The Evaluation of Automatic Retrieval Procedures— Selected Test Results Using the SMART System*

The generation of effective methods for the evaluation of information retrieval systems and techniques is becoming increasingly important as more and more systems are designed and implemented. The present report deals with the evaluation of a variety of automatic indexing and retrieval procedures incorporated into the SMART automatic document retrieval system. The design

of the SMART system is first briefly reviewed. The document file, search requests, and other parameters affecting the evaluation system are then examined in detail, and the measures used to assess the effectiveness of the retrieval performance are described. The main test results are given and tentative conclusions are reached concerning the design of fully automatic information systems.

GERARD SALTON

The Computation Laboratory of Harvard University Cambridge, Massachusetts

Introduction

The evaluation of information retrieval systems and of techniques for indexing, storing, searching and retrieving information has become of increasing importance in recent years. The interest in evaluation procedures stems from two main causes: first, more and more retrieval systems are being designed, thus raising an immediate question concerning performance and efficacy of these systems; and, second, evaluation methods are of interest in themselves, in that they lead to many complicated problems in test design and performance, and in the interpretation of test results.

The present study differs from other reports on systems evaluation in that it deals with the evaluation of automatic rather than conventional information retrieval. More specifically, it is desired to compare the effectiveness of a large variety of fully automatic procedures for information analysis (indexing) and retrieval. Since such an evaluation must of necessity take place in an experimental situation rather than in an operational environment, it becomes possible to eliminate from consideration such important system parameters as cost of retrieval, response time, influence of physical lay-out, personnel problems and so on, and to concentrate fully

on the evaluation of retrieval techniques. Furthermore, a number of human problems which complicate matters in a conventional evaluation procedure, including, for example, the difficulties due to inconsistency among indexers or to the presence of search errors, need not be considered. Other problems, including those which have to do with the identification of information relevant to a given search request, and those concerning themselves with the interpretation of test results, must, of course, be faced in an automatic system just as in a conventional one.

The design of the SMART automatic document retrieval system is first briefly reviewed. The test environment is then described in detail, including in particular a description of the document file and of the search requests used. Parameters are introduced to measure the effectiveness of the retrieval performance; these parameters are similar to the standard recall and precision measures, but do not require that a distinction be made between retrieved and nonretrieved documents. The main test results are then given, and some tentative conclusions are reached concerning the design of fully automatic retrieval systems.

• The SMART Retrieval System

SMART is a fully automatic document retrieval system operating on the IBM 7094. Unlike other computer-based retrieval systems, the SMART system does

American Documentation, Vol. 16, No. 3 — July 1965 209

1 EX1027

This study was supported by the National Science Foundation under Grant GN-245.

not rely on manually assigned keywords or index terms for the identification of documents and search requests, nor does it use primarily the frequency of occurrence of certain words or phrases included in the texts of documents. Instead, an attempt is made to go beyond simple word-matching procedures by using a variety of intellectual aids in the form of synonym dictionaries, hierarchical arrangements of subject identifiers, statistical and syntactic phrase-generating methods and the like, in order to obtain the content identifications useful for the retrieval process.

Stored documents and search requests are then processed without any prior manual analysis by one of several hundred automatic content analysis methods, and those documents which most nearly match a given search request are extracted from the document file in answer to the request. The system may be controlled by the user in that a search request can be processed first in a standard mode; the user can then analyze the output obtained and, depending on his further requirements, order a reprocessing of the request under new conditions. The new output can again be examined and the process iterated until the right kind and amount of information are retrieved.

SMART is thus designed to correct many of the short-comings of presently available automatic retrieval systems, and it may serve as a reasonable prototype for fully automatic document retrieval. The following facilities incorporated into the SMART system for purposes of document analysis may be of principal interest*:

- (a) a system for separating English words into stems and affixes (the so-called "null the-saurus" method) which can be used to construct document identifications consisting of the word stems contained in the documents;
- (b) a synonym dictionary, or thesaurus, which can be used to recognize synonyms by replacing each word stem by one or more "concept" numbers (the thesaurus is a manually constructed dictionary including about 600 concepts in the computer literature, corresponding to about 3000 English word stems); these concept numbers can serve as content identifiers instead of the original word stems;
- (c) a hierarchical arrangement of the concepts included in the thesaurus which makes it possible, given any concept number, to find its "parent" in the hierarchy, its "sons," its "brothers," and any of a set of possible cross-references; the hierarchy can be used to obtain more general content identifiers than the ones originally given by going "up" in the hierarchy, more specific ones by going "down" in the structure, and a set of related ones by picking up brothers and cross-references;

- (d) statistical procedures to compute similarity coefficients based on co-occurrences of concepts within the sentences of a given document, or within the documents of a given collection; association factors between documents can also be determined, as can clusters (rather than only pairs) of related documents, or related concepts; the related concepts, determined by statistical association, can then be added to the originally available concepts to identify the various documents;
- (e) syntactic analysis and matching methods which make it possible to compare the syntactically analyzed sentences of documents and search requests with a pre-coded dictionary of "criterion" phrases in such a way that the same concept number is assigned to a large number of semantically equivalent, but syntactically quite different constructions (e.g. "information retrieval," "the retrieval of information," "the retrieval of documents," "text processing," and so on);
- (f) statistical phrase matching methods which operate like the preceding syntactic phrase procedures, that is, by using a preconstructed dictionary to identify phrases used as content identifiers; however, no syntactic analysis is performed in this case, and phrases are defined as equivalent if the concept numbers of all components match, regardless of the syntactic relationships between components;
- (g) a dictionary updating system, designed to revise the five principal dictionaries included in the system (stem thesaurus, suffix dictionary, concept hierarchy, statistical phrases, and syntactic "criterion" phrases).

The operations of the system are built around a supervisory system which decodes the input instructions and arranges the processing sequence in accordance with the instructions received. At the present time, about 35 different processing options are available, in addition to a number of variable parameter settings. The latter are used to specify the type of correlation function which measures the similarity between documents and search requests, the cut-off value which determines the number of documents to be extracted as answers to search requests, and the thesaurus size.

The SMART systems organization makes it possible to evaluate the effectiveness of the various processing methods by comparing the outputs obtained from a variety of different runs. This is achieved by processing the same search requests against the same document collection several times, and making judicious changes in the analysis procedures between runs. It is this use of the SMART system, as an evaluation tool, which is of particular interest in the present context, and is therefore treated in more detail in the remaining parts of the present report.

More detailed descriptions of the systems organization are included in Refs. 1 and 2. Programming aspects and complete flowcharts are presented in Ref. 3.

Characteristic	Comment	Count
Number of documents in collection.	Document abstracts in the computer field.	405
Number of search requests (a) specific (b) general. 	0 - 9 relevant documents 10 - 30 relevant documents	10 7
User population (requester also makes relevance judgments).	Technical people and students	about 10
Number of indexing and search programs used.	All search and indexing operations are automatic.	15
Number of index terms per document.	Varies greatly depending on indexing procedure and document.	(average) 35
Number of relevant documents per request (a) specific(b) general.		(average) 5 (average) 15
Number of retrieved documents per request.	No cut-off is used to separate retrieved from nonretrieved.	405

Fig. 1. Test Environment.

