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A tree imposes a hierarchical structure on a collection of items. Familiar
examples of trees are genealogies and organization charts. Trees are used to
help analyze electrical circuits and to represent the structure of mathematical
formulas. Trees also arise naturally in many different areas of computer sci-

ence. For example, trees are used to organize information in database sys-
tems and to represent the syntactic structure of source programs in compilers.
Chapter 5 describes applications of trees in the representation of data.
Throughout this book, we shall use many different variants of trees, In this
chapter we introduce the basic definitions and present some of the more com-
mon tree operations. We then describe some of the more frequently used data
structures for trees that can be used to support these operations efficientiy.

3. 1 Basic Terminology

A tree is a collection of elements called nodes, one of which is distinguished as
a root, along with a relation (“parenthood“) that places a hierarchical struc-

ture on the nodes. A node, like an element of a list, can be of whatever type
we wish. We often depict a node as a letter, a string, or a number with a cir-
cle around it. Formally, a tree can be defined recursively in the following
manner.

1. A single node by itself is a tree. This node is also the root of the tree.

2. Suppose a is a node and TI, T2, . . . ,Tk are trees with roots
n1, n2. . . . ,nk, respectively. We can construct a new tree by making n
be the parent of nodes n1, n2, . . .,nk. In this tree it is the root and
T1, T2. . . . ,Tk are the subtrees of the root. Nodes n1, n2, . . , ,nk are
called the children of node n.

Sometimes, it is convenient to include among trees the null tree, a “tree" with
no nodes, which we shall represent by A.

Example 3.1. Consider the table of contents of a book, as suggested by Fig.
'3.l(a). This table of contents is a tree. We can redraw it in the manner
.shown in Fig. 3.1(b). The parent-child relationship is depicted by a line.
'Trees are normally drawn top-down as in Fig. 3.1(b), with the parent above

the child.
' " The root, the node calied “Book," has three subtrees with roots

Corresponding to the chapters C1, C2, and C3. This relationship is
'_6presented by the lines downward from Book to C1, C2, and C3. Book is
he parent of C1, C2, and C3, and these three nodes are the children of Book.
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Book . Book
(‘1 '

sl.l

5‘3 C1 C2 c3
C2

.1. / \ / l \
52.1.1 31.1 51.2 52.1 52.2 52.3

52.1.2 /52.2

32.3 52.1.1 52.1.2
C3

(a) (b)

Fig. 3.1. A table of contents and its tree representation.

The third subtree, with root C3, is a tree of a single node, while the other

two subtrees have a nontrivial structure. For example, the subtree with root
C2 has three subtrees, corresponding to the sections s2.1, 52.2, and s2.3; the
last two are one~node trees, while the first has two subtrees corresponding to
the subsections s2.l.l and 52.1.2. El

Example 3.1 is typical of one kind of data that is best represented as a
tree. In this example, the parenthood relationship stands for containment; a
parent node is comprised of its children, as Book is comprised of C1, C2, and

C3. Throughout this book we shall encounter a variety of other relationships
that can be represented by parenthood in trees. .

If n1, n2, . . . ,nk is a sequence of nodes in a tree such that n,- is the
parent of n,-+1 for 1 S i < k, then this sequence is called a path from node n,
to node in. The length of a path is one less than the number of nodes in the
path. Thus there is a path of length zero from every node to itself. For
example, in Fig. 3.1 there is a path of length two, namely (C2, s21, s2.l.2)
from C2 to 32.1.2.

If there is a path from node a to node b, then a is an ancestor of b, and b
is a descendant of a. For example, in Fig. 3.1, the ancestors of 52.1, are
itself, C2, and Book, while its descendants are itself, 82.1.1, and 52.1.2.

Notice that any node is both an ancestor and a descendant of itself.
An ancestor or descendant of a node, other than the node itself, is called

a proper ancestor or proper descendant, respectively. In a tree, the root is the
only node with no proper ancestors. A node with no proper descendants is
called a leaf. A subtree of a tree is a node, together with all its descendants.

The height of a node in a tree is the length'of a longest path from the
node to a leaf. In Fig. 3.] node C1 has height 1, node C2 height 2, and node
C3 height 0. The height of a tree-is the height of the root. The depth of a
node is the length of the unique path from the root to that node.
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The Order of Nodes

The children of a node are usually ordered from left-to-right. Thus the two
trees of Fig. 3.2 are different because the two children of node a appear in a
different order in the two trees.‘ If we wish explicitly to ignore the order of
children, we shall refer to a tree as an unordered tree.

Fig. 3.2. Two distinct (ordered) trees.

The “ieft—to~right" ordering of siblings (Children of the same node) can be
extended to compare any two nodes that are not related by the ancestor-

descendant relationship. The relevant rule is that if a and b are siblings, and
a is to the left of b, then all the descendants of a are to the left of all the des-
cendants of b.

Example 3.2. Consider the tree in Fig. 3.3. Node 8 is to the right of node 2,
to the left of nodes 9, 6, 10, 4, and 7, and neither left our right of its ances—
tors 1, 3, and 5.

 
./\.l

{\9 l.

A simple rule, given a node n, for finding those nodes to its left and those
to its right, is to draw the path from the root to n. All nodes branching off to
the left of this path, and all descendants of such nodes, are to the left of n.

' All nodes and descendants of nodes branching off to the right are to the right
' of n. El
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Preorder, Postorder, and Inorder

There are several useful ways in which we can systematically order all nodes
of a tree. The three most important orderings are called preorder, inorder

and postorder; these orderings are defined recursively as follows.

0 If a tree T is null, then the empty list is the preorder, inorder and post-
order listing of T.

I [f T conSists a Single node. then that node by itself is the preotder,
inorder, and postorder listing of T.

Otherwise, let T be a tree with root n and subtrees T1, T2, . . . ,Tk, as sug»

gested in Fig. 3.4.

Fig. 3.4. Tree T.

1. The preorder listing (or preorder traversal) of the nodes of T is the root n
of T followed by the nodes of T1 in preorder, then the nodes of T2 in
preorder, and so on, up to the nodes of T; in preorder.

2. The inorder listing of the nodes of T is the nodes of T1 in inorder, fol-
lowed by node n, folloWed by the nodes of T2, . . . ,Tk, each group of

nodes in inorder. .
3. The postarder listing of the nodes of T is the nodes of T1 in postorder,

then the nodes of T2 in postorder, and so on, up to Tk, all followed by
node n.

Figure 3.5(a) shows a sketch of a procedure to list the nodes of a tree in
preorder. To make it a postol'der procedure, we simply reverse the order of
steps (1) and (2). Figure 3.5(b) is a sketch of an inorder procedure. In each
case, we produce the desired ordering of the tree by calling the appr0priate
procedure on the root of the tree.

Example 3.3. Let us list the tree of Fig. 3.3 in preorder. We first list i and
then call PREORDER on the first subtree of 1, the subtree with root 2. This

subtree is a single node, so We simply list it. Then we proceed to the second
subtree of l, the tree rooted at 3. We list 3, and then call PREORDER on

the first subtree of 3. That call results in listing 5, 8, and 9, in that order.

10
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3.1 BASIC TERMINOLOGY 79

procedure PREORDER ( :2: node );
begin

(1) iist n;
(2) for each child c of n, if any, in order from the left do

PREORDER(c)

end; { PREORDER }

(a) PREORDER procedure.

 
procedure INORDER ( n: node );

begin
if n is a leaf then

list n

else begin
iNORDERUeftmost child of :2);
list it;

for each child 6 of n, except for the leftmost,
in order from the left do

INORDER(c)
end

end; { INORDER }
 

(b) INORDER procedure.

  
Fig. 3.5. Recursive ordering procedures.

Continuing in this manner, We obtain the complete preorder traversal of Fig.
3.311, 2, 3, 5, 8, 9, 6, 10, 4, 7.

. Similarly, by simulating Fig. 3.5(a) with the steps reversed, we can dis—
-' cover that the postorder of Fig. 3.3 is 2, 8, 9, 5, 10, 6, 3, 7, 4, 1. By simulat-

-:ing Fig. 3.5(b), we find that the inorder listing of Fig. 3.3 is 2, l, 8, 5, 9, 3,
- 10, 6, 7, 4. III

A useful trick for producing the three node orderings is the following.
Imagine we walk around the outside of the tree, starting at the root, moving

' counterclockwise, and staying as close to the tree as possible; the path We havc
It mind for Fig. 3.3 is shown in Fig. 3.6.

' For preorder, we list a node the first time we pass it. For postorder, we
_ _ t a node the last time we pass it, as we move up to its parent. For inorder,

We list a leaf the first time We pass it, but ilst an interior node the second time
__ __ pass it. For example, node 1 in Fig. 3.6 is passed the first time at the
beginning, and the second time while passing through the “bay” between

nodes 2 and 3. Note that the order of the leaves in the three orderings is

11
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/ \
I/ \ x \ ‘

I 8 /I’\ 9 ) 10 [I

Fig. 3.6. Traversal of a tree.

always the same left-to-right ordering of the leaves. It is only the ordering of

the interior nodes and their relationship to the leaves that vary among the
three. El

Labeled Trees and Expression Trees

Often it is useful to associate a label, or value, with each node of a tree, in

the same spirit with which we associated a value with a list element in the pre-
vious chapter. That is, the label of a node is not the name of the node, but a
value that is “stored" at the node. In some applications we shall even change
the label of a node, while the name of a node remains the same. A useful

analogy is tree:list = label:element = nodezposition.

Example 3.4. Figure 3.7 shows a labeled tree representing the arithmetic
expression (a+b) * (n+c), where m, . . . ,n-, are the names of the nodes,
and the labels, by convention, are shown next to the nodes. The rules

whereby a labeled tree represents an expression are as follows:

1. Every leaf is labeled by an operand and consists of that operand alone.

For example, node :14 represents the expression a.

2. Every interior node n is labeled by an operator. Suppose n is labeled by a
binary operator 6, such as + or *, and that the left child represents
expression E1 and the right child Ez. Then :1 represents expression
(E 1) 9 (13;). We may remove the parentheses if they are not necessary.

For example, node it; has operator +, and its left and right children
represent the expressions a and b, respectively. Therefore, n; represents
(a}+(b), or just a+b. Node n1 represents (a+b)*(a+c), since a. is the label

12
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3.1 BASIC TERMINOLOGY 8]

at n}, and a+b and a+c are the expressions represented by n; and n3, respec-
tively. D

 
Fig. 3.7. Expression tree with labels.

Often, when we produce the preorder, inorder, or postorder listing of a
tree, we prefer to list not the node names, but rather the labels. in the case

of an expression tree, the preorder listing of the labels gives us what is known
as the prefix form of an expression, where the operator precedes its left
operand and its right operand. To be precise, the prefix expression for a sin-
gle operand a is a itself, The prefix expression for (E1) 9 (13;), with 8 a

binary operator, is BPng, where P, and P2 are the prefix expressions for E l
and E2. Note that no parentheses are necessary in the prefix expression, since
we can scan the prefix expression BPIP; and uniquely identify P, as the shor-
test (and only) prefix of P1P; that is a legal prefix expression.

For example, the preorder listing of the labels of Fig. 3.7 is *+ab+ac.

The prefix expression for n2, which is +ab, is the shortest legal prefix of
+ab+ac.

Simiiarly, a postorder listing of the labels of an expression tree gives us
what is known as the posrfix (or Polish) representation of an expression. The
expression (EI) 6 (E1) is represented by the postfix expression PIPZB, where

P; and P2 are the postfix representations of E1 and E2, respectively. Again,
no parentheses are necessary in the postfix representation, as we can deduce

what P2 is by looking for the shortest suffix of P1P; that is a legal postfix
expression. For example, the postfix expression for Fig. 3.7 is ab+ac+*. If
.we write this expression as P1P2*, then P2 is ac+. the shortest suffix of
ab +ac+ that is a legal postfix expression.

13
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The inorder traversal of an expression tree gives the infix expression
itself, but with no parentheses. For example, the inorder listing of the labels
of Fig. 3.7 is a+b * a+c. The reader is invited to provide an algorithm for
traversing an expression tree and producing an infix expression with all
needed pairs of parentheses.

Computing Ancestral Information

The preorder and postorder traversals of a tree are useful in obtaining ances—
tral information. Suppose postorder(n) is the position of node n in a post-
order listing of the nodes of a tree. Suppose desc(n) is the number of proper
descendants of node n. For example, in the tree of Fig. 3.7 the postorder
numbers of nodes n2, in, and us are 3, l, and 2, respectively.

The postorder numbers assigned to the nodes have the useful property
that the nodes in the subtree with root n are numbered consecutively from
poszorder(n) — desc(n) to postorder(n). To test if a vertex 1 is a descendant
of vertex 3!, all we need do is determine whether

postorder(y)-—desc(y) s posrorder(x) S postorder(y).

A similar property holds for preorder.

3.2 The ADT TREE

in Chapter 2, lists, stacks, queues, and mappings were treated as abstract data
types (ADT's). In this chapter trees will he treated both as ADT’s and as
data structures. One of our most important uses of trees occurs in the design

of implementations for the various ADT’s we study. For example, in Section
5.1, we shall see how a “binary search tree“ can be used to implement
abstract data types based on the mathematical model of a set, together with
operations such as INSERT, DELETE, and MEMBER (to test whether an
element is in a set). The next two chapters present a number of other tree

implementations of various ADT’s.
In this section, we shall present several useful operations on trees and

show how tree algorithms can be designed in terms of these operations. As
with lists, there are a great variety of operations that can be performed on
trees. Here, we shall consider the following operations:

1. PARENT(n, T). This function returns the parent of node n in tree T. If

n is the root, which has no parent, A is returned. In this context, A is a
“null node," which is used as a signal that We have navigated off the tree.

2. LEFTMOST_CHILD(n, T) returns the leftmost child of node n in tree T,
and it returns A if n is a leaf, which therefore has no children.

3. RlGHT_SIBLING(n, T) returns the right sibling of node n in tree T,
defined to be that node m with the same parent p as n such that m lies

immediately to the right of n in the ordering of the children of p. For
example, for the tree in Fig. 3.7, LEFTMOST__CHILD(n2) = In;

RIGHT_SIBLING(n4) =_ H5, and RIGH'LSIBLING (ns) = A.

14
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3.2 THE ADT TREE 33

4. LABELUI, T) returns the label of node n in tree T. We do not, however,

require labels to be defined for every tree.

5. CREATEi(v, TL T2, . . . ,T;) is one of an infinite family of functions,
one for each value ofi 0, 1, 2, . . .. CREATEi' makes a new node r

with label v and gives it 1' children, which are the roots of trees
T1, T2, . . . ,7}, in order from the left. The tree with root r is returned.
Note that if i = 0, then r is both a leaf and the root.

6. ROOT(T) returns the node that is the root of tree T, or A if T is the null
tree.

7. MAKENULMT) makes T be the null tree.

ll

Example 3.5. Let us write both recursive and nonrecursive procedures to take
a tree and list the labels of its nodes in preorder. We assume that there are

data types node and TREE already defined for us, and that the data type
TREE is for trees with labels of the type labeltype. Figure 3.8 shows a recur-
sive procedure that, given node n, lists the labels of the subtree rooted at n in
preorder. We call PREORDER(ROOT(T}) to get a preorder listing of tree T.

procedure PREORDER ( n: node );
{ list the labels of the descendants of n in preorder }
var

c: node;

begin
print(LABEL(n, T));
c := LEFTMOST_CHILD(n, T);

while 0 <> A do begin
PREORDER(c);
c := RIGHT_SIBLING(c, T)

end

end; { PREORDER }

Fig. 3.8. A recursive preorder listing procedure.

We shall also develop a nonrecursive procedure to print a tree in
preorder. To find our way around the tree, we shall use a stack S, whose
type STACK is really “stack of nodes." The basic idea underlying our algo-
rithm is that when we are at a node n, the stack will hold the path from the

root to n, with the root at the bottom of the stack and node n at the top.'l'

1‘ Recall our discussion of recursion in Section 2.6 in which we illustrated how the implementation
of a recursive procedure involves a stack of activation records. If we examine Fig. 3.8, we can
observe that when PREORDER(n) is called, the active procedure calls, and therefore the stack of
activation records, correspond to the calls of PREORDER for all the ancestors of n. Thus our
nonrecursive preorder procedure, like the example in Section 2.6, models closely the way the re-
cursive procedure is implemented.
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One way to perform a nonrecursive preorder traversal of a tree is given
by the program NPREORDER shown in Fig. 3.9. This program has two
modes of operation. In the first mode it descends down the leftmost unex-

plored path in the tree,‘ printing and stacking the nodes along the path, until it
reaches a leaf.

The program then enters the second mode of operation in which it retreats
back up the stacked path, popping the nodes of the path off the stack, until it
encounters a node on the path with a right sibling. The program then reverts

back to the first mode of operation, starting the descent from that unexplored
right sibling. _

The program begins in mode one at the root and terminates when the
stack becomes empty. The complete program is shown in Fig. 3.9.

3.3 Implementations of Trees

in this section we shall present several basic implementations for trees and dis-
cuss their capabilities for supporting the various tree operations introduced in
Section 3.2.

An Array Representation of Trees

Let T he a tree in which the nodes are named 1, 2. . . . .31. Perhaps the sim-
plest representation of T that supports the PARENT operation is a linear
array A in which entry A[i] is a pointer or a cursor to the parent of node i.
The root of T can be distinguished by giving it a null pointer or a pointer to
itself as parent. In Pascal, pointers to array elements are not feasible, so we
shall have to use a cursor scheme where AU] = j if node j is the parent of
node i, and A[i] = 0 if node t' is the root.

This representation uses the property of trees that each node has a unique
parent. With this representation the parent of a node can be found in con-

stant time. A path going up the tree, that is, from node to parent to parent,
and so on, can be traversed in time proportionai to the number of nodes on

the path. We can also support the LABEL operator by adding another array
L, such that LU] is the label of node i, or by making the elements of array A
be records consisting of an integer (cursor) and a label.

Example 3.6. The tree of Fig. 3.10(a) has the parent representation given by
the array A shown in Fig. 3.10(h). D

The parent pointer representation does not facilitate operations that
require child-of information. Given a node n, it is expensive to determine the
children of n, or the height of n. In addition, the parent pointer representa-
tion does not specify the order of the children of a node. Thus, operations
like LEFTMOST_CHILD and RIGHT_SIBLING are not well defined. We

could impose an artificial order, for example, by numbering the children of

each node after numbering the parent, and numbering the children in

16
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3.3 IMPLEMENTATIONS OF TREES 85

procedure NPREORDER ( T: TREE );

{ nonrecursive preorder traversal of tree T }
var

m: node; { a temporary }

S: STACK; { stack of nodes holding path from the root
to the parent TOP(S) of the "current" node m }

begin

{ initialize }
MAKENULL{S);
m := ROOT(T);

while true do

if m <> A then begin
print(LABEL(m, T));
PUSH(m, S);

{ explore leftmost child of m }
m := LEFTMOST_CHILD(m, T)

end

else begin

{ exploration of path on stack
is now complete }

if EMPTY(S) then
return;

{ explore right sibling of node
on top of stack }

m := RIGHT_SIBLING(TOP(S), T);
POP(S)

end

end; {NPREORDER }

Fig. 3.9. A nonrecursive preorder procedure.

increasing order from left to right. 011 that assumption, we have written the
_ function RIGHTHSIBLING in Fig. 3.”, for types node and-TREE that are

' ' defined as foilows:

type

node = integer;

TREE = array [1..maxnodes] of node;

_ For this implementation we assume the null node A is represented by 0.
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/\
/\ 9/ \0

(a) a tree

I 2 3 4 5 6 7 8 9 10

A “III-III“.-

(b) parent representation

Fig. 3.10. A tree and its parent pointer representation.

fimction RIGHT_SIBLING ( n: node; T: TREE ) : node;

{ return the right sibling of node n in tree T }
'var

1', parent: node;
begin

parent := T[n1;
for i := n + 1 to maxnodes do

{ search for node after H with same parent }
if TU] = parent then

return (i); 7

return (0) { null node will be returned
if no right sibling is ever found }

end; { RIGHT_SIBL[NG }

Fig. 3.11. Right sibling operation using array representation,

18
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Representation of Trees by Lists of Children

An important and useful way of representing trees is to form for each node a
list of its children. The lists can be represented by any of the methods sug-

gested in Chapter 2, but because the number of children each node may have
can be variable, the linked-list representations are often more appropriate.

Figure‘3.12 suggests how the tree of Fig. 3.10(a) might be represented.
There is an array of header cells, indexed by nodes, which we assume to be
numbered 1, 2, . . . .10. Each header points to a linked list of “elements,”
which are nodes. The elements on the list headed by headerli] are the chil—

dren of node i; for example, 9 and 10 are the children of 3.

—‘

\aon-qaxm-P-mm 
E

header

Fig. 3.12. A linked~list representation of a tree.

Let us first devetop the data structures we need in terms of an abstract

data type LIST (of nodes), and then give a particular implementation of lists
and see how the abstractions fit together. Later, we shall see some of the

simplifications we can make. We begin with the following type declarations:

type
node = integer;

LIST = { appropriate definition for list of nodes };
position = { appropriate definition for positions in lists };
TREE = record

header: array [1..maxnodes] of LIST;
labels: array [l..maxnodes] of labettype;
root: node

end;
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We assume that the root of each tree is stored explicitly in the root field.
Also. 0 is used to represent the null node.

Figure 3.13 shows the code for the LEFTMOSI‘_Cl-IlLD operation. The
reader should write the code for the other operations as exercises.

“motion LEFTMOS'LCHILD ( n: node; T: TREE ) : node;
{ returns the leitrnost child of node n of tree T }
var

L: LlSl‘; { shorthand for the list of n ’s children }
begin

L := T.header [n ];

liEMP'l‘Y(L) then {n is a leaf}
return (0)

else

rem"! (RETRIEVE(FIRST(L), Ln

end; { LEFTMOST_CHILD }

Fig. 3.13. Function to find leftmost child.

Now let us choose a particular implementation of lists, in which both LISI'
and position are integers, used as cursors into an array ccllspace of records:

var

cellspace: array [1..maxmdes] of record
node: integer;
next: integer

end;

To simplify, we shall not insist that lists of children have header cells.
Rather, we shall let T.header[n] point directly to the first cell of the list, as is .
suggested by Fig. 3.12. Figure 3.14(a) shows the function
LEFTMOSI'_CHILD of Fig. 3.13 rewritten for this specific implementation.
Figure 3.140)) shows the operator PARENT, which is more difficult to write
using this representation of lists. since a search of all lists is required to deter—
mine on which list a given node appears.

The Lettmost-Child, Right-Sibling Representation

The data structure described above has, among other shortcomings, the inabil-
ity to create large trees from smaller ones, using the CREATEI' operators.
The reason is that, while all trees share cellspace for linked lists of children,

each has its own array of headers for its nodes. For example, to implement
CREATEflv, Th T7) we would have to copy T, and T2 into a third tree and
add a new node with label v and two children -—~ the roots of Ti and T2.

If We wish to build trees from smaller ones, it is best that the representa-
tion of nodes from all trees share one area. The logical extension of Fig. 3.12
is to replace the header array by an array nodespace consisting of records with

20
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function LEFTMOS’I‘_CHILD ( n: node; T: TREE ) : node;

{ returns the leftmost child of node n on tree T }
var

L: integer; { a cursor to the beginning of the list of n's children }
begin

L := T.header[n];
it'L = Othen {n isaleaf}

return (0)
else

return (cellspace[L}.n0de)
end; { LEFTMOST__CH1LD }

(a) The function LEFTMOST_CHILD.

function PARENT ( n: node; T: TREE ) : node;

{ returns the parent of node n in tree T}var

p: node; { runs through possible parents of n }

1': position; { runs down list ofp’s children }
begin

for p := l to maxnodes do begin
i := T.header[p];

while 1' <> 0 do { see if n is among children ofp }
if cellspace[i].n0de = n then

return (p)
else

t' := cellspace{i].next
end;

return (0) { return null node if parent not found }
end; { PARENT }

(b) The function PARENT.

