

This collection of information is required by 37 CFR 1.53 (b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

FEE TRANSMITTAL		Complete if known	
		Application Number	
		Filing Date	December 13, 2013
Applicant asserts small entity status. See 37 CFR 1.27.		First Named Inventor	WEI-YU CHEN
Applicant certifies micro entity status. See 37 CFR 1.29. Form PTO/SB/15A or B or equivalent must either be enclosed or have been submitted previously.		Examiner Name	
		Art Unit	
TOTAL AMOUNT OF PAYMENT	(\$) 2080	Practitioner Docket No.	14970-94702

METHOD OF PAYMENT (check all that apply)
Check \square Credit Card \square Money Orde \square None \qquad Other (please identify): \qquad
Deposit Account Deposit Account Number: 50-3537
Deposit Account Name:
Morris, Manning \& Martin, LLP
For the above-identified deposit account, the Director is hereby authorized to (check all that apply):
\checkmark Charge fee(s) indicated below \square Charge fee(s) indicated below, except for the filing fee
\checkmark Charge any additional fee(s) or underpayment of fee(s)Credit any overpayment of fee(s) under 37 CFR 1.16 and 1.17
WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.
FEE CALCULATION

1. BASIC FILING, SEARCH, AND EXAMINATION FEES ($\mathbf{U}=$ undiscounted fee; $S=$ small entity fee; $M=$ micro entity fee)

	FILING FEES			SEARCH FEES			EXAMINATION FEES			Fees Paid (\$)
Application Type	$\underline{\mathrm{U}}$ (\$)	S(\$)	M (\$)	$\underline{\mathrm{U}}$ (\$)	S (\$)	M (\$)	$\underline{U(\$)}$	S (\$)	M (\$)	
Utility	280	140*	70	600	300	150	720	360	180	1600
Design	180	90	45	120	60	30	460	230	115	
Plant	180	90	45	380	190	95	580	290	145	
Reissue	280	140	70	600	300	150	2,160	1,080	540	
Provisional	260	130	65	0	0	0	0	0	0	

* The $\$ 140$ small entity status filing fee for a utility application is further reduced to $\$ 70$ for a small entity status applicant who files the application via EFS-Web.

2. EXCESS CLAIM FEES

Fee Description

Each claim over 20 (including Reissues)
Each independent claim over 3 (including Reissues)
Multiple dependent claims

Total Claims		Extra Claims	Fee (\$)
26	-20 or HP =	6 - x	80
HP = highest number of total claims paid for, if greater than 20.			
Indep. Claims		Extra Claims	Fee (\$)
3	-3 or HP =	x	

Undiscounted Fee (\$)	Small Entity Fee (\$)	Micro Entity Fee (\$)
80	40	20
420	210	105
780	390	195
Fee Paid (\$)		
$=480$	Multiple Dependent Claims	
	Fee (\$)	Fee Paid (\$)
Fee Paid (\$)		

$\mathrm{HP}=$ highest number of independent claims paid for, if greater than 3.

3. APPLICATION SIZE FEE

If the specification and drawings exceed 100 sheets of paper (excluding electronically filed sequence or computer listings under 37 CFR 1.52(e)), the application size fee due is $\$ 400$ ($\$ 200$ for small entity) ($\$ 100$ for micro entity) for each additional 50 sheets or fraction thereof. See 35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s).

Total Sheets	Extra Sheets	Number of each additional 50 or fraction th		Fee (\$)		Fee Paid (\$)
$79-100=$	/ $50=$	((round up to a whole number)	$x \quad$			
4. OTHER FEE(S)						Fees Paid (\$)
Non-English specification, \$130 fee (no small or micro entity discount)						
Non-electronic filing fee under 37 CFR 1.16(t) for a utility application, \$400 fee (\$200 small or micro entity)						
Other (e.g., late filing surcharge):						

SUBMITTED BY			
signature	/Tim Tingkang Xia/	Registration No. (Attorney/Agent) 45,242	Telephone (404)495-3678
Name (Print/Type)	Tim Tingkang Xia	Date December 13, 2013	

This collection of information is required by 37 CFR 1.136. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 30 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$14970-94702$
	Application Number	
Title of Invention	IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL	

Secrecy Order 37 CFR 5.2

Portions or all of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuant to 37 CFR 5.2 (Paper filers only. Applications that fall under Secrecy Order may not be filed electronically.)

Inventor Information:

Correspondence Information:

Enter either Customer Number or complete the Correspondence Information section below. For further information see 37 CFR 1.33(a).		
\square An Address is being provided for the correspondence Information of this application.		
Customer Number	24728	
Email Address	mmmipdocket@system.foundationip.com	Add Email

Application Information:

Title of the Invention	IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL					
Attorney Docket Number	$14970-94702$	Small Entity Status Claimed $\quad \square$				
Application Type	Nonprovisional					
Subject Matter	Utility					
Total Number of Drawing Sheets (if any)	23	Suggested Figure for Publication (if any)	1 A			

| Application Data Sheet $\mathbf{3 7}$ CFR 1.76 | Attorney Docket Number | $14970-94702$ |
| :--- | :--- | :--- | :--- |
| | Application Number | |
| Title of Invention | IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL | |

Publication Information:

Request Early Publication (Fee required at time of Request 37 CFR 1.219)
Request Not to Publish. I hereby request that the attached application not be published under 35 U.S.C. 122(b) and certify that the invention disclosed in the attached application has not and will not be the subject of an application filed in another country, or under a multilateral international agreement, that requires publication at eighteen months after filing.

Representative Information:

Representative information should be provided for all practitioners having a power of attorney in the application. Providing this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32). Either enter Customer Number or complete the Representative Name section below. If both sections are completed the customer Number will be used for the Representative Information during processing.

Please Select One:	Customer Number	\bigcirc US Patent Practitioner	\bigcirc Limited Recognition (37 CFR 11.9)
Customer Number	24728		

Domestic Benefit/National Stage Information:

This section allows for the applicant to either claim benefit under 35 U.S.C. 119(e), 120, 121, or 365(c) or indicate National Stage entry from a PCT application. Providing this information in the application data sheet constitutes the specific reference required by 35 U.S.C. 119(e) or 120, and 37 CFR 1.78.

Prior Application Status		Remove	
Application Number	Continuity Type	Prior Application Number	Filing Date (YYYY-MM-DD)
Additional Domestic Benefit/National Stage Data may be generated within this form by selecting the Add button.	Add		

Foreign Priority Information:

This section allows for the applicant to claim priority to a foreign application. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119(b) and 37 CFR 1.55 (d). When priority is claimed to a foreign application that is eligible for retrieval under the priority document exchange program (PDX) 'the information will be used by the Office to automatically attempt retrieval pursuant to 37 CFR $1.55(\mathrm{~h})(1)$ and (2). Under the PDX program, applicant bears the ultimate responsibility for ensuring that a copy of the foreign application is received by the Office from the participating foreign intellectual property office, or a certified copy of the foreign priority application is filed, within the time period specified in 37 CFR $1.55(\mathrm{~g})(1)$.

			Remove
Application Number	Country i	Filing Date (YYYY-MM-DD)	Access Code ${ }^{\text {i }}$ (if applicable)
102139029	TW	$2013-10-29$	

Additional Foreign Priority Data may be generated within this form by selecting the Add button.

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$14970-94702$
	Application Number	
Title of Invention	IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL	

Statement under 37 CFR 1.55 or 1.78 for AIA (First Inventor to File) Transition Applications

This application (1) claims priority to or the benefit of an application filed before March 16, 2013 and (2) also contains, or contained at any time, a claim to a claimed invention that has an effective filing date on or after March 16, 2013.
NOTE: By providing this statement under 37 CFR 1.55 or 1.78 , this application, with a filing date on or after March 16,2013 , will be examined under the first inventor to file provisions of the AIA.

Authorization to Permit Access:

区 Authorization to Permit Access to the Instant Application by the Participating Offices

If checked, the undersigned hereby grants the USPTO authority to provide the European Patent Office (EPO), the Japan Patent Office (JPO), the Korean Intellectual Property Office (KIPO), the World Intellectual Property Office (WIPO), and any other intellectual property offices in which a foreign application claiming priority to the instant patent application is filed access to the instant patent application. See 37 CFR 1.14(c) and (h). This box should not be checked if the applicant does not wish the EPO, JPO, KIPO, WIPO, or other intellectual property office in which a foreign application claiming priority to the instant patent application is filed to have access to the instant patent application.

In accordance with 37 CFR $1.14(\mathrm{~h})(3)$, access will be provided to a copy of the instant patent application with respect to: 1) the instant patent application-as-filed; 2) any foreign application to which the instant patent application claims priority under 35 U.S.C. 119 (a)-(d) if a copy of the foreign application that satisfies the certified copy requirement of 37 CFR 1.55 has been filed in the instant patent application; and 3) any U.S. application-as-filed from which benefit is sought in the instant patent application.

In accordance with 37 CFR 1.14 (c), access may be provided to information concerning the date of filing this Authorization.

Applicant Information:

Providing assignment information in this section does not substitute for compliance with any requirement of part 3 of Title 37 of CFR to have an assignment recorded by the Office.

| Application Data Sheet 37 CFR 1.76 | Attorney Docket Number | $14970-94702$ |
| :--- | :--- | :--- | :--- |
| | Application Number | |
| Title of Invention | IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL | |

Applicant 1			Remove
If the applicant is the inventor (or the remaining joint inventor or inventors under 37 CFR 1.45), this section should not be completed. The information to be provided in this section is the name and address of the legal representative who is the applicant under 37 CFR 1.43; or the name and address of the assignee, person to whom the inventor is under an obligation to assign the invention, or person who otherwise shows sufficient proprietary interest in the matter who is the applicant under 37 CFR 1.46. If the applicant is an applicant under 37 CFR 1.46 (assignee, person to whom the inventor is obligated to assign, or person who otherwise shows sufficient proprietary interest) together with one or more joint inventors, then the joint inventor or inventors who are also the applicant should be identified in this section.			
© Assignee	\bigcirc Legal	der 35 U.S.C. 117	\bigcirc Joint Invento
Person to whom the inventor is obligated to assign.		\bigcirc Person who	sufficient proprietary

Name of the Deceased or Legally Incapacitated Inventor :		
If the Applicant is an Organization check here. $\quad \mathbf{}$		
Organization Name	LARGAN PRECISION CO., LTD.	
Mailing Address Information:		

Address 1	No.11, Jingke Rd., Nantun District		
Address 2			
City	Taichung	State/Province	
Country i	TW	Postal Code	408
Phone Number		Fax Number	
Email Address			

Additional Applicant Data may be generated within this form by selecting the Add button.

Non-Applicant Assignee Information:

Providing assignment information in this section does not subsitute for compliance with any requirement of part 3 of Title 37 of CFR to have an assignment recorded by the Office.

Assignee 1

Complete this section only if non-applicant assignee information is desired to be included on the patent application publication in accordance with 37 CFR 1.215 (b). Do not include in this section an applicant under 37 CFR 1.46 (assignee, person to whom the inventor is obligated to assign, or person who otherwise shows sufficient proprietary interest), as the patent application publication will include the name of the applicant(s).

		$\boxed{\text { Remove }}$
If the Assignee is an Organization check here.	\square	

| Application Data Sheet $\mathbf{3 7}$ CFR 1.76 | Attorney Docket Number | $14970-94702$ |
| :--- | :--- | :--- | :--- |
| | Application Number | |
| Title of Invention | IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL | |

Prefix	Given Name	Middle Name	Family Name	Suffix
Mailing Address Information:				
Address 1				
Address 2				
City			State/Province	
Country i				
Phone Number			Fax Number	
Email Address				
Additional Assignee Data may be generated within this form by selecting the Add button.				Add

Signature:

Remove

NOTE: This form must be signed in accordance with 37 CFR 1.33. See 37 CFR 1.4 for signature requirements and certifications

Signature	Tim Tingkang Xia/		Date (YYYY-MM-DD)	2013-12-13	
First Name	Tim Tingkang	Last Name	Xia	Registration Number	45242
Additional Signature may be generated within this form by selecting the Add button.				Add	

This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses: and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these records.

A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.

A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.

A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).

A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty. CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.

A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL

RELATED APPLICATIONS

This application claims priority to Taiwan Application Serial Number 102139029, filed October 29, 2013, which is incorporated by reference herein in its entirety.

BACKGROUND

Technical Field

The present disclosure relates to an image capturing lens system. More particularly, the present disclosure relates to a compact image capturing lens system applicable to a mobile terminal.

Description of Related Art
In recent years, with the popularity of mobile terminals having camera functionalities, the demand of miniaturized optical systems has been increasing. As the advanced semiconductor manufacturing technologies have allowed the pixel size of sensors to be reduced and compact optical systems have gradually evolved toward the field of higher megapixels, there is an increasing demand for compact optical systems featuring better image quality.

A conventional compact optical system in a portable electronic product typically utilizes a three-element lens structure. Due to the popularity of mobile products with high-end specifications, such as smart phones, tablet personal computers, wearable apparatus and other high-end mobile terminals, the
requirements for high resolution and image quality of present compact optical systems increase significantly. However, the conventional optical systems cannot satisfy these requirements of the compact optical systems.

Another conventional compact optical system provides a four-element lens structure. However, it is hard to make a good balance between obtaining a large field of view and a short total track length. Furthermore, it is also not favorable for the resolving power and illumination in a peripheral region of an image; therefore, it cannot satisfy the requirements of the compact optical systems featuring better image quality.

SUMMARY

According to one aspect of the present disclosure, an image capturing lens system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element and a fourth lens element. The first lens element has refractive power. The second lens element with positive refractive power has a convex image-side surface in a paraxial region thereof. The third lens element with negative refractive power has a concave object-side surface in a paraxial region thereof and a convex image-side surface in a paraxial region thereof. The fourth lens element with refractive power has a concave image-side surface in a paraxial region thereof, wherein both of an object-side surface and the image-side surface of the fourth lens element are aspheric, and the image-side surface of the fourth lens element has at least one convex shape in an off-axis region thereof. The image capturing lens system has a total of four lens elements with refractive power. When an axial distance between an object-side surface of the first lens element and the
image-side surface of the fourth lens element is Td, half of a maximal field of view of the image capturing lens system is HFOV, a focal length of the image capturing lens system is f, a focal length of the fourth lens element is $f 4$, a focal length of the second lens element is $f 2$, and a focal length of the third lens element is $\mathfrak{f} 3$, the following conditions are satisfied:
$0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm} ;$
$1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm}$;
$|f / f 4|<1.20$; and
f2/f3 <-0.65.
According to another aspect of the present disclosure, an image capturing lens system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element and a fourth lens element. The first lens element has refractive power. The second lens element with positive refractive power has a convex image-side surface in a paraxial region thereof. The third lens element with negative refractive power has a concave object-side surface in a paraxial region thereof and a convex image-side surface in a paraxial region thereof. The fourth lens element with refractive power has a concave image-side surface in a paraxial region thereof, wherein both of an object-side surface and the image-side surface of the fourth lens element are aspheric, and the image-side surface of the fourth lens element has at least one convex shape in an off-axis region thereof. The image capturing lens system has a total of four lens elements with refractive power. When an axial distance between an object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, half of a maximal field of view of the image capturing lens system is HFOV, a focal
length of the image capturing lens system is f, a focal length of the fourth lens element is $f 4$, and a focal length of the third lens element is $f 3$, the following conditions are satisfied:
$0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm} ;$
$1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm}$;
$|f / f 4|<1.20$; and
$-2.0<\mathrm{f} / \mathrm{f} 3<-0.95$.
According to still another aspect of the present disclosure, an image capturing lens system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element and a fourth lens element. The first lens element has refractive power. The second lens element with positive refractive power has a convex image-side surface in a paraxial region thereof. The third lens element with negative refractive power has a concave object-side surface in a paraxial region thereof and a convex image-side surface in a paraxial region thereof. The fourth lens element with refractive power has a concave image-side surface in a paraxial region thereof, wherein both of an object-side surface and the image-side surface of the fourth lens element are aspheric, and the image-side surface of the fourth lens element has at least one convex shape in an off-axis region thereof. The image capturing lens system has a total of four lens elements with refractive power. When an axial distance between an object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, half of a maximal field of view of the image capturing lens system is HFOV, a focal length of the image capturing lens system is f, a focal length of the fourth lens
element is $\mathfrak{f 4}$, and an f -number of the image capturing lens system is Fno, the following conditions are satisfied:
$0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm}$;
$1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm}$;
$|f / f 4|<1.20$; and
$1.40<$ Fno ≤ 2.25.
According to yet another aspect of the present disclosure, an imaging device includes the image capturing lens system according to the aforementioned aspect and an image sensor, wherein the image sensor is located on an image plane of the image capturing lens system.

According to still yet another aspect of the present disclosure, a mobile terminal includes the imaging device according to the aforementioned aspect.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure can be more fully understood by reading the following detailed description of the embodiments, with reference made to the accompanying drawings as follows:

Fig. 1 A is a schematic view of an imaging device according to the 1st embodiment of the present disclosure;

Fig. 1B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 1st embodiment;

Fig. 2 A is a schematic view of an imaging device according to the 2 nd embodiment of the present disclosure;

Fig. 2 B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 2nd embodiment;

Fig. 3 A is a schematic view of an imaging device according to the 3rd embodiment of the present disclosure;

Fig. 3B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 3rd embodiment;

Fig. 4A is a schematic view of an imaging device according to the 4th embodiment of the present disclosure;

Fig. 4B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 4th embodiment;

Fig. 5A is a schematic view of an imaging device according to the 5th embodiment of the present disclosure;

Fig. 5B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 5th embodiment;

Fig. 6A is a schematic view of an imaging device according to the 6th embodiment of the present disclosure;

Fig. 6B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 6th embodiment;

Fig. 7A is a schematic view of an imaging device according to the 7th embodiment of the present disclosure;

Fig. 7B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 7th embodiment;

Fig. 8 A is a schematic view of an imaging device according to the 8th embodiment of the present disclosure;

Fig. 8B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 8th embodiment;

Fig. 9A is a schematic view of an imaging device according to the 9th embodiment of the present disclosure;

Fig. 9B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 9th embodiment;

Fig. 10A is a schematic view of an imaging device according to the 10 th embodiment of the present disclosure;

Fig. 10B shows spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 10th embodiment;

Fig. 11A shows a smart phone with an imaging device of the present disclosure installed therein;

Fig. 11B shows a tablet personal computer with an imaging device of the present disclosure installed therein; and

Fig. 11C shows a wearable device with an imaging device of the present disclosure installed therein.

DETAILED DESCRIPTION

An image capturing lens system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element and a fourth lens element. The image capturing lens system has a total of four lens elements with refractive power.

The first lens element can have positive refractive power, so that it provides the image capturing lens system with the positive refractive power as it needs to be so as to reduce the total track length of the image capturing lens system. The first lens element can have a convex object-side surface in a
paraxial region thereof, so that it is favorable for further reducing the total track length.

The second lens element has positive refractive power, so that it is favorable for the second lens element adjusting the light gathering ability of the first lens element. The second lens element has a convex image-side surface in a paraxial region thereof, so that it is favorable for correcting the astigmatism of the image capturing lens system.

The third lens element has negative refractive power, so that it is favorable for correcting the aberration of the image capturing lens system. The third lens element has a concave object-side surface in a paraxial region thereof and a convex image-side surface in a paraxial region thereof, so that it is favorable for correcting the astigmatism of the image capturing lens system.

The fourth lens element can have a convex object-side surface in a paraxial region thereof and has a concave image-side surface in a paraxial region thereof. Furthermore, the image-side surface of the fourth lens element has at least one convex shape in an off-axis region thereof. Therefore, it is favorable for correcting the astigmatism and aberration of the off-axis.

When an axial distance between the object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, and the following condition is satisfied: $0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm}$. Therefore, it is favorable for keeping the image capturing lens system compact. Preferably, the following condition is satisfied: $0.8 \mathrm{~mm}<\mathrm{Td}<2.5 \mathrm{~mm}$.

When the axial distance between the object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, and half of a maximal field of view of the image capturing lens system is HFOV, the
following condition is satisfied: $1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm}$. Therefore, it is favorable for obtaining a large field of view and short total track length for the image capturing lens system. Preferably, the following condition is satisfied: $1.2 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<2.75 \mathrm{~mm}$.

When a focal length of the image capturing lens system is f, and a focal length of the fourth lens element is $\mathfrak{f 4}$, the following condition is satisfied: $|\mathrm{f} / \mathrm{f} 4|<$ 1.20. Therefore, it is favorable for the principal point of the image capturing lens system being positioned away from the image plane so as to reduce the total track length and keep the image capturing lens system compact.

When a focal length of the second lens element is $\mathfrak{f 2}$, and a focal length of the third lens element is $\mathfrak{f 3}$, the following condition is satisfied: $\mathrm{f} 2 / \mathrm{f} 3<-0.65$. Therefore, it is favorable for balancing the refractive powers of the second lens element and the third lens element so as to correct the aberration and reduce the photosensitivity. Preferably, the following condition is satisfied: f2/f3 < -0.75.

When the focal length of the image capturing lens system is f, and the focal length of the third lens element is $\mathfrak{f 3}$, the following condition is satisfied: $-2.0<\mathrm{f} / \mathrm{f} 3<-0.95$. Therefore, the third lens element serves as a correcting lens for balancing and correcting the aberrations of the image capturing lens system so as to obtain better image quality.

When an f-number of the image capturing lens system is Fno, and the following condition is satisfied: $1.40<$ Fno ≤ 2.25. Therefore, it is favorable for improving the illumination in a peripheral region of the image capturing lens system.

When the focal length of the image capturing lens system is f, and a focal length of the first lens element is f 1 , the following condition is satisfied: $-0.25<$ $f / f 1<0.75$. Therefore, the first lens element will have a more proper refractive power so as to avoid excess photosensitivity. Preferably, the following condition is satisfied: $0.25<\mathrm{f} / \mathrm{f} 1<0.75$.

When a curvature radius of the object-side surface of the second lens element is R3, and a curvature radius of the image-side surface of the second lens element is R4, the following condition is satisfied: $0.5<(R 3+R 4) /(R 3-R 4)<$ 2.5. Therefore, it is favorable for further correcting the aberration of the image capturing lens system.

When the focal length of the image capturing lens system is f, and the following condition is satisfied: $0.5 \mathrm{~mm}<\mathrm{f}<2.0 \mathrm{~mm}$. Therefore, it is favorable for providing a proper total track length.

When a sum of the central thicknesses of the first lens element, the second lens element, the third lens element, and the fourth lens element is $\Sigma C T$, and the axial distance between the object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, the following condition is satisfied: $0.80<\Sigma \mathrm{CT} / \mathrm{Td}<0.95$. Therefore, it is favorable for assembling the lens elements of the image capturing lens system so as to reduce the photosensitivity.

When an Abbe number of the first lens element is V 1, and the following condition is satisfied: $45<\mathrm{V} 1$. Therefore, it is favorable for correcting the chromatic aberration of the image capturing lens system.

When a central thickness of the second lens element is CT2, a central thickness of the first lens element is CT1, a central thickness of the third lens
element is CT3, and a central thickness of the fourth lens element is CT4, the following condition is satisfied: $0.65<\mathrm{CT} 2 /(\mathrm{CT} 1+\mathrm{CT} 3+\mathrm{CT} 4)<2.0$. Therefore, the thickness of each lens element is favorable for manufacturing and assembling the lens elements.

When a maximal field of view of the image capturing lens system is FOV, and the following condition is satisfied: 80 degrees $<$ FOV <110 degrees. Therefore, it is favorable for obtaining enough field of view.

According to the image capturing lens system of the present disclosure, the lens elements thereof can be made of glass or plastic material. When the lens elements are made of glass material, the distribution of the refractive power of the image capturing lens system may be more flexible to design. When the lens elements are made of plastic material, the manufacturing cost can be effectively reduced. Furthermore, surfaces of each lens element can be arranged to be aspheric, since the aspheric surface of the lens element is easy to form a shape other than spherical surface so as to have more controllable variables for eliminating the aberration thereof, and to further decrease the required number of the lens elements. Therefore, the total track length of the image capturing lens system can also be reduced.

According to the image capturing lens system of the present disclosure, each of an object-side surface in a paraxial region thereof and an image-side surface has a paraxial region and an off-axis region. The paraxial region refers to the region of the surface where light rays travel close to the optical axis, and the off-axis region refers to the region of the surface where light rays travel away from the optical axis. Particularly, when the lens element has a convex surface, it indicates that the surface is convex in the paraxial region thereof;
when the lens element has a concave surface, it indicates that the surface is concave in the paraxial region thereof.

According to the image capturing lens system of the present disclosure, the image capturing lens system can include at least one stop, such as an aperture stop, a glare stop or a field stop. Said glare stop or said field stop is for eliminating the stray light and thereby improving the image resolution thereof.

According to the image capturing lens system of the present disclosure, an aperture stop can be configured as a front stop or a middle stop. A front stop disposed between an imaged object and the first lens element can provide a longer distance between an exit pupil of the image capturing lens system and the image plane and thereby improves the image-sensing efficiency of an image sensor. A middle stop disposed between the first lens element and the image plane is favorable for enlarging the field of view of the image capturing lens system and thereby provides a wider field of view for the same.

The present image capturing lens system can be optionally applied to moving focus optical systems. According to the image capturing lens system of the present disclosure, the image capturing lens system is featured with good correction ability and high image quality, and can be applied to 3D (three-dimensional) image capturing applications, in products such as digital cameras, mobile devices, digital tablets, wearable devices and other mobile terminals.

According to the present disclosure, an imaging device is provided. The imaging device includes the image capturing lens system according to the aforementioned image capturing lens system of the present disclosure, and an
image sensor, wherein the image sensor is disposed on an image plane of the aforementioned image capturing lens system. As a result, it is favorable for reducing the total track length of the image capturing lens system while obtaining large field of view. Furthermore, it is also favorable for improving the resolving power and illumination so as to achieve the best image quality. Preferably, the imaging device can further include a barrel member, a holding member or a combination thereof.

According to the present disclosure, a mobile terminal is provided, wherein the mobile terminal includes the aforementioned imaging device. The imaging device includes the image capturing lens system according to the aforementioned image capturing lens system of the present disclosure, and the image sensor, wherein the image sensor is disposed on an image plane of the aforementioned image capturing lens system. As a result, it is favorable for reducing the total track length of the image capturing lens system while obtaining large field of view. Furthermore, it is also favorable for improving the resolving power and illumination so as to achieve the best image quality.

In Fig. 11A, Fig. 11B and Fig. 11C, an imaging device 1101 may be installed in but not limited to a mobile terminal, including a smart phone 1110, a tablet personal computer 1120 or a wearable device 1130. The three exemplary figures of different kinds of mobile terminal are only exemplary for showing the imaging device of present disclosure installing in a mobile terminal and is not limited thereto. Preferably, the mobile terminal can further include but not limited to display, control unit, random access memory unit (RAM) a read only memory unit (ROM) or a combination thereof.

According to the above description of the present disclosure, the following 1st -10 th specific embodiments are provided for further explanation.

1st Embodiment

Fig. 1 A is a schematic view of an imaging device according to the 1 st embodiment of the present disclosure. Fig. 1B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 1 st embodiment.

In Fig. 1A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor 170. The image capturing lens system includes, in order from an object side to an image side, a first lens element 110, an aperture stop 100, a second lens element 120, a third lens element 130, a fourth lens element 140, an IR-cut filter 150 and an image plane 160, wherein the image capturing lens system has a total of four lens elements (110-140) with refractive power.

The first lens element 110 with positive refractive power has a convex object-side surface 111 in a paraxial region thereof and a concave image-side surface 112 in a paraxial region thereof, which are both aspheric, and the first lens element 110 is made of plastic material.

The second lens element 120 with positive refractive power has a convex object-side surface 121 in a paraxial region thereof and a convex image-side surface 122 in a paraxial region thereof, which are both aspheric, and the second lens element 120 is made of plastic material.

The third lens element 130 with negative refractive power has a concave object-side surface 131 in a paraxial region thereof and a convex image-side
surface 132 in a paraxial region thereof, which are both aspheric, and the third lens element 130 is made of plastic material.

The fourth lens element 140 with positive refractive power has a convex object-side surface 141 in a paraxial region thereof and a concave image-side surface 142 in a paraxial region thereof, which are both aspheric, and the fourth lens element 140 is made of plastic material. Furthermore, the image-side surface 142 of the fourth lens element 140 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 150 is made of glass and located between the fourth lens element 140 and the image plane 160, and will not affect the focal length of the image capturing lens system. The image sensor 170 is disposed on the image plane 160 of the image capturing lens system.

The equation of the aspheric surface profiles of the aforementioned lens elements of the 1 st embodiment is expressed as follows:

$$
X(Y)=\left(Y^{2} / R\right) /\left(1+\operatorname{sqrt}\left(1-(1+k) \times(Y / R)^{2}\right)\right)+\sum_{i}(A i) \times\left(Y^{i}\right)
$$

, where,
X is the relative distance between a point on the aspheric surface spaced at a distance Y from the optical axis and the tangential plane at the aspheric surface vertex on the optical axis;

Y is the vertical distance from the point on the aspheric surface to the optical axis;
R is the curvature radius;
k is the conic coefficient; and
Ai is the i-th aspheric coefficient.

In the image capturing lens system of the imaging device according to the 1 st embodiment, when a focal length of the image capturing lens system is f, an f-number of the image capturing lens system is Fno, and half of a maximal field of view of the image capturing lens system is HFOV, these parameters have the following values: $f=1.17 \mathrm{~mm} ; F n o=2.20$; and $\mathrm{HFOV}=46.7$ degrees.

In the image capturing lens system of the imaging device according to the 1st embodiment, when an Abbe number of the first lens element 110 is V 1 , the following condition is satisfied: $\mathrm{V} 1=21.4$.

In the image capturing lens system according to the 1 st embodiment, when a central thickness of the second lens element 120 is CT2, a central thickness of the first lens element 110 is CT1, a central thickness of the third lens element 130 is CT3, and a central thickness of the fourth lens element 140 is CT4, the following condition is satisfied: $\mathrm{CT} 2 /(\mathrm{CT} 1+\mathrm{CT} 3+\mathrm{CT} 4)=0.69$.

In the image capturing lens system according to the 1st embodiment, when a curvature radius of the object-side surface 121 of the second lens element 120 is R3, and a curvature radius of the image-side surface 122 of the second lens element 120 is R4, the following condition is satisfied: $(R 3+R 4) /(R 3-R 4)=0.85$.

In the image capturing lens system of the imaging device according to the 1 st embodiment, when the focal length of the image capturing lens system is f, and a focal length of the first lens element 110 is $f 1$, the following condition is satisfied: $f / f 1=0.12$.

In the image capturing lens system of the imaging device according to the 1st embodiment, when a focal length of the second lens element 120 is f 2 ,
and a focal length of the third lens element 130 is $f 3$, the following condition is satisfied: $\mathrm{f} 2 / \mathrm{f} 3=-0.77$.

In the image capturing lens system of the imaging device according to the 1st embodiment, when the focal length of the image capturing lens system is f , and a focal length of the fourth lens element 140 is f 4 , the following condition is satisfied: $|f / f 4|=0.77$.

In the image capturing lens system of the imaging device according to the 1 st embodiment, when the focal length of the image capturing lens system is f, and the focal length of the third lens element 130 is $f 3$, the following condition is satisfied: $\mathrm{f} / \mathrm{f} 3=-1.10$.

In the image capturing lens system according to the 1st embodiment, when an axial distance between the object-side surface 111 of the first lens element 110 and the image-side surface 142 of the fourth lens element 140 is Td, the following condition is satisfied: $\mathrm{Td}=1.850 \mathrm{~mm}$.

In the image capturing lens system according to the 1st embodiment, when a sum of the central thicknesses of the first lens element 110, the second lens element 120, the third lens element 130, and the fourth lens element 140 is ¿CT, and the axial distance between the object-side surface 111 of the first lens element 110 and the image-side surface 142 of the fourth lens element 140 is Td , the following condition is satisfied: $\Sigma \mathrm{CT} / \mathrm{Td}=0.89$.

In the image capturing lens system according to the 1st embodiment, when the axial distance between the object-side surface 111 of the first lens element 110 and the image-side surface 142 of the fourth lens element 140 is Td, and half of the maximal field of view of the image capturing lens system is HFOV, the following condition is satisfied: $\mathrm{Td} / \mathrm{tan}(\mathrm{HFOV})=1.74 \mathrm{~mm}$.

