
The DARPA Boolean equation benchmark on a reconfigurable computer

D. A. Buell and S. Akella and J. P. Davis and G. Quan
Department of Computer Science and Engineering

University of South Carolina
Columbia, South Carolina 29208�

buell|akella|jimdavis|michalsk|gquan�@cse.sc.edu
D. Caliga

SRC Computers, Inc.
4240 North Nevada Avenue

Colorado Springs, Colorado 80907
caliga@srccomp.com

Abstract

The Defense Advanced Research Projects Agency has
recently released a set of six discrete mathematics bench-
marks that can be used to measure the performance of
high productivity computing systems. Benchmark five re-
quires matching a short bit string (with don’t care positions)
against a very long bit stream, setting up systems of linear
equations with���coefficients, and solving the systems us-
ing Gaussian elimination. We describe the implementation
of this benchmark on the SRC Computers reconfigurable
computer and present results on performance. Since this
is a reconfigurable machine with Field Programmable Gate
Arrays (FPGAs) that can be used as processing elements,
the implementation has many features of a special purpose
hardware design as well as the load balancing and data ac-
cess problems inherent in a software implementation.

1. Introduction

The Defense Advanced Research Projects Agency has
recently released the DARPA HPCS Discrete Mathematics
Benchmarks that can be used to measure the performance
of high productivity computing sytems [1]. These bench-
marks are intended to augment the DARPA floating point
benchmarks as well as standard performance guides such
as LINPACK. Described briefly, the six benchmarks (num-
bered zero through five by DARPA) are

0. random access to a very large shared memory array;

1. matrix multiplication with multiprecise modular coef-
ficients;

2. a dynamic programming problem;

3. transposition of bits in a bitstream;

4. integer sorting;

5. matching of a bit string with a bitstream and solution
of a derived system of linear boolean equations.

Benchmark five requires matching a short bit string (in-
cluding don’t care bits) against a very long bitstream, set-
ting up systems of linear equations with� � � coefficients,
and solving the systems using Gaussian elimination. We
describe an implementation of this benchmark on the SRC
Computers SRC-6 reconfigurable computer [2], and we re-
port on this implementation. We provide raw performance
numbers, an analysis of the SRC-6 for this application, and
a more general discussion of the issues of load balancing
of data movement and computation for problems similar to
this benchmark.

2. Benchmark Five

Let ����be a stream of bits of length	. We are to search
for all occurrences of a bit pattern
 , where bits in
 can be
specified as�, �, or “don’t care” bits. Let� be the position
in the bitstream immediately after an occurrence of
 in the
bitstream.

Beginning with bit�, we form� equations in� un-
knowns over
� ���, solve the system of equations, and
output either the unique solution or the information that no
solution exists.

The systems of equations should be set up and solved for
every occurrence of
 in the bitstream.

SRC00004936

Patent Owner FG SRC LLC
IPR2021-00633, Ex. 2013, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Specific parameters are given as examples for bench-
mark five.

� The length	 of the input bitstream is���.
� An example bit pattern is the pattern of

��
bits

 � �����������������������
where

�
indicates a “don’t care” bit.

� We take� � ���, and thus we are required for ev-
ery substring match to set up and solve the��� ����
matrix equation
�
��	

�
 �
��

 �
����
�
���� �
����

 �
�����

�
������� �
�������

 �
�������

�
���

�
��	
��
��

����

�
���

�
�
��	

�
����
�
�����

�
�������

�
���

using the��� ���� � ������ bits beginning with the
�-th bit.

3. Software Implementation

These benchmarks are new to DARPA as benchmarks,
but they have been in use for some time. However, the
available software implementations are rather dated, which
makes it difficult to make comparisons against prior art. The
“rules of the game” for the DARPA benchmarks are that
one should first make and them time a code port with only
those changes necessary for correct execution, and only
later make subsequent changes that would speed up the ex-
ecution based on machine-specific characteristics.