• The Test Environment

The parameters which control the testing procedures about to be described are summarized in Fig. 1. The data collection used consists of a set of 405 abstracts* of documents in the computer literature published during 1959 in the IRE Transactions on Electronic Computers. The results reported are based on the processing of about 20 search requests, each of which is analyzed by approximately 15 different indexing procedures. The search requests are somewhat arbitrarily separated into two groups, called respectively "general" and "specific" requests, depending on whether the number of documents believed to be relevant to each request is equal to at least ten (for the general requests) or is less than ten (for the specific ones). Results are reported separately for each of these two request groups; cumulative results are also reported for the complete set of requests.

The user population responsible for the search requests consists of about ten technical people with background in the computer field. Requests are formulated without study of the document collection, and no document already included in the collection is normally used as a source for any given search request. On the other hand, in view of the experimental nature of the system it cannot be stated unequivocally that an actual user need in fact exists which requires fulfilment.

An excerpt from the document collection, as it is originally introduced into computer storage, is reproduced in Fig. 2. It may be noted that the full abstracts are stored together with the bibliographic citations. A typical search request, dealing with the numerical solution of differential equations, is shown at the top of

Fig. 3. Any search request expressed in English words is acceptable, and no particular format restrictions exist. Also shown in Fig. 3 is a set of documents found in answer to the request on differential equations by using one of the available processing methods. The documents are listed in decreasing order of the correlation coefficient with the search request; a short 12-character identifier is shown for each document under the heading "answer," and full bibliographic citations are shown under "identification."

The average number of index terms used to identify each document is sometimes believed to be an important factor affecting retrieval performance. In the SMART system, this parameter is a difficult one to present and interpret, since the many procedures which exist for analyzing the documents and search requests generate indexing products with widely differing characteristics. A typical example is shown in Fig. 4, consisting of the index "vectors" generated by three different processing methods for the request on differential equations (short form "DIFFERNTL EQ"), and for document number 1 of the collection (short form "1A COMPUTER").

It may be seen from Fig. 4 that the number of terms identifying a document can change drastically from one method to another: for example, document number 1 is identified by 35 different word stems using the word stem analysis (labelled "null thesaurus" in Fig. 4); these 35 stems, however, give rise to 50 different concept numbers using the regular thesaurus, and to 55 concepts for the statistical phrase method. The number of index terms per document shown in the summary of Fig. 1 (35) must therefore be taken as an indication at best, and does not properly reflect the true situation.

In Fig. 4, each concept number is followed by some mnemonic characters to identify the concept and by a

Practical considerations dictated the use of abstracts rather than full documents; the SMART system as such is not restricted to the manipulation of abstracts only.

*TEXT 2MICRO-PROGRAMMING .

\$MICRO-PROGRAMMING
\$R. J. MERCER (UNIVERSITY OF CALIFORNIA)
\$U.S. GOV. RES. REPTS. VOL 30 PP 71-72(A) (AUGUST 15, 1958) PB 126893

MICRO-PROGRAMMING • THE MICRO-PROGRAMMING TECHNIQUE OF DESIGNING THE CONTROL CIRCUITS OF AN ELECTRONIC DIGITAL COMPUTER TO FORMALLY INTERPRET AND EXECUTE A GIVEN SET OF MACHINE OPERATIONS AS AN EQUIVALENT SET OF SEQUENCES OF ELEMENTARY OPERATIONS THAT CAN BE FXECUTED IN ONE PULSE TIME IS DESCRIBED •

*TEXT 3THE ROLE OF LARGE MEMORIES IN SCIENTIFIC COMMUNICATIONS

\$THE ROLE OF LARGE MEMORIES IN SCIENTIFIC COMMUNICATIONS \$M. M. ASTRAHAN (IBM CORP.) \$IBM J. RES. AND DEV. VOL 2 PP 310-313 (OCTOBER 1958)

THE ROLE OF LARGE MEMORIES IN SCIENTIFIC COMMUNICATIONS • THE ROLE OF LARGE MEMORIES IN SCIENTIFIC COMMUNICATIONS IS DISCUSSED • LARGE MEMORIES PROVIDE AUTOMATIC REFERENCE TO MILLIONS OF WOPDS OF MACHINE-RE-ADABLE CODED INFORMATION OR TO MILLIONS OF IMAGES OF DOCUMENT PAGES • HIGHER DENSITIES OF STORAGE WILL MAKE POSSIBLE LOW-COST MEMORIES OF BILLIONS OF WORDS WITH ACCESS TO ANY PART IN A FEW SECONDS OR COMPLE-TE SEARCHES IN MINUTES • THESE MEMORIES WILL SERVE AS INDEXES TO THE DELUGE OF TECHNICAL LITERATURE WHEN THE PROBLEMS OF INPUT AND OF THE AUTOMATIC GENERATION OF CLASSIFICATION INFORMATION ARE SOLVED • DOCUMENT FILES WILL MAKE THE INDEXED LITERATURE RAPIDLY AVAILABLE TO THE SEARCHER • MACHINE TRANSLATION OF LANGUAGE AND RECOGNITION OF SPOKEN INFORMATION ARE TWO OTHER AREAS WHICH WILL REQUIRE FAST • LARGE MEMORIES •

Fig. 2. Typical Document Prints.

ANSWERS TO REQUESTS FOR DOCUMENTS ON SPECIFIED TOPICS SEPTEMBER 28, 1964 PAGE 83

CURRENT REQUEST - +LIST DIFFERNTL EQ NUMERICAL DIGITAL SOLN OF DIFFERENTIAL EQUATIONS

REQUEST *LIST DIFFERNTL EQ NUMERICAL DIGITAL SOLN OF DIFFERENTIAL EQUATIONS

GIVE ALGORITHMS USEFUL FOR THE NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS ON DIGITAL COMPUTERS. EVALUATE THE VARIOUS INTEGRATION PROCEDURES (E.G. RUNGE-KUTTA, MILNE-S METHOD) WITH RESPECT TO ACCURACY, STABILITY, AND SPEED

