HANDBOOR of

APPLIED
CRYPTOGRAPRHY

Alfred J. Menezes

Paul C. van Oorschot
Scott A. Vanstone

TCL Exhibit 1009
Page 1

Foreword

by R.L. Rivest

Aswe draw near to closing out the twentieth century, we see quite clearly that the
information-processing and telecommunications revol utions now underway will
continue vigoroudly into the twenty-first. We interact and transact by directing flocks
of digital packets towards each other through cyberspace, carrying love notes, digital
cash, and secret corporate documents. Our personal and economic lives rely more and
more on our ability to let such ethereal carrier pigeons mediate at a distance what we
used to do with face-to-face meetings, paper documents, and a firm handshake.
Unfortunately, the technical wizardry enabling remote collaborations is founded on
broadcasting everything as sequences of zeros and ones that one's own dog wouldn't
recognize. What is to distinguish adigital dollar when it is as easily reproducible as the
spoken word? How do we converse privately when every syllable is bounced off a
satellite and smeared over an entire continent? How should a bank know that it really is
Bill Gates requesting from his laptop in Fiji atransfer of $10,000,000,000 to another
bank? Fortunately, the magical mathematics of cryptography can help. Cryptography
provides techniques for keeping information secret, for determining that information
has not been tampered with, and for determining who authored pieces of information.

Cryptography is fascinating because of the close ties it forges between theory and
practice, and because today's practical applications of cryptography are pervasive and
critical components of our information-based society. |nformation-protection protocols
designed on theoretical foundations one year appear in products and standards
documents the next. Conversely, new theoretical devel opments sometimes mean that
last year's proposal has a previously unsuspected weakness. While the theory is
advancing vigorously, there are as yet few true guarantees; the security of many
proposals depends on unproven (if plausible) assumptions. The theoretical work refines
and improves the practice, while the practice challenges and inspires the theoretical
work. When a systemis "broken," our knowledge improves, and next year's systemis
improved to repair the defect. (One isreminded of the long and intriguing battle
between the designers of bank vaults and their opponents.)

Cryptography is also fascinating because of its game-like adversarial nature. A good
cryptographer rapidly changes sides back and forth in his or her thinking, from attacker
to defender and back. Just asin a game of chess, sequences of moves and counter-
moves must be considered until the current situation is understood. Unlike chess
players, cryptographers must also consider al the ways an adversary might try to gain
by breaking the rules or violating expectations. (Does it matter if she measures how
long | am computing? Does it matter if her “random™ number isn't one?)

The current volume is amajor contribution to the field of cryptography. It isarigorous
encyclopedia of known techniques, with an emphasis on those that are both (believed to
be) secure and practically useful. It presentsin a coherent manner most of the important
cryptographic tools one needs to implement secure cryptographic systems, and explains
many of the cryptographic principles and protocols of existing systems. The topics
covered range from low-level considerations such as random-number generation and
efficient modular exponentiation agorithms and medium-level items such as public-
key signature techniques, to higher-level topics such as zero-knowledge protocols. This

TCL Exhibit 1009
Page 2

book's excellent organization and style allow it to serve well as both a self-contained
tutorial and an indispensable desk reference.

In documenting the state of afast-moving field, the authors have done incredibly well
at providing error-free comprehensive content that is up-to-date. Indeed, many of the
chapters, such as those on hash functions or key-establishment protocols, break new
ground in both their content and their unified presentations. In the trade-off between
comprehensive coverage and exhaustive treatment of individual items, the authors have
chosen to write simply and directly, and thus efficiently, allowing each element to be
explained together with their important details, caveats, and comparisons.

While motivated by practical applications, the authors have clearly written a book that
will be of as much interest to researchers and students as it is to practitioners, by
including ample discussion of the underlying mathematics and associated theoretical
considerations. The essential mathematical techniques and requisite notions are
presented crisply and clearly, with illustrative examples. The insightful historical notes
and extensive bibliography make this book a superb stepping-stone to the literature. (I
was very pleasantly surprised to find an appendix with complete programs for the
CRYPTO and EUROCRY PT conferences!)

It isa pleasure to have been asked to provide the foreword for this book. I am happy to
congratul ate the authors on their accomplishment, and to inform the reader that he/she
islooking at alandmark in the development of the field.

Ronald L. Rivest

Webster Professor of Electrical Engineering and Computer Science
M assachusetts I nstitute of Technology

June 1996

TCL Exhibit 1009
Page 3

Preface

This book is intended as a reference for professiona cryptographers, presenting the
techniquesand algorithmsof greatest interest to the current practitioner, along with the sup-
porting motivation and background material. It also providesacomprehensive source from
which to learn cryptography, serving both students and instructors. In addition, the rigor-
ous treatment, breadth, and extensive bibliographic material should make it an important
reference for research professionals.

Our goal was to assimilate the existing cryptographic knowledge of industrial interest
into one consistent, self-contained volume accessible to engineersin practice, to computer
scientists and mathematicians in academia, and to motivated non-specialistswith a strong
desire to learn cryptography. Such atask is beyond the scope of each of the following: re-
search papers, which by nature focus on narrow topics using very specialized (and often
non-standard) terminology; survey papers, which typically address, at most, a small num-
ber of major topics at a high level; and (regretably also) most books, due to the fact that
many book authors lack either practical experience or familiarity with the research litera-
ture or both. Our intent was to provide a detailed presentation of those areas of cryptogra-
phy which we have found to be of greatest practical utility in our ownindustrial experience,
while maintaining a sufficiently formal approach to be suitable both as a trustworthy refer-
ence for those whose primary interest is further research, and to provide a solid foundation
for students and othersfirst learning the subject.

Throughout each chapter, we emphasize the relationship between various aspects of
cryptography. Background sections commence most chapters, providing a framework and
perspective for the techniques which follow. Computer source code (e.g. C code) for algo-
rithms has been intentionally omitted, in favor of algorithmsspecified in sufficient detail to
allow direct implementation without consulting secondary references. Webelievethisstyle
of presentation allows a better understanding of how algorithmsactually work, while at the
same time avoiding low-level implementation-specific constructs (which some readers will
invariably be unfamiliar with) of various currently-popular programming languages.

The presentation also strongly delineates what has been established as fact (by math-
ematical arguments) from what is simply current conjecture. To avoid obscuring the very
applied nature of the subject, rigorousproofs of correctness arein most cases omitted; how-
ever, references given in the Notes section at the end of each chapter indicate the original
or recommended sources for these results. The trailing Notes sections a so provide infor-
mation (quitedetailed in places) on various additional techniques not addressed inthe main
text, and provide a survey of research activitiesand theoretical results; references againin-
dicate where readers may pursue particular aspects in greater depth. Needless to say, many
results, and indeed some entire research areas, have been given far |ess attention than they
warrant, or have been omitted entirely due to lack of space; we apologize in advance for
such major omissions, and hope that the most significant of these are brought to our atten-
tion.

To provide an integrated treatment of cryptography spanning foundational motivation
through concrete implementation, it is useful to consider a hierarchy of thought ranging
from conceptual ideas and end-user services, down to the tools necessary to complete ac-
tual implementations. Table 1 depictsthe hierarchical structure around which this book is
organized. Corresponding to this, Figure 1 illustrates how these hierarchical levels map

XXiii

TCL Exhibit 1009
Page 4

XXiV

Preface

Information Security Objectives
Confidentiality
Dataintegrity
Authentication (entity and data origin)
Non-repudiation
Cryptographic functions
Encryption Chapters®6, 7, 8
Message authentication and dataintegrity techniques Chapter 9
Identification/entity authentication techniques Chapter 10
Digital signatures Chapter 11
Cryptographic building blocks
Stream ciphers Chapter 6
Block ciphers (symmetric-key) Chapter 7
Public-key encryption Chapter 8
One-way hash functions (unkeyed) Chapter 9
M essage authentication codes Chapter 9
Signature schemes (public-key, symmetric-key) Chapter 11
Utilities
Public-key parameter generation Chapter 4
Pseudorandom bit generation Chapter 5
Efficient algorithms for discrete arithmetic Chapter 14
Foundations
Introduction to cryptography Chapter 1
Mathematical background Chapter 2
Complexity and analysisof underlying problems Chapter 3
Infrastructure techniques and commercial aspects
Key establishment protocols Chapter 12
Key installation and key management Chapter 13
Cryptographic patents Chapter 15
Cryptographic standards Chapter 15

Table 1: Hierarchical levels of applied cryptography.

onto the various chapters, and their inter-dependence.

Table 2 lists the chapters of the book, along with the primary author(s) of each who
should be contacted by readers with comments on specific chapters. Each chapter waswrit-
ten to provide a self-contained treatment of one major topic. Collectively, however, the
chapters have been designed and carefully integrated to be entirely complementary with
respect to definitions, terminology, and notation. Furthermore, there is essentially no du-
plication of material across chapters; instead, appropriate cross-chapter references are pro-
vided where relevant.

Whileit is not intended that thisbook be read linearly from front to back, the material
has been arranged so that doing so has some merit. Two primary goals mativated by the
“handbook” nature of this project wereto allow easy access to stand-aloneresults, andtoal-
low results and algorithmsto be easily referenced (e.g., for discussion or subsequent cross-
reference). Tofacilitate the ease of accessing and referencing results, items have been cate-
gorized and numbered to alarge extent, with thefoll owing classes of itemsjointly numbered
consecutively in each chapter: Definitions, Examples, Facts, Notes, Remarks, Algorithms,
Protocols, and Mechanisms. In more traditional treatments, Facts are usually identified as
propositions, lemmas, or theorems. We use numbered Notes for additional technical points,

TCL Exhibit 1009
Page 5

XXV

Preface

1 Bideys z mudeyd €T P1deyd ST B1deyd
punoibxoeq juswabeuew Aay spiepuels
uononpoul yrew pue sjusjed
¢ pideyd ZT Bideyd yT Je1deyd
suonepunoj Ajnoas A9 101095 Jo JuaWysIgeISd uonejuswadwi
Aox-o1ignd JUETRITE]
¥ Jeideyd g R1deyd
siopowesed |<-—|——|—{ uoneisusb
Jsquinu
fex-ognd wopuels
11 Re1dey)d 1T .1deyd 6 J01deyd 6 ey g8 Jeydeyd L »1deyd 9 lideyn
(Aox-oupewiwAs) (Aex-o11gnd) (pakay) (pakayun) (Aex-onignd) (Aox-oupewwAs)
seinjeubls sainjeubis suonouny ysey suopouny ysey uondAious s1aydio o0|q siaydpo weans

T T T

TT Bideyd oT sideyd 6 Je1deyd 6 Jeideyd
sainjeubis uoneoyuSp! uoneonuayne sanbiuyos}
leybip abessaw AyuBayul eyep

g8','9seideyd

uondAious

S

uoneipndal-uou

uopeopuayne

Aubayul eyep

Ayjenuspyuod

Figure 1: Roadmap of the book.

TCL Exhibit 1009

Page 6

XXVi Preface

Chapter Primary Author
AM PVO SAV
1. Overview of Cryptography * * *
2. Mathematical Background *
3. Number-Theoretic Reference Problems *
4. Public-Key Parameters * *
5. Pseudorandom Bits and Sequences *
6. Stream Ciphers *
7. Block Ciphers *
8. Public-Key Encryption *
9. Hash Functionsand Data I ntegrity *
10. Identification and Entity Authentication *
11. Digita Signatures *
12. Key Establishment Protocols *
13. Key Management Techniques *
14. Efficient Implementation *
15. Patentsand Standards *
— Overall organization * *

Table 2: Primary authorsof each chapter.

while numbered Remarks identify non-technical (often non-rigorous) comments, observa-
tions, and opinions. Algorithms, Protocols and Mechanisms refer to techniques involving
a series of steps. Examples, Notes, and Remarks generally begin with parenthetical sum-
mary titles to allow faster access, by indicating the nature of the content so that the entire
item itself need not be read in order to determine this. The use of alarge number of small
subsectionsis also intended to enhance the handbook nature and accessibility to results.

Regarding the partitioning of subject areas into chapters, we have used what we call a
functional organization (based on functionsof interest to end-users). For example, al items
related to entity authenticationare addressed in one chapter. An alternativewould havebeen
what may be called an academic organization, under which perhaps, all protocolsbased on
zero-knowledge concepts (including both a subset of entity authentication protocols and
signature schemes) might be covered in one chapter. We believe that a functional organi-
zation is more convenient to the practitioner, who is more likely to be interested in options
availablefor an entity authentication protocol (Chapter 10) or asignature scheme (Chapter
11), than to be seeking a zero-knowledge protocol with unspecified end-purpose.

In the front matter, a top-level Table of Contents (giving chapter numbers and titles
only) isprovided, as well as adetailed Table of Contents (down to the level of subsections,
eg., §5.1.1). Thisisfollowed by aList of Figures, and aList of Tables. At the start of each
chapter, abrief Table of Contents(specifying section number andtitlesonly, e.g., §5.1, §5.2)
isalso given for convenience.

Attheend of thebook, wehaveincluded alist of papers presented at each of the Crypto,
Eurocrypt, Asiacrypt/Auscrypt and Fast Software Encryption conferences to date, as well
as a list of al papers published in the Journal of Cryptology up to Volume 9. These are
in addition to the References section, each entry of whichis cited at least once in the body
of the handbook. Almost al of these references have been verified for correctnessin their
exact titles, volume and page numbers, etc. Finaly, an extensive Index prepared by the
authorsisincluded. The Index beginswith a List of Symbols.

Our intention was not to introduce a collection of new techniques and protocols, but

TCL Exhibit 1009
Page 7

Preface

XXVii

rather to selectively present techniquesfrom those currently availablein the public domain.
Such a consolidation of the literature is necessary from time to time. The fact that many
good booksin thisfield include essentially no more than what is covered here in Chapters
7, 8 and 11 (indeed, these might serve as an introductory course a ong with Chapter 1) illus-
trates that the field has grown tremendously in the past 15 years. The mathematical foun-
dation presented in Chapters 2 and 3 is hard to find in one volume, and missing from most
cryptography texts. The materia in Chapter 4 on generation of public-key parameters, and
in Chapter 14 on efficient implementations, whilewell-known to asmall body of specialists
and available in the scattered literature, has previously not been available in general texts.
The material in Chapters 5 and 6 on pseudorandom number generation and stream ciphers
is also often absent (many texts focus entirely on block ciphers), or approached only from
atheoretical viewpoint. Hash functions (Chapter 9) and identification protocols (Chapter
10) have only recently been studied in depth as specialized topics on their own, and along
with Chapter 12 on key establishment protocols, it is hard to find consolidated treatments
of these now-mainstream topics. Key management techniques as presented in Chapter 13
have traditionally not been given much attention by cryptographers, but are of great impor-
tance in practice. A focused treatment of cryptographic patents and a concise summary of
cryptographic standards, as presented in Chapter 15, are also long overdue.

In most cases (with some historical exceptions), where algorithms are known to bein-
secure, we have chosen to leave out specification of their details, because most such tech-
niques are of little practical interest. Essentialy all of the algorithms included have been
verified for correctness by independent implementation, confirming the test vectors speci-
fied.

Acknowledgements

This project would not have been possible without the tremendous efforts put forth by our
peers who have taken the time to read endless drafts and provide us with technical correc-
tions, constructivefeedback, and countless suggestions. In particular, the advice of our Ad-
visory Editorshasbeen invaluable, and itisimpossibleto attributeindividual credit for their
many suggestions throughout this book. Among our Advisory Editors, we would particu-
larly like to thank:

Mihir Bellare Don Coppersmith Dorothy Denning ~ Walter Fumy

Burt Kaliski Peter Landrock Arjen Lenstra Ueli Maurer
Chris Mitchell Tatsuaki Okamoto Bart Preneel Ron Rivest
Gus Simmons Miles Smid Jacques Stern Mike Wiener
Yacov Yacobi

In addition, we gratefully acknowledge the exceptionally large number of additional indi-
vidualswho have helped improve the quality of thisvolume, by providing highly appreci-
ated feedback and guidance on various matters. These individualsinclude:

Carlisde Adams Rich Ankney Tom Berson
Simon Blackburn lan Blake Antoon Bosselaers
ColinBoyd Jorgen Brandt Mike Burmester
Ed Dawson Peter de Rooij Yvo Desmedt
Whit Diffie Hans Dobbertin Carl Ellison

Luis Encinas Warwick Ford Amparo Fuster
Shuhong Gao Will Gilbert Marc Girault
Jovan Golic Dieter Gollmann Li Gong

TCL Exhibit 1009
Page 8

XXViii

Preface

Carrie Grant Blake Greenlee Helen Gustafson
Darrel Hankerson Anwar Hasan Don Johnson
Mike Just Andy Klapper Lars Knudsen
Neal Koblitz CetinKog Judy Koeller
Evangelos Kranakis David Kravitz Hugo Krawczyk
XugjiaLai CharlesLam AlanLing

S. Mike Matyas Willi Meier Peter Montgomery
Mike Mosca Tim Moses Serge Mister
Volker Mueller David Naccache James Nechvatal
Kaisa Nyberg Andrew Odlyzko Richard Outerbridge
Walter Penzhorn Birgit Pfitzmann Kevin Phelps
Leon Pintsov Fred Piper Carl Pomerance
Matt Robshaw Peter Rodney Phil Rogaway
Rainer Rueppel Mahmoud Salmasizadeh Roger Schlafly
Jeff Shallit Jon Sorenson Doug Stinson
Andrea Vanstone Serge Vaudenay Klaus Vedder
Jerry Veeh Fausto Vitini LisaYin

Robert Zuccherato

We apologize to those whose names have inadvertently escaped thislist. Special thanksare
due to Carrie Grant, Darrel Hankerson, Judy Koeller, Charles Lam, and Andrea Vanstone.
Their hard work contributed greatly to the quality of this book, and it was truly a pleasure
working with them. Thanks also to the folks at CRC Press, including Tia Atchison, Gary
Bennett, Susie Carlisle, Nora Konopka, Mary Kugler, Amy Morrell, Tim Pletscher, Bob
Stern, and Wayne Yuhasz. The second author would like to thank his colleagues past and
present at Nortel Secure Networks (Bell-Northern Research), many of whom are mentioned
above, for their contributionson this project, and in particular Brian O’ Higginsfor hisen-

couragement and support; all views expressed, however, are entirely that of the author. The
third author would also like to acknowledge the support of the Natural Sciences and Engi-

neering Research Council.

Any errorsthat remain are, of course, entirely our own. We would be grateful if readers
who spot errors, missing references or credits, or incorrectly attributed resultswoul d contact
us with details. It is our hope that this volume facilitates further advancement of thefield,
and that we have helped play a small part in this.

Alfred J. Menezes
Paul C. van Oorschot
Scott A. Vanstone
August, 1996

TCL Exhibit 1009
Page 9

1

Table of Contents

List of Tables

List of Figures
Foreword by R.L. Rivest
Preface

Overview of Cryptography
11 Introduction L
1.2 Informationsecurityandcryptography L.
13 Backgroundonfunctions
1.3.1 Functions(1-1, one-way, trapdoor oneway)
132 Permutations Lo
133 Invalutions.
14 Basicterminologyandconcepts oo e
15 Symmetric-keyencryption Lo
15.1 Overview of block ciphersand streeamciphers
1.5.2 Substitution ciphers and transpositionciphers
153 Compositionofciphers o oo
154 Streamciphers Lo Lo
155 Thekeyspace o i i it e
16 Digitalsignatures e e e e e e
1.7 Authenticationand identification
171 Identification.
1.7.2 Dataoriginauthentication
1.8 Public-key cryptography e
181 Public-ckeyencryptiono
1.8.2 The necessity of authenticationin public-key systems
1.8.3 Digital signatures from reversible public-key encryption.
1.84 Symmetric-key vs. public-key cryptography
19 Hashfunctions
1.10 Protocolsandmechanisms.
1.11 Key establishment, management, and certification.
1.11.1 Key management through symmetric-key techniques
1.11.2 Key management through public-key techniques.
1.11.3 Trusted third parties and public-key certificates
1.12 Pseudorandom numbersandsequences L.
1.13 Classesof attacksand securitymodels
1.13.1 Attacksonencryptionschemes
1.13.2 Attacksonprotocols L e
1.13.3 Modelsfor evaluatingsecurity
1.13.4 Perspective for computational security
114 Notesand furtherreferences. oL

TCL Exhibit 1009
Page 10

XV
XiX
XXi

podlll

Vi

Table of Contents

2 Mathematical Background

21

22

23

24

25

26

2.7

31
32

33
34
35

Probability theory
Basic definitions
Conditional probability

211
212
213
214
215
216

Information theory
Entropy
2.2.2 Mutud information
Complexity theory
Basic definitions
2.3.2 Asymptotic notation
2.3.3 Complexity classes
2.3.4 Randomized algorithms
Number theory
Theintegers
AlgorithmsinZ
The integers modulo n

221

231

241
242
243
244
245
2.4.6

251
252
253
254
255

26.1

Random variables

Binomial distribution
Birthday attacks

Random mappings

Algorithmsin Z,,

The Legendre and Jacobi symbols
Blumintegers
Abstract algebra
Groupso

Polynomia rings.
Vectorspaces
Finitefields
Basic properties
2.6.2 The Euclidean agorithm for polynomials
2.6.3 Arithmetic of polynomials
Notes and further references

Number-Theoretic Reference Problems

Introduction and overview

The integer factorization problem
Trid divison.
Pollard’srho factoring algorithm
Pollard’sp — 1 factoring algorithm
Elliptic curve factoring
Random square factoring methods
Quadratic sieve factoring
Number field sieve factoring
The RSA problem
The quadratic residuosity problem
Computing square rootsin 7Z,,
Case(i):nprime.
3.5.2 Case (ii): n composite

321
322
323
324
325
3.2.6
327

351

TCL Exhibit 1009

Page 11

Table of Contents Vii
3.6 Thediscretelogarithmproblem 103
36.1 Exhaustivesearch 104

3.6.2 Baby-step giant-stepagorithm. 104

3.6.3 Pollard’srho agorithmfor logarithms 106

3.6.4 Pohlig-Hellmanalgorithm 107

3.6.5 Index-calculusalgorithm. 109

3.6.6 Discrete logarithm problemin subgroupsof Z7 113

3.7 TheDiffieHellmanproblem, 113
38 Compositemoduli e 114
3.9 Computingindividualbits, 114
3.9.1 Thediscrete logarithm problemin ZI*, — individua bits 116

3.9.2 TheRSA problem—individua bits 116

3.9.3 TheRabin problem —individua bits 117

310 Thesubsetsumproblem., 117
3.10.1 The L3-lattice basisreductionalgorithm 118
3.10.2 Solving subset sum problemsof lowdensity 120
3.10.3 Simultaneous diophantineapproximation 121

3.11 Factoring polynomiasover finitefields 122
3.11.1 Square-freefactorization. 123
3.11.2 Berlekamp’s @-matrix algorithm. 124

3.12 Notesandfurtherreferences. 125
4 Public-Key Parameters 133
41 Introduction 133
4.1.1 Generating large primenumbersnaively 134

4.1.2 Distributionof primenumbers L. 134

4.2 Probabilisticprimalitytests o o L 135
421 Fermat’stesto 136

422 Solovay-Strassentesto 137

423 Miller-Rabintest Lo 138

4.2.4 Comparison: Fermat, Solovay-Strassen, and Miller-Rabin 140

43 (True) Primalitytests i i it e 142
431 TestingMersennenumbers. 142

4.3.2 Primality testing using the factorizationof n — 1 143

433 Jacobisumtest oL 144

434 Testsusingdlipticcurves oo, 145

44 Primenumbergeneration oo e e e 145
44,1 Random search for probableprimes 145

442 Srongprimes e 149

4.4.3 NIST method for generatingDSA primes 150

444 Constructivetechniquesfor provableprimes. 152

4.5 lrreducible polynomialsoverZ,o L 154
451 lIrreduciblepolynomias 0. 154

45.2 lIrreducibletrinomials L. 157

453 Primitivepolynomialso oL 157

4.6 Generatorsand elementsof highorder, 160
4.6.1 Selecting a prime p and generator of Z;‘, 164

4.7 Notesand furtherreferences. L. 165

TCL Exhibit 1009
Page 12

viii

Table of Contents

5 Pseudorandom Bits and Sequences 169
51 Introduction e 169
5.1.1 Background and Classification 170

52 Randombitgeneration o oL, 171
5.3 Pseudorandombitgeneration L. 173
531 ANSI X9.17generator 173

532 FIPS186generator. v v it e e 174

54 Statisticaltests. 175
5.4.1 Thenorma and chi-squaredistributions 176

54.2 Hypothesistesting oo 179

54.3 Golomb'srandomnesspostulates. 180

544 Fivebasictests. o Lo 181

545 Maurer'suniversa satisticaltest L 183

5.5 Cryptographically secure pseudorandom bit generation 185
55.1 RSA pseudorandombit generator L. L. 185

5.5.2 Blum-Blum-Shub pseudorandom bit generator 186

56 Notesandfurtherreferences. 187
6 Stream Ciphers 191
6.1 Introduction e 191
6.1.1 Classification 192

6.2 Feedback shiftregisters L L oo 195
6.2.1 Linear feedback shiftregisters 195

6.22 Linearcomplexity o 198

6.2.3 Berlekamp-Massey agorithm 200

6.2.4 Nonlinear feedback shiftregisters 202

6.3 StreamciphersbasedonLFSRs oL 203
6.3.1 Nonlinear combinationgenerators 205

6.3.2 Nonlinear filtergenerators 208

6.3.3 Clock-controlledgenerators 209

6.4 Otherstreamciphers. o e e 212
641 SEAL 213

6.5 Notesandfurtherreferences. 216
7 Block Ciphers 223
7.1 Introductionandoverviewo Lo oo 223
7.2 Backgroundandgeneralconcepts, 224
7.2.1 Introductiontoblockciphers. o oL 224

722 Modesof operation o 228

7.2.3 Exhaustive key search and multipleencryption 233

7.3 Classical ciphersand historical development 237
7.3.1 Transpositionciphers(background) 238

7.3.2 Substitutionciphers (background)o oo 238

7.3.3 Polyaphabetic substitutionsand Vigenere ciphers (historical) . . . 241

7.3.4 Polyalphabetic cipher machines and rotors (historical) 242

7.3.5 Cryptanalysisof classical ciphers (historical) 245

74 DES e 250
7.4.1 Product ciphersand Feistel ciphers. 250

742 DESagorithm 252

7.4.3 DESpropertiesandstrength oL, 256

TCL Exhibit 1009
Page 13

Table of Contents iX
75 FEAL e 259
76 IDEA . .. e e 263
7.7 SAFER, RC5, and other block ciphers. 266

771 SAFER 266

772 RC5 . . . 269

7.7.3 Otherblockciphers o ... 270

7.8 Notesandfurtherreferences. 271
8 Public-Key Encryption 283
81 Introduction e 283
811 Basicprinciples L Lo oo 284

8.2 RSA public-key encryption L oo 285
821 Destription. 286

822 Securityof RSA e 287

8.23 RSA encryptioninpractice 290

8.3 Rabinpublic-keyencryption. Lo oL 292
8.4 ElGamal public-keyencryption o, 294
84.1 BasicElGamal encryption 294

8.4.2 Generdized ElIGamal encryption. 297

85 McEliece public-keyencryption. 298
8.6 Knapsack public-keyencryption. oo, 300
8.6.1 Merkle-Hellman knapsack encryption 300

8.6.2 Chor-Rivest knapsack encryption 302

8.7 Probabilisticpublic-key encryption o oL 306
8.7.1 Goldwasser-Micali probabilisticencryption 307

8.7.2 Blum-Goldwasser probabilisticencryption. 308

8.7.3 Plaintext-awareencryption. 311

88 Notesandfurtherreferences. 312
9 Hash Functionsand Data I ntegrity 321
9.1 Introduction e 321
9.2 Classficationandframework 322
9.21 Generd classification L oo, 322