However, by being old, the benchmarks present several
problems that make it difficult to use the old code “as is.”
First, the data size for benchmark� is too small. A

��
-

bit pattern to match is not necessarily too small, but a bit-
stream of only ten million bits is insufficient to tax a modern
computer. When ported as indicated below, the benchmark
code on ten million bits of input data takes only about�
��
second. The signal-to-noise ratio of timing something that
small makes any conclusions highly suspect if one is using
services provided through an operating system and not ac-
tual hardware counters for timing.

Since the benchmark as originally stated is too small,
we have increased the size of the input bitstream from ten
million to ���� million bits, specifically to (����� � ��� �
����������) bits. This is not a magic number, and we re-
serve the right to increase the size even more. But one fur-
ther problem with the code provided for the benchmark is

that all the computation is done using memory arrays in a
manner that is fast in time but wasteful in memory. When
we increase the bitstream much larger than�
� gigabits, the
concomitant increase in array sizes elsewhere in the pro-
gram cause problems. In order to maintain as much fidelity
to the benchmark rules as possible, we thus stop with the
size indicated here. Our execution results clearly seem to
scale linearly with the number of bits processed, so we feel
that extrapolating to larger bit lengths is justified based on
the experimentation presented here.

To ensure that we are in fact solving the benchmark prob-
lem as posed, we have also in C a program for the bench-
mark for an Intel Pentium 4 processor. We have begun with
a naive implementation that, although slow, was simple, so
that the answers could readily be verified and we would
have correct answers against which to compare when we
tried running optimized code. A second step would be to
write efficient C code for a standard Pentium. We have not
done this, so we cannot yet test a highly optimized version
in C or Fortran against the implementation on the SRC-6.
However, we hope that over time there will develop a col-
lection of results that will permit these results to be put into
context. And once again, our final result scales linearly and
can therefore be used for extrapolation purposes, so we feel
that a useful experiment has in fact been conducted.

4. The Code Port

There were a number of serious issues in porting the
original single-processor code, written in FORTRAN 77
for a Cray vector machine, to a modern Pentium-based ma-
chine. Most of the initial problems stemmed from the fact
that theINTEGER data type in Cray FORTRAN is/was a��-bit value, all the bit-oriented functions (shifts and such)
operated on

��-bit integer values, and Cray FORTRAN
had built in functions forLEADZ andPOPCNT to provide
the number of leading zeros in a word and the number of
nonzero bits in a word. Standard C compilers on

��
-bit

Pentium machines permit
��-bit long long data types,

but the compilers do not appear to generate correct code for
shifts of more than

��
bits. Further, although software rou-

tines were provided to substitute forLEADZ andPOPCNT,
the code was incorrect. Finally, some of the static mem-
ory allocations of the FORTRAN code had to be changed to
dynamic allocations in C.

After some substantial effort, we were able to run the
modified code on a Dell PowerEdge 2650 machine (named
seymour) with dual 2.8GHz processors and

�
Gbytes of

memory. Since we have an all-C reimplementation of
the benchmark that generates correct answers (albeit much
more slowly than desired), we can verify correctness of our
more optimized implementations.

SRC00004937

Patent Owner FG SRC LLC
IPR2021-00633, Ex. 2013, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5. Implementation on the SRC-6

Part of our goal in this project is to measure the effec-
tiveness of the SRC MAPC compiler for generating code to
run on the FPGAs of the MAP. We have at this point there-
fore, in an attempt to maintain the spirit of “programming”
and not “hardware design,” eschewed resorting to VHDL.
Since our first intent is to measure the performance of the
SRC-6 on the pattern matching part of the benchmark, we
have excerpted that part of the benchmark. A C main pro-
gram reads a bitstream and the necessary lookup tables from
files, calls a MAP function for doing the pattern match, and
then writes the results to a file. The times required for the
pattern-match portion of the benchmark done entirely in C
in software onseymour are presented as column� in Fig-
ure 1. For the expanded�
�-gigabit benchmark of the last
line, the time of approximately��
��seconds is the same as
was required for the pattern match when done in Fortran as
part of the larger program ported from the older Cray code.
Our goal, then, is to use the MAP hardware to decrease the
��
�� seconds execution time of the two software versions.

