll, 1984) as T = FGFT and G = ITI", which are different
from Equations 4.28 and 4.29. Can you explain this discrepancy?

4-8. Derive Equation 4.64. (Hint: use the concept of basis vectors and the orthogonality of
basis vectors.)

4-9. Justify that the normalization factor is the quantization step.

4-10. The transform used in TC has two functions: decorrelation and energy compaction. Does
decorrelation automatically lead to energy compaction? Comment.

4-11. Using your own words, explain the main idea behind transform coding.

4-12. Read the techniques by Chen and Pratt presented in Section 4.4.2. Compare them with
JPEG discussed in Chapter 7. Comment on the similarity and dissimilarity between them.

4-13. How is one-pass adaptation to local statistics in the Chen and Pratt algorithm achieved?

4-14. Explain why the DCT is superior to the DFT in terms of energy compaction.

4-15. Why is the subimage size of 8 x 8§ widely used?
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5 Variable-Length Coding:
Information Theory Results (Il)

Recall the block diagram of encoders shown in Figure 2.3. There are three stages that take place
In an encoder: transformation, quantization, and codeword assignment. Quantization was discussed
in Chapter 2. Differential coding and transform coding using two different transformation compo-
nents were covered in Chapters 3 and 4, respectively. In differential coding it is the difference
signal that is quantized and encoded, while in transform coding it is the transformed signal that is
quantized and encoded. In this chapter and the next chapter, we discuss several codeword assignment
(encoding) techniques. In this chapter we cover two types of variable-length coding: Huffman
coding and arithmetic coding.

First we Introduce some fundamental concepts of encoding. After that, the rules that must be
obeyed by all optimum and instantancous codes are discussed. Based on these rules, the Huffman
coding algorithm is presented. A modified version of the Huffman coding algorithm is introduced as
an efficient way to dramatically reduce codebook memory while keeping almost the same optimality.

The promising arithmetic coding algorithm, which is quite different from Huffman coding, is
another focus of the chapter. While Huffman coding is a block-oriented coding technique, arithmetic
coding is a stream-oriented coding technique. With improvements in implementation, arithmetic
coding has gained increasing popularity. Both Huffman coding and arithmetic coding are included 1n
the international still image coding standard JPEG (Joint Photographic [image] Experts Group coding).
The adaptive arithmetic coding algorithms have been adopted by the international bilevel image coding
standard JBIG (Joint Bi-level Image experts Group coding). Note that the material presented in this
chapter can be viewed as a continuation of the information theory results presented in Chapter 1.

5.1 SOME FUNDAMENTAL RESULTS

Prior to presenting Huffman coding and arithmetic coding, we first provide some fundamental
concepts and results as necessary background.

5.1.1T CobpING AN INFORMATION SOURCE

Consider an information source, represented by a source alphabet S.

Sz{sl,sz,---,sm} (5.1)

where s, i = 1,2,---,m are source symbols. Note that the terms source symbol and information
message are used interchangeably in the literature. In this book, however, we would like to
distinguish between them. That is, an information message can be a source symbol, or a combination

of source symbols. We denote code alphabet by A and
A={a,a, - a| (5.2)

where a;, j = 1,2,---,r are code symbols. A message code is a sequence of code symbols that
represents a given information message. In the simplest case, a message consists of only a source
symbol. Encoding is then a procedure to assign a codeword 1o the source symbol. Namely,
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S:‘_}Afz(afl=ai2*"'=afk) (5.3)

where the codeword A; is a string of k code symbols assigned to the source symbol s;. The term
message ensemble is defined as the entire set of messages. A code, also known as an ensemble
code, is defined as a mapping of all the possible sequences of symbols of § (message ensemble)
into the sequences of symbols in A.

Note that in binary coding, the number of code symbols r 1s equal to 2, since there are only
two code symbols available: the binary digits “0” and “1”. Two examples are given below to
illustrate the above concepts.

Example 5.1
Consider an English article and the ASCII code. Refer to Table 5.1. In this context, the source

alphabet consists of all the English letters in both lower and upper cases and all the punctuation
marks. The code alphabet consists of the binary | and 0. There are a total of 128 7-bit binary

codewords. From Table 5.1, we see that the codeword assigned to the capital letter A 1s 1000001,
That 1s, A 1s a source symbol, while 1000001 is its codeword.