ANSWER	CORRELATION	IDENTIFICATION
384STABILITY		STABILITY OF NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS W. E. MILNE AND R. R. REYNOLDS (OREGON STATE COLLEGE) J. ASSOC. FOR COMPUTING MACH. VOL 6 PP 196-203 (APRIL, 1959)
ANSWER	CORRELATION	IDENTIFICATION
360SIMULATIN	U.5758	SIMULATING SECOND-ORDER EQUATIONS D. G. CHADWICK (UTAH STATE UNIV.) ELECTRONICS VOL 32 P 64 (MARCH 6, 1959)
ANSWER	CORRELATION	IDENTIFICATION
200 SOLUTION	0.5663	SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS ON AN AUTOMATIC DIGITAL COMPUTER G.N. LANCE (UNIV. OF SOUTHAMPTON) J. ASSOC. FOR COMPUTING MACH., VOL 6, PP 97-101, JAN., 1959
ANSWER	CORRELATION	IDENTIFICATION
3920N COMPUT		ON COMPUTING RADIATION INTEGRALS R. C. HANSEN (HUGHES AIRCRAFT CO.), L. L. BAILIN (UNIV. OF SOUTHERN CALIFORNIA, AND R. W. RUTISHAUSER (LITTON INDUSTRIES, INC.) COMMMUN. ASSOC) FOR COMPUTING MACH. VOL 2 PP 28-31 (FEBRUARY, 1959)
ANSWER	CORRELATION	IDENTIFICATION
386FLIMINATI	0.5483	ELIMINATION OF SPECIAL FUNCTIONS FROM DIFFERENTIAL EQUATIONS J. E. POWERS (UNIV. OF OKLAHOMA) COMMUN. ASSOC. FOR COMPTING MACH. VOL 2 PP 3-4 (MARCH, 1959)

Fig. 3. Typical Search Request and Corresponding Answers.

212

OCCURRENCES O	F CONCEPTS.	AND PHRASE	S IN DOCUMEN	NTS	SEPTEMBER 28, 1964
DOCUMENT	CONCEPT, DCC	URS			PAGE 17
DIFFERNTL EQ	4EXACT 12 110AUT 12 269ELI 4 42BSTB 4	8ALGOR 12 143UTI 12 2740IF 36 505APP 24	13CALC 18 176SOL 12 356VEL 12	71EVAL 6 179STD 12 357YAW 4	92DIGI 12 181QUA 24 384TEG 12
LA COMPUTER	2INPUT 4 318IT 3 57DSCB 15 87EN8L 12 110AUT 36 143UTI 12 162ROF 6 182SAV 4 276GEM 18 346JET 6	9LOCAT 12 32REQU 3 59AMNT 20 93ORCR 10 1120PE 6 146JOB 18 163EAS 12 187DIR 12 327AST 12 350IFO 6	10ALPH 12 41MCHO 8 72EXEC 6 106NQU 6 119AUT 8 147SYS 12 1680RC 4 2100UT 4 332SEE 12 419GEM 6	15BASE 6 47CHNG 6 77LIST 4 107DGN 3C 12IMEM 4 149PDG 36 176SOL 12 212SIZ 12 338MCH 8 501URD 4	16BASC 6 53DATA 6 108L00 12 130MEA 4 158REL 12 178SYM 18 216D0M 12 340LET 3 508ACT 6
DIFFERNTL EQ	ACCUR 12 EQU 24 NUMER 12 SOLUT 12	ALGORI 12 EVALU 12 ORDIN 12 SPEED 12	COMPUT 12 GIVE 12 PARTI 12 STABIL 12	DIFFER 24 INTEGR 12 PROCED 12 USE 12	DIGIT 12 METHOD 12 RUNGE- 12 VARIE 12
1A COMPUTER	BAS 12 DIRECT 12 GIVE 12 MACHIN 24 PDS 12 SCANN 12 TECHNI 12	CHARAC 12 ENABLE 12 HANDLE 12 OPER 12 POSS 12 SIMPLE 12 TOWARD 12	COMPUT 36 ESTIM 12 ILLUST 12 ORD 12 PROBLE 36 SIZE 24 TRANSF 12	DESCRI 12 EXPLAI 12 INDEPE 12 ORIENT 12 PROGRA 36 STORE 12 USING 12	DESIGN 12 FORM 12 INFORM 12 PLANE 12 RECOGN 12 STRUCT 12 WRITT 12
DIFFERNTL EQ	4EXACT 12 110AUT 12 269ELI 4 379CIF 72	8ALGUR 12 143UTI 12 27401F 36 384TLG 12	13CALC 18 176SOL 12 356VEL 12 428STB 4	71EVAL 6 179STD 12 357YAW 4 505APP 24	92DIGI 12 181QUA 24 (375NUM 36)
1A CUMPUTER	21NPUT 4 168ASC 6 53DATA 6 83MAP 6 108LOO 12 130MEA 4 158REL 12 178SYM 18 212S1Z 12 302LOO 72 346JET 6	5LOCAT 12 318IT 3 57DSCB 15 87ENBL 12 11JAUT 36 143UTI 12 162RUF 6 182SAV 4 216DOM 12 327AST 12 35JIFO 6	10ALPH 12 32REQU 3 59AMNT 24 930RDR 10 1120PE 6 146JDR 18 163EAS 12 187DIR 12 219POG 36 332SEF 48 419GEM 6	14CODR 72 41MCHO 8 72EXEC 6 106NQU 6 119AUT 8 147SYS 12 168ORD 4 200DA 72 276GEM 18 338MCH 8 501GRO 4	15BASE 6 STAT. 47CHNG 6 PHRASES 107DGN 30 121MEM 4 149POG 36 176SOL 12 2100UT 4 (292THK 36) 340LET 3 508ACT 6

Fig. 4. Typical Indexing Products for Three Analysis Procedures.

weight. The weights assigned to the concept numbers also change from method to method. Since no distinction is made in the evaluation procedure between retrieved and nonretrieved documents, the last indicator included in Fig. 1 (the number of retrieved documents per request) must also be put into the proper perspective. A discussion of this point is postponed until after the evaluation measures are introduced in the next few paragraphs.

Evaluation Measures

1. Recall and Precision

One of the most crucial tasks in the evaluation of retrieval systems is the choice of measures which reflect systems performance. In the present context, such a measurement must of necessity depend primarily on the system's ability to retrieve wanted information and to reject nonwanted material, to the exclusion of operational criteria such as retrieval cost, waiting time, input preparation time, and so on. The last mentioned factors

may be of great practical importance in an operational situation, but do not enter, at least initially, into the evaluation of experimental procedures.

A large number of measures have been proposed in the past for the evaluation of retrieval performance. Perhaps the best known of these are, respectively, recall and precision; recall is defined as the proportion of relevant material actually retrieved, and precision as the proportion of retrieved material actually relevant.* A system with high recall is one which rejects very little that is relevant but may also retrieve a large proportion of irrelevant material, thereby depressing precision. High precision, on the other hand, implies that very little irrelevant information is produced but much relevant information may be missed at the same time, thus depressing recall. Ideally, one would of course hope for both high recall and high precision.†

Measures such as recall and precision are particularly attractive when it comes to evaluating automatic retrieval procedures, because a large number of extraneous factors which cause uncertainty in the evaluation of conventional (manual) systems are automatically absent. The following characteristics of the present system are particularly important in this connection:

 (a) input errors in the conventional sense, due to faulty indexing or encoding, are eliminated since all indexing operations are automatic;

Precision has also been called "relevance," notably in the literature of the ASLIB-Cranfield project.

[†] It has, however, been conjectured that an inverse relationship exists between recall and precision, such that high recall automatically implies low precision and vice versa.

