Petitioner Tennant Company's Demonstratives for Oral Argument

May 20, 2022

TENNANT COMPANY v. OXYGENATOR WATER TECHNOLOGIES Case No. IPR2021-00625 (Patent RE45,415)

ENNAN C O M P A N Y

Overview of Petitioner's Oral Argument

- Claim Construction
- Testing Burden
- Petitioner's Grounds 1-6
 - Ex. 1112 US Pat. No. 3,891,535 to Wikey as primary reference (Mr. Johnson arguing)
- Petitioner's Grounds 7-24
 - Ex. 1105 US Pat. No. 4,917,782 to Davies as primary reference (Mr. Steinert arguing)

Issues Not in Dispute

No dispute regarding qualifications of POSITA

V. LEVEL OF ORDINARY SKILL IN THE ART

A person of ordinary skill in the art (POSITA) would have had a degree in chemistry, chemical engineering, or a similar discipline and at least two years of experience with electrolysis systems. Ex. 1103, ¶ 14. Alternatively, a POSITA could have equivalent experience in industry or research, such as designing, developing, testing, or implementing electrolysis systems. *Id.* Also, as noted in the '415 patent, a POSITA "can readily fabricate any of the emitters shown in FIG. 4 or 5 or can design other embodiments that will oxygenate flowing water." Ex. 1101, 9:20-22.

- No dispute that Petitioner's references qualify as prior art
- No proposed claim amendments

- Petition (Paper 1), 16
- PO Response (Paper 9), 7

٠

Only Independent Claim at Issue

13. A method for producing an oxygenated aqueous com-²⁰ position comprising: flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a ²⁵ tubular housing, causing electricity to flow from the power source to the electrodes, and, producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the ³⁰ water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein: the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches; 35 the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps, the tubular housing has an inlet and an outlet and a 40 tubular flow axis from the inlet to the outlet; the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports 45 plant or animal life.

- Petition (Paper 1), 16

- Ex. 1101, 11:20-45

'415 File History

Examiner's Reasons for Allowance

Allowable Subject Matter

Claims 1 and 13-27 are allowed. The following is a statement of reasons for the indication of allowable subject matter: The prior art does not disclose nor fairly suggest the method for producing oxygenated aqueous composition comprising the combination of the critical distance between the cathode and anode of .0005-0.140, the voltage maximum of about 28.3 volts, and 13 or less amperage with a maximum of 12 gallons per minute such that it results in the formation of a suspension comprising oxygen microbubbles and nanobubbles in the water, the nanobubbles having a bubble diameter of less than 50 microns.

- Petition (Paper 1), 15
- Ex. 1102, 25

Examiner: Bubble Size Created by Electrode Gap

Therefore the device is capable of saturation when given enough time.

Regarding claims 77, 79, and 83, the claims do not further disclose additional structure that further limits it over its dependent claim. The claim states that the bubble size is a diameter less than 0.0006 inches. Since all of the claimed structure is present and independent claims state that the bubbles are due to the electrode gap, the device should create the bubble size for at least same reasons as applicant. Regarding claims 76, 78, and 82, the Hough reference discloses that the saturation level is determined by the length of time the device is allowed to operate.

Petition (Paper 1), 15Ex. 1102, 108

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

7

Patent Confirms Bubble Size Results from the Size of Electrode Gap

(57) ABSTRACT

An oxygen emitter which is an electrolytic cell is disclosed. When the anode and cathode are separated by a critical distance, very small microbubbles and nanobubbles of oxygen are generated. The very small oxygen bubbles remain in suspension, forming a solution supersaturated in oxygen. A flow-through model for oxygenating flowing water is disclosed. The use of supersaturated water for enhancing the growth of plants is disclosed. Methods for applying supersaturated water to plants manually, by drip irrigation or in hydroponic culture are described. The treatment of waste water by raising the dissolved oxygen with the use of an oxygen emitter is disclosed.

- Petition (Paper 1), 9

- Ex. 1101, Abstract

In order to form microbubbles and nanobubbles, the anode and cathode are separated by a critical distance. The critical distance ranges from 0.005 inches to 0.140 inches. The pre-¹⁵ ferred critical distance is from 0.045 to 0.060 inches.

- Petition (Paper 1), 9

"Critical distance" means the distance separating the anode and cathode at which evolved oxygen forms microbubbles and nanobubbles.

- Petition (Paper 1), 17
- Ex. 1101, 4:1-6
- ³⁰ reacts to form molecular oxygen, O₂. In the special dimensions of the invention, as explained in more detail in the following examples, O₂ forms bubbles which are too small to break the surface tension of the fluid. These bubbles remain suspended indefinitely in the fluid and, when allowed to build
 ³⁵ up, make the fluid opalescent or milky. Only after several hours do the bubbles begin to coalesce on the sides of the container and the water clears. During that time, the water is supersaturated with oxygen. In contrast, the H₂ formed
 - Petition (Paper 1), 10Ex. 1101, 4:30-38

⁻ Ex. 1101, 3:13-16

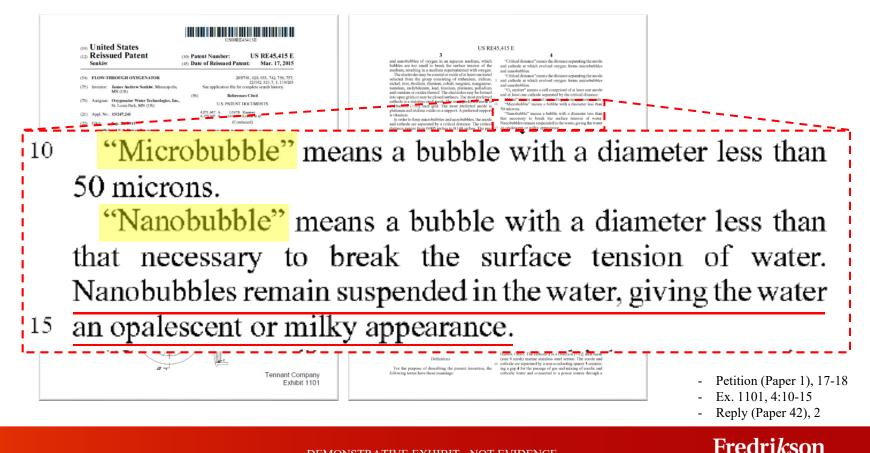
Claim Construction

"Critical Distance"

"Critical distance" means the distance separating the anode and cathode at which evolved oxygen forms microbubbles and nanobubbles.

- Petition (Paper 1), 17

- Ex. 1101, 4:1-6


In order to form microbubbles and nanobubbles, the anode and cathode are separated by a critical distance. The critical distance ranges from 0.005 inches to 0.140 inches. The pre-¹⁵ ferred critical distance is from 0.045 to 0.060 inches.

- Petition (Paper 1), 9

- Ex. 1101, 3:13-16

"Microbubble" and "Nanobubble"

Patent Equates Milkiness, Dissolved Oxygen with Presence of Nanobubbles

"Nanobubble" means a bubble with a diameter less than that necessary to break the surface tension of water. Nanobubbles remain suspended in the water, giving the water

- Petition (Paper 1), 18

Ex. 1101, 4:12-15

15 an opalescent or milky appearance.

"Supersaturated" means oxygen at a higher concentration than normal calculated oxygen solubility at a particular temperature and pressure.

-	Petition	(Paper	1),	18	
---	----------	--------	-----	----	--

- Ex. 1101, 4:16-18

MODEL	ACTIVE ELECTRODE AREA, SQ. IN.	VOLTAGE	CURRENT, AMPS.	FLOW RATE GAL/MINUTE	DO OF* SAMPLE AT ONE MINUTE
2-Inch "T"	2	28.3	0.72	12	N/A
3-inch "T"	3	28.3	1.75	12	N/A
2-plate Tube	20	28.3	9.1	12	8.4
3-Plate tube	30	28.3	12.8	12	9.6

TABLE III

*As the apparatus runs longer, the flowing water becomes milky, indicating supersaturation. The one-minute time point shows the rapid increase in oxygenation.

- Reply (Paper 42), 9
- Ex. 1101, 9:39-49

"Flowing Water . . . Through an Electrolysis Emitter"

- 1. '415 Patent provides no definition.
- 2. '415 Patent provides no limitation.
- 3. Nothing in the claims requires the water be flowing independent of electrolysis.
 - Petition (Paper 1), 19
 - Ex. 1101
 - Reply (Paper 42), 3-4

2)		ed States ued Patent	(10) Patent Nu (45) Date of R
4)	FLOW-I	HROUGH OXYGENATOR	
5)	Inventor:	James Andrew Senklw, Minneapolis, MN (US)	See ap
3)	Assignce:	Oxygenator Water Technologies, Inc. St. Louis Park, MN (US)	(56)
1)	Appl. No.	13/247,241	4,071,44 4,179,34
2)	Filed:	Sep. 28, 2011	
		lated U.S. Patent Documents	р
	nie of Patent No. Issued: Appl. No.: Filed:	Mar. 2, 2010	IP OB
s. 0)	10, 2005, ation-in-pa	E f application No. 10/752,326, filed on Dr now Pat. No. 7,396,441, which is a contin at of application No. 10/372,017, filad o 008, now Pat. No. 6,689,262.	u- ment of Needle
0)	Provisiona 22, 2002	al application No. 60/358,534, filed on Fe	
1)	Int. CL C02F 1/4 C02F 1/0	(2006.01) (2006.01) (Continued)	Primary Exa Assistant Exa (74) Attorney Woessner, PJ
2)	204 Field of C USPC		 tance, very a are generate supposition, fi flow-through closed. The ti growth of plo support of the support of the suppor
		art art	

US RE45,415 E

hich "Critical distance" means the distance separating the ano the and cathode at which evolved oxygen forms microbubbl pm, and nanobubbles.

5 and enthode at which evolved exygen forms microbubbles and nanobubbles. "O₂ emitter" means a cell comprised of at least one anode

"Metal" means a metal or an alloy of one or more metals. "Microbubble" means a bubble with a diameter less than 0 microns.

hat necessary to break the surface tension of water Nanobubbles remain suspended in the water, giving the water in opalescent or milky appearance. "Superstanted" means orecan at a higher concentration

tan normal calculated oxygen solubility at a particular temerature and pressure. "Superoxygenated water" means water with an oxygen ortent at least 120% of that calculated to be submitted at a

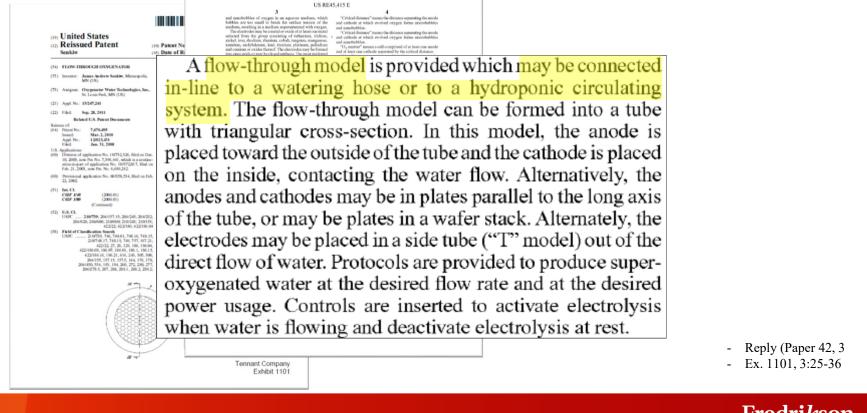
emperature. "Water" means any aqueous medium with resistance less an one ohm per square centimeter; that is, a medium that can upport the electrolysis of water. In general, the lower limit of

containing more than 2006 percential disarched relations that properties investigated disarched relationships and anniholdships of enzymes with the deterministic of waters. And anniholdships of enzymes with the deterministic of waters were associated and the second seconds.

The first objective of this investigation was to make an expansion time with this poper-schemashic, bue voltages and hose certent inter with a devised. The annole and combode were set at varyage datasees. It was characterized to the schema strategies of an algorith along characterized to the schema strategies of a datasets before arcing of the current occurrent. Suppristor and the schema strategies of the schema million and bus displicit larger distances, the wave fraction million and bus bus bus displicit larger distances, the wave fraction and the bubbled off the cutchede. At distance of 0.140 methors threage for min-schema clarked, it was under Torritor, the cutched larger for minor bubbles and mandeable formation waves to the schema for minor and bubbles and mandeable formation waves and the schema for minor bubbles and mandeables formation waves are schema for minor bubbles and mandeables formation waves are schema for minor bubbles and mandeable formation waves are schema for minor bubbles and mandeables formation waves are schema for minor bubbles and mandeables formation waves are schema for minor bubbles and mandeables formation waves are schema for minor bubbles and mandeables formation waves are schema for minor bubbles and mandeables formation waves are schema for minor bubbles and mandeables for minor bubbles for minor bubbles for minor bubbles and mandeables for the mandeables are schema for minor bubbles and mandeables for minor bubbles and mandeables for minor bubbles and mandeables for minor bubbles are schema for minor bubbles and mandeables are schema for minor bubbles are schema for minor bubbles and mandeables are schema for minor bubbles are schema for mi

EXAMPLE 1

ygen Emitter


As shown in FIG. 1, the oxygen evolving model 1 selected as the most efficient is an influent model could single sidel sheet of platianam on a support of itanium (Elbech, Pairport Harbor, Chio). The cubicks 2 is a fraction (wijs) inch moth (size R moreh) marine statulens steel screen. The mode and cubick are segmented by a non-conducting appear 2 scattaining a pp 4 for the parage of gas and mixing of anotic and therefore in a science on a summer or more thereach a

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Tennant Company Exhibit 1101

"Flowing Water ... Through an Electrolysis Emitter"

"Water Temperature is a Factor for Formation of the Suspension"

- '415 Patent, claim 18 requires 1. water temperature is a factor and that the temperature be no greater than about ambient temperature. - Petition (Paper 1), 34

 - Ex. 1101, 12:14-17 - Reply (Paper 42), 11
- For infringement, the Patent 2. Owner asserts this does not require measuring or analyzing water temperature.
 - Reply (Paper 42), 5
 - Ex. 1148

		10) Patent Nu 15) Date of R
4)	FLOW-THROUGH OXYGENATOR	
5)	Inventor: James Andrew Senklw, Minneapolis, MN (US)	See ap
3)	Anignee: Oxygenator Water Technologies, Inc., St. Louis Park, MN (US)	(56)
1)	Appl. No.: 13/247,241	4,071,44
2)	Filed: Sep. 28, 2011	
	Related U.S. Patent Documents	Р
4)	ue of: Patent No. 7,670,495 Issued: Mar. 2, 2010 Appl. No.: 12023,431 Filed: Jan. 31, 2008	IP CB
(S. (0)	Applications: Division of application No. 10/752,326, filed on Dec. 10, 2008, now Pat. No. 7,396,441, whida is a continu- ation-in-part of application No. 10/072,017, filad on Feb. 21, 2008, now Pat. No. 6,689,262.	"Effect of Ony ment of Seedle house Condis [Online]. Retti Pages/pdfs/Def
O)	Provisional application No. 60/358,534, filed on Feb. 22, 2002.	
1)	Int. CL (2006.01) C02F 1/40 (2006.01) (Continued)	Primary Exas Assistant Exa (74) Attorney Woessner, PA
12)	U.S. (T.) 1997	(57) An oxygen ei When the are tance, very si are generated mopension, f flow-dravagh closed. The growth of pli attranted wat hydroposic c water by rais onygen emitti

US RE45,415 E

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Tennant Company Exhibit 1101 "The Water has a Temperature No Greater than About Ambient... and the Water Temperature is a Factor for Formation of the Suspension" (Claim 18)

Subject: Date: Attachments:	9971 RE: ONF v. Tennant Wednesday, August 25, 2021 1:35:41 PM WED20555.pp	
EXTERNAL E-	MAIL]	
Lora:		
see how the C could not have the Court might in a timely fast be prepared to	ourt's claim constructions gave rise to new written description defenses that Tennant asserted from the beginning of the case. Moreover, it was entirely foreseeable that ht adopt OWT's contentions, and it was incumbent on Tennant to provide contentions hion that addressed that possibility. Accordingly, during the meet and confer please	
has not yet id what they are	infringement by the Tennant e-	cells under the doctrine of equivalents. With respect to claim 18,
With respect	OWT has already alleged that <mark>"t</mark>	he water temperature is a factor for formation of the suspension" as
suggests that infringement	construed by the Court in the Te	ennant process since Tennant instructs its user to use "clear cool
Bit with with with with with with with wi	0, OWT is still in the process of analyzing the impact of the Court's	
be dropping th	his claim from the case with a reservation of rights to appeal the Court's construction	
Nate		
	Carlson Caspers 225 S. Sixh St., Suite 4200 Minneapolis, MN 55402	
	Cell: 612.716.3924	- Reply (Paper 4 - Ex. 1148

Testing Burden

Petitioner's Testing

- 1. Petitioner reconstructed embodiments of three prior art reference and tested them during the pandemic
- 2. Board agreed Petitioner made a prima facie case for inherency (Paper No. 10, *24-25, and 35-36)
- 3. Burden then shifted to Patent Owner to prove the creation of "microbubbles" and "nanobubbles" was not inherent in the prior art. *Howmedica Osteonics Corp. v. Zimmer, Inc.*, 640 Fed. Appx. 951, 957 (Fed. Cir. 2016).
- 4. Patent Owner failed to do so.
 - 1. Patent Owner's Expert, Dr. White, testified:
 - 8 BY MR. JOHNSON:
 - 9 Q Have you yourself done any testing in this case?
 - 10 A No.
 - 11 Q Have you tried to recreate any prior art in this case?
 - 12 A No.

- Reply (Paper 42), 1, 5-7, 10, 16, 17, 19
- Ex. 1147, 16:8-12.

Grounds 1-6 Primary Ref.: Wikey – US Pat. No. 3,891,535

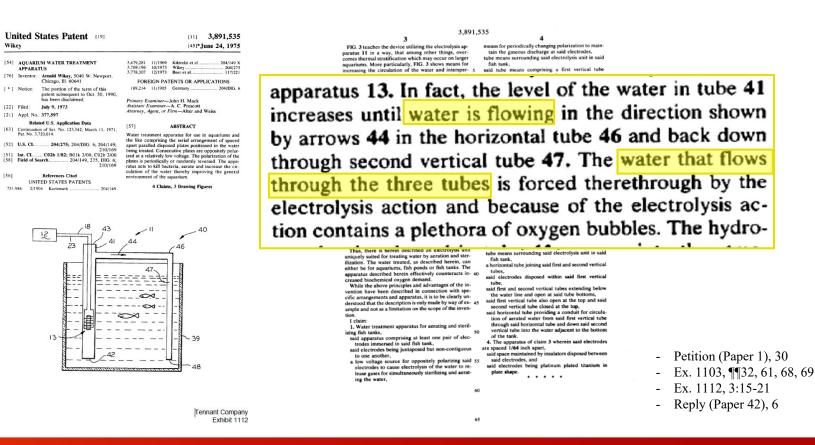
Petitioner's Grounds 1-6

Ground	Challenged Claims	35 U.S.C. §	Prior Art
1	13, 18-23 and 25	102	Wikey
2	13, 18-23 and 25	103	Wikey and AFD
3	13, 18-23 and 25	103	Wikey and AFD in view of the general knowledge, experience and common sense of a POSITA as reflected in Wendt, Han, Glembotsky and Burns
4	26 and 27	103	Wikey and Clark
5	26 and 27	103	Wikey, Clark and AFD
6	26 and 27	103	Wikey, Clark and AFD in view of the general knowledge, experience and common sense of a POSITA, as reflected in Wendt, Han, Glembotsky and Burns

- Petition (Paper 1), 4

Ground 1- Wikey Anticipates Claims 13, 18-23, and 25

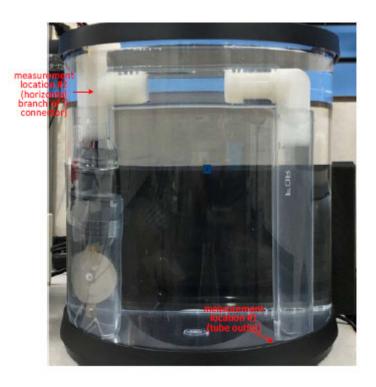
<u>RE45,415</u>


13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life.
 - Petition (Paper 1), 30
 - Ex. 1101, 11:20-12:4
 - Ex. 1112

	ey	states Patent [19]			[11] 3,891,53 [45]*June 24, 197
[54]	AQUARI	UM WATER TREATMENT TUS	3,479,281 3,769,196 3,778,307	11/1969 10/1973 12/1973	Kikindai et al
[76]	Inventor:	Arnold Wikey, 5040 W. Newport. Chicago, Ill. 60641			Beer et al. 117/22 TENTS OR APPLICATIONS
1.1	Notice:	The portion of the term of this patent subsequent to Oct. 30, 1990,	189,214	11/1905	Germany
[22]	Filed	has been disclaimed. July 9, 1973	Primary E Assistant 1	xaminer-	John H. Mack -A. C. Prescott
	Appl. No.				Firm-Alter and Weiss
[]		ted U.S. Application Data			
[63]	Continuatio	m of Ser. No. 123,342, March 11, 1971,	[57]		ABSTRACT
1521	Pat. No. 3, U.S. Cl.		the like co	omprising	paratus for use in aquariums an the serial arrangement of space sed plates positioned in the wate
[52] U.S. Cl. 204/275; 204/DIG. 6; 204/149; 210/169 [51] Int. Cl. C02b 1/82; B01k 3/00, C02b 3/00 [58] Field of Search 204/149, 275, DIG. 6; 210/169		apart paralled disposed plates positioned in the wat being treated. Consecutive plates are oppositely pola- ized at a relatively low voltage. The polarization of the plates is periodically or randomly reversed. The app- ratus acts to kill bacteria, aerate and increase the ci- culation of the water thereby improving the gener-			
[56]	References Cited UNITED STATES PATENTS		environme	nt of the a	aquarium.
751.9		04 Kurtzmark 204/149		4 Claim	is, 3 Drawing Figures
	L		44		40 5 ⁴⁶
		12 1/ 41		47 X X	-

