
1 EX 1028

Automatic Feedback Using Past Queries: Social Searching?

Larry Fitzpatrick

lef@opentext.com

Open Text Corporation
3 Bethesda Metro Ctr

Bethesda, MD, USA 20814

Abstract

The eflect of using past queries to improve automatic
query expansion was examined in the TREC environment.
Automatic feedback of documents identified from similar

past queries was compared with standard top-document feed-
back and with no feedback. A new query similarity metric
was used based on comparing result lists and using prob-
ability of relevance. Our top-document feedback method
showed small improvements over no feedback method consis—
tent with past studies. On recall-precision and average pre—
cision measures, past query feedback yielded performance
superior to that of top-document feedback. The past query
feedback method also lends itself to tunable thresholds such

that better performance can be obtained by automatically
deciding when, and when not, to apply the expansion. Auto—
matic past-query feedback actually improved top document
precision in this experiment.

1 Introduction

Multi-gigabyte databases are de regueur today and the state
of the art is pushing beyond terabyte sizes. Yet wide-spread
experience with public and private search systems tells us
that searchers are either unwilling or unable to invest in
query construction. Over a wide range of operational en—
vironments, the average number of searcher-supplied query
terms is frequently less than 2 and rarely more than 4. At
the same time, the best performers in the TREC studies
created queries with nearly 100 terms ([3], [1]). Clearly the
developers of these systems believe that more terms lead to
better effectiveness. It does seem intuitively obvious that as
the data volumes increase, the number of search terms must
also increase to provide the additional context necessary for
effective retrieval — i.e., regardless of the engine ranking, how
can 2 terms sift 100GBytes of data? 1

One approach to this problem is to rely more heavily on
automatic query expansion. Historically, automatic expan—
sion has been viewed as operationally impractical because,

1Except, of course, for that class of high precision queries where a
few words can identify exactly the need.

Permission to make digital/hard copies ofall or part oflhis material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice. the title ofthe publication and its date appear, and notice is
given that copyright is by permission of the ACM. Inc. To copy otherwise.
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee

SIGIR 97 Philadelphia PA, USA
Copyright 1997 ACM 0-89791-836-3/97/7..$3.50

Mei Dent

mei@opentext.com

Open Text Corporation
185 Columbia Street West

Waterloo, Ontario, Canada N2L 5Z5

while it has helped recall, it generally hurts precision at
the top of the result list. We expect that as extraction tech-
niques and our ability to estimate or infer relevance improve,
automatic expansion methods should help offset the prob-
lems related to the paucity of user-supplied query terms and
relevance judgments.

It is appealing to think that the results of past searches
may be a source of additional evidence to help future searches.
In operational environments, close examination of query logs
clearly indicates the overlap in topic interests between search-
es. For example, the top 10 queries against the Open Text
Web Index (http://www.opentext.com) often account for
more than 5% of all queries. Additionally, external events
create database hot spots. For example, during the heavy
US East Coast snowstorm of January 1996, the Open Text
Web Index experienced a sudden, profound, and sustained
burst of activity due to the query weather, which prior to the
storm had been rare. While these observations only consider
queries that are identical, there is also great topical overlap
between non—identical queries. A quick sample of daily query
logs for the Open Text Index shows that between 5 and 9 of
the top 10 most frequently occurring queries are all about
one very specific and popular topic!

In this paper we describe experiments using past queries
as a source of evidence for automatic term expansion. The
hypothesis is that the top documents selected by a query
from a pool of documents that are themselves the top docu-
ments from result lists of past similar queries are a good
source for automatic term expansion. We compared the
performance of this method against the unexpended base-
line queries and against the baseline queries expanded with
top—document feedback ([4]). We created a query similarity
metric that used empirically derived probability of relevance
information. We also evaluated the use of a threshold to con-

trol, on a per query basis, whether or not to apply automatic
expansion. In the following sections we describe the method—
ology used. including the query similarity metric. Then we
examine the results, review related efforts, summarize and
discuss future directions.