In the image capturing lens system of the imaging device according to the 1 st embodiment, when a maximal field of view of the image capturing lens system is FOV, the following condition is satisfied: FOV $=93.4$ degrees.

The detailed optical data of the 1st embodiment are shown in Table 1 5 and the aspheric surface data are shown in Table 2 below.

TABLE 1								
Embodiment 1								
$\mathrm{f}=1.17 \mathrm{~mm}, \mathrm{Fno}=2.20, \mathrm{HFOV}=46.7 \mathrm{deg}$.								
Surface \#		Curvatu	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object			Infinity				
1	Lens 1	1.666	ASP	0.256	Plastic	1.650	21.4	9.56
2		2.139	ASP	0.031				
3	Ape. Stop			0.019				
4	Lens 2	5.712	ASP	0.671	Plastic	1.544	55.9	0.82
5		-0.464	ASP	0.130				
6	Lens 3	-0.228	ASP	0.230	Plastic	1.634	23.8	-1.06
7		-0.480	ASP	0.030				
8	Lens 4	0.679	ASP	0.483	Plastic	1.535	55.7	1.52
9		3.062	ASP	0.300				
10	IR-cut filter			0.145	Glass	1.517	64.2	-
11				0.204				
12	Image			-				
Note: Reference wavelength is 587.6 nm (d-line).								

TABLE 2				
Aspheric Coefficients				
Surface \#	1	2	4	5
$\mathrm{k}=$	$1.2237 \mathrm{E}+00$	$1.7244 \mathrm{E}+01$	$9.0000 \mathrm{E}+01$	$-6.9311 \mathrm{E}-01$
$\mathrm{~A} 4=$	$3.1416 \mathrm{E}-01$	$1.1703 \mathrm{E}+00$	$-4.1498 \mathrm{E}-01$	$-6.9345 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-1.0010 \mathrm{E}+00$	$-2.0080 \mathrm{E}+01$	$3.6416 \mathrm{E}+00$	$1.3202 \mathrm{E}+00$
$\mathrm{~A} 8=$	$4.5872 \mathrm{E}+01$	$5.2569 \mathrm{E}+02$	$4.3035 \mathrm{E}+01$	$1.0955 \mathrm{E}+01$
$\mathrm{~A} 10=$	$-5.9339 \mathrm{E}+02$	$-3.0044 \mathrm{E}+03$	$-7.4996 \mathrm{E}+03$	$-3.8285 \mathrm{E}+02$
$\mathrm{~A} 12=$	$4.0961 \mathrm{E}+03$	$-1.6432 \mathrm{E}+05$	$1.3290 \mathrm{E}+05$	$3.0040 \mathrm{E}+03$
A14 $=$	$-1.4631 \mathrm{E}+04$	$3.1882 \mathrm{E}+06$	$-1.1481 \mathrm{E}+06$	$-1.0680 \mathrm{E}+04$
A16 $=$	$2.0715 \mathrm{E}+04$	$-1.7563 \mathrm{E}+07$	$3.7732 \mathrm{E}+06$	$1.3826 \mathrm{E}+04$
Surface $\#$	6	7	8	9

$\mathrm{k}=$	$-9.8477 \mathrm{E}-01$	$-3.2669 \mathrm{E}+00$	$-6.1619 \mathrm{E}-01$	$-1.4636 \mathrm{E}+01$
$\mathrm{~A} 4=$	$3.5682 \mathrm{E}+00$	$-1.8915 \mathrm{E}+00$	$-1.2870 \mathrm{E}+00$	$1.2883 \mathrm{E}+00$
$\mathrm{~A} 6=$	$-3.7958 \mathrm{E}+00$	$8.7075 \mathrm{E}+00$	$3.1244 \mathrm{E}+00$	$-3.7603 \mathrm{E}+00$
$\mathrm{~A} 8=$	$-1.1135 \mathrm{E}+02$	$-3.6761 \mathrm{E}+01$	$-9.1933 \mathrm{E}+00$	$5.9040 \mathrm{E}+00$
$\mathrm{~A} 10=$	$1.5862 \mathrm{E}+03$	$1.7257 \mathrm{E}+02$	$1.7146 \mathrm{E}+01$	$-5.8521 \mathrm{E}+00$
$\mathrm{~A} 12=$	$-8.7685 \mathrm{E}+03$	$-4.8146 \mathrm{E}+02$	$-1.9850 \mathrm{E}+01$	$3.5356 \mathrm{E}+00$
$\mathrm{~A} 14=$	$2.3054 \mathrm{E}+04$	$6.7728 \mathrm{E}+02$	$1.2752 \mathrm{E}+01$	$-1.1759 \mathrm{E}+00$
$\mathrm{~A} 16=$	$-2.3557 \mathrm{E}+04$	$-3.6747 \mathrm{E}+02$	$-3.5165 \mathrm{E}+00$	$1.6169 \mathrm{E}-01$

In Table 1, the curvature radius, the thickness and the focal length are shown in millimeters (mm). Surface numbers 0-12 represent the surfaces sequentially arranged from the object-side to the image-side along the optical axis. In Table 2, k represents the conic coefficient of the equation of the aspheric surface profiles. A1-A16 represent the aspheric coefficients ranging from the 1st order to the 16th order. The tables presented below for each embodiment are the corresponding schematic parameter and aberration curves, and the definitions of the tables are the same as Table 1 and Table 2 of the 1 st embodiment. Therefore, an explanation in this regard will not be provided again.

2nd Embodiment

Fig. 2 A is a schematic view of an imaging device according to the 2 nd embodiment of the present disclosure. Fig. 2B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 2nd embodiment.

In Fig. 2A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor 270. The image capturing lens system includes, in order from an object side to
an image side, a first lens element 210, an aperture stop 200, a second lens element 220, a third lens element 230, a fourth lens element 240, an IR-cut filter 250 and an image plane 260, wherein the image capturing lens system has a total of four lens elements (210-240) with refractive power.

The first lens element 210 with positive refractive power has a convex object-side surface 211 in a paraxial region thereof and a concave image-side surface 212 in a paraxial region thereof, which are both aspheric, and the first lens element 210 is made of plastic material.

The second lens element 220 with positive refractive power has a convex object-side surface 221 in a paraxial region thereof and a convex image-side surface 222 in a paraxial region thereof, which are both aspheric, and the second lens element 220 is made of plastic material.

The third lens element 230 with negative refractive power has a concave object-side surface 231 in a paraxial region thereof and a convex image-side surface 232 in a paraxial region thereof, which are both aspheric, and the third lens element 230 is made of plastic material.

The fourth lens element 240 with positive refractive power has a convex object-side surface 241 in a paraxial region thereof and a concave image-side surface 242 in a paraxial region thereof, which are both aspheric, and the fourth lens element 240 is made of plastic material. Furthermore, the image-side surface 242 of the fourth lens element 240 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 250 is made of glass and located between the fourth lens element 240 and the image plane 260, and will not affect the focal length of the
image capturing lens system. The image sensor 270 is disposed on the image plane 260 of the image capturing lens system.

The detailed optical data of the 2nd embodiment are shown in Table 3 and the aspheric surface data are shown in Table 4 below.

TABLE 3								
Embodiment 2								
$\mathrm{f}=1.23 \mathrm{~mm}$, Fno $=2.45, \mathrm{HFOV}=45.6 \mathrm{deg}$.								
Surface \#		Curvatu	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object			Infinity				
1	Lens 1	1.728	ASP	0.217	Plastic	1.640	22.0	1207.16
2		1.647	ASP	0.041				
3	Ape. Stop			0.020				
4	Lens 2	2.201	ASP	0.685	Plastic	1.544	55.9	0.78
5		-0.465	ASP	0.138				
6	Lens 3	-0.213	ASP	0.222	Plastic	1.634	23.8	-0.90
7		-0.479	ASP	0.030				
8	Lens 4	0.691	ASP	0.430	Plastic	1.535	55.7	1.40
9		7.112	ASP	0.300				
10	IR-cut filter			0.300	Glass	1.517	64.2	-
11				0.171				
12	Image			-				
Note: Reference wavelength is 587.6 nm (d-line).								

TABLE 4				
Aspheric Coefficients				
Surface \#	1	2	4	5
$\mathrm{k}=$	$-7.8611 \mathrm{E}-01$	$2.2256 \mathrm{E}+01$	$4.4287 \mathrm{E}+01$	$-6.8249 \mathrm{E}-01$
$\mathrm{~A} 4=$	$2.7433 \mathrm{E}-01$	$3.5449 \mathrm{E}-01$	$-1.1581 \mathrm{E}+00$	$-5.9944 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-1.5466 \mathrm{E}+00$	$-2.9377 \mathrm{E}+01$	$8.9406 \mathrm{E}-01$	$3.6061 \mathrm{E}-01$
$\mathrm{~A} 8=$	$4.7455 \mathrm{E}+01$	$6.4129 \mathrm{E}+02$	$4.1870 \mathrm{E}+01$	$1.6896 \mathrm{E}+01$
$\mathrm{~A} 10=$	$-6.0092 \mathrm{E}+02$	$-3.8207 \mathrm{E}+03$	$-7.3180 \mathrm{E}+03$	$-3.8194 \mathrm{E}+02$
$\mathrm{~A} 12=$	$4.0961 \mathrm{E}+03$	$-1.6432 \mathrm{E}+05$	$1.3290 \mathrm{E}+05$	$3.0043 \mathrm{E}+03$
$\mathrm{~A} 14=$	$-1.4631 \mathrm{E}+04$	$3.1882 \mathrm{E}+06$	$-1.1481 \mathrm{E}+06$	$-1.0680 \mathrm{E}+04$
$\mathrm{~A} 16=$	$2.0715 \mathrm{E}+04$	$-1.7563 \mathrm{E}+07$	$3.7732 \mathrm{E}+06$	$1.3826 \mathrm{E}+04$
Surface \#	6	7	8	9
$\mathrm{k}=$	$-1.0107 \mathrm{E}+00$	$-3.0532 \mathrm{E}+00$	$-7.4231 \mathrm{E}-01$	$2.2155 \mathrm{E}+01$
A4 $=$	$3.8803 \mathrm{E}+00$	$-1.7079 \mathrm{E}+00$	$-1.1152 \mathrm{E}+00$	$1.6267 \mathrm{E}+00$
A6 $=$	$-4.2860 \mathrm{E}+00$	$8.7245 \mathrm{E}+00$	$2.9613 \mathrm{E}+00$	$-4.5228 \mathrm{E}+00$
A8 $=$	$-1.1314 \mathrm{E}+02$	$-3.7291 \mathrm{E}+01$	$-9.2058 \mathrm{E}+00$	$6.4630 \mathrm{E}+00$

$\mathrm{A} 10=$	$1.5859 \mathrm{E}+03$	$1.7181 \mathrm{E}+02$	$1.7048 \mathrm{E}+01$	$-5.8730 \mathrm{E}+00$
$\mathrm{~A} 12=$	$-8.7686 \mathrm{E}+03$	$-4.8143 \mathrm{E}+02$	$-1.9563 \mathrm{E}+01$	$3.4083 \mathrm{E}+00$
$\mathrm{~A} 14=$	$2.3054 \mathrm{E}+04$	$6.7878 \mathrm{E}+02$	$1.3110 \mathrm{E}+01$	$-1.1920 \mathrm{E}+00$
$\mathrm{~A} 16=$	$-2.3557 \mathrm{E}+04$	$-3.6776 \mathrm{E}+02$	$-4.1607 \mathrm{E}+00$	$1.9105 \mathrm{E}-01$

In the 2nd embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in the following table are the same as those stated in the 1st embodiment with corresponding values for the 2 nd embodiment, so an explanation in this regard will not be provided again.

Moreover, these parameters can be calculated from Table 3 and Table 4 as the following values and satisfy the following conditions:

2nd Embodiment			
$\mathrm{f}[\mathrm{mm}]$	1.23	$\mathrm{f} / \mathrm{ff3}$	-0.87
Fno	2.45	$\|\mathrm{f} / \mathrm{f4}\|$	0.88
HFOV [deg.]	45.6	$\mathrm{f} / \mathrm{f3}$	-1.37
V 1	22.0	Td [mm]	1.783
CT2/(CT1+CT3+CT4)	0.79	$\Sigma \mathrm{CT} / \mathrm{Td}$	0.87
(R3+R4)/(R3-R4)	0.65	Td/tan(HFOV) [mm]	1.75
$\mathrm{f} / \mathrm{f} 1$	0.00	FOV [deg.]	91.2

3rd Embodiment

Fig. 3 A is a schematic view of an imaging device according to the 3rd embodiment of the present disclosure. Fig. 3B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 3rd embodiment.

In Fig. 3A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor
370. The image capturing lens system includes, in order from an object side to an image side, a first lens element 310, an aperture stop 300, a second lens element 320, a third lens element 330, a fourth lens element 340, an IR-cut filter 350 and an image plane 360, wherein the image capturing lens system has a total of four lens elements (310-340) with refractive power.

The first lens element 310 with positive refractive power has a convex object-side surface 311 in a paraxial region thereof and a concave image-side surface 312 in a paraxial region thereof, which are both aspheric, and the first lens element 310 is made of plastic material.

The second lens element 320 with positive refractive power has a concave object-side surface 321 in a paraxial region thereof and a convex image-side surface 322 in a paraxial region thereof, which are both aspheric, and the second lens element 320 is made of plastic material.

The third lens element 330 with negative refractive power has a concave object-side surface 331 in a paraxial region thereof and a convex image-side surface 332 in a paraxial region thereof, which are both aspheric, and the third lens element 330 is made of plastic material.

The fourth lens element 340 with positive refractive power has a convex object-side surface 341 in a paraxial region thereof and a concave image-side surface 342 in a paraxial region thereof, which are both aspheric, and the fourth lens element 340 is made of plastic material. Furthermore, the image-side surface 342 of the fourth lens element 340 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 350 is made of glass and located between the fourth lens element 340 and the image plane 360, and will not affect the focal length of the
image capturing lens system. The image sensor 370 is disposed on the image plane 360 of the image capturing lens system.

The detailed optical data of the 3rd embodiment are shown in Table 5 and the aspheric surface data are shown in Table 6 below.

TABLE 5								
Embodiment 3								
$f=1.66 \mathrm{~mm}$, Fno $=2.15$, $\mathrm{HFOV}=46.8 \mathrm{deg}$.								
Surface \#		Curvatur	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object			Infinity				
1	Lens 1	1.333	ASP	0.286	Plastic	1.544	55.9	2.50
2		59.851	ASP	0.005				
3	Ape. Stop			0.195				
4	Lens 2	-1.920	ASP	0.409	Plastic	1.544	55.9	1.60
5		-0.644	ASP	0.156				
6	Lens 3	-0.263	ASP	0.200	Plastic	1.650	21.4	-1.49
7		-0.470	ASP	0.030				
8	Lens 4	0.677	ASP	0.363	Plastic	1.535	55.7	2.33
9		1.206	ASP	0.400				
10	IR-cut filter			0.175	Glass	1.517	64.2	-
11				0.431				
12	Image			-				
Note: Reference wavelength is 587.6 nm (d-line).								
The effective radius of Surface 1 is 0.510 mm .								

5

TABLE 6				
Aspheric Coefficients				
Surface \#	1	2	4	5
$\mathrm{k}=$	$-2.4704 \mathrm{E}+00$	$9.0000 \mathrm{E}+01$	$5.8947 \mathrm{E}+00$	$-3.7972 \mathrm{E}-01$
$\mathrm{~A} 4=$	$-3.4848 \mathrm{E}-02$	$-3.8775 \mathrm{E}-01$	$-9.3075 \mathrm{E}-01$	$-3.3741 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-4.4471 \mathrm{E}-01$	$-2.8417 \mathrm{E}+00$	$3.6516 \mathrm{E}+00$	$9.2277 \mathrm{E}-01$
$\mathrm{~A} 8=$	$-4.9925 \mathrm{E}-01$	$1.8185 \mathrm{E}+01$	$-4.0769 \mathrm{E}+01$	$-3.9461 \mathrm{E}+00$
$\mathrm{~A} 10=$	$-1.2166 \mathrm{E}+01$	$-2.0954 \mathrm{E}+01$	$-4.4351 \mathrm{E}+00$	$-1.9037 \mathrm{E}+01$
$\mathrm{~A} 12=$	$3.9114 \mathrm{E}+01$	$-1.4998 \mathrm{E}+03$	$1.2130 \mathrm{E}+03$	$4.9148 \mathrm{E}+01$
$\mathrm{~A} 14=$	$-1.7950 \mathrm{E}+02$	$1.2389 \mathrm{E}+04$	$-4.4615 \mathrm{E}+03$	$1.0076 \mathrm{E}+02$
$\mathrm{~A} 16=$	$3.3572 \mathrm{E}+02$	$-2.9058 \mathrm{E}+04$	$6.2425 \mathrm{E}+03$	$8.0489 \mathrm{E}+01$
Surface \#	6	7	8	9
$\mathrm{k}=$	$-1.1491 \mathrm{E}+00$	$-2.3808 \mathrm{E}+00$	$-1.7649 \mathrm{E}+00$	$-1.0689 \mathrm{E}+01$
A4 $=$	$4.2079 \mathrm{E}+00$	$2.1562 \mathrm{E}-01$	$-6.9591 \mathrm{E}-01$	$9.1971 \mathrm{E}-01$
A6 $=$	$-2.8310 \mathrm{E}+01$	$-4.4239 \mathrm{E}+00$	$1.2041 \mathrm{E}+00$	$-3.0958 \mathrm{E}+00$

$\mathrm{A} 8=$	$1.2287 \mathrm{E}+02$	$1.8790 \mathrm{E}+01$	$-2.9023 \mathrm{E}+00$	$4.8713 \mathrm{E}+00$
$\mathrm{~A} 10=$	$-3.9035 \mathrm{E}+02$	$-4.1840 \mathrm{E}+01$	$4.4195 \mathrm{E}+00$	$-4.6279 \mathrm{E}+00$
$\mathrm{~A} 12=$	$8.5064 \mathrm{E}+02$	$5.5883 \mathrm{E}+01$	$-3.7857 \mathrm{E}+00$	$2.6418 \mathrm{E}+00$
$\mathrm{~A} 14=$	$-9.7331 \mathrm{E}+02$	$-4.0255 \mathrm{E}+01$	$1.6532 \mathrm{E}+00$	$-8.3581 \mathrm{E}-01$
$\mathrm{~A} 16=$	$4.7213 \mathrm{E}+02$	$1.4428 \mathrm{E}+01$	$-2.8192 \mathrm{E}-01$	$1.1204 \mathrm{E}-01$

In the 3rd embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in the following table are the same as those stated in the 1st embodiment with corresponding values for the 3rd embodiment, so an explanation in this regard will not be provided again.

Moreover, these parameters can be calculated from Table 5 and Table 6 as the following values and satisfy the following conditions:

3rd Embodiment			
$\mathrm{f}[\mathrm{mm}]$	1.66	$\mathrm{f} 2 / \mathrm{f3}$	-1.07
Fno	2.15	$\|\mathrm{f} / \mathrm{f} 4\|$	0.71
HFOV [deg.]	46.8	$\mathrm{f} / \mathrm{f3}$	-1.11
V1	55.9	Td [mm]	1.644
CT2/(CT1+CT3+CT4)	0.48	$\Sigma \mathrm{CT} / \mathrm{Td}$	0.77
(R3+R4)/(R3-R4)	2.01	Td/tan(HFOV) [mm]	1.54
$\mathrm{f} / \mathrm{f1}$	0.66	FOV [deg.]	93.6

4th Embodiment

Fig. 4A is a schematic view of an imaging device according to the 4th embodiment of the present disclosure. Fig. 4B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 4th embodiment.

In Fig. 4A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor
470. The image capturing lens system includes, in order from an object side to an image side, a first lens element 410, an aperture stop 400, a second lens element 420, a third lens element 430, a fourth lens element 440, an IR-cut filter 450 and an image plane 460, wherein the image capturing lens system has a total of four lens elements (410-440) with refractive power.

The first lens element 410 with negative refractive power has a convex object-side surface 411 in a paraxial region thereof and a concave image-side surface 412 in a paraxial region thereof, which are both aspheric, and the first lens element 410 is made of plastic material.

The second lens element 420 with positive refractive power has a convex object-side surface 421 in a paraxial region thereof and a convex image-side surface 422 in a paraxial region thereof, which are both aspheric, and the second lens element 420 is made of plastic material.

The third lens element 430 with negative refractive power has a concave object-side surface 431 in a paraxial region thereof and a convex image-side surface 432 in a paraxial region thereof, which are both aspheric, and the third lens element 430 is made of plastic material.

The fourth lens element 440 with positive refractive power has a convex object-side surface 441 in a paraxial region thereof and a concave image-side surface 442 in a paraxial region thereof, which are both aspheric, and the fourth lens element 440 is made of plastic material. Furthermore, the image-side surface 442 of the fourth lens element 440 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 450 is made of glass and located between the fourth lens element 440 and the image plane 460, and will not affect the focal length of the
image capturing lens system. The image sensor 470 is disposed on the image plane 460 of the image capturing lens system.

The detailed optical data of the 4th embodiment are shown in Table 7 and the aspheric surface data are shown in Table 8 below.

TABLE 7								
Embodiment 4								
$\mathrm{f}=1.15 \mathrm{~mm}, \mathrm{Fno}=2.22, \mathrm{HFOV}=48.5 \mathrm{deg}$.								
Surface \#		Curvatur	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object			Infinity				
1	Lens 1	1.999	ASP	0.200	Plastic	1.544	55.9	-46.83
2		1.789	ASP	0.021				
3	Ape. Stop			0.037				
4	Lens 2	1.606	ASP	0.471	Plastic	1.544	55.9	0.81
5		-0.543	ASP	0.184				
6	Lens 3	-0.207	ASP	0.209	Plastic	1.634	23.8	-1.22
7		-0.393	ASP	0.030				
8	Lens 4	0.747	ASP	0.319	Plastic	1.535	55.7	1.62
9		4.607	ASP	0.300				
10	IR-cut filter			0.300	Glass	1.517	64.2	-
11				0.130				
12	Image			-				
Note: Reference wavelength is 587.6 nm (d-line).								

TABLE 8				
Aspheric Coefficients				
Surface \#	1	2	4	5
$\mathrm{k}=$	$-2.2996 \mathrm{E}+01$	$3.4247 \mathrm{E}+01$	$9.8701 \mathrm{E}+00$	$-4.2975 \mathrm{E}-01$
$\mathrm{~A} 4=$	$-2.1353 \mathrm{E}-01$	$-2.0670 \mathrm{E}+00$	$-2.2221 \mathrm{E}+00$	$-6.3795 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-3.6880 \mathrm{E}+00$	$-3.6063 \mathrm{E}+01$	$-8.7081 \mathrm{E}+00$	$-6.5092 \mathrm{E}+00$
$\mathrm{~A} 8=$	$5.2789 \mathrm{E}+01$	$6.9201 \mathrm{E}+02$	$1.4888 \mathrm{E}+02$	$4.6114 \mathrm{E}+01$
$\mathrm{~A} 10=$	$-6.4083 \mathrm{E}+02$	$-4.8238 \mathrm{E}+03$	$-8.2602 \mathrm{E}+03$	$-4.7532 \mathrm{E}+02$
$\mathrm{~A} 12=$	$4.0983 \mathrm{E}+03$	$-1.6432 \mathrm{E}+05$	$1.3290 \mathrm{E}+05$	$3.0044 \mathrm{E}+03$
$\mathrm{~A} 14=$	$-1.4631 \mathrm{E}+04$	$3.1882 \mathrm{E}+06$	$-1.1481 \mathrm{E}+06$	$-1.0679 \mathrm{E}+04$
$\mathrm{~A} 16=$	$2.0715 \mathrm{E}+04$	$-1.7563 \mathrm{E}+07$	$3.7732 \mathrm{E}+06$	$1.3828 \mathrm{E}+04$
Surface \#	6	7	8	9
$\mathrm{k}=$	$-1.0439 \mathrm{E}+00$	$-2.0056 \mathrm{E}+00$	$-6.4024 \mathrm{E}-01$	$-3.3636 \mathrm{E}+00$
$\mathrm{~A} 4=$	$4.2327 \mathrm{E}+00$	$-9.7476 \mathrm{E}-01$	$-8.3147 \mathrm{E}-01$	$1.0958 \mathrm{E}+00$
$\mathrm{~A} 6=$	$-3.4551 \mathrm{E}+00$	$1.0236 \mathrm{E}+01$	$2.1761 \mathrm{E}+00$	$-1.7086 \mathrm{E}+00$
$\mathrm{~A} 8=$	$-1.0303 \mathrm{E}+02$	$-3.7610 \mathrm{E}+01$	$-4.8336 \mathrm{E}+00$	$1.3575 \mathrm{E}+00$

$\mathrm{A} 10=$	$1.5970 \mathrm{E}+03$	$1.6620 \mathrm{E}+02$	$5.0397 \mathrm{E}+00$	$-2.6285 \mathrm{E}+00$
$\mathrm{~A} 12=$	$-8.9315 \mathrm{E}+03$	$-4.9093 \mathrm{E}+02$	$-4.1411 \mathrm{E}+00$	$4.3863 \mathrm{E}+00$
$\mathrm{~A} 14=$	$2.3054 \mathrm{E}+04$	$6.8046 \mathrm{E}+02$	$3.4069 \mathrm{E}+00$	$-3.3963 \mathrm{E}+00$
$\mathrm{~A} 16=$	$-2.3558 \mathrm{E}+04$	$-3.4010 \mathrm{E}+02$	$-1.6576 \mathrm{E}+00$	$9.5967 \mathrm{E}-01$

In the 4th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in the following table are the same as those stated in the 1st embodiment with corresponding values for the 4th embodiment, so an explanation in this regard will not be provided again.

Moreover, these parameters can be calculated from Table 7 and Table 8 as the following values and satisfy the following conditions:

4th Embodiment			
$\mathrm{f}[\mathrm{mm}]$	1.15	$\mathrm{f} 2 / \mathrm{f} 3$	-0.66
Fno	2.22	$\|\mathrm{f} / \mathrm{f4}\|$	0.71
HFOV [deg.]	48.5	$\mathrm{f} / \mathrm{f3}$	-0.94
V 1	55.9	Td [mm]	1.471
CT2/(CT1+CT3+CT4)	0.65	$\Sigma \mathrm{CT} / \mathrm{Td}$	0.82
(R3+R4)/(R3-R4)	0.49	Td/tan(HFOV) [mm]	1.30
$\mathrm{f} / \mathrm{f} 1$	-0.02	FOV [deg.]	97.0

5th Embodiment

Fig. 5A is a schematic view of an imaging device according to the 5 th embodiment of the present disclosure. Fig. 5B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 5th embodiment.

In Fig. 5A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor
570. The image capturing lens system includes, in order from an object side to an image side, a first lens element 510, an aperture stop 500, a second lens element 520, a third lens element 530, a fourth lens element 540, an IR-cut filter 550 and an image plane 560 , wherein the image capturing lens system has a total of four lens elements (510-540) with refractive power.

The first lens element 510 with negative refractive power has a convex object-side surface 511 in a paraxial region thereof and a concave image-side surface 512 in a paraxial region thereof, which are both aspheric, and the first lens element 510 is made of glass material.

The second lens element 520 with positive refractive power has a convex object-side surface 521 in a paraxial region thereof and a convex image-side surface 522 in a paraxial region thereof, which are both aspheric, and the second lens element 520 is made of glass material.

The third lens element 530 with negative refractive power has a concave object-side surface 531 in a paraxial region thereof and a convex image-side surface 532 in a paraxial region thereof, which are both aspheric, and the third lens element 530 is made of plastic material.

The fourth lens element 540 with positive refractive power has a convex object-side surface 541 in a paraxial region thereof and a concave image-side surface 542 in a paraxial region thereof, which are both aspheric, and the fourth lens element 540 is made of plastic material. Furthermore, the image-side surface 542 of the fourth lens element 540 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 550 is made of glass and located between the fourth lens element 540 and the image plane 560, and will not affect the focal length of the
image capturing lens system. The image sensor 570 is disposed on the image plane 560 of the image capturing lens system.

The detailed optical data of the 5th embodiment are shown in Table 9 and the aspheric surface data are shown in Table 10 below.

TABLE 9								
Embodiment 5								
$\mathrm{f}=2.24 \mathrm{~mm}$, Fno = 2.51, $\mathrm{HFOV}=44.2 \mathrm{deg}$.								
Surface \#		Curvatur	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object			Infinity				
1	Lens 1	1.367	ASP	0.300	Glass	2.144	17.8	-13.68
2		1.110	ASP	0.144				
3	Ape. Stop			-0.015				
4	Lens 2	3.909	ASP	1.483	Glass	1.525	70.3	1.60
5		-0.932	ASP	0.325				
6	Lens 3	-0.341	ASP	0.277	Plastic	1.639	23.5	-1.72
7		-0.651	ASP	0.030				
8	Lens 4	0.897	ASP	0.606	Plastic	1.565	57.0	2.00
9		3.302	ASP	0.800				
10	IR-cut filter			0.300	Glass	1.517	64.2	-
11				0.342				
12	Image			-				
Note: Reference wavelength is 587.6 nm (d-line).								

TABLE 10				
Aspheric Coefficients				
Surface \#	1	2	4	5
$\mathrm{k}=$	$1.1992 \mathrm{E}+00$	$1.9195 \mathrm{E}+00$	$2.1734 \mathrm{E}+01$	$-7.2786 \mathrm{E}-01$
$\mathrm{~A} 4=$	$5.8324 \mathrm{E}-02$	$1.2422 \mathrm{E}-01$	$-9.9032 \mathrm{E}-02$	$-1.2252 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-1.4402 \mathrm{E}-01$	$-5.2189 \mathrm{E}-01$	$5.9983 \mathrm{E}+00$	$5.2990 \mathrm{E}-01$
$\mathrm{~A} 8=$	$1.0028 \mathrm{E}+00$	$4.2713 \mathrm{E}+00$	$-1.1966 \mathrm{E}+02$	$-3.0301 \mathrm{E}+00$
$\mathrm{~A} 10=$	$-4.0021 \mathrm{E}+00$	$1.8016 \mathrm{E}+01$	$1.4083 \mathrm{E}+03$	$7.9248 \mathrm{E}+00$
$\mathrm{~A} 12=$	$8.9035 \mathrm{E}+00$	$-4.2193 \mathrm{E}+02$	$-9.4428 \mathrm{E}+03$	$-1.0795 \mathrm{E}+01$
$\mathrm{~A} 14=$	$-9.8479 \mathrm{E}+00$	$2.2697 \mathrm{E}+03$	$3.3923 \mathrm{E}+04$	$6.3429 \mathrm{E}+00$
$\mathrm{~A} 16=$	$3.0263 \mathrm{E}+00$	$-4.1004 \mathrm{E}+03$	$-5.0610 \mathrm{E}+04$	$-8.0066 \mathrm{E}-01$
Surface \#	6	7	8	9
$\mathrm{k}=$	$-9.8774 \mathrm{E}-01$	$-3.1767 \mathrm{E}+00$	$-8.3817 \mathrm{E}-01$	$-2.4331 \mathrm{E}+01$
$\mathrm{~A} 4=$	$2.5606 \mathrm{E}+00$	$-1.2881 \mathrm{E}-01$	$-4.2259 \mathrm{E}-01$	$3.5717 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-7.9740 \mathrm{E}+00$	$-6.6170 \mathrm{E}-01$	$4.3675 \mathrm{E}-01$	$-4.5759 \mathrm{E}-01$
$\mathrm{~A} 8=$	$1.4853 \mathrm{E}+01$	$1.1888 \mathrm{E}+00$	$-4.6275 \mathrm{E}-01$	$2.9937 \mathrm{E}-01$

$\mathrm{A} 10=$	$-1.1480 \mathrm{E}+01$	$-4.2607 \mathrm{E}-01$	$3.1380 \mathrm{E}-01$	$-1.1921 \mathrm{E}-01$
$\mathrm{~A} 12=$	$-4.4740 \mathrm{E}+00$	$-5.1720 \mathrm{E}-01$	$-1.2912 \mathrm{E}-01$	$2.8364 \mathrm{E}-02$
$\mathrm{~A} 14=$	$1.2594 \mathrm{E}+01$	$5.0722 \mathrm{E}-01$	$2.9275 \mathrm{E}-02$	$-3.7104 \mathrm{E}-03$
$\mathrm{~A} 16=$	$-5.4160 \mathrm{E}+00$	$-1.2485 \mathrm{E}-01$	$-2.8533 \mathrm{E}-03$	$2.0238 \mathrm{E}-04$

In the 5th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in the following values for the 5th embodiment, so an explanation in this regard will not be provided again.

