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1
SYSTEM AND METHOD OF ENHANCING

EFFICIENCY AND UTILIZATION OF
MEMORY BANDWIDTH IN

RECONFIGURABLE HARDWARE

RELATED APPLICATIONS

The present invention claims the benefit of US. Provi-
sional Patent application Ser. No. 60/479,339 filed on Jun.
18, 2003, which is incorporated herein by reference in its
entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates, in general, to enhancing the
efliciency and utilization of memory bandwidth in reconfig-
urable hardware. More specifically, the invention relates to
implementing explicit memory hierarchies in reconfigurable
processors that make eflicient use of off-board, on-board,
on-chip storage and available algorithm locality. These
explicit memory hierarchies avoid many of the tradeofls and
complexities found in the traditional memory hierarchies of
microprocessors.

2. Relevant Background
Over the past 30 years, microprocessors have enjoyed

annual performance gains averaging about 50% per year.
Most of the gains can be attributed to higher processor clock
speeds, more memory bandwidth and increasing utilization
of instruction level parallelism (ILP) at execution time.

As microprocessors and other dense logic devices (DLDs)
consume data at ever-increasing rates it becomes more of a
challenge to design memory hierarchies that can keep up.
Two measures of the gap between the microprocessor and
memory hierarchy are bandwidth efliciency and bandwidth
utilization. Bandwidth efliciency refers to the ability to
exploit available locality in a program or algorithm. In the
ideal situation, when there is maximum bandwidth efli-
ciency, all available locality is utilized. Bandwidth utiliza-
tion refers to the amount of memory bandwidth that is
utilized during a calculation. Maximum bandwidth utiliza-
tion occurs when all available memory bandwidth is uti-
lized.

Potential performance gains from using a faster micro-
processor can be reduced or even negated by a correspond-
ing drop in bandwidth efliciency and bandwidth utilization.
Thus, there has been significant effort spent on the devel-
opment of memory hierarchies that can maintain high band-
width efliciency and utilization with faster microprocessors.

One approach to improving bandwidth efliciency and
utilization in memory hierarchies has been to develop ever
more powerful processor caches. These caches are high-
speed memories (typically SRAM) in close proximity to the
microprocessor that try to keep copies of instructions and
data the microprocessor may soon need. The microprocessor
can store and retrieve data from the cache at a much higher
rate than from a slower, more distant main memory.

In designing cache memories, there are a number of
considerations to take into account. One consideration is the

width of the cache line. Caches are arranged in lines to help
hide memory latency and exploit spatial locality. When a
load suffers a cache miss, a new cache line is loaded from
main memory into the cache. The assumption is that a
program being executed by the microprocessor has a high
degree of spatial locality, making it likely that other memory
locations in the cache line will also be required.
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For programs with a high degree of spatial locality (e.g.,
stride-one access), wide cache lines are more eflicient since
they reduce the number of times a processor has to suffer the
latency of a memory access. However, for programs with
lower levels of spatial locality, or random access, narrow
lines are best as they reduce the wasted bandwidth from the
unused neighbors in the cache line. Caches designed with
wide cache lines perform well with programs that have a
high degree of spatial locality, but generally have poor
gather/scatter perfonnance. Likewise, caches with short
cache lines have good gather/scatter performance, but loose
efliciency executing programs with high spatial locality
because of the additional runs to the main memory.

Another consideration in cache design is cache associa-
tivity, which refers to the mapping between locations in
main memory and cache sectors. At one extreme of cache
associativity is a direct-mapped cache, while at another
extreme is a fully associative cache. In a direct mapped-
cache, a specific memory location can be mapped to only a
single cache line. Direct-mapped caches have the advantage
ofbeing fast and easy to construct in logic. The disadvantage
is that they suffer the maximum number of cache conflicts.
At the other extreme, a fully associative cache allows a
specific location in memory to be mapped to any cache line.
Fully associative caches tend to be slower and more com-
plex due to the large amount of comparison logic they need,
but suffer no cache conflict misses. Oftentimes, caches fall
between the extremes of direct-mapped and fully associative
caches. A design point between the extremes is a k-set
associative cache, where each memory location can map to
k cache sectors. These caches generally have less overhead
than fully associative caches, and reduce cache conflicts by
increasing the value of k.

Another consideration in cache design is how cache lines
are replaced due to a capacity or conflict miss. In a direct-
mapped cache, there is only one possible cache line that can
be replaced due to a miss. However, in caches with higher
levels of associativity, cache lines can be replaced in more
that one way. The way the cache lines are replaced is
referred to as the replacement policy.