- (b) for the same reason, conventional search errors arising from the absence of needed search terms are also excluded;
- (c) errors cannot be introduced in any transition between original search request and final machine query, since this transition is now handled automatically and becomes indistinguishable from the main analysis operation;
- (d) inconsistencies introduced by a large number of different indexers and by the passage of time in the course of an experiment cannot arise; and
- (e) the role of human memory as a disturbance in the generation of retrieval measurements is eliminated (this factor can be particularly troublesome when source documents are to be retrieved in a conventional system by persons who originally perform the indexing task).

In order to calculate the standard recall and precision measures the following important tasks must be undertaken:

- (a) relevance judgments must be made by hand in order to decide, for each document and for each search request, whether the given document is relevant to the given request;
- (b) the relevance judgments are usually all or nothing decisions so that a given document is assumed either wholly relevant or wholly irrelevant (in case of doubt relevance is assumed); and
- (c) a cut-off in the correlation between documents and search requests is normally chosen, such that documents whose correlation exceeds the cut-off value are retrieved, while the others are not retrieved.

2. The Generation of Relevance Judgments

A great deal has been written concerning the difficulties and the appropriateness of the various operations listed in part 1.5-8 The first task, in particular, which may require the performance of hundreds of thousands of human relevance judgments for document collections of reasonable size, is extremely difficult to satisfy and to control.

Two solutions have been suggested, each of which would base the relevance decisions on less than the whole document collection. The first one consists in using sampling techniques to isolate a suitable document subset, and in making relevance judgments only for documents included in that subset. If the results obtained for the subset, however, are to be applicable to the total collection, it becomes necessary to choose a sample representative of the whole. For most document collections, this turns out to be a difficult task.

The other solution consists in formulating search requests based on specific source documents included in the collection, and in measuring retrieval performance for a given search request as a function of the retrieval of the respective source documents. This procedure suffers from the fact that search requests based on source

documents are often claimed to be nontypical, thus introducing a bias into the measurements which does not exist for requests reflecting actual user needs.

Since the document collection used in connection with the present experiments is small enough to permit an exhaustive determination of relevance, the possible pitfalls inherent in the sampling procedure and in the use of source documents were avoided to a great extent. Many of the problems connected with the rendering of relevance judgments are, however, unresolved for general document collections.

3. The Cut-off Problem

The other major problem is caused by the requirement to pick a correlation cut-off value to distinguish retrieved documents from those not retrieved. Such a cutoff introduces a new variable which seems to be extraneous to the principal task of measuring retrieval performance. Furthermore, in the SMART system, a different cut-off would have to be picked for each of the many processing methods if it were desired to retrieve approximately the same number of documents in each case.

Because of these added complications, it was felt that the standard recall and precision measures should be redefined so as to remove the necessary distinction between retrieved and nonretrieved information. Fortunately, this is not difficult in computer-based information systems, because in such systems numeric coefficients expressing the similarity between each document and each search request are obtained as output of the search process. Documents may then be arranged in decreasing order of these similarity coefficients, as shown, for example, for the previously used request on differential equations in the center section of Fig. 5. It may be seen in the figure that document 384 exhibits the largest correlation with the search request, followed by documents 360, 200, 392, and so on.

An ordered document list of the kind shown in Fig. 5 suggests that a suitable criterion for recall and precision measures would be the set of rank-orders of the relevant documents, when these documents are arranged in decreasing correlation order. A function of the rank-order list which penalizes high ranks for relevant documents (and therefore low correlation coefficients) can be used to express recall, while a function penalizing low ranks of nonrelevant documents is indicative of precision.

4. Normalized Recall and Normalized Precision*

It is desired to use as a measure of retrieval effectiveness a set of parameters which reflects the standard recall and the standard precision, and does not depend on a distinction between retrieved and nonretrieved documents. This suggests that one might take the average of the recall and the average of the precision obtained for

[•] The measures described in this part were suggested by J. Rocchio.9

					2.	
CORRELATIONS OF	PHRASE-DOCUMENT	MATRIX	SEPTEMBER 28	, 1964 PA	GE 73	
					G 80 5000	
	EQ 1A COMPUTER		DIFFERNTL EC			0.9800 0
	EQ 2MICRO-PROGR		DIFFERNTL EC			0.9600 0
	EQ 3THE ROLE OF		DIFFERNTL EC			0.9400 0
	EO 4A NEW CLASS		DIFFERNTL EC			0.9200 0
	EQ SANALYSIS OF		DIFFERNTL EC			0.9000 0
	EQ 6GENERALIZED		DEFFERNTL EC			0.8800 0
	EQ 7AN IMPROVED		DIFFERNTL EC			0.8600 0
	EQ BSHORT-CUT M		DIFFERNTL EC			0.8400 0
	EQ POPERATION A		DIFFERNTL EC			0.8200 0
	EQ ICACCURATE T		DIFFERNTL FO			0.8000 0
	EO 1201GITAL CO		DIFFERNTL EC			0.7800 0
	EQ 13HALF-ADDER		DIFFERNTL EC			0.7600 0
	EQ 16CONTROL AP		DIFFERNTL EC			0.7400 0
	EO 17THE FUNCTI		DIFFIRNTL EC			0.7200 0
	EQ 18AN ACCURAT		DIFFERNTL EC			0.7000 0
	EQ 19RESISTANCE		DIFFERNTL EC			0.6830 0
	EQ ZOCIFFERENTI		DIFFERNIL EC			0.6600 1
	EQ 21AN ERROR-C		DIFFERNIL EC			0.6400 1
	EC 22LATCHING C		DIFFFRNIL EL			0.6200 1
	EQ 23MINIATURE		DIFFERNTL E			3.6000 1
	EQ 24SOME NOVEL		DIFFERNTL EC			0.5800 1
	EQ 25A NEW TRAN		DIFFERNTL E			0.5600 3
	EQ 26SEMICONDUC		DIFFERNTL E			0.5400 6
	EQ 27TEN MEGAPU		DEFFERNTL EC			9.5209 6
	EQ 28DESTON OF		DIFFERNTL E			0.5000 6
	EQ 29INVESTIGAT		DIFFERNTL EC			0.4800 6
	EO 3CA TRANSIST		DIFFERNTL EC			0.4600 6
	EQ 31MAGNETIC C		DIFFERNTL E			0.4400 7
	FC 354NALOGUE I		DIFFERNTL EC			0.4200 7
	EQ 33THL USF OF		DIFFERNTL EC			0.4000 8
	EQ 34END-FIRED		DIFFERNTL EC			0.3800 12
	EQ 35A LOAD-SHA		DIFFERNTL EC			0.3603 12
	EO 36FUNDAMENTA		DIFFERNTL EC			0.3400 14
	EQ 37A HIGH-SPE		DIFFERNTL EC			0.3200 15
	EQ 38AUTOMATIC		DIFFERNTL EC			0.3000 21
	EQ 41COMMUNICAT		DIFFERNTL EG			0.2800 23
	EQ 42A DIRECT R		DIFFERNTL EC			0.2600 33
	EQ 43THE DATA C		DIFFERNTL EG			0.2400 34
	EO 44ACCURACY C		DIFFERNTL EC			C. 2200 47
	EO 45A CALCULAT		DIFFERNTL EG			0.2000 60
	EQ 46RADIO DIRE		DIFFERNTL EG			0.1800 73
	EQ 47SPECIAL PU		DIFFERNTL EC			3.1653 87
	EQ 48A BUSINESS		DIFFERNTL EG			G.140C 1C6
	EQ 49A DUAL MAS		DIFFERNTL EC			C-120C 135
	EQ SOACCURACY C		DIFFERNTL EC			0.1000 166
	EQ 52+ATHENA .		DIFFERNTL EG			0.0800 200
	EQ 53A COMPUTER		DIFFERNTL EC			0.0600 257
	EQ 54AN AUTOMAT		DIFFERNTL EC			0.0400 304
	EQ SSAUTOMATIC		DIFFERNTL EG			0.0200 348
	EQ SATHE COMPUT		DIFFERNTL EC			
	EQ STCASE STUDY		DIFFERNTL EG			
	EQ SETHE LARGES		DIFFERNTL EC			
	EQ 59DATA PROCE		DIFFERNTL EC			
	EQ GOINTELLIGEN		DIFFERNTL EG			
	EQ 61AN INPUT R		DIFFERNTL EC			
DIFFERNTL	EQ 620N PROGRAM	n.figi	DIFFERNTL EC	4 ZSSPAŁEZI	MP 0.5043	
-A INCOCA	CINC DOCUMEN	т .	P) DECDEVE	ING CORRE	ATION	c) HISTOGRAM
	SING DOCUMEN	1		ING CONNE	LATION	C/ INSTOURAGE
ORDER			ORDER			