Fig. 3.14. Two functions using linked-list representation of trees.

I two fields label and header. This array will hold headers for all nodes of all
trees. Thus, we declare

var

nodespace: array [1..maxnodes} of record
label: labeltype;
header: integer { cursor to celispace }

end;

_ hen, since nodes are no longer named l. 2, , . . .n, but are represented by

21
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arbitrary indices in nodespace, it is no longer feasible for the field node of
cellspace to represent the “number" of a node; rather, node is now a cursor

into nodespace, indicating the position of that node. The type TREE is simply
a cursor into nodespace, indicating the position of the root.

Example 3.7. Figure 3.15(a) shows a tree, and Fig. 3.15(b) shows the data

structure where we have placed the nodes labeled A, B, C, and D arbitrarily
in positions 10, 5, 11, and 2 of nodespace. We have also made arbitrary
choices for the cells of cellspace used for lists of children. D

 
2

S

/A\
B C

I 10-—

(a) Tree T  
nodespace

celtrpace

(b) Data structure

Fig. 3.15. Another linked-list structure for trees.

The structure of Fig. 3.15(b) is adequate to merge trees by the CREATEJ'

operations. This data structure can be significantly simplified, however.
First, observe that the chains of next pointers in cellspace are really right-
sibling pointers.

Using these pointers, we can obtain leftmost children as follows. Suppose
cellspaceEi}.node =_ n. (Recall that the “name" of a node, as oppOSed to its

iabei, is in effect its index in nodespace, which is what cellspace[i].node gives
us.) Then nodespacelniheader indicates the cell for the leftmost child of n in
cellspace. in the sense that the node field of that cell is the name of that node

in nodesPace.
We can simplify matters if we identify a node not with its index in
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3.3 IMPLEMENTATIONS OF TREES 91

nodespace, but with the index of the cell in cellspace that represents it as a
child. Then, the next pointers of cellspace truly point to right siblings, and
the information contained in the nodespace array can be held by introducing a
field teflmost_child in cellspace. The datatype TREE becomes an integer used
as a cursor to cellspace indicating the root of the tree. We declare cellspace
to have the following structure.

var

cellspace: array [1..maxnodes] of record
label: labeltype;
leftmostwchild: integer;
right_siblt‘ng: integer

end;

Example 3.8. The tree of Fig. 3.15(a) is represented in our new data struc-
ture in Fig. 3.16. The same arbitrary indices as in Fig. 3.15(b) have been
used for the nodes. El

 
leftmost label right

child Sibling

cellspace

Fig. 3.16. Leftmost-child, right-sibling representation of a tree.

_ __ All operations but PARENT are straightforward to implement in the
leftmost-child, right-sibling representation. PARENT requires searching the
entire cellspace. If we need to perform the PARENT operation efficiently, we
.can add a fourth field to cellspace to indicate the parent of a node directly.

_ As an example of a tree operation written to use the leftmost-child, right-
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sibling structure as in Fig. 3.16, we give the function CREATEZ in Fig. 3.17.
We assume that unused cells are linked in an available space list, headed by
avail, and that available cells are linked by their right—sibling fields. Figure
3.18 shows the old (solid) and the new (dashed) pointers.

  
function CREATEZ ( v: labeltype; T1, T2: integer ) : integer;

{ returns new tree with root v, having T1 and T2 as subtrees }
var

temp: integer; { holds index of first available cell
for root of new tree }

begin

temp := avail;
avail := cellspace[avail].rt’ght_sibling;

cellspace [temp ] . leftmochhild := Tl;
cellspace[temp].!abel := v;

cellspacehemp].right_sibling 1= 0;
cellspace [T1 ] .right_sibling := T2;
cellspace[T2].rt'ght_sib[ing := 0; { not necessary;

_ that field should be 0 as the cell was formerly a root }
return (temp)

end; { CREATEZ }

Fig. 3.17. The function CREATEZ.

  
 

set to null

Fig. 3.18. Pointer changes produced by CREATEZ.

Aiternatively. we can use less space but more time if we put in the right-
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sibling field of the rightmost child a pointer to the parent, in place of the null
pointer that would otherwise be there. To avoid confusion, We need a bit in
every cell indicating whether the right-sibling field holds a pointer to the right
sibling or to the parent.

Given a node, we find its parent by following right—sibling pointers untii
we find one that is a parent pointer. Since all siblings have the same parent,
we thereby find our way to the parent of the node we started from. The time
required to find a node’s parent in this representation depends on the number
of siblings a node has.

3.4 Binary Trees

The tree we defined in Section 3.] is sometimes called an ordered, oriented

tree because the chitdren of each node are ordered from left—to-right, and
because there is an oriented path (path in a particular direction) from every
node to its descendants. Another useful, and quite different, notion of “tree"
is the binary tree, which is either an empty tree, or a tree in which every node
has either no children, a left child, a right child, or both a left and a right
child. The fact that each child in a binary tree is designated as a left child or
as a right child makes a binary tree different from the ordered, oriented tree
of Section 3.1.

Example 3.9. If we adopt the convention that ieft children are drawn extend-
ing to the ieft, and right children to the right, then Fig. 3.19 (a) and (b)
represent two different binary trees, even though both “look like” the ordia
nary (ordered, oriented) tree of Fig. 3.20. However, let us emphasize that
Fig. 319(2) and (b) are not the same binary tree, nor are either in any sense
equal to Fig. 3.20, for the simple reason that binary trees are not directly
comparable with ordinary trees. For example, in Fig. 3.19(a), 2 is the left
child of 1, and i has no right child, while in Fig. 3.19(b), 1 has no ieft child
but has 2 as a right child. In either binary tree, 3 is the left child of 2, and 4
is 2’5 right child. D

The preorder and postorder listings of a binary tree are similar to those of

an ordinary tree given on p. 78. The inorder iisting of the nodes of a binary
tree with root n, left subtree T, and right subtree T2 is the inorder listing of T1
followed by n followed by the inorder iisting of T2. For exampie, 35241 is the
inorder listing of the nodes of Fig. 3. l9(a).

Representing Binary Trees

__A convenient data structure for representing a binary tree is to name the
nodes 1, 2, . . . ,n, and to use an array of records declared

var

celispace: array [1..maxnodes] of record
leftchild: integer;
rightchild: integer

end;
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A A
\5 5/

Fig. 3.19. Two binary trees.

 
2

/ \
1

Fig. 3.20. An “ordinary" tree.

 
The intention is that cellspace[i].leflchild is the left child of node i, and

rightchild is analogous. A value of 0 in either field indicates the absence of a
child.

Example 3.10. The binary tree of Fig..3.l9(a) can be represented as shown in
Fig. 3.21. D

An Example: Huffman Codes

Let us give an example of how binary trees can be used as a data structure.
The particular problem we shall consider is the construction of “Huffman
codes." Suppose we have messages consisting of sequences of characters. In
each message, the characters are independent and appear with a known 
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1e [child ri htchild
2

 ‘1!ng—
3
0

O
0

Fig. 3.21. Representation of a binary tree.

probability in any given position; the probabilities are the same for all posi-
tions. As an example, suppose we have a message made from the five charac-
ters a, b, c, d, e, which appear with probabilities .12, .4, .15, .08, .25,
respectively.

We wish to encode each character into a sequence of 0’s and 1’s so that
no code for a character is the prefix of the code for any other character. This
prefix property allow us to decode a string of 0’s and 1’s by repeatedly delet-
ing prefixes of the string that are codes for characters.

Example 3.11. Figure 3.22 shows two possible codes for our five symbol
alphabet. Clearly Code 1 has the prefix property, since no sequence of three
bits can be the prefix of another sequence of three bits. The decoding algo-
rithm for Code 1 is simple. Just “grab" three bits at a time and translate each
group of three into a character. Of course, sequences 10!, HO, and ii] are
impossible, if the string of bits really codes characters according to Code 1.
For example, if we receive 001010011 we know the original message was bed.

    
 

S mbol Probabilit Code 1 Code 2

a 000

b 11
c 01
d 001
e 10

Fig. 3.22. Two binary codes.

It is easy to check that Code 2 also has the prefix property. We can
__ decode a string of bits by repeatedly “grabbing" prefixes that are codes for

: '_Characters and removing them, just as we did for Code 1. The only difference
is that here, we cannot slice up the entire sequence of hits at once, because

'Whether we take two or three bits for a character depends on the bits. For
_ example, if a string begins 1101001, we can again be sure that the characters

__coded were bed. The first two bits, 11, must have come from b, so we can
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remove them and worry about 01001. We then deduce that the bits 01 came
from c, and so on. D

The problem we face is: given a set of characters and their probabilities,
find a code with the prefix property such that the average length of a code for

a character is a minimum. The reason we want to minimize the average code
length is to compress the length of an average message. The shorter the aver-

age code for a character is, the shorter the length of the encoded message.
For example, Code i has an average code length of 3. This is obtained by

multiplying the length of the code for each symbol by the probability of
occurrence of that symbol. Code _2 has an average length of 2.2, since sym-
bols a and d, which together appear 20% of the time, have codes of length
three. and the other symbols have codes of length tWo.

Can we do better than Code 2? A complete answer to this question is to
exhibit a code with the prefix property having an average length of 2.15. This
is the best possible code for these probabilities of symbol occurrences. One

technique for finding optimal prefix codes is called Hufiman's algorithm. It
.works by selecting two characters a and b having the lowest probabilities and
replacing them with a single (imaginary) character, say x, whose probability of
occurrence is the sum of the probabilities for a and b. We then find an
optimal prefix code for this smaller set of characters, using this procedure
recursively. The code for the original character set is obtained by using the

code for x with a 0 appended as the code for a and with a l appended as a
code for b.

We can think of prefix codes as paths in binary trees. Think of following
a path from a node to its left child as appending a 0 to a code, and proceeding

from a node to its right child as appending a 1. If we label the leaves of a
binary tree by the characters represented, we can represent any prefix code as
a binary tree. The prefix property guarantees no character can have a code
that is an interior node, and conversely, labeling the leaVes of any binary tree
with characters gives us a code with the prefix property for these characters.

Example 3.12. The binary trees for Code I and Qode 2 of Fig. 3.22 are
shown in Fig. 323(3) and (b), respectively. B

We shall implement Hoffman's algorithm using a forest (collection of
trees), each of which has its leaves labeled by characters whose codes we

desire to select and whose roots are labeled by the sum of the probabilities of
all the leaf labels. We call this sum the weight of the tree. Initially, each

character is in a one-node tree by itself, and when the algorithm ends, there
will be only one tree, with all the characters at its leaves. In this tree, the
path from the root to any leaf represents the code for the label of that leaf,
according to the left = 0, right = ] scheme of Fig. 3.23.

The essential step of the algorithm is to select the two trees in the forest
that have the smallest weights (break ties arbitrarily). Combine these tWo
trees into one, whose weight is the sum of the weights of the two trees. To
combine the trees We create a new node, which becomes the root and has the

2
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Fig. 3.23. Binary trees representing codes with the prefix property.

roots of the two given trees as left and right Children (which is which doesn't
matter). This process continues until only one tree remains. That tree
represents a code that, for the probabilities given, has the minimum possible
average code length.

Example 3.13. The sequence of steps taken for the characters and probabili-
ties in our running example is shown in Fig. 3.24. From Fig. 324(6) we see
the code words for a. b. c, d, and e are 1111, 0, 110, 1110, and 10. In this
example, there is only one nontrivial tree, but in general, there can be many.
For example, if the probabilities of b and a were .33 and .32, then after Fig.
3.24(c) we would combine b and e, rather than attaching e to the large tree as
we did in Fig. 3.24(d). B

Let us now describe the needed data structures. First. we shall use an

array TREE of records of the type

record

leftcht'ld: integer;

rightchitd: integer;
parent: integer

end

to represent binary trees. Parent pointers facilitate finding paths from leaves
to roots, so we can discover the code for a character. Second, we use an

array ALPHABET of records of type

record

symbol; char;
probability: real;
leaf: integer { cursor into tree }

end

29
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12 40 15 08 25 .20 .40 .15 25

a b c d e d a b c e
(3) Initial (1)) Merge a andd

.35 .60
.40 .25 .40

c . . e .
b e b

d a 1.00 c
d a

(c) Merge a, d with c
(d) Merge a, c , d with e

d a

(e) Final tree

Fig. 3.24. Steps in the construction of a Huffman tree.
1 of the alphabet being encoded, its correspond-

each character. Third, we
he trees themselves. The

to associate, with each symbo
ing leaf. This array also records the probability of
need an array FOREST of records that represent 1
type of these records is

record

weight: real;
root: integer { cursor into tree }

end

g the data of Fig. 3.24(a), aree arrays, assumin
build the Huffman tree isThe initial values of all thes

h of the program to
shown in Fig. 3.25. A sketc
shown in Fig. 3.26.
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weight root symbol prob- leaf [eft- right parent

ability Child child
FOREST ALPHABET TREE

Fig. 3.25. Initial contents of arrays.

(1) whiie there is more then one tree in the forest do

begin
(2) 1' := index of the tree in FOREST with smallest weight;
(3) j 2: index of the tree in FOREST with second smallest weight;
(4) create a new node with left child FORESTU ].root and

right child FORESTU].r00t;
(5) replace tree i in FOREST by a tree whose root

is the new node and whose weight is
FOREST[i}.wer'ght + FOREST[j].weight;

(6) delete tree j from FOREST
end;

Fig. 3.26. Sketch of Huffman tree construction.

To implement line (4) of Fig. 3.26, which increases the number of cells of
'_the TREE array used, and lines {5) and (6), which decrease the number of

utilized cells of FOREST, we shall introduce cursors lasrrree and lastnode,

pointing to FOREST and TREE, respectively. We assume that cells 1 to last-
'tree of FOREST and l to lasmode of TREE are occupied.T We assume that

._arrays of Fig. 3.25 have some deciared lengths, but in what follows we omit
comparisons between these limits and cursor values.

.For the data reading phase, which we omit. we also need a cursor for the array ALPHA-
_BET as it fills with symbols and their probabiiities.
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procedure lightones ( var least, second: integer );

{ sets least and second to the indices in FOREST of

the trees of smallest weight. We assume lasttree 22. }
var

1': integer;

begin { initialize [east and second, considering first two trees }
if FOREST11].weight <= FORESTIZIMeight then

begin least := 1; second := 2 end
else

begin least := 2; second :== 1 end;
{ Now let i run from 3 to Iasttree. At each iteration

least is the tree of smallest weight among the first i trees
in FOREST, and second is the next smallest of these }

for i := 3 to lastrree do

if FORESTH].weigh.! < FOREST[least].weight then
begin second := least; least := 1' end

else if FOREST[i}.weighr < FOREST{second}.weight then
second := 1'

end; { It‘ghtones }

function create ( lefitree, righttree: integer ) : integer;
{ returns new node whose left and right children are

F0REST[Iefltree].roat and F0REST[righttree].root }
begin

Iasmode := t‘asmode + l;

{ cell for new node is TREE[lastnade] }
TREEUasmodeIJeftcht‘ld := F0REST[teflrree].r-oot;
TREEUastnode].rt‘ghtchild := FOREST[rt'gkuree].root;

{now enter parent pointers for new node and its children }
TREE[lasmode] .parent := 0;

TREE[FORESTflefitree} . root] .parem := tasmode;
TREE[FORESTirighttree].root].parem := tasmode;
return (tasmode)

end; { create }

 
Fig. 3.27. Two procedures.

Figure 3.27 shows two useful procedures. The first implements lines (2)
and (3) of Fig. 3.26 to select indices of the two trees of smallest weight. The
second is the command create(nl, :12) that creates a new node and makes n1
and n2 its left and right children.

Now the steps of Fig. 3.26 can be described in greater detail. A pro-
cedure Htgfi'man, which has no input or output, but works on the global struc-
tures of Fig. 3.25, is shown in Fig. 3.28.

 
32



33

3.4 BINARY TREES lOl

procedure Huffman;
var

i, j: integer; { the two trees of least weight in FOREST}
newroat: integer;

begin

while lastrree > I do begin
lightones(l, j);
newroot := create“, j);

{ Now replace tree 1' by the tree whose root is newroot }
FOREST[1'].weighr z= FOREST[i].weight + FORESTU1.weight;
F0REST[1'].mor := newroor;

{ next, replace tree j, which is no longer needed, by lasttree,
and shrink FOREST by one }

FORESTU] := FORESTUasm-ee];
lasrtree :2 lasttree - 1

end

end; {Huffman }

  
 

Fig. 3.28. Huffman's algorithm.

 
Figure 3.29 shows the data structure of Fig. 3.25 after lastzree has been

reduced to 3, that is, when the forest looks like Fig. 3.24(c).

weight root

FOREST symbol prob- leaf
ability

ALPHABET . right— parent
child child

TREE

Fig. 3.29. Tree data structure after two iterations. 
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After completing execution of the algorithm, the code for each symbol can
be determined as follows. Find the symbol in the symbol field of the ALPHA-
BET array. Follow the leaf field of the same record to get to a record of the
TREE array; this record corresponds to the leaf for that symbol. Repeatedly
follow the parent pointer from the “current" record, say for node n, to the
record of the TREE array for its parent p. Remember node n, so it is possible
to examine the leftchild and rightchild pointers for node ,0 and see which is n.
In the former case, print 0, in the latter print l. The sequence of bits printed
is the code for the symbol, in reverse. If we wish the bits printed in the
correct order, we could push each onto a stack as we go up the tree, and then
repeatedly pop the stack, printing symbols as we pop them.

Pointer-Based Implementations of Binary Trees

Instead of using cursors to point to left and right chiidren (and parents if we
wish), we can use true Pascal pointers. For example. we might declare

type
node = record

(eftchild: 1 node;
rightchild: t node;
parent: 1 node

end

For example, if We used this type for nodes of a binary tree, the function
create of Fig. 3.27 could be written as in Fig. 3.30.

function create ( Iefltree, ri’ghttree: 1 node ) 2 T node;
var

root: 1 node;

begin
new(r00t);

roottleflchild := lefttree;
root t. rightchild := righttree;
rootLparem := ',

lefltreetparent := root;
righttree Lparem := root;
return (root)

end; { create }

Fig. 3.30. Pointer-based implementation of binary trees.
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Exercises

3.] Answer the following questions about the tree of Fig. 3.31.
a} Which nodes are leaves?

b') Which node is the root?

c) What is the parent of node C?

d) Which nodes are children of C?

e) Which nodes are ancestors of E?

f) Which nodes are descendants of E?

g) What are the right siblings of D and E?

h) Which nodes are to the left and to the right of G?

i) What is the depth of node C?

j) What is the height of node C?

B/\\ 
/ f

M N

Fig. 3.31. A tree.

3.2 In the tree of Fig. 3.31 how many different paths of length three are
there?

3.3 Write programs to compute the height of a tree using each of the

three tree representations of Section 3.3.

3.4 List the nodes of Fig. 3.31 in

a} preorder,
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3.5

3.6

3.7

3.9

TREES

b) postorder, and

c) inorder.

If m and n are two different nodes in the same tree, show that exactly
one of the following statements is true:

a) m is to the left of n

b) m is to the right of n

c) m is a proper ancestor of It

d) m is a proper descendant of :1.

Place a check in row i and column j if the two conditions represented
by row i and column 1‘ can oceur simultaneously.

preorder(n) inorder(n) pastorderm)
< preorder(m) < inarder(m) < posrarder(m)

n is to the
left of m

n is to the

right of m

n is a proper
ancestor of m

n is a proper
descendant of m

For example, put a check in row 3 and column 2 if you believe that n
can be a proper ancestor of m and at the same time n can precede m
in inorder.

Suppose we have arrays PREORDERln], lNORDERM], and

POSTORDERDI] that give the preorder, inorder, and postorder posi-
tions, respectively, of each node n of a tree. Describe an algorithm
that tells whether node i is an ancestor of node j, for any pair of
nodes i and j. Explain why your algorithm works.

We can test whether a node in is a proper ancestor of a node n by

testing whether m precedes n in X~order but follows it in Y-order,
where X and Y are chosen from {pre, post, in}. Determine all those

pairs X and Y for which this statement holds.

Write programs to traverse a binary tree in

a) preorder,

b) postorder,

c) inorder;
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3.10

3.1]

3.!2

3.13

3.14

3.15

3.16

3.17

3.18

The level~order listing of the nodes of a tree first lists the root, then
all nodes of depth i. then all nodes of depth 2, and so on. Nodes at
the same depth are listed in left-to-right order. Write a program to
list the nodes of a tree in level-order.

Convert the expression ((0 Hi) + c * (d+e) + f) * (g +h) to a

a) prefix expression

b) postfix expression.

Draw tree representations for the prefix expressions

:1) *a +b w: +de

b) *0 +44: +cde

Let T be a tree in which every nonleaf node has two children. Write
a program to convert

a) a preorder listing of T into a postorder listing,

b) a postorder listing of T into a preorder listing,

c) a preorder listing of T into an inorder listing.

Write a program to evaluate

a) preorder

b) postorder

arithmetic expressions.

We can define a binary tree as an AD'I' with the binary tree structure
as a mathematical model and with operations such as
LEFTCHILD(n), RlGHTCHILD(n), PARENTtn), and NULL(n).

The first three operations return the left child, the right child, and the
parent of node n (A if there is none) and the last returns true if and

only if n is A. Implement these procedures using the binary tree
representation of Fig. 3.21.

Implement the seven tree operations of Section 3.2 using the following
tree implementations:

a) parent pointers
b) lists of children

c) leftmost-child, right-sibling pointers.

The degree of a node is the number of children it has. Show that in
any binary tree the number of leaves is one more than the number of
nodes of degree two.

Show that the maximum number of nodes in a binary tree of height h
is 2"”ml. A binary tree of height h with the maximum number of
nodes is called a full binary tree.
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*3.19 Suppose trees are implemented by leftmost—child, right-sibling and
parent pointers. Give nonrecursive preorder, postorder, and inorder
traversal algorithms that do not use ”states" or a stack, as Fig. 3.9
does.

3.20 Suppose characters 0,11, c,d, e,f have probabilities .07, .09, .l2,
.22, .23, .27, respectively. Find an optimal Huffman code and draw

the Huffman tree. What is the average code length?

*3.21 Suppose T is a Huffman tree, and that the leaf for symbol a has
greater depth than the leaf for symbol .5. Prove that the probability
of symbol [7 is no less than that of a.

$3.22 Prove that Huffman‘s algorithm works, i.e., it produces an optimal
code for the given probabilities. Hint: Use Exercise 3.21.

Bibliographic Notes

Berge [1958] and Harary [1969] discuss the mathematical properties of trees.
Knuth [1973] and Nievergelt [1974] contain additional information on binary
search trees. Many of the works on graphs and applications referenced in
Chapter 6 also cover material on trees.

The algorithm given in Section 3.4 for finding a tree with a minimal
weighted path length is from Huffman [1952]. Parker [1980] gives some more
recent explorations into that algorithm.
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CHAPTER 5

Advanced

Set

Representation

Methods

This chapter introduces data structures for sets that permit more efficient
implementation of common collections of set operations than those of the pre-
vious chapter. These structures, however, are more complex and are often
only appropriate for large sets. All are based on various kinds of trees, such
as binary search trees, tries, and balanced trees.