9.2.2 Basic propertiesand definitions 323

9.2.3 Hash propertiesrequired for specific applications 327

9.2.4 One-way functionsand compression functions. 327

9.2.5 Relationshipsbetween properties 329

9.2.6 Other hash function propertiesand applications 330

9.3 Basicconstructionsandgeneral results Lo oL 332
9.3.1 General model for iterated hash functions 332

9.3.2 General constructionsandextensions L. L 333

9.3.3 Formattingand initidizationdetails 334

9.3.4 Security objectivesand basicattackso 335

9.3.5 Bitsizesrequired for practical security 337

9.4 Unkeyed hash functions(MDCs) 338
9.4.1 Hashfunctionsbased onblockciphers. 338

9.4.2 Customized hash functionsbasedonMD4 343

9.4.3 Hash functionsbased on modular arithmetic 351

95 Keyed hashfunctions(MACs) 352
951 MACsbasedonblockciphers 353

TCL Exhibit 1009
Page 14

Table of Contents

10

11

9.5.2 ConstructingMACsfromMDCs. 354
953 Customized MACS. oo o 356
954 MACsforstreamciphers oo 358
9.6 Dataintegrity and message authentication. 359
9.6.1 Background and definitions L L 359
9.6.2 Non-maliciousvs. maliciousthreatsto dataintegrity 362
9.6.3 DataintegrityusingaMACadone 364
9.6.4 Dataintegrity usingan MDC and an authenticchannel 364
9.6.5 Dataintegrity combined withencryption. 364
9.7 Advanced attacksonhashfunctions 368
9.7.1 Birthdayattacks 369
9.7.2 Pseudo-collisionsand compression functionattacks 371
9.73 Chainingattacks 373
9.7.4 Attacks based on properties of underlyingcipher 375
9.8 Notesandfurtherreferences. 376
I dentification and Entity Authentication 385
10.1 Introduction o ol 385
10.1.1 Identification objectivesand applications 386
10.1.2 Properties of identificationprotocols 387
10.2 Passwords (weak authentication), 388
10.2.1 Fixed password schemes: techniques 389
10.2.2 Fixed password schemes: attacks 391
1023 Casestudy—UNIX passwords 393
10.24 PINSand passkeysS .« . v v v v v v v e e e e e e e e e e e 394
10.2.5 One-time passwords (towards strong authentication) 395
10.3 Challenge-response identification (strong authentication) 397
10.3.1 Background on time-variant parameters 397
10.3.2 Challenge-response by symmetric-key techniques 400
10.3.3 Challenge-response by public-key techniques 403
10.4 Customized and zero-knowledge identification protocols 405
10.4.1 Overview of zero-knowledgeconcepts 405
10.4.2 Feige-Fiat-Shamir identification protocol 410
10.4.3 GQidentificationprotocol 412
10.4.4 Schnorr identificationprotocolo 0oL 414
10.4.5 Comparison: Fiat-Shamir, GQ, and Schnorr 416
10.5 Attacksonidentificationprotocols L 417
10.6 Notesandfurtherreferences. oo .. 420
Digital Signatures 425
111 Introduction oo L 425
11.2 A framework for digital signaturemechanisms 426
11.2.1 Basicdefinitions 426
11.2.2 Digital signature schemeswithappendix 428
11.2.3 Digital signature schemes with message recovery 430
11.2.4 Types of attackson signatureschemes 432
11.3 RSA andrelated signatureschemes 433
11.3.1 The RSA signaturescheme 433
11.3.2 Possible attackson RSA signatures 434
11.3.3 RSA signaturesinpracticeo oL 435

TCL Exhibit 1009
Page 15

Table of Contents Xi
11.3.4 The Rabin public-key signaturescheme 438
11.35 ISO/IEC 9796 formatting « . o v v v v 442
11.3.6 PKCS#Llformatting 445

11.4 Fat-Shamir signatureschemes 447
11.4.1 Feige-Fiat-Shamir signaturescheme 447
1142 GQsignaturescheme oo 450

115 TheDSA andrelated signatureschemes 451
11.5.1 The Digital Signature Algorithm(DSA) 452
11.5.2 The EIGama signaturescheme 454
11.5.3 The Schnorr signaturescheme 459
11.5.4 The EIGamal signature scheme with message recovery 460

11.6 Onetimedigital signatures 462
11.6.1 The Rabinone-timesignaturescheme 462
11.6.2 The Merkle one-timesignaturescheme 464
11.6.3 Authenticationtreesand one-timesignatures. 466
11.6.4 The GMR one-time signaturescheme 468

11.7 Othersignatureschemes. oo i v it 471
11.7.1 Arbitrated digital signatureso oo e e 472
TWT72ESIGN . . .o e e 473

11.8 Signatureswith additiona functionality 474
11.8.1 Blindsignatureschemes 475
11.8.2 Undeniablesignatureschemes 476
11.8.3 Fail-stopsignatureschemes 478

119 Notesandfurtherreferences. 481

12 Key Establishment Protocols 489

121 Introduction Lo o 489

12.2 Classificationand framework L. 490
12.2.1 Genera classification and fundamental concepts 490
12.2.2 Objectivesand properties 493
12.2.3 Assumptions and adversaries in key establishment protocols. . . . 495

12.3 Key transport based on symmetric encryption 497
12.3.1 Symmetric key transport and derivationwithout aserver 497
12.3.2 Kerberos and related server-based protocols 500

12.4 Key agreement based on symmetrictechniques 505

12.5 Key transport based on public-key encryption 506
12.5.1 Key transport using PK encryption without signatures 507
12.5.2 Protocols combining PK encryption and signatures 509
12.5.3 Hybrid key transport protocolsusing PK encryption 512

12.6 Key agreement based on asymmetric techniques 515
12.6.1 Diffie-Hellman and related key agreement protocols 515
12.6.2 Implicitly-certifiedpublickeys. 520
12.6.3 Diffie-Hellman protocolsusing implicitly-certifiedkeys 522

127 Secretsharing o e 524
12.7.1 Simpleshared control schemes. 524
1272 Thresholdschemes 525
12.7.3 Generalized secret sharing 526

12.8 Conferencekeying 528

12.9 Analysisof key establishmentprotocols. 530
12.9.1 Attack strategies and classic protocol flaws 530

TCL Exhibit 1009
Page 16

Xii

Table of Contents

13

14

12.9.2 Andlysisobjectivesand methods 532
12.10 Notesand furtherreferences 534
Key Management Techniques 543
13.1 Introduction o oL 543
13.2 Backgroundand basicconcepts oo 544
13.2.1 Classifying keys by algorithmtypeand intendeduse. 544
13.2.2 Key management objectives, threats, and policy 545
13.2.3 Simplekey establishmentmodels 546
13.2.4 Rolesof thirdparties. 547
13.2.5 Tradeoffs among key establishment protocols 550
13.3 Techniquesfor distributing confidential keys 551
13.3.1 Key layeringand cryptoperiods 551
13.3.2 Key tranglation centers and symmetric-key certificates. 553
13.4 Techniquesfor distributingpublickeys 555
13.4.1 Authenticationtreeso 556
13.4.2 Public-key certificates oo o L 559
13.4.3 Identity-basedsystems oL 561
13.4.4 Implicitly-certifiedpublickeys. 562
13.4.5 Comparison of techniques for distributingpublickeys 563
13.5 Techniquesfor controllingkeyusage 567
13.5.1 Key separation and constraintsonkey usage 567
13.5.2 Techniques for controlling use of symmetrickeys 568
13.6 Key management involvingmultipledomains 570
13.6.1 Trust betweentwodomains 570
13.6.2 Trust models involving multiple certification authorities 572
13.6.3 Certificate distributionand revocation 576
13.7 Keylifecycleissues. 577
13.7.1 Lifetime protectionrequirements. 578
13.7.2 Key management lifecycle 578
13.8 Advanced trusted third party services 581
13.8.1 Trusted timestamping service 581
13.8.2 Non-repudiation and notarization of digital signatures 582
1383 Key sCrow o v ot e e e e e e e e e 584
13.9 Notesand furtherreferences. L. 586
Efficient Implementation 591
14.1 Introduction oL e 591
14.2 Multiple-precisioninteger arithmetic 592
1421 Radix representationo 592
14.2.2 Additionand subtraction o oL 594
14.2.3 Multiplication o 595
1424SqUaring - - -« v vt e e e e e e 596
1425 DIiViSION L Lo e e e 598
14.3 Multiple-precisonmodular arithmetic. 599
14.3.1 Classical modular multiplication 600
14.3.2 Montgomery reductiono oo 600
1433 Barrettreductiono oo 603
14.3.4 Reduction methods for moduli of specia form 605
144 Greatest commondivisor algorithms 606

TCL Exhibit 1009
Page 17

Table of Contents Xii

14.4.1 Binaryged algorithm 60¢
14.4.2 Lehmer'sged algorithm 607
14.4.3 Binary extended gcd algorithm 60¢

14.5 Chineseremainder theoremforintegers 61(
1451 Residuenumbersystems 61"
1452 Garner’salgorithm 612

146 Exponentiation 613
14.6.1 Techniques for general exponentiation 61¢
14.6.2 Fixed-exponent exponentiationalgorithms. 62(
14.6.3 Fixed-base exponentiationalgorithms 62:

14.7 Exponentrecoding e 62
14.7.1 Signed-digitrepresentation. L. 627
14.7.2 String-replacement representation L. ... L. 62¢

14.8 Notesandfurtherreferences. 63
15 Patentsand Standards 63
151 Introduction e 63E
15.2 Patentson cryptographictechniques. 63t
15.2.1 Fivefundamental patents. 63¢
1522 Tenprominentpatents 63¢
1523 Tensdlectedpatents 64!
15.2.4 Ordering and acquiringpatents. 64¢

15.3 Cryptographicstandards 64¢
15.3.1 International standards — cryptographic techniques. 64¢
15.3.2 Banking security standards (ANSI, ISO) 64¢
15.3.3 International security architecturesand frameworks 65:
15.34 U.S. government standards(FIPS) 65¢
1535 Internet standardsand RFCs 65¢
1536 Defactostandards 65¢
15.3.7 Ordering and acquiringstandards 65¢

154 Notesandfurtherreferences. 65’
A Bibliography of Papers from Selected Cryptographic Forums 66:
A.1l Asiacrypt/AuscryptProceedings.o oo e 66:
A2 CryptoProceedings e 667
A3 EurocryptProceedings 68¢
A.4 Fast Software Encryption Proceedings 69¢
A.5 Journd of Cryptology papers 70(
References 70:
Index 75¢

TCL Exhibit 1009
Page 18

Chapter

Overview of Cryptography

Contentsin Brief

11 Introduction. 1
1.2 Information security and cryptography 2
13 Backgroundonfunctions 6
14 Basicterminology andconcepts. n
15 Symmetric-key encryption L 15
1.6 Digital signatures oo o o oL 22
1.7 Authentication and identification 24
1.8 Public-keycryptography o 25
19 Hashfunctions 33
110 Protocolsand mechanisms 33
111 Key establishment, management, and certification 35
112 Pseudorandom numbersand sequences 39
1.13 Classesof attacksand securitymodels 41
114 Notesand further references 45

1.1 Introduction

Cryptography has a long and fascinating history. The most complete non-technical acc
of the subject is Kahn'$he Codebreakers. This book traces cryptography from its initial
and limited use by the Egyptians some 4000 years ago, to the twentieth century whi
played a crucial role in the outcome of both world wars. Completed in 1963, Kahn'’s b
coversthose aspects of the history which were most significant (up to that time) to the d
opment of the subject. The predominant practitioners of the art were those associatec
the military, the diplomatic service and government in general. Cryptography was use
atool to protect national secrets and strategies.

The proliferation of computers and communications systems in the 1960s brought
it a demand from the private sector for means to protect information in digital form anc
provide security services. Beginning with the work of Feistel at IBM in the early 1970s ¢
culminating in 1977 with the adoption as a U.S. Federal Information Processing Stan
for encrypting unclassified information, DES, the Data Encryption Standard, is the n
well-known cryptographic mechanism in history. It remains the standard means for se
ing electronic commerce for many financial institutions around the world.

The most striking developmentin the history of cryptography came in 1976 when Di
and Hellman publishedew Directionsin Cryptography. This paper introduced the revolu-
tionary concept of public-key cryptography and also provided a new and ingenious me

1

TCL Exhibit 1009
Page 19

2 Ch. 1 Overview of Cryptography

for key exchange, the security of which is based on the intractability of the discrete lo
rithm problem. Although the authors had no practical realization of a public-key encry
tion scheme at the time, the idea was clear and it generated extensive interest and ac
in the cryptographic community. In 1978 Rivest, Shamir, and Adleman discovered the f
practical public-key encryption and signature scheme, now referred to as RSA. The F
scheme is based on another hard mathematical problem, the intractability of factoring I
integers. This application of a hard mathematical problem to cryptography revitalized
forts to find more efficient methods to factor. The 1980s saw major advances in this ¢
but none which rendered the RSA system insecure. Another class of powerful and prac
public-key schemes was found by ElIGamal in 1985. These are also based on the dis
logarithm problem.

One of the most significant contributions provided by public-key cryptography is tt
digital signature. In 1991 the first international standard for digital signatures (ISO/IE
9796) was adopted. It is based on the RSA public-key scheme. In 1994 the U.S. Gov
ment adopted the Digital Signature Standard, a mechanism based on the ElGamal pt
key scheme.

The search for new public-key schemes, improvements to existing cryptographic m
hanisms, and proofs of security continues at a rapid pace. Various standards and infras
tures involving cryptography are being putin place. Security products are being develo
to address the security needs of an information intensive society.

The purpose of this book is to give an up-to-date treatise of the principles, techniqt
and algorithms of interest in cryptographic practice. Emphasis has been placed on tl
aspects which are most practical and applied. The reader will be made aware of the &
issues and pointed to specific related research in the literature where more indepth dis
sions can be found. Due to the volume of material which is covered, most results will
stated without proofs. This also serves the purpose of not obscuring the very applied ne
of the subject. This book is intended for both implementers and researchers. It descr
algorithms, systems, and their interactions.

Chapter 1 is a tutorial on the many and various aspects of cryptography. It does
attempt to convey all of the details and subtleties inherent to the subject. Its purpose
introduce the basic issues and principles and to point the reader to appropriate chapters
book for more comprehensive treatments. Specific techniques are avoided in this cha)

1.2 Information security and cryptography

The concept ofnformation will be taken to be an understood quantity. To introduce cryp
tography, an understanding of issues related to information security in general is neces
Information security manifests itself in many ways according to the situation and requi
ment. Regardless of who is involved, to one degree or another, all parties to a transac
must have confidence that certain objectives associated with information security have |
met. Some of these objectives are listed in Table 1.1.

Over the centuries, an elaborate set of protocols and mechanisms has been crea
deal with information security issues when the information is conveyed by physical d«
uments. Often the objectives of information security cannot solely be achieved throt
mathematical algorithms and protocols alone, but require procedural techniques and ¢
ance of laws to achieve the desired result. For example, privacy of letters is providec
sealed envelopes delivered by an accepted mail service. The physical security of the
velope is, for practical necessity, limited and so laws are enacted which make it a crim

TCL Exhibit 1009
Page 20

§1.2 Information security and cryptography 3

privacy keeping information secret from all but those who are autho-

or confidentiality rized to see it.

data integrity ensuring information has not been altered by unauthorized or
unknown means.

entity authentication]| corroboration of the identity of an entity (e.g., a person, a

or identification computer terminal, a credit card, etc.).

message corroborating the source of information; also known as data

authentication origin authentication.

signature a means to bind information to an entity.

authorization conveyance, to another entity, of official sanction to do or{be
something.

validation a means to provide timeliness of authorization to use or ma-
nipulate information or resources.

access control restricting access to resources to privileged entities.

certification endorsement of information by a trusted entity.

timestamping recording the time of creation or existence of information

witnessing verifying the creation or existence of information by an entjty
other than the creator.

receipt acknowledgement that information has been received.

confirmation acknowledgement that services have been provided.

ownership a means to provide an entity with the legal right to use or
transfer a resource to others.

anonymity concealing the identity of an entity involved in some process.

non-repudiation preventing the denial of previous commitments or actions.

revocation retraction of certification or authorization.

Table 1.1: Some information security objectives.

offense to open mail for which one is not authorized. It is sometimes the case that secu
is achieved not through the information itself but through the physical document recordil
it. For example, paper currency requires special inks and material to prevent counterfeiti

Conceptually, the way information is recorded has not changed dramatically over tirr
Whereas information was typically stored and transmitted on paper, much of it now r
sides on magnetic media and is transmitted via telecommunications systems, some w
less. What has changed dramatically is the ability to copy and alter information. One c
make thousands of identical copies of a piece of information stored electronically and et
is indistinguishable from the original. With information on paper, this is much more diffi
cult. What is needed then for a society where information is mostly stored and transmitt
in electronic form is a means to ensure information security which is independent of t|
physical medium recording or conveying it and such that the objectives of information s
curity rely solely on digital information itself.

One of the fundamental tools used in information security is the signature. Itis a buil
ing block for many other services such as non-repudiation, data origin authentication, id
tification, and witnessing, to mention a few. Having learned the basics in writing, an inc
vidual is taught how to produce a handwritten signature for the purpose of identificatio
At contract age the signature evolves to take on a very integral part of the person’s ident
This signature is intended to be unique to the individual and serve as a means to iden
authorize, and validate. With electronic information the concept of a signature needs to

TCL Exhibit 1009
Page 21

Ch. 1 Overview of Cryptography

11

redressed; it cannot simply be something unique to the signer and independent of the
formation signed. Electronic replication of it is so simple that appending a signature to
document not signed by the originator of the signature is almost a triviality.

Analogues of the “paper protocols” currently in use are required. Hopefully these ne
electronic based protocols are at least as good as those they replace. There is a uniqu
portunity for society to introduce new and more efficient ways of ensuring information se
curity. Much can be learned from the evolution of the paper based system, mimicking thc
aspects which have served us well and removing the inefficiencies.

Achieving information security in an electronic society requires a vast array of techn
cal and legal skills. There is, however, no guarantee that all of the information security o
jectives deemed necessary can be adequately met. The technical means is provided thr

cryptography.

Definition Cryptography is the study of mathematical techniques related to aspects of ir
formation security such as confidentiality, data integrity, entity authentication, and data o
gin authentication.

Cryptography is not the only means of providing information security, but rather one set:
techniques.

Cryptographic goals
Of all the information security objectives listed in Table 1.1, the following four form a

framework upon which the others will be derived: (1) privacy or confidentiality (§1.8);
(2) data integrity (§1.9); (3) authentication (§1.7); and (4) non-repudiation (§1.6).

1. Confidentiality is a service used to keep the content of information from all but thost
authorized to have itSecrecy is a term synonymous with confidentiality and privacy.
There are numerous approaches to providing confidentiality, ranging from physic
protection to mathematical algorithms which render data unintelligible.

2. Data integrity is a service which addresses the unauthorized alteration of data. ~
assure data integrity, one must have the ability to detect data manipulation by un:
thorized parties. Data manipulation includes such things as insertion, deletion, a
substitution.

3. Authenticationis a service related to identification. This function applies to both enti-
ties and informationitself. Two parties entering into acommunication should identif
each other. Information delivered over a channel should be authenticated as to oric
date of origin, data content, time sent, etc. For these reasons this aspect of crypt
raphy is usually subdivided into two major classestity authentication anddata
origin authentication. Data origin authentication implicitly provides data integrity
(for if a message is modified, the source has changed).

4. Non-repudiationis a service which prevents an entity from denying previous commit-
ments or actions. When disputes arise due to an entity denying that certain actic
were taken, a means to resolve the situation is necessary. For example, one er
may authorize the purchase of property by another entity and later deny such autt
rization was granted. A procedure involving a trusted third party is needed to resol
the dispute.

A fundamental goal of cryptography is to adequately address these four areas in b
theory and practice. Cryptography is about the prevention and detection of cheating ¢
other malicious activities.

This book describes a number of bagigptographic tools (primitives) used to provide
information security. Examples of primitives include encryption schemes (§1.51a8j

TCL Exhibit 1009
Page 22

§1.2 Information security and cryptography 5

hash functions (§1.9), and digital signature schemes (§1.6). Figure 1.1 provides a schem:
listing of the primitives considered and how they relate. Many of these will be briefly intro
duced in this chapter, with detailed discussion left to later chapters. These primitives shol

Arbitrary length
hash functions

Unkeyed One-way permutations
Primitives

Random sequences

Block
ciphers

Symmetric-key
ciphers

Stream

Arbitrary length ciphers
hash functions (MACs)

Security Symmetric-key
Primitives o Primitives

Signatures

Pseudorandom
sequences

Identification primitives

Public-key
ciphers

Public-key Signatures
Primitives

Identification primitives

Figure 1.1: Ataxonomy of cryptographic primitives.

be evaluated with respect to various criteria such as:

1. level of security. This is usually difficult to quantify. Often it is given in terms of the
number of operations required (using the best methods currently known) to defeat t
intended objective. Typically the level of security is defined by an upper bound o
the amount of work necessary to defeat the objective. This is sometimes called t
work factor (se€1.13.4).

2. functionality. Primitives will need to be combined to meet various information se-
curity objectives. Which primitives are most effective for a given objective will be
determined by the basic properties of the primitives.

3. methods of operation. Primitives, when applied in various ways and with various in-
puts, will typically exhibit different characteristics; thus, one primitive could provide

TCL Exhibit 1009
Page 23

Ch. 1 Overview of Cryptography

very different functionality depending on its mode of operation or usage.

4. performance. This refers to the efficiency of a primitive in a particular mode of op-
eration. (For example, an encryption algorithm may be rated by the number of k
per second which it can encrypt.)

5. ease of implementation. This refers to the difficulty of realizing the primitive in a
practical instantiation. This mightinclude the complexity of implementing the prirr
itive in either a software or hardware environment.

The relative importance of various criteria is very much dependent on the applicat
and resources available. For example, in an environment where computing power is lim
one may have to trade off a very high level of security for better performance of the syst
as awhole.

Cryptography, over the ages, has been an art practised by many who have devise
hoc techniques to meet some of the information security requirements. The last twe
years have been a period of transition as the discipline moved from an artto a science. T
are now several international scientific conferences devoted exclusively to cryptogra
and also an international scientific organization, the International Association for Cryp
logic Research (IACR), aimed at fostering research in the area.

This book is about cryptography: the theory, the practice, and the standards.

1.3 Background on functions

While this book is not a treatise on abstract mathematics, a familiarity with basic mat
matical concepts will prove to be useful. One concept which is absolutely fundamenta
cryptography is that of &nction in the mathematical sense. A function is alternately re
ferred to as anapping or atransformation.

1.3.1 Functions (1-1, one-way, trapdoor one-way)

1.2

1.3

A set consists of distinct objects which are call#dments of the set. For example, a s&t
might consist of the elements b, ¢, and this is denoted” = {a, b, c}.

Definition A functionis defined by two setX andY and arule f which assigns to each
element inX precisely one element iii. The setX is called thedomain of the function
andY thecodomain. If z is an element ok (usually writtenz € X) theimage of z is the
element inY” which the rulef associates withy; the imagey of = is denoted by = f(z).
Standard notation for a functighfrom setX tosetYis f: X — Y. If y € Y, thena
preimageof y is an element € X forwhich f(z) = y. The set of all elements i which
have at least one preimage is calleditimage of f, denotedm(f).

Example (function) Consider the setX = {a,b,c}, Y = {1,2,3,4}, and the rulef
from X to Y defined asf(a) = 2, f(b) = 4, f(c) = 1. Figure 1.2 shows a schematic of
the setsX, Y and the functiory. The preimage of the elemedis a. The image off is
{1,2,4}. O

Thinking of a function in terms of the schematic (sometimes call&hetional dia-
gram) given in Figure 1.2, each element in the dom&irhas precisely one arrowed line
originating fromit. Each elementin the codomaircan have any number of arrowed lines
incident to it (including zero lines).

TCL Exhibit 1009
Page 24

§1.3 Background on functions 7

14

1.5

1.6

1.7

1.8

1.9

1.10

o4

Figure 1.2: Afunction f froma set X of three elementsto a set Y of four elements.

Often only the domaiX and the rulef are given and the codomain is assumed to b
the image off. This point is illustrated with two examples.

Example (function) TakeX = {1,2,3,...,10} andletf be the rule that for each e X,
f(z) = ry, wherer,, is the remainder when? is divided by11. Explicitly then

f)=1 f(2)=4 fB)=9 f(4)=5 [f(5) =3
F6)=3 f(1)=5 f(8)=9 f(9)=4 f(10)=1.
The image off is the sef” = {1, 3,4, 5,9}. a

Example (function) TakeX = {1,2,3,...,10°°} and letf be the rulef(z) = ., where
r, is the remainder when? is divided by10°° + 1 for all z € X. Here it is not feasible
to write down f explicitly as in Example 1.4, but nonetheless the function is complete
specified by the domain and the mathematical description of thefrule a

(i) 1-1 functions

Definition A function (or transformation) i4 — 1 (one-to-one) if each element in the
codomaint is the image of at most one element in the donJ&in

Definition A function (or transformation) isnto if each element in the codomain is
the image of at least one element in the domain. Equivalently, a funtich — Y is
ontoifIm(f) =Y.

Definition Ifafunctionf: X — Yis1—1andlm(f) =Y, thenf is called abijection.

Fact If f: X — Yisl1l — 1thenf: X — Im(f) is a bijection. In particular, if
f: X —Yisl—1,andX andY are finite sets of the same size, thérs a bijection.

In terms of the schematic representationf ifs a bijection, then each element¥h
has exactly one arrowed line incident with it. The functions described in Examples 1.3 ¢
1.4 are not bijections. In Example 1.3 the elemiig not the image of any element in the
domain. In Example 1.4 each element in the codomain has two preimages.

Definition If f is a bijection fromX toY thenitis a simple matter to define a bijectipn
fromY to X as follows: for eacly € Y defineg(y) = x wherex € X andf(x) = y. This
functiong obtained fromf is called thenverse function of f and is denoted by = f 1.

TCL Exhibit 1009
Page 25

Ch. 1 Overview of Cryptography

1.11

1.12

1.13

1.14

f g
a o 1 1 O a
b O o 2 2 ob
X ¢ o3Y Y 3 oc X
d o 4 4 od
e o 5 5 o e

Figure 1.3: Abijection f anditsinverseg = f~ 2.

Example (inversefunction) Let X = {a,b,c,d,e}, andY = {1,2, 3,4,5}, and consider
the rule f given by the arrowed edges in Figure 1,8is a bijection and its inversgis
formed simply by reversing the arrows on the edges. The domaiisaf and the codomain
isX. O

Note that if f is a bijection, then so ig~!. In cryptography bijections are used as
the tool for encrypting messages and the inverse transformations are used to decrypt. °
will be made clearer i§1.4 when some basic terminology is introduced. Notice that if the
transformations were not bijections then it would not be possible to always decrypt to
unigue message.

(ii) One-way functions

There are certain types of functions which play significant roles in cryptography. At th
expense of rigor, an intuitive definition of a one-way function is given.

Definition A function f from a setX to a setY is called aone-way function if f(x) is
“easy” to compute for alk € X but for “essentially all” elementg € Im(f) it is “com-
putationally infeasible” to find any € X such thatf(z) = y.

Note (clarification of termsin Definition 1.12)

(i) A rigorous definition of the terms “easy” and “computationally infeasible” is neces-
sary but would detract from the simple idea that is being conveyed. For the purpo
of this chapter, the intuitive meaning will suffice.

(i) The phrase “for essentially all elements¥f refers to the fact that there are a few
valuesy € Y forwhichitis easy to find am € X such thay = f(z). For example,
one may computg = f(z) for a small number of values and then for these, the
inverse is known by table look-up. An alternate way to describe this property of
one-way function is the following: for a randogn€ Im(f) it is computationally
infeasible to find any € X such thatf (z) = y.

The concept of a one-way function is illustrated through the following examples.
Example (one-way function) TakeX = {1,2,3,...,16} and definef(z) = r, for all
x € X wherer, is the remainder whe3r is divided by17. Explicitly,

z |1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
f)|3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

Given a number betwedrand16, it is relatively easy to find the image of it undérHow-
ever, given a number such aswithout having the table in front of you, it is harder to find

TCL Exhibit 1009
Page 26

§1.3 Background on functions 9

1.15

1.16

x giventhatf(xz) = 7. Of course, if the number you are giver8ithen it is clear that = 1
is what you need; but for most of the elements in the codomain it is not that easy’]

One must keep in mind that this is an example which uses very small numbers;
important point here is that there is a difference in the amount of work to confijuje
and the amount of work to find given f(x). Even for very large numberg(z) can be
computed efficiently using the repeated square-and-multiply algorithm (Algorithm 2.14:
whereas the process of findimgrom f(z) is much harder.

Example (one-way function) A prime number is a positive integer greater than 1 whose
only positive integer divisors are 1 and itself. Select primes 48611, ¢ = 53993, form

n = pg = 2624653723, and letX = {1,2,3,...,n — 1}. Define a functionf on X

by f(z) = r, for eachz € X, wherer,, is the remainder when? is divided byn. For
instance f(2489991) = 1981394214 since24899913 = 5881949859 - n + 1981394214.
Computingf (z) is arelatively simple thing to do, but to reverse the procedure is much mo
difficult; that is, given a remainder to find the valuevhich was originally cubed (raised
to the third power). This procedure is referred to as the computation of a modular cube r
with modulusn. If the factors ofn are unknown and large, this is a difficult problem; how-
ever, if the factorg andq of n are known then there is an efficient algorithm for computing
modular cube roots. (S&8.2.2(i) for details.) a

Example 1.15 leads one to consider another type of function which will prove to t
fundamental in later developments.

