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FlGURE 2.13 lnp ·ut-output characteristic of the optimal quantizer for Gaussian distribution \>.1ith z.ero mean, 
unit variance, and N = 8. 

decision levels are d'ensely distributed in the region having a higher probability of occurrence and 
coarsely distributed in other regions. A logarithmic companding technique also allocates decisio11 
levels densely in the small-magnitude region, which corresponds to a high occurrence probabilily, 
but in a different way. We conclude that nonunifonn quantization achieves 1ninimu1n n1ean square 
quantization error by distributing decision levels according to the statistics of the input random 
variable. 

These two types of nonuniforrn quantizers are both time-invariant. That is, they are not designed 
for nonstationary input signals. Moreover, even for a stationary input signal, if its pdf deviates from 
r.hat with \vhich the optimum quantizer is designed, then what is called 111is111c1tc/1 wi 11 take plat,;e 
and the perfor 111ance of the quantizer will deteriorate. There are two main type.s of mismatch. One 
is called. variance mismalcl1. That is, tl1e p'(if of input signal is matched, while the variance is 
mismatched. Another type is pdf mismatcl1. Noted that these two kinds of mis1natch also oc.ct1r in 
optimum uniform quantization, since there the optimization is also achieved based on the input 
statistics as-sumption. For a detailed analysis of the effects of the two t_y·pes of mismatch 0 11 

quantization, readers are referred to (Jayant and Noll, 1984). 
Adaptive quantization attempts to make the quantizer design adapt to tl1e varying input statis tics 

in order to achieve better performance. lt is a means to combat tl1e mis1natch proble1.11 discu sse·d 
above . By statistic .s, we m.ean the statistical n1·ean, variance (or the dynamic range), and type of 
input pdf When the mean o·f the input changes, differential coding (dis.cussed in the 11ext cl1apter) 
is a suit~ble method to handle the variation. For other types of cases, adaptive quantization is ·four1d 
to be effective. The price paid for adapt'ive quantization is processing delays and an extra storage 
re.quirement as see.n belcw. 

There are two different types of adaptive quantization: forward adaptation and backward 
adaptation. Before we discuss the-se, howeve.r, let us describe an alte.rnative way to defi11e quanti­
zatjon (Jayant and Noll, 1984 ). Look at Figure 2.14. Quantization can be viewed as a two-stage 

IPR2021-00827 
Unified EX1008 Page 72



Quantization 47 

In purx Quantization Interval index Quantization Outputy 
decoder encoder - - -

Rcconstructio n 
level 

FIGURE 2.14 A two-stage model of c1uantization. 

proce ss . Tl1e first stage is tl1e quantiz .ation e11code·r and tl1e second stage is tl1e quanti .zation decoder. 
In tl1e encoder, the input to quantizati o11 is co11verted to the i11dex of an i11terval into which the 
inpu t .,r falls. This index is mapped to (the codeword that represents) the reconstruction level 
corre 'ponding to the interva l in the decoder. Roughly speaking, this defini tion considers a quantizer 
as a co n11Tiunication systen, in \vl1icl1 the quantization encoder is on tl1e transmitter side while the 
quantization decoder is on tl1e receiver side. I11 tl1is sense, this definit ion is broader than that for 
quantizatio11 defined in Figure 2.3(a). 

2.4.1 FORWARD ADAPTIVE QUANTIZATION 

A block diagrrrrn or forward adaptive qua11tization is shown in Figure 2.15. 'fhere, the input to tl1e 
quan tizer, .. r, is first split into blocks , each ,vitl1 a cer tajn length . Blocks are stored in a buffer one 
at a tin1e. A tati tical analysis is then car ried out with respect to tl1e block in the buffer. Based on 
the analysis, tl1e quantization encoder is set up, and the input data witl1in tl1e block are assigned 
indexes o·f respective intervals. In additior1 to these indexes, the encoder setting parameters, derived 
from tl1e statistict1l a11alysis, are sent to tl1e quantizat ion decode r as side inform·ation. The term side 
comes fro 1n the f,1ct that tl1e amount of bits used 1~or coding tll'e setting parari1eter is usually a sma ll 
fract ion of the tota l an1ount of bits used. 

Se lection of tl1e b·lock size is a crit ical issue. If tl1e size is sn1all, the adaptatio r1 to the local 
statist ics will be effective, but tl1e side infor111ation needs to be sent freque ntly. Tl1at is, more bits 
are used for sending tl1e side inforn·1ation. If tl1e size is large, the bits used for side inforn1ation 
decrease . On tl1e other l1and, the adapta tion becomes less sensitive to cha.nging statistics, and bot11 
processing delays and storage required ir1crease. Ih practice, a proper con1pron1ise between the 
quant ity of side i11for111ation ,111d the effectiveness of adaptation produces a good se lection of tl1e 
'block size. 

Exan1ples of using tl1e forward ,1pproacJ1 to adapt quantizatior1 to a changing input varia11ce (to 
combat variance mismatcl1) can be fou11.d in (Jaya nt and Noll, 1984; Say·ood, 1996) . 
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FIGURE 2.16 Bat k\vard adaptive quantization. 

2.4.2 BACKWARD AD ,APTIVE QUANTIZATION 

Figure 2.16 sho\vs a block diagram of back\vard adaptive quantization . A close look at the block 
diagram reveals that in both the quantization encoder and decoder the b,ut~ferin .g and the stati stical 
analysis are carried out \Vith respect to the output of the qu.antizati on encoder. In thi s \vay, there 
is no need to se .nd side ·infor1nation . The sensitivity of adaptation to the ch-angi ng stati stics wi 11 be 
degraded, however; since instead of the original input, only the output of the quantization e ncoder 
is used in. the statistical analysis. That is, the quantization noise is involved in the statistical analysis. 

2.4.3 ADAPTIVE QUANTIZATION WITH A ONE-WORD MEMORY 

Intuitively, it is expected that observance of a sufficiently large number of input or output (quantized) 
data is necessary in order to track the changing statistics and then adapt the q·uanti ze r setting in 
adaptive quantizatio ·n. Through an &.nalysis, Jayant showed that effective adaptations can be reali ze d 
with an explicit memory of o.nly one woro. That is, either one input samp le, x~ in forward adaptive 
quantization or a quantized output,) ', in ·backward adaptive quantization is sufficient (Jayant, 1973). 

In (Jayant, 1984), examples on step-s .ize adaptati0n (with the number of total reconstru ction 
levels larger than four) were given. The idea is as follows . If at moment t; the input sample X; t·t\lls 
into the outer interval, then the step size at the next moment t; .. 1 will be .enlarged by a factor ·of ,rz; 
(multiplying the current step size by nz;, t1z; > 1). On the other hand, if the input x; falls into an 
inner interval clo ·se to x = 0 the .a, the multiplier is less than 1, i.e., 11i; < l. That is , the multiplier 
nz; is small in the interval near x = 0 and monotonically increases for an increa sed x. Its range 
varies from a small positive number less than 1 to a number larger than 1. In this way, the quantize .r 
adapts itself to th.e input to avoid overload as well as u11derload to achieve better performance. 

2.4.4 SWITCHED QUANTIZATION 
• 

This is another adaptive quantization scheme . A block diagram is shown in ,Figure 2 .17. It co nsists 
of a bank of L quantizers4 Each quantizer in the bank is fixed, b.ut collectively they forn1 a ba11k 
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of quantizers wi tl1 a variety of input-output characteristics. Based on a statistical analysis of recent 
input or output samples, a switch connects the current input to one of tl1e quantizers in the bank 
sucl1 that the best possible. performance may be achieved. It is reported that in both video and 
speech applications, this scl1en1e has st,own improved perfor:n1ance even when the number of 
quantizers in the bank, L, is two (Jayant and Noll, 1984). Interestingly, it is n.oted tl1at as L -) oo, 

the switched quar1tization converges to the adaptive quantizer discussed above. 

2.5 PCM 

Pulse code modulatior1 (PCM) is closely related to quantization, the focus of this chapter. Further­
more, as poi11ted out ir1 (Jaya11t, 1984), PCM is tl1e earliest, best establisl1ed, and most frequently 
applied cod ing syste111 despite the fact that it is tl1e 1nost bit-consu1ning digitizing syste1n (since it 
encodes eact1 pixel independently) as well as being a very dema11ding systen1 in ter rn.s o.f the bit 
error rate 011 tl1e digital channel. Tl1erefore, we discuss tl1e PC,M tecJ1nique in this section. 

PCM is ·now the most in1portant, form. of pulse modulation. Tl1e other t'om1s of pulse modulation 
are pulse amplitude n1odulation (PAM), pulse widtl1 n1odulation (PWM), and pul-se position mod­
ulation (PPM ), wl1ich are covered in n10st comn1unications texts. B1·iefly speaking , pulse modulation 
links an analog signal to a pulse train in the follo\ving way. The analog signal is firsl sampled (a 
discretization in tl1e tin1e don1ain). The sampled values are used to 1n·odulate a pulse trai11. If the 
modulation is carried out 1hrougl1 the amplitude of the pulse train, it is called PAM. If th,e n1odified 
parameter of the pulse train is tl1e pulse width, we then l1ave PWM. If tl1e pulse width and inagnitude 
are constant onl·y the position of pulses is n1odulated by the sample values we then encounter 
PPM . An illustration of these pulse modulations is shown in Figure 2.18. 

In PCM , an analog signal is first sampled. The sampled value is then quantized. Finally tl1e 
quantized value is encoded, resulting in a bit steam. Figure 2.19 provides an exa1nple of PCM . We 
see tl1at tl1rough a sampling and a uniforrn quantizatibn the PCM system converts tl1e input ar1atog 
signal, 'vv.hich is continuous in ho.th tirne and magnilude, into a digital sig11al (discretized in both 
time and magnitude) in the form of a natural binary c;ode sequence. In this way, an a·nalog signal 
n1odulates a pulse train with a natural binary code. 

By far, PCM is n1ore popular than other types .of pulse modulation since the c.ode modulation 
is mucl1 more robust against various noises than amplitude modulation, widtl1 modulatio11, and 
position modulatior1. In fact, almost all coding teol1niques include a PCM component. In digital 
in1age processing, g-iven digital i111ages usually appear in PCM forrnat. It is known tl1at an acceptable 
PCM representation of a monocl1rome pictore requires six to eight bits per pixel (Huang, 1975). 
It is used so commonly in practice that its performan ce normally serves as a standard against \Vhicl1 
0th.er coding techniques are con1pared. 
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FIGURE 2.18 Pulse modulation. 

Recall the false contouring phenomenon discussed in Chapter 1, \vhen we discussed texture 
masking. It ·states that our eyes are more sensitive to relatively uniform regions in an image plane. 
If the number of reconstruction levels is not large enough (coarse quantiz·ation), then some unnatural 
contours will appear. When fr:equency masking was discussed, it was. noted that by adding son1e 
high-frequency signal before quantization; the false conto.uring can be eliminated to a great exte11t. 
This technique is called dithering. The high-frequency s.ignal used is referred to as a dither signal. 
Both false contouring and dithering were first reporte,d in (Goodall, l 951 ). 

2.6 SUMMARY 

Quantization ·is a process in which a ·quantity having poss,i.bly an infinite number of different values 
js converted to. another quantity having only finite many values. It is an important element in source 
encoding that has significant im.pact on both bit rate an.d distorlion of reconstructed images and 
video in visual co.mmu,nieation systems. Depend.ing on whether the quantity· is a scalar or a vector, 
quantization is called either scalar quantization or vector quantization. In this chapter we considered 
only scalar quantization. 

Unifo11n quantization is the sitnplest and yet the most important case. In uniforJTI quantizat,ion, 
except for outer intervals, both dec.ision levels and reconstruction levels are uniformly spaced. 
Mor.eover, a reconstructi on level is the arithmetic averag~ of the two con·espo,nding decision levels . 
In unifor111 quanti zation design, th.e step size is usually lne only param,eter that needs to be specified. 
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Optimun1 quantization in1plies n1inimization 9f the mean square quantization ·error. Wl1en the 
input has a u11iform distribution ; uniform quantization is optimum. For the sake of simplicity, a 
uniform optimu m quantizer is sometimes desired even whe11 the input does not obey unifom1 
distribution. The desigr1 under tl1ese circumstances i.nvolves a11 iterative procedure. The design 
prob lem in cases where tl1e input l1as Gaussian, Lapacian, or Gamma distr ibution was solved and 
the parameters are available. 

When the constraint of un.iform quantizatio n is removed, the conditions for optimum quanti­
zation are derived. TI1e resultant optimum quantizer is no1111ally nonuniform. An iterative procedure 

• 

to solve tl1e design is establisl1ed and tl1e optin1t1n1 design ·parameters for Gaussian, Laplacian, and 
Gamma distribution are tabulated. 

The compandi'ng technique is an alternative w·ay to implen1ent nonu11iform quantization. Botl1 
11on·uniform quantizatior1 and con1pa11di11g are tjn1e-invarjant and l1ence 116t suitable for nonstation­
ary input. Adaptive quantization deals with nonstatio11ary input and con1bats the mismatch tl1at 
occurs in optimurn quanti,zation design. 

In adapti.ve quantization, buffering is 11ecessary to store some recent input or sampled output 
data. A statistical analysis is carried out with respec t to the stored recer1t data. Based 0 11 the analysis, 
the quantizer's paran1eters are adapted to changing i11put statistics to act1ieve better quantization 
p~rforn1a.nce. There are t\.VO types of adaptive quanti2atio11: forward and bac·k\vard adaptive quan­
tization. With the forward type, the statistical analysis is derived from the original input data, \.Vhile 
with tl1e backward type, quantizatio11 noise is involved in tl1e ar1alysis. Therefore, the forward 

I 
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tecl1nique usually ·achieves more effective adaptation than the backward rnanner. The latter, however, 
does not need to send quantizer setting paran1eters as side infor1nation to the receiver side, since 
the 9utput values of the quantization encoder (based on wl1ich the statistics are analyzed and the 
quantizer's parameters are adapted) are available in both the tr,1nsn1 itt.er and rece iver sides. 

Switched quantization is another type of adaptive qua11tization. In this schen1e, a bank of fixed 
quantizers is utilized, each quantizer having differe11t input.;.oulput characteris tics. A statistical 
analy~is based on recent input decides wli1ich quantizer in the bank is suitable for the prese 11t input. 
The systen1 then connects tl1e input lo this particular quar1tizer. 

Nowadays, pulse code 111.odulation is the most frequently used forn1 of pulse 111odulation due 
to its robustness against noise. PCM consists of tl1ree stages: sampling, quantization, and e11coding. 
Analog signals are first sampled \vith a proper san1pling ·frequency. The sa111pled data are then 
quantized using a unifo1111 quantizer . Finally, the quantized vall1es are encoded \Vith natural binary 
code. It is the best established and mo st applied coding system. Despite its bit-con. u 111 i ng feature, 
it is utilized in almosJ all coding systems . 

2.7 EXERCISES 

2-1. Using your O\Vn \vords, define quantization and unil'or1n quantization. Wh at are lhe t\ VO 

features of uniform qua11tizati9n? 
2-2. What is optimum quantization ? Why is u1lifonn quantization sometimes desired, eve11 

\vhen the .input has a pdf different from uniform? How was this problem olved '? Draw 
an input-output cl1aracteristic of an optimum unifo1111 quantizer \vith an input obey ing 
Gaussian pdf having 2iero mean,, unit variance, and the nun1ber of reco11struction leve ls, 
N, equal to 8. 

2-3. What are the conditions of optimum nonunifor·m quantization? Fro111 Tab.le 2.2 , wl·1at 
observations can you make? 

2-4. Define variance mismatch and pdf misn1atch. Discuss ho\v you can resolve the r11ismatch 
problem. 

~5. What is the difference bet\veen forward a11d bac'k\vard adaptive quantizati on? Con1n1enl 
on the merits and dra,vbacks for each. 

2-6. What are PAM, PWM, PPM, and PCM? Why is PCM the most popular type of pulse 
modulation? 
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Instead of cncocling a signal directly, tl1e diffe1·e1ztial cocli1ig tech11ique codes the diff ere nee between 
tl1e signal itscl f a11d its prcdictior1. Therefore it is also known as p1·edictive codi1zg. By utilizing 
spatial a11d/or ten1poral i11terpixcl co11·elation, differential codir1g is an efficient and yet computalio11-
,1ll.)1 si1n1)lc codi11g tech11ic1ue. I11 Ll1is cl1,1pter, \Ve first describe the differential tecl1nique in general. 
T,;vo compo11cnls of differential coding, prediction and qu.a11Lization, are discussed. There is an 
c111pJ1asis on (optimun1) predictio11, since quantization was discussed in CJ1apter 2. Wl1e11 Lhe differ­
ence signal (al o known as predictio11 error) is qL1antized, tl1e differential coding is called differential 
pt1lse code moclulalion (DPCM). Son1e issues in DPCtv1 are discussed, after which delta modulation 
(DM ) as a special case of DPCM is covered. The idea of differential coding involving image 
seque11ces is brieny discussed in tl1is cl1apter. More detailed coverage is presented in Sections Ill 
and IV, starting fro111 Cl1apte.r I 0. ] f quantization is not .included, the differential coding is referred 
to as inf or,naLion-preservj ng differential cod i11g. This is discussed at the end of the chapter. 

3.1 INTRODUCTION TO DPCM 

As d·epict~d 1n Figure 2.3 1 a source e11coder consists of tl1e following tt1ree components: transt·or-
1nati on, quantizatio11, and codeword assign111ent. The transfo1mation converts input into a format 
for quan tizatio11 follo\ved by codeword assig11me11t. In ott1er words, tl1e component of lransforrnation 
decides \Vl1ich forrnat ot· i.nput is to be encoded. As mentioned in tl1e previous ch·apter, inpu-t itself 
is not ncces ari I y the n1ost ui table format for encodi11g. 

Consider tl1e case of monocl1ro·me in1age encoding. The input is usually a 2-D array of gray 
level values of ar1 image obtained via PCM coding. The concept of spatial redundancy, discussed 
in Sec tion 1.2. J. I , tells us that 11.eighboring pixels of a11 i1nage are usually l1ighly correlated. 
Therefo re, jt is n1ore efficient to encode rl1e gray difference between two neigl1boring pixels instead 
of e11codi 11g the gray level values of each pixel. At the receiver, tl1e decoded difference is added 
back to reconsLruct tl1e gray level value of the pixel. Since 11eigl1borihg pixels are t1ighly co1Telated, 
Ll1e.ir gray level values .bear a great si111ilarity. He11ce, we expect that tl1e varia11ce of the difference 
signal wi 11 be s111aller than tl1at of tl1c original sign~!. Assume uni form quantiz ation and natural 
binary coding for the sake of sirnplicity. Tl1en we see that for the san1e bit rate (bits per sample) 
tl1e qua11tizatio11 error will be s111aller, i.e., a higher quality of reco11structed signal can be achieved. 
Or, for tl1e san1e quality of reconstructed signal, we need a lower bit rate. 

3 .1.1 SIMPLE PtXEL-TO-PIXEL DPCM 

Denote. the gray level values of pixels along a row of an image as Z;, i = 1, · ·, M, where M is the 
total i1umber of pixels within tl1e row. Using the immedi.ately preceding pixel's gray l·evel value, 
Z;_1, as a predic tion of tl1at or the present pixel. Z;, i.e., 

" Z - 7 • - ~ · I I I-
(3.1) 

we then have the difference signal 

d. = z. - Z-= z. - Z- I I I I I I-
(3. 2.) 

55 

• 

• 

IPR2021-00827 
Unified EX1008 Page 81



• 

56 

• 

Image and Video Com pression fo r ML1lt11n eclia Engin eering 

0.012 

Cl) 0.01 -n, 
'-
Cl) 0.008 
(.) 
C 
Cl) 
t: 0.006 :::, 
0 
0 
0 0.004 

0 .002 

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 . -

(a) Gray le\€1 \0 1ue 

0.18 ·-- -------- - -- ------- ----, 

0.16 

0.14 
CD 
~ 0.12 

8 0.1 
C 
CD .... 

~ 
0,08 

0.06 

0.04 

0 .02 

0.L-..------ ---
-255 

(b) 
0 

Dff erence value 
255 

0 .18 

0.16 

0.14 
CD 

0.12 -as .... 
CD 0.1 
~ 
CD 
t 0.08 
:, 

~ 0.06 

0 .04 

0 .02 

0 . . 

-9 -8 · 7 -6 -5 -4 -3 -2 -1 0 + 1 +2 +3 +4 +6 +6 +7 +8 +9 
C Off erence value 

FIGURE 3.1 (a) Histogram of the original "boy and girl " image. (b) Histogram of the difference in1age 
obtained by using horizontal pixel-to-pix el diff erencing. (c) A close-up of the central portion of tl1e hislogram 
of the difference image. 

Assume -a bit rate of eight bits per sample in the quantization. We can see that although the dynamic 
range of the difference signal is theoretically doubled, from 256 to 512, the variance of the difference 
signal js actually much smaller. This can be confirmed from the histograms of the '' boy and girl'' 
image (refer to Figure 1. 1) and its difference image obtained by horizontal pixel-to-pixel differ­
encing ., shown in Figure 3.1 (a) and (b), respectively. Figure 3. l(b) and its close-up (c) i11dicate that 
by a rate of 42.44o/o tl1e difference values fall into the range of - 1, 0, and + l . I11 other words, the 
histogram of the difference signal is much more narro,vly concentrated tl1a11 tl1at of the origin al 
signal. 
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z d, + -z, d, -( + d, 

. 