5.1 Binary Search Trees

We shall begin with binary search trees, a basic data structure for representing
sets whose elements are ordered by some linear order. We shall, as usual,
denote that order by <. This structure is useful when we have a set of ele-
ments from a universe so large that it is impractical to use the elements of the
set themselves as indices into arrays. An example of such a universe would
be the set of possible identifiers in a Pascal program. A binary search tree
can support the set operations INSERT, DELETE, MEMBER, and MIN, tak-

ing 0(logn) steps per operation on the average for a set of n elements.
A binary search tree is a binary tree in which the nodes are labeled with

elements of a set. The important property of a binary search tree is that all
elements stored in the left subtree of any node x are all less than the element

stored at .r. and all elements stored in the right subtree of x are greater than

the element stored at x. This condition, called the binary search tree property.
holds for every node of a binary search tree, including the root.

Figure 5.1 shows two binary search trees representing the same set of
integers. Note the interesting property that if we list the nodes of a binary
search tree in inorder, then the elements stored at those nodes are listed in
sorted order.

Suppose a binary search tree is used to represent a set. The binary search
tree property makes testing for membership in the set simple. To determine
whether x is a member of the set, first compare x with the element r at the
root of the tree. If x = r we are done and the answar to the membership
query is “true.” If x < r, then by the binary search tree property. x can only
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/‘°\ lit/”x
\7 12/ \18 5/

,/ \m
7/ \12

(a) (b)

Fig. 5.1. Two binary search trees.

be a descendant of the left child of the root, if x is present at alM' Similarly,
if x > r, then x could only be at a descendant of the right child of the root.

We shall write a simple recursive function MEMBER(x, A) to implement
this membership test. We assume the elements of the set are of an unspeci-

fied type that will be called elementtype. For convenience, we assume
elementtype is a type for which < and = are defined. If not, we must define
functions LT(a, b) and EQ(a, b), where a and b are of type elementtype,
such that LT(a, b) is true if and only if a is “less than" b, and EQ(a, b) is
true if and only if a and b are the same.

The type for nodes consists of an element and two pointers to other
nodes:

type

nodetype = record
element: elementtype;
leftchild, rightchild: t nodetype

end;

Then we can define the type SET as a pointer to a node, which We take to be

the root of the binary search tree representing the set. That is:

T Recall the left child of the root is a descendant of itself. so we have not ruled out the

possibility that .t is at the left child of the root.

40
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W
SET = t nodetype;

Now we can specify fully the function MEMBER, in Fig. 5.2. Notice that
since SET and “pointer to nodetype" are synonymous. MEMBER can call
itself on subtrees as if those subtrees represented sets. In effect, the set can
be subdivided into the subset of members less than x and the subset of

members greater than 1.

function MEMBER ( x: elementtype; A: SET ) : boolean;
I returns true if x is in A , false otherwise }
Neil!

ifA = nil then

return (false) {x is never in Q }
else if: = A telement then

return (true)
else ifx < A telement then

return (MEMBERu, A tlefichild»
else {1: > A telement }

return (MEMBERO: , A t.righrchl‘ld))
end; { MEMBER }

Fig. 5.2. Testing membership in a binary search tree.

The procedure INSERT“, A), which adds element x to set A , is also
easy to write. The first action INSERT must do is test whether A = nil, that
is, whether the set is empty. If so, we create a new node to hold x and make
A point to it. If the set is not empty, we search for x more or less as
MEMBER does, but when we find a nil pointer during our search, we replace
it by a pointer to a new node holding x. Then A: will be in the right place.
namely, the place where the function MEMBER will find it. The code for
INSERT is shown in Fig. 5.3.

Deletion presents some problems. First, we must locate the element x to
be deleted in the tree. If x is at a leaf, we can delete that leaf and be done.

However, .1: may be at an interior node Mode, and if We simply deleted inode,
we would disconnect the tree.

If inode has only one child, as the node numbered 14 in Fig. 5.1(b), we
can replace inade by that child, and we shall be left with the appropriate
binary search tree. If inode has two children, as the node numbered 10 in

Fig. 5.1(a), then we must find the lowest-valued element among the descen-
dants of the right child.T For example, in theycase the element 10 is deleted
from Fig. 5.10:), we must replace it by 12, the minimum-valued descendant of

t The highest-valued node among the descendants of the left child would do as well.
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procedure INSERT ( x: elementtype; var A: SET );
{addxto setA}
begin

if A = nil then begin
new (A);
An ,element := x;

Ar .leftchild := nil;
A1 .righlchild :5 nil

end

else it” x < Atelement then
lNSERT(x, Atlefrchild)

else it‘x > ALeIement then
INSERT (x, A1.rightchild)

{ if x = ALetemem, we do nothing; x is already in the set }
end; { INSERT }

Fig. 5.3. Inserting an element into a binary search tree.

the right child of 10.
To write DELETE, it is useful to have a function DELETEMINLA) that

removes the smallest element from a nonempty tree and returns the value of
the element removed. The code for DELETEMlN is shown in Fig. 5.4. The
code for DELETE uses DELETEMIN and. is shown in Fig. 5.5.

function DELETEMIN ( var A: SET ) : elementtype;

{ returns and removes the smallest element from set A }
begin

ifAtJeftchild = nil then begin
{ A points to the smallest element }
DELETEMIN := Atelemcnt;

A := Atrightchild

{ replace the node pointed to by A by its right child }
end

else { the node pointed to by A has a left child }
DELETEMIN := DELETEMIN(At.lefichild)

end; { DELETEMIN }

 
Fig. 5.4. Deleting the smallest element.

Example 5.]. Suppose we try to delete IO from Fig. 5.1(a). Then, in the last
statement of DELETE we call DELETEMIN with argument a pointer to node
14} That pointer is the rightchild field in the root. That call results in
another call to DELETEMIN. The argument is then a pointer to node 12;
this pointer is found in the leftchild field of node 14. We find that l2 has no
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procedure DELETE { x: elementtype; var A: SET );
{ remove x from set A }

begin
if A <> nil then

if): < A telemem then

DELETE(x, A Lleftchild)
else if x > Atelemenr then

DELETEU, A r.rightchild)

{ if we reach here, 1; is at the node pointed to by A }
else if (A Lleftchild = nil) and (Atmightchild = nil) then

A := nil { delete the leaf holding x }
else it“ Atleflchild = nil then

A := Atrightchild
else ifA trightchild = nil then

A := Atgleflchild

else{ both children are present }
A telemem := DELETEMINM Lrightchila‘)

end; { DELETE }

Fig. 5.5. Deletion from a binary search tree.

left child, so we return element 12 and make the left child for 14 be the right

child of 12, which happens to be nil. Then DELETE takes the value 12
returned by DELETEMIN and replaces 10 by it. The resulting tree is shown
in Fig. 5.6. D

/\
5 14

\
7 8\

/I

Fig. 5.6. Tree of Fig. 5.I(a) after deleting 10.
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52 Time Analysis of Binary Search Tree Operations

in this section we analyze the average behavior of various binary search tree
operations. We show that if we insert n random elements into an initially
empty binary search tree, then the average path length from the root to a leaf
is 0(logn). Testing for membership, therefore, takes 0(logn) time.

It is easy to see that if a_binary tree of n nodes is complete (all nodes,
except those at the lowest level have two children), then no path has more
than l+logn nodes.‘l' Thus, each of the procedures MEMBER, INSERT,
DELETE, and DELETEMIN takes 0(logn) time. To see this, observe that
they all take a constant amount of time at a nocle,1 then may call themselves
recursively on at most one child. Therefore, the sequence of nodes at which
calls are made forms a path from the root. Since that path is 0003:!) in
iength, the total time spent following the path is 0(logn).

However, when we insert :1 elements in a "random" order, they do not
necessarily arrange themselves into a complete binary tree. For example, if
we happen to insert smallest first, in sorted order, then the resulting tree is a
chain of n nodes, in which each node except the lowest has a right child but

no left chiid. In this case, "it is easy to show that, as it takes 0(t') steps to
insert the ith element, and 2 i = n(n+ l)/2, the whole process of n insertionsi=1

takes 00:2) steps, or 001) steps per operation.
We must determine whether the ”average” binary search tree of n nodes

is closer to the complete tree in structure than to the chain, that is, whether
the average time per operation on a “random” tree takes 0(logn) steps, 00:)
steps, or something in between. As we cannot know the true frequency of
insertions and deletions, or whether deleted elements have some special pro-
perty (e.g., do we always delete the minimum?), we can only analyze the
average path length of “random“ trees if we make some assumptions. The
particular assumptions we make are that trees are formed by insertions only,
and all orders of the n inserted elements are equally likely.

Under these fairly natural assumptions, we can calculate P(n), the aver-
age number of nodes on the path from the root to some node (not necessarily
a leaf). We assume the tree was formed by inserting an random elements into
an initially empty tree. Clearly P(0) = 0 and Hi) = 1. Suppose we have a
list of n22 elements to insert into an empty tree. The first element on the
list, call it a, is equally likely to be first, second, or nth in the sorted order.
Suppose that 1‘ elements on the list are less than a, so n-i—l are greater than
a. When we build the tree, a will appear at the root, the t‘ smaller elements
will be descendants of the ieft child of the root, and the remaining n~i—1
will be descendants of the right child. This tree is sketched in Fig. 5.7.

As all orders for the 1' small elements and for the n-i—l large elements
are equally likely, we expect that the left and right subtrees of the root will 

i Recall that all logarithms are to the base 2 unless otherwise noted.
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Fig. 5.7. Binary search tree.

have average path lengths P(i) and P(n—i-— 1), respectively. Since these ele—
ments are reached through the root of the complete tree, we must add 1 to the

number of nodes on every path. Thus P(n) can be calculated by averaging,
for all 1’ between 0 and fl‘"1, the sum

ni(P(i)+t) + 1%”) (P(n-i—l)+l) +%
The first term is the average path length in the left subtree, weighted by its
size. The second term is the analogous quantity for the right subtree, and the
I/n term represents the contribution of the root. By averaging the above sum
for all i between 1 and n, we obtain the recurrence

n~l

Pm = 1 + J; 2 [mm + (n—i~1)P(n—z'—1)] (5.1)II [=0
l”a

The first part of the summation (5.1), E iP(i), can be made identical to
n-l i=0

 

 
the second part 2(n—i—l)P(n—-i—t) if We substitute i for nmiwl in thei=0

nkl

second part. Also, the term for i=0 in the summation E iP(i) is zero, so wei=0

can begin the summation at I. Thus (5.1) can be written
n-—l

P(n) = 1 + is EiPU) for n 2 2 (5.2)n i=1

We shall show by induction on n, starting at n=l, that P(n) 5 1 + 4logn.
Surely this statement is true for n = l, since P(l) = 1. Suppose it is true for
all:' < n. Then by (5.2)

11-]

PM 5 r + 5% 2 (4ilogi + i)i=1H  
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2 n—l 2 n-l
s i + 724ilogi + 7 21'n = N i=1

Pl

5. 2 + -§- Eilogi (5.3)

i l
—l

n2 r: 1
He]

The iast step is justified, since 22‘ S 112/2, and therefore, the last term of thei=l

second line is at most 1. We shall divide the terms in the summation of (5.3)
into two parts, those for r‘ S [n/Zl-l, whirh do not exceed ilogtn/Z), and
those for i> [pi/2] - l, which do not exceed ilogn. Thus (5.3) can be rewritten

8 [n/ZI—l
nml

P(n) S 2 + —2 E ilog(n/2) + 2 ilogn (5.4)n i=1 i=[n/2] 
Whether n is even or odd, one can show that the first sum of (5.4) does not
exceed (n2/8)log(n/2), which is (n2/8)logn - (VIZ/8), and the second sum does
not exceed (3:12/8) logn. Thus, we can rewrite (5.4) as

8 n2 n2P(n) S 2 + -n-2[—2—logn — if]
.<_ l + 4logn

as we wished to prove. This step compietes the induction and shows that the
average time to follow a path from the root to a random node of a binary
search tree constructed by random insertions is 0(logn), that is to within a
constant factor as good as if the tree were complete. A more careful analysis
shows that the constant 4 above is really about 1.4.

We can conclude from the above that the time of membership testing for a
random member of the set takes 0(logn) time. A similar analysis shows that
if we include in our average path length only those nodes that are missing
both children, or only those missing left children, then the average path length
still obeys an equation similar to (5.1), and is therefore 0(logn). We may
then conclude that testing membership of a random element not in the set,
inserting a random new element, and deleting a random element also all take
0(logn) time on the average.

Evaluation of Binary Search Tree Performance

Hash table implementations of dictionaries require constant time per operation
on the average. Although this performance is better than that for a binary
search tree, a hash table requires 0(a) steps for the MIN operation, so if MIN
is used frequently, the binary search tree will be the better choice; if MIN is
not needed, we would probably prefer the hash table.

The binary search tree should also be compared with the partialiy ordered
tree used for priority queues in Chapter 4. A partially ordered tree with n
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elements requires only 0(Iogn) steps for each INSERT and DELETEMIN
operation not only on the average, but also in the worst case. Moreover, the
actual constant of proportionality in front of the logn factor will be smaller for
a partially ordered tree than for a binary search tree. However, the binary
search tree permits general DELETE and MIN operations, as well as the com—
bination DELETEMIN, while the partially ordered tree permits only the
latter. Moreover, MEMBER requires 0(n) steps on a partially ordered tree
but only 0003:!) steps on a binary search tree. Thus, while the partially
ordered tree is well suited to implementing priority queues, it cannot do as

efficiently any of the additional operations that the binary search tree can do.

5.3 Tries

In this section we shall present a special structure for representing sets of
character strings. The same method works for representing data types that
are strings of objects of any type, such as strings of integers. This structure is
known as the trie, derived from the middle letters of the word “retrieval."‘i’

By way of introduction, consider the following use of a set of character
strings.

Example 5.2. As indicated in Chapter I, one way to implement a spelling
checker is to read a text file, break it into words (character strings separated
by blanks and new lines). and find those words not in a standard dictionary of
words in common use. Words in the text but not in the dictionary are printed

out as possible misspellings. In Fig. 5.8 we see a sketch of one possible pro-
gram spelt. It makes use of a procedure getword(x,f) that sets x to be the
next word in text file f; variable x is of a type called wordtype, which we shall
define later. The variable A is of type SET; the SET operations we shall need
are INSERT, DELETE, MAKENULL, and PRINT. The PRINT operator
prints the members of the set. U

The trie structure supports these set operations when the elements of the
set are words, i.e., character strings. It is appropriate when many words
begin with the same sequences of letters, that is, when the number of distinct
prefixes among all the words in the set is much less than the total length of all
the words.

In a trie, each path from the root to a leaf corresponds to one word in the
represented set. This way, the nodes of the trie correspond to the prefixes of
words in the set. To avoid confusion between words like THE and THEN, let
us add a special endmarker symbol, S, to the ends of all words, so no prefix of
a word can be a word itself.

Example 5.3. In Fig. 5.9 we see a trie representing the set of words {Tl-IE,

THEN, THIN, THIS, TIN, SIN. SING}. That is, the root corresponds to the
empty string, and its two children correspond to the prefixes T and S. The

i Trie was originally intended to be a homonym of “tree“ but to distinguish these two
terms many people prefer to pronounce trie as though it rhymes with "pic."
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program spell ( input, output, dictionary );
type

wordtype = { to be defined };
SET : { to be defined, using the trie structure };

var

A: SET; { holds input words not yet found in the dictionary }
nexrword: wordtype;
dictionary: file of char;

procedure gerword ( var x: wordtype; f: file of char );
{ a procedure to be defined that sets x

to be the next word in file f}

procedure ENSERT ( x: wordtype; var S: SET );
{ to be defined }

procedure DELETE (x: wordtype; var S: SET );
{ to be defined }

procedure MAKENULL ( var S: SET );
{ to be defined }

procedure PRINT ( var S: SET );
{ to be defined }

begin
MAKENULLM);

while not eof (input) do begin

gerward (nextword, input);
lNSERT(nexIw0rd, A)

end;

while not eof (dictionary) do begin

getword ( nextword, dictionary);
DELETE(nextword, A)

end;
PRINT(A)

end; { spell }

 
Fig. 5.8. Sketch of spelling checker.

leftmost leaf represents the word THE, the next leaf the word THEN, and so
on. D

We can make the foliowing observations about the trie in Fig. 5.9.

1. Each node has at most 27 children, one for each letter and $.
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Fig. 5.9. A trie.

2. Most nodes will have many fewer than 27 children.

3. A leaf reached by an edge labeled 3 cannot have any children, and may as
well not be there.

Trie Nodes as ADT’s

We can view a node of a trie as a mapping whose domain is
{A, B, . . . ,2, $} (or whatever alphabet we choose) and whose value set is
the type “pointer to trie node." Moreover, the trie itself can be identified with
its root, so the ADT‘s TRIE and TRIENODE have the same data type,
although their operations are substantially different. 0n TRIENODE we need
the following operations:

1. procedure ASSIGN(noa'e, c, p) that assigns value p (a pointer to a node)
to character c in node node,

2. function VALUEOF(node, c) that produces the value associated with
character c in node,T and

3. procedure GETNEW(nade, c) to make the value of node for character c
be a pointer to a new node.

Technically, we also need a procedure MAKENULL(node) to make node be

the null mapping. One simple implementation of trie nodes is an array node
of pointers to nodes, with the index set being {A. B. . . . .Z, 3}. That is, we
define

T VALUEOF is a function version of COMPUTE in Section 2.5.
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type
chars = (’A', 'B', . . - . 'Z'. '3');
TRIENODE = array[chars] of 1 TRIENODE;

If node is a trie node, node [c] is VALUEOF(node, c) for any c in the set

chars. To avoid creating many leaves that are children corresponding to '$’,
we shall adopt the convention that node{'$'} is either nil or a pointer to the
node itself. In the former case, node has no child corresponding to ’3', and in
the latter case it is deemed to have such a child, although we never create it.

Then we can write the procedures for trie nodes as in Fig. 5.10.

procedure MAKENULL ( var node: TRIENODE );
{ makes node a leaf, i.e., a null mapping }
var

c: chars;

begin
for c := 'A’ to '$' do

node [cl := nil

end; { MAKENULL }

procedure ASSIGN ( var node: TRIENODE; c: chars; p: tTRlENODE );
begin

node [c] := p

end; { ASSIGN }

function VALUEOF ( var node: TRIENODE; c: chars ) : 1TRIENODE:
begin

return (node [c1]

end; { VALUEOF }

procedure GETNEW ( var node: TRIENODE; c: chars );
begin

new (node {c 1);
MAKENULL(node [c I)

end; { GETNEW }

 
Fig. 5.10. Operations on trie nodes.

Now let us define

type '
TRlE = t TRIENODE;

We shall assume wordtype is an array of characters of some fixed length. The
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value of such an array will always be assumed to have at least one ’$’; we
take the end of the represented word to be the first '3', no matter what fol-
lows (presumably more '$"s). On this assumption, we can write the pro-
cedure lNSERT(x, words) to insert x into set words represented by a trie, as
shown in Fig. 5.11. We leave the writing of MAKENULL, DELETE, and
PRINT for tries represented as arrays for exercises.

procedure INSERT ( x: wordtype; var words: TRIE );
var

i: integer; { counts positions in word x }

t: TRIE; { used to point to trie nodes
corresponding to prefixes ofx }

begin
t' := l;
t := words;

while x[i] <> '$' do begin
if VALUEOFm, x[i]) = nil then

{ if current node has no child for character x[t'],
create one }

GETNBWUT, x[i]);
I := VALUEOF(tt, x[t']);

{ proceed to the child oft for character x[i],
whether or not that child was just created }

1' := i+l {move along the word I}
end;

{ now we have reached the first '3' in x }
ASSIGN(t1, '5’, I)

{ make loop for ’3' to represent a leaf }
end; {INSERT}

Fig. 5.11. The procedure INSERT.

A List Representation for Trie Nodes

The array representation of trie nodes takes a collection of words, having
among them p different prefixes, and represents them with 27p bytes of
storage. That amount of space could far exceed the total length of the words
in the set. However, there is another implementation of tries that may save
space. Recall that each trie node is a mapping, as discussed in Section 2.6. In
principle, any implementation of mappings would do. Yet in practice, we
want a representation suitable for mappings with a small domain and for map-
pings defined for comparatively few members of that domain. The linked list
representation for mappings satisfies these requirements nicely. We may
represent the mapping that is a trie node by a linked list of the characters for
which the associated value is not the nil pointer. That is, a trie node is a
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linked list of cells of the type .

type
celltype = record

domain: chars;

value: 1 celltype;
{ pointer to first cell on list for the child node }

next: tcelltype
{ pointer to next cell on the list }

end;

We shall leave the procedures ASSIGN, VALUEOF, MAKENULL, and
GETNEW for this implementation of trie nodes as exercises. After writing

these procedures, the INSERT operations on tries, in Fig. 5.11, and the other
operations on tries that we left as exercises, should work correctly.

Evaluation of the Trie Data Structure

Let us compare the time and space needed to represent :1 Words with a total of
p different prefixes and a total length of I using a hash table and a trio. In
what follows, we shall assume that pointers require four bytes. Perhaps the

most space-efficient way to store words and still support INSERT and
DELETE efficiently is in a hash table. if the words are of varying length, the
cells of the buckets should not contain the words themselves; rather. the cells

consist of two pointers, one to link the cells of the bucket and the other point-
ing to the beginning of a word belonging in the bucket.

The words themselves are stored in 'a large character array, and the end
of each word is indicated by an endmarker character such as ’$'. For exam-
ple, the words THE, THEN, and THIN could be stored as

THESTHEN$THIN$ . . .

The pointers for the three words are cursors to positions 1, 5, and 10 of the
array. The amount of space used in the buckets and character array is

1. 8n bytes for the cells of the buckets, there being one cell for each of the n
words, and a cell has two pointers or 8 bytes,

2. l + n bytes for the character array to store the n words of total length l
and their endmarkers. ’ ‘

The total space is thus 9n + I bytes plus whatever amount is used for the
bucket headers.

In comparison, a trio with nodes implemented by linked lists requires
[1 + :1 cells, one cell for each prefix and one cell for the end_of each word.
Each trie cell has a character and two pointers, and needs nine bytes, for a
total space of 9n + 9p. if 1 plus the space for thebucket headers exceeds 9p,
the trie uses less space. However, for applications such as storing a dictionary
where Up is typically less than 3, the hash table would use less space.
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In favor of the trie, however, let us note that we can travel down a trie,

and thus perform operations INSERT, DELETE, and MEMBER in time pro-
portional to the length of the word involved. A hash function to be truly
“random" should involve each character of the word being hashed. It is fair,
therefore, to state that computing the hash function takes roughly as much
time as performing an operation like MEMBER on the trie. Of course the

time spent computing the hash function does not include the time spent resolv-
ing collisions or performing the insertion, deletion, or membership test on the
hash table, so we can expect tries to be considerably faster than hash tables
for dictionaries whose elements are character strings.

Another advantage to the trio is that it supports the MIN operation effi-
ciently, while hash tables do not. Further, in the hash table organization
described above, we cannot easily reuse the space in the character array when
a word is deleted (but see Chapter 12 for methods of handling such a prob-
lem).

5.4 Balanced Tree Implementations of Sets

In Sections 5.1 and 5.2 we saw how sets could be implemented by binary

search trees, and we saw that operations like INSERT could be performed in
time proportional to the average depth of nodes in that tree. Further, we
discovered that this average depth is 0(logn) for a “random" tree of n nodes.
However, some sequences of insertions and deletions can produce binary
search trees whose average depth is proportional to n. This suggests that we
might try to rearrange the tree after each insertion and deletion so that it is
always complete; then the time for INSERT and similar operations would
always be 0(logn).

