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Abstract. The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends
sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular
network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for
the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the
predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium
theory. The theory predictions are in good agreement with the experimental and numerical simulation
results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the
interface between elastic solids with randomly rough surfaces is studied. We present results for such high
contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized
fluid at the interface. The theoretical predictions are compared to experimental data for a simple model
system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber
plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device.
For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary
contact, to the theory prediction.

1 Introduction

The influence of surface roughness on fluid flow at the in-
terface between solids in stationary or sliding contact is a
topic of great importance both in nature and technology.
Technological applications include leakage of seals, mixed
lubrication, and removal of water from the tire-road foot-
print. In nature, fluid removal (squeeze-out) is important
for adhesion and grip between the tree frog or gecko adhe-
sive toe pads and the countersurface during raining, and
for cell adhesion.

Almost all surfaces in nature and most surfaces of
interest in tribology have roughness on many different
length scales, sometimes extending from atomic distances
(∼ 1 nm) to the macroscopic size of the system which
could be of order ∼ 1 cm. Often the roughness is fractal-
like so that when a small region is magnified (in general
with different magnification in the parallel and orthogonal
directions) it “looks the same” as the unmagnified surface.

Most objects produced in engineering have some par-
ticular macroscopic shape characterized by a radius of

a e-mail: b.persson@fz-juelich.de

curvature (which may vary over the surface of the solid)
e.g., the radius R of a cylinder in a combustion engine.
In this case the surface may appear perfectly smooth to
the naked eye, but at short enough length scale, in gen-
eral much smaller than R, the surface will exhibit strong
irregularities (surface roughness). The surface roughness
power spectrum C(q) of such a surface will exhibit a roll-
off wavelength λ0 � R (related to the roll-off wave vec-
tor q0 = 2π/λ0) and will appear smooth (except for the
macroscopic curvature R) on length scales much longer
than λ0. In this case, when studying the fluid flow be-
tween two macroscopic solids, one may homogenize the
microscopic fluid dynamics occurring at the interface, re-
sulting in effective fluid flow equations describing the av-
erage fluid flow on length scales much larger than λ0, and
which can be used to study, e.g., the lubrication of the
cylinder in an engine. This approach of eliminating or in-
tegrating out short length scale degrees of freedom to ob-
tain effective equations of motion which describe the long
distance (or slow) behavior is a very general and power-
ful concept often used in physics, and is employed in the
study presented below.
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In the context of fluid flow at the interface between
closely spaced solids with surface roughness, Patir and
Cheng [1, 2] have shown how the Navier-Stokes equations
of fluid dynamics can be reduced to effective equations
of motion involving locally averaged fluid pressure and
flow velocities. In the effective equation the so-called flow
factors occur, which are functions of the locally averaged
interfacial separation ū. The authors showed how the flow
factors can be determined by solving numerically the fluid
flow in small rectangular units with linear size of order
of (or larger than) the roll-off wavelength λ0 introduced
above, and by averaging over several realizations. How-
ever, with the present speed (and memory) limitations of
computers fully converged solutions using this approach
can only take into account roughness over two or at most
three decades in length scale. In addition, Patir and Cheng
did not include the long-range elastic deformations of the
solid walls in the analysis. Later studies have attempted
to include elastic deformation using asperity contact me-
chanics models as pioneered by Greenwood-Williamson
(GW) [3], but it is now known that this theory (and other
asperity contact models [4]) does not accurately describe
contact mechanics because of the neglect of the long-range
elastic coupling between the asperity contact regions [5,6].
In particular, the relation between the average interfacial
separation ū and the squeezing pressure p, which is very
important for the fluid flow problem, is not accurately de-
scribed by the GW model [7–9].

The paper by Patir and Cheng was followed by many
other studies of how to eliminate or integrate out the sur-
face roughness in fluid flow problems (see, e.g., the work
by Sahlin et al. [10]). Most of these theories involve solving
numerically the fluid flow in rectangular interfacial units
and, just as in the Patir and Cheng approach, cannot in-
clude roughness on more than ∼ 2 decades in length scale.
In addition, in some of the studies the measured rough-
ness topography must be “processed” in a non-trivial way
in order to obey periodic boundary conditions (which is
necessary for the Fast Fourier Transform method used in
some of these studies).