(iii) Trapdoor one-way functions

Definition A trapdoor one-way function is a one-way functiorf: X — Y with the
additional property that given some extra information (calledtthgdoor information) it
becomes feasible to find for any givere Im(f), anz € X such thatf(z) = y.

Example 1.15 illustrates the concept of a trapdoor one-way function. With the ad
tional information of the factors ot = 2624653723 (namely,p = 48611 andq = 53993,
each of which is five decimal digits long) it becomes much easier to invert the functic
The factors 02624653723 are large enough that finding them by hand computation woul
be difficult. Of course, any reasonable computer program could find the factors relativ
quickly. If, on the other hand, one selegtandgq to be very large distinct prime numbers
(each having about 100 decimal digits) then, by today’s standards, it is a difficult proble
even with the most powerful computers, to dedpe@dg simply fromn. This is the well-
known integer factorization problem (see§3.2) and a source of many trapdoor one-way
functions.

It remains to be rigorously established whether there actually are any (true) one-v
functions. That is to say, no one has yet definitively proved the existence of such ful
tions under reasonable (and rigorous) definitions of “easy” and “computationally infea
ble”. Since the existence of one-way functions is still unknown, the existence of trapdc
one-way functions is also unknown. However, there are a number of good candidates
one-way and trapdoor one-way functions. Many of these are discussed in this book, v
emphasis given to those which are practical.

One-way and trapdoor one-way functions are the basis for public-key cryptograg
(discussedi§1.8). The importance of these concepts will become clearer when their apy
cation to cryptographic techniques is considered. It will be worthwhile to keep the abstr.
concepts of this section in mind as concrete methods are presented.

TCL Exhibit 1009
Page 27

10 Ch. 1 Overview of Cryptography

1.3.2 Permutations

Permutations are functions which are often used in various cryptographic constructs.

1.17 Definition LetS be a finite set of elements. permutation p on S is a bijection (Defini-
tion 1.8) fromS to itself (i.e.,p: S — S).

1.18 Example (permutation) LetS = {1,2,3,4,5}. A permutatiorp: S — S is defined as
follows:

p(1) =3, p(2) =5, p(3) =4, p(4) =2, p(5) = 1.
A permutation can be described in various ways. It can be displayed as above or as an

1 2 3 4 5
p<35421>’ (1)
where the top row in the array is the domain and the bottom row is the image unde
mappingp. Of course, other representations are possible. |

Since permutations are bijections, they have inverses. If a permutation is written :
array (see 1.1), its inverse is easily found by interchanging the rows in the array and rec
ing the elements in the new top row if desired (the bottom row would have to be reord
correspondingly). The inverse pfin Example 1.18ip~! = (é i :13 g g) .
1.19 Example (permutation) Let X be the set of integed, 1,2, ... ,pg — 1} wherep andgq

are distinctarge primes (for exampley andg are each about 100 decimal digits long), an
suppose that neither- 1 norg— 1 is divisible by 3. Then the function(z) = r,, wherer,,
is the remainder when? is divided bypgq, can be shown to be a permutation. Determinir
the inverse permutation is computationally infeasible by today’s standards prdesk;
are known (cf. Example 1.15). O

1.3.3 Involutions
Another type of function which will be referred to §1.5.3 is an involution. Involutions
have the property that they are their own inverses.

1.20 Definition LetS be a finite set and lef be a bijection fronSto S (i.e., f: S — §).
The functionf is called aninvolutionif f = f~!. An equivalent way of stating this is
f(f(x))=zforallz € S.

1.21 Example (involution) Figure 1.4 is an example of an involution. In the diagram of
involution, note that ifj is the image ot theni is the image of. |

TCL Exhibit 1009
Page 28

§1.4 Basic terminology and concepts 11

1 o\ 1
o

O

v\%
O O

2 2
3 3 S
4 O 4
5 o 5

Figure 1.4: Aninvolution on a set S of 5 elements.

1.4 Basic terminology and concepts

The scientific study of any discipline must be built upon rigorous definitions arising fr
fundamental concepts. What follows is a list of terms and basic concepts used throu
this book. Where appropriate, rigor has been sacrificed (here in Chapter 1) for the se
clarity.

Encryption domains and codomains

A denotes a finite set called thiphabet of definition. For exampleA = {0, 1}, the
binary alphabet, is a frequently used alphabet of definition. Note that any alpha
can be encoded in terms of the binary alphabet. For example, since tha2darary
strings of length five, each letter of the English alphabet can be assigned a ui
binary string of length five.

M denotes a set called timessage space. M consists of strings of symbols from
an alphabet of definition. An element 8fl is called aplaintext message or simply
aplaintext. For example M may consist of binary strings, English text, computt
code, etc.

C denotes a set called tlegphertext space. C consists of strings of symbols from ar
alphabet of definition, which may differ from the alphabet of definitionfdr An
element of is called aciphertext.

Encryption and decryption transformations

K denotes a set called tley space. An element oftC is called akey.

Each element € K uniquely determines a bijection froM to C, denoted byF..
E. is called arencryption function or anencryption transformation. Note thatF.
must be a bijection if the process is to be reversed and a unique plaintext me:
recovered for each distinct ciphertéxt.

For eachd € K, D, denotes a bijection frori to M (i.e.,Dg4: C — M). Dy is
called adecryption function or decryption transformation.

The process of applying the transformatibp to a message: € M is usually re-
ferred to agencrypting m or theencryption of m.

The process of applying the transformatiog to a ciphertext is usually referred to
asdecrypting ¢ or thedecryption of c.

1More generality is obtained i, is simply defined as @& — 1 transformation fromM to C. That is to say,
E. is a bijection fromM to Im(Ee) whereIm(E) is a subset of.

TCL Exhibit 1009
Page 29

12

Ch. 1 Overview of Cryptography

1.22

e An encryption scheme consists of a sefE. : e € K} of encryption transformations
and a corresponding s€D,: d € K} of decryption transformations with the prop-
erty that for eacte € K there is a unique key € K such thatD, = E;1; that is,
Dy(E.(m)) = m forallm € M. An encryption scheme is sometimes referred tc
as acipher.

e The keyse andd in the preceding definition are referred to dsegpair and some-
times denoted bye, d). Note thate andd could be the same.

e To construct an encryption scheme requires one to select a message/spagei-
phertext spacé, a key spac&, a set of encryption transformatiofif.: e € K},
and a corresponding set of decryption transformatidng: d € K}.

Achieving confidentiality

An encryption scheme may be used as follows for the purpose of achieving confidential
Two parties Alice and Bob first secretly choose or secretly exchange a key pdjir At a
subsequent point in time, if Alice wishes to send a message M to Bob, she computes
¢ = E.(m) and transmits this to Bob. Upon receivingBob compute,(c) = m and
hence recovers the original message

The question arises as to why keys are necessary. (Why not just choose one encry)
function and its corresponding decryption function?) Having transformations which a
very similar but characterized by keys means that if some particular encryption/decrypt
transformation is revealed then one does not have to redesign the entire scheme but si
change the key. Itis sound cryptographic practice to change the key (encryption/decryp
transformation) frequently. As a physical analogue, consider an ordinary resettable con
nation lock. The structure of the lock is available to anyone who wishes to purchase one
the combination is chosen and set by the owner. If the owner suspects that the combine
has been revealed he can easily reset it without replacing the physical mechanism.

Example (encryption scheme) Let M = {mq,mz2, ms} andC = {c1,c2,c3}. There
are precisel\3! = 6 bijections fromM to C. The key spac& = {1,2,3,4,5,6} has
six elements in it, each specifying one of the transformations. Figure 1.5 illustrates the
encryption functions which are denoted By, 1 < ¢ < 6. Alice and Bob agree on a trans-

FEq Es Es
mi ON& 1 mi1 O——»0O C1 mi O——»0C1
ma2 O C2 ma z><o C2 mz2 O——»0 C2
m3 O c3 m3 O c3 m3 O——»0 C3
FE4 Es Es
mi O C1 mi ><O C1 mi O c1
ma2 O c2 m2 O c2 ma2 O C2
m3 O c3 m3 O——»0 c3 m3 O c3

Figure 1.5: Schematic of a simple encryption scheme.

formation, sayF;. To encrypt the message;, Alice computes; (m;) = c3 and sends
c3 to Bob. Bob decrypts; by reversing the arrows on the diagram for and observing
thatcs points tom;.

TCL Exhibit 1009
Page 30

§1.4 Basic terminology and concepts 13

WhenM is a small set, the functional diagram is a simple visual means to describe tt
mapping. In cryptography, the s#t is typically of astronomical proportions and, as such,
the visual description is infeasible. What is required, in these cases, is some other sim
means to describe the encryption and decryption transformations, such as mathematica
gorithms. O

Figure 1.6 provides a simple model of a two-party communication using encryption.

Adversary
A
encrypton | | ¢ YV N decryption
E.(m)=c UNSECURED CHANNEL Dgy(c) =m
b "
laintext
plaintex destination
source
Alice Bob

Figure 1.6: Schematic of a two-party communication using encryption.

Communication participants
Referring to Figure 1.6, the following terminology is defined.

e An entity or party is someone or something which sends, receives, or manipulate
information. Alice and Bob are entities in Example 1.22. An entity may be a persor
a computer terminal, etc.

e A sender is an entity in a two-party communication which is the legitimate transmitter
of information. In Figure 1.6, the sender is Alice.

e A receiver is an entity in a two-party communication which is the intended recipient
of information. In Figure 1.6, the receiver is Bob.

e An adversaryis an entity in a two-party communication which is neither the sender
nor receiver, and which tries to defeat the information security service being provide
between the sender and receiver. Various other names are synonymous with ady
sary such as enemy, attacker, opponent, tapper, eavesdropper, intruder, and interlo
An adversary will often attempt to play the role of either the legitimate sender or th
legitimate receiver.

Channels

e A channel is a means of conveying information from one entity to another.

e A physically secure channel or secure channel is one which is not physically acces-
sible to the adversary.

e An unsecured channel is one from which parties other than those for which the in-
formation is intended can reorder, delete, insert, or read.

¢ A secured channel is one from which an adversary does not have the ability to reorder
delete, insert, or read.

TCL Exhibit 1009
Page 31

14

Ch. 1 Overview of Cryptography

1.23

One should note the subtle difference between a physically secure channel and &
cured channel — a secured channel may be secured by physical or cryptographic technic
the latter being the topic of this book. Certain channels are assumed to be physically sec
These include trusted couriers, personal contact between communicating parties, and a
icated communication link, to name a few.

Security

A fundamental premise in cryptography is that the getsC, K, {E.: e € K}, {Dg: d €

K} are public knowledge. When two parties wish to communicate securely using an ¢
cryption scheme, the only thing that they keep secret is the particular kefepdjwhich
they are using, and which they must select. One can gain additional security by keeping
class of encryption and decryption transformations secret but one should not base the s
rity of the entire scheme on this approach. History has shown that maintaining the secr
of the transformations is very difficult indeed.

Definition An encryption scheme is said to beeakable if a third party, without prior
knowledge of the key palfe, d), can systematically recover plaintext from corresponding
ciphertext within some appropriate time frame.

An appropriate time frame will be a function of the useful lifespan of the data bein
protected. For example, an instruction to buy a certain stock may only need to be kept se
for a few minutes whereas state secrets may need to remain confidential indefinitely.

An encryption scheme can be broken by trying all possible keys to see which one
communicating parties are using (assuming that the class of encryption functions is pu
knowledge). This is called aexhaustive search of the key space. It follows then that the
number of keys (i.e., the size of the key space) should be large enough to make this apprt
computationally infeasible. Itis the objective of a designer of an encryption scheme thatt
be the best approach to break the system.

Frequently cited in the literature alerckhoffs’ desiderata, a set of requirements for
cipher systems. They are given here essentially as Kerckhoffs originally stated them:

1. the system should be, if not theoretically unbreakable, unbreakable in practice;

. compromise of the system details should not inconvenience the correspondents;
. the key should be rememberable without notes and easily changed;
. the cryptogram should be transmissible by telegraph;
. the encryption apparatus should be portable and operable by a single person; an
. the system should be easy, requiring neither the knowledge of a long list of rules

mental strain.
This list of requirementswas articulated in 1883 and, for the most part, remains useful toc
Point 2 allows that the class of encryption transformations being used be publicly knoy
and that the security of the system should reside only in the key chosen.

o0k WN

Information security in general

So far the terminology has been restricted to encryption and decryption with the goal of
vacy in mind. Information security is much broader, encompassing such things as auth
tication and data integrity. A few more general definitions, pertinent to discussions later
the book, are given next.

¢ An information security service is a method to provide some specific aspect of secu
rity. For example, integrity of transmitted data is a security objective, and a metht
to ensure this aspect is an information security service.

TCL Exhibit 1009
Page 32

§1.5 Symmetric-key encryption 15

e Breaking an information security service (which often involves more than simply er
cryption) implies defeating the objective of the intended service.

e A passiveadversaryis an adversary who is capable only of reading information fron
an unsecured channel.

e An active adversary is an adversary who may also transmit, alter, or delete inform:i
tion on an unsecured channel.

Cryptology

e Cryptanalysisis the study of mathematical techniques for attempting to defeat cry
tographic techniques, and, more generally, information security services.

e A cryptanalyst is someone who engages in cryptanalysis.

e Cryptology is the study of cryptography (Definition 1.1) and cryptanalysis.

e A cryptosystemis a general term referring to a set of cryptographic primitives use
to provide information security services. Most often the term is used in conjuncti
with primitives providing confidentiality, i.e., encryption.

Cryptographic techniques are typically divided into two generic typgsmetric-key

andpublic-key. Encryption methods of these types will be discussed separat§lySrand
§1.8. Other definitions and terminology will be introduced as required.

1.5 Symmetric-key encryption

§1.5 considers symmetric-key encryption. Public-key encryption is the togit.8f

1.5.1 Overview of block ciphers and stream ciphers

1.24 Definition Consider an encryption scheme consisting of the sets of encryption and
cryption transformation§E. : e € K} and{Dy: d € K}, respectively, wherk is the key
space. The encryption scheme is said teametric-key if for each associated encryp-
tion/decryption key paife, d), it is computationally “easy” to determinkknowing onlye,
and to determine fromd.

Sincee = d in most practical symmetric-key encryption schemes, the term symmetr
key becomes appropriate. Other terms used in the literatusangte-key, one-key, private-
key,2 andconventional encryption. Example 1.25 illustrates the idea of symmetric-key er
cryption.

1.25 Example (symmetric-key encryption) Let 4 = {A,B,C,...,X,Y,Z} be the English
alphabet. LetM andC be the set of all strings of length five ovdr The keye is chosen
to be a permutation ol. To encrypt, an English message is broken up into groups ea
having five letters (with appropriate padding if the length of the message is not a multi
of five) and a permutatioais applied to each letter one at a time. To decrypt, the invers
permutationd = ¢! is applied to each letter of the ciphertext. For instance, suppose tl
the keye is chosen to be the permutation which maps each letter to the one which is tt
positions to its right, as shown below

_(ABCDEFGHI JKLMNOPQRSTUVWXYZ
€= DEFGHIJKLMNOPQRSTUVWXYZABC

2Private key is a term also used in quite a different context §&e8). The term will be reserved for the latter
usage in this book.

TCL Exhibit 1009
Page 33

16

Ch. 1 Overview of Cryptography

1.26

A message
m = THISC IPHER ISCER TAINL YNOTS ECURE
is encrypted to
¢ = E.(m) = WKLVF LSKHU LVFHU WDLQO BQRWV HFXUH. O

A two-party communication using symmetric-key encryption can be described by tt
block diagram of Figure 1.7, which is Figure 1.6 with the addition of the secure (both cor

Adversary
A
key [SECURE CHANNEL
source
‘e
v
encrypton | | ¢ YV N decryption
E.(m)=c UNSECURED CHANNEL Dy(c) =m
i "
m
laintext
P destination
source
Alice Bob

Figure 1.7: Two-party communication using encryption, with a secure channel for key exchange.
The decryption key d can be efficiently computed from the encryption key e.

fidential and authentic) channel. One of the major issues with symmetric-key systems is
find an efficient method to agree upon and exchange keys securely. This problemis refel
to as thekey distribution problem (see Chapters 12 and 13).

Itis assumed that all parties know the set of encryption/decryptiontransformations (i.
they all know the encryption scheme). As has been emphasized several times the only in
mation which should be required to be kept secret is thelkélowever, in symmetric-key
encryption, this means that the keynust also be kept secret, d€an be deduced from
e. In Figure 1.7 the encryption keyis transported from one entity to the other with the
understanding that both can construct the decryptiondkey

There are two classes of symmetric-key encryption schemes which are commonly ¢
tinguished:block ciphers andstream ciphers.

Definition A block cipher is an encryption scheme which breaks up the plaintext mes
sages to be transmitted into strings (calbbocks) of a fixed lengtht over an alphabet,
and encrypts one block at a time.

Most well-known symmetric-key encryption techniques are block ciphers. A numbe
of examples of these are given in Chapter 7. Two important classes of block ciphers i
substitution ciphers andtransposition ciphers (§1.5.2). Product ciphers (§1.5.3) combine

TCL Exhibit 1009
Page 34

§1.5 Symmetric-key encryption 17

these. Stream ciphers are considereili®.4, while comments on the key space follow in
§1.5.5.

1.5.2 Substitution ciphers and transposition ciphers

1.27

1.28

1.29

Substitution ciphers are block ciphers which replace symbols (or groups of symbols)
other symbols or groups of symbols.

Simple substitution ciphers

Definition Let .4 be an alphabet af symbols andM be the set of all strings of length
t over A. Let K be the set of all permutations on the skt Define for eacke € K an
encryption transformatiok, as:

Ee(m) = (e(m1)e(mz) - -~ e(my)) = (crc2---) = ¢,

wherem = (mimsg---m¢) € M. In other words, for each symbol intetuple, replace
(substitute) it by another symbol frohaccording to some fixed permutatienTo decrypt
¢ = (cica - - - ¢;) compute the inverse permutatidn= e~ and

Dy(c) = (d(er)d(c2) -+ - d(ct)) = (mamg -+ -my) = m.
F. is called asimple substitution cipher or amono-alphabetic substitution cipher.

The number of distinct substitution cipherglsand is independent of the block size in
the cipher. Example 1.25is an example of a simple substitution cipher of block length fiy

Simple substitution ciphers over small block sizes provide inadequate security e\
when the key space is extremely large. If the alphabet is the English alphabet as in Ex
ple 1.25, then the size of the key space6s ~ 4 x 1025, yet the key being used can be
determined quite easily by examining a modest amount of ciphertext. This follows from t
simple observation that the distribution of letter frequencies is preserved in the cipherte
For example, the lettdf occurs more frequently than the other letters in ordinary Englist
text. Hence the letter occurring most frequently in a sequence of ciphertext blocks is m
likely to correspond to the lettdt in the plaintext. By observing a modest quantity of ci-
phertext blocks, a cryptanalyst can determine the key.

Homophonic substitution ciphers

Definition To each symbok € A, associate a sdf(a) of strings oft symbols, with
the restriction that the sefé(a), a € A, be pairwise disjoint. Aomophonic substitution
cipher replaces each symbalin a plaintext message block with a randomly chosen string
from H(a). To decrypt a string: of t symbols, one must determine anc A such that

¢ € H(a). The key for the cipher consists of the séfa).

Example (homophonic substitution cipher) ConsiderA = {a,b}, H(a) = {00, 10}, and
H(b) = {01,11}. The plaintext message bloek encrypts to one of the followind1001,
0011, 1001, 1011. Observe that the codomain of the encryption function (for messages
length two) consists of the following pairwise disjoint sets of four-element bitstrings:

aa — {0000,0010,1000,1010}

ab — {0001,0011,1001,1011}

ba — {0100,0110,1100,1110}

bb — {0101,0111,1101,1111}

Any 4-bitstring uniquely identifies a codomain element, and hence a plaintext meSsage

TCL Exhibit 1009
Page 35

18

Ch. 1 Overview of Cryptography

1.30

1.31

1.32

Often the symbols do not occur with equal frequency in plaintext messages. Wil
simple substitution cipher this non-uniform frequency property is reflected in the cipher
as illustrated in Example 1.25. A homophonic cipher can be used to make the frequent
occurrence of ciphertext symbols more uniform, at the expense of data expansion. De«
tion is not as easily performed as it is for simple substitution ciphers.

Polyalphabetic substitution ciphers

Definition A polyal phabetic substitution cipher is a block cipher with block lengthover
an alphabe#d having the following properties:
(i) the key spac& consists of all ordered setspermutationgpi, ps, ... ,pt), where
each permutatiop; is defined on the sed;
(i) encryption of the message = (mims - --m;) under the key = (p1,p2,... ,pt)
is given byE, (m) = (p1(m1)pz(m2) - - p:(ms)); and
(i) the decryption key associated with= (p1,pa, ... ,pi)isd = (py L py Ly ..., 07 b).

Example (Vigenérecipher) Let A = {A,B,C,... ,X,Y,Z} andt = 3. Choose: =
(p1,p2, p3), wherep; maps each letter to the letter three positions to its right in the alphat
po 10 the one seven positions to its right, anden positions to its right. If

m = THI SCI PHE RIS CER TAI NLY NOT SEC URE
then
¢=E.(m) =WOS VJS SOO UPC FLB WHS QSI QVD VLM XYO. O

Polyalphabetic ciphers have the advantage over simple substitution ciphers that syi
frequencies are not preserved. In the example above, the letter E is encrypted to both (
L. However, polyalphabetic ciphers are not significantly more difficult to cryptanalyze, t
approach being similar to the simple substitution cipher. In fact, once the block keisgth
determined, the ciphertext letters can be divided trgooups (where group 1 < ¢ < ¢,
consists of those ciphertext letters derived using permutatipand a frequency analysis
can be done on each group.

Transposition ciphers

Another class of symmetric-key ciphers is the simple transposition cipher, which sim
permutes the symbols in a block.

Definition Consider a symmetric-key block encryption scheme with block lendtat /C
be the set of all permutations on the §&12, . .. ,t}. For eacke € K define the encryption
function

Ee(m) = (MeyMe(2) - - Me(t))

wherem = (mims - --m;) € M, the message space. The set of all such transformatic
is called asimpletransposition cipher. The decryption key correspondingds the inverse
permutation] = e~!. Todecrypt = (cicz - - - ¢;), computeDg(c) = (Ca(1)Ca(2) - - * Cact))-

A simple transposition cipher preserves the number of symbols of a given type wit
a block, and thus is easily cryptanalyzed.

TCL Exhibit 1009
Page 36

81.5 Symmetric-key encryption 19

1.5.3 Composition of ciphers

1.33

1.34

In order to describe product ciphers, the concept of composition of functions is introdu
Compositions are a convenient way of constructing more complicated functions from:
pler ones.

Composition of functions

Definition LetS, 7, and/ be finite sets and let: S — 7 andg: T — U be func-
tions. Thecomposition of g with f, denoted; o f (or simplygf), is a function fromsS to
U as illustrated in Figure 1.8 and defined(aye f)(x) = g(f(z)) forallz € S.

Figure 1.8: The composition g o f of functions g and f.

Composition can be easily extended to more than two functions. For fungtioifis,
., ft, one can defing, o - - -o fy 0 f1, provided that the domain ¢f equals the codomain
of f;_; and so on.
Compositions and involutions

Involutions were introduced i§iL.3.3 as a simple class of functions with an interesting pra
erty: E,(Ey(z)) = x for all z in the domain of&y;; that is, E, o Ey, is the identity function.

Remark (composition of involutions) The composition of two involutions is not necessa
ily aninvolution, as illustrated in Figure 1.9. However, involutions may be composed to
somewhat more complicated functions whose inverses are easy to find. This is animp
feature for decryption. For example#fy, , Ey,, . .. , Ex, are involutions then the inverse
of Ey, = Ey, Eky -+ Ey, IS E,;l = Ey,Ey, , --- Ex,, the composition of the involutions
in the reverse order.

1 01 10—01 1 01
2Z><oz 2 02 2
3 03 3><o3
4:><o4 40—04

f g gof

Figure 1.9: The composition g o f of involutions g and f isnot an involution.

3
04

A~ W N

TCL Exhibit 1009
Page 37

20

Ch. 1 Overview of Cryptography

1.35

1.36

Product ciphers

Simple substitution and transposition ciphers individually do not provide a very high le
of security. However, by combining these transformations it is possible to obtain stron
phers. As will be seen in Chapter 7 some of the most practical and effective symmetric
systems are product ciphers. One example rfodluct cipher is a composition of > 2
transformation€y, Ex, - - - E, where eachFy,, 1 < i < ¢, is either a substitution or a
transposition cipher. For the purpose of this introduction, let the composition of a subs
tion and a transposition be calledaund.

Example (product cipher) Let M = C = K be the set of all binary strings of length six
The number of elements i is 26 = 64. Letm = (myms - - - mg) and define

E,(cl)(m) = mk, wherek € K,
E®(m) = (magmsmemimams).

Here,® is theexclusive-OR (XOR) operation defined as follows:4 0 = 0,06 1 = 1,
1¢0=1,191 =0. E,(Cl) is a polyalphabetic substitution cipher afié?) is a trans-

position cipher (not involving the key). The prodLEﬁl)E(z) is a round. While here the
transposition cipher is very simple and is not determined by the key, this need not b
case. 0

Remark (confusionand diffusion) A substitution in a round is said to addnfusion to the
encryption process whereas a transposition is said talidfidion. Confusion is intended
to make the relationship between the key and ciphertext as complex as possible. Diffi
refers to rearranging or spreading out the bits in the message so that any redundancy
plaintext is spread out over the ciphertext. A round then can be said to add both cc
sion and diffusion to the encryption. Most modern block cipher systems apply a numbi
rounds in succession to encrypt plaintext.

1.5.4 Stream ciphers

1.37

1.38

Stream ciphers form an important class of symmetric-key encryption schemes. They a
one sense, very simple block ciphers having block length equal to one. What makes
useful is the fact that the encryption transformation can change for each symbol of p
text being encrypted. In situations where transmission errors are highly probable, st
ciphers are advantageous because they have no error propagation. They can also k
when the data must be processed one symbol at atime (e.g., if the equipmenthas nom
or buffering of data is limited).

Definition Let K be the key space for a set of encryption transformations. A sequenc
symbolsejeqses - - - e; € K, is called akeystream.

Definition Let.A be an alphabet of symbols and le, be a simple substitution cipher
with block lengthl wheree € K. Letmmaoms - - - be a plaintext string and leteses - - -
be a keystream froik. A streamcipher takes the plaintext string and produces a cipherte
stringcicacs - - - wheree; = E., (m;). If d; denotes the inverse ef, thenDg,(¢;) = m;
decrypts the ciphertext string.

TCL Exhibit 1009
Page 38

§1.5 Symmetric-key encryption 21

1.39

A stream cipher applies simple encryption transformations according to the keystre
being used. The keystream could be generated at random, or by an algorithm which ¢
erates the keystream from an initial small keystream (callegkd), or from a seed and
previous ciphertext symbols. Such an algorithm is callkeyatream generator.

The Vernam cipher
A motivating factor for the Vernam cipher was its simplicity and ease of implementatior

Definition TheVernam Cipher is a stream cipher defined on the alphaltet {0,1}. A
binary messager;ms - - - m, is operated on by a binary key strikgks - - - k; of the same
length to produce a ciphertext stringes - - - ¢; where

cG=m;dk; 1<i<t.

If the key string is randomly chosen and never used again, the Vernam cipher is calle
one-time system or aone-time pad.

To see how the Vernam cipher corresponds to Definition 1.38, observe that there
precisely two substitution ciphers on the gketOne is simply the identity maf, which
sendd) to 0 and1 to 1; the otherE; send9) to 1 and1 to 0. When the keystream contains
a0, apply F to the corresponding plaintext symbol; otherwise, agply

If the key string is reused there are ways to attack the system. For example,if- ¢;
andc}c, - - - ¢} are two ciphertext strings produced by the same keystigdm: - - k, then

/ !
ci=m; @k, ¢ =m; Dk

andc; @ ¢, = m; @ m}. The redundancy in the latter may permit cryptanalysis.

The one-time pad can be shown to be theoretically unbreakable. That s, if a crypta
lyst has a ciphertext string ¢ - - - ¢; encrypted using a random key string which has beet
used only once, the cryptanalyst can do no better than guess at the plaintext being an
nary string of length (i.e., ¢-bit binary strings are equally likely as plaintext). It has been
proventhatto realize an unbreakable system requires a random key of the same length ¢
message. This reduces the practicality of the system in all but a few specialized situati
Reportedly until very recently the communication line between Moscow and Washingt
was secured by a one-time pad. Transport of the key was done by trusted courier.

