=

B —————

e e~

e e

S ——

lncludes USB 2.0

UsB

COMPLETE

SECOND EDITION

au ‘_l

Everything You

Need to Develop
‘ Custom USB

AN

'5-
-~
>

Perzp/aemls

jAN Axram.smm

of Pc

alle

| Port Complet:

> an

d

al Port Cot

-'h.i!cf.‘if"
|

Fundamental Ex 2006 '

TCT et al v Fundamental

IPR2021-00599 !

g
!

Ullilll!lllllmllillINININHﬂlHllﬂfﬂllllll!iﬂllilllllmIIHIEIHII{

021

USB Complete

Everything You Need
to Develop Custom USB Peripherals

Second Edition

Jan Axelson

Lakeview Research
Madison, WI 53704

Fundamental Ex 2006

TCT et al v Fundamental

IPR2021-00599

copyright 2001 by Jan Axelson. All rights reserved.

Published by Lakeview Research

Cover by Rattray Design. Cover Photo by Bill Bilsley Photography.
Index by Broccoli Information Management

Lakeview Research Phone: 608-241-5824
5310 Chinook Ln. Fax: 608-241-5848
Madison, WI 53704 Email; info@Lvr.com
USA Web: http://www.Lvr.com

1413121110987 654321

Products and services named in this book are trademarks or registered trademarks of
their respective companies. In all instances where Lakeview Research is aware of a
trademark claim, the product name appears in initial capital letters, in all capital letters,
or in accordance with the vendor’s capitalization preference. Readers should contact the
appropriate companies for complete information on trademarks and trademark registra-
tions. All trademarks and registered trademarks in this book are the property of their
respective holders.

No part of this book, except the programs and program listings, may be reproduced in
any form, or stored in a database or retrieval system, or transmitted or distributed in any
form, by any means, electronic, mechanical photocopying, recording, or otherwise,
without the prior written permission of Lakeview Research or the author. The programs
and program listings, or any portion of these, may be stored and executed in a computer
system and may be incorporated into computer programs developed by the reader.

The information, computer programs, schematic diagrams, documentation, and other
material in this book are provided “as is,” without warranty of any kind, expressed or
implied, including without limitation any warranty concerning the accuracy, adequacy,
or completeness of the material or the results obtained from using the material. Neither
the publisher nor the author shall be responsible for any claims attributable to errors,
omissions, or other inaccuracies in the material in this book. In no event shall the pub-
lisher or author be liable for direct, indirect, special, incidental, or consequential dam-
ages in connection with, or arising out of, the construction, performance, or other use of
the materials contained herein.

ISBN 0-9650819-5-8 Printed and bound in the United States of America

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Inside USB Transfers

3 device. If |

can access

-0 the chip

about how
. make the
sose of the

Inside USB Transfers

To design and program a USB device, you need to know a certain amount
about the inner workings of the interface. This is true even though the hard-
ware and system software handle many of the details automatically.

This and the next three chapters are a tutorial on how USB transfers data.
This chapter has essentials that apply to all transfers. The following chapters
cover the four transfer types supported by USB, the enumeration process,
and the standard requests used in control transfers.

You don't need to know every bit of this information to get a project up and
running, but I've found that understanding something about how the trans-
fers work helps in deciding which transfer types to use, in writing the firm-
ware for the controller chip, and in tracking down the inevitable bugs that
show up when you try out your circuits and code.

The USB interface is complicated, and much of what you need to know is
interwoven with everything else. This makes it hard to know where to start.
In general, T begin with the big picture and work down to the details.
Unavoidably, some of the things T refer to aren’ explained in detail until

:"Complete 39

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Chapter 3

Jater. And some things are repeated because they're important and relevant

in more than one place.

The information in these chapters is dense. If you don’t have a background
in USB, you won't absorb it all in one reading. You should, however, get a
feel for how USB works, and will know where to look later when you need
to check the details.

The ultimate authority on the USB interface is the specification published
by its sponsoring members. The specification document, titled not surpris-
ingly, Universal Serial Bus Specification, is available on the USB Implement-
ers Forum's website (www.ush.org). However, by design, the specification
omits information and tips that are unique to any operating system or con-
troller chip. This type of information is essential when you're designing a
product for the real world, so I've included it.