Ground 1 – Wikey Teaches "Flowing Water at a Flow Rate No Greater than 12 Gallons per Minute"



DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Fredrikson

22

Ground 1 – Wikey Teaches "Flowing Water at a Flow Rate No Greater than 12 Gallons per Minute"

- Petition (Paper 1), 22
- Ex. 1103, ¶ 54

56. Following are relevant parameters/measurements obtained from

Operation #1:

	Parameters/Measurements	Value
	electrode spacing	0.016 inch
	water type	well water
	Voltage	ÖV
<	flow rate	0.96 gpm
	current	6.2 amp
	initial conductivity	358.2 ppm
	initial dissolved oxygen content	69.8%
	dissolved oxygen content while	121.4%
	running cell	
	3 hour dissolved oxygen content	126.6%

Petition (Paper 1), 22
Ex. 1103, ¶ 56

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

23

Ground 1- Wikey Anticipates Claims 13, 18-23, and 25

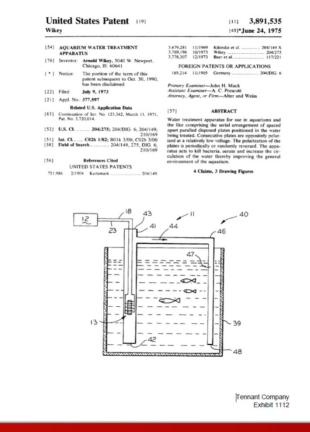
<u>RE45,415</u>

13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life.
 - Petition (Paper 1), 30
 - Ex. 1101, 11:20-12:4
 - Ex. 1112

	ey	states Patent [19]			[11] 3,891,53 [45]*June 24, 197
[54]	AQUARI	UM WATER TREATMENT TUS	3,479,281 3,769,196 3,778,307	11/1969 10/1973 12/1973	Kikindai et al
[76]	Inventor:	Arnold Wikey, 5040 W. Newport. Chicago, Ill. 60641			Beer et al. 117/22 TENTS OR APPLICATIONS
1.1	Notice:	The portion of the term of this patent subsequent to Oct. 30, 1990,	189,214	11/1905	Germany
[22]	Filed	has been disclaimed. July 9, 1973	Primary E Assistant 1	xaminer-	John H. Mack -A. C. Prescott
	Appl. No.				Firm-Alter and Weiss
[]		ted U.S. Application Data			
[63]	Continuatio	m of Ser. No. 123,342, March 11, 1971,	[57]		ABSTRACT
1521	Pat. No. 3, U.S. Cl.		the like co	omprising	paratus for use in aquariums an the serial arrangement of space sed plates positioned in the wate
[52] U.S. Cl. 204/275; 204/DIG. 6; 204/149; 210/169 [51] Int. Cl. C02b 1/82; B01k 3/00, C02b 3/00 [58] Field of Search 204/149, 275, DIG. 6; 210/169		apart paralled disposed plates positioned in the wan being treated. Consecutive plates are oppositely pola- ized at a relatively low voltage. The polarization of the plates is periodically or randomly reversed. The app ratus acts to kill bacteria, aerate and increase the ci- culation of the water thereby improving the gener-			
[56]	References Cited UNITED STATES PATENTS		environme	nt of the a	aquarium.
751.9		04 Kurtzmark 204/149		4 Claim	is, 3 Drawing Figures
	L		44		40 5 ⁴⁶
		12 1/ 41		47 X X	-

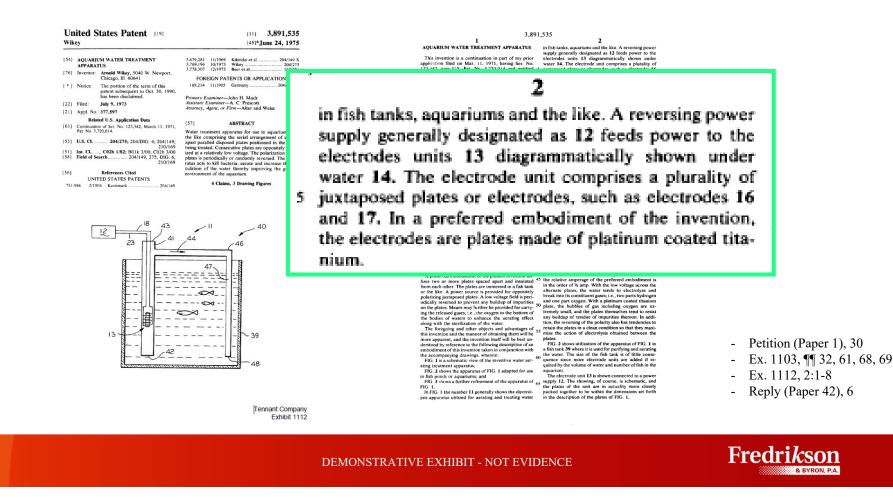
Ground 1- Wikey Anticipates Claims 13, 18-23, and 25


<u>RE45,415</u>

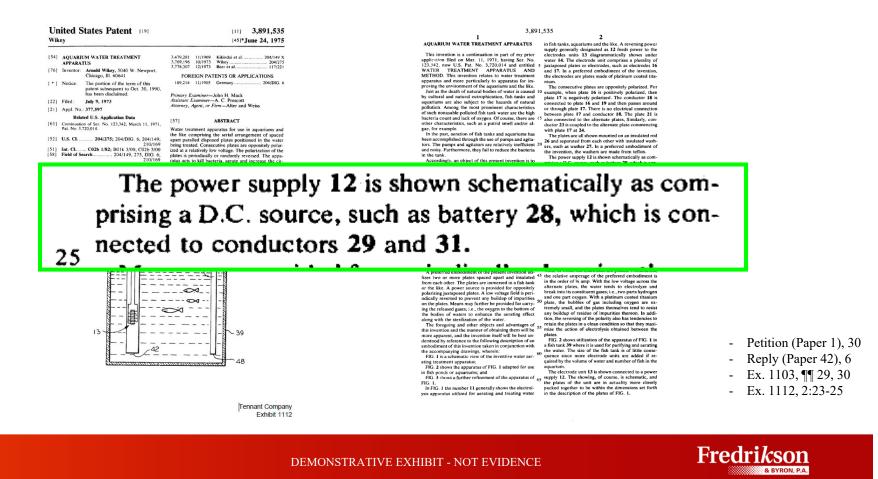
13. A method for producing an oxygenated aqueous composition comprising:

flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,

causing electricity to flow from the power source to the electrodes, and,


- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - Petiti
 - Petition (Paper 1), 30
 - Ex. 1101, 11:20-12:4
 - Ex. 1103, ¶¶ 29, 30
 - Ex. 1112

25

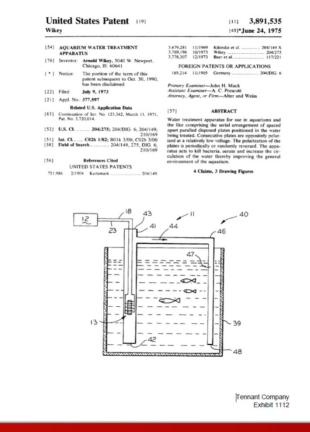


Ground 1 – Wikey Teaches "causing electricity to flow"

26

Ground 1 – Wikey Teaches "causing electricity to flow"

Ground 1- Wikey Anticipates Claims 13, 18-23, and 25


<u>RE45,415</u>

13. A method for producing an oxygenated aqueous composition comprising:

flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,

causing electricity to flow from the power source to the electrodes, and,

- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - Petiti
 - Petition (Paper 1), 30
 - Ex. 1101, 11:20-12:4
 - Ex. 1103, ¶¶ 29, 30
 - Ex. 1112

Ground 1- Wikey Anticipates Claims 13, 18-23, and 25

RE45.415

13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches:
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - Petition (Pa

	[56] 751,986	References Cited UNITED STATES PATENTS 2/1904 Kartzmark
		12
per 1), 31 1:20-12:4 35		

Wikey

[22] Filed: [21] Appl. No.: 377,597

AQUARIUM WATER TREATMENT APPARATUS

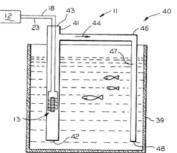
has been disclaimed

Related U.S. Application Data

Continuation of Scr. No. 123,342, March 11, 1971, Pat. No. 3,720,014.

July 9, 1973

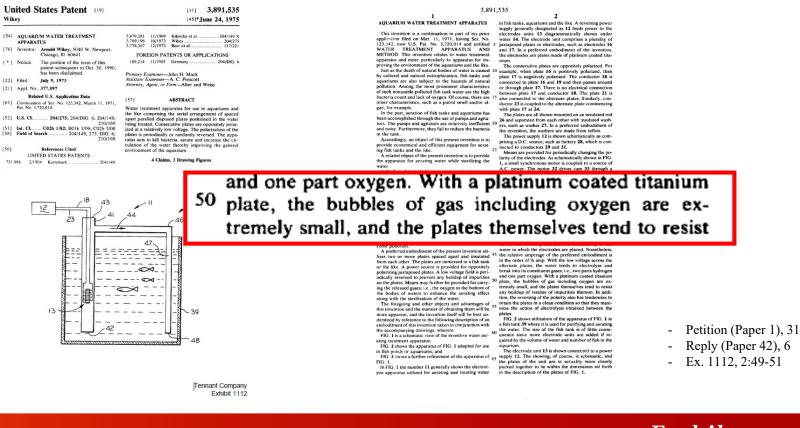
Oct. 3


United States Patent (19) (11) 3,891,535 [45]*June 24, 1975 Inventor: Arnold Wikey, 5040 W. Newpor Chicago, III, 60641 FOREIGN PATENTS OR APPLICATIONS The portion of the term of the 189,214 11/1905 Germany ... 204/DIG. (ary Examiner—John H. Mack tant Examiner—A. C. Prescott mey, Agent, or Firm—Alter and Weiss

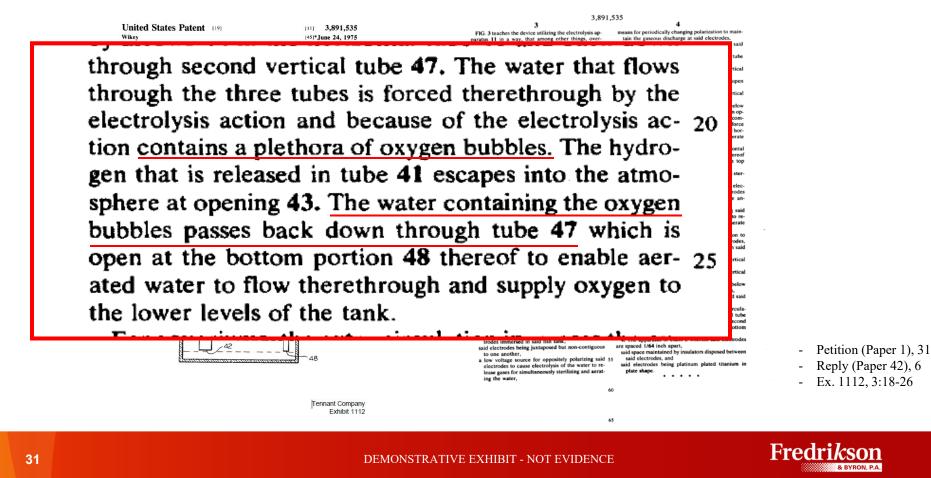
ABSTRACT

[57]

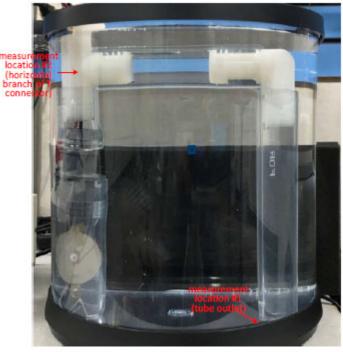
Water treatment apparatus for use in water treatment apparatus for use in aquanus the like comprising the serial arrangement of apart paralled disposed plates positioned in the being treated. Consecutive plates are oppositely ized at a relatively low voltage. The polarization obtas is created for meaned. The of the ally or ran rsed. The app


Tennant Company Exhibit 1112

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

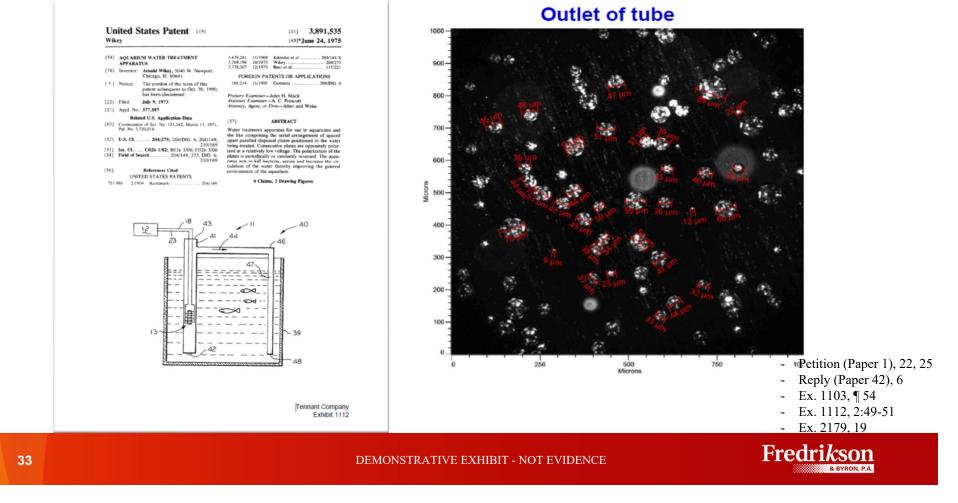

- Ex. 1101, 1 - Ex. 1103, ¶

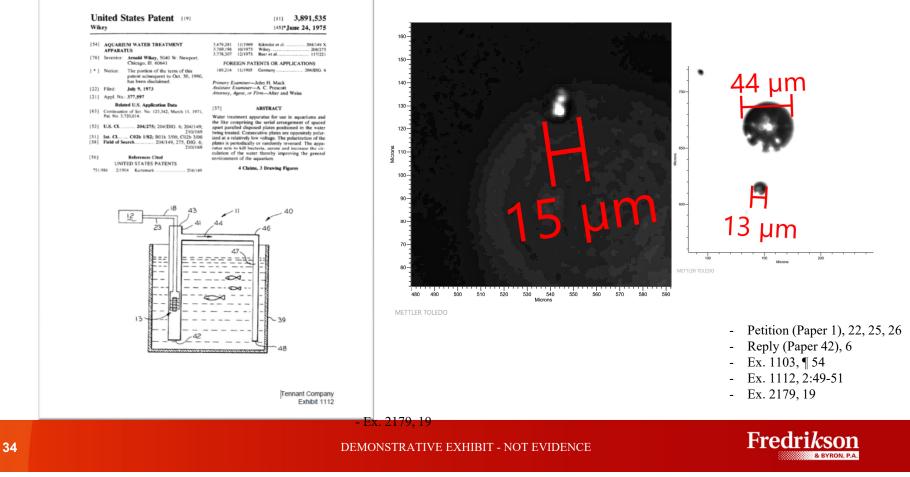
Ex. 1112



Wil	key				[45]*June 24, 197	
[54]	AQUARI	UM WATER TREATMENT TUS	3,479,281 3,769,196	11/1969 10/1973	Kikindai et al	
[76]	Inventor:	Arnold Wikey, 5040 W. Newport. Chicago, Ill. 60641	3,778,307	12/1973	Beer et al 117/22 ENTS OR APPLICATIONS	
	Notice:	The portion of the term of this			Germany	
1-1	Nouce.	patent subsequent to Oct. 30, 1990, has been disclaimed.	Primary Examiner-John H. Mack			
[22]	Filed:	July 9, 1973	Assistant E	xaminer-	A. C. Prescott firm—Alter and Weiss	
[21]	Appl. No.	377,597	Attorney,	igeni, or i	irm-Aner and weiss	
	Rela	ted U.S. Application Data	[57]		ABSTRACT	
[63]	Continuation Pat. No. 3.	an of Ser. No. 123,342, March 11, 1971,				
					paratus for use in aquariums and the serial arrangement of spaced	
[52]	U.S. Cl		apart para	led dispos	ed plates positioned in the water	
[51]		C02b 1/82; B01k 3/00; C02b 3/00			cutive plates are oppositely polar w voltage. The polarization of the	
[58]	Field of Search		plates is periodically or randomly reversed. The appa- ratus acts to kill bacteria, acrate and increase the cir-			
[56]		References Cited	environme		r thereby improving the genera quarium.	
	6] References Cited UNITED STATES PATENTS 751,986 2/1904 Kartzmark 204/149				s. 3 Drawing Figures	
			44	17	40	
				×1 ×1		

-42


Tennant Company Exhibit 1112



- Petition (Paper 1), 22, 32
- Reply (Paper 42), 6
- Ex. 1103, ¶ 54
- Ex. 1112, 2:49-51

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Fredrikson

Ground 1 – Dr. Tremblay's Prior Art Testing Follows the '415 Patent Specification

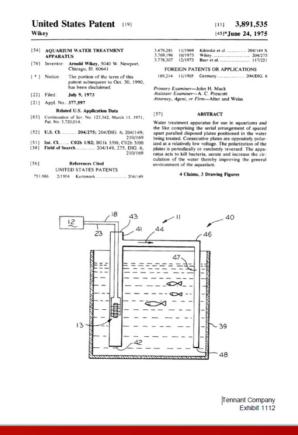
		Measurement of O_2 Bubbles	
(19) United States (2) Reissued Patent (19) Senkiw (49) (4) FLOW-THROUGH OXYGENATOR (7) Inserts: Jases Andrew Senkiw, Minnespellin, MN (18) (7) Anigase: Organiser Warr Enclangtes, Inc., Science Ind., MN (18) (2) Anigase: Organiser Warr Enclangtes, Inc., Science Ind., MN (18) (2) Anigase: Organiser Warr Enclangtes, Inc., Science Ind., MN (18) (2) Flatting: Sep 32, 2011 Related U.S. Patent Documents Related U.S. Patent Documents Related U.S. Patent Documents Related U.S. Patent Documents Mar.2, 2010 Jaset Noc. 7078/451 Jaset Noc. 70	USOORI-4541 SE Date of Reissued Patent: Mar. 17, 2015 205701 (25, 63, 742, 756, 757) See application floor complete two this holes US. POTINT DOCUMENTS 47, 970 A. 20179 Reame of al (Continued) DOREION PRINT DOCUMENTS 121997 Reame of al (Continued) 0 1222 188 A. 20199 1222 189 A. 20199 1223 189 A. 20199 1223 189 A. 20199 1223 189 A. 20199 1224 A. 2019 1224 A. 201	Attempts were made to measure the diameter of the O_2 bubbles emitted by the device of Example 1. In the case of particles other than gasses, measurements can easily be made by scanning electron microscopy, but gasses do not survive electron microscopy. Large bubble may be measured by pore exclusion, for example, which is also not feasible when mea- suring a gas bubble. A black and white digital, high contrast, backlit photograph of treated water with a millimeter scale	
 [60] Division of application No. 10773.23, 8, Belon D.R., 10, 2008, no. 94, No. 7, 356, 441, which is a contain- tion of the state of	<section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header>	reference was shot of water produced by the emitter of Example 1. About 125 bubbles were seen in the area selected for measurement. <u>Seven bubbles</u> ranging from the smallest clearly seen to the largest were measured. The area was enlarged, giving a scale multiplier of 0.029412. Recorded bubble diameters at scale were 0.16, 0.22, 0.35, 0.51, 0.76, 0.88 and 1.09 millimeters. The last three were considered outliers by reverse analysis of variance and were assumed to be hydrogen bubbles. When multiplied by the	
	Tennant Company Exhibit 1101	scale multiplier, the assumed O_2 bubbles were found to range from 4.7 to 15 microns in diameter. This test was limited by the resolution of the camera and smaller bubbles in the nanometer range could not be resolved. It is known that white light cannot resolve features in the nanometer size range, so monochromatic laser light may give resolution sensitive enough to measure smaller bubbles. Efforts continue to	
		- Ex. 110	1, 5

Ex. 1101, 5:40-67
Reply (Paper 42), 19, 21

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

35

Ground 1- Wikey Anticipates Claims 13, 18-23, and 25


<u>RE45,415</u>

13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - P

ection	
t has a	
solids	
-	Petition (Paper 1), 31
-	Ex. 1101, 11:20-12:4
-	Ex. 1103, ¶ 35

- Ex. 1112

RE45.415

13. A method for producing an oxygenated aqueous composition comprising:

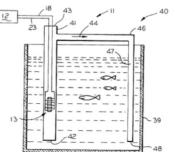
- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches:
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - Petition (Paper

rising , the er of	[52] U.S. CL
n the nes to	
28.3	
flow	
ection	
has a	13
solids	42
- Petition (Paper 1), 32	Structure and a structure of the structu
- Ex. 1101, 11:20-12:4	
- Ex. 1103, ¶ 34	

Wikey

patent subsequent to has been disclaimed.

