e e ML=~ B

PATENT
Docket No.: 4428-4001

particular implementation of the invention, one or more of the aspects may be used together in
various permutations and/or combinations, with the understanding that different permutations
and/or combinations may be better suited for particular applications or have more or less benefits
or advantages than others.

The underlying scenario common to all these basic examples is that there is a hierarchical
arrangement to the possible choices that can be illustrated in a form of “tree” structure.

FIG. 1 is an example graph 100 representing a possible hierarchically arranged
transaction processing or decisional system suitable for use with the invention. The individual
boxes 102 - 120 are referred to as “nodes” and each represents a specific choice or option in the
hierarchy. For purposes described in more detail below, each node is arbitrarily uniquely
identified in some manner. In the example of FIG. 1, the individual nodes 102 - 120 are
numbered 1 through 10 starting from the top node 102 in the hicrarchy.

Each “node” is associated with exactly one verbal description, for example in the case of
an airline system, a verbal description relating to some aspect of the reservation process. Each
such description contains “key” words that are deemed to be of importance and other words that
can be disregarded. For example, one node may have the associated verbal description “Would
you like to make a reservation?” In this description, there is only one “key” word —
“reservation” deemed important, so all of the other words in the description can be ignored.

A level in the hierarchy below that one may be used to obtain further narrowing
information, for example, using the verbal description “Is the reservation for a domestic or
international flight?” In this description, the terms “domestic” and “international” are “key”

words. Similarly, the word “flight” could be a “key” word, for example, for a system that

728851 vl

214

o I R L L = R M R L

PATENT
Docket No.: 4428-4001

involves not only airline travel but also rail and/or cruise travel or it could be an “ignored” or
stop word for a purely airline related system because it has minimal meaning in that context.
Again, the other words can be ignored as well.

The unique identification of each node allows the creation of a list of all the key words
and their associated nodes so that, if a key word is duplicated in two or more nodes, it need only
be listed once. For example, a hierarchical tree related to “pens” might have nodes for ball-point
pens, fine point pens, medium point pens, fountain pens, felt-tip pens, quill pens, erasable pens,
etc. By using this approach, one could list the keyword “point” once, but associate it with each
of the nodes where that keyword appears by using the unique identifier for each node where the
term appears.

In this manner the keywords are obtained from the collection of available descriptions
found in the particular application in which the invention will be used. In addition, each
particular node where the keyword appears is associated with the keyword. Thus, with respect to
the pen application above, the keyword “point” might appear in nodes 2, 3, 6, 7, 13 and 15.
Similarly, the keyword “erasable’ might appear in nodes 3, 4, 5, 6 and 22. An index, as
described more fully below, associating these keywords with the nodes containing them is then
created, for example:

point: 2, 3,6, 7, 13,15
erasable: 3, 4, 5, 22

By making use of these associations the “tree’ can be negotiated by allowing presentation

of relevant verbal descriptions for the nodes associated with a term, irrespective of where in the

728851 vl

215

PATENT
Docket No.: 4428-4001

hierarchy they are, thereby causing a “jump” to a particular node without necessarily traversing
the tree in the rigid hierarchical manner.

Various examples will now be presented to illustrate certain concepts related to the
invention. It should be understood that while these examples are presented in the context of
things and likely experiences of ordinary people, the same approach can be applied to other
forms of transaction processing including navigating through hierarchically nested data files in a
computer system, pattern analysis or image processing, ctc. the term “transaction” as used herein
relating to traversal through a hierarchy to a goal, not mathematical calculation per se.

Morcover, the specific formats used and presented in these examples are purely for
illustration purposes. It should be understood that that other techniques for interrelating data,
such as hash tables, direct or indirect indexing, etc. can be substituted in a straightforward
manner. Thus, for example, the relationship between the word and a node could be configured
such that the location of the word in a list as the “n-th™ item could be used as an index into
another list containing the nodes correlated to the list. A similar approach could be used for the
thesaurus, the important aspect relative to the invention being the relationship among certain
words and the node(s) in which they occur and, where applicable, the relationship between
certain words and “synonyms” for those words, not the data structure or its form or format
whereby that information is kept or maintained.

Example 1

Example 1 illustrates, in simplified form, how an index is used to jump among nodes

with reference to FIG. 2. In this example, the hierarchical tree 200 represents a portion of a more

728851 vl

216

A B

PATENT
Docket No.: 4428-4001

complex tree specifically involving possible decision relating to fruit and a decision between two
specific types of fruits, an apple and an orange.

In prior art hierarchical trees, navigation of this graph 200 would necessarily involve
going through the “fruit” node 202 in order to reach the “apple” 204 or “orange™ 206 nodes. As
a result, assuming this simple tree was part of a larger tree for an on-line supermarket that
prompted the user for what they wanted to purchase, the exchange would be both rigid and time
consuming. For example, in response to a prompt “What do you want to purchase?” if the
response was anything other than “fruit” traversal to the “fruit” node 202 could not occur. At the
point in the tree that would lead to the “fruit” node 202, neither apple nor orange would be an
acceptable response.

In accordance with the invention, assuming the only relevant keywords for that portion of
the tree were “fruit”, “apple” and “orange”, an inverted index would be created that includes an
association of “Fruit” with the top node 202, “Apple” with the bottom left node 204, and
“Orange” with the bottom right node 206. As shown above, that association can be created using
node identifiers, in this example, the node identifiers 1A01, 1A02 and 1A03 are arbitrarily
assigned and used. Thus, the information can be stored in a file, for example, as follows:

Fruit, 1A01

Apple, 1A02

Orange, 1A03

Accordingly, to navigate the system 200, when a response to a verbal description is
provided by a user, possible keywords are identified in the response and used to search the index
and identify any node to which the response may be directed, irrespective of the hierarchy.

Thus, a user response of “an orange” to a verbal description located above the “fruit” node 202 in

10
728851 vl

217

wo T A

B Y R

e M e L

PATENT
Docket No.: 4428-4001

the hicrarchy, for example, “What would you like to buy today?”” would cause the system to
identify “orange” as a key word from the response, search the index, and directly identify node

1 A03 (206) as the node whose verbal description should be presented next, thereby avoiding the
need to traverse intervening nodes, for example, through the “fruit” node (202) 1A01, at all.
This illustrates an example of a simple jump according to the invention.

Example 2

Having illustrated a simple “node jump”™ a more complex (and likely) scenario can be
shown. In this example, the Example | graph of FIG. 2 applies, but relevant portion of the index
is as follows:

Fruit, 1A01

Apple, 1A02, 2F09

Orange, 1A03

As aresult, there are two nodes relevant to the keyword “apple” one being the node 204
in the portion of the graph shown in FIG. 2 and one in the node uniquely identified as 2F09
located somewhere else in the hierarchy (not shown).

In this example, a user response containing the keyword ““apple” would identify nodes
with identifiers 1 A02 and 2F09. In this case, and unlike the prior art, the verbal descriptions
from both nodes would be presented to the user, likely in alternative fashion. Thus, if the user
did not want an apple, they wanted apple cider, node 2F09 might be more appropriate because it
is part of the “drinks™ portion of the overall hierarchy.

Thus, presenting the user with the verbal description from both nodes would likely result
in a jump to the portion of the graph nearer to node 2F09 since it is closer to the user’s goal

thereby speeding up the process and avoiding potentially confusing or frustrating the user.

11
728851 vl

218

e AT T e i B

Ah

PATENT
Docket No.: 4428-4001

Example 3

While the verbal descriptions associated with various nodes will generally be chosen to
accurately represent the node, in accordance with certain variants of the invention, it is possible
to create a situation where a user response takes them away from their ultimate desired goal.
Nevertheless, by using the teachings of the present invention, the user can often still be brought
to their goal quicker than possible with the prior art because the user need not rigidly trace
through the hierarchy. This is accomplished by virtue of the “grouping” aspect inherent in some
implementations of the invention.

This example illustrates the “grouping’ aspect using a simplified graph 300 representing
a portion of an airline reservation system as shown in FIG. 3.

In particular, the graph of FIG.3 can be thought of as part of a very simple interactive
voice response (“IVR”) system.

As described above, each node is uniquely identified, for example, by the numbers 1
through 7 and the identified terms “Reservation”, “Domestic”, “International”, “Business Class”,
“Economy Class” are deemed the relevant keywords. Note, there is no requirement for a the
“keyword” to be a single word, in some implementations, keywords could be single words,
phrases of two or more words, or even some other form of information like a specific data
pattern.

Again, an inverted index is created as described above associating those keywords with
the nodes, in this case:

Reservation, 1

Domestic, 2
International, 3

12
728851 vl

219

b e I TR

PATENT
Docket No.: 4428-4001

Business Class, 4, 6
Economy Class, 5, 7

Assuming that the top node is assigned the number 1, its two child nodes (Domestic and
International) are assigned the numbers 2 and 3, and the grandchild nodes (i.e. at the lowest level
in the hierarchy) have been assigned numbers 4, 5, 6, and 7 taken from left to right cach node can
be uniquely located. Note that the last two entries in the inverted index are cach associated with
two nodes, 4 and 6 in the first case, and § and 7 in the second.

Using the above, the concept of grouping of nodes from different parts of the graph (i.c.
nodes that are not siblings or nodes that do not have a common parent) can be explained.

Presume that the response to a verbal description presented as an initial query of “What
do you want to do?”’ was “Make a business class reservation.” In this case there are two
keywords present, “reservation” and “business class™.

Depending upon the particular implementation, as noted previously, the verbal
descriptions associated with each identified node could be presented together or in sequence.
Alternatively, and as is the case here, a set of rules can be established, for example, such that if
an identified node is a sub-node of another identified node, only the verbal description of the
sub-node(s) is provided because of inherent redundancy. Thus, since both “business class”
nodes 310, 314 are sub-nodes of the “reservation” node 302, the verbal description associated
with the “reservations™ node can be suppressed if it can be determined that business class
necessarily implies reservations.

In this example, a search of the inverted index would identify nodes 4 and 6 (310, 314)

from different parts of the tree are associated with the keywords in the query, and thus the

13
728851 vl

220

A

S

PATENT
Docket No.: 4428-4001

system, in presenting the verbal descriptions from each, in effect, alters the tree structure and
groups these nodes in the result. Thus, the combination of result nodes presented depends upon
the user query or response, not that predetermined by the graph structure itself.

Of course, the goal would still not be reached because of the ambiguity caused by
“Business Class” being under both “Domestic™ and “International”. However, that ambiguity
can be handled by suitable wording of the following verbal descriptions and whether they are
combined or provided sequentially or by other nodes.

Example 4

A persistent and further drawback present in the prior art is the inability to operate if any
term other than the specific allowed terms are provided. Thus, in an IVR of the prior art,
providing anything other than the recognized term(s) will likely result in meaningless repeat of
the same inquiry by the IVR or an error.

Advantageously, the teachings of the present invention allow for construction of a more
flexible system than available in the prior art. Specifically, we can incorporate a thesaurus to
accommodate synonyms for the keywords.

Example 4 illustrates the addition of a simple thesaurus as an aspect of a system so that a
synonym of a keyword may also be used by the system to jump to the desired nodes in the graph.
Example 4 is discussed with reference to a portion 400 of an interactive television program
listing system as shown in FIG. 4.

Such a system implementing the invention will allow a user to speak to or interact with a

device to look for programs of his choice by time slot, genre, favorite actor or actress, etc.

14
728851 vl

221

i
A

S B T R

PATENT
Docket No.: 4428-4001

This example, as with the other examples above, use an inverted index, in this case one
where each node 402, 404, 406 is uniquely identified by a string of six characters, the portion of
which corresponding to FIG. 4 is shown as follows.

Programs; acgyct

Sitcoms; ifgnxh

Films; vhymos

Since a common synonym for “Films” is “Movies’ a thesaurus can be created associating
the two. Depending upon the particular implementation, thesaurus terms to be equated to the
keywords can be taken from a standard thesaurus or can be custom created for the particular
application. In addition, the equating of terms can be done in any of a myriad of different ways,
the exact implementation details of which however re irrelevant to the invention, but a few
representative examples of which however are contained herein for purposes of illustration.

In one example case, the equating can be done on a purely word basis. For example, a
file can be constructed such that one or more single word synonyms are directly associated with
an index word, for example as follows:

Movies, Flicks — Films

Alternatively, the synonyms can be equated with the node identifier(s) corresponding to
the index term, for example as follows:

Movies, Flicks — vnymos

In the former case, the system would still have to search the index after the thesaurus has
provided the proper index term(s). In the latter case, the thesaurus provides a direct link to the

respective node(s) so that re-searching is not required.

15
728851 vl

222

AT g A JE T

PATENT
Docket No.: 4428-4001

In the system of Example 4, a user who provides the input “Movies” would cause the
processing to occur as follows.

The system would search the inverted index of keywords and fail to locate “Movies™ as a
keyword. As a result, it would search the thesaurus and find that the word “Movies™ is a
synonym that can be correlated with a keyword. At this point, depending upon the particular
thesaurus, it would either return to the inverted index and search using the synonym keyword
“Films” and return the result as the node 406 identified by “vnymos”, or go directly to the node
406 identified by “vnymos’ based upon the thesaurus entry.

Of course, it 1s possible (and likely) that in actual usage a synonym will be associated
with more than one keyword. For example, “Comedies” may be associated with both the
keywords “Sitcoms” and “Films”, resulting in, for example, the following entry in a thesaurus:

Comedies — Sitcoms, Films

In this case, a search for “Comedies” would result in the system identifying that the
synonym was associated with nodes 404, 406 for both “Sitcoms” and “Films”, and it would
return both terms or node identifiers corresponding to the two keywords as the result.

Example 5

Advantageously, the thesaurus concept can be extended further so that an initially
unknown word (i.c. a word that is neither a keyword nor a thesaurus word) can be leamed by the
system and added to a thesaurus for future use.

This example is described with reference to FIG. 5 which is a portion 500 of a larger
system graph as part of a very simple “geographic information system’ found in some

automobiles, kiosks and elsewhere today. Such a system enables a user to, among other things,

16
728851 vl

223

LR e e i P B

PATENT
Docket No.: 4428-4001

identify and get information about different locations in an environment. For example,
information about particular types of restaurants in an area.

In this example, the inverted index for the portion 500 shown in FIG. 5 could look as
follows:

Restaurants, 1

Pizza, 2

Burgers, 3

Chinese, 4

A user issues the following query to the system “fast food” in order to find a quick meal.

The system’s search of both the index and thesaurus would result in the “term”, in this
case a phrase, not being found in either. In this case, it is an unknown phrase, and the system has
to learn the “meaning” of the term.

To do this, the system first offers the verbal description from the top level node(s) 502 to
the user — in this example, just “Restaurants”. The user presumably provides a positive response.
(Of course, in a real system, it is possible and likely there are more top level nodes than just one.
In that case, the user would be offered two or more of these nodes, and would have to select
“Restaurants” to match his intended request.)

Continuing on, once the user has responded affirmatively, the system moves down the
tree and offers the verbal description from each of the child nodes: “Pizza” (504), “Burgers”
(506), and “Chinese” (508). Presuming that the user picks “Pizza”, the transaction interaction
would look something like this:

User: Fast food

System: Restaurants?

17
728851 vl

224

T il T TR T

i LS

PATENT
Docket No.: 4428-4001

User: Yes

System: Pizza, Burgers, or Chinese?

User: Pizza

At this point, the system has “learned” for the time being that it can equate “fast food”
with “pizza” and can add “fast food” as a synonym to “pizza” in the thesaurus.

This user, who first used the unknown term “fast food”, had to trace a path down the tree.
However, now the system is able to associate “pizza” with *“fast food™ and create or add a
thesaurus entry to reflect this association, for example as follows:

Fast food — Pizza

Thus, the system has learned a meaning of the initially unknown term “fast food™ and has
added it to the thesaurus for future use.

As aresult, a subsequent uses of the same term “fast food” will enable the system to jump
directly to the “pizza” node 504.

Examplec 6

This example illustrates how additional meanings for an existing thesaurus term or phrase
can be learned by the system for future use, whether the existing thesaurus term or phrase was an
original thesaurus term or one previously learned with continuing reference to FIG. 5.

At this point, the inverted index is unchanged as:

Restaurants, 1

Pizza, 2

Burgers, 3

Chinese, 4

Additionally, presume the following entry now exists in the thesaurus.

18
728851 vl

225

S b O L N B

PATENT
Docket No.: 4428-4001

Fast food — Pizza

Suppose a new user now issues the query “fast food™ as above, but with “Burgers™ rather
than “Pizza” in mind.

Based upon the thesaurus, the system would go directly to the “Pizza” node. However,
the user will reject “Pizza”, having “burgers” in mind. By rejecting the “Pizza” node 504
description, the user indicates that the “Pizza” node 504 is not of interest. The system is
therefore configured with a further set of rules, in this case one in which the system goes up in
the hierarchy to a higher node, the top node 502 in this portion of the example, and provides the
verbal descriptions for the other nodes 502, 504, 506, 508 so as to cause a tracing down the tree.
This can be illustrated by the following “dialog™:

User: Fast food

System: Pizza?

User: No

System: Restaurants?

User: Yes

System: Pizza, Burgers, or Chinese?

User: Burgers

This time, although this user has had to trace through at least a portion of the path from a
higher-level node 502 of the tree 500, the system has learned yet another meaning for “fast
food”. It now adds this meaning to the earlier entry in the thesaurus, for example as:

Fast food — Pizza, Burgers

19
728851 v1

226

i B T T T i L

apsdt

PATENT

Docket No.: 4428-4001

It has now learned two meanings for future use. If a user were now to issue the query
“Fast food”, the system would respond with the verbal descriptions from the nodes 504, 506
corresponding to both Pizza and Burgers.

Thus, the system can keep learning new meanings of terms based on the intended
meanings of users “‘deduced” from the interactions between users and the system.

Of course, the nature and extent to which the system will incorporate synonyms and/or
keywords in a continual learning process will not only depend upon its construction and rules,
but also on the quality of the original thesaurus and the quality of the initial inverted index. In
addition, where in the tree the system jumps if the user rejects the initial meaning(s) offered by
the system can be handled different ways in different implementations.

For example, the system can always jump to fixed ancestor(s) (either the top node or a
parent or some ancestor(s) at an intermediate point) or a fixed level (e.g. halfway from the top).
This approach has the advantage of being simple to implement, but it has the problem of
inflexibility because it may be relatively efficient for certain graphs and associated verbal
descriptions, but not for all. For example, if two or more nodes’ verbal descriptions are offered
and rejected, the relevant node selected would have to be common ancestor(s) of the offered
nodes. In other words, with reference to Example 6 which is part of a larger tree, going up to the
“Restaurants” node 502 would mean going to the parent of the “Pizza” node 504 rather than all
the way to the top in the larger tree containing the portion 500 shown.

A more {lexible alternative uses the information recorded in the thesaurus to find every
synonym for “pizza” in the thesaurus and collect all the other keywords associated with those

synonyms. Then the system would search the inverted index to identify all the nodes associated

20
728851 vl

227

PATENT
Docket No.: 4428-4001

with these other associated keywords and identify the most common ancestor of all of those
nodes and go to it. By using the information in the thesaurus in this way the system makes use
of known properties of the one meaning of “fast food”, which is “Pizza”, to construct an
intelligent hypothesis about where the other meanings of “fast food” might lie in the graph. This
allows the user to reach another meaning with the least effort and allows the system thereby to
learn what the new meaning of “fast food” is more efficiently.

Example 7

Of course, just as it may be desirable to create implementations to add meanings to the
thesaurus, it may be equally or more desirable to cause an existing meaning for a thesaurus word
to be dropped, for example, due to relative lack of use. This process is described with continuing
reference to FIG. 5 and the associated inverted index, particularly with respect to the thesaurus
entry resulting from the most recent example.

Fast food — Pizza, Burgers

In this example, presume that there have been several uses of the query “fast food” and
that the user(s) issuing these queries have almost always selected “Burgers”™ and almost never
“Pizza”.

In accordance with another implementation of the invention, the system is constructed to
track the frequency of use of a particular term in the thesaurus. Depending upon the particular
implementation, the tracking can be done for all entries in the thesaurus, for only those added as
part of the “learning” process, or for some specified combination thereof.

In addition, some specified criterion is used to determine when, and which terms, if any,

should be removed from the thesaurus. Depending upon the particular implementation the

21
728851 vl

228

SRt G

PATENT

Docket No.: 4428-4001

criterion can be based upon usage relative to time, usage of a particular term relative to some
other term(s), term usage relative to overall thesaurus usage, or simply elimination of all added
terms not used since the last purge.

Thus, presuming that the system has kept track of the frequency of use of different
meanings of “fast food”, and that “Pizza” does not meet the criterion for a sufficiently high
frequency, the meaning “Pizza” can be dropped as a synonym for “Fast food” and the entry (after
purging) would look as follows:

Fast food — Burgers

Thus, a further enhanced implementation can be constructed so the system is dynamically
updating the thesaurus, either adding n:leanings or dropping meanings for existing and/or initially
unknown words.

Example 8

A further advantage to the invention is that, in some implementations, it can be
configured so that, when there are multiple relevant nodes to be presented, an associated ranking
can be used to determine the type, method or order of presentation. For example, the ranking can
be based upon the frequency of use of particular nodes, which is tracked in these
implementations, so that the most frequently selected or used nodes are presented first, more
prominently, or in a particular manner.

For example, this can be illustrated by continuing from Example 7, where the thesaurus
entry was as follows:

Fast food — Pizza, Burgers

22
728851 vl

229

PATENT
Docket No.: 4428-4001

Under the assumption that the system has been tracking the frequency of usage of the “Pizza”
node and the “Burgers” node and each has been accessed an identical number of times. When a
user enters the query “Fast food”, as above, the system presents the user with both the “Pizza”
node 504 and the “Burgers” node 506, but because it tracks usage and the usage is the same, it
presents them in the order they are listed, i.e. “Pizza” and then “Burgers”. However, at this
point, the user’s selection will cause one entry to have a greater frequency of usage relative to the
other entry, for example a selection of “Burgers” will make it have a higher frequency of usage
and, accordingly, a higher ranking for the next instance of use.

Thus, the next time the system will be presenting both the “Pizza” and “Burgers” nodes
to a user, the “Burgers” node 506 will have the higher frequency of usage and, accordingly, will
be presented first, or more prominently, or in some other specified manner because of its
ranking. Ifthe frequency reverses with use so that the “Pizza” node 504 outranks “Burgers”
node 506, then the “Pizza” node 504 will supplant the “Burgers” node 506.

Example 9

A further variant of Example 8 allows the node rankings to be used to prune the nodes
themselves. In this variant, a criterion can be specified, typically zero usage over a long
specified period of time, that is used to remove an entire node. This is advantageously made
possible because of the system’s ability to “jump’” among nodes. Thus, it may occur that a node
within the tree is never accessed, but a child node of that node is. In some variants therefore,
when this state exists for a sufficiently long period of time, the system is constructed to delete
that node. It should be understood that, if handled properly, this process will not even affect the

“learning” process because, even if no user action ever directly causes the node to be presented,
> P

23
728851 vl

230

R 1 e S R RS P i S B

PATENT
Docket No.: 4428-4001

if the learning process causes the node to be presented the node’s access frequency will be non-
zero and it will not be “pruned”.

In addition, by tracking access frequency on a node basis, a qualitative evaluation of the
hierarchical system can be made and visualized. This makes it possible to review the overall
hierarchy after some period of time and periodically optimize it based upon the result instead of
relying purely upon the dynamic optimization that inherently and naturally flows from use of the
teachings of the invention.

Having now described various component aspects of different variants implementing the
invention, by way of the above examples, it should be understood that the “jumps” can occur
from any node to any node, i.¢. vertically and/or laterally and to another node that is higher,
lower or on the same “level” as the node from which the jump is made. All manner of vertical
and lateral jumps from multiple nodes to multiple nodes are possible.

In addition, it should be understood that in some applications (like document retrieval
systems) the verbal description from the identified node may be the one issued whereas, in others
(like an IVR system), the verbal descriptions for the children of the identified nodes may be what
is presented. Nevertheless, in both cases, the process as described above by way of example will
be the same or directly analogous.

Having described the various aspects individually a more commercially suitable example,
employing a combination of the above examples, can now be presented with reference to FIG. 6
which illustrates a simplified example of an “interactive voice response unit” (IVR) hierarchy
600 that might be used in the airline industry. Of course, a real menu tree used in an IVR may

have any number of nodes from several, up to a thousand, or more. For example, a tree with 4

24
728851 vl

231

Al A R

PATENT
Docket No.: 4428-4001

branches from each node and which has 5 levels uniformly would have 1365 nodes. As shown
in FIG. 6, the tree 600 is a hierarchical tree and consists of the following nodes and branches:

Initial start (node a0) 602

domestic flight arrival information (node al) 604

domestic reservations (node a2) 606

international flight arrival information (node a3) 608

international reservations (node a4) 610
The node 604 identified by al is a service node with pre-recorded information.

The node 606 has two child node a 2, first/business class (node a5) and economy (node a6).
The node 608 identified by a3 is service node with pre-recorded information.

The node identified as a4 has three child nodes identified as first class (node a7), business class
(node a8), and economy (node a9).

The nodes 612, 614, 616, 618, 620 identificd as a5, a6, a7, a8, a9 are all service nodes (i.c.
terminal nodes) where a respective customer service representative will interact with the caller.

Of course, a real system may also have a choice at the top level or at each level for a live
operator and may even have a choice to go back to the previous menu.

Even for such a simple example, in a traditional interactive voice response system, the
caller would have to listen to several choices and then traverse a path down to a service node.
Someone interested in business class reservations on a domestic flight would have to traverse the
path (a0, a2, a5) for example. This involves listening to multiple choices at each level of the tree
(e.g. first a prompt at a0, then four prompts offering al, a2, a3, and a4 at the next level, at which

the caller would choose a2, and finally two prompts offering a5 and a6, at which level the caller

25
728851 vl

232

S

PATENT
Docket No.: 4428-4001

would choose a5 and then wait for the operator) and then making a choice by pressing an
appropriate number on the telephone dial pad or alternatively saying the appropriate number. In
certain cases, he may make a mistake: he may choose international reservations when he is
interested in domestic reservations or something similar (simply by pressing the wrong number
on his touch-tone telephone or saying the wrong number). If he does, then he has no choice but
to disconnect the phone and redial the number (or if the system has a backtracking option, then
he can backtrack, but even here he has wasted valuable time).

In contrast, in accordance with a system implementing the invention, the caller would be
able to say what he was looking for (e.g. “I want to make a domestic business class reservation”)
and the system would identify and respond with the appropriate node 612 (e.g. a5 in this case or
the relevant customer service representative directly). In other words, it would enable the caller
to skip to the correct node(s) without having to trace through the entire path. If the user makes a
mistake, he could ask for something different wherever he finds himself in the tree, and skip
laterally or vertically to his preferred choice.

The system implementing the invention can further include an option that the entire
transaction (e.g. the making of the reservation) would be carried out through natural language
interactions with the system without the intervention of a human customer service representative.
In other words, all the details of his domestic reservation are obtained by the system and the
system updates a database accordingly and issues whatever commands are required (e.g. the
mailing of a ticket) to be carried out by some human representative later.

While it is true that some more advanced interactive voice response systems available

today allow for natural language interactions, they are highly constrained natural language

20
728851 vl

233

NN

PATENT
Docket No.: 4428-4001

interactions with relatively little or no intervention by a human operator. However, unlike with
systems using the invention, those systems still require direct path traversal through the hierarchy
(i.e. jumping to non-connected nodes is not contemplated or possible, let alone allowed).
Moreover, such systems still typically use a limited list of keywords, which the caller is required
to use to correctly traverse to the next connected node.

In contrast, variants of a system implemented in accordance with the invention can
incorporate an automatically generated or updated thesaurus, which greatly expands the range of
words or terms a caller can use. In these variants, the user is not restricted to parroting the highly
constrained script as required by other interactive voice response systems, nor is the user limited
to traversal to a connected node. In these more complex implementations of the invention, a
system can be constructed that is able to learn new words or terms that it may not have
understood the first time. For example, if a user asks for “coach class” and the system docs not
have the word “coach” or the phrase “coach class™ in its keyword list or in its current thesaurus,
then on this first occasion, it offers the user a traditional path down the conventional tree. But it
tracks what the user did, what node of the tree the user went to, and on this basis, it learns a new
response to “coach class”. The next time a caller (either the same person or a different person)
uscs the words “coach class” the system does not offer the traditional path as it did the first time,
but instead it offers a new set of nodes based on what it learned the first time. Thus, in such
implementations, the thesaurus is a dynamically changing entity, continually updating itself by
learning new words and terms and lecarning new “meanings” (i.c. new actions or responses) for

existing terms.

27
728851 vl

234

S et i sy T R 1

PATENT
Docket No.: 4428-4001

Implementations according to the invention can also allow novel groupings of nodes to
be presented to the caller based on his query. [fhe asks for “economy class” without specifying
whether he wants an international or domestic reservation, then the system would offer him the
nodes a6 and a9 (appropriately phrased in natural language), and allow him to further choose
whether he wants international or domestic reservations, something current systems do not offer.
In other words, the system can pick out the relevant responses from different branches of the tree

. and pool them together and offer them to the caller.

This functioning of the system, by which it is able to skip around laterally or vertically in
the tree, is enabled by the associating of natural language (i.e. human language) verbal
descriptions with each node, and then using thesc as an initial basis for the navigation,
augmented, in some variants, by a dynamically changing thesaurus that greatly expands its range
and comprehension.

Thus, based upon a conceptual understanding of the above examples, further details of
the process will now be presented.

The flowcharts of FIGS. 7 through 14 are illustrative of a functional example of the
genecral method of a more complex variant the invention as would be implemented in software
according to the flowcharts in this case for a newspaper subscription application. It should be
understood that particular details are provided in the description below merely for completeness
or because they are necessary or helpful for forming an understanding of the particular
implementation. They are not to be considered essential for implementing the invention.
Similarly, details unrelated to or unnecessary for understanding the invention have been omitted

to avoid confusion.

28
728851 vl

235

ol | e L R o e e e L B

PATENT
Docket No.: 4428-4001

An example implementation is described and contains two programs, a preparatory
program, illustrated in FIGS. 7-10 and a transaction or query processing program, illustrated in
FIGS. 11-14. In addition, a particular software implementation fairly corresponding to the
flowcharts of FIGS. 7 - 14 appears in the Appendix A that follows. The program contained
therein, is written in the “C” programming language for execution on any personal computer
having a processor, memory , input-output, etc, capabilities to run the particular application in its
intended environment.

Broadly, the first program process of FIGS. 7-10 constructs an inverted index and an
application-specific thesaurus and the second program process of FIGS. 11-14 uses those
constructs in a transaction processing system to interact with a user.

In the preparatory program of FIGS. 7A, 7B and 8-10, the shorthand names of files that
the program uses and the contents of the corresponding files are as follows. Notably, both the
process parts shown in FIG. 7A and 7B as well as the process part shown in FIG. 8 are indicated
as start points. This is because they are each independent of each other in that any of the three
could start before any other or two or more could be run concurrently. Thus, it should not be
presumed that they are mutually exclusive or any one is per se required for the invention.
Moreover, it should be understood that any one or more could have been undertaken at a
different time, by a different entity, or for a different application. Whether one or more of the
portions shown in FIG. 7A, FIG. 7B or FIG. 8 are the starting points, the starting point for actual
operational processing will be the same.

The file named ‘p’ contains a list of prompts or verbal descriptions in a hierarchical

relationship (i.e. they can be visualized or arranged in a tree-type graph).

29
728851 vl

236

PATENT
Docket No.: 4428-4001

The file named ‘w’ contains documents that are related to the prompts or verbal
descriptions in ‘p’. For example, ‘w’ could contain a training manual for customer service
personnel or a website document that is likely to contain material that is related to the queries
customers may have. This file is used to create a thesaurus.

The file named ‘I contains forms that are used to elicit relevant information from
customers. They have fields like ‘name’, for example, which would be used by the system to ask
and record a caller’s name.

The file named ‘x’ contains an index associating the forms in ‘f” with terminal prompts or
descriptions in ‘p’. Once a terminal prompt is reached in the process, the corresponding form
from the file ‘x’ is activated, and the system proceeds to elicit information from the user.

The file named ‘s’ contains a list of application-specific stop words, many of which are
high-occurrence and/or generally uninformative words like "a’, ‘an’, ‘the’ or “from’ or words
with a high-occurrence in for the particular application such that they have little meaning, for
example, ‘fly’ in an airline reservation system, ‘street’ in a navigation system, ‘file’ in a
computer search tool. These are eliminated from ‘p” and ‘w” and ‘f* before processing, because
they don’t carry any useful information for the application.

The file ‘t.cfg’ contains the thesaurus and inverted index that will be constructed by the
program. Of course, in alternative variants, the thesaurus could be a separate file from the
inverted index file and cither or both could be made up of multiple files.

The file ‘l.cfg’ is a file that is used to store newly learned words. As with the t.cfg’ file,
the ‘l.cfg’ file need not be a separate file, it could be part of ‘t.cfg’, or part of a separate thesaurus

and/or inverted index file. Similarly, the ‘l.cfg’ file could be made up of several files.

30
728851 vi

237

TR R . B T TR 2 1

()

PATENT
Docket No.: 4428-4001

With reference to FIGS. 7A, 7B and 8 through 10, the processes as carried out by the first
program are as follows. It bears noting that, although the process and its components are
presented by way of example in a particular order, unless a specific process component is
expressly stated to necessarily have to occur at a particular time or after some other particular
process component, or two process components must necessarily occur in sequence because one
relies upon completion of the other before it can start, no order should be implied or considered
required since the order in different implementations may be different and may vary based upon
the particular programmer, programming language and/or computer involved.

The files p, w, f, x, and s are each read and processed as follows. It should be understood
that the order of processing of file ‘p’ relative to file ‘f* or their respective sub-processing
components, although shown sequentially, could be done in a myriad of ways including doing
each of the reading extracting and storing concurrently or as a common operation (i.e. reading
for both is done before extracting for both, etc.).

Specifically, keywords arc extracted from p ___ and from f . These are initially just
all the words or terms contained in the prompts in p. The keywords are stored, for example, in a
temporary file.

Similarly, thesaurus words are extracted from w. These are initially just all the words or
terms in w. They are also stored, for example, in a temporary file,

Stop words are loaded from s (902) and stop words and duplicate words are climinated
from keywords and thesaurus words stored in the temporary files.

The thesaurus is constructed in accordance with FIGS. 9 and 10 described in overview as

follows:

31
728851 vl

238

o

PATENT
Docket No.: 4428-4001

a. Increment the file of thesaurus words with keywords from p and f remaining after
elimination of stop words.

b. Create a matrix of thesaurus words as row words (or words listed along the rows
of the matrix) against keywords as column words (or words listed along the
columns of the matrix).

c. Count the number of co-occurrences of each row word with each column word of
the matrix in the documents contained in w and fill in that number in the
corresponding matrix cell. (For example, a co-occurrence of a pair of words may
be defined as that pair occurring in the same paragraph. If w is made up of a
hundred paragraphs, then take each pair of row word and column word and count
the number of times this pair occurs within the space of each of the hundred
paragraphs in w. For each pair, the pair may co-occur zero or more times in a
paragraph and add up the number of co-occurrences in all the paragraphs in w.)

This process yields a matrix filled with nonnegative integers in ecach cell. It is then
possible to consider each row of numbers as a vector associated with the corresponding row
word. When viewed geometrically, these vectors, one for each row word, form angles with each
other in a multi-dimensional space. As a result, we can calculate the cosine of each such angle
by computing scalar products for the angles. Thus, we compute the cosines of the angles formed
by the vectors associated with each pair of row words.

The cosine values for all pairs of row words and column words are calculated and stored,

for example, in a new matrix.

32
728851 vl

239

o R

PATENT
Docket No.: 4428-4001

For each row word, the top ‘n’ cosine values are identified as are the corresponding
keywords. For example, in an airline system context, if there are two row words ‘coach’ and
‘economy’, where ‘economy’ is also a keyword (originally from p and/or f), and if the cosine
value of this pair or words is among the top ‘n’ cosines for the word ‘coach’, then ‘economy’ is
identified as a synonymous keyword for coach.

A new file can then be created, formatted for example, by listing thesaurus words on the
left (e.g. coach), and against each thesaurus word, its associated keywords (e.g. economy). This
is referred to as an inverted index (i.e. the thesaurus) of row words and their keyword synonyms.
Essentially, this file will now contain words like ‘coach’ coupled with its particular alternative
meanings, one of which may be ‘economy’. The user interactive transaction processing
program, the second program, will later use this thesaurus file when a caller uses a word like
‘coach’ in his query to determine the relevant keywords (like ‘economy’). This will enable the
program to find the relevant prompt with which to respond to the user.

Optionally, to provide the system with a set of prompts or verbal descriptions with which
to respond to a user, another inverted index is created using the files p, f, and x. This index will
contain a list of keywords from p and/or f associated with the prompts in which they occur.
Thus, when a user uses a synonym like ‘coach’ in a query, the second program will look up the
thesaurus, find the keywords corresponding to it (e.g. ‘economy’), and then look up the inverted
index to find the prompts corresponding to ‘ecconomy’ and other corresponding keywords.

Once both the inverted index and thesaurus files have been created, the file t.cfg can be

created from them for use by the second program.

33
728851 vl

240

T R ECR SRS R R e e L

PATENT
Docket No.: 4428-4001

One example of the program flow for a fairly generic transaction processing program
implementing one variant of the invention is illustrated in the flowcharts of FIGS. 11 through 14.
This example is configured to incorporate a collection of several of previously described simple
aspects. To demonstrate the functions of this program and how this program operates, for
context we use an example interaction that a calling customer might have with this example
system.

Following the example is the Appendix contains that program code essentially
implementing a variant of the invention largely corresponding to that of FIGS. 7 through 14.

The particular example we use for purposes of illustration is for an automated telephone
system for a newspaper, like the New York Times. For simplicity, every item in the flowchart is
not traced through since, an understanding of the process with respect to one path will be
sufficient to allow an understanding of the other paths.

The example begins with “I want to subscribe” uttered by the caller to the system. We
will assume that the first three words of the query (i.e. “I”, “want”, and “10”) are stop words and
the last word (i.e. “subscribe”) is neither a keyword nor a thesaurus word.

The process as carried out by the second program are as follows:

The files t.cfg, l.cfg, f, x, and s are read (1102).

The keywords, thesaurus words, prompts from t.cfg. are loaded (1104), as are the learned
words from l.cfg. Initially, l.cfg will be empty as the program has not yet learned any new
words. The forms and index of forms against prompts from f and x respectively are loaded, as

are stop words from s.

34
728851 vl

241

D

e [A

PATENT
Docket No.: 4428-4001

The program opens the interaction with a greeting (1106) and an elicitation of the first
query from the caller (1108). This might be: “Thank you for calling the New Herald. How may
we help you?”

The caller then utters his or her statement: “I want to subscribe”.

The stop words in the statement are first eliminated, leaving behind just the word
“subscribe”.

The statement is then processed in the following way:

The keywords and the thesaurus words remaining in the query are identified (1202, 1204)
by comparing with the list in t.cfg and l.cfg. As we have assumed that “subscribe” is neither, we
have none.

The prompts that best match the identified keywords and thesaurus words are selected
(1206). As there are no such words identified, there are no prompts selected.

The program arrives at a decision in the flowchart: are any nodes selected? (1208). Since
the answer is in the negative, the program will follow the branch and select the top level node
(1218). (Note: These top level prompts are the ones at the top level of the menu tree.) This
completes the prompt selection process. The process then proceeds to the second part of the
query process.

The process proceeds with another decision: has a single leaf prompt been selected?
(1210). Since the top level prompts are selected (of which there are more than one and also none

is a leaf prompt), a negative answer is the result.

T28BE51 vl

242

R e SRR B

PATENT
Docket No.: 4428-4001

These prompts or verbal descriptions are issued to the user (caller) and elicit another

response. Assume that the offered verbal descriptions are as follows:

System: Are you calling about subscriptions?

System: Is there a problem with your paper or delivery?

System: Would you like information about the New York Times website?
System: Are you calling about advertisements?

System: Are you calling about something else?

Assume further that the caller responds as follows:
User: I am calling about subscriptions.

As aresult, the program returns to selecting verbal descriptions by identifying the
keywords and the thesaurus words remaining in the query by comparing with the list in t.cfg and
l.cfg (1202, 1204). “Subscriptions™ is now synonymous with a keyword and it is identified.

The program will again select verbal description(s) that best match the identified
keywords and thesaurus words (1206).

For example, assume these are:

System: Would you like to order a subscription?
System: Would you like to give a gift subscription?
System: Would you like to change your address or change any other information?

The program then arrives at a decision branch (1208) in the flowchart: are any nodes
selected? Since the answer is affirmative, it follows that branch and exits the prompt selection

process and returns to the query process.

36
728851 vl

243

7% T R R T

PATENT
Docket No.: 4428-4001

This begins with another decision box: is a single leaf node selected? (1210). The answer
is no, since three prompts have been selected.

Next, these verbal descriptions are issued to the caller and the system will await his
response (1220). We assume the caller responds as follows:

User: I want to order a subscription

The program will again return through a loop to the prompt selection process (1202,
1204, 1206) where the program will identify the keywords and the thesaurus words remaining in
the query by comparing with the list in t.cfg and l.cfg. “Order” and “subscription” are now
identified.

Verbal descriptions are selected that best match the identified keywords and thesaurus
words. Now assume this is just the prompt “Would you like to order a subscription?” from the
three descriptions above.

The program will then arrive at a decision branch (1208) in the flowchart: are any nodes
selected? Since the answer is affirmative, it follows that branch and exits the prompt selection
process and returns to the query process to again arrive at a decision: has a single leaf node been
selected? (1210). This time the answer is yes, a single prompt has been reached, which is also a
leaf prompt, since it is at the bottom of the menu tree.

This is followed by another decision: any verbal description corresponding to the node?
(1212). The program checks t.cfg and finds the answer is no.

The branch then leads to yet another decision (1214): is a form for verbal description
available? The answer by checking the index x is the yes branch. This leads to the portion of the

flowchart of FIG. 13.

a7
728851 vl

244

wootl 2RSSR AL

by BB

PATENT
Docket No.: 4428-4001

The form is processed in the following way:

The first part is a decision: is it a response form? (1302). The answer is no.

The system then issues questions to the caller based on the form and accepts information
back (1304). The questions are of the form “Please tell us your name”, “Where do you live?”,
“Do you want an annual or half-yearly subscription?” etc. The caller provides the information to
the system.

It repeats the information the caller has given the system and asks if the information is
correct. Let us assume the user confirms that the information is correct.