Transfer Basics

You can divide USB communications into two categories, depending on
whether they're used in configuring and setting up the device or in the appli-
cations that carry out the device’s purpose. In configuration communica-
tions, the host learns about the device and prepares it for exchanging data.
Most of these communications take place when the host enumerates the
device on power up or attachment. Application communications occur
when the host exchanges data for use with applications. These are the com-
munications that perform the functions the device is designed for. For
example, for a keyboard, the application communications are the sending of
keypress data to the host to tell an application to display a character.

Configuration Communications

During enumeration, the device’s firmware responds to a series of standard
requests from the host. The device must identify each request, return
requested information, and take other actions specified by the requests.

On PCs, Windows performs the enumeration, so there’s no user program-
ming involved. However, to complete the enumeration, Windows must

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Inside USB Transfers

d relevant have two files available: an INF file that identifies the filename and location
of the device’s driver, and the device driver itself. If the files are available and
the firmware is in order, the enumeration process is invisible to users.

wckground
ever, get a Depending on the device and how it will be used, the device driver may be
you need one that’s included with Windows or one provided by the product vendor.

The INF file is a text file that you can usually adapt if needed from an exam-
published ‘ ple provided by the driver’s provider. Chapter 11 has more details about
device drivers and INF files.

>t surpris-
1plement- N
-cification Application Communications
m Or con- After the host has exchanged enumeration information with the device and
signing a a device driver has been assigned and loaded, the application communica-
tions can be fairly straightforward. At the host, applications can use standard
Windows API functions to read and write to the device. At the device, trans-
ferring data typically requires placing data to send in the USB controller’s
transmit buffer, reading received data from the receive buffer, and on com-
nding on pleting a transfer, ensuring that the device is ready for the next transfer.
the appli- Most devices also require additional firmware support for handling errors
nmunica- and other events.

sing data. i
5118 Each data transfer on the bus uses one of four transfer types: control, inter-

erates the . . .
rupt, bulk, or isochronous. Each has a format and protocol suited for partic-

)ns occur
ular uses.
the com-

| for. For

, - Managing Data on the Bus
ending of

USB’s two signal lines carry data to and from all of the devices on the bus.
The wires form a single transmission path that all of the devices must share.
(As explained later in this chapter, a cable segment between a 1.x device and
. 2.0 hub on a high-speed bus is an exception, but even here, all data shares
‘standard the path between the hub and host.) Unlike RS-232, which has a TX line to
L, return carry data in one direction and an RX line for the other direction, USB’s
pair of wires carries a single differential signal, with the directions taking
program- turns,

L.

lests.

JwWs must

omplete - USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Chapter 3
~ [m " %) ~ e %) 2} ~|e © Host Spe
Alx
1511 P O A A E e must
clglels s g g [lolsls |8 |88 clsls 4 8
2Elzlz |z A ERIHAFEEEE Zlalz & 3 Al
I I chan
1-MILLISECOND FRAME [-MILLISECOND FRAME X 1-MILLISECOND FRAME In co
Figure 3-1: At low and full speeds, the host schedules transactions within Spee
1-millisecond frames. Each frame begins with a Start-of-Frame packet, followed help
by transactions that transfer data to or from device endpoints. The host may isa
schedule transactions anywhere it wants within a frame. The process is similar at ware.
high speed, but using 125-microsecond microframes. than
. The
The host is in charge of seeing that all transfers occur as quickly as possible. upstr
It manages the traffic by dividing time into chunks called frames, or microf-
rames at high speed. The host gives each transfer a portion of each frame or
microframe (Figure 3-1). For low- and full-speed data, the frames are one
millisecond. For high speed data, the host divides each frame into eight
125-microsecond microframes. Each frame or microframe begins with a
Start-of-Frame timing reference.
U
Each transfer consists of one or more transactions. Control transfers always -
have multiple transactions because they have multiple stages, each consisting or
of one or more transactions. Other transfers use multiple transactions when
they have more data than will fit in a single transaction. Depending on how
the host schedules the transactions and the speed of a devices response, a ’
transfer’s transactions may all be in a single frame or microframe, or they o
; : i HIGH-SP
may be spread over multiple (micro)frames. DEVIC
Because all of the transfers share a data path, each transaction must include a
device address. Every device has a unique address assigned by the host, and
all data travels to or from the host. Fach transaction begins when the host
sends a block of information that includes the address of the receiving device
and a specific location, called an endpoint, within the device. Everything a
device sends is in response to receiving a request from the host to send data Figure 3-2:
or status information. low and full
42 , USB Complete USB Comp
damenta 006