5.1 A Code Port for the MAP

Most of the initial work to port the software version to
a MAP version dealt with the problems of data movement.
The original code stores everything in multiple long arrays
as would be reasonable for a supercomputer with a large
flat common memory. The MAP, however, has six banks
each of� megabytes, and we must use this memory ef-
ficiently. Since we are dealing with patterns of bits that
must be treated as unsigned

��-bit quantities, we will refer
only to (

��-bit) words; there are thus six on-board memory
(OBM) banks each of������ words. The bitstream being
����� � ��� � ���������� bits, or

�������� words, the
bitstream cannot be loaded entirely into the MAP. In our
Version 1 code we have blocked the bitstream into blocks
of

������words and used DMA to transfer these blocks to
the MAP in a loop controlled from the MAP.

Many of the C constructs for programming the MAP
are self-explanatory. Some require only a brief pars-
ing for a first-level understanding of their function. The
OBM BANK x lines serve to declare the argument variables
to have the given data type as arrays of the given length and
to reside in the appropriate bank (A throughF) of on-board
memory. The Version 1 code also has declarations that allo-
cate two arrays into banksA andB. TheDMA CPU function
calls cause arrays to be transferred via DMA from common
memory to on-board memoryCM2OBM or from on-board
memory to common memoryOBM2CM. At present, some
care must be taken in aligning the DMA transfers, but mem-
ory access can be improved by striping arrays into multiple
banks of on-board memory (although we did not use strip-

ing here). Thewait DMA is the obvious barrier synchro-
nization primitive.

With this basic program structure, the main program and
MAP program are as presented in Figures 2 and 3. The
timing of our routines is presented in column� of Figure 1.

The time of�
�� seconds on the MAP is a speedup of�
�, and we analyze the code to see how to improve this.

5.2 Improvements

The timing of this program depends on three factors. The
first is the data movement of the bitstream to the MAP and
the subsequent movement of the results array back to the
host machine. The second is the number of clock ticks
required for each iteration of the main loop of the MAP
routine. Finally, as is traditional in high-performance com-
puting, we ought to examine the possibility of overlapping
the data movement with computation so as to hide the time
spent accessing data.

One of the constraints on the current implementation is
that we have six lookup tables, a large input bitstream, and
an output bitstream, but only six banks of memory. If we ac-
cess all six lookup tables in parallel, there will be inherent
bank conflicts with the access of the input data and the stor-
age of the result data. Further, we must consider the cost
of data movement itself. If we are required to stream the
bits into a single bank of memory, then the

��
��� million
words, at one word per tick at���MHz, will require about
�
��� seconds. The maximum speedup we could obtain,
then, would be a factor of about��
����
��� � ��
� over
the software time of��
��seconds. In column� of Figure 1
we present the observed data movement time for the code of
Figures 2 and 3 but with the computational loop removed.
We note that the data movement time for the last column
is about�
��� seconds, or about

�
� ticks per word on av-
erage. This means that our computational loop should be
taking about��
��� � �
������
��������� � �
�� clocks
per iteration. Indeed, the MAP compiler has informed us
that due to bank conflicts it has added two extra clocks per
iteration and due to other resource conflicts it has added one
more, for a total of four clocks per iteration.

5.3 Reducing Conflicts

We have two strategies to pursue in reducing the execu-
tion time. First, we need to reduce the execution time of the
computational loop to one clock per iteration by removing
the bank and other resource conflicts. Next, we can try to
overlap data movement of “the next block” with computa-
tion on ”this block” of data. If this can be accomplished, we
would hope to be able to reduce the time by the

��������
ticks necessary for moving the data since the data move-
ment would be entirely overlapped with the computation.