Options for the replacement policy include least recently
used (LRU), random replacement, and first in-first out
(FIFO). LRU is used in the majority of circumstances where
the temporal locality set is smaller than the cache size, but
it is normally more expensive to build in hardware than a
random replacement cache. An LRU policy can also quickly
degrade depending on the working set size. For example,
consider an iterative application with a matrix size of N
bytes running through a LRU cache of size M bytes. If N is
less than M, then the policy has the desired behavior of
100% cache hits, however, if N is only slightly larger than
M, the LRU policy results in 0% cache hits as lines are
removed just as they are needed.

Another consideration is deciding on a write policy for the
cache. Write-through caches send data through the cache
hierarchy to main memory. This policy reduces cache coher-
ency issues for multiple processor systems and is best suited
for data that will not be re-read by the processor in the
immediate future. In contrast, write-back caches place a
copy of the data in the cache, but does not immediately
update main memory. This type of caching works best when
a data just written to the cache is quickly requested again by
the processor.

In addition to write-through and write-back caches,
another kind of write policy is implemented in a write-
allocate cache where a cache line is allocated on a write that

misses in cache. Write-allocate caches improve performance
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when the microprocessor exhibits a lot of write followed by
read behavior. However, when writes are not subsequently
read, a write-allocate cache has a number of disadvantages:
When a cache line is allocated, it is necessary to read the
remaining values from main memory to complete the cache
line. This adds unnecessary memory read traffic during store
operations. Also, when the data is not read again, potentially
useful data in the cache is displaced by the unused data.

Another consideration is made between the size and the

speed of the cache: small caches are typically much faster
than larger caches, but store less data and fewer instructions.
Less data means a greater chance the cache will not have
data the microprocessor is requesting (i.e., a cache miss)
which can slow everything down while the data is being
retrieved from the main memory.

Newer cache designs reduce the frequency of cache
misses by trying to predict in advance the data that the
microprocessor will request. An example of this type of
cache is one that supports speculative execution and branch
prediction. Speculative execution allows instructions that
likely will be executed to start early based on branch
prediction. Results are stored in a cache called a reorder
buffer and retired if the branch was correctly predicted. Of
course, when mis-predictions occur instruction and data
bandwidth are wasted.

There are additional considerations and tradeolfs in cache

design, but it should be apparent from the considerations
described hereinbefore that it is very difficult to design a
single cache structure that is optimized for many difierent
programs. This makes cache design particularly challenging
for a multipurpose microprocessor that executes a wide
variety of programs. Cache designers try to derive the
program behavior of “average” program constructed from
several actual programs that run on the microprocessor. The
cache is optimized for the average program, but no actual
program behaves exactly like the average program. As a
result, the designed cache ends up being sub-optimal for
nearly every program actually executed by the micropro-
cessor. Thus, there is a need for memory hierarchies that
have data storage and retrieval characteristics that are opti-
mized for actual programs executed by a processor.

Designers trying to develop ever more efficient caches
optimized for a variety of actual programs also face another
problem: as caches add additional features, the overhead
needed to implement the added features also grows. Caches
today have so much overhead that microprocessor perfor-
mance may be reaching a point of diminishing returns as the
overhead starts to cut into performance. In the Intel Pentium
III processor for example, more than half of the 10 million
transistors are dedicated to instruction cache, branch pre-
diction, out-of-order execution and superscalar logic. The
situation has prompted predictions that as microprocessors
grow to a billion transistors per chip, performance increases
will drop to about 20% per year. Such a prediction, if borne
out, could have a significant impact on technology growth
and the computer business.

Thus, there is a growing need to develop improved
memory hierarchies that limit the overhead of a memory
hierarchy without also reducing bandwidth efficiency and
utilization.

SUMMARY OF THE INVENTION

Accordingly, an embodiment of the invention includes a
reconfigurable processor that includes a computational unit
and a data access unit coupled to the computational Imit,
where the data access unit retrieves data from an on-

10

15

20

25

30

35

40

45

50

55

60

65

4

processor memory and supplies the data to the computa-
tional unit, and where the computational unit and the data
access unit are configured by a program.

The present invention also involves a reconfigurable
processor that includes a first memory of a first type and a
data prefetch unit coupled to the memory, where the data
prefetch unit retrieves data from a second memory of a
second type different from the first type, and the first and
second memory types and the data prefetch unit are config-
ured by a program.