The system then calls an external routine to store the information in a database. The
routine returns another form to the system (1306) and returns in a loop to the question: is it a
response form? (1302). Since the form contains questions about the payment, based on the type
and period of subscription selected by the caller, the answer will be negative.

The system then issues these questions to the caller and the caller provides the required
information (1304).

The system then repeats the information and gets a confirmation from the caller.

The information is passed to another routine (mentioned in the form) to update the
database. This routine (1306) then retumns a response form and again returns in the loop to the
question: is it a response form? (1302). This time the answer is yes. The system then issues a
response (1308) thanking the caller for the subscription, and exits this process returning to FIG.

11.

38
728851 v1

245

RS e e L I

PATENT
Docket No.: 4428-4001

The system now exits the query process as well since the caller’s query has been
completely processed and the corresponding actions taken by the system. It now returns to the
main part of the program.

The next process in the main part of the program is a question: is there an unknown word
in the caller’s query? (1112). The answer is yes, since the word “subscribe” in the initial query
was not known to the system. This invokes the portion of the flowchart of FIG. 14.

The system therefore has to learn this previously unknown word:

The learning process begins with a decision: is the word already in l.cfg? (1402). The
answer is no, since l.cfg is initially empty and the word has not been encountered before.

The corresponding “NO” branch is followed and the word is added to the list of learned
words (initially empty) with keywords from the final single leaf prompt that was selected (1404).

The system then records these changes in l.cfg (1408) and returns to the main part of the
program in FIG. 11. It has now learned the meaning of the initially unknown word “subscribe”.

Next, the program asks the caller if he wishes to continue (1114) (i.e. arc there any
further queries). We assume the answer is no and the system thanks the user and exits.

Now, having described the example traversal of one path through the second program
with reference to the flowchart, an example dialogue for the path traversal that has taken place is

presented so the complete transaction can now be understood.

Dialogue:

Caller: I want to subscribe

System: Are you calling about subscriptions?

System: Is there a problem with your paper or delivery?
39

728851 vl

246

System:
System:

System:

Caller:

System:
System:

System:

Caller:

System:

Caller:

System:

R R L L e R i L B

PATENT
Docket No.: 4428-4001

Would you like information about the New York Times website?

~ Are you calling about advertisements?

Are you calling about something else?

[am calling about subscriptions

Would you like to order a subscription?

Would you like to give a gift subscription?

Would you like to change your address or change any other information?
I want to order a subscription

Please tell us your name

Bertrand Russell

Where do you live?

The dialogue continues in this way with the system eliciting the required information

from the caller.

Having demonstrated traversal in a system where the system was constructed to learn

when an unknown word is used, what happens the second time a caller uses the same word

“subscribe” in a query after it has been learned by the system can now be demonstrated. This

demonstrates the power of including the optional feature of learning in the program.

In this case, the dialogue that occurs when a new caller uses the word “subscribe”

following the above is now presented.

Dialogue:

Caller:

System:

728851 vl

I want to subscribe

Please tell us your name

40

247

a tL ot I S e

i T L

PATENT
Docket No.: 4428-4001

Caller: J. L. Austin
System: Where do you live?

Thereafter, the process continues. Notably, the system has now learned the correct
response to the query “I want to subscribe”.

Other Variants

Having described several simple and more complex examples that make it possible to use
the invention, other variants can now be presented. Examples of such optional functions that can
be incorporated into other variants, individually or collectively, include:

a) creating the thesaurus by providing access to a collection of multiple documents
and determining synonymy based on sufficient similarity of meaning with the keywords as

measured by the frequency of co-occurrence of the keywords in the collection of documents;

b) identifying words in the user’s response by recording the response for future
learning;

c) parsing out of a response all non-stop word unknown terms or keywords;

d) identifying synonyms for all non-stop terms in the user’s response;

e) cycling between user and system responses until the user reaches a vertex (i.e.

verbal description) that enables him to carry out his goal and updating the thesaurus when the

goal vertex is reached by associating the recorded previously unknown words in the user’s

response with the keywords that are associated with the verbal description reached by the user;
) recording, when the goal vertex is reached, the pairs of synonyms in the user’s

responses and the keywords that are associated with the verbal description reached by the user;

41
728851 vl

248

RS e e

PATENT

Docket No.: 4428-4001

PR e i R Y B

g) removing associations between keywords and their synonyms from the thesaurus
that have not been accessed more than a specified amount of times within a specified period (this
can be based upon a parameter set in the system by the system’s administrator or can occur as
part of program maintenance or updates);

h) selecting the verbal descriptions that best meet the user’s goal as indicated by the
keywords and synonyms in the user’s response by identifying the keywords in the user’s
response and/or the keywords corresponding to synonyms in the user’s response and computing
a degree of match between each verbal description and the identified keywords, in accordance
with conventional linguistic processing techniques;

1) computing the degree of match between verbal descriptions and identified
keywords by utilizing the pairs of synonyms in user’s response and the keywords associated with
the verbal descriptions reached by users as previously recorded;

1) responding to the user on the basis of verbal descriptions selected by presenting
the user with verbal descriptions that best match the user’s previous response;

k) for “best match” variants, in the event that even the best matches have a low
degree of match, the best “n™ verbal descriptions are presented to the user (“n” being a number
representing a predetermined system parameter);

1) for “best match” variants, in the event that the best matches have a low degree of
match, the user is automatically connected to a human operator, when or if a human operator is

available;

42
728851 vl

249

PATENT
Docket No.: 4428-4001

m) for “*best match” variants in the event that the best matches have a low degree of
~match, the best “n” verbal descriptions are presented to the user, along with an option of being
connected to a human operator when or if a human operator is available;

n) presenting the user with those verbal descriptions that best match the user’s
previous response in order to elicit any information from the user that may be required to
accomplish the user’s goal;

0) recording information elicited from a user in a database for future use;

P) selecting multiple verticies in the graph structure that are not connected to a
previously selected vertex, based upon parameters associated with nodes correlated to keywords
and synonyms in a user’s response;

q) selecting a vertex in the graph structure in the same row as the previously selected
vertex based upon the keywords and synonyms in the user’s response; and/or

r) updating the thesaurus by adding words from a user’s response that are not in the
thesaurus.

Finally, it is to be understood that various variants of the invention including
representative embodiments have been presented to assist in understanding the invention. It
should be understood that they are not to be considered limitations on the invention as defined by
the claims, or limitations on equivalents to the claims. For instance, some of these variants are
mutually contradictory, in that they cannot be simultaneously present in a single embodiment.
Similarly, some advantages are applicable to one aspect of the invention, and inapplicable to
others. Thus, no particular features or advantages should be considered dispositive in

determining equivalence.

43
728851 vl

250

WENGY L S

PATENT
Docket No.: 4428-4001

It should therefore be understood that the above description is only representative of
illustrative embodiments. For the convenience of the reader, the above description has focused
on a representative sample of all possible embodiments, a sample that teaches the principles of
the invention. The description has not atiempted to exhaustively enumerate all possible
combinations or variations, for example, those arising out of the use of particular hardware or
software, or the vast number of different types of applications in which the invention can be
used. That alternate embodiments may not have been presented for a specific portion of the
invention, or that further undescribed alternate embodiments may be available for a portion of
the invention, is not to be considered a disclaimer of those alternate embodiments. One of
ordinary skill will appreciate that many of those undescribed embodiments incorporate the
minimum essential aspects of the invention and others incorporate one or more equivalent

aspects.
APPENDIX A

FILE IDENTIFICATION
Main Source Files
main.c, process.c, arraylib.c, stemlib.c, dialog.c, interactive.c, formlib.c
Header Files
globalvar.h, process.h, arraylib.h, forms.h
Make Files
Makefile
Parameter Files
t.ini, d.ini
Data Files
p.w,s, f,x,a
Configuration Files
t.cfg, l.cfg
Shell Script Files
acct_info, add_acct, chg_acct, get pymt, updt pymt, susp_deli, updt_acct, prefer

44
728851 vl

251

o g g
SR e)

PATENT
Docket No.: 4428-4001

MAIN SOURCE CODE (in C)
main.c: Main Program to process p and w to create the thesaurus
e s e ook ok ok ok e ok sk sk ok ko o s o ook ok ok skt ook ok o ok sk ok ok ok R R oKk ok Rk o ok KR R ok kR Rk Kok

SOURCE CODE DOCUMENTATION

sk o o ok ok ook ook ok ok ok ok o ok ok ok ko ok ok sk ok ok ok R oK R oK ok ok sk sk sk sk ok ook o e sk sk sk ok ok sksk sk ok ok ok sk ok o ok ok

finclude <stdio.h>
#include <string.h>
#include "process.h"
#include "arraylib.h"
tinclude "forms.h"

int numColumn = 0, numRow = 0 , numIndex = 0, numMenu;
int topValues =5 ;

char **rowTerms, **columnTerms, **prompts, **stopWords;
double **matrix, **cosine;

float phoneThreshold = 0.02, webThreshold = 0.0006;

mnt #*indexList, ¥**menulist, **thesaurus, **promptKeys;

int numStopWord = 0;

int numForms, numPF;

struct form **formlist;

char ***Fprompts, *wdoc, *pdoc, *sdoc, *fdoc, *xdoc, *cfg;

main(int arge, char *argv([]) {
int i, j;
;***

PRINT THESAURUS PROGRAM INFO

s s sk s sk s sk e e s sk s s sk ok o s sk o SRR R Rk R R R Rk kR Rk ok

/* if (arge 1=5) {
printf("Usage Instructions: t p w f x\n");
printf("Parses w for matrix row terms and p for matrix column terms.\n");
printf("*** Exiting, goodbye.\n");
exit(1);
xy

if (arge !=2) {
printf("Usage Instructions: t <ini-file=\n");

45
728851 vl

252

KT

PATENT
Docket No.: 4428-4001

printf("*** Exiting, goodbye.\n");
exit(1);

/38 s sk sk ok 3 ok o o s sk o ok ok ok o sk ok ok o ok e sk sk sk o e s e s sk sk sk sk ok o s s sk sk sk ok ok sk sk sk ok o sk sk ok skeske sk ok ok ok

OPEN INPUT FILES

S o s o s o o o ook ok ok o otk ok o ok sk ok ok ok s ks ok ok sk o ok o e ks s ok kR ok R Kok R oK Sk ok ok Kok |
readini(argv[1]);
loadStopWords(sdoc);
numPF = JoadFormsList(xdoc);
numForms = loadForms(fdoc);

[sk sk ok ok oSSk ok o oK R R oK KoK ok R SR s o s ok ok ok ok o8 3 ok ok ok ok ok s ok stk ok ok o ok ok kR oK

PREPARATION FOR PHONEDOC PARSING

#/

printf("\nReading files\n");
numColumn = processFile(pdoc, &columnTerms, phoneThreshold);
// printf("The document contains %d relevant terms.\n\n", numColumn);

/1 This routine will add the keywords from the Forms into ColumnTerms.
numColumn = addFormKeys(&columnTerms, numColumn);

// printf("The document contains %d relevant terms.\n\n", numColumn);

f*********************************#*****#*************************

PREPARATION FOR WEBDOC PARSING

stk skskof sk stk sk ook ok sk ok ok Ko s o ok R Kok Kk o koK Sk s ok ok sk sk otk sk sk ok ek kst sk ok skokok s ok

numRow = processFile(wdoc, &rowTerms, webThreshold);

/P ok o s ok sk ok e sk otk Rk ok ok sk ok ok e ke ok sk s st sk s sk st e ok sk ok e ke sk ok ke e s ok e s sk ke sk sk ke sk sk e sk ok sk sk ok

MERGE COLUMNTERMS & FINALTERMS INTO ROWTERMS

o o o ok o o o o o o o o sk St ook Sk Sk R e s et ok ok sk stk sk sk sk sk sk sk sk sk ok s okokok koK kR ok

numRow = mergeArray(&rowTerms, columnTerms, numRow, numColumn);
sortArray(rowTerms, numRow);

46
728851 vl

253

S

Docket No.:

PATENT
4428-4001

// printf("The document contains %d relevant terms.\n\n", numRow);
/7% 3Kk e ke e sk ok s e sk ot e o s o e sk oR o o sk e ok ok sk oK ok SR ok ok sk ok o e sk oR K ok ok S o sk K 3 ok oK sk ko ok ok o sk ok sk ok sk ok ke ok

MATRIX CONSTRUCTIONS

S oS ek o ko s o o s o 3 ks o R R FOR Soe SK s S ok st s ok ok ok Sk s sk K stk o o ok ok ok sk e ook ok

printf("loading prompts ...\n", numIndex);
numlIndex = loadPrompts(pdoc);
printf("processing words ...\n", numIndex);
createMatrix(wdoc);

numRow = eraseZeroes();

calcCosine();

filllndex();

// This function will add leaf prompts to the index keywords from Forms.
/! appendIndex(argv[3]);

createThesaurus();

// printf("created thesaurus .\n\n", numIndex);
printf("saving data ...\n");

saveData(cfg);

printf("done.\n");

readini(char * filenm)
{
FILE * fp;
char buf[80], key[80], value[80], comment[80];
it cnt;
if ((fp=fopen(filenm,"r"))==NULL)
{
perror(filenm);
exit(1);
}
while (fgets(buf,79,fp)!=NULL)
{
sscanf(buf,"%s %s %s" key,value, comment);
if (!strcmp(key, "pdoc"))
pdoc=strdup(valueg);
if (!strcmp(key, "wdoc"))
wdoc=strdup(value);
if (!stremp(key, "sdoc"))
sdoc=strdup(value);

47
728851 vl

254

A

PATENT

Docket No.: 4428-4001

if (!stremp(key, "fdoc™))
fdoc=strdup(value);
if (!strcmp(key, "xdoc"))
xdoc=strdup(value);
if (!stremp(key, "cfg"))
cfg=strdup(value);
if (!stremp(key, "pt"))
sscanf(buf,"%s %f %s" key,&phoneThreshold,value);
/fphoneThreshold=(float)atof(value);
if (!stremp(key, "wt"))
sscanf(buf,"%s %f %s" key,&webThreshold,value);
if (Istremp(key, "tv""))
topValues=atoi(value);

process.c: This program contains various functions called from Main

#include <stdio.h>

#finclude <string.h>

#include <math.h>

#include "globalvar.h"

#include "arraylib.h"

#include "forms.h"
#definemin(x,y) (x<y)?x:y

int *rowcount, *colcount;

int processFile(char *filename, char ***cArray, float threshold) {
FILE * fp;

char tmpWord[50], paraFlag;

int 1, numWords = 0, wordLen = 0, totWords = 0;

float *freqArray;

fp = fileOpen(filename,"r");
*cArray = NULL;
freqArray = NULL;

while((wordLen = fetchWord(fp, tmpWord)) !=0) {

totWords++;
if (! inArray(stopWords, tmpWord, numStopWord)) { // ignore stopwords

48
728851 vl

255

o I

PATENT

Docket No.: 4428-4001

stemWord(tmpWord);

if (i = inArray(*cArray, tmpWord, numWords)) {
freqArray[i - 1]++;
3

else |
addWord(cArray, tmpWord, ++numWords);
freqArray = (float *) realloc(freqArray, numWords * sizeof{ float));
freq Array[numWords - 1] = 1;
}
}

}
// printf("Totwords = %d, numWords = %d\n",totWords, numWords);

for (i=0;1 <numWords; i++)
{
if ((float)(freqArray[i] / totWords) >= threshold)
(*cArray)[i] = NULL;
}

numWords = removeNulls((*cArray), numWords);
sortArray((*cArray), numWords);

return numWords;

}

{************************************#***************************************

Prompts Processing
#*********/

int loadPrompts(char *filename)
1
char buffer[256];
inti=0,j, len, nc;
int level[10], tabs, m = 0;
FILE * fp;

for (1=0;1<10; i++)
level[i] = 0;

fp = fileOpen(filename,"r");

prompts = NULL;

menulList = NULL;

J=i1=0;

while (fgets(buffer, 256, fp) '= NULL)

49
728851 vl

256

R e 0

PATENT
Docket No.: 4428-4001

{
tabs = allTrim(bufTer);
if ((len = strlen(buffer)) = 0)

continue;
if ((j = inArray(prompts, buffer, i)) == 0)
1=1
else
joug

level[tabs + 1] =) + 1;
menuList = (int **)realloc(menuList, ++m * sizeof(int *));
menuList[m - 1] = (int *)malloc(3 * sizeof(int));
menuList[m - 1][0] = level[tabs];
menulListfm - 1][1] = level[tabs + 1];
menuListfm - 1][2] = 0;
if j =1)
addWord(&prompts, buffer, ++i);
}
numMenu = m;
for (j = 0; j < numMenu; j++)
{
for(m = 0; m < numMenu; m++)
if (menuList[j][1] == menuList[m][0])
break;
if (m !'= numMenu) /* Leaf Node */
continue;
nc=0;
for (m = 0; m < numMenu; m+-+)
if (menuListim|[0] = menuList[j|[0])
nct+;

if (nc!=1)
it
menuList[j][2] = 99;
continue;
h
len = strlen(prompts[menuList[j][1] - 1]);
if (prompts[menuList[j][1] - 1][len - 1] =="7")
menuList[j][2] = 99;

clse
{
for (m = 0; m < numMenu; m-+-+)
if (menuList{m][1] == menuList[j][0])
menuList{m][2] = menuList[j][1];
menuList[j][2] = 100;
50
728851 vl

257

LA

PATENT
Docket No.: 4428-4001

}
return 1;

}

void filllndex()
d

int 1, j, k;

indexList = (int **)malloc(numColumn * sizeof{int *));
for (i=0; i <numColumn; i++) {
indexList[i] = (int *)malloc(numIndex * sizeof{(int));
for (j = 0; j <numlIndex; j++)
indexList[1][j] = 0;
}

for (i = 0; 1 < numlIndex; i++)
updateThesaurus(prompts[i], i + 1);
updateFrmForms();

}

updateThesaurus(char *str, int pmpt)
{

char tmpstr[256];

char *sarray[50];

int i, j, k, wrds;

int iflag = 0, dflag =0,

strepy(tmpstr, str);

wrds = readValues(tmpstr, sarray);
stemArray(sarray, wrds);

for (i=0; i < wrds; i++)

{
for (j = 0; j < numColumn; j++)
{
if (!stremp(columnTerms[j], sarray[i]))
{
iflag = 1;
dflag = 0;
for (k = 0; indexList[j][k] && k < numlIndex; k++)
if (indexList[j][k] == pmpt)
51
728851 vl

258

W gk

PATENT
Docket No.: 4428-4001

dflag = 1;
if (k < numIndex && dflag = 0)
indexList[j][k] = pmpt;
break;
}

}
if (iflag == 0)
{
printf("** warning the following prompt does not contain index word\n");
printf("\t%s\n", str);
}

/**!k**#****************

Create Matrix here
stk s e ok ks sk o s sk e sk ke ook sk s ke ok ok ok ok sk sk s o s s ootk s ok o sk s o s o o K KKk o K ok o sk ok o o
void createMatrix(char * filename) {

inti,j,nwp=0,k=0;

int minv;

FILE * fp;

/* allocate memory for matrix */
matrix = (double **)malloc(numRow * sizeof(double *));
for (1= 0; i < numRow; ++i) {
matrix[i] = (double *)malloc(numColumn * sizeof(double));
for j = 0; j < numColumn; j++)
matrix[i][j] = 0;
}
/* allocate memory for rowcount and column count */
rowcount = (int *)malloc(numRow * sizeof(int));
colcount = (int *)malloc(numColumn * sizeof(int));

/* Go to start of document */
fp = fileOpen(filename,"r");
while (!feof(fp))

{

/* initialize rowcount array */
for (j = 0; j < numRow; j++)

52
728851 vl

259

S AR

LR R

PATENT
Docket No.: 4428-4001

rowcount[j] = 0;
/* initialize columncount array */
for (j = 0; j < numColumn; j++)
colcount[j] = 0;

nwp = readPara(fp);
if (feof(fp))
break;
if (nwp == 0)
continue;

/* add co-occurance of rowword & colword to the matrix */
for (j = 0; j < numRow; j++)
for (k = 0; k < numColumn; k++) {
minv = min(rowcount[j], colcount[k]);
matrix[j][k] += minv;

i

int readPara(FILE *fp)
]
1

int i, j, k, weount = 0, m = 0;
int nextpara, currpara, wordLen;
char tmpword[50];

currpara = ftell(fp);
wcount = wordsInPara(fp);
if (feof(fp)) {
if (wecount == 0)
return 0;

}

nextpara = ftell(fp);
fseek(fp, currpara, 0);
for (i=0; i <wcount; ++i) {
wordLen = fetchWord(fp, tmpword);
if (inArray(stopWords,tmpword,numStop Word))
continue;
stemWord(tmpword);

/* count the occurance of each word from the row in para */

53
728851 vl

260

B T
w iLoJhall

A gt el 5 e

PATENT
Docket No.: 4428-4001

for (j = 0;) < numRow; j++)
if (!stremp(rowTerms[j], tmpword)) {
rowcount[j]-++;
break: '
'
/* count the occurance of each word from the column in para */
for (j = 0; j < numColumn; j++)
if (!stremp(columnTerms[j], tmpword)) {
colcount[j]++;
break;
}

:
fseek(fp, nextpara, 0);
return wecount;

}
int wordsInPara (FILE *fp)
i

int ¢, count = ();

int state;

—

const int out =0, in =

state = out;
while ((c = getc(fp)) != EOF) {
if (lisalpha(c)) {
if (c =="\n"|| ¢ == EOF)
break;
state = oul;
}
else
if (state == out) {
state = in;
count++;

'

return count;
174 s o ke s o o e ke ke o ok o s ok e ok ok ok ok ok ok ok e ok o ke ok o o ok ok e ke ok ok ke ok ok o o o ok o o ok ok ok ok sk ok ok ok ok sk ok o ok

Calculate Cosine Function
-‘k***t********;

void calcCosine()

54
728851 vl

261

e L B

b

PATENT
Docket No.: 4428-4001

{

inti, j, k, sum;
/* memory allocation for the cosine matrix */

cosine = (double **)malloc(numRow * sizeof(double *));
for (1 = 0; i < numRow; ++i) {
cosine[i] = (double *)malloc(((numRow) * sizeof{double)));
for (j = 0;) < numRow; j++)
cosine[i][j] = 0;
¥

/*Normalization*/

for (i = 0; i < numRow; ++i)
i
sum = 0;
for (k = 0; k < numColumn; ++k)
sum += matrix[i][k] * matrix[i][k];
if (sum !=0)
{
for (j = 0; j < numColumn; ++j)
matrix[i][j] = matrix[i][j] / sqrt(sum);
}
}

/*Cosines*/

for (1= 0; 1 < numRow; ++i)

{
for (k =1+ 1; k < numRow; ++k)
{
cosine[i][k] = 0;
for (j = 0; j < numColumn; ++j)
cosineli[k] += matrix[i][j] * matrix[k][jl;
H
}

}

[ok ok ke skt otk ok ok ok o ok ok o ok Kok ok ok ok ok ok ok ok K o sk ok Kok o s sk sk ok ok o ko sk ok sk ok sk sk ok ok o ok

eraseZeroes : removes the row with all zero column in the matrix
**[{

int eraseZeroes() {

55
728851 vl

262

b R R

PATENT
Docket No.: 4428-4001

int j, k;
int cond;

/* Free and nullify the rowTerms and matrix row for all zeroes */
for (j = 0; j < numRow; ++j) {
cond = 1;
for (k = 0; k < numColumn; ++k) {
if (matrix[j][k] '=0) {
cond = 0;
break;
}
H
if (cond == 1) {
rowTerms[j] = NULL;
matrix[j] = NULL;
}
H

/* Push NULL rows at the end of arrays */
for (j = 0;) < numRow; j++)
{
if (rowTerms[j] == NULL)
{
for (k =j + 1; k < numRow; k++)
if (rowTerms[k] '= NULL)
break;
if (k < numRow)

]
1

rowTerms[j] = rowTerms[k];
matrix[j] = matrix[k];
rowTerms[k] = NULL,;
matrix[k] = NULL,;

}

H

/* count new numRow */
for (j = 0; (rowTerms[j] '= NULL) && j < numRow; j++);

return j;

b

56
728851 vl

263

% e s L= R

A

PATENT
Docket No.: 4428-4001

7 ek sk sk ok sk sk ok ok sk ok sk ok sk o o8 sk oF Sk ok ok ok ok ok sk o oK ok ok e ok ok ok ok ok ok ok o sk ok ok o o ok o ok ok ok o ok ok ok ok sk sk sk ok ok sk sk ok ok ok ok ok

createThesaurus: Function to Create Thesaurus of rowTerms by taking the
index words matching the top 5 cosine values.
#**x**;

void createThesaurus()

inti,j, k, 1;

int m, numword;

double *tmpcos, prevcosine = 0;
int *colnum;

tmpcos = (double *)malloc(numRow * sizeof(double));
colnum = (int *)malloc(numRow * sizeof{(int));

thesaurus = (int **)malloc(numRow * sizeof{int *));
for (i = 0; i < numRow; i++) {
thesaurus(i] = (int *)malloc(numColumn * sizeof(int));
for (j = 0; j < numColumn; j++)
thesaurus[i][j] = 0;
h

/* initialization of thesaurus */

for (i = 0; i < numRow; i++) {
for (j = 0; j < numRow; j++) {
if (i >j)
tmpcos[j] = cosine[j][i];
else
if (<))
tmpcos(j] = cosinel[i][j];
else
tmpcos[j] = 0;
colnum[j] =j;

floatSort(colnum, tmpcos, numRow);
numword = prevcosine = 0;

/* count top 'topValues' of cosine */
for (m = 0; m < numColumn; m++) {

if (prevcosine != tmpcos[m])
numword++;

57
728851 vl

264

T 1

PR W M M 1 B

ol W e

PATENT
Docket No.: 4428-4001

prevcosine = tmpcos[m];
if (numword == topValues + 1)
break;
;
=--m,
/* m = total num of syn */

for=k=0;k <=m; kt++) {
if ((1 = inArray(columnTerms,rowTerms[colnum[k]], numColumn)) != 0)
if (tmpcos[k] != 0) {
thesaurus[i][j] = I;
j+t+s

}

}

/74 3 s stk s e sk sk ke sk ke sk ok e s sk e ok s ok s ok e s e sk sk ok sk s ok s sk sk sk ok o oK ok ok ok 5 3 ok s ok ok sk o sk ok sk sk ok sk ok sk ok sk ok sk skeok sk ok ok ok

floatSort : Sorts the array of cosine values and corresponding index of
index words in reverse order.
***f
floatSort(int *colnum, double *tmpcos, int numRow)
i
inti, j, k;
double f;
for (1 = numRow - 1;i>0; i--)
for G =0;) <i; j++) {
if (tmpcos[j] < tmpcos[j + 1]) {
f = tmpcos[j], k = colnum[j];
tmpcos[j] = tmpcos[j + 1], colnum([j] = colnum(j + 1];
tmpcos[j + 1] = f, colnum[j + 1] =k;

'
}
}
void saveData(char *filenm)
{
inti,j, k, I;
FILE *fp;

fp = fileOpen(filenm, "w");

58
728851 vl

265

. T s W R R

PATENT
Docket No.: 4428-4001

printArray(fp, "PROMPTS", prompts, NULL, numlIndex, 0); // Write Prompts to the file

[rEEEERELEE Write Menu-Tree to the file *%*kk*krskk/
// printArray(fp, "MENUTREE", NULL, menuList, numMenu, 2);
fprintf(fp, "[%s]\n", "MENUTREE");
for (i = 0; i < numMenu; i-++)
fprintf(fp, "%d,%d,%d\n", menuList[i][0], menuList[i][1],menuList[i][2]);
fprintf(fp, "\n");

printArray(fp, "INDEX", columnTerms, indexList, numColumn, numIndex); // Write Index to
the file

printArray(fp, "THESAURUS", rowTerms, thesaurus, numRow, numColumn); // Write
Thesaurus to the file

fclose(fp);
printf("Data saved in %s\n", filenm);

H

printArray(FILE *fp, char *head, char **cArray, int **iArray, int cNum, int iNum)
{
int i,j;
fprintf(fp, "[%s]\n", head);
for (1 =0; 1< cNum; i++)
{
fprintf(fp, "%s ", cArray[i]);
for (j =0;j <iNum && iArray[i][j] = 0; j++)
fprintf(fp, "%d,", iArray[i][j]);
fprintf(fp, "\n");
}
fprintf(fp, "\n"),
H

int addFormKeys(char ***cArray, int count)

{

char **wordList, *tmparray[20];
int 1, j, k, words;

int 1, tmpecount;

wordList = NULL;

words = 0;
for(i = 0; i < numForms; 1++)

59
728851 v1

266

i R B R R S e

g B L R

PATENT

Docket No.: 4428-4001

for (j = 0; j < formlist[i]->numFields; j++)
{
if (!stremp("MChoice", formlist[i]->fields[j]->Type))
for(k = 0; k < formlist[i]->fields[j]->numChoice; k++)

{

tmpcount = createArray(formlist[i]->fields[j]->Choice[k],

tmparray);
for(l1 = 0; | < tmpcount; 1++)
addWord(&wordList, tmparray[1], ++words);
}
}

i = mergeArray(cArray, wordList, count, words);
sortArray((*cArray), 1);
return 1;

}

updateFrmForms()

{

inti,j, k,I;

int m, n, X, tmpcount;

int pmpt;

char *tmpstr, *tmparray[20];

for (i = 0; i < numPF; i++)

{
pmpt = inArray(prompts, Fprompts[i][1], numIndex);
if (pmpt == 0)
{
printf("Unknown prompt encountered for form %s\n",Fprompts[i][0]);
exit(1);
}

for(j = 0; j < numForms; j++)
if (!stremp(Fprompts[i][0], formlist[j]->name))

break;
if (j = numForms)
continue;
for(k = 0; k < formlist[j]->numFields; k++)

{
if (stremp(formlist[j]->fields[k]->Type,"MChoice™))

60
728851 vl

267

collt RO B R M B

PATENT
Docket No.: 4428-4001

continue;
for(l = 0; I < formlist[j}->fields[k]->numChoice; 1++)
{ = :
tmpcount = createArray(formlistfj]->fields[k]->Choice[l], tmparray);
for(m = 0; m < tmpcount; m++)
{
n = inArray(columnTerms, tmparray[m], numColumn);
n--;
for (x = 0; indexList[n][x] && x < numIndex; x++)
if (indexList[n][x] == pmpt)
break;
if (x < numIndex && indexList[n][x] == 0)
indexList[n][x] = pmpt;
H

arraylib.c: This program contains general purpose functions
f#finclude <stdio.h>

ffinclude <string.h>

#include "globalvar.h"

#tinclude "forms.h"

FILE * fileOpen(char *, char *);

int fetchWord(FILE *f, char * wrd) {

inti=0,c;
wrd[0] = 0;
if (feof(f))
return 0;
while(lisalpha(c = fgetc(f)))
if (c == EOF)
return O;
do {

wrd[i++] = tolower(c);

¢ while(isalpha(c = fgetc(f)));
wrd[i] = 0;
return 1;

}

61
728851 vl

268

int inArray(char **array, char *word, int length)

{

int 1;

for (1= 0; 1 < length; 1++)
if (array[1] != NULL && !stremp(array[i], word))
returni + 1;
return 0;

}
int removeNulls(char **strarray, int numWords)
{

int1, j;

for (1 = 0; i < numWords; i++)

{
if (strarray[i] == NULL)
{
for (j =i+ 1;j < numWords; j++)
if (strarray[j] != NULL)
{
strarray[i] = strarray[j];
strarray[j] = NULL;
break;
}
f
}

/* get count of filtered words */
for (j = 0; (strarray[j] '= NULL) && (j < numWords); j++);
return j;

}

P e M L o

T Ak

PATENT
Docket No.: 4428-4001

int mergeArray(char ***Arrayl, char ** Array2, int numArrayl, int numArray2) {

int 1;
for (i=0; i < numArray2; i++)
if (! inArray((*Arrayl), Array2[i], numArrayl))
addWord(Arrayl, Array2[i], ++numArrayl);

return numArrayl;

f

728851 vi

269

Y

PATENT

Docket No.: 4428-4001

int readValues(char *str, char **array)
{

inti,j=0,c;

int state;

const int out =0, in = 1;

state = out;
for (i=0; (c = str[i]) I= 0; i++)

if (tisalnum(c)) /* alfa-numeric to read numbers also */
{
state = out;
str[i] =0; /* word is over end it with null */

}
else
{
str[i] = tolower(c);
if (statc == out)
!
state = in;
array[j++] = str + i; /* word started, store the ptr.*/
)
}
}
return j;
}
void sortArray(char *allwords[], int numwords) {
inti=0;
intj=0;

char *tmp;

for (1 = 0; 1 < numwords; ++i)
for j =1+ 1; j < numwords; ++j)

if (stremp(allwords[i], allwords[j]) > 0) {
tmp = allwords[i];
allwords[i] = allwords[j|;
allwords[j] = tmp;

}

}

loadStopWords(char * filename) {

63
728851 vl

270

Docket No

e T R R

PATENT
.: 4428-4001

FILE * fp;
char tmpWord[50];
int wordLen = 0;

numStopWord = 0;

fp = fileOpen(filename,"r");

stopWords = NULL;

while((wordLen = fetchWord(fp, tmpWord)) != 0)
addWord(&stopWords, tmpWord, ++numStopWord);

b
FILE * fileOpen(char *filename, char *mode)
{
FILE * fp;
if ((fp = fopen(filename, mode)) == NULL) |{
perror(filename);
exit(1);
}
return fp;
f

addWord(char ***cArray, char * word, int c)

{

*cArray = (char **) realloc(*cArray, ¢ * sizeof(char *));
(*cArray)[c - 1] = strdup(word);

h

int removeZeros(int *intArray, int numlInt)

{

int i, j;

for (1 = 0; 1 < numlnt; i++)

{
if (intArray[i] = 0)
{
for (j =1+ 1; j < numlint; j++)
if (intArray[j] != 0)
d
intArray|[1] = intArray[j];
intArray[j] = 0;
break;
}
64
728851 vl

271

LA o st T e el L

PATENT
Docket No.: 4428-4001

i

/* get count of filtered integers */
for (j = 0; (intArray[j] = 0) && (j < numInt); j++);
return j;

v

s sk s sk ok sk ok ok sk ok sk ok s ok ok sk ok ok ook ok ook ook sk skok sk ook ok Sk ok ok sk ok ok ko sk ook o sk ok ok @ @

Newly added functions (for further reducing the code)
3 o ok ook ok ok o o ok sk ok ok oK ok ok ok K oK ok oK oK ok o o o oK o o o okl s s o o o s sk s s s sk sk sk sk sk sk stk sk sk sk ok ok sk sk sk sk ok Sk sk ok

int breakStr(char * str, char **strarray)

{
char ¢, *tmpstr;
inti,j=0;

int state;

const int out =0, in = 1;

/* Seperate the sentence into individual words */
tmpstr = strdup(str);

state = out;

for (i = 0; (c = tmpstr[i]) != 0; i++)

{
if (lisalpha(c))
(
state = out;
tmpstr[i] = 0;
H
clse
{
tmpstr[i] = tolower(c);
if (state == out)
{
state = in;
strarray[j++] = tmpstr + i;
1
}
y
return j;

i

/* remove stopWords */
filterStopWords(char ** strarray, int numWords)

{

05
728851 vl

272

L L

int i;

for (i=0; i < numWords; i++) _
if (inArray(stopWords, strarray[i], numStopWord))
strarray[1] = NULL;

H

/* remove duplicates */
filterDuplicates(char ** strarray, int numWords)
.{ .
int i;
for (1 = 0; 1 < numWords; i++)
if (strarray[i] != NULL && inArray(strarray, strarray[i], 1))
strarray[1] = NULL;
}
int loadFormsList(char *filename)

{

char buf]256];
FILE *fp;
int len, 1;

fp = fileOpen(filename, "r");

Fprompts = NULL;
numPF = 0;
while (fgets(buf,255,fp) '= NULL)
{
len = strlen(buf);
for 1=0;1 <len; i++)
if (buf[i] =""
{
bufli] = 0;
break;

}

if (i ==len)

{
fprintf(stderr, "Error in Prompt list\n");

exit(0);

}
allTrim(buf);
allTrim(buf +i + 1);

66
728851 vl

273

S I e

PATENT
Docket No.: 4428-4001

AT I s e L B TR

PATENT
Docket No.: 4428-4001

Fprompts = (char ***)realloc(Fprompts, (++numPF)*sizeof(char **));
Fprompts[numPF-1] = (char **)malloc(2 * sizeof{char *));
Fprompts[numPF-1][0] = strdup(buf);
Fprompts[numPF-1][1] = strdup(buf + i + 1);
}

felose(fp);

rcturn numPF;

}

int loadForms(char * filenamc)

{

int i, j, formcount = 0;

FILE *{p;

char buf[80], **namelist = NULL;
formlist = NULL;

numForms = 0;

fp = fileOpen(filename, "r");
while(fgets(buf,79.fp) !'= NULL)
{
if (buf[0] == ")
{

for(i = 0; buffi]; i++)
if (bufli] == "' || buffi] =)

buf[i] ="";
allTrim(buf);
addWord(&namelist, buf, ++formcount);
}

}

for (1=0; 1 < formcount; i++)
{
formlist = (struct form **)realloc(formlist, (++numForms) * sizeof(struct form *));
formlistfnumForms - 1] = (struct form*)malloc(sizeof{(struct form));
loadForm(fp , formlistinumForms - 1], namelist[i]);
}
felose(p);
return numForms;

}

int allTrim (char * str)

{

int i, j, sf, tabs;

67
728851 vl

274

for (1 = tabs = 0; isspace(str[i]) && str[i]; 1++)
tabs += (str[i] == "\t")? 1: 0;

for (j = sf=0; str[i]; i++, j++)
str(j] = isentrl(str[i])? ' "z str[i];

for(str[j--] = 0; isspace(str[j]) && j = 0; str[j--]1 = 0);

return tabs;

}

int createArray (char * str, char ** array)
{

int count;

count = breakStr(str, array);

return processArray(array, count, 1);

'

int processArray(char ** array, int count, int sflag)
{
if (sflag)

filterStopWords(array, count);
stemArray(array, count);
filterDuplicates(array, count);
return removeNulls(array, count);

}

e

PATENT
Docket No.: 4428-4001

stemlib.c: This program contains functions related to stemming algorithim

/* This is the Porter stemming algorithm, coded up in ANSI C by the author.

It may be be regarded as cononical, in that it follows the algorithm presented

in Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, no. 3,

pp 130-137, only differing from it at the points maked --DEPARTURE-- below.

See also http://www _tartarus.org/~martin/PorterStemmer

The algorithm as described in the paper could be exactly replicated
by adjusting the points of DEPARTURE, but this is barely necessary,
because (a) the points of DEPARTURE are definitely improvements, and
(b) no encoding of the Porter stemmer I have scen is anything like
as exact as this version, even with the points of DEPARTURE!

You can compile it on Unix with 'gcc -O3 -o stem stem.c'

after which

'stem’ takes a list of inputs and sends the stemmed equivalent to

68
728851 vl

275

PATENT

Docket No.: 4428-4001

stdout.
The algorithm as encoded here is particularly fast.

Release 1
*/

#include <string.h> /* for memmove */

#define TRUE 1
#define FALSE 0

/* The main part of the stemming algorithm starts here. b is a buffer
holding a word to be stemmed. The letters are in b[k0], b[k0+1] ...
ending at b[k]. In fact kO = 0 in this demo program. k is readjusted
downwards as the stemming progresses. Zero termination is not in fact
used in the algorithm.

Note that only lower case sequences are stemmed. Forcing to lower case
should be done before stem(...) is called.
¥/

static char * b; /* buffer for word to be stemmed */
static int k,k0,j; /* j is a general offset into the string */

/* cons(i) is TRUE <=> b[i] is a consonant. */

int cons(int 1)
{ switch (b[i])
{ case 'a": case 'e": case 'i": case '0': casc 'u": return FALSE;
case 'y": return (i==k0) ? TRUE : !cons(i-1);
default: return TRUE;
1
}

/* m() measures the number of consonant sequences between k0 and j. if ¢ is
a consonant sequence and v a vowel sequence, and <..> indicates arbitrary
presence,

<¢c><v> gives 0
<c>ve<v> gives 1
<c>vceve<v> gives 2
<c>veveve<=v> gives 3

69
728851 vl

276

it

int m()
{ intn=0;
int i =KkO0;
while(TRUE)
{ if (1 >)) return n;
if (! cons(i)) break; i++;

i++;
while(TRUE)
{ while(TRUE)

{ if (i >j) return n;
if (cons(i)) break;
1++;

)

1++;

while(TRUE)

{ if (i >j) return n;
if (! cons(i)) break;
i+

;

i++;

)
}

/* vowelinstem() is TRUE <=> k0,...j contains a vowel */

int vowelinstem()

{ inti; for (i = kO; i <= j; i++) if (! cons(i)) return TRUE;
return FALSE;

H

AL

/* doublec(j) is TRUE <=> j,(j-1) contain a double consonant. */

int doublec(int j)

{ if § <kO+1) return FALSE;
if (b[j] !=b[j-1]) return FALSE,;
return cons(j);

}

70
728851 vi

277

I e)

PATENT
Docket No.: 4428-4001

AL G R

PATENT

Docket No.: 4428-4001

/* cve(i) is TRUE <=> i-2,i-1,i has the form consonant - vowel - consonant
and also if the second c is not w,x or y. this is used when trying to
restore an ¢ at the end of a short word. e.g.

cav(e), lov(e), hop(e), crim(e), but
snow, box, tray.

.

int cve(int i)
{ if (1 <k0+2 || 'cons(i) || cons(i-1) || Icons(i-2)) return FALSE;
{ int ch = bJ[i];
if (ch =="w' || ch =="x"[| ch =="y') return FALSE;
}
return TRUE;

}

/* ends(s) is TRUE <=> kO,...k ends with the string s. */

int ends(char * s)
{ int length = s[0];
if (s[length] != b[k]) return FALSE; /* tiny speed-up */
if (length > k-kO+1) return FALSE;
if (memcmp(b+k-length+1,s+1,length) != 0) return FALSE;
J = k-length;
return TRUE;
}

/* setto(s) sets (j+1),...k to the characters in the string s, readjusting
Jo %S

void setto(char * s)

{ int length = s[0];
memmove(b++1,s+1,length);
k = j+length;

}

/* 1(s) is used further down. */
void r(char * s) { if (m() > 0) setto(s); }

/* steplab() gets rid of plurals and -ed or -ing. e.g.

