EXHIBIT B

26

27

28

ANCORA TECHNOLOGIES, INC.,

Counterdefendant.

Pursuant to the Court's August 29, 2011 Order Re: Stipulated Trial Schedule (D.I. 40), Apple Inc. hereby provides its N.D. Cal. Patent L.R. 3-3 Disclosures ("Invalidity Contentions") for U.S. Patent No. 6,411,941.

By providing these Invalidity Contentions, Apple does not waive any applicable privilege or immunity, including the attorney-client privilege or work product doctrine. Apple predicates the Invalidity Contentions, in part, on the claim constructions suggested by Ancora's September 14, 2011 Discovery Order Disclosures and Disclosures Pursuant to Patent Rules 3-1 and 3-2 ("Infringement Contentions"). Accordingly, these Invalidity Contentions should not be read as representing or otherwise reflecting Apple's final positions regarding the proper interpretation of the claims. Ancora has asserted in its Infringement Contentions that Apple's iPhone, iPod Touch, iPad and Apple TV infringe Claims 1-3 and 5-17 of the '941 patent ("Asserted Claims"). These Invalidity Contentions address only the Asserted Claims.

Apple bases these Invalidity Contentions on information reasonably available to it at this time. The significant deficiencies in Ancora's Infringement Contentions and other discovery responses have made it difficult for Apple to understand Ancora's infringement and claim construction positions, and those positions necessarily inform Apple's invalidity positions. Apple's investigation of Ancora's claims and the prior art is ongoing. Apple incorporates by reference the Preliminary Invalidity Contentions of Microsoft and PC Company Defendants in *Ancora Technologies, Inc. v. Toshiba Am. Info. Sys., Inc.*, No. 2:09-cv-00270-MJP (W.D. Wash.), attached as Exhibit A. Apple reserves the right to supplement or amend these Invalidity Contentions in the future, particularly in response to any supplementation by Ancora of its infringement contentions to clarify its theories.

¹ See October 26, 2011 letter to Ancora's counsel outlining deficiencies.

Patent L.R. 3-3(a) A.

1

2

Apple identifies prior art publications and patents that anticipate or render obvious one or more of the limitations of the Asserted Claims in Table A below.

3	obvious one or more of the limitations of the Asserted Claims in Table A below.		
4			
5	Author	Non-Patent Publication	Publication Date
5	White et al.	ABYSS: A Trusted Architecture for	June 1990
6		Software Protection, IEEE Transactions	
_		on Software Engineering, Vol. 16, No. 6,	
7		pp. 38-51 ("White 1990") (Ex. 1)	
8	Tygar et al.	Dyad: A System for Using Physically	May 4, 1991
O		Secure Coprocessors, CMU-CS-94-140R,	
9		Carnegie Mellon University ("Tygar	
		1991") (Ex. 2)	
10	Yee	Using Secure Coprocessors, Carnegie	May 1994
11		Mellon University, CMU-CS-94-149	
11		("Yee 1994") (Ex. 3)	
12	Clark et al.	BITS: A Smartcard Protected Operating	Nov. 1994
12		System, Communications of the ACM,	
13		Vol. 37, No. 11, pp. 68-70; 94 ("Clark	
1.4		1994") (Ex. 4)	
14	Yee et al.	Secure Coprocessors in Electronic	July 1995
15		Commerce Applications, Proceedings of	
13		the 1st USENIX Workshop on Electronic	
16		Commerce, pp. 155-170 ("Yee 1995")	
		(Ex. 5)	
17	Arbaugh et al.	A Secure and Reliable Bootstrap	1996
10		Architecture, Dept. of Comp. & Info. Sci.	
18		Tech. Reports, U. Penn. ("Arbaugh 1996")	
19		(Ex. 6)	
	AMI et al.	Desktop Management BIOS Specification,	March 6, 1996
20		Version 2.0 ("DMI BIOS Specification")	
21		(Ex. 7)	
21	Arbaugh et al.	A Secure and Reliable Bootstrap	1997
22		Architecture, SP '97 Proceedings of the	
22		1997 IEEE Symposium on Security and	
23		Privacy, pp. 66-71 ("Arbaugh 1997") (Ex.	
		8)	
24	Inventor	Patent Number	Issue Date
25	Hellman	U.S. 4,658,093 ("Hellman Patent") (Ex. 9)	Apr. 14, 1987
23	Joshi	U.S. 4,688,169 ("Joshi Patent") (Ex. 10)	Aug. 18, 1987
26	Allen et al.	U.S. 4,757,533 ("Allen Patent") (Ex. 11)	July 12, 1988
	Karp	U.S. 4,866,769 ("Karp Patent") (Ex. 12)	Sep. 12, 1989
27	Waite	U.S. 5,103,476 ("Waite 476 Patent) (Ex.	Apr. 7, 1992
• 0		13)	