Fig. 5. Correlations Between Search Request and Document Collection.

all possible retrieval levels to define a new pair of measures, termed respectively normalized recall and normalized precision. Specifically, if $R_{(j)}$ is the standard recall after retrieving j documents from the collection (that is, if $R_{(j)}$ is equal to the number of relevant documents retrieved divided by the total relevant in the collection, assuming j documents retrieved in all), then the normalized recall can be defined as

$$R_{\text{norm}} = \frac{1}{N} \sum_{i=1}^{N} R_{(i)}$$

where N is the total number of documents in the collection.

Similarly, if $P_{(j)}$ is the standard precision after retrieving j documents from the collection, then a normalized precision measure is defined as

$$P_{\text{norm}} = \frac{1}{N} \sum_{i=1}^{N} P_{(i)}$$
.

 R_{norm} and P_{norm} may thus be obtained mechanically by first retrieving one document and calculating recall and precision, then retrieving another document, and again calculating R and P, and repeating the process one

document at a time until all documents in the whole collection have been retrieved. Finally, all R's and P's are averaged to obtain the normalized measures.

In practice, this manner of proceeding would be extremely tedious for large document collections, even if the calculations were done by computer. It may, however, be shown by reasonably straightforward algebra that the normalized recall and normalized precision may be rewritten, respectively, as

$$R_{\text{norm}} = \frac{1}{N} \sum_{i=1}^{N} R_{(1)} = 1 - \frac{\sum_{i=1}^{n} r_i - \sum_{i=1}^{n} i}{n(N-n)}$$
(1)

and

$$P_{\text{norm}} = \frac{1}{N} \sum_{j=1}^{N} P_{(j)} = 1 - \frac{\sum_{i=1}^{n} \ln r_{i} - \sum_{i=1}^{n} \ln i}{\ln \frac{N!}{n!(N-n)!}}$$
(2)

where r_i is the rank (in decreasing correlation order with the search request) of the ith relevant document in the collection,

n is the total number of relevant documents in the collection,

The expressions in the right-hand side are suitable for automatic computation and are in fact used in the SMART system. All basic definitions are summarized in Fig. 6.

	STANDARD DEFINITIONS (BASED ON THRESHOLD TO DISTINGUISH DOCUMENTS RETRIEVED FROM DOCUMENTS NOT RETRIEVED)	DEFINITIONS BASED ON RANKS OF RELEVANT DOCUMENTS (DOCUMENTS ARRANGED IN ORDER BY DECREASING CORRELATION WITH SEARCH REQUESTS)
RECALL	PROPORTION OF RELEVANT MATERIAL ACTUALLY RETRIEVED (LOW RECALL IMPLIES THAT SOME RELEVANT DOCUMENTS HAVE LOW CORRECATION WITH SEARCH REQUEST AND ARE THUS NOT RETRIEVED)	$ \begin{array}{c} \sum\limits_{i=1}^{n} r_i & -\sum\limits_{i=1}^{n} i \\ 1 & -\sum\limits_{i=1}^{n} n \; (N-n) \end{array} $ n: number of relevant documents N: number of documents in collection r_i : rank order of i^m relevant document
PRECISION	PROPORTION OF RETRIEVED MATERIAL ACTUALLY RELEVANT (LOW PRECISION IMPLIES THAT SOME NOW-RELEVANT DOCUMENTS HAVE A HIGH CORRELATION WITH SEARCH REQUEST AND ARE THUS RETRIEVED)	$[-\frac{\sum\limits_{i=1}^{n} \ln r_i - \sum\limits_{i=1}^{n} \ln i}{\ln \frac{N!}{n! \; (N-n)!}}$

Fig. 6. Basic Definitions of Recall and Precision.

Test Results

1. Output Formats

The normalized recall and precision measures are a function only of the ranks of the relevant documents. If those measures are to be evaluated automatically as part of the retrieval process, it is necessary to introduce for each search request processed a list of the corresponding relevant document identifications. To this effect the requester is given a copy of the full document collection after his request is received, and he is asked to list those documents which he believes should be considered relevant to his request. It is important to note that these relevance judgments are a priori judgments, based on the document texts only, and not on any retrieval results produced by the computer.

The type of output obtained from the evaluation process is illustrated in Fig. 7. The top part of the figure represents the output from the regular thesaurus procedure for the request on differential equations previously used, while the bottom part is produced by the statistical phrase method. On the right side of the figure appears the list of all 16 relevant document numbers, as originally submitted by the user, together with the respective correlation coefficients and the ranks assigned by the computer during the retrieval process. It may be noticed that the relevant document which exhibits the lowest correlation with the search request is ranked 40th out of 405 by the regular thesaurus procedure, but only 25th out of 405 by the statistical phrase search.