Related U.S. Application Data

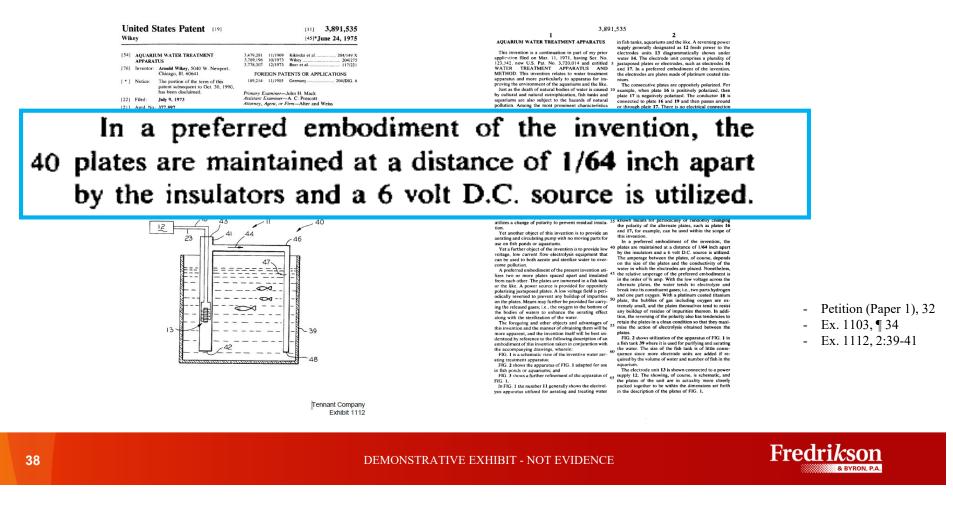

[22] Filed: July 9, 1973 [21] Appl. No.: 377,597

Ex. 1112 -

United States Patent (19) (11) 3,891,535 [45]*June 24, 1975 [54] AQUARIUM WATER TREATMENT APPARATUS 3,479,281 11/1969 Kikindai et al. 3,769,196 10/1973 Wikey... 3,778,307 12/1973 Beer et al..... 204/149 X Inventor: Arnold Wikey, 5040 W. Newpor Chicago, Ill. 60641 FOREIGN PATENTS OR APPLICATIONS The portion of the term of the 189,214 11/1905 Germany 204/DIG. (o Oct. 30 uary Examiner-John H. Mack stant Examiner-A. C. Prescott rney, Agent, or Firm-Alter and Weiss ABSTRACT [57] tinuation of Ser. No. 123,342, March 11, 1971, No. 3,720,014. Water treatment apparatus for use in

the treatment apparatus for use in aquarius 1 like comprising the serial arrangement of art paralled disposed plates positioned in the ing treated. Consecutive plates are oppositely d at a relatively low voltage. The polarization the in generationally on voltage. the like compr of the cally or rar rsed. The app

4 Claims, 3 Drawing Figure


Tennant Company Exhibit 1112

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE



37

Ground 1 – Wikey Teaches "the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches"

Ground 1 – Wikey Teaches "the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches"

- Petition (Paper 1), 21-22
- Ex. 1103, 28, ¶ 54

56. Following are relevant parameters/measurements obtained from

Operation #1:

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

	Parameters/Measurements	Value	
<	electrode spacing	0.016 inch	>
	water type	well water	
	Voltage	6V	
	flow rate	0.96 gpm	
	current	6.2 amp	
	initial conductivity	358.2 ppm	
	initial dissolved oxygen content	69.8%	
	dissolved oxygen content while	121.4%	
	running cell		
	3 hour dissolved oxygen content	126.6%	

- Petition (Paper 1), 21-22

- Ex. 1103, 28, ¶ 56

RE45.415

13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches:
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - Petition (Pa

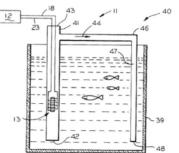
	210/169
	References Cited UNITED STATES PATENTS 751:986 2/1904 Kartzmark 204/149
	13
per 1), 32	
1:20-12:4	
34	

Wikey

[22] Filed: [21] Appl. No.: 377,597

has been disclaimed.

July 9, 1973


- Ex. 1103, ¶ Ex. 1112

- Ex. 1101, 1

United States Patent (19) (11) 3,891,535 [45]*June 24, 1975 [54] AQUARIUM WATER TREATMENT APPARATUS 3,479,281 11/1969 Kikindai et al. 3,769,196 10/1973 Wikey... 3,778,307 12/1973 Beer et al..... 204/149 3 Inventor: Arnold Wikey, 5040 W. Newpor Chicago, III, 60641 FOREIGN PATENTS OR APPLICATIONS The portion of the term of the 189,214 11/1905 Germany 204/DIG. (o Oct. 30 ary Examiner—John H. Mack tant Examiner—A. C. Prescott mey, Agent, or Firm—Alter and Weiss Related U.S. Application Data ABSTRACT [57] Continuation of Ser. No. 123,342, March 11, 1971, Pat. No. 3,720,014, Water treatment apparatus for use in

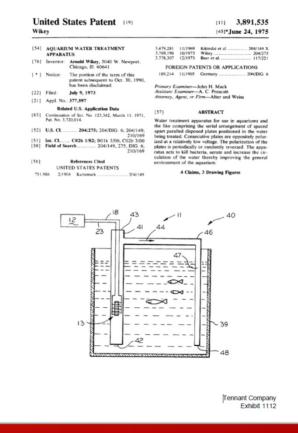
water treatment apparatus for use in aquanus the like comprising the serial arrangement of apart paralled disposed plates positioned in the being treated. Consecutive plates are oppositely ized at a relatively low voltage. The polarization obtas is created for meaned. The ally or ran rsed. The app

4 Claims, 3 Drawing Figure

Tennant Company Exhibit 1112

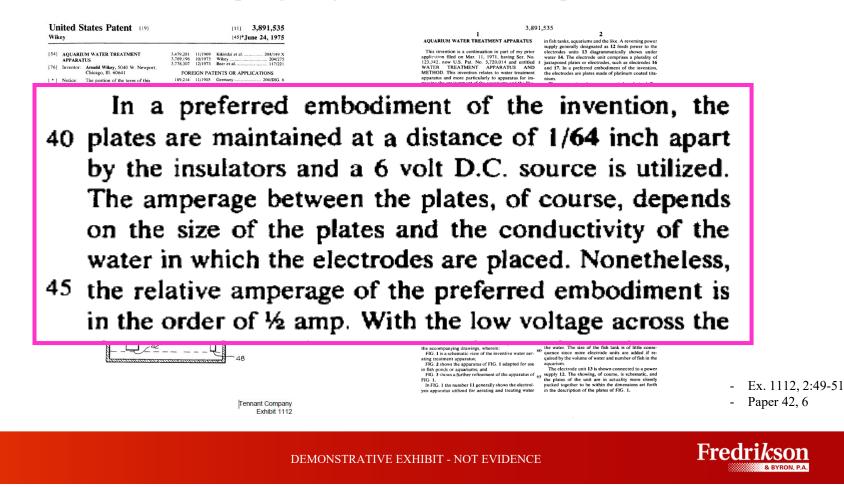
DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

40

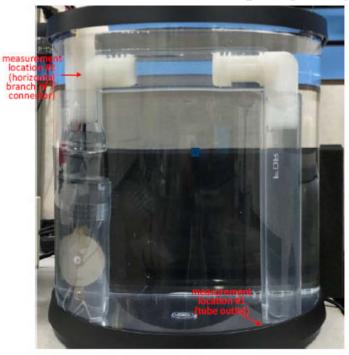

<u>RE45,415</u>

13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - Pe


inus	u
soli	ds
-	Petition (Paper 1), 32
-	Ex. 1101, 11:20-12:4
-	Ex. 1103, ¶ 34

- Ex. 1112



Ground 1 – Wikey Teaches "the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps"

Ground 1 – Wikey Teaches "the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps"

- Petition (Paper 1), 21-22
- Ex. 1103, 28, ¶ 54

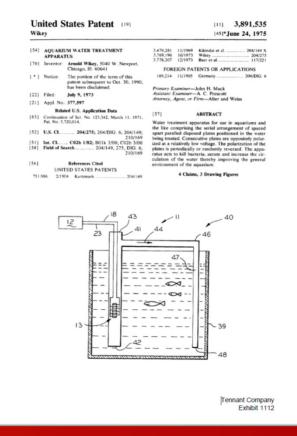
56. Following are relevant parameters/measurements obtained from

Operation #1:

	Parameters/Measurements	Value	
	electrode spacing	0.016 inch	
	water tree	went water	
<	Voltage	6V	>
	flow rate	0.96 mm	
	current	6.2 amp	
	initial conductivity	358.2 ррш	
	initial dissolved oxygen content	69.8%	
	dissolved oxygen content while	121.4%	
	running cell		
	3 hour dissolved oxygen content	126.6%	

- Petition (Paper 1), 21-22

- Ex. 1103, 28, ¶ 56

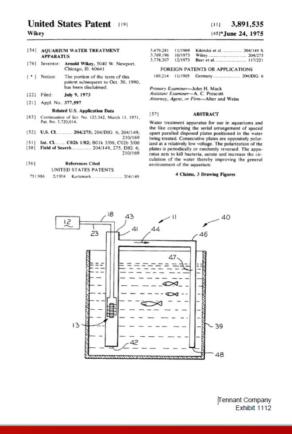

<u>RE45,415</u>

13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - Pe

	<i>7</i> 11	
has	a	
soli	ds	
-	Petition (Paper 1), 32	
-	Ex. 1101, 11:20-12:4	

- Ex. 1103, ¶ 34
- Ex. 1112


<u>RE45,415</u>

13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - Po

11	ds
	Petition (Paper 1), 33
	Ex. 1101, 11:20-12:4

- Ex. 1103, ¶ 31
- Ex. 1112

Ground 1 – Wikey Teaches "the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet"

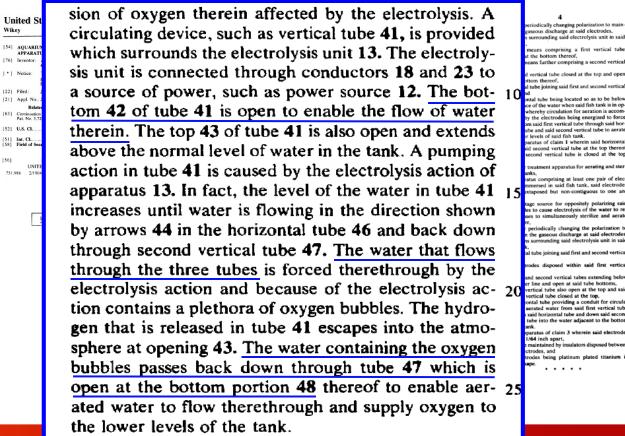
<u>RE45,415</u>

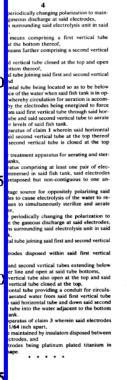
13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. - Petition (Paper 1), 33

Wil		States Patent (19)			(11) 3,891,535 (45)*June 24, 1975
[54]	AQUAR	UM WATER TREATMENT	3,479,281 3,769,196	11/1969 10/1973	Kikindai et al
[76]	Inventor.	Arnold Wikey, 5040 W. Newport.	3,778,307	12/1973	Beer et al 117/221
		Chicago, Ill. 60641			TENTS OR APPLICATIONS
(•)	Notice:	The portion of the term of this patent subsequent to Oct. 30, 1990, has been disclaimed.			Germany
(22)	Filed:	July 9, 1973	Assistant E	uaminer-	John H. Mack -A. C. Prescott
					Firm-Alter and Weiss
[21]	Appl. No				
		ated U.S. Application Data	[57]		ABSTRACT
[63]	Continuati Pat. No. 3	ion of Ser. No. 123,342, March 11, 1971, .720,014.	Water trea		paratus for use in aquariums and the serial arrangement of spaced
			apart paral being treat	led dispo ed. Conse	sed plates positioned in the water cutive plates are oppositely polar-
[51] [58]	Int. Cl Field of S	C02b 1/82; B01k 3/00; C02b 3/00 earch	ized at a re plates is pe ratus acts t	latively lo riodically to kill bac	w voltage. The polarization of the or randomly reversed. The appa- teria, aerate and increase the cir-
[56]		References Cited	culation of	the wate	er thereby improving the general
[36]		TED STATES PATENTS	environmen	nt of the a	iquanum.
74.		104 Kartzmark 204/149		4 Claim	s, 3 Drawing Figures
				× ×	
					Tennant Compa

46


DEMONSTRATIVE EXHIBIT - NOT EVIDENCE


- Ex. 1101, 11:20-12:4 - Ex. 1103, ¶ 31

- Ex. 1112

Ground 1 – Wikey Teaches "the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet"

- Petition (Paper 1), 33
- Ex. 1112, 3:6-26
- Reply (Paper 42), 6

Fredrikson

RE45.415

13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches:
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet:
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life. Petition (Paper 1 -

rising , the er of	[63] Continuation of Rev. No. 122,342, March 11, 1971, Pet. IN. 5720,014. [52] U.S. CL	(27) ABSTRACT Water treatment apparatus for use in aquariums the like comprising the strait arrangement of up appr parallel diposed platus posticutioned in the u- being treated. Contracting plans are oppositely pu- plates is periodically or randomly revened. The a ratus acts to kill bacteria, sense and increase the option of the squarium. 4 Claims, 3 Drawing Figures
n the		
nes to		44 46
t 28.3		47
flow		
ection		
has a	13	
solids		
- Petition (Paper 1), 33	Statement	48
- Ex. 1101, 11:20-12:4		
- Ex. 1103, ¶ 31		Tennant Cor

United States Patent (19)

[54] AQUARIUM WATER TREATMENT APPARATUS

[22] Filed: July 9, 1973 [21] Appl. No.: 377,597

Inventor: Arnold Wikey, 5040 W. Newport Chicago, Ill. 60641

patent subsequent to has been disclaimed.

Related U.S. Application Data

Continuation of Ser. No. 123,342, March 11, 1971, Pat. No. 3,720,014,

The portion of the term of the

o Oct. 30

Wikey

Tennant Company Exhibit 1112

(11) 3,891,535

[45]*June 24, 1975

204/149 X

204/DIG. (

n of the nly reversed. The app

ise the cit

3,479,281 11/1969 Kikindai et al. 3,769,196 10/1973 Wikey... 3,778,307 12/1973 Beer et al.....

189,214 11/1905 Germany

[57]

FOREIGN PATENTS OR APPLICATIONS

ABSTRACT

uary Examiner-John H. Mack stant Examiner-A. C. Prescott rney, Agent, or Firm-Alter and Weiss

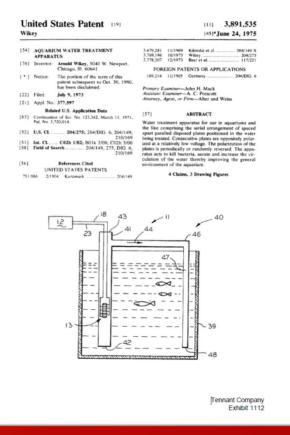
48

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Ex. 1112

-

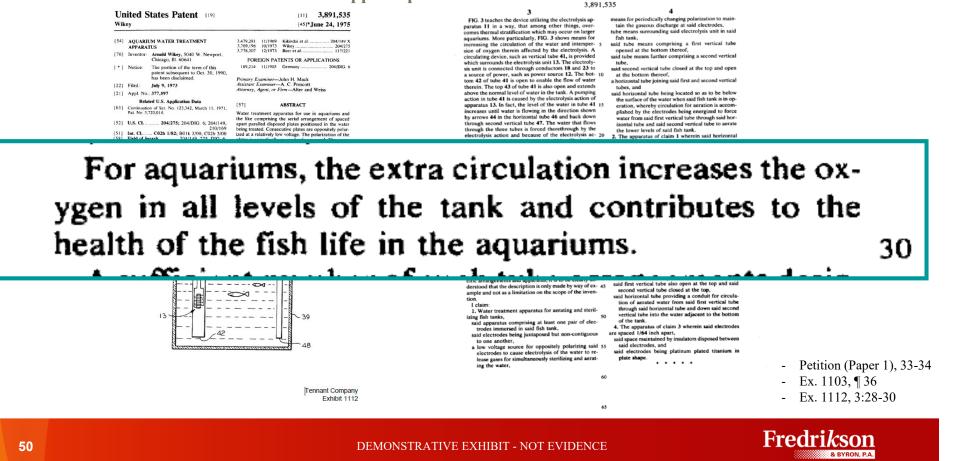
<u>RE45,415</u>

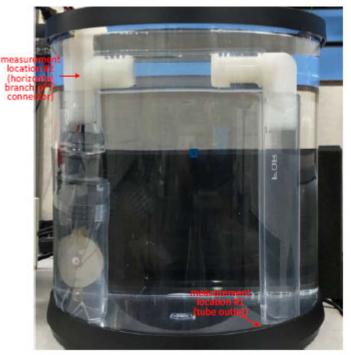

13. A method for producing an oxygenated aqueous composition comprising:

- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life.

- Ex. 1101, 11:20-12:4.

Petition (Paper 1), 33-34
Ex. 1101, 11:20-12:4
Ex. 1103, ¶ 36


- Ex. 1112


49

Ground 1 – Wikey Teaches "the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life"

Ground 1 – Wikey Teaches "the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life"

-

-

Petition (Paper 1), 21-22 Ex. 1103, 28, ¶ 54

56. Following are relevant parameters/measurements obtained from

Operation #1:

Parameters/Measurements	Value	
electrode spacing	0.016 inch	
water type	well water	
Voltage	6V	
flow rate	0.96 gpm	
current	6.2 amp	
initial conductivity	358.2 ppm	
initial dissolved oxygen content	69.8%	
dissolved oxygen content while	121.4%	
running cell		
3 hour dissolved oxygen content	126.6%	

- Petition (Paper 1), 21-22, 33-34

- Ex. 1103, ¶¶ 36, 56

<u>RE45,415</u>

13. A method for producing an oxygenated aqueous composition comprising:

flowing water at a flow rate no greater than 12 gallons per minute
through an electrolysis emitter comprising an electrical power
source electrically connected to an anode electrode and a
cathode electrode contained in a tubular housing,
aguing algorithmits to flow from the newer source to the

- electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches;
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life.

- Ex. 1101, 11:20-12:4.

Wil		States Patent (19)			[11] 3,891,535 [45]*June 24, 1975
[54]	AQUARI	UM WATER TREATMENT TUS	3,769,196 10	0/1973	Kikindai et al
[76]	Inventor:	Arnold Wikey, 5040 W. Newport.			Beer et al
	Notice:	Chicago, Ill. 60641 The portion of the term of this			ENTS OR APPLICATIONS Germany 204/DIG. (
1-1	Notice.	patent subsequent to Oct. 30, 1990, has been disclaimed.	Primary Exam		
[22]	Filed:	July 9, 1973	Assistant Exa	miner-	A. C. Prescott
[21]	Appl. No.	377,597	Attorney, Age	ni, or Fi	irm-Alter and Weiss
	Rela	ted U.S. Application Data			
[63]	Continuati Pat. No. 3,	on of Ser. No. 123,342, March 11, 1971, 720,014.		ent app	ABSTRACT aratus for use in aquariums and
52]	U.S. CL		apart paralled	dispose	he serial arrangement of spaced of plates positioned in the water utive plates are oppositely polar-
58]	Int. Cl. Field of S	C02b 1/82; B01k 3/00; C02b 3/00 earch	ized at a relati plates is perio ratus acts to k	ively low dically of kill bacto	v voltage. The polarization of the or randomly reversed. The appa- eria, aerate and increase the cir- thereby improving the general
56]		References Cited TED STATES PATENTS	environment of	of the ac	auarium.
			44 11		40
		12 1	44		r
			-		
			-		-46

<u>RE45,415</u>

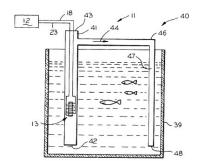
18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.


23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

•••

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

Un Wik		States Patent (19)			[11] 3,891,535 [45]*June 24, 1975		
[54]	AQUARI	UM WATER TREATMENT TUS	3,479,281 3,769,196 3,778,307	11/1969 10/1973 12/1973	Kikindai et al		
[76]	Inventor:	Arnold Wikey, 5040 W. Newport. Chicago, Ill. 60641			TENTS OR APPLICATIONS		
1•1	Notice:	The portion of the term of this patent subsequent to Oct. 30, 1990,	189,214	11/1905	Germany 204/DIG. (
[22]	Filed:	has been disclaimed. July 9, 1973	Primary Examiner—John H. Mack Assistant Examiner—A. C. Prescott Attorney, Agent, or Firm—Alter and Weiss		-A. C. Prescott		
[21]	Appl. No.	: 377,597			Firm-Alter and Weiss		
	Rela	ted U.S. Application Data			DOTT OT		
[63]		<pre>ontinuation of Ser. No. 123,342, March 11, 1971, at. No. 3,720,014.</pre> .S. Cl		[57] ABSTRACT Water treatment apparatus for use in aquariums an the like comprising the serial arrangement of space			
[52]	U.S. CI			apart paralled disposed plates positioned in the water being treated. Consecutive plates are oppositely polar-			
1511	Int. Cl.	C02b 1/82; B01k 3/00; C02b 3/00	ized at a relatively low voltage. The polarizat				
(58)	Field of S	earch	plates is periodically or randomly reversed. The app ratus acts to kill bacteria, aerate and increase the ci culation of the water thereby improving the gener				
[56]		References Cited	environme				
	UNI	TED STATES PATENTS		111 24-00			
751.	986 2/19	04 Kartzmark 204/149		4 Claim	is, 3 Drawing Figures		

- Petition (Paper 1), 34

- Ex. 1103, ¶ 36
- Ex. 1112

Tennant Company Exhibit 1112

<u>RE45,415</u>

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

•••

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

- ³⁰ reacts to form molecular oxygen, O_2 . In the special dimensions of the invention, as explained in more detail in the following examples, O_2 forms bubbles which are too small to break the surface tension of the fluid. These bubbles remain suspended indefinitely in the fluid and, when allowed to build
- ³⁵ up, make the fluid opalescent or milky. Only after several hours do the bubbles begin to coalesce on the sides of the container and the water clears. During that time, the water is supersaturated with oxygen. In contrast, the H_2 formed
 - Petition (Paper 1), 34-35
 - Ex. 1101, 4:30-38

<u>RE45,415</u>

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

•••

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

56. Following are relevant parameters/measurements obtained from

Operation #1:

Parameters/Measurements	Value
	0.016 - 1
electrode spacing	0.016 inch
water type	well water
Voltage	6V
flow rate	0.96 gpm
current	6.2 amp
initial conductivity	358.2 ppm
initial dissolved oxygen content	69.8%
dissolved oxygen content while	121.4%
Coming cell	
3 hour dissolved oxygen content	126.6%

- Ex. 1112, 3:13-15, Fig. 3
- Ex. 1103 ¶¶ 35, 56
- Petition (Paper 1), 22, 34-36

<u>RE45,415</u>

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

•••

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

claims). The suspension of oxygen microbubbles and nanobubbles in water displays the characteristic that these bubbles are substantially incapable of breaking the surface tension of the water (2:63-67, 4:30-33). This phenomenon is described as making an opalescent or milky fluid

(the nanobubbles in water, 4:27-54). This phenomenon is capable of remaining for several hours when the suspension is contained in an appropriate container (4:34-37, 7:45-55). A container such as a two and one-half gallon aquarium reservoir is appropriate (7:45-55). A volume of the water having some depth is needed to maintain this suspension for such a period. If the suspension is spread as a film or layer of water on a flat surface such as a floor or other flat surface, the microbubbles and nanobubbles can escape in a short time from such films or layers of water.