1	Waite	U.S. 5,222,134 ("Waite 134 Patent) (Ex. 14)	Jun. 22, 1993
2	Smyth	U.S. 5,325,430 ("Smyth Patent") (Ex. 15)	June 28, 1994
3	Ewertz	U.S. 5,371,876 ("Ewertz Patent") (Ex. 16)	Dec. 6, 1994
4	Davis	U.S. 5,473,692 ("Davis 692 Patent") (Ex. 17)	Dec. 5, 1995
5	Richardson	U.S. 5,490,216 ("Richardson Patent") (Ex. 18)	Feb. 6, 1996
6	Schull	U.S. 5,509,070 ("Schull Patent") (Ex. 19)	Apr. 16, 1996
7	Morisawa et al.	U.S. 5,537,544 ("Morisawa Patent") (Ex. 20)	July 16, 1996
8	Davis et al.	U.S. 5,568,552 ("Davis 552 Patent") (Ex. 21)	Oct. 22, 1996
9	Christenson et al.	U.S. 5,579,522 ("Christenson Patent") (Ex. 22)	Nov. 26, 1996
10	McCarty	U.S. 5,666,411 ("McCarty Patent") (Ex. 23)	Sep. 9, 1997
11	Lewis	U.S. 5,734,819 ("Lewis Patent") (Ex. 24)	Mar. 31, 1998
12	O'Connor et al.	U.S. 5,745,568 ("O'Connor Patent") (Ex. 25)	Apr. 28, 1998
13	Davis	U.S. 5,844,986 ("Davis 986 Patent") (Ex. 26)	Dec. 1, 1998
14	Clark	U.S. 5,892,902 ("Clark Patent") (Ex. 27)	Apr. 6, 1999
15	Chou et al.	U.S. 5,892,906 ("Chou Patent") (Ex. 28)	Apr. 6, 1999
16	Labatte et al.	U.S. 5,901,311 ("Labatte 311 Patent") Ex. 29)	May 4, 1999
17	Labatte et al.	U.S. 5,913,057 ("Labatte 057 Patent") (Ex. 30)	June 15, 1999
18	Griswold	U.S. 5,940,504 ("Grisworld Patent") (Ex. 31)	
19	Beelitz	U.S. 5,944,820 ("Beelitz Patent") (Ex. 32)	Aug. 31, 1999
20	Okada	U.S. 6,049,670 ("Okada Patent") (Ex. 33)	
20	Osborn	U.S. 6,026,293 ("Osborn Patent") (Ex. 34)	Feb. 15, 2000
21	Miller	U.S. 6,038,320 ("Miller Patent") (Ex. 35)	Mar. 14, 2000
22	Mirov et al.	U.S. 6,138,236 ("Mirov Patent") (Ex. 36)	Oct. 24, 2000
22	Fieres et al. Schwartz et al.	U.S. 6,148,083 ("Fieres Patent") (Ex. 37)	Nov. 14, 2000 Nov. 28, 2000
23		U.S. 6,153,835 ("Schwartz Patent") (Ex. 38)	,
24	Arbaugh et al.	U.S. 6,185,678 ("Arbaugh Patent") (Ex. 39)	Feb. 6, 2001
25	Misra et al.	U.S. 6,189,146 ("Misra Patent") (Ex. 40)	Feb. 13, 2001
26	Saunders	U.S. 6,209,099 ("Saunders Patent") (Ex. 41)	Mar. 27, 2001
27	Pearce et al.	U.S. 6,243,468 ("Pearce Patent") (Ex. 42)	Jun. 5, 2001
28	Cotichini et al.	U.S. 6,269,392 ("Cotichini Patent") (Ex. 43)	July 31, 2001
Į.			

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