Moreover, these parameters can be calculated from Table 9 and Table 10 as the following values and satisfy the following conditions:

5th Embodiment			
$\mathrm{f}[\mathrm{mm}]$	2.24	$\mathrm{f} / \mathrm{f3} 3$	-0.93
Fno	2.51	$\|\mathrm{f} / \mathrm{f} 4\|$	1.12
HFOV [deg.]	44.2	$\mathrm{f} / \mathrm{f3}$	-1.30
V1	17.8	Td [mm]	3.150
CT2/(CT1+CT3+CT4)	1.25	ICT/Td	0.85
(R3+R4)/(R3-R4)	0.61	Td/tan(HFOV) [mm]	3.24
f/f1	-0.16	FOV [deg.]	88.4

6th Embodiment

Fig. 6A is a schematic view of an imaging device according to the 6th embodiment of the present disclosure. Fig. 6B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the table are the same as those stated in the 1st embodiment with corresponding imaging device according to the 6th embodiment.

In Fig. 6A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor
670. The image capturing lens system includes, in order from an object side to an image side, a first lens element 610, an aperture stop 600, a second lens element 620, a third lens element 630, a fourth lens element 640, an IR-cut filter 650 and an image plane 660, wherein the image capturing lens system has a total of four lens elements (610-640) with refractive power.

The first lens element 610 with positive refractive power has a convex object-side surface 611 in a paraxial region thereof and a convex image-side surface 612 in a paraxial region thereof, which are both aspheric, and the first lens element 610 is made of plastic material.

The second lens element 620 with positive refractive power has a concave object-side surface 621 in a paraxial region thereof and a convex image-side surface 622 in a paraxial region thereof, which are both aspheric, and the second lens element 620 is made of plastic material.

The third lens element 630 with negative refractive power has a concave object-side surface 631 in a paraxial region thereof and a convex image-side surface 632 in a paraxial region thereof, which are both aspheric, and the third lens element 630 is made of plastic material.

The fourth lens element 640 with positive refractive power has a convex object-side surface 641 in a paraxial region thereof and a concave image-side surface 642 in a paraxial region thereof, which are both aspheric, and the fourth lens element 640 is made of plastic material. Furthermore, the image-side surface 642 of the fourth lens element 640 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 650 is made of glass and located between the fourth lens element 640 and the image plane 660, and will not affect the focal length of the
image capturing lens system. The image sensor 670 is disposed on the image plane 660 of the image capturing lens system.

The detailed optical data of the 6th embodiment are shown in Table 11 and the aspheric surface data are shown in Table 12 below.

TABLE 11								
Embodiment 6								
$\mathrm{f}=1.27 \mathrm{~mm}$, Fno = 2.10, HFOV $=44.4 \mathrm{deg}$.								
Surface \#		Curvatur	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object			Infinity				
1	Lens 1	2.393	ASP	0.280	Plastic	1.544	55.9	3.85
2		-16.057	ASP	0.017				
3	Ape. Stop			0.044				
4	Lens 2	-30.373	ASP	0.755	Plastic	1.544	55.9	0.87
5		-0.468	ASP	0.121				
6	Lens 3	-0.246	ASP	0.240	Plastic	1.639	23.5	-0.90
7		-0.594	ASP	0.030				
8	Lens 4	0.639	ASP	0.522	Plastic	1.530	55.8	1.47
9		2.521	ASP	0.400				
10	IR-cut filter			0.175	Glass	1.517	64.2	-
11				0.073				
12	Image			-				
Note: Reference wavelength is 587.6 nm (d-line).								

TABLE 12				
Aspheric Coefficients				
Surface \#	1	2	4	5
$\mathrm{k}=$	$1.7241 \mathrm{E}+00$	$-8.9754 \mathrm{E}+01$	$-9.0000 \mathrm{E}+01$	$-7.5923 \mathrm{E}-01$
$\mathrm{~A} 4=$	$2.1410 \mathrm{E}-01$	$1.4516 \mathrm{E}+00$	$1.5168 \mathrm{E}-01$	$-5.4982 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-2.3810 \mathrm{E}-01$	$-1.0826 \mathrm{E}+01$	$4.8929 \mathrm{E}+00$	$2.0791 \mathrm{E}+00$
$\mathrm{~A} 8=$	$2.3555 \mathrm{E}+01$	$1.9495 \mathrm{E}+02$	$-3.2116 \mathrm{E}+01$	$8.2787 \mathrm{E}-01$
$\mathrm{~A} 10=$	$-2.5034 \mathrm{E}+02$	$-5.1780 \mathrm{E}+02$	$-2.6801 \mathrm{E}+03$	$-1.4893 \mathrm{E}+02$
$\mathrm{~A} 12=$	$1.4357 \mathrm{E}+03$	$-5.7593 \mathrm{E}+04$	$4.6579 \mathrm{E}+04$	$1.0534 \mathrm{E}+03$
$\mathrm{~A} 14=$	$-4.2381 \mathrm{E}+03$	$9.2351 \mathrm{E}+05$	$-3.3256 \mathrm{E}+05$	$-3.0936 \mathrm{E}+03$
A16 $=$	$4.9589 \mathrm{E}+03$	$-4.2045 \mathrm{E}+06$	$9.0327 \mathrm{E}+05$	$3.3098 \mathrm{E}+03$
Surface \#	6	7	8	9
$\mathrm{k}=$	$-9.9704 \mathrm{E}-01$	$-3.7851 \mathrm{E}+00$	$-7.3474 \mathrm{E}-01$	$-2.0751 \mathrm{E}+00$
A4 $=$	$2.9255 \mathrm{E}+00$	$-1.3600 \mathrm{E}+00$	$-1.2133 \mathrm{E}+00$	$1.8260 \mathrm{E}+00$
A6 $=$	$-2.4852 \mathrm{E}+00$	$5.5927 \mathrm{E}+00$	$3.0817 \mathrm{E}+00$	$-5.9653 \mathrm{E}+00$
A8 $=$	$-5.7718 \mathrm{E}+01$	$-1.8755 \mathrm{E}+01$	$-1.0034 \mathrm{E}+01$	$9.6816 \mathrm{E}+00$

$\mathrm{A} 10=$	$6.7135 \mathrm{E}+02$	$7.3016 \mathrm{E}+01$	$1.9498 \mathrm{E}+01$	$-9.2466 \mathrm{E}+00$
$\mathrm{~A} 12=$	$-3.0733 \mathrm{E}+03$	$-1.6937 \mathrm{E}+02$	$-2.1549 \mathrm{E}+01$	$5.1894 \mathrm{E}+00$
$\mathrm{~A} 14=$	$6.6780 \mathrm{E}+03$	$1.9522 \mathrm{E}+02$	$1.2590 \mathrm{E}+01$	$-1.5760 \mathrm{E}+00$
$\mathrm{~A} 16=$	$-5.6393 \mathrm{E}+03$	$-8.6932 \mathrm{E}+01$	$-3.0510 \mathrm{E}+00$	$1.9769 \mathrm{E}-01$

In the 6th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in the following table are the same as those stated in the 1st embodiment with corresponding values for the 6th embodiment, so an explanation in this regard will not be provided again.

Moreover, these parameters can be calculated from Table 11 and Table 12 as the following values and satisfy the following conditions:

6th Embodiment			
$\mathrm{f}[\mathrm{mm}]$	1.27	$\mathrm{f} 2 / \mathrm{f3}$	-0.97
Fno	2.10	$\|\mathrm{f} / \mathrm{f} 4\|$	0.86
HFOV [deg.]	44.4	$\mathrm{f} / \mathrm{f} 3$	-1.41
V1	55.9	Td [mm]	2.009
CT2/(CT1+CT3+CT4)	0.72	$\Sigma \mathrm{CT} / \mathrm{Td}$	0.89
(R3+R4)/(R3-R4)	1.03	Td/tan(HFOV) [mm]	2.05
$\mathrm{f} / \mathrm{f1} 1$	0.33	FOV [deg.]	88.8

7th Embodiment

Fig. 7A is a schematic view of an imaging device according to the 7 th embodiment of the present disclosure. Fig. 7B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 7th embodiment.

In Fig. 7A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor
770. The image capturing lens system includes, in order from an object side to an image side, an aperture stop 700, a first lens element 710, a second lens element 720, a third lens element 730, a fourth lens element 740, an IR-cut filter 750 and an image plane 760, wherein the image capturing lens system has a total of four lens elements (710-740) with refractive power.

The first lens element 710 with positive refractive power has a convex object-side surface 711 in a paraxial region thereof and a concave image-side surface 712 in a paraxial region thereof, which are both aspheric, and the first lens element 710 is made of plastic material.

The second lens element 720 with positive refractive power has a concave object-side surface 721 in a paraxial region thereof and a convex image-side surface 722 in a paraxial region thereof, which are both aspheric, and the second lens element 720 is made of plastic material.

The third lens element 730 with negative refractive power has a concave object-side surface 731 in a paraxial region thereof and a convex image-side surface 732 in a paraxial region thereof, which are both aspheric, and the third lens element 730 is made of plastic material.

The fourth lens element 740 with positive refractive power has a convex object-side surface 741 in a paraxial region thereof and a concave image-side surface 742 in a paraxial region thereof, which are both aspheric, and the fourth lens element 740 is made of plastic material. Furthermore, the image-side surface 742 of the fourth lens element 740 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 750 is made of glass and located between the fourth lens element 740 and the image plane 760 , and will not affect the focal length of
the image capturing lens system. The image sensor 770 is disposed on the image plane 760 of the image capturing lens system.

The detailed optical data of the 7th embodiment are shown in Table 13 and the aspheric surface data are shown in Table 14 below.

TABLE 13								
Embodiment 7								
$\mathrm{f}=1.57 \mathrm{~mm}, \mathrm{Fno}=2.05, \mathrm{HFOV}=48.5 \mathrm{deg}$.								
Surface \#		Curvatu	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object			Infinity				
1	Ape. Stop			-0.052				
2	Lens 1	1.142	ASP	0.279	Plastic	1.544	55.9	2.84
3		4.008	ASP	0.159				
4	Lens 2	-4.075	ASP	0.614	Plastic	1.544	55.9	1.24
5		-0.608	ASP	0.142				
6	Lens 3	-0.255	ASP	0.230	Plastic	1.634	23.8	-1.37
7		-0.487	ASP	0.030				
8	Lens 4	0.636	ASP	0.414	Plastic	1.535	55.7	2.35
9		0.998	ASP	0.500				
10	IR-cut filter			0.175	Glass	1.517	64.2	-
11				0.141				
12	Image			-				
Note: Reference wavelength is 587.6 nm (d-line).								

TABLE 14				
Aspheric Coefficients				
Surface \#	2	3	4	5
$\mathrm{k}=$	$-5.4318 \mathrm{E}-01$	$6.9324 \mathrm{E}+01$	$6.0179 \mathrm{E}+01$	$-4.8138 \mathrm{E}-01$
$\mathrm{~A} 4=$	$1.1275 \mathrm{E}-01$	$-3.4138 \mathrm{E}-01$	$-6.6571 \mathrm{E}-01$	$-8.5384 \mathrm{E}-02$
$\mathrm{~A} 6=$	$-1.4350 \mathrm{E}+00$	$-2.7321 \mathrm{E}+00$	$4.9846 \mathrm{E}-01$	$-6.6518 \mathrm{E}-01$
$\mathrm{~A} 8=$	$6.0529 \mathrm{E}+00$	$2.0740 \mathrm{E}+01$	$-4.5807 \mathrm{E}+00$	$-2.1554 \mathrm{E}-01$
$\mathrm{~A} 10=$	$4.7148 \mathrm{E}+01$	$-7.0776 \mathrm{E}+01$	$-1.7027 \mathrm{E}+02$	$-7.9977 \mathrm{E}+00$
$\mathrm{~A} 12=$	$-1.4571 \mathrm{E}+02$	$-1.4998 \mathrm{E}+03$	$1.2130 \mathrm{E}+03$	$2.5638 \mathrm{E}+01$
$\mathrm{~A} 14=$	$-3.8164 \mathrm{E}+03$	$1.2389 \mathrm{E}+04$	$-4.4615 \mathrm{E}+03$	$-4.3167 \mathrm{E}+01$
$\mathrm{~A} 16=$	$1.5882 \mathrm{E}+04$	$-2.9058 \mathrm{E}+04$	$6.2425 \mathrm{E}+03$	$7.2938 \mathrm{E}+01$
Surface \#	6	7	8	9
$\mathrm{k}=$	$-1.1103 \mathrm{E}+00$	$-3.0258 \mathrm{E}+00$	$-9.3042 \mathrm{E}-01$	$-5.1455 \mathrm{E}+00$
$\mathrm{~A} 4=$	$5.4423 \mathrm{E}+00$	$4.5345 \mathrm{E}-01$	$-7.7223 \mathrm{E}-01$	$7.0200 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-3.5666 \mathrm{E}+01$	$-4.9768 \mathrm{E}+00$	$9.4468 \mathrm{E}-01$	$-1.5850 \mathrm{E}+00$
$\mathrm{~A} 8=$	$1.3446 \mathrm{E}+02$	$1.9752 \mathrm{E}+01$	$-1.3669 \mathrm{E}+00$	$1.7028 \mathrm{E}+00$

$\mathrm{A} 10=$	$-2.5131 \mathrm{E}+02$	$-4.2912 \mathrm{E}+01$	$1.1409 \mathrm{E}+00$	$-1.1082 \mathrm{E}+00$
$\mathrm{~A} 12=$	$-7.3665 \mathrm{E}+01$	$5.3544 \mathrm{E}+01$	$-5.2307 \mathrm{E}-01$	$4.3302 \mathrm{E}-01$
$\mathrm{~A} 14=$	$1.1117 \mathrm{E}+03$	$-3.5702 \mathrm{E}+01$	$1.2365 \mathrm{E}-01$	$-9.2838 \mathrm{E}-02$
$\mathrm{~A} 16=$	$-1.2600 \mathrm{E}+03$	$1.0063 \mathrm{E}+01$	$-1.1645 \mathrm{E}-02$	$8.3092 \mathrm{E}-03$

In the 7th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in the following table are the same as those stated in the 1st embodiment with corresponding values for the 7 th embodiment, so an explanation in this regard will not be provided again.

Moreover, these parameters can be calculated from Table 13 and Table 14 as the following values and satisfy the following conditions:

7 th Embodiment			
$\mathrm{f}[\mathrm{mm}]$	1.57	$\mathrm{f} / \mathrm{f3} 3$	-0.91
Fno	2.05	$\|\mathrm{f} / \mathrm{f} 4\|$	0.67
HFOV [deg.]	48.5	$\mathrm{f} / \mathrm{f3}$	-1.15
V 1	55.9	Td [mm]	1.868
CT2/(CT1+CT3+CT4)	0.67	$\Sigma \mathrm{CT} / \mathrm{Td}$	0.82
(R3+R4)/(R3-R4)	1.35	Td/tan(HFOV) [mm]	1.65
f/f1	0.55	FOV [deg.]	97.0

8th Embodiment

Fig. 8 A is a schematic view of an imaging device according to the 8 th embodiment of the present disclosure. Fig. 8B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 8th embodiment.

In Fig. 8A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor
870. The image capturing lens system includes, in order from an object side to an image side, a first lens element 810, an aperture stop 800, a second lens element 820, a third lens element 830, a fourth lens element 840, an IR-cut filter 850 and an image plane 860, wherein the image capturing lens system has a total of four lens elements (810-840) with refractive power.

The first lens element 810 with positive refractive power has a convex object-side surface 811 in a paraxial region thereof and a concave image-side surface 812 in a paraxial region thereof, which are both aspheric, and the first lens element 810 is made of plastic material.

The second lens element 820 with positive refractive power has a concave object-side surface 821 in a paraxial region thereof and a convex image-side surface 822 in a paraxial region thereof, which are both aspheric, and the second lens element 820 is made of plastic material.

The third lens element 830 with negative refractive power has a concave object-side surface 831 in a paraxial region thereof and a convex image-side surface 832 in a paraxial region thereof, which are both aspheric, and the third lens element 830 is made of plastic material.

The fourth lens element 840 with positive refractive power has a convex object-side surface 841 in a paraxial region thereof and a concave image-side surface 842 in a paraxial region thereof, which are both aspheric, and the fourth lens element 840 is made of plastic material. Furthermore, the image-side surface 842 of the fourth lens element 840 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 850 is made of glass and located between the fourth lens element 840 and the image plane 860, and will not affect the focal length of
the image capturing lens system. The image sensor 870 is disposed on the image plane 860 of the image capturing lens system.

The detailed optical data of the 8th embodiment are shown in Table 15 and the aspheric surface data are shown in Table 16 below.

TABLE 15								
Embodiment 8								
$\mathrm{f}=1.68 \mathrm{~mm}$, Fno $=2.10, \mathrm{HFOV}=46.0 \mathrm{deg}$.								
Surface \#		Curvatur	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object			Infinity				
1	Lens 1	1.787	ASP	0.278	Plastic	1.544	55.9	3.81
2		12.133	ASP	0.022				
3	Ape. Stop			0.145				
4	Lens 2	-3.839	ASP	0.668	Plastic	1.544	55.9	1.38
5		-0.668	ASP	0.194				
6	Lens 3	-0.273	ASP	0.230	Plastic	1.639	23.5	-1.18
7		-0.569	ASP	0.030				
8	Lens 4	0.784	ASP	0.496	Plastic	1.530	55.8	1.65
9		5.992	ASP	0.400				
10	IR-cut filter			0.175	Glass	1.517	64.2	-
11				0.472				
12	Image			-				
Note: Reference wavelength is 587.6 nm (d-line).								

TABLE 16				
Aspheric Coefficients				
Surface \#	1	2	4	5
$\mathrm{k}=$	$-1.3232 \mathrm{E}+00$	$5.3151 \mathrm{E}+01$	$5.1693 \mathrm{E}+01$	$-5.9308 \mathrm{E}-01$
$\mathrm{~A} 4=$	$1.6281 \mathrm{E}-02$	$-1.2122 \mathrm{E}-02$	$-2.5602 \mathrm{E}-01$	$-1.1508 \mathrm{E}-01$
$\mathrm{~A} 6=$	$1.5823 \mathrm{E}-01$	$-1.1940 \mathrm{E}+00$	$-1.0332 \mathrm{E}+00$	$-6.8787 \mathrm{E}-01$
$\mathrm{~A} 8=$	$5.9941 \mathrm{E}-01$	$1.2093 \mathrm{E}+01$	$1.0464 \mathrm{E}+01$	$-9.7964 \mathrm{E}-02$
$\mathrm{~A} 10=$	$-1.3812 \mathrm{E}+01$	$-2.0003 \mathrm{E}+01$	$-1.9940 \mathrm{E}+02$	$-6.2734 \mathrm{E}+00$
$\mathrm{~A} 12=$	$4.5317 \mathrm{E}+01$	$-1.4998 \mathrm{E}+03$	$1.2130 \mathrm{E}+03$	$2.8529 \mathrm{E}+01$
$\mathrm{~A} 14=$	$-4.4460 \mathrm{E}+01$	$1.2389 \mathrm{E}+04$	$-4.4615 \mathrm{E}+03$	$-4.4589 \mathrm{E}+01$
$\mathrm{~A} 16=$	$-4.7734 \mathrm{E}+01$	$-2.9058 \mathrm{E}+04$	$6.2425 \mathrm{E}+03$	$2.7908 \mathrm{E}+01$
Surface \#	6	7	8	9
$\mathrm{k}=$	$-1.0578 \mathrm{E}+00$	$-3.0032 \mathrm{E}+00$	$-8.6121 \mathrm{E}-01$	$5.6610 \mathrm{E}+00$
$\mathrm{~A} 4=$	$4.0391 \mathrm{E}+00$	$9.4553 \mathrm{E}-02$	$-6.6716 \mathrm{E}-01$	$7.7788 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-2.6571 \mathrm{E}+01$	$-4.4170 \mathrm{E}+00$	$1.1395 \mathrm{E}+00$	$-1.2944 \mathrm{E}+00$
$\mathrm{~A} 8=$	$1.2417 \mathrm{E}+02$	$1.9085 \mathrm{E}+01$	$-1.7698 \mathrm{E}+00$	$1.0967 \mathrm{E}+00$

$\mathrm{A} 10=$	$-3.9394 \mathrm{E}+02$	$-4.1568 \mathrm{E}+01$	$1.6239 \mathrm{E}+00$	$-5.7605 \mathrm{E}-01$
$\mathrm{~A} 12=$	$8.2748 \mathrm{E}+02$	$5.5376 \mathrm{E}+01$	$-8.6944 \mathrm{E}-01$	$1.8609 \mathrm{E}-01$
$\mathrm{~A} 14=$	$-9.7331 \mathrm{E}+02$	$-4.1902 \mathrm{E}+01$	$2.5418 \mathrm{E}-01$	$-3.3617 \mathrm{E}-02$
$\mathrm{~A} 16=$	$4.7213 \mathrm{E}+02$	$1.3653 \mathrm{E}+01$	$-3.1838 \mathrm{E}-02$	$2.5144 \mathrm{E}-03$

In the 8th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in the following table are the same as those stated in the 1st embodiment with corresponding values for the 8th embodiment, so an explanation in this regard will not be provided again.

Moreover, these parameters can be calculated from Table 15 and Table 16 as the following values and satisfy the following conditions:

8th Embodiment			
$\mathrm{f}[\mathrm{mm}]$	1.68	$\mathrm{f} / \mathrm{f3} 3$	-1.17
Fno	2.10	$\|\mathrm{f} / \mathrm{f} 4\|$	1.02
HFOV [deg.]	46.0	$\mathrm{f} / \mathrm{f3}$	-1.42
V1	55.9	Td [mm]	2.063
CT2/(CT1+CT3+CT4)	0.67	$\Sigma \mathrm{CT} / \mathrm{Td}$	0.81
(R3+R4)/(R3-R4)	1.42	Td/tan(HFOV) [mm]	1.99
$\mathrm{f} / \mathrm{f} 1$	0.44	FOV [deg.]	92.0

9th Embodiment

Fig. 9A is a schematic view of an imaging device according to the 9th embodiment of the present disclosure. Fig. 9B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 9th embodiment.

In Fig. 9A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor
970. The image capturing lens system includes, in order from an object side to an image side, a first lens element 910, an aperture stop 900, a second lens element 920, a third lens element 930, a fourth lens element 940, an IR-cut filter 950 and an image plane 960 , wherein the image capturing lens system has a total of four lens elements (910-940) with refractive power.

The first lens element 910 with positive refractive power has a convex object-side surface 911 in a paraxial region thereof and a convex image-side surface 912 in a paraxial region thereof, which are both aspheric, and the first lens element 910 is made of plastic material.

The second lens element 920 with positive refractive power has a convex object-side surface 921 in a paraxial region thereof and a convex image-side surface 922 in a paraxial region thereof, which are both aspheric, and the second lens element 920 is made of plastic material.

The third lens element 930 with negative refractive power has a concave object-side surface 931 in a paraxial region thereof and a convex image-side surface 932 in a paraxial region thereof, which are both aspheric, and the third lens element 930 is made of plastic material.

The fourth lens element 940 with positive refractive power has a convex object-side surface 941 in a paraxial region thereof and a concave image-side surface 942 in a paraxial region thereof, which are both aspheric, and the fourth lens element 940 is made of plastic material. Furthermore, the image-side surface 942 of the fourth lens element 940 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 950 is made of glass and located between the fourth lens element 940 and the image plane 960, and will not affect the focal length of
the image capturing lens system. The image sensor 970 is disposed on the image plane 960 of the image capturing lens system.

The detailed optical data of the 9th embodiment are shown in Table 17 and the aspheric surface data are shown in Table 18 below.

TABLE 17								
Embodiment 9								
$\mathrm{f}=0.92 \mathrm{~mm}, \mathrm{Fno}=2.45, \mathrm{HFOV}=43.9 \mathrm{deg}$.								
Surface \#		Curvatur	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object	Pla		Infinity				
1	Lens 1	100.000	ASP	0.205	Plastic	1.633	23.4	13.12
2		-9.046	ASP	0.017				
3	Ape. Stop	Pla		0.024				
4	Lens 2	1.695	ASP	0.475	Plastic	1.544	55.9	0.54
5		-0.319	ASP	0.100				
6	Lens 3	-0.148	ASP	0.160	Plastic	1.634	23.8	-0.65
7		-0.329	ASP	0.030				
8	Lens 4	0.595	ASP	0.239	Plastic	1.530	55.8	1.28
9		4.109	ASP	0.300				
10	IR-cut filter	Pla		0.145	Glass	1.517	64.2	-
11		Pla		0.151				
12	Image	Pla		-				
Note: Reference wavelength is 587.6 nm (d-line).								

TABLE 18				
Aspheric Coefficients				
Surface \#	1	2	4	5
$\mathrm{k}=$	$-9.0000 \mathrm{E}+01$	$9.0000 \mathrm{E}+01$	$3.3243 \mathrm{E}+01$	$-6.6437 \mathrm{E}-01$
$\mathrm{~A} 4=$	$2.5656 \mathrm{E}-01$	$2.4894 \mathrm{E}+00$	$-1.9077 \mathrm{E}+00$	$-1.5093 \mathrm{E}+00$
$\mathrm{~A} 6=$	$-1.0613 \mathrm{E}+00$	$-9.5530 \mathrm{E}+01$	$-1.3506 \mathrm{E}+01$	$4.3096 \mathrm{E}+00$
$\mathrm{~A} 8=$	$1.6769 \mathrm{E}+02$	$3.0126 \mathrm{E}+03$	$1.0928 \mathrm{E}+01$	$1.6065 \mathrm{E}+02$
$\mathrm{~A} 10=$	$-3.7307 \mathrm{E}+03$	$-2.3016 \mathrm{E}+04$	$-4.4021 \mathrm{E}+04$	$-2.9203 \mathrm{E}+03$
$\mathrm{~A} 12=$	$3.9786 \mathrm{E}+04$	$-1.5960 \mathrm{E}+06$	$1.2908 \mathrm{E}+06$	$2.9181 \mathrm{E}+04$
$\mathrm{~A} 14=$	$-2.1485 \mathrm{E}+05$	$4.6819 \mathrm{E}+07$	$-1.6860 \mathrm{E}+07$	$-1.5683 \mathrm{E}+05$
$\mathrm{~A} 16=$	$4.5990 \mathrm{E}+05$	$-3.8994 \mathrm{E}+08$	$8.3772 \mathrm{E}+07$	$3.0696 \mathrm{E}+05$
Surface \#	6	7	8	9
$\mathrm{k}=$	$-1.0921 \mathrm{E}+00$	$-2.4247 \mathrm{E}+00$	$-6.0015 \mathrm{E}-01$	$3.3921 \mathrm{E}+01$
$\mathrm{~A} 4=$	$8.8579 \mathrm{E}+00$	$-1.7457 \mathrm{E}+00$	$-1.8642 \mathrm{E}+00$	$3.4965 \mathrm{E}+00$
$\mathrm{~A} 6=$	$-9.7201 \mathrm{E}+00$	$2.7059 \mathrm{E}+01$	$4.2816 \mathrm{E}+00$	$-1.7965 \mathrm{E}+01$
$\mathrm{~A} 8=$	$-4.6210 \mathrm{E}+02$	$-1.6609 \mathrm{E}+02$	$-3.6842 \mathrm{E}+01$	$3.3243 \mathrm{E}+01$

$\mathrm{A} 10=$	$1.0079 \mathrm{E}+04$	$1.0699 \mathrm{E}+03$	$9.4802 \mathrm{E}+01$	$-3.1178 \mathrm{E}+01$
$\mathrm{~A} 12=$	$-8.5169 \mathrm{E}+04$	$-4.7330 \mathrm{E}+03$	$-1.9140 \mathrm{E}+02$	$1.8452 \mathrm{E}+01$
$\mathrm{~A} 14=$	$3.3855 \mathrm{E}+05$	$1.0605 \mathrm{E}+04$	$3.6755 \mathrm{E}+02$	$-3.7397 \mathrm{E}+01$
$\mathrm{~A} 16=$	$-5.2300 \mathrm{E}+05$	$-7.7191 \mathrm{E}+03$	$-9.3365 \mathrm{E}+02$	$3.7762 \mathrm{E}+01$

In the 9th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in the following table are the same as those stated in the 1st embodiment with corresponding values for the 9th embodiment, so an explanation in this regard will not be provided again.

Moreover, these parameters can be calculated from Table 17 and Table 18 as the following values and satisfy the following conditions:

9th Embodiment			
$\mathrm{f}[\mathrm{mm}]$	0.92	$\mathrm{f} / \mathrm{f3} 3$	-0.83
Fno	2.45	$\mathrm{f} / \mathrm{f} 4 \mid$	0.72
HFOV [deg.]	43.9	$\mathrm{f} / \mathrm{f3}$	-1.42
V1	23.4	Td [mm]	1.250
CT2/(CT1+CT3+CT4)	0.79	$\Sigma \mathrm{CT} / \mathrm{Td}$	0.86
(R3+R4)/(R3-R4)	0.68	Td/tan(HFOV) [mm]	1.30
$\mathrm{f} / \mathrm{f} 1$	0.07	FOV [deg.]	87.8

10th Embodiment

Fig. 10A is a schematic view of an imaging device according to the 10th embodiment of the present disclosure. Fig. 10B shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the imaging device according to the 10th embodiment.

In Fig. 10A, the imaging device includes the image capturing lens system (not otherwise herein labeled) of the present disclosure and an image sensor
1070. The image capturing lens system includes, in order from an object side to an image side, an aperture stop 1000, a first lens element 1010, a second lens element 1020, a third lens element 1030, a fourth lens element 1040, an IR-cut filter 1050 and an image plane 1060, wherein the image capturing lens system has a total of four lens elements (1010-1040) with refractive power.

The first lens element 1010 with positive refractive power has a convex object-side surface 1011 in a paraxial region thereof and a concave image-side surface 1012 in a paraxial region thereof, which are both aspheric, and the first lens element 1010 is made of plastic material.

The second lens element 1020 with positive refractive power has a concave object-side surface 1021 in a paraxial region thereof and a convex image-side surface 1022 in a paraxial region thereof, which are both aspheric, and the second lens element 1020 is made of plastic material.

The third lens element 1030 with negative refractive power has a concave object-side surface 1031 in a paraxial region thereof and a convex image-side surface 1032 in a paraxial region thereof, which are both aspheric, and the third lens element 1030 is made of plastic material.

The fourth lens element 1040 with positive refractive power has a convex object-side surface 1041 in a paraxial region thereof and a concave image-side surface 1042 in a paraxial region thereof, which are both aspheric, and the fourth lens element 1040 is made of plastic material. Furthermore, the image-side surface 1042 of the fourth lens element 1040 has at least one convex shape in an off-axis region thereof.

The IR-cut filter 1050 is made of glass and located between the fourth lens element 1040 and the image plane 1060, and will not affect the focal length
of the image capturing lens system. The image sensor 1070 is disposed on the image plane 1060 of the image capturing lens system.

The detailed optical data of the 10th embodiment are shown in Table 19 and the aspheric surface data are shown in Table 20 below.

TABLE 19								
Embodiment 10								
$\mathrm{f}=1.80 \mathrm{~mm}$, Fno $=2.12$, $\mathrm{HFOV}=47.2 \mathrm{deg}$.								
Surface \#		Curvatu	Radius	Thickness	Material	Index	Abbe \#	Focal Length
0	Object			Infinity				
1	Ape. Stop			-0.060				
2	Lens 1	1.246	ASP	0.289	Plastic	1.544	55.9	2.97
3		5.018	ASP	0.191				
4	Lens 2	-3.749	ASP	0.593	Plastic	1.544	55.9	1.57
5		-0.733	ASP	0.156				
6	Lens 3	-0.288	ASP	0.248	Plastic	1.634	23.8	-1.33
7		-0.584	ASP	0.030				
8	Lens 4	0.704	ASP	0.601	Plastic	1.535	55.7	2.05
9		1.382	ASP	0.500				
10	IR-cut filter			0.210	Glass	1.517	64.2	-
11				0.198				
12	Image			-				
Note: Reference wavelength is 587.6 nm (d-line).								
The effective radius of Surface 9 is 1.676 mm .								