L Quantization 't, • . 
,. 

z,_1 = z, ' - + . 

-z,_, 
Delay 

(a) Encoder 
• (b) Decoder 

FIGURE 3.2 Block diagram or a pixe l-to-pixel clif ferential coding system. 

A block diagram of the sc·heme described above is shown in Figure 3.2. There z. denotes the 
"' I 

sequence of pixels along a row, d; is the corresponding difference signal, and d; is the quantized 
version of tl1e di fference, i.e., 

d. = Q(cl.) = d. + e 
I I I (/ 

(.3 .3) 

wl1ere eq represents the quantization error. In the decoder, Z; represenlS tl1e reconstructed pixel gray 
value, a11d we l1ave 

" z. = Z, I + d. I / - I 
(3 .4) 

This sirnple schen1e, however, suffers fron1 an accun1ulated quantization error. We can see this 
clearly fron1 the followjng derivation (Sayood, 1996), wl1ere we assutne the initia.1 value z0 is 
avai table for both the encoder ar1d the decoder . 

• 

(3 .5) 

" 
z1 = z0 + d 1 = z0 + d 1 + eq.i = z1 + eq.i 

Sitni larly, w e can have 

(3 .6) 
• 

and, in general, 

• 
I 

z. = z. + ~ e . 
I I .L..J t/,} 

(3 .7) 

j=I 

This problem can be re111edied by tl1e following sche.me, sl10\.vn i11 Figure 3.3. Now we see that 
in both the encoder and the decoder, tl1e reconstru·cted signal is generated in the same ,vay, i.e., 

,... 

z. = z. I + d. 
I / - I 

. 

(3 .8) 

and i·n the encod~r the djff erence signal changes to 

d, = z. - z. J 
I I I -

• 

• 
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FIGURE 3.3 Block diagram of a practical pixel-to-pixel differential coding systen1. 

. A 

Thus, the previously reconstructed Z;_1 is used as the predictor, Z;, i.e., 

A -

7 -z ~.~ - .. 1 • I 1-
(3 . 10) 

In this \Vay, ,ve have 

(3.11) 

Similarly, we have • 

. as i =2, 

,.. 

d, = d2 + e 2 - q, 
(3 .12) 

A 

z2 = i 1 + d,, = z2 + e 2 - q. 

In gene.ral, 

-Z- = z. + e . 
I I qJ 

(3 .13) 

Thus, we see that the problem of the quantization error accumulation has been resolved by 
having both the e.ncoder and the decode·r work in the same fashion, as i.ndicated in Figure 3.3, or 
in Equations 3.3, 3.9, and 3.10 . 

3.1.2 G .ENERAL OPCM SYSTEMS 

In the above discussionJ we can view the reconstructed neighboring pixel's gray value as a prediction 
of that of the pixel being coded. Now, we generalize this simple pixel-to-pixel BPCM. ln a general 
DPCM system , a pixel's gray level value is first predicted from the preceding reconstructed pix.els' 
gray level values. The difference between tfie pixel',s gray level value and the predicted value is 
then quantized. Finally, the quantized difference is encoded and transmitted to the receiver. A block 
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FIGURE 3.4 Block diagram of a general DPCM system. 

d iagra m of tl1is general clifferential coding scheme is Shown in ·Figure 3.4, where the codeword 
,1ssignment in Lhe encoder and its counterpart i11 decoder are not .included. 

It is noted that, instead of using the previously reconstructed san1ple, z~_1, as a predictor, we 
110w ~1ave the predicted version of Z;, Z;, as a function of tl1e n previously recon structed 
san1ples, z,_1, z,_2 , · · · , z,_,

1
• That is, 

z,. = f ( z,._, , f;_2 , · · · , Z;-n) (3.14) 

Linear prediction, i.e., that tl1e function fin Equation 3.14 is linear, is of particular i.nterest and 
is widely used in differential coding. I11 linear prediction, we have 

n ,.. L -z. = a .z . . 
I J 1- J 

(3.15) 
j= l 

where c1i are real paran1eters. J-Ience, we see that the simple pixel-to-pixel differential codjng is a 
specia l case of general differential coding with linear prediction, i.e., 11 = l and a1 = l. 

In Figure 3.4, di is the difference sign.al and is equal to the difference between the original 
signal, Z;, and tl1e prediction Z;, TJ1at js, 

f " C.. = z. - z. 
I I I 

(3.16) 

" 
The quantized version O'f cl,. is denoted by d;. The re.constructed version of Z; is represented 

by Z;, and 

A 

z. == z. + d. 
I I I 

(3.17) 

Note that this is true for botl1 tl1e encoder and the decod.er. Recall that the accumulation of the 
quantization error can be remedied by using this method. 

Tl1e difference between the original input and the predicted input is called prediction error, 
which is denoted by e

1
,. That is, 

(3.18) 

where the e,, is understood as the prediction error associated witl1 the index i. Quantization error, 
e", is equal to the reconstruc.tior1 error or coding error, e,, defined as the difference ·bet\veen the 
original signal, z,., and tl1e reconstructed signal, Z;, when the transmission is error t·ree: 
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,. 
e = d. - (/. q I I 

= (z. - z.)-(z. - z.) 
· I I I I 

-= z. - z. = e 
·1 I r 

(3 . 19) 

This indicates that quantization error is the 011ly source of inforn1ation loss with a,1 error-free 
transmission channel. 

The DPCM system depicted in Figure 3.4 is also called closed-loop DPCM \vith feedback 
around the. quantizer (Jayant, 1984). This ter 111 reflects the feature in DPCM structure. 

Before \Ve leave this section, let us take a look at the history of the developn1ent of di1·rerential 
image coding. According to an excellent early article on differential i1nage coding (Mus mann, 
1979), tl1e first theoretical and e.xperimental approaches to in1age codi 11g involving Ii n.ear pred iction 
began in 1952 at the Bell Telephone Laboratories (Oliver, l 952 ; Kretzmer1 1952 ; Harrison, 19 52) . 
The concepts of DPCM and o ·M \Vere also developed in 1952 (Cutler, 1952; Dejage r 1952). 
Predictiv·e coding capable of preser\1ing info11nation for a PCM signal vvas e tablisl1ed at the 
~1assachusetts Institute of Technology (Elias, 1955). 

The differential coding technique l1as played an in1portant role in image and video cod ing. In 
the international coding standard for sLill images, J.PEG (covered in Chapter 7), we can see that 
differential coding is used in the lossless mode and in the OCT-based ,node for coding DC 
coefficients. Motion -compensated (MC) coding l1as been a 1naj or development in video coding 
since the 1980s an,d has been adopted by all tl1e international video coding standards such as H .26 l 
and H.263 (covered in Chapter 19), MPEG l and MPEG 2 (CO\'ered i,1 Chapter 16). MC codi ng is 
essentially a predict.i\1e coding technique applied to video sequences involving displaceme nt motion 
vecto~s. 

3.2 OPTIMUM LINEAR PREDICTION 

Figure 3.4 demonstrates that a differential coding system consists of two major components : 
prediction and quantization. Quantization was discussed in the previous chapter. Hence, i11 tl1is 
chapter \Ve emphasize prediction. Below, we for 1nulate an optimum linear predict ion problen1 and 
then present a theoretical solution to the problem. 

• 

3.2.1 FORMULATION 

Optimum linear prediction can be fonnulated as follows. Consider a discrete.-time random process 
z. At a typical moment i, it ,is a random variable Z.;-We have ,z previous observations Z;_1, z1_2 , • • ·, z,_" ,.. 
available a.nd would like lo form a prediction of Z;., ·ctenoted by z,. The output of the predictor , Z;, 

is a linear funetion of the ,z previous observations. That is, 

n ,.. L -z. = a.z . . 
I I ,-, 

(3.20) 
j=l 

with a,, j = 1,2,- · · ,,,z being a set of real coefficients. An illustration of a linear predictor is shown 
in Figure 3.5. As defined above., the prediction error, e

1
,, is 

(3.21) 
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l 

FIGURE 3.5 An illustration of a linear predictor. 

The mean square prediction error, MSE1,, is 

MSE = E (e )2 

/J J) 

-z . 1 ,-

61 

(3.22) 

The oplimun1 prediction, then, refers to lhe detern1in-ation of a set of coefficients aj, j = 1,2, · · · ,,i 
such tha.L the n1ean square prediction error, MSEP' js mi.n in1ized. 

This optimjzation problem turns out to be co111putationally intractable for most practical cases 
due to tl1e feedback around the quantizer sl1own in Figure 3.4, and tl1e nonline.ar nature of t11e 
quantizer. Therefore, tl1e optimization proble111 is solved in two separate stages. That is, the best 
lir1ear predictor is first designed ignoring the quantizer. Tl1en, the quantizer is optimized for the 
distribution of the difference signal (Habibi, 1971). AltJ1ough l11e pre_djctor thus de~igned is sub­
optimal, ignorjng the qua11tizer in tl1e optimun1 predictor design allows us to substitute the recon­
structed zi-i by zi-i for j = 1,2,·· ·,1·1., according to Equation 3.20. Co11sequently, we can apply tl1e 
theory of optimun1 linear predjcti.on to l1andle tl1e design of th.e optimum predictor as shown below. 

3.2.2 ORTHOGONALITY CONDITION AND MINIMUM MEAN SQUARE ERROR 

By taking the differentiation of MSEP \.Vill1 respect to coefficient ajs, one can derive the follo\.ving 
necess·ary conditions, which are usually referred to as the orthogo1zalit)1 co11diti o11: 

E[e Z ] -0 fio,· 1·=1,2 ,·· ·,11. . . p. i-j - (3.23) 

The interpretation of Equation 3.23 is tl1a_t the prediction error, e1,, n1ust be orthogonal to all the 
observations, wl1ich are .now the precedjng samples : Z;-i, j = 1,2;· · ·,11 according to our discussion 
in Section 3.2.1. Tl1ese ai-e equivalent to 

I 
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n 

R:.(111) = L,ajR z(,11-j) Jo,· 111 = 1,2, ... ,,, (3.24) 

j= I 

,vhere R:. represents the autocorrelation function of z. In a vector-matrix forn,1at, the above ortl1ogonal 
conditions can be ,vritten as 

Rz(l) R.(O) R_(l) • • • ••• R.(11-l) ai - - -
Rt(2) R

2
(l) Rr(O) . . . ••• R_ (11 - 2) a') -- - . • (3 .25) • • • 

• • • - • • ••• • •• • - • • • • • 

• • • • • 
• . 

• • • • • • • • • • • • • • 

. 

R:. (11) Rz(O) Rl (11) R.(11-l) • • • • • • a . 
II -

Equations 3.24 and 3.25 are called Yule-Walker equations. 
Tl1e minin1um mean square prediction error is tl1en found to be 

,, 
MSEP =,R:.(0)- L, c,iR:.(j) (3 .26) 

j = I 

T,hese results can be found in texts dealing ,vith randon1 processes, e.g., in (Leon-Garcja, 1994). 

3.2.3 So ,tt:JTION TO YutE-WALKER EQUATIONS 

Once autocorrelation data are available, the Yule-Walker equation ,can be solved by n1atri x i nversio.n. 
A recursive procedure ,vas developed by Levinson to solve the Yule-Walker equation s (Leon-Garc,ia, 
1993). When the nun1ber of previous samples used in the linear predictor is large, i.e., the din1ension 
of the matrix is high, the Levinson. recursive algor.ithrn becomes 111ore attractive. Note that in the 
field of image coding the autocorrelation function of various types of video frames is derived fron1 
measurements (O'Neal, 1966; Habibi, 1971). 

3.3 SOME ISSUES, IN THE IMPLEMENTATION OF DPCM 

Several related issaes in the implementation of DPCM are discussed in tl1is section. 

3.3.1 OPTIMUM DPCM SYSTEM 

Since DBCM consists mainly of two parts, prediction and quantization, its optimizatio11 should not 
be carried out separately . The interaction between the t,vo parts is quite complicated, however, and 
thus combined optimization of th-e whole DPCM system is difficult. Fortunately, with the mean 
square error criterion, the relation bet,veen quantization error and prediction error has been fou11d: 

9 
MSE ~ MSE 

q 2N 2 ,, 
(3.27) 

where N is the total number of reconstruct.ion levels in the quantizer (O'Neal, 1966; Musn1ano, 
1919). That is, the mean square error of quantization is approximately proportional to the mean 
square error of prediction ,. With this approximation, we can optimize the two parts separate ly, a.s 
mentio .ned in Section 3.2.1. While the optimization of quantization was addres·sed in Cha,pter 2, the 
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optimL1rn predictor was discussed in Section 3.2. A large an1ount of work has been done on this 
subject. For instance, the optin1un1 predictor for color i1nage coding was des.igned and tested in 
(Pirscl1 ,111d Stenger, 1977.). 

3.3.2 1-D, 2-D, AND 3-D DPCM 

111 Sec tion 3. J .2, \Ve expressed linear prediction in Equation 3. 15. However, so far we have not 
real I y di cussed 110\v to predict a pixel 's gray level val tie by using its neighboring pixels' coded 
gray level v,1lues. 

Rec a 11 that a practical pixel-to-pixel differential coding systen1 was discussed in Sectio11 3. 1.1 . 
• 

There, the reconstructed intensity of tl1e imn1ediately preceding pixel along the same scan line is used 
as n ()redic tio,1 of tl1e pixel i11tensity being coded. Tl1is type of diffe rential codir1g is refe1Ted to as 
l-0 DPCivl. fn general, 1.-D DPCM may use tl1e reconstrlJCted gray level values of more than one of 
tl1e precedi11g pixels \vithin tl1e s,1n1e scan line to predict tl1at or a [)ixel bei11g coded. ·By t·ar, howev·er, 
lhe in1111ediately preceding pixel i11 tl1c san1e scan line is most freqL1ently used in l-D DPCM. Tl1at 
i.s, pixel A j,1 Figure 3 .. 6. is often used as a prediction of pixel Z, whicl1 is being DPCM coded. 

So111etin1es in DPCM .i111age coding, botl1 ll1e decoded i11tensity values of adjacent pixels \Vitl1in 
the 'an1e scan line and tl1e decoded intensity values of neighborir1g pixels in different scan li11es 
are invol\1ed in Lhe prediction. This is called 2-D DPCM. A typical pixel arrangement in 2-0 
prediclive coding is shown in FigL1re 3.6. Note tl1at the pixels involved in the predictior1 are restricted 
Lo be eitl1er in the lines abo,1e the line w11ere the pixel bein·g coded, Z, is located or on the Iefr­
ha11d idc of pixel Z if they arc in the sa111e line. Traditionally, a TV fra1ne is scanned from top to 
botton1 and f'ron1 left to righL. Her1ce, tl1e above restriction indicates tl1at only tl1ose pixels, \¥111.c.h 
l1ave been coded and available in both the trans1nitter a11d tl1e receiver, are used ~11 tl1e prediction. 
[r1 2-D ystc111 theory, il1is support is referred to as recursively co1npt1table (Bose, 1982) . An often­
t1sed 2-0 prediction involve pixels A, D, and E. 

Obvio usly; 2-D predictive coding utilizes not only tl1e spatif1l correlation existing within a scan 
line but also tl1al ex isling in neigl1boring scan lines. In otl1er words, rl1e spatial correlation is utilized 
both l1orizor1 tally and vertical I y. lt \Vas reported tl1al 2-D predictive coding outperforms 1-D · 
predic tive co.ding by decreasi.ng tl1e prediction error by a factor of l\VO, or equivalently, 3dB in 
SNR. Tl1e improvement in subjec tive assessn1ent is even larger (Musn1ann, 1979). Furthem1ore, the 
tra11sn1ission error in 2-D predictive in1ag.e codi11g is 111ucl1 less severe than in l-D predictive image 
coding. This is dLscussed in Section 3.6. 

In tt1e context of i1nage sequences, n,eigl1boring pixels n1ay be located not 011ly i11 tl1e san1e 
image frame but also in suc:cessive frames. That is, nejgi1boring pixels along tl1e time din1e11sion 
,1re also involved. If tl1e predicti·on of a DPCM system involves three types of 11eighboring pixels : 
those along tl1e san1e scan I ine, tl1ose in tl1e di fferent scan lines of tl1e sa111e image fran1e, and those 

0 ,--- ___ ...,.. y • 

L I . I H 

X 

C D E F 6 

B A z 

FIGURE 3.6 Pixel arrangemer1t in 1-D a11d 2-D prediction. 
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in tile different frames, the DPCM is then called 3-D differential coding. It will be discussed in 
Section 3~5. 

3.3.3 ORDER OF PREDICTOR 

Tl1e number of coefficients in the linear prediction, 11, is referred to as the orcler of tl1~ predictor. 
The relation bet\veen the mean square prediction error, MSEJ>' and the order of tl1e predictor,,, _, has 
been studied. As sho\vn in Figure 3.7, the MSE,, decreases quite effectively as 11 increases, but tt1e 
performance impro'iement becon1es negligible as tl > 3 (Habibi, 197 l ). 

3.3.4 At>APT~VE PREDICTION 

Adaptive D,PCM means ad,aptive prediction and adaptive quantization. As adaptive quantiza tion 
,vas discussed in Chapter 2, here we discuss adaptive prediction only. 

Similar to tl1e discussion on ad,aptive quantization, adaptive prediction can be done in t\VO 

different ways: for,vard adaptive and backward adapcive prediction. 1n the forn1er, adap tation is 
based o,n the input of a DPCM system, -while in tl1e latter, adaptatio11 is based on tl1e output of tl1e 
DPCM. Therefore,, for\vard adaptive prediction is more sensitive to cha11ge .. in local sta tistics. 
Prediction .parameters (the coefficients of the predictor), ho\vever, need to be tr,1ns111 i tted as side 
infor111ation to the decoder. On the otl1er hand,, quantization error is involved i.n backvvard adap tive 
prediction. Hence, the adaptation is less sensitive to local changing statistics. But , it doe .. not need 
to transmit side info1111ation. 

MSE, 
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FIGURE 3.7 Meijn square prediction error vs. order of predictor. (Data frqm Habibi, 19'71.) 
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In either case, tl1e data (ei.tl1er inpul or output) have to be buffered. Autocorrelation coefficients 
are analyzed , based on which predictio11 parameters are determined. 

3.3.5 EFFECT OF TRANSMISSION ERRORS 
• 

Transmission e·rrors caused by cl1annel noise may reverse the binary bit infor111ation from O to J 

or 1 to O with \vhat is known as bit e1·ro1· p1·obability, or bit e,·ror rare. The effect of transmission 
errors on reconstrucLed images varies depending on different coding techniques. 

In the case of the PCM-coding technique, each pixel is coded independently of the others . 
Tl1erefore bil reversal in Lhe transn1ission only affects the gray level value of tl1e correspo nding 
pix el in lhe reco11structed image. 1t does not affect other pixels in tl1e reconstructed jmage. 

In DPCM, l1owever, the effect caused by transmission ei-rors ·becon1es n1ore severe. Consider 
a bit reversal occurring in tra11s111ission. It cat1ses error in tl1e corresponding pixe1. But, this is not 
the end of the effect. The affected pixel causes errors in reconstructing those pixe.ls tow.ards which 
tl1e err·oneous gray level value was used in the prediction . In this way, the transmission error 
propaga tes. 

Inleresli11gly, it is reported that tt1e error I)ropagation is more severe in 1-D differential image 
coding lha·n in 2-D differer1tial coding. Thi s may be explained as follo\JJS. In l~D differential coding, 
usually only the i1nn1ediale preceding pixel in the same scan line is involved in prediction. Therefore, 
an error will be propagated along the scan line until the beginning of tl1e next line, where the pixel 
gray .level value is re.initialized. In 2-D differential coding, the prediction of a pixel gray level value 
depends nol only 0 11 the reco11structed gray level values ot· pixels along tl1e same scan lir1e but also 
0 11 the rccon·structcd gray level values of the vertical neighbors. Hence, the effect caused by a bit 
reversal tra11smission error is less severe tha.r1 i11 the ,1-D differential coding. 

For this reaso n, tl1e bit error rate required by DPCM coding is lower than that req.uired by PCM 
coding. For insta11ce, while a bit error rate less tl1an 5 · 10-6 is nom1ally required for PCM to provide 
broadcast TV quality, for the san1e application a bit error rate less than 10-7 and 10-9 are required 
for DPCM coding with 2-D prediction and 1-D prediction, respeclively (Musmann, 1979). 

Cl1annel encoding witl1 an error correction capability was applied to lower the bit error rate. 
For instance, to lower the bit error rate from the order of 10--0 to the order of I 0-9 for DPCM coding 
\vith 1-D prediction, an error correction by adding ·3o/o redundancy in channel coding has been used 
(Bruders, 1978). 

3.4 DELTA MODULATION 

Delta modulation (OM) is an i111portant, si1nple, special case of DPC.M, as discussed above. It h.as 
been wide1y applied and is thus an in1portanl coding technique in and of .itself. 

The above discussion and characterization of DPCM systen1s are applicable to DM systems. 
Tl1is is because DM is essentially a special type of DPCM, with the following two features. 

1. Tl1e linear predictor is of the first order, ,vith the coefficient a 1 equal to 1. 
2. The quantizer is a one-bit quantizer. That js, depending on whetl1er the difference signal 

is positive or negative, the output is eitl1er +!::J2 or -!::J2. 