2 Description of the Feedback Methods

The experiments were conducted with the TREC—5 data set
[9]. The set of evaluation queries were the 50 ad hoc TREC-5
topics and their relevance judgments. For past queries feed-
back, we also used the 50 ad hoc TREC—3 [7] and 10 of the
ad hoc TREC-4 queries [8] as the past queries. From the 50
ad hoc TREC-5 queries, baseline queries were created man—
ually from the topics and were expressed in a simple natural

306

EX 1028

2

query language with stem expansion No feedback, data
or knowledge resources were used to generate the baseline
queries. The average number of terms per baseline query
was about 5. The small number of terms reflected the fact

that we used no manual augmentation resources to discover
additional terms ._ consistent with real users in the opera—
tional environments with which we are familiar. Manually
created baseline queries presumably yielded a higher perfor-
mance than automatically generated baseline queries would
have, but this shouldn’t effect the comparison of the two
automatic feedback methods with each other.

The search system was the commercial off—the—shelf Open
Text 6.0 Livelink OEM search engine. 2 A run of the base—
line queries served as a benchmark against which the other
methods were compared.

The complete TREC-5 data set was used for the exper—
iment. It consists of 524929 documents from TREC disk-2

and disk—4, about 2 GBytes of text. Document length varies
from collection to collection, with an average of 550 terms
per document We used the standard TREC performance
analysis methods. Average precision, exact precision, recall-
precision curve and document—precision curve are defined by
Harman[9].

To provide a framework for the evaluation of different
automatic query expansion methods, and in particular the
effect of past queries, we posit a simple model for automatic
query expansion. This model (see Figure 1) isolates the doc—
uments that are candidates for feedback in an affinity pool.
Query expansion is done by evaluating the query against the
affinity pool and extracting terms from the top documents
retrieved there. The extracted terms are used to augment
the query, then the query is executed against the main cor-
pus.

Creation of the affinity pool seems overly complex for
simple automatic feedback methods, such as top document
feedback. However, it has allowed us to experiment with
different methods for the creation of a query contest. In
these experiments, we also used the results of past queries
to generate this pool, but in other configurations we’ve used
external sources such as documents from web-browser his—

tory files, This is similar to creating context by watching
information consuming habits of users, such as reported by
Maes [10], Goker and McCluskey [6], and Morita and Shin-
oda [11].

The top-document and past queries feedback methods
tested with this model are described below,

2.1 Top-document feedback

An automatic top~document feedback 3 run was created for
the test queries. This method is virtually identical to the
method described by Buckley, et al.[4] wherein the query is
first executed against the corpus, the result set is ranked,
some number of top documents are selected, key terms are
extracted from the t0p documents, added to the query, and
the query is re-executed. In terms of the feedback model
described above, the affinity corpus is simply the top 200
documents from the relevance—ranked result list of the base-

line query, so top documents extracted from it are the same
as the baseline query‘s top documents.

The terms that expand the query are extracted from the
top documents using the standard abstract operator in the

2The ranking algorithm was a straightforward probabilistic rele-
vance ranking algorithm, one of the standard ranking methods avail-
able in the system.

3without the use of human-generated relevancejudgments

307

Figure 1: A simple model of automatic query expansion.

search engine. 4 The number of documents selected for term
expansion and the number of terms extracted from those
documents can be selected at run-time. In this experiment,
the top 2 documents were used to select the top 10 terms for
expansion. The extracted terms were added to the baseline
query and then the expanded query was run against the full
corpus.

2.2 Past—query feedback

Past-queries feedback required a set of queries to use for
generating the affinity pool for each query. The past queries
consisted of the 50 ad hoc TREC-5 queries, 50 ad hoc TREC-
3 queries, and 10 ad hoc TREC-4 queries. 5 These 110
queries were run against the TREC-5 data to generate re-
sult lists, relevance ranked, then truncated after 200 and
saved. These were then used as input to form an affinity
pool for each query.