- Ex. 1102, 149-150
- Petition (Paper 1), 35-36

56

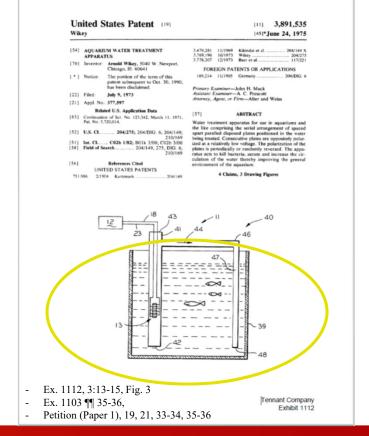
<u>RE45,415</u>

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.


22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

•••

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

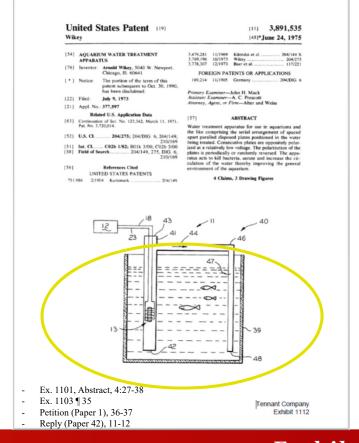
<u>RE45,415</u>

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.


22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

•••

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

<u>RE45,415</u>

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

•••

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

56. Following are relevant parameters/measurements obtained from

Operation #1:

Parameters/Measurements	Value	
electrode spacing	0.016 inch	
water type	well water	
Voltage	6V	
flow rate	0.96 gpm	
current	6.2 amp	
initial conductivity	350.2 ppm	
mitial dissolved oxygen content	69.8%	
dissolved oxygen content while	121.4%	
running cell		
3 hour dissolved oxygen content	126.6%	

- Ex. 1101, Abstract, 4:27-38
- Ex. 1103 ¶ ¶ 35, 56, 61, 68
- Petition (Paper 1), 36-37, 21-29
- Reply (Paper 42), 11-12

<u>RE45,415</u>

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

•••

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

Regarding claims 77, 79, and 83, the claims do not further disclose additional structure that further limits it over its dependent claim. The claim states that the bubble size is a diameter less than 0.0006 inches. Since all of the claimed structure is present and independent claims state that the bubbles are due to the electrode gap, the device should create the bubble size for at least same reasons as applicant.

- Ex. 1102, 108

- Ex. 1103 ¶ ¶ 35, 61, 68
- Petition (Paper 1), 37, 21-29

RE45,415

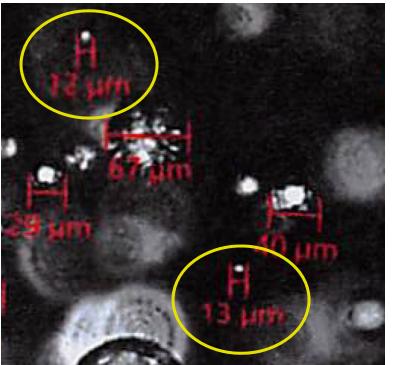
18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.


23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

. . .

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

-.0006 inches = 15.24 microns

Ex. 2179, 19 Ex. 1103 ¶¶ 35, 58-61, 65-68 Petition (Paper 1), 36-37, 21-29

61

RE45.415

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

. . .

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

United States Patent Wikey

[54] AQUARIUM WATER TREATMENT APPARATUS [76] Inventor: Arnold Wikey, 5040 W. N Chicago, Ill. 60641 The portion of the term of patent subsequent to Oct has been disclaimed. [22] Filed: July 9, 1973 [21] Appl. No.: 377,597 Related U.S. Application Data [63] Continuation of Ser. No. 123,342, March Pat. No. 3,720,014.

References Cited UNITED STATES PATENTS 751.986 2/1904 Kartzmark

3.891.535 AQUARIUM WATER TREATMENT APPARATUS

in fish tanks, aquariums and the like. A reversing power supply generally designated as 12 feeds power to the electrodes units 13 diagnammatically shown under water 14. The electrode unit comprises a plurality of 5 juxtaposed plates or electrodes, such as electrodes 16 and 17. In a preferred embodiment of the invention, the electrode

application filed on Mar. 11, 1971, having Ser. No. 123,342, now U.S. Pat. No. 3,720,014 and entitled WATER TREATMENT APPARATUS AND METHOD. This invention relates to water treatment apparatus and more particularly to apparatus for imapparatus and more particularly to apparatus for im-proving the environment of the agatariums and the like proving the environment of the agatariums and the like by cultural and natural eutrophication. If the hards of aquariums are also subject to the hazards of natural pollution. Among the most prominent characteristics of such nonusable polluted fith tank water are the high bacteria count and fack of oxygen. Of course, there are sets, for stamillor, secutive plates are oppositely polarized. For example, when plate 16 is positively polarized, then plate 17 is negatively polarized. The conductor 18 is connected to plate 16 and 19 and then passes around or through plate 17. There is no electrical connection between plate 17 and conductor 18. The plate 21 is also connected to the alternate plates, Similarly, conductor 23 is coupled to the alte

with plate 17 at 24. The plates are all shown mounted on an insulated rod e. tration of fish tanks and aquariums has in the past, aeration or rish tanks and aquariums one en accomplished through the use of pumps and agita-rs. The pumps and agitators are relatively inefficient ² d noisy. Furthermore, they fail to reduce the bacteria 26 and separated from each other with i ers, such as washer 27. In a preferred embodiment of the invention, the washers are made from teflo The power supply 12 is shown sch rdingly, an object of this present invention is to prising a D.C. source, such as battery 28, which is con

nected to conductors 29 and 31. Means are provided for periodically changing the pe

provide economical and entruition equiparts in the second The plates are all shown mounted on an insulated rod 26 and separated from each other with insulated wash-20 ers, such as washer 27. In a preferred embodiment of the invention, the washers are made from teflon.

ing the released gases; i.e., the oxygen to the bot

This invention is a continuation in part of my prior pplication filed on Mar. 11, 1971, having Ser. No.

Ex. 1112, 2:18-21

- Ex. 1101, 5:14-15
- Petition (Paper 1), 37-38

ward in state the converse of the relative appropriate the preferred emocean-in the order of 4 any With the low voltage are alternate plates, the water tends to electroly break into its constituent gases, i.e., two parts hy and one part orgen. With a platimum coated to 50 plate, the bubbles of gas including oxygen trendy small, and the plates themsives tend "ww buildup of residue of impurities thereon." The presence of the present and shall be a special apart and insulated from each other. The plates are immersed in a fish tank or the like. A power source is provided for oppositely polarizing juxtaposed plates. A low voltage field is perirsed to prevent any buildup of impurities n the plates. Means may further be provided for carry aters to enhance the aerating effect any buildup of residue of impurities thereon tion, the reversing of the polarity also has tem-retain the plates in a clean condition so that t mize the action of electrolysis obtained bet with the sterilization of the water. foregoing and other objects and advantages of vention and the manner of obtaining them will be apparent, and the invention itself will be best un-odb yr efference to the following description of an diment of this invention taken in conjunction with

mize the action of electrolysis obtained between the plates. FIG. 2 shows utilization of the apparatus of FIG. I in a fish tank 39 where it is used for purifying and aerating the water. The size of the fish tank is of little conse-quence since more electrode units are added if re-quired by the volume of water and number of fish in the mbodiment of this invention taken in conjunction with he accompanying drawings, wherein: FIG. 1 is a schematic view of the inventive water aerting treatment apparatus; FIG. 2 shows the apparatus of FIG. 1 adapted for use

aquarium. The electrode unit 13 is shown com FIG. 3 hows the apparatus of FIO. 1 adapted for use FIG. 3 hows a further refinement of the apparatus of FIG. 1. The showing, of course, is schematic, and is apparatus units of the plates of the units are in actually more closely In FIG. 1. The number 11 generally shows the electron is apparatus units of the artisting and the discretion of the plates of FIO. 1. vsis apparatus utilized for aerating and treating water

The con

RE45.415

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

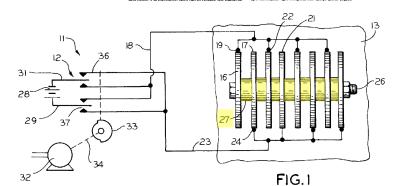
21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

. . .

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.


- Ex. 1101, 12:14-37.

The plates are all shown mounted on an insulated rod 26 and separated from each other with insulated wash-20 ers, such as washer 27. In a preferred embodiment of the invention, the washers are made from teflon.

> [21] Appl. No.: 377,597 Related U.S. Application Data [63] Continuation of Ser. No. 123,342, March Pat. No. 3,720,014.

are also subject to the interaction of the interaction of the most prominent characteristics nusable polluted fish tank water are the high ount and lack of oxygen. Of course, there are remember of a putrid smell and/or alconnected to plate 16 and 19 and then passes around or through plate 17. There is no electrical connection between plate 17 and conductor 18. The plate 21 is cted to the alternate plates, Sir ductor 23 is coupled to the

with plate 17 at 24. The plates are all shown mounted on an insulated rod pie. aeration of fish tanks and aquariums has ished through the use of pumps and agita-ps and agitators are relatively inefficient thermore, they fail to reduce the bacteria 26 and separated from each other with insulated was ers, such as washer 27. In a preferred embodimen

embodiment of this invention taken in conjunction with

ms; and

ent apparatus

fish ponds or aquariums; an FIG. 3 shows a further refine

te accompanying drawings, wherein: FIG. 1 is a schematic view of the inventive water aer-

Ex. 1112, 2:18-21, Fig. 1

- Ex. 1101, 5:14-15
- Petition (Paper 1), 37-38

quence since more electrode units are added if re quired by the volume of water and number of fish in the FIG. 2 shows the apparatus of FIG. 1 adapted for use aquarium. The elec de unit 13 is sl ment of the apparatus of 65 supply 12. The showing, of course, is sche the plates of the unit are in actuality mo IG. 1. In FIG. 1 the number 11 generally shows the electrol-

a fish tank 39 where it is used for purifying the water. The size of the fish tank is of little

RE45.415

18. A method according to claim 13 wherein the water has a temperature no greater than about ambient temperature at the inlet and the water temperature is a factor for formation of the suspension.

19. A method according to claim 13 wherein the microbubbles and nanobubbles remain in the water at least in part for a period up to several hours.

20. A method according to claim 19 wherein the period for which the microbubbles and nanobubbles at least in part remain in the water is determined by containing the water with microbubbles and nanobubbles in a two and one half gallon aquarium reservoir container.

21. A method according to claim 13 wherein the microbubbles and nanobubbles supersaturate the water.

22. A method according to claim 13 wherein the bubble diameter of the microbubbles and nanobubbles is less than 0.0006 inches.

23. A method according to claim 13 wherein the separation of electrodes is maintained by a nonconductive spacer.

25. A method according to claim 13 wherein the microbubbles and nanobubbles are substantially incapable of breaking the surface tension of the water.

- Ex. 1101, 12:14-37.

United States Patent (19) Wikey						
[54]	AQUARI	UM WATER TREATMENT TUS				
[76]	Inventor:	Arnold Wikey, 5040 W. Newport, Chicago, Ill. 60641				
• 1	Notice:	The portion of the term of this patent subsequent to Oct. 30, 1990,				

FIG. 3 teaches the device utilizing the electrolysis apparatus 11 in a way, that among other things, over mes thermal stratification which may occur on larger aquariums. More particularly, FIG. 3 shows means for increasing the circulation of the water and intersperincreasing the circulation of the variable of the lectrolysis. A circulating device, such as vertical tube 41, is provided which surrounds the electrolysis unit 13. The electroly-sis unit is connected through conductors 18 and 23 to 13. The bot. rce of power, such as power source 12. The bot om 42 of tube 41 is open to enable the flow of water rein. The top 43 of tube 41 is also open and extends bove the normal level of water in the tank. A pumping action in tube 41 is caused by the electrolysis action of

3

3 891 535

means for periodically changing polarization to m tain the gaseous discharge at said electrodes, tube means surrounding said electrolysis unit fish tank said tube means comprising

opened at the bottom thereof, said tube means further comprising

at the bottom thereof

a horizontal tube joining said first and tubes, and said horizontal tube being located so as to be below the surface of the water when said fish tank is in op

tion contains a plethora of oxygen bubbles. The hydrogen that is released in tube 41 escapes into the atmosphere at opening 43. The water containing the oxygen bubbles passes back down through tube 47 which is open at the bottom portion 48 thereof to enable aer- 25 ated water to flow therethrough and supply oxygen to the lower levels of the tank. a horizontal tube joining said first and

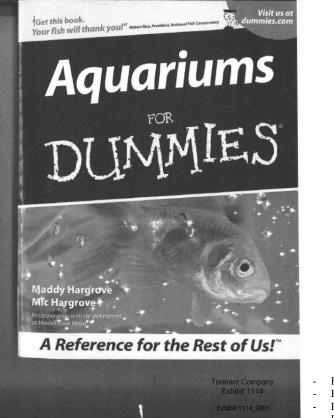
sterilizing and aerat

tubes, said electr tube said first and second vertical tubes extending below the water line and open at said tube bottoms said first vertical tube also open at the top and vay of ex- 45 second vertical tube closed at the top said horizontal tube providing a conduit for circula tion of aerated water from said first vertical tub through said horizontal tube and vertical tube into the water of the tank The apparatus of claim are spaced 1/64 inch apart. catus of claim said space maintained by in said electrodes, and polarizing said

electrodes being plat plate shape. . . .

Ex. 1112, Fig. 1, 3:21-27

. . .


DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Fredrikson

Ground 2 – Wikey and AFD Render Claims 13, 18-23, and 25 Obvious

Nik	inteu c	States Patent (19)		_	(11) 3,891,53 (45)*June 24, 197
54]	APPARA		3,479,281 3,769,196 3,778,307	11/1969 10/1973 12/1973	Kikindai et al
76]	Inventor:	Arnold Wikey, 5040 W. Newport, Chicago, Ill. 60641			TENTS OR APPLICATIONS
• 1	Notice:	•		11/1905	Germany
1	Notice.	tice: The portion of the term of this patent subsequent to Oct. 30, 1990, has been disclaimed.		xaminer-	John H. Mack
22}	Filed:	July 9, 1973			-A. C. Prescott Firm—Alter and Weiss
21]	Appl. No.	: 377,597	Attorney,	agent, or a	rim—Aiter and weiss
	Rela	ted U.S. Application Data	1000		- DOTE - OT
63]	Continuation Pat. No. 3.	on of Ser. No. 123,342, March 11, 1971,	[57]		ABSTRACT paratus for use in aquariums and
52] 51] 58] 56]	Int. Cl. Field of S		apart para being treat ized at a ro plates is po ratus acts	lled dispo ted. Conse elatively lo eriodically to kill bac f the wate	the serial arrangement of spaced sed plates positioned in the water incutive plates are oppositely polar- we voltage. The polarization of the or randomly reversed. The appa- teria, aerate and increase the cir- er thereby improving the general aquarium.
751.		TED STATES PATENTS 04 Kartzmark 204/149		4 Claim	as. 3 Drawing Figures
		12 18 43	44	п	40
		23	/**		4 ⁴⁶
				47 X	

Tennant Company Exhibit 1112

- Ex. 1114, 9-11, 20-22, 24, 31, 54, 71-77
- Ex. 1103 ¶¶ 70-72, 182
- Petition (Paper 1), 39-40
 - Reply (Paper 42), 13-14

Fredrikson

& BYRON, P.A.

65

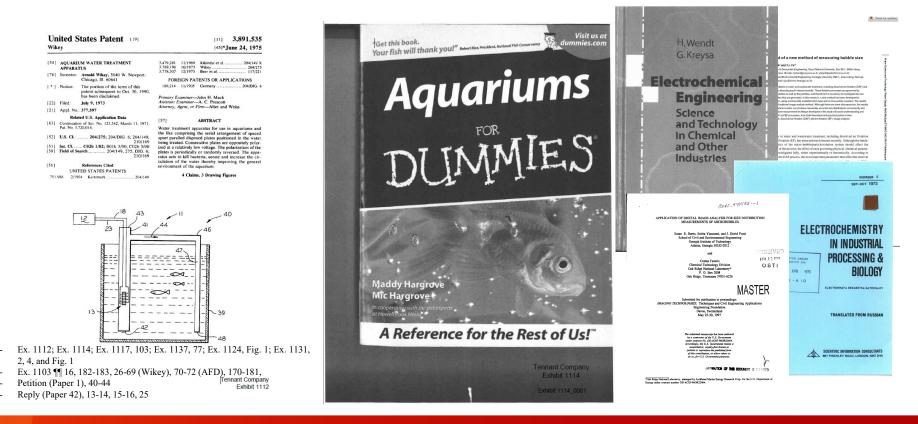
Ground 2 – Wikey and AFD Render Claims 13, 18-23, and 25 Obvious

Motivation to combine: Dr. Tremblay, a PhD in Chemistry with a vast amount of experience in electrolysis cell design notes:

- A POSITA would have been motivated to combine Wikey and AFD because they address the same field, and because AFD "teaches the use of a filtration system to help aerate the water by producing flow and bubbles. Ex. 1103 ¶182. Paper No. 42.
- AFD teaches: filtration "produces water flow and bubbles.
- AFD teaches use of an air pump. –Ex. 1114, 21
- Wikey teaches that electrolysis results in a "pumping action" Ex. 1112, 3:13-15.
- Both Wikey and AFD relate to aerating or increasing the oxygen content of water in an aquarium to support plant and animal life.
- AFD teaches a flow rate of 1.33 gallons per minute.
- -Ex. 1103, ¶ 71
- AFD discloses various container sizes and water no greater than ambient temperature
- -Ex. 1103, ¶ ¶ 70, 72

- Ex. 1114, 9-11, 21-22, 24, 31, 54, 71-77
- Ex. 1112, 3:13-15
- Ex. 1103 ¶¶ 70-72, 182
- Petition (Paper 1), 39-40
- Reply (Paper 42), 13-14

Petitioner's Grounds 1-6

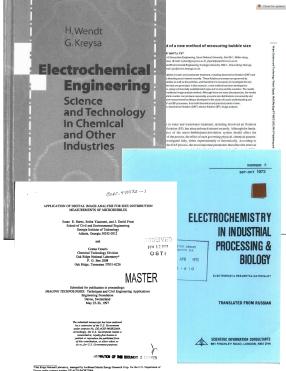

Ground	Challenged Claims	35 U.S.C. §	Prior Art
1	13, 18-23 and 25	102	Wikey
2	13, 18-23 and 25	103	Wikey and AFD
3	13, 18-23 and 25	103	Wikey and AFD in view of the general knowledge, experience and common sense of a POSITA as reflected in Wendt, Han, Glembotsky and Burns
4	26 and 27	103	Wikey and Clark
5	26 and 27	103	Wikey, Clark and AFD
6	26 and 27	103	Wikey, Clark and AFD in view of the general knowledge, experience and common sense of a POSITA, as reflected in Wendt, Han, Glembotsky and Burns

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

67

Ground 3 – Wikey and AFD in view of the general knowledge, experience and common sense of a POSITA as reflected in Wendt, Han, Glembotsky and Burns

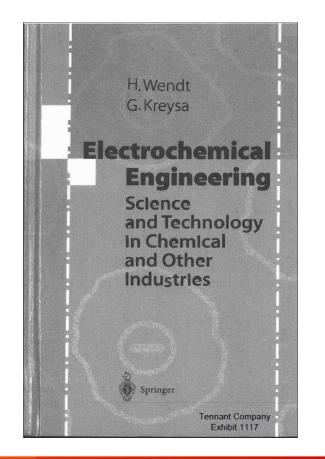
DEMONSTRATIVE EXHIBIT - NOT EVIDENCE



Ground 3 – Wikey and AFD in view of the general knowledge, experience and common sense of a POSITA as reflected in Wendt, Han, Glembotsky and Burns

- These textbooks merely reflect the general knowledge and understanding of a POSITA.
- Show how a POSITA would understand Wikey
- A POSITA would have understood water electrolysis systems were known to produce bubbles smaller than 50 microns. – Pet. 40-43; Ex. 1103, ¶¶170-183, 191, 206.
 - Ex. 1117, 103; Ex. 1137, 77; Ex. 1124, Title, Fig. 1; Ex. 1131, Abstract, 2, 4, and Fig. 1;

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE


- Ex. 1103 ¶¶ 16, 170-183.
- Petition (Paper 1), 40-43, 43-44
- Reply (Paper 42), 13-14, 15-16, 25

69

Ground 3 – Producing Oxygen Bubbles Smaller than 50 Microns was Well Known

5.4.7 Mass Transfer at Gas Evolving Electrodes

Mass transfer at gas evolving electrodes can be remarkably enhanced, provided gas evolution is intense enough to influence the flow of the electrolyte along the electrode. As radii of electrochemically evolved gas bubbles are usually relative small (5–50 μ m), bubbles can perturb concentration boundary layers very effectively thereby enhancing mass transfer and compressing Nernst-diffusion layers.