Another embodiment of the invention includes a recon-

figurable hardware system that includes a common memory,
also referred to as external memory, and one or more
reconfigurable processors coupled to the common memory,
where at least one of the reconfigurable processors includes
a data prefetch unit to read and write data between the unit
and the common memory, and where the data prefetch unit
is configured by a program executed on the system.

Another embodiment of the invention includes a method

of transferring data that includes transferring data between a
memory and a data prefetch unit in a reconfigurable pro-
cessor, transferring data between the prefetch unit and a data
access unit, and transferring the data between a computa-
tional unit and the data access unit, where the computational
unit, data access unit and the data prefetch unit are config-
ured by a program.

Additional embodiments of the invention are set forth in

part in the description that follows, and in part will become
apparent to those skilled in the art upon examination of the
following specification, or may be learned by the practice of
the invention. The advantages of the invention may be
realized and attained by means of the instrumentalities,
combinations, compositions, and methods particularly
pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a reconfigurable processor in which the
present invention may be implemented;

FIG. 2 shows computational logic as might be loaded into
a reconfigurable processor;

FIG. 3 shows a reconfigurable processor as in FIG. 1, but
with the addition of data access units;

FIG. 4 shows a reconfigurable processor as in FIG. 3, but
with the addition of data prefetch units;

FIG. 5 shows reconfigurable processor with the inclusion
of external memory;

FIG. 6 shows reconfigurable processors with external
memory and with an intelligent memory controller;

FIG. 7 shows a reconfigurable processor having a com-
bination of data prefetch units and data access units feeding
computational logic;

FIG. 8 shows the bandwidth efficiency and utilization
gains obtained when utilizing a data prefetch unit and an
intelligent memory controller to perform strided memory
references;

FIG. 9A and FIG. 9B show the bandwidth efficiency and
utilization gains obtained when utilizing a data prefetch unit
and an intelligent memory controller to perform subset
memory references in X-Y plane;

FIG. 10A and FIG. 10B show the bandwidth efficiency
and utilization gains obtained when utilizing a data prefetch
unit and an intelligent memory controller to perform subset
memory references in X-Z plane;

FIG. 11A and FIG. 11B show the bandwidth efficiency
and utilization gains obtained when utilizing a data prefetch

15



16

US 7,149,867 B2

5

unit and an intelligent memory controller to perform subset
memory references in Y—Z plane;

FIG. 12A and FIG. 12B show the bandwidth efficiency
and utilization gains obtained when utilizing a data prefetch
unit and an intelligent memory controller to perform subset
memory references in a mini-cube;

FIG. 13 shows the bandwidth efficiency and utilization
gains obtained when utilizing a data prefetch unit and an
intelligent memory controller to perform indirect memory
references ;

FIG. 14 shows the bandwidth efficiency and utilization
gains obtained when utilizing a data prefetch unit and an
intelligent memory controller to perform strided memory
reference together with computation.

DETAILED DESCRIPTION

1. Definitions:

Direct execution logic (DEL)7is an assemblage of
dynamically reconfigurable functional elements that enables
a program to establish an optimized interconnection among
selected functional units in order to implement a desired
computational, data prefetch and/or data access functionality
for maximizing the parallelism inherent in the particular
code.

Reconfigurable Processoriis a computing device that
contains reconfigurable components such as FPGAs and
can, through reconfiguration, instantiate an algorithm as
hardware.

Reconfigurable Logiciis composed of an interc01mec-
tion of functional units, control, and storage that implements
an algorithm and can be loaded into a Reconfigurable
Processor.

Functional Unitiis a set of logic that performs a specific
operation. The operation may for example be arithmetic,
logical, control, or data movement. Functional units are used
as building blocks of reconfigurable logic.

Macroiis another name for a functional unit.

Memory Hierarchyiis a collection of memories
Data prefetch Unitiis a functional unit that moves data

between members of a memory hierarchy. The movement
may be as simple as a copy, or as complex as an indirect
indexed strided copy into a unit stride memory.

Data access Unitiis a functional unit that accesses a

component of a memory hierarchy, and delivers data directly
to computational logic.

Intelligent Memory Control Unitiis a control unit that
has the ability to select data from its storage according to a
variety of algorithms that can be selected by a data requester,
such as a data prefetch unit.

Bandwidth Efficiencyiis defined as the percentage of
contributory data transferred between two points. Contribu-
tory data is data that actually participates in the recipients
processing.

Bandwidth Utilizationiis defined as the percentage of
maximum bandwidth between two points that is actually
used to pass contributory data.