Tripp [11] has presented an analytical derivation of the
flow factors for the case where the separation between the
surfaces is so large that no direct solid-solid contact oc-
curs. He obtained the flow factors to first order in 〈h2〉/ū2,
where 〈h2〉 is the ensemble average of the square of the
roughness amplitude and ū is the average surface separa-
tion. The result of Tripp has recently been generalized to
include elastic deformations of the solids [12,13].

In this paper, the study of fluid squeeze-out from the
region between two elastic solids with randomly rough sur-
faces is presented. We focus on such high contact pres-
sures that after long enough contact time the area of real
contact percolates resulting in pockets of confined, pres-
surized, fluid at the interface. The Bruggeman effective
medium theory and the Persson contact mechanics theory
are employed to calculate the interfacial fluid conductivity
tensor. For anisotropic surface roughness the Bruggeman
effective medium theory predicts that the contact area
percolates when A/A0 = γ/(1+γ), where γ is the Peklenik

number (the ratio between the decay length of the height-
height correlation function along the two principle direc-
tions) and A/A0 is the relative contact area (A0 is the
nominal or apparent contact area). The main aim of the
present work is to verify the theory predictions through
the comparison with the results of molecular dynamics
(MD) simulations and experiments. MD calculations have
been carried out both for isotropic and anisotropic surface
roughness, while the experiments consider only the sur-
faces with isotropic statistical properties (where γ = 1).
The paper outline is as follows. The theoretical approach
and its application to the fluid squeeze-out are described
in sects. 2–4 and 5, respectively. Sections 6 and 7 present
simulations and experiments. In sect. 8 we apply the the-
ory to the breakloose (or static) friction for prefillable sy-
ringes. The work is closed by the concluding sect. 9.

2 Anisotropic surface roughness

Many surfaces of practical importance have roughness
with isotropic statistical properties, e.g., sandblasted sur-
faces or surfaces coated with particles typically bound by a
resin to an otherwise flat surface, e.g., sandpaper surfaces.
However, some surfaces of engineering interest have sur-
face roughness with anisotropic statistical properties, e.g.,
surfaces which have been polished or grinded in one direc-
tion. The surface anisotropy is usually characterized by a
single number, the so-called Peklenik number γ, which is
the ratio between the decay length ξx and ξy of the height-
height correlation function 〈h(x, y)h(0, 0)〉 along the x-
and y-directions, respectively, i.e. γ = ξx/ξy. Here it has
been assumed that the x-axis is oriented along one of the
principal directions of the anisotropic surface roughness.

Let us define the 2×2 matrix (we use polar coordinates
so that the wave vector q = q(cosφ, sinφ)) [13]

D(q) =
∫

dφ C(q)qq/q2

∫
dφ C(q)

, (1)

where the surface roughness power spectrum [14]

C(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x, (2)

where 〈...〉 stands for ensemble average, and h(x) is the
height profile. For roughness with isotropic statistical
properties, C(q) will only depend on q = |q| and in this
case D(q) will be diagonal with D11 = D22 = 1/2.

We will assume most of the time that D(q) is indepen-
dent of q and in this case (1) is equivalent to

D =
∫

d2q C(q)qq/q2

∫
d2q C(q)

. (3)

In this case, in the coordinate system where D is diagonal
the flow conductivity matrix (defined below) σeff will be
diagonal too. Note that TrD = D11 + D22 = 1, and in
the coordinate system where D is diagonal we can write
D11 = 1/(1 + γ) and D22 = γ/(1 + γ), where γ = ξx/ξy
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is the Peklenik number. Note that D11(1/γ) = D22(γ).
If D(q) (see (1)) depends on q we may still define (in the
coordinate system where D(q) is diagonal) γ = −1+1/D11

as before, but the xy-coordinate system where D(q) is
diagonal may depend on q (in which case the rotation
angle, ψ(q), of the x-axis relative to some fixed axis, is
important information too, see ref. [13]). In this case γ
will depend on q and we will refer to γ(q) as the Peklenik
function (and ψ(q) as the Peklenik angle function). Note
that since D(q) is a symmetric tensor and since TrD =
1, the D-matrix has only two independent components.
Thus, it is fully defined by the Peklenik function γ(q) and
the Peklenik angle function ψ(q). In this paper we will
assume that γ(q) and ψ(q) are constant.