In Fig. 5.12(a) we see a tree of six nodes that becomes the complete tree
of seven nodes in Fig. 5.12(b), when element 1 is inserted. Every element in
Fig. 5.12(a), however, has a different parent in Fig. 5.12(b), so we must take
a steps to insert 1 into a tree like Fig. 5.12(a), if we wish to keep the tree as
balanced as possible. It is thus unlikely that simply insisting that the binary
search tree be complete will lead to an implementation of a dictionary, priority
queue, or other ADT that includes INSERT among its operations, in 0(logn)
time.

There are several other approaches that do yield worst case 0(logn) time
per operation for dictionaries and priority queues, and we shall consider one
of them, called a “2-3 tree," in detail. A 23 tree is a tree with the following
two properties.
1. Each interior node has two or three children.

2. Each path from the root to a leaf has the same length.

We shall also consider a tree with zero nodes or one node as special cases of a
2-3 tree.

We represent sets of elements that are ordered by some linear order <, as
follows. Elements are placed at the leaves; if element a is to the left of
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A A
2/ \4 6/ 1/ \3 5/ \7

(a) (b)

Fig. 5.12. Complete trees.

element 1:, then a < (7 must hold. We shall assume that the “<" ordering of
elements is based on one field of a record that forms the element type; this
field is called the key. For example, elements might represent people and cer-
tain information about people, and in that case, the key field might be “social
security number."

At each interior node we record the key of the smallest element that is a
descendant of the second child and, if there is a third child, we record the key
of the smallest element descending from that child as well.T Figure 5.13 is an
example of a 2-3 tree. in that and subsequent examples, we shall identify an
element with its key field, so the order of elements becomes obvious.

 
Fig. 5.13. A 2-3 tree.

T There is another version of 2-3 trees that places whole records at interior nodes, as a
binary search tree does.
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Observe that a 2-3 tree of k levels has between 2"“1 and 3""l leaves. Put

another way, a 2-3 tree representing a set of n elements requires at least
1 + log3n levels and no more than 1 + logzn levels. Thus, path lengths in the
tree are 0(logn).

We can test membership of a record with key x in a set represented by a
2-3 tree in 0(logn) time by simply moving down the tree, using the values of
the elements recorded at the interior nodes to guide our path. At a node
node, compare x with the value y that represents the smallest element des-
cending from the second child of node. (Recall we are treating elements as if
they consisted solely of a key field.) If x < y, move to the first child of node.
If xay, and node has only two children, move to the second child of node. If
node has three children and xay, compare x with z, the second value
recorded at node, the value that indicates the smallest descendant of the third

child of node. If x<z, go to the second child, and if x22, go to the third
child. In this manner, we find ourselves at a leaf eventually, and x is in the
represented set if and only if x is at the leaf. Evidently, if during this process
we find I:y or x=z, we can stop immediately. However, we stated the algo-
rithm as we did because in some cases we shall wish to find the leaf with x as

well as to verify its existence.

Insertion into a 2-3 Tree

To insert a new element 1 into a 2-3 tree, we proceed at first as if we were
testing membership of x in the set. However, at the level just above the
leaves, we shall be at a node node whose children, we discover, do not include

x. If node has only two children, we simply make x the third child of node,
placing the children in the proper order. We then adjust the two numbers at
node to reflect the new situation.

For example, if we insert 18 into Fig. 5.13, we wind up with node equal
to the rightmost node at the middle level. We place 18 among the children of
node, whose proper order is 16, 18, 19. The two values recorded at node
become 18 and 19, the elements at the second and third children. The result

is shown in Fig. 5.14.
Suppose, howeVer, that x is the fourth, rather than the third child of

node. We cannot have a node with four children in a 2-3 tree, so we split
node into two nodes, which We call node and node'. The two smallest ele-

ments among the four children of node stay with node, while the two larger
elements become children of node'. Now, we must insert node’ among the
children of p, the parent of node. This part of the insertion is analogous to
the insertion of a leaf as a child of node. That is, if ,0 had two children, we

make node' the third and place it immediately to the right of node. If p had
three children before node’ was created, we split p into p and p', giving p the
two leftmost children and p' the remaining two, and then we insert p' among
the children of p's parent, recursively.

One special case occurs when we wind up splitting the root. In that case
we create a new root, whose two children are the two nodes into which the
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Fig. 5.14. 2-3 tree with 18 inserted.

old root was split. This is how the number of levels in a 2-3 tree increases.

Example 5.4. Suppose we insert 10 into the tree of Fig. 5.14. The intended
parent of 10 already has children 7, 8, and 12, so we split it into two nodes.
The first of these has children 7 and 8; the second has 10 and 12. The result

is shown in Fig. 5.15(a). We must now insert the new node with children 10
and 12 in its proper place as a child of the root of Fig. 5.1501). Doing so
gives the root four children, so we split it, and create a new root, as shown in

Fig. 5.15(b). The details of how information regarding smallest elements of
subtrees is carried up the tree will be given when we develop the program for
the command INSERT. E1

Deletion in a 2-3 tree

When we delete a leaf, we may leave its parent node with only one child. If
node is the root, delete node and let its lone child be the new root. Other-

wise, let p be the parent of node. If p has another child, adjacent to node on
either the right or the left, and that child of p has three children, we can

transfer the proper one of those three to node. Then node has two children,
and we are done.

If the children of p adjacent to node have only two children. transfer the

lone child of node to an adjacent sibling of node, and delete node. Should p7
now have only one child, repeat all the above, recursively, with p in place of
node.

Example 5.5. Let us begin with the tree of Fig. 5.15(b). If 10 is deleted, its
parent has only one child. But the grandparent has another child that has
three children, 16, 18, and 19. This node is to the right of the deficient node,
so we pass the deficient node the smallest element, 16, leaving the 2-3 tree in
Fig. 5.16m.
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(a) (b)

Fig. 5.15. Insertion of 10 into the tree of Fig. 5.14.

Next suppose we delete 7 from the tree of Fig. 5.16(a). [ts parent now
has only one child, 8, and the grandparent has no child with three children.
We therefore make 8 be a sibling of 2 and 5, leaving the tree of Fig. 5.16(b).
Now the node starred in Fig. 5.l6(b) has only one child, and its parent has no
other child with three children. Thus we delete the starred node, making its

child be a child of the sibling of the starred node. Now the root has only one
child, and we delete it. leaving the tree of Fig. 5.16(c).

Observe in the above examples, the frequent manipulation of the values at
interior nodes. While we can always calculate these values by walking the
tree, it can be done as we manipulate the tree itself, provided we remember
the smallest value among the descendants of each node along the path from
the root to the deleted leaf. This information can be computed by a recursive
deletion algorithm, with the call at each node being passed, from above, the

correct quantity (or the value "minus infinity” if we are along the leftmost
path). The details require careful case analysis and will be sketched later
when we consider the program for the DELETE operation. D

Data Types for 2-3 Trees

Let us restrict ourselves to representing by 2-3 trees sets of elements whose
keys are real numbers. The nature of other fields that go with the field key,
to make up a record of type elementtype, we shall leave unspecified, as it has
no bearing on what follows.
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Fig. 5.16. Deletion in a 2-3 tree.

In Pascal, the parents of leaves must he records consisting of two reals

(the keys of the smallest elements in the second and third subtrees) and of
three pointers to elements. The parents of these nodes are records consisting
of two reels and of three pointers to parents of leaves. This progression con-
tinues indefinitely; each level in a 23: tree is of a different type from all other

levels. Such a situation would make programming 2—3 tree operations in Pas‘
cal impossible, but fortunately, Pascal provides a mechanism, the variant
record structure, that enables us to regard all 2-3 tree nodes as having the
same type. even though some are elements. and some are records with

pointers and reals.T We can define nodes as in Fig. 5.17. Then we declare a
set, represented by a 2-3 tree, to be a pointer to the root as in Fig. 5J7.

Implementation of INSERT

The details of operations on 2-3 trees are quite involved, although the princi-

ples are simple. We shall therefore describe only one operation, insertion, in
detail; the others, deletion and membership testing, are similar in spirit, and
finding the minimum is a trivial search down the leftmost path. We shall
write the insertion routine as main procedure. INSERT, which we call at the
root, and a procedure insertl, which gets called recursively down the tree.

T All nodes, however. take the largest amount of space needed for any of the variant
types. to Pascal is not really the best language for implementing 2-3 trees in practice.

.
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type

elementtype = record
key: real;
{other fields as warranted}

end;

nodetypes = (leaf, interior);
twothreenode = record

case kind: nodetypes of

leaf: (element: elementtype);
interior: (firstchild, secondchitd, thirdchild: 1 twothreenode;

lowafsecond, Iowoftkird: real)
end;
SET = 1 twothreenode;

Fig. 5.17. Definition of a node in a 2-3 tree.

For convenience, we assume that a 2-3 tree is not a single node or empty.
These two cases require a straightforward sequence of steps which the reader
is invited to provide as an exercise.

procedure insert] ( node: ftwothreenode;

x: elementtype; {x is to be inserted into the subtree of node }
var pnew: T twothreenode; { pointer to new node created to right of node }
var low: real ); { smallest element in the subtree pointed to by pnew }

begin
pnew := nil;

if node is a leaf then begin
ifx is not the element at node then begin

create new node pointed to by pnew;
put x at the new node;
law := Line}:

and
end

else begin { node is an interior node }
let w be the child of node to whose subtree It belongs;
insert1(w, x, pback, lowback);
if pback <> till then begin

insert pointer pback among the children of node just
to the right of w;

if node has four children then begin
create new node pointed to by pnew;
give the new node the third and fourth children of node;
adjust lowofsecand and Iowofthird in node and the new node;

59



60

I76 ADVANCED SET REPREENTATION METHODS

set low to be the lowest key among the
children of the new node

end
end

end

end; { insert] }

Fig. 5.18. Sketch of 2-3 tree insertion program.

We would like insertl to return both a pointer to a new node, if it must
create one, and the key of the smallest element descended from that new

node. As the mechanism in Pascal for creating such a function is ewkwsrd,

we shall instead declare insert] to be a procedure that assigns values to
parameters pnew and tow in the case that it must “return" a new node. We

sketch insertl in Fig. 5.18. The complete procedure is shown in Fig. 5.19;
some comments in Fig. 5J8 have been omitted from Fig. 5.19 to save space.

procedure insert! ( node: t twothreenode; x: elementtype;
var pnew: t twothreenode; var tow: real );
var

pback: ttwothreenode:
lawback: real;

child : l..3; { indicates which child of node is foilowed

in recursive call (cf. w in Fig. 5.18) }
w: 1twothreenode; { pointer to the child }

begin

mm := nil;
ifmdehkind = leaf thenbegin

If node Lekmentkzy <> chey then begin

{ create new leaf holding x and “return" this node }
new (pnew , leaf );
“(nodetelementkey < Lizzy) then

{ place I in new node to right of current node }
begin pnewt.elemsnt := 1:; low := chzy end

else begin { .7; belongs to left of element at current node }
pnew Lehman: := node Leiemenr;
node telemem := 1:;

low := pnew1.element.kcy
end

end
end

else begin { node is an interior node }
{ select the child of node that we must follow }
li'erey < node Llowqfsecond then

begin child := I; w := nodetfirsrchiid end
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else if (node Lthirdchild = nil) or (x.key < node Llowofihr'rd) then begin
{x is in second sublree }
child := 2;
w := node tsecondchild

end

else begin { x is in third subtree }
child := 3;
w := nodemhirdchiid

end;

insert 1(w , x , pback , lowback);

if pback <> nil then
{ a new child of node must be inserted }
if node T.rhirdchild = nil then

{ node had only two children, so insert new node in proper place }
if child = 2 then begin

node Lthirdchild := pback;
node Llowofihird := lowback

end

elsebegln {child =1}
node tthirdchild := node tsecondchild;
node Llawofihird := node Llowofsecond;

node tsecandchild := pback;
node Llowofisecand := lowback

end

else begin { node already had three children }
new (pnew , interior);
1! child = 3 then begin

{ pback and third child become children of new node }
pnew tfirrtchfld := node t.rhirdchild;

pnew tsecaudchild := pbaclc;
pnewtthirdchild := nil;
pnew tlowofirecond := Iowback;

{ Iawafihird is undefined for pnew }
low := node Llowoflhird ;
node t.thirdchild := nil

end

else begin { child 5 2; move third child of node to pnew}
pnew tsecondchiid := node Lthirdchild;
pnew tJowofsecond := node flowofihira‘;
pnew1.thirdchild := nil;
node Lthirdchild := nil

end;

if child = 2 then begin
{ pback becomes first child of pnew }
pnew 1.firsrchild := pback;
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law := lowback

end;

if child = I then begin
{ second child of node is moved to pm;

pback becomes second child of node }
pnew tfimcht'ld := node t.secondchlld;
low := node Llowafsecond;
nodet.secondchild := pback;
nodetJowafsecond := lowback

end
end

end

end; { inserti }

Fig. 5.19. The procedure insert 1.

Now we can write the procedure INSERT, which calls insert 1. If insert]
"returns" a new node, then INSERT must create a new root. The code is

shown in Fig. 5.20 on the assumption that the type SET is t twothreenode,

i.e., a pointer to the root of a 2-3 tree whose leaves contain the members of
the set.

procedure INSERT ( x: elementtype; var S: ET );
var

pback: t twothreenode; { pointer to new node returned by insenl }
lawback: real; { low value in subtree of pback }
saves: SET; { place to store a temporary copy of the pointer S }

begin

{ checks for S being empty or a single node should occur here.
and an appropriate insertion procedure should be included }

inserI1(S , x. pback, lowback);
itpback <> nil then begin

{ create new root; its children are now pointed to by S and pback }
saves := S;

new (S ):

S Lfirstchitd := sum? ;
S Lsecandchild := pback;
S Llowofsecond := lowback;
Strhr’rdchiid := nil;

end

end; { INSERT }

Fig. 5.20. INSERT for sets represented by 2-3 trees.
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Implementation of DELETE

We shall sketch a function delete] that takes a pointer to a node node and an
element x , and deletes a leaf descended from node having value x. if there is
one.1' Function delete] returns true if after deletion node has only one child.
and it returns false if node still has two or three children. A sketch of the

code for delete] is shown in Fig. 5.21.
We leave the detailed code for function delete] for the reader. Another

exercise is to write a procedure DELETE(S,x) that checks for the special
cases that the set S consists only of a single leaf or is empty. and otherwise
calls del¢t¢1(S,.r); if delete] returns true. the procedure removes the root

(the node pointed to by S ) and makes S point to its lone child.

function delete] ( node: ttwothreenode; x: elementtype ) : boolean;
var

onlyone: boolean; { to hold the value returned by a call to deletel }
basin

deletel := false;

if the children of node are leaves then begin
Hz is among those leaves then begin

remove x;

shift children of node to the right of I one position left;
If node now has one child then

delete] := true

end
end

else begin { node is at level two or higher }
determine which child of node could have x as a descendant;

onlyone := delete [(W, x); { w stands for node Lfirstchild,
node hsecondcltild , or node t.tlu‘rdchild, as appropriate }

if onlyone then begin { fix children of node }
if w is the first child of node then

if y , the second child of node, has three children then

make the first child of y be the second child of w

else begin { y has two children }
make the child of w be the first child of y;
remove w from among the children of node;
i! node now has one child then

delete] := true

end;
if w is the second child of node then

If y , the first child of node . has three children then
make the third child of y be the first child of w

T A useful variant would take only a key value and delete any element with that key.
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else { y has two children }
if z, the third child of node, exists

and has three children then
make first child of 2 be the second child of w

else begin { no other child of node has three children }
make the child of w be the third child of y;
remove w from among the children of node;
il' node now has one child then

delete] := true

end;
if w is the third child of node then

if y, the second child of node, has three children then
make the third child ofy be the first child of w

else begin { y has two children }
make the child of w be the third child of y;

remove w from among the children of node

end { note node surely has two children left in this case }
end

end

end; { deletel }

Fig. 5.2]. Recursive deletion procedure.

5.5 Sets with the MERGE and FIND Operations

In certain problems we start with a collection of objects, each in a set by itself;
we then combine sets in some order, and from time to time ask which set a

particular object is in. These problems can be solved using the operations
MERGE and FIND. The operation MERGEM, B. C) makes C equal to the
union of sets A and B, provided A and B are disjoint (have no member in

common); MERGE is undefined if A and B are not disjoint. FIND(x) is a
function that returns the set of which .2: is a member; in case x is in two or
more sets, or in no set, FIND is not defined.

Example 5.6. An equivalence relation is a reflexive, symmetric, and transitive
relation. That is, if E is an equivalence relation on set S, then for any (not

necessarily distinct) members a, b, and c in S, the following properties hold:

I. a E a (reflexivity)

2. lfa "=— b, then b E a (symmetry).

3. lfa = b and b =—= c, then a E c (transitivity).

The relation “is equal to" (=) is the paradigm equivalence relation on
any set S. For a, b, and c in S, we have (I) a = a, (2) if a = b, then b = a.
and (3) if a = b and b = c, then a = c. There are many other equivalence
relations, however. and We shall shortly see several additional examples.
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In general, whenever we partition a collection of objects into disjoint
groups. the relation 0 E b if and only if a and b are in the same group is an
equivalence relation. “Is equal to" is the special case where every element is
in a group by itself.

More formally, if a set S has an equivalence relation defined on it, then
the set S can be partitioned into disjoint subsets SI, 5'2, . . . . called

equivalence classes, whose union is S. Each subset S,- consists of equivalent
members ofSi That is. a E b for all a and b in Si. and a i b if a and b are

in different subsets. For example, the relation congruence modulo n1“ is an
equivalence relation on the set of integers. To check that this is so, note that
mm = 0. which is a multiple of n (reflexivity); if a-b = dn, then
b—a = (—d)n (symmetry); and if a—b = dn and b-c = en, then
a—c = (d+e)n (transitivity). In the case of congruence modulo n there are n
equivalence classes, which are the set of integers congruent to 0, the set of
integers congruent to l, . . . , the set of integers congruent to n—-l.

The equivalence problem can be formulated in the following manner. We
are given a set S and a sequence of statements of the form “a is equivalent to
b.” We are to process the statements in order in such a way that at any time
we are able to determine in which equivalence class a given element belongs.
For example, suppose S = {1, 2, . . . .7} and we are given the sequence of
statements

152 5-=—6 354 124

to process. The following sequence of equivalence classes needs to be con-
structed, assuming that initially each element of S is in an equivalence class by
itself.

122 {1.2} {3} {4} {5} {6} {7}

556 {1,2} {3} {4} {5,6} {7}

3E4 {1,2} {3,4} {5,6} {'7}

154 {l,2,3,4} {5,6} {7}

We can “solve" the equivalence problem by starting with each element in
a named set. When we process statement aEb, we FIND the equivalence
classes of a and b and then MERGE them. We can at any time use FIND to
tell us the current equivalence class of any element.

The equivalence problem arises in several areas of computer science. For
example, one form occurs when a Fortran compiler has to process
"equivalence declarations” such as

T We say a is congruent to b module :1 ifa and b have the same remainders when divided
by n. or put another way. a—b is a multiple of n.
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EQUIVALENCE (A(l),B(1,2),C(3)). (A(2),D,E), (F,G)

Another example, presented in Chapter 7, uses solutions to the
equivalence problem to help find minimum-cost spanning trees. El

A Simple Implementation of MFSET

Let us begin with a simplified version of the MERGE-FIND ADT. We shall
define an ADT, called MFSET, consisting of a set of subsets, which we shall

call components. together with the following Operations:

1. MERGEM , B) takes the union of the components A and B and calls the
result either A or B , arbitrarily.

2. FIND(x) is a function that returns the name of the component of which I
is a member.

3. INITIALM , 1) creates a component named A that contains only the ele-
ment x.

To make a reasonable implementation of MFSET, we must restrict our

underlying types, or alternatively, we should recognize that MFSET really has
two other types as “parameters" — the type of set names and the type of
members of these sets. In many applications we can use integers as set 7
names. If we take n to be the number of elements, we may also use integers
in the range [1..n] for the members of components. For the implementation
we have in mind, it is important that the type of set members he, a subrange
type, because we want to index into an array defined over that subrange. The
type of set names is not important, as this type is the type of array elements,
not their indices. Observe, however, that if we wanted the member type to be
other than a subrange type, we could create a mapping, with a hash table. for

example, that assigned these to unique integers in a subrange. We only need
to know the total number of elements in advance.

The implementation we have in mind is to declare

eons!

n = { number of elements };
type

MFSET = arrayIl ..n} of integer;

as a special case of the more general type

array[subrange of members] of (type of set names);

Suppose we declare components to be of type MFSET with the intention that
components [x] holds the name of the set currently containing x. Then the
three MFSET operations are easy to write. For example, the operation
MERGE is shown in Fig. 5.22. INITIALM , I) simply sets components [x] to
A , and FIND(x) returns campanentst].

The time performance of this implementation of MFSET is easy to
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procedure MERGE ( A. B: integer; var C: MFSET );
var

x: l..n;

begin
for x-:= 1 to u do

if C[x] = B then
C(x] := A

end; { MERGE }

Fig. 5.22. The procedure MERGE.

analyze. Each execution of the procedure MERGE takes 001) time. On the
other hand, the obvious implementations of INITIALM, x) and FlND(x) have
constant running times.

A Faster Implementation of MFSET

Using the algorithm in Fig. 5.22, a sequence of n-—l MERGE instructions

will take 0(n2) time.T One way to speed up the MERGE operation is to link
together all members of a component in a list. Then, instead of scanning all
members when we merge component B into A, we need only run down the list
of members of B. This arrangement saves time on the average. However. it

could happen that the in' merge is of the form MERGEM, B) where A is a
component of size I and B is a component of size 1', and that the result is

named A. This merge operation would require 0(1‘) steps, anld a sequence ofn-

n-l such merge instructions would take on the order of 2 i = n(n—l)/2i=1

time.

One way to avoid this worst case situation is to keep track of the size of
each component and always merge the smaller into the larger.$ Thus, every
time a member is merged into a bigger component, it finds itself in a com-
ponent at least twice as big. Thus. if there are initially it components. each
with one member, none of the n members can have its component changed
more than l+logn times. As the time spent by this new version of MERGE
is proportional to the number of members whose component names are
changed, and the total number of such changes is at most n(l+logn), we see

that 0(n logn) work suffices for all merges.
Now let us consider the data structure needed for this implementation.

First, we need a mapping from set names to records consisting of

T Note that n —l is the largest number of merges that can be performed before all ele-
ments are in one set.

3 Note that our ability to call the resulting component by the name of either of its consti-
tuents is important here. although in the simpler implementation, the name of the first ar—
gument was always picked.
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1. a count giving the number of members in the set and

2. the index in the array of the first element of that set.

We also need another array of records, indexed by members, to indicate ‘
1. the set of which each element is a member and

2. the next array element on the list for that set.

We use 0 to serve as NIL, the end-of-list market. In a language that lent

itself to such constructs, we would prefer to use pointers in this array, but
Pascal does not permit pointers into arrays.

In the special case where set names, as well as members, are chosen from

the subrange l..n, we can use an array for the mapping described above.
That is, we define

type
nametype = l..n;

elementtype z 1..n;
MFSET = record

setheaders: arrayii..n1 of record
{ headers for set lists }
count: 0..n;

firstelemem: 0..n
end;

names: arrayll . .n] of record
{ table giving set containing each member }
semame: nametype;
nextelemem: 0..n

end

end;

The proeedures INITIAL, MERGE, and FIND are showu in Fig. 5.23.
Figure 5.24 shows an example of the data structure used in Fig. 5.23,

where set 1 is {1, 3, 4}, set 2 is {2}, and set Sis {5, 6}.

A Tree Implementation of MFSET’s

Another, completely different, approach to the implementation of MFSET’s
uses trees with pointers to parents. We shall describe this approach infor-
mally. The basic idea is that nodes of trees correSpond to set members, with
an array or other implementation of a mapping leading from set members to
their nodes. Each node, except the root of each tree, has a pointer to its
parent. The roots hold the name of the set, as well as an element. A map-
ping from set names to roots allows access to any given set, when merges are
done.