T0 perceive tl1ese· two features, let us take a look at the block diagram of a DM system and 
the input-output characteristic of its one-bit quantizer , shown in Figures 3.8 and 3.9, re-spectively. 
Due to t.he first fea~ure listecl above, we hav·e: 

"' -Z- = z. 1 I 1-
(3.28) 

-
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FIGURE 3.8 Block diagram of DM systems. 
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FIGURE 3.9 Inp·ut-output characteristic of two-level quantization in OM . 
• 

Next, we see that there are only two reconstruction levels in quantization becaus e of the second 
feature . That is, 

" d -. -
I 

+/1/2 

-/1/2 

if 

if 
z. > z. I I 1- (3 .29) -z. < z. I I I -

From the relation between the reconstructed value and the predicted va.lue of DPCM, di scussed 
above, and the fact that DM is a special case of DPCM, we have 

,. 
- " d ,z. = z. + . . 

I I I 

Co.mbining Equations 3;28, 3.29, and 3.30 , we have 

-Z -. -
,I 

z. +A/2 ,-1 

z;_1 - /1/2 
if 
if 

(3.30) 

-z. > z. I , ,-
(3.31) 
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FIGURE 3.10 OM wi th fixed step size. 

Tt1e above mathematical reJationships are of in1portance in understanding DM systems. For 
instance, Equation 3.3 1 indicates that Lhe step size fl. of DM is a crucial paran1eter. We notice that 
a large step size compared with tl1e magnitude of the difference signal causes granular error, as 
sl1own· in Figure 3.10. Tl1ere1:ore, in order to reduce the granu lar error we should choose a small 
step size. On th·e other hand, a sn1al l step size compared witl1 the magnitude of the difference signa l 
will lead to the overload error discussed in C.hapter 2 for quanti zation . Since in DM systen1s it is 
the difference signal that is quantized, the overload error in DM becomes slope .ove1·loc1d error, as 
shown. in Figure 3. 10. Tha.t is, it takes a while (multiple steps) for the reconstructed san1ples to 
catc h up with' lhe sudden cl1ange in input. Therefore, the step size should be large in order to avoid 
the slope overload. Considering these ·two conflicting factors, a proper compron1ise in choosi11g 
the step size is common practice in DM. 

To in1prove the performance of DM, an oversampling technique is often applied. That is, the 
input is over·sampled prior Lo tl1e application of DM. By oversampling, w.e mean that the sampling 
frequency is t1igher than the sampling frequ·ency used in obtaining the original input signal. The 
increased sample density caused by oversampling decreases tl1e mag11itude of the difference s·ignal. 
Con sequently, a relatively small step size can be used s·o as to decreas e the granular noise without 
increasing the slope overload error. Thus·, the resolution of the OM-coded image is kept tl1e san1e 
as that of the original input (J ayant, 1984; Lim, 19.90). 

To achieve better perfonna'i-1ce for changing inputs , an adaptive technique can be applied in 
DM . That is, eitl1er input (forwa1·d adaptation) or output (backward adaptati on) data are buffered 
and the data variation is analyzed. Tl1e step size is then chose.n accordingly . If it is t·or\vard 
adaptarion, side in·formation is required for transmission to the decoder. Figure 3.11 demonstrates 
step size adaptati on. We see the same input as tl1at sl1own in Figure 3.10. But, the step size is 110w 

not fixed. Instead, the step size is adapted according to the varying input . When the input changes 
with a large slope, the step sjze increas·es to avoid the stope overload error. On the other hand, 
when the input changes· slowly, the step size decreases Lo reduce the granular error. 
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FIGURE 3.11 Adapti\re OM. 

3.5 INTERFRAME DIFFERENTIAL CODING 

As was mentioned in Section 3.3 .2, 3-D differential cod ing involves an image sequen ce. Consider 
• 

a sensor located in 3-D world space. For instance, in appl ,ications such as videophony and video -
conferencing, the sensor is fixed in position for a while and it takes pictur es. As ti111.e goes by, the 
images form a temporal im,age sequen ,ce. The coding of such an image seq uence is refe rred to as 
interframe coding. The subject of in1age sequence and video coding is addres sed in Sec tions Ill 
and IV. In tl1is section, we briefly discu ss how differential codin g is applied to interframe co din g. 

3 .5 .1 CONDITIONAL REPLENISHMENT 

Recognizing the great similarity between consecutive TV fram es , a conditional repl e'nishm ent 
coding technique was proposed and developed (Mounts, 1969). It was regard ,ed as one o f tt1e first 
real demonstrations of interframe coding exploiting interframe redundancy (Ne trav.ali and Robbin s, 
1979). 

In this sch ,eme, the previous fram,e is used as a Feference for the present frame. Con sider a pair 
of pixels: one in the previous frame, the other in tl1e present frame both occupying the same 
spatial position in the frames . If the gray level difference between the pair of pixels excee ds a 
certain criterion, then the pixel is considered a cha11gi1ig pixel. The present pixel gray level value 
and its position information are transmitted to the receiving side, where the pixel is replenished. 
Otherwise, the pix_e1 is considered u11chan,ged. At Lhe receiver its previous gray level is repea ted . 
A block diagram of condition .al replenishment is sl1own in Figure 3.12. There, a frame n1e1noty 
unit in the transmitter is used to store frames ,. The di ffere·ncing and thresholding of corre sponding 
pixels in two consecutive frames can then be conducted there. A bu.ffer in the transmitt er is used 
to smooth the transmission data rate. This is necessary because the data rate varies from region to 
regi0n wjthin an ima .ge frame and from ffame to frame within an image sequence. A buffer in the 
receiver is needed for a similar consideration. In the frame memory unit, the repleni shm ent is 

• 
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FIGURE 3.12 Block diagram of conditi onal replenishment. 

carried out for the changing pixels and the gray level values in the receiver are repeated for tl1e 
unchanged pixels. 

Wjth cond itional replenishrnent , a considerable savings in bit rate was achieved in applications 
such as videop l1ony, videoconferencing, and TV broadcasting. Experin1ents in real time, using the 
head-and-shoulder view of a person in animated conversation as the video source, demonstrated 
an average bit rate of I biUpixel with a quality of reconstructed video comparable with standard 
8 bit/pixel PCM transmission (Mounts, 1969). Compared \Vith pixel-to-pixel 1-D DPCM, the most 
popularly used coding technique at the time, the conditional replenishment technique is more 
efficient due to the exploitation of high interfrarne redundancy. As pointed jn (Mounts, ,1969), there 
is more correlation between television pixels along_ tl1e frame-to-frame temporal dimension than 
there is between adjace nt pixels within a signal frame. That is, the temporal redundancy is no11nally 
higher than spat ial redundan cy for TV signals. 

Tremendou s efforts have been made to improve the efficiency of this rudimentary technique. 
For an excellent review, readers are referred to (H"1skell et al., 1972, 1979). 3-D DPCM coding is 
among the improvements and is discussed next. 

3.5.2 3-D DPCM 

It was soon realized that it is n1ore efficient to transmit the gray level difference than to transmit 
the gray level itself, resulting in interframe differenti~1l coding. Furthermore, instead of treating 
each pixel jndepende ntly of its nejghboring pixels, it is n1ore efficient to utilize spatial redundancy 

. 
as well as temporal redundancy, resulting in 3-D DPCM. 

Consider two consec utive TV frames, each consisting of an odd and ,t'n even field. Figure 3.13 
demonstrates the s1na11 neighborl1ood o·f a pixel, Z, in the conte.xt. As with the 1-D and 2-D DPCM 
discussed before, the prediction can only be based on the previously encoded pixels. If the pixel 
under consideration, Z, is located in the even field of the present frame, then the odd field of the 
present fra111e and both odd and even fields of tl1e previous frame are available. As mentioned in 
Section 3.3.2 , it is assumed that in the even field of the present frame, only those pixels in the lines 
above the line where pixel z lies and those pixels le;ft of the Z in the line \vhere Z lies are used 
for prediction . 

Table 3.1 lists several utilized linear prediction scheme~. It is recognized that the case of elenie,zt 
difference is a 1-D predictor since the immediately preceding pixel is used as the predictor. Tt1e 
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FIGURE 3.13 Pixel arrangement in two TV frames. (After Haskell, 1979.) 

field difference is defined as the arithmetic average of t\"10 immediately vertical neighboring pixels 
. . 

in the previous. od.d field. Since tl1e odd field is generated first, folJovved by the even ricld, 1l1is 
predictor cannot be regarded as a pure 2-0 predictor. lnstead1 it should be conside:red a 3-D predicto r. 
The remaining cases are all 3-D predictors . One thing is common in all the cases: tJ1e gray levels 
of pixels used in the p,rediction have already bee11 coded and tl1us are available i11 botl1 tJ1e trar1srn i tter 
and the receiver. The prediction error of e.acJ, cl1anging pixel Z identified in tl1resholding process 
is then· quan.tized and coded. 

An analysis of the relationship between tl1e entropy of moving areas (bits per cl1angi11g pixel) 
and the speed O'f the motion (pixels per fra~e interval) in an image contai11ing a n1oving r11annequi n's 
head was studied with different linear predictions , as listed in Table 3.1 in Haskell ( 1979). It was 
found that the ele1nent difference of field difference generally corresponds to the lowest entropy, 
meaning that this prediction is the mo,st ef.ficient. The frame difference and element differ:e11ce 
c·ocrespOn'd to higher e.ntropy. It is recognized that, in the circumstances, transn1ission error wil1 be 
propagated if the pixels in the previous line are used in prediction (Connor, 1973). Hence, the Jinear 
predictor should use only pixels from th.e same line or the same line i.n the prev ious ·fran1c wl1en 
bit reversal error in transmission needs to be considered. Combining these two factors, ihe element 
difference of frame difference prediction is preferred. 

TABLE 3.1 
So.me Linear Predi,ction Schemes. (After Ha.skell, 1.979). 

... 
Original signal {Z) Prediction signal {Z) Differential signal (dz) 

Element difference z G Z-G 
Field differenc~ z E+J E+J 

.2 
2-

2 

Frame difference z T Z-T 

Element differ.ence of frame difference z T+ G-S (Z-G)-(T-S) 

Line differen·ce of frame di,fference . . z T+B-Nl (Z-B)-(T -M) 

Element difference of field differente z E+l Q+W E+J .Q+ \,y 
'R+ Z- T--

2 2 2 2 
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3.5.3 MOTION-COMPENSATED PREDICTIVE CODING 

When fTames are take11 densely enough, changes in successive frames can be attributed to the 
motion of objects during the interva] between frames. Under this assumption, if we can analyze 
object motion f'ron1 successive rran1es, tl1en we should be able to predict obje.cts in the next frame 
based on tl1eir positio11s in tl1e prev·ious frame and tl1e estimated motion. The difference between 
the origina l frame a11d the predicted frame thus generated and the motion vectors are then q·uantized 
and coded. If tl1e n1otion estimation is accurate enough, the motion-compe-nsated prediction error 
can be sma1ler tl1an 3-D DPCM. In other words, the variance of the prediction error will be smaller, 
resulting i,1 n1ore e fficient coding. Take n1otion into consideration chis differen.tial technique is 
called motion compensated JJredictive coding. This l1as. been a 1najor developrnent in image sequence 
coding since tl1e 1980s. It has been adopte·d by l:111 international video coding standards. A 111ore 
detailed discL1ssion is pro.vided in Chapter 10. 

3.6 INFORMATION-PRESERVING DIFFERENTIAL CODING 

As e111phasized in Chapter 2, qua11tization is not reversible in the se.nse tl1at it causes permane.nl 
information loss. The DPCM technique, discussed above, includes quantization, and hence is lossy 
codj11g. In applicatior1s suc}1 as tl1ose involving scientific measurements, in.formation preservatio11 
is required. I11 thjs section, tJ1e following question is addressed: und·er the-se circun1stances, l1ow 
should we apply differential coding in order to reduce the bit rate while ,preservi11g in·formation? 

Figure 3. 14 sl1ows a block diagra111 of ·inf orr11ation-preserving differential coding. First, we see. 
that there is no quantizer. There.fore, the irreversible info1 r11ation loss ass.ociated with quantizatio11 
does not exist i11 this technique. Second, we observe that prediction and differencing are still used. 
Tl1at is, the differential (predictive) tecl1nique still applies. Hence it is expected tl1at the variance 
of tl1e difference signc\l is smaller than that of tI1e orjginal signal, as explained in Sectio.n 3.1. 
Consequently, the higher-pe.aked histograms make coding more efficient. Third, an efncie11t lossless 
coder is utilized. Si11ce quantizers cannot be used here, PCM wilh natural binary. coding is not used 
l1ere. Since the histogram of the difference signal is narrowly concentrated about its mean, lossless 
coding techniques sucl1 as an efficient Huffman coder (discussed in C'hapter 5) is naturall.y a suitable 
cho ice here . 

lnp 
tring marys 

ut Zr + r ~ d, Lossless r - . ' 

coding '- ~ 

- • 

A ;, 
Prediction 

(a) Encoder .. 

B 
Output 

• d, inary stnng + z, Lossless • , 
' . 

l: ' . 

decoding - ... ~ ,. 
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-
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-
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FIGURE 3.14 Block diagram of information-preservfog, differential coding. 
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As mentioned before, input images are r1ormally in a PCM coded forn1at with '-1 bit rat~ of 
,. 

eight bits per pixel for r11onocl1rome pictures. The di ff ere nee signal is tl1erefore i nteger-valuecl. 
Having no quantization and using an efficient lossless coder, the coding systern depicted in 
Figure 3.14, therefore, is an i11formation-preserving different ial codi11g technique. 

3.7 SUMMARY 

Rather than coding tl1e signal itself, differential coding, also kno\vn as predictive coding, encodes 
tl1e difference between the signal and its prediction. Utilizing spatial and/or ten1poral correlation 
between pixe.ls in the prediction, the variance of the difference signal can be mucl1 sr11,1Jler tl1a11 
that of the original signal, thu·s making differential coding quite efficient. 

Among differential coding methods, differential pulse code modulation (DPCM) i u ed n1ost 
,videly. In DPCM coding, th.e difference signal is quantized and codewords are as·signed to the 
quantized difference. Prediction and quantization are therefore two n1ajor components i11 the DPCM 
systems. Since quantization ,vas addressed in Cl1apter 2, tl1is chapter en1phasizes prcdiclion. The 
theory of optimum linear prediction is introduced. Here, optimum means n1inimization or the 111e,1n 
square prediction error. The fonnulation of optimum linear prediction, the ortl1ogona lity condition, 
an.d the minimum mean square prediction error are presented. Tl1e orthogonality condition states 
that the prediction error must be orthog·O·nal to each observation, i.e., to tl1e reconstructed ample 
intensity values used in the linear prediction. By solving the Yule-\Valker equation, tt1e optimun1 
prediction coefficients may be deter rnined. 

In addition, some fundamental issues jn implementing the DPCM technique are discussed. One 
issue is the dimensionality of the predictor 1n DPCM. We discussed 1-D, 2-D, and 3-D predictors. 
DPCM with a 2-D predictor demonstrates better perfoc cnance than a 1-D predictor since 2-D DPCM 
utilizes more spatial correlation, i.e., not only horizontally but also vertically. As a result, a 3-dB 
i,mprovement in SNR was reported. 3-D prediction is encountered in \JJhat is knowr1 as inter frame 
coding. There, temporal correlation exists . 3-D DPCM utilizes both spatial and temporal correlation 
between neighboring pixels in successive frames. Consequently, more redundancy can be re1noved. 
M·otion-compensated predictive coding is a. very powerful tec.hnique in video codi11g related to 
differential coding. It uses a more advanced translational motion model in the prediction, however, 
and it is covered in Sections Ill and IV. 

Anoth.er issue is the order of predictors and its effect on the perfor rnance of prediction in terms 
of mean square prediction error. Increasing the prediction order can .lower the mear1 square predic­
tion error effectively, but the pe.rformance improveme.nt becomes insignificant after the third order. 

Adaptive prediction is another issue. Similar to adaptive quantization, discussed in Chapter 2, 
we can adapt the prediction coefficients in the linear predictor to varying local statist ics. 

The last issue is concerned with the effect of transmission error. Bit reversal in transmission 
causes a different effect on reconstructed images dependin.g on the type of coding technique used. 
PCM. is known to be bit-consuming. (An acceptable PCM representation of monochrome in1·ages 
requires six to eight bits per pixel.) But a one-bit reversal only affects an individual pixel. For the 
DPCM coding technique~ however, a transmission error may propagate f ram one pixel to tl1e other. 
I.n particular, DPCM with a 1-D predictor suffers from error propagation more severely than DPCM 
with a 2-D predictor. 

Delta modulation is an important special case of DPCM in which the predictor is o·f the first 
order. Speci:fically, the immediately preceding coded sample is used as a prediction of the present 
input sample. Further1nore, the quantizer has only two reconstruction levels .. 

Finally, an info1111ation-preserving differential coding technique is discussed. As mentioned in 
Chapter 2, quantization is an irreversible process: it cause-s info1111ation loss . In orde.r to preserve 
info1111ation, there is no quantizer in this type of system. To .be efficientr lossless codes such as · 
Huffman code or arithmetic , code shou)d b-e· used for difference signal encoding. · 
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3.8 EXER.CISES 

3-1. Justify the necess ity of lhe closed- loop DPCM with feedback around quantizers . That 
is, convince yourself wl1y the quantization error will be accumulated if, instead of usino 

0 

tl1e reconstructed preced ing sa1nples, we use the immediately preceding sample as the 
predi ction of tl1e sample being coded in DPCM . 

3-2. Why does the overload error e11countered in quantization appear to be the slope overload 
in DM? 

3-3. What advantage does oversa111pling bring up in the DM technique? 
3-4. Wl1at are th·e two features of DM that 111ake it a subclass of DPCM? 
3-5. Exp lain why DPCM witl1 a 1-D predictor suffers from bit reversal transmission error 

more severely than DPCM with a 2-D predictor. 
3-6. Expl ,1in why 110 quanti zer can be used in infonnation -preserving differential coding, and 

wt1y the differential system can work without a quantizer. 
3-7. Why do all the pixels involved in prediction of differential coding have to be in a 

recur ive ly computable order fron1 tl1e point of view of the pixel being coded? 
3-8. Discuss the similarity and dissin1ilarity between DPCM and motion compensated pre­

di ctiv e coding. 
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As introduced in tl1e previous cl1c1pter, differential coding act1ieves higl1. codi11g efficiency by 
utiliz ing 1l1e correlation between pixels exisLir1g in image frames. Transforrr1 coding (TC), the focus 
of this chapter, is ar1other efficient coding scl1cn1e based on utilization of interpjxel correlation. As 
we 'vvill see ir1 Chapter 7, TC has become a fundan1ental technique recom.mendcd by the internati onal 
still in1age coding standard , JPEG. Moreover, TC has been found to be efficient in codj ng prediction 
error in n1otior1-con1pcnsated predictive coding .. As a result, TC was also adopted by the international 
video codin g standards such as H.26 1, H.263J and MPEG 1, 2, and 4. Thi s will be discussed in 
Section IV. 

4.1 INTRODUCTION 

Reca ll the block diagram of ource encoders shown in Figure 2.3 . There are three compon ents in 
a source encode r: transfonn ation, quantizalion, and codeword assignment . It is the transformation 
co n1ponen1 that decides wt1icl1 for111nt o-f input source is quantized and encoded . In DPCM , for 
in lance , tl1e di fferencc bet ween an original signal and a predicted version of the orig inal signal is 
quanti zed ar1d encode d. As long as the predictior1 error is sn1all enough , i.e., tl1e prediction resemble s 
the orig inal signal we'll (by using correlation betwee n pixels), differential codi ng is efficient . 

In trans for,n cod ing, the main idea is tl1at if tl1e transformed version of a signal is less correlated 
co n1pared with the original signal, tl1en quantizing and encoding the transformed signal may lead 
to dat a compr ess ion. At the receive r) the encoded data are decoded and transfo11ned back tb 
reconstruct the signal. Tl1ercfo re, in transform coding, the transfor,nation co_mponent illustrat ed in 
Figur e 2.3 is a transt·orn1. Quantizati on and codeword assignm ent are carried out with respect to 
the tran sfor,ned signal, or, in other words, carried out in the transfo rm domain . 

We beg in with the Hotelli.og transform , using it as an example of how a trans form may 
deco rre late a sig nal in tl1e transfom1 don1ain. 

4.1.1 HOTELLING TRAN SFORM 

Con sider an N-d in1ensional vector z:, .. The ens.en1ble or such vectors, {z.f.} !i E /,where/ represents . . 
the set of al l vector indexes, can be modeled by a random vector z with eacl1 of its con1ponent Z.1 

i = 1, 2, · · ·, N as a randon1 variable. That is, 

( 4.1) 

\vhere T stand s for tl1e operator of matrix transposition . The mean vector of t't1e population, 11i-; , is 
defined as 

(4.2) 

where E stands for tlie expectation operator. Note that r11; is. an N-dimensional vector \.Vith the ith 
component, 111.;, being the expectation value of the ith random variable component in z. 