Example 5.2

Table 5.2 lists what 1s known as the (5,2) code. It is a linear block code. In this example, the source
alphabet consists of the four (2%) source symbols listed in the left column of the table: 00, 01, 10,
and 11. The code alphabet consists of the binary | and 0. There are four codewords listed 1n the
right column of the table. From the table, we see that the code assigns a 5-bit codeword to each
source symbol. Specifically, the codeword of the source symbol 00 is 00000. The source symbol
O1 1s encoded as 10100; 01111 is the codeword assigned to 10. The symbol 11 is mapped to 11011.

5.1.2 SoMEe DESIRED CHARACTERISTICS

To be practical 1n use, codes need to have some desirable characteristics (Abramson, 1963). Some
of the characteristics are addressed in this subsection.

5.1.2.1 Block Code

A code is said to be a block code if it maps each source symbol in S into a fixed codeword in A.
Hence, the codes listed in the above two examples are block codes.

5.1.2.2 Uniquely Decodable Code

A code 1s uniquely decodable if it can be unambiguously decoded. Obviously, a code has to be
uniquely decodable if it is to be of use.

Example 5.3

Table 5.3 specifies a code. Obviously it is not uniquely decodable since if a binary string “00” 1s
received we do not know which of the following two source symbols has been sent out: s, or ;.

Nonsingular Code
A block code is nonsingular if all the codewords are distinct (see Table 5.4).

Example 5.4
Table 5.4 gives a nonsingular code since all four codewords are distinct. If a code is not a nonsingular
code, i.e., at least two codewords are identical, then the code is not uniquely decodable. Notice,

however, that a nonsingular code does not guarantee unique decodability. The code shown in
Table 5.4 is such an example in that it is nonsingular while it is not uniquely decodable. It is not
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A (5,2) Linear Block Code

Source Symbol

S, (0 0)
S, (0 1)
S, (10)
Sg(I1)

Codeword

00000
10100
01111
[ 1011

TABLE 5.1
Seven-Bit American Standard Code for Information Interchange (ASCII)
s 5 1 0 1 0 | 1 | o [ 5 1
. 0 IS I SIS N S ) IO |

| | 2 |3 ] 4 | 77 1 o 0 0 0 P : :

0 [0 ] 0] 0 NUL DLE SP 0 | @ [p . X
| | 0 10 0 | SOH DCI | 1 | A | Q| a q
10 | | 0 0 STX DC2 | T2 4 B R b r
|| | 1 0 0 ETX DCS_q#Ech__S o "

0 0 l O | EOT | DC4 $ | 4 | D | T d t
| | 0 l 0 | ENQ NAK o | 3 E U ¢ u
| O 1 | | 0 | ACK | SYN & | 6 F v f v
| | 1 l 0 || BEL ETB . 7 1| G | W g W
10 | 0O 0 l BS | CAN ( | 8 | H | X h X
| | 0 0 | | HT EM | ) | -] | S IO i y
lo [ 1t [ o] 1 LF | SUB « T : T3 1z z
[t [ o[ v [ vt [ Ec [ + [ + [ K] ]k 1
(o [ o1 | FF FS , ¢ | E | & | |

L | o | 1 | Cr GS - = M ] m |
o [ 1 [ 1] SO RS _ > | N[ A [ n =
(v [ [ [ st [ us / | 2 o] — 1] o | DEL

NUL Null, or all zeros DCI Device control |

SOH Start of heading DC2 Device control 2

STX Start of text DC3 Device control 3

ETX End of text DC4 Device control 4

EOT End of transmission NAK Negative acknowledgment

ENQ  Enquiry SYN Synchronous 1dle

ACK  Acknowledge ETB End of transmission block

BEL Bell, or alarm CAN Cancel

BS Backspace EM End of medium

HT Honzontal tabulation SUB Substitution

LF Line feed ESC Escape

VT Vertical tabulation FS File separator

FF Form feed GS Group separator

CR Carriage return RS Record separator

SO Shift out usS Unit separator

Sl Shift in SP Space

DLE Data link escape DEL Delete

TABLE 5.2
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TABLE 5.3
A Not Uniquely Decodable Code
Source Symbol Codeword
S, 00
S, 10
S, 00
Sy I ]
TABLE 5.4

A Nonsingular Code

Source Symbol Codeword

S, 1

S, |1
S, 00
S, 0}

uniquely decodable because once the binary string “11” is received, we do not know if the source
symbols transmitted are s, followed by s, or simply s,.