- Ex. 1117, 103
- Ex. 1103 ¶¶ 16, 170, 181, 183
- Petition (Paper 1), 40-41, 43-44
- Reply (Paper 42), 15-16, 25

Ground 3 – Producing Oxygen Bubbles Smaller than 50 Microns was Well Known

Introduction

Check for updates

Development of a new method of measuring bubble size

M.Y. Han*, Y.H. Park* and T.J. Yu**

*School of Civil, Urban & Geosystem Engineering, Seoul National University, San 56-1, Shilim-dong, Kwanak, gu, Seoul, Korea, E-mail: myhan@gong.sru.ac.kr; rybpark@waterlinst.sru.ac.kr) *Department of Civil and Environmental Engineering, Kwangju University, 592-1, Jinvol-dong, Nam-gu, Kwangju, Knez, E-mail: fyru@hoim.kwangju.ac.kr)

Abstract The use of babbies in water and waterwater treatment, including dissolved air fotation (DAF) and electro-fotation (EF), is attracting much interest recently. These fotation processes are governed by characteristics of the babbies as well as the particles, and therefore it is nonceasing to investigate the size distribution (The bubbles that are generated, in this means), and we methy has been developed to measure the bubble size, using commencially valiable babch-byse and on-line particle counters. The results are compared with the traditional image analysis in theto-A. Although there are some discographics, the results who that an on-the particle counter can produce reasonable counts is use distributions conveniently and efficiently. The bubble size measurement tochrispa developed in this study will assist understanding and improvement of the DAE and EF processor, from both theoretical and practical points (view. Keyversets Bubble size, disolved air flotation (DAF); electro-flotation (EF); image analysis; particle counter

Introduction

The use of bubbles in water and watewater treatment, including dissolved air flotation (DAF) and electro-flotation (EF), has attracted much interest recently. Although the fundamental characteristics of the micro-bubble/particle/solution system should affect the removal efficiency of the process, the effect of each governing physical-chemical parameter has not been investigated fully, either experimentally on theoretically. According to recent modeling of the DAF process, the most important parameters that affect the removal efficiency are the size and zeta potential of both bubbles and particles (Han et al., 2001; Han, 2002).

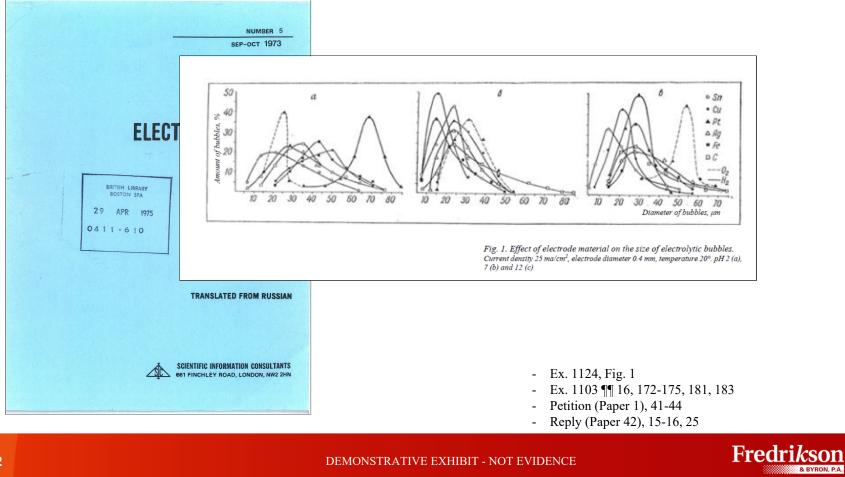
In DAF, bubbles are generated when air-saturated water is released into atmospheric pressure. The size of bubbles is movelly affected by pressure difference across the injection system and type of nozzle (AWWA, 1999). The size range is generally reported to be 10–100 µm, with the average being approximately 40 µm, under a pressure of 4–6 atmospheres (Garwald, 1995). In EF, hydrogen and oxygen bubbles are generated when current is applied to the solution through metal electrodes. The average size range is reported to be around 20–40 µm, which is a smaller range than that OAA (Burss *et al.*, 1997).

Several methods have been developed to measure the size of bubbles. The most straightforward method is image analysis. Because this method requires a complicated experimental setup and is time-consuming, it is not easy to produce enough data to generate size distributions under different conditions. Another method is to measure the rising velocity of the bubbles and to calculate the sizes by Stokes' Law. However, because the sizes of bubbles are not uniform, and because the rising velocity of many bubbles is different from that of a single bubble, no general equations are available to predict the size distribution of bubbles from the rising velocities.

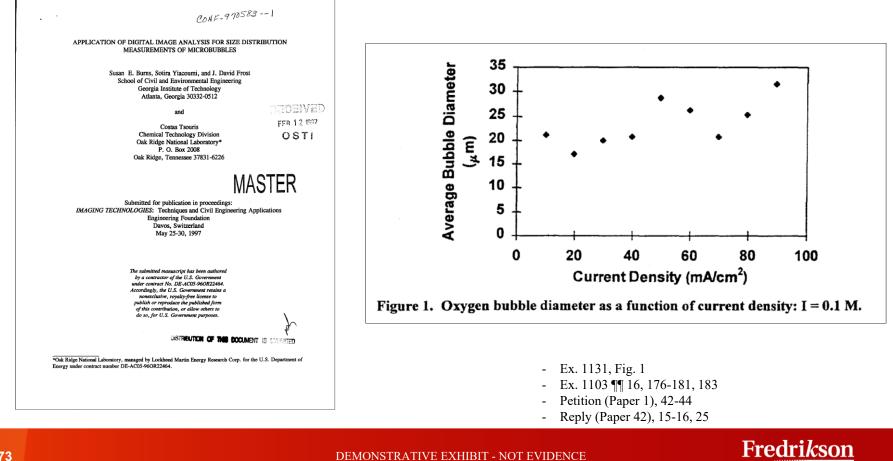
In this study, a new method to measure the size of bubbles, using particle counters, was developed. The bubble counting results obtained from both image analysis and particle Tennant Company Exhibit 1137

The use of bubbles in water and wastewater treatment, including dissolved air flotation (DAF) and electro-flotation (EF), has attracted much interest recently. Although the fundamental characteristics of the micro-bubble/particle/solution system should affect the removal efficiency of the process, the effect of each governing physical–chemical parameter has not been investigated fully, either experimentally or theoretically. According to recent modeling of the DAF process, the most important parameters that affect the removal efficiency are the size and zeta potential of both bubbles and particles (Han *et al.*, 2001; Han, 2002).

In DAF, bubbles are generated when air-saturated water is released into atmospheric pressure. The size of bubbles is mostly affected by pressure difference across the injection system and type of nozzle (AWWA, 1999). The size range is generally reported to be $10-100 \mu m$, with the average being approximately $40 \mu m$, under a pressure of 4–6 atmospheres (Edzwald, 1995). In EF, hydrogen and oxygen bubbles are generated when current is applied to the solution through metal electrodes. The average size range is reported to be around 20–40 μm , which is a smaller range than that of DAF (Burns *et al.*, 1997).


- Ex. 1137, 77
- Ex. 1103 ¶¶ 16, 171, 181, 183
- Petition (Paper 1), 41, 43-44
- Reply (Paper 42), 15-16, 25

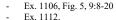
DEMONSTRATIVE EXHIBIT - NOT EVIDENCE


71

Ground 3 – Producing Oxygen Bubbles Smaller than 50 Microns was Well Known

72

Ground 3 – Producing Oxygen Bubbles Smaller than 50 Microns was Well Known



Ground 4 – Wikey and Clark Render Claims 26 and 27 Obvious

<u>RE45,415</u>

26. A method according to claim 13 wherein each anode and cathode electrode of the emitter is positioned so that substantially all points midway between opposing anode and cathode electrodes are closer to a surface of the tubular housing than to a center point within the tubular housing.

27. A method according to claim 26 wherein each anode and cathode electrode of the emitter are positioned so that the electrodes do not obstruct a water flow passage along the center of the tubular housing.

- Ex. 1103 ¶ 184, 26-69 (Wikey), 73-77 (Clar
- Petition (Paper 1), 44-46
- Reply (Paper 42), 14-15

Wik	ey			[45]*June 24, 1975
76]	APPARA	Arnold Wikey, 5040 W. Newport. Chicago, Ill. 60641 The portion of the term of this patent subsequent to Oct. 30, 1990.	3,479,281 3,769,196 3,778,307 FOR 189,214	United States Patent [19] [11] 4,039,439 Clark [45] Aug. 2, 1977
21] 63] 52] 51]	Continuatic Pat. No. 3, U.S. Cl Int. Cl Field of Se UNIT	ted U.S. Application Data on of Ser. No. 123.342, March 11, 1971.	Primary E Advisoring , (57) Water tre the like on phases is a phase is a realized at a phases is a realized at a phase is a realized at a	[4] METHOD RODE DESTRATIFYING RODED [7] OF WATES [7] Nomine [8] Nomine [9] Nomine [9] No. 51.058 [9] No. 52.059 [9] No. 51.058 [9] No. 52.059 [9] No. 51.058 [9] No. 50.058 [9] No. 5
.)				

Tennant Company Exhibit 1106

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Fredrikson

Ground 4 – Wikey and Clark Render Claims 26 and 27 Obvious RE45,415

26. A method according to claim 13 wherein each anode and cathode electrode of the emitter is positioned so that substantially all points midway between opposing anode and cathode electrodes are closer to a surface of the tubular housing than to a center point within the tubular housing.

27. A method according to claim 26 wherein each anode and cathode electrode of the emitter are positioned so that the electrodes do not obstruct a water flow passage along the center of the tubular housing.

United States Patent [19] 4,039,439 [11] Aug. 2, 1977 Clark [45] 210/170 204/149 210/220 261/123 [54] METHOD FOR DESTRATIFYING BODIES OF WATER Laird et a John W. Clark, 205 Hoagland, Las -Thomas G. Wyse FIG. 6 ABSTRACT T 10

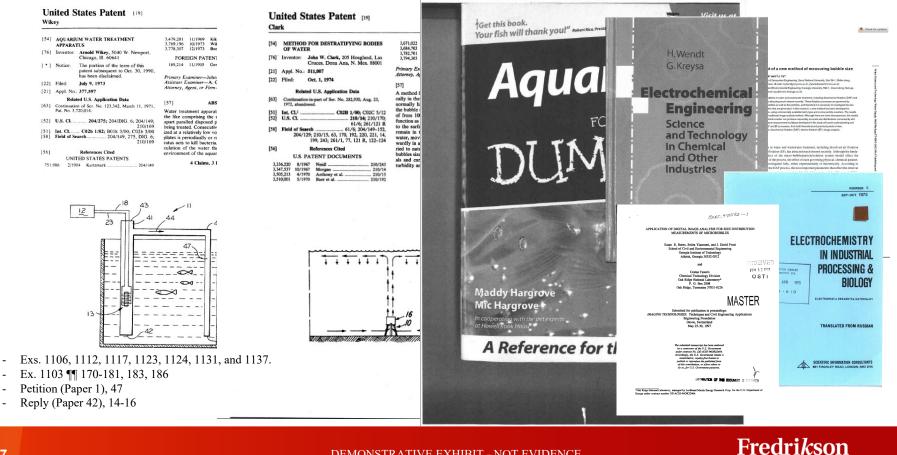
Ex. 1106, Fig. 6, 9:8-20, 8:58-63

Ex. 1112.

Ex. 1103 ¶¶ 184, 26-69 (Wikey), 73-77 (Clark)

- Petition (Paper 1), 44-46
- Reply (Paper 42), 14-15

Tennant Company Exhibit 1106



Ground 5 – Wikey and Clark and AFD Render Claims 26 and 27 Obvious

United States Patent 191 Pikey	United States Patent [19] Cark 1	fget this book. Your fish will thank you!" nortexe resident helener in careerer Aquation FOR DUINMIE	Visit us at dummies.com
		Maddy Hargrove Mic Hargrove In cooperation with the set expects at Howell Disk, House	of Us!"
		Ext	- Exs. 1106, 1112, 1117. - Ex. 1103 ¶¶ 70-77, 182, 184-185 - Petition (Paper 1), 47 - Reply (Paper 42), 13-15
	DEMONSTRATIVE EX	HIBIT - NOT EVIDENCE	Fredrikson

Ground 6 – Wikey, Clark, AFD, Wendt, Han, Glembotsky and Burns Render Claims 26 and 27 Obvious

Grounds 7-24 Primary Ref.: Davies – US Pat. No. 4,917,782

Petitioner's Grounds 7-12

Ground	Challenged Claims	35 U.S.C. §	Prior Art
7	13, 14, 17-23 and 25	102	Davies
8	13, 14, 17-23 and 25	103	Davies and Hough
9	13, 14, 17-23 and 25	103	Davies and Erickson
10	13, 14, 17-23 and 25	103	Davies, Erickson and Hough
11	13, 14, 17-23 and 25	103	Davies and Erickson in view of the general knowledge, experience and common sense of a POSITA, as reflected in Wendt, Han, Glembotsky and Burns
12	13, 14, 17-23 and 25	103	Davies, Erickson and Hough in view of the general knowledge, experience and common sense of a POSITA, as reflected in Wendt, Han, Glembotsky and Burns

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

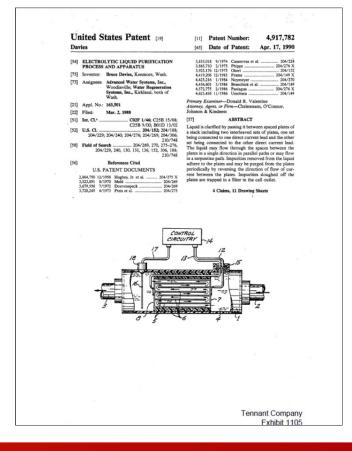
Petitioner's Grounds 13-18

Ground	Challenged Claims	35 U.S.C. §	Prior Art
13	24	103	Davies and Schoeberl
14	24	103	Davies, Schoeberl and Hough
15	24	103	Davies, Erickson and Schoeberl
16	24	103	Davies, Erickson, Schoeberl and Hough
17	24	103	Davies, Erickson and Schoeberl in view of the general knowledge, experience and common sense of a POSITA, as reflected in Wendt, Han, Glembotsky and Burns
18	24	103	Davies, Erickson, Schoeberl and Hough in view of the general knowledge, experience and common sense of a POSITA, as reflected in Wendt, Han, Glembotsky and Burns

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

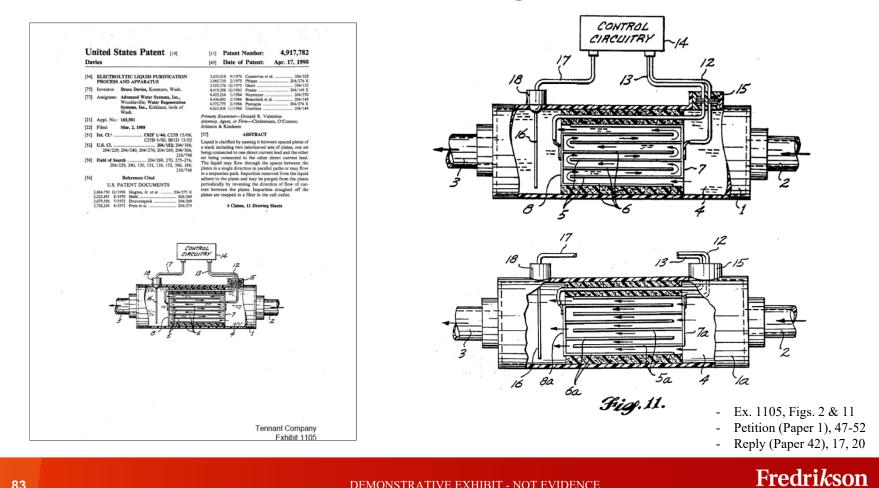
Petitioner's Grounds 19-24

Ground	Challenged Claims	35 U.S.C. §	Prior Art
19	26 and 27	103	Davies and Peters
20	26 and 27	103	Davies, Peters and Hough
21	26 and 27	103	Davies, Peters and Erickson
22	26 and 27	103	Davies, Peters, Erickson and Hough
23	26 and 27	103	Davies, Peters and Erickson in view of the general knowledge, experience and common sense of a POSITA, as reflected in Wendt, Han, Glembotsky and Burns
24	26 and 27	103	Davies, Peters, Erickson and Hough in view of the general knowledge, experience and common sense of a POSITA, as reflected in Wendt, Han, Glembotsky and Burns

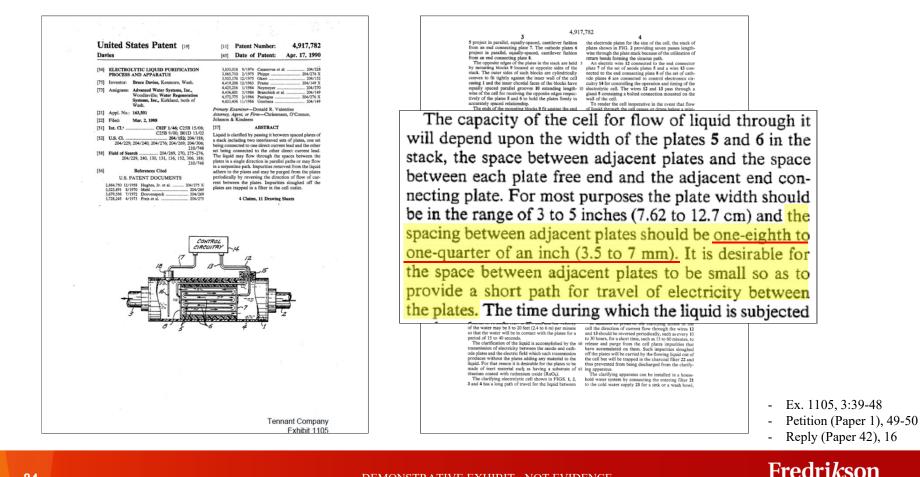

Ground 7 – Davies Anticipates Claims 13, 14, 17-23, and 25

RE45.415

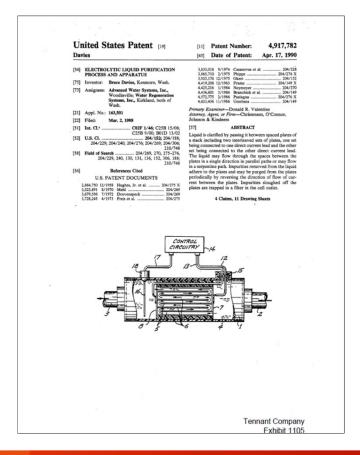
13. A method for producing an oxygenated aqueous composition comprising:


- flowing water at a flow rate no greater than 12 gallons per minute through an electrolysis emitter comprising an electrical power source electrically connected to an anode electrode and a cathode electrode contained in a tubular housing,
- causing electricity to flow from the power source to the electrodes, and,
- producing the composition comprising a suspension comprising oxygen microbubbles and nanobubbles in the water, the microbubbles and nanobubbles having a bubble diameter of less than 50 microns, wherein:
 - the anode electrode is separated at a critical distance from the cathode such that the critical distance is from 0.005 inches to 0.140 inches:
 - the power source produces a voltage no greater than about 28.3 volts and an amperage no greater than about 13 amps,
 - the tubular housing has an inlet and an outlet and a tubular flow axis from the inlet to the outlet;
 - the water flows in the inlet, out the outlet, is in fluid connection with the electrodes, and the water flowing into the inlet has a conductivity produced by the presence of dissolved solids such that the water supports plant or animal life.

- Ex. 1101, 11:20-12:4.


Ground 7 – Davies Configurations

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE


& BYRON, P.A.

Ground 7 – Davies Teaches the "Critical Distance"

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Ground 7 – Davies Teaches the Claimed Voltage, Applied to Aquarium Water and Drinking Water

The clarifying apparatus can be installed in a household water system by connecting the entering filter 21 to the cold water supply 23 for a sink or a wash bowl,

> In FIG. 15 the clarifying electrolytic cell 1*a* is used for maintaining the liquid in the aquarium 40 in clean condition to obviate the formation of scum on the surface of the water, formation of deposits on the interior wall of the aquarium tank and clouding of the water.

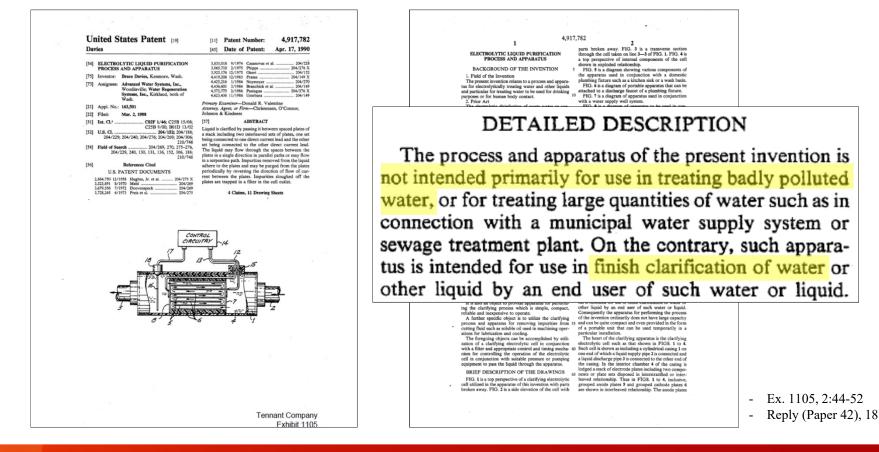
FIG. 8 is a diagram of apparatus used for clarifying water in the water system of a house trailer, a recreational vehicle or a cabin cruiser. Such apparatus includes the same clarifying cell control mechanism, monitor, flow switch and filters as used in the apparatus described in connection with FIG. 5. In this instance, however, the power source will not be rectified alternating current but can be a primary source of direct current electricity such as a 12 volt battery 19'.