Figure 5.25 shows the sets A = {1, 2, 3, 4}, B = {5, 6}, and C = {7}
represented in this form. The rectangles are assumed to be part of the root

node, not separate nodes. i
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procedure INITIAL ( A: nametype; x: elementtype: var C: MFSET );
{ initialize A to a set containing 1 only }
begin

C .names [x].semame := A;
C .names [x ].nexte!ement : = 0;

{ null pointer at end of list of members of A }
C .setheaders [A [mount := l ;

C .setheaders [A ].firstelement := At
end; { INITIAL }

procedure MERGE ( A. B: nametype; var C: MFSET );

{ merge A and B, calling the result A or B, arbitrarily }VIII'

1‘: 0.

begin
.n; { used to find end of smaller list }

if C.setheaders [A ].caunt > C.setheaders [B ].count then begin

end

{A is the larger set; merge B into A }
{ find end of B, changing set names to A as we go}
i := C.setheaders[B ] .flrstelemem;
while C.names [1' ].nextelement <> 0 do begin

C.names[i].semame := A;
i : = C. names [t' ].nexteiement

end;

{ append list A to the end of B and call the result A }
{ now i is the index of the last member 0“? }
C.names [r'].semame := A;

C.names[i].nexretement := C.setheaders [A ].firsrelement;
C.setheaders {A ].firslelement := C.serheaders [B ].firstelemem;
C.setheaders [A [count := C.setheaders [A [count +

CJetheaders [B Locum;
C.setheaders[B Locum := 0;

C.setheadezs [B ] .firstelemem := 0

{ above two steps not really necessary, as set B no longer exists }

else { B is at least as large as A }

{ code similar to case above, but with A and B interchanged }
end; { MERGE }

function FIND ( x: l..n; var C: MFSET );
{ return
begin

the name of the set of which x is a member }

return (Gnomes [x].semame)
end; { FIND }

Fig. 5.23. The operations of an MFSET.
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To find the set containing an element x, we first consult a mapping (e.g.,
an array) not shown in Fig. 5.25, to obtain a pointer to the node for x. We
then follow the path from that node to the root of its tree and read the name
of the set there.

The basic merge operation is to make the root of one tree be a child of
the root of the other. For example, we could merge A and B of Fig. 5.25 and
call the result A, by making node 5 a child of node l. The result is shown in
Fig. 5.26. However, indiscriminate merging could result in a tree of n nodes
that is a single chain. Then doing a FIND operation on each of those nodes

would take 001’) time. Observe that although a merge can be done in 0(1)
steps, the cost of a reasonable number of FIND’s will dominate the total cost,

and this approach is not necessarily better than the simplest one for executing
n merges and It finds.

However, a simple improvement guarantees that if n is the number of ele-

ments, then no FIND will take more than 0(log n) steps. We simply keep at
each root a count of the number of elements in the set, and when called upon

to merge two sets, we make the root of the smaller tree be a child of the root
of the larger. Thus, every time a node is moved to a new tree, two things
happen: the distance from the node to its root increases by one, and the node
will be in a set with at least twice as many elements as before. Thus, if n is
the total number of elements, no node can be moved more than logn times;
hence, the distance to its root can never exceed logn. We conclude that each

FIND requires at most 0(Iogn) time.

Path Compression

Another idea that may speed up this implementation of MFSET’s is path
compression. During a FIND, when following a path from some node to the
root, make each node encountered along the path be a child of the root. The
easiest way to do this is in two passes. First, find the root, and then
retraverse the same path, making each node a child of the root.

Example 5.7. Figure 5 .27(a) shows a tree before executing a FIND operation
on the node for element 7 and Fig. 5.27(b) shows the result after 5 and 7 are

made children of the root. Nodes 1 and 2 on the path are not moved because
1 is the root, and 2 is already a child of the root. CI

Path compression does not affect the cost of MERGE's; each MERGE
still takes a constant amount of time. There is, however, a subtle speedup in
FlND‘s since path compression tends to shorten a large number of paths from
various nodes to the root with relatively little effort.

Unfortunately, it is very difficult to analyze the average cost of FIND’s

when path compression is used. .3 It turns out that if we do not require that
smaller trees be merged into larger ones, we require no more than 0(nlogn)

time to do n FlND’s. Of course, the first FIND may take 0(n) time by itself
for a tree consisting of one chain. But path compression can change a tree
very rapidly and no matter in what order we apply FIND to elements of any
tree no more than 0(a) time is spent on n FlND's. However, there are
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count firstelement semame nextelemem

setheaders names

Fig. 5.24. Example of the MFSET data structure.

name = A name = B

EYE

 

Fig. 5.25. MFSET represented by a collection of trees.

sequences of MERGE and FIND instructions that require fl(nlogn) time.
The algorithm that both uses path compressiori and merges the smaller

tree into the larger is asymptotically the most efficient method known for

implementing MFSET's. In particular, :1 FlND‘s require no more than
0(na(n)) time, where Mn) is a function that is not constant, yet grows much
more slowly than logn. We shall define ci(n) below, but the analysis that
leads to this bound is beyond the scope of this book.
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Fig. 5.26. Merging B into A.

0 9 900 0

00 0 000®

000 '

09
(a) (b)

Fig. 5.27. An example of path compression.
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The Function ot(n)

The function u(n) is closely related to a very rapidly growing function
Aix. 31), known as Ackermann'sfunction. A(x, y) is defined recursively by:

A(O,y)= 1 foryzo

A(1, 0) = 2

A(x, O) = x-l-Z for): 2 2

AU; y) = A(A(x-—l, y), yHl) for x, y 21

Each value of y defines a function of one variable. For example, the third
line above tells us that for y=0, this function is “add 2." For y = l, we have
A(x, l) = A(A(x-l, l),0) = A(x-l, i) + 2, for x >1, with A(1, 1) =
A(A(0, l). 0) = AU, 0) = 2. Thus A(x, l) = 2x for all x 21. In other

words, Atx,1) is “multiply by 2." Then, A(1, 2) = A(A(x—l, 2), l) =

2A(x—1, 2) for 1: >1. Also, A(1, 2) = A(A(0,2), i) = A(1,1) = 2. Thus
A(x, 2) = 2*. Similarly, we can show that A(x, 3) = 22“ (stack of x 2's),
while A(x, 4) is so rapidly growing there is no accepted mathematical notation
for such a function.

A single-variable Ackermann's function can be defined by letting
A(x) = Au, x). The function a(n) is a pseudo~inverse of this single variable
function. That is, a(n) is the least I such that n E A(x). For example,
A(l) = 2, so (1(1) = 01(2) = l. A(2) = 4, so 01(3) = 01(4) = 2. 11(3) = 8,
so «1(5) = = (1(8) = 3. So far, a(n) seems to be growing rather
steadily.

However, 44(4) is a stack of 65.536 2's. Since log(A(4)) is a stack of 65535
2’s, we cannot hope even to writeui(4) explicitly, as it would take log(A(4))
bits to do so. Thus a(n) s 4 {or all integers I: one is ever likely to encounter.
Nevertheless, ot(n) eventually reaches 5, 6, 7, . . . on its unimaginably slow
course toward infinity.

5.6 An ADT with MERGE and SPLIT

Let S be a set whose members are ordered by the relation <. The operation
SPLIT(S, SI, 52, x) partitions S into two sets: S.={ a la is in S and a < x}
and S; = {a J a is in S and a 2 x}. The value of S after the split is unde-
fined, unless it is one of S. or 32. There are several situations where the
operation of splitting sets by (comparing each member with a fixed value x is
essential. We shall consider one such problem here.

The Longest Common Subsequenee Problem

A subsequence of a sequence x is obtained by removing zero or more (not
necessarily contiguous) elements from x. Given two sequences x and y, a
longest common subsequence (LCS) is a longest sequence that is a subsequence
of both x and y.
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For example, an LCS of l, 2, 3, 2, 4, 1, 2 and 2, 4, 3, l, 2, l is the
subsequence 2, 3, 2, 1, formed as shown in Fig. 5.28. There are other LCS's
as well, such as 2, 4, l, 2, but there are no common subsequences of length 5.

2324

/\\\
243

Fig. 5.28. A longest common subsequence.

There is a UNIX command called difl that compares files line-by-line, finding
a longest common subsequence, where a line of a file is considered an element
of the subsequence. That is, whole lines are analogous to the integers l, 2, 3,
and 4 in Fig. 5.28. The assumption behind the command diff is that the lines
of each file that are not in this LCS are lines inserted, deleted or modified in

going from one file to the other. For example, if the two files are versions of
the same program made several days apart, difi' will, with high probability,
find the changes.

There are several general solutions to the LCS problem that work in

0(n2) steps on sequences of length n. The command diff uses a different stra-
tegy that works well when the files do not have too many repetitions of any

line. For example, programs will tend to have lines “begin" and “end”
repeated many times, but other lines are not likely to repeat.

The algorithm used by dijf for finding an LCS makes use of an efficient
implementation of sets with operations MERGE and SPLIT, to work in time

0(plogn), where n is the maximum number of lines in a file and p is the
number of pairs of positions, one from each file, that have the same line. For
example, p for the strings in Fig. 5.28 is 12. The two 1's in each string con-
tribute four pairs, the 2's contribute six pairs, and 3 and 4 contribute one pair

each. In the worst case, p could be n2, and this algorithm would talte

0(nzlogrt) time. However, in practice, p is usually closer to n, so We can
expect an 0(nlogn} time complexity.

To begin the description of the algorithm let A = alaz - - - an and
B = blbz - - - b,,, be the two strings whose LCS we desire. The first step is to

tabulate for each value a, the positions of the string A at which 0 appears.
That is, we define PLACES(a) = {i la = (1,}. We can compute the sets
PLACES(a) by constructing a mapping from symbols to headers of lists of
positions. By using a hash table, we can create the sets PLACES(a) in 0(a)
“steps" on the average, where a “step" is the time it takes to operate on a
symbol, say to hash it or compare it with another. This time could be a con-
stant if symbols are characters or integers, say. However, if the symbols of A
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and B are really lines of text, then steps take an amount of time that depends
on the average length of a line of text.

Having computed PLACES(a) for each symbol a that occurs in string A.
we are ready to find an LCS. To simplify matters, we shall only show how to
find the length of the LCS, leaving the actual construction of the LCS as an

exercise. The algorithm considers each b}, for j = l, 2, . . . ,m, in turn.
After considering bi, we need to know, for each 1' between 0 and n, the length
of the LCS of strings a. ' - - a,- and bi ‘ ‘ -bj.

We shall group values of i into sets S,“ for k = 0, l, . . . ,n, where Sh

consists of all those integers i such that the LCS of a] - ' ~42,- and b1 ‘ ' - I),-
has length k. Note that S,‘ will always be a set of consecutive integers, and
the integers in SH] are larger than those in St, for all k.

Example 5.8. Consider Fig. 5.28, with j = 5. If we try to match zero sym-
bols from the first string with the first five symbols of the second (24312), we
naturally have an LCS of length 0, so 0 is in So. If we use the first symbol
from the first string, we can obtain an LCS of length l, and if we use the first
two symbols, 12, we can obtain an LCS of length 2. However, using l23, the
first three symbols, still gives us an LCS of length 2 when matched against
24312. Proceeding in this manner, we discover S0 = {0}, S, = {l}, 82 = {2,
3}, S3 = {4, 5, 6}, and S4 = {7}. 3

Suppose that we have computed the Sk‘s for position j—l of the second

string and we wish to modify them to apply to position j. We consider the set

PLACESMJ»). For each r in PLACES(bj), we consider whether we can
improve some of the LCS's by adding the match between a, and b; to the LCS

 

of a. - - ‘ ab, and b1 - . -bj. That is, if both r—l and r are in St, then all

s a- r in S, really belong in S“, when b, is considered. To see this we
observe that we can obtain k matches between a; ' - - a,_. and b, ‘ . - bj—h to
which we add a match between a, and bi. We can modify Sp, and St“ by the
following steps.

1. FIND(r) to get Si.

2. If FIND(r-l) is not Sk, then no benefit can he had by matching b,- with
a,. Skip the remaining steps and do not modify 5,, or SH].

3. if FIND(r-l) = Sk, apply SPLIT(S,{, Sk, S,;, r) to separate from 5,, those
members greater than or equal to r.

4. MERGELS‘L, SH“ St“) to move these elements into SH].

It is important to consider the members of PLACES(bJ-) largest first. To
see why, suppose for example that 7 and 9 are in PLACES(bJ-), and before b,-
is considered, S3={6, 7, 8, 9} and S4={]0, ll}.

If we consider 7 before 9, we split 53 into S; = {6} and S3; = {7, 8, 9},
then make S4 = {7, 8, 9, 10, 11}. If we then consider 9, we split 54 into
S4={7, 8} and 5:. = {9, 10, 1]}, then merge 9, 10 and ll into 55. We have
thus moved 9 from S3 to 55 by considering only one more position in the
second string, representing an impossibility. Intuitively, what has happened is

that we have erroneously matched b}- against both :17 and a9 in creating an
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imaginary LCS of length 5.
In Fig. 5.29. we see a sketch of the algorithm that maintains the sets Sk as

we scan the second string. To determine the length of an LCS, we need only
execute FIND(n) at the end.

procedure LCS;
begin

(I) initialize So = {0, l, . . . ,n} and S; = Q forl' = 1,2, . . . ,n;

(2) forj := I to n do ( compute Sk’s for position j }

(3) for r in PLACES(bJ-), largest first do begin
(4) k := FIND(r);

(5) it‘k = FlND(r—l) then begin { r is not smallest in Sk }

(6) SPLIT(SE, 2% 3;, r);
(7) MERGE(Sh Sm- SH I)

end
end

end; { LCS}

Fig. 5.29. Sketch of longest common subsequence program.

Time Analysis of the LCS Algorithm

As we mentioned earlier, the algorithm of Fig. 5.29 is a useful approach only
if there are not too many matches between symbols of the two strings. The
measure of the number of matches is

m

p = 2 iPLACES(bj)|j=l

where lPLACES(bJ-)l denotes’ the number of elements in set PLACESUJj). in
other words, p is the sum over all bj of the number of positions in the first
string that match bf. Recall that in our discussion of file comparison, we
expect p to he of the same order as m and' n, the lengths of the two strings
(files).

It turns out that the 2-3 tree is a good structure for the sets Si, We can
initialize these sets, as in line (1) of Fig. 5.29, in 0(a) steps. The FIND
operation requires an array to serve as a mapping from positions r to the leaf
for r and also requires pointers to parents in the 2-3 tree. The name of the
set, i.e., k for St, can be kept at the root, so we can execute FIND in 0(logn)
steps by following parent pointers until we reach the root. Thus all executions
of lines (4) and (5) together take 0(plogn) time, since those lines are each
executed exactly once for each match found.

The MERGE operation of line (5) has the special property that every
member of S; is lower than every member of St“. and we can take advantage
of this fact when using 2—3 trees for an impiementationi To begin the

T Strictly speaking we should use a different name for the MERGE operation, as the im-
plementation we propose will not work to compute the arbitrary union of disjoint sets.
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MERGE, place the 2-3 tree for 5,; to the left of that for SH]. If both are of
the same height, create a new root with the roots of the two trees as children.
if S; is shorter, insert the root of that tree as the leftmost child of the leftmost
node of S“; at the appropriate level. If this node now has four children, we
modify the tree exactly as in the INSERT procedure of Fig. 5.20. An exam-
ple is shown in Fig. 5.30. Similarly, if 5H1 is shorter, make its root the right-
most child of the rightmost node of 3,; at the appropriate level.

6 7 8 9 10 1112 I3 14 6 7 8 9 10 1112 l3 l4

5;; Sk +1 Sk+1

(a) Before restructuring (b) After restructuring

Fig. 5.30. Example of MERGE.

The SPLIT operation at r requires that we travel up the tree from leaf r,
duplicating every interior node along the path and giving one copy to each of
the two resulting trees. Nodes with no children are eliminated, and nodes

with one child are removed and have that child inserted into the proper tree at
the proper level.

Example 5.9. Suppose we split the tree of Fig. 5.30(b) at node 9. The two
trees, with duplicated nodes, are shown in Fig. 5.31(a). On the left, the
parent of 8 has only one child, so 8 becomes a child of the parent of 6 and 7.
This parent now has three children, so all is as it should be; if it had four chil-
dren, a new node would have been created and inserted into the tree. We

need only eliminate nodes with zero children (the old parent of 8) and the
chain of nodes with one child leading to the root. The parent of 6, 7, and 8
becomes the new root, as shown in Fig. S.3l(b). Similarly, in the right-hand
tree, 9 becomes a sibling of 10 and 1!, and unnecessary nodes are eliminated,
as is also shown in Fig. 5.3l(b). D

while keeping the elements sorted so operations like SPLIT and FIND can be performed.
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I
678 91011121314

(21) Split trees.

678

Fig. 5.3]. An example of SPLIT.

9 l0111213l4

(b) Result of repairs.

If we do the splitting and reorganization of the 2-3 tree bottom up, it can
be shown by consideration of a large number of cases that 0(iogn) steps suf-
fices. Thus, the total time spent in lines (6) and (7) of Fig. 5.29 is 0(plogn),
and hence the entire algorithm takes 0(plog n) steps. We must add in the
preprocessing time needed to compute and sort PLACES(a) for symbols a.
As we mentioned, if the symbols 0 are “large" objects, this time can be much

greater than any other part of the algorithm. As we shall see in Chapter 8, if
the symbols can be manipulated and compared in single “steps," then
0(nlogn) time suffices to sort the first string alaz - - -a,, (actually, to sort
objects (1’, an) on the second field), whereupon PLACES(a) can be read off
from this list in 0(n) time. Thus, the length of the LCS can be computed in
0(max(n, p) logn) time which, since p 2 11 is normal. can be taken as
0(p logn).

78

A



79

EXERCISES 195

Exercises

5.1

5.2

5.3

5.5

5.7

5.8

5.9

5.10

5.11

Draw all possible binary search trees containing the four elements 1,
2, 3, 4.

Insert the integers 7. 2, 9, 0, 5, 6, 8, 1 into a binary search tree by
repeated application of the procedure INSERT of Fig. 5.3.

Show the result of deleting 7, then 2 from the final tree of Exercise
5.2.

When deleting two elements from a binary search tree using the pro-
cedure of Fig. 5.5, does the final tree ever depend on the order in
which : or: delete them?

We wish to keep track of all 5-character substrings that occur in a
given string, using a trie. Show the trie that results when we insert
the 14 substrings of length five of the string ABCDABACDEBA—
CADEBA.

To implement Exercise 5.5, we could keep a pointer at each leaf,
which. say. represents string abode, to the interior node representing

the suffix bcde. That way, if the next symbol, say f , is received, we
don't have to insert all of bcdef , starting at the root. Furthermore,
having seen abode, we may as well create nodes for bcde. cde, tie,
and 9, since we shall, unless the sequence ends abruptly, need those
nodes eventually. Modify the trie data structure to maintain such
pointers, and modify the trie insertion algorithm to take advantage of
this data structure.

Show the 2-3 tree that results if we insert into an empty set.
represented as a 2-3 tree, the elements 5, 2, 7, 0, 3, 4, 6. l, 8, 9.

Show the result of deleting 3 from the 2—3 tree that results from Exer—
cise 5.7.

Show the successive values of the various Sf’s when implementing the

LCS algorithm of Fig. 5.29 with first string abacabada, and second
string bdbacbad .

Suppose we use 2-3 trees to implement the MERGE and SPLIT opera-
tions as in Section 5.6.

a) Show the result of splitting the tree of Exercise 5.7 at 6.

b) Merge the tree of Exercise 5.7 with the tree consisting of leaves
for elements 10 and ll.

Some of the structures discussed in this chapter can be modified easily
to support the MAPPING ADT. Write procedures MAKENULL,
ASSIGN. and COMPUTE to operate on the following data structures.

a) Binary search trees. The ”<" ordering applies to domain ele-
ments.
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5.14

$5.15

*5.16
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*5.18

5.19

:«5.20

ADVANCED SET REPRESENTATION METHODS

b) 2—3 trees. At interior nodes, place only the key field of domain
elements.

Show that in any subtree of a binary search tree, the minimum ele-
ment is at a node without a left child.

Use Exercise 5.12 to produce a nonrecursive version of DELETE-
MIN.

Write procedures ASSlGN, VALUEOF, MAKENULL and GETNEW
for trie nodes represented as lists of cells.

How do the trio (list of cells implementation), the open hash table,
and the binary search tree compare for speed and for space utilization
when elements are strings of up to ten characters?

If elements of a set are ordered by a “<" relation. then we can keep
one or two elements (not just their keys) at interior nodes of a 2-3
tree, and we then do not have to keep these elements at the leaves.
Write INSERT and DELETE procedures for 2-3 trees of this type.

Another modification we could make to 2-3 trees is to keep only keys
at interior nodes, but do not require that the keys k. and k; at a node

truly be the minimum keys of the second and third subtrees, just that
all keys k of the third subtree satisfy k 2 k2, all keys k of the second
satisfy k, s k < kg, and all keys k of the first satisfy k < kl.

a) How does this convention simplify the DELETE operation?

In) Which of the dictionary and mapping operations are made more

complicated or less efficient?

Another data structure that supports dictionaries with the MIN opera-
tion is the AVL tree (named for the inventors” initials) or

height-balanced tree. These trees are binary search trees in which

the heights of two siblings are not permitted to differ by more than
one. Write procedures to implement INSERT and DELETE. while
maintaining the AVL-tree property.

Write the Pascal program for procedure delete! of Fig. 5.21.

A finite automaton consists of a set of states, which we shall take to
be the integers i..n and a table transitionflstate, input] giving a
next state for each state and each input character. For our purposes,

we shall assume that the input is always either 0 or 1. Further, cer-
tain of the states are designated accepting states. For our purposes,
we shall assume that all and only the even numbered states are
accepting. Two states p and q are equivalent if either they are the
same state. or (i) they are both accepting or both nonaccepting, (ii) on
input 0 they transfer to equivalent states, and (iii) on input 1 they
transfer to equivalent states. Intuitively, equivalent states behave the
same on all sequences of inputs; either both or neither lead to accept-

ing states. Write a program using the MFSET operations that com-
putes the sets of equivalent states of a given finite automaton.
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EXERCISES [97

“5.21 In the tree implementation of MFSET:

a) Show that 0(nlogn) time is needed for certain lists of n opera-
tions if path compression is used but larger trees are permitted to
be merged into smaller ones.

b) Show that 0(na(n)) is the worst case running time for n opera-
tions if path compression is used, and the smaller tree is always
merged into the larger.

5.22 Select a data structure and write a program to compute PLACES
(defined in Section 5.6) in average time 0(a) for strings of length n.

*5.23 Modify the LCS procedure of Fig. 5.29 to compute the LCS. not just
its length.

*5.24 Write a detailed SPLIT procedure to work on 2-3 trees.

*5.25 If elements of a set represented by a 2-3 tree consist only of a key
field, an element whose key appears at an interior node need not

appear at a leaf. Rewrite the dictionary operations to take advantage
of this fact and avoid storing any element at two different nodes.
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CHAPTER 10

Algorithm._‘_j

Design

Techniques ' I

Over the years computer scientists have identified a number of general tech-

niques that often yield effective algorithms in solving large classes of prob-
lems. This chapter presents some of the more important techniques, such as

divide-and-conquer, dynamic programming, greedy techniques, backtracking,
and local search. In trying to devise an algorithm to solve a gix problem, it
is often useful to ask a question such as “What kind of solution does divide-
and—conquer, dynamic programming, a greedy approach, or some other stan-
dard technique yield?"