To create an affinity pool for a query, we first computed
the 3 queries most similar to it from the 109 other queries
that exceeded a similarity threshold. If a query had 3 close
matches then the affinity pool was created by pooling the
top 100 documents from each of the matching past queries’
result lists. A way to conceptualize this is: since the docu-
ments retrieved by similar past queries that end up in the
affinity pool are from the same corpus as the final result
documents, in effect, the past queries affinity pool is a mask
that prevents baseline—query top documents that are not also
past-query top documents from being used for feedback.

Feedback terms were the top ranked terms computed by
the abstract operator when applied to the top documents
from the result list of the baseline query executed against the

“The abstract operator performs key term identification using a
straightforward if X Ldf term-scoring algorithm similar to that de-
scribed in [4],

5The TREC~3 and TREC-4 queries were created manually using
the same method as for the TREC-S test queries. Only 10 of the
TREC-4 topics were used because these are what we had available
from another experiment.

3

" wgt(Pos(L,D,')) t wgt(Pos(L',D.-))i=1 n

S(L, L) = i=1 wgt2(Pos(L1 Dill
(1)

affinity pool. Once the baseline query was augmented with
feedback terms, it was executed against the full corpus. The
same constants for number of top documents and number of
top terms were used as for the top-document feedback run.

The number of queries for which we could compute an
affinity pool were, of course, dependent upon the threshold.
For those queries that had no affinity pool, because there
were less than 3 past queries similar enough to exceed the
threshold, we used the baseline queries as part of the run.
That is, no augmentation was done for some of the queries in
the past-queries feedback run. We did this to make compar-
isons between the baseline and past queries feedback easier.

Two issues warrant further discussion. First the method

of assessing inter-query similarity, and the threshold for de-
termination of similar queries.

2.3

The query similarity method compared two queries by ex-
amining the overlap between their result lists. Essentially,
it is a weighted overlap measure for the top 200 documents
of each result list. This is somewhat similar to the method

used by Raghavan, et al.[12], but without the use of rele-
vance judgments and extended to take into account empir-
ically derived weights based on the probability of relevance
of each matching hit. The weighting gave more preference
to matches that occurred near the beginning of the lists,
because the probability of finding a relevant document in a
ranked result list is greatest at the beginning and decreases
towards the tail.

The similarity measure is described by Equation 1. L

and L! are result lists to be compared. D.- is the 1‘“ element
in the result list. 11 is the number of elements in the result

list. Pos(L,D.-) is a function that maps an element in the
result list to its position in the result list L. wgt(P) is a
weight function for different positions in the result list. The
weight for a position in the result list is determined by the
probability of finding a relevant document in that position.
If a document does not appear in the result list, the weight
is 0.

In this experiment, a large-grained partition of the result
lists was used to produce the position mapping. The weight
for each position was empirically derived from the relevance
ranked result lists of 50 TREC~3 ad hoc queries against the
TREC-3 data collection. Table 1 shows the mapping from
an element in the result list to its position in the result list,
and the probability of finding a relevant document in that
position. For example, the 10"I document in the result list
will be mapped to position 0, which has a probability of 33%
to be relevant.

Closer examination of the result lists showed that much

greater discrimination was possible by partitioning the result
list more finely (Table 2). Though not evaluated, we expect
this partition to produce a better similarity measure.

Measuring Inter-query Similarity

2.4 Query Similarity Thresholds

The past-queries feedback method is sensitive to whether or
not there are any queries similar enough to the one being
expanded to be used in generating the affinity pool. To

308

"In“
Iowa

Table 1: The mapping from ranges in the result list to posi-
tions and the probability of relevance used in the experiment
(wide range).