The nth Extension of a Block Code

The nth extension of a block code, which maps the source symbol s, into the codeword A, 1s a
block code that maps the sequences of source symbols s;,s, -5, into the sequences of codewords
AjAp---A

n*

A Necessary and Sufficient Condition of a Block Code’s Unique Decodability

A block code is uniquely decodable if and only if the nth extension of the code is nonsingular for
every finite n.

Example 5.5
The second extension of the nonsingular block code shown in Example 5.4 is listed in Table 5.5.

Clearly, this second extension of the code is not a nonsingular code, since the entries 5,5, and $,5,
are the same. This confirms the nonunique decodability of the nonsingular code in Example 5.4.

TABLE 5.5

The Second Extension of the Nonsingular Block Code in
Example 5.4

Source Symbol Codeword Source Symbol Codeword
S, S, 11 S3:S, 00 1
S: S, 1 11 S35 0011
S;S; 100 SuS: 0000
S, Sq 101 S; S, 0001
S,'S; 1 11 S5 011
S, S, 1111 Si'S; 0111
S2 53 1100 S: S, 0100

S, S, 1101 S, S, 0101

IPR2021-00827
Unified EX1008 Page 136



Variable-Length Coding: Information Theory Results (1) 111

TABLE 5.6
Three Uniquely Decodable Codes

Source Symbol Code 1 Code 2 Code 3

S, 00 1 1
S, 0 1 0 1 10

g, 1 0 00 I 100
S, | ] 0001 1000

5.1.2.3 Instantaneous Codes

Definition of Instantaneous Codes
A uniquely decodable code is said to be instantaneous if it is possible to decode each codeword
In a code symbol sequence without knowing the succeeding codewords.

Example 5.6

Table 5.6 lists three uniquely decodable codes. The first one is in fact a two-bit natural binary code.
In decoding, we can immediately tell which source symbols are transmitted since each codeword
has the same length. In the second code, code symbol “1” functions like a comma. Whenever we
sec a 1", we know it 1s the end of the codeword. The third code 1s different from the previous
two codes in that if we see a “10” string we are not sure If it corresponds to s, until we see a
succeeding “1”. Specifically, if the next code symbol is “0”, we still cannot tell if it 1s s, since the
next one may be “0” (hence s,) or “1” (hence s;). In this example, the next 17 belongs to the
succeeding codeword. Therefore we sce that code 3 1s uniquely decodable. It 1s not instantaneous,

however.

Definition of the jth Prefix
Assume a codeword A, = a,a,---a,. Then the sequences of code symbols @, a,,---a; with 1 < j < k

1s the jth order prefix of the codeword A,.

Example 5.7
If a codeword is 11001, it has the following five prefixes: 11001, 1100, 110, 11, 1. The first-order

prefix is |, while the fifth-order prefix is 11001.

A Necessary and Sufficient Condition of Being an Instantaneous Code
A code is instantaneous if and only if no codeword is a prefix of some other codeword. This

condition is often referred to as the prefix condition. Hence, the instantaneous code is also called
the prefix condition code or sometimes simply the prefix code. In many applications, we need a
block code that is nonsingular, uniquely decodable, and instantaneous.

5.1.2.4 Compact Code

A uniquely decodable code is said to be compact if its average length is the minimum among all
other uniquely decodable codes based on the same source alphabet S and code alphabet A. A

compact code is also referred to as a munimum redundancy code, or an optumum code.
Note that the average length of a code was defined in Chapter 1 and is restated below.

5.1.3 DiscrReTE MEMORYLESS SOURCES

This is the simplest model of an information source. In this model, the symbols generated by the
source are independent of each other. That is, the source is memoryless or it has a zero memory.

Consider the information source expressed in Equation 5.1 as a discrete memoryless source.
The occurrence probabilities of the source symbols can be denoted by p(s)), p(s3), -+, p(s,,). The
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lengths of the codewords can be denoted by [, [,, -+, [
equal to

The average length of the code 1s then

m?*

Loe= Y Lp(s:) (5.4)
=]

Recall Shannon’s first theorem, i.e., the noiseless coding theorem described in Chapter 1. The

average length of the code is bounded below by the entropy of the information source. The entropy
of the source S is defined as H(S) and

H(S)= -—i p(s;)log, p(s,) (5.5)

Recall that entropy is the average amount of information contained in a source symbol. In
Chapter 1 the efficiency of a code, 1, is defined as the ratio between the entropy and the average
length of the code. That is, n = H(S)/L,,.. The redundancy of the code, C, is defined as C=T1=M.