1.5.5 The key space

1.40

The size of the key space is the number of encryption/decryption key pairs that are avail:
in the cipher system. A key is typically a compact way to specify the encryption transfc
mation (from the set of all encryption transformations) to be used. For example, a trans
sition cipher of block length hast! encryption functions from which to select. Each can
be simply described by a permutation which is called the key.

Itis a great temptation to relate the security of the encryption scheme to the size of
key space. The following statement is important to remember.

Fact A necessary, but usually not sufficient, condition for an encryption scheme to be :
cure is that the key space be large enough to preclude exhaustive search.

For instance, the simple substitution cipher in Example 1.25 has a key space of ¢
26! ~ 4 x 1026, The polyalphabetic substitution cipher of Example 1.31 has a key spa
of size(26!)® ~ 7 x 107. Exhaustive search of either key space is completely infeasibl
yet both ciphers are relatively weak and provide little security.

TCL Exhibit 1009
Page 39

22

Ch.1 Overview of Cryptography

1.6 Digital signatures

1.41

1.42

A cryptographic primitive which is fundamental in authentication, authorization, and n
repudiation is theligital signature. The purpose of a digital signature is to provide a mea
for an entity to bind its identity to a piece of information. The process@fing entails
transforming the message and some secret information held by the entity into a tag «
asignature. A generic description follows.

Nomenclature and set-up

e M is the set of messages which can be signed.

e S is a set of elements callethnatures, possibly binary strings of a fixed length.

e S, is atransformation from the message Aétto the signature sef, and is called
asigning transformation for entity A.3 The transformatiors 4 is kept secret by,
and will be used to create signatures for messages . vom

e V4 is a transformation from the sét x S to the set{true, false}.# V, is called
a verification transformation for A’s signatures, is publicly known, and is used b
other entities to verify signatures createdby

Definition The transformationS 4 andV4 provide adigital signature schemefor A. Oc-
casionally the terndigital signature mechanismis used.

Example (digital signature scheme) M = {my, mz, ms} andS = {s1, s2, s3}. The left
side of Figure 1.10 displays a signing functi6p from the setM and, the right side, the
corresponding verification functidr, . a

(ma, s1)
(ma, s2)
(my, s3)
(ma2, s1)

True

SA (mz, 82)

(ma, 55) False
(ms, s1)
(ma, s2)
(ma, s3)

Va

Figure 1.10: A signing and verification function for a digital signature scheme.

3The names of Alice and Bob are usually abbreviated @nd B, respectively.
4 M x S consists of all pair§m, s) wherem € M, s € S, called theCartesian product of M andS.

TCL Exhibit 1009
Page 40

§1.6 Digital signatures 23

1.43

1.44

Signing procedure

Entity A (thesigner) creates a signature for a message M by doing the following:
1. Computes = S4(m).
2. Transmit the paifm, s). s is called thesignature for messagen.

Verification procedure

To verify that a signature on a messager was created byl, an entity B (the verifier)
performs the following steps:

1. Obtain the verification functiolis of A.

2. Computey = V4 (m, s).

3. Acceptthe signature as having been created iy, = true, and reject the signature
if u = false.

Remark (conciserepresentation) The transformationS 4 andV4 are typically character-
ized more compactly by a key; that is, there is a class of signing and verification algorith
publicly known, and each algorithm is identified by a key. Thus the signing algoSthm
of A is determined by a key4 and A is only required to keeg 4 secret. Similarly, the
verification algorithmi’4 of A is determined by a kel which is made public.

Remark (handwritten signatures) Handwritten signatures could be interpreted as a sp
cial class of digital signatures. To see this, take the set of signafub@sontain only one
element which is the handwritten signaturedfdenoted by 4. The verification function
simply checks if the signature on a message purportedly signedipy 4.

An undesirable feature in Remark 1.44 is that the signature is not message-depen
Hence, further constraints are imposed on digital signature mechanisms as next discu

Properties required for signing and verification functions
There are several properties which the signing and verification transformations must sat

(a) s is avalid signature oft on message if and only if V4 (m, s) = true.
(b) Itis computationally infeasible for any entity other tharo find, for anym € M,
ans € S such thal/4 (m, s) = true.

Figure 1.10 graphically displays property (a). There is an arrowed line in the diagri
for V4 from (m;, s;) totrue provided there is an arrowed line fram; to s; in the diagram
for S4. Property (b) provides the security for the method — the signature uniquely Ainds
to the message which is signed.

No one has yet formally proved that digital signature schemes satisfying (b) exist (
though existence is widely believed to be true); however, there are some very good «
didates.§1.8.3 introduces a particular class of digital signatures which arise from publ
key encryption techniques. Chapter 11 describes a number of digital signature mechan
which are believed to satisfy the two properties cited above. Although the description ¢
digital signature given in this section is quite general, it can be broadened further, as
sented irg11.2.

TCL Exhibit 1009
Page 41

24

Ch. 1 Overview of Cryptography

1.7 Authentication and identification

Authentication is a term which is used (and often abused) in a very broad sense. By
it has little meaning other than to convey the idea that some means has been provi
guarantee that entities are who they claim to be, or that information has not been m
ulated by unauthorized parties. Authentication is specific to the security objective w
one is trying to achieve. Examples of specific objectives include access control, entit
thentication, message authentication, data integrity, non-repudiation, and key authe
tion. These instances of authentication are dealt with at length in Chapters 9 throug
For the purposes of this chapter, it suffices to give a brief introduction to authenticatio
describing several of the most obvious applications.

Authentication is one of the most important of all information security objectives. U
til the mid 1970s it was generally believed that secrecy and authentication were intrinsi
connected. With the discovery of hash functions (§1.9) and digital signatures (§1.6), it
realized that secrecy and authentication were truly separate and independent inforr
security objectives. It may at first not seem important to separate the two but there are
ations where it is not only useful but essential. For example, if a two-party communice
between Alice and Bob is to take place where Alice is in one country and Bob in ano
the host countries might not permit secrecy on the channel; one or both countries r
want the ability to monitor all communications. Alice and Bob, however, would like to
assured of the identity of each other, and of the integrity and origin of the information t
send and receive.

The preceding scenario illustrates several independent aspects of authentication.
ice and Bob desire assurance of each other’s identity, there are two possibilities to cor

1. Alice and Bob could be communicating with no appreciable time delay. Thatis, t
are both active in the communication in “real time”.

2. Alice or Bob could be exchanging messages with some delay. That is, mes:
might be routed through various networks, stored, and forwarded at some later-

In the first instance Alice and Bob would want to verify identities in real time. Tt
might be accomplished by Alice sending Bob some challenge, to which Bob is the
entity which can respond correctly. Bob could perform a similar action to identify Ali
This type of authentication is commonly referred tesaisty authentication or more simply
identification.

For the second possibility, it is not convenient to challenge and await response
moreover the communication path may be only in one direction. Different techniques
now required to authenticate the originator of the message. This form of authenticati
calleddata origin authentication.

1.7.1 ldentification

1.45 Definition An identification or entity authenticationtechnique assures one party (throuc

acquisition of corroborative evidence) of both the identity of a second party involved,
that the second was active at the time the evidence was created or acquired.

Typically the only data transmitted is that necessary to identify the communicating
ties. The entities are both active in the communication, giving a timeliness guarantee

TCL Exhibit 1009
Page 42

§1.8 Public-key cryptography 25

1.46 Example (identification) A calls B on the telephone. 1A and B know each other then
entity authentication is provided through voice recognition. Although not foolproof, t
works effectively in practice. O

1.47 Example (identification) PersonA provides to a banking machine a personal identifice
tion number (PIN) along with a magnetic stripe card containing information atbhotihe
banking machine uses the information on the card and the PIN to verify the identity of
card holder. If verification succeedd,is given access to various services offered by th
machine. 0

Example 1.46 is an instancemibitual authenticationwhereas Example 1.47 only pro-
videsunilateral authentication. Numerous mechanisms and protocols devised to provi
mutual or unilateral authentication are discussed in Chapter 10.

1.7.2 Data origin authentication

1.48 Definition Data origin authentication or message authentication techniques provide to
one party which receives a message assurance (through corroborative evidence) of the
tity of the party which originated the message.

Often a message is providedBalong with additional information so tha&t can de-
termine the identity of the entity who originated the message. This form of authentica
typically provides no guarantee of timeliness, but is useful in situations where one of
parties is not active in the communication.

1.49 Example (need for data origin authentication) A sends taB an electronic mail message
(e-mail). The message may travel through various network communications systems a
stored forB to retrieve at some later timel andB are usually not in direct communication.
B would like some means to verify that the message received and purportedly create
A did indeed originate from. d

Data origin authentication implicitly provides data integrity since, if the message v
modified during transmissio would no longer be the originator.

1.8 Public-key cryptography

The concept of public-key encryption is simple and elegant, but has far-reaching co
guences.

1.8.1 Public-key encryption

Let{E.: e € K} be a set of encryption transformations, and[BY; : d € K} be the set of
corresponding decryption transformations, whiers the key space. Consider any pair ol
associated encryption/decryption transformati@is, D) and suppose that each pair ha:
the property that knowingdy. it is computationally infeasible, given a random ciphertex
¢ € C, to find the message € M such thatt, (m) = c. This property implies that given
e it is infeasible to determine the corresponding decryptiondkefOf coursee andd are

TCL Exhibit 1009
Page 43

26

Ch. 1 Overview of Cryptography

simply means to describe the encryption and decryption functions, respectivglis be-
ing viewed here as a trapdoor one-way function (Definition 1.16) &/khing the trapdoor
information necessary to compute the inverse function and hence allow decryption. Thit
unlike symmetric-key ciphers wheesandd are essentially the same.

Under these assumptions, consider the two-party communication between Alice ¢
Bobillustrated in Figure 1.11. Bob selects the key paijtl). Bob sends the encryption key
e (called thepublic key) to Alice over any channel but keeps the decryption&égalled the
private key) secure and secret. Alice may subsequently send a messiaggob by apply-
ing the encryption transformation determined by Bob’s public key tagetF . (m). Bob
decrypts the ciphertextby applying the inverse transformatid@»; uniquely determined
by d.

Passive
Adversary
A A
L& .. Y L key
; UNSECURED CHANNEL source
| ‘d
v
encrypton | | ¢ Y__|,| decryption
E.(m)=c UNSECURED CHANNEL Day(c) =m
i g
m
laintext
P destination
source
Alice Bob

Figure 1.11: Encryption using public-key techniques.

Notice how Figure 1.11 differs from Figure 1.7 for a symmetric-key cipher. Here th
encryption key is transmitted to Alice over an unsecured channel. This unsecured char
may be the same channel on which the ciphertext is being transmitted (kjit.8e®.

Since the encryption keyneed not be kept secret, it may be made public. Any entity
can subsequently send encrypted messages to Bob which only Bob can decrypt. Figure
illustrates this idea, wherd;, A, and A3 are distinct entities. Note that #; destroys
messagen; after encrypting it ta:;, then evend; cannot recovem; fromc;.

As a physical analogue, consider a metal box with the lid secured by a combinati
lock. The combination is known only to Bob. If the lock is left open and made publicly
available then anyone can place a message inside and lock the lid. Only Bob can retri
the message. Even the entity which placed the message into the box is unable to retrie

Public-key encryption, as described here, assumes that knowledge of the pulalic ke
does not allow computation of the private kéyin other words, this assumes the existence
of trapdoor one-way functions (§1.3.1(iii)).

1.50 Definition Consider an encryption scheme consisting of the sets of encryption and decn

TCL Exhibit 1009
Page 44

§1.8 Public-key cryptography 27

1.51

A | Eo(mi)=a \
\ Dd(cl) =mi

Az | Ee(ma) =c2 Dg(c2) = ma2

/ Dg(c3) = ms
As | Eo(ms) = /
3 (ma) = es . Bob

Figure 1.12: Schematic use of public-key encryption.

tion transformation§E. : e € K} and{Dy: d € K}, respectively. The encryption method
is said to be gublic-key encryption scheme if for each associated encryption/decryption
pair (e, d), one keye (thepublic key) is made publicly available, while the othé(thepri-
vate key) is kept secret. For the scheme toseeure, it must be computationally infeasible
to computed frome.

Remark (private key vs. secret key) To avoid ambiguity, a common convention is to use
the termprivate key in association with public-key cryptosystems, @actet key in associ-
ation with symmetric-key cryptosystems. This may be motivated by the following line «
thought: it takes two or more partiesdigare a secret, but a key is trufyrivate only when
one party alone knows it.

There are many schemes known which are widely believed to be secure public-
encryption methods, but none have been mathematically proven to be secure indeper
of qualifying assumptions. This is not unlike the symmetric-key case where the only syst
which has been proven secure is the one-time pad (§1.5.4).

1.8.2 The necessity of authentication in public-key systems

Itwould appear that public-key cryptographyis an ideal system, not requiring a secure ct
nel to pass the encryption key. This would imply that two entities could communicate o
an unsecured channel without ever having met to exchange keys. Unfortunately, this is
the case. Figure 1.13 illustrates how an active adversary can defeat the system (de
messages intended for a second entity) without breaking the encryption system. This
type ofimpersonation and is an example girotocol failure (see§1.10). In this scenario
the adversary impersonates enfityby sending entityd a public keye’ which A assumes
(incorrectly) to be the public key dB. The adversary intercepts encrypted messages fro
Ato B, decrypts with its own private key/, re-encrypts the message undgs public key

e, and sends it on t®. This highlights the necessity suithenticate public keys to achieve
data origin authentication of the public keys themselwsnust be convinced that she is

TCL Exhibit 1009
Page 45

28 Ch. 1 Overview of Cryptography

encrypting under the legitimate public key Bf Fortunately, public-key techniques alsc
allow an elegant solution to this problem ($del1).

e

Adversary

L] key

l source

|

! ‘ d encryption | | ________.

| E.(m)=c
e

|

|

|

|

|

|

l

v

decryption A
Dy () =m 7”4? !
i |

’
encryption | | € key ¢
E.(m)=¢ source
b 1
plaintext decryption <
source Dgi(c)=m
{m
A
destination
B

Figure 1.13: Animpersonation attack on a two-party communication.

1.8.3 Digital signatures from reversible public-key encryption

This section considers a class of digital signature schemes which is based on publi
encryption systems of a particular type.

Supposer. is a public-key encryption transformation with message specand ci-
phertext spac€. Suppose further thatt = C. If D is the decryption transformation
corresponding t&. then sincel,. andD, are both permutations, one has

Dy(E.(m)) = E.(D4a(m)) = m, forallm e M.

A public-key encryption scheme of this type is calleslersible.> Note that it is essential
that M = C for this to be a valid equality for allh € M; otherwise,D (m) will be
meaningless fom ¢ C.

5There is a broader class of digital signatures which can be informally described as arisirigrénansible
cryptographic algorithms. These are describeéflih.2.

TCL Exhibit 1009
Page 46

§1.8 Public-key cryptography 29

Construction for a digital signature scheme

1. Let M be the message space for the signature scheme.

2. LetC = M be the signature spa¢e

3. Let(e,d) be a key pair for the public-key encryption scheme.

4. Define the signing functiofi4 to beD,. Thatis, the signature fora messagez M
iss = Dgy(m).

. Define the verification functiolis by

[

[true, if E.(s) =m,
Va(m, s) = { false, otherwise.

The signature scheme can be simplified furthet dnly signs messages having a spe-
cial structure, and this structure is publicly known. let’ be a subset aM where ele-
ments of M’ have a well-defined special structure, such th&tcontains only a negligi-
ble fraction of messages from the set. For example, supposattainsists of all binary
strings of lengtt2t for some positive integer Let M’ be the subset of1 consisting of all
strings where the firgtbits are replicated in the laspositions (e.9.101101 would be in
M’ fort = 3). If A only signs messages within the suhsét, these are easily recognized
by a verifier.

Redefine the verification functidr, as

[true, if E.(s) e M/,
Va(s) = { false, otherwise.

Under this new scenarid only needs to transmit the signatursince the message =
E.(s) can be recovered by applying the verification function. Such a scheme is calle
digital signature scheme with message recovery. Figure 1.14 illustrates how this signature
function is used. The feature of selecting messages of special structure is referred t
selecting messages witbdundancy.

e key
Ee(s) = source
Y
m/
' ; 1
Accept
if m’ € M’ Dg(m) = s
f m
Verifier B message
source
M/
Signer A

Figure 1.14: Adigital signature scheme with message recovery.

The modification presented above is more than a simplification; it is absolutely cruc
if one hopes to meet the requirement of property (b) of signing and verification functio
(see page 23). To see why this is the case, note that any &ty select a random ele-
ments € S as a signature and apph. to getu = E.(s), sinceS = M andE. is public

TCL Exhibit 1009
Page 47

30

Ch. 1 Overview of Cryptography

1.52

knowledge.B may then take the message= v and the signature am to bes and trans-
mits (m, s). Itis easy to check thatwill verify as a signature created b4 for m but in
which A has had no part. In this cagehasforged a signature ofd. This is an example of
what is calledexistential forgery. (B has produced!’s signature on some message likely
not of B’s choosing.)

If M’ contains only a negligible fraction of messages fidfn then the probability of
some entity forging a signature dfin this manner is negligibly small.

Remark (digital signaturesvs. confidentiality) Although digital signature schemes base!
on reversible public-key encryption are attractive, they require an encryption method
primitive. There are situations where a digital signature mechanismis required but enc
tion is forbidden. In such cases these digital signature schemes are inappropriate.

Digital signatures in practice

For digital signatures to be useful in practice, concrete realizations of the preceding
cepts should have certain additional properties. A digital signature must

1. be easy to compute by the signer (the signing function should be easy to apply);

2. be easy to verify by anyone (the verification function should be easy to apply); a

3. have an appropriate lifespan, i.e., be computationally secure from forgery until
signature is no longer necessary for its original purpose.

Resolution of disputes

The purpose of a digital signature (or any signature method) is to permit the resolutio
disputes. For example, an entilycould at some point deny having signed a message
some other entity3 could falsely claim that a signature on a message was producéd by
In order to overcome such problemsrasted third party (TTP) orjudgeis required. The
TTP must be some entity which all parties involved agree upon in advance.

If A denies that a message held by B was signed by4, then B should be able to
present the signaturgy for m to the TTP along withm. The TTP rules in favor oB if
Va(m, s4) = trueand in favor ofA otherwise.B will accept the decision iB is confident
thatthe TTP has the same verifying transformatiaras A does.A will accept the decision
if Ais confident that the TTP uséd, and thatS4 has not been compromised. Therefore
fair resolution of disputes requires that the following criteria are met.

Requirements for resolution of disputed signatures

1. S4 andV4 have properties (a) and (b) of page 23.
2. The TTP has an authentic copyof.
3. The signing transformatio$iy has been kept secret and remains secure.

These properties are necessary but in practice it might not be possible to guare
them. For example, the assumption thatandV, have the desired characteristics giver
in property 1 might turn out to be false for a particular signature scheme. Another po
bility is that A claims falsely that54 was compromised. To overcome these problems r:
quires an agreed method to validate the time period for wHielill accept responsibility
for the verification transformation. An analogue of this situation can be made with cre
card revocation. The holder of a card is responsible until the holder notifies the card iss
company that the card has been lost or stofdr3.8.2 gives a more indepth discussion o
these problems and possible solutions.

TCL Exhibit 1009
Page 48

§1.8 Public-key cryptography 31

1.8.4 Symmetric-key vs. public-key cryptography

Symmetric-key and public-key encryption schemes have various advantages and disas
tages, some of which are common to both. This section highlights a number of these
summarizes features pointed out in previous sections.

(i) Advantages of symmetric-key cryptography

1.

N

Symmetric-key ciphers can be designed to have high rates of data throughput. £
hardware implementations achieve encrypt rates of hundreds of megabytes per
ond, while software implementations may attain throughput rates in the megab
per second range.

. Keys for symmetric-key ciphers are relatively short.
. Symmetric-key ciphers can be employed as primitives to construct various cry|

graphic mechanisms including pseudorandom number generators (see Chapt
hash functions (see Chapter 9), and computationally efficient digital signature ¢
emes (see Chapter 11), to name just a few.

. Symmetric-key ciphers can be composed to produce stronger ciphers. Simple ti

formations which are easy to analyze, but on their own weak, can be used to cons
strong product ciphers.

. Symmetric-key encryption is perceived to have an extensive history, althoughit

be acknowledged that, notwithstanding the invention of rotor machines earlier, m
of the knowledge in this area has been acquired subsequent to the invention o
digital computer, and, in particular, the design of the Data Encryption Standard (
Chapter 7) in the early 1970s.

(ii) Disadvantages of symmetric-key cryptography

1.
2.

3.

In a two-party communication, the key must remain secret at both ends.

In a large network, there are many key pairs to be managed. Consequently, effe
key managementrequires the use of an unconditionally trusted TTP (Definition 1.(
In a two-party communication between entitkésnd B, sound cryptographic prac-
tice dictates that the key be changed frequently, and perhaps for each communic
session.

. Digital signature mechanisms arising from symmetric-key encryption typically 1

quire either large keys for the public verification function or the use of a TTP (s
Chapter 11).

(iii) Advantages of public-key cryptography

1.

2.

Only the private key must be kept secret (authenticity of public keys must, howe
be guaranteed).

The administration of keys on a network requires the presence of only a function
trusted TTP (Definition 1.66) as opposed to an unconditionally trusted TTP. Depe
ing on the mode of usage, the TTP might only be required in an “off-line” mann:
as opposed to in real time.

. Depending on the mode of usage, a private key/public key pair may remain unchi

ed for considerable periods of time, e.g., many sessions (even several years).

. Many public-key schemes yield relatively efficient digital signature mechanisr

The key used to describe the public verification function is typically much smal
than for the symmetric-key counterpart.

TCL Exhibit 1009
Page 49

32

Ch. 1 Overview of Cryptography

1.53

5. In a large network, the number of keys necessary may be considerably smaller
in the symmetric-key scenario.

(iv) Disadvantages of public-key encryption

1. Throughputrates for the most popular public-key encryption methods are severa
ders of magnitude slower than the best known symmetric-key schemes.

2. Key sizes are typically much larger than those required for symmetric-key encrypt
(see Remark 1.53), and the size of public-key signatures is larger than that of
providing data origin authentication from symmetric-key techniques.

3. No public-key scheme has been proven to be secure (the same can be said for
ciphers). The most effective public-key encryption schemes found to date have t
security based on the presumed difficulty of a small set of number-theoretic proble

4. Public-key cryptography does not have as extensive a history as symmetric-key
cryption, being discovered only in the mid 1970s.

Summary of comparison

Symmetric-key and public-key encryption have a number of complementary advanta
Current cryptographic systems exploit the strengths of each. An example will serve ti
lustrate.

Public-key encryption techniques may be used to establish a key for a symmetric-
system being used by communicating entitieand B. In this scenaricd and B can take
advantage of the long term nature of the public/private keys of the public-key scheme
the performance efficiencies of the symmetric-key scheme. Since data encryption is
quently the most time consuming part of the encryption process, the public-key schem
key establishment is a small fraction of the total encryption process betdvaad B.

To date, the computational performance of public-key encryption is inferior to that
symmetric-key encryption. There is, however, no proof that this must be the case.
important points in practice are:

1. public-key cryptographyfacilitates efficient signatures (particularly non-repudiatic
and key mangement; and

2. symmetric-key cryptography is efficient for encryption and some data integrity
plications.

Remark (key sizes. symmetric key vs. private key) Private keys in public-key systems
must be larger (e.g., 1024 bits for RSA) than secret keys in symmetric-key systems (e.¢
or 128 bits) because whereas (for secure algorithms) the most efficient attack on symm
key systems is an exhaustive key search, all known public-key systems are subject to “s
cut” attacks (e.g., factoring) more efficient than exhaustive search. Consequently, for ec
alent security, symmetric keys have bitlengths considerably smaller than that of private |
in public-key systems, e.g., by a factor of 10 or more.

61t is, of course, arguable that some public-key schemes which are based on hard mathematical probler
a long history since these problems have been studied for many years. Although this may be true, one r
wary that the mathematics was not studied with this application in mind.

TCL Exhibit 1009
Page 50

§1.9 Hash functions 33

1.9 Hash functions

One of the fundamental primitives in modern cryptography is the cryptographic hash ful
tion, often informally called a one-way hash function. A simplified definition for the prese
discussion follows.

1.54 Definition A hashfunctionis a computationally efficient function mapping binary strings
of arbitrary length to binary strings of some fixed length, caliash-values.

For a hash function which outputsbit hash-values (e.gs, = 128 or 160) and has de-
sirable properties, the probability that a randomly chosen string gets mapped to a partic
n-bit hash-value (image) i2~". The basic idea is that a hash-value serves as a comp:
representative of an input string. To be of cryptographic use, a hash fuhdsdgpically
chosen such that it is computationally infeasible to find two distinct inputs which hash ti
common value (i.e., twoolliding inputsz andy such thath(z) = h(y)), and that given
a specific hash-valug it is computationally infeasible to find an input (pre-imagejuch
thath(z) = .

The most common cryptographic uses of hash functions are with digital signatures .
for data integrity. With digital signatures, a long message is usually hashed (using a
licly available hash function) and only the hash-value is sighed. The party receiving 1
message then hashes the received message, and verifies that the received signature
rect for this hash-value. This saves both time and space compared to signing the mes
directly, which would typically involve splitting the message into appropriate-sized bloc!
and signing each block individually. Note here that the inability to find two messages w
the same hash-value is a security requirement, since otherwise, the signature on one
sage hash-value would be the same as that on another, allowing a signer to sign one me
and at a later point in time claim to have signed another.

Hash functions may be used for data integrity as follows. The hash-value correspc
ing to a particular input is computed at some point in time. The integrity of this hash-val
is protected in some manner. At a subsequent point in time, to verify that the input d
has not been altered, the hash-value is recomputed using the input at hand, and com|
for equality with the original hash-value. Specific applications include virus protection a
software distribution.

A third application of hash functions is their use in protocols involving a priori com
mitments, including some digital signature schemes and identification protocols (e.g.,
Chapter 10).

Hash functions as discussed above are typically publicly known and involve no sec
keys. When used to detect whether the message input has been altered, they aredialled
fication detection codes(MDCs). Related to these are hash functions which involve a secr
key, and provide data origin authentication (§9.76) as well as data integrity; these are ca
message authentication codes (MACS).

1.10 Protocols and mechanisms

1.55 Definition A cryptographic protocol (protocol) is a distributed algorithm defined by a se-
guence of steps precisely specifying the actions required of two or more entities to achi
a specific security objective.

TCL Exhibit 1009
Page 51

34

Ch. 1 Overview of Cryptography

1.56

1.57

1.58

1.59

1.60

Remark (protocol vs. mechanism) As opposed to a protocol,reechanismis a more gen-
eral term encompassing protocols, algorithms (specifying the steps followed by a single
tity), and non-cryptographic techniques (e.g., hardware protection and procedural contrc
to achieve specific security objectives.

Protocols play a major role in cryptography and are essential in meeting cryptograpl
goals as discussed§i.2. Encryption schemes, digital signatures, hash functions, and ra
dom number generation are among the primitives which may be utilized to build a protoc:

Example (asimplekey agreement protocol) Alice and Bob have chosen a symmetric-key
encryption scheme to use in communicating over an unsecured channel. To encrypt ini
mation they require a key. The communication protocol is the following:
1. Bob constructs a public-key encryption scheme and sends his public key to Alice o\
the channel.
. Alice generates a key for the symmetric-key encryption scheme.
. Alice encrypts the key using Bob’s public key and sends the encrypted key to Bot
. Bob decrypts using his private key and recovers the symmetric (secret) key.
. Alice and Bob begin communicating with privacy by using the symmetric-key sys
tem and the common secret key.
This protocol uses basic functions to attempt to realize private communications on an un
cured channel. The basic primitives are the symmetric-key and the public-key encrypti
schemes. The protocol has shortcomings including the impersonation atéicB & but
it does convey the idea of a protocol. a

a b~ wN

Often the role of public-key encryption in privacy communications is exactly the on
suggested by this protocol — public-key encryption is used as a means to exchange k
for subsequent use in symmetric-key encryption, motivated by performance differences
tween symmetric-key and public-key encryption.

Protocol and mechanism failure

Definition A protocol failureor mechanismfailureoccurs when a mechanism fails to meet
the goals for which it was intended, in a manner whereby an adversary gains advant
not by breaking an underlying primitive such as an encryption algorithm directly, but b
manipulating the protocol or mechanism itself.