SRC00004938

Patent Owner FG SRC LLC
IPR2021-00633, Ex. 2013, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

cevans
Highlight

https://www.docketalarm.com/

In the main loop of the MAP function we have bank con-
flicts that will prevent a one-tick-per-iteration execution un-
less we are more clever than in our original code port.

1. Since the entireS[.] array is stored in a single bank,
the simultaneous fetch in thei-th iteration of both
S[i] andS[i+1] will require two fetches and cost
us one tick per loop iteration. If we rewrite the loop
so as to compute and savet5 andt6 in the previous
iteration of the loop, this conflict disappears.

2. In our MAP code we have spread the lookup tables
over the six banks of memory so we could do the six
lookups simultaneously. This creates a bank conflict
with reading the bitstream arrayS[.] and with writ-
ing the result arraySS[.], since we would like to be
able read and write these arrays at the same time we
are fetching lookup values from the same banks.

3. We note that we have avoided a scalar dependency
by using the vendor-providedcg accum function. A
customary code block

(*sscount) = 0;
for(i = 0; i < limit; i++)
{

code
if(t7 != 0)
{

SS[*sscount] = i;
(*sscount)++;

}
} /* for i from 1 to num */

would have required one extra tick to increment the
pointer and would have caused a slowdown. The use
of thecg accum function

cg_accum_add_32(1,t7!=0,0,
((loopsub==0)&(i==0)),
&localsscount);

SS[localsscount] = i + inputarraysub + 1;

prevents the loss. This function performs a
��

-bit ad-
dition into localsscount (the last argument) of
the values in the first argument (in this case the con-
stant �) for every loop iteration for whicht7 !=
0 is true, resetting the value oflocalsscount to
zero (the third argument) every time the condition
(loopsub==0)&(i==0) is met.

The first of these changes can be done with the exist-
ing code. The second, however, will require consolidating
the lookup tables so as to use fewer of them, thus saving a
bank or two for the input and the output streams. We have
not made these changes, but we have run the code as if we

could. The results of this are shown in column� of Fig-
ure 1. Were we to make these changes we would produce
a loop that executes in one tick per iteration, and the dif-
ference between the

��million clock ticks of column� for
data movement and the�� million ticks for total execution
time of column� is the cost of one tick per iteration on the��million words of the data stream.

5.4 Overlapping Data Movement and Computa-
tion

The final improvement that could be made in this pro-
gram is to overlap the DMA of the data into the MAP with
computation on the data previously brought into the MAP.
When this change is done, as is shown in the Version 2 code
of Figure 4, we get the execution times of column� of Fig-
ure 1. As can be seen, we have decreased the execution
time by exactly the

�� million ticks we spent waiting for
the DMA of the data to finish.

5.5 The Bottom Line

Although we have in fact not implemented “the fastest
possible” version of code for the benchmark, we are confi-
dent that such an implementation would be entirely feasi-
ble and straightforward. The current timings for the code
as implemented readily allow for execution at the 100MHz
rate of the hardware. Silicon usage for the various imple-
mentations has been in the range of 13%-15% of the 33792
slices of one Xilinx Virtex 6000 chip (the MAP has two
such chips).

The most crucial part of an implementation that would
run at one tick per data word is reducing the number of
lookup tables from six to four. There are a total of 85 bits
that must be considered in order to determine whether a bit
in a given 64-bit word could be the first bit of a match of
the target pattern. If we were to expand our lookup from
�� bits using

��� � ����� words per lookup table to��
bits using all

��� � ������words of a memory bank, then
four lookup tables would cover� � �� � �� bits. The re-
maining

�� � �� � � bits could readily be accommodated
using a separate lookup table stored in the block RAM on
the FPGA.

Finally, we comment on the level of effort necessary
to achieve this implementation. By far the largest effort
needed did not relate directly to the reconfigurable platform
but rather to the problems of the algorithm itself. The orig-
inal code was old and buggy, and the difficulty of verifying
correctness (the built-in self test of the supplied code was
comprised of hard-coded lists of matches and thus depended
on the bits supplied by the random number generator) made
it necessary to be very careful in checking that the code was
functioning as desired.