5.1.4 EXTeENSIONS OF A DISCRETE MEMORYLESS SOURCE

Instead of coding each source symbol in a discrete source alphabet, it is often useful to code blocks
of symbols. It 1s, therefore, necessary to define the nth extension of a discrete memoryless source.

5.1.4.1 Definition

Consider the zero-memory source alphabet S defined in Equation 5.1. That is, S = {s}, S5, *** S}
If n symbols are grouped into a block, then there is a total of m” blocks. Each block is considered

as a new source symbol. These m" blocks thus form an information source alphabet, called the nth
extension of the source S, which is denoted by S”.

5.1.4.2 Entropy

Let each block be denoted by 3. and

B, =(5f|=5f2"“*5m) (5.6)

Then we have the following relation due to the memoryless assumption:

p(a,-)=1jp(s,;,.) 5

Hence, the relationship between the entropy of the source S and the entropy of its nth extension 1s
as follows:

H(S")=n-H(S) (5.8)

Example 5.8
Table 5.7 lists a source alphabet. Its second extension is listed in Table 5.8.
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TABLE 5.7
A Discrete Memoryless Source Alphabet
Source Symbol Occurrence Probability
S, 0.6
S, 0.4
TABLE 5.8

The Second Extension of the Source
Alphabet Shown in Table 5.7

Source Symbol Occurrence Probability
g8 0.36
S.'S, 0.24
8.8, 0.16

The entropy of the source and its second extension are calculated below.

H(S)=-0.6-log,(0.6)—0.4-log,(0.4) = 0.97

H(S?)=-0.36-log,(0.36)—2-0.24-log,(0.24) — 0.16-log,(0.16) = 1.94

It 1s seen that H(S?) = 2H(S).

5.1.4.3 Noiseless Source Coding Theorem

The noiseless source coding theorem, also known as Shannon’s first theorem, defining the minimum

average codeword length per source pixel, was presented in Chapter 1, but without a mathematical
expression. Here, we provide some mathematical expressions in order to give more insight about

the theorem.
For a discrete zero-memory information source S, the noiseless coding theorem can be expressed

ds
H(S)<L . <H(S)+] (5.9)

avg

That is, there exists a variable-length code whose average length is bounded below by the entropy
of the source (that is encoded) and bounded above by the entropy plus 1. Since the nth extension
of the source alphabet, 57, is itself a discrete memoryless source, we can apply the above result to

it. That is,
H(S")< L, < H(S")+1 (5.10)

avg

where L”  is the average codeword length of a variable-length code for the S”. Since H(S") = nH (S)

avg

and L” = nlL"avg, we have

avg

1
H(S)< L, <H(S)+— (5.11)
: H
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Therefore, when coding blocks of n source symbols, the noiseless source coding theory states that
for an arbitrary positive number €, there is a variable-length code which satisfies the following:

H(S)s L, <H(S)+e (5.12)

as n 1s large enough. That is, the average number of bits used in coding per source symbol is
bounded below by the entropy of the source and is bounded above by the sum of the entropy and
an arbitrary positive number. To make € arbitrarily small, i.e., to make the average length of the
code arbitrarily close to the entropy, we have to make the block size n large enough. This version
of the noiseless coding theorem suggests a way to make the average length of a variable-length
code approach the source entropy. It is known, however, that the high coding complexity that occurs
when n approaches infinity makes implementation of the code impractical.

5.2 HUFFMAN CODES

Consider the source alphabet defined in Equation 5.1. The method of encoding source symbols
according to their probabilities, suggested in (Shannon, 1948; Fano, 1949), is not optimum. It
approaches the optimum, however, when the block size n approaches infinity. This results 1n a large
storage requirement and high computational complexity. In many cases, we need a direct encoding
method that is optimum and instantaneous (hence uniquely decodable) for an information source
with finite source symbols in source alphabet S. Huffman code is the first such optimum code
(Huffman, 1952), and is the technique most frequently used at present. It can be used for r-ary
encoding as r > 2. For notational brevity, however, we discuss only the Huffman coding used 1n
the binary case presented here.