- Ex. 1105, 4:66-68, 5:60-68, 7:36-40
- Petition (Paper 1), 50, 52
- Reply (Paper 42), 18

Ground 7 – Davies Inherently Discloses the Claimed Current

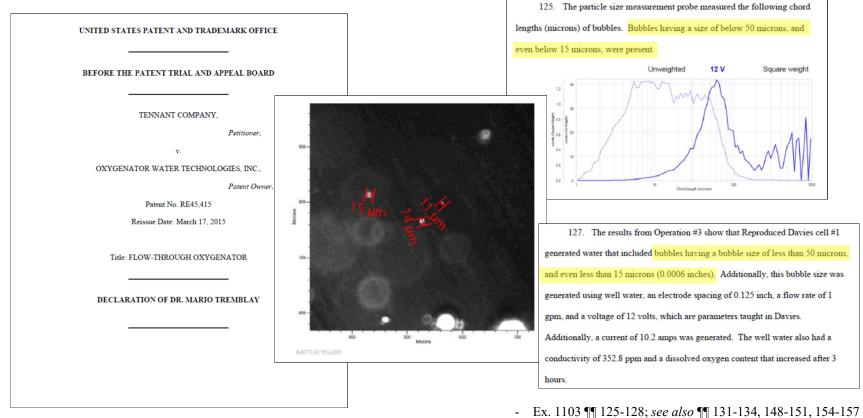
	124. Following are relevant parameters/measurements obtained from	
UNITED STATES PATENT AND TRADEMARK OFFICE	Operation #3:	
BEFORE THE PATENT TRIAL AND APPEAL BOARD	Parameters/Measurements Value electrode spacing 1/8 inch (0.125 inch) water type well water voltage 12V	
TENNANT COMPANY, Petitioner,	flow rate 1 gpm current 10.2 amp conductivity 352.8 ppm dissolved oxygen content 66.2% 3 hour dissolved oxygen content 103.4% Operation #4:	from
v.	Parameters/Measurements Value	
OXYGENATOR WATER TECHNOLOGIES, INC., Patent Owner. Patent No. RE45.415	147. Following are relevant parameters/measurements obtained from Operation #5: electrode spacing 1/8 inch (0.125 inch) water type municipal water voltage 12V flow rate 1gpm	
Reissue Date: March 17, 2015	Parameters/Measurements Value current 8.8 amp conductivity 281 ppm	
Title: FLOW-THROUGH OXYGENATOR	electrode spacing 1/8 inch (0.125 inch) water type well water voltage 12V flow rate 1 gpm	
DECLARATION OF DR. MARIO TREMBLAY	flow rate Igpm current 11.0 amps conductivity 352.8 ppm dissolved oxygen content 66.2% 3 hour dissolved oxygen content 125.6% Operation #6:	om
	Parameters/Measurements Value	
	- Ex. 1103 ¶¶ 124, 130, 147, 153 - Ex. 1103 ¶¶ 124, 130, 147, 153 - Petition (Paper 1), 52-53 - Reply (Paper 42), 17	

Page 1	. Atom		E-C	ell 1					
ge 1		TALAS				4			
			Operation number	Water			ower supply C Setpoint (V)	urrent (Amp)	
	A LOAT MA		1	Tap water	.)p~	1	12	10.2	
		CONTRACTOR OF THE OWNER	2	Tap water		1		25.2	
		Your partner in chemical	3	Sodium bicarbona	ate+Tap water	1	12	26.0	
-			4	"Muni" water "Muni" water		1	12 24	8.8 20.7	
PRO		process development		I Muni Water	-		24	20.7	
PROTECTIVE ORDER MATERIAL	Tennant Bubble	Size Measurements		Operation	ell 2		[Flam	D	
enna			Constant and	number	1	er Type	(GPM)	Power supply Setpoint (V)	
ant				1	Tap water		1	12	11.0
- 6	03	3/01/2021 EXHIE	BIT	2	Tap water		1	24	27.8
0W		2//	3	3	Tap water		0.3	12	12.4
TE	Nalas Engineering Services Proprietary	la la constante de la constante	Gol	4	Tap water Sodium bicarb	onatat Tan ur	0.3 ater 1	24	28.9 31.9
N 0 2	the engineering of need ropinitary -		00000450	6	Sodium bicarb			12	31.9
OWT Ex. 2179 Tennant Company v. OWT		IC_IPR.	00000158			- Ex. - PO	. 2179, 9, 1	7 per 35), 36	52.0 01


Ground 7 – Davies Inherently Discloses the Claimed Current

87

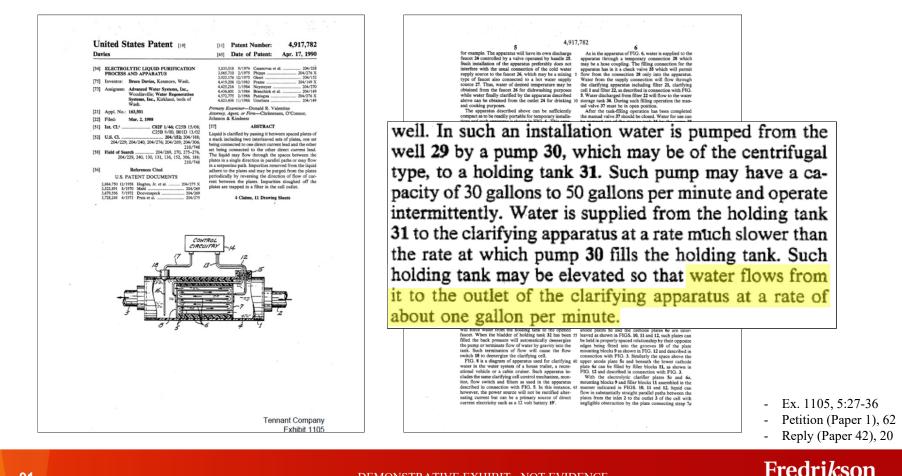
DEMONSTRATIVE EXHIBIT - NOT EVIDENCE


Fredrikson

Ground 7 – Davies Inherently Discloses the Creation of "Microbubbles" and "Nanobubbles"

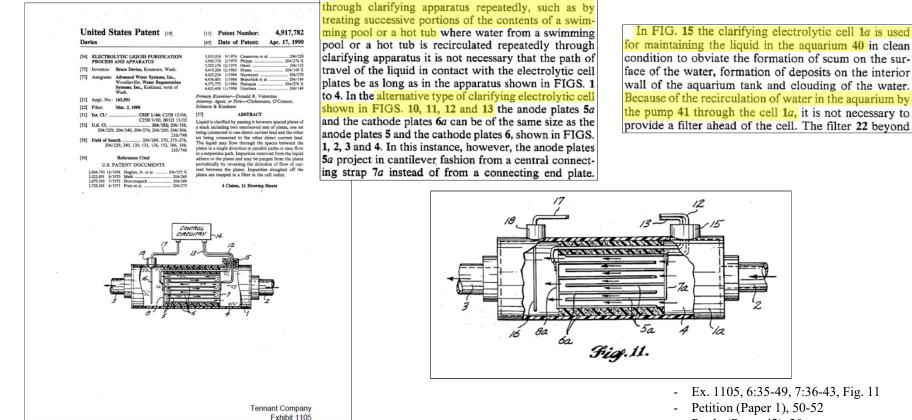
Ground 7 – Davies Inherently Discloses the Creation of "Microbubbles" and "Nanobubbles"

- Petition (Paper 1), 52-63


Ground 7 – Dr. Tremblay's Prior Art Testing Follows the '415 Patent Specification

		Measurement of O ₂ Bubbles
(19) United States (12) Reissued Patent Senkiw	USORE45415E (10) Patent Number: US RE45,415 E (45) Date of Reissued Patent: Mar. 17, 2015	Attempts were made to measure the diameter of the O_2
 [3] FLOW-THROUGH OXYCENATOR [3] Instance James derive Sacking Minasapolis MN (15) [3] Anigaze Orygenste Water Technologies, In Statistical Conference on Computer Value Technologies, In Statistical Computer Value Technologies, International Computer Value Technologies, International Computer Value Technologies, International Computer Value Computer Value Value	(5) Reference Clad U.S. PUTINT DOCUMENTS U.S. PUTINT DOCUMENTS U.S. PUTINT DOCUMENTS U.S. PUTINT DOCUMENTS U.S. PUTINT DOCUMENTS DOCUMENT	bubbles emitted by the device of Example 1. In the case of particles other than gasses, measurements can easily be made by scanning electron microscopy, but gasses do not survive electron microscopy. Large bubble may be measured by pore exclusion, for example, which is also not feasible when mea- suring a gas bubble. A black and white digital, high contrast, backlit photograph of treated water with a millimeter scale reference was shot of water produced by the emitter of Example 1. About 125 bubbles were seen in the area selected for measurement. <u>Seven bubbles</u> ranging from the smallest clearly seen to the largest were measured. The area was enlarged, giving a scale multiplier of 0.029412. Recorded bubble diameters at scale were 0.16, 0.22, 0.35, 0.51, 0.76, 0.88 and 1.09 millimeters. The last three were considered outliers by reverse analysis of variance and were assumed to be hydrogen bubbles. When multiplied by the scale multiplier, the assumed O ₂ bubbles were found to range from <u>4.7 to 15 microns</u> in diameter. This test was limited by the resolution of the camera and <u>smaller bubbles in the</u> nanometer range could not be resolved. It is known that white light cannot resolve features in the nanometer size range, so monochromatic laser light may give resolution sensitive enough to measure smaller bubbles. Efforts continue to

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE


Ground 7 – Davies Teaches the Claimed Flow Rate

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Ground 7 – Davies Teaches the Claimed Flow Rate

In other installations water can be recirculated

Reply (Paper 42), 20

Fredrikson

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Ground 7 – Davies Teaches the Claimed Flow Rate

			So for flow rate purposes, if we measure it
TENNANT COMPANY, Petitioner,	Case IPR2021-00625 Patent No. RE 45,415		at the inlet or the outlet, it doesn't matter which arrangement we have in the middle?
7. DXYGENATOR WATER TECHNOLOGIES	COPY	A	That's what I'm saying is, the gallons per minute of a device, the volumetric flow rate, would be measured for the device as a device.
Patent Owne	r.	_	Right. That's
			It doesn't matter the arrangement of the electrodes inside of that device? There would be a different, I'm not sure if we should call it flow rate or distribution, a different distribution of the fluid within the straight-through compared to the serpentine.
Court Stenographer: Patrick J. Mahon Registered Merit Reporter Pertified Realtime Reporter			- Ex. 1147, 213 - Reply (Paper

"The Water has a Temperature No Greater than About Ambient... and the Water Temperature is a Factor for Formation of the Suspension" (Claim 18)

Cc: <u>OVT</u> Subject: RE: OVT v. Ternant Date: Wednesday, August 25, 2021 1:05:41 PM Attachments: <u>WED1306.pp</u>		
[EXTERNAL E-MAIL]		
Lora:		
The fact that Tennant lost on claim construction does not prove good cause exists. OVT see how the Court's claim constructions gave rise to new written description defenses th could not have asserted from the beginning of the case. Moreover, it was entirely forese the Court might adopt OVT's contentions, and it was incumbent on Tennant to provide or in a timely fashion that addresed that possibility. Accordingly, during the meet and conf be prepared to explain the good cause for Tennant to add written description arguments claim terms.	t Tennant able that ntenilons rjésse	
has not yet id what they are infringement by the Ten	nant e-cells under the doctrine of equivalents	s. With respect to claim 18,
with respect OWT has already allege	<mark>that</mark> "the water temperature is a factor for f	ormation of the suspension" as
suggests that construed by the Court	n the Tennant process since Tennant instruct	s its user to use "clear cool
claim constru	claim 20, OWT is still in the process of analyz	ing the impact of the Court's
make such an amendment, it will raise that with Tennant. We are also considering wheth be dropping this claim from the case with a reservation of rights to appeal the Court's cor of the relevant claim term.		
We will be sending a separate email about Tennant's requested stay, but are available to confer on both issues at 2 pm tomorrow.	neet and	
Nate		
Nate D Louwagie Carlson Caspers 225 S. Skrth St., Suite 4200 Minneapolis, MIN 65402 Direct: 612.436.9660 Cell: 612.715.9224		- Ex 1148
Carlson Caspers 225 S. Sixth St., Suite 4200 Minneapolis, MN 55402 Direct 612-430,9656	MPANY	- Ex. 1148 - Reply (Paper 42),

& BYRON, P.A.

"The Water has a Temperature No Greater than About Ambient... and the Water Temperature is a Factor for Formation of the Suspension" (Claim 18)

	nited States Patent [19]	[11] Patent Number: 4,917,782
Da	wies	[45] Date of Patent: Apr. 17, 1990
[75]	ELECTROLYTIC LIQUID PURIFICATION PROCESS AND APPARATUS Inventor: Brace Davies, Kennore, Wash. Assignes: Advanced Water Regeneration	3.83.5018 9/1974 Cananovus et al. 204/226 3.865.710 2/1975 Phippe 204/276 3.923.116 12/1975 Okert 204/126 4.451.206 12/1915 Strain 204/169 4.452.316 1/1944 Negusyer 204/270 4.453.4601 1/1944 Memory 204/270 4.572.775 2/1945 Paintages 204/276
	Systems, Inc., Kirkland, both of Wash. Appl. No.: 163,501	4,623,436 11/1986 Umebara
	Filed: Mar. 2, 1988 Int. Cl. ⁴	Johnson & Kindness [57] ABSTRACT
	C25B 9/00; B01D 13/02 U.S. Cl	Liquid is clarified by passing it between spaced plates of a stack including two interleaved sets of plates, one set being connected to one direct current lead and the other set being connected to the other direct current lead.
[58]	Field of Search	Set being connected to the other direct current lead. The liquid may flow through the spaces between the plates in a single direction in parallel paths or may flow in a serpentine path. Impurities removed from the liquid
[56]	References Cited U.S. PATENT DOCUMENTS	adhere to the plates and may be purged from the plates periodically by reversing the direction of flow of cur-
	2,864,750 12/1958 Hughes, Jr. et al	rent between the plates. Impurities sloughed off the plates are trapped in a filter in the cell outlet. 4 Claims, 11 Drawing Sheets
	CON	TROL
*		
•		

In FIG. 15 the clarifying electrolytic cell 1a is used for maintaining the liquid in the aquarium 40 in clean condition to obviate the formation of scum on the surface of the water, formation of deposits on the interior wall of the aquarium tank and clouding of the water. Because of the recirculation of water in the aquarium by the pump 41 through the cell 1a, it is not necessary to provide a filter ahead of the cell. The filter 22 beyond

- Ex. 1105, 7:36-43
- Petition (Paper 1), 52, 66
- Reply (Paper 42), 20

"The Microbubbles and Nanobubbles Supersaturate the Water" (Claim 21)

(19)	Unite	d States			0300RE45	41.58		
(12)		ued Patent		Patent Numb Date of Reiss			RE45,415 E 4ar. 17, 2015	
(54)	FLOW-TH	IROUGH OXYGENATOR			205/7		33, 742, 756, 757; 321.7, 1; 119/263	
(75)	Inventor:	James And rew Senkiw, Minn MN (US)	eapolis,	See applicat	tion file for co References	mplete se	arch history.	
(73)	Assignce:	Oxygenator Water Technolog St. Louis Park, MN (US)	tes, Inc.,		PATENT DO		TS	
(21)	Appl. No.:	13/247,241		4,071,447 A 4,179,347 A	1/1978 Ra 12/1979 Ka	ause et al.		
(22)		Sep. 28, 2011			(Continu			
Reiss		ited U.S. Patent Documents			IGN PATENT		ENTS	
(64) U.S./	Patent No.: Issued: Appl. No.: Filed: Applications	Mar. 2, 2010 12/023,431 Jan. 31, 2008		GB 15	(Continu (Continu THER PUBL	CATION		
(60)	Division of 10, 2003, n ation-in-pa Feb. 21, 20	application No. 10/732,326, fil ow Pat. No. 7,396,441, which is rt of application No. 10/372,01 03, now Pat. No. 6,689,262. application No. 60/358,534, fil	7, filed on	"Effect of Oxygenaic ment of Seedless Cu house Conditions", [Online]. Retrieved 1 Pages/pdfs/DrMirzal	cumbers and T Project Repo from the Intern	omato See rt: Seair et: <url: RB), 5 pgs</url: 	dings under Green- Diffusion Systems, http://www.seair.ca/	
(60)	22, 2002.	application No. 607358,534, fi	led on Feb.					
(51)	Int. Cl. C02F 1/48 C02F 1/00			Primary Examiner Assistant Examiner (74) Attorney, Age Woessner, P.A.	r — Cameron ent, or Firm -	J Allen – Schweg	man Lundberg &	
(204/	. 210/739; 204/157.15; 204/24; 628; 204/600; 210/600; 210/243 422/22; 422/186; 4	3; 210/153;	(57) An oxygen emitter When the anode at tance, very small r are generated. Th	nd cathode are	ectrolytics separate	d by a critical dis-	
(58)	USPC	Insuffication Search 210739, 746, 748,01, 748, 210748,17, 748,19, 749, 7: 422/22, 27, 28, 129, 11 227/186.03, 186.07, 186.01, 186 422/186.16, 186.21, 616, 243 204/155, 157.15, 157.5, 164 04/450, 554, 193, 194, 260, 272	57, 167, 21; 86, 186.04, 51, 186.15, 505, 308; 5176, 178, 5280, 277,	are generated. The suspension, formit flow-through mode closed. The use of growth of plants is saturated water to hydroponic culture water by raising to oxygen emitter is of	f supersaturat s disclosed. N plants manu e are describ he dissolved fisclosed.	ed water fethods fi dly, by di id. The ti oxygen v	for enhancing the or applying super- ip irrigation or in reatment of waste rith the use of an	
		204/278.5, 287, 288, 288.1, 28	8.2, 230.2;	16 0	Claims, 8 Dra	wing Sho	xe fs	
		a.						
		18 -	a-'				Tennant C	

"Supersaturated" means oxygen at a higher concentration than normal calculated oxygen solubility at a particular temperature and pressure.

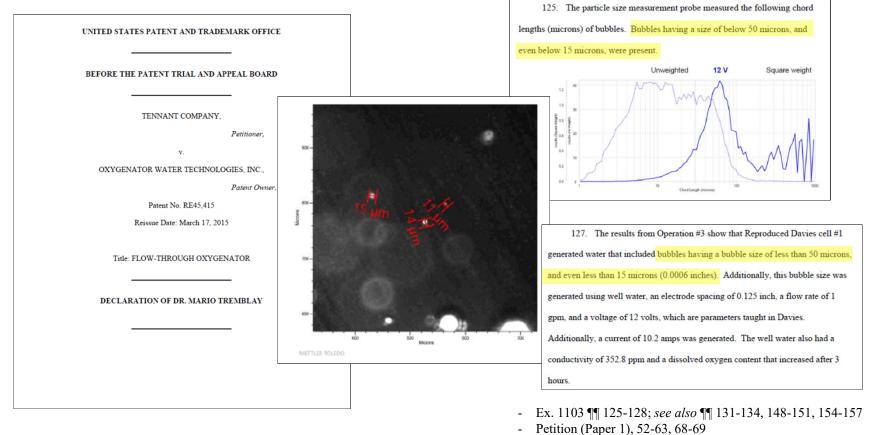
reacts to form molecular oxygen, O_2 . In the special dimensions of the invention, as explained in more detail in the following examples, O_2 forms bubbles which are too small to break the surface tension of the fluid. These bubbles remain suspended indefinitely in the fluid and, when allowed to build up, make the fluid opalescent or milky. Only after several hours do the bubbles begin to coalesce on the sides of the container and the water clears. During that time, the water is supersaturated with oxygen. In contrast, the H₂ formed readily coalesces into larger bubbles which are discharged into the atmosphere, as can be seen by bubble formation at the cathode.