_
_—

FRAME
within
cet, followed

ost may
s is similar at

v as possible.
s, or microf-
ach frame or
mes are one
e into eight
gins with a

isfers always
h consisting
ctions when
ling on how
response, a
me, or they

st include a
e host, and
en the host
ving device
verything a
> send data

Host S

Inside USB Transfers

peed and Bus Speed

A 1.x host supports low and full speeds. A 2.0 host with user-accessible ports
must support low, full, and high speeds.

A 1.x hub doesn’t convert between speeds; it just passes received traffic on,
changing only the edge rate of the signals to match the destination's speed.
In contrast, a 2.0 hub acts as a remote processor. It converts between high
speed and low or full speed as needed and performs other functions that
help make efficient use of the bus time. The added intelligence of 2.0 hubs

is a major reason why the high-speed bus remains compatible with 1.x hard-

ware. It also means that 2.0 hubs are much more complicated internally
than 1.x hubs.

The traffic on a bus segment is high speed only if the host controller and all
upstream (toward the host) hubs are 2.0-compliant. Figure 3-2 illustrates. A

2.@ HOST

AND
ROOT HUB
1M

HIGH SPEED Qﬁr

(, HIGH SPEED LOW SPEED

FULL SPEED
LI

LOW/FULL SPEED

[}

HIGH-SPEED FULL-SPEED LOW-SPEED

2.0 HUB DEVICE BEVICE DEVICE

1

N LOW SPEED FULL SPEED®
FULL SPEED

SPEED

. (]
T LT
HIGH SPEED LOW=SPEED

UJ LOW-SPEED HISEQ?EEED DEVICE

HIGH-SPEED DEVICE
DEVICE

B FULL-SPEED
FULL-SPEED DEVICE
DEVICE

*FULL-SPEED ENUMERATION 1S REQUIRED.
ADDITIONAL FULL-SPEED FUNCTIONALITY
IS OPTIONAL.

Figure 3-2: A USB 2.0 bus uses high speed whenever possible, switching to
low and full speeds when necessary.

Complete USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Chapter 3

high-speed bus may also have 1.x hubs, and if so, any bus segments down-
stream (away from the host) are low or full speed. Traffic to and from low-
and full-speed devices travels at high speed between the host and any 2.0
hubs that connect to the host with no 1.x hubs in between. Traffic between
2.0 hub and a 1.x hub or another low- or full-speed device travels at low or
full speed. A bus with only a 1.x host controller supports only low and full
speeds, even if the bus has 2.0 hubs and devices. ‘

Elements of a Transfer

Understanding USB transfers requires looking inside them several levels
deep. Fach transfer is made up of transactions. Each transaction is made up
of packets. And each packet contains information. To understand transac-
tions, packets, and their contents, you also need to know about endpoints

and pipes. So that’s where we'll begin.

Device Endpoints

All transmissions travel to or from a device endpoint. The endpoint is a
buffer that stores multiple bytes. Typically its a block of data memory or a
register in the controller chip. The data stored at an endpoint may be
received data, or data waiting to transmit. The host also has buffers for
received data and for data ready to transmit, but the host doesnt have end-
points. Instead, the host serves as the starting point for communicating with

the device endpoints.

The specification defines a device endpoint as “a uniquely addressable por-
tion of a USB device that is the source or sink of information in a communi-
cation flow between the host and device.” This suggests that an endpoint
carries data in one direction only. However, as I'll explain, a control end-
point is a special case that is bidirectional.

The unique address required for each endpoint consists of an endpoint
number and direction. The number may range from 0 to 15. The direction
/ is from the host’s perspective: IN is toward the host and OUT is away from
the host. An endpoint configured to do control transfers must transfer data

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Chapter 3

Handshaking

62

Like other interfaces, USB uses status and control, or handshaking, infor-
mation to help to manage the flow of data. In hardware handshaking, dedi-
cated lines carry the handshaking information. An example is the RTS and
CTS lines in the RS-232 interface. In software handshaking, the same lines
that carry the data also carry handshaking codes. An example is the XON
and XOFF codes transmitted on the data lines in RS-232 links.