,,,, = E[ Z;] l·=12···N 
. ' ' ' 

(4.3) 
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76 Image and Video Compression for Multimecli a Engineering 

The covariance n1atrix of the population, denoted by Cr , is equal to 

(4.4) 

Note that tl1e product inside the E operator is ret·erred to as the outer p1·od1,ct of the vector (z -
111.;). Denote an entry at the ith row and jth colu111n in the covariance matrix by c,.J· From 
Equation 4.4,_ it can be seen tl1at c;,j is the covariance bet\.veen the ith a11d }th component s of the 
random vector z. That is, 

c . . = E[(z. -ni.)(z. -11i.)] = Cov(z-,z-). 
I,) I I ' ) J I J 

( 4 .5) 

On the main diagonal of the covariance .matrix Cz, tl1e element c;.i is tt1e varia11ce of Lhe ith 
component of z, Z;- Ob,vio,usly, the co, 1ariance matrix Cr is a real and symmetri c matrix. It is real 
because of tl1e definition of random variables. It is sy1nmetric because Cov(z,., zi) = Cov(zi , z,.). 
According to the theory of linear algebra, it is always possible to find a set of N orthonorrnal 
eigenvectors of tl1e matrix C1, With wl1ich. we can convert the real symmetric rnatrix Cz into a fully 
ranked diagonal matrix. This statement can be found in texts of linear algebra, e.g. , in (Strang, l 998). 

Denote the set of N orthono11nal eigenvectors and their corresponding eigenvalues of the 
qovariance matrix Ci -by e; and A,, i = 1,2, · · · ,N, respectively . Note that eigenvector s are column 
vectors. For1n a matrix <I> such that its rows comprise the N transposed eigenvectors. Thal is, 

(4.6) 

No.w, consider the fo1lo\ving transfor1r1ation: 

(4.7) 

It is easy to verify that the transfo1111ed random vector y has the ·following two characteristics: 

1. The mean vector, 1111, is a zero vector. That is, 

(4.8) 

2. The covariance matrix of the transf 01111ed random vector C- is 
- )' 

"-1 0 

"'2 
C- = <t>C-<l>T = 

• 
(4.9) • 

• • >' z; 
• 

• 
• 

0 ~ n 

;Fhis tran-sfo1:in is called the Hotelling transfoJ·111 (Hotelling, 1933), or eigenvector transfor1n (Tasto, 
1971 ; Wintz, 1'972). 

The inver.s.e Hotelling · transfo11n is definem as 

Z = a,-• y + ,11l- , 
z 

( 4.10) 
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where <1>-1 is tl1e inverse matrix of <I>. It js easy to -see from its formation discussed above that the 
matrix <l> is orthogonal. Tl1erefore, we l1ave <l>7 = <1>-1• Hence, the inverse H·otelling transfoiin can 
be expressed as · 

- ,;t,.T -
Z = 'V .)1 + 111- . z ( 4. 1 1) 

Note that i11 implemer1ting tl1e Hotelling transform, the mean vector 11i2 and the covariance matrix 
Cr can be calculated approximately by using a given set of K sample vectors (Gonzalez an.d Woods, 
1992). 

K 

1 r-111- = Z , K s 
( 4.12) 

s= I 

K 

C_ = _!_" Z Z T - nl-l1 'l! 
z K~ss z z 

(4.13) 
.r= I 

The analogous transforrn for continuous data was devised by Karhune-n. and Loeve (Karhunen, 
1947; Loeve, 1948). Alternatively, the Hotelling transform can be viewed as the discrete version 
of the Karhun en-Loeve transform (KLT). We observe that the covariance matrix C; is a diagonal . ~ 

matrix . The elements in the diagonal are the eigenvalues of the covariance matrix C1 . That is, the 
two covariance matrices have the san1e eigenv-alues and eigenvectors because the two matrices are 
similar. The fact that zero values are everywl1ere except along the n1ain diagonal in Cs: indicates 
that the components of the transfo1med vector y are uncorrelated. That is, the correlation previously 

. . . . ._. . 
ex1st1ng between the different components of the random vector z has been remove.d 1n the trans-
forrned domain. Therefore, if tl1e i~put is split into blocks and the Hotelling transfo1111 is applied 
blockwi se , the coding may be n1ore e·fficient sin·ce the data in the trans·for111ed block are un.correlated. 
At the receiver, we may produce a replica of the input with an inverse transfo11n. This basic idea 
behind transfo11n coding will be further illustrated next. Note that transform coding is also referred 
to as block quantization (Huang, 1963). 

4.1.2 STATISTICAL INTERPRETATION 

Let's conti_nue our discussion of the 1-D Hotelling transform. Recall that the covariance matrix o·f 
the transfo11ned vector y, C-;:, is a diagonal matrix. The elen1ents ,in the main diagonal are eigen-

• 

values of the covariance matrix C-;. According to the definition of a covariance matrix, these 
elements are the variances of tl1e components of vector y, denoted by cr; .. 1, cr}.2, '· · , oJ·.N· Let us 
arrange the eigenvalues (variances) in a non increasing order. That is, A.1 ~ A..i ~ · · · ~ A;v· Cl1oose 
~n integer L, and L < N. Using the correspondit1g L .eigenvectors ., e1, e2, · · · , i_L, we form a .n11atrix 
<I> with these .L eigenvectors (transposed) as its L row~. Obviously, the matrix <l> is. of L x N. Hence, 
using the matrix ~ in Equation 4 .7 we will have the transformed vector y of L x 1.. That i-s, 

' 

The inverse transform change~ accordingly: 

-, ;i;,.T-z =· ""' y + l1l- . z 

(4 .. 14) 

( 4.15) 
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Note that the reconstructed vec.tor i, denoted by z', is still an N x J colun1n vector. It can be 
sl)O\v.n (Wi1,tz, I 972) tl1at the. rnean square reconstruction error between tl1e o.rigi11al veclor z and 
the reco11structed vector z i.s given by 

N 

MSE, = ·:1: a.:.;. ( 4. 16) 

i=L+I 

This equation indicates that the n1ean square reconstruction error equals the sum of variances 
of the discarded components. Note that althougl1 \Ve discu ss the reco nstruction error here , vve have 
not co·nsidered the quantization error and trans111issio n error involved. Equation 4. 15 in1plies tl1al 
if, in tl1e tran·sforn1ed vector y, the first L cotnponents have their variances occupy a large percentage 
of tl1e t9tal varian.ces, the mea11 square reconstructi on error wi 11 not be large ever1 though on I y the 

.... 
first L components are kept, i.e.,. the (N - L) ren1aining components in the )' are discarded. 
Quantizing and en.coding only L con1ponents of vectqr y in the transform domain lead to higher 
coding efficiency. This is tl1e basic idea behind trans'for1n coding. 

4.1.3 GEOMETRICAL INTERPRETATION • 

Transfo11ning a set of statistically dependent data into another set of uncor related dat a, tl1en 
discarding the insignificant transform coefficients (having small variances) illuslrated above using 

' ' 

the Hotellin ,g transfor111, can be vie\ved as a statistical interpretatio n of transforn1 codi r1g. Here, we 
gi,,e a g~ometrical interpretation ot· transfo.r111 codi·ng. For this purpose, we use 2-D \rectors instead 
of N-D vect0i:s. 

Consider a binary image of a car in Figure 4. l (a). Each pixel in the shaded object regio n 
correspond -s to a 2-D vector \vith its two componer1ts being coordinates z, and z1, respe ctively. 
Renee, th·e set of all pixels associated \Vith the object forms a populati on 01· vectors. \Ve can 
d.etertnine its mean vector and ,covariance . matri~ using Equation s 4.12 and 4.13 , respec tively. We 
can then a.pply the H0telling transfor111 by using Equation 4.7. Figure 4. 1 (b) depict s the same object 
after the application of the Hotelling transform in the ) ' i-) '2 coordinate system. We notice that the 
origin of the new co0rdinate system is now located at the centroid 0f the binary object. Furthe1111ore, 
the new coordinate system is aligned with the two eigenvectors of the covariance matrix Cr. 

~s m.entio .ned, the elements along lhe- main diagonal of Cf (two eigenvalue s of the C; a11d 
C;) afe th·e two variances of the l\VO components of the y population. Since the covariance matrix 

y_., -

z. 
0 

(a~ (b) 

FIGURE 4.1 {~} A bfnali.}' object in the. z1-z2 CQOJid:inate syste1n. (b) A'fter the H0telling tr.ansfo.rm, tl1e object 

is aligned with its principal axes. 
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C; is a diagonal matrix, the two components are unc·orrelated after the transfor1n. Since one variance 
(along the )1

1 direction) is larger tl1an the other (along the y2 direction), it is possible for us · to 
achieve l1igher cod ing efficiency by igr1oring the con1p0nent associated with the s1naller variance 
\.Vitl1out too n1ucl1 sacrifice of the recor1structed image quality. 

It is noted that the alig11r11enc of the object wicl1 the eigenvectors of the covarlan,ce matrix is of 
import,1nce in patte rn recog 11itio11 (Gonzalez and Woods, I 992). 

4.1.4 BASIS VECTOR INTERPRETATION 

Basis vector ex1)a11sio11 is another ir1terpretation of transforn1 coding. For simplicity, in this sub­
seclion we assume a zero n1ean vector. Under this ass,umption, the Hotelling transform and its 
inverse trar1sform beco111e 

- m.T­z = '-V ) 1, 

( 4.17 ) 

( 4.18 ) 

Recall tl1at the row vectors ir1 the 1natrix <Dare the transpo~ed eigenvectors of the covariance matrix 
Cr. Therefore, Equati on 4.18 ca.n be written as 

N 

z = L>1;e,.. (4.19) 
i = I 

In the above equalion, \Ve can view vector z as a linear con1binatio11 of basis vecro,·J' e,., i = 
1,2,. · ·,N. Tl1e components of Ll1e tra11sforn1ed vector y, )',, i = ·J ,2, · ·,N ser·ve as coefficients io the 
linear com bi nation, or weights in the weighted sum of basis vectors. The coefficient) :;, i = 1,2, · · · ,N 
can be produ ced accord ing to Equation 4.17: 

-T-y. = e. z. 
I I 

(4.20) 

That is , )'; is the ir111e1· p1·od1tct bet ween vectors e',. a.nd z. T11erefore,. the coefficient )'; can be 
interpreted as the amount of correlation betwee11 the basis vector e; and the original sig·n.al z. 

In the Hotel ling transfom1 the coefficients )',-, i = 1,2, .. · ,N are u11co1·related. The vari,ance oJ· )'; 
can be arranged in a nonincre.asing order. For i > L., the variance of the coetlicient becomes 
insignificant. We can tl1en discard tl1ese coeffi'cients witl1out introducing signi'fica11t error i,n fl1e 
linear con1bination of basis vectors and acl1ieve l1igher coding efficiency. 

In tl1e above tl1ree interpretations of trans·form coding, we see tl1at the· linear unitary transform 
can provid e. tl1e following two functions: 

I. Decorrelate input data; i.e., transfor111 coefficients are less correlated than the original 
data, and 

2. Have some transform coeJ·ficients more significant than others (\vith lar,ge variance, 
e.igenvalue, or weigl1t i11 basis v·ector expa11sion) such tl1at l'ransfor_m coefficients can b.e 
treated differently: sorne can be discarded, some can be coarsely quantized, and son1e 
ca.n be fi11ely quantized. 

Note th:at the d·e.fi niti.on of i,,,,.irary, tra11sfor111. is given s5}10rtl:y in Se_ction 4 .. 2.1.3. 
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Input image 
Oulput bil stream 
• 

V, Bit aJlocatjon ~ 

l:.ineat , • 
Block Truncation -. " transform . -division Quantization 

Codeword assignment 

- • 

{a) Transmitter 

Input bit stream Reco nstruct ed 
• 1ma2e 

' 

V" v-, 

Decoder Inverse Block 
- transform - - merge 

I I 

• 

(b) Receiver 

FIGURE 4.2 Block diagram of transform coding. 

4.1.5 PROCEDURES OF TRANSFORM CODING 

Prior to leaving this section, we summ~ze the procedures of transform coding. Ther.e are three 
steps in transfor111 coding ~s shown in Figure 4.2. First, the input data (frame) are divided into 
blocks (subimages). Each block is then linearly transf611ned. The transfom1ed version is then 
truncated, quantized~ and encoded. These last three functions, which are discussed in Section 4.4, 
can be grouped -~nd te1111ed as bit allocation. The output of the encoder is a bitstream. 

In the receiver, the bitstream is decoded and then inversely tra.nsfo1 rned to form reconstructed 
blocks. All the reconstructed blocks collectively produce a replica of the input image. 

·4.2 LINEAR TRA,NSFORM·S 

In this section, we first discuss.a general fotmulation of a linear unitary 2-D image transform. Then, 
a bas.is image interpretation of TC is given. 

4.2.1 2-0 IMAGE TRANSFORMATION KERNEL 

There are two different ways to handle im.age transformation. In the first way, we convert a 2-D 
array represe·nting a digit-al image into a 1-t> array via row-by-row sracking, for example. That is, 
from the second row on, the beginnin,g of each row in the 2-D array is cascaded to the end ,of its 
previous r:.0w. Then we transfo11r, this 1-D ar.ra-y using a 1-D transfo11n. After the transt·ormation, 
we can convert th.e 1-D ar,ray baek tc) a 2-D array. In th'.e s-econd way, a 2-D transform is directly 
applied ro the 2-D array e~rresponding to an inp:ut itnag.e, resulting in a transfo11ned 2~~ _ array. 
These two ways are essentially the samer It can be stra1ghtf(:)rwardly shown that the d-1fference 
be.twe~ the t,w,0 is simplf a, mat~er of not~tion (Wintz, 1972). _In this-section; w~ use the second 
way to handle i,mage transfonnat1on. That 1s, we work on 2-D image transformation. 
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Transform Codi .ng 81 

Assume a digital i1nage is represented by a 2-D array g(x, y), where (x, y) is the coordinates 
of a pixel in the 2-D array, while g is the gray level value (also.often called intensity or brightness) 
of tl1e pixel. Denote the 2-D transforrn of g(x, y) by T(L,., v), where (u, v) is the coordinates in the 
transformed domain. Assume that both g(x, y) and T(Lt, v) are a square 2-D array of N x N; i.e., 
0 ~ X, ) ', u, v ~ N - 1. 

Tl1e 2-D forward and inverse transforms are defined as 

N-1 N- 1 

T(u, v) = L L,g( x,y)f(x,y, ·u, v) ( 4.21) 
.x=O 1•=0 

' 

and 

N-1 N- 1 

• 
g(x,y)= L,L,r(u ,\1)i(x,y,u,v) (4.22) 

u-=O 1·=0 

where f(x, y, ti, v) and i(x, y, 1.,, v) are ret~erred to as the forward and inverse tra11.sfo1·11iatior1. ker,ielJ·, 
respective} y. 

A few cJ1aracteristics of transforrns are discussed below. • 

4.2.1.1 S·eparability 

A transforn1ation kernel is called separable (hence, the transform is said to be separable) if the 
following conditions are satisfied. 

f(x,y,1t, v) = fi{;r,i,)f 2(y, v), (4.23) 

and 
• 

(4.24) 

Note that a 2-D separable transform can be decomposed into two 1-D trans·forms. That is, a 
2-D transfor1n can be implernented by a 1-D transform rowwise followed by another 1-0 transfor1n 
columnwise. That is, 

N- 1 

Yi(x, v) = L,g(x,)1).t; ()', v), (4.25) · 

y=O 

where O ~ x, v ~ N - l, and 

N-1 
• 

T(1t, v) = L, I;(x, v)J;(x,i,), .(4.26) ' 

x=O 

wh_ere O s; it, v s; N - I. Of c0urse, the 2-D transform can also be .in1plemented in a revers.e order 
with two 1-D transforins, i.e., ·columnwise first, followed by rowwise. The counterparts of 
Equations 4.25 and 4.26 for the ir1verse transform can be derived similarly. 

• 
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4.2.1.2 Symmetry 

The transforn1ation kernel is symmetric (l1ence, tl1e tr.ansform is symmetric) if tl.1e ker11el is separable 
and the f0ll0wing condition is satisfied: 

Ji()', v) = fz{y, v). 

Th·at is, / 1 is functionally equivalent to / 2 . 

4.2.1.3 Matrix Form 

(4.27) 

If a transfo1111a.tion ker·nel is symm.etric (l1ence, separable) theh the 2-D image transform discussed 
above can be expressed compactly in the following matrix form. De11ote an in1age 111c1t ,·ix by G 
and G = {g;,j} = {g(i - 1, J - l)}. That is , a typical element (at tl1e ith row and jth column) in the 
matrix G is the pixel gra.y level value in the 2-D array g(x, y) at tl1e same geometricl1l pos ition. 
NoEe that th_e subtraction .of one in the notation g(i - 1 ,j - 1) comes from Equati ons 4.2 1 and 4.22. 
Namely, the indexes of a square 2-D image array ate conventionally defined from O to N-1, "vbile 
the i'ndexes of a squ-are matrix are from l to N. Denote the for1-vard t1·a,1sfo,-,,z n1ar,-i.x by F and F = 
{/;.i} = {f,(i - l,j- 1)}. We then have the following matrix ·form of a 2-D transform: 

(4.28) 

where T o.n the l_eft-hand side of the equation denotes the 111atrix corresponding to tl1e transformed 
2-D array in tne s·ame fashion as that used in defini11g the G matrix. The inverse transt·orm can be 
expressed as 

(4.29) 

wh .ere the marrix I is the itiverse t1·a11sfon1i ,,zatrix and / = { ii.k} = { i I U - I, k - 1)}. The forward 
and inverse transform matriees have the foll0wi:ng relation: 

(4.30) 
• 

. 

Note that all of the matrices defined above, G, T, F, and J are of N x N. 
I.t is known that the d-iscrete Four.ier tran"sfo1111 involves complex quantities. In tl1is case, the 

counterparts of Equ.ation-s 4.28, 4.29, and 4.30 1 become Equations 4.31, 4.32, and 4.33, respectively: 

T=F*TGF (4 .31) 

(4.32) 

( 4.3·3) 

where *· indicates cQ.mplex eonjugation .. Note that the transform matrices F aho / contain complex 
quantities ind satisfy Eqµatien 4.31. They are caIJed unitary matrices and the tr·an-sfotm is referred 
to~ a unirai:y transform . 

• 
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4.2.1.4 Orthogonality 

A transfo1~m is said Lo be orthogonal if tl1e lra11sform m~trjx is orthogonal. That is, 

F T = p - 1 (4.34) 

Note tl1at an orthogonal matrix (orthogonal transform) is a special case of a unitary matrix 
(unitary transfo11n), where only real quantities are involved. We will see that all the 2-D image 
transforms, presented in Section 4.3, are separable, symmetric,. and unitary. 

4.2.2 BASIS IMAGE INTERPRETAllON 

Here we study tt1e concept of bc,sis i1rzages· or bas·is 111alrices. Recall that \Ve discussed basis vectors 
whe11 we cor1sidered tl1e 1-D transform. Tl1at is, the components of the transfot 1ned vector (also 
referred to as tl1e transfom1 coefficients) can be interpreted as the coefficients in the basis vector 
expansion of the input vector. Each coefficient is essentiall·y the an1ount of correlation bet\veen the 
jnput vector and the corresponding basis vector. The concept of basis vectors can be extend·ed to 
basis images in the context ot· 2·D image transforms. 

Recall tl1at the 2· D j nverse transfor 1n introduced at tl1e beginning of this section is defined as 

N-1 N- 1 

g(x,y) =LL, r(i,, v)i(x,y,,,, v) (4.35) 
11=0 1·=0 

where O::; x , )' ::; N - l . Tt1is equation can be vie\ved as a collipo11e11t fo11n of the in·verse trans.fonn. 
As def1ned above in Sectjon 4.2.1.3, tl1e whole i'l11age {g(x ., )1

)) is denoted by rl1e in1age matrix G 
of N x N. We now denote tl1e ' 'image'' formed by the inverse transfor111ation kernel { i (x, y, i,., v),O::; 
x, y ::; N - l} as a 2-D arTay /

11
_

1
• of N x N for a specific pair of (i,, v) with 0::; it, v::; N - 1. Recall 

that a digital image can be represented by a 2-D array of gray level values. In turn the 2-D array 
can be arranged into a matrix. Namely, we treat the following three: a digital image, a 2-D array 
(with proper resolution), and a n1atrix (with proper indexin.g)·, jnterchangeably . We then have 

i(Q,0,Lt, v) i(O, I,i,, v) ••• • o L i(O, N - 1, ll, v) 

i(l,O,u,v) i(1,1,Lt, i1) • • • i(l, N -1,it, v) • 
••• 

• • (4.36) • I • • - • ••• . . ·-
• • • II , I' 
• • • • • • • •• • •• • • • 

i( N -1, 0, l,l, v) i(N -1, l,it, v) • • • ••• i(N-l,N-1,Lt, \t) 

The 2-D array /
11

.v is .referred to as a b.asis image. The.re are N 2 basis images in total since O S 
u, v ::; N - 1. Tl1e inverse transforn1 expressed i.rt Equation 4.35 can then be written in a collective 

fonn as 

N-1 N-l 

c = L, L, r(t,, v)I;,., .. 
u=O v=O 

(4.37) 

We .can interpret this equation as a serjes expa11sion o·f tl1e original imag-e G into a s:et of N 2 

basis images J
11 

v· The transform coefficients T(it, v), 0 ::; Lt, v ~ N - l, become the coefficie:nts of 
the expansion. Alternatively,_ the image G is .said fo be a weighted sum of basis images. Note tl1at, 
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similar to the. 1-D case, the coefficient or the weight T(it, v) is a co·rrelarjon measure between the 
image G and tlie basis image /,,.~, (Wintz, 1972). 