The document ranks are used by the program to produce a variety of measures reflecting recall and precision, including the normalized recall and normalized precision

```
SEPTEMBER 28. 1964 PAGE 86
  EVALUATION OF REQUEST DIFFERNTL EQ WITH 16 RELEVANT DOCUMENTS
            THE FOR FIFTEEN DOCUMENTS
                                                                                                                     RELEVANT DOCUMENT RANKS
                                                                                                                             384STABILITY 0.6676
8-3SIMULATIN 0.5758
200SGUBTION 0.5568
9920N COMPUT 0.5568
86ELININATI 0.5684
1.3RUNGE-KUT 0.5445
85NOTE 00 AN 0.4545
1020N THE SO 0.3987
358STABILIZA 0.3986
358STABILIZA 0.3986
                     X 384STABILITY 0.6676
X 363SINULATIN 0.5758
                                                                                                                                                                                                   REGULAR
THE SAURUS
                                                                                                                      11 38780UNDARY 0.394
12 2U2STABLE PR 0.394
15 251ERROR EST 0.33
17 253ROUND-OFF 0.31
23 390MONTE CAR 0.28
                                                                                                                      24 388A METHOD 0.2788
40 385NUMERICAL 0.2301
 RANK RECALL= J.7196 LOG PRECISION= 0.9169
NORMALIZEO RECALL=J.9914626 NORMALIZEO PRECISION=J.9572
RNK REC + LOG PREFIL6365 WEIGHTED NORMED RECALL + NORMED PREC=1.9146
             THE TOP FIFTEEN DOCUMENTS
                                                                                                                      RELEVANT DOCUMENT RANKS
                     X 3845TABILITY 0.8576
                                                                                                                               384STABILITY 0.8576
            1 % 3845TABILITY 0.8576
2 % 3605IMULATIN 0.7704
3 % 386ELIMINATI 0.7408
5 % 3920N COMPUT 0.6571
5 % 2005DLUTION 0.6644
6 % 85NOTE ON AN 0.6372
7 % 38780UVOARY 0.6072
8 % IC3RUNGE-KUT (5.5875
9 % IO2ON IME SO 0.5648
10 % 390MONTE CAR 0.5408
11 % 3535TABILIZA 0.5437
12 % 3834 MFTMOD (.5318
13 % 2025TABLE PR 0.5163
14 % 385NWERICAL 0.4992
                                                                                                                             3845TABILITY 0.8576
5051MUATIN 0.7741
386ELIMINATI 2.7408
9920N COMPUT 0.6571
2005GLUTION 0.6444
85NOTE UN AN 0.6372
103RUNGE-RUT 0.5875
1020N THE 50 0.5648
390MONTE CAR 0.5648
390MONTE CAR 0.5648
396XTABILIZA 0.5437
388A METHOD 0.5318
385MUAERICAL 0.4942
2251ERROR EST 0.4846
                                                                                                                                                                                                   STATISTICAL
                                                                                                                                                                                                   PHRASE SEARCH
                            169THEORETIC C.4794
RAIN RECALL= 0.9007 LUG PRECISION= 0.9751
NURMALIZEU RECALL-0.997590 NURMALIZED PRECISION=0.9880
R«K REC + LOG PRE=1.8758 WEIGHTED NORMED RECALL + NURMED PREC=1.9759
```

Fig. 7. Automatic Evaluation.

measures previously introduced. Also calculated are simplified expressions, termed respectively rank recall and log precision, and defined as follows:

$$\operatorname{rank\ recall} = \frac{\displaystyle\sum_{i=1}^{n} i}{\displaystyle\sum_{i=1}^{n} r_{i}}$$

$$\operatorname{log\ precision} = \frac{\displaystyle\sum_{i=1}^{n} l\ ni}{\displaystyle\sum_{i=1}^{n} ln\ r_{i}} \ .$$

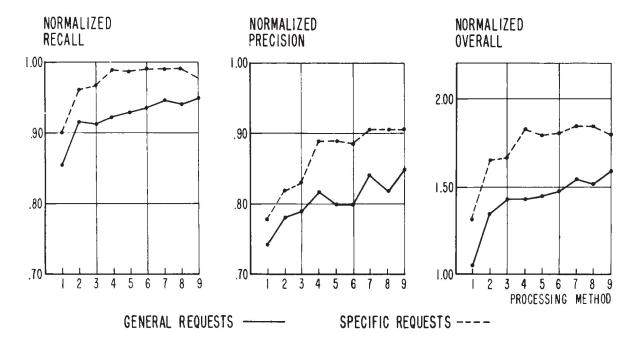
These simple measures are analogous to the normalized recall and normalized precision but do not take into account the collection size N.

Finally, two composite measures are produced which include both recall and precision components. The first one consists simply of the sum of rank recall plus log precision. The other is a weighted sum of the normalized measures, as follows:

normed overall measure = $1-5~(R_{\rm norm})+P_{\rm norm}$ The factor of 5 is so chosen as to give equal weight to the two component measures. Also included on the left-hand side of Fig. 7 are lists of the 15 documents which exhibit the highest correlation coefficients with the search request. The relevant documents on that list are provided with a special marker (X). It may be seen for the example of Fig. 7 that the recall and precision values obtained by the statistical phrase process are larger than the corresponding values for the thesaurus lookup procedure.

2. Results Derived from the Normalized Measures

In order to obtain statistically useful measurements, the recall and precision values must be averaged over many different search requests. This is done in Fig. 8 for nine different processing methods and for a total of ten specific and seven general requests.


The following processing methods are included in Fig. 8:

- 1. Thesaurus—Titles only
 The word stems included in the titles of the
 documents are looked up in the regular thesaurus
 and replaced by weighted concept numbers. The
 remainder of the document abstracts is not used.
- 2. Thesaurus—Hierarchy (up and add)
 The complete document abstracts are used. All

word stems are replaced by weighted concept numbers from the thesaurus; these concept numbers are then looked up in the hierarchy, and to each original concept the corresponding "parent" from the next higher hierarchy level is added.

- 3. Thesaurus—Logical Vectors
 Complete document abstracts are used. All word
 stems are replaced by concept numbers from the
 thesaurus, and each concept is given a weight
 of 1.
- 4. Word Stems—Full Text (Null Thesaurus)
 Complete document abstracts are used, and
 weighted word stems are generated by the suffix
 cut-off procedure. No further dictionary is used.
- 5. Thesaurus—Syntactic Phrases

 The weighted concepts obtained from the thesaurus are looked up in the phrase dictionary, and phrase concepts corresponding to available concept groupings are detected and used as document identifiers, provided that certain specified syntactic relationships hold between the phrase components.
- Thesaurus—Hierarchy (down and add)
 Procedure identical with 2 except that the concepts added from the hierarchy are obtained by

PROCESSING METHODS:

- I. THESAURUS TITLES ONLY
- 2. THESAURUS HIERARCHY (UP AND ADD)
- 3. THESAURUS LOGICAL VECTORS
- 4. WORD STEMS FULL TEXT
- 5. THESAURUS SYNTACTIC PHRASES
- 6. THESAURUS HIERARCHY (DOWN AND ADD)
- 7. THESAURUS NUMERIC VECTORS
- 8. THESAURUS STATISTICAL PHRASES

(REQUESTS ONLY)

9. THESAURUS - STATISTICAL PHRASES (WHOLE)

Fig. 8. Normalized Recall, Precision and Overall Measures (averaged over 10 specific and 7 general requests for several processing methods).

taking the "sons" of each original concept on the next lower level of the hierarchy.