USB uses software handshaking. A code indicates the success or failure of all
transactions except in isochronous transfers. In addition, in control trans-
fers, the Status stage enables a device to report the success or failure of the
entire transfer.

Most handshaking signals transmit in the handshake packet, though some
use the data packet. The defined status codes are ACK, NAK, STALL,
NYET, and ERR. A sixth status indicator is the absence of an expected
handshake code, indicating a more serious bus error. In all cases, the receiver
of the handshake, or lack of one, uses the information to help it decide what
to do next. Table 3-5 shows the status indicators and where they transmit in
each transaction type.

ACK

ACK (acknowledge) indicates that a host or device has received data without
error. Devices must return ACK in the handshake packets of Setup transac-
tions. Devices may also return ACK in the handshake packets of OUT
transactions. The host returns ACK in the handshake packets of IN transac-
tions.

NAK

NAK (negative acknowledge) means the device is busy or has no data to
return. If the host sends data at a time when the device is too busy to accept
it, the device sends a NAK in the handshake packet. If the host requests data
from the device when the device has nothing to send, the device sends a
NAK in the data packet. In either case, NAK indicates a temporary condi-
tion, and the host retries later.

USB Complete

w»»-m»mwwvwwmwwww«wmwwwxr«mﬂm’wwwwmwm 4

Table 3
on the

Transac
or PING

Setup
ouT

IN

PING
(high s

USE

Inside USB Transfers

Table 3-5: The location, source, and contents of the handshake signal depend
on the type of transaction.

lflg, infor. [Transaction type |Data packet Data packet Handshake Handshake
ang, dedL r PING query source contents packet source packet
- RTS ang 2 contents
same lineg Setup host data device ACK
the - fouT host data device ACK,
XON o NAK,
STALL,
NYET (high
lure of o] speed only),
rol trans. ERR (from hub in
ire of the Lk complete split)
device data, ACK
; NAK,
gh some STALL,
ERR (from hub in
'STALL’ complete split)
“Xp ec?ted _ [PING none device ACK,
recetver - |(high speed only) NAK,

de what _ STALL
Asmit in '
Hosts never send NAK. Isochronous endpoints don't support NAK because
they have no handshake packet for returning the NAK. If a device or the

host misses isochronous data, it’s gone.

vithout

ransac- STALL

ouTt ‘ The STALL handshake can have any of three meanings: unsupported con-
fansac- ‘ trol request, control request failed, or endpoint failed.

When a device receives a control-transfer request that the endpoint doesn’t
support, the device returns a STALL to the host. The device also sends a
STALL if it supports the request but for some reason can’t take the requested
action. For example, if the host sends a Set_Configuration request that
requests the device to set its configuration to 2, and the device supports only
configuration 1, the device returns a STALL. To clear this type of STALL,
the host just needs to send another Setup packet to begin a new control
transfer. The specification calls this type of stall a protocol stall.

USB Complete

Fundamental Ex 2006
TCTetalv Fundamental
IPR2021-00599

Enumeration: How the Host Learns about Devices

Arantee a rag

mn at the sa
e time tq &
nder Wind,
aranteed Cp

Enumeration:
How the Host Learns
about Devices

v

Before applications can communicate with a device, the host needs to learn
about the device and assign a device driver. Enumeration is the initial
exchange of information that accomplishes this. The process includes
assigning an address to the device, reading data structures from the device,
assigning and loading a device driver, and selecting a configuration from the
options presented in the retrieved data. The device is then configured and
ready to transfer data using any of the endpoints in its configuration.

This chapter describes the enumeration process, including the structure of
the descriptors that the host reads from the device during enumeration. You
don’t need to know every detail about enumeration in order to design a USB
peripheral, but understanding a certain amount is essential in creating the

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Chapter 5

descriptors that will reside in the device and writing the firmware that
responds to enumeration requests.