5

TABLE 20				
Aspheric Coefficients				
Surface \#	2	3	4	5
$\mathrm{k}=$	$-5.0585 \mathrm{E}-01$	$9.0000 \mathrm{E}+01$	$3.6143 \mathrm{E}+01$	$-3.9805 \mathrm{E}-01$
$\mathrm{~A} 4=$	$8.6099 \mathrm{E}-02$	$-2.2970 \mathrm{E}-01$	$-4.8540 \mathrm{E}-01$	$-1.5034 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-9.1382 \mathrm{E}-01$	$-1.8900 \mathrm{E}+00$	$2.7508 \mathrm{E}-01$	$-5.1276 \mathrm{E}-01$
$\mathrm{~A} 8=$	$1.9706 \mathrm{E}+00$	$1.1233 \mathrm{E}+01$	$-2.0152 \mathrm{E}+00$	$-1.5742 \mathrm{E}-01$
$\mathrm{~A} 10=$	$1.9492 \mathrm{E}+01$	$-3.0654 \mathrm{E}+01$	$-6.3534 \mathrm{E}+01$	$-3.0117 \mathrm{E}+00$
$\mathrm{~A} 12=$	$-3.5519 \mathrm{E}+01$	$-4.4967 \mathrm{E}+02$	$3.6120 \mathrm{E}+02$	$7.3424 \mathrm{E}+00$
$\mathrm{~A} 14=$	$-8.0910 \mathrm{E}+02$	$2.9681 \mathrm{E}+03$	$-1.0702 \mathrm{E}+03$	$-1.0241 \mathrm{E}+01$
$\mathrm{~A} 16=$	$2.4600 \mathrm{E}+03$	$-5.5960 \mathrm{E}+03$	$1.2022 \mathrm{E}+03$	$1.7746 \mathrm{E}+01$
Surface \#	6	7	8	9
$\mathrm{k}=$	$-1.1070 \mathrm{E}+00$	$-2.9894 \mathrm{E}+00$	$-9.3316 \mathrm{E}-01$	$-5.2865 \mathrm{E}+00$
$\mathrm{~A} 3=$			$-1.4739 \mathrm{E}-01$	$5.0831 \mathrm{E}-01$
$\mathrm{~A} 4=$	$4.3809 \mathrm{E}+00$	$4.3352 \mathrm{E}-01$	$-3.5412 \mathrm{E}+00$	$2.6512 \mathrm{E}+00$

$\mathrm{A} 5=$			$2.4672 \mathrm{E}-02$	$1.3099 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-2.6437 \mathrm{E}+01$	$-3.7903 \mathrm{E}+00$	$1.0303 \mathrm{E}+01$	$-3.1255 \mathrm{E}+01$
$\mathrm{~A} 7=$			$3.7082 \mathrm{E}-02$	$2.0652 \mathrm{E}-01$
$\mathrm{~A} 8=$	$9.1296 \mathrm{E}+01$	$1.0965 \mathrm{E}+01$	$-3.1616 \mathrm{E}+01$	$1.1148 \mathrm{E}+02$
$\mathrm{~A} 9=$			$-2.2687 \mathrm{E}-03$	$-9.0797 \mathrm{E}-01$
$\mathrm{~A} 10=$	$-1.5853 \mathrm{E}+02$	$-1.4675 \mathrm{E}+01$	$6.3626 \mathrm{E}+01$	$-2.2327 \mathrm{E}+02$
$\mathrm{~A} 11=$			$-2.3794 \mathrm{E}-03$	$3.6058 \mathrm{E}-01$
$\mathrm{~A} 12=$	$8.3141 \mathrm{E}+00$	$7.7310 \mathrm{E}+00$	$-7.5604 \mathrm{E}+01$	$2.6201 \mathrm{E}+02$
$\mathrm{~A} 13=$			$8.0966 \mathrm{E}-03$	$1.7201 \mathrm{E}-01$
$\mathrm{~A} 14=$	$3.8963 \mathrm{E}+02$	$1.2159 \mathrm{E}+00$	$4.7652 \mathrm{E}+01$	$-1.7041 \mathrm{E}+02$
$\mathrm{~A} 15=$			$-5.5857 \mathrm{E}-02$	$1.0396 \mathrm{E}-01$
$\mathrm{~A} 16=$	$-3.9976 \mathrm{E}+02$	$-1.8447 \mathrm{E}+00$	$-1.2153 \mathrm{E}+01$	$4.7523 \mathrm{E}+01$

In the 10th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1 st embodiment. Also, the definitions of these parameters shown in the following table are the same as those stated in the 1st embodiment with corresponding values for the 10th embodiment, so an explanation in this regard will not be provided again.

Moreover, these parameters can be calculated from Table 19 and Table 20 as the following values and satisfy the following conditions:

10th Embodiment			
$\mathrm{f}[\mathrm{mm}]$	1.80	$\mathrm{f} 2 / \mathrm{f3}$	-1.18
Fno	2.12	$\|\mathrm{f} / \mathrm{f} 4\|$	0.88
HFOV [deg.]	47.2	$\mathrm{f} / \mathrm{f} 3$	-1.35
V1	55.9	Td [mm]	2.108
CT2/(CT1+CT3+CT4)	0.52	$\Sigma \mathrm{CT} / \mathrm{Td}$	0.82
(R3+R4)/(R3-R4)	1.49	Td/tan(HFOV) [mm]	1.95
$\mathrm{f} / \mathrm{f1} 1$	0.61	FOV [deg.]	94.4

The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. It is to be noted that

TABLES 1-20 show different data of the different embodiments; however, the data of the different embodiments are obtained from experiments. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated. The embodiments depicted above and the appended drawings are exemplary and are not intended to be exhaustive or to limit the scope of the present disclosure to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings.

CLAIMS

WHAT IS CLAIMED IS:

1. An image capturing lens system comprising, in order from an object side to an image side:
a first lens element having refractive power;
a second lens element with positive refractive power having a convex image-side surface in a paraxial region thereof;
a third lens element with negative refractive power having a concave object-side surface in a paraxial region thereof and a convex image-side surface in a paraxial region thereof; and
a fourth lens element with refractive power having a concave image-side surface in a paraxial region thereof, wherein both of an object-side surface and the image-side surface of the fourth lens element are aspheric, and the image-side surface of the fourth lens element has at least one convex shape in an off-axis region thereof;
wherein the image capturing lens system has a total of four lens elements with refractive power, an axial distance between an object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, half of a maximal field of view of the image capturing lens system is HFOV, a focal length of the image capturing lens system is f, a focal length of the fourth lens element is $\mathfrak{f 4}$, a focal length of the second lens element is $\mathfrak{f 2}$, a focal length of the third lens element is f 3 , and the following conditions are satisfied:
$0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm} ;$
$1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm}$;
$|f / f 4|<1.20$; and
f2/f3 <-0.65.
2. The image capturing lens system of claim 1, wherein the fourth lens element has the object-side surface being convex in a paraxial region thereof.
3. The image capturing lens system of claim 2, wherein the focal length of the image capturing lens system is f, a focal length of the first lens element is f 1 , and the following condition is satisfied:
$-0.25<\mathrm{f} / \mathrm{f} 1<0.75$.
4. The image capturing lens system of claim 2, wherein the axial distance between the object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, and the following condition is satisfied:
$0.8 \mathrm{~mm}<\mathrm{Td}<2.5 \mathrm{~mm}$.
5. The image capturing lens system of claim 2, wherein an f-number of the image capturing lens system is Fno, and the following condition is satisfied:
$1.40<$ Fno ≤ 2.25.
6. The image capturing lens system of claim 2, wherein a curvature radius of the object-side surface of the second lens element is R3, a curvature radius of the image-side surface of the second lens element is R4, and the following condition is satisfied:
$0.5<(R 3+R 4) /(R 3-R 4)<2.5$.
7. The image capturing lens system of claim 2, wherein the focal length of the image capturing lens system is f , and the following condition is satisfied:
$0.5 \mathrm{~mm}<\mathrm{f}<2.0 \mathrm{~mm}$.
8. The image capturing lens system of claim 1, wherein the first lens element has a convex object-side surface in a paraxial region thereof.
9. The image capturing lens system of claim 8, wherein the axial distance between the object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, half of the maximal field of view of the image capturing lens system is HFOV, and the following condition is satisfied:
$1.2 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<2.75 \mathrm{~mm}$.
10. The image capturing lens system of claim 8 , wherein a sum of the central thicknesses of the first lens element, the second lens element, the third lens element, and the fourth lens element is $\Sigma C T$, the axial distance between the object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, and the following condition is satisfied:
$0.80<\Sigma \mathrm{CT} / \mathrm{Td}<0.95$.
11. The image capturing lens system of claim 8, wherein an Abbe number of the first lens element is V 1 , and the following condition is satisfied:
$45<$ V1.
12. The image capturing lens system of claim 8, wherein a central thickness of the second lens element is CT2, a central thickness of the first lens element is CT1, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, and the following condition is satisfied:
$0.65<\mathrm{CT} 2 /(\mathrm{CT} 1+\mathrm{CT} 3+\mathrm{CT} 4)<2.0$.
13. An imaging device, comprising:
the image capturing lens system of claim 1; and an image sensor.
14. A mobile terminal, comprising:
the imaging device of claim 13.
15. An image capturing lens system comprising, in order from an object side to an image side:
a first lens element having refractive power;
a second lens element with positive refractive power having a convex image-side surface in a paraxial region thereof;
a third lens element with negative refractive power having a concave object-side surface in a paraxial region thereof and a convex image-side surface in a paraxial region thereof; and
a fourth lens element with refractive power having a concave image-side surface in a paraxial region thereof, wherein both of an object-side surface and the image-side surface of the fourth lens element are aspheric, and the image-side surface of the fourth lens element has at least one convex shape in an off-axis region thereof;
wherein the image capturing lens system has a total of four lens elements with refractive power, an axial distance between an object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, half of a maximal field of view of the image capturing lens system is HFOV, a focal length of the image capturing lens system is f, a focal length of the fourth lens element is $f 4$, a focal length of the third lens element is $f 3$, and the following conditions are satisfied:
$0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm}$;
$1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm}$;
$|f / f 4|<1.20$; and
$-2.0<\mathrm{f} / \mathrm{f} 3<-0.95$.
16. The image capturing lens system of claim 15, wherein an Abbe number of the first lens element is V 1 , and the following condition is satisfied: $45<\mathrm{V} 1$.
17. The image capturing lens system of claim 15 , wherein the focal length of the image capturing lens system is f, a focal length of the first lens element is $\mathfrak{f 1}$, and the following condition is satisfied:
$-0.25<\mathrm{f} / \mathrm{f} 1<0.75$.
18. The image capturing lens system of claim 15 , wherein a maximal field of view of the image capturing lens system is FOV, and the following condition is satisfied:

80 degrees < FOV < 110 degrees.
19. The image capturing lens system of claim 15, wherein the axial distance between the object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, and the following condition is satisfied:
$0.8 \mathrm{~mm}<\mathrm{Td}<2.5 \mathrm{~mm}$.
20. The image capturing lens system of claim 15, wherein a focal length of the second lens element is $\mathfrak{f} 2$, the focal length of the third lens element is $f 3$, and the following condition is satisfied:
f2/f3 <-0.75.
21. An image capturing lens system comprising, in order from an object side to an image side:
a first lens element having refractive power;
a second lens element with positive refractive power having a convex image-side surface in a paraxial region thereof;
a third lens element with negative refractive power having a concave object-side surface in a paraxial region thereof and a convex image-side surface in a paraxial region thereof; and
a fourth lens element with refractive power having a concave image-side surface in a paraxial region thereof, wherein both of an object-side surface and the image-side surface of the fourth lens element are aspheric, and the image-side surface of the fourth lens element has at least one convex shape in an off-axis region thereof;
wherein the image capturing lens system has a total of four lens elements with refractive power, an axial distance between the object-side surface of the first lens element and the image-side surface of the fourth lens element is Td, half of a maximal field of view of the image capturing lens system is HFOV, a focal length of the image capturing lens system is f, a focal length of the fourth lens element is $\mathfrak{f 4}$, an \mathfrak{f}-number of the image capturing lens system is Fno, and the following conditions are satisfied:

$$
\begin{aligned}
& 0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm} \\
& 1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm} \\
& |\mathrm{f} / f 4|<1.20 ; \text { and } \\
& 1.40<\text { Fno } \leq 2.25 .
\end{aligned}
$$

22. The image capturing lens system of claim 21, wherein a focal length of the second lens element is $\mathfrak{f 2}$, a focal length of the third lens element is f 3 , and the following condition is satisfied:
f2/f3 <-0.65.
23. The image capturing lens system of claim 21, wherein an Abbe number of the first lens element is V 1 , and the following condition is satisfied:

$$
45<\mathrm{V} 1 .
$$

24. The image capturing lens system of claim 21, wherein the first lens element has positive refractive power, the focal length of the image capturing lens system is f, a focal length of the first lens element is $f 1$, and the following condition is satisfied:

$$
0.25<\mathrm{f} / \mathrm{f} 1<0.75
$$

25. The image capturing lens system of claim 21, wherein a maximal field of view of the image capturing lens system is FOV, and the following condition is satisfied:

80 degrees < FOV < 110 degrees.
26. The image capturing lens system of claim 21, wherein a central thickness of the second lens element is CT2, a central thickness of the first lens element is CT1, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, and the following condition is satisfied:

$$
0.65<\mathrm{CT} 2 /(\mathrm{CT} 1+\mathrm{CT} 3+\mathrm{CT} 4)<2.0 .
$$

ABSTRACT OF THE DISCLOSURE

An image capturing lens system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element and a fourth lens element. The first lens element has refractive power. The second lens element with positive refractive power has a convex image-side surface in a paraxial region thereof. The third lens element with negative refractive power has a concave object-side surface in a paraxial region thereof and a convex image-side surface in a paraxial region thereof. The fourth lens element with refractive power has a concave image-side surface in a paraxial region thereof, wherein both of an object-side surface and the image-side surface thereof are aspheric, and the image-side surface thereof has at least one convex shape in an off-axis region thereof. The image capturing lens system has a total of four lens elements with refractive power.

HP, Ex. 1002
Page 65

HP, Ex. 1002
Page 66

HP, Ex. 1002
Page 67

Fig. 3A

HP, Ex. 1002
Page 69

HP, Ex. 1002
Page 70

Fig. 4A

HP, Ex. 1002
Page 73

Fig. 6A

HP, Ex. 1002
Page 75

Fig. 7A

HP, Ex. 1002
Page 78

HP, Ex. 1002
Page 79

HP, Ex. 1002
Page 80

Fig. 9A

HP, Ex. 1002
Page 81

HP, Ex. 1002
Page 82

HP, Ex. 1002
Page 83

HP, Ex. 1002
Page 84

HP, Ex. 1002
Page 85

Fig. 11B

HP, Ex. 1002
Page 86

Fig. 11C

HP, Ex. 1002
Page 87

TRANSMITTAL FOR POWER OF ATTORNEY TO ONE OR MORE REGISTERED PRACTITIONERS

NOTE: This form is to be submitted with the Power of Attorney by Applicant form (PTO/AIA/82B or equivalent) to identify the application to which the Power of Attorney is directed, in accordance with 37 CFR 1.5. If the Power of Attorney by Applicant form is not accompanied by this transmittal form or an equivalent, the Power of Attorney will not be recognized in the application.

Application Number				
Filing Date		December 13, 2013		
First Named Inventor		WEI-YU CHEN		
Title		IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL		
Art Unit				
Examiner Name				
Attorney Docket Number		14970-94702		
SIGNATURE of Applicant or Patent Practitioner				
Signature	/Tim Ting	ang Xia/	Date	December 13, 2013
Name	Tim Tin	kang Xia	Telephone	4044953678
Registration Number	45242			

NOTE: This form must be signed in accordance with 37 CFR 1.33. See 37 CFR 1.4(d) for signature requirements and certifications.
*Total of 1 forms are submitted.

This collection of information is required by 37 CFR 1.31, 1.32 and 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

POWER OF ATTORNEY BY APPLICANT

24728

or

 transmbital sether to:

 nowixwy

DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN APPLICATION DATA SHEET (37 CFR 1.76)

Title of

IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL Invention

As the below named inventor, I hereby declare that:
This declaration is directed to:

The attached application, or
United States application or PCT international application number \qquad
filed on \qquad -.

The above-identified application was made or authorized to be made by me.

I beleve that I am the original inventor or an original joint inventor of a claimed invention in the application.

I hereby acknowledge that any wilful false statement made in this declanation is punishable under 18 U.S.C. 1001 by fine or imprisonment of not more than five (5) years, or both.

WARNING:

Petitioner/applicant is cautioned to avoid submitting personal information in doouments filed in a patent application that may contribute to identity theft. Personal information such as social security numbers, bank account numbers; or credit card numbers (other than a check or credit card authorization form PTO-2038 submitted for payment purposes) is never required by the USPTO to support a petition or an application. If this type of personal information is included in documents submitted to the USPTO, petitioners/applicants should consider redacting such personal information from the documents before submitting them to the USPTO. Petitioner/applicant is advised that the record of a patent application is available to the public after publication of the application (uniess a non-publication request in compliance with 37 CFR 1.213 (a) is made in the application) or issuance of a patent. Furthermore, the record from an abandoned application may also be available to the public if the application is referenced in a published application or an issued patent (see 37 CFR 1.14). Checks and credit card authorization forms PTO-2038 submitted for payment purposes are not retained in the application file and therefore are not publicly available.

LEGAL NAME OF NVENTOR

Note: An application data sheet (PTO/AIA/14 or equivalent), including naming the entire inventive entity, must accompany this form. Use an additional PTOISEIAIA01 form for each additional inventor.

This collection of intormation is required by 35 U. S. 115 and 37 GFR 1.53 . The information is requited to obtain or tetain a benefit by the public which is to file (and by the USPTO to process) an appication. Contidentialig is govemed by 35 U. S. 6,122 and 37 GFR 1.11 and 1.14 , This collection is estimated to take f minute to complete, includng gathering, preparig, and submitting the compteted application form to the USPTO. Time will vary depending upen the individual case, Any commenis on the amount of time you require to complete this form andor suggestions for reducing this burden, shouid be sent to the Chief Information Officer, U. S. Patent and Trademark Office, US Department of Commerce, PD, Box 1450 , Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TD THIS ADDRESS. SEND TO: Commissioner for Patents, P.O, Box 1450, Alexandria, VA 22313-1450.

$$
13 p 0339
$$

Electronic Patent Application Fee Transmittal

Application Number:	
Filing Date:	
Title of Invention:	
First Named Inventor/Applicant Name:	WEI-YU CHEN
Filer:	Tim Tingkang Xia/Debby Yew LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL
Attorney Docket Number:	$14970-94702$

Filed as Large Entity
Utility under 35 USC 111 (a) Filing Fees

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)

Basic Filing:

Utility application filing	1011	1	280	280
Utility Search Fee	1111	1	600	600
Utility Examination Fee	1311	1	720	720

Pages:

Claims:				
	Claims in Excess of 20	1202	6	80
480				

Miscellaneous-Filing:

Petition:

$\left.$| Description | Fee Code | Quantity | Amount |
| :--- | :---: | :---: | :---: | | Sub-Total in |
| :---: |
| USD(\$) | \right\rvert\,

Electronic Acknowledgement Receipt	
EFS ID:	17655791
Application Number:	14105811
International Application Number:	
Confirmation Number:	5836
Title of Invention:	IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL
First Named Inventor/Applicant Name:	WEI-YU CHEN
Customer Number:	24728
Filer:	Tim Tingkang Xia/Debby Yew
Filer Authorized By:	Tim Tingkang Xia
Attorney Docket Number:	14970-94702
Receipt Date:	13-DEC-2013
Filing Date:	
Time Stamp:	14:55:47
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 2080$
RAM confirmation Number	1437
Deposit Account	503537
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination orq9Psing fees)	

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Transmittal of New Application	1497094702Trans.pdf	191208	no	1
			911943 ffb 92207 dc 234 e 0 ab 91 fe 63 eb 9832 $931 f$		
Warnings:					
Information:					
2	Fee Worksheet (SB06)	1497094702FeeTrans.pdf	169762	no	1
			6a72dbc3lee8el ado6a1 105b03d9d230aa9 2a63tb		
Warnings:					
Information:					
3	Application Data Sheet	1497094702ADS.pdf	1505518	no	6
			d1e35235 $108 a d$ d 8994784 a7b $68449652 a 15$ afteo		
Warnings:					
Information:					
4		1497094702Spec.pdf	296526	yes	56
			832ad976d3e8915629b09063f87e1e98258 4299f		
	Multipart Description/PDF files in .zip description				
	Document Description		Start	End	
	Specification		1	47	
	Claims		48	55	
	Abstract		56	56	

Warnings:

Information:					
5	Drawings-only black and white line drawings	1497094702Drawings.pdf	619675	no	23
			co565e7bd2ed4bfazabtc4191 ect7636662		
Warnings:					
Information:					
6	Power of Attorney	1497094702POA.pdf	374075	no	2
			6db2169529065c90f140:5297ce56677 e547		
Warnings:					
Information:					

7	Oath or Declaration filed	1497094702Dec.pdf	442888	no	1
			 b133		
Warnings:					
Information:					
	Fee Worksheet (SB06)	fee-info.pdf	37137	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			3636789		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

Date Mailed: 01/08/2014

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Inventor(s)

WEI-YU CHEN, Taichung, TAIWAN;

Applicant(s)

LARGAN PRECISION CO., LTD., Taichung, TAIWAN
Assignment For Published Patent Application
LARGAN PRECISION CO., LTD., Taichung, TAIWAN
Power of Attorney: The patent practitioners associated with Customer Number $\underline{24728}$
Domestic Applications for which benefit is claimed - None.
A proper domestic benefit claim must be provided in an Application Data Sheet in order to constitute a claim for domestic benefit. See 37 CFR 1.76 and 1.78.

Foreign Applications (You may be eligible to benefit from the Patent Prosecution Highway program at the USPTO. Please see http://www.uspto.gov for more information.)
TAIWAN 102139029 10/29/2013

Permission to Access - A proper Authorization to Permit Access to Application by Participating Offices (PTO/SB/39 or its equivalent) has been received by the USPTO.

If Required, Foreign Filing License Granted: 01/02/2014
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US $14 / 105,811$
Projected Publication Date: 04/30/2015
Non-Publication Request: No
Early Publication Request: No

Title

IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL

Preliminary Class

359
Statement under 37 CFR 1.55 or 1.78 for AIA (First Inventor to File) Transition Applications: No PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4258).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 \& 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

SelectUSA

The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The U.S. offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to promote and facilitate business investment. SelectUSA provides information assistance to the international investor community; serves as an ombudsman for existing and potential investors; advocates on behalf of U.S. cities, states, and regions competing for global investment; and counsels U.S. economic development organizations on investment attraction best practices. To learn more about why the United States is the best country in the world to develop technology, manufacture products, deliver services, and grow your business, visit http://www. SelectUSA. gov or call $+1-202-482-6800$.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

PC. Box 1450
Alexandria, Virginia 22313-1450
Alexandria, Yir
APPLICATION NUMBER \quad FILING OR 371(C) DATE \quad FIRST NAMED APPLICANT \quad ATTY. DOCKET NO./TITLE
14/105,811 12/13/2013 WEI-YU CHEN 14970-94702
CONFIRMATION NO. 5836
24728
MORRIS MANNING MARTIN LLP
3343 PEACHTREE ROAD, NE
1600 ATLANTA FINANCIAL CENTER
ATLANTA, GA 30326
Date Mailed: 01/08/2014

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 12/13/2013.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.
/hnguyen/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

發明摘要

※ 申請案號：
※ 申請日：
※IPC 分類：

5 【發明名稱】（中文／英文）

影像拾取系統透鏡組，取像裝置及可攜裝置／Image Capturing Lens System，Imaging Device and Mobile Terminal

10 【中文】
本發明提供一種影像拾取系統透鏡組，由物側至像側依序包含：一具屈折力的第一透鏡；一具正屈折力的第二透鏡，其像側面於近光軸處為凸面；一具負屈折力的第三透鏡，其物側面於近光軸處為凹面，其像側面於近光軸處為凸面；及一具屈折力的第四透
15 鏡，其像側面於近光軸處為凹面，其物側面及像側面皆為非球面，且其像側面於離軸處具有至少一凸面。藉由上述結構，在滿足特定條件下，可有利於具備大視角及縮短系統總長度，並提升周長解像力和照度。

【英文】

This invention provides an image capturing lens system comprising from object－side to image－side：a first lens element with refractive power；a positive second lens element having a convex image－side surface in a paraxial region；a negative third lens element having a concave object－side surface in a paraxial region and a convex image－side surface in a paraxial region；and a fourth lens element with refractive power having a concave image－side surface in a paraxial region，both of the object－side and image－side surfaces being aspheric，and the image－side surface has at least a convex shape at an off－axis region thereof．When particular relations are satisfied with the aforesaid structure configuration，wide field of view can be obtained，the total track length can be favorably reduced and the resolution for peripheral image and illumination can be improved．

【代表圖】

【本案指定代表圖】：第（一A）圖。【本代表圖之符號簡單說明】：

光圈	100
第一透鏡	110

物側面 111 像側面 112
第二透鏡 120
物側面 121 像側面 122
第三透鏡 130
物側面 131 像側面 132
第四透鏡 140
物側面 141 像側面 142
紅外線濾除濾光元件 150
成像面 160
電子感光元件 170

【本案若有化學式時，請揭示最能顯示發明特徵的化學式】：

發明專利說明書

（本說明留格式：順序，請勿任意更動）

【發明名稱】（中文／英文）

影像拾取系統透鏡組，取像裝置及可攜裝置／Image Capturing Lens System，Imaging Device and Mobile Terminal

【技術領域】

本發明係闕於一種影像拾取系統透鏡組，特別是關於一種應用於可攜式電子產品的影像拾取系統透鏡組。

【先前技術】

隨著個人電子產品逐漸輕薄化，電子產品内部各零組件被要求具有更小的尺寸。攝影鏡頭的尺寸在這個趨勢下同樣面臨著小型化的要求。除了小型化的要求之外，因為半導體製程技術的進步使得感光元件的畫素面積縮小，攝影鏡頭逐漸往高畫素領域發展，因此，對成像品質的要求也日益增加。

傳統搭載於可浻式電子産品上的小型化光學系統，多採用三片式透鏡結構為主，但由於智慧型手機（Smart Phone），平板電腦 （Tablet PC）與可穿戴式設備（Wearable Apparatus）等高規格可摧裝置（Mobile Terminal）的盛行，使得攝影鏡頭在畫素與成像品質上的迅速攀升，習知的三片式攝影鏡頭已無法滿足更高階的攝影需求。

領域中亦提出四片式透鏡組，期能提供更優異的成像品質。然而，習用四片式透鏡組往往未能在大視角及鏡頭總長度之間取得良好的平衡，且對於周還影像的解像力與照度也不甚理想，尚未能滿足領域中所要求的高階成像品質。

因此，領域中急需一種在滿足小型化的條件下，具有良好之

周邊解像力與照度的攝影鏡頭。

【發明内容】

本發明提供一種影像拾取系統透鏡組，由物側至像側依序包含：一具屈折力的第一透鏡；一具正屈折力的第二透鏡，其像側面於近光軸處為凸面：一具負屈折力的第三透鏡，其物側面於近光軸處為凹面，其像側面於近光軸處為凸面；及一具屈折力的第四透鏡，其像側面於近光軸處為凹面，其物側面及像側面皆為非球面，且其像側面於離軸處具有至少一凸面；其中，該影像拾取系統透鏡組中具有屈折力的透鏡為四片；其中，該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td ，該影像拾取系統透鏡組中最大視角的一半為 HFOV，該影像拾取系統透鏡組的焦距為 f ，該第四透鏡的焦距為 f 4 ，該第二透鏡的焦距為 f2，該第三透鏡的焦距為 f 3 ，係滿足下列關係式： $0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm}$ ； $1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm} ;|\mathrm{f} / \mathrm{f} 4|<1.20$ ；及 $\mathrm{f} 2 / \mathrm{f3}<$ －0．65。

另一方面，本發明提供一種影像拾取系統透鋧組，由物側至像側依序包含：一具屈折力的第一透鏡：一具正屈折力的第二透鏡，其像側面於近光軸處為凸面；一具負屈折力的第三透鏡，其物側面於近光軸處為凹面，其像側面於近光軸處為凸面；及一具屈折力的第四透鏡，其像側面於近光軸處為凹面，其物側面及像側面皆為非球面，且其像側面於離軸處具有至少一几面；其中，該影像拾取系統透鏡組中具有屈折力的透鏡為四片；其中，該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td ，該影像拾取系統透鏡組中最大視角的一半為 HFOV，該影像拾取系統透鏡組的焦距為 f，該第四透鏡的焦距為 f 4 ，該第三透鏡的焦距為 $\mathrm{f3}$ ，係滿足下列關係式： $0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm} ; 1.0 \mathrm{~mm}<\mathrm{Td} /$ $\tan (\mathrm{HFOV})<3.75 \mathrm{~mm} ;|\mathrm{f} / \mathrm{f} 4|<1.20: 及-2.0<\mathrm{f} / \mathrm{f3}<-0.95$ 。

又一方面，本發明提供一種影像拾取系統透鏡組，由物側至像側依序包含：一具屈折力的第一透鏡；一具正屈折力的第二透鏡，其像側面於近光軸處為凸面；一具負屈折力的第三透鏡，其物側面於近光軸處為凹面，其像側面於近光軸處為凸面；及一具屈折力的第四透鏡，其像側面於近光軸處為凹面，其物側面及像側面皆為非球面，且其像側面於離軸處具有至少一凸面；其中，該影像拾取系統透鏡組中具有屈折力的透鏡為四片；其中，該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，該影像拾取系統透鏡組中最大視角的一半為 HFOV，該影像拾取系統透鏡組的焦距為 f ，該第四透鏡的焦距為 f 4 ，該影像拾取系統透鏡組的光圈值為 Fno，，係滿足下列關係式： $0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm}$ ； $1.0 \mathrm{~mm}<\mathrm{Td} / /^{\mathrm{t}} \tan (\mathrm{HFOV})<3.75 \mathrm{~mm}$ ；｜f／f4｜＜1．20；及1．40＜Fno ≤ 2.25 。

再一方面，本發明提供一種取像裝置，包含如前述的影像拾取系統透鏡組及一電子感光元件。

更一方面，本發明提供一種可㩰裝置，包含如前述的取像裝置。

當 Td 滿足上述條件時，有利於維持系統的小型化。
當 Td／tan（HFOV）滿足上述條件時，有助於使該影像拾取系統透鏡組同時具備大視角及短總長的特性。

當｜f／f4｜滿足上述條件時，可使系統的主點更遠離成像面，有利於縮短系統的光學總長度，以維持鏡頭的小型化。

當 $\mathrm{f} 2 / \mathrm{f}$ 滿足上述條件時，該第二透鏡與該第三透鏡的屈折力配置較為平衡，可有助於像差的修正與敏感度的降低。

當 $\mathrm{f} / \mathrm{f} 3$ 滿足上述條件時，該第三透鏡的作用如同補正透鏡，其功能為平衡及修正系統所產生的各項像差，進而可使系統獲得更高的成像品質。