Note that basis images hav,e notl1ing to do with the input image. Instead, jt is comp letely defined 
by the transform itself. That is, basis images are the attribute of 2-D image transform s. Dii:ferent 
transfor1ns have different sets of basis imagesA 

The n1otivation behind t1·ansfom1 coding is that with a prop~r tra11sfor1n, hence, a proper set of 
basis images, the transfo1111 coefficients are more independent than the gray sca les of the orig inal 
input image. In the ideal case,. the transfol'1n coefficients are statistically independent. We c,1n then 
optimally encode tl1e coefficients independently, whicl1 can make coding rnore efficient ,ind simple. 
As pointed out in (Wintz, 1972), however, tl1is is generally impossible because of tl1e following 
two reasons. First, it requires the joint probability density function of tl1e N 2 pixels, \ivt1icl1 l1ave 
not been deduced fro,m basic pl1ysica l la\vs and cannot be 1neasured. Second, even if the j oint 
pr0ba.bility density t·unctions were know·n, the problem of devising a re,,ersib le tra11sfonn that can 
generate independent coefficients is unsolved. The optin1um linear transfor,n ,ve can have results 
in unco·rrelated coefficients. When Gaussian distribu~ion is invol,1ed, we can l1ave independent 
transfor111 coefficients. In addition to the uncorrelatedness of coefficients, the variance of the 
coefficients varies wid.ely. Insignificant coefficients can be ignored witl1out introducing significant 
distortion in the reconstru·cted image. Significant coefficients can be allocated n1ore bits in e11coding. 
The coding efficiency is thus enhanced. 

As sho,vn in Figure 4.3, TC can be viewed as expanding the i11put i,nage into a se t 01: basis 
images, then quantizing and encoding the coeffic,ients associated 'vvith the basis images sepa rately. 
At the receiver the coefficients are reconstructed lo produce a replica of the input i111age. T'his 
strategy is similar tb that of subband coding, whicl1: is discussed in Ch.ap_ter 8. From Ll1is point of 
vie\v, transform coding can be considered a special case of subband coding, tt1ough transfom1 
coding was devised muc~ earlier than subband coding. 

It is \VOrth rnentioning an alternative way to define basis images. That is, a basis image with 
. _. 

in.dexes (i,, l'), Ju.,., of a tra~sform can tie constructed as the· 01,te,· prodztc.t of the itth basis vector, b,,, 
and the vth basis vector, b", of the transforn1. The basis vector, b

11
, is the 11th column vector of the 

inverse transfo1111 matrix I (Jayant and Noll , 1984) . That is, 

(4.38) 

4.2.3 SuBIMAGE S1zE SELECTION 
• 

The selection of s·ubimage (block) size, N, is imp·ortant. Normally, the larger the size the more 
decorrelation the transfot m coding can aehieve. It has been shown, however, that the corre lation 
between image pixels becomes insignificant when the distance between pixels beco1nes ]arge, e.g., it 
e~eeed~ 20 pixels (H-abibi, 19·71 a). On the other hand, a large ·size cau·ses some problen1s. In adaptive 
tr:ansfor1r1 codin.g, a large block cannot adapt to local statistics well. As will be see.n later in this 

. 
chapter, a transmissio ,n error in transfor1n coding affects the whole associated subimage. Hence a 
large size im:plies a possibly severe effect of transmission error on reconstructed images. As .wjll be 
sbown in video cooing (Section Ill and Section IV),. transfo1111 coding is used together with motion­
compensated coding. Consider that lai:ge block size i.s not used in motion estimation; subimage sizes 
e.f 4, 8, and 16 are used most often. In particular, N = 8 is adopted by tl1e international still image 
coding standard, .JPEG, as well as video ceding stan.clards H.261, H.263, MPEG I, and MPEG 2. 

4.3 lRANSfORMS Of PARTIC:ULAR I.NTEREST 

Seve'fal commonly u·sed image transfor111s .are discussed in this section. They inc.Jude the discrete 
Feurie·r transfor111, the discrete Walsh transfonn, the disc,rete Hadama·rd transfor111, and the discrete 
Cosine and Sine, 'transfo1,11s. All of these transfor1ns a.re symrnetri·c, (hence, separable as well) , 
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(a) Transmitte r 

... 1 D (0,0) I --
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transform 
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" 
• • • • • 

... , D (N-1.N •l) I ... 

(b) Receiver 

FIGURE 4.3 Basis imq.ge interpretation of TC (Q : quantizer, E: encoder, D: decoder) . 

unitary, and reversible. For each transform, we define its transfor111ation kernel and disc.uss fts basis 
• 

images. 

4.3.1 DIS CRETE FOURIER TRANSFORM (DFT) 

The DFT is of great importance in tl1e field ot· digital signal processi11g. Owing to the fast Fourier 
transform (FFf) based on the algoritl1m de·velopetl in (Cooley, I 965) , the DFT is widely utilized 
for various tasks of digital signal processing. It has been discussed in n1any signal and i:mage 
processing texts. Here we only de-fine it by using tl1e· transfor1n.ation kernel jus t introduced above. 
The forward and inverse transfom1ation kernel·S of the DFT are 

f (x,y,11, v) = iexp{-J2n(xu +yv)/ N} (4.39) 

and 

i(x,y,11, v) = ~ exp{J21t(xu + yv )/N} (4.40~ 
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Clearly, since complex quantiti·es are involved in tile DFf transformation ker11els, tl1e OFT is 
gener:a]ly con1plex. He.nee, we use tl1e unitary matrix to l1andle tl1e DFT (refer to Sectio11 4.2 . t .3·). 

. -. 
TI'1e basis vector of tl1e DF'T b,, is an N x 1 colun1n vector and is defined as 

I . ·2 '' ,exp 1 1t 
N 

. 

. ·2 21t ·2 , exp J 7t ,. · ·, exp J 7t 
N 

(N-l)rt 

N 

............ 

T 

(4.41) 

As n1entioned, the b.asis image with index (1,, v), / 11.,., is equal to /Ju b;;. A few basis i·mages are 
liste·d belo'\v for N = 4. 

I I I l 

I = _!_ 
1 I 1 1 

( 4.42) 
0.0 4 ) l 1 l 

I 1 1 1 

I • -1 • 
} -J 

1 • -1 • 

I } - 1 
lo., ;= 4 (4.43) 

I • -l • 

} -J 

l • -) • 

} -1 

1 l 1 • 
-1 

• • • • . 1 l -1 } -1 
( 4.44) I =-

1.2 4 -l 1 -1 l 
• • • • -1 -1 -1 I 

• l • -J -1 • 
) 

• -] • 1 1 -1 J 
/3.3 = - (4.45) 

-1 • 1 • 4 J -1 
• 

1 • -1 J -J 

4.3.2 DlSCRETE WALSH TRANSFORM (0WT) 

The trans .formation kernels o·f the DWT (Walsh, 1923) are defined as 

n-l 

f (x, j•,11, v) = ~ Il[ (-1y,<x)p,",-,C•l (-1 t,(,)p;_,_,f,)] 
i=O 

(4.46) 

a(\d 

i(x,y,u, v.) = f(x,y.,i,, v). (4.47) 

wher:e n = Iogi N, ./l;{:arg) r~Rr.esent-s the ith bir in the (\atural bi'nary representation o·f the arg, tl1e 
vdt ·bit couespo -nds ta the least significa·n~ bit, and ~ne (,i-1 )tb bit eo·rre$nonds to the· most significant 
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FIG URE 4.4 When N = 4: a set of the I 6 basis i n1ages of DWT. 

bit. For instance, consider N = 16, then n = 4. The natural binary code of number 8 is I 000. Hence., 
Po(8) = p 1(8) = /J2(8) = 0, and p3(8) = 1. We see that if the factor 1/N is p_ut aside then the t·orw-ard 
transformation ken-rel is always a11 i11teger: either+ I or -1. ln addition, the inverse transformation 
kernel is tl1e sa111e as the forward tra-nsforrnaLion kernel. Therefor~, 'vve cone I ude that the imple­
n1entation of tl1e DWT is sirnpl·e. 

When N = 4, tt1e 16 basis images of the DWT are sl1own in Figure 4.4. Each corresponds to a 
specific pair of (i t, v) and is of resolution 4 x 4 i11 the x-) 1 coordinate system. Th·ey are binary 

. . 

images, wl1ere the brigl1t represents +I, while tl1e dark - 1. Tl1e tra11sfo1m matrix of rh·e DWT is 
sho\-vn below for N = 4. 

I 1 l l 

F = _!_ 
l I -l -1 

( 4.48) 
2 l -1 I -] 

l -1 -I I 

4.3.3 DISCRETE HADAMARD TRANSFORM (DHT) 

Tl1e DHT (Hadamard, I 893) is closely related to the DWT. Tl1is can be seen from tl1e followir1g 
defi.nitio11 or the t1·ansforn1atio11 kernels. 

n 

f ( X, )', LL, V) = ~ IT [ (-l )'';(x)p;(<1) (- J)P;(J')I';(•)] 

i=O 

(4.49) 

and 

i(x,y,1,, v) = f (x,) 1,1t, v) ( 4.5.0) 

wherie the definjcion·s of -,-z., i, and Pi(arg) are the same as in tl1e DWT. For this reas0n, the term 
Walsl1-Hada1na:rd transforn1 (DWHT) is freque11tly used to represent e-ither of the two tra,11sfor1ris. 
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Wl1en N is a po,ve.r of 2, the transform n1atrices of the DWT a11d DHT have the same row (or 
colun1n) ,,ectors e.xcept that tl1e order of row (or column) vectors in the n,atrices ai·e differe11t. Tl1is 
is tl1.e only difference between tl1e DWT and ·DHT under the circumstance N = 211

• Because 01· tl1is 
differen.ce, ,vhile the DWT can be implemented by using the FFf algorithm with a straightfor\vard 
1nodification, the DHT needs more ,vork to use the FFf algoritl1n1. On the otl1er har1d) tl1e DHT 
possesses tl1e following recur:sive feature, ,vl1ile the DWT does not: 

and 

- I I 
F..= 2 1 -1 

(4 .51) 

( 4 .52) 

,vhere the subscripts .indicate the size of the transfom1 matrices. It is obvious that the transform 
matrix of the DHT can be easily derived by using the recursion. 

Note that the number of sign changes betvveen consecutive entries in a row (or a column) of 
a transfo11n matTix (from positive to negative and from negative to positive) is k110\vn ,1s seqite,zc)'· 
It is observed that the sequency does not monotonically increase as the order number of rows (or 
columns) increases in the DHT. Since sequency bears some similarity to frequency in the Fourier 
transfo(111, sequency is desired as·an increasing function of tJ1e order nu1nber of ro\vs (or columns). 
This is realized by the 01·de1·ed Hadamard transforn1 (Gonzalez. 1992). 

The transforr11ation kernel of the ordered Hadamard transfor111 is defined as 

N-1 

f (x • y, u, v) = ~ TI [ (-1 ) P;(x)d;("\ -1 y ,(y),1;( •·)] 

i=O 

(4 .53) 

where the de·finitions of i, p;(arg) are tl1e same as defined above for the DWT and DHT. T~1e d,.(arg) 
is d.efined as below. 

d0(arg) = bn_,(arg) 

d1(arg) = bn_1(arg)+bn_2 (arg), 

dn_,(arg) = b1(arg)+b 0(arg) 

(4 .54) 

The 16 basis images of the orderecl Hadamard transfor1n are shown in Figure 4.5 for N = 4. It 
is observed that the variation of th.e binacy basis images becomes more frequent monotonically 
When u .and v increase. Also we see that the basis image expansion is similar to the frequency 
expansion of the Fourier transfo1111 in the sense that an image is decomposed into components with 
different variations. In transfo1111 coding, th·ese components witl1 diffe:rent coefficients are treated 
qiffei:ently. 

4.3.4 D1~CRffE COSINE TRANSEORM (D.CT) 

The DCT is the, most commonly used transfor1n for image and video coding. 
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FIGURE 4.5 When N = 4: a sel of Lhe 16 basis images of the ordered 01:lT. 

4.3 .4.1 Background 

The OCT, wh icl1 plays a,1 extremely in1portanl role in i,nage and video coding, was established by 
Ahm ed et al. ( 197 4 ). There, it was shown that the basis 111e l'11b e 1· cos[ (2x + I )i11t/2N] is tl1e ztth 
Cl1ebyshev polynomial 1'u(~) evaluated at the .,\·th zero of TN(~). Recall that the Chebyshev poly­
nomials are defined as 

• 

Ya(s) = 1/.fi ( 4.55) 

( 4.56) 

where TK(~) is the ktt1 order Chebyshev polynomi al and. it }1as k zeros, starting fron1 the 1st zero 
to the kth zero. Furtl 1ermore, it was den1onstrared that the basis vectors of 1-D DCT pr ovide a good 
approximation to tl1e eigenvectors of the class of Toeplitz matrices defined as 

I p2 N- 1 p • •• p 

1 p N-2 p ••• p 
p2 I N- 3 (4 .57) p ••• p • 

• • • • 
• • • • • •• 
• • • • 

N- 1 P N-2 N-3 I p p • • • 

where O < p < I . 

4.3.4 .2 Transformation Kernel 

The transformation kernel of tl1e 2-D DCT can be extended straigt1tforwardly frorn that o,f 1-D 
DCT as follows: 
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FIGURE 4.6 When N = 8: a set of the 64 basis images of the DCT. 

f (x, )', u, v) = C(u )~(v) cos (2x + l)z.,n 
2N 

1 -
. 

Z{= 0 

cos 
(2) ' + I)vrc 

2N 

C(u)= ~ N 
2 

,N 

for 

for u=l2·· · N-1 ' ' ' 

i(x,y,u, v) = f (x,y,u, v). 

(4.58) 

(4 .59) 

(4.60) 

Note that the C( v) is defined the same way as in Equ.ation 4.59 ·. The 64 basis images of the DCT 
~e shown in Figure 4.6 for N = 8 .. 

4.3.4 .. 3 Relationship with DFT 

The DCT is closely related to the DFf. This can be examine.a fr.om an alternative method of defining 
the-DCT. It is known that applying the BFf t0 an N~po.irit sequence gN(n), n = 0,1,··,N - 1, is 
eqpivalent to the following: 
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I. Repealing gN(11) every N points, 
period N. Tl1at is, 

91 

forrn a periodic sequence, &N (tz), wilh a fundamental 

-
gN(n) = LgN(,1 ·-iN) . (4.61) 

2. Oetern1ine the Fourier series expansion of the periodic sequence gN(n). That is, dete11r1ine 
all tl1e coefficients in tl1e Fourier series which are known to be periodic with the same 
fundam ental period N. 

3. Truncate the sequence of the Fourier series coefficients so as to l1ave the san1e support 
as tl1at of tl1e given sequence gN(n). That is, only keep the N coefficients \Vith indexes 
0, 1, · · · ,N - I a11d set all tl1e others to equal ze.ro. These N Fourier series coe.fficients fonn 
the OFT of the given N-point sequence g.N(,i). 

A11 N-point sequence gN (11) and the periodic sequence gN(,i), generated from gN(t1.), are shown 
in Figure 4.7(a) ·and (b), respectively. In summary, the DFr can .. be viewed as a co.rres.pondence 
between two periodic sequence s. One is the periodic sequence gN(,i), which is for111ed by period­
ically repeatin g gN(,z). The other is the periodic sequence of Fourier series coefficients crf gN(rz). 

The OCT of an N-point sequence is obtained via the following three steps: 

1. Flip ov er the given sequence with respect to the end point of the sequence to forn1 a 2N­
polnt sequence, g2N(11), as shown in Figure 4.7(c). Then for1n a periodic sequence g2N(,i), 
sl1own in Figure 4.7(d) , according to . 

• 
DO 

g2N(t1) = L8 2N(,1-2iN) (4.62) 
• 1 = -00 

2. Find the Fourier series coefficients of tl1e periodic sequences g2N (rz.). 
3. Truncate the resultant periodic sequence of the Fourier series coefficients to h·ave tlle 

support of the giv.en finite sequence g,lrz). That is, only keep tl1e N coefficie·nts wi.th 
indexes 0,1,· · ·,N - I and set aJl the others to equal zero. These N Fourier se.ries coeffi­
cients f~orm the OCT of the given N-poirit sequence g.,/ti). 

A con1parison between Figure 4.7(b) and (d) reveals that t.he periodic se,quence gN(,i) is not 
smootl1. There usually exist discontinuities at tl1e beginning and end of each period. These end­
head . discontinuities cause a high-frequency distribution i.n the corresponding OFT. On the contrary,. 
the periodic sequence g

2
N (n.) does ·not have this type of discontinuity due to flippin.g over the given 

.finite sequence. As a result, there is no .hig.h-·frequency component corresponding to th~ end-head 
discontinuities. Hence, the OCT possesses better energy compaction in the low frequencies than 
the DFT. By better energy compaction, we mean more e.nergy is compacted in a fraction of transfom1 
coefficients. For instance, it is known tl1at tl1e ·1nost energy of a11 image is contained in a small 
region of low frequency in the OFr domain. Vivid exarnples can be found in (Gonzalez and Woods, 
1992). In te1·rns of energy c·ompaction., when compared \Vith the Karhunen-Loeve rransforn1 (the 
Hotelling transfor1r1 is its discrete version), which is known as the optimal, tl1e OCT is the· best 
among the OFT, OWT, OHT, !ind discrete ·Haar transfo1111. 

Bes.ides this advantage, the OCT can be in1plen1ented using the FFT. This can be seen from 
tl1e a.bove dis.cussion. There, it l1as been shown that tl1e OCT ·of an N-poiot sequence, 8N (rz). can 
be obtained from the DFT of the 2N-pojnt sequence g2N (1z). Further111ore, tl1e even syn1metry 
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(b) Formation of a periodic sequence with a fundamental period of N (DFT ) 

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(c) Format ion of a back-to -back 2N sequence 

0 

(d) Fonnation of a peri.odic segue.nee with a fundamental period of 2N (DCT) 

n 

,1 

n 

FIGURE 4.7 An example to illustrate· the differences and similarities between DFT and DCT. 

in g2N (1z) makes the computation required for the DCT of an N-poinl equal to that required for the 
DPT of the N-point sequence. B.eeause of these two merits, the OCT is the most poptllar image 
transfo1111 used in image an.d video coding nowadays .. 

4.3.5 PERFORMANCE COMPARISON 

In this subsection, we compare the perfoonance of a few commonly used transfor1-ns in ter1ns of 
,eneigy oompactio·n, mean square reconstruction error., and computational complexity. 

4.3.5.1 Energy Compaction 

Since all the tFans,f0rms we disc.ussed are symmetric (he.nee separable) and unitary, the matrix form 
of the 2-C· image ttansfonn can be expressed as T = Ft GF as discussed in Section 4.2. l.3. In the 
1-D case, the transfo11·11 matrix F is the. counterpart of the matrix <I> discussed in the Ho.telling 
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trar1sform. Using tl1e_ F, one can tr~nsform a 1-D column vector z into another 1-D column vector y. 
The cornponenls of the vector )' are transfo1111 coefficients. The variances of these trans·form 
coefficjents, and lherefore the signal energy associated with the transfer r11 coefficients, can be 
arranged in a no11decreasing order. It can be shown Lhat the total energy before and after the 
transform ren1ai11s the same. Therefore, the more energy con,pacted in a fraction of total coefficients, 
the better energy compaction tl1e lransfonn has. One measure of energy compaction is the trat1sfornz 
codi11g gai11. Grc, which is defined as the ratio between the arithmetic mean and tl1e geometric mean 
of tl1e variances of all tl1e cornponents in the transformed vector (Jayant, 1984). · · 

N-1 

1 L , - a-
N I 

G i=O 
TC =----, ( 4.63) 

-
N-1 N 

rr G ;2 

i=O 

A larger Grc indicates higher energy compaction. The transform coding gains for a first-order 
autoregress ive source with p = 0.95 achieved by using the DCT, DFr , and KLT \Vas reported in 
(Zelin ski and Noll, 1975; Jayant and Noll, 1984). The transfo11n coding gain aft·orded by the DCT 
con1pares very closely to that of the optimum KLT. 

4.3.5.2 Mean Square Reconstruction Error· 

The perfor1nance of the transf onns ·can b.e compared in ten11s of the mean square reconstruction 
error as well. This was mentioned in Section 4.1.2 when we. provided a statistical interpretation for 
transf om1 cod ing. That is, after arranging al] tl1e N transforn1ed coefficients according to their 
variances in a nonincreasi ·ng order, if L < N and we discard Lhe last (N- L) coefficients to reconstruct 
the original input signal z (sJn1ilar Lo what we did with tl1e Hotelling transform), then the mean 
square reconstruction error is 

N 

MSEr = E[llz - z'll2
] = L CT;

2
, (4.64) 

i=L+I 

where z' denotes tl1e recor1structed vector. Note tl1at in the above-defined mean square reconstruc­
tion error, the quantizati on error and tra11smission error have not been included. Hence, it is 
sometimes referred to as tl1e mean square approximation error. Therefor·e it is desired to choose a 
transform so tl1at the transformed coefficients are ''more indepen.dent'' and more energy is concen­
trated in the first L coefficients. Then it is possible. to discard the remaining coefficients to save 
coding bits witl1out causing sigr1ificant distortion in input signal reconstruction. 