71
728851 vl

278

bR RS B TR

PATENT

Docket No.: 4428-4001

caresses ->= carcss
ponies -> poni

ties -> ti
carcss -= caress
cats -> cat
feed -> feed

agreed -> agree
disabled -> disable

matting -> mat
mating -> mate
meeting -> meet
milling -> mill
messing -> mess

meetings -> meet
iyl

void steplab()
{ 1f(b[k] =="s))
{ if (ends("\04" "sses")) k -= 2; else
if (ends("\03" "ies")) setto("\01" "i"); else
if (b[k-1] 1="s") k--;
}
if (ends("™03" "eed™)) { if (m() = 0) k--; } else
if ((ends("\02" "ed") || ends("\03" "ing")) && vowelinstem())
{ k=J;
if (ends("\02" "at")) setto("\03" "ate™); else
if (ends("\02" "b1")) setto("\03" "ble"); else
if (ends("\02" "iz")) setto("\03" "ize"); else
if (doublec(k))
{ k—;
{ intch =b[k];
if (ch=="1"|| ch=="s"|| ch =="2") k++;
h
}
clse if (m() == 1 && cve(k)) setto("01" "e™);
h
}

/* steplc() turns terminal y to 1 when there is another vowel in the stem. */

72
728851 vl

279

L AT gk Wl

w 2L

PATENT
Docket No.: 4428-4001

void steplc() { if (ends("™01" "y") && vowelinstem()) b[k] ="i"; }

/* step2() maps double suffices to single ones. so -ization (= -ize plus
-ation) maps to -ize etc. note that the string before the suffix must give
m() > 0. */

void step2() { switch (b[k-1])
{
case 'a" if (ends("\07" "ational")) { r("\03" "ate"); break; }
if (ends("\06" "tional")) { r("\04" "tion"); break; }
break;
case 'c": if (ends("™04" "enci")) { r("\04" "ence"); break; }
if (ends("\04" "anci")) { r("\04" "ance"); break; }
break;
case 'e': if (ends("\04" "izer")) { r("\03" "ize"); break; }
break;
case 'l': if (ends("03" "bli")) { r("\03" "ble"); break; } /*-DEPARTURE-*/

/* To match the published algorithm, replace this line with
case 'lI': if (ends("\04" "abli")) { r("\04" "able"); break; } */

if (ends("\04" "alli")) { r("\02" "al"); break; }
if (ends("\05" "entli")) { r("03" "ent"); break; }
if (ends("03" "eli")) { r("\O1" "e"); break; }
if (ends("\05" "ousli")) { r("\03" "ous"); break; }
break;

case '0": if (ends("\07" "ization")) { r("\03" "ize"); break; }
if (ends("\05" "ation")) { r("\03" "ate"); break; }
if (ends("\04" "ator")) { r("\03" "ate™); break; }
break;

case 's': if (ends("\05" "alism™)) { r("\02" "al"); break; }
if (ends("\07" "iveness")) { r("M03" "ive"); break; }
if (ends("\07" "fulness")) { r("\03" "ful"); break; }
if (ends("\07" "ousness")) { r("\03" "ous"); break; }
break;

case 't": if (ends('"\05" "aliti")) { r("\02" "al"); break; }
if (ends("\O5" "iviti")) { r("03" "ive"); break; }
if (ends("06" "biliti")) { r("\03" "ble"); break; }
break;

case 'g": if (ends("\04" "logi")) { r("03" "log"); break; } /*-DEPARTURE-*/

73
728851 vl

280

AN

/* To match the published algorithm, delete this line */

3
/* step3() deals with -ic-, -full, -ness etc. similar strategy to step2. */

void step3() { switch (b[k])
{
case 'e": if (ends("\0S5" "icate")) { r("\02" "ic"); break; }
if (ends("™05" "ative")) { r("\O0" ""); break; }
if (ends("\05" "alize")) { r("\O2" "al"); break; }
break;
case '1": if (ends("\05" "iciti")) { r("\02" "ic"); break; }
break;
case 'l': if (ends("\04" "ical™)) { r("\02" "ic"); break; }
if (ends("™03" "ful")) { r("O00" ""); break; }
break;
case 's": if (ends("\04" "ness")) { r("\00" ""); break; }
break;
P}

/* step4() takes off -ant, -ence etc., in context <c>vcve<v>. */

void step4()
{ switch (b[k-1])
{ case 'a" if (ends("\02" "al")) break; return;

case 'c”: if (ends("\04" "ance")) break;

if (ends("\04" "ence")) break; return;
case 'e": if (ends("\02" "er")) break; return;
case 'i": if (ends("\02" "ic")) break; return;
case 'l": if (ends("\04" "able")) break;

if (ends("\04" "ible")) break; return;
case 'n'"; if (ends("\03" "ant")) break;

if (ends("\05" "ement")) break;

if (ends("\04" "ment")) break;

if (ends("\03" "ent")) break; return;
case 'o": if (ends("\03" "ion") && (b[j] =="'s' || b[j] == 't")) break;

if (ends("\02" "ou")) break; return;

/* takes care of -ous */
case 's": if (ends("™\03" "ism")) break; return;
case 't'": if (ends("\03" "ate")) break;

if (ends("03" "iti")) break; return;
case "u': if (ends("\03" "ous")) break; return;

74
728851 v1

281

e L

PATENT
Docket No.: 4428-4001

JE s N LS

PATENT
Docket No.: 4428-4001

case 'v': if (ends("\03" "ive")) break; return;
case 'z": if (ends("\03" "ize")) break; return;
default: return;
H
if(m()>1)k=j;
f

/* step5() removes a final -e if m() > 1, and changes -1l to -1 if
m() > 1. */

void step5()
{ 1=k

if (b[Kk] = "¢

{ inta=m();

if(a>1]|a==1 && !cve(k-1)) k--;

H

if (b[k] ="I' && doublec(k) && m() > 1) k--;
H

/* In stem(p,1,)), p is a char pointer, and the string to be stemmed is from
pli] to p[j] inclusive. Typically i is zero and j is the offset to the last
character of a string, (p[j+1] == "0'). The stemmer adjusts the
characters p[i] ... p[j] and returns the new end-point of the string, k.
Stemming never increases word length, so i <=k <= j. To turn the stemmer
into a module, declare 'stem' as extern, and delete the remainder of this
file.

%

int stem(char * p, int 1, int j)
{ b=p; k=j; kO =1; /* copy the parameters into statics */
if (k <= kO+1) return k; /*-DEPARTURE-*/

/* With this line, strings of length 1 or 2 don't go through the
stemming process, although no mention is made of this in the
published algorithm. Remove the line to match the published
algorithm. */

steplab(); steplc(); step2(); step3(); step4(); step5();
retum k;

y

S e stemmer definition ends herg---------—---- s

75
728851 vl

282

PATENT

Docket No.: 4428-4001

stemArray(char **list, int arrayLen)
{ -
int i; - _
for (1 = 0; i < arrayLen; i++)
if (list[i] = NULL)
stemWord(list[i]);

stemWord(char * s)

{

s[stem(s,0, strlen(s) - 1) + 1] = 0;
!

dialog.c: This is main program of dialog module
/78 s ek sk e o ok e ko ok o s o s sk o ok o o ok ok ke ok o ok s ok ok ok sk ok ok ok ok ok ok ke ok o o ok ok ok sk ok ok ok ok o sk ke ok ok o ke ok ok e ok o 3ok ok oK R K ok ok ok ok

dialog.c : The main function for the interactive dialog program. loads all
the global arrays and variables before calling the interacitve function.

Arguments are:
1. The Configuration file for Thesaurus. contains Prompts, index,
basic thesaurus etc.
2. The Leaming Thesaurus. - used to store learnt words and to refer to them.
**********************#**#**************************************#**#**#*****/
#include <stdio.h>
#include <string.h>
ffinclude "arraylib.h"

int numColumn, numRow, numIndex, numMenu;

int startPoint, eofFlag, topValues;

char **rowTerms, **columnTerms, **prompts, **stopWords;
float **matrix, **cosine, phoneThreshold, webThreshold;
int **indexList, **menulList, **thesaurus;

int numStopWord, numOrgRow;

int numForms, numPF;

struct form ** formlist;

char ***Fprompts, *formfile;

int **scoring, numScore = 0;

char *cfg, *Icfg, *fdoc, *xdoc, *sdoc;

int minPromptCount = 1, timeout = 30;

void Interactive(char *);

76
728851 vl

283

A B e e B B

o

PATENT
Docket No.: 4428-4001

main(int argc, char *argv[])

{

inti=0;

/*if (arge !=35)
{
printf{"Usage Instructions: dialog config_file learn_file\n");
printf("*** Exiting, goodbye.\n");
exit(1);
5
if (arge !=2)
{
printf("Usage Instructions: d <ini-file>\n");
printf("*** Exiting, goodbye.\n™);
exit(1);
}
readini(argv([1]);
formfile = fdoc;
loadStopWords(sdoc);
numPF = loadFormsList(xdoc);
numForms = loadForms(fdoc);
loadData(cfg, lcfg);
Interactive(lcfg);

}

/3% 3 sk s she sk sk ok sk ke ke ke ke sk ok sk sk b sk sk sk sk sk sk sk ok Sk sk sk ok ok ok o ok ok ok ke o o o ok ok e ke e s ok ok ok ok ok sk ok sk sk ok sk ok sk ke R R R ok R R o

loaddata : This function will read the configuration files and load the

information into the relevant global arrays.
SRR SRR ok ok R ok ok o o sk o ook sk ok ks o ks ok sk ok SR oRR SR R R ok ok ok Rk ok o R Sk R ok ok sk R ok ok ook ok o

loadData(char *filenm, char *file2)

{

char buf[256], word[20];

int 1, j, k, I;

int numext;

FILE *fp, *f2;

[k sk e sk sk sk ke ok ok ok ok open configuration file ***k sk kokckok %Kk kkok |

fp = fileOpen(filenm, "r");

/****’F********* Open IEern(extendCd thcsaurus) ﬁlc ****************/

2 = fileOpen(file2, "r");

77
728851 vl

284

T gl e

PATENT
Docket No.: 4428-4001

prompts = columnTerms = rowTerms = NULL;
scoring = thesaurus = indexList = menuList = NULL;

/* read data in the arrays */

numMenu = loadMenuTree(fp, "[MENUTREE]");

numindex = read Array(fp, "[PROMPTS]", &prompts, 1, NULL, 0, 0);

numColumn = readArray(fp, "[INDEX]", &columnTerms, 1, &indexList, numIndex, 0);
numOrgRow = readArray(fp, "[THESAURUS]", &rowTerms, 1, &thesaurus, numColumn, 0);
numRow = readArray(f2, "[EXT-THESAURUS]", &rowTerms, 1, &thesaurus, numColumn,
numOrgRow);

numScore = readArray(f2, "[SCORING]", NULL, 0, &scoring, numColumn + 1, 0);

felose(fp);
fclose(f2):
}

K kb ok sk ok ok ok ok ok sk b ok ok ok sk ok ok sk ok o ok ook Sk R oK ok s ok ok ok ok ok ok ok s ok o ok ok s ok sk ok sk ok sk sk o ok e ol ok e ok sk sk sk sk ok sk ok ok ok ok ok

readArray : Reads the file and fills the rows and columns of the given arrays
**************’k#***************************************#******************/

int read Array(FILE *fp, char *head, char ***ch_array, int ccount, int ***int_array, int icount, int
sp)

{

char buf[256];

int i, j, start = 0, we = 0;
int k, c;

char **tmparray; /*To store the pointers to the words/numbers from the string*/
= Sp;

if (icount != 0)
tmparray = (char **)malloc((icount + 1) * sizeof(char *));

fseek(fp, 0, 0); /* Go to Top */

while (fgets(buf, 255, {p) != NULL) /* read lines till end of file */
{
allTrim(buf);
j = strlen(buf);
if (buf[j - 1]=="\n") buflj - 1] =0;
if (start)
{
if (strlen(buf) == 0) /* if blank line, stop reading */
break;
if (icount == 0) /* i.c. no integer array */

78
728851 vl

285

P M L

PATENT
Docket No.: 4428-4001

addWord(ch array, buf, ++c);
else /* read first word string */

{ /* rest are columns of int array */
we = readValues(buf, tmparray);
ctt;
(*int_array) = (int **)realloc(*int_array, ¢ * sizeof(int *));
(*int_array)[c - 1] = (int *)malloc(icount * sizeof{int));
if (ccount !=0)

addWord(ch_array, tmparray[0], c);
else

(*int_array)[c - 1][0] = atoi(tmparray[0]);
for (k = 1; k < icount; k++)

if (k < wc)

(*int_array)[c - 1][k - ccount] = atoi(tmparray[k]);

else
(*int_array)[c - 1][k - ccount] = 0;
}
H
else
if (!strcmp(head, buf))
start = 1;
}
return c;

}

7Sk e sk ke sk ke sk sk s s s ok sk ok sk sk ok sk sk ke sk ok sk ok sk ok s sk ke sk ok sk sk ke sk ke ok e sk ok ke ok ok ok ok ok ok ok sk o sk ok oK ok koK KoK 3K K o K K

loadMenuTree : loads the menutree from file to menuList array
**********1‘#******************************#************************}f

int loadMenuTree (FILE *fp, char *head)
{
char buf[256];
int i, j, start = 0, count = 0;
fseck(fp, 0, 0);
while (fgets(buf, 255, fp) != NULL)
{
j = strlen(buf);
if (buf]j - 1] =="n")
buffj - 1] =0;
if (start)
{
if (strlen(buf) == 0)
break;
menuList = (int **)realloc(menulList, (count + 1) * sizeof(int *));

79
728851 vl

286

i) gl

menuList[count] = (int *)malloc(3 * sizcof(int));
sscanf{buf, "%d,%d,%d\n", &menuList[count][0],

&menuList[count][1],&menuList[count][2]);

count++;
h
else
if (!strcmp(head, buf))
start = 1;
}

return count ;

}

readini(char * filenm)

{

FILE * fp;

char buf[80], key[80], value[80], comment[80];

int cnt;

if ((fp=fopen(filenm,"r'"))==NULL)

{

perror(filenm);
exit(1);

h

while (fgets(buf,79,fp)!=NULL)

{

sscanf(buf"%s %s %s" key,value, comment);

if (!stremp(key, "sdoc"))
sdoc=strdup(value);

if (!stremp(key, "fdoc"))
fdoc=strdup(value);

if (!stremp(key, "xdoc™))
xdoc=strdup(value);

if (!stremp(key, "cfg"))
cfg=strdup(value);

if (!stremp(key, "lcfg"))
lefg=strdup(value);

if (!stremp(key, "minprompt"))
minPromptCount=atoi(value);

if (!stremp(key, "timeout"))
timeout=atoi(value);

i

80

728851 vl

287

E 5

o AL L R e

PATENT
Docket No.: 4428-4001

PP s IR B

PATENT
Docket No.: 4428-4001

interactive.c: This program contains funtions related to user interaction
/**********$**********#**#*****

Interactive : function to accept a sentence from the user and then
generate the response.

thesaurusFlag = is 1 if there is atleast 1 thesaurus/learned word in query

updateFlag = is set to 1 if the program needs to learn (i.c. main menu was
selected during the prompt navigation)

interPrompts = Intersection of prompts

unionPrompts = Union of prompts

interUnionPrompts = Intersection of Union

numlinter = number of prompts in InterPrompts

numInterUnion = num of prompts in Intersection of Union

numUnion = num of prompts in Union

numUnknown = num of unknown words

**********************#*******************************#***************/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <unistd.h>

#include "globalvar.h"

ffinclude "arraylib.h"

#include "forms.h"

#define max(a,b) (a=>b)? a: b
#define min(a,b) (a<b)? a: b
#define swap(a,b) (a”=b, b *=a, a *=b)

extern int numScore, **scoring;

int updateFlag = 0, learnFlag, numQueryList = 0;

FILE *If, *pf;

char ** uWList=NULL, *queryTerms[50];

it uWNum;

extern int minPromptCount, timeout;

char query[256], **queryList = NULL;

char *affrmWords[] = { "yes", "right", "correct"};

char *negWords[] = { "no", "neither"};

extern char * fdoc;

int otheFlag = 0;

int unknownWords[20], numQuery = 0, numUnknown:

char **uWords; // Added this array to facilitate learning wven if lateral shift
int numUW; // Added this to facilitate learning wven if lateral shift
void sayOther();

81
728851 vl

288

A LB

PATENT

Docket No.: 4428-4001

void Interactive(char *flnm)

{

int InterPrompts[20], unionPrompts[20], t1Prompts[20];

int interUnionPrompts[20], numInterUnion, {2Prompts[20], numT2;
inti,j, k, I;

int start, numUnion, numInter, numT1;

int n, selectedPrompt, thesaurusFlag = 0;

char *interlog, *processlog, c;

numUnknown = numUW = 0;

for(i=0; 1 < 20; i++)
unknownWords[i] = 0;

uWords=NULL;

if ((interlog = (char *)getenv("TIMEOUT")) != NULL)
timeout = atoi(interlog);

if ((interlog = (char *)getenv("MINPROMPT")) = NULL)
minPromptCount = atoi(interlog);

if ((interlog = (char *)getenv("INTERLOG")) == NULL)
interlog = "test.html";

if ((processlog = (char *)getenv("PROCESSLOG")) == NULL)
processlog = "process.html";

signal(SIGALRM, &sayOther);
If = fileOpen(interlog,"w");

pf = fileOpen(processlog,"w");
fprintf(If, "<HTML>n<TITLE>%s</TITLE>n<BODY=>\n", intcrlog);
fprintf(pf, "<HTML>n<TITLE>%s</TITLE=\n<BODY=>\n", processlog);

system("clcar");

printf("Thank you for calling the New Herald.\n");
printf("How may we help you?\n\n");

fprintf(1f,"\nThank you for calling the New Herald.
");
fprintf(1f,;"How may we help you. <P=");

fgets(query, 255, stdin); /* accept the user input */

while (1)
{

82
728851 v

289

PATENT

Docket No.: 4428-4001

addWord(&queryList, query, ++numQueryList);
numQuery = thesaurusFlag = 0;
if (strlen(query) == 0)
break;
fprintf(If, "<I[> %s</I= <P=", query);

numQuery = createArray(query, queryTerms);

e s o o ok sk o st sk kK S K sk sk sk s sk ok stk ok skt okl etk sk ok skl ek skl ok /
fprintf(pf, "Terms in Query: ");
for (j = 0; j < numQuery; j++)
fprintf(pf, " %s", queryTerms[j]);
fprintf(pf, "
");

I[J**$*********/

/* initialize InterPrompts and unionPrompts array */
for (i=0;1<20; i++)
{
t2Prompts[i] = t1Prompts[i] = 0;
InterPrompts[i] = unionPrompts[i] = interUnionPrompts[i] = 0;
}
start =1;

numInterUnion = numT2 = numT1 = numInter = numUnion = 0;

/* Scan thru all the words to generate union/intersection of prompts*/
for (i = 0; i < numQuery; i++)
d
/* if not in index words check thesaurus */
if (!inArray(columnTerms, queryTerms[i], numColumn))
{
learnFlag = numT1 = numT2 = 0;
scanThesaurus(queryTerms[i], t1 Prompts, t2Prompts, &numT]1,

&numT2);

/* if unknown/learned word save it to array */
if (learnklag)
{
unknownWords[numUnknown] = i, numUnknown-++;
addWord(&uWords, queryTerms[i], ++numUW);
if (numTI1 == 0 && numT2 == 0)
continue;
else
thesaurusklag = 1;

}

83

728851 vl

290

: A e 5

B oll CL L el T

PATENT
Docket No.: 4428-4001

else
thesaurusFlag = 1;

;
t

numT1 = fetchPrompts(queryTerms|i], t1Prompts);

numT2 = fetchPrompts(queryTerms|i], t2Prompts);
s s s ks s stk sk s Rk ok o ks kR sk ok kol sk ok ook ok ok ok ok ok ok

else

fprintf(pf, "%s (index) :", queryTerms[i]);
for (j = 0; j <numT1; j++)

fprintf(pf, " %d", t1 Prompts[j]);
fprintf(pf, "
");
fflush(pf);

f***!

H

if (start) /* if first word */
{
numlInter = PromptUnion(InterPrompts, t2Prompts, numiInter, numT2);
numUnion = PromptUnion(unionPrompts, t1Prompts, numUnion,
numT1);
numInterUnion = PromptUnion(interUnionPrompts, t1 Prompts,
numInterUnion, numT1);

start = 0;
b
clse

{

numlnter = PromptIntersection(InterPrompts, t2Prompts, numlinter,
numT2);

numUnion = PromptUnion(unionPrompts, t1Prompts, numUnion,
numT1);

numlInterUnion = PromptIntersection(interUnionPrompts, t1 Prompts,
numInterUnion, numT1);

i
H
{**X
fprintf{pf, "Final Intersection Result: ");
for (j = 0; j < numlnter; j++)
fprintf(pf," %d", InterPrompts[j]);
fprintf(pf, "
");
fprintf(pf, "Final Intersection of Union Result: ");
for (j = 0; j < numInterUnion; j++)

84
728851 vl

291

ol 0 gt e

PATENT
Docket No.: 4428-4001

fprintf(pf, " %d", interUnionPrompts[j]);
fprintf(pf, "
");
fprintf(pf, "Final Union Result: ");
for (j = 0;j < numUnion; j++)

fprintf(pf, " %d", unionPrompts[j]);
fprintf(pf, "
");
fflush(pf);

e L

if (numInter < minPromptCount && thesaurusFlag)
{
if (numinterUnion < minPromptCount)
numlInter = PromptUnion(InterPrompts, unionPrompts, numinter,
numUnion);
else
numinter = PromptUnion(InterPrompts, interUnionPrompts,
numlInter, numInterUnion);

}

fprintf(pf, "Final Selection : ");
fflush(pf);
for (j = 0; j < numlnter; j++)

fprintf(pf, " %d", InterPrompts[j});
fprintf(pf, "
");
fflush(pf);
numlInter = orderPrompts(InterPrompts, numInter);
numInter = removeChild(InterPrompts, numInter);
/I eliminate prompts > 3
for (j = 3;) < numlnter; j++)

InterPrompts[j] = 0;
numinter = min(numlInter, 3);
fprintf(pf, "Selection After Elimination of descendants: ");
fflush(pf);
for (j = 0; j < numlInter; j++)

fprintf(pf, " %d", InterPrompts[j]);
fprintf(pf, "
");
fflush(pf);
selectedPrompt = GetPrompt(InterPrompts, numlInter);
if (selectedPrompt == 100)

continue;

/I if (updateFlag)
learnThesaurus(selectedPrompt, unknownWords, numUnknown, flnm);

85
728851 vI

292

CH o

PATENT
Docket No.: 4428-4001

updateFlag = 0;
for(j = 0; (j < numMenu) && (menuList[j][1] = selectedPrompt); j++);
if (menuList[j][2] == 99)
{
for (1 = 0; i < numPF; i++)
{
if (!Istremp(Fprompts[i][1],prompts[selectedPrompt - 1]))
{
for(k = 0; k < numForms; k++)
if (!stremp(Fprompts[i][0],formlist[k]->name))
{
fillForm(formlist[k], queryList, numQueryL.ist);
processForm(formlist[k]);
break;
H
break;
}
H
if (i == numPF)
{
system("clear");
printf("\nYour query has been understood.\n");
printf("Pleasc wait to be transferred to the relevant department.\n\n");
fprintf(1f,"<P>Y our query has been understood.=");
fprintf(1f,"Please wait to be transferred to the relevant department.<HR>");
break;
}
H

{
printf("\n%s\n\n",prompts[menul.ist[j][2] - 1]);
fprintf(1f, "\n<P>%s<HR>",prompts[menuList[j][2] - 1]);
H
// modilfied for the loop
printf("Do you have another query?\n\n");
fgets(query,80,stdin);
if (!chkNegtn(query))

else

1
for(i = 0; i < numQueryList; i-++)
free(queryList[i]);

for(i= 0; i < numForms; i++)
free(formlist[i]);
free(formlist);

86
728851 vl

293

R e T B A T I I e

PATENT
Docket No.: 4428-4001

free(queryList);
queryList = NULL;
numForms = loadForms(fdoc);
numQueryList = 0;
/fprint{("Please tell us your query.\n\n");
/{fgets(query,255,stdin);
continue;
H
system("clear");
printf("\nThank you for calling.\nGoodbye.\n");
break;
h

fprintf(If, "</HTML>\n</BODY>\n");
fprintf(pf, "</HTML>n</BODY=>\n");
fclose(1f);
fclose(ph);

}

int scanThesaurus(char *word, int *t1Prompts, int *{2Prompts, int* nl, int * n2)
{

inti,j, k=01

int m, tp[20], sflg = 1;

for (1= 0;1 < 20; i++)
t1Prompts[i] = t2Prompts[i] = tp[i] = 0;

for (1= 0; 1 < numRow; H++)
if (!stremp(word, rowTerms[1]))
break;
/* if the word is not present in thesaurus */
if (1 == numRow)
{
fprintf(pf, "%s (unknown)
", word);
learnFlag = 1;

return 0;
}
else
{
if (1 >=numOrgRow)
{
fprintf(pf, "%s (learned):
", word);
87
728851 vl

294

e 8 s R e T s

PATENT
Docket No.: 4428-4001

learnFlag = 1;
y
clse
fprintf(pf, "%s (thesaurus):
", word);

for (j = 0; thesaurus[l][j] && j < numRow; j++)
{
m = fetchPrompts(columnTerms[thesaurus[1][j] - 1], tp);
}1***;
fprintf(pf, "%s (index) :", columnTerms|thesaurus(1][j] - 1]);
for (k =0; k <m; k++)
fprintf(pf, " %d", tp[k]);
fprintf(pf, "
");

/e s ke s s e s ook ok o o ok sk sk o o ok s o R KSR kS kKSR ok ok Kok sk ok otk o sk okl sk ook ek

*n1 = PromptUnion(t1 Prompts, tp, *nl, m);
if (sflg)
{

*n2 = PromptUnion(t2Prompts, tp, *n2, m);
sflg = 0;
H

{

*n2 = PromptIntersection(t2Prompts, tp, *n2, m);

}

else

b
fprintf{pf, "Union Result: ");
for (k =0; k < *nl; k++)
fprintf(pf, " %d", t1Prompts[k]);
fprintf(pf, "
");
fprintf(pf, "Intersection Result: ");
for (k= 0; k <*n2; k++)
fprintf(pf, " %d", t2Prompts[k]);
fprintf(pf, "
");
}

return k;

i

2Kk e s o s s e sk o s o sk ok s ok b o ok sk sk ke sk ok sk sk ok sk sk sk sk ke sl sk ke s sk ke s sk s ok sk sk ok 3 ok o oK 3 ok ok ok K ok ok ok

PromptUnion : does a union of arrays pointed by p1 and p2 and

stores in pl. returns the total elements in result
st st e oo ke o s s s oo oo o sk se ook ok o o o o s sk ok ok 3 o o sk ok ok o s ok ok sk sk o s s ok ok ok ok ko ok ok sk sk sk ok ok

88
728851 vl

295

T e T e A R

PATENT
Docket No.: 4428-4001

int PromptUnion(int *p1, int *p2, int nl1, int n2)

{
int 1, j;
for 1=0;i<n2;i++)
{
for (j =0;j <nl; j++)
if (p1[j] == p2[i])
break;
if (j ==nl)
{
pllil = p2[i];
nl++;
H
H
return nl;
H

;(*************#***********#***************#******************************Ji#

Promptlntersection : does a intersection of arrays pointed by pl and p2 and

stores in pl. returns the total elements in result
30k ok ok ook S ok o ok o o o R o o o o R SR R R ok R Rk ok o KKK Kk KKk Rk ek ksl sk sk ok ok sk ke ok sk s sk ok ok ok ok ok

int Promptlintersection(int *p1, int *p2, int nl, int n2)

{
inti, j;
for 1=0;1<nl;i++)
i
for (j = 0;) <n2; j++)
if (p1[i] == p2[iD
break;
if (j ==n2) /* not there */
{
for j =1i;j <nl; j++)
plli]l=plli +1];
nl--;
i--;
H
}
return nl;
}

13838 e s sk ok ok ok sk sk ok sk ok ok sk ok sk ok ok sk ke sk ok skl ok s st e sk sk ok sk ke ok st ok s sk ok ok oK ok ok o sk ok ok o ok stk sk ok ok o sk ok o sk ok sk ke ke

fetchPrompts : Will fetch all the prompts for 'word' into
Arraylist pointed by t1 Prompts;

s s sk s ok ksl sk ook s sk s s sk ok ol SR R R St sk o K oK o SRR sk s o ok ok o o ok sk s s ok sk sk ok sk ook ok ok ok

89
728851 vl

296

b T

g T L

PATENT

Docket No.: 4428-4001

int fetchPrompts(char *word, int *t1 Prompts)
{
inti,j, k, 1;
“for (i=0;1<20; i++)
t1 Prompts[i] = 0;
if ((i = inArray(columnTerms, word, numColumn)) == 0)
return 0;
i
for (j = 0; (t1Prompts(j] = indexList[i][j]) && (j < numIndex); j++);
return j;

¥

e ok stk st ot s s s st sttt ok o s ok ook ok 8 o o o ook ook R Rk R e e ok ok ook ok ok ok ook o o ok sk sk sk ok ok sk o kol ok ok ok ok

GetPrompt: Returns the final prompt selected by user

s oo o sk ok ook s ol ok o R ok ok oo o e ok ook sk ok oK SR SR Sk ok o ko o R ook ok ok ok o sk ok o ok ok sk o |
int GetPrompt(int *Parray, int pcnt)

{

inti,j, k, I;

int mmflag = 0, af = 0;

char ans[80];

while (1)
{
system("clear");
printf("\n");
fprintf(1f, "<P>");
// Removed the comments to reintroduce last prompt
if (pent == 1 && isLeaf(Parray[0]) && numUnknown > 0)
af=1;

if ((pent > 1) || (pent =1 && af == 1))

{
// sortPrompts(Parray, pcnt);
orderPrompts(Parray, pcnt);

for (i=0; 1 < pent; i++)
{
printf("%s\n\n", prompts[Parray[i] - 1]);
fprintf(If, "%s", prompts[Parray[i] - 1]);
f

if ('mmflag)
{
otheFlag = 0;
alarm(timeout);

90
728851 vl

297

728851 vl

oH el 4 g
T

PATENT

Docket No.: 4428-4001

H
fgets(ans, 80, stdin); /* accept the user input */
alarm(0);
fprintf(1f, "<P><I>%s</I><P>", ans);
fflush(lf);
if (otheFlag == 1 && chkAfrm(ans))
1=0;
else
{
if (chkNegitn(ans) && otheFlag !'= 1)
i=0;
else
{
addWord(&queryList, ans, ++numQueryList);
J = chkAns(ans, Parray, pent);
H
otheFlag = 0;
}
if (j ==-99)
{
updateFlag = 1;
return 100;
i
if j <0)
{
pent = removeZeros(Parray,pent);
continue;
h
mmiflag = 0;
h
clse
] = pent;
if =20)
i
pent = getNodes(j, Parray);
mmflag = updateFlag = 1;
¥
clse
{
if (isLeaf(Parray[j - 1]))
{
return Parrayfj - 1];
}
91

298

. : B

PATENT
Docket No.: 4428-4001

clse
pent = getNodes(Parray(j - 1], Parray);

af=1;

f

A s ook s o stk ok feok sk ok s sk ootk ok e ke e ool o ok ok ok e e s s ok ok o ok e o o sk ok o 8 oK ok sk o o ok ok o K ok o kR ok ok ok ok ok

isLeaf: Returns 1 if 'node’ is a leaf in the menutree, else O
***********#*************ﬁk***/
int isLeaf(int node)
.{ .
mta;
for (1=0; i < numMenu; i++)

if (menuList[i][1] == node)

break;

if (i = numMenu)

return 0;
return menulList[i][2];

f

int getNodes(int pnode, int *parray)

{

inti, j;

for (i=0,] =0; i< numMenu; it+)

if (menuList[i][0] == pnode)

{
parray[j] = menuList[i][1];
s
H

parray[j] = 0;

return j;

j

/7 o e st o b ok b sk sk sk o ok sk ok oK ok o ok ok o ok o ok sk ok sk ok ok e sk ok sk sk sk sk sk ok sk ok sk e ok ke sk sk sk sk ok ok o ok s ke st ke ke sk sk sk sk sk sk ok sk ke ok e sk ke sk sk e o

learnThesaurus : re-writes the thesaurus with relearned pattern and newly
learned word.

e ok ok ok ok KR o o sk sk s ok ok ok ok o sk sk o ok o ok sk ok sk o Rk o sk ok ok ok sk o kKR ok sk sk ok sk sk skl ok ok ok ok sk ok /

learnThesaurus(int pmpt, int unknownWords[], int numUnknown, char *flnm)

{

int i, j, k, 1;

FILE *fp;

int *tmplist, tmpCount;

92
728851 vl

299

SR

PATENT

Docket No.: 4428-4001

/* create and initialize a tmp Array */

tmpList = (int *)calloc(numColumn, sizeof{(int));

for (i = tmpCount = 0; i < numColumn; i++)
tmpList[i] = O;

/* scan thru the query words and gather a list of unique keywords in tmp array*/
tmpCount = getKeyWords(queryTerms, numQuery, tmpList);

/* Locate the row for select prompt. if not create new row */

for (k = 0; k < numScore && scoring[k][0] != pmpt; k++);

if (k >= numScore)

{
scoring = (int **)realloc(scoring, (k + 1) * sizeof(int *));
scoring[k] = (int *) malloc((numColumn + 1) * sizeof(int));
for (j = 0;] <= numColumn; j++)
scoring[k][j] = 0;
numScore++;
h

scoring[k][0] = pmpt;
for (j = 0; j < tmpCount; j++)
scoring[k][tmpList[j]]++;

[ek sk sk ke sk e sk stk sk ok sk sk st ok skl ok sk kol s ksl ok sk ok kR R kR R Rk Rk ok ok

for (i = tmpCount = 0; i < numColumn; i++)
tmpList[i] = 0;

for (j =1=0;j < numColumn; j++)
{
for (k = 0; k < numIndex && indexList[j][k] != 0; k++)
if (indexList[j][k] == pmpt)
break;
if (k < numiIndex && indexList[j][k] != 0)
{
tmpList[i]=j + 1;
i++;
}
H
tmpCount = i;
fp = fileOpen(flnm, "w");
fprintf(pf, "
Leamed words
");
fprintf{fp, "[%s]\n", "EXT-THESAURUS");

93
728851 vl

300

D o

PATENT
Docket No.: 4428-4001

for (1 = numOrgRow; i < numRow; i++)

{
fprintf(fp, "%s: ", rowTerms[i]);

if (updateFlag && inArray(uWords, rowTerms[i], numUW))
{
fprintf(pf, "%s (relearned)
original: ", queryTerms[unknownWords[j]]);
for (k = 0; k < numColumn; k++)
{
if (thesaurus[i][k] != 0)
fprintf(pf, " %d", thesaurus[i][k]);
if (thesaurus[ij[k] == 0)
break;
}
fprintf(pf, "
");
k = PromptUnion(thesaurus[i], tmpList, k, tmpCount);
fprintf(pf, "new :");
for j = 0;j <k; j++)
fprintf(pf, " %d", thesaurus[i][j]);
fprintf(pf, "

");

}
for (j = 0; j < numColumn; j++)
{
if (thesaurus[i][j] == 0)
break;
fprintf(fp, "%d,", thesaurus[i][j]);
}
fprintf(fp, "\n");
}
for (i = 0; updateFlag && 1 < numUW; i++)
{
if (inArray(rowTerms, uWords[i], numRow))
continue;

fprintf(fp, "%s: ", uWords[i]);

fprintf(pf, "%s(new-learned) :", uWords[i]);
addWord(&rowTerms, uWords[i], ++numRow);

thesaurus = (int **)realloc(thesaurus, numRow * sizeof(int *));
thesaurus[numRow - 1] = (int *)malloc(numColumn * sizeof(int));
for (j = 0;) <numColumn; j++) thesaurus[numRow -1][j] = 0;

for (j =0;j < tmpCount; j++)

{

94
728851 vi

301

S ek 55 TP PP B

PATENT
Docket No.: 4428-4001

thesaurus[numRow - 1][j] = tmpList[j];
fprintf(fp, "%d,", tmpList[j]);
fprintf(pf, " %d", tmpList[j]);
}

fprintf(fp, "\n");

fprintf(pf, "

");

H

fprintf(fp, "\n");

/* write the scoring in the file */
fprintf(fp, "[%s]\n", "SCORING");
for (i = 0; i < numScore; i++)
{
fprintf(fp, "%d.", scoring[i][0]);
for(j = 1; j <= numColumn; j++)
fprintf(fp, "%d,", scoring[i][j]):
fprintf(fp, "\n");
}

fprintf(fp, "\n");
fclose(fp);
}

/78 s e e st s sk s ke ok ok sk ook s sk o ok e ok o ok sk ok ok ke sk ok ok skeok ok sk e sk sk sk sk sk sk ke ok ok 3k ke ok s ok ok sk ok ok oo ok ok ok ok sk o ok sk ke ok sk ok ok ok

removeChild: removes descendents of all the elements from the list
sk o ook sk ke obok ok sk o ok sk s ok ok ok ok sk st ksl sk sk kb sk ok sk sk stk sk ok stk o s ok ok ok skok stk o ok sk ok ook sk sk ek sk skokok |

int removeChild(int *array, int tot)
{

inti,j, k, ent=0;

int *tmparray, m = 99;

tmparray = (int *)calloc(numIndex, sizeof(int));

/* Remove any prompts that are responses rather than choices */
for (1 =0; i < tot; i++)
{
for(j = 0; j < numMenu; j++)
if (menuList[j][1] == array[i] && menuList[j][2] == 100)
array[i] = 0;
}

/* Remove any prompts that are root node and have a child which is not a leaf rather than
choices */

95
728851 vi

302

ALy

for (i=0; i < tot; i++)
{
if (array[i] == 0) /* already removed so go to next */
continue;

/* if (isLeaf(array[i]))
continue; */

m = arrayl[i];
while(1)
{
for(j = 0; j < numMenu; j++)
if (menuList[j][1] == rm)

break;
if (menuList[j][0] == 0)
break;
m = menuList[j][0];
}
if (rn != array|1])
i
for j =0;) <tot; j++)
1
if (array[j] == m)
array(j] = 0;
}
H

}
for (1=0;1 < tot; 1++)

if (array[i] == 0) /* already removed so go to next */
continue;

for (j = 0; j < numlndex; j++) /* initialize tmparray */
tmparray[j] = 0;

Docket No.:

L

A 2

PATENT
4428-4001

cnt = getChildren(array[i], tmparray); /* get children & grand-children of i */
for (j = 0; j < tot; j++) /* scan thru the array to check for child */

if (j '=1) /* ignore self from checking */
for (k = 0; k < cnt; k++)
if (array[j] == tmparray[k])
{

array[j] = 0; /* if j is child of i, make it O */

break;

96
728851 vl

303

T R R R S T

PATENT

Docket No.: 4428-4001

;
i

/* Shift All non-zeroes upwards */
for (i = 0: i < tot; i++)

{
if (array[i] == 0)
1
for(j=1i+1;j <tot; j++)
if (array[j] = 0)
break;
if (j <tot)
{
array[i] = arraylj];
array[j] = 0;
}
H
}

/* count no of elements */
for (j = 0;) < tot; j++)

{
if (array(j] = 0)
break;
}
return j;

i

/*****************#*#***’k******

getChildren: fetches all the descendents of pmpt into array

304 koo ook ok oK oK oK ok ok o ok oK ok o R R Sk ko sk K ok R ks sk sk sk sk sk skt ok ok ok ok kR kokokok R okok
int getChildren(int pmpt, int *array)

Lo

mti,j, k, I;

intt, tl, t2;

int *tmparray1, *tmparray2;

if (isLeaf(pmpt)) /* if node is leaf no children so return 0 */
return 0;

tmparrayl = (int *)calloc(numlIndex, sizeof(int)); /* child of child in every loop */
tmparray2 = (int *)calloc(numlIndex, sizeof(int)); /* union of all scanned children */
t=tl=12=0;

for (i = 0; i < numMenu; i++)

{

97
728851 v1

304

b | e L Rt T e

PATENT
Docket No.: 4428-4001

if (menuList[i][0] == pmpt && menuList[i][2] != 100)
{
array[t] = menuList[i][1]; _
t1 = getChildren(array[t], tmparrayl);
t2 = PromptUnion(tmparray2, tmparrayl, t2, t1);

tH+;
}
} .
t = PromptUnion(array, tmparray2, t, t2);
return t;

}

int chkAns (char * ans, int * Parray, int pcnt)

{

char locquery[256];

int 1, j, tmplent = 0, tmp2ent = 0;

char *resWords[50], start ="'Y";

int numWords, tmpArray1[20], tmpArray2[20];
int uwFlag = 0, rowOrColWord = 0;

strepy(locquery,ans);
numWords = breakStr(ans, resWords);
if (stremp(resWords[0],"other") == 0 && stremp(resWords[1],"options™) == 0)
{
return 0;
H
numWords = processArray(resWords, numWords, 1);
for (i=0; 1< 20; i++)
tmpArrayl[i] = tmpArray2[i] = 0;
fprintf(pf,"<li=Initialized Temp Array\n"); fflush(pf);

for (1= 0; i < numWords; i++)
i{f(!inAnay(columnTenns, resWords[i], numColumn))
i{f(!inAnay(rochnns,rcsWords[i],numColumn))
i{f(!inArray(uWLisl, resWords[i], uWNum))
ziddWord(&qu,ist, resWords[i], ++uWNum);
fllush(1f);
h

98
728851 vi

305

I e b R B

PATENT
Docket No.: 4428-4001

else
{
fprintf(pf,"<li=Unknown Word: %s'\n",resWords[i]);
fflush(pf);
uwFlag = 1; /* unKnown word encountered twice */
H
b
else
rowOrColWord++;
continue;
H
else
rowOrColWord-++;

tmplent = fetchPrompts(resWords[i], tmpArrayl);
if (start =="Y")
{
tmp2ent = PromptUnion(tmpArray2, tmpArrayl, tmp2ent, tmplcnt);
start="N";
H
else
tmp2cnt = PromptIntersection(tmpArray2, tmpArray1, tmp2cnt, tmplcnt);

tmp2cnt = PromptIntersection(tmpArray2, Parray, tmp2cnt, pcnt);
}
if (tmp2cnt !'= 1)

{
if (tmp2cnt == 0 && pent == 1 && numWords == 1) // i.e. only one prompt &

not selected

{

strepy(ans, locquery);

if (chkAfrm(ans))

retumn 1;

}
if (tmp2cnt > 1) // i.e. multiple prompt selection then do score
{

strepy(ans, locquery);

return checkscore(ans, Parray, pent);
}

if (uwFlag)

if (AskforOp())
return -99;