2. Description
A reconfigurable processor (RP) 100 implements direct

executable logic (DEL) to perform computation, as well a
memory hierarchy for maintaining input data and computa-
tional results. DEL is an assemblage of dynamically recon-
figurable functional elements that enables a program to
establish an optimized interconnection among selected func-
tional units in order to implement a desired computational,
data prefetch and/or data access functionality for maximiz-
ing the parallelism inherent in the particular code. The term
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6

DEL may also be used to refer to the set of constructs such
as code, data, configuration variables, and the like that can
be loaded into RP 100 to cause RP 100 to implement a
particular assemblage of functional elements.

FIG. 1 presents an RP 100, which may be implemented
using field programmable gate arrays (FPGAs) or other
reconfigurable logic devices, that can be configured and
reconfigured to contain filnctional units and interconnecting
circuits, and a memory hierarchy comprising on-board
memory banks 104, on—chip block RAM 106, registers
wires, and a connection 108 to external memory. On—chip
reconfigurable components 102 create memory structures
such as registers, FIFOs, wires and arrays using block RAM.
Dual-ported memory 106 is shared between on-chip recon-
figurable components 102. The reconfigurable processor 100
also implements user-defined computational logic (e.g., such
as DEL 200 shown in FIG. 2) constructed by programming
an FPGA to implement a particular interconnection of
computational functional units. In a particular implementa-
tion, a number of RPs 100 are implemented within a
memory subsystem of a conventional computer, such as on
devices that are physically installed in dual inline memory
module (DIMM) sockets of a computer. In this manner the
RPs 100 can be accessed by memory operations and so
coexist well with a more conventional hardware platform. It
should be noted that, although the exemplary implementa-
tion of the present invention illustrated includes six banks of
dual ported memory 104 and two reconfigurable compo-
nents 102, any number of memory banks and/or reconfig-
urable components may be used depending upon the par-
ticular implementation or application.

Any computer program, including complex graphics pro-
cessing programs, word processing programs, database pro-
grams and the like, is a collection of algorithms that interact
to implement desired functionality. In the common case in
which static computing hardware resources are used (e.g., a
conventional microprocessor), the computer program is
compiled into a set of executable code (i.e., object code)
units that are linked together to implement the computer
program on the particular hardware resources. The execut-
able code is generated specifically for a particular hardware
platform. In this manner, the computer program is adapted
to conform to the limitations of the static hardware platform.
However, the compilation process makes many compro-
mises based on the limitations of the static hardware plat-
form.

Alternatively, an algorithm can be defined in a high level
language then compiled into DEL. DEL can be produced via
a compiler from high level programming languages such as
C or FORTRAN or may be designed using a hardware
definition language such as Verilog, VHDL or a schematic
capture tool. Computation is performed by reconfiguring a
reconfigurable processor with the DEL and flowing data
through the computation. In this manner, the hardware
resources are essentially adapted to conform to the program
rather than the program being adapted to conform to the
hardware resources.

For purposes of this description a single reconfigurable
processor will be presented first. A sample of computational
logic 201 is shown in FIG. 2. This simple assemblage of
functional units performs computation of two results (“A+
B” and “A+B—(B*C)) from three input variables or operands
“A”, “B” and “C”. In practice, computational units 201 can
be implemented to perform very simple or arbitrarily com-
plex computations. The input variables (operands) and out-
put or result variables may be of any size necessary for a
particular application. Theoretically, any number of oper-

16



17

US 7,149,867 B2

7

ands and result variables may be used/generated by a
particular DEL. Great complexity of computation can be
supported by adding additional reconfigurable chips and
processors.

For greatest performance the DEL 200 is constructed as
parallel pipelined logic blocks composed of computational
functional units capable of taking data and producing results
with each clock pulse. The highest possible performance that
can be achieved is computation of a set of results with each
clock pulse. To achieve this, data should be available at the
same rate the computation can consume the data. The rate at
which data can be supplied to DEL 200 is determined, at
least in significant part, by the memory bandwidth utiliza-
tion and efficiency. Maximal computational performance
can be achieved with parallel and pipelined DEL together
with maximizing the memory bandwidth utilization and
efficiency. Unlike conventional static hardware platforms,
however, the memory hierarchy provided in a RP 100 is
reconfigurable. In accordance with the present invention,
through the use of data access units and associated memory
hierarchy components, computational demands and memory
bandwidth can be matched.

High memory bandwidth efficiency is achieved when only
data required for computation is moved within the memory
hierarchy. FIG. 3 shows a simple logic block 300 comprising
computational functional units 301, control (not shown), and
data access functional units 303. The data access unit 303

presents data directly to the computational logic 301. In this
manner, data is moved from a memory device 305 to the
computational logic and from the computational logic back
into a memory device 305 or block RAM memory 307
within an RP 100.