當 Fno 滿足上述條件時，有助於提升系統的周䢬照度。

【雷式簡單說明】

第一 A 圖係本發明第一珼施例的取像装置示意圖。第一 B 圖係本發明第一貫施例的像差曲線圖。
第二 A 圖係本發明第二實施例的取像装置示意圖。
第二 B 圖係本發明第二實施例的像差曲線圖。
第三 A 圖係本發明第三實施例的取像裝置示意圖。
第三 B 圖係本發明第三實施例的像差曲線圖。
第四A圖係本發明第四實施例的取像装置示意圖。第四 B 圖係本發明第四實施例的像差曲線圖。
第五 A 圖係本發明第五實施例的取像裝置示意圖。第五 B 圖係本發明第五實施例的像差曲線圖。第六 A 圖係本發明第六實施例的取像装置示意圖。第六 B 圖係本發明第六實施例的像差曲線圖。第七A圖係本發明第七實施例的取像裝置示意圖。第七 B 圖係本發明第七實施例的像差曲線圖。第八A圖係本發明第八實施例的取像装置示意圖。第八B圖係本發明第八實施例的像差曲線圖。第九 A 圖係本發明第九實施例的取像装置示意圖。第九 B 圖係本發明第九實施例的像差曲線圖。第十 A 圖係本發明第十實施例的取像装置示意圖。第十 B 圖係本發明第十實施例的像差曲線圖。第十一 A 圖係示意裝設有本發明之取像装置的智慧型手機。第十一 B 圖係示意裝設有本發明之取像裝置的平板電腦。。
第十一 C 圖係示意裝設有本發明之取像裝置的可穿戴式設備。

【實施方式】

本發明提供一種影像拾取系統透鏡組，由物側至像側依序包含具屈折力的第一透鏡，第二透鏡，第三透鏡，及第四透鏡。

該第一透鏡可具有正屈折力，可提供系統所需的正屈折力，有助於縮短系統的總長度。該第一透鏡物側面可為凸面，可有效加強缩短光學總長度的功效。

該第二透鏡具正屈折力，有助於利用第二透鏡調和第一透鏡的匯聚能力。該第二透鏡的像側面於近光軸處為凸面，有助於修正系統的像散。

該第三透鏡具負屈折力，有助於系統的像差修正。該第三透鏡物側面近光軸處為凹面，其像側面近光軸處為凸面，可有助於修正系統的像散。

該第四透鏡物側面近光軸處可為凸面，其像側面近光軸處為凹面，且其像側面於離軸處具有至少一凸面，有助於修正系統非點收差（Astigmatism），並可有效修正離軸像差。

該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，當影像拾取系統透鏡組滿足下列關係式： $0.5 \mathrm{~mm}<\mathrm{Td}<3.2$ mm 時，有利於維持系統的小型化；較佳地，滿足下列關係式： $0.8 \mathrm{~mm}<\mathrm{Td}<2.5 \mathrm{~mm}$ 。

該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，該影像拾取系統透鏡組中最大視角的一半為 HFOV，當影像拾取系統透鏡組滿足下列關係式： $1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<$ 3.75 mm 時，有助於使該影像拾取系統透鏡組同時具備大視角及短總長的特性；較佳地，滿足下列關係式： $1.2 \mathrm{~mm}<\mathrm{Td} / \tan$（HFOV）

$<2.75 \mathrm{~mm}$ 。

該影像拾取系統透鏡組的焦距為 f ，該第四透鏡的焦距為 f4，當影像拾取系統透鏡組滿足下列關係式：｜f／f4｜＜1．20時，可使系統的主點更遠離成像面，有利於縮短系統的光學總長度，以維持鏡頭的小型化。

該第二透鏡的焦距為 f 2 ，該第三透鏡的焦距為 f 3 ，當影像拾取系統透鏡組滿足下列關係式：f2／f3＜－0．65時，該第二透鏡與該第三透鏡的屈折力配置較為平衡，可有助於像差的修正與敏感

度的降低；較佳地，滿足下列關係式：f2／f3＜－0．75。
該影像拾取系統透鏡組的焦距為 f ，該第三透鏡的焦距為 f 3 ，當影像拾取系統透鏡組滿足下列關係式：$-2.0<\mathrm{f} / \mathrm{f3}<-0.95$時，該第三透鏡的作用如同補正透鏡，其功能為平衡及修正系統所産生的各項像差，進而可使系統獲得更高的成像品質。

該影像拾取系統透鏡組的光圈值為 Fno，當影像拾取系統透鏡組滿足下列關係式： $1.40<$ Fno ≤ 2.25 時，有助於提升系統的周邊照度。

該影像拾取系統透鏡組的焦距為 f ，該第一透鏡的焦距為 fl ，當影像拾取系統透鏡組滿足下列關係式：－ $0.25<\mathrm{f} / \mathrm{f} 1<0.75$ 時，該第一透鏡的屈折力較為合適，避免敏感度過高；較佳地，滿足下列關係式： $0.25<\mathrm{f} / \mathrm{fl}<0.75$ 。

該第二透鏡物側面的曲率半徑為 R3，該第二透鏡像側面的曲率半徑為 R4。當影像拾取系統透鏡組滿足下列關係式： $0.5<$ （R3＋R4）／（R3－R4）＜ 2.5 時，有助於加強像差的修正。

該影像拾取系統透鏡組的焦距為 f ，冨影像拾取系統透鏡組滿足下列關係式： $0.5 \mathrm{~mm}<\mathrm{f}<2.0 \mathrm{~mm}$ 時，有助於提供適當的光學總長度。

該第一透鏡，該第二透鏡，該第三透鏡，及該第四透鏡於光軸上之厚度的總合為 $\Sigma C T$ ，該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，當影像拾取系統透鏡組㴖足下列關係式： $0.80<\Sigma \mathrm{CT} / \mathrm{Td}<0.95$ 時，有利於該影像拾取系統透鏡組的組裝，並降低敏感度。

該第一透鏡的色散係數為 V1，當影像拾取系統透鏡組滿足下列關係式： $45<$ V1 時，可有效修正系統色差。

該第二透鏡於光軸上的厚度為 CT2，該第一透鏡於光軸上的厚度為 CT1，該第三透鏡於光軸上的厚度為CT3，該第四透鏡於光軸上的厚度為 CT4，當影像拾取系統透鏡組滿足下列關係式： $0.65<\mathrm{CT} 2 /(\mathrm{CT} 1+\mathrm{CT} 3+\mathrm{CT} 4)<2.0$ 時，各透鏡的厚度較為合適，

有助於鏡片的製作及組装。
該影像拾取系統透鏡組的最大視角為 FOV，當影像拾取系統透鏡組滿足下列關係式：80度＜FOV＜ 110 度時，有利於取得足狗的視場角。

本發明的影像拾取系統透鏡組中，透鏡的材質可為玻䍖或塑膠，若透鏡的材質為玻璃，則可以增加該影像拾取系統透鏡組屈折力配置的自由度，若透鏡材質為塑膠，則可以有效降低生產成本。此外，可於鏡面上設置非球面（ASP），非球面可以容易製作成球面以外的形狀，獲得較多的控制變數，用以消減像差，進而縮隇透鏡使用的數目，因此可以有效降低本發明的影像拾取系統透鏡組的總長度。

本發明的影像拾取系統透鏡組中，可至少設置一光闌，如孔徑光闌（Aperture Stop），耀光光闌（Glare Stop）或視場光闌（Field Stop）等。

本發明影像拾取系統透鏡組中，光圈配置可為前置或中置，其中前置光圈意即光圈設置於被攝物與第一透鏡間，中置光圈則表示光圈設置於第一透鏡與成像面間，前置光圈可使影像拾取系統透鏡組的出射瞳（Exit Pupil）與成像面產生較長的距離，使之具有遠心（Telecentric）效果，可增加電子感光元件如 CCD 或 CMOS接收影像的效率；中置光圈則有助於擴大系統的視場角，使影像拾取系統透鏡組具有獚角鏡頭之優勢。

本發明影像拾取系統透鏡組中，就以具有屈折力的透鏡而言，若透鏡表面係為凸面且未界定該凸面位置時，則表示該透鏡表面於近光軸處為凸面；若透鏡表面係為凹面且未界定該凹面位置時，則表示該透鏡表面於近光軸處為凹面。

本發明的影像拾取系統透鏡組更可視需求應用於變焦的光學系統中，並兼具優良像差修正與良好成像品質的特色可多方面應用於 $3 D$（三維）影像顐取，數位相機，行動装置，數位平板與可穿戴式設備等可搹裝置中。

本發明更提供一種取像裝置，其包含前述影像拾取系統透鏡組以及電子感光元件，其中該電子感光元件設置於該影像拾取系統透鏡組的成像面，因此取像裝置可藉由影像拾取系統透鏡組的系統設計，有利於縮短大視角的系統總長，並提升周㒇解像力與照度，進而達到最佳成像效果。較佳地，該取像裝置可進一步包含鏡筒（Barrel Member），支持装置（Holder Member）或其組合。

請参第十一 A 圖，第十一 B 圖，第十一 C 圖，該取像装置 （1101）可搭載於可揜裝置，其包括，但不限於：智慧型手機（1110），平板電腦（1120），或可穿戴式設備（1130）。前揭可崙裝置僅是示範性地說明本發明之取像裝置的實際運用例子，並非限制本發明之取像裝置的運用範圍。較佳地，該可摧裝置可進一步包含控制單元（Control Unit），顯示單元（Display），儲存單元（ROM），暫儲存單元（RAM）或其組合。

本發明的取像装置及影像拾取系統透鏡組將藉由以下具體實施例配合所附圖式予以詳細說明。

《第一實施例》
本發明第一實施例請参閱第一 A 圖，第一實施例的像差曲線請參関第一 B 圖。第一實施例的取像装置包含影像拾取系統透鏡組與一電子感光元件（170），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具正屈折力的第一透鏡（110），其材質為塑膠，其物側面 （111）於近光軸處為凸面，其像側面（112）於近光軸處為凹面，且其兩面皆為非球面；

一具正屈折力的第二透鏡（120），其材質為塑膠，其物側面 （121）於近光軸處為凸面，其像側面（122）於近光軸處為凸面，且其兩面皆為非球面；

一具負屈折力的第三透鏡（130），其材質為塑膠，其物側面• （131）於近光軸處為凹面，其像側面（132）於近光軸處為凸面，且其兩面皆為非球面；及

一具正屈折力的第四透鏡（140），其材質為塑膠，其物側面 （141）於近光軸處為凸面，其像側面（142）於近光軸處為凹面，其兩面皆為非球面，且其像側面（142）於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組另設置有一光圈（100），置於該第一透鏡（110）與該第二透鏡（120）間；另包含有一紅外線濾除㴧光元件（IR－cut filter）（150）置於該第四透鏡（140）與一成像面（160）間，其材質為玻璃且不影響焦距。

其中，該電子感光元件（170）設置於該成像面（160）上。
第一實施例詳細的光學數據如表一所示，其非球面數據如表二所示，其中曲率半徑，厚度及焦距的單位為毫米，HFOV 定義為最大視角的一半。

衰一								
（第一蔕施例）								
$f=1.17 \mathrm{~mm}, \mathrm{Fno}=2.20 . \mathrm{BFOV}=46.7 \mathrm{deg}$								
表面\＃		曲率半徑		厚度	材質	折射偁	色散係龉	焦踶
0	被嘪物	平面		無限				
1	第一遥鏡	1.666	ASP	0.256	塑膠	1.650	21.4	9.56
2		2.139	ASP	0.031				
3	光䍖	平面		0.019				
4	第二透鏡	5.712	ASP	0.671	塑膠	1.544	55.9	0.82
5		－0．464	ASP	0.130				
6	第三透鏡	－0．228	ASP	0.230	塑膠	1.634	23.8	－1．06
7		－0．480	ASP	0.030				
8	第四透稳	0.679	ASP	0.483	塑膠	1.535	55.7	1.52
9		3.062	ASP	0.300				
10	红外線泿除沰光片	平面		0.145	玻珤	1.517	64.2	－
11		平面		0.204				
12	成像面	平面		－				
註：参考波長窑 d－line 587.6 nm								

表二				
非球面像数				
表面 $\#$	1	2	4	5
$\mathrm{k}=$	$1.2237 \mathrm{E}+00$	$1.7244 \mathrm{E}+01$	$9.0000 \mathrm{E}+01$	$-6.9311 \mathrm{E}-01$
$\mathrm{~A} 4=$	$3.1416 \mathrm{E}-01$	$1.1703 \mathrm{E}+00$	$-4.1498 \mathrm{E}-01$	$-6.9345 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-1.0010 \mathrm{E}+00$	$-2.0080 \mathrm{E}+01$	$3.6416 \mathrm{E}+00$	$1.3202 \mathrm{E}+00$
$\mathrm{~A} 8=$	$4.5872 \mathrm{E}+01$	$5.2569 \mathrm{E}+02$	$4.3035 \mathrm{E}+01$	$1.0955 \mathrm{E}+01$
$\mathrm{~A} 10=$	$-5.9339 \mathrm{E}+02$	$-3.0044 \mathrm{E}+03$	$-7.4996 \mathrm{E}+03$	$-3.8285 \mathrm{E}+02$
$\mathrm{~A} 12=$	$4.0961 \mathrm{E}+03$	$-1.6432 \mathrm{E}+05$	$1.3290 \mathrm{E}+05$	$3.0040 \mathrm{E}+03$
$\mathrm{~A} 14=$	$-1.4631 \mathrm{E}+04$	$3.1882 \mathrm{E}+06$	$-1.1481 \mathrm{E}+06$	$-1.0680 \mathrm{E}+04$
$\mathrm{~A} 16=$	$2.0715 \mathrm{E}+04$	$-1.7563 \mathrm{E}+07$	$3.7732 \mathrm{E}+06$	$1.3826 \mathrm{E}+04$
表面 $\#$		6	7	8
$\mathrm{k}=$	$-9.8477 \mathrm{E}-01$	$-3.2669 \mathrm{E}+00$	$-6.1619 \mathrm{E}-01$	9
$\mathrm{~A} 4=$	$3.5682 \mathrm{E}+00$	$-1.8915 \mathrm{E}+00$	$-1.2870 \mathrm{E}+00$	$-1.4636 \mathrm{E}+01$
$\mathrm{~A} 6=$	$-3.7958 \mathrm{E}+00$	$8.7075 \mathrm{E}+00$	$3.1244 \mathrm{E}+00$	$-3883 \mathrm{E}+00$
$\mathrm{~A} 8=$	$-1.1135 \mathrm{E}+02$	$-3.6761 \mathrm{E}+01$	$-9.1933 \mathrm{E}+00$	$5.9040 \mathrm{E}+00$
$\mathrm{~A} 10=$	$1.5862 \mathrm{E}+03$	$1.7257 \mathrm{E}+02$	$1.7146 \mathrm{E}+01$	$-5.8521 \mathrm{E}+00$
$\mathrm{~A} 12=$	$-8.7685 \mathrm{E}+03$	$-4.8146 \mathrm{E}+02$	$-1.9850 \mathrm{E}+01$	$3.5356 \mathrm{E}+00$
$\mathrm{~A} 14=$	$2.3054 \mathrm{E}+04$	$6.7728 \mathrm{E}+02$	$1.2752 \mathrm{E}+01$	$-1.1759 \mathrm{E}+00$
$\mathrm{~A} 16=$	$-2.3557 \mathrm{E}+04$	$-3.6747 \mathrm{E}+02$	$-3.5165 \mathrm{E}+00$	$1.6169 \mathrm{E}-01$

上述的非球面曲線的方程式表示如下：

$$
\mathrm{X}(\mathrm{Y})=\left(\mathrm{Y}^{2} / \mathrm{R}\right) /\left(1+\operatorname{sqrt}\left(1-(1+\mathrm{k})^{*}(\mathrm{Y} / \mathrm{R})^{2}\right)\right)+\sum_{i}(A i)^{*}\left(Y^{i}\right)
$$

其中：

X ：非球面上距離光軸為 Y 的點，其與相切於非球面光軸上頂點之切面的相對距離；

Y ：非球面曲線上的點與光軸的垂直距離；
R：曲率半徑；
k：錐面係數；
Ai：第 i階非球面係數。
影像拾取系統透鏡組的焦距為 f ，影像拾取系統透鏡組的光圈值為 Fno，影像拾取系統透鏡組中最大視角的一半為 HFOV，其數值為： $\mathrm{f}=1.17$（毫米）， $\mathrm{Fno}=2.20, \mathrm{HFOV}=46.7$（度）。該第一透鏡（110）的色散係數為 V1，其關係式為：V1 $=21.4$ 。

該第二透鏡（120）於光軸上的厚度為 CT2，該第一透鏡（110）於光軸上的厚度為 CT1，該第三透鏡（130）於光軸上的厚度為CT3，該第四透鏡（140）於光軸上的厚度為 CT4，其關係式為：CT2／ （CT1 + CT3 3 CT4）$=0.69$ 。

該第二透鏡物側面（121）的曲率半徑為 R3，該第二透鏡像側面 （122）的曲率半徑為 R4，其關係式為：（R3＋R4）／（R3－R4）$=0.85$ 。

該影像拾取系統透鏡組的焦距為 f ，該第一透鏡（110）的焦距為 fl ，其關係式為： $\mathrm{f} / \mathrm{fl}=0.12$ 。

該第二透鏡（120）的焦距為 f 2 ，該第三透鏡（130）的焦距為 f 3 ，其關係式為：f2／f3＝－ 0.77 。

該影像拾取系統透鏡組的焦距為 f ，該第四透鏡（140）的焦距為 f4，其關係式為：｜f／f4｜＝0．77。

該影像拾取系統透鏡組的焦距為 f ，該第三透鏡（130）的焦距為 f3，其關係式為：f／f3＝－1．10。

該第一透鏡物側面（111）至該第四透鏡像側面（142）於光軸上的距離為 Td，其關係式為：Td＝1．850（毫米）。

該第一透鏡（110），該第二透鏡（120），該第三透鏡（130），及該第四透鏡（140）於光軸上之厚度的總合為 $\Sigma C T$ ，該第一透鏡物側面 （111）至該第四透鏡像側面（142）於光軸上的距離為 Td，其關係式為：$\Sigma \mathrm{CT} / \mathrm{Td}=0.89$ 。

該第一透鏡物側面（111）至該第四透鏡像側面（142）於光軸上的距離為 Td，該影像拾取系統透鏡組中最大視角的一半為 HFOV，其閆係式為：Td／ $\tan (H F O V)=1.74$（毫米）。

該影像拾取系統透鏡組的最大視角為 FOV，其關係式為：FOV $=93.4$（度）。

《第二實施例》

本發明第二實施例請参閱第二 A 圖，第二實施例的像差曲線請参閲第二 B 圖。第二實施例的取像裝置包含影像拾取系統透鏡

組與一電子感光元件（270），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具正屈折力的第一透鏡（210），其材質為塑膠，其物側面 （211）於近光軸處為凸面，其像側面（212）於近光軸處為凹面，且其兩面皆為非球面；

一具正屈折力的第二透鏡（220），其材質為塑膠，其物側面 （221）於近光軸處為凸面，其像側面（222）於近光軸處為凸面，且其兩面皆為非球面；

一具負屈折力的第三透鏡（230），其材質為塑膠，其物側面 （231）於近光軸處為凹面，其像側面（232）於近光軸處為凸面，且其兩面皆為非球面；及

一具正屈折力的第四透鏡（240），其材質為塑膠，其物側面 （241）於近光軸處為凸面，其像側面（242）於近光軸處為凹面，其兩面皆為非球面，且其像側面（242）於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組另設置有一光圈（200），置於該第一透鏡（210）與該第二透鏡（220）間；另包含有一紅外線濾除濾光元件（250）置於該第四透鏡（240）與一成像面（260）間，其材質為玻璃且不影響焦距。

其中，該電子感光元件（270）設置於該成像面（260）上。
第二實施例詳細的光學數據如表三所示，其非球面數據如表四所示，其中曲率半徑，厚度及焦距的單位為毫米，HFOV 定義為最大視角的一半。

表三								
（第二賽施例）								
$\mathrm{f}=1.23 \mathrm{~mm}$, Fno $=2.45, \mathrm{HFOV}=45.6 \mathrm{deg}$.								
表面 \＃		曲隺半徑		厚度	材質	折射率	色散係數	焦距
0	被攝物	平面		無限				
1	第一悉镜	1.728	ASP	0.217	等醪	1.640	22.0	1207.16
2		1.647	ASP	0.041				
3	光圆	平面		0.020				

4	第二透獍	2.201	ASP	0.685	塑臥	1.544	55.9	0.78
5		－0．465	ASP	0.138				
6	第三䅎埃	－0．213	ASP	0.222	塑膠	1.634	23.8	－0．90
7		－0．479	ASP	0.030				
8	第四透镜	0.691	ASP	0.430	塑膠	1.535	55.7	1.40
9		7.112	ASP	0.300				
10	紅外線淧除源光片	平面		0.300	玻理	1.517	64.2	－
11		平面		0.171				
12	成像面	平面		－				
註：参考波長為 d－line 587.6 nm								

表四				
非球面係數				
表面 \＃	1	2	4	5
$\mathrm{k}=$	－7．8611E－01	$2.2256 \mathrm{E}+01$	$4.4287 \mathrm{E}+01$	－6．8249E－01
A4 $=$	$2.7433 \mathrm{E}-01$	$3.5449 \mathrm{E}-01$	$-1.1581 \mathrm{E}+00$	－5．9944E－01
A6＝	$-1.5466 \mathrm{E}+00$	－2．9377E＋01	8．9406E－01	3.6061 E－01
A8 $=$	$4.7455 \mathrm{E}+01$	$6.4129 \mathrm{E}+02$	$4.1870 \mathrm{E}+01$	$1.6896 \mathrm{E}+01$
A10 $=$	$-6.0092 E+02$	$-3.8207 \mathrm{E}+03$	$-7.3180 \mathrm{E}+03$	$-3.8194 \mathrm{E}+02$
A12＝	$4.0961 \mathrm{E}+03$	$-1.6432 \mathrm{E}+05$	$1.3290 \mathrm{E}+05$	$3.0043 \mathrm{E}+03$
A14＝	$-1.4631 \mathrm{E}+04$	$3.1882 \mathrm{E}+06$	$-1.1481 E+06$	$-1.0680 \mathrm{E}+04$
A16＝	$2.0715 \mathrm{E}+04$	$-1.7563 \mathrm{E}+07$	$3.7732 \mathrm{E}+06$	$1.3826 \mathrm{E}+04$
表面 \＃	6	7	8	9
k $=$	$-1.0107 \mathrm{E}+00$	－3．0532E＋00	．7．4231E－01	$2.2155 E+01$
A4 $=$	$3.8803 \mathrm{E}+00$	$-1.7079 \mathrm{E}+00$	$-1.1152 \mathrm{E}+00$	$1.6267 \mathrm{E}+00$
A6＝	$-4.2860 \mathrm{E}-00$	$8.7245 \mathrm{E}+00$	$2.9613 \mathrm{E}+00$	$-4.5228 \mathrm{E}+00$
A8 $=$	$-1.1314 \mathrm{E}+02$	－3．7291E＋01	$-9.2058 \mathrm{E}+00$	$6.4630 \mathrm{E}+00$
A10 $=$	$1.5859 \mathrm{E}+03$	$1.7181 \mathrm{E}+02$	$1.7048 \mathrm{E}+01$	$-5.8730 \mathrm{E}+00$
A12＝	－8．7686E＋03	$-4.8143 \mathrm{E}+02$	$-1.9563 \mathrm{E}+01$	$3.4083 \mathrm{E}+00$
A14＝	$2.3054 \mathrm{E}+04$	$6.7878 \mathrm{E}+02$	$1.3110 \mathrm{E}+01$	$-1.1920 \mathrm{E}+00$
A16＝	$-2.3557 E+04$	$-3.6776 \mathrm{E}+02$	$-4.1607 E+00$	$1.9105 \mathrm{E}-01$

第二實施例非球面曲線方程式的表示如同第一實施例的形式。此外，各個關係式的参數係如同第一實施例所聞釋，惟各個 5 關係式的數值係如表五中所列。

表五			
第二實施例			
f ［mm］	1.23	［2／E3	－0．87
Fno	2.45	$\|f / \mathrm{f} 4\|$	0.88
HFOV［deg．］	45.6	4／6	－1．37

V1	22.0	Td［mm］	1.783
CT2／（CT1＋CT3＋CT4）	0.79	ICT／Td	0.87
（R3＋R4）／（R3－R4）	0.65	Td／tan（HFOV）［mm］	1.75
f／f1	0.00	FOV［deg．］	91.2

《第三實施例》

本發明第三實施例請参閱第三A圖，第三實施例的像差曲線請参閲第三 B 圖。第三實施例的取像裝置包含影像拾取系統透鏡組與一電子感光元件（370），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具正屈折力的第一透鏡（310），其材質為塑膠，其物側面 （311）於近光軸處為凸面，其像側面（312）於近光軸處為凹面，且其兩面皆為非球面； （321）於近光軸處為凹面，其像側面（322）於近光軸處為凸面，且其兩面皆為非球面；

一具負屈折力的第三透鏡（330），其材質為塑膠，其物側面 （331）於近光軸處為凹面，其像側面（332）於近光軸處為凸面，且其兩面皆為非球面；及

一具正屈折力的第四透鏡（340），其材質為塑膠，其物側面 （341）於近光軸處為凸面，其像側面（342）於近光軸處為凹面，其兩面皆為非球面，且其像側面（342）於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組另設置有一光圈（300），置於該第一透鏡（310）與該第二透鏡（320）間：另包含有一紅外線濾除濾光元件（350）置於該第四透鏡（340）與—成像面（360）間，其材質為玻䍗且不影響焦距。

其中，該電子感光元件（370）設置於該成像面（360）上。
第三實施例詳細的光學數據如表六所示，其非球面數據如表七所示，其中曲率半徑，厚度及焦距的單位為毫米，HFOV 定義為最大視角的一半。

表六								
（第三脢施例）								
$\mathrm{f}=1.66 \mathrm{~mm}, \mathrm{Fno}=2.15, \mathrm{HFOV}=46.8 \mathrm{deg}$.								
表面 \＃		曲率半徑		厚度	材質	折射率	色散係晸	焦距
0	被摂物			無限				
1	第一逸鎮	1.333	ASP	0.286	塑膠	1.544	55.9	2.50
2		59.851	ASP	0.005				
3	光圈			0.195				
4	第二透鏡	－1．920	ASP	0.409	塑䐝	1.544	55.9	1.60
5		－0．644	ASP	0.156				
6	第三逸䭗	－0．263	ASP	0.200	塑膠	1.650	21.4	－1．49
7		－0．470	ASP	0.030				
8	第四透鏡	0.677	ASP	0.563	塑膠	1.535	55.7	． 2.33
9		1.206	ASP	0.400				
10	紅外線涩除			0.175	玻唒	1.517	64.2	－
11	澡光片			0.431				
12	成像面			－				
註：参考波長為 d－line 587.6 nm								
第 1 面有效半徑為 0.510 mm								

表七				
非球面係数				
表面 \＃	1	2	4	5
k $=$	$-2.4704 \mathrm{E}+00$	$9.0000 \mathrm{E}+01$	$5.8947 \mathrm{E}+00$	－3．7972E－01
A4＝	－3．4848E－02	－3．8775E－01	－9．3075E－01	－3．3741E－01
A6＝	－4．4471E－01	$-2.8417 \mathrm{E}+00$	$3.6516 \mathrm{E}+00$	$9.2277 \mathrm{E}-01$
A8＝	－4．9925E－01	$1.8185 \mathrm{E}+01$	$-4.0769 \mathrm{E}+01$	－3．9461E +00
A10 $=$	$-1.2166 \mathrm{E}+01$	$-2.0954 \mathrm{E}+01$	$-4.4351 \mathrm{E}+00$	$-1.9037 \mathrm{E}+01$
A12＝	$3.9114 \mathrm{E}+01$	$-1.4998 \mathrm{E}+03$	$1.2130 \mathrm{E}+03$	$4.9148 \mathrm{E}+01$
A14 $=$	$-1.7950 \mathrm{E}+02$	$1.2389 \mathrm{E}+04$	－4．4615E＋03	$1.0076 \mathrm{E}+02$
A16＝	$3.3572 \mathrm{E}+02$	$-2.9058 \mathrm{E}+04$	$6.2425 \mathrm{E}+03$	$8.0489 \mathrm{E}+01$
表面 \＃	6	7	8	9
k $=$	$-1.1491 \mathrm{E}+00$	$-2.3808 \mathrm{E}+00$	$-1.7649 \mathrm{E}+00$	$-1.0689 \mathrm{E}+01$
A4 $=$	$4.2079 \mathrm{E}+00$	$2.1562 \mathrm{E}-01$	－6．9591E－01	$9.1971 \mathrm{E}-01$
A6＝	$-2.8310 \mathrm{E}+01$	$-4.4239 \mathrm{E}+00$	$1.2041 \mathrm{E}+00$	$-3.0958 \mathrm{E}+00$
A8＝	$1.2287 \mathrm{E}+02$	$1.8790 \mathrm{E}+01$	$-2.9023 \mathrm{E} \div 00$	$4.8713 \mathrm{E}+00$
A10 $=$	－3．9035E＋02	$-4.1840 \mathrm{E}+01$	$4.4195 \mathrm{E}+00$	$-4.6279 \mathrm{E}+00$
A12＝	$8.5064 \mathrm{E}+02$	$5.5883 \mathrm{E}+01$	$-3.7857 \mathrm{E}+00$	$2.6418 \mathrm{E}+00$
A14 $=$	－9．7331E＋02	$-4.0255 E+01$	$1.6532 \mathrm{E}+00$	－8．3581E－01
A16＝	$4.7213 \mathrm{E}+02$	$1.4428 \mathrm{E}+01$	－2．8192E－01	1．1204E－01

第三賓施例非球面曲線方程式的表示如同第一實施例的形式。此外，各個關係式的参數係如同第一實施例所關釋，惟各個關係式的數值係如表八中所列。

表八			
第三察施例			
f ［mm］	1.66	［2／83	－1．07
Fno	2.15	｜f7f4］	0.71
HFOV［deg．］	46.8	f／f3	－1．11
V1	55.9	Td［mm］	1.644
$\mathrm{CT} 2 /(\mathrm{CT1}+\mathrm{CT} 3+\mathrm{CT} 4)$	0.48	ICT／Td	0.77
（R3＋R4）$(\mathrm{R} 3-\mathrm{R} 4)$	2.01	Td／tan（HFOV）［mm］	1.54
f／fi	0.66	FOV［deg．］	93.6

《第四䆩施例》

本發明第四贯施例請參閱第四A圖，第四賔施例的像差曲線請参閱第四 B 圖。第四實施例的取像裝置包含影像拾取系統透鏡組與一電子感光元件（470），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具負屈折力的第一透鏡（410），其材質為塑膠，其物側面 （411）於近光軸處為凸面，其像側面（412）於近光軸處為凹面，且其兩面皆為非球面；

一具正屈折力的第二透鏡（420），其材質為塑膠，其物側面 （421）於近光軸處為凸面，其像側面（422）於近光軸處為凸面，且其兩面皆為非球面；

一具負屈折力的第三透鏡（430），其材質為塑膠，其物側面 （431）於近光軸處為凹面，其像側面（432）於近光軸處為凸面，且其兩面皆為非球面；及

一具正屈折力的第四透鏡（440），其材質為塑膠，其物側面 （441）於近光軸處為凸面，其像側面（442）於近光軸處為凹面，其兩面皆為非球面，且其像側面（442）於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組另設置有一光圈（400），置於該第一透鏡（410）與該第二透鏡（420）間；另包含有一紅外線㴔除涺光元件（450）置於該第四透鏡（440）與—成像面（460）間，其材質為玻璃且不影響焦距。

其中，該電子感光元件（470）設置於該成像面（460）上。
第四實施例詳細的光學數據如表九所示，其非球面數據如表十所示，其中曲率半徑，厚度及焦距的單位為毫米，HFOV 定義為最大視角的一半。

表九								
（第四實施例）								
$\mathrm{f}=1.15 \mathrm{~mm}$ ，Fno $=2.22 . \mathrm{HFOV}=48.5 \mathrm{deg}$								
表面 \＃		曾率半徑		牸度	材質	折射率	色散係数	焦距
0	被摂物	平面		無限				
1	第一透鏡	1.999	ASP	0.200	筀賿	1.544	55.9	－46．83
2		1.789	ASP	0.021				
3	光圈	平面		0.037	－			
4	第二透鏡	1.606	ASP	0.471	筀賿	1． 544	55.9	0.81
5		－0．543	ASP	0.184				
6	第三透鏡	－0．207	ASP	0.209	塑漻	1.634	23.8	－1．22
7		－0．393	ASP	0.030				
8	第四透鏡	0.747	ASP	0.319	筀謬	1.535	55.7	1.62
9		4.607	ASP	0.300				
10	紅外缐浔除渴光片	平面		0.300	玻瞞	1.517	64.2	－
11		平面		0.130				
12	成像面	平面		－				
註：忩考波長為 d－line 587.6 nm								