- 7. Thesaurus—Numeric Vectors
 Procedure identical with 3 except that the concepts obtained from the thesaurus are weighted in accordance with their frequency. This is the standard thesaurus method.
- 8. Thesaurus—Statistical Phrases (requests only)
 Standard thesaurus method (7), to which are
 added phrases (concept groupings) occurring in
 the requests only. Syntactic relationships between phrase components are not used.
- 9. Thesaurus—Statistical Phrases (whole)
 Standard thesaurus method (7) followed by the
 phrase procedure (5) for all documents without
 detection of syntactic relationships between
 phrase components.

The data of Fig. 8 give rise to the following observations:

- (a) the normalized evaluation measures obtained for the various processing methods exhibit substantial differences;
- (b) as one proceeds from one method to another, both recall and precision tend to vary in the same direction (either up or down);
- (c) all the measures (recall, precision, and overall) obtained for the specific requests are larger than the corresponding values for the general requests, thus indicating a better systems performance for clearly specified topic classes*;
- (d) methods one to four tend to produce relatively poorer recall than methods five to nine; these same methods also furnish relatively poor precision;
- (e) the use of the regular thesaurus which provides vocabulary control (method seven) seems much more effective than the use of the original words included in document and search requests (method four);
- (f) the most effective procedures seem to be those which use combinations of concepts (phrases), rather than individual concepts alone.

The data of Fig. 8 are of interest in themselves, since they do support the notion that more reasonable procedures (than mere word matching) can be generated to improve retrieval effectiveness in an automatic system. However, if full advantage is to be taken of the organization of the SMART system, then search requests are

best processed iteratively by several different methods, and the respective outputs combined. In order to determine whether this juxtaposition of methods can in fact be used to improve the performance characteristics, average normalized recall and precision figures are given in Fig. 9 for six combined methods and for the 17 requests previously used in Fig. 8.

Figure 9 includes the normalized recall and precision values for the regular thesaurus run previously shown in Fig. 8, followed by the same measures for various combined methods. All of the combined runs include the regular thesaurus run (method 7 of Fig. 8) as a component. In fact, the following correspondences between Figs. 8 and 9 are apparent:

Method 1	of Fig. 9 corre	sponds to	
	method 7		Fig. 8,
method 2	" corres	ponds to	
	methods 7	- F 4 "	"
method 3	" " corres	ponds to	
	methods 7	Г 9	"
method 4	" " corres	ponds to	
	methods 7	1 5	"
method 5	" " corres	ponds to	
	methods 7	F 2 "	"
method 6	" corres	ponds to	
	methods $7 -$	+4+9 "	"

It may be seen that for three of the combined methods of Fig. 8 (methods 2, 3, and 6), the overall measures for both specific and general requests are larger than for any of the included methods alone. Method 6, consisting of a combination of regular thesaurus plus word stems plus statistical phrase runs, seems to be particularly effective.

The normalized recall and precision measures for the combined methods are computed by using the rank lists produced by the computer for the individual methods alone, and automatically generating a combined rank list. The combined rank of a given document depends on the individual ranks held by that document in the component methods. Specifically, documents are taken alternately from the component lists to form the new combined list, and a document already included on the combined list is rejected if an attempt is made to list it again. The final combined rank list is then used to compute normalized recall and precision measures for the combined methods, as specified in the previous section. The resulting measures are averaged over several search requests to produce the graphs of Fig. 9.

A combined rank list, generated for the two methods illustrated by the evaluation output of Fig. 7, is shown in Fig. 10 (only the first 15 documents are included for each component method). Documents previously specified as relevant are marked with an X, as in Fig. 7.

3. Results Using the Standard Measures

The performance characteristics of the SMART retrieval operations are reflected with reasonable accuracy in the data of Figs. 8 and 9. In particular, these figures

[◆]These results would seem to indicate that Cleverdon's observations reported by Swet⁴, that specific requests will have high precision and low recall and vice versa for general requests, need not necessarily hold in all circumstances.

[†] This observation has of course been made many times before, particularly by librarians and documentalists, but still requires emphasis in computer circles.

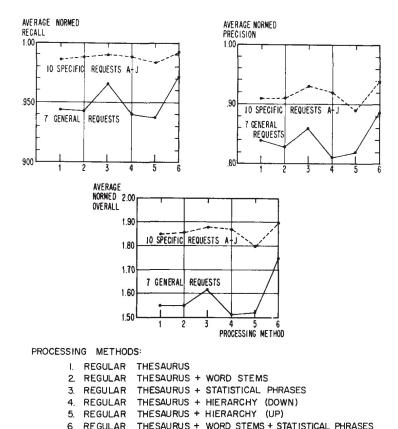


Fig. 9. Normalized Recall, Precision and Overall Measures for Several Merged Methods.

can be used to obtain an idea of the *relative* effectiveness of one method compared with another. The data are, however, difficult to interpret in absolute terms, particularly since the measures used are new ones, and no comparable output is available elsewhere in the literature.

In order to furnish some indication of systems performance which could lend itself more easily to a comparison with previously published data, the *standard* recall and precision measures, reflecting respectively the proportion of relevant material retrieved and the proportion of retrieved material relevant, are also computed for the search requests previously used. To generate these functions, it becomes necessary to choose appropriate threshold values which separate the retrieved information from that not retrieved. The procedure adopted for this purpose is as follows:

- (a) a specified standard recall value is picked (say, 0.1);
- (b) the number of documents which must be retrieved for a given search request in order to produce the specified recall is determined;
- (c) using the cut-off value calculated under (b) for the number of retrieved documents, the precision measure (corresponding to the specified recall) is generated;

- (d) the precision values obtained for a given recall level are averaged over a number of search requests, and the corresponding point is plotted on a precision versus recall plot;
- (e) the complete procedure is repeated for a new recall level (say, 0.2, and 0.3, and so on) to produce a curve of the type shown in Fig. 11.

Figure 11 displays the standard precision versus standard recall graphs obtained for six processing methods, averaged over the 17 search requests previously used in Figs. 8 and 9. Figure 11 is in the exact form introduced by Cleverdon, 5,6 using the standard precision and recall measures, rather than the normalized measures based on rank lists. The procedure described above to generate the average precision over several requests is, however, different from Cleverdon's, since he combines requests not by computing separate recall-precision points for each request which are then averaged, but rather by treating sets of requests with i,j,...,k relevant documents, respectively, as a single request with i + j + ... + k relevant documents in all. Although the actual measurements are thus conducted from a somewhat different point of view, the output plots presented here should, nevertheless, lend themselves to a comparison with the published Cranfield material.*

Recall versus precision plots have been criticized, because important information reflected in separate plots of recall and precision is obscured in the combined presentation (notably the number of documents both retrieved and relevant.)¹⁰

Ranks		Document Numbers	Ranks		Document Numbers	Ranks		Document Numbers
1	X	384 ——	→ 1	х	384	1	Х	384
2	Х	360 ——	→ 2	X	360	2	X	360
3	х	200	→ 3	X	200	3	X	383
4	x	392 —	4	X	386	<u></u>	X	392
5	x	386	5	X	392	5	X	200
5	X	103	→ 6	X	103	6	X	85
7	X	25	7	X	85	7	X	387
8		192	8	X	387	8	X	203
9	Х	102	9		192	9	X	102
10	X	358	10	X	102	10	X	390
11	X	387	11	X	358	11	X	358
12	X	202	12	X	390	12	X	388
13		229	13	X	202	13	X	202
بلا		88	14	X	388	/ 24	X	385
15	Х	251	15		229	15		169
	•		16		88		:	
,			17	X	385	1		
			18	X	251		:	
			19		169			
ļ				•				
(a) Regular (b) Combined Rank (c) Statistical Thesaurus List Phrases								

Fig. 10. Merging of Rank-order Lists.