“—m
—mmn_
“——
“——
mi-

Table 2: The mapping from ranges in the result list to po-
sitions and the probability of relevance (finer range).

avoid polluting the affinity pool with almost surely irrelevant
documents in the low-similarity case, we used a threshold
to eliminate poor matches. The threshold determined how
many queries were expanded — the lower the threshold, the
more queries are expanded.

For the 50 TREC-5 queries, when each was compared
against 109 other queries (for a. total of 5450 comparisons),
we observed the similarity measure to range between 0 and
0.56. Theoretically it could range up to 1, but this happened
only when comparing a query against itself. We ran test runs
at two different thresholds, 0.025 and 0.012, chosen because
of the number of queries that would be augmented (we didn’t
want too few, or too many). These thresholds yielded 23
and 35 queries (out of the 50 TREC-5 queries) respectively
which have affinity pools. The effects of these thresholds on
recall-precision and average precision are described in the
following section.

3 Discussion of Results

Every query in top-document feedback had an affinity pool
and so feedback was used for all 50 TREC-5 ad hoc queries.
Top-document feedback showed an improvement of 7.5%
over the baseline in average precision (Table 3) and an im-
provement of 13.5% in the total number of documents re—
trieved. Compared to the baseline, precision was higher for
top-document feedback at all recall values except 0 (Fig-
ure 2). However, precision at top 5 and top 10 documents
suffered, with a drop of 5% on average. Precision at all
other points up to the 100 document precision level showed
an improvement over the baseline (Figure 3).

Unlike in top—document feedback, some TREC-S topics
had no similar past queries to create affinity pools in past-
queries feedback. For these topics, the baseline results were
used. Though we saw improvement of precision at almost
all recall levels for all queries (Figure 2), the actual effect
of past~queries feedback is best revealed when only the re-
sults from queries which have affinity pools are compared
(Figure 4). With only the queries that were augmented by
past-queries feedback, precision improved at all recall levels.

As expected, top—document precision suffered with the

4

Recall-Precislonl top-document leedback‘ past-querles feedbaw, baseline (all queries)

baseline #
top-documemleedback -~—-

past-queriesleedback 1: ,

Preclsmn
Recall

Figure 2: Recall-Precision for baseline, top-document and past-queries feedback methods for all TREC-5 queries.

DocumemPreclsion lor Top 100 documents: past-queries feedback. lop-document feedback, baseline

baseline +—
top-documentteedback -+-‘

past-queries feedback In

Precision
0 10 20 30 40 50 60 70 80 90 loo

Documenl

Figure 3: Dacumeut~Precisi0n at top 100 documents for baseline, toprdocument and pastrquerles feedback methods for the
23 TREC—f) augmented queries only

309

5

topdocument baseline
_

precisionWW

0.2291 m 0.2465 0.2606 0.2133 0.1884
0.2736 0.2629 0.3095 0.2693 0.2238

Table 3: Average and exact precision for baseline, top-document and past-queries feedback methods.

Recall-Precision: lop-document feedback. past-queries feedback. baseline (augmented queries)

Precision
baseline ~—

iop—document feedback -+---
pasiauerlesieedback -n--

Figure 4: Recall—Precision for baseline, top-document and past-queries feedback methods for the 23 TREC—5 augmented
queries only.

top-document feedback method. However, this was not the
case for past-queries feedback. Precision at top 5 and top 10
documents in past—queries feedback improved 6% on average
(Figure 3).

Table 3 shows the average precision and exact precision
for the baseline, top-document feedback and past-queries
feedback methods. For all 50 TREC-5 ad-hoc queries, past—
queries feedback showed an average precision improvement
of 15.5% over the baseline, an improvement of 7.6% over
top-document feedback.

Comparing average precision for the expanded queries
only (23 of the 50), past-queries feedback showed an im—
provement of 38.3% over the baseline and an improvement
of 12.1% over topdocument feedback. The difference be—
tween this and the measures for all queries is due to the fact
that the baseline query result was used when an afiinity pool
could not be found for a query in the past-queries feedback
method.