10

\cdots						表十
非球面係数						
表面 $\#$	1	2	4	5		
$\mathrm{~K}=$	$-2.2996 \mathrm{E}+01$	$3.4247 \mathrm{E}+01$	$9.8701 \mathrm{E}+00$	$-4.2975 \mathrm{E}-01$		
$\mathrm{~A} 4=$	$-2.1353 \mathrm{E}-01$	$-2.0670 \mathrm{E}+00$	$-2.2221 \mathrm{E}+00$	$-6.3795 \mathrm{E}-01$		
$\mathrm{~A} 6=$	$-3.6880 \mathrm{E}+00$	$-3.6063 \mathrm{E}+01$	$-8.7081 \mathrm{E}+00$	$-6.5092 \mathrm{E}+00$		
$\mathrm{AB}=$	$5.2789 \mathrm{E}+01$	$6.9201 \mathrm{E}+02$	$1.4888 \mathrm{E}+02$	$4.6114 \mathrm{E}+01$		
$\mathrm{~A} 10=$	$-6.4083 \mathrm{E}+02$	$-4.8238 \mathrm{E}+03$	$-8.2602 \mathrm{E}+03$	$-4.7532 \mathrm{E}+02$		
$\mathrm{~A} 12=$	$4.0983 \mathrm{E}+03$	$-1.6432 \mathrm{E}+05$	$1.3290 \mathrm{E}+05$	$3.0044 \mathrm{E}+03$		

$\mathrm{A} 14=$	$-1.4631 \mathrm{E}+04$	$3.1882 \mathrm{E}+06$	$-1.1481 \mathrm{E}+06$	$-1.0679 \mathrm{E}+04$
$\mathrm{~A} 16=$	$2.0715 \mathrm{E}+04$	$-1.7563 \mathrm{E}+07$	$3.7732 \mathrm{E}+06$	$1.3828 \mathrm{E}+04$
衣面 $\#$	6	7	8	9
$\mathrm{k}=$	$-1.0439 \mathrm{E}+00$	$-2.0056 \mathrm{E}+00$	$-6.4024 \mathrm{E}-01$	$-3.3636 \mathrm{E}+00$
$\mathrm{~A} 4=$	$4.2327 \mathrm{E}+00$	$-9.7476 \mathrm{E}-01$	$-8.3147 \mathrm{E}-01$	$1.0958 \mathrm{E}+00$
$\mathrm{~A} 6=$	$-3.4551 \mathrm{E}+00$	$1.0236 \mathrm{E}+01$	$2.1761 \mathrm{E}+00$	$-1.7086 \mathrm{E}+00$
$\mathrm{~A} 8=$	$-1.0303 \mathrm{E}+02$	$-3.7610 \mathrm{E}+01$	$-4.8336 \mathrm{E}+00$	$1.3575 \mathrm{E}+00$
$\mathrm{~A} 10=$	$1.5970 \mathrm{E}+03$	$1.6620 \mathrm{E}+02$	$5.0397 \mathrm{E}+00$	$-2.6285 \mathrm{E}+00$
$\mathrm{~A} 12=$	$-8.9315 \mathrm{E}+03$	$-4.9093 \mathrm{E}+02$	$-4.1411 \mathrm{E}+00$	$4.3863 \mathrm{E}+00$
$\mathrm{~A} 14=$	$2.3054 \mathrm{E}+04$	$6.8046 \mathrm{E}+02$	$3.4069 \mathrm{E}+00$	$-3.3963 \mathrm{E}+00$
$\mathrm{~A} 16=$	$-2.3558 \mathrm{E}+04$	$-3.4010 \mathrm{E}+02$	$-1.6576 \mathrm{E}+00$	$9.5967 \mathrm{E}-01$

第四實施例非球面曲線方程式的表示如同第一實施例的形式。此外，各個關係式的参數係如同第一實施例所闆釋，惟各個關係式的數值係如表十一中所列。

表十一			
第四實施例			
f［mm］	1.15	f2／f3	－0．66
Fno	2.22	｜ffif	0.71
HFOV［deg．］	48.5	f／f3	－0．94
V1	55.9	Td［mm］	1.471
$\mathrm{CT} 2 /(\mathrm{CT1}+\mathrm{CT} 3+\mathrm{CT} 4)$	0.65	ECT／Td	0.82
（R3＋R4）／（R3－R4）	0.49	Td／tan（ HFOV ）［ mm ］	1.30
f／fl	－0．02	FOV［deg．］	97.0

《第五實施例》

本發明第五實施例請参閱第五A圖，第五實施例的像差曲線請参閱第五 B 圖。第五實施例的取像裝置包含該影像拾取系統透鏡組與一電子感光元件（570），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具負屈折力的第一透鏡（510），其材質為玻璃，其物側面 （511）於近光軸處為凸面，其像側面（512）於近光軸處為凹面，且其兩面皆為非球面；

一具正屈折力的第二透鏡（520），其材質為玻璃，其物側面 （521）於近光軸處為凸面，其像側面（522）於近光軸處為凸面，且

其兩面皆為非球面；
一具負屈折力的第三透鏡（530），其材質為塑膠，其物側面 （531）於近光軸處為凹面，其像側面（532）於近光軸處為凸面，且其兩面皆為非球面；及

一具正屈折力的第四透鏡（540），其材質為塑膠，其物側面 （541）於近光軸處為凸面，其像側面（542）於近光軸處為凹面，其兩面皆為非球面，且其像側面（542）於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組另設置有一光圈（500），置於該第一透鏡（510）與該第二透鏡（520）間；另包含有一紅外線濾除濾光元件（550）置於該第四透鏡（540）與—成像面（560）間，其材質為玻環且不影響焦距。

其中，該電子感光元件（570）設置於該成像面（560）上。
第五實施例詳細的光學數據如表十二所示，其非球面數據如表十三所示，其中曲率半徑，厚度及焦距的單位為毫米，HFOV定義為最大視角的一半。

表十三								
（第五實施例）								
$\mathrm{f}=2.24 \mathrm{~mm}$, Fno $=2.51, \mathrm{HFOV}=44.2 \mathrm{deg}$.								
表面\＃		曲率半徑		厚度	材質	折射軍	色散係數	焦距
0	被茿物	平面		無限				
1	第一迷鏡	1.367	ASP	0.300	玻潟	2.144	17.8	－13．68
2		1.110	ASP	0.144				
3	光臅	平面		－0．015				
4	第二遥鏡	3.909	ASP	1.483	玻㻦	1.525	70.3	1.60
5		－0．932	ASP	0.325				
6	第三透镜	－0．341	ASP	0.277	塑膠	1.639	23.5	－1．72
7		－0．651	ASP	0.030				
8	第四透鈖	0.897	ASP	0.606	筀膠	1.565	57.0	2.00
9		3.302	ASP	0.800				
10	紅外線浼除澡光片	平面		0.300	玻㻦	1.517	64.2	－
11		平面		0.342				
12	成像面	平面		－				
註：参考波畏為 d－line 587.6 nm								

表十三				
非球面係數				
表面\＃	1	2	4	5
$k=$	$1.1992 \mathrm{E}+00$	$1.9195 \mathrm{E}+00$	$2.1734 \mathrm{E}+01$	－7．2786E－01
A4 $=$	$5.8324 \mathrm{E}-02$	$1.2422 \mathrm{E}-01$	－9．9032E－02	－1．2252E－01
A6 $=$	－1．4402E－01	－5．2189E－01	$5.9983 \mathrm{E}+00$	5．2990E－01
A8＝	$1.0028 \mathrm{E}+00$	4．2713E -00	$-1.1966 \mathrm{E}+02$	－3．0301E＋00
A10 $=$	$-4.0021 \mathrm{E}+00$	$1.8016 \mathrm{E}+01$	$1.4083 \mathrm{E}+03$	$7.9248 \mathrm{E}+00$
A12 $=$	8．9035E＋00	$-4.2193 \mathrm{E}+02$	$-9.4428 \mathrm{E}+03$	$-1.0795 \mathrm{E}+01$
A14 $=$	$-9.8479 \mathrm{E}+00$	$2.2697 \mathrm{E}+03$	$3.3923 \mathrm{E}+04$	$6.3429 \mathrm{E}+00$
A16＝	$3.0263 \mathrm{E}+00$	－4．1004E＋03	$-5.0610 \mathrm{E}+04$	－8．0066E－01
表面 \＃	6	7	8	9
$\underline{k}=$	－9．8774E－01	－3．1767E＋00	－8．3817E－01	$-2.4331 \mathrm{E}+01$
A4 $=$	$2.5606 \mathrm{E} \div 00$	－1．2881E－01	－4．2259E－01	3．5717E－01
A6＝	$-7.9740 \mathrm{E}+00$	－6．6170E－01	$4.3675 \mathrm{E}-01$	－4．5759E－01
A8 $=$	$1.4853 \mathrm{E}+01$	$1.1888 \mathrm{E}+00$	－4．6275E－01	$2.9937 \mathrm{E}-01$
A10 $=$	$-1.1480 \mathrm{E}+01$	－4．2607E－01	$3.1380 \mathrm{E}-01$	－1．1921E－01
A12 $=$	$-4.4740 \mathrm{E}+00$	－5．1720E－01	－1．2912E－01	$2.8364 \mathrm{E}-02$
A14 $=$	$1.2594 \mathrm{E}+01$	$5.0722 \mathrm{E}-01$	2．9275E－02	－3．7104E－03
A16 $=$	$-5.4160 \mathrm{E}+00$	－1．2485E－01	－2．8533E－03	$2.0238 \mathrm{E}-04$

第五實施例非球面曲線方程式的表示如同第一實施例的形式。此外，各個關係式的参數係如同第一實施例所聞釋，惟各個

開係式的數值係如表十四中所列。

表十四			
第五賽施例			
f ［mm］	2.24	f2／f3	－0．93
Fno	2.51	［ $1 / 54$ ］	1.12
HFOV［deg．］	44.2	f／f3	－1．30
V1	17.8	Td［mm］	3.150
$\mathrm{CT} 2 /(\mathrm{CT1}+\mathrm{CT} 3+\mathrm{CT} 4)$	1.25	ECT／Td	0.85
（R3＋R4）／（R3－R4）	0.61	Td／tan（HFOV）［mm］	3.24
f／fl	－0．16	FOV［deg．］	88.4

《第六實施例》

本發明第六實施例請参閱第六A圖，第六實施例的像差曲線請参閱第六 B 圖。第六實施例的取像裝置包含影像拾取系統透鏡

組與一電子感光元件（670），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具正屈折力的第一透鏡（610），其材質為塑膠，其物側面 （611）於近光軸處為凸面，其像側面（612）於近光軸處為凸面，且其兩面皆為非球面；

一具正屈折力的第二透鏡（620），其材質為塑膠，其物側面 （621）於近光軸處為凹面，其像側面（622）於近光軸處為凸面，且其兩面皆為非球面；

一具負屈折力的第三透鏡（630），其材質為塑膠，其物側面 （631）於近光軸處為凹面，其像側面（632）於近光軸處為凸面，且其兩面皆為非球面；及

一具正屈折力的第四透鏡（640），其材質為塑膠，其物側面 （641）於近光軸處為凸面，其像側面（642）於近光軸處為凹面，其兩面皆為非球面，且其像側面（642）於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組另設置有一光圈（600），置於該第一透鏡（610）與該第二透鏡（620）間；另包含有一紅外線濾除濾光元件（650）置於該第四透鏡（640）與一成像面（660）間，其材質為玻璃且不影響焦距。

其中，該電子感光元件（670）設置於該成像面（660）上。
第六實施例詳細的光學數據如表十五所示，其非球面數據如表十六所示，其中曲率半徑，厚度及焦距的單位為毫米，HFOV定義為最大視角的一半。

表十五								
（第六悤施例）								
$\mathrm{f}=1.27 \mathrm{~mm}, ~ F n o=2.10, \mathrm{HFOV}=44.4 \mathrm{deg}$.								
表面 \＃		曲率半嘤		厚度	材質	折射率	色散倞數	焦距
0	被攝物	平面		無限				
1	第一透鏡	2.393	ASP	0.280	知賿	1.544	55.9	3.85
2		－16．057	ASP	0.017				
3	光圈	平面		0.044				

4	第二透镜	－30．373	ASP	0.755	塑翏	1.544	55.9	0.87
5		－0．468	ASP	0.121				
6	第三透鏡	－0．246	ASP	0.240	塑翏	1.639	23.5	－0．90
7		－0．594	ASP	0.030				
8	第四綉鏡	0.639	ASP	0.522	策胗	1.530	55.8	1.47
9		2.521	ASP	0.400				
10	紅外線源除渡光片	平面		0.175	玻㰚	1.517	64.2	－
11		平面		0.073				
12	成像面	平面		－				
註：参考波長為 d－line 587.6 nm								

琶十六				
非球面係數				
表面 \＃	1	2	4	5
$k=$	$1.7241 \mathrm{E}+00$	－8．9754E＋01	$-9.0000 \mathrm{E}+01$	－7．5923E－01
A4 $=$	$2.1410 \mathrm{E}-01$	$1.4516 \mathrm{E}+00$	$1.5168 \mathrm{E}-01$	－5．4982E－01
A6＝	－2．3810E－01	$-1.0826 \mathrm{E}+01$	$4.8929 \mathrm{E}+00$	$2.0791 \mathrm{E}+00$
A8＝	$2.3555 \mathrm{E}+01$	$1.9495 \mathrm{E}+02$	－3．2116E＋01	8．2787E－01
Al0＝	－2．5034E＋02	$-5.1780 \mathrm{E}+02$	$-2.6801 \mathrm{E}+03$	$-1.4893 \mathrm{E}+02$
A12＝	$1.4357 \mathrm{E}+03$	－5．7593E＋04	$4.6579 \mathrm{E}+04$	$1.0534 \mathrm{E}+03$
A14＝	$-4.2381 \mathrm{E}+03$	$9.2351 \mathrm{E}+05$	－3．3256E＋05	$-3.0936 \mathrm{E}+03$
A16 $=$	$4.9589 \mathrm{E}+03$	－4．2045E＋06	$9.0327 \mathrm{E}+05$	$3.3098 \mathrm{E}+03$
表面 \＃	6	7	8	9
$\mathrm{k}=$	－9．9704E－01	－3．7851E＋00	$-7.3474 \mathrm{E}-01$	－2．0751E＋00
A4 $=$	$2.9255 \mathrm{E}+00$	$-1.3600 \mathrm{E}+00$	$-1.2133 \mathrm{E}+00$	$1.8260 \mathrm{E}+00$
A6＝	$-2.4852 \mathrm{E}+00$	$5.5927 \mathrm{E}+00$	$3.0817 \mathrm{E}+00$	$-5.9653 \mathrm{E}+00$
A8＝	$-5.7718 \mathrm{E}+01$	－1．875SE＋01	$-1.0034 E+01$	$9.6816 \mathrm{E}+00$
A10 $=$	$6.7135 \mathrm{E}+02$	$7.3016 \mathrm{E}+01$	$1.9498 \mathrm{E}+01$	$-9.2466 \mathrm{E}+00$
A12＝	$-3.0733 \mathrm{E}+03$	$-1.6937 E+02$	$-2.1549 \mathrm{E}+01$	$5.1894 \mathrm{E}+00$
A14＝	$6.6780 \mathrm{E}+03$	$1.9522 \mathrm{E}+02$	$1.2590 \mathrm{E}+01$	$-1.5760 \mathrm{E}+00$
A16＝	$-5.6393 \mathrm{E}+03$	－8．6932E＋01	$-3.0510 \mathrm{E}+00$	$1.9769 \mathrm{E}-01$

第六實施例非球面曲線方程式的表示如同第一實施例的形式。此外，各個關係式的参數係如同第一實施例所聞釋，惟各個
5 關係式的數值係如表十七中所列。

表十七			
第六實施例			
f ［ mm ］	1.27	f2／f3	－0．97
Fno	2.10	｜f／f4｜	0.86
HFOV［deg．］	44.4	f／f3	－1．41

V1	55.9	Td［mm］	2.009
$\mathrm{CT} 2(\mathrm{CTI}+\mathrm{CT} 3+\mathrm{CT} 4)$	0.72	ECT／Td	0.89
（R3＋R4）／（R3－R4）	1.03	Td／tan（HFOV）［mm］	2.05
7п	0.33	FOV［deg．］	88.8

《第七實施例》

本發明第七實施例請参閱第七A圖，第一實施例的像差曲線請参閱第七 B 圖。第七實施例的取像裝置包含影像拾取系統透鏡組與一電子感光元件（770），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具正屈折力的第一透鏡（710），其材質為塑膠，其物側面 （711）於近光軸處為凸面，其像側面（712）於近光軸處為凹面，且其兩面皆為非球面；

一具正屈折力的第二透鏡（720），其材質為塑膠，其物側面 （721）於近光軸處為凹面，其像側面（722）於近光軸處為凸面，且其兩面皆為非球面；

一具負屈折力的第三透鏡（730），其材質為塑膠，其物側面 （731）於近光軸處為凹面，其像側面（732）於近光軸處為凸面，且其兩面皆為非球面；及

一具正屈折力的第四透鏡（740），其材質為塑膠，其物側面 （741）於近光軸處為凸面，其像側面（742）於近光軸處為凹面，其兩面皆為非球面，且其像側面（742）於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組另設置有一光圈（700），置於一被攝物與該第一透鏡（710）間：另包含有一紅外線濾除濾光元件 （750）置於該第四透鏡（740）與一成像面（760）間，其材質為玻㻦且不影響焦距。

其中，該電子感光元件（770）設置於該成像面（760）上。
第七實施例詳細的光學數據如表十八所示，其非球面數據如表十九所示，其中曲率半徑，厚度及焦距的單位為毫米，HFOV定義為最大視角的一半。

表十八								
（第七罡施例）								
$\mathrm{f}=1.57 \mathrm{~mm}, \mathrm{Fno}=2.05, \mathrm{HFOV}=48.5 \mathrm{deg}$								
表面\＃		曲率半徑		呂度	材犋	折射率	色散係數	焦距
0	被䍞物			無限				
1	光圈			－0．052				
2	第一透鐚	1.142	ASP	0.279	㷎膠	1.544	55.9	2.84
3		4.008	ASP	0.159				
4	第二透鏡	－4．075	ASP	0.614	塑膠	1.544	55.9	1.24
5		－0．608	ASP	0.142				
6	第三透鏡	－0．255	ASP	0.230	签膠	1.634	23.8	$\cdot 1.37$
7		－0．487	ASP	0.030				
8	第四透鏡	0.636	ASP	0.414	筀嘐	1.535	55.7	2.35
9		0.998	ASP	0.500				
10	紅外線沲除	平		0.175	玻理	1.517	64.2	－
11	濾光片	平		0.141				
12	成像面	平		．－				
註：夋考波長為 d－line 587.6 nm								

表十九				
非球面係数				
表面 \＃	2	3	4	5
$\mathbf{k}=$	－5．4318E－01	$6.9324 \mathrm{E}+01$	$6.0179 \mathrm{E}+01$	－4．8138E－01
A4 $=$	－1．1275E－01	－3．4138E－01	－6．6571E－01	－8．5384E－02
A6＝	$-1.4350 \mathrm{E}+00$	$-2.7321 \mathrm{E}+00$	$4.9846 \mathrm{E}-01$	－6．6518E－01
A8＝	$6.0529 \mathrm{E}+00$	$2.0740 \mathrm{E}+01$	$-4.5807 \mathrm{E}+00$	－2．1554E－01
A10 $=$	$4.7148 \mathrm{E}+01$	－7．0776E＋01	$-1.7027 \mathrm{E}+02$	$-7.9977 \mathrm{E}+00$
A12＝	$-1.4571 \mathrm{E}+02$	$-1.4998 \mathrm{E}+03$	$1.2130 \mathrm{E}+03$	$2.5638 \mathrm{E}+01$
A14 $=$	$-3.8164 \mathrm{E}+03$	$1.2389 \mathrm{E}+04$	$-4.4615 \mathrm{E}+03$	－4．3167E＋01
A16＝	$1.5882 \mathrm{E}+04$	$-2.9058 \mathrm{E}+04$	$6.2425 E+03$	$7.2938 \mathrm{E}+01$
费面 \＃	6	7	8	9
$\mathrm{k}=$	$-1.1103 \mathrm{E}+00$	$-3.0258 \mathrm{E}+00$	－9．3042E－01	－5．1455E＋00
A4 $=$	$5.4423 \mathrm{E}+00$	$4.5345 \mathrm{E}-01$	－7．7223E－01	$7.0200 \mathrm{E}-01$
A6＝	－3．5666E＋01	$-4.9768 \mathrm{E} \div 00$	$9.4468 \mathrm{E}-01$	$-1.5850 \mathrm{E}+00$
A8＝	$1.3446 \mathrm{E}+02$	$1.9752 \mathrm{E}+01$	$-1.3669 \mathrm{E}+00$	$1.7028 \mathrm{E}+00$
A10 $=$	－2．5131E＋02	$-4.2912 \mathrm{E}+01$	$1.1409 \mathrm{E}+00$	$-1.1082 \mathrm{E}+00$
A12＝	－7．3665E＋01	$5.3544 \mathrm{E}+01$	－5．2307E－01	4．3302E－01
A14＝	$1.1117 \mathrm{E}+03$	$-3.5702 \mathrm{E}+01$	1．2365E－01	－9．2838E－02
A16＝	$-1.2600 \mathrm{E}+03$	$1.0063 \mathrm{E}+01$	－1．1645E－02	8．3092E－03

第七實施例非球面曲線方程式的表示如同第一實施例的形式。此外，各個關係式的参數係如同第一實施例所聞釋，惟各個關係式的數值係如表二十中所列。

表二十			
第七實施例			
f［mm］	1.57	f2／3	－0．91
Fno	2.05	｜ 774 ［4］	0.67
HFOV［deg．］	48.5	7f3	－1．15
V1	55.9	Td［mm］	1.868
$\mathrm{CT} 2 /(\mathrm{CT1}+\mathrm{CT} 3+\mathrm{CT4})$	0.67	ECT／Td	0.82
（R3＋R4）／（R3－R4）	1.35	Td／tan（HFOV）［mm］	1.65
f／fl	0.55	FOV［deg．］	97.0

《第八實施例》

本發明第八實施例請参閱第八A圖，第八賔施例的像差曲線請参閱第八 B 圖。第八實施例的取像裝置包含影像拾取系統透鏡組與一電子感光元件（870），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具正屈折力的第一透鏡（810），其材質為塑膠，其物側面 （811）於近光軸處為凸面，其像側面（812）於近光軸處為凹面，且其兩面皆為非球面；

一具正屈新力的第二透鏡（820），其材質為塑膠，其物側面 （821）於近光軸處為凹面，其像側面（822）於近光軸處為凸面，且其兩面皆為非球面；

一具負屈折力的第三透鏡（830），其材質為塑膠，其物側面 （831）於近光軸處為凹面，其像側面（832）於近光軸處為凸面，且其兩面皆為非球面：及

一具正屈折力的第四透鏡（840），其材質為塑膠，其物側面 （841）於近光軸處為凸面，其像側面（842）於近光軸處為凹面，其兩面皆為非球面，且其像側面（842）於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組另設置有一光圈（800），置於該第一透鏡（810）與該第二透鏡（820）間；另包含有一紅外線滤除濾光元件（850）置於該第四透鏡（840）與一成像面（860）間，其材質為玻璃且不影響焦距。

其中，該電子感光元件（870）設置於該成像面（860）上。
第八實施例詳細的光學數握如表二十一所示，其非球面數據如表二十二所示，其中曲率半徑，厚度及焦距的單位為毫米， HFOV 定義為最大視角的一半。

表二十一								
（第八實施例）								
$\mathrm{f}=1.68 \mathrm{~mm}, \mathrm{Fno}^{2}=2.10 . \mathrm{HFOV}=46.0 \mathrm{deg}$.								
表面 ${ }^{\text {\＃}}$		曲率半徑		厚度	材質	折射率	色散係數	焦距
0	被攝物	平面		無限				
1	第一透鏡	1.787	ASP	0.278	知臥	1.544	55.9	3.81
2		12.133	ASP	0.022				
3	光圈	平面		0.145				
4	第二透䋓	－3．839	ASP	0.668	塑膠	1.544	55.9	1.38
5		－0．668	ASP	0.194				
6	第三透竸	－0．273	ASP	0.230	塑膠	1.639	23.5	－1．18
7		－0．569	ASP	0.030				
8	第四透錽	0.784	ASP	0.496	筀䏮	1.530	55.8	1.65
9		5.992	ASP	0.400				
10	紅外線滤除涺光片	平面		0.175	玻墿	1.517	64.2	－
11		平面		0.472				
12	成像面	平面		－				
註：參考波畏為 d－line 587.6 nm								

10

农二十二				
非球面係數				
表面 $\#$	1	2	4	5
$\mathrm{k}=$	$-1.3232 \mathrm{E}+00$	$5.3151 \mathrm{E}+01$	$5.1693 \mathrm{E}+01$	$-5.9308 \mathrm{E}-01$
$\mathrm{~A} 4=$	$1.6281 \mathrm{E}-02$	$-1.2122 \mathrm{E}-02$	$-2.5602 \mathrm{E}-01$	$-1.1508 \mathrm{E}-01$
$\mathrm{~A} 6=$	$1.5823 \mathrm{E}-01$	$-1.1940 \mathrm{E}+00$	$-1.0332 \mathrm{E}+00$	$-6.8787 \mathrm{E}-01$
$\mathrm{~A} 8=$	$5.9941 \mathrm{E}-01$	$1.2093 \mathrm{E}+01$	$1.0464 \mathrm{E}+01$	$-9.7964 \mathrm{E}-02$
$\mathrm{~A} 10=$	$-1.3812 \mathrm{E}+01$	$-2.0003 \mathrm{E}+01$	$-1.9940 \mathrm{E}+02$	$-6.2734 \mathrm{E}+00$
$\mathrm{~A} 12=$	$4.5317 \mathrm{E}+01$	$-1.4998 \mathrm{E}+03$	$1.2130 \mathrm{E}+03$	$2.8529 \mathrm{E}+01$

$\mathrm{A} 14=$	$-4.4460 \mathrm{E}+01$	$1.2389 \mathrm{E}+04$	$-4.4615 \mathrm{E}+03$	$-4.4589 \mathrm{E}+01$
$\mathrm{~A} 16=$	$-4.7734 \mathrm{E}+01$	$-2.9058 \mathrm{E}+04$	$6.2425 \mathrm{E}+03$	$2.7908 \mathrm{E}+01$
表面 $\#$	6	7	8	9
$\mathrm{k}=$	$-1.0578 \mathrm{E}+00$	$-3.0032 \mathrm{E}+00$	$-8.6121 \mathrm{E}-01$	$5.6610 \mathrm{E}+00$
$\mathrm{~A} 4=$	$4.0391 \mathrm{E}+00$	$9.4553 \mathrm{E}-02$	$-6.6716 \mathrm{E}-01$	$7.7788 \mathrm{E}-01$
$\mathrm{~A} 6=$	$-2.6571 \mathrm{E}+01$	$-4.4170 \mathrm{E}+00$	$1.1395 \mathrm{E}+00$	$-1.2944 \mathrm{E}+00$
$\mathrm{~A} 8=$	$1.2417 \mathrm{E}+02$	$1.9085 \mathrm{E}+01$	$-1.7698 \mathrm{E}+00$	$1.0967 \mathrm{E} \div 00$
$\mathrm{~A} 10=$	$-3.9394 \mathrm{E}+02$	$-4.1568 \mathrm{E}+01$	$1.6239 \mathrm{E}+00$	$-5.7605 \mathrm{E}-01$
$\mathrm{Al2}=$	$8.2748 \mathrm{E}+02$	$5.5376 \mathrm{E}+01$	$-8.6944 \mathrm{E}-01$	$1.8609 \mathrm{E}-01$
$\mathrm{~A} 14=$	$-9.7331 \mathrm{E}+02$	$-4.1902 \mathrm{E}+01$	$2.5418 \mathrm{E}-01$	$-3.3617 \mathrm{E}-02$
$\mathrm{Al6}=$	$4.7213 \mathrm{E}+02$	$1.3653 \mathrm{E}+01$	$-3.1838 \mathrm{E}-02$	$2.5144 \mathrm{E}-03$

第八實施例非球面曲線方程式的表示如同第一實施例的形式。此外，各個關係式的參數係如同第一實施例所聞釋，惟各個關係式的數值係如表二十三中所列。

表二十三			
第八霉施例			
f［mm］	1.68	f2／f3	－1．17
Fno	2.10	｜$/ 1 / 44$	1.02
HFOV［deg．］	46.0	f／f3	－1．42
V1	55.9	Td［mm］	2.063
$\mathrm{CT} /(\mathrm{CT1}+\mathrm{CT} 3+\mathrm{CT} 4)$	0.67	工CT／Td	0.81
（R3＋R4）／（R3－R4）	1.42	Td／tan（HFOV）［mm］	1.99
7f1	0.44	FOV［deg．］	92.0

《第九實施例》

本發明第九實施例請参閱第九 A 圖，第九實施例的像差曲線請参関第九B圖。第一實施例的取像装置包含影像拾取系統透鏡組與一電子感光元件（970），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具正屈折力的第一透鏡（910），其材質為塑膠，其物側面 （911）於近光軸處為凸面，其像側面（912）於近光軸處為凸面，且其兩面皆為非球面；

一具正屈折力的第二透鏡（920），其材質為塑膠，其物側面 （921）於近光軸處為凸面，其像側面（922）於近光軸處為凸面，且

其兩面皆為非球面；
一具負屈折力的第三透鏡（930），其材質為塑膠，其物側面 （931）於近光軸處為凹面，其像側面（932）於近光軸處為凸面，且其兩面皆為非球面；及

一具正屈折力的第四透鏡（940），其材質為塑膠，其物側面 （941）於近光軸處為凸面，其像側面（942）於近光軸處為凹面，其兩面皆為非球面，且其像側面（942）於離軸處具有至少一凸面：

其中，該影像拾取系統透鏡組另設置有一光圈（900），置於該第一透鏡（910）與該第二透鏡（920）間；另包含有一紅外線濾除㴧光元件（950）置於該第四透鏡（940）與—成像面（960）間，其材質為玻璃且不影響焦距。

其中，該電子感光元件（970）設置於該成像面（960）上。
第九䆩施例詳細的光學數據如表二十四所示，其非球面數據如表二十五所示，其中曲率半徑，厚度及焦距的單位為毫米， HFOV 定義為最大視角的一半。

表二十四								
（第九質施例）								
$\mathrm{f}=0.92 \mathrm{~mm}, \mathrm{Fno}=2.45, \mathrm{HFOV}=43.9 \mathrm{deg}$.								
表面 \＃		曲率半径		厚度	材質	折射军	色散係數	焦距
0	被塁物	平面		無限				
1	第一透錇	100.000	ASP	0.205	笣膠	1.633	23.4	13.12
2		－9．046	ASP	0.017				
3	光圈	平面		0.024				
4	第二䞬鏡	1.695	ASP	0.475	䇥胵	1.544	55.9	0.54
5		－0．319	ASP	0.100				
6	第三透鏡	－0．148	ASP	0.160	㮾膠	1.634	23.8	－0．65
7		－0．329	ASP	0.030				
8	第四透縕	0.595	ASP	0.239	㿻膠	1.530	55.8	1.28
9		4.109	ASP	0.300				
10	紅外線㴗除濾光片	平面		0.145	玻理	1.517	64.2	－
11		平面		0.151				
12	成像面	平面		－				
註：急考波长為 d－line 587.6 nm								