99
728851 vl

306

A P R L T

O

PATENT
Docket No.: 4428-4001

else
return -1;
else
if(rowOrColWord)
{
strepy(query,locquery);
return -99;
}
}
for (i1 = 0; Parray[i]; i++)
if (Parray[i] = tmpArray2[0])
returni+ 1;

}

int AskforOp()

L

mti,j:

char *resWords[50];
int numWords ;

system("clear");
printf("Your request was not understood.\n");
printf("Would you prefer to speak to an operator or try again with a new request?\n");
fprintf(1f, "<P>Your request was not understood.");
fprintf(1f, "Would you prefer to speak to an operator or try again with a new request?\n");
fflush(1f);
fgets(query, 255, stdin); /* accept the user input */
addWord(&queryList, query, ++numQueryList);
fprintf(If, "<P><I> %s</I>", query);
numWords = breakStr(query, resWords);
if (iInArray(resWords,"operator",numWords))
{
printf("\n\nPlease wait for the operator ...\n");
fprintf(1f,"<P>Please wait for the operator ...");
fflush(1f);
exit(0);
)
if(inArray(resWords,"try",numWords) && inArray(resWords,"again",numWords))
{
system("clear");
printf("Please tell us your new request\n");
fprintf(1f, "<P>Please tell us your new request\n");
fflush(lf);

100
728851 vl

307

AT e Ay

PATENT
Docket No.: 4428-4001

fgets(query, 255, stdin); /* accept the user input */
addWord(&queryList, query, ++numQueryList);
H

return 1;

}

void sayOther()

{

printf("\nWould you like to hear other options?\n\n");
fprintf(1f, "Would you like to hear other options?<P>");
otheFlag = 1;

}
int checkscore(char *ans, int *Parray, int pent)
{
char * resWords[50], *pmptWords[50];
int i, j, *score, *scorel;
int numWords, numpWords, maxscore;
score = (int *)malloc(pent * sizeof(int));
scorel = (int *)malloc(pent * sizeof(int));
for (1= 0;1 < pent; i++)
score[i] = scorel[i] = 0;
numWords = breakStr(ans, resWords);
for (i = 0; 1 < pent; i++)
{
numpWords = breakStr(prompts[Parray[i]-1], pmptWords);
for (j = 0; j < numWords; j++)
if (inArray(pmptWords,resWords[j], numpWords))
score[i]++;
H
for (1 = maxscore = 0; i < pent; i++)
maxscore = (maxscore < score|i])?score[i]:maxscore;
for (1=j=0;1 < pent; i++)
j += (score[i] == maxscore)?1:0;
if (j==1) /* single prompt selection */
{
for (i=0; i < pent; i++)
if (score[i] == maxscore)
return i + 1;
H
101
728851 vl

308

ol gt IR RO i M W B I

PATENT
Docket No.: 4428-4001

else
i
for (i = 0; i < pent; i++)
i
numpWords = breakStr(prompts[Parray[i] - 1], pmptWords);
scorel[i] = getscorel(resWords, numWords, pmptWords, numpWords);
H
maxscore = (;
for (i = 0; i < pent; i++)
maxscore = (scorel[i] > maxscore)?scorel [i]:maxscore;
for (1=) = 0; 1< pent; i++)
J += (scorel[i] == maxscore)?1:0;
if (j==1) /* single prompt selection */
{
for (1=0; i <pent; i++)
if (scorel[i] == maxscore)
return i+ 1;
h
else
{
for (1=0; i < pent; i++)
if (score[i] = maxscore)
Parray[i] = 0;
return -1;
1
h
f
int chkAfrm(char * str)
{
int i,j, numWords;
char * resWords[50];
numWords = breakStr(str, resWords);
for (1=0; i <numWords; i ++)
if (inArray(affrmWords, resWords[i], 3))
return 1;
return 0;
}
int chkNegtn(char * str)
{
102
728851 vl

309

PATENT
Docket No.: 4428-4001

int 1,j, numWords;
char * resWords[50];

numWords = breakStr(str, resWords);
for (i=0; 1 < numWords; i ++)
if (inArray(negWords, resWords([i], 2))
return 1;
return 0;

}

int getscorel(char **Word1, int num1, char **Word2, int num2)
{ . -

int 1, j, scr = 0,

int Ismatch = 0;

for(i=0; i <numl; i++)
{
for() = Ismatch; j < num2; j++)
if (!stremp(Word 1[i],Word2[j]))
{
scrt+;
break;
}
if (j <num2)
Ismatch =) + 1;

}

return scr;

i

int orderPrompts(int *InterPrompts,int numinter)

{
inti,j, k, I;
int *tmpArray[2]; /* 0 - score ; 1 - level; 3 - menu order */
int *tmpList, tmpCount;

tmpArray[0] = (int *)malloc(numInter * sizeof(int));
tmpArray[1] = (int *)malloc(numIinter * sizeof{int));

tmpList = (int *)malloc(numColumn * sizeof(int));
for (1= 0; i <numColumn; i++)

tmpList[i] = 0;
/I get the list of keywords from queryTerms

103
728851 vl

310

PATENT
Docket No.: 4428-4001

tmpCount = getKeyWords(queryTerms, numQuery, tmpList);

for (i = 0; i < numlnter; i-++)
{
/* get the maxscore for the prompt */
tmpArray[0][i] = 0;
for (j = 0; (j < numScore) && (scoring[j][0] != InterPrompts[i]); j++);
/* if any previous scoring present */
if ((j < numScore) && (scoring[j][0] == InterPrompts[i]))
{
/I get the max score
for (k = 0; k < tmpCount; k++)
tmpArray[0][i] = max(tmpArray[0][i] , scoring[j][tmpList[k]]);
}
tmpArray[1][i] = getLevel(InterPrompts[i]);
}

// sort the array in order of score, level and menu-order
for (1= 0; 1 < (numlnter - 1); i++)
{
for (j =i+ 1;j < numlinter; j++)
if (!gThan(tmpArray[0][i], tmpArray[1][i], InterPrompts[i],
tmpArray[0][j], tmpArray[1][j], InterPrompts[j]))

{
swap(tmpArray[0][i], tmpArray[0][j]);
swap(tmpArray[1][i], tmpArray[1][j]);
swap(InterPrompts[i], InterPrompts[j]);
}

H

return numlInter;

}

int getKeyWords(char **queryTerms, int numQuery, int *tmpList)

{ - . .
inti,], k, [;
int count = 0;

for (j = 0; j < numQuery; j++)

{
/* Check if the word is keyword */
if ((k = inArray(columnTerms, queryTerms[j], numColumn)) != 0)
{
104
728851 vl

311

LT g gy

PATENT

Docket No.: 4428-4001

/* add in temp list only if not present */
for (i = 0; i <count && tmpList[i] =k ; i++);
if (i >= count)
tmpList[count++] = k;
continue;

}

/* check if the word 1s Thesaurus/Learned Word */
if ((k = inArray(rowTerms, queryTerms[j], numRow)) != 0)

{
/* pick-up all keywords for that word */
for (i = 0; thesaurus[k - 1][i] != 0; i++)
{
for (1=0; | < count && tmpList[1] != thesaurus[k - 1][i] ; I++);
if (1 == count)
tmpList[count++] = thesaurus[k - 1][i];
f
f
f
return count;
}
int getLevel(int pmpt)
{
mmti, k, I;
for (1 = 0; 1 < numMenu && menuList[i][1] != pmpt; i++);
k = menuList[i][0];
for (1=0; k > 0;14++)
{
for (1 = 0; 1 < numMenu && menuList[i][1] !=k; i++);
k = menuList[i][0];
H
return [;
}
int gThan(int a, int b, int ¢, int p, int g, int r)
{
if (a > p) return 1; // Desc order here
if (a < p) return 0; // Desc order here
if (b > q) return 0; // Asc order here
105
728851 vl

312

|1| !.'"'U e e o 5; T

if (b < q) return 1; // Asc order here
if (c > r) return 0; // Asc order here
return 1; // Asc order here

formlib.c: This program contains functions for forms processing

o o R
fl W Sl L

PATENT
Docket No.: 4428-4001

#include <stdio.h=
#include <string.h>
#include "arraylib.h"

struct input {
char *Type;
char *APrompt;
char *RPrompt;
char *Name;
char *Value;
char **Choice;
int numChoice;

};

struct form {

char * name;

struct input **fields;
int numFields;

-
char * split(char * , char);

int loadForm(FILE *f, struct form *frm, char *namc)
{

int j, start=0;

char buf{512];

char fname[20];

sprintf(fname,"[%s]",name);
fseek(f,SEEK._SET.,0);
while(fgets(buf,512,f) != NULL) {

j = strlen(buf);

if (buffj - 1]=="\n") buf[j - 1]=0;

if (start)

{

106
728851 vl

313

B B TP L e s W e ML

PATENT
Docket No.: 4428-4001

if (strlen(buf) == 0) /* if blank line, stop reading */
break;
frm->numFields++; _
frm->fields = (struct input **)realloc(frm->fields, (frm->numFiclds) *
sizeof{struct input *));
frm->fields[frm->numFields-1] = (struct input *)malloc(sizeof(struct input));
loadInput(frm->fields[frm->numFields-1], buf);

}

else
if (!stremp(fname, buf)) {
start = 1;
frm->name = strdup(name);
frim-=numFields=0;
fim-=fields=NULL;
}

H

return start;

}

loadInput(struct input *inp, char * str)
{

char ***]ist, *tmpstrl, *tmpstr2;

int 1, J, len;

inp->Type = inp->APrompt = inp->RPrompt = inp->Name = inp->Value = NULL;
list = (char ***)malloc(2 * sizeof(char **));
list[0] = (char **)malloc(2 * sizeof(char *));
list| 1] = (char **)malloc(2 * sizeof(char *));
list[0][0] = str;
for(i=0;(list[i+1][0] = split(list[1][0],":"))!=NULL;i++)
1
list[i][1] = split(list[i][0],"=");
list = (char ***)realloc(list,(i+3)*sizeof(char**));
list[i+2] = (char **)malloc(2 * sizeof{char *));

}

list[i][1] = split(list[i][0],"=");
len=1+1;
for(i=0; i <len;i++)

{

if (!Istremp("Type",list[i][0]))
mystrep(&inp->Type,list[i][1]);

if (!stremp(" APrompt",list[i][0]))
mystrep(&inp->APrompt,list[i][1]);

107
728851 vl

314

AL

PATENT

Docket No.: 4428-4001

if (!stremp("RPrompt",list[i][0]))
mystrep(&inp->RPrompt.list[i][1]);
if (!strcmp("Name" list[i][0]))
mystrep(&inp->Name,list[i][1]);
if (!stremp("Value" list[1][0]))
mystrep(&inp->Value,list[i][1]);
if (!stremp("Choice",list[i][0]))
{
mystrep(&tmpstrl, list[i][1]);
tmpstr2 = tmpstrl;
inp->Choice = NULL;
inp->numChoice=0;
for(j=0;tmpstri[j];j++)

1
if (tmpstrl[j]=="")
{
tmpstrl[j]=0;
inp->Choice = (char **)realloc(inp->Choice,(inp-
>numChoicet1)*sizeof(char *));
inp->Choice[inp->numChoice++] = strdup(tmpstr2);
allTrim(inp->Choice[inp->numChoice-1]);
tmpstr2=tmpstr1+j+1;
}
H
inp->Choice = (char **)realloc(inp->Choice,(inp-
>numChoice+1)*sizeof(char *));
inp->Choice[inp->numChoice++] = strdup(tmpstr2);
allTrim(inp->Choice[inp->numChoice-1]);

}

mystrep(char **strl, char *str2)

i

int len, 1, j;

len = strlen(str2);

if(str2[0]=="" & & str2[len-1]=="") // i.e. quoted string;
for (1 = str2[--len] = 0; (str2[i] = str2[i + 1]); i++);

*strl = (strlen(str2)==0)?NULL:strdup(str2);

}

char * split(char * str, char dlm)

108
728851 vl

315

Ak

L
int 1;
for (i = 0; str[i]; i++)
if (str[i] == dIm)

{
str[i] = 0;
return str+1+ 1;

return NULL;
H

acceptForm(struct form *frm)
.{ -

nt 1;

char ans[256];

struct input cnfim;

cnfm.Type = "MChoice";

cnfm. APrompt = strdup("Is this information correct?");
cnfm.numChoice = 4;

cnfm.Choice = (char **)malloc(2 * sizeof{char *));
enfm.Choice[0] = strdup("no");

cnfm.Choice[1] = strdup("yes");

cnfm.Choice[2] = strdup("right™);

cnfm.Choice[3] = strdup("correct");

cnfim.Value = NULL;

system("clear");
printf{"\n");
for(i = 0; i<frm->numFields; i++)
{
if (!stremp(frm->fields[i]->Type,"Say"))
say Text(frm->fields[i]);
if (frm->fields[i]->Value !'= NULL)
continue;
if (!stremp(frm->fields[1]->Type," AcceptResponse™))
getText(frm->fields[i]);
if (Istremp(fim->fields[1]->Type,"MChoice"))
getChoice(frm->fields[i]);
}
while (1)
{

system("'clear");

109
728851 vl

316

o AL

PATENT
Docket No.: 4428-4001

R S

printf("\n");
for(i = 0; i<frm->numFields; i++)
{
~if (!stremp(frm->fields[i]->Type," AcceptResponse'))
sayText(frm->ficlds[i]);
if (Istremp(frm->fields[i]->Type,"MChoice"))
sayText(frm->fields[i]);
H
printf("\n");
getChoice(&cenfm);
if (stremp(cnfm.Value,"no"))
return 1;
system("clear");
printf{("\n");
for(i = 0; i<frm->numFields; i++)
{
if (!stremp(frm->fields[i]->Type," AcceptResponse"))
getText(frm->fields[i]);
if (!stremp(frm->fields[i]->Type,"MChoice"))
getChoice(frm->ficlds[i]);
}

}

getText(struct input * inp)

{

char buf[256];
printf{"\n%s\n\n",inp->APrompt);
fgets(buf,255,stdin);
allTrim(buf);

inp->Value = strdup(buf);

}

sayText(struct input * inp)

{

if (inp->RPrompt = NULL)
printf("%s",inp->RPrompt);

if (inp->Value != NULL)
printf{"%s",inp->Value);

if (inp->RPrompt != NULL || inp->Value !'= NULL)

printf(".\n");

}

110
728851 v1

317

X R M D L B 1R B

PATENT
Docket No.: 4428-4001

ol 7 S A S T s 8 5 L

PATENT
Docket No.: 4428-4001

fillForm(struct form * fim, char ** Array, int arrCount)

{

int i, j, wrdCount = 0, tmpCount = 0;

char **wordList = NULL;

char *tmparray[50];

for(i = 0; i < arrCount; i++)
{
tmpCount = breakStr(Array[i], tmparray);
wrdCount = mergeArray(&wordList,tmparray, wrdCount, tmpCount);
}

wrdCount = processArray(wordList, wrdCount, 1);

for(i = 0; 1 < frm->numFields; i++)
if(!stremp(frm->fields[i]->Type,"MChoice"))

selectValue(frm->fields[i], wordList, wrdCount);

}

int selectValue(struct input * inp, char **array, int arrCount)
{

int i, j, *score;

char *tmparray[20] ;

int max, maxcount, tmpCount;

score = (int *) malloc(inp->numChoice * sizeof{(int));
for (i = 0; 1 < inp->numChoice; i-++)
{
score[i] = 0;
tmpCount = breakStr(inp->Choice[i], tmparray);
if (tmpCount > 1) // Basically to avoid filtering of 'yes', mo' etc
filterStopWords(tmparray, tmpCount);
tmpCount = processArray(tmparray, tmpCount, 0);
for(j = 0; j < tmpCount; j++)
if (inArray(array, tmparray[j], arrCount))
score[i]++;
}
for(i = max = 0; i < inp->numChoice; i++)
if (score[i] > max) max = score[i];
for(i = maxcount = 0; i < inp->numChoice; i++)
if (score[i] == max) maxcount-++;
if (maxcount != 1)
return 0;
for(i = 0; i < inp->numChoice; i++)
if (score[i] == max)

{

111
728851 vl

318

Docket No.

P W B

PATENT
: 4428-4001

inp->Value = strdup(inp->Choicel[i]);

break;
_ }
return 1;
}
processForm (struct form *frm)
{
int i, j;

char *formType = NULL, *formAction = NULL;

for(i = 0; i<frm->numFields; i++)

{

if (frm->fields[i]->Value = NULL)
continue;

if (!stremp(frm->fields[i]->Type,"FormType™))
formType = strdup(frm->fields[i]->Value);

if (!stremp(frm->fields[i]->Type,"FormAction™))
formAction = strdup(frm->fields[i]->Value);

1
¥

// 1f not defined the form type use 'AcceptFrom' as default.
if (formType == NULL)
formType = strdup(" AcceptForm");

if (!stremp(formType," AcceptForm"))
j = acceptForm(frm);

if (!stremp(formType,"ResponseForm"))
J = responseForm(frm);

if j !=0 && formAction != NULL)
performAction(frm, formAction);

}

responseForm(struct form *frm)

{

int i;

system("clear");

printf("\n");

for (1 =0; 1 < frm->numFields; i++)

{

112
728851 vl

319

A

A

Docket No.

di

P e L 3

PATENT

: 4428-4001

if (stremp("Say",frm->fields[i]->Type))
continue;
say Text(frm->fields[i]);
%
printf("\n");
H

getChoice(struct input * inp)
{

char buf[256], *tmparray[50];
int tmpCount;

while (1)
{
printf("\n%s\n\n", inp->APrompt);
foets(buf,255,stdin);
tmpCount = breakStr(buf, tmparray);
if (tmpCount > 1) // Basically to avoid filtering of 'yes', 'no' etc
filterStopWords(tmparray, tmpCount);
tmpCount = processArray(tmparray, tmpCount, 0);
if (selectValue(inp, tmparray, tmpCount))
return;
f
H

performAction(struct form *frm, char *action)
{

struct form f

char * cmd = NULL;

char buf [256];

int i, j,lenl, len2;

FILE *pd;

sprintf(buf, "%s <<EOD\n", action);
cmd = strdup(buf);
for (i = 0; i < frm->numFields; i++)
{
if (frm->fields[i]->Name == NULL)
continue;

sprintf(buf,"%s=%c%s%c\n", frm->fields[i]->Name,"", frm->fields[i]->Value,"");

lenl = strlen(buf);
len2 = strlen(cmd);
cmd = (char *) realloc(cmd, (lenl + len2 + 1) * sizeof(char));

113
728851 vl

320

s M O L B

S

PATENT
Docket No.: 4428-4001

strcat(cmd, buf);
}
sprintf(buf,"EOD\n");
lenl = strlen(buf);
len2 = strlen(cmd);
cmd = (char *) realloc(cmd, (lenl + len2 + 1) * sizeof{char));
strcat(cmd, buf);
if (pd = popen(cmd, "1")) == NULL)
i
fprintf(stderr, "Error in command execution\n");
exit(1);
}
f.name = NULL;
fnumPields = 0;
f.fields = NULL;:
while ((fgets(buf, 255, pd)!= NULL))
{
j = strlen(buf);
if (buffj - 1]=="n") buf]j - 1] =0;
if (strlen(buf) == 0) /* if blank line, stop reading */
continue;
fnumFields++;
f.fields = (struct input **)realloc(f.fields, (f.numFields) * sizeof(struct input *));
f.fields[f.numFields-1] = (struct input *)malloc(sizeof{struct input));
loadInput(f.fields[fnumFields-1], buf);
}
pclose(pd);
processForm(&f);
}

HEADER FILES (C)

globalvar.h: Header file for global variables

extern FILE *webDoc, *phoneDoc;

extern int numColumn, numRow, numiIndex, numMenu;

extern int startPoint, eofFlag, topValues;

extern char **rowTerms, **columnTerms, **prompts, **stopWords;
extern double **matrix, **cosine;

float phoneThreshold, webThreshold;

extern int **indexList, **menuList, **thesaurus;

114
728851 vI

321

PATENT
Docket No.: 4428-4001

extern int numStopWord, numOrgRow;
void stemArray(char **list, int arrayLen);
extern int numForms, numPF;

int stemWord(char *);

extern char ***Fprompts;

extern int numForms, numPF;

extern struct form **formlist;

process.h: Header file declaring functions in process.c
;#**************************#**************t*********************************\

* Process.h: *

N\ s s s ks s ok s ok sk o R R SRR S SR R HOR SR R R SRR R SRS SR SRR S K SR oK o o K sk sk ook sk o ok sk o sk ok ks ok |

int processFile(char *filename, char ¥***cArray, float threshold);
void loadStopWords(char * filename) ;

/I'int allTrim(char *str);

void filllndex();

void updateThesaurus(char *str, int pmpt);

void createMatrix(char * filename);

// int readPara(FILE *fp);

/I int wordsInPara (FILE *fp);

void calcCosine();

int eraseZeroes();

void createThesaurus();

/ void floatSort(int *colnum, float *tmpcos, int numRow);
void saveData(char *filenm);

arraylib.h: Header file declaring functions in arraylib.c

/28283 o o o e o o o o o o o o o o o o S S o ek s o o s sk s sk e e ok sk sk ko Sk R KRk KRRk R Kk ok Kk sk ok KK ok sk o |
* ArrayLib.h ¥
#******************#*********{
int fetchWord(FILE *f, char * wrd);

int inArray(char **array, char *word, int length);

int removeNulls(char **strarray, int numWords);

int mergeArray(char ***Arrayl, char **Array2, int numArrayl, int numArray?2);

int readValues(char *str, char **array);

void sortArray(char *allwords[], int numwords);

int loadPrompts(char *filename);

void loadStopWords(char *);

115
728851 vl

322

e
W T

PATENT

Docket No.: 4428-4001

FILE * fileOpen(char *filename, char *mode);

void addWord(char *** cArray, char * word, int ¢);
int breakStr(char * str, char **strarray);

void filterStopWords(char ** strarray, int numWords);
void filterDuplicates(char ** strarray, int numWords);
int loadFormsList(char *filename);

int loadForms(char * filename);

int all'Trim(char *str);

int createArray(char *, char **);

int processArray(char **_ int, int);

forms.h: Header file declaring functions in formlib.c

#include <stdio.h>

extern struct input {
char *Type;

char * APrompt;
char *RPrompt;
char *Name;

char *Value;

char **Choice;

int numChoice;

' a

extern struct form {
char * name;

struct input **fields;
int numFields;

} b;

char * split(char * | char);
int loadForm(FILE *, struct form *, char *);

void loadInput(struct input *, char *);

void mystrep(char **, char *);

void dumplInput(FILE *, struct input *);

void dumpForm(FILE *, struct form *);

void acceptForm(struct form *);

void getText(struct input *);

void fillForm(struct form * frm, char ** Array, int arrCount);

116
728851 vl

323

PATENT
Docket No.: 4428-4001

MAKE FILE

makefile: Makefile for compiling the source code.

all: t d demorun
t: main.o process.o arraylib.o stemlib.o formlib.o
cc -g main.o process.o arraylib.o stemlib.o formlib.o -0 t -Im
d: dialog.o interactive.o arraylib.o stemlib.o formlib.o
cc -g dialog.o interactive.o arraylib.o stemlib.o formlib.o -o d
demorun: demorun.c
cc demorun.c -0 demorun
main.o: main.c process.h arraylib.h forms.h
cc -C -g main.c
process.o: process.c globalvar.h forms.h
CC -C - pProcess.c
arraylib.o: arraylib.c globalvar.h
cc -c -g arraylib.c
dialog.o: dialog.c arraylib.h
cc -c -g dialog.c
interactive.o: interactive.c globalvar.h
cc -c -g interactive.c
stemlib.o: stemlib.c
cc -c -g stemhib.c
formlib.o: formlib.c
cc -c -g formlib.c
clean:
rm -f *.0 t d core demorun
bkup: clean
tar cvzf ../stem’date "+%d%m" " .tgz .

PARAMETER FILES

t.ini: This file contains parameters required for program 't'

pdoc p # phonedoc

wdoc w # webdoc

sdoc s # stopwords

fdoc f# forms

xdoc x # link of forms & prompts
cfg z.cfg # config file

pt 0.02 # phoneThreshold

wt 0.0006 # webThreshold

tv 5 # topValues for cosine

117
728851 vl

324

g I (I T e T TR

PATENT
Docket No.: 4428-4001

d.ini: This file contains parameters required for program 'd’
cfg t.cfg # config file

_lcfg l.cfg # learn file

sdoc s # stopwords

fdoc f # forms

xdoc x #f x

minprompt 2 # minimum no of prompts

timeout 30 # timeout secs for other options

DATA FILES

p: Document 'p'
Are you calling about subscriptions?
Would you like to order a subscription?
Would you like to pay your subscription fees?
Would you like to give a gift subscription?
Would you like to change your address or change any other information?
Do you have any billing enquiries or concerns?
Would you like information about your account balance or your payments?
Would you like to speak to a customer care representative?
Would you like to temporarily suspend your delivery?
[s there a problem with your paper or delivery?
Did you miss today's paper?
Did you miss yesterday's newspaper and would you like credit for yesterday?
Did you receive a wet paper?
Would you like information about the New Herald website?
Would you like to obtain your New Herald website password?
The website address is www.newherald.com. Would you like any other information about
the website?
Are you calling about advertisements?
Would you like to advertise in the New Herald?
Is it a classified ad?
Is it a full-page, half-page, or quarter-page ad?
Would you like to place an ad?
Is it a classified ad?
Is it a full-page, half-page, or quarter-page ad?
Are you calling about something else?
Would you like to write to the New Herald?
Would you like to submit an article to the op-ed page?
Please email your article to oped@newherald.com.
Would you like to send a letter to the editor?

118
728851 vl

325

AL AET e o T, B W L ZHL T

PATENT
Docket No.: 4428-4001

Please email your letter to letters@newherald.com.
Would you like to work for the New Herald?
Would you like to write for the New Herald? _ _
Would you like to work for the editorial division or for the administrative
division?

w: Document 'w'

Now, it's easicr than ever to manage your Herald. Welcome to The New Herald Subscription &
Customer Carc Web site. You expect all the news that's fit to print in each issue of The New
Herald. And you can expect responsive, round-the-clock on-line customer care that allows you to
review and update your delivery and billing information, stop delivery of your newspaper when
you're away, discover special promotions and notify us of any questions or comments you have.
And if you're not a subscriber, browse our Web site and consider subscribing to home delivery.
Please enjoy your visit.

With convenient home delivery, you will be sure to receive all the wit, the wisdom, the news, the
views offered in every issue of The New Herald. And, through this special offer, you will get
50% off the regular rate for the first cight weeks. To subscribe enter your ZIP code below and
submit.

ZIP Code:

Expect the World Around the Clock

We are pleased to offer our subscribers instant, 24-hour on-line customer care to meet your
service needs. Now, it's casier than ever to order home delivery, review your bill, or change your
service -- and to find out about special customer benefits and promotions.

Take Our Survey

Help us provide you with the highest quality customer service. This short survey asks for vital
information about you and your service needs. The New Herald may perform statistical analysis
of reader interests to identify ways to improve our services and products to better meet the needs
of our subscribers. Personal information about you as an individual subscriber will not be
provided to any third party. Our privacy policy is posted online to disclose our guidelines for the
use of customer information.

You can handle most of your subscription service requests online, including:

& Suspending your delivery while you're away

119
728851 vl

326

Lo A (R e L TR

PATENT
Docket No.: 4428-4001

* Reporting missed deliveries

X Checking the status of your account

% Checking your billing history

* Changing your delivery or billing address
* Changing your method of payment

To subscribe

Customer care:

Account Summary

Update Account

Activity History

Billing History

Paper not received

Suspend delivery

Complaints

Order Home Delivery at 50% Off (US Customers Only)

With convenient home delivery, you can start each day with all the news, the views, the wit and
the wisdom you expect from The New Herald. And, through this special offer, you can save 50%
on the first eight weeks when you order today. It's a smart, easy way to keep up with The Herald.
This offer expires December 31, 2001 and is valid in areas served by The New Herald' delivery
service. Subscribers who have had Herald home delivery within the past 90 days are not cligible
for this introductory offer. To subscribe enter your ZIP code below and submit.

GIFT SUBSCRIPTION OFFER

There's no present like The Herald. And, when you order a gift subscription of 12-week home
delivery of The New Herald, you'll save 50% on the regular rate. Hurry. This offer expires

120
728851 vl

327

o

o 0 i B R

PATENT
Docket No.: 4428-4001

December 31, 2001. To order, enter the ZIP code of the gift recipient below and submit.
Order Home Delivery at 50% Off (US Customers Only)

With convenient home delivery, you can start each day with all the news, the views, the wit and
the wisdom you expect from The New Herald. And, through this special offer, you can save 50%
on the first eight weeks when you order today. It's a smart, easy way to keep up with The Herald.

This offer expires December 31, 2001 and is valid in areas served by The New Herald' delivery
service. Subscribers who have had Herald home delivery within the past 90 days are not eligible
for this introductory offer. To subscribe enter your ZIP code below and submit.

ZIP Code:
GIFT SUBSCRIPTION OFFER
There's no present like The Herald. And, when you order a gift subscription of 12-week home

delivery of The New Herald, you'll save 50% on the regular rate. Hurry. This offer expires
December 31, 2001. To order, enter the ZIP code of the gift recipient below and submit.

ZIP Code:

LARGE TYPE WEEKLY

Developed especially for people with low vision, The New Herald Large Type Weekly offers a
select package of the week's news printed in 16-point type--about twice the size of the regular
type size. With its updated, color-enhanced design, The Large Type Weekly is a striking--and
clearly readable way to enjoy The New Herald. A mail subscription of The New Herald Large
Type Weekly makes a great gift for yourself or someone you care for.

To order, select a country/region below and submit.

Order Home Delivery at 50% Off (US Customers Only)

With convenient home delivery, you can start each day with all the news, the views, the wit and
the wisdom you expect from The New Herald. And, through this special offer, you can save 50%
on the first eight weeks when you order today. It's a smart, casy way to keep up with The Herald.

This offer expires December 31, 2001 and is valid in areas served by The New Herald' delivery

service. Subscribers who have had Herald home delivery within the past 90 days are not eligible
for this introductory offer. To subscribe enter your ZIP code below and submit.

121
728851 vi

328

Nt R T e e L

PATENT
Docket No.: 4428-4001

ZIP Code:

GIFT SUBSCRIPTION OFFER

There's no present like The Herald. And, when you order a gift subscription of 12-week home
delivery of The New Herald, you'll save 50% on the regular rate. Hurry. This offer expires
December 31, 2001. To order, enter the ZIP code of the gift recipient below and submit.

ZIP Code:

LARGE TYPE WEEKLY

Developed especially for people with low vision, The New Herald Large Type Weekly offers a
select package of the week's news printed in 16-point type--about twice the size of the regular
type size. With its updated, color-enhanced design, The Large Type Weekly is a striking--and
clearly readable way to enjoy The New Herald. A mail subscription of The New Herald Large
Type Weekly makes a great gift for yourself or someone you care for,

To order, select a country/region below and submit.

Country:

The New Herald Book Review

Get a head start on the latest book reviews, the acclaimed New Herald Best Sellers lists and
everything new and noteworthy in the literary world. When you order a mail subscription to The
New Herald Sunday Book Review, you'll receive it days in advance of the Sunday New Herald.
To order, select a country/region below and submit.

Country:

To Subscribe - Foreign Mail Subscriptions

Stay informed with all the news in the United States and throughout the world, including sharp
analyses, reports and reviews from the world of business, sports and the arts. Discerning readers
across the country and around the globe depend on The Herald for inside revelations, outside
opinions, all sides of the story. Now you can too -- with the convenience of home delivery by

mail. Order now.

To change your address, method of billing or any of the account information featured below,
please enter the updated information in the appropriate box. Once you have completed all

122
728851 vl

329

w R ST e

PATENT
Docket No.: 4428-4001

information requested, please click Submit at the bottom of the page. (Please note: It is necessary
for all bold fields to be filled out to process your updated information.)

~ Your billing and payment history provides an at-a-glance summary of your account and makes it
simple to check on your balance, last payment and new charges. Recent invoices are listed below
for your review. Questions may be submitted to our customer care billing representatives by
going to the Complaints page. Please be sure to indicate Billing Inquiry as the nature of your
complaint.

Did you miss a paper? The New Herald is committed to making sure you get every issue you've
ordered. If you did not receive your paper or any of its sections, simply select one of the
following redelivery options so that we may deliver one to you.

Please note: Only same day redelivery is available on-line; you must submit this information on
the same day on which your paper or section was to be delivered. For credits on past issues,
please phone our customer care representatives at 1(800) 555-9876.

' would like to have today's paper delivered tomorrow. Please credit my account for today's
missed paper.

Did you miss a paper? The New Herald is committed to making sure you get every issue you've
ordered. If you did not receive your paper or any of its sections, simply select one of the
following redelivery options so that we may deliver one to you.

Please note: Only same day redelivery is available on-line; you must submit this information on
the same day on which your paper or section was to be delivered. For credits on past issues,
please phone our customer care representatives at 1(800) 555-9876.

PAPER NOT RECEIVED

I did not receive today's paper.

ACCOUNT NUMBER: 060095544
Reason:
Select One: [would like to have today's paper delivered tomorrow.

Please credit my account for today's missed paper.

SECTIONS NOT RECEIVED

123
728851 vl

330

T e e T R, o L

PATENT
Docket No.: 4428-4001

I received today's paper with the section(s) checked below missing
Sections not received: ARTS & LEISURE BUSINESS
DINING IN/OUT MAIN NEWS SEC
METROPOLITAN SPORTS
Select One: I would like to have today's paper delivered tomorrow.
Please credit my account for today's missed paper.
As a newspaper home delivery subscriber, you may suspend your service for any amount of
time. When you suspend your home delivery service, you may elect to take part in our vacation
donation program (see description below). Please indicate your suspension
and restart dates below:
ACCOUNT NUMBER: 060095544
SUSPEND/RESUME
Suspend:
Resume:
Vacation Donation Program
During your next vacation, sit back, relax -- and at the same time enrich your community.
Through The New Herald Newspaper in Education program, you can donate your subscription to
students for the time period in which you will be out of town. For each copy you donate, at least
two students will receive their own copy of The New Herald. To donate your vacation copies,

please indicate below.

Choose One: Donate the vacation period papers to local schools through the Newspapers in
Education program. Credit my account for the period of my vacation. SUSPEND/RESUME 2

Suspend:

Resume:

124
728851 vl

331

RPN e

w0

PATENT
Docket No.: 4428-4001

Choose One: Donate the vacation period papers to local schools through the Newspapers in
Education program. Credit my account for the period of my vacation. SUSPEND/RESUME 3

Suspend:
Resume:

Choose One: Donate the vacation period papers to local schools through the Newspapers in
Education program. Credit my account for the period of my vacation.

To best provide you with responsive, accessible customer service, we encourage your comments
and suggestions. Please let us know about any dissatisfaction you may have with your delivery or
billing service. Customers who have not received a paper can order another paper or receive
credit for today by clicking here.

For all other subscription concerns, please use the form below to send us an email indicating the
nature of your complaint and explaining how we may help you. A customer care representative
will respond to your request within 24 hours to the email address provided on this form.

s: Document 's'

a
also
an
am
and
any
as

at

be
but
by
can
could
do
for
from
go
got
have
he
her

125
728851 vl

332

SRt o ! oo L BN

PATENT
Docket No.: 4428-4001

my
of

on

or

our
say
she
that
the
their
there
therefore
they
there
their
this
these
those
through
to
until
we
what
when
where
which
while
who
with
would
you
your
about

126
728851 vl

333

ACTOSS
are
around
did
during
each
ever
every
had
must
no
now
only
other
S0
than
too
was
within
everything
is

like
want
please
S
cannot
then

d

11

me
paper
going
having
ve
been
being
some
speak
know

728851 vl

127

334

R

PATENT
Docket No.: 4428-4001

AT g

PATENT

Docket No.: 4428-4001

f: Document 'f’

[FORM1] : _ _

Type="FormType":Value="AcceptForm"

Type="AcceptResponse":Name="AcctNo": APrompt="Please tell us your account
number.":Value="":RPrompt="Your account number is "
Type="AcceptResponse":Name="date": APrompt="When would you like to start suspending the
paper?":Value="":RPrompt="The delivery will stop on "

Type="MChoice":Name="Duration": APrompt="Would you like to suspend the paper for one
month, two months, or three months?":Choice="one month,two months,three
months":Value="":RPrompt="The delivery will be suspended for "
Type="FormAction":Value="./susp_deli"

[FORM2]

Type="FormType":Value="AcceptForm"
Type="AcceptResponse":Name="Name":APrompt="Please tell us your
name.":Value="":RPrompt="Your name is "
Type="AcceptResponse":Name="Address":APrompt="What city do you live
in?":Value="":RPrompt="You live in "

Type="MChoice":Name="SubType": APrompt="Would you like the newspaper daily or just the
Sunday paper?":Value="":Choice="a daily newspaper,the Sunday newspaper":RPrompt="You
have opted for "

Type="MChoice":Name="SubPrd":APrompt="Would you like a half-yearly or annual
subscription?":Value="":Choice="a half-yearly subscription,an annual
subscription":RPrompt="You have chosen "

Type="FormAction":Value="./add_acct"

[FORM3]

Type="FormType":Value="AcceptForm"
Type="AcceptResponse":Name="AcctNo":APrompt="What is your account
number?":Value="":RPrompt="Your account number is "
Type="FormAction":Value="./acct_info"

[FORM4]

Type="FormType":Value="AcceptForm"
Type="AcceptResponse":Name="AcctNo":APrompt="Whalt is your account
number?":Value="":RPrompt="Your account number is "
Type="FormAction":Value="./get pymt"

[FORMS]

Type="FormType":Value="AcceptForm"

Type="AcceptResponse":Name="Name": APrompt="Whom would you like to gift the
subscription to?":Value="":RPrompt="You are gifting this subscription to "

128
728851 vl

335

AT

PATENT

Docket No.: 4428-4001

Type="AcceptResponse":Name="Address": APrompt="In which city does the person
live?":Value="":RPrompt="The person lives in "
Type="MChoice":Name="SubType":APrompt="Would you like to give a daily newspaper or
Jjust the Sunday paper?":Value="":Choice="a daily newspaper,the Sunday
newspaper":RPrompt="You have opted for "

Type="MChoice":Name="SubPrd": APrompt="Would you like a half-yearly or annual
subscription?":Value="":Choice="a half-yearly subscription,an annual
subscription”:RPrompt="You have chosen "

Type="FormAction":Value="./add_acct"

[FORMG6]

Type="FormType":Value="AcceptForm"
Type="AcceptResponse":Name="AcctNo":APrompt="What is your account
number?":Value="":RPrompt="Your account number is "
Type="MChoice":Name="preference": APrompt="Would you like the newspaper or would you
prefer credit for it?":Value="":Choice="the newspaper,credit":RPrompt="You prefer "
Type="FormAction":Value="./prefer"

[FORMT7]

Type="FormType":Value="AcceptForm"
Type="AcceptResponse":Name="AcctNo":APrompt="What is your account
number?":Value="":RPrompt="Your account number is "
Type="Hidden":Name="preference":Value="credit"
Type="FormAction":Value="./prefer"

[FORMSE]

Type="FormType":Value="AcceptForm"
Type="AcceptResponse":Name="AcctNo":APrompt="What is your account
number?":Value="":RPrompt="Your account number is "
Type="FormAction":Value="./chg acct"

x: Document x'

FORM1:Would you like to temporarily suspend your delivery?

FORM2:Would you like to order a subscription?

FORM3:Would you like information about your account balance or your payments?
FORM4:Would you like to pay your subscription fees?

FORMS5:Would you like to give a gift subscription?

FORMG6:Did you miss today's paper?

FORMG6:Did you receive a wet paper?

FORM7:Did you miss yesterday's newspaper and would you like credit for yesterday?
FORMS8:Would you like to change your address or change any other information?

129
728851 vl

336

S

i B e

PATENT
Docket No.: 4428-4001

a: Datafile 'a’ contains data about subscription
1{1]2]01-01-2002|365|315]01-01-2002|50|||[FregelJena
2[2{2|01-02-2002]52|32|01-02-2002[20]|[Russell|[Cambridge
3]2[2|01-02-2002(52[32[01-02-2002]20|||Wittgenstein|Vienna
4{1|2|01-04-2002|364|314]01-04-2002|50|||Austin|Oxford
5|1]2]01-05-2002|365]|264|01-05-2002|100]||Grice|Berkeley
6[1]1j01-06-2002]180[49]01-06-2002|130j||Parikh|New York

CONFIGURATION FILES

t.cfg: Thesaurus configuration file. This is gencrated by program 't'
[PROMPTS]

Are you calling about subscriptions?

Would you like to order a subscription?

Would you like to pay your subscription fees?

Would you like to give a gift subscription?

Would you like to change your address or change any other information?
Do you have any billing enquiries or concerns?

Would you like information about your account balance or your payments?
Would you like to speak to a customer care representative?

Would you like to temporarily suspend your delivery?

Is there a problem with your paper or delivery?

Did you miss today's paper?

Did you miss yesterday's newspaper and would you like credit for yesterday?
Did you receive a wet paper?

Would you like information about the New Herald website?

Would you like to obtain your New Herald website password?

The website address is www.newherald.com. Would you like any other information about the
website?

Are you calling about advertisements?

Would you like to advertise in the New Herald?

Is it a classified ad?

Is it a full-page, half-page, or quarter-page ad?

Would you like to place an ad?

Are you calling about something clse?

Would you like to write to the New Herald?

Would you like to submit an article to the op-ed page?

Please email your article to oped@newherald.com.

Would you like to send a letter to the editor?

Please email your letter to letters@newherald.com.

Would you like to work for the New Herald?

130
728851 vl

337

i T B B2 B 0

A

PATENT
Docket No.: 4428-4001

Would you like to write for the New Herald?
Would you like to work for the editorial division or for the administrative division?