FIG. 4 illustrates the logic block 300 with an addition of
a data prefetch unit 401. The data prefetch unit 401 moves
data from one member of the memory hierarchy 305 to
another 308. Data prefetch unit 401 operates independently
of other functional units 301, 302 and 303 and can therefore
operate prior to, in parallel with, or after computational
logic. This independence of operation permits hiding the
latency associated with obtaining data for use in computa-
tion. The data prefetch unit deposits data into the memory
hierarchy within RP 100, where computational logic 301,
302 and 303 can access it through data access units. In the
example of FIG. 4, prefetch unit 401 is configured to deposit
data into block RAM memory 308. Hence, the prefetch units
401 may be operated independently of logic block 300 that
uses prefetched data.

An important feature of the present invention is that many
types of data prefetch units can be defined so that the
prefetch hardware can be configured to conform to the needs
of the algorithms currently implemented by the computa-
tional logic. The specific characteristics of the prefetch can
be matched with the needs of the computational logic and
the format and location of data in the memory hierarchy. For
example, FIG. 9A and FIG. 9B show an external memory
that is organized in a 128 byte (16 word) block structure.
This organization is optimized for stride 1 access of cache
based computers. A stride 128 access can result in a very
inefficient use of bandwidth from the memory, since an extra
120 bytes of data is moved for every 8 bytes of requested
data yielding a 6.25% bandwidth efficiency.

FIG. 5 shows an example of data prefetch in which there
are no bandwidth gains since all data fetched from external
memory blocks is also transferred and used in computational
units 301 through memory bank access units 303. However,
bandwidth utilization is increased due to the ability of the
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8

data prefetch units 501 to initiate a data transfer in advance
of the requirement for data by computational logic.

In accordance with an embodiment of the present inven-
tion, data prefetch units 601 are configured to communicate
with an intelligent memory controller 603 in FIG. 6 and can
extract only the desired 8 bytes of data, discard the remain-
der of the memory block, and transmit to the data prefetch
unit only the requested portion of the stride 128 data. The
prefetch units 601 then delivers that data to the appropriate
memory components within the memory hierarchy of the
logic block 300.

FIG. 6 shows the prefetch units 601 delivering data to the
RP’s onboard memory banks 305. An onboard memory bank
data access unit 303 then delivers the data to computational
logic 301 when required. The data prefetch units 501 couple
with an intelligent memory controller 601 in the implemen-
tation of FIG. 6 that supports a strided reference pattern,
which yields a 100% bandwidth efficiency in contrast to the
6.25% efficiency. Although illustrated as a single block of
external memory, multiple numbers of external memories
may be employed as well.

In FIG. 7, the combination of data prefetch units 701 and
data access units 703 feeding computational logic 301 such
that bandwidth efficiency and utilization are maximized is
shown in FIG. 7. In this example strided data prefetch units
701 fetch only the required data words from external
memory. FIG. 8 demonstrates the efficiency gains enabled
by this combination. Prefetch units 701 deliver the data into
stream memory components 705 that is accessed by stream
data access units 703. The stream data access units 703 fetch
data from the stream based on valid data bits that are

provided to the stream by the data prefetch units 701 as data
is presented to the stream. Use of the stream data access unit
allows computational logic to be activated upon initiation of
the data prefetch operation. This, in turn, allows computa-
tion to start with the arrival of the first data item, signaled by
valid data bits. Computational logic 301 does not have to
await arrival of a complete bulfer of data in order to proceed.
This elimination of latency increases the bandwidth utiliza-
tion, by allowing data transfer to continue uninterrupted and
in parallel with computation.

FIG. 8 illustrates the efficiency gains enabled by the
configuration of FIG. 7. FIG. 8 shows a plurality of memory
blocks 800 in which only one memory element 801 exists in
each memory block 800. The configuration of FIG. 7 allows
the desired portions 801 of each memory block 800 to be
compacted into a transfer bulfer 805. The desired data
elements 801 are compacted in order. Since only the con-
tents of the transfer buffer 805 need be transferred to the

computational logic, a significant increase in transfer effi-
ciency can be realized.

FIGS. 9A/9B, 10A/10B, 11A/11B and 12A/12B show
bandwidth efficiency gains that are achieved in various
situations when a subset of stored data is required for
computation. Applications store data in a specific order in
memory. However it is often the case that the actual refer-
ence pattern required during computation is different from
the ordering of data in memory. FIGS. 9A/9B, 10A/10B,
11A/11B and 12A/12B show an example of a X,Y,Z coor-
dinate oriented data which is stored such that striding though
the X axis is the most efficient for retrieving blocked data.