In ter111s of the mean s.quare reconstruction error, the perfom1ance of the OCT, KLT, DFr, 
DWT, and discrete Haar transform for the 1-D case was reported in Ahmed et al. (1974). The 
variance s of tl1e 16 transform coeffi~ients are shown in Figure 4.8 \Vhen N = 16, p = 0.95. Ndte 
that N stands for the dimension of the 1-D vector, while the parameter p is sho\vn in the Toeplitz 
matrix (refer to Equation 4.57) . We can see that the DCT compares n1ost closely to the KLT, which 
is known to be optimum. 

Note that the unequaJ varianc·e distribution among· transform coefficients has also found appli­
cation in the field of pattern rec.ognition. Similar results to tho.se in Ahmed et al. ( 1974) for the 
DFT, DWT, and Haar transfor1n were reporl~d in (Andrews, 1971 ) . 

A similar anal1ysis can be carried out for the 2:-D case (Wintz, 1972). Recall tl1at an itnage 
g(x, y) can be expressed as a weighted sum of basis images /11., • • That is, 
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FIGURE 4.8 Transform coefficient va-riances \vhen N = 16, p = 0.95. (Fron, Ahmed, N. el al., l .EEE T1·c111s. 

Co111pztt., 90, 1974. w·ith permission.) 

N-1 N - l 

G = L LT( i,, v·) /
11

.v ( 4.65 ) 

u =O l'-=0. 

where the weights are transfo11n coefficients. We arrange the coefficients according to t.l1eir \1ariances 
in a nonjncreasing order. For some choices of the transform (hence basis images), the coefficients 
become insignificant after the first L te1111s, and .the image can be approxim·ated well by truncating 
the coefficients after L. That is_, 

N-l N- 1 L 

G =""" T(u, v)I ~" ~ T(tt; v)l , ~ L u.v LL... u.i 
(4 .66) 

u=O ' v=O 

The me~n sq4are. reconstruc;;tion error is given by 

N-1 N-1 

MSE = "~a 2 
· r L.J L.J 11,v 

(4.67 ) 

L 

A comparison among the KLT, DHT, and DFf in terms of the mean square reconstruction error 
for 2-D array of 16 x l 6 (i;e., 256 transfo1 rn coefficients) was reported in (Figure 5, Wintz, 1972). 
Note tnat tbe discrete KLT is image deQendent. In the comparis,on, the KLT is calculated with 
respect to an i1nage named' ,·,cameraman.' 1 It ~h'ows that-while the KLT achieves the be st pert·or­
mance, tfie otfier transf o.rms perfor n1 closely. 

In essenee, the criteria of mean squ.are reconstruction erro.r and ene·rgy compaction ate closely 
related. It has been shoWin th::at the disc-rete KarhuAen tr-ansfoim .(KLT), also kno.wn as the Hotelling 
tr-.ansfo,rr.1-1.,, is che op>til'Flum in terms of energ¥ compaction and mean square reco,nstruction error. 
'Fhe DWT, DHT, DFf; and E>-CT are <tlose to the 0ptimum (Wintz, 1972; Ahmed et al., 1974)~ 
however. the OCT is the best am,o·ng these several subopti11i.it1n tFansfor 111s. 
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• 

Note tl1at the perform,lncc con1pariso11 a111ong various transforms in ter1ns of bit rate vs. 
distortion ir1 the reconstructed in1age was reported in (Pearl et al., 1972; Ahmed et al ., 1974). The 
same conc lusion was drawn. Tl1at is. tl1e KLT is optin1um, wt,ile tl1e DFf, DWT, OCT, and Haar 
transforms ,lre close in performance. An1ong tl1e suboptimum transfor1ns, the DCT is the best. 

4.3.5.3 Computational Complexity 

Note tl1at wl1i.le Ll1e DWT , DHT, DFT, and OCT are i·npL1t in1age independent, tl1e discrete KLT 
(tl1e Hotelli11g lransforn1) is inpuL depe11dent. More specifically, th·e row vectors of the Hotelling 
trar1sforn1 111atrix are transposed eigen\recrors of the covariance matrix of the input random vector. 
So far there is 110 fast tra11sfom1 algoritl1m ,1vailable. Tl1is computational complexity prol1ibits the 
Hotelling transform fron1 practical Lisage. IL can be sl10\v11 th,1t the DWT, DFT, a11d DCT can be 
in1J)!en1entecl L1sing the FF1"' algoritl1n1. 

4.3.S.4 Sumn1ary 

As pointed out above, the DCT js the l1est ar11ong tl1c suboptimu1n tra11sforn1s in terms of er1ergy 
compactio'f1. Moreover, tl1e DCT Ccln be irnple111ented using the FFI '. Even though a 2N-·poir1t 
sequence is i11volvecl, the eve11 sy1nn1etry makes the co111putation involved in the N-p.oint DCT 
equivalent to that of tl1e N-point FFT. For t11ese two reasons, the DCT finds the widest application 
in in1age and video coding. 

4.4 BIT ALLOCATION 

As sho\v11 ir1 Figu1·e 4.2, i.r1 trar1sfonn coding, an i11put i111age is first divided into blocks (subimages). 
Tl1en a 2-D 1 in ear transform is appl ie-d to eacl1 block. The transfo1111ed blocks go tl1rougl1 truncation, 
quan tization, and codeword assignrnent. The last tl1ree functions: truncation, quantization, arid 
cod eword ass ign111ent, are to rnbined and called bit allocation. 

From the pre\iious section, it is kr1own tl1at tl1e applied tra.nsfor111 decorrelates subin1ages. 
Moreover, it redistributes in1age e11ergy in tl1e transform domain in sucl1 a way that most of the 
energy is compa cted into a small fraction of coefficients. Tl1eref'·ore, it is possible to discard the 
majority of transforrn coefficients witl1out introducing significant distortion. 

As a result, we see that in transform coding there are mainly tl1ree types of errors involved. 
One is due to trur1cation. Tl1at is; the rnajority of coefficients are truncated to zero. Otl1ers -con1e 
from quanti zation. (Note tl1at truncation can also be considered a special type of quantization). 
Transmission errors are the tl1ird type of e1-ror. Recall tl1at tl1e n1ean square reconstruction error 
disc ussed i11 Sectio r1 4.3.5.2 is in fact only related to truncation error. For tl1is reason_, it was reterred 
to more precisely as a mear1 square approximation error. In ge11eral, the reconstruction er1·or, i.e., 
tl1e error betwee11 tl1e origina l i111age signal ar1d tl1e reco-nsrru.cted in1age al tl1e receiver~ includes 
tl1ree types of errors: tru11catior1 error, quant ization error, and tr~1ns1nission error. 

There are t\VO differe11t ways to truncate Lransfonn coefficients. One is called zo11al codi,zg, 
while the otl1er is tlz,~es/1old coclitig. They are discussed bel_ow. 

4.4.1 ZONAL CODING 

ln zon·al codir1g, also known as zo11al san1pli11.g, a zone in tl1e transforr11ed block is predefined 
accordjng to a statistical average obtained frorn many blocks. All tra11s-forn1 coefficients ir1 the zor1e 
are retained, while al'l coefficie11ts outside tl1e -zo11e are set to zero. A·s n1entioned i11 Section 4.3.5.1, 
the total energy of the i1nage ren1ains tl1e san,e after applying the transforms discL1sseo there. Since 
it is known . tt1at tl1e DC a11d low-freque11cy AC coefficients of the DCT occupy r11ost of the energy, 
th'e zone is located i11 the top-Je-ft portion of tl1e lra11sforn1ed blo_ck wl1en the transform coordinate 

• 
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FIGURE 4.9 Two illustrations of zonal co.ding. 

system is set conventionally .. (Note that by DC we mean ,,, = v = 0. By AC we 111ear1 ti and \1 do 
not equal zero simultaneously.) That is, the origir1 is at the top-le·ft corner of tl1e transforn1ed block. 
T\VO typical zones are shown in Figure 4.9. The simplest uniforr11 quantization \Vitl1 natural binary 
coding can be used to quantize and encode the retained transfor,11 coefficients. Wjt}1 tl1is sin1ple 
tech,nique, there is no overhead side info11nation that needs to be sent to tl1e receiver, si11ce the 
structure of the zone, the scheme of the quantization, and encoding are knovvn at botl1 the transn1 i tter 
and receiver. 

The coding effic.iency, bo\vever, n1ay not be very high. This is because the zo11e is predefined 
based on average statistics. Tl1erefore some co·efficients outside the zone might be la.rge in magni­
tude, while some coefficients inside t.he zone may be small in quantity. Unifo1111 quantization and 
natural binary encoding are simple, but they are known not to be efficie.nt enoug.h. 

For further improvement of coding efficiency, an adaptive scheme has to be used. There, a t\vo­
pass procedure is applied. In the first pass, the variances of transforn1 coefficients are measured or 
estimated. Based on the statistics, t'he quantization and enco.ding schemes are detern1ined. l.n the 
second pass, quantization and encoding are carried out (Habibi, 197 la~ Chen and Smith, 1977). 

4.4.2 THRESHOLD CODING 

In threshold eodin.g, also known as threshold samplin.g, there is not a predefin.ed zone. Instead , 
each transform co'efficient is compared with a threshold. If it is smaller than the tl1reshold, then it 
is set to zero. If it is large.r than the threshold,. it will be reta.ine'd for quantization and encodi.11g. 
OotnRared with zonal coding, this scheme is adaptive in truncation in the sense that the coefficients 
with more energ_y are retained no matter· where they ate loc-ated. The addresses of tl1ese retained 
coefficients, however, have to be sent to the rec·eiver as side infor1nation. Furthe11nore, the threshold 
is determined after an ev.aluation of all coefficients. He·nce, it wa.s usually a .two-pass adaptive 
techniqu.e. 

Chen. an,d Pratt (1984) deviseo an. efficient adaptive sch·eme to handle threshold coding. It is a 
one-pass adaptive scheme, i-n contrast to the two-pass adaptive ~chemes. He.nee it is fast in imple ­
men:tation. With several effeGtive techniques that will be. addressed here~ it achieved excellent results 
in transfo1111 coding. Specifically, it demonstrated a satisfactory quality of reconstructed frames at 
~ bit rate of 0.4 bits per pixel for, coding, ef color images·, which corresponds t.o real-time color 
televjsion transmission over, a 1.5-Mb/sec channel. This s.cheme has been adopted by tl1e interna­
tional still eo.din,g standard JPEG. A block diagram Gf the thresh0ld coding proposed by Che.n and 
Pfatt is shown jn Figure 4.10. M·orre details an.cl mod,iticatio.n m.acle .b)' I.PEG will be. describ·e<d in 
Onapter 7. 
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FIGURE 4.10 Blo ck di agram of the algorit l1m proposed by Chen and Pratt ( 1984) . 

4.4.2.1 Thresholding and Shifting 

The OCT is used in the scheme because of its sup_eriority, described in Section 4.3. Here we use 
C(t,, v) to denote the DCT coefficients. The DC coefficient, C(0,0), is processed differently. As 
mentioned . in Chapter 3, tl1e DC coefficients are encoded with a differential coding technique. F0r 
more details, refer .to Chapter 7. For al] the AC coefficients, the following thresholding and shifting 
are carried out: 

C(1.,, v)- T 

0 

if 

if 

C(it, v) > T 

C(.1.,, v) ~ T 
(4.68) 

where r ·on the right-l1and side is the threshold. Nole that the above equation also implies a shifti_11g 
of transform coefficients by T when C(1t, v) > T. The input-output character istic of tl1~ tl1resnolding 
&nd 'sl1'ift ing i·s sl1own in Figure 4. I 1. 

Figure 4.12 demonstrates that more than 60% of the DCT coeffici¢nts normally fa·II below a 
threshold v·atue as low as 5. Tt1is indicates that with a .p.roperly selected threshold Value it is possible 
to set most of the DCT coefficients equal to zero. The threshold value is adjusted by the feed'back 
from toe rate buffer, or by the desired bit rate-. 

' 
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FIGURE 4.11 Input-output characteristic of thresholding and shifting . 

• 

Distribution of cosine transfrom coeffic ients 

,oo,~---:!~J :t======·t===~·F~5.·~~:+:=:=:~==t~~-~-~-==,-. . . . . ->----. . . .. . _,.. ' . . . . . __ ,...- . . 
C ~ . . . ·-,... . . . 'll'lil • ••• - • • • '... • •••••• , - • • .• - • ••• • •• , ••• • • • • "~ ' . .. ... . . . . ...... ... . ... .. . . . , •• • • • • • • • • • , . . . . . . . .. . . . 

..J . . . _.,. . . . . 
t f - • • I f 

0 . .,,, . . . . . 
• ; t • • • ' 

.... • #J/1' • • • • • 

.... • ,1# • • • • • 

(/) 
b"li ••••• ---.. i ........... . . .. #"' .... . . .. _ . .. ..... . . . ... ... . . .. . . .... .. . ... , • • • • • •••• • • • ·• ..... ..... ..... • • • • • • • • • • • • 
Q,I • /.. ' • • • 

• • • • • • • 
W . ,, . • • . . . 

; /: : : : : : a: . . . . . . . 
• / • • • t • • 

... "'IP\ ..... . ... ... ., . .. ... . . ... . . . .............. . ..... .. .. ~ ..... . . . . .. ... . . .. . ...... ..... . . . . . ... . , ••• • • • • • • • • ... ,v • • • e t t I 

L- • • • . • • . r- • / • . . • . . 
• • • • • • f 

~ ~ I i • • • • • 

;:a. 'J'. : : ~ : : : 
0 eo •• ••••• ••••••••••••"'••••-••••••• .. ••- ••• • • • • • • I • •• • • • • • • ••• • •••••••· • • • • • '•• • • • • • ••• • ' • • • • • ••• • • • • • • • • • • 
..J 

,.._ . . . . . . . . . . ' . . 
,: ~ : : : : ; w . . . .s . - . m sc, ...... it.: .•.•. . .•. . .. ~ . .......... _ .... ~ .. . . .. .. .. . : .. . . . . ....... : . .. .. .... . . . : . . . . . . . . . . . ~ .. .. . . . . . . . 

I •• • • • • • • 
L_ • • • • • • 
r- • . . • ' . . I • • • • • • • 
Z . . . . . . ' . . . . . . -w -IC) •• c .. . : .. •.••. ....• ~ •... . ... . ... .:.. . •.•.•...•. .: .•........•. ~ . .. ....... . . . :.. .. •. .•. .... .:. .• .•.... . . . 
- I •• • • • •. • • 
0 . . . . . . . ' . . . . . 
-- I • , Ii• ', , • • 

LL • • • • • 
J 

• • • • • • . 
-.1 1 1 -

1 • ' • • ' 
~ . ·····~·-···· ······1············,··········-~········ ········ ·· ···· ···, ·· ·· ·· ···- ·~·-··· · ·-~--w I • • • • • • • 

• • • • • • • 
O J ; : ; ; Miss America :- - , Foqtball;-
0 J • • • • • . . 

"}t\ ••••••• , • • •••• , • ••••• , ••• ••• • ••• • • ._. ••••• • ••••• ,, .... . ....... .. ..... . . . .. .... . ..... . ... . , . .. . . .... . . . 
~ . . . . . . . 

I • • • • • • • ......_o • • • • • • • 
o' I : : ! : : : ! . . .. . . . . 

l . . . . . . . 
10 ···· · · · ··· ····· · ···· ' ··· ~--- - - ~··' · · ·· · ······"'······ ···· ······ · · ·······'··· · · ···· · · ' ··· · · ··· · · · • • • • • • • I • • • • , • • 

• • • • • • • • • • • • • • . . ' . . . . 
• • • • • • • 

QL-~ ......... --....L...--...L....--......_ __ ...__ __ ....._ __ J...._ _ __J 

5 10 15 2S 30 

COEfflCIENT THRESH0LD 
• 

FIGURE 4.1.2 Amplitude distribution of the OCT coefficients. 

4.4.2.2 Norm·alization and Ro~ndoff 

Phe threshold subtracted transfo1111 coefficients C7(u, v) are no1111alized before roundoff. The nor-
malization is implemented as f ollews: . 

(4.69) 

where the 0011nalization factor r11.v is coqtrollecl by the rate huff er. The roundoff pr0cess converts 
floating point to integer as follows. 

• 

C7N(ii, v) ~ 0 

C7N(u, v) < 0 
(4.10) 
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FIGURE 4.13 lnpul-oulput characteristic of (a) normalization, (b) roundoff. 

99 

• 

where the operator L.,t J m.eans. the largest integer smaller than or equal .to X, the op·erator r X l means 
the smallest integer larger th.an -or equal to x. The input-output characteristics of the nor111alization 
and roundoff are show.n in Figure 4. l 3(a) and (b), respectively. 

From these input-output characteristics, we can see that the roundoff is a uniform midtread 
quantizer with a unit quantization step. The com·bination of normalization and roundoff is eq·uivalent 
to a uniform midtread qua.ntizer with the quantizatio11 step size equal to tl1e normalization factor 
r,,,, .. No11nalization is a scaling process, which n1akes the resultant uniforn1 midtread quantizer 
adapt to the dynamic range of the associated transform coefficient. 1t is therefore possible for one 
quantizer design to be applied to v·arious coefficients with different ranges. Obviously, by adjusting 
the para'met.er r

11
., , (quantization step size) a variable bit rate and mean square quantization error 

can ·be acl1ieved. Bence, the selection of the normalization factors for different transfo, rn coefficients 
can take the statistical feature crf the images and the characteri-stics of the hun1an visual system 
(H.VS) intp, consideration. In general, most image energy is contained in the DC and low-frequency 
AC tran~form coefficients. The HVS is 010.re sensitive to a relatively uniforn1 regio·n than to a 
relatively de.tailed region, as discussed in 'Chapter l. Chapter 1 also mentions that, \Vith regard to 
the color image, the HVS is more sens.itive to the lu1ninance component than to the chron1inance 
components. 

These have bee-n taken into consideratjon in JPEG. A matrix consisting of all the normalization 
factors is called a quantization table. in JPEG. A luminance quantizati9n table and a chrominance 
quantization table used in JPEG are shown in Figure 4. 14. We observe that in ge·neral in both tables 

' 
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16 1 1 10 16 24 40 51 61 17 18 24 47 99 99 99 99 

12 12 . 14 19 26 58 60 55 18 21 26 66 99 99 99 99 . 

14 13 16. 24 40 57 69 56 24 26 56 99 99 99 99 99 

14 17 22 29 51 87 80 62 47 66 99 99 99 99 99 99 
. 

18 22 37 56 68 JOS IO~ 77 99 99. 99 99 99 99 99 99 

24 35 55 64 . 8l l~ 11 ~ 92 99 99 99 99 99 99 99 99 
-

49 64 78 87 10~ 121 12( 101 .99 99 99 99 99 99 99 99 

72 92 95 98 11'" .J. lOC IO~ 99 QQ QQ QQ QQ QQ QQ QQ QQ 

(a) Luminance quantization table (b) Chrominance quantization table 

FIGURE 4 .. 14 Quantization tables. 

the small no11nalization factors are assigned to the DC and low-frequency AC coefficients . The 
larg.e rs ·are associated with the high-frequency transforn1 coefficients. Con1p.ared with the lumi­
nance quantization table, the chrominance quantization table has· larger quantizatio11 step sizes for 
the low·- an·d middle-frequency coefficients and almost the sa.me step sizes for the DC and high­
frequency coefficie·nts, indicating that the chrom.inance components are relatively coa.rsely quan­
tized, compared with the luminance component. 

4.4.2.3 Zigzag Scan 

As mentioned at the beginning of this section, while threshold coding is adaptive to the local 
·statis,tics :and hence is .more efficient in truncation, thres.hold coding needs to send the addresses 
of retained coefficients to the receiver as overhead side info1111ation. An efficient scl1eme, called 
the zigzag .scan, was proposed by Chen and: Pratt ( 1984) and is shown in Figure 4.14 . As shown 
in Figure 4.12, a great rnajor·ity of transfor1n coefficients I1ave magnitudes smaller than a threshold 
o·f 5. Consequently, most quantized coefficients are zero. Hence, in the 1-D sequence obtained by 
zigzag scanning, most of the numbers are zero. A co·de kno\vn as run-length code, discussed .in 
Chapter, 6, is very efficient under these circumstances to encode the address information of nonzero 
coefficients. Run-length of zero c0efficients is understood as the number of consecut_ive zeros in 
the zigzag scan. Zigzag scanning minimizes the u.se of run-length codes jn the block . 

• 

0 V 

u 

FIGURE 4.15 Zigzag scan of; DCT coefficients within an 8 x 8 bl0ck. 
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4.4.2.4 Huffman c ,oding 
• 

Statistical studies of the magnitude of nonzero DCT coefficients and tl1e run-length of zero OCT 
coefficients in zigzag scanni11g were co11ducted in (Cl1en and Pratt, 1984). The domination of the 
coefficients with smal l an1plitudes and the short run-lengths was found and is shown in Figures 4.16 
and 4. 17. This ju stifies the application of the Huffman coding to the magnitude of nonzero transforrn 
coefficients and run-lengths of zeros. 
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FIGURE 4.16 Histogram of DCT coefficients in absolute amplitude. 
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4.4.2.5 Special Cod'ewords 

Two special code,v.ords were ,used by Chen a.nd Pratt ( 1984). One is called e11cl of block (EOB). 
Another is called ru11-le1zgth prefix. Once tl1e last nonzero DCT coefficients in ll1e zigzag is coded, 
EOB is appended, indic.ating the tem1ination of c·oding the block. Tl1is furtl1er sa\1es bi ts used in 
codi11g. A run-le11gtl1 prefix is used to discrin1i11ate tl1e run-lengtl1 codewords fron1 tl1e a111plitude 
c0dewords. 