MODEL	ACTIVE ELECTRODE AREA, SQ. IN.	VOLTAGE	CURRENT, AMPS.	FLOW RATE GAL/MINUTE	DO OF* SAMPLE AT ONE MINUTE
2-Inch "T"	2	28.3	0.72	12	N/A
3-inch "T"	3	28.3	1.75	12	N/A
2-plate Tube	20	28.3	9.1	12	8.4
3-Plate tube	30	28.3	12.8	12	9.6

- Ex. 1101, 4:16-18, 4:30-41, 9:38-50

Fredrikson

- Petition (Paper 1), 10-11, 18, 68
- Reply (Paper 42), 20-21



"The Microbubbles and Nanobubbles Supersaturate the Water" (Claim 21)

		-								neasurements			Sample m	easurements	after 3 h	
100				Water T	Гуре							Time	Time			У
17 24					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	12	10.2	66.2%		7.6	1:05 PM		103.4%		
A all	T MA		2 Tap	water		1	24	25.2	66.2%	551.2	7.6	1:24 PM	4:26 PM	92.7%	520.5	+
	1 2 1		3 Sodiu	um bicarbonat	ate+Tap water	1	12	26.0	80.0%	2086.0	8.2	1:38 PM	4:41 PM	90.6%	1060.0	$^{+}$
		N	4 "Mun	ni" water		1	12	8.8	104.2%	440.5	8.5	2:05 PM	5:01 PM	115.9%	452.5	
		1	5 "Mun	ni" water		1	24	20.7	104.2%	440.5	8.5	2:15 PM	5:13 PM	110.2%	458.3	
															*	
Operation	1	Flow rate F	Powersunn	ly Current		easurement				ents after 3 h					Ŵ	V HAR
Operation	n Water ⊺ype		Power supp Setpoint (V	ly Current I) (Amp) C	Dissolved 0	easurement Conductivity (uS/cm)	Tin	e Tir	ne Dissol	ved Conduct	tivity	pH			N.	A HEREIN
number 1			Setpoint (V 12	(Amp) C	Dissolved C Dxygen (%) 66.2%	Conductivity (uS/cm) 551.2	Tin	ted meas	ne Dissol ured Oxyger PM 125.6	ved Conduct	tivity m)	рН 9.3		NAL-05	7-09866 23FEET	
number 1 2	Water Type	(GPM) 1 1	Setpoint (V 12 24	(Amp) C 11.0 27.8	Dissolved 0 Oxygen (%) 66.2%	Conductivity (uS/cm) 551.2 551.2	Time pH Colleg 7.6 9:21 7.6 9:30	ted meas AM 12:54 AM 12:56	me Dissol ured Oxyger PM 125.6 PM 108.0	ved Conduct (%) (uS/ci % 548. % 534.0	tivity m) 3 8			NAL-05 Water E-Cell 2	7-09866 23FERT 2-0.3GPM -13/	
number 1 2 3	Water Type Tap water Tap water Tap water	(GPM) 1 1 0.3	Setpoint (V 12 24 12	(Amp) C 11.0 27.8 12.4	Dissolved O Oxygen (%) 66.2% 66.2% 66.2% 66.2% 66.2%	Conductivity (uS/cm) 551.2 551.2 551.2 551.2	Tim pH colle 7.6 9:21 7.6 9:30 7.6 9:44	e Tir ted meas AM 12:54 AM 12:56 AM 12:56	ne Dissol ured Oxyger PM 125.6 PM 108.0 PM 106.3	Ved Conduct (%) (uS/cl % 534.1 % 537.1	tivity m) 3 8 1	9.3 9.3 9.4		NAL-05 Water E-Cell 2	7-09866 22FEET 2-0.3GPM-174'F	A HEAL HOUSE
number 1 2 3 4	Water Type Tap water Tap water Tap water Tap water	(GPM) 1 1 0.3 0.3	Setpoint (V) 12 24 12 24 24	(Amp) C 11.0 27.8 12.4 28.9	Dissolved O Oxygen (%) 66.2% 66.2% 66.2% 66.2% 66.2%	Conductivity (uS/cm) 551.2 551.2 551.2 551.2 551.2	Tin pH colle 7.6 9:21 7.6 9:30 7.6 9:44 7.6 9:56	Image Time sted meas AM 12:54	ne Dissol ured Oxyger PM 125.6 PM 108.0 PM 106.3 PM 92.8	Ved Conduct (uS/cl 548.) % 548.) % 534.0 % 534.0 % 534.0 % 534.0 % 534.0 % 534.0	tivity m) 3 8 1 6	9.3 9.3 9.4 9.6		NAL-05 Water E-Cell 2	7.09866 22FEF 2.0.3GPM-17V-1	A LEASE AND A LEAS
number 1 2 3 4 5	Water Type Tap water Tap water Tap water Sodium bicarbonate+Tap water	(GPM) 1 1 0.3 0.3 1	Setpoint (V) 12 24 12 24 24 12	(Amp) C 11.0 27.8 12.4 28.9 31.9	Dissolved O Oxygen (%) 66.2% 66.2% 66.2% 66.2% 66.2% 80.0% 80.0%	Conductivity (uS/cm) 551.2 551.2 551.2 551.2 551.2 2086	Tim pH colle 7.6 9:21 7.6 9:30 7.6 9:34 7.6 9:56 8.2 11:00	Image Time intered mease AM 12:56 AM 12:56 AM 12:56 AM 1:00 AM 1:13 AM 2:19	ne Dissol ured Oxyger PM 125.6 PM 108.0 PM 106.3 PM 92.8° PM 94.9°	Ved Conduct (uS/ca 548.) % 548.) % 534.) % 537. % 545.) % 2387.	tivity m) 3 8 1 6 .0	9.3 9.3 9.4 9.6 9.1		NAL05 Water E-Cell 2	7-09866 22FE8 2-0.3GPM-13*	
number 1 2 3 4	Water Type Tap water Tap water Tap water Tap water	(GPM) 1 1 0.3 0.3	Setpoint (V) 12 24 12 24 24	(Amp) C 11.0 27.8 12.4 28.9	Dissolved O Oxygen (%) 66.2% 66.2% 66.2% 66.2% 80.0%	Conductivity (uS/cm) 551.2 551.2 551.2 551.2 2086 2086	Tin pH colle 7.6 9:21 7.6 9:30 7.6 9:44 7.6 9:56	Image Time Attending meas AM 12:56 AM 12:56 AM 12:56 AM 1:00 AM 1:13 AM 2:19	ne Dissol ured Oxyger PM 125.6 PM 108.0 PM 106.3 PM 92.8° PM 94.9°	Ved Conduct (uS/ca 548.) % 548.) % 534.) % 537. % 545.) % 2387.	tivity m) 3 8 1 6 .0	9.3 9.3 9.4 9.6		NAL-05 Water E-Cen 1	7-09866 22FEF 2-0.3GPM - 12 ⁻⁷	
number 1 2 3 4 5	Water Type Tap water Tap water Tap water Sodium bicarbonate+Tap water Sodium bicarbonate+Tap water	(GPM) 1 1 0.3 0.3 1	Setpoint (V) 12 24 12 24 24 12	(Amp) C 11.0 27.8 12.4 28.9 31.9	Dissolved O Oxygen (%) 66.2% 66.2% 66.2% 66.2% 80.0%	Conductivity (uS/cm) 551.2 551.2 551.2 551.2 551.2 2086	Tim pH colle 7.6 9:21 7.6 9:30 7.6 9:34 7.6 9:56 8.2 11:00	Image Time intered mease AM 12:56 AM 12:56 AM 12:56 AM 1:00 AM 1:13 AM 2:19	ne Dissol ured Oxyger PM 125.6 PM 108.0 PM 106.3 PM 92.8° PM 94.9°	Ved Conduct (uS/ca 548.) % 548.) % 534.) % 537. % 545.) % 2387.	tivity m) 3 8 1 6 .0	9.3 9.3 9.4 9.6 9.1		NALOS Water E-Cell 2	7.09865 22FEN 2.0.3GPM-17V-1	
number 1 2 3 4 5 6	Water Type Tap water Tap water Tap water Sodium bicarbonate+Tap water Sodium bicarbonate+Tap water	(GPM) 1 1 0.3 0.3 1	Setpoint (V) 12 24 12 24 24 12	(Amp) C 11.0 27.8 12.4 28.9 31.9	Dissolved C Oxygen (%) 66.2% 66.2% 66.2% 66.2% 80.0% 80.0% 80.0%	Conductivity (uS/cm) 551.2 551.2 551.2 551.2 2086 2086	Tim pH colle 7.6 9:21 7.6 9:30 7.6 9:34 7.6 9:56 8.2 11:00	Image Time intered mease AM 12:56 AM 12:56 AM 12:56 AM 1:00 AM 1:13 AM 2:19	ne Dissol ured Oxyger PM 125.6 PM 108.0 PM 106.3 PM 92.8° PM 94.9°	Ved Conduct (uS/ca 548.) % 548.) % 534.) % 537. % 545.) % 2387.	tivity m) 3 8 1 6 .0	9.3 9.3 9.4 9.6 9.1		NAL-05 Water E-Gall	7.09866 227551 2-0.36PM-13/1	
number 1 2 3 4 5 6	Water Type Tap water Tap water Tap water Sodium bicarbonate+Tap water Sodium bicarbonate+Tap water	(GPM) 1 1 0.3 0.3 1	Setpoint (V) 12 24 12 24 24 12	(Amp) C 11.0 27.8 12.4 28.9 31.9	Dissolved C Oxygen (%) 66.2% 66.2% 66.2% 66.2% 80.0% 80.0% 80.0%	Conductivity (uS/cm) 551.2 551.2 551.2 551.2 551.2 2086 2086 2086	Tim pH colle 7.6 9:21 7.6 9:30 7.6 9:34 7.6 9:56 8.2 11:00	Image Time intered mease AM 12:56 AM 12:56 AM 12:56 AM 1:00 AM 1:13 AM 2:19	ne Dissol ured Oxyger PM 125.6 PM 108.0 PM 106.3 PM 92.8° PM 94.9°	Ved Conduct (uS/ca 548.) % 548.) % 534.) % 537. % 545.) % 2387.	tivity m) 3 8 1 6 6 .0 .0	9.3 9.3 9.4 9.6 9.1 9.4	79 9 1	E-Ceil 2	7.09866 25FEF 2.0.3GPM-12/1	
number 1 2 3 4 5 6	Water Type Tap water Tap water Tap water Sodium bicarbonate+Tap water Sodium bicarbonate+Tap water	(GPM) 1 1 0.3 0.3 1	Setpoint (V) 12 24 12 24 24 12	(Amp) C 11.0 27.8 12.4 28.9 31.9	Dissolved C Oxygen (%) 66.2% 66.2% 66.2% 66.2% 80.0% 80.0% 80.0%	Conductivity (uS/cm) 551.2 551.2 551.2 551.2 551.2 2086 2086 2086	Tim pH colle 7.6 9:21 7.6 9:30 7.6 9:34 7.6 9:56 8.2 11:00	Image Time intered mease AM 12:56 AM 12:56 AM 12:56 AM 1:00 AM 1:13 AM 2:19	ne Dissol ured Oxyger PM 125.6 PM 108.0 PM 106.3 PM 92.8° PM 94.9°	Ved Conduct (uS/ca 548.) % 548.) % 534.) % 537. % 545.) % 2387.	tivity m) 3 8 6 .0 .0	9.3 9.3 9.4 9.6 9.1 9.4 Ex. 217	79, 9, 17	E-Ceil 2	2-0.36PM - 17	
	E-C	E-Cell 2		2 Tap 3 Sodi 4 "Mur 5 "Mur process deve	number Water 1 Tap water 2 Tap water 3 Sodium bicarbone 4 "Muni" water 5 "Muni" water process developme	number Water Type 1 Tap water 2 Tap water 3 Sodium bicarbonate+Tap water 4 "Muni" water 5 "Muni" water Process development	number Water Type (GPM) 1 Tap water 1 2 Tap water 1 3 Sodium bicarbonate+Tap water 1 4 "Muni" water 1 5 "Muni" water 1 7 Process development 1	number Water Type (GPM) Setpoint (V) 1 Tap water 1 12 2 Tap water 1 12 3 Sodium bicarbonate+Tap water 1 12 4 "Muni" water 1 12 5 "Muni" water 1 24 process development 1 24	number Water Type (GPM) Setpoint (V) (Amp) 1 Tap water 1 12 10.2 2 Tap water 1 24 25.2 3 Sodium bicarbonate+Tap water 1 12 26.0 4 "Muni" water 1 12 8.8 5 "Muni" water 1 24 20.7	Operation number Water Type Flow rate (GPM) Power supply Setpoint (V) Current (Amp) Dissolved Oxygen (%) 1 Tap water 1 12 10.2 66.2% 2 Tap water 1 12 26.0 80.0% 3 Sodium bicarbonate+Tap water 1 12 26.0 80.0% 4 "Muni" water 1 12 20.7 104.2% 5 "Muni" water 1 24 20.7 104.2%	Operation number Water Type Flow rate (GPM) Power supply Setpoint (V) Current (Amp) Dissolved Oxygen (%) Conductivity (us/cm) 1 Tap water 1 12 10.2 66.2% 551.2 2 Tap water 1 12 26.0 80.0% 2086.0 3 Sodium bicarbonate+Tap water 1 12 26.0 80.0% 2086.0 4 "Muni" water 1 124 20.7 104.2% 440.5 5 "Muni" water 1 24 20.7 104.2% 440.5	Operation number Water Type Flow rate (GPM) Power supply Setpoint (V) Current (Amp) Dissolved Oxygen (%) Conductivity (uS/cm) pH 1 Tap water 1 12 10.2 66.2% 551.2 7.6 2 Tap water 1 124 26.0 80.0% 2008.0 8.2 3 Sodium bicarbonate+Tap water 1 12 8.8 104.2% 440.5 8.5 5 "Muni" water 1 24 20.7 104.2% 440.5 8.5	Operation number Water Type Flow rate (GPM) Power supply Setpoint (V) Current (Amp) Dissolved Oxygen (%) Conductivity (uS/cm) Time pH 1 Tap water 1 12 10.2 66.2% 551.2 7.6 1:05 PM 2 Tap water 1 12 26.0 80.0% 2086.0 8.2 1:38 PM 3 Sodium bicarbonate+Tap water 1 12 8.8 104.2% 440.5 8.5 2:05 PM 4 "Muni" water 1 124 20.7 104.2% 440.5 8.5 2:15 PM Process clevelopment	Operation number Water Type Flow rate (GPM) Power supply Setpoint (V) Current (Amp) Dissolved Oxygen (%) Conductivity (uS/cm) Time pH Time collected Time measurec 1 Tap water 1 12 10.2 66.2% 551.2 7.6 1:05 PM 4:09 PM 2 Tap water 1 12 26.0 80.0% 208e.0 8.2 1:32 PM 4:40 PM 3 Sodium bicarbonate+Tap water 1 12 26.0 80.0% 208e.0 8.5 2:05 PM 5:01 PM 4 "Muni" water 1 124 20.7 104.2% 440.5 8.5 2:05 PM 5:01 PM 5 "Muni" water 1 24 20.7 104.2% 440.5 8.5 2:15 PM 5:13 PM	Operation number Water Type Flow rate (GPM) Power supply Setpoint (V) Current (Amp) Dissolved Oxygen (%) Conductivity (uS/cm) Time pH Time collected Time measured Dissolved Oxygen (%) 1 Tap water 1 12 10.2 66.2% 551.2 7.6 1:05 PM 4:09 PM 103.4% 2 Tap water 1 12 26.0 80.0% 2508.0 8.2 1:38 PM 4:41 PM 90.6% 3 Sodium bicarbonate+Tap water 1 12 8.8 104.2% 440.5 8.5 2:05 PM 5:01 PM 115.9% 4 "Muni" water 1 24 20.7 104.2% 440.5 8.5 2:15 PM 5:13 PM 110.2%	Operation number Water Type Flow rate (GPM) Power supply Setpoint (V) Current (Amp) Dissolved Oxygen (%) Time value Time collected Time measured Dissolved Oxygen (%) Conductivity (uS/cm) 1 Tap water 1 12 10.2 66.2% 551.2 7.6 1:05 PM 4:09 PM 103.4% 536.0 2 Tap water 1 12 26.0 80.0% 2086.0 8:1 1:32 PM 4:34 PM 90.7% 502.5 3 Sodium bicarbonate+Tap water 1 12 28.0 80.0% 2086.0 8:5 2:05 PM 5:01 PM 115.9% 452.5 4 "Muni" water 1 124 20.7 104.2% 440.5 8:5 2:05 PM 5:01 PM 110.2% 458.3 DrOCess development 1 24 20.7 104.2% 440.5 8:5 2:15 PM 5:13 PM 110.2% 458.3

& BYRON, P.A.

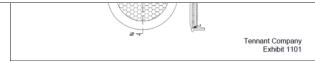
"The Bubble Diameter... is Less than 0.0006 Inches" (Claim 22)

- Reply (Paper 42), 21-22

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

"The Bubble Diameter... is Less than 0.0006 Inches" (Claim 22)

Measurement of O_2 Bubbles	
Attempts were made to measure the diameter of the O ₂ bubbles emitted by the device of Example 1. In the case of particles other than gasses, measurements can easily be made by scanning electron microscopy, but gasses do not survive electron microscopy. Large bubble may be measured by pore exclusion, for example, which is also not feasible when mea- suring a gas bubble. A black and white digital, high contrast, backlit photograph of treated water with a millimeter scale reference was shot of water produced by the emitter of Example 1. About 125 bubbles were seen in the area selected for measurement. <u>Seven bubbles</u> ranging from the smallest clearly seen to the largest were measured. The area was enlarged, giving a scale multiplier of 0.029412. Recorded bubble diameters at scale were 0.16, 0.22, 0.35, 0.51, 0.76, 0.88 and 1.09 millimeters. The last three were considered outliers by reverse analysis of variance and were assumed to be hydrogen bubbles. When multiplied by the scale multiplier, the assumed O ₂ bubbles were found to range	
light cannot resolve features in the nanometer size range, so monochromatic laser light may give resolution sensitive enough to measure smaller bubbles. Efforts continue to	Ex. 1101.
	Attempts were made to measure the diameter of the O_2 bubbles emitted by the device of Example 1. In the case of particles other than gasses, measurements can easily be made by scanning electron microscopy, but gasses do not survive electron microscopy. Large bubble may be measured by pore exclusion, for example, which is also not feasible when mea- suring a gas bubble. A black and white digital, high contrast, backlit photograph of treated water with a millimeter scale reference was shot of water produced by the emitter of Example 1. About 125 bubbles were seen in the area selected for measurement. Seven bubbles ranging from the smallest clearly seen to the largest were measured. The area was enlarged, giving a scale multiplier of 0.029412. Recorded bubble diameters at scale were 0.16, 0.22, 0.35, 0.51, 0.76, 0.88 and 1.09 millimeters. The last three were considered outliers by reverse analysis of variance and were assumed to be hydrogen bubbles. When multiplied by the scale multiplier, the assumed O ₂ bubbles were found to range from 4.7 to 15 microns in diameter. This test was limited by the resolution of the camera and smaller bubbles in the nanometer range could not be resolved. It is known that white light cannot resolve features in the nanometer size range, so monochromatic laser light may give resolution sensitive


- Ex. 1101, 5:40-67 - Reply (Paper 42), 19, 21

"Substantially Incapable of Breaking the Surface Tension of Water" (Claim 25)

	US00RE45415E
(19) United States (12) Reissued Patent Senkiw	(10) Patent Number: US RE45,415 E (45) Date of Reissued Patent: Mar. 17, 2015
(54) FLOW-THROUGH OXYGENATOR	205/701, 628, 633, 742, 756, 757 22/192, 321, 7, 1; 119/263
(75) Inventor: James And rew Senkiw, Minneapolis, MN (US)	See application file for complete search history.
(73) Assignce: Oxygenator Water Technologies, Inc St. Louis Park, MN (US)	(56) References Cited , U.S. PATENT DOCUMENTS

The present invention produces microbubbles and nanobubbles of oxygen via the electrolysis of water. As molecular oxygen radical (atomic weight 8) is produced, it reacts to form molecular oxygen, O_2 . In the special dimensions of the invention, as explained in more detail in the following examples, O_2 forms bubbles which are too small to break the surface tension of the fluid. These bubbles remain suspended indefinitely in the fluid and, when allowed to build up, make the fluid opalescent or milky. Only after several hours do the bubbles begin to coalesce on the sides of the container and the water clears. During that time, the water is supersaturated with oxygen. In contrast, the H₂ formed readily coalesces into larger bubbles which are discharged into the atmosphere, as can be seen by bubble formation at the cathode.

S/N 13/247.2		REISSUE PATEN
	IN THE UNITED STATES	PATENT AND TRADEMARK OFFICE
Applicant:	James Andrew Senkiw	Examiner: Cameron Allen
erial No .:	13/247,241	Group Art Unit: 1774
iled:	September 28, 2011	Docket No.: 3406.005USR
ustomer No	.: 21186	Confirmation No.: 1737
Title:	FLOW-THROUGH OXYGENAT	OR
	Re-issue of I	J.S. Patent No. 7,670,495

Applicant's system, method and suspension are the opposite. Applicant's micro and nanobubbles do not rise to the surface and do not break water surface tension. Applicant's claims now recite the conditions needed to produce this result, including voltage, amperage, total water solids indicating conductivity, and the electrode spacing. In particular, Applicant's electrode spacing is significantly smaller than the one ince spacing of Murrell. As Applicant states:

Above that thickness (0.0140 inches), the power needs are higher and the oxygen bubbles formed at a higher voltage will coalesce and escape the fluid. Reissue patent - 5:4-10

In other words, higher voltages and higher electrode separations cause larger bubbles that will rise to the surface like Murrell's development.