The Process

One of the duties of a hub js to detect the attachment and removal of
devices. Each hub has an interrupt IN pipe for reporting these events to the
host. On system boot-up, the host polls its root hub to learn if any devices
are attached, including additional hubs and devices attached to the first tier
of devices. After boot-up, the host continues to poll periodically to learn of
any newly attached or removed devices. '

On learning of a new device, the host sends a series of requests to the
device’s hub, causing the hub to establish 1 communications path between
the host and the device. The host then attempts to enumerate the device by
sending control transfers containing standard USB requests to Endpoint 0,
All USB devices must support control transfers, the standard requests, and
Endpoint 0. For a successful enumeration, the device must respond to each

request by returning the requested information and taking other requested Fiqure 5-1:|
« igure 5-

actions. : USB deViC
From the user’s perspective, enumeration should be invisible and automatic, and others |
except for possibly a window that announces the detection of a new device

and whether or not the attempt to configure it succeeded. Sometimes on

first use, the user needs to provide a disk containing the INF file and device

driver.

When enumeration is complete, Windows adds the new device to the
Device Manager display in the Control Panel. Figure 5-1 shows an example.
To view the Device Manager, in Windows 98, click the Start menu > Set.
tings > Control Panel >System > Device Manager. In Windows 2000, ic’s the
same except that after clicking System, you click Hardware, then Device ; |
Manager. When a user disconnects a peripheral, Windows automatically Enumera
removes the device from the display. 1 3
Durij
devid

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Enumeration: How the Host Learns about Devices

firmware th

. | Monitars
d remoy.
al Off -7y Mouse
cvents to the ; B Network adapters
3 .] Ports (COM & LPT)
an :
y dCVlces 45 5CS| controllers
the ﬁl‘st tier 23 Sound, video and game contrallers
f 1 ' H w«% System devices
Vto learn of B Tape dive contoliers
Tape drives
| @ Universal Serial Bus controllers
Iests to the @ General purpose USE Hub
‘ G%P Intel 82371AB/EE PCla USE Universal Host Cantroller
th between « - € PDCS000
= device by - use oot Hub

adpoine ¢ : ~ o
uests, and
id to each
requested

Pefresh . PRemove

ger in Windows’ Control Panel lists all detected
USB devices. Some devices are listed under Univers

al Serial Bus controllers,
ltomatic, _and others are listed by type, such as keyboard or modem.
w device
imes on In a typical peripheral, the device’s program code contains the information
d device

the host will request, and a combination of hardware and firmware decodes

and responds to requests for the information. Some application-specific

t the ' | chips (ASICs) manage the enumeration entirely in hardware and require no
ample, ‘ firmware support. On the host side, under Windows there’s no need to write
> Set. ~ code for enumerating, because Windows handles it automatically. Windows
its the will look for a special text file called an INF file that identifies the driver to
Jevice use for the device.

tically)

Enumeration Steps
During the enumeration process, a device moves through four of the six

device states defined by the specification: Powered, Default, Address, and

USB Complete 95

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Chapter 5

Configured. (The other states are Attached and Suspend.) In each state, the
device has defined capabilities and behavior, :

The steps below are 2 typical sequence of events that occurs during enume,.
ation under Windows. The device firmware shouldn’t assume that the en,_
meration requests and events will occur in 4 particular order, however. The

evice should be ready to detect and respond to any control request at any
time.

1. The user plugs a device into a USB port. Or the system powers up with
a device already plugged into a port. The port may be on the root hub at the
host or attached to a hub that connects downstream of the host. The hub
provides power to the port, and the deyice is in the Powered state.

2. The hub detects the device. The hub monitors the voltages on the signal
lines of each of its ports. The hub has a 15-kilohm pull-down resistor on
each of the port’s two signal lines (D+ and D-), while a device has
1.5-kilohm pull-up resistor on either D+ for a full-speed device or D- for a
low-speed device. High-speed devices attach ac full speed. When a device
plugs into a port, the device’s pull-up brings that line high, enabling the hub,
to detect that a device is attached. Chapter 18 has more on how hubs detect
devices.

bl

3. The host learns of the new device. Each hub uses its interrupt pipe to
feport events at the hub. The report indicates only whether the hub or a
port (and if so, which port) has experienced an event. When the host learns
of an event, it sends the hub a Get_Port_Status request to find out more,
Get_Port_Status and the other requests described here are standard
hub-class requests that all hubs understand. The information returned tells
the host when a device is newly attached.