5.2.1 ReQuIrReD RULES FOR OPTIMUM INSTANTANEOUS CODES

Let us rewrite Equation 5.1 as follows:

Sz(sl,s:,_,---,sm) (5.13)

Without loss of generality, assume the occurrence probabilities of the source symbols are as
follows:

p(sl) 2 p(sz) 2 2 p(sm_I) > p(sm) (5.14)

Since we are seeking the optimum code for §, the lengths of codewords assigned to the source
symbols should be

[ <L, L1 < . (5.15)

Based on the requirements of the optimum and instantaneous code, Huffman derived the
following rules (restrictions):

Enlsh sl =l (5.16)
Equations 5.14 and 5.16 imply that when the source symbol occurrence probabilities are
arranged in a nonincreasing order, the length of the corresponding codewords should be
in a nondecreasing order. In other words, the codeword length of a more probable source

IPR2021-00827
Unified EX1008 Page 140



Variable-Length Coding: Information Theory Results (1) 115

symbol should not be longer than that of a less probable source symbol. Furthermore.,

the length of the codewords assigned to the two least probable source symbols should
be the same.

2. The codewords of the two least probable source symbols should be the same except for
their last bits.

3. Each possible sequence of length [/, — 1 bits must be used either as a codeword or must
have one of its prefixes used as a codeword.

Rule I can be justified as follows. If the first part of the rule, i.e., [, £ [, < --- <[ is violated,
say, {, > [,, then we can exchange the two codewords to shorten the average length of the code.
This means the code is not optimum, which contradicts the assumption that the code is optimum.
Hence it 1s impossible. That is, the first part of Rule 1 has to be the case. Now assume that the
second part of the rule is violated, i.e., [, , </,. (Note that /,_, >/, can be shown to be impossible
by using the same reasoning we just used in proving the first part of the rule.) Since the code is
instantaneous, codeword A, _, is not a prefix of codeword A,. This implies that the last bit in the
codeword A, 1s redundant. It can be removed to reduce the average length of the code, implying
that the code is not optimum. This contradicts the assumption, thus proving Rule 1.

Rule 2 can be justified as follows. As in the above, A, , and A, are the codewords of the two
least probable source symbols. Assume that they do not have the identical prefix of the order [, — 1.
Since the code is optimum and instantaneous, codewords A,_, and A,, cannot have prefixes of any
order that are identical to other codewords. This implies that we can drop the last bits of A, _, and
A, to achieve a lower average length. This contradicts the optimum code assumption. It proves that
Rule 2 has to be the case.

Rule 3 can be justified using a similar strategy to that used above. If a possible sequence of
length /, — | has not been used as a codeword and any of its prefixes have not been used as
codewords, then it can be used in place of the codeword of the mth source symbol, resulting in a
reduction of the average length L_ . This is a contradiction to the optimum code assumption and

it justifies the rule.

ave

5.2.2 HurrMAN CODING ALGORITHM

Based on these three rules, we see that the two least probable source symbols have codewords of
equal length. These two codewords are identical except for the last bits, the binary 0 and I,
respectively. Therefore, these two source symbols can be combined to form a single new symbol.
Its occurrence probability is the sum of two source symbols, i.e., p(s,._;) + p(s,,). Its codeword 18
the common prefix of order [, — 1 of the two codewords assigned to s, and s,,_,, respectively. The
new set of source symbols thus generated is referred to as the first auxiliary source alphabet, which
is one source symbol less than the original source alphabet. In the first auxiliary source alphabet,
we can rearrange the source symbols according to a nonincreasing order of their occurrence
probabilities. The same procedure can be applied to this newly created source alphabet. A binary
0 and a binary 1, respectively, are assigned to the last bits of the two least probable source symbols
in the alphabet. The second auxiliary source alphabet will again have one source symbol less than
the first auxiliary source alphabet. The procedure continues. In some step, the resu}lant source
alphabet will have only two source symbols. At this time, we combine them to form a single source

symbol with a probability of 1. The coding is then complete. ‘ |
Let’s go through the following example to illustrate the above Huffman algorithm.

Example 5.9 - |
Consider a source alphabet whose six source symbols and their occurrence probabilities are listed

in Table 5.9. Figure 5.1 demonstrates the Huffman coding procedure applied. In the example, among
the two least probable source symbols encountered at each step we assign binary O to the top

symbol and binary 1 to the bottom symbol.
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