It should be emphasized, however, that there are problems, such as the
NP—complete problems, for which these or any other known techniques will .'
not produce efficient solutions. When such a problem is encountered, it is
often useful to determine if the inputs to the problem have special characteris-
tics that could be exploited in trying to devise a solution, or if an easily found
approximate solution could be used in place of the difficult-to—compute exact
solution.

10.1 Divide-and-Conquer Algorithms

Perhaps the most important, and most widely applicable, technique for design-

ing efficient algorithms is a strategy called “divide—and-conquer.” It consists
of breaking a problem of size n into smaller problems in such a way that from
solutions to the smaller problems we can easily construct a solution to the
entire probiem. We have already seen a number of applications of this tech-
nique, such as mergesort or binary search trees.

To illustrate the method consider the familiar “towers of Hanoi” puzzle.
it consists of three pegs A, B‘, and C. Initially peg A has on it some number
of disks, starting with the largest one on the bottom and successively smaller
ones on top, as shown in Fig. 10.1. The object of the puzzle is to move the
disks one at a time from peg to peg, never placing a larger disk on t0p of a

smaller one, eventually ending with all disks on peg B. _
One soon learns that the puzzle can be solved by the following simple

algorithm. Imagine the pegs arranged in a triangle. On odd-numbered
moves, move the smallest disk one peg clockwise. On even-numbered moves

82

 



83

 

10.1 DIVIDE-AND-CONQUER ALGORITHMS 307

Fig. 10.]. initial position in towers of Hanoi puzzle.

make the only legal move not involving the smallest disk.
The above algorithm is concise, and correct, but it is hard to understand

why it works, and hard to invent on the spur of the moment. Consider
instead the following divide-and-conquer approach. The problem of moving
the rt smallest disks from A to B can be thought of as consisting of two sub-

problems of size n-l. First move the "“1 smallest disks from peg A to peg
C, exposing the rim smallest disk on peg A. Move that disk from A to B.
Then move the 11—1 smallest disks from C to B. Moving the n-l smallest

disks is accomplished by a recursive application of the method. As the n disks
involved in the moves are smaller than any other disks. we need not concern

ourselves with what is below them on pegs A, B, or C. Although the actual
movement of individual disks is not obvious, and hand simulation is hard

because of the stacking of recursive calls, the algorithm is conceptually simple
to understand, to prove correct and, we would like to think, to invent in the

first place. It is probably the ease of discovery of divide-and-conquer algo—
rithms that makes the technique so important, although in many cases the
algorithms are also more efficient than more conventional ones?

The Problem of Multiplying Long Integers

Consider the problem of multiplying two n-bit integers X and Y. Recall that

the algorithm for multiplication of 21-bit (or n—digit) integers usually taught in
elementary school involves computing n partial products of size n and thus is

an 0012) algorithm, if we count single bit or digit multiplications and addi-
tions as one step. One divide-and—conquer approach to integer multiplication
would break each of X and Y into two integers of n/2 bits each as shown in

1' in the towers of Hanoi case, the divideaand-conquer algorithm is really the same as the
one given initially.
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Fig. 10.2. (For simplicity we assume n is a power of 2 here.)

Fig. 10.2. Breaking n-bit integers into 321-bit pieces.

The product of X and Y can now be written

XY = AC2" + (AD-t-BC) 2*"2 + an ' (10.1)

If we evaluate XY in this straightforward way, we have to perform four multi-

plications of (n/2)-bit integers (AC , AD, BC, and BD), three additions of
integers with at most 2n bits (corresponding to the three + signs in (10.1)),
and two shifts (multiplication by 2” and 2"”). As these additions and shifts
take 0(n) steps, we can write the following recurrence for T(n), the total
number of bit operations needed to multiply unbit integers according to (10.1).

T(l) = 1

T(n) = 4T(m‘2} + on (10.2)

Using reasoning like that in Example 9.4, we can take the constant c in (10.2)
to be 1. so the driving function d(n) is just n, and then deduce that the homo—

geneous and particular solutions are both 0(n2).
In the case that formula (10.1) is used to multiply integers, the asymptotic

efficiency is thus no greater than for the elementary school method. But
recall that for equations like (10.2) we get an asymptotic improvement if we
decrease the number of subproblems. It may be a surprise that we can do so,
but consider the following formula for multiplying X by Y.

XY = AC2” + [(A -H)(D—C) + AC + BDIZ'”2 + BD (10.3)

Although (10.3) looks more complicated than (10.l) it requires only three
multiplications of (n/2)-bit integers, AC, BD, and (A-B)(D-C), six additions
or subtractions, and two shifts. Since all but the multiplications take 0(n)

steps, the time T(n) to multiply n-bit integers by (10.3) is given by

TU) = 1

T(n) = 3T(nl2) + on

whose solution is T(n) = 00110313) = 0(nl'59).
The complete algorithm, including the details implied by the fact that

(10.3) requires multiplication of negative, as well as positive, (n/2)-bit
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integers, is given in Fig. 10.3. Note that lines (8)-—(ll) are performed by
copying bits, and the multiplication by 2" and 2",2 in line (16) by shifting.

’Also, the muitiplication by s in line (16) simply introduces the proper sign
into the result.

function mult ( X, Y, n: integer ): integer;
{X and Y are signed integers S 2".

n is a power of 2. The function returns XY}var

s: integer; {holds the sign of XY }

ml, m2, m3: integer; { hold the three products }
A, B, C, D: integer; { hold left and right halves ofX and Y}

begin
(I) ' s := sign(X) * sign(Y);
(2) X := abs(X);

(3) Y := abstY); { make X and Y positive }
(4) ifn = 1 then

(5) if (X = l) and (Y = i) then
(6) return (s)

else

(7) return (0)

else begin
(8) A :3 left 11/2 bits of X;

(9) B := right n/2 bits of X;
(10) C := left n/2 bits of Y;

(11) D := right n/Z bits of Y;
(13) ml := mult(A, C, Nil);
(14) m2 := mult(A —B, D—C, n/Z);
(15) m3 := mult(B, 1), 11/2);

(16) return (5' =1: (ml*2" + (ml + m2 + m3) =1= 2’”2 + m3))
end

end; { mid: )

Fig. 19.3. Divide-and-conquer integer multiplication algorithm.

Observe that the divide-and-conquer algorithm of Fig. 10.3 is asymptoti-

cally faster than the method taught in elementary school, taking 0011'”) steps
against 0012). We may thus raise the question: if this algorithm is so superior
why don‘t we teach it in elementary school? There are two answers. First,
while easy to implement on a computer, the description of the algorithm is
sufficiently complex that if we attempted to teach it in elementary school stu-
dents would not learn to multiply. Furthermore, we have ignored constants of
proportionality. While procedure mull of Fig. 10.3 is asymptotically superior
to the usual method, the constants are such that for small problems (actually
up to about 500 bits) the elementary school method is superior, and We rarely
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ask elementary school children to multiply such numbers.

Constructing Tennis Tournaments

The technique of divide-and-conquer has widespread applicability, not only in
algorithm design but in designing circuits, constructing mathematical proofs
and in other walks of life. We give one example as an illustration. Consider

the design of a round robin tennis tournament schedule, for n = 2" players.
Each player must play every other player, and each player must play one
match per day for n-l days, the minimum number of days needed to com-
plete the tournament.

The tournament schedule is thus an n row by n—l column table whose

entry in row i and column j is the player i must contend with on the j'h day.
The divide-and-conquer approach constructs a schedule for one-half of the

players. This schedule is designed by a recursive application of the algorithm
by finding a schedule for one half of these players and so on. When We get
down to two players, we have the base case and we simply pair them up.

Suppose there are eight players. The schedule for players 1 through 4 fills
the upper left corner (4 rows by 3 columns) of the schedule being constructed.
The lower left corner (4 rows by 3 columns) of the schedule must pit the high
numbered players (5 through 8) against one another. This subschedule is
obtained by adding 4 to each entry in the upper left.

We have now simplified the problem. All that remains is to have lower—

numbered players play high-numbered players. This is easily accomplished by
having players I through 4 play 5 through 8 respectively on day 4 and cycli-
cally permuting 5 through 8 on subsequent days. The process is illustrated in
Fig. 10.4. The reader should now be able to generalize the ideas of this fig-

ure to provide a schedule for 2* players for any k.

Balancing Subprnblems

In designing algorithms one is always faced with various trade-offs. One rule

that has emerged is that it is generally advantageous to balance competing
costs wherever possible. For example in Chapter 5 we saw that the 2-3 tree
balanced the costs of searching with those of inserting, while more straightfor»

ward methods take 0(n) steps either for each lookup or for each insertion,
even though the other operation can be done in a constant number of steps.

Similarly, for divide-and-ccmquer algorithms, we are generally better off if

the subproblems are of approximately equal size. For example, insertion sort
can be viewed as partitioning a problem into two subproblems, one of size 1
and one of size 11—1, with a maximum cost of :1 steps to merge. This gives a
recurrence

Too = 7(1) + T(n-1) + n-

which has an 0(n2) solution. Mergesort, on the other hand, partitions the
problems into two subproblems each of size 11/2 and has 0(nlogn) perfor-

mance. As'a general principle, we often find that partitioning a problem into
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Fig. 10.4. A round-robin tournament for eight players.

equal or nearly equal subproblems is a crucial factor in obtaining good perfor-
manee.

[0.2 Dynamic Programming

Often there is no way to divide a problem into a small number of subproblems
whose solution can be combined to solve the original problem. In such cases
we may attempt to divide the problem into as many subproblems as necessary,
divide each subproblem into smaller subproblems and so on. If this is all we
do, we shall likely wind up with an exponential-time algorithm.

Frequently, however, there are only a polynomial number of subproblems,
and thus we must be solving some subproblem many times. If instead we
keep track of the solution to each subproblem solved, and simply look up the
answer when needed, we would obtain a polynomial-time algorithm.

It is sometimes simpler from an implementation point of view to create a
table of the solutions to all the subproblems we might ever have to solve. We
fill in the table without regard to whether or not a particular subproblem is
actually needed in the overall solution. The filiing-in of a table of subprob—
lems to get a solution to a given problem has been termed dynamic program-
ming, a name that comes from control theory.

The form of a dynamic programming algorithm may vary, but there is the
common theme of a table to fill and an order in which the entries are to be

filled. We shall illustrate the techniques by two examples, calculating odds on
a match like the World Series, and the “triangulation problem."
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World Series Odds

Suppose two teams, A and B, are playing a match to see who is the first to
win n games for same particular :1. The World Series is such a match‘, with
n = 4. We may suppose that A and B are equally competent, so each has a
50% chance of winning any particular game. Let PU, j) be the probability
that if A needs 1' games to win, and B needs j games, that A will eventually
win the match. For example, in the World Series, if the Dodgers have won
two games and the Yankees one, then i = 2, j = 3, and P(2, 3), we shall dis—
cover, is 11/16.

To compute P(i, j), we can use a recurrence equation in two variables.
First, if 1': 0 and j> 0, then team A has won the match already, so
P(0, j) = 1. Similarly, Hi, 0) = 0 for i > 0. If i and j are both greater
than 0, at least one more game must be played, and the two teams each win
half the time. Thus, P(i, j) must be the average of P(i— l, j) and P(i, j— 1),
the first of these being the probability A will win the match if it wins the next
game and the second being the probability A wins the match even though it
loses the next game. To summarize:

P(i,j)=1ifi=0andj>0

=0 ifi>0andj=0

= (PU-l, j) + P(I', j- 1))l2 ifi > 0 andj > 0 (10.4)

If we use (10.4) recursively as a function, we can show that P(i, j) takes
no more than time O(2‘+’). Let T(n) be the maximum time taken by a call to
P(i, j), where i+j = n. Then from (10.4),

T(l) = c

T(n) = 2T(n-l)+d

for some constants c and d. The reader may check by the means discussed in

the previous chapter that T01) S 2"‘lc + (2"“l-l)d, which is 0(2") or
0(2‘“). .

We have thus proven an exponential upper bound on the time taken by
the recursive computation of P(i, j). However, to convince ourselves that the

recursive formula for P(i, j) is a bad way to compute it, we need to get a
big-omega lower bound. We leave it as an exercise to show that when we call

P(t', j), the total number of calls to P that gets made is (ll-1.3"), the number of
ways to choose i things out of i+ '. If i = j, that number is (MT/Vii), where
n = i+j. Thus, T(n) is 0(2"/ n), and in fact, we can show it is 0(2”/'\/:_2)
also. While TIN/H grows asymptotically more slowly than 2", the difference
is not great, and T(n) grows far too fast for the recursive calculation of P(i, j)
to be practical.

The problem with the recursive calculation is that we wind up computing
the same P(i, j) repeatedly. For example, if we want to compute P(2, 3), we
compute, by (10.4), HI, 3) and P(2, 2). P(l, 3) and P(2, 2) both require
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  the computation of PU, 2), so we compute that value twice.
A better way to compute P(i, j) is to fill in the table suggested by Fig.

10.5. The bottom row is all 0’s and the rightmost column all 1’s by the first
two lines of (10.4). By the last line of (10.4), each other entry is the average
of the entry below it and the entry to the right. Thus, an appropriate way to
fill in the table is to proceed in diagonals beginning at the lower right corner,
and proceeding up and to the left along diagonais representing entries with a
constant value of i+j, as suggested in Fig. 10.6. This program is given in
Fig. 10.7, assuming it works on a two-dimensional array P of suitable size.   
 

  
 

 
 

 

1 4

3 r
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4 3 2 l 0
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Fig. 10.5. Table of odds.

A

Fig. 10.6. Pattern of computation.

The analysis of function add: is easy. The loop of lines (4)—(5) takes
0(5) time, and that dominates the 0(1) time for lines (2)—(3). Thus, theH

outer loop takes time C(23) or 0022), where i+j = n. Thus dynamic pro-.r=l
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function odds ( i, j: integer ) : real;
var

s, k: integer;
begin

(1) for r := 1 tot + j do begin
{ compute diagonal of entries whose indices sum to s }

(2) P[0, r] := 1.0;
(3) P[s, 0] := 0.0;
(4) fork:=1tos—ido
(5) P[k, s—k] := (P[k-1, 5-1:] + P[k, s—k-l])/2.0

end;

(6) return (PH, j])
end; { odds }

Fig. 10.7. Odds calculation.

gramming takes 0012) time, compared with 0(2"/\/;) for the straightforward
approach. Since WWW grOWS wildly faster than n2, we would prefer dynamic
programming to the recursive approach under essentially any circumstances.

The Triangulation Problem

As another example of dynamic programming, consider the problem of tri-
angularing a polygon. We are given the vertices of a polygon and a distance
measure between each pair of vertices. The distance may be the ordinary
(Euclidean) distance in the plane, or it may be an arbitrary cost function given
by a table. The problem is to select a set of chords (lines between nonadja-

cent vertices) such that no two chords cross each other, and the entire polygon
is divided into triangles. The total length (distance between endpoints) of the
chords selected must be a minimum. We call such a set of chords a minimal

triangulation.

Example 10.1. Figure 10.8 shows a seven-sided polygon and the (x, y) coor-
dinates of its vertices. The distance function is the ordinary Euclidean dis-

tance. A triangulation, which happens not to be minimal, is shown by dashed
lines. lts cost is the sum of the Ian ths of the chords v0, V2)z 1v“, v3),
(v0, v5), and (v3, v5), or V82+165 + 152+162 + V221+22 + \/71’+142 =
77.56. D

As well as being interesting in its own right, the triangulation problem has
a number of useful applications. For example, Fuchs, Kedem, and Uselton
[1977] used a generalization of the triangulation problem for the following
purpose. Consider the problem of shading a two—dimensional picture of an
object whose surface is defined by a collection of points in 3-space. The light
source comes from a given direction“, and the brightness of a point on the sur-
face depends on the angles between the direction of light, the direction of the
viewer's eye, and a perpendicular to the surface at that point. To estimate the

direction of the surface at a point, we can compute a minimum triangulation
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Fig. 10.8. A heptagon and a triangulation.

of the points defining the surface.
Each triangle defines a plane in a 3-space, and since a minimum triangula—

tion was found, the triangles are expected to be very small. It is easy to find
the direction of a perpendicular to a plane, so We can compute the light inten-
sity for the points of each triangle, on the assumption that the surface can be
treated as a triangular plane in a given region. If the triangles are not suffi-
ciently small to make the light intensity look smooth, then local averaging can

improve the picture.
Before proceeding with the dynamic programming solution to the triangu-

lation problem, let us state two observations about triangulations that will help
us design the algorithm. Throughout we assume we have a polygon with n
vertices v0, v1, . . . ,v,,_1, in clockwise order.

Fact 1. In any triangulation of a polygon with more than three vertices, every
pair of adjacent vertices is touched by at least one chord. To see this, suppose
neither v,- nor v,-+,T were touched by a chord. Then the region that edge
(vi, vi“) bounds would have to include edges (v;_,, v;), (v,-+1, 12,-”) and at
least one additional edge. This region then would not be a triangle.

Fact 2. If (v,», vj) is a chord in a triangulation, then there must be some vk

T In whal follows, we take all subscripts to be computed modulo n. Thus, in Fig. 10.8, v,
and v”. could be v5 and v0, respectively, since :1 = 7.
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such that (vi, vk) and {vb vj) are each either edges of the polygon or chords.

Otherwise, (vi, vj) Would bound 3 region that was not a triangle.
To begin searching for a minimum triangulation, we pick two adjacent

vertices, say v0 and v1. By the two facts we know that in any triangulation,
and therefore in the minimum triangulation, there must be a vertex vk such
that (11,, vk) and (vk, we) are chords or edges in the triangulation. We must

therefore consider how good a triangulation we can find after selecting each
possible value for k. If the polygon has n vertices, there are a total of (rt—2)
choices to make.

Each choice of It leads to at most two subproblems, which we define to be
polygons formed by one chord and the edges in the original polygon from one
end of the chord to the other. For example, Fig. 10.9 shows the two subprob-
lems that result if we select the vertex v3.

 
0 (a)

Fig. 10.9. The two subproblems after selecting v3.

Next, we must find minimum triangulations for the polygons of Fig.
10.9(a) and (b). Our first instinct is that we must again consider all chords

emanating from two adjacent vertices. For example, in solving Fig. 10.9(b),
we might consider choosing chord (v3, v5), which leaves subproblem
(v0, v3, v5, v6), a polygon two of whose sides, (v0, v3) and (V3, v5). are chords

of the original polygon. This approach leads to an exponential-time algo-
rithm.

However, by considering the triangle that involves the chord (v0, vk) we
never have to consider polygons more than one of whose sides are chords of

the original polygon. Fact 2 tells us that, in the minimal triangulation, the
chord in the subproblem, such as (v0, V3) in Fig. 10.9(b), must make a trian-
gle with one of the other vertices. For example, if we select v4, we get the
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triangle (v0, v3, v4) and the subproblem (v9, v4, v5, v5) which has only one
chord of the original polygon. If we try vs. we get the subproblems
(v3, V4, v5) and (v0, v5, v6), with chords (v3, v5) and (v0, us) only.

In general, define the subprobiem of size 5 beginning at vertex v,-, denoted
Sb, to be the minimal triangulation problem for the polygon formed by the 5

vertices beginning at v,- and proceeding clockwise, that is, v,-, vi“, . . . ,v,-H_l.
The chord in Sr: is (v,-, v,»+s_.). For example, Fig. 10.9(a) is S04 and Fig.
10.90)) is S35. To solve Sis we must consider the following three options.

1. We may pick vertex v,-+s_2 to make a triangle with the chords (vi, v,-+5_l)
and Whig-+1-2) and third side (v,-+,_2, v,»+,..,), and then solve the sub-

problem SH”.

2. We may pick vertex v”, to make a triangle with the chords (vi, VHF.)
and (lg-+1, V141-” and third side (vi, v,+.), and then solve the subproblem
Si+l.s-l-

3. For some k between 2 and 3—3 we may pick vertex v,-+,c and form a trian-

gle with sides (vi, vi“), (Vtht. viflnl), and (vi‘ v,-+,_l) and then solve sub-
probiems Sh“, and Sum—k-

If we remember that “solving" any subproblem of size three or less
requires no action, we can summarize (l)-(3) by saying that we pick some 1:
between 1 and s—Z and solve subproblerns SM“ and Slump,“ Figure 10.10
illustrates this division into subproblems.

Fig. 10.10. Division of Sr: into subproblems.

If we use the obvious recursive algorithm implied by the above rules to
solve subproblems of size four or more, then it is possible to show that each
call on a subproblem of size 3 gives rise to a total of 3"" recursive calls, if we

“solve" subproblems of size three or less directly and count only calls on
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subproblems of size four or more. Thus the number of subproblems to be
solved is exponential in .9. Since our initial problem is of size n, where n is the
number of vertices in the given polygon, the total number of steps performed
by this recursive procedure is exponential in n.

Yet something is clearly wrong in this analysis, because we know that
besides the original problem, there are only HUI-4) different subproblems
that ever need to be solved. They are represented by S“, where 0 S i' < n
and 4 S s < n. Evidently not all the subproblems solved by the recursive
procedure are different. For example, if in Fig. 10.8 we choose chord
(v0, v3), and then in the subproblem of Fig. 10.9(b) we pick v4, we have to
solve subproblem S44. But We would also have to solve this problem if we
first picked chord (v0, v4}, or if we picked (v1. v4) and then, when solving
subproblem S45, picked vertex v0 to complete a triangle with v, and 124.

This suggests an efficient way to solve the triangulation problem. We
make a table giving the cost Ci, of triangulating Sf, for all i and 5. Since the

solution to any given problem depends only on the solution to» problems of
smaller size, the logical order in which to fill in the table “Mill size order.

That is, for sizes s = 4, 5, . . . ,n-l we fill in the minimumncqst for prob-
lems S”, for all vertices i. It is convenient to include problems of size
0 _<_ s < 4 as well, but remember that S], has cost 0 if s < 4.

By rules (l)—(3) above for finding subproblems, the formula for comput-
ing C}, for s a 4 is:

c. = min [Ci.r+1+ carpi. + 0m, v.0.) + D(v.+t.v.-+.-1i] (10.5)lSkss-Z

where D(vp, vq) is the length of the chord between vertices vp and vq, if vp

and vq are not adjacent points on the polygon; D(vp, vq) is 0 if vp and vq are
adjacent.

Example 10.2. Figure 10.“ holds the table of costs for SL: for 0 S i S 6 and
4 S s s 6, based on the polygon and distances of Fig. l0.8. The costs for the
rows with s < 3 are all zero. We have filled in the entry C07, in column 0
and the row for s = ‘7. This entry, like all in that row, represents the triangu-
lation of the entire polygon. To see that, just notice that we can, if we wish,-
considet the edge (v0, v6) to be a chord of a larger polygon and the polygon
of Fig. 10.8 to be a subproblem of this polygon, which has a series of addi-
tional vertices extending clockwise from v6 to V“. Note that the entire row for
s = 7 has the same value as C07, to within the accuracy of the computation.

Let us, as an example, show how the entry 38.09 in the column for i = 6

and row for s = 5 is filled in. According to (10.5) the value of this entry,
C65, is the minimum of three sums, corresponding to k = l, 2, or 3. These
sums are:

C62 'l' C04 + 00%.. V0} + DWO, V3) .

C63 + C13 + D(V6.V1)+ Divi, V3)

C64 ‘i” C22 + D(V6, V2) ‘l‘ D(V2, V3)
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-75.43

C062 C162 C26: C36: C46: C56: C662
53. 34 55. 22 57. 54 59. 67 59. 78 59. 78 63. 61

C052 C152 C252 C352 C452 C552 C652

37. 54 31. 31 35.45 37. 74 45. 50 39. 98 c.38 09C042 C142 C242 C342 C442 C542
16.16 {6.16 15. 65 15.65 22.09 22.09 C1739

.9 ‘=0 l 2 3 4 5 6

         

Fig. 10.11. Table of C,»_,‘s.