Example (mechanism failure) Alice and Bob are communicating using a stream cipher.
Messages which they encrypt are known to have a special form: the first twenty bits ca
information which represents a monetary amount. An active adversary can simply XOR
appropriate bitstring into the first twenty bits of ciphertext and change the amount. Whi
the adversary has not been able to read the underlying message, she has been able tc
the transmission. The encryption has not been compromised but the protocol has faile:
perform adequately; the inherent assumption that encryption provides data integrity is
correct. O

Example (forward search attack) Suppose that in an electronic bank transactiorsthe

bit field which records the value of the transaction is to be encrypted using a public-ki
scheme. This simple protocol is intended to provide privacy of the value field — but dor
it? An adversary could easily take af? possible entries that could be plaintextin this field
and encrypt them using the public encryption function. (Remember that by the very natt
of public-key encryption this function must be available to the adversary.) By comparir

TCL Exhibit 1009
Page 52

§1.11 Key establishment, management, and certification 35

each of the3? ciphertexts with the one which is actually encrypted in the transaction, the
adversary can determine the plaintext. Here the public-key encryption function is not con
promised, but rather the way it is used. A closely related attack which applies directly t

authentication for access control purposes is the dictionary attackiBez2). d
1.61 Remark (causes of protocol failure) Protocols and mechanisms may fail for a number of
reasons, including:
1. weaknesses in a particular cryptographic primitive which may be amplified by the
protocol or mechanism;
2. claimed or assumed security guarantees which are overstated or not clearly und
stood; and
3. the oversight of some principle applicable to a broad class of primitives such as e
cryption.
Example 1.59 illustrates item 2 if the stream cipher is the one-time pad, and also item
Example 1.60 illustrates item 3. See a$d08.2.
1.62 Remark (protocol design) When designing cryptographic protocols and mechanisms, the
following two steps are essential:
1. identifyall assumptions in the protocol or mechanism design; and
2. for each assumption, determine the effect on the security objective if that assumptic
is violated.
1.11 Key establishment, management, and
certification
This section gives a brief introduction to methodology for ensuring the secure distributio
of keys for cryptographic purposes.
1.63 Definition Key establishment is any process whereby a shared secret key becomes avai
able to two or more parties, for subsequent cryptographic use.
1.64 Definition Key management is the set of processes and mechanisms which support ke

establishment and the maintenance of ongoing keying relationships between parties, incl
ing replacing older keys with new keys as necessary.

Key establishment can be broadly subdivided ikexp agreement andkey transport.
Many and various protocols have been proposed to provide key establishment. Chapter
describes anumber of these in detail. For the purpose of this chapter only a brief overview
issues related to key management will be given. Simple architectures based on symmet
key and public-key cryptography along with the concept of certification will be addressec

As noted in§1.5, a major issue when using symmetric-key techniques is the establist
ment of pairwise secret keys. This becomes more evident when considering a network
entities, any two of which may wish to communicate. Figure 1.15illustrates a network cor
sisting of 6 entities. The arrowed edges indicatelthpossible two-party communications
which could take place. Since each pair of entities wish to communicate, this small ne
work requires the secure exchange(g))‘ = 15 key pairs. In a network with entities, the

number of secure key exchanges require(@s: w

TCL Exhibit 1009
Page 53

36 Ch. 1 Overview of Cryptography

As

| I
N /

A5 A4

Figure 1.15: Keying relationships in a simple 6-party network.

The network diagram depicted in Figure 1.15 is simply the amalgamatio$ twfo-

party communications as depicted in Figure 1.7. In practice, networks are very large
the key management problem is a crucial issue. There are a number of ways to handle
problem. Two simplistic methods are discussed; one based on symmetric-key and the c

on public-key techniques.

1.11.1 Key management through symmetric-key techniques

One solution which employs symmetric-key techniques involves an entity in the netwc

which is trusted by all other entities. As§f.8.3, this entity is referred to asrasted third

party (TTP). Each entityd; shares a distinct symmetric kiéywith the TTP. These keys are
assumed to have been distributed over a secured channel. If two entities subsequently

to communicate, the TTP generates a kegometimes called session key) and sends it
encrypted under each of the fixed keys as depicted in Figure 1.16 for edtitiand As.

A1 A2

n]
6 3

/ source
i) TTP

]

A5 A4

Figure 1.16: Key management using a trusted third party (TTP).

Advantages of this approach include:
1. Itis easy to add and remove entities from the network.
2. Each entity needs to store only one long-term secret key.

Disadvantages include:
1. All communications require initial interaction with the TTP.
2. The TTP must store long-term secret keys.

TCL Exhibit 1009
Page 54

§1.11 Key establishment, management, and certification 37

3. The TTP has the ability to read all messages.
4. Ifthe TTP is compromised, all communications are insecure.

1.11.2 Key management through public-key techniques

There are a number of ways to address the key management problem through public
technigues. Chapter 13 describes many of these in detail. For the purpose of this chaj
very simple model is considered.

Each entity in the network has a public/private encryption key pair. The public ki
along with the identity of the entity is stored in a central repository callpabic file. If
an entityA; wishes to send encrypted messages to ewdtityA, retrieves the public key
eg Of Ag from the public file, encrypts the message using this key, and sends the ciphel
to Ag. Figure 1.17 depicts such a network.

Al A2
private key d; private key da
¢ = Eeg(m)
c Public file
A1 s el
€6
AG A2 L e2 A3
private key dg As: es private key ds
m = Dag (c) Ay ey
As: es
A6: €6
A5 A4
private key ds private key d4

Figure 1.17: Key management using public-key techniques.

Advantages of this approach include:

1. No trusted third party is required.

2. The public file could reside with each entity.

3. Onlyn public keys need to be stored to allow secure communications between i
pair of entities, assuming the only attack is that by a passive adversary.

The key management problem becomes more difficult when one must take into acct
an adversary who iactive (i.e. an adversary who can alter the public file containing publi
keys). Figure 1.18 illustrates how an active adversary could compromise the key man
ment scheme given above. (This is directly analogous to the att§&kar?.) In the figure,
the adversary alters the public file by replacing the publicd«egf entity Ag by the adver-
sary’s public keye*. Any message encrypted fdrs using the public key from the public
file can be decrypted by only the adversary. Having decrypted and read the message

TCL Exhibit 1009
Page 55

38 Ch. 1 Overview of Cryptography

adversary can now encrypt it using the public keydgfand forward the ciphertext tdg.
A; however believes that onlffg can decrypt the ciphertext

Ay) Public file
e S Ee*(m):C4----------e """""""""" Ai:er
: As: e
é Asz: e
Dys(e) = m|Beg(m) =¢/| ¢ Dyg(¢) =m Aaz e
priv?it? key | privatde6 key As: es
Adversary As orlle

Figure 1.18: Animpersonation of A by an active adversary with public key €.

To prevent this type of attack, the entities may use a TTétfy the public key of
each entity. The TTP has a private signing algoritiimand a verification algorithrivy
(see§l1.6) assumed to be known by all entities. The TTP carefully verifies the identity
each entity, and signs a message consisting of an identifier and the entity’s authentic p
key. This is a simple example ofcartificate, binding the identity of an entity to its public
key (see§1.11.3). Figure 1.19 illustrates the network under these conditidnsises the
public key of Ag only if the certificate signature verifies successfully.

Ay
verification Public file
Vr(Asglles, s6) A1, e1, Sr(Arler) = s1
€6, S6

c= Ees(m) Az, e, ST(A H€2) = 82
' A3, es, ST(A H€3) = 83
Dys(c) =m As, eq, ST(Aslles) = sa
private key As, e, S{Asljes) = s
dﬁ AG, €6, ST(HGG) = S6

As

Figure 1.19: Authentication of public keys by a TTP. || denotes concatenation.

Advantages of using a TTP to maintain the integrity of the public file include:
1. It prevents an active adversary from impersonation on the network.
2. The TTP cannot monitor communications. Entities need trust the TTP only to bi
identities to public keys properly.
3. Per-communication interaction with the public file can be eliminated if entities stc
certificates locally.
Even with a TTP, some concerns still remain:
1. Ifthe signing key of the TTP is compromised, all communications become insect
2. All trust is placed with one entity.

TCL Exhibit 1009
Page 56

§1.12 Pseudorandom numbers and sequences 39

1.11.3 Trusted third parties and public-key certificates

1.65

1.66

1.12

A trusted third party has been usedih8.3 and again here #1.11. The trust placed on
this entity varies with the way it is used, and hence motivates the following classificatic

Definition A TTP is said to baunconditionally trusted if it is trusted on all matters. For
example, it may have access to the secret and private keys of users, as well as be ch
with the association of public keys to identifiers.

Definition A TTP is said to bdunctionally trusted if the entity is assumed to be honest
and fair but it does not have access to the secret or private keys of users.

§1.11.1 provides a scenario which employs an unconditionally trusted §ILTEL.2
uses a functionally trusted TTP to maintain the integrity of the public file. A functionall
trusted TTP could be used to register or certify users and contents of documents or, ¢
§1.8.3, as ajudge.

Public-key certificates

The distribution of public keys is generally easier than that of symmetric keys, since secr
is notrequired. However, the integrity (authenticity) of public keys is critical (réda8.2).

A public-key certificate consists of alata part and asignature part. The data part con-
sists of the name of an entity, the public key correspondingto that entity, possibly additio
relevant information (e.g., the entity’s street or network address, a validity period for t
public key, and various other attributes). The signature part consists of the signature
TTP over the data part.

In order for an entityB to verify the authenticity of the public key of an entity; B
must have an authentic copy of the public signature verification function of the TTP. F
simplicity, assume that the authenticity of this verification function is providétiby non-
cryptographic means, for example Byobtaining it from the TTP in persorB can then
carry out the following steps:

1. Acquire the public-key certificate of over some unsecured channel, either from ¢
central database of certificates, frofrdirectly, or otherwise.

2. Use the TTP’s verification function to verify the TTP’s signaturedmcertificate.

3. If this signature verifies correctly, accept the public key in the certificatésaau-
thentic public key; otherwise, assume the public key is invalid.

Before creating a public-key certificate fdr the TTP must take appropriate measures
to verify the identity ofA and the fact that the public key to be certificated actually belong
to A. One method is to require thdtappear before the TTP with a conventional passpot
as proof of identity, and obtaiA’s public key fromA in person along with evidence that
A knows the corresponding private key. Once the TTP creates a certificate for a party,
trust that all other entities have in the authenticity of the TTP’s public key can be used tr
sitively to gain trust in the authenticity of that party’s public key, through acquisition ar
verification of the certificate.

Pseudorandom numbers and sequences

Random number generation is an important primitive in many cryptographic mechanisi
For example, keys for encryption transformations need to be generated in a manner whi

TCL Exhibit 1009
Page 57

40

Ch. 1 Overview of Cryptography

1.67

1.68

unpredictable to an adversary. Generating a random key typically involves the selectior
random numbers or bit sequences. Random number generation presents challenging is
A brief introduction is given here with details left to Chapter 5.

Often in cryptographic applications, one of the following steps must be performed:

(i) From afinite set of: elements (e.g{1,2,...,n}), select an element at random.
(ii) From the set of all sequences (strings) of lengtlover some finite alphabet of n
symbols, select a sequence at random.
(iii) Generate a random sequence (string) of symbols of lemgbiver a set of: symbols.

It is not clear what exactly it means $elect at random or generate at random. Calling a
number random without a context makes little sense. Is the nu23teerandom number?
No, but if 49 identical balls labeled with a number frahto 49 are in a container, and this
container mixes the balls uniformly, drops one ball out, and this ball happens to be labe
with the numbee3, then one would say thas was generated randomly from a uniform
distribution. Theprobability that23 drops out isl in 49 or %.

If the number on the ball which was dropped from the container is recorded and the k
is placed back in the container and the process repédiates, then a random sequence
of length6 defined on the alphabet = {1, 2, ... ,49} will have been generated. What is
the chance that the sequen@e45, 1,7, 23, 35 occurs? Since each elementin the sequenc
has probability% of occuring, the probability of the sequenicg 45,1, 7, 23, 35 occurring
is

1 1 1 1 1 1 1

— X=X —= X=X ——=X ==

49 49 49 49 49 49 13841287201
There are precisel¥3841287201 sequences of length over the alphabetl. If each of
these sequences is written on on@8841287201 balls and they are placed in the container
(first removing the originad9 balls) then the chance that the sequence given above dro
out is the same as if it were generated one ball at a time. Hence, (ii) and (iii) above i
essentially the same statements.

Finding good methods to generate random sequences is difficult.

Example (random sequence generator) To generate a random sequenc@’sfandl’s, a
coin could be tossed with a head landing up recordediaaral a tail as 4. It is assumed
that the coinisinbiased, which means that the probability of@n a given toss is exact%r.
This will depend on how well the coin is made and how the toss is performed. This meth
would be of little value in a system where random sequences must be generated qui
and often. It has no practical value other than to serve as an example of the idea of rant
number generation. O

Example (random sequence generator) A noise diode may be used to produce random

binary sequences. This is reasonable if one has some way to be convinced that the pr
bility that a1 will be produced on any given trial i5. Should this assumption be false, the
sequence generated would not have been selected from a uniform distribution and so
all sequences of a given length would be equally likely. The only way to get some feelil
for the reliability of this type of random source is to carry out statistical tests on its outpt
These are considered in Chapter 5. If the diode is a source of a uniform distribution on

set of all binary sequences of a given length, it provides an effective way to generate r
dom sequences. O

Since mostrue sources of random sequences (if there is such a thing) come fioys-
ical means, they tend to be either costly or slow in their generation. To overcome the:

TCL Exhibit 1009
Page 58

§1.13 Classes of attacks and security models 41

problems, methods have been devised to congteeatiorandom sequencesin a determin-
istic manner from a shorter random sequence callesié The pseudorandom sequence
appear to be generated by a truly random source to anyone not knowing the method o
eration. Often the generation algorithm is known to all, but the seed is unknown excej
the entity generating the sequence. A plethora of algorithms has been developedto ge
pseudorandom bit sequences of various types. Many of these are completely unsuitat
cryptographic purposes and one must be cautious of claims by creators of such algor
as to the random nature of the output.

1.13 Classes of attacks and security models

Over the years, many different types of attacks on cryptographic primitives and protc
have been identified. The discussion here limits consideration to attacks on encryptio
protocols. Attacks on other cryptographic primitives will be given in appropriate chapt

In§1.11theroles of an active and a passive adversary were discussed. The attack:
adversaries can mount may be classified as follows:.

1. Apassiveattack is one where the adversary only monitors the communication ch.
nel. A passive attacker only threatens confidentiality of data.

2. Anactive attack is one where the adversary attempts to delete, add, or in some o
way alter the transmission on the channel. An active attacker threatens data inte
and authentication as well as confidentiality.

A passive attack can be further subdivided into more specialized attacks for dedt
plaintext from ciphertext, as outlined §1.13.1.

1.13.1 Attacks on encryption schemes

The objective of the following attacks is to systematically recover plaintext from ciphert
or even more drastically, to deduce the decryption key.

1. Aciphertext-only attack is one where the adversary (or cryptanalyst) tries to dedt
the decryption key or plaintext by only observing ciphertext. Any encryption sche
vulnerable to this type of attack is considered to be completely insecure.

2. A known-plaintext attack is one where the adversary has a quantity of plaintext a
corresponding ciphertext. This type of attack is typically only marginally more d
ficult to mount.

3. A chosen-plaintext attack is one where the adversary chooses plaintext and is tt
given corresponding ciphertext. Subsequently, the adversary uses any inform
deduced in order to recover plaintext corresponding to previously unseen cipher

4. An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the choic
of plaintext may depend on the ciphertext received from previous requests.

5. A chosen-ciphertext attack is one where the adversary selects the ciphertext anc
then given the corresponding plaintext. One way to mount such an attack is foi
adversary to gain access to the equipment used for decryption (but not the decry
key, which may be securely embedded in the equipment). The objective is the
be able, without access to such equipment, to deduce the plaintext from (diffel
ciphertext.

TCL Exhibit 1009
Page 59

42 Ch. 1 Overview of Cryptography

6. An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the choice
of ciphertext may depend on the plaintext received from previous requests.

Most of these attacks also apply to digital signature schemes and message authentic
codes. Inthis case, the objective of the attacker is to forge messages or MACs, as discL
in Chapters 11 and 9, respectively.

1.13.2 Attacks on protocols

The following is a partial list of attacks which might be mounted on various protocols. Un
a protocol is proven to provide the service intended, the list of possible attacks can ne
be said to be complete.

1. known-key attack. In this attack an adversary obtains some keys used previously a
then uses this information to determine new keys.

2. replay. In this attack an adversary records a communication session and replays
entire session, or a portion thereof, at some later point in time.

3. impersonation. Here an adversary assumes the identity of one of the legitimate p:
ties in a network.

4. dictionary. This is usually an attack against passwords. Typically, a password
stored in a computer file as the image of an unkeyed hash function. When a u
logs on and enters a password, it is hashed and the image is compared to the st
value. An adversary can take a list of probable passwords, hash all entries in this
and then compare this to the list of true encrypted passwords with the hope of find
matches.

5. forward search. This attack is similar in spirit to the dictionary attack and is used t¢
decrypt messages. An example of this method was cited in Example 1.60.

6. interleaving attack. This type of attack usually involves some form of impersonatior
in an authentication protocol (sé&2.9.1).

1.13.3 Models for evaluating security

The security of cryptographic primitives and protocols can be evaluated under several
ferent models. The most practical security metrics are computational, provable, and ad
methodology, although the latter is often dangerous. The confidence level in the amc
of security provided by a primitive or protocol based on computational or ad hoc secur
increases with time and investigation of the scheme. However, time is not enough if f
people have given the method careful analysis.

(i) Unconditional security

The most stringent measure is an information-theoretic measure — whether or not a
tem hasunconditional security. An adversary is assumed to have unlimited computatione
resources, and the question is whether or not there is enough information available to
feat the system. Unconditional security for encryption systems is cpdidect secrecy.
For perfect secrecy, the uncertainty in the plaintext, after observing the ciphertext, mus
equal to the a priori uncertainty about the plaintext — observation of the ciphertext provic
no information whatsoever to an adversary.

A necessary condition for a symmetric-key encryption scheme to be unconditiona
secure is that the key be at least as long as the message. The one-time pad (§1.5.4) is ¢
ample of an unconditionally secure encryption algorithm. In general, encryption schen

TCL Exhibit 1009
Page 60

§1.13 Classes of attacks and security models 43

do not offer perfect secrecy, and each ciphertext character observed decreases the the:
cal uncertainty in the plaintext and the encryption key. Public-key encryption schemes c:
not be unconditionally secure since, given a ciphertggte plaintext can in principle be
recovered by encrypting all possible plaintexts unt obtained.

(ii) Complexity-theoretic security

An appropriate model of computation is defined and adversaries are modeled as ha\
polynomial computational power. (They mount attacks involving time and space polyn
mial in the size of appropriate security parameters.) A proof of security relative to the moc
is then constructed. An objective is to design a cryptographic method based on the weal
assumptions possible anticipating a powerful adversary. Asymptotic analysis and usui
also worst-case analysis is used and so care must be exercised to determine when p
have practical significance. In contrast, polynomial attacks which are feasible under 1
model might, in practice, still be computationally infeasible.

Security analysis of this type, although not of practical value in all cases, may nonett
less pave the way to a better overall understanding of security. Complexity-theoretic ar
ysis is invaluable for formulating fundamental principles and confirming intuition. This it
like many other sciences, whose practical techniques are discovered early in the deve
ment, well before a theoretical basis and understanding is attained.

(iii) Provable security

A cryptographic method is said to Ipeovably secure if the difficulty of defeating it can be
shown to be essentially as difficult as solving a well-known supposedly difficult (typ-
ically number-theoretic) problem, such as integer factorization or the computation of di
crete logarithms. Thus, “provable” here means provable subject to assumptions.

This approach is considered by some to be as good a practical analysis techniqut
exists. Provable security may be considered part of a special sub-class of the larger clas
computational security considered next.

(iv) Computational security

This measures the amount of computational effort required, by the best currently-kno
methods, to defeat a system; it must be assumed here that the system has been well-st
to determine which attacks are relevant. A proposed technique is saicctonpatation-

ally secure if the perceived level of computation required to defeat it (using the best attac
known) exceeds, by a comfortable margin, the computational resources of the hypothesi
adversary.

Often methods in this class are related to hard problems but, unlike for provable ses
rity, no proof of equivalence is known. Most of the best known public-key and symmetric
key schemes in current use are in this class. This class is sometimes alsicdtezhl
security.

(v) Ad hoc security

This approach consists of any variety of convincing arguments that every successful att
requires aresource level (e.g., time and space) greater than the fixed resources of a perci
adversary. Cryptographic primitives and protocols which survive such analysis are saic
haveheuristic security, with security here typically in the computational sense.

Primitives and protocols are usually designed to counter standard attacks such as tt
givening1.13. While perhaps the most commonly used approach (especially for protocol
it is, in some ways, the least satisfying. Claims of security generally remain questional
and unforeseen attacks remain a threat.

TCL Exhibit 1009
Page 61

44

Ch. 1 Overview of Cryptography

1.13.4 Perspective for computational security

1.69

1.70

To evaluate the security of cryptographic schemes, certain quantities are often consic

Definition Thework factor WW; is the minimum amount of work (measured in appropria
units such as elementary operations or clock cycles) required to compute the privdte
given the public key, or, in the case of symmetric-key schemes, to determine the se
keyk. More specifically, one may consider the work required under a ciphertext-only ati
givenn ciphertexts, denoteld’;(n).

If W istyears, then for sufficiently largeghe cryptographic schemeis, for all practica
purposes, a secure system. To date no public-key system has been found where o
prove a sufficiently large lower bound on the work fadiy. The best that is possible to
date is to rely on the following as a basis for security.

Definition The historical work factor Wy is the minimum amount of work required to
compute the private kayfrom the public keye using the best known algorithms at a givel
point in time.

The historical work factolV/; varies with time as algorithms and technology improwv:
It corresponds to computational security, whef@gscorresponds to the true security level
although this typically cannot be determined.

How large is large?

§1.4 described how the designer of an encryption system tries to create a scheme for:
the best approach to breaking it is through exhaustive search of the key space. Th
space must then be large enough to make an exhaustive search completely infeasib
important question then is “How large is large?”. In order to gain some perspective or
magnitude of numbers, Table 1.2 lists various items along with an associated magnit

Reference ‘ Magnitude
Seconds in a year ~ 3 x 107
Age of our solar system (years) ~ 6 x 107

Seconds since creation of solar systen ~ 2 x 107
Clock cycles per year, 50 MHz computer ~ 1.6 x 105

Binary strings of length 64 264 ~ 1.8 x 10%°
Binary strings of length 128 2128 x5 3.4 x 1038
Binary strings of length 256 2256 ~ 1.2 x 1077
Number of 75-digit prime numbers ~5.2x 107
Electrons in the universe ~ 8.37 x 1077

Table 1.2: Reference numbers comparing relative magnitudes.

Some powers of0 are referred to by prefixes. For example, high-speed modern cc
puters are now being rated in termstefaflops where a teraflop i$0'? floating point op-
erations per second. Table 1.3 provides a list of commonly used prefixes.

TCL Exhibit 1009
Page 62

§1.14 Notes and further references 45

1.14
§1.1

§1.2

‘ Prefix ‘ Symbol ‘ Magnitude‘ ‘ Prefix ‘ Symbol ‘ Magnitude
exa E 1018 deci d 1071
peta P 1015 centi c 1072
tera T 1012 milli m 1073
giga G 10° micro U 10-6
mega M 108 nano n 1079
kilo k 103 pico p 10712
hecto h 102 femto f 10715
deca da 10 atto a 1018

Table 1.3: Prefixes used for various powers of 10.

Notes and further references

Kahn [648] gives a thorough, comprehensive, and non-technical history of cryptogra
published in 1967. Feistel [387] provides an early exposition of block cipher ideas. -
original specification of DES is the 1977 U.S. Federal Information Processing Stand
Publication 46 [396]. Public-key cryptography was introduced by Diffie and Hellm:
[345]. The first concrete realization of a public-key encryption scheme was the knap:
scheme by Merkle and Hellman [857]. The RSA public-key encryption and signature ¢
eme is due to Rivest, Shamir, and Adleman [1060], while the EIGamal public-key enci
tion and signature schemes are due to EIGamal [368]. The two digital signature stand
ISO/IEC 9796 [596] and the Digital Signature Standard [406], are discussed extensive
Chapter 11.

Cryptography has used specialized areas of mathematics such as number theory to 1
very practical mechanisms such as public-key encryption and digital signatures. Sucht
was not conceived as possible a mere twenty years ago. The famous mathematician,
[539], went as far as to boast about its lack of utility:

“ ... both Gauss and lesser mathematicians may be justified in rejoicing that
there is one science at any rate, and that their own, whose very remoteness from
ordinary human activities should keep it gentle and clean.”

This section was inspired by the foreword to the b@uktemporary Cryptology, The Sci-
ence of Information Integrity, edited by Simmons [1143]. The handwritten signature can
into the British legal system in the seventeenth century as a means to provide various
tions associated with information security. See Chapter 9 of Meyer and Matyas [859
details.

This book only considers cryptography as it applies to information in digital form. Chag
9 of Beker and Piper [84] provides an introduction to the encryption of analogue sign
in particular, speech. Although in many cases physical means are employed to faci
privacy, cryptography plays the major role. Physical means of providing privacy inclu
fiber optic communication links, spread spectrum technology, TEMPEST techniques,

TCL Exhibit 1009
Page 63

46

Ch. 1 Overview of Cryptography

§1.3

§1.4

§1.5

tamper-resistant hardwargeganography is that branch of information privacy which at-
tempts to obscure the existence of data through such devices as invisible inks, secret ¢
partments, the use of subliminal channels, and the like. Kahn [648] provides an historic
account of various steganographic techniques.

Excellent introductions to cryptography can be found in the articles by Diffie and Hellma
[347], Massey [786], and Rivest [1054]. A concise and elegant way to describe cryptogi
phy was given by Rivest [1054Cryptography is about communication in the presence of
adversaries. The taxonomy of cryptographic primitives (Figure 1.1) was derived from the
classification given by Bosselaers, Govaerts, and Vandewalle [175].

The theory of functions is fundamental in modern mathematics. Theramge is often
used in place of image of a function. The latter, being more descriptive, is preferred. /
alternate term for one-to-oneiigective; an alternate term for onto &irjective.

One-way functions were introduced by Diffie and Hellman [345]. A more extensive histor
is given on page 377. Trapdoor one-way functions were first postulated by Diffie and He
man [345] and independently by Merkle [850] as a means to obtain public-key encryptic
schemes; several candidates are given in Chapter 8.

The basic concepts of cryptography are treated quite differently by various authors, so
being more technical than others. Brassard [192] provides a concise, lucid, and technici
accurate account. Schneier [1094] gives a less technical but very accessible introduct
Salomaa[1089], Stinson [1178], and Rivest [1054] present more mathematical approact
Davies and Price [308] provide a very readable presentation suitable for the practitione

The comparison of an encryption scheme to a resettable combination lock is from Diff
and Hellman [347]. Kerckhoffs’ desiderata [668] were originally stated in French. Th
translation stated here is given in Kahn [648]. Shannon [1121] also gives desiderata
encryption schemes.

Symmetric-key encryption has a very long history, as recorded by Kahn [648]. Most sy
tems invented prior to the 1970s are now of historical interest only. Chapter 2 of Dennii
[326] is also a good source for many of the more well known schemes such as the Cae
cipher, Vigenere and Beaufort ciphers, rotor machines (Enigma and Hagelin), running k
ciphers, and so on; see also Davies and Price [308] and Konheim [705]. Beker and Pi
[84] give an indepth treatment, including cryptanalysis of several of the classical systel
used in World War Il. Shannon’s paper [1121] is considered the seminal work on sect
communications. It is also an excellent source for descriptions of various well-known hi
torical symmetric-key ciphers.

Simple substitution and transposition ciphers are the focigd & Hill ciphers [557], a
class of substitution ciphers which substitute blocks using matrix methods, are coverec
Example 7.52. The idea of confusion and diffusion (Remark 1.36) was introduced by She
non [1121].

Kahn [648] gives 1917 as the date when Vernam discovered the cipher which bears Vv
nam’s name, however, Vernam did not publish the result until 1926 [1222]; see page 2
for further discussion. Massey [786] states that reliable sources have suggested that
Moscow-Washington hot-line (channel for very high level communications) is no longe
secured with a one-time pad, which has been replaced by a symmetric-key cipher requir
a much shorter key. This change would indicate that confidence and understanding in

TCL Exhibit 1009
Page 64

§1.14 Notes and further references 47

§1.6

§1.7

§1.8

§1.9

§1.10

ability to construct very strong symmetric-key encryption schemes exists. The one-ti
pad seems to have been used extensively by Russian agents operating in foreign cour
The highest ranking Russian agent ever captured in the United States was Rudolph /
When apprehended in 1957 he had in his possession a booklet the size of a postage ¢
(11 x £ x % inches) containing a one-time key; see Kahn [648, p.664].