We experimented with four affinity pool thresholds. Two
were used to demonstrate the effect of thresholds on the av—

erage precision and recall-precision curve. 6 The tighter
the threshold, the fewer queries with affinity pools. When
the threshold was 0.025, 23 topics had affinity pools. When
the threshold was 0.012, 35 topics had affinity pools. Aver—
age precision and exact precision improves as the threshold
tightens. For example, average precision improved 24.0%

6The results shown above are from the 0.025 threshold.

310

when the threshold was increased from 0.012 to 0.025.

Figure 5 shows the recall-precision curve for the two
thresholds. Similar to average precision, precision was imA
proved at all recall value when the threshold was increased.

4 Related Work

Raghavan, et al.[12] reported on efforts to reuse past apti-
mal queries for either of two purposes: to short-circuit query
evaluation by matching a user query to one that had al-
ready been evaluated, and to jump—start optimal query for-
mation using a steepest descent method by using the closest
matching past query as the initial query vector. To frame
this effort, they presented a detailed analysis of similarity
measures between queries. They concluded that the best
similarity metric between queries was obtained by compar-
ing query result vectors rather than treating the queries as
term-vectors. They presented distance and similarity algo-
rithms that used the relevant and non-relevant document

overlap and ordering relations between query results. Us-
ing the Cranfield 1400 collection they attempted to validate
that the use of the best match past query as the initial query
in a steepest descent query refinement method reduced the
number of iterations needed to reach an optimal query.

Our effort differed from Raghavan‘s in several areas. First,
the goal of the their experimental effort was to accelerate
formation of optimal queries in the presence of relevance

6

Recall-Precision: past-queries ieedback using various thresholds (augmented queries)08

Precision
threshold a 0.012 ~—
Ihreshold - 0.025 +-

Recall

Figure 5: Recall-Precision for past-queries feedback methods for augmented queries only using various thresholds

judgments. Our goal was to improve the effectiveness of a
user—supplied query by identifying key terms from poten—
tially relevant documents from past queries.

Both Raghavan’s and our approaches used an inter—query
similarity metric based on result—set overlap. Raghavan, et
al, showed how this was better than other methods. The
Raghavan metric used in the experiments relied on rele-
vant document overlap between the two result lists, but we
expressly avoided using relevant documents since they are
rarely available in practice and so we used common docu-
ment overlap. The assumption we made was that the prob-
ability of two queries being similar is increased if they share
any retrieved documents in common.

Most significantly, we used the fact that the beginning of
a result list is more likely to include a relevant document by
weighting matches by their position in the result list. The
weights were empirically derived probabilities of different
result list ranges to contain relevant documents.

T.L. Brauen[2] reported on a set of experiments using the
Cranfield collection (424 documents, 155 queries) that used
past queries to improve the effectiveness of future queries.
The approach he used was to select a handful of relevant
documents from each past query and modify these relevant
documents’ vectors by the query vector that selected them,
This had the effect of injecting the searcher’s understanding
of the document into the document’s concept vector. Future
queries were executed against the modified document vec-
tors. In evaluating results, Brauen distinguished between
queries that had other similar past queries and queries that
did not. He reported reasonable recall/precision, average
recall and average precision gains for this method.

Our approach differed from Brauen’s effort in several
ways. First. Brauen used relevance judgments to decide
which documents: vectors to modify whereas our effort did
not rely on relevance judgments at all (except for evalua—
tion). Second, Brauen's method modified the underlying
corpus index, whereas our method modified just queries,
Our computation over past queries need not involve the

311

database system’s index at all, other than to query it. 7 Fi-
nally, Brauen’ query«similarity metric compared the queries
by comparing their term-vectors. we compared them by their
result-lists.