The data of Fig. 11 confirm those previously shown in Fig. 8 in that the statistical phrase run again seems to give the best performance. Furthermore, word stem comparisons are again inferior to the regular thesaurus runs, and "titles only" analysis is generally inferior. The differences in systems performance previously noted for the output of Figs. 8 and 9 are again in evidence, since, for a given recall level, average precision can vary by over 30 percent from one method to another. The same is true of the average recall differences for a given level of precision.

Figure 12 shows standard precision versus standard recall figures averaged separately over the specific and the general requests for three processing methods. A comparison with Fig. 9 again indicates that both recall and precision measures are substantially higher for the specific requests than for the general requests.

Conclusions

The evaluation procedures and results included in the present study are based on the manipulation of one relatively small collection of document abstracts, and a set of about 20 search requests. Only about 15 different processing methods are used. Under the circumstances, it is not possible to make claims of general validity, or to prove many assertions with finality.

Nevertheless, it is believed that the data presented here

can be used as indications of the kind of performance to be expected of automatic retrieval systems. In particular, the data which point to the existence of considerable discrepancies in performance characteristics between processing methods may be expected to be confirmed by new experiments with different document collections and larger numbers of search requests. Of special interest, in this connection, is the fact that certain processing methods exhibit both high recall and high precision, thus indicating good overall performance.

The other principal piece of evidence tends to support the notion that the juxtaposition of a variety of processing methods provides improved retrieval performance over and above the performance of the individual component methods. The design philosophy of the SMART system, which is based on an iterative search procedure with a variety of analysis methods to retrieve relevant information, should therefore prove useful in practice. (A similar conclusion, pointing to the joint use of UDC (Universal Decimal Classification) coupled to a Uniterm system, has previously been reached in a conventional retrieval situation.¹¹)

Additional experiments remain to be carried out with different document collections not previously used with the available dictionaries, and with additional search requests. A careful analysis of systems failures is also mandatory, in order to determine more precisely the

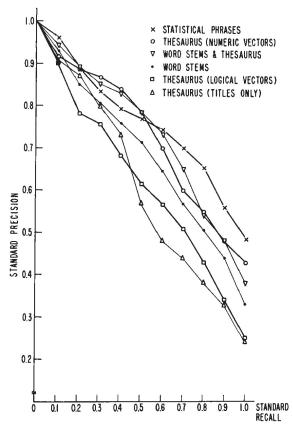


Fig. 11. Standard Precision vs. Standard Recall (average values over 17 requests).

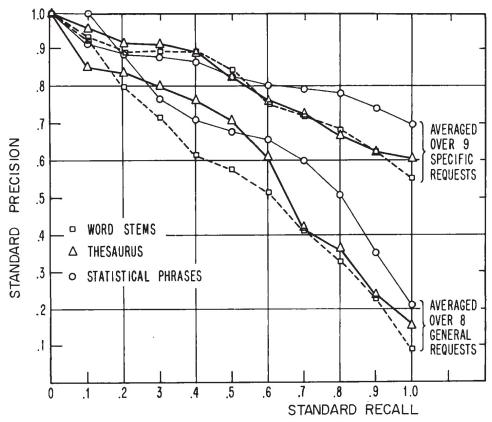


Fig. 12. Standard Precision vs. Standard Recall Comparison of General and Specific Requests.

strengths and weaknesses of the individual methods, and the circumstances under which relevant documents are not recognized and receive therefore a low correlation on the output lists. Additional processing sequences must also be analyzed, and useful sequences identified in order to maximize system performance and retrieval effectiveness.

References

- G. Salton, "A Document Retrieval System for Manmachine Interaction," Proceedings of the 19th ACM Annual Conference, Philadelphia, 1964.
- and M. E. Lesk, "The SMART Automatic Document Retrieval System—An Illustration," Communications of the ACM, vol. 8, no. 6, June 1964.
- et al., "Information Storage and Retrieval," Reports No. ISR-7 and ISR-8 to the National Science Foundation, The Computation Laboratory of Harvard University, June 1964 and December 1964.
- J. A. SWETS, Information Retrieval Systems Science, vol. 141, no. 3577, July 19, 1963.

- C. W. CLEVERDON, "The Testing of Index Language Devices," ASLIB Proceedings, vol. 15, no. 4, April 1963.
- 6. ——, "The Testing and Evaluation of the Operating Efficiency of the Intellectual Stages of Information Retrieval Systems," International Study Conference on Classification Research, Elsinore, September 1964.
- D. R. Swanson, "Searching Natural Text by Computer," Science, vol. 132, no. 3434, October 21, 1960.
- 8. ——, "The Evidence Underlying the Cranfield Results," The Library Quarterly, vol. 35, no. 1, January 1965.
- J. Rocchio, "Performance Indices for Document Retrieval Systems," "Information Storage and Retrieval,"
 Report No. ISR-8 to the National Science Foundation,
 The Computation Laboratory of Harvard University,
 December 1964.
- R. A. FAIRTHORNE, "Basic Parameters of Retrieval Tests," short paper presented at the 1964 ADI Annual Meeting, Philadelphia, October 1964.
- J. A. Schuller, "Experience with Indexing and Retrieving by UDC and Uniterms," ASLIB Proceedings, vol. 12, no. 11, November 1960.

When you select your microfiche supplier compare...

Experience ... only the Microcard® Corporation has the depth of experience you seek ... serving as prime microfiche systems supplier to A.E.C., O.T.S., the Oak Ridge National Laboratory and the GE Apollo Program of N.A.S.A.

Equipment... only Microcard has developed the one "step and repeat", high output camera to film your technical material fast, at lowest cost and highest quality, and at the U.S. Gov't. format and size of 105mm x 148mm.

And only Microcard gives you a special trial offer of 20 technical reports reproduced on microfiche* for only \$100!

*You'll receive Microcard's "Master Camera Negative" allowing you to reproduce your own copies of these reports in any quantity.

Interested? Just drop us a line... no cost or obligation. We'll send you a complete Information Kit giving you all the facts.

365 SOUTH OAK STREET, WEST SALEM 3, WISC.