3 Fluid flow between solids with random
surface roughness

Consider two elastic solids with randomly rough surfaces.
Even if the solids are squeezed in contact, because of the
surface roughness there will in general be non-contact re-
gions at the interface and, if the squeezing force is not
too large, there will exist non-contact channels from one
side to the other side of the nominal contact region. We
consider now fluid flow at the interface between the solids.
We assume that the fluid is Newtonian and that the fluid
velocity field v(x, t) satisfies the Navier-Stokes equation

∂v
∂t

+ v · ∇v = −1
ρ
∇p + ν∇2v,

where ν = η/ρ is the kinetic viscosity and ρ is the mass
density. For simplicity we will also assume an incompress-
ible fluid so that

∇ · v = 0.

We assume that the non-linear term v · ∇v can be
neglected (this corresponds to small inertia and small
Reynolds number), which is usually the case in fluid flow
between narrowly spaced solid walls. For simplicity we as-
sume the lower solid to be rigid with a flat surface, while
the upper solid is elastic with a rough surface, see fig. 1.
We introduce a coordinate system xyz with the xy-plane
in the surface of the lower solid and the z-axis pointing to-
wards the upper solid. Consider now squeezing the solids
together in a fluid. Let u(x, y, t) be the separation between
the solid walls and assume that the slope |∇u| � 1. We
also assume that u/L � 1, where L is the linear size of the
nominal contact region. In this case one expects that the
fluid velocity varies slowly with the coordinates x and y as
compared to the variation in the orthogonal direction z.
Assuming also a slow time dependence, the Navier-Stokes
equation is reduced to

η
∂2v
∂z2

= ∇p. (4)

Here and in what follows v = (vx, vy), x = (x, y) and ∇ =
(∂x, ∂y) are two-dimensional vectors. Note that vz ≈ 0 and

Fig. 1. An elastic solid (block) with a rough surface is squeezed
(pressure p0) in a fluid against a rigid solid (substrate) with a
flat surface.

that p(x) is independent of z to a good approximation.
From (4) one can obtain the fluid flow vector

J = −u3(x)
12η

∇p. (5)

Assuming an incompressible fluid mass conservation de-
mands that

∂u(x, t)
∂t

+ ∇ · J = 0, (6)

where the interfacial separation u(x, t) is the volume of
fluid per unit area. In this last equation we have allowed
for a slow time dependence of u(x, t) as would be the case,
e.g., during fluid squeeze-out from the interfacial region
between two solids.

The fluid flow at the interface between contacting
solids with surface roughness on many length scales is
a very complex problem, in particular at high squeezing
pressures where a network of flow channels with rapidly
varying width and height may prevail at the interface.
This is illustrated in fig. 2, which shows the contact area
(black) between two elastic solids with randomly rough
surfaces. At high enough pressure the contact area will
percolate, which will have a drastic influence on the in-
terfacial fluid flow properties. Percolation corresponds to
the moment when the narrowest channel disappears as a
result of squeezing. It is also visible that for anisotropic
roughness percolation occurs later in the direction of the
roughness elongation (which is vertical in fig. 2).

Equations (5) and (6) describe the fluid flow at the
interface between contacting solids with rough surfaces.
One can show that after eliminating all the surface rough-
ness components, the fluid current (given by (5)) takes the
form

J̄ = −σeff∇p̄, (7)
where p̄ is the fluid pressure averaged over different real-
izations of the rough surface. The flow conductivity σeff(ū)
is in general (for anisotropic surface roughness) a 2×2 ma-
trix. The ensemble average of (6) gives

∂ū(x, t)
∂t

+ ∇ · J̄ = 0. (8)

Substituting (7) in (8) gives

∂ū(x, t)
∂t

= ∇ · (σeff∇p̄) . (9)
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Fig. 2. (Color online) A snapshot of the contact before per-
colation in the x-direction (which is horizontal) for anisotropic
roughness with Peklenik number 5/7. Red line indicates a fluid
flow stream line. It is visible that fluid is able to flow from the
left to the right part of the figure (or vice-versa) due to the
presence of a narrow channel at some region of the contact.
Inset presents the magnification of this region.