Worona [13] reported on experiments with the Cranfield
collection (424 documents, 155 queries) that retrieved doc—
uments by first clustering queries, The objective was to
evaluate cluster searching with clusters generated by clus-
tering queries not documents. In this method, query clusters
were formed using a clustering algorithm over the concept
vectors of each query. Then document clusters were formed
by replacing each query cluster with the relevant documents
from each of the queries in the cluster. Queries were first
executed to identify the best clusters, then the clusters were
expanded and the documents ranked against the query. This
was compared against cluster—searching where the clusters
were formed by document clustering, and against full search—
ing. The results indicated that “with ’good’ enough clusters
and centroids, a clustered search need not lose a great deal
of the recall compared with a. full search."

Worona’s effort and goals differed substantively from ours
in that he evaluated cluster—searching in order to optimize
query execution speed without loss of search effectiveness.
Conversely, our use of past queries was strictly to improve
effectiveness without concern for execution speed. However,
it is worth considering his efforts in light of our model of
query expansion. His formation of a cluster is analogous
to our formation of an affinity pool. In generating clusters.
queries were treated as term-vectors and compared with a
cosine measure. 5 Additionally, the two approaches differed
in the application of the Clusters: his method attempted to
identify a cluster of documents to he retrieved7 whereas our
method attempted to identify an affinity pool from which

7Some thought is needed to determine how best to utilize a method
that modifies the index, such as Brauen‘s, in the face of heavily up-
dated text databases.

”Raghavan, et al.[12] showed how the cosine comparison method
was inappropriate for comparing queries.

7

expanded terms could be extracted and used to refine the
query. Finally, his method of cluster formation relied on rel—
evant documents, but ours did not. The common thread is
that queries can be used to identify document clusters.

A common difference between these other studies and
ours was the difference in test collection characteristics. The
other studies all used some form of the Cranfield collection
whereas we used the TREC—5 data collection and TREC—

3, 4, and 5 ad-hoc queries. Cranfield is very topic specific
(aeronautics) whereas the TREC collection is not; the Cran—
field documents are bibliographic references with abstracts
whereas TREC is full-text. The TREC collection is about

3 orders of magnitude larger than Cranfield. However, the
number of queries used was very similar (Brauen used 155,
VVorona used 155, Raghavan used 222, and we used 110).

5 Conclusions and Future Work

The goal of our effort was to determine whether past queries
could be used as an additional source of evidence to improve
automatic query expansion for a user-provided query. This
goal was formulated as one possible solution to the problem
of small user queries in the presence of very large heteroge—
neous databases, The results are encouraging.

It appears that there is implicit relevance information
in past queries that can improve automatic feedback and
that this information was tapped by the affinity pool cre-
ation algorithm and inter-query similarity metric. Auto—
matic past queries feedback outperformed automatic top
document feedback and actually improved top document
precision. Consistent with the literature (e.g., [4]), aute—
matic top document feedback was nominally better than the
baseline and slightly hurt top document precision.

When we compared only the 23 queries for which past—
queries expansion was performed, average precision for past—
queries feedback was 38% over the baseline and 12% bet—
ter than top—document feedback. Past queries feedback im—
proved the top 5 and top 10 document precision levels by
about 6%. The full 50 automatic past-queries feedback
run (using the baseline query for the 27 queries for which
past—queries feedback could not be performed) showed a
15.5% improvement over the baseline in average precision
and 7.6% over top-document feedback when all queries were
compared. Total recall improved slightly for past—queries
feedback against the baseline.

Interestingly, the performance of the baseline queries for
which past-queries feedback could be executed was worse
than the complete baseline run compared over average pre—
cision. By subjective inspection, at least 6 of these queries
were vague or abstract, were very poor performers in the
baseline, and had higher improvement by past queries feed—
back than the other queries. We’re tempted to speculate
that for difficult queries, the result lists of similar other
queries may act as a noise filter for top-document feedback,
but the numbers are too small to say.

Finally, the use of a threshold for past-queries feedback
to control when the technique is applied involved some cal-
ibration, but appeared to be useful. The runs indicated an
inverse relationship between the threshold and the effective—
ness of the technique. For the two points shown here, a
higher threshold reduced the number of queries that were
expanded, but increased average precision by 24%.