4. The hub detects whether a device is low or full speed. Just before the
hub resets the device, the hub determines whether the device is low or full
speed by examining the voltages on the two signal lines. The hub detects the

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Enumeration: How the Host Learns about Devices

Get_Port_Status request. USB 1.x allowed the hub the option to detect
device speed just after reset. USB 2.0 requires speed detection to occur
before reset so it knows whether to check for a high—speed—capable device
during reset, as described below.

5. The hub resets the device. When a host learns of a new device, the host
controller sends the hub a Set_Port_Feature request that asks the hub to
reset the port. The hub places the device’s USB data lines in the Reset condi-
tion for at least 10 milliseconds. Reset is a special condition where both D+
and D- are a logic low. (Normally, the lines have opposite logic states.) The
hub sends the reset only to the new device. Other hubs and devices on the
bus don’t see it.

6. The host learns if a full-speed device supports high speed. Detecting
whether a device supports high speed uses two special signal states. In the
Chirp J state, the D+ line only is driven and in the Chirp K state, the D- line
only is driven.

During ‘the reset, a device that supports high speed sends a Chirp K. A
high-speed hub detects the chirp and responds with a series of alternating
Chirp Ks and Js. When the device detects the pattern KJKJKJ, it removes its
full-speed pull up and performs all further communications at high speed. If
the hub doesn't respond to the device’s Chirp K, the device knows it must
continue to communicate at full speed. All high-speed devices must be capa-

ble of responding to enumeration requests at full speed.

7. The hub establishes a signal path between the device and the bus.
The host verifies that the device has exited the reset state by sending a
Ge/t_Port_Status request. A bit in the data returned indicates whether the
device is still in the reset state. If necessary, the host repeats the request until

the device has exited the reset state.

When the hub removes the reset, the device is in the Default state. The
device’s USB registers are in their reset states and the device is ready to
respond to control transfers over the default pipe at Endpoint 0. The device
can now communicate with the host, using the default address of 00h. The
device can draw up to 100 milliamperes from the bus.

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Chapter 5

8. The host sends a Get_Descriptor request to learn the maximum
packet size of the default pipe. The host sends the request to device
address 0, Endpoint 0. Because the host enumerates only one device at 3
time, only one device will respond to communications addressed to device

address 0, even if several devices attach at once.

The eighth byte of the device descriptor contains the maximum packet size
supported by Endpoint 0. A Windows host requests 64 bytes, but after
receiving just one packet (whether or not it has 64 bytes), it begins the status
stage of the transfer. On completion of the status stage, a Windows host
requests the hub to reset the device (step 5). The specification doesn’t
require a reset here, because devices should be able to handle the host’s aban-
doning a control transfer at any time by responding to the next Setup
packet. But resetting is a precaution that ensures that the device will be in a
known state when the reset ends.

9. The host assigns an address. The host controller assigns a unique
address to the device by sending a Set_Address request. The device reads the
request, returns an acknowledge, and stores the new address. The device is
now in the Address state. All communications from this point on use the
new address. The address is valid until the device is detached or reset or the
system powers down. On the next enumeration, the device may be assigned
a different address.

10. The host learns about the device’s abilities. The host sends a
Get_Descriptor request to the new address to read the device descriptor, this
time reading the whole thing. The descriptor is a data structure containing
the maximum packet size for Endpoint 0, the number of configurations the
device supports, and other basic information about the device. The host uses
this information in the communications that follow.

The host continues to learn about the device by requesting the one or more
configuration descriptors specified in the device descriptor. A device nor-
mally responds to a request for a configuration descriptor by sending the
descriptor followed by all of that descriptor’s subordinate descriprors. But a
Windows host begins by requesting just the configuration descriptor’s nine

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

1aximum
to device
*Vice at a
to device

icket size
but after
he status
>ws host
. doesn’t
t's aban-
it Setup
Ibeina

unique
sads the
levice is
use the
t or the
ssigned

ends a
or, this
taining
ns the
ISt uses

Enumeration: How the Host Learns about Devices

bytes. Included in these bytes is the total length of the configuration descrip-
tor and its subordinate descriptors.