The distances we need are calculated from the coordinates of the vertices as:

D(v2, v3) = D(v5, v0) = 0

(since these are polygon edges, not chords. and are present “for free”)

D(v6, v2) = 26.08

D(v., v3) = 16.16

D(v6, VI} = 22.36

D(v0, v3) = 22.93

The three sums above are 38.09, 38.52, and 43.97, respectively. We may
conclude that the minimum cost of the subprohlem S65 is 38.09. Moreover.
since the first sum was smallest. we know that to achieve this minimum we

must utilize the subproblems $62 and 504, that is, select chord (v0, v3) and
then solve 564 as best we can; chord (v3, v3) is the preferred choice for that
subproblem. 1:]

There is a useful trick for fining out the table of Fig. 10.11 according to

the formula (10.5). Each term of the min operation in (10.5) requires a pair
of entries. The first pair, for k = I. can be found in the table (a) at the “bob

tom” (the row for s = 2H of the column of the element being computed, and
(b) just below and to the righti of the element being computed. The second
pair is (a) next to the bottom of the column. and (b) two positions down and
to the right. Fig. 10.12 shows the two lines of entries we foilow to get all the
pairs 0f entries we need to consider simultaneously. The pattern m up the

 
T Remember that the table of Fig. IO. it has rows of 0‘s betow those shown.
4‘- By “to the right" we mean in the sense of a table that wraps around. Thus, if we are at
the rightmost column, the column “to the right" is the leftmost column.
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column and down the diagonal -— is a common one in filling tables during
dynamic programming.

 
Fig. 10.12. Pattern of table scan to compute one element.

Finding Solutions from the Table

While Fig. _10.ll gives us the cost of the minimum triangulation, it does not
immediately give us the triangulation itself. What We need, for each entry, is
the value of k that produced the minimum in (10.5). Then we can deduce that
the solution consists of chords (v5, 1),”), and (tn-H, VHS-” (unless one of
them is not a chord, because k = l or k = 5—2), plus whatever chords are

implied by the solutions to SM.” and Si+k,s—k- It is useful. when we compute
an element of the table, to include with it the value of k that gave the best
solution.

Example 10.3. In Fig. [0.11, the entry C07, which represents the solution to
the entire problem of Fig. 10.8, comes from the terms for k = 5 in (10.5).
That is, the problem Sm is split into Sm and $52; the former is the problem
with six vertices v0, v;, . . . ,v5, and the latter is a trivial “problem" of cost
0. Thus we introduce the chord (v0, v5) of cost 22.09 and must solve S06.

The minimum cost for C05 comes from the terms for k = 2 in (l0.5).
whereby the problem Sm is split into S03 and 324. The former is the triangle
with vertices v0, v1, and v2, while the latter is the quadrilateral defined by

v2, v3, V4, and vs. Sm need not be solved, but S24 must be, and we must
include the costs of chords (v0, v2) and (v2, v5) which are 17.39 and l9.80,
respectively. We find the minimum value for C24 is assumed when k = l in

(10.5), giving us the subproblems C22 and C33, both of which have size less
than or equal to three and therefore cost 0. The chord (v3, v5) is introduced,
with a cost of 15.65. D '
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Fig. 10.13. A minimal cost triangulation.

19.3 Greedy Algorithms

Consider the problem of making change. Assume coins of values 25¢ (quar-
ter), 10¢ (dime), 5e (nickel) and 1e (penny), and suppose we want to return
63¢ in change. Almost without thinking we convert this amount to two quar-
ters, one dime and three pennies. Not only were we able to determine quickly
a list of coins with the correct value, but we produced the shortest list of coins
with that value.

The algorithm the reader probably used was to select the largest coin
whose value was not greater than 63¢ (a quarter), add it to the list and sub-
tract its value from 63 getting 38¢. We then selected the largest coin whose
value was not greater than 38¢ (another quarter) and added it to the list, and
so on.

This method of making change is a greedy algorithm. At any individual
stage a greedy algorithm selects that option which is “locally optimal" in some
particular sense. Note that the greedy algorithm for making change produces
an overall optimal solution only because of special properties of the coins. If
the coins had values to, 5:25, and lie and we were to make change of 15¢,
the greedy algorithm would first select an 11¢ coin and then four lo coins,
for a total of five coins. However, three 5e coins would suffice.

We have already seen several greedy algorithms, such as Dijkstra’s shor-
test path algorithm and Kruskal’s minimum cost spanning tree algorithm.
Dijkstra’s shortest path aigorithm is “greedy” in the sense that it always
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chooses the closest vertex to the source among those whose shortest path is
not yet known. Kruskal’s algorithm is also “greedy”; it picks from the
remaining edges the shortest among those that do not create a cycle.

We should emphasize that not every greedy approach succeeds in produc-
ing the best result overall. Just as in life, a greedy strategy may produce a

good result for a while, yet the overall result may be poor. As an example,
we might consider what happens when we allow negative-weight edges in
Dijkstra’s and Kruskal’s algorithms. It turns out that Kruskal’s spanning tree
algorithm is not affected; it still produces the minimum cost tree. But
Dijkstra‘s algorithm fails to produce shortest paths in Some cases.

Example 10.4. We see in Fig. 10.14 a graph with a negative cost edge
between b and c. If we apply Dijkstra’s algorithm with source s, we correctly
discover first that the minimum path to a has length 1. Now, considering
only edges from s or a to b or c, we expect that b has the shortest path from
s, namely s .. a T- b, of length 3. We then diseover that c has a shortest path
from s of length l.

 
Fig. 10.14. Graph with negative Weight edge.

However, our “greedy” selection of b before 6 Was wrong from a global
point of view. It turns out that the path s —, 0 ~ c ~ 17 has length only 2, so
our minimum distance of 3 for b was wrong.1' El

Greedy Algorithms as Heuristics

For some problems no known greedy algorithm produces an optimal solution,
yet there are greedy algorithms that can be relied upon to produce “good"
solutions with high probability. Frequently, a suboptimal solution with a ecst

a few percent above optimal is quite satisfactory. in these cases, a greedy
algorithm often provides the fastest way to get a “good" solution. In fact, if
the problem is such that the only way to get an optimal solution is to use an

i“ In fact, we should be careful what we mean by ”shortest path" when there are negative
edges. If we allow negative cost cycles, then we could traverse such a cycle repeatedly to
get arbitrarily large negative distances. so presumably we want to restrict ourselves to acy-
clic paths. I
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exhaustive search technique, then a greedy algorithm or other heuristic for
getting a good, but not necessarily optimal, solution may be our only real
choice.

Example 10.5. Let us introduce a famous problem where the only known
algorithms that produce optimal solutions are of the "try-all-possibilities”
variety and can have running times that are exponential in the size of the
input. The problem, called the traveling salesman problem, or TSP, is to find,
in an undirected graph with weights on the edges, a tour (a simple cycle that
includes all the vertices) the sum of whose edge-weights is a minimum. A

tour is often called a Hamilton (or Hamiltonian) cycle.
Figure 10.1$(a) shows one instance of the traveling salesman problem, a

graph with six tertices (often called “cities”). The coordinates of each vertex
are given, and we take the weight of each edge to be its length. Note that, as
is conventional with the TSP, we assume all edges exist, that is, the graph is

complete. In more general instances, where the weight of edges is not based
on Euclidean distance. we might find a weight of infinity on an edge that
really was not present.

Figure 10.15(b}—(e) shows four tours of the six “cities" of Fig. iO.lS(a).

The reader might ponder which of these four, if any, is optimal. The lengths
of these four tours are 50.00, 49.73, 48.39, and 49.78, respectively; ((1) is the
shortest of all possible tours.

c o(1,7) do (15,7)

6 0 (15,4)
b.(4,3)

a o(0,0} f0 (18.0)

(a) six “cities”

.2—:1F:\

£1241.
Fig. 10.15. An instance of the traveling salesman problem.

The TSP has a number of practical applications. As its name implies, it
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can be used to route a person who must visit a number of points and return to
his starting point. For example, the TSP has been used to route collectors of
coins from pay phones. The vertices are the phones and the “home base."
The cost of each edge is the travel time between the two points in question.

Another “application" of the TSP is in solving the knight's rour problem:
find a sequence of moves whereby a knight can visit each square of the chess-
board exactly once and return to its starting point. Let the vertices be the

chessboard squares and let the edges betwaen two squares that are a knight’s
move apart have weight 0; all other edges have weight infinity. An optimal
tour has weight 0 and must he a knight‘s tour. Surprisingly, good heuristics
for the TSP have no trouble finding knight’s tours, although finding one ”by
hand” is a challenge. '

The greedy algorithm for the TSP we have in mind is a variant of
Kruskal’s algorithm. Like that algorithm, we shall consider edges shortest
first. In Kruskal's algorithm we accept an edge in its turn if it does not form
a cycle with the edges already accepted, and we reject the edge otherwise.
For the TSP, the acceptance criterion is that an edge under consideration,
together with already selected edges,

1. does not cause a vertex to have degree three or more, and

2. does not form a cycle, unless the number of selected edges equals the
number of vertices in the problem.

Collections of edges selected under these criteria will form a collection of

unconnected paths, until the last step, when the single remaining path is
closed to form a tour. '

In Fig. lO.lS(a), we would first pick edge (d, 6), since it is the shortest,
having length 3. Then we consider edges (b, c), (a, b), and (e, j), all of
which have length 5. It doesn’t matter in which order we consider them; all
meet the conditions for selection, and we must select them if we are to follow

the greedy approach. Next shortest edge is (a, c}, with length 7.08. How-
ever, this edge would form a cycle with (a, b) and (b, c), so we reject it.
Edge (d, f) is next rejected on similar grounds. Edge (b, e) is next to be con-
sidered, but it must be rejected because it would raise the degrees of b and e
to three, and could then never form a tour with what we had selected. Simi-

larly we reject (b, at). Next considered is (c, d), which is accepted. We now
have one path, a ~ (7 - c -. d —» e —~f, and eventually accept (a, f) to complete
the tour. The resulting tour is Fig. 10.1503), which is fourth best of all the

tours, but less than 4% more costly than the optimal. D

10.4 Backtracking

Sometimes we are faced with the task of finding an optimal solution to a prob»
lem, yet there appears to he no applicable theory to help us find the optimum,
except by resorting to exhaustive search. We shall devote this section to a
systematic, exhaustive searching technique called backtracking and a technique
called alpha-beta pruning, which frequently reduces the search substantially.
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Consider a game such as chess, checkers, or tic-tac—toe, where there are
two players. The players alternate moves, and the state of the game can be
represented by a board position. Let us assume that there are a finite number
of board positions and that the game has some sort of stopping rule to ensure
termination. With each such game. we can associate a tree called the game
tree. Each node of the tree represents a board position. With the root we
associate the starting position. If board position x is associated with node n,
then the children of n correspond to the set of allowable moves from board
position x, and with each child is associated the resulting board position. For
example, Fig. 10.16 shows part of the tree for tic-tac-toe.

X moves / \
u 0
- x x

X moves 0
0 o

X X X X X X X

amoves Io on Io0 0 0 O 0 X 0

1 / e1 \ 0| \
xox x x x

Xmoves xlo x-o o.
o o 000 ox

Fig. 10.16. Part of the tic-tac-toe game tree.

The leaves of the tree correspond to board positions where there is no
move, either because one of the players has won or because all squares are
filled and a draw resuited. We associate a value with each node of the tree.
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First we assign values to the leaves. Say the game is tic-tac—toe. Then a leaf
is assigned —1, 0 or 1 depending on whether the board position corresponds
to a loss, draw or win for player i (playing X).

The values are propagated up the tree according to the following rule. If
a node corresponds to a board position where it is player 1’s move. then the
value is the maximum of the values of the children of that node. That is, we

assume player 1 will make the move most favorable to himself i.e., that which
produces the highest-valued outcome, If the node corresponds to player 2’s
move, then the value is the minimum of the values of the children. That is,

we assume player 2 will make his most favorable move, producing a loss for
player 1 if possible, and a draw as next preference.

Example 10.6. The values of the boards have been marked in Fig. 10.16.

The leaves that are wins for 0 get value — 1, while those that are draws get 0,
and wins for X get +1. Then we proceed up the tree. On level 8, where only
one empty square remains, and it is X’s move, the values for the unresolved
boards is the “maximum" of the one child at level 9.

On level 7, where it is 0‘5 move and there are two choices, we take as a
value for an interior node the minimum of the values of its children. The left—

mOSt board shown on level 7 is a leaf and has value 1, because it is a win for

X. The second board on level 7 has value min(0, — 1) = — 1, while the third
board has value min(0, i) = 0. The one board shown at level 6, it being X’s
move on that level, has value max(1, *- 1, 0) = 1, meaning that there is some
choice X can make that will win; in this case the win is immediate. El

Note that if the root has value 1, then player 1 has a winning strategy.
Whenever it is his turn he is guaranteed that he can select a move that leads

to a board position of value 1. Whenever it is player 2's move he has no real

choice but to select a moving leading to a board position of value 1, a loss for
him. The fact that a game is assumed to terminate guarantees an eventual
win for the first player. If the root has value 0, as it does in tic-tac-toe, then
neither player has a winning strategy but can only guarantee himself a draw
by playing as well as possible. if the root has value - 1, then player 2 has a
winning strategy.

Payoff Functions

The idea of a game tree, where nodes have values - l, 0, and i, can be gen-
eralized to trees where leaves are given any number (called the payofi‘) as a
value, and the same rules for evaluating interior nodes applies: take. the max-
imum of the children on those levels where player 1 is to mova, and the
minimum of the children on levels where player 2 moves. /

As an example where general payoffs are useful, consider a complex
game, like chess, where the game tree, though finite, is so huge that evaluat-
ing it from the bottom up is not feasible. Chess programs work, in essence,
by building for each board position from which it must move, the game tree
with that board as root, extending downward for several levels; the exact
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number of levels depends on the speed with which the computer can work.
As most of the leaves of the tree will be ambiguous, neither wins, losses, nor

draws, each program uses a function of board positions that attempts to esti-
mate the probability of the computer winning in that position. For example,
the difference in material figures heavily into such an estimation, as do such
factors as the defensive strength around the kings. By using this payoff func-

tion, the computer can estimate the probabilityiof a win after matting each of
its possible next moves, on the assumption of subsequent best play by each
side, and chose the move with the highest payoff.‘l'

Implementing Backtrack Search

Suppose we are given the rules for a game,i that is, its legal moves and rules
for termination. We wish to construct its game tree and evaluate the root. _

We could construct the tree in the obvious 'way, and then visit the nodes in_
postorder. The postorder traversal assures that we visit an interior noden
after all its children, whereupon we can evaluate n by taking the min or max
of the values of its children, as appropriate.

The space to store the tree can be prohibitively large, but by being careful
we need never store more than one path, from the root to some node, at any
one time. in Fig. [0.17 we see the sketch of a recursive program that
represents the path in the tree by the sequence of active procedure calls at any
time. That program assumes the following:

1. Payoffs are real numbers in a limited range, for example ~—l to +1.

2. The constant 00 is larger than any positive payoff and its negation is
smaller than any negative payoff.

3. The type modetype is declared

type
modetype = (MIN, MAX)

4. There is a type boardtype declared in some manner suitable for the
representation of board positions.

5. There is a function payafi' that computes the payoff for any board that is a
leaf(i.e., won, lost, or drawn position).

’r Incidentally, some of the other things good chessplaying programs do are:
l. Use heuristics to eliminate from consideration certain moves that are unlikely to be good.

This helps expand the tree to more levels in a fixed time.
2. Expand “capture chains". which are sequences of capturing moves beyond the last level to

which the tree is normally expanded. This helps estimate the relative material strength of pn~
sitions more accurately.

3. Prime the tree search by alpha-beta pruning. as discussed later in this section.

i We should not imply that only “games" can be solved in this manner. As we shall see
in subsequent examples, the “game" could really represent the solution to a practical

- problem.
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function search ( B: boardtype; mode: modetype ) : real;
{ evaluates the payoff for board 3, assuming it is

player ['5 move if mode = MAX and player 2’s move
if mode = MIN. Returns the payoff }

var

C: boardtype; { a child of board B }
value: real; { temporary minimum or maximum value }

begin
(i) if B is a leaf then
{2) return (payojflBD

else begin
{ initialize minimum or maximum value of children }

(3) if mode = MAX then
(4) value := ~00

else

(5) value := 00;
(6) for each child C of board B do
(7) if mode = MAX then
(8) value := max(vatue, search(C, MIN»

else

(9) value := min(value, search(C, MAX));
(10) return (value)

end

end; { search }

Fig. 10.17. Recursive backtrack search program.

Another implementation we might consider is to use a nonreéursive pro-
gram that keeps a stack of boards corresponding to the sequence of active calls
to search. The techniques discussed in Section 2.6 can be used to construct
such a program.

Alpha-Beta Pruning

There is a simple observation that allows us to eliminate from consideration
much of a typical game tree. In terms of Fig. 10.17, the for-loop of line (6)
can skip over certain children, often many of the children. Suppose we have a
node n, as in Fig. 10.18, and we have already determined that cl, the first of
11’s children, has a value of 20. As it is a max node, we know its value is at "

least 20. Now suppose that continuing with our search we find that d, a child
of (:2 has value 15. As c2, another child of n, is a min node, we know the
value of c; cannot exceed 15. Thus, whatever value c; has, it cannot affect
the value of n or any parent of n. ' '

It is thus possible in the situation of Fig. 10.18, to skip consideration of
the children of c; that we have not already examined. The general rules for
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Fig. 10.18. Pruning the children of a node.

skipping or “pruning" nodes involves the notion of final and tentative values
for nodes. The final value is what we have simply been calling the “value.” A
tentative value is an upper bound on the value of a min node, or a lower
bound on the value of a max node. The rules for computing final and tenta-
tive values are the following.

 
1. If all the children of a node n have been considered or pruned, make the

tentative value of n final.

2. if a max node n has tentative value v1 and a child with final value v2, then
set the tentative value of n to max(v,, v2). If n is a min node, set its ten-
tative value to min(v1, v2).

3. lfp is a min node with parent (1 (a max node), and p and q have tentative
values v] and v2, respectively, with v1 5 v2, then we may prune all the

unconsidered children ofp. We may also prune the unconsidered children
ofp ifp is a max node (and therefore q is a min node) and v2 5 v1.

Example 10.7. Consider the tree in Fig. 1019. Assuming values for the
._. leaves as shown. we wish to calculate the value for the root. We begin a post-

'_ 'order traversal. After reaching node D, by rule (2) we assign a tentative
value of 2, which is the final value of D, to node C. We then search E and

return to C and then to B. By rule (1), the final value of C is fixed at 2 and

-_the value of B is tentatively set to 2. The search continues down to G and
'then back to F. The value F is tentatively set to 6. By rule (3), with p and q

equal to F and B, respectively, we may prune H. That is, there is no need to
_ '3_search node H. since the tentative value of F can never decrease and it is

' already greater than the value of B, which can never increase.
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max

min

max 
Fig. 10.19. A game tree.

Continuing our example, A is assigned a tentativevalue of 2 and the

search proceeds to K. J is assigned a tentative value of 8. L does not deter-
mine the value of max node J. I is assigned a tentative value of 8. The search
goes down to N, and M is assigned a tentative value of 5. Node 0 must be
searched, since 5, the tentative value of M, is less than the tentative value of
I. The tentative values of! and A are revised, and the search goes down to R.

Eventually R and S are searched, and P is assigned a tentative value of 4. We
need not search T or below, since that can only lower P's value and it is
already too low to affect the value ofA. El

Branch-and-Bound Search ‘

Games are not the only sorts of “problems” that can be solved exhaustively by
searching a complete tree of possibilities. A wide variety of problems where
we are asked to find a minimum or maximum configuration of some sort are

amenable to solution by backtracking search over a tree of all possibilities.
The nodes of the tree can be thought of as sets of configurations, and the chil-
dren of a node n each represent a subset of the configurations that n
represents. Finally, the leaves each represent single configurations, or solu-
tions to the problem, and we may evaluate each such configuration to see if it
is the best solution found so far.

if we are reasonably clever in how we design the search, the children of a
node will each represent far fewer configurations than the node itself, so we
need not go to too great a depth before reaching leaves. Lest this notion oi
searching appear too vague, let us take a concrete example.

Example 10.8. Recall from the previous section our discussion of the
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traveling salesman problem. There we gave a ”greedy algorithm” for finding
a good but not necessarily optimum tour. Now let us consider how we might
find the optimum tour by systematically considering all tours. One way is to
consider all permutations of the nodes, and evaluate the tour that visits the
nodes in that order, remembering the best found so far. The time for such an
approach is 0(rzl) on an )2 node graph, since we must consider (n—l}! dif-
ferent permutationsj and each permutation takes 0(n) time to evaluate.

We shall consider a somewhat different approach that is no better than
the above in the worst case, but on the average, when coupled with a tech-
nique called “branch-and—bound” that we shall discuss shortly, produces the
answer far more rapidly than the “try all permutations” method. Start con-
structing a tree, with a root that represents all tours. Tours are what we
called “configurations" in the prefatory material. Each node has two chil-
dren, and the tours that a node represents are divided by these children into

two groups — those that have a particular edge and those that do not. For
example, Fig. 10.20 shows portions of the tree for the TSP instance from Fig.
10.15(a).

in Fig. 10.20 we have chosen to consider the edges in lexicographic order
(a, b), (a, c), . . . ,(a,f), (b, c), . . . ,(b,fl, (c,d), and so on. We could,

of course pick any other order. Observe that not every node in the tree has
two children. We can eliminate some children because the edges selected do

not form part of a tour. Thus, there is no node for “tours containing
(a, b), (a. c), and (a, (1’),” because a would have degree 3 and the result
would not be a tour. Similarly, as we go down the tree we shall eliminate

some nodes because some city would have degree less than 2. For example,
we shail find no node for tours without (a, b), (a, c), (a, d), or (a, e). 2|

 

Bounding Heuristics Needed for Branch-and-Baund

Using ideas similar to those in alpha—beta pruning, we can eliminate far more
nodes of the search tree than would be suggested by Example 10.8. Suppose,
to be specific, that our problem is to minimize some function, e.g., the cost of

a tour in the TSP. Suppose also that we have a method for getting a lower
bound on the cost of any solution among those in the set of solutions
represented by some node it. If the best solution found so far costs less than
the lower bound for node n, we need not explore any of the nodes below n.

Example 10.9. We shall discuss one way to get a lower bound on certain sets
of solutions for the TSP, those sets represented by nodes in a tree of solutions
as suggested in Fig. 10.20. First of all, suppose we wish a lower bound on all
solutions to a given instance of the TSP. Observe that the cost of any tour
can be expressed as one half the sum over all nodes n of the cost of the two

tour edges adjacent to n, This remark leads to the following rule. The sum

1' Note that we need not consider all nl permutations, since the starting point of a tour is
immaterial. We may therefore consider only those permutations that begin with 1.
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all
tours

tours

without

(a. b) 
  

tours tours

with without

(a, b) not (a, c) (a, b) or (a, c)

tours

with

(a, b) and (a, c)
 

  

tours with tours with tours

(a, b) not (a. c) not without
(a, c) or (a. b} or (a, b), (a, c)
(a, d) (a, d} or (a, d)

tours with

(a, b), (a, c)
not (a. d)

tours with tours with tours with

(a, b) and (a. c) and (a, d) not
(a, d) not (a, d) not (a, b) or
(a. 0) (a. b) (a. 6)

 
Fig. 10.20. Beginning of a solution tree for a TSP instance.

of the two tour edges adjacent to node n is no less than the sum of the two
edges of least cost adjacent to n. Thus, no tour can cost less than one half the
sum over all nodes n of the two lowest cost edges incident upon n.