Coupling data prefetch units in the RP 100 with an
intelligent memory controller 601 in the external memory
yields a significant improvement in bandwidth efficiency
and utilization. Four examples are presented in the FIGS.
9A/9B, 10A/10B, llA’llB and 12A/12B in which the

shaded memory locations indicate desired data. The Figures
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illustrate an intelligent memory controller’s response to each
of four different data prefetch unit’s requests for data. Again,
an important feature of the present invention is the ability to
implement various kinds or styles of prefetch umts to meet
the needs of a particular algorithm being implemented by
computational elements 301. For ease of illustration, each
example shows the same set of computational logic, how-
ever, in most cases the function being implemented by
components 301 would change and therefore alter the deci-
sion as to which prefetch strategy is most appropriate. In
accordance with the present invention, the prefetch units are
implemented in a manner that is optimized for the imple-
mented computational logic.

FIGS. 9A/9B shows response to a request from an XY-
slice data prefetch unit. FIGS. 10A/10B shows response to
a XZ-slice data prefetch unit request. FIGS. 11A/11B shows
response to a YZ-slice data prefetch unit request. FIGS.
12A/12D shows the response to a SubCube data prefetch
unit request. In each of these examples the data prefetch
units are configured to pass information to the intelligent
memory controller 601 to identify the type of request that is
being made, as well as a data address and parameters, in this
case, defining the slice size or sub-cube size.

One of the largest bandwidth efficiency and utilization
gains can be seen in the case of a Gather data prefetch unit
working in cooperation with an intelligent memory control-
ler 601. FIG. 13 illustrates the activity in the external
memory controller 601. In this example an index array 1301
and a data array 1303 reside in memory. A gather data
prefetch unit in an RF 100 requests a gather by specifying
the access type as “gather”, and providing a pointer to index
array 1301, and another pointer to the data array 1303. The
memory controller uses the index array 1301 to select
desired data elements, indicated by shading, and then deliv-
ers an in order stream of data to the prefetch unit. Gains are
made by delivering only requested data from transfer buffer
1305 (not the remainder of a data block as in cache line
oriented systems) by eliminating the need to transfer an
index array either to the processor or to the memory con-
troller, and by eliminating the start/stop time required when
the data is not streamed to the requestor.

A further bandwidth efficiency and utilization gain is
made when coupling a data prefetch unit with memory
controller capable of computation. FIG. 14 illustrates activ-
ity in a cooperating memory controller having a computa-
tional component 1407 in response to a data prefetch unit.
Here the prefetch units requests a “strided compute”, pro-
viding parameters for an operator, and addresses, and strides
for data to be operated upon. In FIG. 14, the data to be
operated on comprises “X” data 1401 and “Y” data 1403.
The data 1401 and 1403 are processed by computational
component 1407 to generate a resultant value that is a
specified function of X and Y as indicated by FO(,Y) in FIG.
14. The resultant values are then passed to the requesting
prefetch unit via transfer buffer 1405. In this case only
computed results are passed and no operand data need to
transferred. Accordingly, where the desired data, indicated
by shading in FIG. 14, resides across multiple blocks,
efficiency is achieved not only by avoiding transfer of the
undesired data surrounding the desired data, but also
because only the result is transferred, not the original data
1401/1403.

EXAMPLES

Some programming examples utilizing the memory hier-
archy of the present invention will now be illustrated. The
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first example illustrates how a computational intensive
matrix multiplication problem may be handled by the explic-
itly parallel and addressable storage of the present invention.

Example 1

Explicit Parallel and Addressable Storage

Consider the matrix multiplication C:A><B, where:
A is a matrix of size M rows by 64 columns,
B is a matrix of size 64 rows by N columns; and
C is a matrix of size M rows by N columns.

The size and shape of this problem typically arises in the
context of LU decomposition in linear algebra libraries (e.g.,
LAPACK). The operation count for this problem would be
2*M*N*64, and the total data necessary to transport would
be (M*64+N*64+M*N), making the problem quite compu-
tationally intensive.

The dot-product formulation of the matrix multiplication
may be represented as the following a triple-nested loop:

for (i = 0; I<m; I++) {
for (j = 0; j< n; j++){

sum = 0;
for (k = 0; k < 64; k++) {

sum += A[k*m*l] * BU*64+k];
}
C1[i+j+mm] = sum;

}
}

On a conventional microprocessor with static execution
resources, these loops would be arranged to give stride-one
data access where possible and also block or tile these uses
to facilitate data cache hits on the B and A matrices, which
are read many times. With the configurable memory hier-
archy of the present invention, matrix B may be stored in
on-board BRAM memory 307 and rows of matrix A in
registers.