The concept of a digital signature was introduced by Diffie and Hellman [345] and indep:
dently by Merkle [850]. The first practical realization of a digital signature scheme appea
in the paper by Rivest, Shamir, and Adleman [1060]. Rabin [1022] (see also [1023]) a
claims to have independently discovered RSA but did not publish the result.

Most introductory sources for digital signatures stress digital signatures with message
covery coming from a public-key encryption system. Mitchell, Piper, and Wild [882] giv
a good general treatment of the subject. Stinson [1178] provides a similar elementary
generalintroduction. Chapter 11 generalizes the definition of a digital signature by allow
randomization. The scheme described 18 is referred to adeterministic. Many other
types of digital signatures with specific properties have been created, such as blind si
tures, undeniable signatures, and failstop signatures (see Chapter 11).

Much effort has been devoted to developing a theory of authentication. At the forefroni
this is Simmons [1144], whose contributions are nicely summarized by Massey [786]. |
a more concrete example of the necessity for authentication without secrecy, see the a
by Simmons [1146].

1976 marked a major turning point in the history of cryptography. In several papers tl
year, Diffie and Hellman introduced the idea of public-key cryptography and gave concr
examples of how such a scheme might be realized. The first paper on public-key cryp
raphy was “Multiuser cryptographic techniques” by Diffie and Hellman [344], present:
at the National Computer Conference in June of 1976. Although the authors were not
isfied with the examples they cited, the concept was made clear. In their landmark pa
Diffie and Hellman [345] provided a more comprehensive account of public-key cryptc
raphy and described the first viable method to realize this elegant concept. Another g
source for the early history and development of the subject is Diffie [343]. Nechvatal [9:
also provides a broad survey of public-key cryptography.

Merkle [849, 850] independently discovered public-key cryptography, illustrating how tt
concept could be realized by giving an elegant and ingenious example now commonly
ferred to as thderkle puzzle scheme. Simmons [1144, p.412] notes the first reported ap
plication of public-key cryptography was fielded by Sandia National Laboratories (U.S.)
1978.

Much of the early work on cryptographic hash functions was done by Merkle [850]. Tl
most comprehensive current treatment of the subject is by Preneel [1004].

A large number of successful cryptanalytic attacks on systems claiming security are du
protocolfailure. An overview of this area is given by Moore [899], including classificatior
of protocol failures and design principles.

TCL Exhibit 1009
Page 65

48

Ch. 1 Overview of Cryptography

§1.11

§1.12

§1.13

One approach to distributing public-keys is the so-calMstkie channel (see Simmons
[1144, p.387]). Merkle proposed that public keys be distributed over so many indepen
public channels (newspaper, radio, television, etc.) that it would be improbable for an
versary to compromise all of them.

In 1979 Kohnfelder [702] suggested the idea of ugnblic-key certificates to facilitate
the distribution of public keys over unsecured channels, such that their authenticity ca
verified. Essentially the same idea, but by on-line requests, was proposed by Needhal
Schroeder (ses Wilkes [1244]).

A provably secure key agreement protocol has been proposed whose security is based
Heisenberg uncertainty principle of quantum physics. The security of so-cpléetium
cryptography does not rely upon any complexity-theoretic assumptions. For further det
on quantum cryptography, consult Chapter 6 of Brassard [192], and Bennett, Brassarc
Ekert [115].

For an introduction and detailed treatment of many pseudorandom sequence generato
Knuth [692]. Knuth cites an example of a complex scheme to generate random nurr
which on closer analysis is shown to produce numbers which are far from random, and
cludes:...random numbers should not be generated with a method chosen at random.

The seminal work of Shannon [1121] on secure communications, published in 1949
mains as one of the best introductions to both practice and theory, clearly presenting 1
ofthe fundamentalideas including redundancy, entropy, and unicity distance. Variousr
els under which security may be examined are considered by Rueppel [1081], Simr
[1144], and Preneel [1003], among others; see also Goldwasser [476].

TCL Exhibit 1009
Page 66

Chapter

Mathematical Background

Contentsin Brief

21 Probabilitytheory 50
22 Informationtheory 56
23 Complexitytheory 57
24 Numbertheory 63
25 Abstractalgebrao 75
26 Finitefields oo oo 80
2.7 Notesand further references oL 85

This chapter is a collection of basic material on probability theory, information the-

ory, complexity theory, number theory, abstract algebra, and finite fields that will be used
throughout this book. Further background and proofs of the facts presented here can be
foundinthereferencesgivenin §2.7. Thefollowing standard notation will be used through-

out:

~NOoO b~ wDNBRE

10.
11
12.
13.
14.
15.
16.

. Z denotesthe set of integers; that is, theset {... ,—2,-1,0,1,2,...}.

. Q denotesthe set of rational numbers; that is, the set { | a,b € Z,b # 0}.
. R denotesthe set of real numbers.

. 7 isthe mathematical constant; = ~ 3.14159.

. e isthe base of the natural logarithm; e ~ 2.71828.

. [a, b] denotesthe integers = satisfyinga < x < b.

. |x] isthelargest integer less than or equal to =. For example, |5.2] = 5 and

|—5.2] = —6.

. [x] isthe smallest integer greater than or equal to z. For example, [5.2] = 6 and

[—5.2] = 5.

. If Aisafiniteset, then | A| denotesthe number of elementsin A, called the cardinality

of A.

a € A meansthat element a isamember of the set A.

A C B meansthat A isasubset of B.

A C B meansthat A isaproper subset of B; thatisA C Band A # B.

The intersection of sets A and B isthesst AN B = {z | z € Aandx € B}.
Theunionof sets A and B isthesst AUB = {z | z € Aorz € B}.

The difference of sets A and Bistheset A— B = {z |z € Aandz ¢ B}.

The Cartesian product of sets A and Bistheset A x B = {(a,b) |a € Aandb €
B} For example, {al,ag} X {bl,bz,b3} = {(al,bl),(al,bg),(al,bg),(ag,bl),
(ag,bz),(az,bg)}.

49

TCL Exhibit 1009
Page 67

50

Ch. 2 Mathematical Background

17. A function or mapping f : A — B isarulewhich assignsto each element a in A
precisely oneelementbin B. If a € Aismappedtob € B thenbiscalled theimage
of a, a iscalled apreimage of b, and thisiswritten f(a) = b. Theset A iscalled the
domain of f, andtheset B is called the codomain of f.

18. A function f : A — Bis1 — 1 (one-to-one) or injectiveif each element in B isthe
image of at most oneelement in A. Hence f(a1) = f(a2) impliesa; = as.

19. A function f : A — B isontoor surjectiveif each b € B istheimage of at least
onea € A.

20. A function f : A — B isabijectionif it is both one-to-one and onto. If fisa
bijection between finite sets A and B, then |A| = |B|. If f isabijection between a
set A and itself, then f is called a permutation on A.

21. Inz isthe natural logarithm of z; that is, the logarithm of x to the base e.

22. g x isthe logarithm of x to the base 2.

23. exp(z) isthe exponential function e*.

24. 3°" | a; denotesthesum a; + az + « - - + ay,.

25. [Ii-, a; denotestheproducta; - as - - - - - Q-

26. For apositive integer n, the factorial functionisn! = n(n — 1)(n — 2)---1. By
convention, 0! = 1.

2.1 Probability theory

2.1.1 Basic definitions

21

2.2

23

24

25

Definition An experiment is a procedurethat yields one of a given set of outcomes. The
individual possible outcomes are called simple events. The set of all possible outcomesis
called the sample space.

This chapter only considers discrete sample spaces; that is, sample spaces with only
finitely many possible outcomes. Let the simple events of a sample space S be labeled
81,825+ 58n-

Definition A probabilitydistribution P on S isasequenceof numberspy, po, . .. , p, that
areall non-negativeand sumto 1. Thenumber p; isinterpreted asthe probability of s; being
the outcome of the experiment.

Definition Anevent E is a subset of the sample space S. The probability that event £
occurs, denoted P(E), isthe sum of the probabilitiesp; of all simpleevents s; which belong
toE. Ifs; € S, P({s;}) issimply denoted by P(s;).

Definition If £ is an event, the complementary event is the set of simple events not be-
longingto F, denoted E.

Fact Let £ C S bean event.
(i) 0 < P(E) < 1. Furthermore, P(S) = 1 and P(()) = 0. (0 isthe empty set.)
(i) P(E)=1- P(E).

TCL Exhibit 1009
Page 68

§2.1 Probability theory 51

(iii) If the outcomesin S are equally likely, then P(E) = %

2.6 Definition Twoevents E; and E;, are called mutually exclusiveif P(E; N E,) = 0. That
is, the occurrence of one of the two events excludes the possibility that the other occurs.

2.7 Fact Let E; and E> betwo events.
(i) P(Ey U Es) + P(Ey N Ey) = P(E1) + P(E2). Hence, if E; and B, are mutually
exclusive, then P(E; U E) = P(E;) + P(E»).

2.1.2 Conditional probability

2.8 Definition Let F; and E» betwo eventswith P(E5) > 0. The conditional probability of
E, given E,, denoted P(E4 | E2), is

P(E1NEy)
P(E»)
P(FE:|E2) measuresthe probability of event E; occurring, giventhat £ has occurred.

P(Er|Es) =

2.9 Definition Events E; and E;, are said to be independent if P(E; N E2) = P(E1)P(E2).

Observethetif £, and E, areindependent, then P(E4|E2) = P(Ey) and P(Es|E) =
P(E5). Thatis, the occurrence of one event does not influencethelikelihood of occurrence
of the other.

2.10 Fact (Bayes theorem) If E; and E; are eventswith P(E;) > 0, then
P(E:1)P(E2|Eq)

P(Er|Ep) = P(Ey)

2.1.3 Random variables
Let S be asample space with probability distribution P.

2.11 Definition A randomvariable X is afunction from the sample space S to the set of real
numbers; to each simple event s, € S, X assignsarea number X (s;).

Since S is assumed to be finite, X can only take on afinite number of values.

2.12 Definition Let X bearandomvariableonS. Theexpectedvalueor meanof X isE(X) =
2sies X(si)P(si).

2.13 Fact Let X bearandomvariableon S. Then E(X) = 3° pz- P(X =).

214 Fact If X1, Xo, ... , X,, aerandomvariableson S,and a1, as, . . . , a,, arerea numbers,

2.15 Definition Thevariance of arandom variable X of mean p isanon-negativenumber de-
fined by
Var(X) = E((X — p)*).

The standard deviation of X is the non-negative square root of Var(X).

TCL Exhibit 1009
Page 69

52

Ch. 2 Mathematical Background

2.16

If arandom variable has small variance then large deviations from the mean are un-
likely to be observed. This statement is made more precise below.

Fact (Chebyshev's inequality) Let X be a random variable with mean . = E(X) and
variance 02 = Var(X). Thenfor any ¢ > 0,

02

P(X —pl 2 1) < 5.

2.1.4 Binomial distribution

217

218

219

2.20

2.21

2,22

2.23

2.24

Definition Letn and k£ be non-negativeintegers. The binomial coefficient (Z) isthe num-
ber of different ways of choosing k distinct objects from a set of n distinct objects, where
the order of choiceis not important.

Fact (properties of binomial coefficients) Let n and k be non-negative integers.
M () = wosme

@ () = G)

(i) (1) = () + (3)-

Fact (binomial theorem) For any real numbersa, b, and non-negativeinteger n, (a+b)" =

> k=0 (Z) akpr k.

Definition A Bernoulli trial isan experiment with exactly two possible outcomes, called
success and failure.

Fact Supposethat the probability of success on a particular Bernoulli tria is p. Then the
probability of exactly k& successes in a sequence of n such independent trialsis

<Z>pk(1 —p)" % foreach0 < k < n. (2.1)

Definition The probability distribution (2.1) is called the binomial distribution.

Fact The expected number of successes in a sequence of »n independent Bernoulli trials,
with probability p of successin each tria, is np. The variance of the number of successes

isnp(1 — p).

Fact (law of large numbers) Let X be the random variable denoting the fraction of suc-
cesses in n independent Bernoulli trials, with probability p of successin each trial. Then
forany e > 0,

P(|X —p| >€) — 0, asNn — 0.

In other words, as n gets larger, the proportion of successes should be close to p, the
probability of successin each trial.

TCL Exhibit 1009
Page 70

§2.1 Probability theory 53

2.1.5 Birthday problems

2.25 Definition
(i) For positiveintegersm, n withm > n, the number m (™ is defined as follows:

m™ =m(m—1)(m—2)---(m —n+1).
(ii) Let m,n be non-negative integers with m > n. The Stirling number of the second

kind, denoted {""}, is
m _l = _1\n—k n m
I EF I R

k=0
with the exceptionthat {;} = 1.

The symbol { ’7’;} counts the number of ways of partitioning a set of m objectsinto n
non-empty subsets.

2.26 Fact (classical occupancy problem) An urn hasm balls numbered 1 to m. Supposethat n
balls are drawn from the urn one at atime, with replacement, and their numbers are listed.
The probability that exactly ¢ different balls have been drawnis

(t)
Py(m,n,t) = {?}mn , 1<t<n.
m

The birthday problem is a special case of the classical occupancy problem.

2.27 Fact (birthday problem) An urn has m balls numbered 1 to m. Suppose that n balls are
drawn from the urn one at atime, with replacement, and their numbers are listed.

(i) The probability of at least one coincidence (i.e., aball drawn at least twice) is

(n)
Py(m,n) =1— Py(m,n,n)=1-— mn

, 1<n<m. (2.2)
mn

If n = O(y/m) (see Definition 2.55) and m — oo, then

) — 1 - exp (22201 0(-L)) <1 e (- 22).

(ii) Asm — oo, the expected number of draws before a coincidenceis /73" .

Thefollowing explainswhy probability distribution (2.2) isreferred to as the birthday
surprise or birthday paradox. The probability that at least 2 people in aroom of 23 people
have the same birthday is P»(365,23) ~ 0.507, which is surprisingly large. The quantity
P5(365,n) asoincreases rapidly asn increases; for example, P (365, 30) ~ 0.706.

A different kind of problemis consideredin Facts 2.28, 2.29, and 2.30 below. Suppose
that there are two urns, one containing m white balls numbered 1 to m, and the other con-
taining m red ballsnumbered 1 to m. First, n; ballsare selected from thefirst urn and their
numbers listed. Then n4 balls are selected from the second urn and their numbers listed.
Finally, the number of coincidences between the two lists is counted.

2.28 Fact (model A) If the ballsfrom both urns are drawn one at atime, with replacement, then
the probability of at least one coincidenceis

1 n n
1 (t1+t2)) "1 2
Ps(m,n1,ng) =1 e, E m(tittz {tl }{t2 }’

t1,t2

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

TCL Exhibit 1009
Page 71

54 Ch. 2 Mathematical Background

where the summationisoveral 0 < t; <nj,0 <ty < no. If n=n1 = na, n = O(y/m)
and m — oo, then

) — 1o (<2 140 ()]) =1 (-2

2.29 Fact (model B) If the balls from both urns are drawn without replacement, then the prob-
ability of at least one coincidenceis

(n1+n2)
Py(m,n1,ng) =1 o

B m(nl)m('”Z) ’
If ny = O(v/m), ng = O(y/m), and m — oo, then

—1 1
Py(m,nq1,n2) — 1 —exp (7711112 {1+n1+n2 +O(—)})
m 2m m

2.30 Fact (model C) If then; white ballsare drawn one at atime, with replacement, and thens
red balls are drawn without replacement, then the probability of at least one coincidenceis
n2

P5(m,n1,n2) =1- (1 — 7) ' .
m

If ny = O(y/m), no = O(y/m), and m — oo, then
ning 1 ~1 _ _n1n2
Ps(m,ni,m2) — 1 —exp (— p= {14—0(%)]) ~1 exp(p=)

2.1.6 Random mappings

2.31 Definition Let F,, denotethe collection of al functions (mappings) from afinite domain
of sizen to afinite codomain of sizen.

Models where random elements of F,, are considered are called random mappings
models. Inthissectionthe only random mappingsmodel considerediswhereevery function
from F,, is equally likely to be chosen; such models arise frequently in cryptography and
algorithmic number theory. Note that | F,,| = n™, whence the probability that a particular
function from ,, ischosenis1/n™.

2.32 Definition Let f beafunctionin F,, with domain and codomain equal to {1,2,... ,n}.
The functional graph of f is a directed graph whose points (or vertices) are the elements
{1,2,...,n} and whose edges are the ordered pairs (z, f(z)) fordl z € {1,2,... ,n}.

2.33 Example (functional graph) Consider thefunctionf : {1,2,...,13} — {1,2,...,13}
defined by f(1) = 4, f(2) = 11, f(3) = 1, f(4) = 6, f(5) = 3, f(6) = 9, f(7) = 3,
f£(8) = 11, £(9) = 1, f(10) = 2, f(11) = 10, f(12) = 4, f(13) = 7. The functiona
graph of f isshownin Figure2.1. 0

As Figure 2.1 illustrates, a functional graph may have several components (maximal
connected subgraphs), each component consisting of a directed cycle and some directed
trees attached to the cycle.

2.34 Fact Asn tendsto infinity, the following statements regarding the functional digraph of a
random function f from F,, aretrue:

(i) The expected number of componentsis % Inn.

TCL Exhibit 1009
Page 72

§2.1 Probability theory 55

13
.\ 12 4 10
11

7.\

o 9
/3 1 >
5

Figure 2.1: Afunctional graph (see Example 2.33).

(ii) The expected number of points which are on the cyclesis /mn /2.
(iii) The expected number of terminal points (points which have no preimages) isn/e.
(iv) The expected number of k-th iterate image points (x is a k-th iterate image point if
x=f(f(--- f(y)---)) forsomey) is (1 — 7)n, wherethe 7, satisfy the recurrence
N—_——

k times
To =0, Tpy1 = e 7 fork > 0.

2.35 Definition Let f bearandom function from {1,2,... ,n} to {1,2,... ,n} andletu €
{1,2,...,n}. Consider the sequence of points ug, u1, us,... defined by ug = u, u; =
f(u;—1) fori > 1. Intermsof thefunctional graph of f, this sequence describes a path that
connectsto acycle.

(i) The number of edgesin the path is called the tail length of «, denoted A(u).
(i) The number of edgesin the cycleis called the cycle length of «, denoted p(w).
(iii) Therho-length of u isthe quantity p(u) = A(u) + u(u).
(iv) Thetreesize of u isthe number of edgesin the maximal tree rooted onacycleinthe
component that contains w.
(v) The component size of « is the number of edges in the component that contains u.
(vi) The predecessors size of « is the number of iterated preimages of .

2.36 Example Thefunctional graphin Figure2.1 has2 componentsand 4 terminal points. The
point u = 3 has parameters A(u) = 1, u(u) = 4, p(u) = 5. The tree, component, and
predecessorssizes of u = 3 are4, 9, and 3, respectively. O

2.37 Fact Asn tendsto infinity, the following are the expectations of some parameters associ-
ated with arandom point in {1, 2, ... ,n} and arandom function from F,,: (i) tail length:
v/mn/8 (ii) cyclelength: /mn/8 (iii) rho-length: /7n/2 (iv) tree size: n/3 (v) compo-
nent size: 2n/3 (vi) predecessorssize: /7n/8.

2.38 Fact Asn tendstoinfinity, the expectationsof the maximumtail, cycle, and rho lengthsin
arandomfunctionfrom F,, are c1v/n, ca+/n, and c3+/n, respectively, wherec; = 0.78248,
co = 1.73746, and c3 ~ 2.4149.

Facts 2.37 and 2.38 indicate that in the functional graph of a random function, most
points are grouped together in one giant component, and there is a small number of large
trees. Also, almost unavoidably, acycle of length about /n arises after following a path of
length \/n edges.

TCL Exhibit 1009
Page 73

56

Ch. 2 Mathematical Background

2.2 Information theory

2.2.1 Entropy

2.39

2.40

2.41

2.42

243

244

Let X bearandom variablewhich takeson afinite set of values 1, zs, . . . , x,, with prob-
ability P(X = x;) = p;, where0 < p; < 1foreachi,1 <i < n,andwhere> ;" p; = 1.
Also, let Y and Z be random variables which take on finite sets of values.

Theentropy of X isamathematical measure of the amount of information provided by
an observation of X. Equivalently, it isthe uncertainity about the outcome before an obser-
vation of X . Entropy is also useful for approximating the average number of bits required
to encode the elements of X.

Definition The entropy or uncertainty of X isdefinedtobe H(X) = — Y7 | p;1gp; =
S pilg () where, by convention, p; - lgp; = p; - 1g (pi) =0ifp; =0.
Fact (properties of entropy) Let X be arandom variable which takes on n values.
(i) 0< H(X)<lgn.
(i) H(X) =0ifandonly if p; = 1 for somei, andp; = 0 for al j # i (that is, thereis
no uncertainty of the outcome).
(i) H(X) =lgnifandonlyif p; =1/nforeachi, 1 <i < n(thatis, al outcomesare
equally likely).

Definition Thejoint entropy of X and Y isdefined to be

Y P(X =2,Y =y)lg(P(X =,Y =y)),

where the summation indices « and y range over all valuesof X and Y, respectively. The
definition can be extended to any number of random variables.

Fact If X andY arerandom variables, then H(X,Y) < H(X)+ H(Y), with equality if
and only if X andY areindependent.

Definition If X, Y arerandom variables, the conditional entropy of X givenY =y is
H(X|Y =y) ZP =2lY =y)lg(P(X = 2[Y =y)),

where the summation index = ranges over all values of X. The conditional entropy of X
givenY’, aso caled the equivocation of Y about X, is

H(X|Y) = ZP H(X|Y =y),
where the summation index y ranges over all valuesof Y.

Fact (properties of conditional entropy) Let X and Y be random variables.

(i) Thequantity H(X|Y) measures the amount of uncertainty remaining about X after
Y has been observed.

TCL Exhibit 1009
Page 74

§2.3 Complexity theory 57

(i) H(X|Y)>0and H(X|X) = 0.
(i) H(X,Y)=H(X)+ H(Y|X)=H(Y)+ H(X|Y).
(iv) H(X|Y) < H(X), with equality if and only if X and Y are independent.

2.2.2 Mutual information

2.45 Definition The mutual information or transinformation of random variables X andY is
I(X;Y) = H(X) — H(X|Y). Similarly, the transinformation of X and the pair Y, Z is
definedtobe I(X;Y,Z) = H(X) — H(X|Y, Z).

2.46 Fact (propertiesof mutual transinformation)
(i) Thequantity I(X;Y") can be thought of as the amount of information that Y reveals

about X. Similarly, the quantity I(X;Y, Z) can be thought of as the amount of in-
formation that Y and Z together reveal about X .

(i) I(X;Y)>0.

(iii) I(X;Y) = 0if and only if X and Y are independent (that is, Y contributes no in-
formation about X).

(iv) I(X;Y) = I(Y; X).

2.47 Definition The conditional transinformation of the pair X, Y given Z is defined to be
I(X;Y)=H(X|Z) - HX|Y, Z).

2.48 Fact (propertiesof conditional transinformation)
(i) Thequantity Iz (X;Y") can beinterpreted as the amount of information that Y~ pro-
vides about X, given that Z has already been observed.
(i) I(X;Y,2) = I(X;Y) + Iy (X; Z).
(iii) I2(X;Y) = I2(Y; X).

2.3 Complexity theory

2.3.1 Basic definitions

Themaingoal of complexity theory isto provide mechanismsfor classifying computational
problems according to the resources needed to solve them. The classification should not
depend on a particular computational model, but rather should measure the intrinsic dif-
ficulty of the problem. The resources measured may include time, storage space, random
bits, number of processors, etc., but typically the main focusis time, and sometimes space.

2.49 Definition An algorithmis awell-defined computationa procedure that takes a variable
input and halts with an output.

TCL Exhibit 1009
Page 75

58 Ch. 2 Mathematical Background

Of course, theterm “well-defined computational procedure” isnot mathematically pre-
cise. It can be made so by using formal computational models such as Turing machines,
random-access machines, or boolean circuits. Rather than get involved with the technical
intricacies of these models, it is simpler to think of an algorithm as a computer program
written in some specific programming language for a specific computer that takes a vari-
able input and halts with an output.

It isusualy of interest to find the most efficient (i.e., fastest) algorithm for solving a
given computational problem. Thetimethat an a gorithmtakesto halt dependsonthe* size”
of the probleminstance. Also, theunit of time used should be madeprecise, especially when
comparing the performance of two algorithms.

2.50 Definition The size of the input is the total number of bits needed to represent the input
in ordinary binary notation using an appropriate encoding scheme. Occasionaly, the size
of the input will be the number of itemsin theinput.

2.51 Example (sizes of some objects)

(i) The number of bitsin the binary representation of a positiveinteger nis1 + |lgn |
bits. For simplicity, the size of n will be approximated by 1g n.
(i) If fisapolynomial of degreeat most k, each coefficient being anon-negativeinteger
at most n, thenthesizeof f is (k + 1) lgn bits.
(i) If A isamatrix with r rows, s columns, and with non-negative integer entries each
at most n, thenthe size of A isrslgn bits. O

2.52 Definition The running time of an algorithm on a particular input is the number of prim-
itive operations or “ steps’ executed.

Often astep is taken to mean a bit operation. For some algorithmsit will be more con-
venient to take step to mean something el se such as a comparison, a machineinstruction, a
machine clock cycle, amodular multiplication, etc.

2.53 Definition Theworst-case running time of an algorithmis an upper bound on the running
time for any input, expressed as a function of the input size.

2.54 Definition The average-case running time of an algorithm is the average running time
over al inputs of afixed size, expressed as afunction of the input size.

2.3.2 Asymptotic notation

It is often difficult to derive the exact running time of an algorithm. In such situations one
isforced to settle for approximations of the running time, and usually may only derive the
asymptotic running time. That is, one studies how the running time of the algorithm in-
creases as the size of the input increases without bound.

Inwhat follows, the only functions considered are those which are defined on the posi-
tiveintegersand take on real valuesthat are always positive from some point onwards. Let
f and g be two such functions.

2.55 Definition (order notation)

(i) (asymptotic upper bound) f(n) = O(g(n)) if there exists apositive constant ¢ and a
positive integer no suchthat 0 < f(n) < cg(n) foral n > no.

TCL Exhibit 1009
Page 76

§2.3 Complexity theory 59

(ii) (asymptotic lower bound) f(n) = Q(g(n)) if there exists apositive constant c and a
positive integer ny suchthat 0 < cg(n) < f(n) foraln > ny.

(iii) (asymptotictight bound) f(n) = ©(g(n)) if there exist positive constants ¢; and ca,
and apositive integer ng suchthat c;g(n) < f(n) < cag(n) foral n > nyg.

(iv) (o-notation) f(n) = o(g(n)) if for any positive constant ¢ > 0 there exists aconstant
ng > 0 suchthat 0 < f(n) < cg(n) foral n > ng.

Intuitively, f(n) = O(g(n)) meansthat f growsno faster asymptotically than g(n) to
within a constant multiple, while f(n) = Q(g(n)) meansthat f(n) grows at least as fast
asymptotically as g(n) towithinaconstant multiple. f(n) = o(g(n)) meansthat g(n) isan
upper bound for f(n) that is not asymptotically tight, or in other words, the function f(n)
becomesinsignificant relativeto g(n) asn getslarger. Theexpressiono(1) is often used to
signify afunction f(n) whose limit asn approaches oo is0.

2.56 Fact (propertiesof order notation) For any functions f(n), g(n), h(n), andl(n), the fol-
lowing are true.

(i) f(n) = O(g(n)) it and only if g(n) = Q(f(n)).

(i) f(n) =©(g(n))ifandonlyif f(n) = O(g(n)) and f(n) = Q(g(n)).
(iii) 1f f(n) = O(h(n)) and g(n) = O(h(n)), then (f + g)(n) = O(h(n)).
(iv) If f(n) = O(h(n)) and g(n) = O(I(n)), then (f - g)(n) = O(h(n)l(n)).