4 Fluid flow conductivity σeff

As was mentioned above, the fluid flow at the interface be-
tween contacting randomly rough surfaces requires taking
into account the presence of the network of many inter-
connected flow channels. In a macroscopic approach this
can be achieved through the use of the pressure flow fac-
tor. Here we have employed the 2D Bruggeman effective
medium theory [15–18] to calculate (approximately) the
pressure flow factor (see also appendix B).

For an anisotropic system, the effective medium flow
conductivity σeff is a 2 × 2 matrix. Let us introduce a xy
coordinate system and choose the x-axis along a principal
axis of the D-matrix. In this case we can consider σeff

as a scalar which within the Bruggeman effective medium
theory satisfies the relation:

1
σeff

=
∫

du P (u)
1 + γ

γσeff + σ(u)
, (10)

where P (u) is the probability distribution of interfacial
separations, and where

σ(u) =
u3

12η0
. (11)

Fluid flow along the y-axis is given by a similar equation
with γ replaced with 1/γ. The probability distribution
P (u) of interfacial separations has been derived in ref. [21].
Here we note that P (u) has a delta function at the origin
u = 0 with the weight determined by the area of real
contact:

P (u) =
A

A0
δ(u) + Pc(u), (12)
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Fig. 3. (Color online) The pressure flow factor φp as a function
of the average interfacial separation ū, for anisotropic surfaces
with the Peklenik numbers γ = 1/2, 1 and 2. In all cases the
angular average power spectrum is of the type shown in fig. 4
with H = 0.9 and the root-mean-square roughness hrms =
10 μm.

where Pc(u) is a continuous (finite) function of u. Substi-
tuting this in (10) gives

1
σeff

=
A

A0

1 + γ

γσeff
+

∫
du Pc(u)

1 + γ

γσeff + σ(u)
. (13)

This equation is easy to solve by iteration.
In fig. 3 the pressure flow factor φp = 12η0σeff/ū3 as

a function of the average interfacial separation ū is dis-
played for anisotropic surfaces with the Peklenik numbers
γ = 1/2, 1 and 2 (see also below). Note that φp = 0
for ū < ūc, where ūc is the average interfacial separation
where the area of real contact percolates in the direction
orthogonal to the fluid flow. In the Bruggeman effective
medium theory this occurs when the area of real contact
equals A/A0 = γ/(γ + 1). Thus for γ = 1/2, 1 and 2 the
contact area percolates (so that no fluid flow occurs along
the considered direction) when A/A0 = 1/3, 1/2 and 2/3,
respectively. This explains why φp vanishes at much larger
(average) interfacial separation (and hence smaller contact
area) for γ = 1/2 as compared to γ = 2.

In obtaining the results presented below we have used
the Persson contact mechanics theory for the contact area
A and the probability distribution P (u) (see refs. [19–21]).
This theory depends on the elastic energy Uel stored in the
asperity contact regions and in this paper we use the sim-
plest version for Uel (see ref. [5]), where the γ-parameter
(not the Peklenik number) = 1. Comparison of the theory
predictions with numerical simulations for small systems
have shown that γ ≈ 0.45 gives the best agreement be-
tween theory and the (numerical) experiments. However,
using γ = 0.45 (or γ �= 1 in general) results in much
longer computational time, with relatively small numeri-
cal changes as compared to using γ = 1.

For large (average) surface separation ū eqs. (5) and
(6) can be solved exactly to leading order in 〈h2〉/ū2

(where 〈h2〉 is the mean of the square of the surface rough-
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ness amplitude h(x, y), where we have assumed 〈h〉 =
0) [11,13]

φp = 1 +
3〈h2〉
ū2

(1 − 3D).