[MENUTREE]
0,1,0
1,2,99
1,3,99
1,4,99
1,5,99
1,6,0
6,7,99
6,8,99
1,9,99
0,10,0
10,11,99
10,12,99
10,13,99
0,14,0
14,15,99
14,16,99
0,17,0
17,18,0
18,19,99
18,20,99
17,21,0
21,19,99
21,20,99
0,22,0
22,23.0
23,24,25
24,25,100
23,26,27
26,27,100
22,280
28,29,99
28,30,99

[INDEX]
account 7,

ad 19,20,21,
address 5,16,
administr 30,
advertis 17,18,

131
728851 vl

338

U B R G R T B

PATENT
Docket No.: 4428-4001

annual 2.4,
articl 24,25,
balanc 7,

bill 6,

call 1,17,22,
care 8,

chang 5,
classifi 19,
com 16,25,27,
concern 6,
credit 12,11,13,
custom 8,
daili 2,4,
deliveri 9,10,
divis 30,

ed 24,

editor 26,
editori 30,

els 22,

email 25,27,
enquiri 6,

fee 3,

full 20,

gift 4,

give 4,

hall 20,24,
inform 5,7,14,16,
letter 26,27,
miss 11,12,
month 9,
newspap 12,2,4,11,13,
nytim 16,25,27,
obtain 15,
on9,

op 24,25,
order 2,

pai 3,
password 15,
payment 7,
place 21,
problem 10,
quarter 20,
receiv 13,

132
728851 vi

339

L R T

PATENT
Docket No.: 4428-4001

repres 8,

send 26,

someth 22,
submit 24,
subscript 1,2,3,4,
sundai 2,4,
suspend 9,
temporarili 9,
three 9,

todai 11,

two 9,

websit 14,15,16,
wet 13,

work 28,30,
write 23,29,
www 106,

yearli 2,4,
yesterdai 12,

|THESAURUS]
access 58,41,48,19,
acclaim 54,48,53.,41,
account 16,36,39,34,
address 12,9,15,50,25,
advanc 54,48,53,41,
allow 11,17,9,32,
amount 55,36,19,
analys 19,41,32,52,
analysi 32,17,49,
anoth 58,41,48,19,
appropri 12,3,9,32,
ask 32,17,49,

back 59,48,36,53,
balanc 44,49,11,9,
benefit 9,12,17,19,
better 32,17,49,

bill 12,3,44,

bold 12,3,9,32,
bottom 12,3,9,32,
box 12,3,9,32,
brows 11,17,9,32,
care 49,17,8,32,
chang 9,3,44,19,

133
728851 vl

340

W M P e

PATENT
Docket No.: 4428-4001

charg 8,44,49,11,9,
commun 59,48.,36,53,
complet 12,3,9,32,
concern 50,25,49,11,3,
consid 11,17,9,32,
credit 1,36,34,39,58,
custom 11,49,32,
deliveri 41,52,
depend 19,41,32,52,
descript 55,36,19,
discern 19,41,32,52,
disclos 32,17.49,
discov 11,17,9,32,
dissatisfact 58,41,48,19,
elect 55,36,19,

email 15,50,49,.3,11,17,
encourag 58,41,48,19,
enrich 59,48,36,53,
explain 15,50,25,49,11,3,
featur 12,3,9,32,

field 12,3,9,32,

fill 12,3,9,32,

find 9,12,17,19,

fit 11,17,9,32,

foreign 53,29,59,54,
gift 53,41,52,19,
glanc 8,44,49,11,9,
globe 19,41,32,52,
guidelin 32,17.,49,
handl 53,29,59,54,
head 54,48,53,41,
highest 32,17,49,
identifi 32,17,49,
improv 32,17,49,
individu 32,17,49,
inform 17,49,11,
inquiri 8,44,49,11,9,
insid 19,41,32,52,
instant 9,12,17,19,
interest 32,17,49,
invoic 8,44,49,11,9,
last 8,44,49,11,9,
latest 54,48,53,41,

134
728851 vi

341

w2 L R et

PATENT
Docket No.: 4428-4001

least 59,48,36,53,
leisur 48,59,54,34,58,
let 58,41,48,19,
literar1 54,48,53,41,
manag 11,17,9,32,
miss 58,16,39,1,48,
most 53,29.59.54,
necessari 12,3,9,32,
newspap 16,55,39,1,
next 59,48,36,53,
noteworthi 54,48,53,41,
notifi 11,17,9,32,

on 36,16,34,1,58,
onc 12,3,9,32,
opinion 19,41,32.52,
order 19,52,29,
outsid 19,41,32,52,
own 59,48,36,53,
part 55,36,19,

parti 32,1749,
payment 8,9,12,49.11,
perform 32,17,49,
person 32,17,49,
pleas 9,12,17,19,
polici 32,17,49,

post 32,17,49,

privaci 32,17,49,
process 12,3,9,32,
product 32,17,49,
qualiti 32,17,49,
receiv 34,59,

recent 8,44,49.11,9,
relax 59,48,36,53,
repres 11,17,8,15,50,32,
respond 15,50,25,49,11,3,
revel 19,41,32,52,
round 11,17,9,32,
see 55,36,19,

seller 54,48,53,41,
send 15,25,49,11,3,
sharp 19,41,32,52,
short 32,17,49,

side 19,41,32,52,

135
728851 vl

342

L A e e e B B e

PATENT
Docket No.: 4428-4001

simpl 8,44,49,11,9,
sit 59,48,36,53,

stai 19,41,32,52,
state 19,41,32,52,
statist 32,17,49,

statu 1,16,8,36,

stop 11,17,9,32,

stori 19,41,32,52,
submit 19,41,49,11,17,
subscript 29,11,
suggest 58,41,48,19,
sundai 48,53,41,59,
suspend 36,39,16,19,
suspens 55,36,19,
third 32,17,49,
throughout 19,41,32,52,
todai 34,16,48,41,
town 59,48,36,53,
two 48,36,53,

unit 19,41,32,52,
visit 11,17,9,32,
vital 32,17,49,
welcom 11,17.,9,32,

l.cfg: Thesaurus learn file. newly learned meanings are stored in this file
[EXT-THESAURUS]

[SCORING]
2,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,4,0,8,0,0,0,0,0,0,0,0,0,0,
0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,
13,0,2,0,0,
0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,

SHELL SCRIPTS FOR DATA MANIPULATION

acct_info: Script to extract account information from 'a’ into a Response form
#1/bin/sh

acctno="cut -d'="-f 2 | sed s\"//g’

#echo $acctno

136
728851 vi

343

SR

PATENT

Docket No.: 4428-4001

cnt="grep -c¢ "“$acctno|" a’
if [$cnt -eq 0]
then
- echo 'Type="FormType":Value="ResponseForm"
echo '"Type="Say":RPrompt="Sorry, the account number you provided does not
exist":Value="""'
exit 0
fi
line=" grep ""$acctno|" a’
echo 'Type="FormType":Value="ResponseForm"

name="ccho $line | cut -d'[' -f11°

echo "Type="Say":RPrompt="Your last name is ":Value=""$name""
city="echo $line | cut -d'|' -f 12’

echo 'Type="Say":RPrompt="You live in ":Value=""$city""
sub_type="echo $line | cut -d'|'-f 2"

if [$sub_type-eq 1]

then

sub_type="a daily newspaper"
else

sub_type="the Sunday newspaper"
fi

echo 'Type="Say":RPrompt="You have subscribed for ":Value=""$sub type""
sub_prd="echo $linc | cut -d'' -f3°

sdate="echo $line | cut -d'|' -f 4

if [$sub_prd -eq 1]

then

sub_prd="six months"
else

sub_prd="one yecar"
fi

echo '"Type="Say":RPrompt="The subscription starts on '$sdate’ for a period of
":Value=""$sub_prd""

fee="echo $line | cut -d'|' -f 5°

echo 'Type="Say":RPrompt="The subscription fce is $":Value=""$fee""

bal="echo $line | cut -d'|' -f 6

echo 'Type="Say":RPrompt="Your balance is $":Valuc=""$bal""

pdate="echo $line | cut -d'|' -f 7°

pymt="echo $line | cut -d'|' - §

echo 'Type="Say":RPrompt="Your last payment was $'Spymt’ on ":Value=""$pdatc™
sudate="echo $line | cut -d'|' -f9’

if ["X$sudate" '="X" |

137
728851 vl

344

Docket No.:

IR T

PATENT
4428-4001

then

suprd="echo $line | cut -d'|' -f 10

case $suprd in

1) suprd="one month";;

2) suprd="two months";;

3) suprd="threc months";;

esac

echo 'Type="Say":RPrompt="Your account is suspended from '$sudate' for
":Value=""$suprd™"
fi

add_acct: Script to add new account into 'a’'

#!/bin/sh
arrange all the values of input into a single line
cp /dev/null /tmp/param
cut -d'="-f2 | sed "s/\"//g
s/ AW /g" | while read aa
do
echo -n $aa' ' >> /tmp/param
done
echo "" =>>/tmp/param

now transfer them into env variables.
read NAME CITY SUB TYPE SUB_PRD < /tmp/param
if ["§SUB_TYPE" = "a daily newspaper" |

then

SUB _TYPE=1

FEE=182
else

SUB_TYPE=2

FEE=26
fi
if ["$SUB_PRD" = "a half-yearly subscription” |
then

SUB_PRD=1
clse

SUB_PRD=2

FEE="expr $FEE * 2°
fi
cnt=1
while true

138

728851 vl

345

PATENT
Docket No.: 4428-4001

do
if [""grep -c\""$ent|\" a’" -ne 0]
then _
cnt="expr $cnt + 1°
continue
fi

echo $ent'|'$SUB_TYPE'|'$SUB_PRD'|"date +%d-%m-
%Y "|SFEE|$FEE|0||SNAME|$CITY" >> a
echo "Type="FormType":Value="AcceptForm"
echo 'Type="Say":RPrompt="Y our subscription request has been entered":Value="""
echo '"Type="Say":Name="acct no":RPrompt="Your account number is ":Value=""$cnt""
echo 'Type="Say":RPrompt="Your fee for the subscription is $":Value=""$FEE""
echo 'Type="AcceptResponse":Name="payment": APrompt="Your minimum initial
payment is $25. How much would you like to pay now?":Value="":RPrompt="You have chosen
to pay $™
echo "Type="FormAction":Value="./updt pymt
break

"

done
#rm /tmp/param

chg_acct: Script to generate a form to change account information
#1/bin/sh

acctno="cut -d'="-f 2 | sed s/\"//g’

#echo $acctno

cnt="grep -¢ ""$acctno|" a’

if [$ent-eq 0]

then

echo "Type="FormType":Value="ResponscForm"'
echo 'Type="Say":RPrompt="Sorry, the account number you provided does not
exist":Value="""
exit 0
fi
line="grep ""$acctno|" a’
echo 'Type="FormType":Value="AcceptForm™
echo '"Type="Hidden":Name="acctno":Value="$acctno""
Response info
name="echo $line | cut -d'|' -f 11"
echo 'Type="Say":RPrompt="Your last name is ":Value=""$name""
city="echo $line | cut -d'|' -f 12’
echo 'Type="Say":RPrompt="You live in ":Value=""$city"
sub_type="echo $line | cut -d'' -f 2’

139
728851 v1

346

AL

PATENT
Docket No.: 4428-4001

if [$sub type-eq 1]

then

sub_type="a daily newspaper"
else

sub type="the Sunday newspaper"
fi

ccho 'Type="Say":RPrompt="You have subscribed for ":Value=""$sub_type""
sub_prd="echo $line | cut -d'|' -f 3

sdate="echo $line | cut -d'|' -f 4°

if [$sub _prd-eq 1]

then

sub_prd="six months"
else

sub_prd="one year"
fi

echo 'Type="Say":RPrompt="The subscription starts on '$sdate' for a period of
":Value=""$sub_prd""

fee="ccho $line | cut -d'|' -f 5°
echo 'Type="Say":RPrompt="The subscription fee is $":Value=""%feec""
bal="echo $line | cut -d'|' -f 6’
echo "Type="Say":RPrompt="Your balance is $":Value=""$bal'""
pdate="echo $lin¢ | cut -d'|' -f 7°
pymt="echo $line | cut -d'|' -f 8"
echo "Type="Say":RPrompt="Your last payment was $'$pymt' on ":Value=""$pdate™"
sudate="echo $line | cut -d'|' -f9°
if ["X$sudate" !="X"]
then
suprd="echo $line | cut -d'|' -f 10"
case $suprd in
1) suprd="one month";;
2) suprd="two months";;
3) suprd="three months";;
esac
echo "Type="Say":RPrompt="Your account is suspended from '$sudate’ for
":Value=""$suprd"
fi
Y
echo "Type="AcceptResponse”:Name="Name": APrompt="What name would you like to
use?":Value="":RPrompt="The name you would like to use is "
echo "Type="AcceptResponse":Name="Address": APrompt="What city would you like the
newspaper sent to?":Value="":RPrompt="The city you would like the newspaper sent to is "'

140
728851 vl

347

T R T SRR B

I P W L R

PATENT
Docket No.: 4428-4001

echo "Type="MChoice":Name="SubType":APrompt="Would you like the newspaper daily or
Jjust the Sunday paper?":Value="":Choice="a daily newspaper,the Sunday
newspaper":RPrompt="You have opted for " _)

ccho '"Type="MChoice":Name="SubPrd": APrompt="Would you like a half-yearly or annual
subscription?":Value="":Choice="a half-yearly subscription,an annual
subscription":RPrompt="You have chosen "

echo 'Type="FormAction":Value="./updt_acct™

get_pymt: Script to generate a form to accept payment for a particular account
#!/bin/sh

acctno="cut -d'=' -f 2 | sed s/\"//g’

#echo $acctno

cnt="grep -¢ ""$acctno|" a’

if [$ent-eq 0]

then

echo 'Type="FormType":Value="ResponseForm"'

echo "Type="Say":RPrompt="Sorry, the account number you provided does not
exist":Value="""'

exit 0

f1
line=" grep ""$acctno|" a’

fee="echo $line | cut -d'|' -f 5°
bal="echo $line | cut -d'|' -f 6
pdate="echo $line | cut -d'|'-f 7°
pymt="echo $line | cut -d'|' -f 8"
if [$bal -le 0 |

then

echo 'Type="FormType":Value="ResponseForm"
clse

echo 'Type="FormType":Value="AcceptForm"'
fi

echo "Type="Say":RPrompt="The subscription fee is $":Value=""$fec""

echo "Type="Say":RPrompt="Your last payment was $'$pymt' on":Value=""$pdatec""
echo '"Type="Say":RPrompt="Your balance is $":Value=""$bal""

if [$bal -ne 0]

then

—_—t e

echo "Type="Hidden":Name="acctno":Value=""$acctno
echo 'Type="AcceptResponse":Name="payment": APrompt="How much would you like
to pay now?":Value="":RPrompt="You have paid $™

141
728851 vl

348

S L L

T

PATENT

Docket No.: 4428-4001

"

echo 'Type="FormAction":Value="./updt pymt
fi

updt_pymt: Script to update the data file 'a’ using form information

#!/bin/sh
cp /dev/null /tmp/param |
cut -d'=" -f2 | sed "s/\"//g
s/ MW\ /g" | while read aa
do
echo -n $aa'' >> /tmp/param1
done
echo "" >>/tmp/param1
read acctno payment < /tmp/param1
touch /tmp/tmpa
echo "no" > /tmp/found
cat a | while read line

do

cacno="echo $line | cut -d'|' -f 1"

if [$cacno -eq $acctno]

then
echo "yes" > /tmp/found
echo -n $cacno'l' >> /tmp/tmpa
echo -n “echo $line | cut -d'|' -£2"|' >= /tmp/tmpa
echo -n “echo $line | cut -d'|' -f 3" >> /tmp/tmpa
echo -n “echo $line | cut -d'|' -f 4™'|' >> /tmp/tmpa
echo -n “echo $line | cut -d'|' -f 5™ >> /tmp/tmpa
bal="echo $line | cut -d'|' -f 6
bal="expr $bal - $payment’
echo -n $bal'|' >> /tmp/tmpa
echo -n “date +%d-%m-%Y "' >> /tmp/tmpa
echo -n $payment'|' >> /tmp/tmpa
echo -n “echo $line | cut -d'|' -f9™'|' >> /tmp/tmpa
echo -n “echo $line | cut -d'' -f 10™'' >> /tmp/tmpa
echo -n “echo $line | cut -d'|' -f 117" >> /tmp/tmpa
echo “echo $line | cut -d'|' -f 12" >> /tmp/tmpa

else
echo $line >> /tmp/tmpa

fi

done

my /tmp/tmpa a
read ans < /tmp/found

142
728851 vl

349

LR

PATENT
Docket No.: 4428-4001

if ["$ans" = "yes"]
then
echo "Type="FormType":Value="ResponseForm" _

~ echo 'Type="Say":RPrompt="Thank you for the subscription":Value="""
else .
echo '"Type="FormType":Value="ResponseForm™
echo '"Type="Say":RPrompt="Sorry, the account number you provided does not
exist":Value="""
fi
rm /tmp/param1 /tmp/found

susp_deli: Script to suspend delivery for a particular account

#!/bin/sh
cp /dev/null /tmp/param1
cut -d'="-f2 | sed "s/\"//g
s/ AW /g™ | while read aa
do
echo -n $aa' ' >> /tmp/param1
done
echo "" >>/tmp/param|
read acctno sdate period < /tmp/param1
if ["$period" = "one month"]

then
period=1
fi
if ["$period"” = "two month"]
then
period=2
fi
if ["$period” = "three months"]
then
period=3
fi

echo "no" > /tmp/found
touch /tmp/tmpa
cat a | while read line

do
cacno="echo $line | cut -d'|' -f 1"
if [$cacno -eq $acctno]
then
echo "yes" > /tmp/found
143
728851 vl

350

L T M

PATENT
Docket No.: 4428-4001

echo -n $cacno'l' >> /tmp/tmpa
echo -n "echo §line | cut -d'|" -f 2"'|' >> /tmp/tmpa
echo -n "echo $line | cut -d'|' -f 3"'|' >> /tmp/tmpa
echo -n “echo $line | cut -d'|' -f 4" >> /tmp/tmpa
echo -n “echo $line | cut -d'|' -f 5| >> /tmp/tmpa
echo -n “echo $line | cut -d'|" -f 6™'|' >> /tmp/tmpa
echo -n "echo $line | cut -d'|' -f 7"'|' >> /tmp/tmpa
echo -n “echo $line | cut -d'[' -f 8"'' >> /tmp/tmpa
echo -n $sdate'l' >> /tmp/tmpa
echo -n $period'|' >> /tmp/tmpa
echo -n “echo S$line | cut -d'|' -f 11" >> /tmp/tmpa
echo "echo $line | cut -d'|' -f 12" >> /tmp/tmpa
else
echo $line >> /tmp/tmpa
fi
done
mv /tmp/tmpa a
read ans < /tmp/found
if ["$ans" = "yes" |
then
echo 'Type="FormType":Value="ResponseForm™
echo '"Type="Say":RPrompt="Thank you. The information has been updated":Value="""
else
echo 'Type="FormType":Value="ResponseForm"'
echo '"Type="Say":RPrompt="Sorry, the account number you provided does not
exist":Value="""

fi

rm /tmp/param1 /tmp/found

updt_acet: Script to update data file "a' with changed information
#1/bin/sh

ft arrange all the values of input into a single line

cp /dev/null /tmp/param

cut -d'='-f2 | sed "s/\"//g

s/ AW\ /g" | while read aa

do

echo -n $aa' ' >> /tmp/param
done
echo "" >>/tmp/param

cp /dev/null /tmp/tmpa

144
728851 vl

351

AL

PATENT

Docket No.: 4428-4001

read acctno name city sub_type sub prd < /tmp/param
cat a | while read line

do

cacno="echo $line | cut -d'' -f 1"
if [$cacno -eq $acctno |

then

728851 vl

echo -n $cacno’|' >> /tmp/tmpa
if ["$sub_type" = "a daily newspaper"]

then
sub type=1
newfee=182
else
sub_type=2
newfee=26
fi

echo -n $sub_type'|' >> /tmp/tmpa
if ["$sub_prd" = "a half-yearly subscription"]

then

sub_prd=1
else

sub_prd=2

newfee="expr $newfee * 2°
fi

echo -n $sub_prd'|' == /tmp/tmpa

echo -n “echo $line | cut -d'|' -f 4" >> /tmp/tmpa
echo -n $newfee’|' == /tmp/tmpa

oldfee="echo $line | cut -d'| -f 5°

oldbal="echo $line | cut -d'|' -f 6

newbal="expr $newfee - $oldfee + $oldbal’

echo $newfee' '$newbal > /tmp/newbal

if [$newbal -gt 0]

then

echo -n $newbal'|' => /tmp/tmpa
else

echo -n '0|' => /tmp/tmpa
fi

#echo -n "date +%d-%m-%Y | >> /tmp/tmpa
echo -n “echo $line | cut -d'' -f 7"|' >> /tmp/tmpa
echo -n “echo $line | cut -d'|' -f 8| >> /tmp/tmpa
echo -n "echo $line | cut -d'|' -f 9"'|' >> /tmp/tmpa
echo -n “echo $line | cut -d'|' -f 10"|' >> /tmp/tmpa
echo -n $name'|' >=> /tmp/tmpa

echo Scity >> /tmp/tmpa

145

352

b 08 8 B LS e e W L

PATENT
Docket No.: 4428-4001

else
echo $line >> /tmp/tmpa

fi
done
mv /tmp/tmpa a
echo '"Type="FormType":Value="ResponseForm"'
read newfee newbal < /tmp/newbal
echo "Type="Say":RPrompt="Your fee for the subscription is $":Value=""$ncwfee""
if [Snewbal -1t O |
then

newbal="expr $newbal * -1°

echo 'Type="Say":RPrompt="A cheque of $'$newbal’ will be sent to you to compensate
for excess balance™
else

echo "Type="Say":RPrompt="Your balance is $":Value=""$newbal™"
fi
echo "Type="Say":RPrompt="Thank you":Value="""
rm /tmp/param /tmp/newbal

prefer: Script to generate form for damaged / missing newspaper complaint
#!/bin/sh

cp /dev/null /tmp/param|

cut -d'="-f2 | sed "s/\"//g

s/ AW /g" | while read aa

do

echo -n $aa' ' >> /tmp/param]
done
echo "" =>/tmp/param1

read acctno preference < /tmp/param]1
cnt="grep -c ""$acctno|" a’
if [$ent -eq 0]
then
echo 'Type="FormType":Value="ResponseForm"
echo 'Type="Say":RPrompt="Sorry, the account number you provided does not
exist":Value=""

exit O
fi
if ["$preference" = "the newspaper”]
then
echo "Type="FormType":Value="ResponseForm"’
146
728851 vl

353

P e 8 e

S et

PATENT
Docket No.: 4428-4001

echo "Type="Say":RPrompt="You will be sent today'\"s newspaper": Value="""
echo 'Type="Say":RPrompt="Thank you":Value="""
exit 0

5 :

touch /tmp/tmpa

cat a | while read line

do

cacno="echo $line | cut -d'|'-f 1"

if [$cacno -eq $acctno |

then
echo "yes" > /tmp/found
echo -n $cacno'|' >> /tmp/tmpa
echo -n “echo $line | cut -d'' -f 2" == /tmp/tmpa
echo -n “echo $line | cut -d'' -f 3™} == /tmp/tmpa
echo -n “echo $line | cut -d'|' -f 4™'|' >> /tmp/tmpa
echo -n “echo $hine | cut -d'|' -f 5| == /tmp/tmpa
bal="echo $line | cut -d'|' -f 6
bal="expr $bal - 1"
echo -n "$bal]" >> /tmp/tmpa
echo -n “echo $line | cut -d'' -£ 77| == /tmp/tmpa
echo -n “echo $line | cut -d'' -f 8| >> /tmp/tmpa
echo -n $sdate'|' >> /tmp/tmpa
echo $period >> /tmp/tmpa

else
echo $line >> /tmp/tmpa

fi

done

my /tmp/tmpa a

echo 'Type="FormType":Value="ResponseForm"'

echo 'Type="Say":RPrompt="Y our account has been credited":Value=""'
echo 'Type="Say":RPrompt="Thank you":Value="""

rm /tmp/param1 /tmp/found

147
728851 vi

354

[R B B

PATENT
Docket No.: 4428-4001

WE CLAIM:

l. A method performed in a system having multiple navigable nodes interconnected
in a hierarchical arrangement comprising:

at a first node, receiving an input from a user of the system, the input containing at least
one word identifiable with at least one keyword from among multiple keywords,

identifying at least one node, other than the first node, that is not directly connected to the
first node but is associated with the at least one keyword, and

jumping to the at least one node.

2 The method of claim 1 further comprising:

providing a verbal description associated with the at least one node to the user.

3. The method of claim 1 further comprising:

searching a thesaurus correlating keywords with synonyms.

4. The method of claim 3 wherein the searching further comprises:

identifying the at least one word as synonymous with the at least one keyword.

5. The method of claim 1 further comprising:

determining that the at least one word is neither a keyword nor a synonym of any

keyword; and

148
728851 vi

355

ST gl T

e M e B

PATENT
Docket No.: 4428-4001

learning a meaning for the word so that the word will be treated as a leamed synonym for

at least one particular keyword of the multiple keywords.

6. The method of claim 5 further comprising:
adding the word to a thesaurus so that, when the word is input by a subsequent user, the

word will be treated as synonymous with the at least one particular keyword.

7 A method performed in connection with an arrangement of nodes representable as
a hierarchical graph containing vertices and edges connecting at least two of the vertices, the
method comprising:

receiving an input from a user as a response to a verbal description associated with a first
vertex;

analyzing the input to identify a meaningful term that can be associated with at least one
keyword;

sclecting a vertex in the graph structure that is not connected by an edge to the first
verlex, based upon an association between the meaningful term and the at least one keyword and
a correlation between the at least one keyword and the vertex; and

jumping to the vertex.

149
728851 vl

356

o e

PATENT

Docket No.: 4428-4001

8. A method performed in connection with an arrangement of nodes representable as
a hierarchical graph comprising:

correlating keywords with nodes in which the keywords appear to create an inverted
index so that the keywords each appear only once and all nodes containing each of the keywords
are indexed to those keywords;

maintaining a thesaurus of synonyms for at least some of the keywords;

receiving an input from a user containing a meaningful word;

searching the inverted index to determine whether the meaningful word is a keyword and,
if the meaningful word is a keyword, jumping to a node identified in the inverted index as
correlated to that keyword, otherwise,

searching the thesaurus to determine if the meaningful word is a synonym for at least one
particular keyword and, if the meaningful word is the synonym, using the synonym to identify
the at least one particular keyword, and

jumping to at least one node correlated to the at least one particular keyword.

9. The method of claim 8 further comprising:
creating the thesaurus by analyzing at least two files and determining synonymy among
application meaningful words contained therein based upon a frequency of co-occurrence among

the application meaningful words.

150
728851 vl

357

e e

PATENT

Docket No.: 4428-4001

10. A system comprising:

a hierarchically arranged series of nodes;

an inverted index correlating keywords with the nodes;

a thesaurus correlating at least some keywords with synonyms for those keywords;

a processor executable learning procedure configured to, upon receipt of a term that is
identified as neither a synonym nor a keyword based upon a search of both the inverted index
and the thesaurus,

(a) identify the term as at last one particular synonym for at least one particular
keyword and

(b) correlate the term with the at least one particular keyword,
so that when a subsequent user provides the term the system will operate as if the term was

synonymous with the at least one particular keyword.

11. The system of claim 10 further comprising:

a set of verbal descriptions for at least some of the nodes.

12. The system of claim 10 wherein at least one of the nodes is a service node.

13. The system of claim 10 further comprising an interactive voice response system

and wherein the hierarchically arranged series of nodes is part of the interactive voice response

system.

151
728851 vl

358

o

PATENT
Docket No.: 4428-4001

14. The system of claim 10 wherein the hierarchically arranged series of nodes 1s part

of a file system browser application.

15. The system of claim 10 wherein the hierarchically arranged series of nodes is part

of a navigation system for television listings.

16. The system of claim 10 wherein the hierarchically arranged series of nodes is part

of one of a document navigation or a document retrieval system.

17. The system of claim 10 wherein the hierarchically arranged series of nodes is part

of a geographic information system.

18. A transaction processing system, having a hierarchical arrangement of nodes and
configured to interact with a user so that the user can navigate among the nodes in the hierarchy,
the system comprising;:

an inverted index correlating keywords with at least some of the nodes in the hierarchical
arrangement so that when the user interacts with the system and provides an input in response 1o
a verbal description from one node in the hierarchy and the response includes a meaningful word
correlatable with a keyword, the system will identify at least one node that is correlated to the
meaningful word by the inverted index and jump to that at least one node without first traversing

any other node.

152
728851 vl

359

PATENT
Docket No.: 4428-4001

19. The system of claim 18 further comprising:
a thesaurus correlating at least some of the keywords with synonyms for the at least some

keywords.

20. The system of claim 18 further comprising:

at least one stored learned word correlated to a keyword.

21 A method performed by a program executed by a processor to navigate among a
hierarchically arranged group of nodes, each of the nodes having an associated verbal
description, the method comprising:

eliminating stop words and duplicates from the verbal descriptions to create a list of
keywords;

creating a list of thesaurus words;

creating a first matrix comprising a correlation of at least some thesaurus words with at
least some keywords;

creating a second matrix by calculating cosine valucs from a co-occurrence analysis of
the entries in the first matrix;

determining a synonymy among the at least some thesaurus words and the at least some
keywords; and

creating a thesaurus configured as an inverted index based upon the synonomy.

153
728851 vl

360

TR P W e B B i

PATENT
Docket No.: 4428-4001

22, The method of claim 21 further comprising:

tracking frequency of use of the nodes.

23. The method of claim 22 further comprising:

ranking the nodes based upon a result of the tracking.

24, The method of claim 21 further comprising:

pruning a node from the group of nodes based upon a frequency of usage criterion.

25. The method of claim 21 further comprising:
adding a synonym entry into the thesaurus based upon a result of an unknown word

analysis.

26. The method of claim 21 wherein the thesaurus further comprises at least some
learned entries, the method further comprising:

deleting a learned entry based upon satisfaction of a frequency of use criterion.

154
728851 vl

361

oL R R M TR

PATENT
Docket No.: 4428-4001

ABSTRACT

A method performed in a system having multiple navigable nodes interconnected in a
hierarchical arrangement involves receiving an input containing at least one word identifiable
with at least one keyword, identifying at least one node, other than the first node, not directly
connected to the first node, but associated with the at least one keyword, and jumping to the
identified node. A transaction processing system having a hierarchical arrangement of nodes and
is configured for user navigation among the nodes. The system has an inverted index correlating
keywords with at least some nodes in the arrangement so that when the user provides an input in
responsc to a verbal description and the response includes a meaningful word correlatable with a
keyword, the system will identify at least one node correlated to the meaningful word by the

inverted index and jump to that node without first traversing any other node.

728851 vl

362

B R B T L e v I T I T b

| [
6 7 8 E
| \
10 114 116 i

FIG.

363

1

B U5 RN B LS R A W o B

FIG. 2

200
\ / 202

Fruit

204 \ l I I / 206

Apple Orange

300 \ 302 \

Reservations
304
\ l / 306
Domestic International
| / 310 |
Economy Business Economy Business
Class Class Class Class

\308 312/ 314/
FIG. 3

364

T T T I i I W O R
i |98 LN | il PP T L - 1 [PR, | P L - LIV DY

400
\\\\\\ /////,402

Programs

404 406
LY | #
I I

Sitcoms Films

FIG. 4

500
\\\\\ ////,502

Restaurants

504
\ I Il

Pizza Burgers Chinese

506/ 508/
FIG. 5

365

T L

600
/ e /

Initial Node
a0

610
— |/

Domestic Domestic International International
Arrivals Info Reservations Arrivals Reservations
al a2 a3 ad
604 — | I\ 606 608
First/Business Economy
Class Class 614
ab ab
612 / | | I
First Business Economy
Class Class Class
a7 a8 a9
616— 618 — 620 —

FIG.

366

6

Read file p

v

Extract keywords from 'p’

Y

Store keywords from 'p'

®

L A R e

Read file f

Y

Extract keywords from 'f'

Y

Store keywords from 'f

®

FIG. 7A FIG. 7B

FIG. 8

Read file w

Y

Extract thesaurus words
from 'w'

v

Store thesaurus words
from 'w'

®

367

902

906

908

910

912

914

Load stop words from 's'

904

FIG. 9

Has YES
keyword file been
processed?
920
Read file x Eliminate stop words from
thesaurus

v

Y

Eliminate stop words from
keywords

Eliminate duplicate words
from thesaurus

v

Eliminate duplicate words
from keywords

v

Construct inverted index

Y

922

924

Mark keyword file as
processed

Mark thesaurus file as
processed

916

Have both
eyword and thesaurus
files been
processed?

368

1Es Copy inverted index and

thesaurus to t.cfg

DONE

918

Wi T A gt
o II...I |I,,,1‘ (TS (A |

FIG. 10 (®)

Add keywords (p + f) to
thesaurus words (w)

l

Create matrix with thesaurus
1004 words as 'row-words’ and
keywords as 'column-words'

'

Count co-occurrence of 'row-
1006 words' with 'column-words' in
document 'w' to fill matrix cells

'

Calculate cosine value of all
pairs of rows corresponding to
all 'row-words' and rows
corresponding to ‘column words'

l

Take keywords matching top
1010 'n’ cosine values for every
'row-word'

1002

1008

369

LT e R iy

U B R

1102 Read files t.cfg, l.cfg, f, xand s

!

1104 Load files t.cfg, l.cfg, 'f', 's' and 'x'

.

FIG. 11

1106 Provide initial verbal description
| Receive response/input from user 1108

1112
Does
response contain unknown
word?

Does user wish to continue?

370

1202

1204

1206

Identify keywords from response/input

A

Y

Identify thesaurus words in t.cfg and l.cfg, if

any, identified from response/input

v

Select node with verbal description(s) that
best match keywords and thesaurus words

1218

Any
nodes
selected?

1208

Select top level node

1220
Is Issue verbal
1210 single leaf node description for node

selected?

and receive response

verbal description
corresponding to

1212

Issue verbal
description for node
and (if applicable)
receive response

Is form for
verbal description
available?

1214

1216 Error handling

371

1222

FIG. 12

T T L ey
AR el t

1302

Is it
a response
form?

YES

1304

Issue questions based on form
to user and accept response

1306 l

Execute corresponding action
returning another form

Issue response

1308
to user

FIG. 13

372

140

1404

Is word
present in
l.cfg?

YES

1406

Add the word to the list of
learned words with
keywords from selected
prompt as synonyms

Merge keywords from
selected prompt into the
list of synonyms
associated with the word

1408

——»| Copychangestol.cfg a—-

FIG. 14

373

') AT e o
Docket No.: 4428-4001
COMBINED DECLARATION AND POWER OF ATTORNEY FOR

ORIGINAL, DESIGN, NATIONAL STAGE OF PCT, SUPPLEMENTAL,
DIVISIONAL, CONTINUATION OR CONTINUATION-IN-PART APPLICATION

As a below named inventor, 1 hereby declare that:
My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first
“and\joint inventor (if plural names are listed below) of the subject matter which is claimed and for which
a patent is sought on the invention entitled:

NAVIGATION IN A HIERARCHICAL
STRUCTURED TRANSACTION PROCESSING SYSTEM

the specification of which
a. X isattached hereto.

b. [[] was filedon as application Serial No. and was amended
on (if applicable).

PCT FILED APPLICATION ENTERING NATIONAL STAGE

c. [] was described and claimed in International Application No. ____ filed on and as
amended on . (1if any).

I hereby state that I have reviewed and understand the contents of the above-identified specification,
including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which 1s material to patentability as defined in 37 C.F.R.
§ 1.56.

I hereby specify the following as the correspondence address to which all communications about this
apphcation are to be directed:

SEND CORRESPONDENCE TO:

o o e A

[C] Address Shown (see below) 27] 23

PATENT TRADEMARK OFFICE
MORGAN & FINNEGAN, L.L.P.
345 Park Avenue

New York. N.Y. 10154 MNAFFIX CUSTOMER NO. LABEL ABOVE

DIRECT TELEPHONE CALLS TO: 212-758-4800

730298 vi

374

b e

Docket No.: 4428-4001

] I hereby claim foreign priority benefits under Title 35, United States Code § 119 (a)-(d) or under
§ 365(b) of any foreign application(s) for patent or inventor's certificate or under § 365(a) of any
PCT international application(s) designating at least one country other than the U.S. listed below
and also have identified below such foreign application(s) for patent or inventor's certificate or
such PCT international application(s) filed by me on the same subject matter having a filing date
within twelve (12) months before that of the application on which priority is claimed:

1 The attached 35 U.S.C. § 119 claim for priority for the application(s) histed below forms a part of

this declaration.

(= T M L% B R

Country/PCT

Application
Number

Date of filing
(day, month, yr)

Date of 1ssue
(day, month, vr)

Priority
Claimed

Yy [N

[y [N

Oy [N

| I hereby claim the benefit under 35 U.S.C. § 119(e) of any U.S. provisional application(s) listed

below.

Provisional Application No.

Date of filing (day, month, yr)

ADDITIONAL STATEMENTS FOR DIVISIONAL, CONTINUATION OR CONTINUATION-IN-

PART OR PCT INTERNATIONAL APPLICATION(S DESIGNATING THE U.S.)

[hereby claim the benefit under Title 35, United States Code § 120 of any United States application(s) or
under § 365(¢) of any PCT international application(s) designating the U.S. listed below.

US/PCT Application Serial No. |

“Filing Date

Status (patented, pending, abandoned)/ U.S.
_application no. assigned (For PCT)

& In this continuation-in-part application, insofar as the subject matter of any of the claims of this
application is not disclosed in the above listed prior United States or PCT international
application(s) in the manner provided by the first paragraph of Title 35, United States Code, §
112, T acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, § 1.56(a) which occurred between the filing date of the prior application(s)
and the national or PCT international filing date of this application.

730298 v1

375

AL S i Sl !

Docket No.: 4428-4001

[hereby declare that all statements made herein of my own knowledge are true and that all statements
made on information and belief are believed to be true; and further that these statements were made with
the knowledge that willful false statements and the like so made are punishable by fine or Imprisonment,
or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements
may jeopardize the validity of the application or any patent issued thercon.

I hercby appoint the following attorncys and/or agents with full power of substitution and revocation, to
prosecute this application, to receive the patent, and to transact all business in the Patent and Trademark
Office connected therewith: Dawvid H. Pfeffer (Reg. No. 19,825), Harry C. Marcus (Reg. No. 22,390),
Robert E. Paulson (Reg. No. 21,046), Stephen R. Smith (Reg. No. 22,615), Kurt E. Richter (Reg. No.
24,052), J. Robert Dailey (Reg. No. 27,434), Eugene Moroz (Reg. No. 25,237), John F. Sweeney (Reg.
No. 27,471), Amold 1. Rady (Reg. No. 26,601), Christopher A. Hughes (Reg. No. 26,914), William S.
Feiler (Reg. No. 26,728), Joseph A. Calvaruso (Reg. No. 28,287), James W. Gould (Reg. No. 28,859),
Richard C. Komson (Reg. No. 27,913), Israel Blum (Reg. No. 26,710), Bartholomew Verdirame (Reg.
No. 28,483), Maria C.H. Lin (Reg. No. 29,323), Joseph A. DeGirolamo (Reg. No. 28,595), Michacl P.
Dougherty (Reg. No. 32,730), Seth J. Atlas (Reg. No. 32,454), Andrew M. Riddles (Reg. No. 31,657),
Bruce D. DeRenzi (Reg. No. 33,676), Mark J. Abate (Reg. No. 32,527), John T. Gallagher (Reg. No.
35,516), Steven F. Meyer (Reg. No. 35,613), Kenneth H. Sonnenfeld (Reg. No. 33,285), Tony V.
Pezzano (Reg. No. 38,271), Andrea L. Wayda (Reg. 43,979), Walter G. Hanchuk (Reg. No. 35,179), John
W. Osborne (Reg. No. 36,231), Robert K. Goethals (Reg. No. 36,813), Peter N. Fill (Reg. No. 38,8706),
Mary J. Morry (Reg. No. 34,398) and Kenneth S. Weitzman (Reg. No. 36,300) of Morgan & Finnegan,
L.L.P. whose address is: 345 Park Avenue, New York, New York, 10154; and Michael S. Marcus (Reg.
No. 31,727), and John E. Hoel (Reg. No. 26,279), of Morgan & Finnegan, L.L.P., whose address is 1775
Eye Street, Suite 400, Washington, D.C. 20006.

[X] I hereby authorize the U.S. attorneys and/or agents named heremabove to accept and follow
instructions from us as to any action to be taken in the U.S. Patent and Trademark Office
regarding this application without direct communication between the U.S. attorneys and/or agents
and me. In the event of a change in the person(s) from whom instructions may be taken I will so
notify the U.S. attorneys and/or agents named hereinabove.

Full name of second inventor: PRASHANT PARIKH
Inventor's signature™* - i?c)\,\ : LA I'E MO\J = OO
Date
Residence: 254 East 68th Street, Apart. 21D, New York, New York 10021
Citizenship: Indian
Post Office Address: Same as residence
-1il-
730298 vi1

376

w o LR BN

Docket No.: 4428-4001

)3 7}@;—' 20072

Inventor's signature*

Date
Residence: 128 Hillside Avenue, Menlo Park, CA 94025
Citizenship: U.S.A.
Post Office Address: Same as residence

] ATTACHED IS ADDED PAGE TO COMBINED DECLARATION AND POWER OF
ATTORNEY FOR SIGNATURE BY THIRD AND SUBSEQUENT INVENTORS FORM.

*Before signing this declaration, each person signing must:

1. Review the declaration and verify the correctness of all information therein; and

2. Review the specification and the claims, including any amendments made to the claims.
After the declaration 1s signed, the specification and claims are not to be altered.
To the inventor(s):

The following are cited in or pertinent to the declaration attached to the accompanying
application:

Title 37, Code of Federal Regulation, §1.56
Duty to disclose information material to patentability

(a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most
effective patent examination occurs when, at the time an application 1s being examined, the Office is aware
of and evaluates the teachings of all information material to patentability. Each individual associated with
the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the
Office, which ncludes a duty to disclose to the Office all information known to that individual to be
material to patentability as defined in this section. The duty to disclose information exists with respect to
each pending claim until the claim 1s cancelled or withdrawn from consideration, or the application
becomes abandoned. Information material to the patentability of a claim that is cancelled or withdrawn
from consideration need not be submitted 1f the information 1s not material to the patentability of any claim
remaining under consideration i the application. There is no duty to submit information which is not
material to the patentability of any existing claim. The duty to disclose all information known to be
material to patentability is deemed to be satisfied if all information known to be material to patentability of
any claim issued in a patent was cited by the Office or submutted to the Office in the manner prescribed by
§§ 1.97(b)-(d) and 1.98. However, no patent will be granted on an application in connection with which
fraud on the Office was practiced or attempted or the duty of disclosure was violated through bad faith or
intentional misconduct. The Office encourages applicants to carefully examne:

(1) Prior art cited in search reports of a foreign patent office in a counterpart application, and

e

730298 v1

377

(b)

(c)

(d)

(e)

Docket No.: 4428-4001

(2) The closest information over which individuals associated with the filing or prosecution of a
patent application believe any pending claim patentably defines, to make sure that any material
information contained therein is disclosed to the Office.