Exhibit 1102_0186

- Ex. 1101, 4:27-41
- Ex. 1102, 198

Fredri*k*son

- Petition (Paper 1), 69

Reply (Paper 42), 22

Grounds 8, 10, 12, 14, 16, 18, 20, 22, 24 – Davies and Hough

SYSTEM (7) Invance, Gary S, Bragh, Woodinstie, Thy T, Jahnen, Bellovis, both of WA (US) (3) Aniguez H20 Technologies, LL (JR (US) (4) Neitz: Series and checking to the motion use of the parties is extended an algoridal interest (3) Aniguez H20 Technologies, LL (JR (US) (4) Neitz: Series (US) Series (US) (4) Neitz: Series (US) Series (US) (5) Int. C1 ² (5) Fold of South —		Jnited States Patent ough et al.	(10) Patent No.: US 6,296,756 B (45) Date of Patent: Oct. 2, 200
SYSTEM (7) Invents: C_{BT} S, Hungh, Woodierdie: Thy T, Jahnsa, Bellevis, both of WA (05) (3) Anajyoe: H21 Technologis, LL, (38 (U5) (4) Notice: Subject to any declaring the term of the patter is extended or adjusted and the system is ex			
$ \begin{array}{c} (3) \text{Invations} \text{Gay s. Rough, Woodinville, Tury T. Jahann, Rolliva, Hold With (20) \\ (3) \text{Jahann, Rolliva, Hold With (20) \\ (4) \text{Jahann, Rolliva, Hold With (20) \\ (5) \text{Jahann, Rolliva, Hold With (20) \\ (6) \text{Kate in a star a discharing the train of this product (20) \\ (2) \text{Jahan, South (20) to go days. \\ (3) \text{Less (20) Soly (20) } \\ (3) Less (2$			4,456,601 3/1984 Branchick et al
 (a) Adaptive full information, bit most full bit continued on acts page.) (b) Notice Statistical or signed a mark si	(75) li	aventees: Gary S. Hough, Woodiaville; Tray T. Johnson, Bellovae, both of WA (US)	4,481,096 11/1984 Okazuki
(1) Notice Subjects any dockings, the sum of the SULCE NOTICE PUBLICATION OF MATTER SUBJECT AND SUBJE	(73) A	ussignce: H20 Technologies, Ltd., OR (US)	
(1) Appl. No. (#335,554 (2) Field Sep. 8, 1997 (3) EG 7 (4) EG 7 (5) Field Steamt 2017, 15074 (4) EG 7 (5) Field Steamt 2017, 15074 (5) Field Steamt 2017, 15074 (6) Constant 2017, 15074 (6) Constant 2017, 15074 (6) Constant 2017, 15074 (7) Constant 2017, 15074 (7) Constant 2017 (7) Constant 2017 ((*) N	patent is extended or adjusted under 35	FOREIGN PATENT DOCUMENTS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		U.S.C. 154(6) by 0 days.	105641 5/3917 (G80).
(2)) Field Sep. 9, 1999 (3) IIII, C. $\frac{1}{10000000000000000000000000000000000$	(21) A	Appl. No.: 09/393,394	WO 87/01690 3(1987 (WO)).
(1) In C.	(22) F	iled: Sep. 9, 1999	WO 98/04502 2/1998 (WO).
(ii) US, CL		nt. Cl. ² C02F 1/461	
 (f) Energy Dispersion of the second se		J.S. CL	0 111011 1 0 0 0 0 0 0 0 0 0 0
U.S. MULKI DOUCHMENTS $1,37,50^{-1}$ (2012) Stratik — 10,000 $1,37,50^{-1}$ (2012) Stratik — 10,0000 $1,37,50^{-1}$ (2012) Stratik — 10,000 $1,37,50^{-1}$ (2012)			chure regarding information on various products to impro-
$ \begin{array}{ c c c c c } \hline \\ \hline $		U.S. PATENT DOCUMENTS	technology, Sep. 30, 1993.
$ \begin{array}{ c c c } \hline \\ \hline $	1,86 2,46 2,56	17,643 2/1917 Schneider 204/271 52,963 6/1932 Curtis 204/271 58,357 4/1949 Brown 204/248 44,250 12/1958 Biggles, Ji. et al. 204/148	Assistant Examiner—Thomas H Parsons (74) Attorney, Agent, or Firm—Seed IP Law Group PLI
	5,83 3,96 3,97 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,0	16:34 6:17/8 Bernett 20:25 3:17/9 Bernett 20:45:25 3:17/9 Freen, III et al. 20:45:25 3:17/1 11:17/9 Freenett 20:42:25 3:17/9 Freenett 20:42:25 20:42:25 3:17/9 Freenett 4:16:42 20:42:25 3:17/9 Freenett 20:42:26 20:42:26 3:17/9 Freenett 20:42:26 20:42:26 3:17/9 Freenett 4:16:42 20:42:26 3:17/9 Freenett 4:16:42 2	elitricia in source to be purified. The electrolytic coll indust as hereing and a set of electrolical. The horizing provide the electrolytic coll from dramage during horizing horizing age. The hard portable appravations have system counted col- fied electrolytic coll from dramage during horizing horized and the system of the system of the system counted col- fied electrolytic coll from dramage during horized and the system of the system of the system of the field electrolytic coll from dramage during horized the field electrolytic colling and the system of the system is small energing and light energing horized electrolytic colling montal as ar the bottom of a continiara with cre-half to fi- galiton expective horized colling premeating or decladation
(m)-H			
Tennant Com			

Another known technique to place oxygen in water is electrolysis, which operates as follows. A voltage is applied to an electrolytic cell that is immersed in water, resulting in current flow in the water. The current flow in the water causes the water molecules to break up into their component parts of hydrogen and oxygen. Hydrogen gas and oxygen gas are thereby freed from the water. Typically, most of the hydrogen gas escapes as a gas from the water, while some of the oxygen gas is dissolved into the water. See, for example, the systems described in U.S. Pat. No. 5,728,287, issued Mar. 17, 1998, and U.S. Pat. No. 5,911,870, issued Jun. 15, 1999, owned by the same assignee as this invention. Current water treatment systems using electrolysis are usually designed to be installed in-line with the water flow path. Additionally, these systems are commonly designed to handle large volumes of water. What is not currently available is a system and method that efficiently increase the dissolved oxygen content of water off-line, and which is small enough for home use.

- Ex. 1111, 1:26-45
- Petition (Paper 1), 70-71
- Reply (Paper 42), 22

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Fredrikson

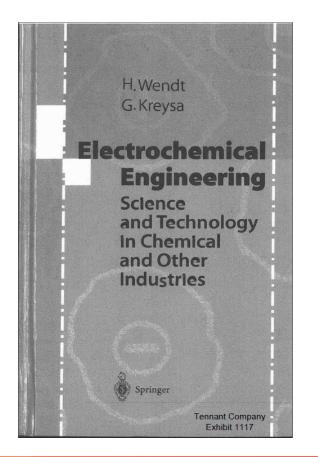
Grounds 9-12, 15-18, 21-24 – Davies and Erickson

Un	ited States Patent [19]	[11]	Patent N	05324398A umber:	5,324,398
Eric	kson et al.	[45]	Date of	Patent:	Jun. 28, 1994
[54]	CAPACITIVE DISCHARGE CONTROL CIRCUIT FOR USE WITH ELECTROLYTIC FLUID TREATMENT SYSTEMS	4,917,1	002 6/1989 782 4/1990 557 6/1990	Davies Tuoci et al	
[75]	Inventors: Robert K. Erickson, Belmont; Francois X. Prinz, San Jose, both of Calif.	5,055, 5,057,	906 1/1991 170 10/1991 212 10/1991 940 11/1991	Saito Burrows	204/228
[73]	Assignce: Water Regeneration Systems, Inc., Belmont, Calif.	0329	OREIGN PA 562 8/1989	European Pat	Off.
[21]	Appl. No.: 901,411		896 11/1983		Sermany .
[51]	Filed: Jun. 19, 1992 Int. Cl. ⁵	Assistant I Attorney,	Examiner—Jo Examiner—A Agent, or Fin k Kindness	run S. Phase	ge sen, O'Connor,
[58]	204/228; 204/305; 204/400; 204/406; 204/412 Field of Search	[57]		BSTRACT	
	204/400, 405, 412 References Cirel U.S.PATENT DOCUMENTS US150 7/770 Window fit	treating fi plied envi lytic cell (circuit (2) applied to tions in fi neously a contamina ation of th	luid provided ronment (14) (18), whose o (0) to allow a to the cell sul luid resistivit chieve, for a ants, killing o the fluid's che ively high levently.	by a fluid s The system peration is go desired av stantially in y, to allow xample, the f biological mical charac	disclosed for use in ource (12) to a sup- includes an electro- overned by a control dependent of varia- the cell to simulta- desired removal of materials, and alter- teristics, and to pro- y to the fluid quickly Sheets
	ENVIRONM			1	
	BO C DOER SUPPLY B2 CURRENT SENSOR M CLARACTIVE STORAGE	1077	1/0	-1	
	96 DOPER SVITEINC CIRCUT 96 INVERTER	1015	-103		
	TO ELECTROLYTIC		- 20	1	

The voltage and/or current range is selected based upon the nature of the water to be treated and the desired relative performance of the system 16 in removing impurities, killing biological materials, and altering the fluid's chemical composition. In that regard, assume that the fluid is water and includes bacteria and organic chemicals. To kill bacteria, a voltage on the order of 24 volts or more, and a current on the order of 10 amperes is desirable to break down the chemical bonds in the water molecules and, hence, increase the oxygenation of the water. The higher oxygen levels then kill the bacteria.

- Ex. 1107, 11:8-19
- Ex. 1103 ¶¶ 188, 189
 - Petition (Paper 1), 73-74

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE


Fredrikson

Grounds 11-12, 17-18, 23-24 – Davies Combinations in View of the General Knowledge, Experience and Common Sense of a POSITA as Reflected in Wendt, Han, Glembotsky and Burns

- These textbooks merely reflect the general knowledge and understanding of a POSITA.
- Show how a POSITA would understand Davies and combined references
- A POSITA would have understood water electrolysis systems were known to produce bubbles smaller than 50 microns. – Pet. 40-44, 74-75, 78-79, 83; Ex. 1103, ¶¶170-183, 191-192, 197-198, 205-206.

5.4.7 Mass Transfer at Gas Evolving Electrodes

Mass transfer at gas evolving electrodes can be remarkably enhanced, provided gas evolution is intense enough to influence the flow of the electrolyte along the electrode. As radii of electrochemically evolved gas bubbles are usually relative small (5–50 μ m), bubbles can perturb concentration boundary layers very effectively thereby enhancing mass transfer and compressing Nernst-diffusion layers.

- Ex. 1117, 103
- Ex. 1103 ¶¶ 16, 170, 181, 191-192, 197-198, 205-206
- Petition (Paper 1), 40-41, 74-75, 78-79, 83
- Reply (Paper 42), 25

Introduction

Check for updates

Development of a new method of measuring bubble size

M.Y. Han*, Y.H. Park* and T.J. Yu**

*School of Civil, Urban & Geosystem Engineering, Seoul National University, San 56-1, Shilim-dong, Kwanak, gu, Seoul, Korea, E-mail: myham@gong.sru.ac.kr; rybpark@waterlinst.sru.ac.kr) *Department of Civil and Environmental Engineering, Kwangju University, 592-1, Jinvol-dong, Nam-gu, Kwangju, Knez, E-mail: fyru@hoim.kwangju.ac.kr)

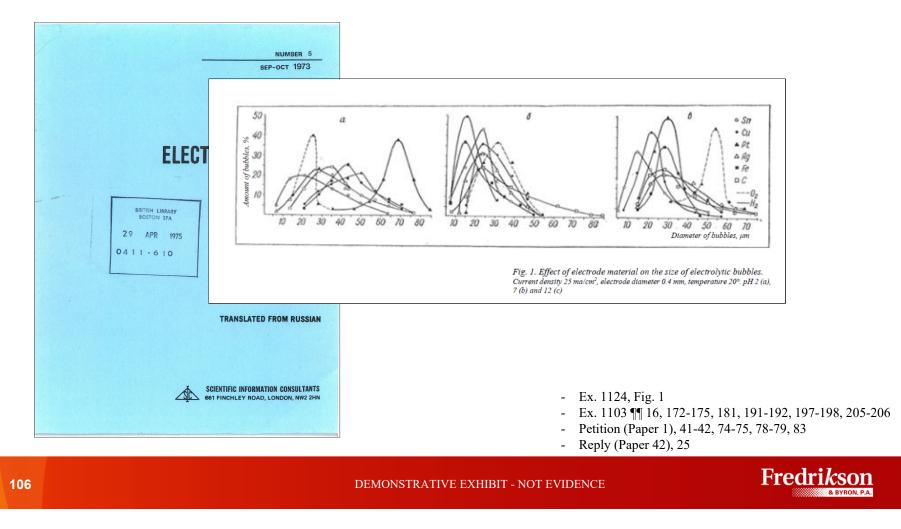
Abstract The use of babbies in water and waterwater transmer, including discoled air fotation (DAF) and electro-fotation (EF), is attracting much interest recently. These fotation processes are governed by characteristics of the babbies as well as the particles, and therefore it is noncease; to investigate the size distribution (The bubbles that are generated, in this research, a new method has been developed to hasaure the bubble size, using commenciarly available babbies, and on-les particle counters. The results are compared with the traditional image analysis method. Although there are some discorpondes, the results who that an on-the particle counter can produce reasonable accurate size distributions conveniently and efficiently. The bubble size measurement technique developed in this stady will assist understanding and improvement of the DE and EF processor, from both theoretical and practical points in view. Keyversets Bubble size, disolved air fotation (DAF); electro-fotation (EF); image analysis; particle counter

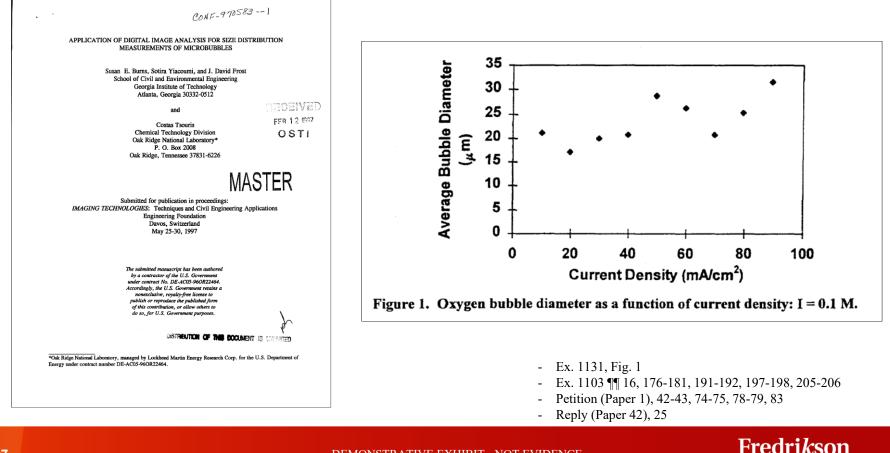
Introduction

The use of bubbles in water and watewater treatment, including dissolved air flotation (DAF) and electro-flotation (EF), has attracted much interest recently. Although the fundamental characteristics of the micro-bubble/particle/solution system should affect the removal efficiency of the process, the effect of each governing physical-chemical parameter has not been investigated fully, either experimentally on theoretically. According to recent modeling of the DAF process, the most important parameters that affect the removal efficiency are the size and zeta potential of both bubbles and particles (Han et al., 2001; Han, 2002).

In DAF, bubbles are generated when air-saturated water is released into atmospheric pressure. The size of bubbles is movel will affected by pressure difference across the injection system and type of nozzle (AWWA, 1999). The size range is generally reported to be 10–100 µm, with the average being approximately 40 µm, under a pressure of 4–6 atmospheres (Garwald, 1995). In EF, hydrogen and oxygen bubbles are generated when current is applied to the solution through metal electrodes. The average size range is reported to be around 20–40 µm, which is a smaller range than that OAA (Burss *et al.*, 1997).

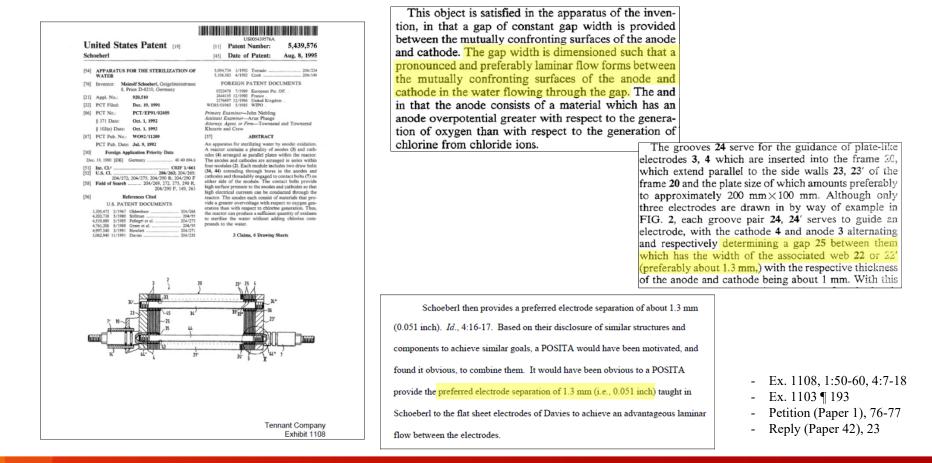
Several methods have been developed to measure the size of bubbles. The most straightforward method is image analysis. Because this method requires a complicated experimental setup and is time-consuming, it is not easy to produce enough data to generate size distributions under different conditions. Another method is to measure the rising velocity of the bubbles and to calculate the sizes by Stokes' Law. However, because the sizes of bubbles are not uniform, and because the rising velocity of many bubbles is different from that of a single bubble, no general equations are available to predict the size distribution of bubbles from the rising velocities.


In this study, a new method to measure the size of bubbles, using particle counters, was developed. The bubble counting results obtained from both image analysis and particle Tennant Company Exhibit 1137


The use of bubbles in water and wastewater treatment, including dissolved air flotation (DAF) and electro-flotation (EF), has attracted much interest recently. Although the fundamental characteristics of the micro-bubble/particle/solution system should affect the removal efficiency of the process, the effect of each governing physical–chemical parameter has not been investigated fully, either experimentally or theoretically. According to recent modeling of the DAF process, the most important parameters that affect the removal efficiency are the size and zeta potential of both bubbles and particles (Han *et al.*, 2001; Han, 2002).

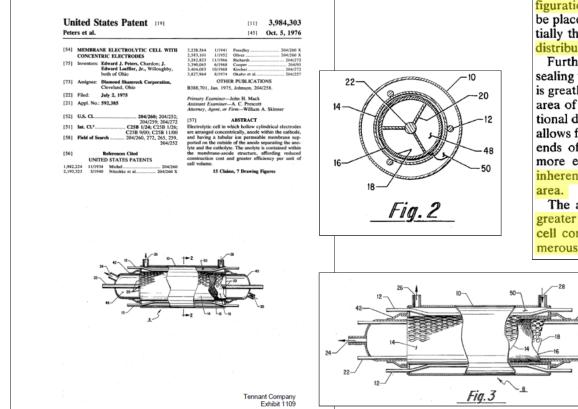
In DAF, bubbles are generated when air-saturated water is released into atmospheric pressure. The size of bubbles is mostly affected by pressure difference across the injection system and type of nozzle (AWWA, 1999). The size range is generally reported to be $10-100 \mu m$, with the average being approximately $40 \mu m$, under a pressure of 4–6 atmospheres (Edzwald, 1995). In EF, hydrogen and oxygen bubbles are generated when current is applied to the solution through metal electrodes. The average size range is reported to be around 20–40 μm , which is a smaller range than that of DAF (Burns *et al.*, 1997).

- Ex. 1137, 77
- Ex. 1103 ¶ 16, 171, 181, 191-192, 197-198, 205-206
- Petition (Paper 1), 41, 74-75, 78-79, 83
- Reply (Paper 42), 25



DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

TECTI/CSON & BYRON, P.A.


Grounds 13-18 – Schoeberl Teaches the Separation Distance of Claim 24

DEMONSTRATIVE EXHIBIT - NOT EVIDENCE

Grounds 19-24 – Peters Teaches the Electrode Configuration of Claims 26 and 27

Additionally, the tubular concentric electrode configuration allows the use of conductor means which can be placed in contact with the electrodes along substantially their entire length, providing more even current distribution and improved current density.

Further, due to its tubular design, the problems of sealing the membrane at its junction with the cell walls is greatly reduced. The membrane sealing area per unit area of electrode is much smaller than in the conventional design, and the nature of the membrane material allows for either a forced fit or a shrink seal around the ends of the anode. Construction tolerances are also more easily achieved, since the cylindrical shape is inherently more stable than flat sheets of equivalent area.

The apparatus of the invention also provides for a greater efficiency per unit of cell volume and reduced cell construction costs, due to the elimination of numerous joints by use of the tubular design.

- Ex. 1109, Figs. 2 & 3, 2:37-55
- Ex. 1103 ¶ 200
- Petition (Paper 1), 79-81
- Reply (Paper 42), 24

Grounds 19-24 – Peters Teaches the Electrode Configuration of Claims 26 and 27

. .

UNITED STATES PATENT AND TRADEMARK OFFICE	Q Okay. And this appears to show that it was known by at
BEFORE THE PATENT TRIAL AND APPEAL BOARD	least 1976 to form electrodes out of mesh and to form
	those mesh electrodes into cylindrical shapes; is that
TENNANT COMPANY, Case IPR2021-00625	fair to say?
Patent No. RE 45,415	MR. LOUWAGIE: Objection to form.
Petitioner,	A I think the statement that you made is consistent with
· COPY	what we see in the patent, yes. Uh-huh.
	BY MR. JOHNSON:
OXYGENATOR WATER TECHNOLOGIES, INC.,	Q Yeah.
Patent Owner.	And apparently this structure affords
	"reduced construction cost and greater efficiency per unit
	of cell volume," according to the ABSTRACT; is that right?
Video Deposition of	MR. LOUWAGIE: Objection to form.
Ralph E. White, Ph.D.	A (Reviewing.) Yes, it says, "affording reduced
Wednesday, February 9, 2022	construction cost and greater efficiency per unit of cell
8:05 a.m.	volume." I see that in the ABSTRACT. While the invention will be described in connection
	with a preferred embodiment, i.e. the electrolysis of sodium chloride brine to produce chlorine and caustic soda, it is to be understood that this is only for purposes of illustration and is not intended to limit the invention to that embodiment. On the contrary, it is intended to
Court Stenographer:	cover all alternatives, modifications and equivalents as
Patrick J. Mahon Registered Merit Reporter	 Ex. 1147, 238:3-18 Ex. 1109, 3:10-19 may be included within the spirit and scope of the invention as defined by the appended claims.
Registered Merit Reporter Certified Realtime Reporter	
	- Reply (Paper 42), 24

Thank you!

111