In appendix A we show that the Bruggeman effective
medium theory gives the same expression for φp to leading
order in 〈h2〉/ū2 if we identify the γ-parameter in the ef-
fective medium theory with the Peklenik γ defined by the
D-matrix (see sect. 2). This result shows that the parame-
ter γ in the effective medium theory, which was introduced
in a phenomenological way (as the ratio between the prin-
ciple axis of an elliptic inclusion) in the effective medium
theory (see ref. [13]), is indeed determined by the eigen-
values of the D-matrix as discussed in sect. 2. This is a
very important result and completes the theory for σeff

developed in ref. [13].

5 Fluid squeeze-out

Let us squeeze a rectangular rubber block (height d,
width (x-direction) 2a and infinite length (y-direction))
against a substrate in a fluid. Assume that we can ne-
glect the macroscopic deformations of the rubber block in
response to the (macroscopically) non-uniform fluid pres-
sure (which requires d � a) [22, 23]. In this case ū(x, t)
will only depend on time t. For this case from (9) we get

dū

dt
− ū3φp(ū)

12η

∂2p̄

∂x2
= 0.

It follows from this equation above that the fluid pressure
is parabolic

p̄(x, t) =
3
2
pfluid(t)

(

1 − x2

a2

)

,

where 2a is the width of the contact region (x-direction)
and pfluid(t) the average fluid pressure in the nominal con-
tact region. Combining the two equations above gives

dū

dt
= − ū3φp(ū)

4ηa2
pfluid(t). (14)

If p0 is the applied pressure acting on the top surface of
the block, we have

pfluid(t) = p0 − pcont(t), (15)

where pcont is the (locally, or ensemble averaged) asperity
contact pressure. If the pressure p0 is so small that for all
times ū 	 hrms, then in this case φp(ū) ≈ 1. For ū 	 hrms

we also have [7]

pcont ≈ βE∗exp
(

− ū

u0

)

, (16)

where E∗ = E/(1 − ν2) (here E is the Young’s modulus
and ν the Poisson ratio), and u0 = hrms/α. The parame-
ters α and β depend on the fractal properties of the rough
surface [7].

-34

-30

-26

-22

-18
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Fig. 4. (Color online) The logarithm (with 10 as basis) of
angular average power spectrum as a function of the logarithm
of the wave vector. For qr < q < q1, with the roll-off wave vector
qr = 104m−1 and the cut-off wave vector q1 = 108m−1, the
surface is self-affine fractal with the Hurst exponent H = 0.9.
The low wave vector cut-off q0 = 103m−1 and hrms = 10 μm.

At high enough squeezing pressures and after long
enough time, the interfacial separation will be smaller
than hrms, so that the asymptotic relation (16) will no
longer hold. In this case the relation pcont(ū) can be cal-
culated using the equations given in ref. [8]. Substituting
(15) in (14) and measuring pressure in unit of p0, sepa-
ration in unit of hrms and time in unit of the relaxation
time

τ =
4ηa2u0

h3
rmsp0

=
4ηa2

αh2
rmsp0

, (17)

one obtains

dū

dt
≈ −α−1φp(ū)ū3(1 − pcont), (18)

where α = hrms/u0. In order to study the squeeze-out over
a large time period, t0 < t < t1, it is convenient to write
t = t0e

μ (0 < μ < μ1 with μ1 = ln(t1/t0)). In this case
(18) takes the form

dū

dμ
≈ −α−1tφp(ū)ū3(1 − pcont). (19)

This equation, together with the relation pcont(ū), consti-
tutes two equations for two unknowns (ū and pcont) which
can be easily solved by numerical integration.

We have studied the influence of percolation on the
fluid squeeze-out for an elastic solid with randomly rough
surface squeezed against a rigid flat surface in a fluid with
the viscosity η = 12 Pa s. In most of the studies the rough
surface has the power spectrum shown in fig. 4 with the
root-mean-square roughness hrms = 10 μm and the large
wave vector cut-off q1 = 108 m−1. We also present some
results for another surface with q1 = 107 m−1. The elastic
block has rectangular shape with the width 2a = 1.84 cm
(x-direction) and infinite length (y-direction), and the
squeezing pressure p0 = 2 MPa. The rubber has the
Young’s modulus E = 3 MPa and Poisson ratio ν = 0.5.
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