The rows of matrix B may be stored in independently,
locally declared BRAM arrays (B0, B1, . . . B63). The rows
are stored as independent memory structures, and may be
accessed in parallel. Rows of matrix A may be stored in 64
registers described with scalar variables. With these explicit
data structures, the following pseudo code can describe the
matrix multiplication:

Load B into BRAM;

for (i:0; i<m; i++) {
Load ith Row of A into registers A00 to A63;
For 0:0; j<n; j++) {
C[i+j+m]+:
A00*b0[j]+
A01*b1[j]+
A02*b2[j]+//inner loop produces
A03*b3[j]+//128 results per
A04*b4[j]+//clock cycle. 64 rows
A05*b5[j]+//of B are read in
A06*b6[j]+//parallel

A63 *b63 [j] ;
The code is designed to minimize the amount of data

motion. The A and B matrices are read once and the C matrix

is written just once at it is produced. When computational
resources permit, the i loop could also be rmrolled to process
multiple rows of matrix A against matrix B in the inner loop.
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Processing two rows of A, for example, would produce 256
computational results per clock cycle.

Example 2

Irregular Memory Access

Benchmarks have been developed for measuring the
ability of a computer system to perform indirect updates. An
indirect update, written in the C programming language,
looks like:

for (I = 0; I < N; I++){
A[Index[I]]) = A[Index[I]] + B[I];
}

Typically, A is a large array, and Index has an unpredictable
distribution. The benchmark generally forces memory ref-
erences to miss in cache, and for entire cache lines to be
brought in for single-word updates. The problem gets worse
as memories get further away from processors and cache
lines become wider.

In this example, the arrays have 64-bit data. To complete
one iteration of this loop, 24 bytes of information is required
from memory and 8 bytes are written back for a total of 32
bytes of memory motion per iteration. On an implicit
architecture with cache-lines of width W bytes, each itera-
tion results in the following memory bus traffic:

1. lndex[I]: 8 bytes per iteration due to stride-1 nature;
2. B[I]: 8 bytes per iteration due to stride-1 nature; and
3. A[lndex[I]]: W bytes read and written per iteration.

The total amount ofbus traffic is 2*W+16 bytes per iteration.
On an average microprocessor today, W:128 so an iteration
of this loop results in 272 bytes of memory traffic when only
32 bytes is algorithmically required, making only 12% of the
data moved as being useful for the problem.

In addition, because microprocessors rely on wide cache
lines and hardware pre-fetching strategies to amortize the
long latency to main memory, only a small number of
outstanding cache-line misses are typically tolerated.
Because of the irregular nature of this example, hardware
pre-fetching provides little benefit, making it difficult to
keep the memory bus saturated, even with the large amount
of wasted memory traffic. Bus utilization on the micropro-
cessor processing only consumes about 700 MB/sec of the
3.2 GB/sec available, or 22%. Combining the poor bus
utilization with the relatively small amount of data that is
useful results in the microprocessor executing at about 2.5%
of peak.

The memory hierarchy of the present invention does not
require that memory traffic be organized in a cache—line
structure, permitting loop iteration to be accomplished with
the minimum number of bytes (in this case 32 bytes of
memory traffic). In addition, data pre-fetch functional units
may be fully pipelined, allowing full use of available
memory bus bandwidth. Data storing may be handled in a
similar pipelined fashion. An example of the pseudo code
that performs the random update in the memory hierarchy
looks like:

for (i=0; I < N-Gatherisize; I=I+Gatherisize) {
gather ( A, Index, I, Ailocal, Gatherisize)

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

for (j=);j < Gatherisize; j++) {
Ailocalfi] = Ailocalfi] + BU];

}
scatter (Ailocal, Index, &A[I], Gatherisize);

}

This loop will pipeline safely as described by the pseudo
code provided that the index vector has no repeated values
within each Gather_size segment. If repeats are present, then
logic within the gather unit can preprocess the Index vector
and B vector into safe sub-lists that can be safely pipelined
with little or no overhead.

CONCLUSION

It should be apparent that the scaleable, programmable
memory mechanisms enabled by the present invention are
available to the exploit available algorithm locality and
thereby achieve up to 100% bandwidth efficiency. In addi-
tion, the scaleable computational resources can be leveraged
to attain 100% bandwidth utilization. As a result, the present
invention provides a programmable computational system
that delivers the maximum possible performance for any
memory bus speed. This combination of efficiency and
utilization yields orders of magnitude performance benefit
compared with implicit models when using an equivalent
memory bus.