O)=
(v) (reflexivity) f(n) = O(f(n)).
(vi) (transitivity) If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

2.57 Fact (approximations of some commonly occurring functions)
(i) (polynomial function) If f(n) isapolynomial of degree k with positiveleading term,
then f(n) = O(n").
(ii) Forany constant ¢ > 0, log.n = O(lgn).
(iii) (Stirling'sformula) For al integersn > 1,

2mn (g)n <nl < m()n+(1/(12n))

Thusn! = V27n (%)" (1+©(2)). Also, n! = o(n™) andn! = Q(2").
(iv) 1g(n!) = B(nlgn).
2.58 Example (comparative growth rates of some functions) Let e and ¢ be arbitrary constants

with0 < e < 1 < ¢. Thefollowing functionsarelisted in increasing order of their asymp-
totic growth rates:

l1<Ilnlnn <Inn <exp(vVInnlnlnn) < n® <n <n"" < <n” <. O

2.3.3 Complexity classes

2.59 Definition A polynomial-time algorithmis an agorithm whose worst-case running time
functionis of theform O(n*), where n istheinput size and k isaconstant. Any algorithm
whose running time cannot be so bounded is called an exponential-time algorithm.

Roughly speaking, polynomial-time algorithms can be equated with good or efficient
algorithms, while exponential-time algorithms are considered inefficient. There are, how-
ever, some practical situations when this distinction is not appropriate. When considering
polynomial-timecompl exity, the degree of the polynomial is significant. For example, even

TCL Exhibit 1009
Page 77

60

Ch. 2 Mathematical Background

2.60

2.61

2.62

2.63

2.64

2.65

though an algorithm with arunning time of O(n'»12 "), n being theinput size, is asymptot-
ically slower that an algorithm with a running time of O(n1%9), the former algorithm may
be faster in practice for smaller values of n, especialy if the constants hidden by the big-O
notation are smaller. Furthermore, in cryptography, average-case complexity is more im-
portant than worst-case complexity — a necessary condition for an encryption scheme to
be considered secureisthat the corresponding cryptanalysis problemis difficult on average
(or more precisely, amost always difficult), and not just for some isolated cases.

Definition A subexponential-time algorithm is an agorithm whose worst-case running
time function is of the form e°(™), where n isthei nput size.

A subexponential-timealgorithm isasymptotically faster than an algorithmwhose run-
ning time is fully exponential in the input size, while it is asymptotically slower than a
polynomial-time algorithm.

Example (subexponential running time) Let A be an algorithm whose inputs are either
elements of afinitefield F, (see §2.6), or aninteger ¢. If the expected running time of A is
of theform

Lylo, e = O (exp ((c +0(1))(Ing)*(Inln q)lfo‘)) , (2.3)

where ¢ is a positive constant, and « is a constant satisfying0 < a < 1,then Aisa
subexponential-time algorithm. Observe that for « = 0, L4[0, ¢] is a polynomia inIng,
whilefor o = 1, Lg[1, ¢] isapolynomial in ¢, and thus fully exponential in In g. d

For simplicity, the theory of computational complexity restricts its attention to deci-
sion problems, i.e., problems which have either YES or NO as an answer. Thisis not too
restrictive in practice, as al the computational problemsthat will be encountered here can
be phrased as decision problemsin such away that an efficient algorithm for the decision
problem yields an efficient algorithm for the computational problem, and vice versa.

Definition The complexity class P isthe set of all decision problemsthat are solvablein
polynomial time.

Definition The complexity class NP is the set of all decision problemsfor whicha YES
answer can beverifiedin polynomial time given someextrainformation, called acertificate.

Definition Thecomplexity class co-NP isthe set of all decision problemsfor whichaNO
answer can be verified in polynomial time using an appropriate certificate.

It must beemphasized that if adecision problemisin NP, it may not bethe casethat the
certificate of aY ES answer can be easily obtained; what is asserted isthat such a certificate
does exist, and, if known, can be used to efficiently verify the YES answer. The sameis
true of the NO answers for problemsin co-NP.

Example (problemin NP) Consider the following decision problem:

COMPOSITES

INSTANCE: A positive integer n.

QUESTION: Isn composite? That is, arethereintegersa, b > 1 such that n = ab?
COMPOSITESbelongsto NP becauseif aninteger n iscomposite, thenthisfact canbe

verifiedin polynomial timeif oneisgivenadivisor a of n, wherel < a < n (the certificate

inthis case consists of the divisor a). Itisinfact also the case that COMPOSITES belongs

to co-NP. It is till unknown whether or not COMPOSITES belongsto P. O

TCL Exhibit 1009
Page 78

§2.3 Complexity theory 61

2.66

2.67

2.68

2.69

2.70

2.7

2.72

Fact P C NP and P C co-NP.

The following are among the outstanding unresolved questions in the subject of com-
plexity theory:
1. IsP=NP?
2. ISNP = co-NP?
3. IsP = NP N co-NP?
Most expertsare of the opinionthat the answer to each of thethree questionsisNO, although
nothing along these lines has been proven.
The notion of reducibility is useful when comparing the relative difficulties of prob-
lems.

Definition Let L, and L, betwo decision problems. L, issaid to polytimereduceto Lo,
written L1 <p Lo, if thereis an algorithm that solves L, which uses, as a subroutine, an
algorithm for solving Lo, and which runsin polynomial time if the algorithm for Lo does.

Informally, if L1 <p Lo, then L, is at least as difficult as L,, or, equivalently, L, is
no harder than L.

Definition Let L; and L, be two decision problems. If L1 <p Ls and Ly <p L, then
L, and L are said to be computationally equivalent.

Fact Let L, Lo, and L3 be three decision problems.
(l) (tranS|tIVIty) If Ly <p Lo and Ly <p L3, then L, <p Ls.
(II) If L <p Lo ansz e P, thenL1 e P.

Definition A decision problem L is said to be NP-complete if
(i) L € NP, and
(i) L1 <p Lforevery L; € NP.

The class of all NP-complete problemsis denoted by NPC.

NP-complete problems are the hardest problems in NP in the sense that they are at
least asdifficult asevery other problemin NP. There are thousandsof problemsdrawn from
diverse fields such as combinatorics, number theory, and logic, that are known to be NP-
complete.

Example (subset sum problem) The subset sum problemis the following: given a set of
positiveintegers{as, as, . .. ,a,} and apositive integer s, determine whether or not there
isasubset of the a; that sum to s. The subset sum problem is NP-complete. d

Fact Let L; and L. betwo decision problems.
(i) If Ly isNP-completeand L, € P, then P = NP.
(i) If Ly € NP, Ly isNP-complete, and L, <p L1, then L is aso NP-complete.
(iii) If Ly isNP-completeand L; € co-NP, then NP = co-NP.

By Fact 2.72(i), if a polynomial-time algorithm is found for any single NP-complete
problem, thenitisthe casethat P = NP, aresult that would be extremely surprising. Hence,
a proof that a problem is NP-complete provides strong evidence for its intractability. Fig-
ure 2.2 illustrates what is widely believed to be the relationship between the complexity
classes P, NP, co-NP, and NPC.

Fact 2.72(ii) suggests the following procedure for proving that a decision problem L
is NP-complete:

TCL Exhibit 1009
Page 79

62 Ch. 2 Mathematical Background

NP N co-NP NP

Q.

Figure 2.2: Conjectured relationship between the complexity classes P, NP, co-NP, and NPC.

1. Provethat L; € NP.
2. Select aproblem L that is known to be NP-complete.
3. Provethat Lo <p L.

2.73 Definition A problemisNP-hardif thereexists someNP-complete problemthat polytime
reducesto it.

Note that the NP-hard classification is not restricted to only decision problems. Ob-
serve a'so that an NP-complete problem is also NP-hard.

2.74 Example (NP-hard problem) Given positiveintegersas, as, . .. , a, and apositiveinte-
ger s, the computational version of the subset sum problem would ask to actually find a
subset of the a; which sumsto s, provided that such a subset exists. This problemis NP-
hard. d

2.3.4 Randomized algorithms

The algorithms studied so far in this section have been deterministic; such agorithmsfol-
low the same execution path (sequence of operations) each time they execute with the same
input. By contrast, a randomized algorithm makes random decisions at certain pointsin
the execution; hence their execution paths may differ each time they are invoked with the
same input. The random decisions are based upon the outcome of a random number gen-
erator. Remarkably, there are many problems for which randomized algorithms are known
that are more efficient, both in terms of time and space, than the best known deterministic
agorithms.

Randomized algorithmsfor decision problems can be classified according to the prob-
ability that they return the correct answer.

2.75 Definition Let A be arandomized algorithm for a decision problem L, and let I denote
an arbitrary instance of L.
(i) A hasO-sidederror if P(A outputsYES| I'sanswerisYES) = 1, and
P(A outputs YES| I'sanswer isNO) = 0.
(i) A has1-sidederror if P(A outputsYES| I'sanswer isYES) > % and
P(A outputs YES | I'sanswer isNO) = 0.

TCL Exhibit 1009
Page 80

§2.4 Number theory 63

(iii) A has 2-sided error if P(A outputs YES | I'sanswer isYES) > 2, and
P(Aoutputs YES | I'sanswer isNO) < 1.

The number % in the definition of 1-sided error is somewhat arbitrary and can be re-
placed by any positive constant. Similarly, the numbers 2 and 1 in the definition of 2-sided
error, can bereplaced by 1 + e and § — ¢, respectively, for any constante, 0 < € < 3.

2.76 Definition Theexpected runningtime of arandomized algorithmisan upper bound onthe
expected running time for each input (the expectation being over all outputs of the random
number generator used by the algorithm), expressed as a function of the input size.

The important randomized complexity classes are defined next.

2.77 Definition (randomized complexity classes)

(i) The complexity class ZPP (“zero-sided probabilistic polynomia time”) is the set of
all decision problems for which there is a randomized a gorithm with 0-sided error
which runsin expected polynomial time.

(ii) The complexity class RP (“randomized polynomial time”) is the set of al decision
problemsfor which thereis arandomized algorithm with 1-sided error which runsin
(worst-case) polynomia time.

(iii) The complexity class BPP (“bounded error probabilistic polynomial time”) isthe set
of al decision problemsfor which thereisarandomized algorithm with 2-sided error
which runsin (worst-case) polynomial time.

2,78 Fact P C ZPP C RP C BPP and RP C NP.

2.4 Number theory

2.41 The integers
Theset of integers{...,-3,-2,-1,0,1,2,3,...} isdenoted by the symbol Z.

2.79 Definition Let a, b beintegers. Then a dividesd (equivalently: a isadivisor of b, or a is
afactor of b) if there existsan integer ¢ suchthat b = ac. If a dividesb, then thisis denoted
by alb.

2.80 Example (i) —3|18, since 18 = (—3)(—6). (ii) 173|0, since 0 = (173)(0). O

The following are some elementary properties of divisibility.

2.81 Fact (propertiesof divisibility) For al a, b, ¢ € Z, thefollowing are true:
(i) ala.
(i) If a|b and blc, then ac.
(iii) If alb and a|c, then a|(bx + cy) fordl z,y € Z.
(iv) If a|b and b|a, then a = +b.

TCL Exhibit 1009
Page 81

64

Ch. 2 Mathematical Background

2.82

2.83

2.84

2.85

2.86

2.87

2.88

2.89

2.90

2.9

2.92

2.93

2.94

2.95

Definition (division algorithm for integers) If a and b are integerswith b > 1, then or-
dinary long division of a by b yields integers ¢ (the quotient) and r (the remainder) such
that

a=qgb+r, where0 <r <b.

Moreover, g and r are unique. The remainder of the division is denoted a mod b, and the
quotient is denoted a div b.

Fact Leta,b € Z withb # 0. Thena divb = |a/b] anda mod b = a — b|a/b].

Example Ifa = 73,b = 17,thenqg = 4andr = 5. Hence 73 mod 17 = 5 and
73 div 17 = 4. O

Definition Aninteger ¢ isacommon divisor of « and b if ¢|a and c|b.

Definition A non-negative integer d is the greatest common divisor of integers a and b,
denoted d = ged(a, b), if

(i) disacommon divisor of ¢ and b; and

(i) whenever c|a and c|b, then ¢|d.
Equivalently, ged(a, b) isthe largest positive integer that divides both a and b, with the ex-
ception that ged(0,0) = 0.

Example Thecommondivisorsof 12and18are{+1, +2, +3,+6},andgcd(12,18) = 6.
O

Definition A non-negativeinteger d istheleast common multiple of integersa and b, de-
noted d = lem(a, b), if

(i) a|d and b|d; and

(i) whenever a|c and blc, then d|c.
Equivaently, lem(a, b) isthe smallest non-negative integer divisible by both a and b.

Fact If a and b are positive integers, then lem(a, b) = a - b/ ged(a, b).
Example Sincegcd(12,18) = 6, it followsthat lem(12, 18) = 12 - 18/6 = 36. 0
Definition Twointegersa andb aresaidto berelatively primeor coprimeif ged(a, b) = 1.

Definition Aninteger p > 2 issaid to be primeif its only positive divisors are 1 and p.
Otherwise, p is called composite.

The following are some well known facts about prime numbers.
Fact If p isprimeand p|ab, then either p|a or p|b (or both).
Fact There are an infinite number of prime numbers.

Fact (prime number theorem) Let 7(z) denote the number of prime numbers < z. Then

(z)

oo z/Inz

TCL Exhibit 1009
Page 82

§2.4 Number theory 65

2.96

297

2.98

299

2.100

2101

2.102

This means that for large values of z, 7(x) is closely approximated by the expres-
sion z/Inx. For instance, when z = 10'°, 7(z) = 455,052,511, whereas |z/Inz| =
434,294,481. A more explicit estimate for (x) is given below.

Fact Let 7(z) denote the number of primes < z. Thenforz > 17
T
7T(.’E) > m
andforz > 1

x
1.25506 —.
m(z) < Inz

Fact (fundamental theorem of arithmetic) Every integer n > 2 has a factorization as a
product of prime powers:

__ .e1,.€e e
n = pyps’ Pt

where the p; are distinct primes, and the e; are positive integers. Furthermore, the factor-
ization is unique up to rearrangement of factors.

Fact If a = p'p5? - - - p7*, b :p{po2 'upﬁ’“,whereeach e; > 0and f; > 0, then

ged(a, b) = prlnin(elyfl)p;nin(627f2) . .pzlin(ek,fk)

and
rlnax(el,fl)p;nax(ez,fz) . .p;naX(ek,fk)_

lem(a,b) =p

Example Leta = 4864 = 28 -19,b = 3458 = 2 - 7- 13 - 19. Then gcd (4864, 3458) =
219 = 38 and lem (4864, 3458) = 28 - 7- 13 - 19 = 442624. g

Definition Forn > 1, let ¢(n) denote the number of integersin theinterval [1, n] which
arerelatively primeton. Thefunction ¢ iscalled the Euler phi function (or the Euler totient
function).

Fact (propertiesof Euler phi function)
(i) If pisaprime, then ¢(p) = p — 1.
(i) The Euler phi functionis multiplicative. That is, if gcd(m,n) = 1, then ¢(mn) =
p(m) - ¢(n).

(iii) If n = pi*p5? - - - pr* isthe prime factorization of n, then
¢(n):n(1_i> <1_i>...<1_i>_
Y41 P2 Pk
Fact 2.102 gives an explicit lower bound for ¢(n).

Fact For al integersn > 5,
n

$(n) >

6lnlnn’

TCL Exhibit 1009
Page 83

66

Ch. 2 Mathematical Background

2.4.2 Algorithms in Z

2.103

2.104

2.105

2.106

Let a and b be non-negative integers, each less than or equal to n. Recall (Example 2.51)
that the number of bits in the binary representation of n is |lgn| + 1, and this number is
approximated by 1g n. The number of bit operationsfor the four basic integer operations of
addition, subtraction, multiplication, and division using the classical agorithmsis summa-
rizedin Table2.1. Theseagorithmsare studied in more detail in §14.2. More sophisticated
techniques for multiplication and division have smaller complexities.

Operation | Bit complexity |
Addition a+b O(lga +1gb) = O(lgn)
Subtraction a—1b O(lga+1gb) = O(lgn)
Multiplication a-b O((lga)(gb)) = O((Ign)?)
Division a=gb+r | O((lgq)gb)) = O((lgn)?)

Table 2.1: Bit complexity of basic operationsin Z.

The greatest common divisor of two integers a and b can be computed via Fact 2.98.
However, computing a gcd by first obtaining prime-power factorizations does not result in
an efficient algorithm, as the problem of factoring integers appears to be relatively diffi-
cult. The Euclidean algorithm (Algorithm 2.104) is an efficient algorithm for computing
the greatest common divisor of two integers that does not require the factorization of the
integers. It is based on the following simple fact.

Fact If o and b are positive integerswith a > b, then ged(a, b) = ged (b, a mod b).

Algorithm Euclidean algorithm for computing the greatest common divisor of two integers

INPUT: two non-negative integers a and b with a > b.
OUTPUT: the greatest common divisor of a and b.

1. While b # 0 do the following:
1.1 Set r<—a mod b, a<-b, b<r.
2. Return(a).

Fact Algorithm 2.104 has arunning time of O((lgn)?) bit operations.

Example (Euclidean algorithm) The following are the division steps of Algorithm 2.104

for computing ged (4864, 3458) = 38:

4864 = 1-3458 + 1406
3458 = 2-1406 + 646
1406 = 2-646+114
646 = 5-114+76
114 = 1-76+38
76 = 2-38+0. g

TCL Exhibit 1009
Page 84

§2.4 Number theory 67

The Euclidean algorithm can be extended so that it not only yieldsthe greatest common
divisor d of two integers ¢ and b, but also integers x and y satisfying ax + by = d.

2.107 Algorithm Extended Euclidean algorithm

INPUT: two non-negativeintegers a and b with a > .
OUTPUT: d = gcd(a, b) and integers z, y satisfying az + by = d.
1. If b = 0 then set d<—a, z<+1, y«0, and return(d,z,y).
2. Set To+1, 140, y2<—0, y1<—1.
3. Whileb > 0 do the following:
31 g+|a/b], r<a— gb, T+x2 — qT1, Y+<Y2 — qY1.
3.2 a+b, b1, mo+x1, T14x, Yay1, aNd y1+vy.
4. Set d<a, x+x9, y<y2, andreturn(d,z,y).

2.108 Fact Algorithm 2.107 hasarunning time of O((lgn)?) bit operations.

2.109 Example (extended Euclidean algorithm) Table 2.2 shows the steps of Algorithm 2.107
with inputsa = 4864 and b = 3458. Hence gcd (4864, 3458) = 38 and (4864)(32) +

(3458)(—45) = 38. O
lal r[o[w| aof b] @[&n] o[]
— — — — | 4864 | 3458 1 0 0 1
1 1406 1 —1 | 3458 | 1406 0 1 1 —1
2 646 —2 3 | 1406 646 1 —2 -1 3
2 114 5 -7 646 114 —2 5 3 -7
5 76 | —27 38 114 76 5 | =27 -7 38
1 38 32 | —45 76 38 | —27 32 38 | —45
2 0| —91 128 38 0 32 | —91 | —45 128

Table 2.2: Extended Euclidean algorithm (Algorithm 2.107) with inputs a = 4864, b = 3458.

Efficient algorithms for gcd and extended gcd computations are further studied in §14.4.

2.4.3 The integers modulo n
Let n be apositive integer.

2.110 Definition If a and b are integers, then a is said to be congruent to b modulo n, written
a =b (mod n),if ndivides(a—b). Theinteger n iscalled the modulus of the congruence.

2.111 Example (i) 24 =9 (mod 5) since24 —9=3-5.
(i) =11 = 17 (mod 7) since —11 — 17 = —4- 7. O

2.112 Fact (propertiesof congruences) For al a, a1, b, b1, ¢ € Z, the following are true.

(i) a="b (mod n) if and only if a and b leave the same remainder when divided by n.
(i) (reflexivity) a = a (mod n).
(iii) (symmetry) If a = b (mod n) thenb = a (mod n).

TCL Exhibit 1009
Page 85

68

Ch. 2 Mathematical Background

2113

2114

2115

2.116

2117

2.118

2119

2120

2121

(iv) (transitivity) If a =b (mod n) andb = ¢ (mod n), thena = ¢ (mod n).
(V) If a = a3 (modn)andb = b; (mod n), thena + b = a1 + b; (mod n) and
ab = a1by (mod n).

The equivalence class of an integer a is the set of all integers congruent to a modulo
n. From properties (ii), (iii), and (iv) above, it can be seen that for afixed n the relation of
congruence modulo n partitions Z into equivalence classes. Now, if a = gn + r, where
0 <r <mn,thena =r (mod n). Hence each integer a is congruent modulo » to a unique
integer between 0 and n — 1, called theleast residue of @ modulon. Thusa and r areinthe
same equivalence class, and so » may simply be used to represent this equivalence class.

Definition The integers modulo n, denoted Z,,, is the set of (equivalence classes of) in-
tegers{0,1,2,...,n — 1}. Addition, subtraction, and multiplication in Z,, are performed
modulo n.

Example Zo; = {0,1,2,...,24}. InZy5, 13+ 16 = 4,since13 + 16 = 29 = 4
(mod 25). Similarly, 13- 16 = 8 in Zgs. O

Definition Leta € Z,. The multiplicative inverse of « modulo n isaninteger x € Z,,
suchthat az =1 (mod n). If suchan z exists, thenitisunique, and a is said to be invert-
ible, or aunit; theinverse of a is denoted by o ~*.

Definition Leta,b € Z,. Divisionof a by b modulon isthe product of @ and b~ modulo
n, and is only defined if b isinvertible modulo n.

Fact Leta € Z,,. Thena isinvertibleif and only if ged(a,n) = 1.

Example Theinvertible elementsin Zg are 1, 2, 4, 5, 7, and 8. For example, 4= = 7

because4 -7 =1 (mod 9). O
Thefollowing is ageneralization of Fact 2.117.

Fact Let d = gcd(a,n). The congruence equation az = b (mod n) has a solution z if

and only if d divides b, in which case there are exactly d solutions between 0 and n — 1;
these solutions are all congruent modulo n/d.

Fact (Chineseremainder theorem, CRT) If the integersnq, no, . .. , ny are pairwiserela
tively prime, then the system of simultaneous congruences

= a1 (mod ng)

az (mod ng2)

x = ar (modng)
has a unique solution modulon = nyng - - - n.
Algorithm (Gauss's algorithm) The solution x to the simultaneous congruences in the
Chinese remainder theorem (Fact 2.120) may be computed as © = Zle a;N; M; mod n,

where N; = n/n; and M; = N[l mod n;. These computations can be performed in
O((Ig n)?) bit operations.

TCL Exhibit 1009
Page 86

§2.4 Number theory 69

Another efficient practical algorithm for solving simultaneous congruencesin the Chinese
remainder theorem is presented in §14.5.

2.122 Example Thepair of congruencesz = 3 (mod 7), z = 7 (mod 13) has a unique solu-
tionz =59 (mod 91). O

2.123 Fact If gcd(ni, ne) = 1, thenthepair of congruencesz = a (mod n1),z = a (mod ns)
hasaunique solution z = a (mod nins).

2.124 Definition The multiplicative group of Z,, isZ; = {a € Z, | gcd(a,n) = 1}.In
particular, if nisaprime, thenZ), ={a|1<a <n-—1}.

2.125 Definition Theorder of Z;, isdefined to be the number of elementsin Z;,, namely |Z;|.

It follows from the definition of the Euler phi function (Definition 2.100) that |Z | =
¢(n). Notealsothatif a € Z; andb € Z;,thena - b € Z,,, and so0 Z;, is closed under
multiplication.

2126 Fact Letn > 2 beaninteger.
(i) (Euler’stheorem) If a € Z*,then a®™ =1 (mod n).
(i) If nisaproductof distinct primes, andif r = s (mod ¢(n)), thena” = a® (mod n)
for al integersa. In other words, when working modulo such an n, exponents can
be reduced modulo ¢(n).

A specia case of Euler’stheorem is Fermat's (little) theorem.

2.127 Fact Let p beaprime.
(i) (Fermat'stheorem) If gcd(a,p) = 1,thena?~! =1 (mod p).
(i) fr = s (mod p — 1), thena”™ = a® (mod p) for al integers a. In other words,
when working modulo a prime p, exponents can be reduced modulo p — 1.
(iii) Inparticular, a? = a (mod p) for al integersa.

2.128 Definition Leta € Z,,. Theorder of a, denotedord(a), istheleast positiveinteger ¢ such
that a* = 1 (mod n).

2.129 Fact If theorder of a € Z;, ist,and a® = 1 (mod n), then ¢ divides s. In particular,

t|p(n).

2.130 Example Letn = 21. ThenZj, = {1,2,4,5,8,10,11,13,16,17,19,20}. Note that
#(21) = ¢(7)9(3) = 12 = |Z3,|. Theordersof elementsin Z3, arelistedin Table2.3. O

a €7y 1124581011 13|16 |17 |19 20
oderofa |1 |6 |36 |2 6 6 2 3|16 6 2

Table 2.3: Orders of elementsin Z5; .

2.131 Definition Let o € Z;. If the order of a is ¢(n), then « is said to be a generator or a
primitive element of Z; . If Z has agenerator, then Z is said to be cyclic.

TCL Exhibit 1009
Page 87

70 Ch. 2 Mathematical Background

2.132 Fact (propertiesof generators of Z;,)
(i) Z* hasagenerator if and only if n = 2,4, p* or 2p*, where p is an odd prime and
k> 1. In particular, if p isaprime, then Z, has a generator.

(i) If o isagenerator of Z7,then Z* = {o’ mod n | 0 < i < ¢(n) — 1}.

(iii) Supposethat o isagenerator of Z. Thenb = o' mod n is also agenerator of Z,
if and only if ged (i, ¢(n)) = 1. It followsthat if Z; is cyclic, then the number of
generatorsis ¢(¢(n)).

(iv) a € ZF isagenerator of Z7 if and only if a®(™)/? % 1 (mod n) for each prime
divisor p of ¢(n).

2.133 Example Z;, isnot cyclic sinceit does not contain an element of order ¢(21) = 12 (see
Table 2.3); note that 21 does not satisfy the condition of Fact 2.132(i). On the other hand,
Zsg iscyclic, and has agenerator o = 2. O

2.134 Definition Leta € Z; . a issaid to be aquadratic residue modulo n, or asguare modulo
n, if thereexistsan x € Z; suchthat 2 = a (mod n). If no such z exists, thena iscalled
a quadratic non-residue modulo n. The set of all quadratic residues modulo n is denoted
by Q,, and the set of all quadratic non-residuesis denoted by Q.

Note that by definition 0 ¢ Z, whence0 ¢ Q,, and0 € Q,,.
2.135 Fact Let p be an odd prime and let o be a generator of Z,,. Thena € Z,, is a quadratic
residue modulo p if and only if & = o mod p, where is an even integer. It follows that

|Qpl = (p—1)/2and |Q,| = (p — 1)/2; that i, half of the elementsin Z;, are quadratic
residues and the other half are quadratic non-residues.

2.136 Example o = 6 isagenerator of Z};. The powersof « arelisted in the following table.

1 0|12 |3]4|5]6 |7|8[9]10]11
omod13 || 161089212 |7 |3 |54 |11

Hence Q13 = {1,3,4,9,10,12} and Q5 = {2,5,6,7,8,11}. O

2.137 Fact Let n beaproduct of two distinct odd primesp and ¢, n = pg. Thena € Z; isa
quadratic residue modulo n if and only if a € @, anda € Q. It followsthat |Q,| =

Qpl - 1Qql = (0 —1)(¢ - 1)/4and[Q,| = 3(p — 1)(¢ — 1)/4.
2.138 Example Letn = 21. Then Qo = {1,4,16}and Q,, = {2,5,8,10,11,13,17,19,20}.
O

2.139 Definition Leta € Q,,. If z € Z; satisfiesz? = a (mod n), then z is called a square
root of @ modulo n.

2.140 Fact (number of square roots)

(i) If pisanoddprimeand a € Q,, then a has exactly two square roots modulo p.
(i) Moregeneraly, let n = p$*p5? - - - p* wherethe p; aredistinct odd primesand e; >
1. If a € Q,,, then a has precisely 2* distinct square roots modulo n.

2.141 Example Thesguarerootsof 12 modulo37 are7 and 30. The squarerootsof 121 modulo
315 are 11, 74,101, 151, 164, 214, 241, and 304.]

TCL Exhibit 1009
Page 88

§2.4 Number theory 71

2.4.4 Algorithms inZ,

2.142

2143

2144

Let n beapositiveinteger. Asbefore, the elementsof Z,, will berepresented by theintegers
{0,1,2,...,n—1}.
Observethat if a,b € Z,, then

a+b, ifa+b<n,

(a+b)modn:{ atbm ifatb>n

Hence modular addition (and subtraction) can be performed without the need of along di-
vision. Modular multiplication of a and b may be accomplished by simply multiplying a
and b as integers, and then taking the remainder of the result after division by n. Inverses
in Z,, can be computed using the extended Euclidean algorithm as next described.

Algorithm Computing multiplicative inverses in Z,,

INPUT: a € Z,.
OUTPUT: ¢! mod n, provided that it exists.
1. Usetheextended Euclidean a gorithm (Algorithm2.107) to find integersz and y such
that ax + ny = d, whered = ged(a, n).
2. If d > 1, then a~! mod n does not exist. Otherwise, return(z).