4.4.2.6 Rate Bu,ffer Feedback a,nd Equalization 

As sl10,vn in Figure 4.10, a rate buffer accepts a variable-rate data input fron1 the encoding process 
ano provides a fixed-rate data output to t.he channel. The status of tl1e rate buffer is monitored and 
fed back to control the threshold and tl1e nonnaliz ation factor. In this fashion a one-pas adaptation 
is a.chieved. 

4.5 SOME ISSUES 

4.5.1 EFFECT OF TRANSM1s·s10N ERRORS 

In transfo1111 coding, each p.ixel in the rec0nstructed image relies on all transforn1 coefficients in 
the subimage \Vl1ere the pixel is located. Hence, a bit reve.rsal transn1ission error will spread. That 
is, an error in a transform coefficient \Vill lead to errors in all the pixels \.Vil11in tl1e SL1bimage. As 
discuss.ed in Section 4.2.3, tl1is is one of the· reasons the selected subin1age size car111ot be very 
large. Depending on ,vhich coefficient is in error, tl1e effect caused by a bit reversal error on tl1e 
reconstructed image va.ries. F0r instance, an error irl the DC or a low-frequency AC coe ffic ient n1ay 
be objeGtionable, while an error in the high-frequency coefficient may be less noticeab le. 

4.5.2 REC0NSTRUCTl0N ERROR SOURCES 

As discussed, three sources: truncation (discarding transform coefficients \Vith sn1all variances), 
quantization, and transmission contrib.ute to the reconstruction error. It is noted rhat j n TC tl1e 
transforin is applied block by block. Quantizatio,n and encoding of trar1sform coefnci ents are also 
conducted block\vise. At the receiver, reconstructed blocks are put together to forrn the whole 
reconstr ·ucted ·image. In the process, block artifacts are produced. Sometimes, even though it may 
not severely affect an objective assessment of the reconstructed image quality, block artifacts can 
be annoying to th·e HVS, especially when the Goding rate is low. 

To alleviate the blocking effect, several techniques have been proposed. One is to overlap blocks 
in .th.e source image. Another is 'to postfilter the reconstructed image along block boundari es. Tl1e 
selection of advanced transfo11ns is an addjtional possible method (Lim, 1990). 

In the block-overlapping method, when the blocks are finally organized to fo11n the recon­
structed image, each pixel in the overlapped regions takes an average value of all its reconstructed 
gray level values from multiple blocks. In this metl1od, extra bits are used for those pixels involved 
in the overlapped regions. For t:hjs reason, the overlapped region is usually only 011e pixe:1 wide. 

E>ue to the sharp transition aleng block boundaries, block artifacts are of high freque11cy in 
nature. Re.nee, low-pass filtering is nor111ally used in the post'filtering n1ethod. To avoid the blurring 
effecl caused by low-pass filtering on the nonboundary image area, low-pass postfiltering is only 
ap,plied to block boand 'aries. ·Unlike. Cl1e bloc.k-overlapping method, the postfilteri11·g method does 
net nee.d eJCtra bits. Moreover, it has been shown that the postfilterin.g method. can achieve better 
resulrs i"n combating hlGck artifacts (R'.eeve and Li,m, 1984; Ramamurthi and Gersho, l986). For 
these two reasons, the p0stfiltering metho~d has been .ad~pted by the international codin:g standards. 

IPR2021-00827 
Unified EX1008 Page 128



Transform Coding 103 

4.5.3 COMPARISON BETWEEN DPCM AND· TC 

As· mentioned at ll1e begin11ing of tl1e chapter, both diffe.rentia1 coding and transform c0ding utilize 
interpixel correlation ar1d are efficient coding techniques. Comparisons between these two tech­
niques have been reported (Habibi, l 971 b ). Take a look at tl1e techniques discussed in tl1e previous 
chapter a11d in tl1is cl1apter. We can see that differential coding is simpler than TC. Tl1is is because 
tl1e linear predictio11 a11d differencing involved in differenLial coding are simple.r tl1a,n the 2-D 
transform involved in TC. In terms of the rnemory requirernent a11d processing delay, differential 
coding sucl1 as DPCM is Sl1perjor to TC. '"fhat is, DPCM need_s less memory a:nd I1as less processing 
delay than TC. Tl1e design of the DPCM systern, however, is sensitive to in1age-to-im.age variation, 
and so is its perfor-n1ance. That is, a11 optimum D·PCM design is matched to the statistics of a certain 
image. When the statistics cl1ange, the performance of the DPCM will be affected. On the contrary, 
TC is les.s sensitive tc) the variatio11 in the image statistics. In general, the opti1num DPCM coding 
systen1 witl1 a third or higher order predictor perfonns better than TC wl1en the bit rate is about 
two to tl1ree bits per pixel for single images. When tl1e bit rate is below l\VO to three bits per pixel, 
TC is nor1n,1lly preferred. As a result, the international still imag.e coding standard JPEG is based 
on TC , whereas, in JPEG , DPCM is used for coding the DC coefficients o.f OCT, and inf or 1nation­
preserving differential coding is used for lossless still in1age coding. 

4.5.4 HYBRID CODING 

A method called hybrid transform/wavefonn coding, or $imply hybrid coding, was devised in order 
to con1bine the merits or the two n1etl1ods. By waveform coding, we mean coding techniques tl1at 
code the waveform of a ~ignal instead of tl1e transf armed signal. DPCM is a waveform coding 
technique. Hybrid coding combines TC a11d DPCM coding. That is, TC can be first appljed rowwise, 
followed by DPCM coding columnwise, or vice versa. In this way, the two techniques complement 
each other. Tl1at is, the hybrid coding tecl111ique simultaneously has TC's small sensitivity to variable 
image statistics and DPCM's simplicity in implementation. 

Worth mentio,ning is a successful hybi·id coding scl1e1ne in interframe coding: predictive coding 
along the tempora l don1ain. Specifically; it uses n1olion-compensated predictive coding. That is, 
the motion analy·zed fron1 successive .frames is used to nlore accurately predict a fran1e. The 
prediction error (in r.he 2-D spatial don1ain) is tra11sform coded. Tl1is l1ybrid coding scheme has 
been very effic.ient and was adopted by tl1e international video coding standards H.261, H.263, and 
MPEG 1, 2, and 4. 

4.6 SUMMARY 

In transforn1 co.ding, instead of tl1e original in1age or s_ome function o·f the. original in1age in the 
spatial and/or temporal domain, t11e image in tl1e transfom1 don1ai11 is qua~t1zed ~nd encoded. The 
main idea behind transform coding is that the tran·sformed version of tl1e image 1s less co~elated. 
Moreover, tl1e in1age energy is con1pacted into a srnall proper subset of tr~nsforn~ coefficie~ts. . 

The basis vector ( 1-D) and the b·t\Sis in1age (2-D) provide a meaningful int?rpretatton of. 
· ·ct } · · I · aoe to be a we1 ohte·d sum ot transfor111 coding. Tl1is type of interpretation cons1 ers t 1e or1g1na 1m, o . e: . 

b · · · · 1 I i:: ffi · · - cs each of wh1cl11s essent1al1y as1s vectors or basts rmages. Tl1e weJg 1ts are t 1e t.rans,om1 coe_ c1en ., · . 
· · · I · · d h · d' . o basis in1age. These we1°11ts a cor1·elalJon measure between tl1e or1g111a ·Image a_n t e c,orrespon 1110 · 0 

· · · l · · · l ·..nag· e Furthermore they. have are less correlated than the gray level values of pixels 10 t 1e ong1na . 1~·· · . . 
. . : . . . . S . 1 h . 1 . iances. They are retained and a great d.1spar1ty 10 v.ar1aric.e d1slr1button. 01ne we1g its ave arge var . d A 

· · . · d and coarse·Iy quantize ·. finely quantized. Some weights h.ave s111all e11ergy. Tl1ey are reta1ne . . ·ffi. • . . 
· · . , . d I h' . y a bigl1 ood-1ng e crency 1s vast 1najority of weiohts are i11sign1f1cant and d1scarde . n t is wa , . ·i:: ~ 

. . 
0 

. . ffi . ·ents have a very nonun1,01111 achieved 1n transforr11 coding. Because the quantized nonzero coe cl 

• 
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probability distribut1on, they can. be encoded by using efficient variab]e-length codes. In sun1n1ary, 
three factors: truncation (discarding a great 111ajority of Lransforn1 coefficients), adaptive quantiza­
fion, and variable-length coding contribute n1ainly to a higl1 coding eft1cie11cy of transforrn coding. 

Several linear, reversible, unitary transfon11s have been studied and utilized i11 tra11sform coding. 
They include the dis·crete Karl1unen-Loeve transfor1n (the Hotelling tr,lns:for111), tl1e discrete Fourier 
trailsfom1, the Walsh transfor111, the Hadamard transform, and the discrete cosine tr,1nsi:orrn. It is 
shown t11at the KLT is the optin1un1. The trans·f om1 coefficients ·of the KLT are uncorreJated. The 
I<LT can compact the most energy in the smallest fraction of transfo1-n1 coefficients. However, the 
KLT is image dependent . There is no fast algorithm to imple1nent it. This prohibit s the KLT from 
practical use in transfo1 in coding . While tl1e rest of the transforn1s perfol ,n c]osely, rl1e OCT appears 
to be the best. Its energy con1paction is very close to the optin1um KLT a11d it can b.e in1plement.ed 
using the fa~t Fourier transforn1. The DCT l1as been found to be efficient not only for still images 
coding but also for coding residual images (predictive error) in n1otion-compensated interfran1e 
predictive coding. These features make tl1e DCT the most \Videly used transform in image and 
video cdding. 

There are two ways to truncate transfo11n coefficients: zonal coding and threshold codj ng. In 
zonal codjng, a zone is predefined based on average statistics. The transform coefficients within 
the zone are retained, while those o.uts id.e th.e zone are discarded. In threshold coding, eacl1 transfo1 n1 
coefficient is compared with a threshold. Those coefficients larger tl1an the thresl1old are retained, 
while those smaller are discarded. Tl1reshold coding is adaptive to local statistics . A tvvo-pass 
procedure is usually taken. That is, the local statistics are measured or estin1.ated in the first pass. 
The truncation takes place in the second pass. The addresses of the retained coefficients need to 
be sent to the rec.eiver as overhead side info11nation. 

A one-step adaptive framework of transform coding has evolved as a result of the tremendous 
research efforts in image coding. It has become a base of the inlematjona] still image coding 
standard JPEG. Its fundamental components include the DCT transforrn, thresholding and adaptive 
quantizatio·n of transfor111 coefficients, zigzag scan, Huff man co.ding of the magnitude of Lhe nonzero 
DCT coefficients and run-length of zeros in the zigzag scan, the codeword of EOB , and rate buffer 
feedback control. 

The threshold and the no11nalization. factor are controlled by rate buffer feedback. Si nee the 
threshold decides how many transfor1n coefficients are retained and the nor111alization factor is 
actually the quantization step size, the rate buffer has direct impact on the bit rate of the transfo1111 
coding system. Selection of quantization steps takes the energy compaction of the DCT and the 
characteristics of the HVS into consideration. That is. it uses not only statistical redundancy, but 
also psychovisual redundancy to enhance coding efficiency. 

After thresholding, no1111alization and roundoff are applied to the DCT transform coefficients 
in a block; a great majority of transfor111 coefficients are set to zero. A zigzag scan can co·nvert the 
2-D array of transfo1m C·oefficients into a 1-D sequence. The number of consecutive zero-valued 
coefficients in the 1-D sequence is referred to as the run-length of zeros and is used to provide 
address infor111ation ,of nonzero DCT coefficients·. Both the magnitude of nonzero coe:fficients and 
run-length info1mation need to be coded. Statistical analysis has demonstrated that a small mag­
nitude and short run-length are dominant. Therefore, efficient lossless entropy coding methods such 
as Huffm,an coding and arithmetic coding (the foc·us of the next ch:apter) can be applied to magnitude 
and tun-length. 

In a reconstructed subimage, there are three types of errors involved: truncation error (some 
transfonn eoeffieients have been .set to zero), quantization error, and transmission error. In a broad 
sens:e, the, truncation can be viewed as a part <>'f the quantization. That is, these truncated coefficients 
are .quantized to ze.ro. The transmission error in terms of b:it reversal will affect the whole recon­
struetee subimage .. Tfiis is bec,ause, in the inverse. transfor111 (such as the inverse DCT), each 
tlian·sfo11n coeffieient makes a conyri:ibution. . '-
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Irt reconstructing the origjnal in1age all the subimages are organized to for,11 the whole image. 
Tl1erefore the independent processi11g of individual subim.ages causes block artifacts. Though they 
may not severely affect lhe object ive assessment of reconstructed image quality, block artifacts can 
be annoying, especially in low bit rate image coding. Block overlappling and postfiltering are two 
effective ways to alleviate block artifacts. In the former, neighboring blocks are purposely over­
lapped by one pixel . In reconstructing the image, those pixels that have been coded more than once 
take a11 average of the mulliple decoded values. Extra bits are used. In the latter technique , a Jow­
pass filter is applied along boundaries of blocks. No extra bits are required in the proc·ess and the 
effect of combating block artifacts is better than with tl1e former technique. 

The select ion of subin1age size is an in1portant issue in the in1plem·entation of transfor1n coding. 
In general, a large size will remove more interpixel redundancy. But it has been shown that the 
pixel correlation becomes insignificant when the distance of pixels exceeds 20. On the other hand, 
a large size is not suitable for adaptc\tion to local statistics, while adaptation is required in handling 
nonsrationary images. A large size also makes tl1e effect of a transmission error spread more widely. 
For these reaso 11s, subimage size should not be large. In motion-compensated predictive interframe 
coding, motion estin1ation is noc1nally carried out in sizes of 16 x 16 or 8 x 8. To be compatible, 
the subin1age si_ze in transfonn coding is no11r1ally chosen as 8 x 8. 

Both predictive codings, say, DPCM and TC, utilize interpjxel correlation and are efficient 
coding scl1emes. Con1pared with TC, DPCM is simpler in coh1putation. It needs less storage and 
has less processi ng delay. But it is more sensitive to in1age-to-in1age variation. On the other hand, 
TC provides higher adaptation to statistical variation. TC is capable of removing more interpixel 
co1Telation, thus providing l1igher coding efficiency. Traditionally, predictiv·e coding is preferred if 
the bit rate is in the range of two to three bits per pixel, while TC is preferred when bit rate is 
belovv two to three bits per pixel. However, the situation changes. TC becomes the core technology 
in image and video coding. Many special VLSI cl1ips a.re designed and n1anufactured for reducing 
computational comp]exi ty. Consequently, predictive coding sucl1 as DPCM is_ only used in some 
very sirnple applications . 

In the context of interframe coding, 3-D (two spatial dimensions and one temporal dimension) 
transform codi11g has not found wide application in practice due to the complexity in computation 
and storage. Hybrid transfer rn/wavef orm coding has proven to be very efficient in inter frame coding . 
There, motion -compensated predictive coding is used a!o·ng tl1e temporal dimension, while trans­
forn1 cod ing is used Lo code the prediction error in two spatial dimension s. 

4.7 EXERCISES 

4-1. Consider the following eigl1t points in a 3-D coordinate system: (0,0,0)T, (1 ,O,O)T, (0,1 ,O)T, 
(0,0,]) ·r, (0, J, J) r, ( 1,0, I) r, (I , 1,0) r, (I, I , 1) 7. Fir1d tl1e mean vector and covariance matrix 
using Equations 4.12 and 4.] 3. 

4-2. For N = 4, find the basis images of the OFT', lu.v when (a) u = 0, v ~ 0; (b) u = 1,. v = 
O; (c) u = 2, v = 2; (d) u = 3, v = 2. Use botl1 metl1ods discussed in the text; i.e., tl1e 
method with basis in1age a11d tl1e n1etl1od witl1 basis vectors. 

4-3. For N = 4, find the basis images of the ordered discrete Hadamard transfor1n \Vh-en (a) ;u = 
0, v = 2; (b) u = J, v = 3; (c) u = 2, v = 3; (d) u = 3, v = 3. Verify your results by 
con1paring them with Figure 4.5. 

4-4. Repeat the previous proble1n for the DWT, and \1e1·ify your results by con1paring them· 

with Figure 4.4. 
4-5. Repeat problem 4-3 for the DCT and N = 4. 
4-6. When N = 8, draw the transforn1 matrix F for the DWT, DHT, the order DHT, DFI', a11d 

DCT. 

• 
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4-7. The n1atrix fom1 of forward and inverse 2-0 symn1etric image transfo11,11s are ex presse d 
in rexts such ~rs (Jayant and Noll , 19 84) as T = FGFT and G = IT/T, whicl1 are diffe rent 
from Equation s 4.2·8 and 4.29. Can you explain this discrepancy? 

4-8~ Derive Equation 4.64 . (Hint : use the cor1cept of basis vectors and the orthogo nality of 
basis vectors.) 

4-9. Justify that the no1111alization factor is the quanti zation step. 
4-10. The transfonn used in TC has two functions: decorrelation and ene rgy con1pactio n. Does 

decorrelation autpmatic ally lead to energy compaction? Con1ment. 
4-11. Using your own words, explain the main idea behind transform cod ing. 
4-12. Read tl1e techniques by Chen and Pratt presented in Sectio n 4.4.2. Con1pare them with 

JPEG discu ssed in. Chapt er 7. Comn1ent on the si111ilarity and dissin1ilarity betwe en then,. 
4-13. Ho\.v is one-pa ss adaptation to local statistics in the Chen and Pratt algorithm achieved? 
4-14. Explain why the DCT is superior to the DFf in terms of e11ergy compaction. 
4-15. Why is the subimage size of 8 x 8 widely used? 
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Recall tl1e block diagra,11 of encoders shown in fjgure 2.3. There are tl1ree stages that take place 
in an enco der: transfor1nation, qL1antization, and code'vvord assignment. Quantization was discussed 
i11 Cl1apler 2. Differe 11tial codin.g and trc1nsfon11 codin·g using two different transformation compo­
nents were cove red i11 Chapte rs 3 and 4, respectively. In differential coding it is 1l1e difference 
signal that is quantiz ed ,1nd encoded, while i11 transfo1111 coding it is the transformed signal that is 
quantized ar1d encodecl. In this cl1apter ar1d the next chapter, we discuss several codeword assignment 
(encod ing) tecl1niques. fn tl1is cl1apter we cover two types of variable-lengtl1 coding: Huff1nan 
cod ing and aritl1metic coding . 

First we introduce son1e fundame.ntal concepts of encoding. After tl1at, the rules that 111ust be 
obeyed by all optin1um and instantaneous codes are discussed. Based on these rules, the Huffman 
coding algoritl1n1 is presented. A modified version of the Huffman codi·ng algorithn1 is introduced as 
an efficient way to dramatically reduce codebook 1nemory while keeping almost the same optimality. 

· Tl1e promising arithmetic coding algorithm, which is quite different from Huffman coding, is 
anot11er focus of the cl1ctpler. While Huffman coding i$ a block-01·ie11,ted coding tecl1n,ique, aritl1.metic 
codi 11g is a st,·ea,11.-orierited coding tecl1nique. Witl1 in1provements in implementation , arithn1etic 
coding has gained increasing popularity. Botl1 Huffman coding and arithmetic coding are included in 
tl1e international still in1age coding standard JPEG (Joint Photographic [image] Experts Grou1J coding). 
The adaptive aritl1metic coding algorithn1s l1ave been adopted by the international bi level in1age coding 
standard JBIG (Joint Bi-level In1age experts Group coding). Note tl1at the material presented in this 
chapter can be viewed as a continuation of the i11formation theory results presented in Cl1apter ·1. 

5.1 SOME FUNDAMENTAL RESU.LTS 

Prior to presenting Huffman coding and arithmetic coding, we first provide some fundamental 
concepts and re.suits as necessa ry background. 

5.1.1 CODING AN INFORMATION SOURCE 

Consider an information source, represented by a soL11·ce alpl1c1bet S. 

(5.1) 

\Vhere s·;, i = 1. ,2, .. ,,11. are source s)1r1ibols. Note that the terms source symb,ol and in formation 
message are used interchangeably in the literature. In this book, however,. we would like to 
distinguish between tl1en1. That is, an information n1essage can be a source symbol, or a combination 
of source symbols. We denote code alp/1abet by A and 

(5.2) 

where a , 1· = 1 2 ... ,. are code sy111bols. A 111.essage code is a sequence of code syn1bols tl1at 
J' I ' 1 . 

represents a given information message; In the simplest case, a 1nessage consists of only a source 
syntoo1. Encoding is then a procedure to assign a codewot"CI to tl1e source S,ymbol. N~n1ely, 
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(5 .3) 

\Vl1ere, the codeword A; is a string of k code symbols assigned to the source symbol s;. Tl1e term 
message ensemble is defined as the entire set of messages. A code, also known as an ensemble 
code, is defined as a mapping of all the possible sequences of syn1bols of S (message ensemble) 
into the sequences of symbols in A. 