表二十五				
非球面保数				
表面 \＃	1	2	4	5
$\mathrm{k}=$	$-9.0000 \mathrm{E}+01$	$9.0000 \mathrm{E}+01$	$3.3243 \mathrm{E}+01$	$-6.6437 \mathrm{E}-01$
$\mathrm{~A} 4=$	$2.5656 \mathrm{E}-01$	$2.4894 \mathrm{E}+00$	$-1.9077 \mathrm{E}+00$	$-1.5093 \mathrm{E}+00$
$\mathrm{~A} 6=$	$-1.0613 \mathrm{E}+00$	$-9.5530 \mathrm{E}+01$	$-1.3506 \mathrm{E}+01$	$4.3096 \mathrm{E}+00$
$\mathrm{~A} 8=$	$1.6769 \mathrm{E}+02$	$3.0126 \mathrm{E}+03$	$1.0928 \mathrm{E}+01$	$1.6065 \mathrm{E}+02$
$\mathrm{~A} 10=$	$-3.7307 \mathrm{E}+03$	$-2.3016 \mathrm{E}+04$	$-4.4021 \mathrm{E}+04$	$-2.9203 \mathrm{E}+03$
$\mathrm{~A} 12=$	$3.9786 \mathrm{E}+04$	$-1.5960 \mathrm{E}+06$	$1.2908 \mathrm{E}+06$	$2.9181 \mathrm{E}+04$
$\mathrm{~A} 14=$	$-2.1485 \mathrm{E}+05$	$4.6819 \mathrm{E}+07$	$-1.6860 \mathrm{E}+07$	$-1.5683 \mathrm{E}+05$
$\mathrm{~A} 16=$	$4.5990 \mathrm{E}+05$	$-3.8994 \mathrm{E}+08$	$8.3772 \mathrm{E}+07$	$3.0696 \mathrm{E}+05$
表面 $\#$		6	7	8
$\mathrm{k}=$	$-1.0921 \mathrm{E}+00$	$-2.4247 \mathrm{E}+00$	$-6.0015 \mathrm{E}-01$	9
$\mathrm{~A} 4=$	$8.8579 \mathrm{E}+00$	$-1.7457 \mathrm{E}+00$	$-1.8642 \mathrm{E}+00$	$3.3921 \mathrm{E}+01$
$\mathrm{~A} 6=$	$-9.7201 \mathrm{E}+00$	$2.7059 \mathrm{E}+01$	$4.2816 \mathrm{E}+00$	$-1.7965 \mathrm{E}+01$
$\mathrm{~A} 8=$	$-4.6210 \mathrm{E}+02$	$-1.6609 \mathrm{E}+02$	$-3.6842 \mathrm{E}+01$	$3.3243 \mathrm{E}+01$
$\mathrm{~A} 10=$	$1.0079 \mathrm{E}+04$	$1.0699 \mathrm{E}+03$	$9.4802 \mathrm{E}+01$	$-3.1178 \mathrm{E}+01$
$\mathrm{~A} 12=$	$-8.5169 \mathrm{E}+04$	$-4.7330 \mathrm{E}+03$	$-1.9140 \mathrm{E}+02$	$1.8452 \mathrm{E}+01$
$\mathrm{~A} 14=$	$3.3855 \mathrm{E}+05$	$1.0605 \mathrm{E}+04$	$3.6755 \mathrm{E}+02$	$-3.7397 \mathrm{E}+01$
$\mathrm{~A} 16=$	$-5.2300 \mathrm{E}+05$	$-7.7191 \mathrm{E}+03$	$-9.3365 \mathrm{E}+02$	$3.7762 \mathrm{E}+01$

第九實施例非球面曲線方程式的表示如同第一實施例的形式。此外，各個關係式的参數係如同第一實施例所聞釋，惟各個關係式的數值係如表二十六中所列。

表二十六			
第九實施例			
$f[\mathrm{~mm}]$	0.92	2／f3	－0．83
Fno	2.45	［ $\mathbf{7 / 5 4}$｜	0.72
HFOV［deg．］	43.9	f／f3	－1．42
V1	23.4	Td［mm］	1.250
CT2／（CT1＋CT3＋CT4）	0.79	ECT／Td	0.86
（R3＋R4）／（R3－R4）	0.68	Td／tan（HFOV）［mm］	1.30
f／fl	0.07	FOV［deg．］	87.8

《第十實施例》

本發明第十實施例請參閱第十 A 圖，第十實施例的像差曲線請参閱第十 B 圖。第一實施例的取像裝置包含影像拾取系統透鏡

組與一電子感光元件（1070），該影像拾取系統透鏡組主要由四片具屈折力的透鏡構成，由物側至像側依序包含：

一具正屈折力的第一透鏡（1010），其材質為塑膠，其物側面 （1011）於近光軸處為凸面，其像側面（1012）於近光軸處為凹面，且其兩面皆為非球面；

一具正屈折力的第二透鏡（1020），其材質為塑膠，其物側面 （1021）於近光軸處為凹面，其像側面（1022）於近光軸處為凸面，且其兩面皆為非球面；

一具負屈折力的第三透鏡（1030），其材質為塑膠，其物側面 （1031）於近光軸處為凹面，其像側面（1032）於近光軸處為凸面，且其兩面皆為非球面；及

一具正屈折力的第四透鏡（1040），其材質為塑膠，其物側面 （1041）於近光軸處為凸面，其像側面（1042）於近光軸處為凹面，其兩面皆為非球面，且其像側面（1042）於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組另設置有一光圈（1000），置於一被攝物與該第一透鏡（1010）間；另包含有一紅外線濾除濾光元件（1050）置於該第四透鏡（1040）與一成像面（1060）間，其材質為玻䍗且不影響焦距。

其中，該電子感光元件（1070）設置於該成像面（1060）上。
第十實施例詳細的光學數據如表二十七所示，其非球面數握如表二十八所示，其中曲率半徑，厚度及焦距的單位為毫米， HFOV 定義為最大視角的一半。

表二十七								
（第十實施例）								
$\mathrm{f}=1.80 \mathrm{~mm}, \mathrm{FnO}=2.12 . \mathrm{HFOV}=47.2 \mathrm{deg}$.								
表面 \＃		曲率半徑		厚度	材犋	折射率	色散係數	焦距
0	被湶物	平面		無限				
1	光图	平面		－0．060				
2	第一透镜	1.246	ASP	0.289	筀膠	1.544	55.9	2.97
3		5.018	ASP	0.191				

4	第二逸鏡	－3．749	ASP	0.593	等膠	1.544	55.9	1.57
5		－0．733	ASP	0.156				
6	第三逶箁	－0．288	ASP	0.248	塑㺒	1.634	23.8	－1．33
7		－0．584	ASP	0.030				
8	第四透䍌	0.704	ASP	0.601	塑嘐	1.535	55.7	2.05
9		1.382	ASP	0.500				
10	红外線涳除			0.210	玻璃	1.517	64.2	－
11	㳽光片			0.198				
12	成像面			－			．	
註：參考波長為 d－line 587.6 nm								
第9面有效半蛵為 1.676 mm								

表二十八				
非球面係數				
表面 \＃	2	3	4	5
$\mathrm{k}=$	－5．0585E－01	$9.0000 \mathrm{E}+01$	$3.6143 \mathrm{E}+01$	－3．9805E－01
A4 $=$	8．6099E－02	－2．2970E－01	－4．8540E－01	－1．5034E－01
A6＝	－9．1382E－01	$-1.8900 \mathrm{E}+00$	$2.7508 \mathrm{E}-01$	－5．1276E－01
A8＝	$1.9706 \mathrm{E}+00$	$1.1233 \mathrm{E}+01$	$-2.0152 E+00$	－1．5742E－01
A10 $=$	$1.9492 \mathrm{E}+01$	$-3.0654 \mathrm{E}+01$	－6．3534E＋01	$-3.0117 \mathrm{E}+00$
A12＝	$-3.5519 \mathrm{E}+01$	$-4.4967 E+02$	$3.6120 \mathrm{E}+02$	$7.3424 \mathrm{E}+00$
A 14 ＝	－8．0910E＋02	$2.9681 \mathrm{E}+03$	$-1.0702 \mathrm{E}+03$	－1．0241E＋01
A16＝	$2.4600 \mathrm{E}+03$	$-5.5960 \mathrm{E}+03$	$1.2022 E+03$	$1.7746 \mathrm{E}+01$
表面 \＃	6	7	8	9
$\mathrm{k}=$	$-1.1070 \mathrm{E}+00$	$-2.9894 \mathrm{E}+00$	－9．3316E－01	－5．286SE＋00
A3 $=$			－1．4739E－01	5．0831E－01
A4＝	$4.3809 \mathrm{E}+00$	4．3352E－01	$-3.5412 \mathrm{E}+00$	$2.6512 \mathrm{E}+00$
A5 $=$			2．4672E－02	$1.3099 \mathrm{E}-01$
A6＝	$-2.6437 E+01$	$-3.7903 \mathrm{E}+00$	$1.0303 \mathrm{E}+01$	－3．1255E＋01
A7 $=$			$3.7082 \mathrm{E}-02$	$2.0652 \mathrm{E}-01$
A8＝	$9.1296 \mathrm{E}+01$	$1.0965 \mathrm{E}+01$	$-3.1616 \mathrm{E}+01$	$1.1148 \mathrm{E}+02$
A9＝			－2．2687E－03	－9．0797E－01
A10 $=$	$-1.5853 \mathrm{E}+02$	$-1.4675 E+01$	$6.3626 \mathrm{E}+01$	$-2.2327 \mathrm{E}+02$
A11 $=$			－2．3794E－03	$3.6058 \mathrm{E}-01$
A12＝	$8.3141 E+00$	$7.7310 \mathrm{E}+00$	$-7.5604 \mathrm{E}+01$	$2.6201 E+02$
A13 $=$			8．0966E－03	$1.7201 \mathrm{E}-01$
A14＝	$3.8963 \mathrm{E}+02$	$1.2159 \mathrm{E}+00$	$4.7652 \mathrm{E}+01$	－1．7041E＋02
A15＝			－5．5857E－02	$1.0396 \mathrm{E}-01$
A16＝	$-3.9976 \mathrm{E}+02$	$-1.8447 \mathrm{E}+00$	－1．2153E＋01	$4.7523 \mathrm{E} \div 01$

第十實施例非球面曲線方程式的表示如同第一實施例的形

式。此外，各個關係式的参數係如同第一實施例所聞釋，惟各個關係式的數值係如表二十六中所列。

表二十九			
第十貲施例			
$f(\mathrm{~mm}$ ］	1.80	f2／f3	－1．18
Fno	2.12	［ $7 / 741$	0.88
HFOV［deg．］	47.2	7f3	－1．35
V1	55.9	Td［mm］	2.108
$\mathrm{CT} 2 /(\mathrm{CT1}+\mathrm{CT} 3+\mathrm{CT} 4)$	0.52	ECT／Td	0.82
（R3＋R4）／（R3－R4）	1.49	$\mathrm{Td} / \mathrm{tan}(\mathrm{HFOV})[\mathrm{mm}]$	1.95
f／fi	0.61	FOV［deg．］	94.4

表一至表二十九所示為本發明的影像拾取系統透鏡組蕡施例的不同數值懸化表，然本發明各個實施例的數值變化皆屬實驗所得，即使使用不同數值，相同結構的產品仍應屬於本發明的保護範疇，故以上的說明所描述的及圖式僅做為例示性，非用以限制本發明的申請專利範圍。

【符號說明】

光圈 100，200，300，400，500，600，700，800•900， 1000

第一透鏡 $110 \cdot 210 \cdot 310 \cdot 410 \cdot 510 \cdot 610 \cdot 710 \cdot 810 \cdot 910$ ， 1010

物側面 111，211，311•411，511，611，711，811，911， 1011

像側面
112，212•312•412，512，612，712，812，912， 1012

第二透鏡 $120, ~ 220, ~ 320, ~ 420, ~ 520, ~ 620 \cdot 720, ~ 820, ~ 920$ •．
1020
物側面
121，221，321，421，521，621•721，821，921•

像側面 122，222，322，422，522，622，722，822，922， 1022

第三透鏡 $130, ~ 230, ~ 330, ~ 430, ~ 530, ~ 630, ~ 730, ~ 830, ~ 930, ~$
51030
物側面 131，231，331，431，531，631，731，831•931． 1031

像側面 132，322，332，432，532，632，732，832，932， 1032

物側面 141，241，341，441，541，641，741，841，941， 1041

像側面 142，422•342，442，542，642，742，842，942， 1042

紅外線濾除滤光元件 150，250，350，450，550，650， 750，850，950 • 1050

成像面 $160, ~ 260, ~ 360, ~ 460, ~ 560, ~ 660, ~ 760, ~ 860, ~ 960, ~$ 1060

電子感光元件 170，270，370，470，570，670，770，870， 970•1070

取像裝置 1101
智慧型手機 1110
平板電腦 1120
可穿戴式設備 1130

影像拾取系統透鏡組的焦距為 \mathbf{f}
第一透鏡的焦距為f1

第二透鏡的焦距為 f2
第三透鏡的焦距為f3
第四透鏡的焦距為f4
第一透鏡的色散係數為 V1

第一透鏡物側面至第四透鏡像側面於光軸上的距離為 Td
第一透鏡於光軸上的厚度為 CT1
第二透鏡於光軸上的厚度為CT2
第三透鏡於光軸上的厚度為CT3
第四透鏡於光軸上的厚度為 CT4
第一透鏡，第二透鏡，第三透鏡，及第四透鏡於光軸上的厚度的總和為 $\Sigma \mathrm{CT}$

第二透鏡物側面的曲率半徑為 R3
第二透鏡像側面的曲率半徑為 R4
影像拾取系統透鏡組的光圈值為 Fno
影像拾取系統透鏡組的最大視角為 FOV
影像拾取系統透鏡組中最大視角的一半為 HFOV

【生物材料寄存】

國内寄存資訊【請依寄存機構，日期•號碼順序註記】
無
國外寄存資訊【請依寄存國家，機構，日期，號碼順序註記】
無

申請專利範圍

1．一種影像拾取系統透鏡組，由物側至像側依序包含：
一具屈折力的第一透鏡；

- 具正屈折力的第二透鏡，其像側面於近光軸處為凸面；
- 具負屈折力的第三透鏡，其物側面於近光軸處為凹面，其像側面於近光軸處為凸面；及

一具屈折力的第四透鏡，其像側面於近光軸處為凹面，其物側面及像側面皆為非球面，且其像側面於離軸處具有至少一凸面；

其中，該影像拾取系統透鏡組中具有屈折力的透鏡為四片；
其中，該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，該影像拾取系統透鏡組中最大視角的一半為 HFOV，該影像拾取系統透鏡組的焦距為 f ，該第四透鏡的焦距為 f 4 ，該第二透鏡的焦距為 f 2 ，該第三透鏡的焦距為 f 3 ，係滿足下列關係式：
$0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm}$ ；
$1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm}$ ；
｜f $/ \mathrm{f} 4 \mid<1.20$ ；及
f2／f3 <-0.65 。
2．如申請專利範圍第 1 項所述的影像拾取系統透鏡組，其中該第四透鏡的物側面於近光軸處為凸面。
3．如申請專利範圍第 2 項所述的影像拾取系統透鏡組，其中該影像拾取系統透鏡組的焦距為 f ，該第一透鏡的焦距為 fl ，係滿足下列閣係式：

$$
-0.25<\mathrm{f} / \mathrm{f} 1<0.75 \text { 。 }
$$

4．如申請專利範圍第 2 項所述的影像拾取系統透鏡組，其中該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，係滿足下列關係式：

$$
0.8 \mathrm{~mm}<\mathrm{Td}<2.5 \mathrm{~mm} .
$$

5．如申請專利範圍第 2 項所述的影像拾取系統透鏡組，其中該影像拾取系統透鏡組的光圈值為 Fno，係滿足下列關係式：

$$
1.4<\text { Fno } \leq 2.25 \text { 。 }
$$

6．如申請專利範圍第 2 項所述的影像拾取系統透鏡組，該第二透鏡物側面的曲率半徑為 R3，該第二透鏡像側面的曲率半徑為 R4，係滿足下列關係式：

$$
0.5<(\mathrm{R} 3+\mathrm{R} 4) /(\mathrm{R} 3-\mathrm{R} 4)<2.5
$$

7．如申請專利範圍第 2 項所述的影像拾取系統透鏡組，其中該影像拾取系統透鏡組的焦距為f，係滿足下列關係式：

$$
0.5 \mathrm{~mm}<\mathrm{f}<2.0 \mathrm{~mm} .
$$

8．如申請專利範圍第 1 項所述的影像拾取系統透鏡組，其中該第一透鏡物側面於近光軸處為凸面。
9．如申請專利範圍第 8 項所速的影像拾取系統透鏡組，其中該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，該影像拾取系統透鏡組中最大視角的一半為 HFOV，係滿足下列關係式：

$$
1.2 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<2.75 \mathrm{~mm} .
$$

10．如申請專利範圍第 8 項所述的影像拾取系統透鏡組，其中該第一透鏡，該第二透鏡，該第三透鏡，及該第四透鏡於光軸上之厚度的總合為 $\Sigma \mathrm{CT}$ ，該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，係滿足下列關係式：

$$
0.80<\Sigma \mathrm{CT} / \mathrm{Td}<0.95 .
$$

11．如申請專利範圍第 8 項所述的影像拾取系統透鏡組，其中該第一透鏡的色散係數為 V_{1} ，係滿足下列關係式：

$$
45<\mathrm{Vl} \text { 。 }
$$

12．如申請專利範圍第 8 項所述的影像拾取系統透鏡組，其中該第二透鏡於光軸上的厚度為 CT2，該第一透鏡於光軸上的厚度為 CT1，該第三透鏡於光軸上的厚度為CT3，該第四透鏡於光軸上

的厚度為CT4，係滿足下列關係式：

$$
0.65<\mathrm{CT} 2 /(\mathrm{CT} 1+\mathrm{CT} 3+\mathrm{CT} 4)<2.0^{\circ}
$$

13．一種取像裝置，包含如申請專利範圍第 1 項所述的影像拾取系統透鏡組及一電子感光元件。

14．一種可㬞裝置，包含如申請專利範圍第 13 項所述的取像装置。 15．一種影像拾取系統透鏡組，由物側至像側依序包含：

- 具屈折力的第一透鏡：
- 具正屈折力的第二透鏡，其像側面於近光軸處為凸面；

一具負屈折力的第三透鏡，其物側面於近光軸處為凹面，其像側面於近光軸處為凸面；及

一具屈折力的第四透鏡，其像側面於近光軸處為凹面，其物側面及像側面皆為非球面，且其像側面於離軸處具有至少一凸面；其中，該影像拾取系統透鏡組中具有屈折力的透鏡為四片；
其中，該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，該影像拾取系統透鏡組中最大視角的一半為 HFOV，該影像拾取系統透鏡組的焦距為 f ，該第四透鏡的焦距為 f 4 ，該第三透鏡的焦距為 f 3 ，係滿足下列關係式：
$0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm}$ ；
$1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm}$ ；
$|f / \mathrm{f} 4|<1.20$ ；及
$-2.0<\mathrm{f} / \mathrm{f} 3<-0.95$ 。
16．如申請專利範圍第 15 項所述的影像拾取系統透鏡組，其中該第
一透鏡的色散係數為 V1，係滿足下列關係式：
$45<V_{1}$ 。
17．如申請專利範圍第 15 項所述的影像拾取系統透鏡組，其中該影像拾取系統透鏡組的焦距為 f ，該第一透鏡的焦距為 f 1 ，係滿足下列關係式：

$$
-0.25<\mathrm{f} / \mathrm{f} 1<0.75
$$

18．如申請專利範圍第 15 項所述的影像拾取系統透鏡組，其中該影像拾取系統透鏡組的最大視角為 FOV，係滿足下列關係式：

$$
80 \text { 度 < FOV < } 110 \text { 度。 }
$$

19．如申請專利範圍第 15 項所述的影像拾取系統透鏡組，其中該第

一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，係滿足下列關係式：

$$
0.8 \mathrm{~mm}<\mathrm{Td}<2.5 \mathrm{~mm} .
$$

20．如申請專利範圍第 15 項所述的影像拾取系統透鏡組，其中該第二透鏡的焦距為 f 2 ，該第三透鏡的焦距為 f 3 ，係滿足下列關係式：

$$
\mathrm{f} 2 / \mathrm{f} 3<-0.75 \text { 。 }
$$

21．一種影像拾取系統透鏡組，由物側至像側依序包含：

- 具屈折力的第一透鏡：
- 具正屈折力的第二透鏡，其像側面於近光軸處為凸面；

一具負屈折力的第三透鏡，其物側面於近光軸處為凹面，其像側面於近光軸處為凸面；及

一具屈折力的第四透鏡，其像側面於近光軸處為凹面，其物側面及像側面皆為非球面，且其像側面於離軸處具有至少一凸面；其中，該影像拾取系統透鏡組中具有屈折力的透鏡為四片；
其中，該第一透鏡物側面至該第四透鏡像側面於光軸上的距離為 Td，該影像拾取系統透鏡組中最大視角的一半為 HFOV，該影像拾取系統透鏡組的焦距為 f ，該第四透鏡的焦距為 f 4 ，該影像拾取系統透鏡組的光圈值為 Fno，係滿足下列關係式：

$$
\begin{aligned}
& 0.5 \mathrm{~mm}<\mathrm{Td}<3.2 \mathrm{~mm}: \\
& 1.0 \mathrm{~mm}<\mathrm{Td} / \tan (\mathrm{HFOV})<3.75 \mathrm{~mm} ; \\
& |\mathrm{f} / \mathrm{f} 4|<1.20 ; \text {; } \\
& 1.40<\text { Fno } \leq 2.25 .
\end{aligned}
$$

22．如申請專利範圍第 21 項所述的影像拾取系統透鏡組，其中該第

二透鏡的焦距為 f 2 ，該第三透鏡的焦距為 f 3 ，係滿足下列關係式：

$$
\mathrm{f} 2 / \mathrm{f} 3<-0.65 .
$$

23．如申請專利範圍第 21 項所述的影像拾取系統透鏡組，其中該第一透鏡的色散係數為 V1，係滿足下列關係式：

$$
45<V_{1} \text { 。 }
$$

24．如申請專利範圍第 21 項所述的影像拾取系統透鏡組，其中該第一透鏡具正屈折力，該影像拾取系統透鏡組的焦距為f，該第一透鏡的焦距為 f1，係滿足下列關係式：

$$
0.25<\mathrm{f} / \mathrm{fl}<0.75
$$

25．如申請專利範圍第 21 項所述的影像拾取系統透鏡組，其中該影像拾取系統透鏡組的最大視角為 FOV，係滿足下列關係式：

$$
80 \text { 度 < FOV < } 110 \text { 度。 }
$$

26．如申請專利範圍第 21 項所述的影像拾取系統透鏡組，其中該第二透鏡於光軸上的厚度為 CT2，該第一透鏡於光軸上的厚度為 CT1，該第三透鏡於光軸上的厚度為 CT3，該第四透鏡於光軸上的厚度為CT4，係滿足下列關係式：

$$
0.65<\mathrm{CT} 2 /(\mathrm{CT} 1+\mathrm{CT} 3+\mathrm{CT} 4)<2.0^{\circ}
$$

圖式

第一B圖
\because

第六A圖

第七B圖

第八B圖
R

16／23

$18 / 23$

第十一C圖

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Serial No.: $\quad 14 / 105,811$
Examiner: Unassigned

Filed: December 13, 2013
Group Art Unit: Unassigned

Title:
IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL

TRANSMITTAL

Commissioner for Patents

January 6, 2014
P.O. Box 1450

Alexandria, VA 22313-1450
Customer No. 24728
Sir:
We are transmitting herewith the attached:
Transmittal Sheet containing Certificate of Mailing (1 page)
Xubmission of Priority Document (1 page)
\triangle Certified Copy of Priority Document Taiwan Patent Application 102139029, filed October 29, 2013 (66 pages)
Q Return Postcard

MORRIS, MANNING \& MARTIN, LLP 1600 Atlanta Financial Center 3343 Peachtree Road NE Atlanta, Georgia 30326 404.495.3678

Name: Tim Tingkang Xia
Reg. No.: 45,242
TTX

Customer No. 24728

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Filed:
Wei-Yu Chen
14/105,811

Title:

Examiner: Unassigned
Group Art Unit: Unassigned
Docket No.:
14970-94702
IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMIAL

SUBMISSION OF PRIORITY DOCUMENT

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
CUSTOMER NO. 24728

Dear Sir:
The certified copy of Taiwan Patent Application No. 102139029, from which this application claims priority is hereby submitted as the priority document.

If there are any questions regarding this matter, please call the undersigned at 404-495-3678.

January 6, 2014
Respectfully submitted,
MORRIS, MANNING \& MARTIN, LLB

Tim Tingkang Kia
Reg. No. 45,242
Attorney for the Assignee and Applicants on Record
MORRIS, MANNING \& MARTIN, L.L.P.
1600 Atlanta Financial Center
3343 Peachtree Road, N.E.
Atlanta, Georgia 30326
404-495-3678 Direct
Customer No. 24728

The following fields have been set to Customer Number 24728 on 06/10/2014

- Correspondence Address
- Maintenance Fee Address

The address of record for Customer Number 24728 is:

24728

MORRIS MANNING MARTIN LLP
3343 PEACHTREE ROAD, NE
1600 ATLANTA FINANCIAL CENTER
ATLANTA, GA 30326

U.S.PATENTS Remove											
Examiner Initial*	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1		342379	B2	2014-09	-23	Largan Precis	on Co., Ltd.			
If you wish to add additional U.S. Patent citation information please click the Add button. Add											
U.S.PATENT APPLICATION PUBLICATIONS Remove											
Examiner Initial*	Cite No		Publication Number	Kind Code ${ }^{1}$	Publication Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1		20100165485	A1	2010-07-01		Milestone Co., Ltd.				
If you wish to add additional U.S. Published Application citation information please click the Add button. Add											
FOREIGN PATENT DOCUMENTS Remove											
Examiner Initia\|*	Cite No	Foreign Document Number ${ }^{3}$		Country Code²		Kind Code ${ }^{4}$	Publication Date	Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevan Figures Appear	T5
	1		4-178623	JP			2014-09-25	Hitachi Maxell, Ltd.			区
If you wish to add additional Foreign Patent Document citation information please click the Add button Add											
NON-PATENT LITERATURE DOCUMENTS Remove											
Examiner Initials*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.									T5

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	14105811
	Filing Date	2013-12-13
	First Named Inventor	U CHEN
	Art Unit	2872
	Examiner Name	
	Attorney Docket Number	14970-94702

${ }^{1}$ See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number	14105811
Filing Date	$2013-12-13$
First Named Inventor	WEI-YU CHEN
Art Unit	2872
Examiner Name	
Attorney Docket Number	$14970-94702$

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56 (c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
Х A certification statement is not submitted herewith.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4 (d) for the form of the signature.

Signature	/Tim Tingkang Xia/	Date (YYYY-MM-DD)	$2014-12-01$
Name/Print	Tim Tingkang Xia	Registration Number	45242

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

 provided with milembn points so as to emtwh a drectom of he bebr coming from the widerange bens system : 1 ,

Gym．c． \＆ 029 极 GO28				$\begin{aligned} & 2 \operatorname{man} \\ & 2 \mathrm{KOB} \end{aligned}$	参管
（6）出緮国	 	（1） 8 蒳人 （6）虐婹人 万s在的え 148億天 	006063 कx世 10000010 16046003 16016238 和要大 S C 极3 䊾 7 ＊ \％$\% \%$	 彩感 靿 解产 絞女商	8䎆 受に蔓く

（50）（業会）

 ＜

 $5^{*} \mathrm{x}$－

 ソズが大变

 ＊ときた出めヒンズッ

 ズ。

$$
-30 \leq 14 / 8 \leq-0.5 \cdot(4)
$$

憲
（票的

（0001）

（0002）

 ぞ离会。

［0003］

$\{000<1\}$

落为がある。
6000%

 80
(0000)

\｛0007\}

（0008）

（0009）

 ※

(0) 0 :

\{00in)

400x2)

(0013)

 -

(00) 4)

3. $0 \leq b{ }^{*} \leqslant 2,0 \cdots(3)$
(00) 5)

(00) 0)

$$
-30 \leqslant t i / \mathrm{F} \leqslant-0,5 \cdot(4)
$$

(00:7)

\{0019\}

(0)20

40023）

（0022）

（0023）

\％00243

$\{0025\}$

［00203］

澳めていふ。
（0027）

䱂をてがあっ
\｛0028\}

\｛0020\}

 \％\％

$$
\begin{aligned}
& 8=0 \cdot=2 \cdot 8 \\
& 3=85 \cdot 8 \\
& k=4 \cdot 286 m m \\
& 1=3 \cdot 232 m m
\end{aligned}
$$

（0033）

 ど学荅。

（0．034）

(0035)

\｛008s］

 く发悹。
（0037）

（0038）

\｛0033\}

［0040］

（004 1）
以下の淬

$\{0042\}$
（采）A

列采				Vd（F）	
v	19.389	0.00	Y5815	563	畋钉
2	1839	0.359			
3	\＄396	0.827	159116	58.0	枚髫
4	－1．683	0，97			
θ	-2.153	026	188494	24.0	秥榣
8	81.854	6．47			
7	1270	3744	139 ${ }^{\text {a }}$	50．0	
8	1.929	9219			
9	monty	93100	351980	842	妾新方\％
18	imbicy	6，783			
11	imfley	－5922			

（3083）

 ＊。
\｛＊＊8）

	－	婴2，	¢36	W 4 骨	\％563	5\％
K	600000¢00	194845 400	－32424	000005emo	－ 8 91458 608	$394689 \mathrm{mb3}$
As	－8，0002＜02	－2009050］	105437 mm	20y\％etera	－ $48527 \leq 22$	2．10240mon
As	\｛40090 002	92208501	2003618	－70700600	00000960	900000 E 60
83	$0 \mathrm{mon}=00$	00000E600	544054E－91	W0S63E00	－143324 0	5.5889508
AOP	$000005 \leq 09$	000006 600	00000 400	00000600	808000 69	n00005 +00
412	010000 ¢0	000000 EaO	Qumuesob	ommme 600	600000 E00	000006
A 4	Qumbot 60	000000500	803000 090	00000560	300000 600	n0wnes\％
Ans	Q0000\％ 80	$000000 \leqslant 00$	Bubuge 400	Quburevo	00000 cmo	onowneroc

（2） C ）

	¢ 7 \％	
4	－ 38406 cm	0000008090
4	－ 293454	$-1,88252001$
AC	$-2.8656 \leqslant 003$	3601864
As	－8．90002c4	$\underline{-397183402}$
Ars	330532 ECO	302304
412	778851503	－－ 30455
Sis	－ $40305 \mathrm{Ea3}$	$330357 \leq 03$
Abs	432065 Eat	-3.35604

$(0.0 \leqslant 4)$

 もをれる。
（0） 0 5）
（㢺：）
$Y(h)=\frac{c h^{2}}{\eta+\sqrt{1-(K+B) h^{2} h^{2}}}+A_{4}^{4}+A_{0} h^{6}+A_{0} h^{6}+A_{6} h^{6}+A_{2} h^{2}+A_{Q} h^{4}+A_{0} h^{6}$
（0046）

（0047）

为々高。
\｛00483
＊

100401
（等效外2）

400501

［005 $\}$

複えてい为。
$(00523$

(0033)

［0064］

各。
\％$\because 0 .=2.8$
$\alpha=85.8$ ．
$L=4, \quad 983 \mathrm{~mm}$
$0=3.935 \mathrm{~mm}$
40） 5 5

$f=2,563$
$f \leqslant=-\cdots, 672$
Y2 $=: \quad 629$

$$
\because 4 \cdots 7,890
$$

\｛＜ 0 S $\}$

\cdots－

（0058）

（00 58 ）

（0050）

（0063）
（新2A）

	张新妾妾	\％6\％		yu（y\％x ${ }^{\text {c }}$ ）	人 ${ }^{\text {k }}$
$\stackrel{1}{2}$	18.858	©．100	\＄831］8	\＄90	
2	3.087	1587			
3	8．218	0.598	\｛831］	56.0	
4	－2983	0.215			
\％	－2．300	9383	\},gyes	290	涘渗
8	7868	9605			
\rangle	1.998	¢783	18810	569	W新
8	1928	6210			
9	infowy	¢100	183800	88.2	\％363\％
10	inferey	9762			
11	3n6n3	－6029			

（0682）

 s
（表28）

		W2．	䓡き渗	44\％	等5 5	W93m
\ldots	00000 F 00	33 Sas	－29928E006	238898 com	－948582ct04	000000 E90
A4	\＄76085 03	52125×03	781889 E－02	30289E－05	－ $70020 \mathrm{Eb2}$	208047 Eat
As	－10979 02	－445005c02	333598502	－ 20 ghe 01	0 00006 000	900000E09
98	080608 E 00	000000 E－09	－700471	621259505	－X2094ED	871608502
A10	0.00008 ¢00	600000 000	－383407601	－187788600	－306686 E0］	－818509E－02
A2	000000×60	0，0000 E00	000b00 60	050000500	000009 E 90	000009600
Ais	000060 000	00000	000006 600	00000 E 00	000005 900	$000000 \% 00$
A\％	000060e90	$00000 \mathrm{Et00}$	Q00000 600	O0000 E00	600006tho	$000000 \leq 00$