SRC00004939

Patent Owner FG SRC LLC
IPR2021-00633, Ex. 2013, p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

6. Conclusions and Lessons Learned

We have shown that the DARPA benchmark 5 code can
be ported to the SRC-6, and that the pattern matching sub-
step that is one of the computational cores of this bench-
mark could be done at the rate of one word of data per clock
on the SRC-6. Our future work will be to adapt the lookup
tables to permit an implementation that in fact would run at
this maximum speed.

We believe that this represents a watershed event in the
history of computing. We have taken an extant implementa-
tion in a high level language; we have maintained a process
of high-level language programming, and we have achieved
the maximum possible processing rate while resorting only
to the analysis of bank conflicts and loop dependencies that
have been standard in vector and parallel programming for
two decades. The programming process has indeed been
a programming process, and the analysis has been software
timing and debugging as is common with parallel programs.

The era of effective programming of a reconfigurable
computer has arrived.

7. Acknowledgements

The USC authors are grateful to Esam Al-Araby, Hatim
Diab, and Proshanta Saha of George Washington University
for their assistance in making available the SRC-6 machine
at GWU.

References

[1] Defense Advanced Research Projects Agency. High produc-
tivity computing systems discrete mathematics benchmarks,
2003.

[2] SRC Computers, Inc. Web site.www.srccomp.com.

Figure 1. Timing results
A B C D E

SW MAP Data No Overlap
only V1 only conflicts V2

16 0.11 0.028 0.017 0.022
32 0.22 0.045 0.024 0.031
64 0.44 0.079 0.037 0.049

128 0.85 0.149 0.064 0.087
256 1.73 0.285 0.118 0.160
512 3.40 0.559 0.228 0.313
768 5.12 0.837 0.334 0.457

1024 6.79 1.108 0.440 0.609
1536 10.15 1.671 0.659 0.901 0.256

Figure 2. Main program, Version 1
#include <map.h>
#define LMAX 1610612736
#define NBPW 64
#define NMAX LMAX/NBPW+1
#define TWOTO16 65536
#define TWOTO16MINUS 65535
#define LUTLENGTH TWOTO16
#define BLOCKSIZE 262144
void pp5csub(int64_t loopcount,

int64_t inputcountperloop,
uint64_t Sblock[],
uint64_t locallut0[],uint64_t locallut1[],
uint64_t locallut2[],uint64_t locallut3[],
uint64_t locallut4[],uint64_t locallut5[],
uint64_t SSblock[],int64_t *sscount,
int64_t *maptime,int mapnn);

int main()
{

int mapnum;
int64_t bitcount,i,inputcountperloop,loopcount,

maptime,sscount;
uint64_t *S,*SS;
uint64_t *locallut0,*locallut1,*locallut2,

*locallut3,*locallut4,*locallut5;
// mandatory allocation of the MAP
mapnum = 1;
if(map_allocate(mapnum))
{
fprintf(stdout,"Map allocation failed.\n");
exit (1);

}
MALLOC THE S, SS, AND locallut ARRAYS ON CACHE ALIGNED
BOUNDARIES USING VENDOR-PROVIDED CALLS FOR THE MALLOC

READ THE DATA AND LOOKUP TABLES

inputcountperloop = BLOCKSIZE;
loopcount = bitcount/(NBPW*inputcountperloop);

pp5csub(loopcount,inputcountperloop,S,
locallut0,locallut1,locallut2,
locallut3,locallut4,locallut5,
SS,&sscount,&maptime,0);

// highly advised deallocation of the MAP
if(map_free(mapnum))
{
fprintf (stdout,"Map deallocation failed.\n");
exit(1);

}
OUTPUT THE SS RESULT ARRAY
return(0);

}

SRC00004940

Patent Owner FG SRC LLC
IPR2021-00633, Ex. 2013, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

cevans
Highlight

cevans
Highlight

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