The limitations of this effort are the small number of

queries tested and the runtime cost of the implementation
that we used. Also, we are unsure of how the empirically
derived probability of relevance data holds across different

312

collections and query sets. Subject to validation on a larger
query set, we’re very interested in improving both the algo—
rithm and the implementation, and in introducing additional
sources of evidence to feedback in general.

As search activities are viewed less as one-shot events and

more as milestones along the road to satisfying long-term
information needs, useful patterns will become evident. In
most on-line systems with high throughput, anything that
increases the cost of a single search is viewed with a critical
eye. Augmentation techniques generally increase the cost of
a search by more than 2X (because the search is executed
twice), and cumulative query cost translates directly into
hardware cost or response time. W'e’re particularly intrigued
by such modeling and query expansion when it can take
place off the search engine server,

6 References

References

[1] Allan, J., Ballesteros, L., Callan, J.P., Croft, VV.B.,
Lu, 2., Recent Experiments with INQUERY: TREC
4, Proceedings of Fourth Text REtrieval Conference
(TREC-4), NIST Special Publication 500-236, 1996.

[2] Brauen, T.L., Document Vector Modification in The
Smart Retrieval System: Experiments in Automatic
Document Processing, Gerard Salton, Ed., Englewood
Cliffs, NJ: 1971.

Buckley, C., Singhal, A., Mitra, M., Salton, G., New
Retrieval Approaches Using SMART: TREC—4: TREC
4, Proceedings of Fourth Text REtrieval Conference
(TREC-4), NIST Special Publication 500-236, 1996.

Buckley, C., Salton, G., Allan, J., Singhal, A., Auto-
matic Query Expansion Using SMART: TREC 3, Pro-
ceedings of Third Text Retrieval conference (TREC-
3), NIST Special Publication 500—225, 1995.

Buckley, C., Salton, G., Allan, J ., The Effect of Adding
Relevance Information in a Relevance Feedback Envi-

ronment, In the Proceedings of the Seventeenth Annual
International ACM—SIGIR Conference on Research and

Development in Information Retrieval, 1994.

[3]

l4]

[5]

[6] Goker, A., McCluskey, T.L., Incremental learning in
a probabilistic information retrieval system. In: LA.
Birnbaum and CC. Collins and (eds). Machine Learn-
ing. Proceedings of the Eighth International Workshop
on Machine Learning (ML91), Evanston, IL, USA, June
1991. San Mateo, CA: Morgan Kaufmann, 1991. 255—9.

[7] Harman, D.K., The Third Text Retrieval Conference
(TREC-3), Gaithersburg, MD, 1994.

Harman, UK, The Fourth Text Retrieval Conference
(TREC-4), Gaithersburg, MD, 1995.

[8]

[9] Harman, D_K., The Fifth Text Retrieval Conference
(TREC-5) notebook, Gaithersburg, MD, 1996.

[10] Maes, P., Agents that Reduce Work and Information
Overload, Communications of the ACM, Vol. 37, No.7,
July 1994.

Morita, M. and Shinoda, Y; Information Filtering
Based on User Behavior Monitoring and Best Match
Text Retrieval, Proc. of the Seventeenth International

[11]

8

[12]

[13]

ACM-SIGIR Conference on Research and Development
on Information Retrieval, 272—281, Dublin, Ireland,
July 1994‘

Raghavan, V.V., Sever, H., On the Reuse of Past Op-
timal Queries, Proc. of the Eighteenth International
ACM-SIGIR Conference on Research and Development
in Information Retrieval, Seattle, Washington, July
1995.

Worona, 8., Query Clustering in a. Large Document
Space in The Smart Retrieval System: Experiments in
Automatic Document Processing, Gerard Salton, Ed,
Englewood Cliffs, NJ: 1971.

313