Under this section, information is material to patentability when it 1s not cumulative to mformation already
of record or being made of record in the application, and

(1) It establishes, by itself or in combination with other information, a prima facie case of
unpatentability of a claim; or

(2) It refutes, or is inconsistent with, a position the applicant takes in:
(1) Opposing an argument of unpatentability relied on by the Office, or
(1) Asserting an argument of patentability.
(iii) A prima facie case of unpatentability is established when the information

compels a conclusion that a claim is unpatentable under the preponderance of
evidence, burden-of-proof standard, giving each term in the claim its broadest
reasonable construction consistent with the specification, and before any
consideration is given to evidence which may be submitted in an attempt to
establish a contrary conclusion of patentability.

Individuals associated with the filing or prosecution of a patent application within the meaning of this
section are:

(1) Each inventor named in the application;
(2) Each attorney or agent who prepares or prosecutes the application; and
(3) Every other person who is substantively mvolved in the preparation or prosecution of the

application and who is associated with the inventor, with the assignee or with anyone to whom
there is an obligation to assign the application.

Individuals other than the attorney, agent or inventor may comply with this section by disclosing
information to the attorney, agent, or inventor.

In any continuation-in-part application, the duty under this section includes the duty to disclose to the
Office all information known to the person to be material to patentability, as defined in paragraph (b) of
this section, which became available between the filing date of the prior application and the National or
PCT international filing date of the continuation-in-part application.

Title 35, U.S. Code § 101

Inventions patentable

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of
matter, or any new and useful improvement thercof, may obtain a patent therefor, subject to the
conditions and requirements of this title.

Title 35 U.S. Code § 102

Conditions for patentability; novelty and loss of right to patent

A person shall be entitled to a patent unless --

-y-

730298 vi

378

(a)

(b)

(c)
(d)

WY

Docket No.: 4428-4001

the invention was known or used by others in this country, or patented or described in a printed publication
in this or a foreign country, before the invention thereof by the applicant for patent, or

the invention was patented or described in a printed publication in this or a foreign country or in public use
or on sale in this country, more than one year prior to the date of application for patent in the United States,
or

The has abandoned the invention, or

the invention was first patented or caused to be patented, or was the subject of an inventor's certificate, by
the applicant or his legal representatives or assigns in a foreign country prior to the date of the application
for patent in this country on an application for patent or inventor's certificate filed more than twelve months
before the filing of the application in the United States, or

The invention was described in--

(1) an application for patent, published under section 122(b), by another filed mn the United States
before the invention by the applicant for patent, except that an international application filed under
the treaty defined in section 351(a) shall have the effect under this subsection of a national
application pubhished under section 122(b) only if the international application designating the
United States was published under Article 21(2)(a) of such treaty in the English language; or

(2) a patent granted on an applcation for patent by another filed in the United States before the
invention by the applicant for patent, except that a patent shall not be deemed filed in the United
States for the purposes of this subsection based on the filing of an international application filed
under the treaty defined in section 351(a); or

he did not himself invent the subject matter sought to be patented, or

(1) during the course of an interference conducted under section 135 or section 291, another inventor
involved therein establishes, to the extent permitted in section 104, that before such person's invention
thereof the invention was made by such other inventor and not abandoned, suppressed, or concealed, or (2)
before such person's invention thereof, the invention was made in this country by another inventor who had
not abandoned, suppressed, or concealed it. In determining priority of invention under this subsection, there
shall be considered not only the respective dates of conception and reduction to practice of the invention,
but also the reasonable diligence of one who was first to conceive and last to reduce to practice, from a time
prior to conception by the other.

Title 35, U.S. Code § 103

103. Conditions for patentability; non obvious subject matter

(a)

(b)

A patent may not be obtained though the invention is not identically disclosed or described as set forth in
section 102 of this title, if the differences between the subject matter sought to be patented and the prior art
are such that the subject matter as a whole would have been obvious at the time the invention was made to
a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be
negatived by the manner in which the invention was made.

(1) Notwithstanding subsection (a), and upon timely election by the applicant for patent to proceed under

this subsection, a biotechnological process using or resulting in a composition of matter that 1s novel under
section 102 and nonobvious under subsection (a) of this section shall be considered nonobvious if—

V1=

730298 v

379

o S T

Docket No.: 4428-4001

(A) claims to the process and the composition of matter are contained in either the same
application for patent or in separate applications having the same effective filing date;
and

(B) the composition of matter, and the process at the time 1t was invented, were owned by the
same person or subject to an obhgation of assignment to the same person.

(2) A patent issued on a process under paragraph (1)—

(A) shall also contain the claims to the composition of matter used in or made by that process,
or

(B) shall, if such composition of matter is claimed in another patent, be set to expire on the
same date as such other patent, notwithstanding section 154.

(3) For purposes of paragraph (1), the term "biotechnological process" means--

(A) a process of genetically altering or otherwise inducing a single- or multi-celled orgamsm

to--

(1) express an exogenous nucleotide sequence,

(11) inhibit, ehminate, augment, or alter expression of an endogenous nucleotide
sequence, or

(iii) express a specific physiological characteristic not naturally associated with said
organism;

(B) cell fusion procedures yielding a cell hne that expresses a specific protein, such as a

monoclonal antibody; and
(C) a method of using a product produced by a process defined by subparagraph (A) or (B),
or a combination of subparagraphs (A) and (B).

(c) Subject matter developed by another person, which qualifies as prior art only under one or more of
subsections (e), (f), and (g) of section 102 of this title, shall not preclude patentability under this section
where the subject matter and the claimed invention were, at the time the invention was made, owned by the
same person or subject to an obligation of assignment to the same person.

Title 35, U.S. Code § 112 (in part)
Specification

The specification shall contain a written description of the invention, and of the manner and process of
making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art
to which it pertains, or with which it 1s most nearly connected, to make and use the same, and shall set
forth the best mode contemplated by the inventor of carrying out his invention.

The specification shall conclude with one or more claims particularly printing out and distinctly claiming
the subject matter which the applicant regards as his invention.

Title 35, U.S. Code, § 119

Benefit of earher filing date; right of priority

(a) An application for patent for an invention filed in this country by any person who has, or whose legal
representatives or assigns have, previously regularly filed an apphcation for a patent for the same invention

in a foreign country which affords similar privileges in the case of applications filed in the United States or
to citizens of the United States, or in a WTO member country, shall have the same effect as the same

-Vii-
730298 vl

380

(b)

(c)

(d)

(e)

Docket No.: 4428-4001

application would have if filed in this country on the date on which the application for patent for the same
invention was first filed in such foreign country, if the application in this country is filed within twelve
months from the earliest date on which such foreign application was filed: but no patent shall be granted on
any application for patent for an invention which had been patented or described in a printed pubhcation in
any country more than one year before the date of the actual filing of the application mn this country, or
which had been in public use or on sale in this country more than one year prior to such filing.

(N No application for patent shall be entitled to this right of priority unless a claim 1s filed in the
Patent and Trademark Office, identifying the foreign application by specifying the application
number on that foreign application, the intellectual property authority or country in or for which
the application was filed, and the date of filing the application, at such time during the pendency
of the application as required by the Director.

(2) The Director may consider the failure of the applicant to file a timely claim for prionty as a
waiver of any such claim. The Director may establish procedures, including the payment of a
surcharge, to accept an unintentionally delayed claim under this section.

(3) The Director may require a certified copy of the original foreign application, specification, and
drawings upon which it 1s based, a translation 1f not in the English language, and such other
information as the Director considers necessary. Any such certification shall be made by the
foreign intellectual property authority in which the foreign application was filed and show the
date of the application and of the filing of the specification and other papers.

In like manner and subject to the same conditions and requirements, the right provided in this section may
be based upon a subsequent regularly filed application in the same foreign country instead of the first filed
foreign application, provided that any foreign application filed prior to such subsequent application has
been withdrawn, abandoned, or otherwise disposed of, without having been laid open to public inspection
and without leaving any rights outstanding, and has not served, nor thereafter shall serve, as a basis for
claiming a right of priority.

Applications for inventors' certificates filed in a foreign country in which applicants have a right to apply,
at their discretion, either for a patent or for an inventor's certificate shall be treated in this country in the
same manner and have the same effect for purpose of the right of priority under this section as applications
for patents, subject to the same conditions and requirements of this section as apply to applications for
patents, provided such applicants are entitled to the benefits of the Stockholm Revision of the Paris
Convention at the time of such filing.

(1) An application for patent filed under section 111(a) or section 363 of this title for an invention
disclosed in the manner provided by the first paragraph of section 112 of this title in a provisional
application filed under section 111(b) of this title, by an mventor or inventors named in the
provisional application, shall have the same effect, as to such invention, as though filed on the
date of the provisional application filed under section 111(b) of this title, if the application for
patent filed under section 111(a) or section 363 of this title is filed not later than 12 months after
the date on which the provisional application was filed and if it contains or is amended to contain
a specific reference to the provisional application. No application shall be entitled to the benefit
of an earlier filed provisional application under this subsection unless an amendment containing
the specific reference to the earlier filed provisional application is submitted at such time during
the pendency of the application as required by the Director. The Director may consider the failure
to submit such an amendment within that time period as a waiver of any benefit under this
subsection. The Director may establish procedures, including the payment of a surcharge, to
accept an unintentionally delayed submission of an amendment under this subsection during the
pendency of the application.

(2) A provisional application filed under section 111(b) of this title may not be relied upon in any

-viii-

730298 vl

381

S

Docket No.: 4428-4001

proceeding in the Patent and Trademark Office unless the fee set forth in subparagraph (A) or (C)
of section 41(a)(1) of this title has been paid.

(3) If the day that is 12 months after the filing date of a provisional application falls on a Saturday,
Sunday, or Federal holiday within the District of Columbia, the period of pendency of the
provisional application shall be extended to the next succeeding secular or business day.

(N Applications for plant breeder's rights filed in a WTO member country (or in a foreign UPOV Contracting
Party) shall have the same effect for the purpose of the right of priority under subsections (a) through (c) of
this section as applications for patents, subject to the same conditions and requirements of this section as
apply to applications for patents.

() As used in this section--

(1) the term "WTO member country” has the same meaning as the term 1s defined in section 104(b)(2)
of this title; and

(2) the term "UPOV Contracting Party” means a member of the International Convention for the
Protection of New Varieties of Plants.

Title 35, U.S. Code, § 120
Benefit of earlier filing date in the United States

An application for patent for an nvention disclosed in the manner provided by the first paragraph of
section 112 of this title in an application previously filed in the United States, or as provided by section
363 of this title, which is filed by an inventor or inventors named in the previously filed application shall
have the same effect, as to such vention, as though filed on the date of the prior application, if filed
before the patenting or abandonment of or termination of proceedings on the first application or on an
application similarly entitled to the benefit of the filing date of the first application and if it contains or is
amended to contain a specific reference to the earlier filed application. No application shall be entitled to
the benefit of an earlier filed application under this section unless an amendment containing the specific
reference to the earlier filed application is submitted at such time during the pendency of the application
as required by the Director. The Director may consider the failure to submit such an amendment within
that time period as a waiver of any benefit under this section. The Director may establish procedures,
including the payment of a surcharge, to accept an unintentionally delayed submission of an amendment
under this section.

Please read carefully before signing the Declaration attached to the accompanying Application. If you
have any questions, please contact Morgan & Finnegan, L.L.P.

-1%-
730298 vl

382

.

TG
ol e g

PATENT Docket No.
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
Applicant(s): Prashant Parikh

Stanley Peters

Serial No.:

Filed:

To Be Assigned

Herewith

Examiner: To Be Assigned

Group Art Unit: To Be Assigned

For: NAVIGATION IN A HIERARCHICAL
STRUCTURED TRANSACTION P ROCESSING SYSTEM

Commissioner Of Patents
Washington, D.C. 20231

ASSOCIATE POWER OF ATTORNEY (37 C.F.R. 1.34)

Please recognize as an Associate Practitioner in this case:

Date: lg Nov. 2002

Date: (2 71&‘\!‘ 2002

Date: |8 Npy. 2002

Correspondence Address:
Morgan & Finnegan, [.LLP
345 Park Avenue

New York, NY 10154

Richard Straussman
Morgan & Finnegan, LLP
345 Park Avenue

New York, NY 10154
Reg. No.: 39,847

Signed: \ OV\/—\L‘)

b e R Ry

4428-4001

it Parlkh

Stanley fﬂ}tc:s

SEMIOSES L.L.C.

Signed: /—[P@\..-.ﬁl
-'__...-——""'

PRASHRANT

Name (Print):

PARIKH

Its (Title): _CHARMAN] <+ CEO

Tel.:(212)758-4800/Fax: (212)751-6849

383

L

j25859 ™

TR |

e

'y

U.S. UTILITY Patent Application

PATENT NUMBER and
ISSUE DATE

APPL NUM
10299359

o
**APPLICANTS:

e

FILING DATE
11/19/2002

CLASS [SUBCLASS | GAU
T4 - 2186
E —

Farikin Prashani; Peters Stanley:

hrCONTEAUING DATA VERIFIED: . DN i/ T nidd <

I+ FORZIGN APPLICATIONS VERIFIED: ~1V

Ve Yy

e e S e S e e .
PG-PUB 'oo NGT PUBLISH d l RESCIND ‘=d :

Foreign priority claimad

35 USC 119 condiiions met
Verifiur and Acknowledged Examiners's intials

QO yes 2 no

JATTORNEY DOCKET NO §
Q yes 3O no [

428-4001

MIITLE : Navigation in a hierarchical structured transaction processing system

U 3 DEPT. OF COMM./PAT.& TM-PTO-436L{Rev _12-54)]

e Copy

by

|
|

4

Best Availabl

NOTICE OF ALLOWANCE MAILED CLAIMS ALLOWED
Total Claims Print Clalm for
Assistant Examiner 0.6
. ISSUE FEE [DRAWING
Amount Due Date Paid Sheets Drwg. _Flaa.omg. Print Fig.
Primary Examiner
TERMINAL PREPARED FOR ISSUE Application Examiner
DISCLAMER WARNING: The information disclosed herein may be restricted.
Unauthorized disclosure may be prohibited by the United States Code Title 35,
Sections 122, 181 and 368, Possession outside the U.S. Patent & Trademark
Office is restricted to authorized employees and contractors only.
FILED WITH:] pisk (cRF) [] co-rom
{Attached in pocket on right Inside flap)

384

SEARCH SEARCH NOTES
(List databases searched. Attach
search strategy inside.)
Class | Sub. | Date | Exmr. Date Exmr;,
7y [1 |l W diui"jl@?_h:__ N2
.l_ W I T\ P o
4] WS Gk |
) e
(j] _1) E’:" e i
11, _,? ’ ()R
i | @ f}—:.v"-'\
(@ 1tif
s | wpL
: b . (AT NS
Gey f SbH-"J""/ .
{ z,-., e 2
a, Jinl. wprﬂw{ﬁ:?@ g/
O
L (@)
<@
O
O
S
<L
” —
(7]
)
oo
INTERFERENCE SEARCHED
Class |Sub. | Date | Exmr.

385

/,' —

ISSUE SLIP STAPLE AREA (for additional cross-references)

ISSUING CLASSIFICATION
ORIGINAL CROSS REFERENCE(S)
CLASS SUBCLASS CLASS SUBCLASS (ONE SUBCLASS PER BLOCK)
INTERNATIONAL
CLASSIFICATION
]
I
I
)
/ A Continued on Issue Slip Inside File Jacket
INDEX OF CLAIMS
I N Rejectod - (Through numersl) ... Canceled N..
R FOR eererezaes s Restricted 1
Claim Date Claim Date
= | > [] I
BB 2
l -—
VG 51
2], 52
3 53 §
3 5
g5 v WES
&84 8 u ”
& TP v 57
;[P mE
" BE
22k |60
BE 81
P} |82
1§l [|63
71 &)
$[\ 5
. 1R |68
INE I [e7 17
I A RE 118
IS IBE 3 119
- 70 120
g 71 21
WEIE 72 2
317 73 123
12 74 124
K3l 175 WS
76 126
77 27
I~ [28 {78 128
29 79 129
30 B 130
3 81 131
32 &2 132
3 8 133
34 . 134
35 BE {135
% 86 138
J 37 87 137
S EE BE 138
\q 39 189 138
o 40 %0 140
~ rxl a1 141
S e |92) 142
43 93 143
R {744
) 45 S 145
LI Tes {146
NA 97 147
- [[]%8 148
49 99 149
50 100 I~ [150

If more than 150 claims or 9 actions staple additional sheet here

386

3est Ava

A

20/6T/11
old 's'n TeTTl

I

“ g QO ! m-.@‘gE'S@.,_‘ﬂ,:ﬂ.:ﬂ.@mE@

- Docket No. 4428-4001
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE E g
R,
Applicant(s): Prashant Parikh and Stanley Peters 2n =2
2N =
—
. deasS
Serial No.: To Be Assigned S =
- =
n =
Filed: Herewith
For: NAVIGATION IN A HIERARCHICAL

STRUCTURED TRANSACTION PROCESSING SYSTEM

EXPRESS MAIL CERTIFICATE

Express Mail Label No.: EV062749235US
Date of Deposit: November 19, 2002

I hereby certify that the following attached paper(s) and/or fee

1.

Nonkwbd

is being deposited with the United States Postal Service "Express Mail Post Office to Addressee’

Utility Application and Application Fee Transmittal (in duplicate);

enclosing Specification (147 pages), claims 1-26 (7 pages), abstract (1 page),

11 sheets of drawings (FIGS. 1-6, 7A, 7B and 8-14);

Executed Declaration And Power Of Attorney For Patent Application (9 pages);
Executed Associate Power of Attorney (1 page);

Recordation Form Cover Sheet (2 pages);

Executed Assignment (3 pages)

Checks in the amounts of $550.00 and $40.00; and

Return postcard.

service under 37 C.F.R. §1.10 on the date indicated above and is addressed to the Commissioner
for Patents, Washington, D.C. 20231.

JAFET COTTO

(Typed or printed name of person mailing papers(s) and/or fee)

(Si e of person mailing paper(s) and/or fee)

Correspondence Address:
MORGAN & FINNEGAN, L.L.P.
345 Park Avenue

New York, NY 10154-0053

(212) 758-4800 Telephone

(212) 751-6849 Facsimile

730304 vl

387

Express Mail No. EV062749235US

20761711
TR

0ld 's'nietir

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE oon =5

UTILITY APPLICATION AND FEE TRANSMITTAL §(1.53 o =1

Commissioner for Patents
Box Patent Application
Washington, D.C. 20231

Sir:
Transmitted herewith for filing is the patent application of
Inventor(s) names and addresses:

(1) Prashant Parikh, 254 East 68th Street, Apartment 21D, New York, New York 10021
Stanley Peters, 128 Hillside Avenue, Menlo Park, California 94025

[[] Additional inventors are listed on a separate sheet

For: NAVIGATION IN A HIERARCHICAL
STRUCTURED TRANSACTION PROCESSING SYSTEM .

Enclosed Are:

147 page(s) of specification

1 page(s) of Abstract

& page(s) of claims (numbered 1-26)

11 sheets of Formal Drawings, (FIGS. 16, 7A, 7B and 8-14)
9 page(s) of Declaration and Power of Attorney

(] Unsigned

[X] Newly Executed

[[] Copy from prior application

[[] Deletion of inventors including Signed Statement under 37 C.F.R. §1.63(d)(2)

] REQUEST AND CERTIFICATION UNDER 35 U.S.C. §122(b)(2)(B)(i) (form
PTO/SB/35)
" As indicated on the attached Request and Certification, Applicant(s) certify that the invention
disclosed in the attached application HAS NOT and WILL NOT be the subject of an
application filed in another country, or under a multilateral agreement, that requires
publication at eighteen months after filing. Applicant(s) therefore request(s) that the attached
application NOT be published under 35 U.S.C. §122(b).

729449 v

388

X

OOX

0O 0O

10299359 . 1131930

. .)ocket No. 4428-4001

Incorporation by Reference:

[] The entire disclosure of the prior application, from which a copy of the combined
Declaration and Power of Attorney is supplied herein, is considered as being part
of the disclosure of the accompanying application and is incorporated herein by
reference.

Deletion of Inventors (37 C.F.R. §1.63(d) and §1.33(b)

Signed statement attached deleting inventor(s) named in the prior application serial
no. , filed

Microfiche Computer Program (Appendix)

[] page(s) of Sequence Listing

[] computer readable disk containing Sequence Listing

[] Statement under 37 C.F.R. §1.821(f) that computer and paper copies of the
Sequence Listing are the same

Assignment Papers (assignment cover sheet and assignment documents)

X A check in the amount of $40.00 for recording the Assignment

[] Charge the Assignment Recordation Fee to Deposit Account No. 13-4500,
Order No. .

[[] Assignment Papers filed in the parent provisional application
Serial No.

Executed Associate Power of Attorney
Certification of chain of title pursuant to 37 C.F.R. §3.73(b)

Priority is claimed under 35 U.S.C. §119 for:
ApplicationNo(s). __ ,filed __ ,in__ (country).
(] Certified Copy of Priority Document(s) [___]

[] filed herewith

[] filed in application Serial No.
[] English translation document(s) [____]

[] filed herewith

[] filed in application Serial No. _____, filed _____.

filed .

Priority is claimed under 35 U.S.C. §119(e) for , filed i

Information Disclosure Statement

[] Copy of | cited references
[] PTO Form-1449
[] References cited in parent application Serial No. , filed

9.

729449 v1

389

LO0299359 . 11419202

. .)ocket No. 4428-4001

[] Related Case Statement under 37 C.F.R. §1.98(a)(2)(ii1)
[] A copy of related pending U.S. Application(s) Serial No(s): , filed
respectively, is attached hereto.

[] A copy of related pending U.S. Application(s) entitled, ., filed to
inventor(s) , respectively, is attached hereto.

[} A copy of each related application(s) was submitted in parent application serial
no. , filed

Preliminary Amendment
Return receipt postcard (MPEP 503)

This is a [_] continuation [_] divisional [] continuation-in-part of prior application
serial no. , filed , to which priority under 35 U.S.C. §120 is claimed.

OX 0O

[] Cancel in this application original claims of the parent application before
calculating the filing fee. (At least one original independent claim must be
retained for filing purposes.)

[] A Preliminary Amendment is enclosed. (Claims added by this Amendment have
been properly numbered consecutively beginning with the number following the
highest numbered original claim in the prior application).

[[] The status of the parent application is as follows:

[] A Petition for Extension of Time and a Fee therefor has been or is being filed in
the parent application to extend the term for action in the parent application until

[] A copy of the Petition for Extension of Time in the co-pending parent application
is attached.

[] No Petition for Extension of Time and Fee therefor are necessary in the co-
pending parent application.

(] Please abandon the parent application at a time while the parent application is pending
or at a time when the petition for extension of time in that application is granted and
while this application is pending has been granted a filing date, so as to make this
application co-pending.

[[] Transfer the drawing(s) from the parent application to this application
] Amend the specification by inserting before the first line the sentence:

This is [_] continuation [] divisional [_] continuation-in-part of co-pending
application Serial No. , filed

729449 vi

390

10299359 111902

. ‘)ocket No. 4428-4001

I. CALCULATION OF APPLICATION FEE
Basic Fee
Number Filed Number Extra Rate $740.00/370.00

Total Claims 26-20 = 6x $18.00/ $9.00 $ 54.00
Independent
Claims 6-3= 3x $84.00/ $42.00 $126.00
(] Multiple Dependent Claims If marked, add fee of $270.00 ($135.00) $0

TOTAL: $550.00

24 Small entity status is or has been claimed. Reduced fees under 37 C.F.R. §1.9 ()

paid herewith $550.00.

X A check in the amount of $550.00 in payment of the application filing fees is
attached.

[[] Charge fee to Deposit Account No. 13-4500, Order No. . ADUPLICATE
COPY OF THIS SHEET IS ATTACHED.

X The Commissioner is hereby authorized to charge any additional fees which may be

required for filing this application pursuant to 37 CFR §1.16, including all
extension of time fees pursuant to 37 C.F.R. § 1.17 for maintaining copendency
with the parent application, or credit any overpayment to Deposit Account No.
13-4500, Order No. 4428-4001. A DUPLICATE COPY OF THIS SHEET IS
ATTACHED. '

Respectfully submitted,
MORGAN & F AN, L.L.P.

Dated: November 19, 2002 | By: %

Richard Strauissman
Registration No. 39,847

Correspondence Address:
MORGAN & FINNEGAN, L.L.P.
345 Park Avenue

New York, NY 10154-0053

(212) 758-4800 Telephone

(212) 751-6849 Facsimile

729449 vi

391

10299359 111902

106
3 /

116

112
] | \1
4 5 6 7
. [
-/ / | L\
108 110 9 10 114
118 — 120
FIG. 1

392

10299353 . 111902

FIG. 2
200
\ 202
204 Frut / 206
N —/—
| Apple Orange

300 \ 302 \

Reservations
304 \ l / 306
[I
Domestic International
] 310 |
| L/ |
Economy Business Economy Business
Class Class Class Class
\ 312 / 314 /
308
FIG. 3

393

10299359 . 1119202

400
\ / 402
Programs

404 406
\ | /
| |

Sitcoms Films

FIG. 4

500
\ / 502

Restaurants

504 \
I |

Pizza Burgers Chinese

506/ 508/
FIG. 5

394

10pe935g . 111902

/ 602

/ 600

Initial Node
a0
/ 610
Domestic Domestic International International
Arrivals Info Reservations Arrivals Reservations
ail a2 a3 ad
604 — | | |\ 606 608
First/Business Economy
Class Class 614
ab ab
612 / I '
First Business Economy
Class Class Class
a7 a8 a9

616—

618 —

FIG. 6

395

620 —

Read file p

Y

Extract keywords from 'p'

Y

Store keywords from 'p'

®

A0ggg9=ES59 . 111902

Read file f

v

Extract keywords from 'f'

Y

Store keywords from 'f'

®

FIG. 7A FIG. 7B

FIG. 8

Read file w

Y

Extract thesaurus words
from 'w'

Y

Store thesaurus words
from 'w'

®

396

A02ga3509 . dili902

@ FlG. 9

902 Load stop words from 's'

904
Has YES
keyword file been
processed?
920
: Eliminate stop words from

906 Read file x thesaurus
908 Eliminate stop words from Eliminate duplicate words

keywords from thesaurus

* 922
910 Eliminate duplicate words
from keywords o
912 | Construct inverted index
Y 924

914 Mark keyword file as Mark thesaurus file as

processed processed

|
916

Have both YES

NO eyword and thesaurus Copy inverted index and

thesaurus to t.cfg

DONE

files been
processed?

918

397

10299359 . 111902

FIG. 10 (8)

Add keywords (p + f) to
thesaurus words (w)

l

Create matrix with thesaurus
1004 words as 'row-words' and
keywords as 'column-words'’

Count co-occurrence of 'row-

1006 words' with 'column-words' in
document 'w' to fill matrix cells

'

Calculate cosine value of all
pairs of rows corresponding to
all 'row-words' and rows
corresponding to 'column words'

l

Take keywords matching top
1010 'n' cosine values for every
‘row-word'

1002

1008

398

e I e i e e = W 2

1102 Read files t.cfg, l.cfg, f, x and s

)

1104 Load files t.cfg, l.cfg, 'f, 's' and 'X'

!

1106 Provide initial verbal description

!

—»| Receive response/input from user 1108

FIG. 11

1112

Does
response contain unknown
word?

Does user wish to continue?

399

1029359 lii902

1202 Identify keywords from response/input —

v

Identify thesaurus words in t.cfg and |.cfg, if
any, identified from response/input

Y

1206 Select node with verbal description(s) that
best match keywords and thesaurus words

1204

1218

Any

1208 nodes Select top level node
selected?
1220
Is Issue verbal
1210 single leaf node description for node
selected? and receive response
Issue verbal
1212 verbal description description for node
corresponding to and (if applicable)
receive response
1222
Is form for
1214 verbal description
available?
1216 Error handling

FIG. 12

400

10099359 111902

1302
Is it
a response
form?

XES

1304

Issue questions based on form
to user and accept response

1306 l

Execute corresponding action
returning another form

Issue response
to user

1308

FIG. 13

401

140

1404

Is word
present in
l.cfg?

1052 . 111902

YES

1406

Add the word to the list of
learned words with
keywords from selected
prompt as synonyms

Merge keywords from
selected prompt into the
list of synonyms
associated with the word

1408

——p! Copychangestol.cfg |e—

FIG. 14

402

A2 E59 L1190

' . PATENT
Docket No.: 4428-4001

The United States
Patent and Trademark Office

UNITED STATES
PATENT APPLICATION
FOR

NAVIGATION IN A HIERARCHICAL STRUCTURED
TRANSACTION PROCESSING SYSTEM

Inventor(s):

Prashant Parikh
Stanley Peters

728851 vl

403

A2 ESC 111902
PATENT
Docket No.: 4428-4001

NAVIGATION IN A HIERARCHICAL STRUCTURED
TRANSACTION PROCESSING SYSTEM

FIELD OF THE INVENTION

The present invention relates to information processing and, more particularly, computer

based transaction processing.
NOTICE OF COPYRIGHT RIGHTS

A portiop of the disclosure of this patent document, particularly the Appendix, contains
material that is protected by copyright. The copyright owner has no objection to the facsimile
reproduction of the patent document or the patent disclosure as it appears in the Patent and
Trademark Office file or records, but otherwise reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

In everyday life, networks of choices set forth in a particular order or hierarchy are
encountered with increasing frequency. Usually, it is desired to traverse the network in the most
efficient manner possible to accomplish a particular goal.

In modern mathematics, graph theory is used to study networks of hierarchical choices.
The hierarchical networks can be represented as a graph structure. Graph theory finds practical
applications in chemistry, computer science, economics, electronics and linguistics.

A graph structure is a collection of points, called “vertices”, and a collection of lines,
called “edges”. Each edge joins a pair of vertices or a single point to itself.

A simple example of a network represented by a graph structure is a road map. The
vertices i'epresent towns or cities. The edges represent the roads that connect the towns and

cities.

728851 v1

404

o W = T W AL W

PATENT

Docket No.: 4428-4001

Another type of network familiar to anyone who has a telephone is an automated
telephone voice response system, such as commonly utilized by many large companies, to direct
incoming calls to particular individuals or departments or to assist the caller in performing a
transaction, such as making a purchase.

That type of telephone network can also be represented as a graph structure. When the
system answers an incoming call, it transmits a verbal description or prompt to the caller: “If
you would like to speak to Harry, press 1; if you would like to speak to Fred, press 2”. (In
general, we will use “verbal description” to mean a set of words relating to the subject matter
whether presented audibly or in written form. The verbal descriptions may range from a few
words to an entire document worth of textl). A first vertex on the graph represents the initial
prompt, which a caller hears upon reaching the telephone response system. If the user’s response
is pressing 1, calls are directed along a first edge to Harry, represented by a second vertex. If the
response is pressing 2, the call is directed along a second edge to Fred, represented by a third
vertex. Then, if the chosen person is not available, the caller is asked whether the caller wishes
to leave a message. If the response is positive, the caller is directed along another edge to the
selected person’s voice mail, which would be represented by another vertex of the graph.

In general, whether for a telephone response network or for any other application
representable by a graph structure, the caller or user of the system will have some goal. By
“goal” we mean a combination of transactions and information accesses which the user seeks to
accomplish. By “transaction” we mean an operation performed electronically with a user. In
general, there will also be a combination of vertices or nodes in the graph that best represent or

are closest to the goal the user is trying to accomplish. We call these vertices the “goal vertices”.
728851 vl

405

1029359 . A1l1l90

PATENT

Docket No.: 4428-4001

For the user, the object in navigating the graph is to get from the first vertex to the goal
vertices. If this is not done as quickly and efficiently as possible the user may become frustrated
and give up. Moreover, as the number of possible choices or nodes in the network becomes
larger, the number of possible pathways between the first vertex and the goal vertices multiplies
rapidly. Therefore, the ability to reach the goal vertex can become more difficult, require
navigation of an excessive number of choices or nodes, or discourage a user before the goal
vertex is even reached.

SUMMARY OF THE INVENTION

The present invention creates a method for navigating efficiently and naturally through a
series of choices to obtain information, perform transactions, or accomplish some similar goal.
The invention is implemented in a programmed computer that has a hierarchically configured
decisional network that must be navigated as part of the processing and is constructed to accept
inputs or data and process them in a manner that facilitates navigation of the network vertices
more efficiently.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example graph representing a simple, generic hierarchically arranged
transaction processing or decisional system suitable for use with the invention;

FIG. 2 is an example portion of a graph used to illustrate jumping among nodes in
accordance with one variant of the invention;

FIG. 3 is an example portion of a graph in a simple interactive voice response (“IVR”)

system used to illustrate grouping in accordance with one variant of the invention;

728851 vi

406

L2935 . 111902

PATENT

Docket No.: 4428-4001

FIG. 4 is an example portion of a graph in a simple interactive television program listing
used to illustrate another variant of the invention;

FIG. 5 is an example portion of a graph in a simple geographic information system used
to illustrate a further variant of the invention,;

FIG. 6 is an example portion of a graph for a simple automated voice response system
used to illustrate a more complex variant of the invention;

FIGS. 7A, 7B, and 8-10 are collectively a flowchart illustrating an example setup process
for use in accordance with an example implementation of one variant of the present invention;
and

FIGS. 11-14 are collectively an overall flowchart illustrating an example process in
accordance with a further variant of the present invention.

DETAILED DESCRIPTION

In graph theory, mathematicians refer to a “path” from one vertex in a graph to another
specified vertex in the graph as consisting of a sequence of edges that connect the vertices
between the first vertex and the final vertex. If the path contains an edge sequence that is
“closed”, meaning that it loops back on itself, the path is called a “circuit” or a “cycle”. A graph
structure is considered to be “connected” if there is at least one path connecting every pair of
vertices.

Our invention is particularly applicable to transactional processing as applied to
instances where graph theory can be used to represent the transactions as a set of options and
when the options are structured according to a connected graph that contains no circuits. We call

such a graph a “tree”. We use the term “menu tree” for a network that provides a “menu” of

728851 vl

407

lopaoussy A ill90

PATENT

Docket No.: 4428-4001

options, typically presented as verbal descriptions, to assist a user in making a series of choices
through which he or she is able to accomplish one or more of his or her information access or
transaction goals. Informally, a “menu tree” can be regarded as a series of vertices in a hierarchy
or ordered pattern, arranged in rows of increasing numbers of vertices. More precisely, a “menu
tree” can be represented as a “tree” in which (i) the vertices are all the options provided
anywhere in the “menu tree”, plus a first vertex, (ii) every vertex except the first vertex, i.e.,
every “option vertex”, is associated with the verbal description (or such other means) by which a
“menu” presents that option, (iii) an edge connects the first vertex to each vertex that the first
“menu” presents to the user as an option, and (iv) each other vertex is similarly connected by
edges to every other vertex that the corresponding “menu” presents to the user as an option. As
the number of options increases, so does the length of paths from the first vertex to goal vertices.

In overview, in accordance with the teachings of our invention, the user can navigate the
graph or tree in a way that allows them to skip from one vertex to another vertex that may be
many rows down the graph or tree and/or where the vertices may not be connected together by
an edge. This eliminates the necessity for making many choices.

Particular implementations make it possible to jump laterally from one vertex to another
. if the navigation enters a wrong branch of the tree or if the user changes his goal. The approach
is accomplished through associating each vertex with a verbal description (or prompt), and
matching words in users' requests and responses with these verbal descriptions to enable the
selection of vertices that may not be directly connected to the user’s current location in the graph

or tree by an edge.

728851 vl

408

102359 Al i90

PATENT

Docket No.: 4428-4001

In some variants, we create a system with the unique ability to learn by incorporating
previously unknown words, keyword or synonyms of keywords so that the system modifies itself
to thereby increase the likelihood that a user will efficiently and quickly reach the goal.

For purposes of illustration, the invention will be described by way of example, first
using a series of simple examples followed by a more complex example of a more detailed and
commercially suitable example variant, in the context of a menu-type automated telephone voice
response system for a publication, a hierarchical network of the type that is frequently
encountered and easily understood that implements a combination of some of the features of the
simple examples in order to illustrate how those features can be combined or overlayed.

It should be understood that the present invention is applicable to a wide range of
different networks, which can be mathematically represented by graph structures consisting of
vertices and edges and should not be considered to be limited to the particular application
described. Representative examples of suitable applications for the invention include
implementing an enhanced and more efficient “Find” function or file system browser for
personal computer operating systems, a navigation system for television program listing,
document management or retrieval systems, a “geographic information system” in an automobile
that allows location of addresses or business(es) meeting certain criteria, or other devices that
incorporate some hierarchical navigation aspect as part of its operation.

In order to more fully understand the invention, various independent aspects are now
presented below by way of simple illustrative examples. In this manner the teachings of the
invention can be understood in a way that makes it possible to use, overlay and/or combine those

aspects in a beneficial manner in an implementation of the invention. Depending upon the

728851 vl

409

Jloepog=Esg 111902

PATENT

Docket No.: 4428-4001

particular implementation of the invention, one or more of the aspects may be used together in
various permutations and/or combinations, with the understanding that different permutations
and/or combinations may be better suited for particular applications or have more or less benefits
or advantages than others.

The underlying scenario common to all these basic examples is that there is a hierarchical
arrangement to the possible choices that can be illustrated in a form of “tree” structure.

FIG. 1 is an example graph 100 representing a possible hierarchically arranged
transaction processing or decisional system suitable for use with the invention. The individual
boxes 102 - 120 are referred to as “nodes” and each represents a specific choice or option in the
hierarchy. For purposes described in more detail below, each node is arbitrarily uniquely
identified in some manner. In the example of FIG. 1, the individual nodes 102 - 120 are
numbered 1 through 10 starting from the top node 102 in the hierarchy.

Each “node” is associated with exactly one verbal description, for example in the case of
an airline system, a verbal description relating to some aspect of the reservation process. Each
such description contains “key”” words that are deemed to be of importance and other words that
can be disregarded. For example, one node may have the associated verbal description “Would
you like to make a reservation?”” In this description, there is only one “key” word —
“reservation” deemed important, so all of the other words in the description can be ignored.

A level in the hierarchy below that one may be used to obtain further narrowing
information, for example, using the verbal description “Is the reservation for a domestic or
international flight?” In this description, the terms “domestic” and “international” are “key”

words. Similarly, the word “flight” could be a “key” word, for example, for a system that

728851 vl

410

10299359 A4 190

PATENT

Docket No.: 4428-4001

involves not only airline travel but also rail and/or cruise travel or it could be an “ignored” or
stop word for a purely airline related system because it has minimal meaning in that context.
Again, the other words can be ignored as well.

The unique identification of each node allows the creation of a list of all the key words
and their associated nodes so that, if a key word is duplicated in two or more nodes, it need only
be listed once. For example, a hierarchical tree related to “pens” might have nodes for ball-point
pens, fine point pens, medium point pens, fountain pens, felt-tip pens, quill pens, erasable pens,
etc. By using this approach, one could list the keyword “point” once, but associate it with each
of the nodes where that keyword appears by using the unique identifier for each node where the
term appears.

In this manner the keywords are obtained from the collection of available descriptions
found in the particular application in which the invention will be used. In addition, each
particular node where the keyword appears is associated with the keyword. Thus, with respect to
the pen application above, the keyword “point” might appear in nodes 2, 3, 6, 7, 13 and 15.
Similarly, the keyword “erasable” might appear in nodes 3, 4, 5, 6 and 22. An index, as
described more fully below, associating these keywords with the nodes containing them is then
created, for example:

point: 2, 3, 6, 7, 13,15
erasable: 3, 4, 5, 22

By making use of these associations the “tree” can be negotiated by allowing presentation

of relevant verbal descriptions for the nodes associated with a term, irrespective of where in the

728851 vl

411

10299550 . 131190

PATENT

Docket No.: 4428-4001
hierarchy they are, thereby causing a “jump” to a particular node without necessarily traversing
the tree in the rigid hierarchical manner.

Various examples will now be presented to illustrate certain concepts related to the
invention. It should be understood that while these examples are presented in the context of
things and likely experiences of ordinary people, the same approach can be applied to other
forms of transaction processing including navigating through hierarchically nested data files in a
computer system, pattern analysis or image processing, etc. the term “transaction” as used herein
relating to traversal through a hierarchy to a goal, not mathematical calculation per se.

Moreover, the specific formats used and presented in these examples are purely for
illustration purposes. It should be understood that that other techniques for interrelating data,
such as hash tables, direct or indirect indexing, etc. can be substituted in a straightforward
manner. Thus, for example, the relationship between the word and a node gould be configured
such that the location of the word in a list as the “n-th” item could be used as an index into
another list containing the nodes correlated to the list. A similar approach could be used for the
thesaurus, the important aspect relative to the invention being the relationship among certain
words and the node(s) in which they occur and, where applicable, the relationship between
certain wofds and “synonyms” for those words, not the data structure or its form or format
whereby that information is kept or maintained.

Example 1

Example 1 illustrates, in simplified form, how an index is used to jump among nodes

with reference to FIG. 2. In this example, the hierarchical tree 200 represents a portion of a more

728851 vi

412

10299359 11102

PATENT

Docket No.: 4428-4001

complex tree specifically involving possible decision relating to fruit and a decision between two
specific types of fruits, an apple and an orange.

In prior art hierarchical trees, navigation of this graph 200 would necessarily involve
going through the “fruit” node 202 in order to reach the “apple” 204 or “orange” 206 nodes. As
a result, assuming this simple tree was part of a larger tree for an on-line supermarket that
prompted the user for what they wanted to purchase, the exchange would be both rigid and time
consuming. For example, in responseto a prompt “What do you want to purchase?” if the
response was anything other than “fruit” traversal to the “fruit” node 202 could not occur. At the
point in the tree that would lead to the “fruit” node 202, neither apple nor orange would be an
acceptable response.

In accordance with the invention, assuming the only relevant keywords for that portion of
the tree were “fruit”, “apple’”” and “orange”, an inverted index would be created that includes an
association of “Fruit” with the top node 202, “Apple” with the bottom left node 204, and
“Orange” with the bottom right node 206. As shown above, that association can be created using
node identifiers, in this example, the node identifiers 1A01, 1A02 and 1A03 are arbitrarily
assigned and used. Thus, the information can be stored in a file, for example, as follows:

Fruit, 1A01

Apple, 1A02

Orange, 1A03

Accordingly, to navigate the system 200, when a response to a verbal description is
provided by a user, possible keywords are identified in the response and used to search the index
and identify any node to which the response may be directed, irrespective of the hierarchy.