Note that in binary coding, the number of code ~yn1bols r is equal to 2, since there are only 
two code symbols available: the binary digits ' 'O'' and '' l '' . Two examples are give11 below to 
illustrate the above concepts. 

Example 5.1 
Consider an English article an.d the ASCII code. Refer to Table 5.1. In this co11text., the source 
alphabet consists of all the E9glish letters in both lower and upper cases and all the punctuation 
marks. The code alphabet consists of the bi·nary l and 0. There are a total ot· 128 7-bit binary 

. 
codewords. From Table 5.1, we see that the codeword assigned to the capital letter A is I 000001. 
That is, A is a source symbol, while 1000001 is its codeword. 

Example 5.2 
Table 5.2 lists what is known as the (5,2) code. It is a linear block code. In tl1is example, the source 
alphabet consists of the four (22) source symbols listed in the left column ot~ the table: 00, 0 l, 10, 
and 11. Th.e code alphabet consists of the binary I and 0. There are four codewords listed in the 
rig.ht column of the table. From the table, we see that the code assigns a 5-bit codeword to each 
source symbol. Specifically, the c0deword of the source symbol 00 is 00000. The source sym·bol 
Olis encoded as 10100; 01111 is the ,codeword assigned to 10. The symbol l l is mapped to 11011. 

s.1.2 soME DESIRED CHARACTER1s1,cs 

To be practical in use, codes need to have some desirable characteristics (Abramson, J 963). Some 
o.f the characteristics are addressed. in this subsection. 

5.1.2.1 Bl'ock Code. 

A code i's s·aid to be a block code. if it ·maps each source symbol in S into a fixed codeword in A. 
Hence, the codes li_sted in the above tw·o examples are block codes. 

S.1."2.2 Uniquely Decodable Code 

A code is uniquely decodable if it can be unambiguously decoded. Obviously, a code has to be 
uniquely decodable if it .is to be of use. 

Example 5.3 
Table 5.3 specifies ~ code. Obviously it is not uniquely decodable sinGe if a, binary string ' '00'' is 
received we· do not know which of the following two source symbols has be·en sent out: s 1 or s3 • 

Nonsingular Code 
A block code is nonsingular if all the c.ouewords are distinct (see Table 5.4). 

Example 5.4 
't'ab·le S.4 gives a n,onsingular c0.de ·s1nce all four eo.dewords are distinct. If a code is not a nonsingular 
code, i.e., at leas.t two codewords are identical, then the code is not unique'ly decodable . . Notice, 
however-~ that a nonsingular code. does not guarantee unique .cleco.dability. The cod.e .shown in 
'f.able 5~4 is such an example in that it is nQnsingulat while it, is not uniquely decodable .. It is not 
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TABLE 5.1 
Seven-Bit American Standard Code for Information Interchange (ASCII ) 

. 

Bits 
5 0 I 0 1 0 I 0 I 
6 0 0 I I 0 0 l I 

I 2 3 4 7 0 0 .0 0 I I I J 
0 0 0 0 NUL OLE SP 0 @ p • p 
l 0 0 0 SOH o·c1 I 1 A Q . a q 
0 I 0 0 STX DC2 II 2 B I{ b r 
I I 0 0 ETX DC3 # 3 C s C s 
0 0 I 0 EOT DC4 $ 4 D T d ( 

I 0 I 0 ENQ NAK % 5 E u e u 

0 I I 0 ACK SYN & 6 F V f V 

l 1 I 0 BEL ETB I 7 G w g \V 
. 

0 0 0 I BS CAN ( 8 H X h X 

I 0 0 I HT EM ) 9 I y . 
I y 

0 I 0 I LF SUB * J z • • 
J z • 

l 1 0 I VT ESC + • K [ .k { • 

0 0 J I FF FS ' < L \ I I 
. 

I 0 I I CR GS - M ] n, } - -
0 I I I so RS > N /\ n -• 

I I I I SI us I ? 0 - 0 DEL . 

NUL Null. or all zeros DCl Dev,ice control I 

SOH Scart of heading DC2 Device control 2 

STX Start of texr DC3 Device control 3 

ETX End of text DC4 Device control 4 • 

EOT End of transmission NAK Negative ackno\vledgrnent 

ENQ Enquiry SYN Synchronous idle 

ACK Acknowledge ET.B End of transmission block 

BEL Bell, or alarm CAN Cancel 

BS Backspace EM End of n1ediurn 

HT Horizontal tabulation SUB Substitution 
-

LF Line feed ESC Escape 

VT Vertical tabulation FS File separator 

FF Form feed GS Group separator 

CR Carriage return RS Record separator 

so Shift out us Unit separator 

SJ Shift in SP Space 

OLE Data link escape DEL Delete 

TABLE 5.2 
A (5,2) Linear Block Code 

Source Symbol Codeword 

s, (0 0) 00000 

S2 (0 1) I O l O 0 

S3 ( I 0) 0 I I I I 

S4 ( I I) I I O I I 
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TABLE 5.3 
A Not Uniquely Decodable Cod·e 

Source Symbol Codeword 

TABLE 5.4 
A Nonsingular Code 

00 
I Q 
00 
I I 

Source Symbol Codeword 

S1 1 
S., I 1 

~ 

S3 0 0 
S4 0 I 

uniquely ·decodable becaus.e once the binary string '' 11 '' is received,. we do not know if the source 
symbols transmitted are. s 1 fo1lo\Ved by s1 or simply s2 . 

The ,z.th Extension of a Block Code 
The ,zth extension o.f a block code, which maps the source symbol s; into the codeword A;, is a 
block code that maps the sequences of source symbols s;1s,'2 · · · si

11 
into the sequences of codew·ords 

• 

A N·ecessary and Sufficient Condition of a Block Code's Unique Decodability 
A block code is u·niquely decodable i·f and only if the nth extension of the code is nonsingular for 
every finite 11. 

Example 5.5 
The second extensjon .of the nonsingular block code s.hown in Example 5.4 is listed in Table 5.5. 
Clearly, this second extension of the code is not a nonsingular co.de, since the entries s 1s2 and S1S 1 

are the same. Tnis confirms the nonunique decodability of the nonsingular code in Example 5.4. 

TABLE 5.5 
I .he-Second Extension of the Nonsingular Block Code in 
E*ample-5.4 

Source Symbot Co.dew·ord S01;.1rce S.ymbol Codeword 

S1 S1 l I S3 S1 0 0 l 
s1 s~ l I I S3 S2 0 0 I I 
S1 S3 J O 0 S3 S3 0000 
s. s. I O I S3 S4 0001 
S2 S1 I l I S4 S1 0 J 1 
S2 S2 1 l I I S4 S2 0 l I I 
S-2 S3 l I O 0 S4 S3 0 100 
S2 S,. l LO l S4 S4 0 I O I 
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TABLE 5.6 
Three Uniquely Decodable Codes 

Source Symbol Code 1 Code 2 Code 3 

S1 0 0 l I 
S, 0 l O I JO 

• 

S1 I O O O I I O 0 
S~ I I O O O I I O O 0 

5.1.2.3 Instantan eous Codes 

Definition of Instantaneous Codes 

111 

A uniquely decodable code js said to be .i11stantaneous if it is possible to decode each codeword 
in a code syn1bol sequence without kno'vving the succeeding codewords. 

Example 5.6 
Table 5.6 lists tl11·ee uniquely decodable codes. The first one is in fact a t'vvo-bit natural binary code. 
In decoding, we can imr11ediately tell which source syn1bols are transmitted since each code'vvord 
has the same length. In tl1e second code, code symbol '' l '' functions like a comn1a. Whenever we 
sec a '' I'', we know it is the end of the codeword. The tl1ird code is different t·ron1 the previous 
two codes in that if we. see a '' IO'' string we are not sure i.f it corresponds to s2 until \Ve see a 
succeed ing ''I''. Specifical ly, if the next code symbol is ''O'', we still cannot tel1 if it is s3 since the 
11ext one n1ay be ''O'' (l1e11ce s4) or '' I'' (hence s:i). In this example, tl1e next ''I'' belongs to tl1e 
succeed i11g codeword. Theret·ore we see Ll1at code 3 is uniquely decodable. It is not instantaneous, 
l1owever. 

Definition of the jth Prefix 
Assume a codeword A;= a;,a;1 ·. ·a,k. Then the sequences of code symbols cz;1c1,.2 · · ·a;j witl1 1 45:j 5= k 
is tl1e jtl1 order prefix of the codeword A;. 

Example 5.7 
If a codeword is 1100 I, it has Lhe follo'vving five prefixes: 1100 I, 1100, 110, I I, I. Tl1e first-order 
prefix is l , while the fifll1-order prefix is l l 001. 

A Necessary and Suffici ent Co.ndition of Being an Instantaneous Code 
A code is i11st,1ntaneous if a11d only if no codeword is a prefix of so1ne otl1er codeword. This 
condition is often referred to as tl1e pr·efi,r co 11ditio11. Hence, tl1e instantaneous code is also called 
the prefix condition code or son1etimes simp.ly tl1e prefix code. In many applicatio11s, we need a 
block code tl1at is nons.ingular, uniquely decodable, and instantaneous. 

5.1.2.4 Compact Code 

A uniquely decodable code is said to be compact if its a.verage lengtl1 is the n1ioi111u·m an1011g all 
otl1er uniquely decodable code~s based on tl1e s~1me source alphabet S and code alphabet A. A 
compact code is also referred to as a 111i11i111i,11i >·edi111da1ic)1 code, or an opti n1L111z code. 

Note tl1at tl1e avera·ge length of a code was defined in CI1apter l and is restated below. 

5.1.3 DISCRETE MEMORYLESS SOURCES 

This is tl1e s-implest model of an i11forrnatio11 source. In tl1is n1odel, tl1e sy111bols ge11erated by 'tl1e 
source are i11dependent of eacl, otl1er. Tl1at is, tl1e sou.roe is 1neinoryless or it l1as a zero men1ory. 

Consider tl1e inforn1atio11 source expressed in Equation 5.1 as a discrete n1emoryless ·S0t1rce. 
The occurrence probabilities of the source symbols can be denoted by /J(S 1) , p(s 2), • • ·, /J(s:,,,). The 
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lengths of the code\vords can be denoted 'by 11, 12 , • • ·, l,,;· The average lengtl1 of the code is then 
equal to 

171 

La,·g = Ll;p(s;) (5.4) 

i=l 

Recall Shannon's first theorem, i.e., the noiseless coding theorem describ·ed ir1 Chap ter l. The 
average length of the code is bounded below by tl1e entropy of the inforination sot1rce. Tl1e entropy 
of th¢ source S is defined as H(S) and 

,,, 

H(S)=-l:p(s ;) log2 p(s;) (5.5) 

i=l 

Recall th·at entropy is, the average amount of infor1nation contained in a source symbo l. In 
Ch.apter 1 the efficiency of a code, Tl, is defined as the ratio between the entropy and tl1e average 
length of the code. That is, Tl= H(S)IL

0
,.
8

. The redundancy of the code, l;, is defined as s = l -T). 

5 .. 1.4 EXTENSIONS OF A DtSCRETf MEMORYLESS SOURCE 

Instead of coding each sou.rce symbol in a discrete source alphabet, it is often useful to code blocks 
o.f symbols. It is, therefore, necessary to define the 11th extension of a discrete memoryless source. 

5.1.4.1 Definition 

Consider the zero ... memory source alphabet S defined in Equation 5.1. That is> S = {s 1, s2 , ···, sn,}. 
If 11 symbols are -grouped into a block, then there js a total of m!' blocks. Each block is considered 
as a new source symbol. These nin blocks thus fo1 i11 an infor111ation source alphabet, called the nth 
extension of the source S, which is denoted by Sn. 

5.1.4.2 Entropy 

Let each block be denoted by ~i and 

(5.6) 

·Then we have the following relation due to the memoryless assumption: 

n 

P(~;)= TIP(~u) (5.7) 

j=I 

Hence, the relationship between the entropy 0£ the source S and the entropy of its nth extension is 
as follows: 

(5.8) 

Example 5.8 
Table 5.7 lists a so.urce alphabet. Its second ,extension is listeo in Table 5.8 . 

• 
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TABLE 5.7 
A Discrete Memoryless Source Alphabet 

Source Symbol 

TABLE 5.8 

Occurrence Probability 

0.6 

0.4 

The Second Extension of the Source 
Alphabet Shown in Ta.hie 5.7 

Source Symbol Occurrence Probability 

s, SI 0.36 

S2 S2 0.24 

S2 S1 0.24 

S2 S2 0 .. 16 

The entropy of the. source and its second extension are calculated below. 

H(S) = -0 .6 -log2(0.6) - 0.4 -log2(0.4) z 0.97 

H( S2
) = -0 .36 -log

2
(0.36)- 2 · 0.24 · log2 (0.24)-0. l 6 · log2(0. l 6) z 1.94 

It is seen that H(S2) = 2H(S). 

5.1 .4.3 Noiseless Source Coding Theorem 

~13 

The noiseless source coding theorem. also known as s ·hannon 's first theorem, defining the minimum 
average codeword length per source pixel, was presented in CI1apter 1,. but without a mathematical 
expression. Here, we provide some mathematical expressions in order to give n1ore insight about 
the theorem. 

For a discrete zero-memo_ry i nfon11ation_ source S, the noiseless coding theorem can be expressed 
as 

H(S) <5: L < H(S) + 1 
t1l'8 

(5.9) 

That is, there exists a variable-length code whose average length is bounded below by the entropy 
of the source (that is encoded) and bounded above by the entropy plus I. Since the ,zth extension 
of the source alphabet , S", is itself a discrete 1nemoryless source, we can apply the above result to 
it. That is, 

H(S1
') ~ t' < H(S

1

') + l avg · 
(5.10) 

where ~ vg is the average codeword length of a variable-length code for the S11
• Since H(S 11

) = nH(S) · 

and L~,l·g = tzL" avg, we have 

l 
H(S) ~ L < H(S)+-

av8, ll 
(5.11) 
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Tl1erefore, \vhen coding blocks of 11 source sy111bols, tl1e 11oiseless source cod'ing tl1eory states Lhat 
for an arbitrary positive nun1ber 8, tl1ere is a variable-length code which sat isfies the 1·01lowing: 

11( S) $ La\·g < H(S) + £ (5 . I 2) 

as ,z is large enougl1. Thal is, the average number of bits used in coding per source syn1bol is 
bounded belo\v by the en.tropy of tl1e source and is bounded above by the su111 of the en tropy and 
an arbitrary positive number. To 1nake E arbitrarily small, i.e., to 1nake the average lengtl1 ot· tl1e 
code arbitrarily close to the entropy, we have to 111ake the block size 11 large enough. This version 
of tl1e noiseless coding theorem suggests a wa.y to n1ake tl1e average lengtl1 of a \1ariable-lengtl1 
code approacl ,1 the source entropy . It is kno\vn, ho\vever, that the l1igh coding co111plexi ty tl1at occurs 
\vl1en 11 approa.c.hes infir1ity makes i-n1plementation of the code impractical . 

5.2 HUFFMAN CODES 

Consjder the source alphabet defined in Equati on 5. 1. The 1nethod of encoding source syn1bols 
according . to their probabilities , suggested in (Sl1annon, 1948; Fano, 1949) , is not optin1um. It 
appreaches the optimum, ho\vever, when the block size 11 approact1es infinity. This results in a large 
stor-age requirement and high-con1putational complexity. In many cases, \Ve need a direct encoding 

• 

method that is optimum and instantaneous (hence uniquely decodable) for an infom1ation source 
with finite source symbols in -source alphabet S. Huffn1an code is the ·first such op1in1un1 code 
(Huffman, 1952), and is the technique n1ost frequently used at present . It can be used fo r r-ary 
enc0ding as ,. > 2. For notation al brevity, ·ho\vever, we d,iscuss only tl1e H'uffn1an coding used in 
the bihary case presented here. 

5.2.1 REQUIRED RULES FOR OPTIMUM INSTANTANEOUS CODES 

Let us rewrite Equation 5 .. 1 as follo\vs:-· 

• 

(5. 13) 

Without loss of generality, assume the occurrence probabilities of the source symbols are as 
follows: 

p(s,) ~ p(s2 ) ~ • • • ~ p(s,n_,) ~ p(s,
11

) (5 . 14) 

Since we are seeking the optimum code for S, the lengths of codewords .assigned to the source 
symbols should be 

l <i < ... <[ <l 
1 -2- - 1- · tn- n, (5.15) 

Based on the requireme ,nts of the optimum and ins.taritaneous .code, Huffman derived tl1e 
following rules (restrictions): 

l ' < ~ < .-.. < l = L (5.16) 
• 1Jl - 12 - - ,n-1 111 

Equations 5.14 and 5.1·6 imply that w·hen th·e source symbol otcurrenc _e-probabiliti ·es are 
arr-anged ill a noJ1inc_reasing orde.t,. the length' of rhe ,correspon ·ding codewords sho.uld be 
in a n·ondecreasing order. In other words, the codeword length of a more. probabJe source 

' 
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sy111 bol shot1ld not be lo11ger than tl1at of a Jess probable source syn1bol. Furtherrrio.re, 
tl1e lengLh of tl1e codewords assigr1ed to the two least probable source symb0Is should 
be tl1e same. 

2. The c_odewords of the two least probable source symbols st1ould be the same except for 
their last bits. 

3. Each possible sequence of le11gth L,,, - I bits must be used eitl1er as a codeword or must 
have 011e of its prefixes used as a codeword. 

Ri,le 1 ca,1 be ju stif·ied as follows. lf tl1e first part of the rule, i.e., !1 ~ !2 ~ ·•. ~ - l,,,_1 is violated, 
say, I, > L2 , the,1 we can exct1a11ge tl1e two codewords to s.horten the average l~ngth o·f tl1e code. 
This 111ea11s tl1e code is not optirnun1, \,Vl1ic.J1 contradicts tl1e assumption that the code is optimum . 
Hence it is in1possible. That is, the first part of Rule I has to be tl1e case. Now assume that the 
second part of the rule is \1iolated, i.e., l,,,_

1 
< l,,,. (Note that l,,,_

1 
> I," can be sl1own to be impossible 

by using tl1e same reaso ning we j t1st used in proving the first part of tl1e rule.) Since the code is 
instantaneou s, code\vord An,-i is not a prefix of codeword A

111
• Th.is in1plies that the last bit in the 

codeword A 11, .is redundant. ll can be ren1oved to reduce the average length of the code, in1plying 
tl1at tl1e code is not opti mu 111. This contradicts the assumption, thus proving Rule I. 

R11le 2 can be justified as follows. As in the above, A,,,_1 and A.111 are t.l1e codewords .of the two 
least probabl e source symbols. Assun1e that they do not l1ave the identical prefix of the order l,,, - 1. 
Since the code is optimum and instantaneous, codewords A,

11
_ 1 and A,,, cannot have prefixes of any 

order that are identical to other code'vvords. This implies that we can drop the last bits of A 111_ 1 and 
A,11 to achieve a lower average length. This contradicts the optimum code assumption. It proves that 
Rule 2 has lo be tl1e case. 

Rt,t[e 3 can be ju stified using a sin1ilar strategy to that used above. It· a possible sequence of 
length l,,, - I has not been used as ,1 codeword and any of its prefixes have not been used as 
codeword .s, ther1 it can be used in place of the codeword of the ,,zth source symbol, resulting in a 
reduction of tl1e average length La,·g· This is a con.tradiction to the optin1um code assumptio11 and 
it justifies the rule . · 

5.2.2 HUFFMAN COOING ALGORITHM 

Based on these tl1ree rules, we see tt1at tl1e two least probable source symbols l1ave codewords of 
equal length. These two code'vvords are identical except for tl1e l,tst bits, the binary O and 1, 
respectively. Therefore , these two source syn1bols can be combined to forn1 a single ne\V symbol. 
Its occurrence probability is tl1e sum of two source symbols, i.e., p(s,,,_,) + p(s111) . Its codeword is 
the common prefix of order /

111 
- I of the two code\vords assigned to s,,, and s,,,_1, respectively. The 

new set of source symbols thus generated is referred to as the first auxiliary source alphabet, which 
is one source sy111bol less than tl1e origi11al source alphabet. Ir1 the first auxiliary souree alpl1abet, 
\Ve can rearrange the source symbols accordi11g to a nonincreasing Qrder of -their occurrence 
probabilities . The same procedure car1 be applied to this newly created source alphabet. A b.inary 
0 and a binary I, respectively, are assig11ed to tl1e last bits of tl1e two least probable source sy-Ynbols 
in the alphabet. The second auxiliary source alphabet will again ha\1e one source sy1nbol less tl1an 
the first auxiliary source alphabet. The procedure continues. In some step, the resultant source 
alphabet will have only two source symbols. At this time, we con1bine tl1em to form a si11gle .source 
symbol with a probabi.lity of 1. Tl1e coding is tl1en complete. 

Let's go tl1rougl1 the following example to illustrate tl1e above Huffn1an a1goritl1r11. 

Example 5.9 
Consider a source alpl1abet whose six sol1rce syn1bols and their occur,renGe probabilities are listed 
in Table 5.9. Fjgure 5.1 den1onstrates the Huffman coding proeedure applied. In tl1e example, among 
the two least probable .source syn1bols encountered at each step \\ re assign binary O to the top 
symbol and binary 1 to the botton1 sy.rnbol. 
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