（変2c）

	笞》箚	器8筄
K	－538980 +00$\}$	n00093E 100
AR	$\cdots 31127 \leqslant 011$	－133885¢ 01
Ag	308045 E 02	493268E 52
A8	－3，76929－03	－39835 $=52$
AO	－32）889－ 39	306234Em2
A 2	8，97323¢mb	
A3	－ $18558=92$	530662 ${ }^{\text {m }} 03$
888	301683 504	$\cdots \mathrm{arg} 04$

(0083)

（0064）

（0065）

10086）

（0） 07 ）

臆えてい必。
（0） 08 ）

（0059）

$\{0070\}$

会

Fno．$=2.8$
m $=55.8 *$
3． m 3.838 mm
$\mathrm{y}=2,783 \mathrm{~mm}$
（007）

$\dagger=2.5 \leqslant 3$
（1）……4． $52 k$
个2 $\because \because \quad 340$
S 3 w－2．25 9
© $4=3.190$
(0072)

(0073)

$30074\rangle$

(0975)

（0076）

（3077）
\＆3 A

88		䇣敟		UdY\％べ3	稀労
\cdots	150000	0800	180716	50.5	紷㺂
2	2587	Q098			
n	6，974	$0 \$ 79$	150119	58.5	缃称
人	2235	0.889			
5	－6878	0322	3n349	2 sc	缶閣
f）	－1sy2	930］			
7	1218	0.88	3.8316	580	始告
8	1891	0.210			
9	kniticy	0.100	159899	682	xay ${ }^{\text {a }}$
10	xtimisy	0773			
13		-9.988			

（0078）
会
路。

（438）

		綬2毬	参3感		效5橓	
K	$00000 ¢ 900$	3\＄057 $6+00$	Q $83881 \mathrm{~m}+00$	53\％39ev00	－8 4098 ± 60	0．00006 409
A	$-1746 y \leqslant 09$	332642E01	590588 c 02	82774102	－42925－6 $\}$	1.43685608
AE	$\cdots 76386011$	－1，3001500	854668．02	-238489501	000500 E¢ 0	900006E 00
As	$000000 \mathrm{E}+00$	000009500		－ 1383285001	101842 E－bu	887456 E － 01
AY0	000000890	00000\％ 5 50	－2，131248030	8367275913	8.165885404	－158551E01
A12	0010000 $\mathrm{m}+60$	00060\％5\％0	0n0000e 00	000000 E00	9， $900006+00$	60000 \％ 60
A34	$9 \mathrm{mmo6} \mathrm{E}+001$	Q00¢085 500	0，0000E 90	900000 300	$0361005+00$	0000008480
人3	$9 \mathrm{mb060} \mathrm{E}+00\}$	9000005900	000000 E 90	01000 600		0，0000\％ 290

\｛为36）

	\％⿳⿵人一⿲丶丶㇒一⿱心灬丶丶丶	
\％	－7． $23885+0$	09000550
8	－-40921.01	
86	4712\％ 502	8527885－22
A8	530962 -03	－4．486764．02
A10	－336876E－03	297286602
\＆12	5scogy 0 0x	－ 3 3 4855
A18	－48794683	\＄25sastu3
	108896E－9	$\cdots 386-8 k$

100781

$$
(0980)
$$

（008） （美萢泡4）

（0082）

（0082）

数玉といる。

（0084）

（0．085）

600863

会
$\mathrm{Br},=2.8$
$\phi=88,8$ ？
$4=3.382 \mathrm{~mm}$
$\mathrm{H}=2.8$ क 5 m m
［00833

F…2． 883

12ㅃ․ 1 ， 59
$3=-2=0 \quad 0 \quad 2$
\％ $4=3$ ． 607
(0085)

（0）89）

（0） 00 y

（0） 097

(0002)
ぬ

（0） 33 ）
\｛妾 \＆ A ］

67		新稘			
1	159030	9409	ช，S3）	\＄63	橓渗
2	238	9898			
3	1.43	9538	\｛Self	\＄9．0	做妳
4	－	3338			
3	－9．578	9365	\｛ 88888	292	納
3	－1285	9，348			
7	1．37	1899	¢52110	580	沴8
8	1988	3210			
3	mandy	0.100	\＄51880	682	－4\％3\％
10	insmixy	3.753			
I 3	fremity	－9S28			

C009＊）

合
（为（3）

	閔			㿥4部	管5等	
k	000000 ¢00	9588885101	－35297560	8．20887 $9+00$	－3516\％0650\}	660000 000
A	-8.80823503	-383857502	3.8370062	－+33840 E 01	－5， 8360401	¢2905 01
As		－82285E－ 2	－ 378849691	752585 E402	000008800	6000006＊00
A8	00000650	－382824E8！	－ 96890951	－ 1308506000	$87020 ¢ 601$	8． 90808501
A 50	Q00000540	$0900005+30$	－40580 3 \％	59s 09601	653858 5001	－311895E－1
A12	Qunyeb 40	$0000005+0$	8.207978030	3 se 538600	-3.351205014	－ 399785
A14	300080 E40	0000095	006000 $\times 30$		000000 ± 00	009509530
A16	000\％00E 00	0.00000 EPO	$000000 \mathrm{E}+35$	gnonmess00	001000 E50	$009 \% 95400$

（主4C）

K	－8113855609	006000 400
As	－195885 501	－ 393101504
¢ 6	\｛C3946E－0］	7.18008 E 5 S
As	$-38144 \leqslant 02$	
ADO	289718 E 8	
A2	6s2ege 0	－ 138338502$\}$
Al4	－656945E93	S 4×60856
AE	189183EMg	9 $56 E$ E

（098）

（0096）

\｛00 9γ

（0098）

500992

黄天なもあ。
（0100）

（0101）

筑

(0102)

高范
$\operatorname{sio}, \cdots 2,8$
$m=887^{\circ}$
，$=4.107 \mathrm{~mm}$
$0=3.031 \mathrm{~mm}$
（0103）

$\leqslant=2.563$
$\leqslant 1=-62.580$
Y又 $=1.758$
$\uparrow 3=\cdots 1,832$
f $4 \times 3,003$
（0104）

(0305)

（0106）

10 10 $\%$

（0） 08 ］

（0） 0 0
\｛事 5A〕

絧		基䜌			啇采
¢ $\quad 1$	1601000	0.908	133118	50.0	縈䌊
2	27278	0.398			
8	1.786	Qs43	\}5218	360	4143
4	\cdots	0352			
5	－0．586	0×23	188494	243	
s	$\cdots 1285$	0109			
7	1053	§992	3S\％\s	609	W
8	1980	0×10			
9	Bngaif	3 300	\＄． 51689	642	
18	intinity	378			
111	interify	-9093			

［0110］

为
\｛落53\}

	族1廹				要5笭	等包譙
\％	$000000 c+10$	\｛s94898983	－782206E01	※ 58063 5 +00	-352793 E00	000000600
A	\} 36ne6e-0\}	A 801095014	（58539E以0］	－1923376－91	-74330505	108681E－9！
AB	$\cdots 24846 \mathrm{Em}$	$-6.3423-91$	-27283802	4． 1584×-61	000000 500	0.0000600
As	000000 E 90	$1.418085+90\}$	－ 742170 ± 01	－ B ¢081E50	947084E 0	7 13238 E 01
A0	600000 509	600000 E +90	－3．95399600	$-777874{ }^{-1} 92$	7.77973506	－3， 1 ／780E9 9
A12	$0 \mathrm{mb00} \times 30$	000000×50	$78037 \mathrm{~F}=100$	2797895460	-3.883498500	$-6.18003 \mathrm{c}-92$
A14	0，00000 Expu	000000E90	000080 EvO	0300008560	0.605008006	an0000600
A16	0000005009	0000000 000$\}$	0.00000 minos	$33006035+00$	0．0000 500	600000E +06

（尭5cy

	宮7曻	
K	－8724555900	0，00009 +800
A	－ 1 m93 E mb	－15ggase0t
As	953mber－22	780 glE 52
As	$-3.77066 .62$	\sim－ 83008 E 02
A15	248962643	282001602
As 2	831400603	$-334695 \mathrm{mb2}$
A34	-7.8298503	3888576－03
A16	297695.03	－370E－04

［01 1 1 ］

区

HP，Ex． 1002
Page 192

（01：2）

（01：3）

 いましMOふさンザある。
\｛0144\}

40：153

［01． 5 ］

$32 \cdot 22 \cdot 32 \cdot 42 \cdot 52 \cdot \cdots+2+2 x$
$13 \cdot 23 \cdot 33 \cdot 43: 53 \cdots \operatorname{myy}$

(裡: 13

(*) 1$\}$

HP, Ex. 1002
Page 195
(82)
(a)

(b)

(c)

(d)

(3) 3)

HP, Ex. 1002
Page 197
(留4)
(a)

(b)

(c)

(d)

HP, Ex. 1002
Page 199
(W6)
(a)

(b)

(c)

(d)

(荤 7)

HP, Ex. 1002
Page 201
(: 8 8)
(a)

(b)

(c)

(d)

(*)

$(*)+0)$
(a)

(b)

(c)

(d)

 30 m

Electronic Acknowledgement Receipt	
EFS ID:	20824379
Application Number:	14105811
International Application Number:	
Confirmation Number:	5836
Title of Invention:	IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL
First Named Inventor/Applicant Name:	WEI-YU CHEN
Customer Number:	24728
Filer:	Tim Tingkang Xia/Chenae Byrd
Filer Authorized By:	Tim Tingkang Xia
Attorney Docket Number:	14970-94702
Receipt Date:	01-DEC-2014
Filing Date:	13-DEC-2013
Time Stamp:	12:35:20
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Information Disclosure Statement (IDS)Form (SB08)	1497094702IDS.pdf	612323	no	4
Warnings:					
Information:				P, Ex. 1002	

2	Foreign Reference	1497094702JP2014178623.pdf	4629754	no	32
			f79807dce62880f452d54d28487a8dcd42f4 3 ea4 4		
Warnings:					
Information:					
Total Files Size (in bytes):			5242077		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

NOTICE OF ALLOWANCE AND FEE(S) DUE

${ }^{24728} \stackrel{7590}{0127 / 2015}$
MORRIS MANNING MARTIN LLP
IP Department
3343 PEACHTREE ROAD, NE
1600 ATLANTA FINANCIAL CENTER
ATLANTA, GA 30326

DATE MAILED: 01/27/2015

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$14 / 105,811$	$12 / 13 / 2013$	WEI-YU CHEN	$14970-94702$	

TITLE OF INVENTION: IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL

APPLN. TYPE	ENTITY STATUS	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	UNDISCOUNTED	$\$ 960$	$\$ 0$	$\$ 0$	$\$ 960$	$04 / 27 / 2015$

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the ENTITY STATUS shown above. If the ENTITY STATUS is shown as SMALL or MICRO, verify whether entitlement to that entity status still applies.
If the ENTITY STATUS is the same as shown above, pay the TOTAL FEE(S) DUE shown above.
If the ENTITY STATUS is changed from that shown above, on PART B - FEE(S) TRANSMITTAL, complete section number 5 titled "Change in Entity Status (from status indicated above)".
For purposes of this notice, small entity fees are $1 / 2$ the amount of undiscounted fees, and micro entity fees are $1 / 2$ the amount of small entity fees.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " $4 \mathrm{~b} "$ of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE
 Commissioner for Patents
 P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$14 / 105,811$	$12 / 13 / 2013$	WEI-YU CHEN	$14970-94702$	

TITLE OF INVENTION: IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL

APPLN. TYPE	ENTITY STATUS	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PADD ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	UNDISCOUNTED	\$960	\$0	\$0	\$960	04/27/2015
	NER	ART UNIT	CLASS-SUBCLASS			
	ACK	2872	359-779000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). Change of correspondence address (or Change of Correspondence Address form $\mathrm{PTO} / \mathrm{SB} / 122$) attached. "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) The names of up to 3 registered patent attorneys or agents OR, alternatively,		1 a 2 is 3	

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : $\quad \square_{\text {Individual }} \quad \square_{\text {Corporation or other private group entity }} \quad \square_{\text {Government }}$

4a. The following fee(s) are submitted:	4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)
\square Issue Fee	\square A check is enclosed.
\square Publication Fee (No small entity discount permitted)	Payment by credit card. Form PTO-2038 is attached. \square Advance Order - \# of Copies
The director is hereby authorized to charge the required fee(s), any deficiency, or credits any overpayment, to Deposit Account Number	

5. Change in Entity Status (from status indicated above)
\square Applicant certifying micro entity status. See 37 CFR 1.29
\square Applicant asserting small entity status. See 37 CFR 1.27
\square Applicant changing to regular undiscounted fee status.
NOTE: Absent a valid certification of Micro Entity Status (see forms PTO/SB/15A and 15B), issue fee payment in the micro entity amount will not be accepted at the risk of application abandonment.
NOTE: If the application was previously under micro entity status, checking this box will be taken to be a notification of loss of entitlement to micro entity status.
NOTE: Checking this box will be taken to be a notification of loss of entitlement to small or micro entity status, as applicable.
NOTE: This form must be signed in accordance with 37 CFR 1.31 and 1.33. See 37 CFR 1.4 for signature requirements and certifications.

Authorized Signature
Date

Typed or printed name \qquad Registration No.

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
14/105,811 12/13/2013		WEI-YU CHEN	14970-94702	5836
24728	01/27/2015		EXAMINER	
MORRIS MANNING MARTIN LLP			DINH, JACK	
IP Department				
3343 PEACHTREE ROAD, NE			ART UNIT	PAPER NUMBER
1600 ATLANTA FINANCIAL CENTER			2872	
ATLANTA, GA 30326			DATE MAILED: 01/27/2015	

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(Applications filed on or after May 29, 2000)
The Office has discontinued providing a Patent Term Adjustment (PTA) calculation with the Notice of Allowance.
Section 1(h)(2) of the AIA Technical Corrections Act amended 35 U.S.C. 154(b)(3)(B)(i) to eliminate the requirement that the Office provide a patent term adjustment determination with the notice of allowance. See Revisions to Patent Term Adjustment, 78 Fed. Reg. 19416, 19417 (Apr. 1, 2013). Therefore, the Office is no longer providing an initial patent term adjustment determination with the notice of allowance. The Office will continue to provide a patent term adjustment determination with the Issue Notification Letter that is mailed to applicant approximately three weeks prior to the issue date of the patent, and will include the patent term adjustment on the patent. Any request for reconsideration of the patent term adjustment determination (or reinstatement of patent term adjustment) should follow the process outlined in 37 CFR 1.705.

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

OMB Clearance and PRA Burden Statement for PTOL-85 Part B

The Paperwork Reduction Act (PRA) of 1995 requires Federal agencies to obtain Office of Management and Budget approval before requesting most types of information from the public. When OMB approves an agency request to collect information from the public, OMB (i) provides a valid OMB Control Number and expiration date for the agency to display on the instrument that will be used to collect the information and (ii) requires the agency to inform the public about the OMB Control Number's legal significance in accordance with 5 CFR 1320.5(b).

The information collected by PTOL-85 Part B is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of ${ }^{1}$ HP, Ex. 1002

Notice of Al/owability	Application No. 14/105,811	Applicant(s) CHEN, WEI-YU	
	Examiner JACK DINH	Art Unit 2872	AIA (First Inventor to File) Status Yes

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address--
All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. \boxtimes This communication is responsive to the communication filed on 12/01/14.A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on \qquad
2.An election was made by the applicant in response to a restriction requirement set forth during the interview on \qquad ; the restriction requirement and election have been incorporated into this action.
2. \boxtimes The allowed claim(s) is/are $1-26$. As a result of the allowed claim(s), you may be eligible to benefit from the Patent Prosecution Highway program at a participating intellectual property office for the corresponding application. For more information, please see hto:/wwo. uspto.gov/patents/nit events/pohindex.jsp or send an inquiry to PPHieedback@uspto.gov.
3. \boxtimes Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

Certified copies:
a) \boxtimes All
b)
\square Some
*c) \square None of the:

1. \boxtimes Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \qquad .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: \qquad -.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.

THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.

5. \square CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
\square including changes required by the attached Examiner's Amendment / Comment or in the Office action of
Paper No./Mail Date \qquad -.

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6.DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. \square Notice of References Cited (PTO-892)
2. \boxtimes Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date 20141201
3.Examiner's Comment Regarding Requirement for Deposit of Biological Material
3. Interview Summary (PTO-413), Paper No./Mail Date \qquad .
/JACK DINH/
Primary Examiner, Art Unit 2872

REASONS FOR ALLOWANCE

1. Claims 1-26 are allowed. The following is an examiner's statement of reasons for allowance. Regarding claims 1,15 and 21 , the prior art fails to satisfy the conditions as claimed.
2. The prior art taken either singly or in combination fails to anticipate or fairly suggest the limitations of the independent claims, in such a manner that a rejection under 35 USC 102 or 103 would be improper. Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Other Information/Remarks

3. Any inquiry concerning this communication or earlier communications from the examiner should be directed to JACK DINH whose telephone number is (571)272-2327. The examiner can normally be reached on M-F (7:30 AM - 4:00 PM).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Thomas K. Pham can be reached on 571-272-3689. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.
/Jack Dinh/
Primary Examiner, Art Unit 2872
01/12/15

Index of Claims	Application/Control No. 14105811	Applicant(s)/Patent Under Reexamination CHEN, WEI-YU
	Examiner JACK DINH	Art Unit 2872

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
\mathbf{O}	Objected

EAST Search History

EAST Search History (Prior Art)

${ }_{\#}^{\text {Ref }}$	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	0	"14105811"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	OFF	$2015 / 01 / 12$
L2	1	("8842379").PN.	$\begin{aligned} & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	OFF	:2015/01/12
L3	2	"20100165485"	US-PGPUB; USPAT	OR	OFF	$\begin{aligned} & 2015 / 01 / 12 \\ & 07: 12 \end{aligned}$
L4	10323	lens\$2 same (first) same (second near6 positive) same (third near6 negative) same (fourth)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; EPO; } \\ & \text { JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2015 / 01 / 12 \\ & 07: 15 \end{aligned}$
L5	396	(359/771).CCLS.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	
L6	308	(359/772).CCLS.	US-PGPUB; UUSPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	
L7	186	(359/779).CCLS	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; EPO; } \\ & \text { JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	
L8	284	(359/781).CCLS.	US-PGPUB; USPAT; USOCR; IFPRS; EPO; UJPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2015 / 01 / 12 \\ & 07: 15 \end{aligned}$
L9	1059	(359/771,772,779,781).CCLS.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2015 / 01 / 12 \\ & 07: 16 \end{aligned}$
L10	265	L9 and L4	US-PGPUB; UUSPAT;	$1 \mathrm{OR}$	OFF	$\begin{aligned} & 2015 / 01 / 12 \\ & 07: 16 \end{aligned}$

HP, Ex. 1002
${ }_{1}$ Page 216

			$\begin{aligned} & \text { USOCR; } \\ & \text { FPRS; EPO; } \\ & \text { JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$			
L11	636	lens\$2 same (first) same ((second near6 positive) with convex with image) same ((third near6 negative) with concave with object with convex with image) same (fourth with concave with image)	```US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB```	OR	OFF	$\begin{aligned} & 2015 / 01 / 12 \\ & 07: 18 \end{aligned}$
L12	889	(359/715).CCLS.	```US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB```	OR	OFF	$\begin{aligned} & 2015 / 01 / 12 \\ & 07: 18 \end{aligned}$
L13	1714	$(359 / 715,771,772,779,781) . \text { CCLS. }$	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2015 / 01 / 12$ 07:18
L14	86	L11 and L13	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; EPO; } \\ & \text { JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$2015 / 01 / 12$ 07:18

EAST Search History (Interference)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L15	128	(lens\$2 and (first) and ((second near6 positive) with convex with image) and ((third near6 negative) with concave with object with convex with image) and (fourth with concave with (image)). clm.	USPGPUB; USPAT; UPAD	OR	OFF	$\text { : } 2015 / 01 / 12$
L16	0	(lens\$2 and (first) and ((second near6 positive) with convex with image) and ((third near6 negative) with concave with object with convex with image) and (fourth with concave with (image) and Td and HFOV).clm.	USPGPUB; USPAT; UPAD	OR	OFF	:2015/01/12

1/ 12/2015 7:31:07 AM
C:
Users \backslash jdinh \backslash Documents \backslash EAST \backslash Workspaces Case $14105811 . w s p$

Search Notes	Application/Control No. 14105811	Applicant(s)/Patent Under Reexamination CHEN, WEI-YU
	Examiner JACK DINH	Art Unit 2872

CPC- SEARCHED		
Symbol	Date	Examiner

CPC COMBINATION SETS - SEARCHED		
Symbol	Date	Examiner

US CLASSIFICATION SEARCHED				
Class	Subclass	Date	Examiner	
359	$771,772,779,781,715$	$01 / 12 / 15$	JD	

SEARCH NOTES

Search Notes	Date	Examiner
Search EAST and NPL.	$01 / 12 / 15$	JD

INTERFERENCE SEARCH			
US Class/ CPC Symbol	US Subclass / CPC Group	Date	Examiner
See search history.	$01 / 12 / 15$	JD	

Alexandria, Virginia 22313-1450
www.uspto.gov

BIB DATA SHEET

CONFIRMATION NO. 5836

Issue Classification	Application/Control No. 14105811	Applicant(s)/Patent Under Reexamination CHEN, WEI-YU
	Examiner JACK DINH	Art Unit 2872

CPC						
Symbol					Type	Version
G02B		13	\%	004	F	2013-01-01
G02B		9	\%.	34	I	2013-01-01
			,			
			\%.			
			,			
			\%.			
			\%.			
			\%			
			\%.			
			,			
			\%.			
			\%.			
			,			
			\%.			
			\%			

CPC Combination Sets

Symbol			Type	Set	Ranking	Version
	\%					
	\%					

NONE		Total Claims Allowed:	
(Assistant Examiner)	(Date)	26	
lJACK DINH/ Primary Examiner.Art Unit 2872 (Primary Examiner)	$01 / 12 / 2015$	O.G. Print Claim(s)	O.G. Print Figure

Issue Classification	Application/Control No. 14105811	Applicant(s)/Patent Under Reexamination CHEN, WEI-YU
	Examiner JACK DINH	Art Unit 2872

NONE (Assistant Examiner)	(Date)	Total Claims Allowed:26	
/JACK DINH/ Primary Examiner.Art Unit 2872 (Primary Examiner)	01/12/2015 (Date)	O.G. Print Claim(s) 1	O.G. Print Figure $1 \mathrm{~A}$

Issue Classification	Application/Control No. 14105811	Applicant(s)/Patent Under Reexamination CHEN, WEI-YU
	Examiner JACK DINH	Art Unit 2872

区	Claims renumbered in the same order as presented by applicant								CPA		T.D.	$\square \quad \mathrm{R}$.		R.1.47	
Final	Original														
1	1	17	17												
2	2	18	18												
3	3	19	19												
4	4	20	20												
5	5	21	21												
6	6	22	22												
7	7	23	23												
8	8	24	24												
9	9	25	25												
10	10	26	26												
11	11														
12	12														
13	13														
14	14														
15	15														
16	16														

NONE		Total Claims Allowed:
(Assistant Examiner)	(Date)	26
lJACK DINH/ Primary Examiner.Art Unit 2872 (Primary Examiner)	$01 / 12 / 2015$	O.G. Print Claim(s)
O.G. Print Figure		
1	(Date)	1 A

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	14105811
	Filing Date	2013-12-13
	First Named Inventor W	U CHEN
	Art Unit	2872
	Examiner Name	
	Attorney Docket Number	14970-94702

U.S.PATENTS Remove											
Examiner Initia\|*	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1		8842379	B2	2014-09-2		Largan Precis	on Co., Ltd.			
If you wish to add additional U.S. Patent citation information please click the Add button. Add											
U.S.PATENT APPLICATION PUBLICATIONS Remove											
Examiner Initial*	Cite No		Publication Number	Kind Code ${ }^{1}$	Publicatio Date		Name of Pa of cited Doc	ntee or Applicant ment		, Columns,Lines whe vant Passages or Rele es Appear	
	1		20100165485	A1	2010-07-01		Milestone Co., Ltd.				
If you wish to add additional U.S. Published Application citation information please click the Add button. Add											
FOREIGN PATENT DOCUMENTS Remove											
Examiner Initial*	Cite No		reign Document umber ${ }^{3}$	Country Code ${ }^{2}$		Kind Code ${ }^{4}$	Publication Date	Name of Patentee or Applicant of cited Document		Pages,Columns,Line where Relevant Passages or Releva Figures Appear	T5
	1		14-178623	JP			2014-09-25	Hitachi Maxell, Ltd.			区
If you wish to add additional Foreign Patent Document citation information please click the Add button Add											
NON-PATENT LITERATURE DOCUMENTS Remove											
Examiner Initials*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.									T^{5}

Receipt date: 12/01/2014 INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	14105811	14105811-GAU:2872
	Filing Date	2013-12-13	
	First Named Inventor W	WEI-YU CHEN	
	Art Unit	2872	
	Examiner Name		
	Attorney Docket Number	14970-94702	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST .16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.

Receipt date: 12/01/2014 INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	14105811	14105811-GAU:2872
	Filing Date	2013-12-13	
	First Named Inventor W	U CHEN	
	Art Unit	2872	
	Examiner Name		
	Attorney Docket Number	14970-94702	

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR $1.33,10.18$. Please see CFR 1.4 (d) for the form of the signature.

Signature	/Tim Tingkang Xia/	Date (YYYY-MM-DD)	$2014-12-01$
Name/Print	Tim Tingkang Xia	Registration Number	45242

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE
 Commissioner for Patents
 P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for $\underline{\text { maintenance fee notifications. }}$

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)
$24728 \quad 7590 \quad$ 01/27/2015
MORRIS MANNING MARTIN LLP
IP Department
3343 PEACHTREE ROAD, NE
1600 ATLANTA FINANCIAL CENTER
ATLANTA, GA 30326

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission
I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

	(Depositor's name)
(Signature)	
(Date)	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$14 / 105,811$	$12 / 13 / 2013$	WEI-YU CHEN	$14970-94702$	

TITLE OF INVENTION: IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL

APPLN. TYPE	ENTITY STATUS	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional UNDISCOUNTED		\$960	\$0	\$0	\$960	04/27/2015
		ART UNIT	CLASS-SUBCLASS			
DINH, JACK		2872	359-779000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). Change of correspondence address (or Change of Correspondence Address form $\mathrm{PTO} / \mathrm{SB} / 122$) attached. "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) The names of up to 3 registered patent attorneys or agents OR, alternatively,		$\begin{array}{ll}\text { ys MORRIS M } \\ \text { a } & 2 \\ \text { it } \\ \text { is }\end{array}$	\& MARTIN LLP XIA, ESQ.

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)
LARGAN PRECISION CO., LTD.
TAICHUNG, TW
Please check the appropriate assignee category or categories (will not be printed on the patent) : \square Individual \quad Corporation or other private group entity

4a. The following fee(s) are submitted:
XIssue Fee
\square Publication Fee (No small entity discount permitted)Advance Order - \# of Copies \qquad
4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)
\square A check is enclosed.
\square Payment by credit card. Form PTO-2038 is attached.
\boxed{Z} The director is hereby authorized to charge the required fee(s), any deficiency, or credits any overpayment, to Deposit Account Number 503537 (enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)
\square Applicant certifying micro entity status. See 37 CFR 1.29Applicant asserting small entity status. See 37CFR 1.27
\square Applicant changing to regular undiscounted fee status.

NOTE: Absent a valid certification of Micro Entity Status (see forms PTO/SB/15A and 15B), issue fee payment in the micro entity amount will not be accepted at the risk of application abandonment. NOTE: If the application was previously under micro entity status, checking this box will be taken to be a notification of loss of entitlement to micro entity status.
NOTE: Checking this box will be taken to be a notification of loss of entitlement to small or micro entity status, as applicable.

NOTE: This form must be signed in accordance with 37 CFR 1.31 and 1.33. See 37 CFR 1.4 for signature requirements and certifications.

Authorized Signature /Tim Tingkang Xia/
Date FEBRUARY 5, 2015
Typed or printed name TIM TINGKANG XIA
Registration No. 45242

Electronic Patent Application Fee Transmittal

Application Number:	14105811			
Filing Date:	13-Dec-2013			
Title of Invention:	IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL			
First Named Inventor/Applicant Name:	WEI-YU CHEN			
Filer:	Tim Tingkang Xia/Michelle Ellis			
Attorney Docket Number:	14970-94702			
Filed as Large Entity				
Filing Fees for Utility under 35 USC 111(a)				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Utility Appl Issue Fee	1501	1	960	960

	Description	Fee Code	Quantity	Amount
Extension-of-Time:	Sub-Total in USD(\$)			
Miscellaneous:				

Electronic Acknowledgement Receipt	
EFS ID:	21413714
Application Number:	14105811
International Application Number:	
Confirmation Number:	5836
Title of Invention:	IMAGE CAPTURING LENS SYSTEM, IMAGING DEVICE AND MOBILE TERMINAL
First Named Inventor/Applicant Name:	WEI-YU CHEN
Customer Number:	24728
Filer:	Tim Tingkang Xia/Michelle Ellis
Filer Authorized By:	Tim Tingkang Xia
Attorney Docket Number:	14970-94702
Receipt Date:	05-FEB-2015
Filing Date:	13-DEC-2013
Time Stamp:	16:13:28
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 960$
RAM confirmation Number	2937
Deposit Account	503537
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination orq99ssing fees)	

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Issue Fee Payment (PTO-85B)	1497094702IFTrans.pdf	1099156	no	1
			e9bd3b49fe968014aae0f6c3ba7a6e23a5b 10b97		
Warnings:					
Information:					
2	Fee Worksheet (SB06)	fee-info.pdf	30962	no	2
			a3a145258b1acedbb216b5689e7580bble 1c8asb		
Warnings:					
Information:					
Total Files Size (in bytes):			1130118		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)

Change(s) applied to document,
M.I.G.

2/10/2015					U.S.P	PATENTS		Remove		
Examiner Initial*	Cite No		Patent Number	Kind Code ${ }^{1}$	Issue Date	Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1		8842379	B2	2014-09-23	Largan Precis	on Co., Ltd.		, etal.	
If you wish to add additional U.S. Patent citation information please click the Add button. Add										
U.S.PATENT APPLICATION PUBLICATIONS Remove										
Examiner Initial*	Cite No		Publication Number	Kind Code ${ }^{1}$	Publication Date	Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1		20100165485	A1	2010-07-01	Milestone Co., Ltd.		Do; Satoshi		
If you wish to add additional U.S. Published Application citation information please click the Add button. Add										
FOREIGN PATENT DOCUMENTS Remove										
Examiner Initial*	Cite No	Foreign Document Number ${ }^{3}$		Country Code²	i \quadKind Code4	Publication Date	Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevan Figures Appear	T5
	1		14-178623	JP		2014-09-25	Hitachi Maxell, Ltd.			区
If you wish to add additional Foreign Patent Document citation information please click the Add button Add										
NON-PATENT LITERATURE DOCUMENTS Remove										
Examiner Initials*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.								T5

Ex. 1002
Page 232

APPLICATION NO.	ISSUE DATE	PATENT NO.	ATTORNEY DOCKET NO.
$14 / 105,811$	$03 / 24 / 2015$	8988796	$14970-94702$
24728			
MORRIS MANNING MARTIN LLP			
IP Department			
3343 PEACHTREE ROAD, NE			
1600 ATLANTA FINANCIAL CENTER			
ATLANTA, GA 30326			

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)
The Patent Term Adjustment is 0 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
LARGAN PRECISION CO., LTD., Taichung, TAIWAN, Assignee (with 37 CFR 1.172 Interest);
WEI-YU CHEN, Taichung, TAIWAN;

The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The USA offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to encourage and facilitate business investment. To learn more about why the USA is the best country in the world to develop technology, manufacture products, and grow your business, visit SelectUSA.gov.