Thus, a user response of “an orange” to a verbal description located above the “fruit” node 202 in

10
728851 vi

413

109 =25S A1l

PATENT

Docket No.: 4428-4001

the hierarchy, for example, “What would you like to buy today?” would cause the system to
identify “orange” as a key word from the response, search the index, and directly identify node
1A03 (206) as the node whose verbal description should be presented next, thereby avoiding the
need to traverse intervening nodes, for example, through the “fruit” node (202) 1A01, at all.
This illustrates an example of a simple jump according to the invention.

Example 2

Having illustrated a simple “node jump” a more complex (and likely) scenario can be
shown. In this example, the Example 1 graph of FIG. 2 applies, but relevant portion of the index
is as follows:

Fruit, 1A01

Apple, 1A02, 2F09

Orange, 1A03

As a result, there are two nodes relevant to the keyword “apple” one being the node 204
in the portion of the graph shown in FIG. 2 and one in the node uniquely identified as 2F09
located somewhere else in the hierarchy (not shown).

In this example, a user response containing the keyword “apple” would identify nodes
with identifiers 1A02 and 2F09. In this case, and unlike the prior art, the verbal descriptions
from both nodes would be presented to the user, likely in alternative fashion. Thus, if the user
did not want an apple, they wanted apple cider, node 2F09 might be more appropriate because it
is part of the “drinks” portion of the overall hierarchy.

Thus, presenting the user with the verbal description from both nodes would likely result
in a jump to the portion of the graph nearer to node 2F09 since it is closer to the user’s goal

thereby speeding up the process and avoiding potentially confusing or frustrating the user.

11
728851 vl

414

10299359 111902

PATENT

Docket No.: 4428-4001

Example 3

While the verbal descriptions associated with various nodes will generally be chosen to
accurately represent the node, in accordance with certain variants of the invention, it is possible
to create a situation where a user response takes them away from their ultimate desired goal.
Nevertheless, by using the teachings of the present invention, the user can often still be brought
to their goal quicker than possible with the prior art because the user need not rigidly trace
through the hierarchy. This is accomplished by virtue of the “grouping” aspect inherent in some
implementations of the invention.

This example illustrates the “grouping’ aspect using a simplified graph 300 representing
a portion of an airline reservation system as shown in FIG. 3.

In particular, the graph of FIG.3 can be thought of as part of a very simple interactive
voice response (“IVR”) system.

As described above, each node is uniquely identified, for example, by the numbers 1
through 7 and the identified terms “Reservation”, “Domestic”, “International”, “Business Class”,
“Economy Class” are deemed the relevant keywords. Note, there is no requirement for a the
“keyword” to be a single word, in some implementations, keywords could be single words,
phrases of two or more words, or even some other form of information like a specific data
pattern.

Again, an inverted index is created as described above associating those keywords with
the nodes, in this case:

Reservation, 1

Domestic, 2
International, 3

12
728851 v1

415

i0Pg9ssg . 111902

PATENT

Docket No.: 4428-4001

Business Class, 4, 6
Economy Class, 5, 7

Assuming that the top node is assigned the number 1, its two child nodes (Domestic and
International) are assigned the numbers 2 and 3, and the grandchild nodes (i.e. at the lowest level
in the hierarchy) have been assigned numbers 4, 5, 6, and 7 taken from left to right each node can
be uniquely located. Note that the last two entries in the inverted index are each associated with
two nodes, 4 and 6 in the first case, and 5 and 7 in the second.

Using the above, the concept of grouping of nodes from different parts of the graph (i.e.
nodes that are not siblings or nodes that do not have a common parent) can be explained.

Presume that the response to a verbal description presented as an initial query of “What
do you want to do?”” was “Make a businesls class reservation.” In this case there are two
keywords present, “reservation” and “business class”.

Depending upon the particular implementation, as noted previously, the verbal
descriptions associated with each identified node could be presented together or in sequence.
Alternatively, and as is the case here, a set of rules can be established, for example, such that if
an identified node is a sub-node of another identified node, only the verbal description of the
sub-node(s) is provided because of inherent redundancy. Thus, since both “business class”
nodes 310, 314 are sub-nodes of the “reservation” node 302, the verbal description associated
with the “reservations” node can be suppressed if it can be determined that busineés class
necessarily implies reservations.

In this example, a search of the inverted index would identify nodes 4 and 6 (310, 314)

from different parts of the tree are associated with the keywords in the query, and thus the

13
728851 v1

416

_ 0PS54 S0
PATENT

Docket No.: 4428-4001

system, in presenting the verbal descriptions from each, in effect, alters the tree structure and
groups these nodes in the result. Thus, the combination of result nodes presented depends upon
the user query or response, not that predetermined by the graph structure itself.

Of course, the goal would still not be reached because of the ambiguity caused by
“Business Class” being under both “Domestic” and “International”. However, that ambiguity
can be handled by suitable wording of the following verbal descriptions and whether they are
combined or provided sequentially or by other nodes.

Example 4

A persistent and further drawback present in the prior art is the inability to operate if any
term other than the specific allowed terms are provided. Thus, in an IVR of the prior art,
providing anything other than the recognized term(s) will likely result in meaningless repeat of
the same inquiry by the IVR or an error.

Advantageously, the teachings of the present invention allow for construction of a more
flexible system than available in the prior art. Specifically, we can incorporate a thesaurus to
accommodate synonyms for the keywords.

Example 4 illustrates the addition of a simple thesaurus as an aspect of a system so that a
synonym of a keyword may also be used by the system to jump to the desired nodes in the graph.
Example 4 is discussed with reference to a portion 400 of an interactive television program
listing system as shown in FIG. 4.

Such a system implementing the invention will allow a user to speak to or interact with a

device to look for programs of his choice by time slot, genre, favorite actor or actress, etc.

14
728851 v1

417

AU029a3549 111902

PATENT

Docket No.: 4428-4001

This example, as with the other examples above, use an inverted index, in this case one
where each node 402, 404, 406 is uniquely identified by a string of six characters, the portion of
which corresponding to FIG. 4 is shown as follows.

Programs; acgyct

Sitcoms; ifgnxh

Films; vnymos

Since a common synonym for “Films” is “Movies” a thesaurus can be created associating
the two. Depending upon the particular implementation, thesaurus terms to be equated to the
keywords can be taken from a standard thesaurus or can be custom created for the particular
application. In addition, the equating of terms can be done in any of a myriad of different ways,
the exact implementation details of which however re irrelevant to the invention, but a few
representative examples of which however are contained herein for purposes of illustration.

In one example case, the equating can be done on a purely word basis. For example, a
file can be constructed such that one or more single word synonyms are directly associated with
an index word, for example as follows:

Movies, Flicks — Films

Alternatively, the synonyms can be equated with the node identifier(s) corresponding to
the index term, for example as follows:

Movies, Flicks — vnymos

In the former case, the system would still have to search the index after the thesaurus has

provided the proper index term(s). In the latter case, the thesaurus provides a direct link to the

respective node(s) so that re-searching is not required.

15
728851 v

418

10299359 . 111902

PATENT

Docket No.: 4428-4001

In the system of Example 4, a user who provides the input “Movies” would cause the
processing to occur as follows.

The system would search the inverted index of keywords and fail to locate “Movies” as a
keyword. As a result, it would search the thesaurus and find that the word “Movies” is a
synonym that can be correlated with a keyword. At this point, depending upon the particular
thesaurus, it would either return to the inverted index and search using the synonym keyword
“Films” and return the result as the node 406 identified by “vnymos”, or go directly to the node
406 identified by “vnymos” based upon the thesaurus entry. |

Of course, it is possible (and likely) that in actual usage a synonym will be associated
with more than one keyword. For example, “Comedies” may be associated with both the
keywords “Sitcoms” and “Films”, resulting in, for example, the following entry in a thesaurus:

Comedies — Sitcoms, Films

In this case, a search for “Comedies” would result in the system identifying that the
synonym was associated with nodes 404, 406 for both “Sitcoms” and “Films”, and it would
return both terms or node identifiers corresponding to the two keywords as the result.

Example 5

Advantageously, the thesaurus concept can be extended further so that an initially
unknown word (i.e. a word that is neither a keyword nor a thesaurus word) can be learned by the
system and added to a thesaurus for future use.

This example is described with reference to FIG. 5 which is a portion 500 of a larger
system graph as part of a very simple “geographic information system” found in some

automobiles, kiosks and elsewhere today. Such a system enables a user to, among other things,

16
728851 vl

419

10290=E259 . 111902

PATENT

Docket No.: 4428-4001

identify and get information about different locations in an environment. For example,
information about particular types of restaurants in an area.

In this example, the inverted index for the portion 500 shown in FIG. 5 could look as
follows:

Restaurants, 1

Pizza, 2

Burgers, 3

Chinese, 4

A user issues the following query to the system “fast food™ in order to find a quick meal.

The system’s search of both the index and thesaurus would result in the “term”, in this
case a phrase, not being found in either. In this case, it is an unknown phrase, and the system has
to learn the “meaning” of the term.

To do this, the system first offers the verbal description from the top level node(s) 502 to
the user — in this example, just “Restaurants”. The user presumably provides a positive response.
(Of course, in a real system, it is possible and likely there are more top level nodes than just one.
In that case, the user would be offered two or more of these nodes, and would have to select
“Restaurants” to match his intended request.)

Continuing on, once the user has responded affirmatively, the system moves down the
tree and offers the verbal description from each of the child nodes: “Pizza” (504), “Burgers”
(506), and “Chinese” (508). Presuming that the user picks “Pizza”, the transaction interaction
would look something like this:

User: Fast food

System: Restaurants?

17
728851 vl

420

A0299359 411202

PATENT

Docket No.: 4428-4001

User: Yes

System: Pizza, Burgers, or Chinese?

User: Pizza

At this point, the system has “learned” for the time being that it can equate “fast food”
with “pizza” and can add “fast food” as a synonym to “pizza” in the thesaurus.

This user, who first used the unknown term “fast food”, had to trace a path down the tree.
However, now the system is able to associate “pizza” with “fast food” and create or add a
thesaurus entry to reflect this association, for example as follows:

Fast food — Pizza

Thus, the system has learned a meaning of the initially unknown term “fast food” and has
added it to the thesaurus for future use.

As aresult, a subsequent uses of the same term “fast food” will enable the system to jump
directly to the “pizza” node 504.

Example 6

This example illustrates how additional meanings for an existing thesaurus term or phrase
can be learned by the system for future use, whether the existing thesaurus term or phrase was an
original thesaurus term or one previously learned with continuing reference to FIG. 5.

At this point, the inverted index is unchanged as:

Restaurants, 1

Pizza, 2

Burgers, 3

Chinese, 4

Additionally, presume the following entry now exists in the thesaurus.

18
728851 vi

421

102993539 111902

PATENT

Docket No.: 4428-4001

Fast food - Pizza

Suppose a new user now issues the query “fast food” as above, but with “Burgers” rather
than “Pizza” in mind.

Based upon the thesaurus, the system would go directly to tﬁe “Pizza” node. However,
the user will reject “Pizza”, having “burgers” in mind. By rejecting the “Pizza” node 504
description, the user indicates that the “Pizza” node 504 is not of interest. The system is
therefore configured with a further set of rules, in this case one in which the system goes up in
the hierarchy to a higher node, the top node 502 in this portion of the example, and provides the
verbal descriptions for the other nodes 502, 504, 506, 508 so as to cause a tracing down the tree.
This can be illustrated by the following “dialog™:

User: Fast food

System: Pizza?

User: No

System: Restaurants?

User: Yes

System: Pizza, Burgers, or Chinese?

User: Burgers

This time, although this user has had to trace through at least a portion of the path from a
higher-level node 502 of the tree 500, the system has learned yet another meaning for “fast
food”. It now adds this meaning to the earlier entry in the thesaurus, for example as:

Fast food — Pizza, Burgers

19
728851 v

422

1029935359 . 11190

PATENT

Docket No.: 4428-4001

It has now leamed two meanings for future use. If a user were now to issue the query
“Fast food”, the system would respond with the verbal descriptions from the nodes 504, 506
corresponding to both Pizza and Burgers.

Thus, the system can keep learning new meanings of terms based on the intended
meanings of users “‘deduced” from the interactions between users and the system.

Of course, the nature and extent to which the system will incorporate synonyms and/or
keywords in a continual leaming process will not only depend upon its construction and rules,
but also on the quality of the original thesaurus and the quality of the initial inverted index. In
addition, where in the tree the system jumps if the user rejects the initial meaning(s) offered by
the system can be handled different ways in different implementations.

For example, the system can always jump to fixed ancestor(s) (either the top node or a
parent or some ancestor(s) at an intermediate point) or a fixed level (e.g. halfway from the top).
This approach has the advantage of being simple to implement, but it has the problem of
inflexibility because it may be relatively efficient for certain graphs and associated verbal
descriptions, but not for all. For example, if two or more nodes’ verbal descriptions are offered
and rejected, the relevant node selected would have to be common ancestor(s) of the offered
nodes. In other words, with reference to Example 6 which is part of a larger tree, going up to the
“Restaurants” node 502 would mean going to the parent of the “Pizza” node 504 rather than all
the way to the top in the larger tree containing the portion 500 shown.

A more flexible alternative uses the information recorded in the thesaurus to find every
synonym for “pizza” in the thesaurus and collect all the other keywords associated with those

synonyms. Then the system would search the inverted index to identify all the nodes associated

20
728851 vl

423

AD29935%9 111902

PATENT

Docket No.: 4428-4001

with these other associated keywords and identify the most common ancestor of all of those
nodes and go to it. By using the information in the thesaurus in this way the system makes use
of known properties of the one meaning of “fast food”, which is “Pizza”, to construct an
intelligent hypothesis about where the other meanings of “fast food”” might lie in the graph. This
allows the user to reach another meaning with the least effort and allows the system thereby to
learn what the new meaning of “fast food” is more efficiently.

Example 7

Of course, just as it may be desirable to create implementations to add meanings to the
thesaurus, it may be equally or more desirable to cause an existing meaning for a thesaurus word
to be dropped, for example, due to relative lack of use. This process is described with continuing
reference to FIG. 5 and the associated inverted index, particularly with respect to the thesaurus
entry resulting from the most recent example.

Fast food — Pizza, Burgers

In this example, presume that there have been several uses of the query “fast food” and
that the user(s) issuing these queries have almost always selected “Burgers’”” and almost never
“Pizza”.

In accordance with another implementation of the invention, the system is constructed to
track the frequency of use of a particular term in the thesaurus. Depending upon the particular
implementation, the tracking can be done for all entries in the thesaurus, for only those added as
part of the “learning” process, or for some specified combination thereof.

In addition, some specified criterion is used to determine when, and which terms, if any,

should be removed from the thesaurus. Depending upon the particular implementation the

21
728851 vl

424

) A0Pg99E5Y . 141190
PATENT

Docket No.: 4428-4001

criterion can be based upon usage relative to time, usage of a particular term relative to some
other term(s), term usage relative to overall thesaurus usage, or simply elimination of all added
terms not used since the last purge.

Thus, presuming that the system has kept track of the frequency of use of different
meanings of “fast food”, and that “Pizza” does not meet the criterion for a sufficiently high
frequency, the meaning “Pizza” can be dropped as a synonym for “Fast food” and the entry (after
purging) would look as follows:

Fast food — Burgers

Thus, a further enhanced implementation can be constructed so the system is dynamically
updating the thesaurus, either adding rﬁeanings or dropping meanings for existing and/or initially
unknown words.

Example §

A further advantage to the invention is that, in some implementations, it can be
configured so that, when there are multiple relevant nodes to be presented, an associated ranking
can be used to determine the type, method or order of presentation. For example, the ranking can
be based upon the frequency of use of particular nodes, which is tracked in these
implementations, so that the most frequently selected or used nodes are presented first, more
prominently, or in a particular manner.

For example, this can be illustrated by continuing from Example 7, where the thesaurus
entry was as follows:

Fast food — Pizza, Burgers

22
728851 vl

425

) ioPga3sSy lillg02
PATENT

Docket No.: 4428-4001

Under the assumption that the system has been tracking the frequency of usage of the “Pizza”
node and the “Burgers” node and each has been accessed an identical number of times. When a
user enters the query “Fast food”, as above, the system presents the user with both the “Pizza”
node 504 and the “Burgers” node 506, but because it tracks usage and the usage is the same, it
presents them in the order they are listed, i.e. “Pizza” and then “Burgers”. However, at this
point, the user’s selection will cause one entry to have a greater frequency of usage relative to the
other entry, for example a selection of “Burgers” will make it have a higher frequency of usage
and, accordingly, a higher ranking for the next instance of use.

Thus, the next time the system will be presenting both the “Pizza” and “Burgers” nodes
to a user, the “Burgers” node 506 will have the higher frequency of usage and, accordingly, will
be presented first, or more prominently, or in some other specified manner because of its
ranking. If the frequency reverses with use so that the “Pizza” node 504 outranks “Burgers”
node 506, then the “Pizza” node 504 will supplant the “Burgers’ node 506.

Example 9

A further variant of Example 8 allows the node rankings to be used to prune the nodes
themselves. In this variant, a criterion can be specified, typically zero usage over a long
specified period of time, that is used to remove an entire node. This is advantageously made
possible because of the system’s ability to “jump” among nodes. Thus, it may occur that a node
within the tree is never accessed, but a child node of that node is. In some variants therefore,
when this state exists for a sufficiently long period of time, the system is constructed to delete
that node. It should be understood that, if handled properly, this process will not even affect the

“learning” process because, even if no user action ever directly causes the node to be presented,

23
728851 vi

426

_ L0350 11100
PATENT

Docket No.: 4428-4001

if the learning process causes the node to be presented the node’s access frequency will be non-
zero and it will not be “pruned”.

In addition, by tracking access frequency on a node basis, a qualitative evaluation of the
hierarchical system can be made and visualized. This makes it possible to review the overall
hierarchy after some period of time and periodically optimize it based upon the result instead of
relying purely upon the dynamic optimization that inherently and naturally flows from use of the
teachings of the invention.

Having now described various component aspects of different variants implementing the
invention, by way of the above examples, it should be understood that the “jumps’ can occur
from any node to any node, i.e. vertically and/or laterally and to another node that is higher,
lower or on the same “level” as the node from which the jump is made. All manner of vertical
and lateral jumps from multiple nodes to multiple nodes are possible.

In addition, it should be understood that in some applications (like document retrieval
systems) the verbal description from the identified node may be the one issued whereas, in others
(like an TVR system), the verbal descriptions for the children of the identified nodes may be what
is presented. Nevertheless, in both cases, the process as described above by way of example will
be the same or directly analogous.

Having described the various aspects individually a more commercially suitable example,
employing a combination of the above examples, can now be presented with reference to FIG. 6
which illustrates a simplified example of an “interactive voice response unit” (IVR) hierarchy
600 that might be used in the airline industry. Of course, a real menu tree used in an IVR may

have any number of nodes from several, up to a thousand, or more. For example, a tree with 4

24
728851 vl

427

_ 10299359 . Al1l902
PATENT

Docket No.: 4428-4001

branches from each node and which has 5 levels uniformly would have 1365 nodes. As shown
in FIG. 6, the tree 600 is a hierarchical tree and consists of the following nodes and branches:

Initial start (node a0) 602

domestic flight arrival information (node al) 604

domestic reservations (node a2) 606

international flight arrival information (node a3) 608

international reservations (node a4) 610
The node 604 identified by al is a service node with pre-recorded information.

The node 606 has two child node a 2, first/business class (node a5) and economy (node a6).
The node 608 identified by a3 is service node with pre-recorded information.

The node identified as a4 has three child nodes identified as first class (node a7), business class
(node a8), and economy (node a9).

The nodes 612, 614, 616, 618, 620 identified as a5, a6, a7, a8, a9 are all service nodes (i.e.
terminal nodes) where a respective customer service representative will interact with the caller.

Of course, a real system may also have a choice at the top level or at each level for a live
operator and may even have a choice to go back to the previous menu.

Even for such a simple example, in a traditional interactive voice response system, the
caller would have to listen to several choices and then traverse a path down to a service node.
Someone interested in business class reservations on a domestic flight would have to traverse the
path (a0, a2, a5) for example. This involves listening to multiple choices at each level of the tree
(e.g. first a prompt at a0, then four prompts offering al, a2, a3, and a4 at the next level, at which

the caller would choose a2, and finally two prompts offering a5 and a6, at which level the caller

25
728851 vi

428

i029232549 11190

PATENT

Docket No.: 4428-4001

would choose a5 and then wait for the operator) and then making a choice by pressing an
appropriate number on the telephone dial pad or alternatively saying the appropriate number. In
certain cases, he may make a mistake: he may choose international reservations when he is
interested in domestic reservations or something similar (simply by pressing the wrong number
on his touch-tone telephone or saying the wrong number). If he does, then he has no choice but
to disconnect the phone and redial the number (or if the system has a backtracking option, then
he can backtrack, but even here he has wasted valuable time).

In contrast, in accordance with a system implementing the invention, the caller would be
able to say what he was looking for (e.g. “I want to make a domestic business class reservation’)
and the system would identify and respond with the appropriate node 612 (e.g. a5 in this case or
the relevant customer service representative directly). In other words, it would enable the caller
to skip to the correct node(s) without having to trace through the entire path. If the user makes a
mistake, he could ask for something different wherever he finds himself in the tree, and skip
laterally or vertically to his preferred choice.

The system implementing the invention can further include an option that the entire
transaction (e.g. the making of the reservation) would be carried out through natural language
interactions with the system without the intervention of a human customer service representative.
In other words, all the details of his domestic reservation are obtained by the system and the
system updates a database accordingly and issues whatever commands are required (e.g. the
mailing of a ticket) to be carried out by some human representative later.

While it is true that some more advanced interactive voice response systems available

today allow for natural language interactions, they are highly constrained natural language

26
728851 vl

429

10299350 A1 4902

PATENT

Docket No.: 4428-4001

interactions with relatively little or no intervention by a human operator. However, unlike with
systems using the invention, those systems still require direct path traversal through the hierarchy
(i.e. jumping to non-connected nodes is not contemplated or possible, let alone allowed).
Moreover, such systems still typically use a limited list of keywords, which the caller is required
to use to correctly traverse to the next connected node.

In contrast, variants of a system implemented in accordance with the invention can
incorporate an automatically generated or updated thesaurus, which greatly expands the range of
words or terms a caller can use. In these variants, the user is not restricted to parroting the highly
constrained script as required by other interactive voice response systems, nor is the user limited
to traversal to a connected node. In these more complex implementations of the invention, a
system can be constructed that is able to learn new words or terms that it may not have
understood the first time. For example, if a user asks for “coach class” and the system does not
have the word “coach” or the phrase “coach class” in its keyword list or in its current thesaurus,
then on this first occasion, it offers the user a traditional path down the conventional tree. But it
tracks what the user did, what node of the tree the user went to, and on this basis, it learns a new
response to “coach class”. The next time a caller (either the same person or a different person)
uses the words “coach class” the system does not offer the traditional path as it did the first time,
but instead it offers a new set of nodes based on what it learned the first time. Thus, in such
implementations, the thesaurus is a dynamically changing entity, continually updating itself by
learning new words and terms and learning new “meanings” (i.e. new actions or responses) for

existing terms.

27
728851 vl

430

A029935%9 . A11902

PATENT

Docket No.: 4428-4001

Implementations according to the invention can also allow novel groupings of nodes to
be presented to the caller based on his query. If he asks for “economy class™ without specifying
whether he wants an international or domestic reservation, then the system would offer him the
nodes a6 and a9 (appropriately phrased in natural language), and allow him to further choose
whether he wants international or domestic reservations, something current systems do not offer.
In other words, the system can pick out the relevant responses from different branches of the tree
and pool them together and offer them to the caller.

This functioning of the system, by which it is able to skip around laterally or vertically in
the tree, is enabled by the associating of natural language (i.e. human language) verbal
descriptions with each node, and then using these as an initial basis for the navigation,
augmented, in some variants, by a dynamically changing thesaurus that greatly expands its range
and comprehension.

Thus, based upon a conceptual understanding of the above examples, further details of
the process will now be presented.

The flowcharts of FIGS. 7 through 14 are illustrative of a functional example of the
general method of a more complex variant the invention as would be implemented in software
according to the flowcharts in this case for a newspaper subscription application. It should be
understood that particular details are provided in the description below merely for completeness
or because they are necessary or helpful for forming an understanding of the particular
implementation. They are not to be considered essential for implementing the invention.
Similarly, details unrelated to or unnecessary for understanding the invention have been omitted

to avoid confusion.

28
728851 v

431

_ 10299350 . 111902
PATENT

Docket No.: 4428-4001

An example implementation is described and contains two programs, a preparatory
program, illustrated in FIGS. 7-10 and a transaction or query processing program, illustrated in
FIGS. 11-14. In addition, a particular software implementation fairly corresponding to the
flowcharts of FIGS. 7 - 14 appears in the Appendix A that follows. The program contained
therein, is written in the “C” programming language for execution on any personal computer
having a processor, memory , input-output, etc. capabilities to run the particular application in its
intended environment.

Broadly, the first program process of FIGS. 7-10 constructs an inverted index and an
application-specific thesaurus and the second program process of FIGS. 11-14 uses those
constructs in a transaction processing system to interact with a user.

In the preparatory program of FIGS. 7A, 7B and 8-10, the shorthand names of files that
the program uses and the contents of the corresponding files are as follows. Notably, both the
process parts shown in FIG. 7A and 7B as well as the process part shown in FIG. 8 are indicated
as start points. This is because they are each independent of each other in that any of the three
could start before any other or two or more could be run concurrently. Thus, it should not be
presumed that they are mutually exclusive or any one is per se required for the invention.
Moreover, it should be understood that any one or more could have been undertaken at a
different time, by a different entity, or for a different application. Whether one or more of the
portions shown in FIG. 7A, FIG. 7B or FIG. 8 are the starting points, the starting point for actual
operational processing will be the same.

The file named ‘p’ contains a list of prompts or verbal descriptions in a hierarchical

relationship (i.e. they can be visualized or arranged in a tree-type graph).

29
728851 vl

432

_ A0S S 1431902
PATENT

Docket No.: 4428-4001

The file named ‘w’ contains documents that are related to the prompts or verbal
descriptions in ‘p’. For example, ‘W’ could contain a training manual for customer service
personnel or a website document that is likely to contain material that is related to the queries
customers may have. This file is used to create a thesaurus.

The file named ‘f* contains forms that are used to elicit relevant information from
customers. They have fields like ‘name’, for example, which would be used by the system to ask
and record a caller’s name.

The file named ‘x’ contains an index associating the forms in ‘f” with terminal prompts or
descriptions in ‘p’. Once a terminal prompt is reached in the process, the corresponding form
from the file ‘x’ is activated, and the system proceeds to elicit information from the user.

The file named ‘s’ contains a list of application-specific stop words, many of which are
high-occurrence and/or generally uninformative words like ’a’, ‘an’, ‘the’ or ‘from’ or words
with a high-occurrence in for the particular application such that they have little meaning, for
example, ‘fly’ in an airline reservation system, ‘street’ in a navigation system, ‘file’ in a
computer search tool. These are eliminated from ‘p’ and ‘w’ and ‘f* before processing, because
they don’t carry any useful information for the application.

The file ‘t.cfg’ contains the thesaurus and inverted index that will be constructed by the
program. Of course, in alternative variants, the thesaurus could be a separate file from the
inverted index file and either or both could be made up of multiple files.

The file ‘l.cfg’ is a file that is used to store newly learned words. As with the t.cfg’ file,
the ‘l.cfg’ file need not be a separate file, it could be part of ‘t.cfg’, or part of a separate thesaurus

and/or inverted index file. Similarly, the ‘l.cfg’ file could be made up of several files.

30
728851 vl

433

_ 10299359 . 111902
PATENT

Docket No.: 4428-4001

With reference to FIGS. 7A, 7B and 8 through 10, the processes as carried out by the first
program are as follows. It bears noting that, although the process and its components are
presented by way of example in a particular order, unless a specific process component is
expressly stated to necessarily have to occur at a particular time or after some other particular
process component, or two process components must necessarily occur in sequence because one
relies upon completion of the other before it can start, no order should be implied or considered
required since the order in different implementations may be different and may vary based upon
the particular programmer, programming language and/or computer involved.

The files p, w, f, x, and s are each read and processed as follows. It should be understood
that the order of processing of file ‘p’ relative to file ‘f* or their respective sub-processing
components, although shown sequentially, could be done in a myriad of ways including doing
each of the reading extracting and storing concurrently or as a common operation (i.e. reading
for both is done before extracting for both, etc.).

Specifically, keywords are extracted fromp ___ and from f___. These are initially just
all the words or terms contained in the prompts in p. The keywords are stored, for example, in a
temporary file.

Similarly, thesaurus words are extracted from w. These are initially just all the words or
terms in w. They are also stored, for example, in a temporary file.

Stop words are loaded from s (902) and stop words and duplicate words are eliminated
from keywords and thesaurus words stored in the temporary files.

The thesaurus is constructed in accordance with FIGS. 9 and 10 described in overview as

follows:

31
728851 vl

434

1099359 . 111902

PATENT

Docket No.: 4428-4001

Increment the file of thesaurus words with keywords from p and f remaining after
elimination of stop words.

Create a matrix of thesaurus words as row words (or words listed along the rows
of the matrix) against keywords as column words (or words listed along the
columns of the matrix).

Count the number of co-occurrences of each row word with each column word of
the matrix in the documents contained in w and fill in that number in the
corresponding matrix cell. (For example, a co-occurrence of a pair of words may
be defined as that pair occurring in the same paragraph. If w is made up of a
hundred paragraphs, then take eé.ch pair of row word and column word and count
the number of times this pair occurs within the space of each of the hundred
paragraphs in w. For each pair, the pair may co-occur zero or more times in a

paragraph and add up the number of co-occurrences in all the paragraphs in w.)

This process yields a matrix filled with nonnegative integers in each cell. It is then

possible to consider each row of numbers as a vector associated with the corresponding row

word. When viewed geometrically, these vectors, one for each row word, form angles with each

other in a multi-dimensional space. As a result, we can calculate the cosine of each such angle

by computing scalar products for the angles. Thus, we compute the cosines of the angles formed

by the vectors associated with each pair of row words.

The cosine values for all pairs of row words and column words are calculated and stored,

for example, in a new matrix.

32

435

1029359 A 11902

PATENT

Docket No.: 4428-4001

For each row word, the top ‘n’ cosine values are identified as are the corresponding
keywords. For example, in an airline system context, if there are two row words ‘coach’ and
‘economy’, where ‘economy’ is also a keyword (originally from p and/or f), and if the cosine
value of this pair or words is among the top ‘n’ cosines for the word ‘coach’, then ‘economy’ is
identified as a synonymous keyword for coach.

A new file can then be created, formatted for example, by listing thesaurus words on the
left (e.g. coach), and against each thesaurus word, its associated keywords (e.g. economy). This
is referred to as an inverted index (i.e. the thesaurus) of row words and their keyword synonyms.
Essentially, this file will now contain words like ‘coach’ coupled with its particular alternative
meanings, one of which may be ‘economy’. The user interactive transaction processing
program, the second program, will later use this thesaurus file when a caller uses a word like
‘coach’ in his query to determine the relevant keywords (like ‘economy’). This will enable the
program to find the relevant prompt with which to respond to the user.

Optionally, to provide the system with a set of prompts or verbal descriptions with which
to respond to a user, another inverted index is created using the files p, f, and x. This index will
contain a list of keywords from p and/or f associated with the prompts in which they occur.
Thus, when a user uses a synonym like ‘coach’ in a query, the second program will look up the
thesaurus, find the keywords corresponding to it (e.g. ‘economy’), and then look up the inverted
index to find the prompts corresponding to ‘economy’ and other corresponding keywords.

Once both the inverted index and thesaurus files have been created, the file t.cfg can be

created from them for use by the second program.

33
728851 vl

436

10299350 . 111902

PATENT

Docket No.: 4428-4001

One example of the program flow for a fairly generic transaction processing program
implementing one variant of the invention is illustrated in the flowcharts of FIGS. 11 through 14.
This example is configured to incorporate a collection of several of previously described simple
aspects. To demonstrate the functions of this program and how this program operates, for
context we use an example interaction that a calling customer might have with this example
system.

Following the example is the Appendix contains that program code essentially
implementing a variant of the invention largely corresponding to that of FIGS. 7 through 14.

The particular example we use for purposes of illustration is for an automated telephone
system for a newspaper, like the New York Times. For simplicity, every item in the flowchart is
not traced through since, an understanding of the process with respect to one path will be
sufficient to allow an understanding of the other paths.

The example begins with “I want to subscribe” uttered by the caller to the system. We
will assume that the first three words of the query (i.e. “I”, “want”, and “to”) are stop words and
the last word (i.e. “subscribe”) is neither a keyword nor a thesaurus word.

The process as carried out by the second program are as follows:

The files t.cfg, l.cfg, f, x, and s are read (1102).

The keywords, thesaurus words, prompts from t.cfg. are loaded (1104), as are the learned
words from l.cfg. Initially, l.cfg will be empty as the program has not yet learned any new
words. The forms and index of forms against prompts from f and x respectively are loaded, as

are stop words from s.

34
728851 vl

437

, o = e i W = Y
PATENT

Docket No.: 4428-4001

The program opens the interaction with a greeting (1106) and an elicitation of the first
query from the caller (1108). This might be: “Thank you for calling the New Herald. How may
we help you?”

The caller then utters his or her statement: “I want to subscribe”.

The stop words in the statement are first eliminated, leaving behind just the word
“subscribe”.

The statement is then processed in the following way:

The keywords and the thesaurus words remaining in the query are identified (1202, 1204)
by comparing with the list in t.cfg and l.cfg. As we have assumed that “subscribe” is neither, we
have none.

The prompts that best match the identified keywords and thesaurus words are selected
(1206). As there are no such words identified, there are no prompts selected.

The program arrives at a decision in the flowchart: are any nodes selected? (1208). Since
the answer is in the negative, the program will follow the brz;nch and select the top level node
(1218). (Note: These top level prompts are the ones at the top level of the menu tree.) This
completes the prompt selection process. The process then proceeds to the second part of the
query process.

The process proceeds with another decision: has a single leaf prompt been selected?
(1210). Since the top level prompts are selected (of which there are more than one and also none

is a leaf prompt), a negative answer is the result.

35
728851 vl

438

. : 10299359 411120
PATENT

Docket No.: 4428-4001

These prompts or verbal descriptions are issued to the user (caller) and elicit another

response. Assume that the offered verbal descriptions are as follows:

System: Are you calling about subscriptions?

System: Is there a problem with your paper or delivery?

System: Would you like information about the New York Times website?
System: Are you calling about advertisements?

System: Are you calling about something else?

Assume further that the caller responds as follows:
User: I am calling about subscriptions.

As a result, the program returns to selecting verbal descriptions by identifying the
keywords and the thesaurus words remaining in the query by comparing with the list in t.cfg and
l.cfg (1202, 1204). “Subscriptions” is now synonymous with a keyword and it is identified.

The program will again select verbal description(s) that best match the identified
keywords and thesaurus words (1206).

For example, assume these are:

System: Would you like to order a subscription?
System: Would you like to give a gift subscription?
System: Would you like to change your address or change any other information?

The program then arrives at a decision branch (1208) in the flowchart: are any nodes
selected? Since the answer is affirmative, it follows that branch and exits the prompt selection

process and returns to the query process.

36
728851 v1

439

_ . 10299359 111902
PATENT

Docket No.: 4428-4001

This begins with another decision box: is a single leaf node selected? (1210). The answer
is no, since three prompts have been selected.

Next, these verbal descriptions are issued to the caller and the system will await his
response (1220). We assume the caller responds as follows:

User: I want to order a subscription

The program will again return through a loop to the prompt selection process (1202,
1204, 1206) where the program will identify the keywords and the thesaurus words remaining in
the query by comparing with the list in t.cfg and l.cfg. “Order” and “subscription” are now
identified.

Verbal descriptions are selected that best match the identified keywords and thesaurus
words. Now assume this is just the prompt “Would you like to order a subscription?” from the
three descriptions above.

The program will then arrive at a decision branch (1208) in the flowchart: are any nodes
selected? Since the answer is affirmative, it follows that branch and exits the prompt selection
process and returns to the query process to again arrive at a decision: has a single leaf node been
selected? (1210). This time the answer is yes, a single prompt has been reached, which is also a
leaf prompt, since it is at the bottom of the menu tree.

This is followed by another decision: any verbal description corresponding to the node?
(1212). The program checks t.cfg and finds the answer is no.

The branch then leads to yet another decision (1214): is a form for verbal description
available? The answer by checking the index x is the yes branch. This leads to the portion of the

flowchart of FIG. 13.

37
728851 vi

440

. 1lDP9a9E59 . 111902
PATENT

Docket No.: 4428-4001

The form is processed in the following way:

The first part is a decision: is it a response form? (1302). The answer is no.

The system then issues questions to the caller based on the form and accepts information
back (1304). The questions are of the form “Please tell us your name”, “Where do you live?”,
“Do you want an annual or half-yearly subscription?” etc. The caller provides the information to
the system.

It repeats the information the caller has given the system and asks if the information is
correct. Let us assume the user confirms that the information is correct.

The system then calls an external routine to store the information in a database. The
routine returns another form to the system (1306) and returns in a loop to the question: is it a
response form? (1302). Since the form contains questions about the payment, based on the type
and period of subscription selected by the caller, the answer will be negative.

The system then issues these questions to the caller and the caller provides the required
information (1304).

The system then repeats the information and gets a confirmation from the caller.

The information is passed to another routine (mentioned in the form) to update the
database. This routine (1306) then returns a response form and again returns in the loop to the
question: is it a response form? (1302). This time the answer is yes. The system then issues a
response (1308) thanking the caller for the subscription, and exits this process returning to FIG.

11.

38
728851 vl

441

) LS RSY Ll A9
PATENT

Docket No.: 4428-4001

The system now exits the query process as well since the caller’s query has been
completely processed and the corresponding actions taken by the system. It now returns to the
main part of the program.

The next process in the main part of the program is a question: is there an unknown word
in the caller’s query? (1112). The answer is yes, since the word “subscribe” in the initial query
was not known to the system. This invokes the portion of the flowchart of FIG. 14.

The system therefore has to learn this previously unknown word:

The learning process begins with a decision: is the word already in l.cfg? (1402). The
answer is no, since l.cfg is initially empty and the word has not been encountered before.

The corresponding “NO” branch is followed and the word is added to the list of learned
words (initially empty) with keywords from the final single leaf prompt that was selected (1404).

The system then records these changes in l.cfg (1408) and returns to the main part of the
program in FIG. 11. It has now learned the meaning of the initially unknown word “subscribe”.

Next, the program asks the caller if he wishes to continue (1114) (i.e. are there any
further queries). We assume the answer is no and the system thanks the user and exits.

Now,- having described the example traversal of one path through the secqnd program
with reference to the flowchart, an example dialogue for the path traversal that has taken place is

presented so the complete transaction can now be understood.

Dialogue:

Caller: I want to subscribe

System: Are you calling about subscriptions?

System: Is there a problem with your paper or delivery?
39

728851 vl

442

10299359 141902
PATENT

Docket No.: 4428-4001

System: Would you like information about the New York Times website?
System: Are you calling about advertisements?

System: Are you calling about something else?

Caller: I am calling about subscriptions

System: Would you like to order a subscription?

System: Would you like to give a gift subscription?

System: Would you like to change your address or change any other information?
Caller: I want to order a subscription

System: Please tell us your name

Caller: Bertrand Russell

System: Where do you live?

The dialogue continues in this way with the system eliciting the required information
from the caller.

Having demonstrated traversal in a system where the system was constructed to learn
when an unknown word is used, what happens the second time a caller uses the same word
“subscribe” in a query after it has been learned by the system can now be demonstrated. This
demonstrates the power of including the optional feature of learning in the program.

In this case, the dialogue that occurs when a new caller uses the word “subscribe”

following the above is now presented.

Dialogue:
Caller: I want to subscribe
System: Please tell us your name
40
728851 vl

443

10298935359 . 111902

PATENT

Docket No.: 4428-4001

Caller: J. L. Austin
System: Where do you live?

Thereafter, the process continues. Notably, the system has now learned the correct
response to the query “I want to subscribe”.

Other Variants

Having described several simple and more complex examples that make it possible to use
the invention, other variants can now be presented. Examples of such optional functions that can
be incorporated into other variants, individually or collectively, include:

a) creating the thesaurus by providing access to a collection of multiple documents
and determining synonymy based on sufficient similarity of meaning with the keywords as

measured by the frequency of co-occurrence of the keywords in the collection of documents;

b) identifying words in the user’s response by recording the response for future
learning;

c) parsing out of a response all non-stop word unknown terms or keywords;

d) identifying synonyms for all non-stop terms in the user’s response;

€) cycling between user and system responses until the user reaches a vertex (i.e.

verbal description) that enables him to carry out his goal and updating the thesaurus when the

goal vertex is reached by associating the recorded previously unknown words in the user’s

response with the keywords that are associated with the verbal description reached by the user;
f) recording, when the goal vertex is reached, the pairs of synonyms in the user’s

responses and the keywords that are associated with the verbal description reached by the user;

41
728851 vl

444

LOo29g9359 L1190

PATENT

Docket No.: 4428-4001

g) removing associations between keywords and their synonyms from the thesaurus
that have not been accessed more than a specified amount of times within a specified period (this
can be based upon a parameter set in the system by the system’s administrator or can occur as
part of program maintenance or updates);

h) selecting the verbal descriptions that best meet the user’s goal as indicated by the
keywords and synonyms in the user’s response by identifying the keywords in the user’s
response and/or the keywords corresponding to synonyms in the user’s response and computing
a degree of match between each verbal description and the identified keywords, in accordance
with conventional linguistic processing techniques;

1) computing the degree of match between verbal descriptions and identified
keywords by utilizing the pairs of synonyms in user’s response and the keywords associated with
the verbal descriptions reached by users as previously recorded;

1) responding to the user on the basis of verbal descriptions selected by presenting
the user with verbal descriptions that best match the user’s previous response;

k) for “best match” variants, in the event that even the best matches have a low
degree of match, the best “n” verbal descriptions are presented to the user (“n” being a number
representing a predetermined system parameter);

1) for “best match” variants, in the event that the best matches have a low degree of
match, the user is automatically connected to a human operator, when or if a human operator is

available;

42
728851 vl

445

102ou3t . Ai1902

PATENT

Docket No.: 4428-4001

m) for “best match” variants in the event that the best matches have a low degree of
match, the best “n” verbal descriptions are presented to the user, along with an option of being
connected to a human operator when or if a human operator is available;

n) presenting the user with those verbal descriptions that best match the user’s
previous response in order to elicit any information from the user that may be required to
accomplish the user’s goal;

0) recording information elicited from a user in a database for future use;

P) selecting multiple verticies in the graph structure that are not connected to a
previously selected vertex, based upon parameters associated with nodes correlated to keywords
and synonyms in a user’s response;

qQ) selecting a vertex in the graph structure in the same row as the previously selected
vertex based upon the keywords and synonyms in the user’s response; and/or

r) updating the thesaurus by adding words from a user’s response that are not in the
thesaurus.