Although the invention has been described and illustrated
with a certain degree ofparticularity, it is understood that the
present disclosure has been made only by way of example,
and that numerous changes in the combination and arrange-
ment of parts can be resorted to by those skilled in the art
without departing from the spirit and scope of the invention,
as hereinafter claimed.

We claim:

1. A reconfigurable processor that instantiates an algo-
rithm as hardware comprising:

a first memory having a first characteristic memory band-
width and/or memory utilization; and

a data prefetch unit coupled to the memory, wherein the
data prefetch unit retrieves only computational data
required by the algorithm from a second memory of
second characteristic memory bandwidth and/or
memory utilization and places the retrieved computa-
tional data in the first memory wherein the data
prefetch unit operates independent of and in parallel
with logic blocks using the computional data, and
wherein at least the first memory and data prefetch unit
are configured to conform to needs of the algorithm,
and the data prefetch unit is configured to match format
and location of data in the second memory.

2. The reconfigurable processor of claim 1, wherein the
data prefetch unit is coupled to a memory controller that
controls the transfer of the data between the memory and the
data prefetch unit and transmits only portions of data desired
by the data prefetch unit and discards other portions of data
prior to transmission of the data to the data prefetch unit.

3. The reconfigurable processor of claim 1, wherein the
data prefetch unit receives processed data from on—processor
memory and writes the processed data to an external off-
processor memory.

4. The reconfigurable processor of claim 1, wherein the
data prefetch unit comprises at least one register from the
reconfigurable processor.
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5. The reconfigurable processor of claim 1, wherein the
data prefetch unit is disassembled when another program is
executed on the reconfigurable processor.

6. The reconfigurable processor of claim 1 wherein said
second memory comprises a processor memory and said
data prefetch unit is operative to retrieve data from a
processor memory.

7. The reconfigurable processor of claim 6 wherein said
processor memory is a microprocessor memory.

8. The reconfigurable processor of claim 6 wherein said
processor memory is a reconfigurable processor memory.

9. A reconfigurable hardware system, comprising:

a common memory; and

one or more reconfigurable processors that can instantiate
an algorithm as hardware coupled to the common
memory, wherein at least one of the reconfigurable
processors includes a data prefetch unit to read and
write only data required for computations by the algo-
rithm between the data prefetch unit and the common
memory wherein the data prefetch unit operates inde-
pendent of and in parallel with logic blocks using the
computational data, and wherein the data prefetch unit
is configured to conform to needs of the algorithm and
match format and location of data in the common

memory.

10. The reconfigurable hardware system of claim 9,
comprising a memory controller coupled to the common
memory and the data prefetch unit that transmits to the
prefetch unit only data desired by the data prefetch unit as
required by the algorithm.

11. The reconfigurable hardware system of claim 9,
wherein the at least of the reconfigurable processors also
includes a computational unit coupled to the data access
unit.

12. The reconfigurable hardware system of claim 11,
wherein the computational unit is supplied the data by the
data access unit.
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13. A method of transferring data comprising:
transferring data between a memory and a data prefetch

unit in a reconfigurable processor; and
transferring the data between a computational unit and the

data access unit, wherein the computational unit and
the data access unit, and the data prefetch unit are
configured to conform to needs of an algorithm imple-
mented on the computational unit and transfer only data
necessary for computations by the computational unit,
and wherein the prefetch unit operates independent of
and in parallel with the computational unit.

14. The method of claim 13, wherein the data is written
to the memory, said method comprising:

transferring the data from the computational unit to the
data access unit; and

writing the data to the memory from the data prefetch
unit.

15. The method of claim 13, wherein the data is read from
the memory, said method comprising:

transferring only the data desired by the data prefetch unit
as required by the computational unit from the memory
to the data prefetch unit; and

reading the data directly from the data prefetch unit to the
computational unit through a data access unit.

16. The method of claim 15, wherein all the data trans-
ferred from the memory to the data prefetch unit is processed
by the computational unit.

17. The method of claim 15, wherein the data is selected
by the data prefetch unit based on an explicit request from
the computational unit.

18. The method of claim 13, wherein the data transferred
between the memory and the data prefetch unit is not a
complete cache line.

19. The method of claim 13, wherein a memory controller
coupled to the memory and the data prefetch unit, controls
the transfer of the data between the memory and the data
prefetch unit.
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