For example, consider the TSP instance in Fig. [0.21. Unlike the instance
in Fig. 10.15, the distance measure for edges is not Euclidean; that is, it bears

no relation to the distance in the plane between the cities it connects. Such a
cost measure might be traveling time or fare, for example. In this instance,
the least cost edges adjacent to node a are (a, d). and (a, b), with a total cost
of 5. For node b, we have (a, b) and (b, 2), with a total cost of 6. Similarly,

the two lowest cost edges adjacent to c, d, and a, total 8, 7, and 9, respec‘
tively. Our lower bound on the cost of a tour is thus
(5+6+8+7+9)/2 = 17.5.
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Fig. 10.21. An instance of TSP.

Now suppose we want a lower bound on the cost of a subset of tours
defined by some node in the search tree. If the search tree is constructed as
in Example [0.8, each node represents tours defined by a set of edges that
must be in the tour and a set of edges that may not be in the tour. These con-
straints alter our choices for the two lowest-cost edges at each node. Obvi-
ously an edge constrained to be in any tour must be included among the two
edges selected, no matter whether they are or are not lowest or second lowest
in costil‘ Similarly, an edge constrained to be out cannot be selected, even if
its cost is lowest.

Thus, if we are constrained to include edge (a, e), and exclude (b, c),
the two edges for node a are (a, d) and (a, e), with a total cost of 9. For 11
we select (a, b) and (b, e), as before, with a total cost of 6. For c, we can-
not select ((1, c), and so select (a, c) and (c, d), with a total cost of 9. For d
we select (a, d) and (c, d), as before, while for e we must select (a, e), and
choose to select (11, e). The lower bound for these constraints is thus
(9+6+9+7+10)/2 == 20.5. El

Now let us construct the search tree along the lines suggested in Example
10.8. We consider the edges in lexicographic order, as in that example. Each

i The rules for constructing the search tree will be seen to eliminate any set of constraints
that cannot yield any tour. e.g., because three edges adjacent to one node are required to
be in the tour.
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time We branch, by considering the two children of a node, we try to infer
additional decisions regarding which edges must be included or excluded from
tours represented by those nodes. The rules we use for these inference are:

1. If excluding an edge (1:, y) would make it impassible for x or y to have
as many as two adjacent edges in the tour, then (x, y) must be included.

2. If including (1, y) would cause x or y to have more than two edges adja-
cent in the tour, or would complete a non-tour cycle with edges already
included, then (x. y) must be excluded.

When we branch, after making what inferences we can, we compute lower
bounds for both children. If the lower bound for a child is as high or higher
than the lowest cost tour found so far, we can “prune" that child and need
not construct or consider its descendants. Interestingly, there are situations
where the lower bound for a node n is lower than the best solution so far, yet
both children of n can be pruned because their lower bounds exceed the cost
of the best solution so far.

If neither child can be pruned, we shall, as a heuristic, consider the child

with the smaller lower bound first, in the hope of more rapidly reaching a
solution that is cheaper than the one so far found best.’r After considering one
child, we must consider again whether its sibling can be pruned, since a new
best solution may have been found. For the instance of Fig. 10.21. we get the

search tree of Fig. 10.22. To interpret nodes of that tree, it helps to under-
stand that the capital letters are names of the search tree nodes. The numbers
are the lower bounds, and we list the constraints applying to that node but
none of its ancestors by writing xy if edge (I, y) must be included and fy' if
(x, y) must be excluded Also note that the constraints introduced at a node

apply to all its descendants. Thus to get all the constraints applying at a node
we must follow the path from that node to the root.

Lastly, let us remark that as for backtrack search in general, we construct
the tree one node at a time, retaining only one path. as in the recursive algo—
rithm of Fig. 10.17, or its nomecursive counterpart. The nonrecursive version
is probably to be preferred, so that we can maintain the list of constraints con-
veniently on a stack.

Example 10.10. Figure 10.22 shows the search tree for the TSP instance of

Fig. 10.21. To see how it is constructed, We begin at the root A of Fig.

10.22. The first edge in lexicographic order is (a, b), so we c_o_nsider the two
children I! and C, corresponding to the constraints ab and ab, respectively.
There is, as yet, no “best solution so far," so we shall consider both B and C
eventually: Forcing (a , b) to be included does not raise the lower bound, but

T An alternative is to use a heuristic to obtain a good solution using the constraints re-
quired for each child. For example, the reader should be able to modify the greedy TSP
algorithm to respect constraints.
1: We could start with some heuristieally found solution, say the greedy one. although that
would not affect this example. The greedy solution for Fig, 10.21 has cost 7.1.
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excluding it raises the bound to $8.5, since the two cheapest legal edges for
nodes at and 17 new total 6 and 7, respectively, compared with 5 and 6 with no
constraints. Following our heuristic, we shall consider the descendants of
node B first.

The next edge in lexicographic order is (a, c). We thus introduce chil-

dren D and E corresponding to tours where (a, c) is included and excluded,
respectively. In node D, we can infer that neither (a, :1) nor (a, 6) can be in
a tour, else a would have too many edges incident. Following our heuristic
we consider E before D, and branch on edge (a, d). The children F and G
are introduced with [OWer bounds 18 and 23, respectively. For each of these
children we know about three of the edges incident upon a, and so can infer
something about the remaining edge (a, 9}.

Consider the children of F first. The first remaining edge in lexicographic
order is (b, c). If we include (b, c), then, as we have included (a, b), we
cannot include (b, a‘) or (b, e). As we have eliminated (a, e) and (b, e), We
must have (c, e) and (d, e). We cannot have (c, d) or c and d would have
three incident edges. We are left with one tour (a, b, c, e, d, :1), whose cost

is 23. Similarly, node I, where (b, c) is excluded, can be proved to represent
only the tour (a, b, e, c, d, a), of cost 21. That tour has the lowest cost
found so far.

We now backtrack to E and consider its second child, G. But G has a

lower bound of 23, which exceeds the best cost so far, 21. Thus we prune G.
We now backtrack to B and consider its other child, D. The lower bound on

D is 20.5, but since costs are integers, we know no tour represented by D can

have cost less than 21. Since we already have a tour that cheap, we need not
explore the descendants of D, and therefore prune D. Now we backtrack to A
and consider its second child, C. ‘

At the level of node C, we have only considered edge (a, b). Nodes J
and K are introduced as children of C. J corresponds to those tours that have
(a, c) but not (a, b), and its lower bound in 18.5. K corresponds to tours
having neither (a, b) nor (a, c), and we may infer that those tours have

(a, d) and (a, e). The lower bound for K is 21, and we may immediately
prune K, since we already know a tour that is low in cost.

We next consider the children of J, which are L and M, and we prune M
because its IOWer bound exceeds the best tour cost so far. The children of L

are N and P, corresponding to tours that have (b, c), and that exclude (b, c}.

By considering the degree of nodes b and c, and remembering that the
selected edges cannot form a cycle of fewer than all five cities, we can infer

that nodes N and P each represent single tours. One of these,
(a, c, b, e, d, a), has the lowest cost of any tour, 19. We have explored or
pruned the entire tree and therefore end. B
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A 17.5
no constraints

 
pruned after

discovery of I  
pruned
after

discovery
of I

 

  

 

Fig._10.22. Search tree for TSP solution.

10.5 Local Search Algorithms

Sometimes the following strategy will produce an optimal solution to a prob-
lem.

1. Start with a random solution.

2. Apply to the current solution a transformation from some given set of
transformations to improve the solution. The improvement becomes the
new "current" solution.

3. Repeat until no transformation in the set improves the current solution.

The resulting solution may or may not be optimal, In principle, if the
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“given set of transformations" includes all the transformations that take one

solution and replace it by any other, then we shall never stop until we reach
an optimal solution. But then the time to apply (2) above is the same as the

time needed to examine all solutions, and the whole approach is rather point-less.

The method makes sense when we can restrict our set of transformations

to a small set, so we can consider all transformations in a short time; perhaps
0(n2) or 0(n3) transformations should be allowed when the problem is of
“size” it. If the transformation set is small, it is natural to view the solutions

that can be transformed to one another in one step as “close." The transfor-
mations are called ”local transformations,” and the method is called local
search.

Example 10.11. One problem we can solve exactly by local search is the
minimal spanning tree problem. The local transformations are those in which
we take some edge not in the current spanning tree, add it to the tree, which

must produce a unique cycle, and then eliminate exactly one edge of the cycle
(presumably that of highest cost) to form a new tree.

For example, consider the graph of Fig. 10.21. We might start with the

tree shown in Fig. 10.23(a). One transformation we could perform is to add
edge (at, e) and remove another edge in the cycle formed, which is
(e, a, c, d, e). if we remove edge (a, e), we decrease the cost of the tree

from 20 to 19. That transformation can be made, leaving the tree of Fig.
10.23{b), to which we again try to apply an improving transformation. One

such is to insert edge (a, d) and delete edge (13.11) from the cycle formed.
The result is shown in Fig. 10.23t'c). Then we might introduce (a, b) and
delete (b, c) as in Fig. 10.23(d), and subsequently introduce (b. e) in favor of
((1,2). The resulting tree of Fig. 10.23(c) is minimal. We can check that

every edge not in that tree has the highest cost of any edge in the cycle it
forms. Thus no transformation is applicable to Fig. 10.23(e). 1:1

The time taken by the algorithm of Example 10.11 on a graph of n nodes
and e edges depends on the number of times we need to improve the solution,
Just testing that no transformation is applicable could take Otne) time, since e

edges must be tried, and each could form a cycle of length nearly n. Thus the
algorithm is not as good as Prim’s or Kruskal‘s algorithms, but serves as an
example where an optimal solution can be obtained by local search.

Local Search Approximation Algorithms

Local search algorithms have had their greatest effectiveness as heuristics for

the solution to problems whose exact solutions require exponential time. A
common method of search is to start with a number of random solutions, and

apply the local transformations to each, until reaching a locally optimal solu-
tion, one that no transformation can improve. We shall frequently reach dif-
ferent locally optimal solutions, from most or all of the random starting solu-
tions, as suggested in Fig. 10.24. if we are lucky, one of them will be
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Fig. 10.23. Local search for a minimal spanning tree.

globally optimal, that is, as good as any solution.
in practice, we may not find a globally optimal solution as suggested in

Fig. 10.24, since the number of locally optimal solutions may be enormous.
HOWever, We may at least choose that locally optimal solution that has the
least cost among all those found. As the number of kinds of local transforma-

tions that have been used to smile various problems is great, we shall close the

section with two examples -—- the TSP, and a simple problem of “package
placement . ”

The Traveling Salesman Problem

The TSP is one for which local search techniques have been remarkably suc-
cessful. The simplest transformation that has been used is called “2-0pting."
It consists of taking any two edges, such as (A, B) and (C, D) in Fig. 10.25,
removing them, and reconnecting their endpoints to form a new tour. In Fig.
10.25, the new tour runs from B, clockwise to C, then along the edge (C, A),
counterclockwise from A ,to D, and finally along the edge (D, B). If the sum
of the lengths of (A, C) and (B, D) is less than the sum of the lengths of
(A', B) and (C, D), then we have an improved tour.'l' Note that we cannot

‘l Do not be fooled by the picture of Fig. [0.25. True. if lengths of edges are distances in
the plane, then the dashed edges in Fig. 1025 must be longer than those they replace. in
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Starting solutions

/___,__/¥______\

  
Locally optimal
solution Globally optimal

solution

Fig. 10.24. Local search in the space of solutions.

connect A to D and B to C, as the result would not be a tour, but two disjoint
cycles.

To find a locally optimal tour, We start with a random tour, and consider
all pairs of nonadjacent edges, such as (A, B) and (C, D) in Fig. 10.25. if
the tour can be improved by replacing these edges with (A, C) and (B, D),
do so, and continue considering pairs of edges that have not been considered

before. Note that the introduced edges (A. C) and (B, D) must each be
paired with all the other edges of the tour, as additional improvements could
result.

Example 10.12. Reconsider Fig. 10.21, and suppose we start with the tour of
Fig. 10.26(a). We might replace (a, e) and (c, d), with a total cost of 12, by
(a, d) and (c. e). with a total cost of 10, as shown in Fig. lO.26(b). Then we
might replace (a, b) and (c, e) by (a, c) and (b, 2), giving the optimal tour
shown in Fig. 10.26(c). One can check that no pair of edges can be removed
from Fig. 10.26(c) and be profitably replaced by crossing edges with the same
endpoints. As one case in point, (b, c) and (d, e) together have the rela-
tively high cost of 10. But (c, e) and (b, d) are worseI costing 14 together. U

general, however, there is no reason to assume the distances in Fig. 10.25 are distances in
the plane, or if they are. it could have been (A. B) and (C, D) that crossed. not (A, C)
and (B, D).
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Fig. 10.25. 2-0pting.

  
Fig. 10.26. Optimizing a TSP instance by 2-opting.

We can generalize 2-opting to k-opting for any constant k, where we

remove up to k edges and reconnect the remaining pieces in any order so that
result is a tour. Note that we do not require the removed edges to be nonad-v

jacent in general, although for the 2-opting case there was no point in consid-
ering the removal of two adjacent edges. Also note that for k>2, there is
more than one way to connect the pieces. For example, Fig. 10.27 shows the
general process of 3-opting using any of the following eight sets of edges.
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(A,F),(D,E),(B,C) (as the tour was)
(AiF))(CYE)I(D’ 3) (3 2'0?”
(A, E), (F. D), (B. C) (another 2—opt)
(A, E), (F, C), (B, D) (a true 3~opt)
(A, D), (C, E), (B, F) (another true 3-opt)
(A. D), (C, F), (B, E) (another true 3-opt)

(Auc).(D:E).(B,F) (a 2-0pt)
(A,C),(D,F),(B,E) (a 3-opt)

///—x\3
A C

@flQPPPN—

E D

Fig. 10.27. Pieces of a tour after removing three edges.

[t is easy to check that, for fixed k, the number of different k-opting
transformations we need to consider if there are n vertices is 0(n"). For
example, the exact number is n(n-3)/2 for k = 2. The time taken to obtain a

locally optimal tour may be considerably higher than this, however, since we
could make many local transformations before reaching a locally optimum
tour, and each improving transformation introduces new edges that may parti-

cipate in later transformations that improve the tour still further. Lin and
Kernighan [1973] have found that variable-depth-opting is in practice a very
powerful method and has a good chance of getting the optimum tour on 40-
100 city problems.

Package Placement

The one-dimensional package placement problem can be stated as follows. We
have an undirected graph, whose vertices we call ”packages." The edges are
labeled by "weights," and the weight w(a, b) of edge (a, b) is the number of
“wires" between packages 0 and b. The problem is to order the vertices

phpz, . . . ,pn, such that the sum of liuji w(p,—, p1) over all pairs 1' and j is
minimized. That is, we want to minimize the sum of the lengths of the wires
needed to connect all the packages with the required number of wires.

The package placement problem has had a number of applications. For
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example, the “packages” oculd be logic cards on a rack, and the weight of an
interconnection between cards is the number of wires connecting them. A
similar problem comes up when we try to design integrated circuits from
arrays of standard modules and interconnections between them. A generaliza—
tion of the one-dimensional package placement problem allows placement of
“packages,” which have height and width, in a two-dimensional region, while
minimizing the sum of the lengths of the wires between packages. This prob—
lem also has application to the design of integrated circuits, among other
areas.

There are a number of local transformations we could use to find local

optima for instances of the one-dimensional package placement problem.
Here are seVeral.

l. Interchange adjacent packages p,- and pH] if the resulting order is less

costly. Let L(j) be the sum of the weights of the edges extending to theJ# u

left of p}, i.e., 2 Wm,“ pj). Similarly, let R(j) be 2 w(pk,pj).k=l k=j+l

Improvement results if LU) — R(i) + R(i+l) -— L(i+l) + 2w(p,-, pi“) is
negative. The reader should verify this formula by computing the costs
before and after the interchange and taking the difference.

2. Take a package p,- and insert it between Pi and Pj+l for some i and j.

3. Interchange any two packages p,- and pj.

Example 10.13. Suppose we take the graph of Fig. 10.2] to represent a pack-
age placement instance. We shall restrict ourselves to the simple transforma-
tion set (E). An initial placement, a, b, c, d, e. is shown in Fig. 10.28(a); it
has a cost of 97. Note that the cost function weights edges by their distance,
so (a, e) contributes 4X7 = 28 to the cost of 97. Let us consider interchang-
ing at with e. We have L(d) = 13, RM) = 6, L(e) = 24, and R(e) = 0.

Thus L(d)*R(d)+R(e)—L(e)+2w(d, e) = "-5, and we can interchange d and
e to improve the placement to (a, b, c, e, d), with a cost of 92 as shown in
Fig. 10.28(b).

In Fig. 10.28(b), we can interchange c with e profitably, producing Fig.
10.28(c), whose placement (:1, b, e, c, d) has a cost of 9i. Fig. 10.28(c) is

Iocaily optimal for set of transformations (I). It is not globally optimal;
(a, c, e, d. b) has a cost of 84. D

As with the TSP, we cannot estimate closely the time it takes to reach a
local optimum. We can only observe that for set of transformations (1), there
are only n—l transformatiOns to consider. Further, if we compute L0) and
R0) once, We only have to change them when p, is interchanged with p,., or
pm. Moreover, the recalculation is easy. If p,- and pm are interchanged, for
example, then the new L(i) and R0) are, respectively, L(r'+l) — w(p,-, pH.)
and R(i+1) + w(p,, pi“). Thus 0(n) time suffices to test for an improving
transformation and to recalcuiate the L(i)’s and R(i)'s. We also need only
0(n) time to initialize the L(i)’s and R(i)’s, if we use the recurrence
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|l

 
(a) (b) (c)

Fig. 10.28. Local optimizations.

L(l) = 0

LU) = LU—l) + Mpg—1,170

and a similar recurrence for R.

In comparison, the sets of transformations (2) and (3) each have Otnz)
members. It will therefore take 0012) time just to confirm that we have a
locally optimal solution. However, as for set (I), we cannot closely bound the
total time taken when a sequence of improvements are made, since each
improvement can create additional opportunities for improvement. D

Exercises

10.1 How many moves do the algorithms for moving in disks in the Towers
of Hanoi problem take?

*10.2 Prove that the recursive (divide and conquer) algorithm for the Tower
of Hanoi and the simple nonrecursive algorithm described at the
beginning of Section 10.] perform the same steps.

10.3 Show the actions of the divide-and-conquer integer multiplication
algorithm of Fig. 10.3 when multiplying 1011 by 1101.

*10.4 Generalize the tennis tournament construction of Section 10.1 to tour-

naments where the number of players is not a power of two. Him. If
the number of players n is odd, then one player must receive a bye
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(not play) on any given day, and it will take I: days, rather than n —1
to complete the tournament. However, if there are two groups with

an odd number of players, then the players receiving the bye from
each group may actually play each other.

We can recursively define the number of combinations of at things

out ofn, denoted (5'), for n a land 0 S m s n, by

(;)=l ifm =Oorm =n

(,’,',) =(";1)+(;:11) if0<m <n

a) Give a recursive function to compute (:1).
b) What is its worst-case running time as a function of n ?

c) Give a dynamic programming algorithm to compute (3'). Him.
The algorithm constructs a table generally known as] Pascal’s tri-
angle.

d) What is the running time of your answer to (c) as a function of
n .

One way to compute the number of combinations of at things out of
n is to calculate (n)(n—1)(n—2) - - -(n-m+l)l(l)(2) ' ' '(m).

a) What is the worst case running time of this algorithm as a func-
tion of n? _

*b) Is it possible to compute the “World Series Odds" function
PU , j) from Section 10.2 in a similar manner? How fast can you

perform this computation?

a) Rewrite the odds calculation of Fig. 10.7 to take into account the
fact that the first team has a probability p of winning any given
game.

b) If the Dodgers have won one game and the Yankees two, but the
Dodgers have a .6 probability of winning any given game, who is
more likely to win the World Series?

The odds calculation of Fig. 10.7 requires 0012) space. Rewrite the
algorithm to use only 0(a) space.

Prove that Equation (10.4) results in exactly 2(itj)-l calls to P.
Find a minimal triangulation for a regular octagon, assuming dis-
tances are Euclidean.

The paragraphing problem. in a very simple form, can be stated as
follows: We are given a sequence of words w]. W2, . . . . wk of
lengths l1, (2. . . . . I,” which we wish to break into lines of length L.
Words are separated by blanks whose ideal width is b. but blanks can
stretch or shrink it necessary (but without overlapping words), so that

a line w,- w.-+1 - - ' w} has length exactly L. However, the penalty
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for stretching or shrinking is the magnitude of the total amount by
which blanks are stretched or shrunk. That is, the cost of setting line

w,- w,-+, w; for j>i is (j-wi) ib'-b|, where b'. the actual
width of the blanks, is (L‘l,"‘l§+g"‘ - - ’ —lj)/(j—i). However, if
j =k (we have the last line), the cost is zero unless b' < b , since we

do not have to stretch the last line. Give a dynamic programming
algorithm to find a least-cost separation of w], W2, . . . , wk into lines
of length L. Hint. For i=k, k—l, . . . , l, compute the least cost of
setting wh Wm, . . . . wk.

Suppose we are given n elements x1, x3, . . . , 1,, related by a linear
order 1:] < x; < - - - < x”, and that we wish to arrange these ele-

ments m in a binary search tree. Suppose that p,- is the probability
that a request to find an element will be for x;. Then for any givenIt

binary search tree, the average cost of a lookup is E pi(d,- +1),i=1

where d,- is the depth of the node holding x,. Given the pi’s, and
assuming the xi 's never change, we can find a binary Search tree that

minimizes the lookup cost. Find a dynamic programming algorithm
to do so. What is the running time of your algorithm? Hint. Com-

pute for all t' and j the optimal lockup cost among all trees containing

only xi, :5“, . . . , 11”-“ that is, thej elements beginning with x;.

For what values of coins does the greedy change-making algorithm of
Section 10.3 produce an optimal solution?

8.) Write the recursive triangulation algorithm discussed in Section
10.2.

b) Show that the recursive algorithm results in exactly 3'"4 calls on
nontrivial problems when started on a problem of size 3 24.

Describe a greedy algorithm for

a) The one-dimensional package placement problem.

b) The paragraphing problem (Exercise 10.11).

Give an example where your algorithm does not produce an optimal
answer, or show that no such example exists.

Give a nonrecursive version of the tree search algorithm of Fig.
10.17.

Consider a game tree in which there are six marbles, and players 1
and 2 take turns picking from one to three marbles. The player who
takes the last marble loses the game.

a) Draw the complete game tree for this game.

b) If the game tree were searched using the alpha-beta pruning tech-
nique, and nodes representing configurations with the smallest
number of marbles are searched first, which nodes are pruned?
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0) Who wins the game if both play their best?

*10.18 Develop a branch and bound algorithm for the TSP based on the idea
that we shall begin a tour at vertex i, and at each level, branch based
on what node comes next in the tour (rather than on whether a partic-

ular edge is chosen as in Fig. 10.22). What is an apprOpriate lower
bound estimator for configurations, which are lists of vertices
1, v1, v2, . . . that begin a tour? How does your algorithm behave
on Fig. 10.21, assuming a is vertex 1'?

“0.19 A peasible local search algorithm for the paragraphing problem is to
allow local transformations that move the first word of one line to the

previous line or the last word of a line to the line following. Is this

algorithm locally optimal, in the sense that every locally optimal solu-
tion is a globally optimal solution?

10.20 If our local transformations consist of 2-opts only, are there any
locally optimal tours in Fig. 10.21 that are not globally optimal?
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