Finally, it is to be understood that various variants of the invention including
representative embodiments have been presented to assist in understanding the invention. It
should be understood that they are not to be considered limitations on the invention as defined by
the claims, or limitations on equivalents to the claims. For instance, some of these variants are
mutually contradictory, in that they cannot be simultaneously present in a single embodiment.
Similarly, some advantages are applicable to one aspect of the invention, and inapplicable to
others. Thus, no particular features or advantages should be considered dispositive in

determining equivalence.

43
728851 vl

446

10299359 . 1119002

PATENT

Docket No.: 4428-4001

It should therefore be understood that the above description is only representative of
illustrative embodiments. For the convenience of the reader, the above description has focused
on a representative sample of all possible embodiments, a sample that teaches the principles of
the invention. The description has not attempted to exhaustively enumerate all possible
combinations or variations, for example, those arising out of the use of particular hardware or
software, or the vast number of different types of applications in which the invention can be
used. That alternate embodiments may not have been presented for a specific portion of the
invention, or that further undescribed alternate embodiments may be available for a portion of
the invention, is not to be considered a disclaimer of those alternate embodiments. One of
ordinary skill will appreciate that many of those undescribed embodiments incorporate the
minimum essential aspects of the invention and others incorporate one or more equivalent

aspects.
APPENDIX A

_ FILE IDENTIFICATION
Main Source Files
main.c, process.c, arraylib.c, stemlib.c, dialog.c, interactive.c, formlib.c
Header Files
globalvar.h, process.h, arraylib.h, forms.h
Make Files
Makefile
Parameter Files
t.ini, d.ini
Data Files
p,w,s, f,x,a
Configuration Files
t.cfg, l.cfg
Shell Script Files
acct_info, add_acct, chg_acct, get_pymt, updt_pymt, susp_deli, updt_acct, prefer

44
728851 vl

447

) 1Oopg9 5T L1l
PATENT
Docket No.: 4428-4001

MAIN SOURCE CODE (in C)
main.c: Main Program to process p and w to create the thesaurus
f*********#**********************#******#*********#******#********

SOURCE CODE DOCUMENTATION

#**###**#**l

#include <stdio.h>
#include <string.h>
#include "process.h"
#include "arraylib.h"
#include "forms.h"

int numColumn = 0, numRow = 0 , numIndex = 0, numMenu;
int topValues =5 ;

char **rowTerms, **columnTerms, **prompts, **stopWords;
double **matrix, **cosine;

float phoneThreshold = 0.02, webThreshold = 0.0006;

int **indexList, **menuList, **thesaurus, **promptKeys;

int numStopWord = 0;

int numForms, numPF;

struct form **formlist;

char ***Fprompts, *wdoc, *pdoc, *sdoc, *fdoc, *xdoc, *cfg;

main(int argc, char *argv[]) {
int i, j;
f****#**#***#*******t**t****

PRINT THESAURUS PROGRAM INFO

***********************#********#*****#**#********#*******#******}

/* if (arge '=5) {
printf("Usage Instructions: t p w f x\n");
printf("Parses w for matrix row terms and p for matrix column terms.\n");
printf("*** Exiting, goodbye.\n");
exit(1);
A

if (arge 1=2) {
printf("Usage Instructions: t <ini-file>\n");

45
728851 vi

448

L029935T . 131190

PATENT

Docket No.: 4428-4001

printf("*** Exiting, goodbye.\n");
exit(1);

}

f**#**#*********************#*****************$*******************

OPEN INPUT FILES

e s s e ok ok K o e i o o o sk oo sk ok ok ok oK 3 e e o ok ok o 3 e sk e ok o o o e ok 3 s ook o o o oK K ok ek ok ok ok o ok ok sk ok ok ok ok

readini(argv[1]);
loadStopWords(sdoc);

numPF = loadFormsList(xdoc);
numForms = loadForms(fdoc);

f****#**************************#********t************#***#*******

PREPARATION FOR PHONEDOC PARSING

***********#***********#*********#**********#*****#***********#**f

printf("\nReading files\n");
numColumn = processFile(pdoc, &columnTerms, phoneThreshold);
/I printf("The document contains %d relevant terms.\n\n", numColumn);

// This routine will add the keywords from the Forms into ColumnTerms.
numColumn = addFormKeys(&columnTerms, numColumn);

// printf("The document contains %d relevant terms.\n\n", numColumn);

f**********##***##***********#*##*#**#**#****#******#*#********#**

PREPARATION FOR WEBDOC PARSING

**********t******************************t******#*#*#************f

numRow = processFile(wdoc, &rowTerms, webThreshold);

f**#**********#*******************##***#*******#*#**********#*****

MERGE COLUMNTERMS & FINALTERMS INTO ROWTERMS

##***#****#*******************#***#********#***#***********f

numRow = mergeArray(&rowTerms, columnTerms, numRow, numColumn);
sortArray(rowTerms, numRow);

46
728851 vl

449

.

10299359 111902

PATENT

Docket No.: 4428-4001

// printf("The document contains %d relevant terms.\n\n", numRow);
f*****#**#*#************************#********#********************

MATRIX CONSTRUCTIONS

s ko ok o ook R R KRR R KKK oK Kok oK K ok oK o R oK K ok ok ok SR R kK kR kR Kok ok kR sk ok

printf("loading prompts ...\n", numIndex);
numIndex = loadPrompts(pdoc);
printf("processing words ...\n", numIndex);
createMatrix(wdoc);

numRow = eraseZeroes();

calcCosine();

filllndex();

// This function will add leaf prompts to the index keywords from Forms.
/! appendIndex(argv([3]);

createThesaurus();

// printf("created thesaurus .\n\n", numIndex);
printf("saving data ...\n");

saveData(cfg);

printf("done.\n");

readini(char * filenm)

{

FILE * fp;

char buf]80], key[80], value[80], comment[80];

int cnt;
if (fp=fopen(filenm,"r"))==NULL)
{

perror(filenm);

exit(1);

}
while (fgets(buf,79,fp)!=NULL)

sscanf(buf,"%s %s %s" key,value, comment);

if (!stremp(key, "pdoc"))
pdoc=strdup(value);

if (!stremp(key, "wdoc"))
wdoc=strdup(value);

if (!stremp(key, "sdoc"))
sdoc=strdup(value);

47

728851 vi

450

. . 10299359 . 141902
PATENT

Docket No.: 4428-4001

if (!stremp(key, "fdoc"))
fdoc=strdup(value),
if (!stremp(key, "xdoc"))
xdoc=strdup(value);
if (!stremp(key, "cfg"))
cfg=strdup(value);
if (!stremp(key, "pt™)
sscanf(buf,"%s %f %s" key,&phoneThreshold,value);
//phoneThreshold=(float)atof(value);
if (!stremp(key, "wt™))
sscanf(buf,"%s %f %s" key,&webThreshold,value);
if (!stremp(key, "tv"))
topValues=atoi(value);

process.c: This program contains various functions called from Main

#include <stdio.h>

#include <string.h>

#include <math.h>

#include "globalvar.h"

#include "arraylib.h"

#include "forms.h"

#define min(x, y) (x<y)?x:y

int *rowcount, *colcount;

int processFile(char *filename, char ***cArray, float threshold) {
FILE * fp;

char tmpWord[50], paraFlag;

int i, numWords = 0, wordLen = 0, totWords = 0;

float *freqArray;

fp = fileOpen(filename,"r");
*cArray = NULL;
freqArray = NULL;

while((wordLen = fetchWord(fp, tmpWord)) !=0) {

totWords++;
if (! inArray(stopWords, tmpWord, numStopWord)) { // ignore stopwords

48
728851 vl

451

. , A02993E350 . 441902
PATENT

Docket No.: 4428-4001

stem Word(tmpWord);

if (1 = inArray(*cArray, tmpWord, numWords)) {
freqArrayfi - 1]++;
}

else {
addWord(cArray, tmpWord, ++numWords);
freqArray = (float *) realloc(freqArray, numWords * sizeof(float));
freqArray[numWords - 1] = 1;
}
}

}
/I printf("Totwords = %d, numWords = %d\n",totWords, numWords);

for (1=0; 1 <numWords; i++)

{
if ((float)(freqArray[i] / totWords) >= threshold)
(*cArray)[i] = NULL;
}

numWords = removeNulls((*cArray), numWords),
sortArray((*cArray), numWords),

return numWords;

}

f*****&**************i************#******#********************************#**

Prompts Processing
*************#*****************#*************$******************************;

int loadPrompts(char *filename)
{
char buffer[256];
inti=0,j, len, nc;
int level[10], tabs, m = 0;
FILE * fp;

for(1=0;1<10;1++)
level[i] = 0;

fp = fileOpen(filename,"r");

prompts = NULL;

menuList = NULL;

j=1=0;

while (fgets(buffer, 256, fp) != NULL)

49
728851 vl

452

g . IS a 44490
PATENT
Docket No.: 4428-4001

{
tabs = allTrim(buffer);

if ((len = strlen(buffer)) == 0)

continue;
if ((j = inArray(prompts, buffer, 1)) == 0)
J=5
else
J=s

level[tabs + 1] =) + 1;
menuList = (int **)realloc(menuList, ++m * sizeof(int *));
menuList[m - 1] = (int *)malloc(3 * sizeof(int));
menuList[m - 1][0] = level[tabs];
menuList[m - 1][1] = level[tabs + 1];
menuList[m - 1][2] = 0;
if j =1)
addWord(&prompts, buffer, ++i);
i -

numMenu = m;
for (j = 0;) < numMenu; j++)
{
for(m = 0; m < numMenu; m++)
if (menuList[j][1] = menuList[m][0])
break;
if (m != numMenu) /* Leaf Node */
continue;
nc = 0;
for (m = 0; m < numMenu; m++)
if (menuList[m][0] == menuList[;][0])
nct++;

3

if (ne 1=1)

{
menuList[j][2] = 99;
continue;

len = strlen(prompts[menuList[j][1] - 1]);
if (prompts[menuList[j][1] - 1][len - 1] ="?")
menuList[j][2] = 99;

{
for (m = 0; m < numMenu; m++)
if (menuList[m][1] = menuList[j][0])
menuList{m][2] = menuList[j][1];
menuList[j][2] = 100;

else

50
728851 vl

453

10299359 . 111902

PATENT

Docket No.: 4428-4001

return i;

void filllndex()

{
int1, j, k;

indexList = (int **)malloc(numColumn * sizeof(int *));
for (i = 0; i < numColumn; i++) {
indexList[i] = (int *)malloc(numIndex * sizeof(int));
for (j = 0; j < numlndex; j++)
indexList[i][j] = 0;
}

for (1 =0; i <numlndex; i++)
updateThesaurus(prompts[i], i + 1);
updateFrmForms();

}

updateThesaurus(char *str, int pmpt)
{

char tmpstr[256];

char *sarray[50];

int i, j, k, wrds;

int iflag = 0, dflag = 0;

strepy(tmpstr, str);
wrds = readValues(tmpstr, sarray);
stemArray(sarray, wrds);
for (1=0;1 < wrds; i++)
{

for (j = 0; j <numColumn; j++)

if (!stremp(columnTerms[j], sarray[i]))

{
iflag =1;
dflag = 0;

for (k = 0; indexList[j][k] && k < numIndex; k++)
if (indexList[j][k] == pmpt)

51
728851 vl

454

o 102909359 . 111902
PATENT

Docket No.: 4428-4001

dflag =1,
if (k < numIndex && dflag == 0)
indexList[j][k] = pmpt;
break;
}

}
if (iflag == 0)
{
printf("** waming the following prompt does not contain index word\n");
printf("\t%s\n", str);

}

R ok ok sk ok ok ok ok ok ok ok kR ok ook ok ko sk sk Kk ok ok sk sk sk sk ok ok ok ok ok ok

Create Matrix here
*******#*****#*#**#**#*********#*****************************#**}f
void createMatrix(char * filename) {

inti, j,nwp=0,k=0;

int minv;

FILE * fp;

/* allocate memory for matrix */
matrix = (double **)malloc(numRow * sizeof(double *));
for (i = 0; i < numRow; ++i) {
matrix[i] = (double *)malloc(numColumn * sizeof(double));
for (j = 0; j < numColumn; j++)
matrix[i][j] = 0;
}

/* allocate memory for rowcount and column count */
rowcount = (int *)malloc(numRow * sizeof{int));
colcount = (int *)malloc(numColumn * sizeof{(int));

/* Go to start of document */
fp = fileOpen(filename,"r");
while (!feof(fp))

{

/* initialize rowcount array */
for (j = 0; j < numRow; j++)

52
728851 vl

455

. : A0299350 . 1119302
PATENT

Docket No.: 4428-4001

rowcount[j] = 0;
/* initialize columncount array */
for (j = 0; j < numColumn; j++)
colcount[;] = 0;

nwp = readPara(fp);
if (feof(fp))
break;
if (nwp =20)
continue;

/* add co-occurance of rowword & colword to the matrix */
for (j = 0;) < numRow; j++)
for (k = 0; k < numColumn; k++) {
minv = min(rowcount[j], colcount[k]);
matrix[j](k] += minv;

}
}
}
int readPara(FILE *fp)
{

int1i,j, k, weount =0, m = 0;
int nextpara, currpara, wordLen;
char tmpword[50];

currpara = ftell(fp);
wcount = wordsInPara(fp);

if (feof(fp)) {
if (weount == 0)
return 0;
}

nextpara = ftell(fp);
fseek(fp, currpara, 0);
for (1 = 0; 1 < wcount; ++i) {
wordLen = fetchWord(fp, tmpword);
if (inArray(stopWords,tmpword,numStopWord))
continue;
stemWord(tmpword);

/* count the occurance of each word from the row in para */

53
728851 vi

456

for (j = 0;) < numRow; j++)
if (!stremp(rowTerms[j], tmpword)) {
rowcount[j]++;
break;

}

102995359 . 111902

PATENT

Docket No.: 4428-4001

/* count the occurance of each word from the column in para */

for (j = 0; j < numColumn; j++)

if (strcmp(columnTerms[j], tmpword)) {

colcount[j]++;
break;

}

}
fseek(fp, nextpara, 0);

return wcount,

}
int wordsInPara (FILE *fp)
{

int ¢, count = 0;

int state;

const int out =0, in=1;

state = out;
while ((c = gete(fp)) != EOF) {
if (tisalpha(c)) {
if (c ="\n' || c == EOF)

break;
state = out;
}
else
if (state == out) {
state = in;
count++;
}
}
return count;
}

f*#********#****#******#**********#**#******#*#*************

Calculate Cosine Function

ety

void calcCosine()

728851 vl

10299359 . 111902

PATENT

Docket No.: 4428-4001

{

int 1, j, k, sum;
/* memory allocation for the cosine matrix */

cosine = (double **)malloc(numRow * sizeof(double *));
for (1 = 0; 1 < numRow; ++i) {
cosine[i] = (double *)malloc(((numRow) * sizeof(double)));
for (j = 0; j < numRow; j++)
cosine[i][j] = 0;
}

/*Normalization*/

for (1 = 0; 1 <numRow; ++i)
{
sum = 0;
for (k = 0; k < numColumn; ++k)
sum += matrix[i][k] * matrix[i][k];
if (sum !=0)
{
for (j = 0; j < numColumn; ++j)
matrix[i][j] = matrix[i][j] / sqrt(sum);
}
}

/*Cosines*/

for (i = 0; i < numRow; ++i)

{
for (k =1+ 1; k <numRow; ++k)
{
cosine[i][k] = 0;
for (j = 0;) < numColumn; ++j)
cosine[i][k] += matrix[i][j] * matrix[k][j];
}
}

}

;‘*******#************#****#***#*****#**********#***#***************

eraseZeroes : removes the row with all zero column in the matrix
e ek ok ok ook ok ok sk R ok ok ko ook ok ok ok ol o ok ok o ok ok ok sk sk sk ok ok ok ok sk K koo ok Kok sk ok |

int eraseZeroes() {

55
728851 vl

458

102993509 ., 1311920

PATENT

Docket No.: 4428-4001

int j, k;
int cond;

/* Free and nullify the rowTerms and matrix row for all zeroes */
for (j = 0; j <numRow; ++j) {
cond = [;
for (k = 0; k < numColumn; ++k) {
if (matrix[j][k] '=0) {
cond =0;
break;
}
}
if (cond==1) {
rowTerms[j] = NULL;
matrix[j] = NULL;
}
)

/* Push NULL rows at the end of arrays */
for (j = 0; j < numRow; j++)

{

if (rowTerms[j] = NULL)

{
for (k=j + 1; k <numRow; k++)
if (rowTerms[k] != NULL)
break;

if (k < numRow)
{
rowTerms[j] = rowTerms[k];
matrix[j] = matrix[k];
rowTerms[k] = NULL;
matrix[k] = NULL;
}

}
}

/* count new numRow */
for (j = 0; (rowTerms[j] '= NULL) && j < numRow; j++);

return j;

}

56
728851 vl

459

A0S e359 111902

PATENT

Docket No.: 4428-4001

f*#*********#**********#**********#*************#**********#****#******#*

createThesaurus: Function to Create Thesaurus of rowTerms by taking the
index words matching the top 5 cosine values.
************#***t******#*****************#*********#********************f

void createThesaurus()

{

inti,j, k, I

int m, numword;

double *tmpcos, prevcosine = 0,
int *colnum;

tmpcos = (double *)malloc(numRow * sizeof(double));
colnum = (int *)malloc(numRow * sizeof(int));

thesaurus = (int **)malloc(numRow * sizeof(int *));
for (1 =0; 1 < numRow; i++) {
thesaurus[i] = (int *)malloc(numColumn * sizeof(int));
for (j = 0; j < numColumn; j++)
thesaurus[i](j] = 0;
}

/* initialization of thesaurus */

for (i = 0; i < numRow; i++) {
for (j = 0; j <numRow; j++) {
if (1>])
tmpcos[j] = cosine[j][i];
else
if (i <j)
tmpcos[j] = cosine[i][j];
else
tmpcos[j] =0;
colnum(j] =j;
}

floatSort(colnum, tmpcos, numRow);
numword = prevcosine = 0;

/* count top 'topValues' of cosine */
for (m = 0; m < numColumn; m++) {

if (prevcosine != tmpcos[m])
numword++;

57
728851 vl

460

s 1099359 . 111902
PATENT

Docket No.: 4428-4001

prevcosine = tmpcos[m];
if (numword == topValues + 1)
break;
3
_-m;
/* m = total num of syn */

for j =k =0; k <=m; k++) {
if ((1 = inArray(columnTerms,rowTerms[colnum[k]], numColumn)) != 0)
if (tmpcos[k] !=0) {
thesaurus[i][j] = I;
Jtt

}

}

J e e

floatSort : Sorts the array of cosine values and corresponding index of
index words in reverse order.
#**********#********t***********#******#*************************)f

floatSort(int *colnum, double *tmpcos, int numRow)
{
int 1, j, k;
double f;
for (1 =numRow - 1;1>0; i--)
for G=0;j <i;j++) {
if (tmpcos[j] < tmpcos[j + 1]) {
f = tmpcos[j], k = colnum([j];
tmpcos[j] = tmpcos[j + 1], colnum[j] = colnum[j + 1];
tmpcos[j + 1] =f, colnum[j + 1] =k;

}
}
}
void saveData(char *filenm)
{
int 1, j, k, 1;
FILE *fp,

fp = fileOpen(filenm, "w");

58
728851 vl

461

. 5 A029935%9 . 111902
PATENT

Docket No.: 4428-4001

printArray(fp, "PROMPTS", prompts, NULL, numIndex, 0); // Write Prompts to the file

[¥¥x*EEE%%% Write Menu-Tree to the file *****¥¥*xx/
/l printArray(fp, "MENUTREE", NULL, menuList, numMenu, 2);
fprintf(fp, "[%s]\n", "MENUTREE");
for (i =0; i <numMenu; i++)
fprintf(fp, "%d,%d,%d\n", menuList[i][0], menuList[i][1],menuList[i][2]);
fprintf(fp, "\n");

printArray(fp, "INDEX", columnTerms, indexList, numColumn, numIndex); // Write Index to
the file

printArray(fp, "THESAURUS", rowTerms, thesaurus, numRow, numColumn); // Write
Thesaurus to the file

fclose(fp);
printf("Data saved in %s\n",filenm);

}

printArray(FILE *fp, char *head, char **cArray, int **1Array, int cNum, int iNum)
{
int 1,j;
fprintf(fp, "[%s]\n", head);
for (1= 0; i <cNum; i++)

{

fprintf(fp, "%s ", cArray[i]);

for (j = 0; j < iNum && iArray[i][j] !=0; j++)

fprintf(fp, "%d,", iArray[i][j]);
fprintf(fp, "\n");

}
fprintf(fp, "\n");
}

int addFormKeys(char ***cArray, int count)

char **wordList, *tmparray[20];
int i, j, k, words;
int 1, tmpcount;

wordList = NULL;

words = 0;
for(i = 0; i < numForms; i++)

59
728851 vi

462

o 10RP99359 111908
PATENT

Docket No.: 4428-4001

for (j = 0; j < formlist[i]->numFields; j++)

if (!stremp("MChoice", formlist[i]->fields[j]->Type))
for(k = 0; k < formlist[i]->fields[j]->numChoice; k++)

{

tmpcount = createArray(formlist[i]->fields[j]->Choice[k],

tmparray);
for(1 = 0; I < tmpcount; 1++)
addWord(&wordList, tmparray[l], ++words);

}

}

1 = mergeArray(cArray, wordList, count, words);
sortArray((*cArray), 1);
return i;

}

updateFrmForms()

{

inti,j, k,1;

int m, n, X, tmpcount;

int pmpt;

char *tmpstr, *tmparray[20];

for (i = 0; 1 < numPF; i++)

{
pmpt = inArray(prompts, Fprompts[i][1], numIndex);
if (pmpt == 0)
{
printf("Unknown prompt encountered for form %s\n",Fprompts[i][0]);
exit(1);
}

for(j = 0; j < numForms; j++)
if (!stremp(Fprompts[i][0], formlist[j]->name))

break;
if (j == numForms)
continue;
for(k = 0; k < formlist[j]->numFields; k++)

{
if (stremp(formlist[j]->fields[k]->Type,"MChoice"))

60
728851 vi

463

A02g9350 AX1902

PATENT

Docket No.: 4428-4001

continue;
for(l = 0; 1 < formlist[j]->fields[k]->numChoice; 14++)
{
tmpcount = create Array(formlist[j]->fields[k]->Choice[l], tmparray);
for(m = 0; m < tmpcount; m++)
{
n = inAmray(columnTerms, tmparraym], numColumn);
n--; -
for (x = 0; indexList[n][x] && x < numlIndex; x++)
if (indexList[n][x] == pmpt)
break;
if (x < numIndex && indexList[n][x] == 0)
indexList[n][x] = pmpt;
}

arraylib.c: This program contains general purpose functions
#include <stdio.h>

#include <string.h>

#include "globalvar.h"

#include "forms.h"

FILE * fileOpen(char *, char *);

int fetchWord(FILE *f, char * wrd) {

inti=0,c;
wrd[0] = 0;
if (feof(f))
return 0,
while(!isalpha(c = fgetc(f)))
if (c = EOF)
return 0;
do {

wrd[i++] = tolower(c);

} while(isalpha(c = fgetc(f)));
wrd[i] = 0;
return i;

}

61
728851 vl

464

. ; 10299359 .111902
PATENT

Docket No.: 4428-4001

int inArray(char **array, char *word, int length)
{

nti;

for (1 =0; i < length; i++)
if (array[i] '= NULL && !strcmp(array[i], word))

returni + 1;
return 0;
}
int removeNulls(char **strarray, int numWords)
o
int i, j;

for (1 =0; 1 < numWords; i++)

{
if (strarray[i] = NULL)
{
for j =i+ 1; j <numWords; j++)
if (strarray[j] != NULL)
{
strarray[i] = strarray[j];
strarray[j] = NULL;
break;
}
}
}

/* get count of filtered words */
for (j = 0; (strarray[j] '=NULL) && (j < numWords); j++);
return j;

}

int mergeArray(char *** Arrayl, char **Array2, int numArrayl, int numArray2) {
int i;

for (1 =0; 1 < numArray?2; i+%)
if (! inArray((* Arrayl), Array2[i], numArray1))
addWord(Arrayl, Array?[i], ++numAurrayl);

return numAurrayl;
}

62
728851 vl

465

Loz2993509 1110

PATENT

Docket No.: 4428-4001

int readValues(char *str, char **array)

{

inti,j=0,c;

int state;
constintout=0,in=1;

state = out;
for (1 = 0; (c = str[i]) I=0; i++)

if (lisalnum(c)) /* alfa-numeric to read numbers also */

{
state = out;
str{i] =0; /* word is over end it with null */
}
else
{
str[i] = tolower(c);
if (state = out)
{
state = in;
array[j++] = str + 1; /* word started, store the ptr.*/
} %
}
}
return j;
}
void sortArray(char *allwords(], int numwords) {
inti=0;
int j=0;
char *tmp;

for (i = 0; i < numwords; ++i)
for j =1+ 1; j < numwords; ++j)

if (strcmp(allwords[i], allwords[j]) > 0) {
tmp = allwords[i];
allwords[i] = allwords[j];
allwords[j] = tmp;

}

}

loadStopWords(char * filename) {

63
728851 vl

466

. : 1029359 111902
PATENT

Docket No.: 4428-4001

FILE * fp;
char tmpWord[50];
int wordLen = 0;

numStopWord = 0;

fp = fileOpen(filename,"r");

stopWords = NULL;

while((wordLen = fetchWord(fp, tmpWord)) !=0)
addWord(&stopWords, tmpWord, ++numStopWord);

}
FILE * fileOpen(char *filename, char *mode)
{
FILE * fp;
if ((fp = fopen(filename, mode)) == NULL) {
perror(filename);
exit(1);
3
return fp;
}

addWord(char ***cArray, char * word, int c)

{

*cArray = (char **) realloc(*cArray, ¢ * sizeof(char *));
(*cArray)[c - 1] = strdup(word);

}

int removeZeros(int *intArray, int numInt)

{

int 1, j;

for (i = 0; i <numlnt; i++)
{
if (intArray[i] = 0)
{
for (j =1+ 1;j < numlnt; j++)
if (intArray[j] = 0)
{

intArray[i] = intArray[j];
intArray[j] = 0;

break;

}

64
728851 vl

467

}

/* get count of filtered integers */
for (j = 0; (intArray[j] = 0) && (j < numlInt); j++);
return j;

}

10299359 . 1ii902

PATENT

Docket No.: 4428-4001

f**88

Newly added functions (for further reducing the code)

****************#***#*#**********************#****************#*****!

int breakStr(char * str, char **strarray)

{

char ¢, *tmpstr;

inti, j=0;

int state;

constintout=0,in=1;

/* Seperate the sentence into individual words */
tmpstr = strdup(str);

state = out;

for (i = 0; (c = tmpstr[i]) != 0; i++)

{
if (lisalpha(c))

{
state = out;
tmpstr[i] = 0;
}
else
{
tmpstr[i] = tolower(c);
if (state == out)
{
state = in;
strarray[j++] = tmpstr + i;
}
}
}
return j;

}

/* remove stopWords */
filterStopWords(char ** strarray, int numWords)

{

65
728851 vi

468

: 10pugE35T 111902
PATENT

Docket No.: 4428-4001

int i;

for (1 = 0; 1 < numWords; i++)
if (inArray(stopWords, strarray[i], numStopWord))
strarray[i] = NULL;
}

/* remove duplicates */
filterDuplicates(char ** strarray, int numWords)
;{ .
it 1;
for (1=0; i < numWords; i++)
if (strarray[i] != NULL && inArray(strarray, strarray[i], 1))
strarray[i] = NULL;
}

int loadFormsList(char *filename)

{

char buf[256];
FILE *fp;
int len, 1;

fp = fileOpen(filename, "r");

Fprompts = NULL,;
numPF = 0;
while (fgets(buf,255,fp) '= NULL)
{
len = strlen(buf);
for (i=0; i< len; i++)
if (buf[i] ==""
{
bufli] = 0;
break;
}
if (1 ==len)
{
fprintf(stderr, "Error in Prompt list\n");
exit(0);
}
allTrim(buf);
allTrim(buf +1i+ 1);

66
728851 vl

469

10299359 . 111202

PATENT

Docket No.: 4428-4001

Fprompts = (char ***)realloc(Fprompts, (++numPF)*sizeof(char **));
Fprompts[numPF-1] = (char **)malloc(2 * sizeof(char *));
Fprompts[numPF-1][0] = strdup(buf);

Fprompts[numPF-1][1] = strdup(buf + i + 1);

}
felose(fp);
return numPF;

}

int loadForms(char * filename)

{

int 1, j, formcount = 0;

FILE *fp;

char buf[80], **namelist = NULL;
formlist = NULL;

numForms = 0;

fp = fileOpen(filename, "r");
while(fgets(buf,79,fp) = NULL)

{
iI"(‘1"11([0{] ==
for(i = 0; buf[i]; i++)
if (bufli] = ' || buf[i] =)

buf[i]=""
allTrim(buf);
addWord(&namelist, buf, ++formcount);
}

}

for (1= 0; i < formcount; i++)

{

formlist = (struct form **)realloc(formlist, (++numForms) * sizeof(struct form *));
formlistinumForms - 1] = (struct form*)malloc(sizeof(struct form));
loadForm(fp , formlistfnumForms - 1], namelist[i]);

}

felose(fp);

return numForms;

}

int allTrim (char * str)

{

int 1, j, sf, tabs;

67

728851 vi

470

10299359 . A11902

PATENT

Docket No.: 4428-4001

for (i = tabs = 0; isspace(str[i]) && str[i]; i++)
tabs += (str[i] ="\t')? 1: 0;
for (j = sf = 0; str[i]; it++, j++)
str[j] = iscentri(str{i])? ' ": str[i];
for(str[j--] = 0; isspace(str(j]) && j > 0; str[j--] = 0);
return tabs;

}

int createArray (char * str, char ** array)
{

int count;

count = breakStr(str, array);

return processArray(array, count, 1);

}

int processArray(char ** array, int count, int sflag)
{
if (sflag)

filterStopWords(array, count);
stemArray(array, count);
filterDuplicates(array, count);
return removeNulls(array, count);

}

stemlib.c: This program contains functions related to stemming algorithim

/* This is the Porter stemming algorithm, coded up in ANSI C by the author.

It may be be regarded as cononical, in that it follows the algorithm presented

in Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, no. 3,

pp 130-137, only differing from it at the points maked --DEPARTURE-- below.

See also http://www tartarus.org/~martin/PorterStemmer

The algorithm as described in the paper could be exactly replicated

by adjusting the points of DEPARTURE, but this is barely necessary,
because (a) the points of DEPARTURE are definitely improvements, and
(b) no encoding of the Porter stemmer I have seen is anything like

as exact as this version, even with the points of DEPARTURE!

You can compile it on Unix with 'gce -O3 -o stem stem.c' after which
'stem’ takes a list of inputs and sends the stemmed equivalent to

68
728851 vl

471

LOR9a359 ., 111902

PATENT

Docket No.: 4428-4001

stdout.
The algorithm as encoded here is particularly fast.

Release 1
%S

#include <string.h> /* for memmove */

#define TRUE 1
#define FALSE 0

/* The main part of the stemming algorithm starts here. b is a buffer
holding a word to be stemmed. The letters are in b[k0], b[k0+1] ...
ending at b[k]. In fact kO = 0 in this demo program. k is readjusted
downwards as the stemming progresses. Zero termination is not in fact
used in the algorithm.

Note that only lower case sequences are stemmed. Forcing to lower case
should be done before stem(...) is called.
*

static char * b; /* buffer for word to be stemmed */
static int k,k0,j; /*j is a general offset into the string */

/* cons(i) is TRUE <=> b[i] is a consonant. */

int cons(int 1)
{ switch (b[i])
{ case 'a": case 'e": case 'i": case '0': case 'u': return FALSE;
case 'y": return (i==k0) ? TRUE : !cons(i-1);
default: return TRUE;
}
}

/* m() measures the number of consonant sequences between k0 and j. if ¢ is
a consonant sequence and v a vowel sequence, and <..> indicates arbitrary
presence,

<c><v> gives 0
<c>ve<v> gives |
<c>veve<v> gives 2
<c>vcveve<v> gives 3

69
728851 vl

472

10299359 . LA1L1902

PATENT

Docket No.: 4428-4001

o

int m()
{ intn=0;
int i = kO;
while(TRUE)
{ if (i >j) return n;
if (! cons(i)) break; i++;
}
oo o
while(TRUE)
{ while(TRUE)

{ if (1 >]) return n;
if (cons(i)) break;
i++;

)

1=k

n++;

while(TRUE)

{ if (i >]) return n;

if (! cons(1)) break;
i++;

i++;
}
}

/* vowelinstem() is TRUE <=> k0,...j contains a vowel */

int vowelinstem()

{ inti; for (i =kO0; 1 <=j; i++) if (! cons(i)) return TRUE;
return FALSE;

}

/* doublec(j) is TRUE <=> j,(j-1) contain a double consonant. */

int doublec(int j)

{ if j <k0+1) return FALSE;
if (b[j] !=b[j-1]) return FALSE;
return cons(j);

}

70
728851 vl

473

10299359 . L11902

PATENT

Docket No.: 4428-4001

/* cve(i) is TRUE <=>i-2,i-1,i has the form consonant - vowel - consonant
and also if the second c is not w,x or y. this is used when trying to
restore an e at the end of a short word. e.g.

cav(e), lov(e), hop(e), crim(e), but
snow, box, tray.

i

int cve(int 1)
{ if (i <k0+2 || 'cons(i) || cons(i-1) || {cons(i-2)) return FALSE;
{ intch=bl[1];
if ch=="w'"[| ch =="X'|| ch=="y') return FALSE;
}
return TRUE;

}
/* ends(s) is TRUE <=>k0,...k ends with the string s. */

int ends(char * s)
{ int length = s[0];
if (s[length] != b[k]) return FALSE; /* tiny speed-up */
if (length > k-k0+1) return FALSE;
if (mememp(b+k-length+1,s+1,length) != 0) return FALSE;
j =k-length;
return TRUE;
}

/* setto(s) sets (j+1),...k to the characters in the string s, readjusting
Ie. 5

void setto(char * s)

{ int length = s[0];
memmove(b+j+1,s+1,length);
k = j+length;

}

/* 1(s) 1s used further down. */
void r(char * s) { if (m() > 0) setto(s); }

/* steplab() gets rid of plurals and -ed or -ing. e.g.

71
728851 vl

474

10299359 AL 1D02

PATENT

Docket No.: 4428-4001

caresses -> caress
ponies -> poni
ties ->ti
caress -> caress
cats -> cat

feed -> feed
agreed -> agree
disabled -> disable

matting -> mat
mating -> mate
meeting -> meet
milling -> mill
messing -> mess

meetings -> meet
L7

void steplab()
{ if (b[k] ="s")
{ if (ends("\04" "sses")) k -= 2; else
if (ends("03" "ies")) setto("\01" "i"); else
if (b[k-1] I="s") k--; -
} .
if (ends("\03" "eed")) { if (m() > 0) k--; } else
if ((ends("\02" "ed") || ends("\03" "ing")) && vowelinstem())
{ k=J;
if (ends("\02" "at")) setto("\03" "ate"); else
if (ends("\02" "bl")) setto("\03" "ble"); else
if (ends("\02" "iz")) setto("\03" "ize"); else
if (doublec(k))
{1 Bt
{ intch =b[k];
if ch=="1"|| ch=="5'|| ch=="Z') k++;
}

}
else if (m() = 1 && cvc(k)) setto("\01" "e");
}
}

/* steplc() tumns terminal y to i when there is another vowel in the stem. */

72
728851 vl

475

. : 135S , L1190
PATENT
Docket No.: 4428-4001

void steplc() { if (ends("\01" "y") && vowelinstem()) b[k] ="i"; }

/* step2() maps double suffices to single ones. so -ization (= -ize plus
-ation) maps to -ize etc. note that the string before the suffix must give
m() > 0. */

void step2() { switch (b[k-1])
{
case 'a'": if (ends("\O7" "ational")) { r("\03" "ate"); break; }
if (ends("\06" "tional™)) { r("\04" "tion"); break; }
break;
case 'c': if (ends("\04" "enci")) { r("\04" "ence"); break; }
if (ends("\04" "anci")) { r("\04" "ance"); break; }
break;
case 'e': if (ends("\04" "izer")) { r("\03" "ize"); break; }
break;
case 'l": if (ends("\03" "bli")) { r("\03" "ble"); break; } /*-DEPARTURE-*/

/* To match the published algorithm, replace this line with
case 'l" if (ends("\04" "abli")) { r("\04" "able"); break; } */

if (ends(""\04" "alli")) { r("\02" "al"); break; }
if (ends("\05" "entli")) { r("\03" "ent"); break; }
if (ends("\03" "eli")) { r("\01" "e"); break; }
if (ends("\05" "ousli")) { r("\03" "ous"); break; }
break;

case 'o": if (ends("\07" "ization")) { r("\03" "ize"); break; }
if (ends("\05" "ation")) { r("\03" "ate"); break; }
if (ends("\04" "ator")) { r("\03" "ate"); break; }
break;

case 's": if (ends("\05" "alism")) { r("\02" "al"); break; }
if (ends("\07" "iveness")) { r("\03" "ive"); break; }
if (ends("™\07" "fulness")) { r("\03" "ful"); break; }
if (ends("\07" "ousness")) { r("\03" "ous"); break; }
break;

case 't if (ends("\05" "aliti")) { r("\02" "al"); break; }
if (ends("\05" "iviti")) { r("\03" "ive"); break; }
if (ends("\06" "biliti")) { r("\03" "ble"); break; }
break;

case 'g': if (ends("\04" "logi")) { r("\03" "log"); break; } /*-DEPARTURE-*/

73
728851 vi

476

_ . 10299359 . 111902
PATENT

Docket No.: 4428-4001

/* To match the published algorithm, delete this line */

1)

/* step3() deals with -ic-, -full, -ness etc. similar strategy to step2. */

void step3() { switch (b[k])
{
case 'e": if (ends("\05" "icate")) { r("\02" "ic"); break; }
if (ends("\05" "ative™)) { r("\00" ""); break; }
if (ends("\05" "alize")) { r("\02" "al"); break; }
break;
case '": if (ends("\05" "iciti")) { r("\02" "ic"); break; }
break;
case 'l": if (ends("\04" "ical")) { r("\02" "ic"); break; }
if (ends("\03" "ful")) { r("\00" ""); break; }
break;
case 's" if (ends("\04" "ness")) { r("\0OO" ""); break; }
break; :
3}

/* step4() takes off -ant, -ence etc., in context <c>vcve<v>. */

void step4()
{ switch (b[k-1])
{ case'a": if (ends("\02" "al")) break; return;

case 'c": if (ends("\04" "ance")) break;

if (ends("\04" "ence")) break; return;
case 'e": if (ends("\02" "er")) break; return;
case 'i": if (ends("\02" "ic")) break; return;
case 'l': if (ends("\04" "able")) break;

if (ends("\04" "ible")) break; return;
case 'n': if (ends("\03" "ant")) break;

if (ends("\05" "ement")) break;

if (ends("\04" "ment")) break;

if (ends("\03" "ent")) break; retumn;
case 'o": if (ends("\03" "ion") && (b[j] =s'|| b[j] = 't)) break;

if (ends("\02" "ou")) break; return;

/* takes care of -ous */
case 's": if (ends("\03" "ism")) break; return;
case 't": if (ends("\03" "ate")) break;

if (ends("\03" "iti")) break; return;
case 'u': if (ends("\03" "ous")) break; return;

74
728851 vl

477

. . A02989359 111902
PATENT

Docket No.: 4428-4001

case 'v': if (ends("\03" "ive")) break; return;
case 'z": if (ends("\03" "ize")) break; return;
default: return;
}
if(m()>1)k=j;
}

/* step5() removes a final -e if m() > 1, and changes -1l to -1 if
m() > 1. */

void step5()
{i=k
if (b[k] ="¢")
{ inta=m();
if(a>1]a==1&& !cve(k-1)) k--;

}
if (b[k] = "I' && doublec(k) && m() > 1) k--;
}

/* In stem(p,i,j), p is a char pointer, and the string to be stemmed is from
pli] to p[j] inclusive. Typically i is zero and j is the offset to the last
character of a string, (p[j+1] = "\0"). The stemmer adjusts the
characters p[i] ... p[j] and returns the new end-point of the string, k.
Stemming never increases word length, so i <=k <=j. To turn the stemmer
into a module, declare 'stem' as extern, and delete the remainder of this
file.

7

int stem(char * p, int i, int j)
{ b=p; k=j;k0=1; /* copy the parameters into statics */
if (k <= k0+1) return k; /*-DEPARTURE-*/

/* With this line, strings of length 1 or 2 don't go through the
stemming process, although no mention is made of this in the
published algorithm. Remove the line to match the published
algorithm. */

steplab(); steplc(); step2(); step3(); step4(); step5();

return k;

}

I* stemmer definition ends here '

75
728851 vl

478

: . 10299359 111902
PATENT

Docket No.: 4428-4001

stemArray(char **list, int arrayLen)
L
nt 1;
for (1= 0; 1 < arrayLen; 1++)
if (list[i] '= NULL)
stemWord(list[i]);
}

stemWord(char * s)

s[stem(s,0, strlen(s) - 1)+ 1] =0;

}

dialog.c: This is main program of dialog module

f****#**##*#********************************#*****#***********#**#***********

dialog.c : The main function for the interactive dialog program. loads all
the global arrays and variables before calling the interacitve function.

Arguments are: :
1. The Configuration file for Thesaurus. contains Prompts, index,
basic thesaurus etc. '
2. The Learning Thesaurus. - used to store learnt words and to refer to them.
#*#**#*********#*#*#******#**#***##**********#********#**#**********t*{
#include <stdio.h>
#include <string.h>
#include "arraylib.h"

int numColumn, numRow, numIndex, numMenu;

int startPoint, eofFlag, topValues;

char **rowTerms, **columnTerms, **prompts, **stopWords;
float **matrix, **cosine, phoneThreshold, webThreshold;
int **indexList, **menulList, **thesaurus;

int numStopWord, numOrgRow;

int numForms, numPF;

struct form **formlist;

char ***Fprompts, *formfile;

int **scoring, numScore = 0;

char *cfg, *lcfg, *fdoc, *xdoc, *sdoc;

int minPromptCount = 1, timeout = 30;

void Interactive(char *);

76
728851 vl

479