Windows then

parse (pick out the individual elements in) the
data that follows. The Descriptors section in this chapter has more on what
; p p
each descriptor contains.

11. The host assigns and loads a device driver (except for composite
devices). After the host learns as much as it can about the device from its
descriptors; it looks for the best match in a device driver to manage commu-
nications with the device, In selecting a driver, Windows tries to match the
information stored in the system’s INF files with the Vendor and Product
IDs and (optional) Release Number retrieved from the device. If there is no
match, Windows looks for a match with any class, subclass, and protocol
values retrieved from the device. After the operating system assigns and
loads the driver, the driver often requests the device to resend descriptors or
send other class-specific descriptors.

An exception to this sequence is composite devices, which have multiple
interfaces, with each interface requiring a driver. The host can assign these
drivers only after the interfaces are enabled, which requires the device to be
configured (as described in the next step).

12. The host’s device driver selects a configuration. After learning about
the device from the descriptors, the device driver requests a configuration by
sending a Set_Configuration request with the desired configuration num-
ber. Many devices support only one configuration. If 2 deyice supports mul-
tiple configurations, the driver can decide which to use based on whatever
i he device will be used, or it may ask the user
what to do, or it may just select the first configuration. The device reads the

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Chapter 5

request and sets its configuration to match. The device is now in the Config-
ured state and the device’s interface(s) are enabled.

The host now assigns drivers for the interfaces in composite devices. As with
other devices, the host uses the information retrieved from the device to find
a matching driver.

The device is now ready for use.
The other two device states, Attached and Suspended, may exist at any time.

Attached state. If the hub isn't providing power (VBUS) to the port, the
device is in the Attached state. This may occur if the hub has detected an
over-current condition, or if the host requests the hub to remove power
from the port. With no power on VBUS, the host and device cant communi-
cate, so from their perspective, the situation is the same as when the device
isnt attached at all.

Suspend State. The Suspend state means the device has seen no activity,
including Start-of-Frame markers, on the bus for at least 3 milliseconds. In
the Suspend state, the device must consume minimal bus power. Both con-
figured and unconfigured devices must support this state. Chapter 19 has
more details.

Enumerating a Hub

Hubs are also USB devices, and the host enumerates a newly attached hub
in exactly the same way as it enumerates a device. If the hub has devices
attached, the host also enumerates each of these after the hub informs the
host of their presence.

Device Removal

When a user removes a device from the bus, the hub disables the device’s
port. The host learns that the removal occurred after polling the hub, learn-

ing that an event has occurred, and sending a Get_Port_Status request to
find out what the event was. Windows then removes the device from the
Device Manager’s display and the device’s address becomes available to
another newly attached device.

N
descriptd
;

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

Chapter 20

Low- and Full-speed Bus States

Low and full speed support the same bus states, though some are defineg
differently depending on the speed.

Differential 1 and Differential 0

When transferring data, the two states on the bus are Differential 1 and Djg.
ferential 0. A Differential 1 exists when D+ is a logic high and D- is a logic
low. A Differential 0 exists when D+ is a logic low and D- is a logic high,
Chapter 21 has details about the voltages that define logic low and high.

The Differential 1s and 0s don’t translate directly into 1s and Os in the bytes
being transmitted, but instead indicate either a change in logic level, no
change in logic level, or a bit stuff, as explained later in this chapter.

Single-Ended Zero

The Single-Ended-Zero state occurs when both D+ and D- are logic low.
The bus uses the SingleEnded-Zero state when entering the End-of-Packet,

Disconnect, and Reset states.

Single-Ended One

The complement of the Single-Ended Zero is the Single-Ended One. This
occurs when both D+ and D- are logic high. This is an invalid bus state and
should' never occur.

Data J and K States

In addition to the Differential 1 and 0 states, which are defined by voltages
on the lines, USB also defines two Data bus states,] and K. These are
defined by whether the bus state is Differential 1 or 0 and whether the cable
segment is low or full speed:

Bus State Data State
Low Speed Full Speed
Differential 0 |J K

Differential 1 (K J

/

USB Complete

Fundamental Ex 2006
TCT et al v Fundamental
IPR2021-00599