Modular exponentiation can be performed efficiently with the repeated square-and-
multiply algorithm (Algorithm 2.143), which is crucial for many cryptographic protocols.
One version of this algorithm is based on the following observation. Let the binary repre-
sentation of k be 3°¢_ k;2?, whereeach k; € {0,1}. Then

t

ak — Hakﬂi _ (a2°)k0 (a21)k1 L. (a2")kt.

=0

Algorithm Repeated square-and-multiply algorithm for exponentiation in Z .,

INPUT: a € Z,, andinteger 0 < k < n whose binary representationisk = S'_ k;2".
OUTPUT: ¢* mod n.
1. Set b<1. If k = 0 then return(b).
2. Set A<a.
3. If kg = 1 then set b<+—a.
4. For i from 1to t do the following:
4.1 Set A+ A? mod n.
4.2 If k; = 1thenset b+ A - b mod n.

5. Return(b).
Example (modular exponentiation) Table 2.4 showsthe stepsinvolved in thecomputation
of 5596 mod 1234 = 1013. O

Thenumber of bit operationsfor the basic operationsinZ,, issummarizedin Table 2.5.
Efficient algorithms for performing modular multiplication and exponentiation are further
examined in §14.3 and §14.6.

TCL Exhibit 1009
Page 89

72 Ch. 2 Mathematical Background

% 0 1 2 3 4 5 6 7 8 9
ki 0 1 0 1 0 1 0 0 1
A || 5] 25| 625 | 681 | 1011 | 369 421 779 947 925
b 1 1| 625 | 625 67 67 | 1059 | 1059 | 1059 | 1013
Table 2.4: Computation of 5°°¢ mod 1234.
Operation ‘ Bit complexity ‘
Modular addition (a+b) mod n O(lgn)
Modular subtraction (a —b) mod n O(lgn)
Modular multiplication (a-b) mod n O((Ign)?)
Modular inversion a~! modn O((1gn)?)
Modular exponentiation a* modn, k <n | O((lgn)?)

Table 2.5: Bit complexity of basic operationsin Z,,.

2.4.5 The Legendre and Jacobi symbols

The Legendre symbol is a useful tool for keeping track of whether or not aninteger a isa
quadratic residue modulo a prime p.

2.145 Definition Let p be an odd prime and a an integer. The Legendre symbol () is defined

to be
a 0, ifpla,
<—> = 1, IfCLEQp,
p ~1, ifaeq,.

2.146 Fact (properties of Legendre symbol) Let p be an odd prime and a, b € Z. Then the Leg-
endre symbol has the following properties:
(i) (%) = a(®1/2 (mod p). In particular, (;lo) =1and (‘71) =
-1€Q,ifp=1 (mod4),and -1 € Q, if p=3 (mod 4).
(i) (%) = (2)(2). Henceif a € Z;, then (‘177) =1
(iii) If a = b (mod p), then (%) = (%).
iv) () = (—1)?*~1/8 Hence (3) =1ifp=1or7 (mod 8),and (3) = ~1ifp=3
or5 (mod 8).
(v) (law of quadratic reciprocity) If ¢ isan odd prime distinct from p, then

(9 (e

In other words, (%) = (%) unless both p and q are congruent to 3 modulo 4, in which
cas (2) = — 3.

The Jacobi symbol is ageneralization of the Legendre symbol to integersn which are
odd but not necessarily prime.

(—1)»=1/2, Hence

TCL Exhibit 1009
Page 90

§2.4 Number theory 73

2.147 Definition Letn > 3 beoddwithprimefactorizationn = pi*p3? - - - pi*. Thenthe Jacobi
symbol (£) is defined to be

G)-G) G -G
n p p)
Observethat if n is prime, then the Jacobi symboal is just the Legendre symbol.

2.148 Fact (propertiesof Jacobi symbol) Let m > 3,n > 3 beodd integers,and a, b € Z. Then
the Jacobi symbol has the following properties:

(i) (&) =0,1, or — 1. Moreover, (%) = 0if and only if ged(a, n) # 1.
(i) (%) = (2)(L). Henceif a € Z, then (&) = 1.
(i)) = G ()

(iv) If a =b (mod n), then (2) = (2).

v) (3)=1.
(vi) (32) = (-1)™"1/2 Hence (=) = 1ifn =1 (mod 4),and (=) = -1ifn =3
(mod 4).

(i) (2) = (~1)™*=1/8, Hence (2) = 1ifn = 1or7 (mod 8), and (2) = —1if
n=3o0r5 (mod 8).

(viii) () = (2)(—1)(m=D®=1/4 |n other words, (%) = (Z) unless both m and n are
congruent to 3 modulo 4, in which case (2) = — ().

n
m

By properties of the Jacobi symbol it follows that if n isodd and a = 2°a; where aq

isodd, then
a) _ (2 (@) _ (2)" (nmodas (—1)@=Dm=1)/4,
n n n n al

This observation yields the following recursive algorithm for computing (%) , which does
not require the prime factorization of n.

2.149 Algorithm Jacobi symbol (and Legendre symbol) computation

JACOBI(a,n)
INPUT: an odd integer n > 3, and an integer a, 0 < a < n.
OUTPUT: the Jacobi symbol (%) (and hence the Legendre symbol when r is prime).
1. If a = 0 then return(0).
2. If a = 1 thenreturn(1).
3. Writea = 2°a;, where a; isodd.
4. If eiseventhen set s<—1. Otherwiseset s«-1ifn =1o0r 7 (mod 8), or set s« —1
ifn=3o0r5 (mod 8).
. Ifn =3 (mod 4) and a; = 3 (mod 4) then set s« — s.
. Setni<+n mod a;.
7. If a1 = 1 then return(s); otherwise return(s - JACOBI(n1,a1)).

o u

2.150 Fact Algorithm 2.149 has arunning time of O((lg n)?) bit operations.

TCL Exhibit 1009
Page 91

74 Ch. 2 Mathematical Background

2.151 Remark (finding quadratic non-residues modulo a prime p) Let p denote an odd prime.
Even thoughit isknown that half of the elementsin Z,, are quadratic non-residues modulo
p (see Fact 2.135), there is no deterministic polynomial-time algorithm known for finding
one. A randomized algorithm for finding aquadratic non-residueisto simply select random
integersa € Z, until oneis found satisfying (%) = —1. The expected number iterations
beforeanon-residueisfoundis2, and hencethe proceduretakes expected polynomial-time.

2.152 Example (Jacobi symbol computation) For ¢ = 158 andn = 235, Algorithm 2.149 com-

putes the Jacobi symbol (35%) asfollows:

) - @@ G

Unlike the Legendre symbol, the Jacobi symbol (%) does not reveal whether or not a
isaquadratic residue modulo n. Itisindeed truethat if a € @, then (%) = 1. However,
(%) = 1 doesnotimply that a € Q.

n

2.153 Example (quadratic residues and non-residues) Table 2.6 lists the elementsin Z3; and
their Jacobi symbols. Recall from Example 2.138 that Q2; = {1,4,16}. Observe that

(&) =1but5 ¢ Qan. O
a€Zs ||1| 2| 4] 5| 8| 10| 11| 13|16 | 17| 19| 20
a®modn || 1 16 1) 16| 16| 1| 4| 16| 4| 1

&) 1|-1| 1|-1|-1] 1|-1] 1| 1|-1] 1|-1
) 1 1| 1|-1| 1]-1| 1|-1] 1|-1]-1|-1
(&) 1] -1] 1 1| -1]-1|-1|-1|1 1] -1 1

Table 2.6: Jacobi symbols of elementsin Z3; .

2.154 Definition Letn > 3 bean odd integer, and let J,, = {a € Z, | (£) = 1}. Theset of
pseudosquares modul o n, denoted Q,,, is defined to be the set J,, — Q...

2.155 Fact Let n = pq be a product of two distinct odd primes. Then |Q,.| = |Qn| = (p —
1)(¢—1)/4; that is, haf of the elementsin J,, are quadratic residues and the other half are
pseudosquares.

2.4.6 Blum integers

2.156 Definition A Bluminteger isacomposite integer of the form n = pq, where p and g are
distinct primes each congruent to 3 modulo 4.

2157 Fact Let n = pg beaBluminteger, andlet a € @,,. Then a has precisely four square
roots modulo n, exactly one of whichisasoin @,,.

2.158 Definition Letn beaBluminteger andleta € Q,,. Theuniquesquareroot of a in @, is
called the principal square root of a modulo n.

TCL Exhibit 1009
Page 92

§2.5 Abstract algebra 75

2.159 Example (Blum integer) For the Blum integer n = 21, J,, = {1,4,5,16,17,20} and
Q. = {5,17,20}. Thefour squarerootsof a = 4 are 2, 5, 16, and 19, of which only 16 is
alsoin Q1. Thus 16 isthe principal squareroot of 4 modulo 21. O

2.160 Fact If n = pq isaBlum integer, then the function f : Q,, — Q,, defined by f(z) =
z? mod n isapermutation. Theinverse function of f is:

f Y (z) = 2@e=Da=D+D/8 64 p,

2.5 Abstract algebra

This section provides an overview of basic algebraic objects and their properties, for refer-
ence in the remainder of this handbook. Several of the definitionsin §2.5.1 and §2.5.2 were
presented earlier in §2.4.3 in the more concrete setting of the algebraic structure Z .

2.161 Definition A binary operation« onaset .S isamappingfromS x StoS. Thatis, xisa
rule which assigns to each ordered pair of elementsfrom S an element of .S.

2.5.1 Groups

2.162 Definition A group (G,) consists of a set G with a binary operation * on G satisfying
the following three axioms.
(i) Thegroup operationisassociative. Thatis, ax* (bxc) = (axb)*xcforadla,b,c € G.
(i) Thereisanelement 1 € G, called theidentity element, suichthata* 1 =1%a =a
forala € G.
(iii) Foreacha € G thereexistsan element a—! € G, called the inverse of a, such that
axa l=alxa=1.
A group G is abelian (or commutative) if, furthermore,
(iv) axb=bxaforadla,becG.

Note that multiplicative group notation has been used for the group operation. If the
group operation is addition, then the group is said to be an additive group, the identity ele-
ment is denoted by 0, and theinverse of a is denoted —a.

Henceforth, unless otherwise stated, the symbol « will be omitted and the group oper-
ation will smply be denoted by juxtaposition.

2.163 Definition A group G isfiniteif |G| isfinite. The number of elementsin afinite groupis
called its order.

2.164 Example Theset of integersZ with the operation of addition formsagroup. Theidentity
element is 0 and the inverse of an integer a isthe integer —a. d

2.165 Example The set Z,,, with the operation of addition modulo n, forms a group of order
n. The set Z,, with the operation of multiplication modulo » is not a group, since not all
elementshave multiplicativeinverses. However, theset Z;, (see Definition 2.124) isagroup
of order ¢(n) under the operation of multiplication modulo n, with identity element 1. O

TCL Exhibit 1009
Page 93

76 Ch. 2 Mathematical Background

2.166 Definition A non-empty subset H of agroup G isasubgroup of G if H isitself agroup
with respect to the operation of G. |If H isasubgroupof G and H # G, then H iscalleda
proper subgroup of G.

2.167 Definition A groupG iscyclicif thereisanelement o € G suchthat foreachd € G there
isaninteger i with b = . Such an element « is called agenerator of G.

2.168 Fact If Gisagroupanda € G, then the set of all powersof a formsacyclic subgroup of
G, called the subgroup generated by a, and denoted by (a).

2.169 Definition Let G beagroupand a € G. Theorder of a is defined to be the least positive
integer ¢ such that a* = 1, provided that such an integer exists. If such at does not exist,
then the order of a is defined to be co.

2.170 Fact Let G beagroup, and let a € G be an element of finite order t. Then |(a)]|, the size
of the subgroup generated by a, is equal to¢.

2.171 Fact (Lagrange'stheorem) If G isafinitegroupand H isasubgroupof G, then|H | divides
|G|. Hence, if a € G, the order of a divides |G|.

2.172 Fact Every subgroup of acyclic group G isalso cyclic. Infact, if G isacyclic group of
order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.

2173 Fact Let G beagroup.
(i) If theorder of a € G ist, thenthe order of a” ist/ ged(t, k).

(i) If G isacyclic group of order n and d|n, then G has exactly ¢(d) elements of order
d. In particular, G has ¢(n) generators.

2.174 Example Consider themultiplicativegroupZij, = {1,2,...,18} of order 18. Thegroup

*

iscyclic (Fact 2.132(i)), and a generator is o = 2. The subgroups of Z7,, and their gener-

ators, arelisted in Table 2.7. O
| Subgroup | Generators [Order |
{1y 1 1
{1,18} 18 2
{1,7,11} 7,11 3
{1,7,8,11,12, 18} 8,12 6
{1,4,5,6,7,9,11,16,17} | 4,5,6,9,16,17 9
{1,2,3,...,18} 2,3,10,13,14,15 | 18

Table 2.7: The subgroups of Zi.

2.5.2 Rings

2.175 Definition Aring (R, +, x) consistsof aset R with two binary operations arbitrarily de-
noted + (addition) and x (multiplication) on R, satisfying the following axioms.

(i) (R,+) isanabelian group with identity denoted 0.

TCL Exhibit 1009
Page 94

§2.5 Abstract algebra 77

(i) Theoperation x isassociative. Thatis, a x (b x ¢) = (a x b) x cforal a,b,c € R.
(iii) Thereisamultiplicativeidentity denoted 1, with1 # 0, suchthatl xa=ax1=a
forala € R.
(iv) Theoperation x isdistributiveover +. Thatis, a x (b+¢) = (a x b) + (a x ¢) and
(b+c)xa=(bxa)+ (cxa)fordla,b,ceR.
Theringisacommutativeringif a x b=b x a fordl a,b € R.

2.176 Example The set of integersZ with the usual operations of addition and multiplicationis
acommutative ring. O

2177 Example The set Z,, with addition and multiplication performed modulo »n is a commu-
tative ring. O

2.178 Definition Anelement a of aring R iscalled aunit or an invertible element if thereisan
elementb € Rsuchthata x b = 1.

2179 Fact The set of unitsin aring R forms a group under multiplication, called the group of

unitsof R.
2.180 Example The group of unitsof thering Z,, isZ,, (see Definition 2.124). a
2.5.3 Fields
2.181 Definition A field isacommutativeringinwhich all non-zero elements have multiplica-
tiveinverses.

m times

—TN—
2.182 Definition Thecharacteristic of afieldis0if1+ 1+ --- + 1 isnever equal to 0 for any
m > 1. Otherwise, the characteristic of the field is the least positive integer m such that

>, 1equalsO.

2.183 Example The set of integers under the usual operations of addition and multiplication is
not afield, sincetheonly non-zerointegerswith multiplicativeinversesare1 and —1. How-
ever, the rational numbers Q, the real numbersR, and the complex numbers C form fields
of characteristic 0 under the usual operations. O

2.184 Fact Z, isafield (under the usual operations of addition and multiplication modulo n) if
and only if n isaprime number. If n is prime, then Z,, has characteristic n.

2.185 Fact If the characteristic m of afield is not 0, then m is a prime number.

2.186 Definition A subset F' of afield E isasubfield of E if F isitself afield with respect to
the operations of E. If thisisthe case, E issaid to be an extension field of F'.

TCL Exhibit 1009
Page 95

78

Ch. 2 Mathematical Background

2.5.4 Polynomial rings

2.187

2.188

2.189

2.190

219

2.192

Definition If R isacommutativering, then apolynomial in the indeterminate = over the
ring R is an expression of the form

f(x) = anz™ + -+ agx® + ayz + ap

whereeach a; € Randn > 0. The element a; is called the coefficient of z¢ in f(z).
The largest integer m for which a.,,, # 0 is called the degree of f(z), denoted deg f(z);
an, 1s caled the leading coefficient of f(z). If f(z) = ao (aconstant polynomial) and
ap # 0, then f(x) has degree0. If all the coefficientsof f(z) are0, then f(z) iscalled the
zero polynomial and its degree, for mathematical convenience, is defined to be —oo. The
polynomial f(z) issaid to be monic if its leading coefficient is equal to 1.

Definition If R isacommutativering, the polynomial ring R[] isthering formed by the
set of al polynomialsin the indeterminate = having coefficients from R. The two opera-
tions are the standard polynomial addition and multiplication, with coefficient arithmetic
performedin thering R.

Example (polynomial ring) Let f(z) = 2® + z + 1 and g(x) = z? + z be elements of
the polynomial ring Zz[z]. Working in Zs[z],
flx)+g(x) =2 +2%+1
and
flx)-g(z) =2° + z* + 23 + 2. O

For the remainder of thissection, F' will denotean arbitrary field. The polynomial ring
F[z] hasmany propertiesin commonwith theintegers (moreprecisely, F'[x] and Z areboth
Euclidean domains, however, this generalization will not be pursued here). These similar-
ities are investigated further.

Definition Let f(z) € F[z] beapolynomial of degreeat least 1. Then f(z) issaid to be
irreducible over F if it cannot be written as the product of two polynomialsin F[x], each
of positive degree.

Definition (division algorithm for polynomials) If g(x), h(z) € Flz], with h(z) # 0,
then ordinary polynomial longdivision of g(z) by h(x) yieldspolynomialsg(z) andr(x) €
F[z] such that

g(z) = q(z)h(z) + r(z), wheredegr(z) < deg h(z).

Moreover, ¢(x) and r(x) are unique. The polynomial ¢(x) is caled the quotient, while
r(z) iscalled theremainder. Theremainder of thedivisionissometimesdenoted g(x) mod
h(z), and the quotient is sometimes denoted g(z) div h(z) (cf. Definition 2.82).

Example (polynomial division) Consider thepolynomiasg(z) = x84+ 25 +x3+22+z+1
and h(z) = z* + 2® + 1 in Zy[z]. Polynomial long division of g(z) by h(z) yields

g(x) = 22h(z) + (2> + 2 + 1).
Hence g(z) mod h(z) = x® + x + 1 and g() div h(x) = 22. O

TCL Exhibit 1009
Page 96

§2.5 Abstract algebra 79

2.193

2.194

2.195

2.196

2197

2.198

Definition If g(z), h(z) € F[z] then h(x) divides g(z), written h(z)|g(z), if g(z) mod
h(z) = 0.

Let f(z) be afixed polynomial in F[z]. Aswith the integers (Definition 2.110), one
can define congruences of polynomialsin F[z] based on division by f(x).

Definition If g(z), h(x) € F[z], then g(z) is said to be congruent to A (z) modulo f(x)
if f(z) dividesg(z) — h(z). Thisisdenoted by g(z) = h(z) (mod f(x)).

Fact (properties of congruences) For dl g(x), h(x), g1(z), h1(z), s(x) € F[z], thefol-
lowing aretrue.
(i) g(z) = h(z) (mod f(z)) if and only if g(x) and h(z) leave the same remainder
upon division by f(x).
(i) (reflexivity) g(z) = g(x) (mod f(z)).
(iii) (symmetry) If g(z) = h(z) (mod f(x)), then h(z)
(iv) (transitivity) If g(x) = h(z) (mod f(z)) and h(x)
9(z) = s(z) (mod f(z))
(v) If g(z) = g1(z) (mod f(z)) and h(z) = hi(x) (mod f(z)), then g(z) + h(z) =
g1(x) + hi1(z) (mod f(z)) and g(z)h(z) = g1(x)h1(x) (mod f(z)).

Let f(x) beafixed polynomia in F'[z]. The equivalenceclass of apolynomia g(z) €
F[z] isthe set of al polynomialsin F[x] congruent to g(z) modulo f(z). From properties
(ii), (iii), and (iv) above, it can be seen that the relation of congruence modulo f(z) par-
titions F'[z] into equivalence classes. If g(z) € F[z], then long division by f(z) yields
unique polynomialsg(z), r(z) € F|z] suchthat g(z) = q(z) f (z) + r(z), wheredeg r(x)
< deg f(x). Hence every polynomia g(z) is congruent modulo f(z) to a unique polyno-
mial of degree less than deg f (). The polynomia r(x) will be used as representative of
the equivaence class of polynomials containing g(z).

g(x) (mod f(z)).
s(z) (mod f(z)), then

Definition F'[z]/(f(x)) denotesthe set of (equivalence classes of) polynomiasin F[z]
of degreelessthann = deg f(x). Additionand multiplication are performed modulo f(z).

Fact F[z]/(f(x))isacommutativering.

Fact If f(x) isirreducibleover F, then F[z]/(f(z)) isafield.

2.5.5 Vector spaces

2.199

Definition A vector space V over afield F is an abelian group (V, +), together with a
multiplication operatione : F' x V' — V (usually denoted by juxtaposition) such that for
dla,be Fandv,w € V, the following axioms are satisfied.
@) a(v+ w) = av + aw.

(i) (a+b)v =av+ bo.

(iii) (ab)v = a(bv).

(iv) v =w.
Theelementsof V' arecalled vectors, whilethe elementsof F arecalled scalars. Thegroup
operation + is called vector addition, while the multiplication operation is called scalar
multiplication.

TCL Exhibit 1009
Page 97

80 Ch. 2 Mathematical Background

2.200 Definition Let1 beavector spaceover afield F'. A subspaceof V' isan additive subgroup
U of V whichis closed under scalar multiplication, i.e., av € U fordla € Fandv € U.

2.201 Fact A subspace of avector space is also a vector space.

2.202 Definition Let S = {v,v9,... ,v,} beafinite subset of avector space V over afield F.
(i) A linear combination of .S is an expression of theform a v, + agva + - - + anvy,
whereeacha; € F.
(ii) Thespan of S, denoted (S), isthe set of all linear combinationsof S. The span of S
isasubspaceof V.
(iii) If U isasubspaceof V, then S issaidtospan U if (S) = U.
(iv) The set S islinearly dependent over F' if there exist scalars ay, as, . .. , a,, not al
zero, such that a1v; + asve + -+ - + a,v, = 0. If no such scalars exist, then S is
linearly independent over F.
(v) A linearly independent set of vectorsthat spans V' iscalled abasisfor V.

2.203 Fact Let V beavector space.

(i) If V hasafinite spanning set, then it has abasis.
(i) If V hasabasis, thenin fact all bases have the same number of elements.

2.204 Definition If avector space V hasabasis, then the number of elementsin abasisiscalled
the dimension of V', denoted dim V'.

2.205 Example If F isany field, then the n-fold Cartesianproduct V = F x F' x --- x F'isa
vector space over F of dimension n. The standard basisfor V is {eq, e, ... ,e,}, where
e; isavector with a1 in the i coordinate and 0’s elsewhere. O

2.206 Definition Let F be an extension field of F. Then E can be viewed as a vector space
over the subfield F', where vector addition and scalar multiplication are simply the field
operationsof addition and multiplicationin E. The dimension of thisvector spaceiscalled
the degree of E over F', and denoted by [E : F]. If this degreeisfinite, then E iscalled a
finite extension of F.

2.207 Fact Let F, F/, and L befields. If L isafinite extension of £ and E is afinite extension
of F', then L isalso afinite extension of F' and

[L:F]=][L:E]|E:F)].

2.6 Finite fields

2.6.1 Basic properties

2.208 Definition A finitefieldisafield ' which containsafinite number of elements. The order
of F'isthe number of elementsin F'.

TCL Exhibit 1009
Page 98

§2.6 Finite fields 81

2.209

2.210

2.211

2.212

2.213

2.214

2.215

Fact (existence and uniqueness of finite fiel ds)

(i) If Fisafinitefield, then F' containsp™ elementsfor someprimep andinteger m > 1.
(i) For every prime power order p™, thereis aunique (up to isomorphism) finite field of
order p™. Thisfield is denoted by F,,m, or sometimesby GF(p™).

Informally speaking, two fields are isomorphic if they are structurally the same, al-
though the representation of their field elements may be different. Notethat if p isaprime
then Z,, is afield, and hence every field of order p isisomorphicto Z,. Unless otherwise
stated, the finite field IF,, will henceforth be identified with Z,,.

Fact If I, isafinite field of order ¢ = p™, p aprime, then the characteristic of F, is p.
Moreover, IF, contains a copy of Z,, asasubfield. Hence F, can be viewed as an extension
field of Z, of degree m.

Fact (subfieldsof afinitefield) Let F, beafinitefield of order ¢ = p™. Thenevery subfield
of I, has order p™, for somen that is a positive divisor of m. Conversely, if n isapositive
divisor of m, then there is exactly one subfield of IF, of order p™; an element a € F, isin
the subfield .« if and only if a?” = a.

Definition Thenon-zeroelementsof I, formagroup under multiplication called the mul-
tiplicative group of IF;, denoted by IF;.

Fact I, isacyclicgroup of order ¢ — 1. Hencea? = a foral a € F,.

Definition A generator of the cyclic group IF; is called a primitive element or generator
of F,.

Fact If a,b € F,, afinitefield of characteristic p, then

(a+b) =a + v fordlt>0.

2.6.2 The Euclidean algorithm for polynomials

2.216

2.217

Let Z, be the finite field of order p. The theory of greatest common divisors and the Eu-
clidean algorithm for integers carries over in a straightforward manner to the polynomial
ring Zy,[z] (and more generally to the polynomial ring F'[z], where F' is any field).

Definition Let g(z), h(z) € Z,[z], wherenot both are 0. Then the greatest common divi-
sor of g(x) and h(x), denoted gcd(g(z), h(z)), isthe monic polynomial of greatest degree
in Zy[z] which divides both g(z) and h(z). By definition, gcd(0, 0) = 0.

Fact Z,[z] is aunique factorization domain. That is, every non-zero polynomia f(z) €

Zy|z] has afactorization
f(@) = afi(2)™ fa(2) - - fi(2),

wherethe f;(z) aredistinct monic irreducible polynomiasin Z,[z], the e; are positivein-
tegers, anda € Z,,. Furthermore, thefactorization is unique up to rearrangement of factors.

Thefollowing is the polynomial version of the Euclidean algorithm (cf. Algorithm 2.104).

TCL Exhibit 1009
Page 99

82

Ch. 2 Mathematical Background

2.218

2.219

2.220

2.221

2,222

2.223

Algorithm Euclidean algorithm for Z, [z]

INPUT: two polynomials g(z), h(z) € Z,[z].
OUTPUT: the greatest common divisor of g(z) and h(x).

1. While h(z) # 0 do the following:
1.1 Setr(z)<g(z) mod h(z), g(x)«h(z), h(z)+r(z).
2. Return(g(z)).

Definition A Z,-operation means either an addition, subtraction, multiplication, inver-
sion, or divisionin Z,,.

Fact Supposethat deg g(z) < manddeg h(z) < m. ThenAlgorithm2.218 hasarunning
time of O(m?) Z,-operations, or equivalently, O(m?(1g p)?) bit operations.

Aswith the case of the integers (cf. Algorithm 2.107), the Euclidean algorithm can be
extended so that it also yields two polynomials s(x) and ¢(z) satisfying

s(z)g(x) + t(z)h(z) = ged(g(), h(z)).

Algorithm Extended Euclidean algorithm for Z,[z]

INPUT: two polynomials g(x), h(z) € Zpx].
OUTPUT: d(z) = ged(g(x), h(x)) and polynomials s(z), t(x) € Z,[z] which satisfy
s(z)g(x) + t(x)h(z) = d(z).
1. If h(z) = O thenset d(x)<—g(z), s(x)+1, t(z)+0, and return(d(z),s(z).t(z)).
2. Set sy(x)+1, s1(x)<=0, ta(z)<0, t1(x)<«1.
3. While h(z) # 0 do thefollowing:
3.1 g(z)<+g(z) div h(z), r(x)+g(z) — h(x)g(x).
3.2 s(z)<—sa(z) — g(z)s1(x), t(x)ta(z) — q(x)t1(x).
3.3 g(z)+h(z), h(z)+r(z).
3.4 sy(z)+s1(x), s1(x)+s(x), ta(z)+t1(z), and t1(x)t(z).
4. Setd(z)«g(x), s(x)+s2(z), t(x)+ta(z).
5. Return(d(z),s(x),t(z)).

Fact (running time of Algorithm 2.221)
(i) Thepolynomialss(z) andt(z) given by Algorithm 2.221 have small degres; thet is,
they satisfy deg s(x) < deg h(x) and deg ¢(x) < deg g(z).
(i) Supposethat deg g(x) < manddegh(z) < m. ThenAlgorithm2.221 hasarunning
time of O(m?) Z,-operations, or equivalently, O(m?(lg p)?) bit operations.

Example (extended Euclidean algorithmfor polynomials) The following are the steps of
Algorithm 2.221 with inputs g(z) = 2'% + 2% + 28 + 25 + 2° + 2* + 1 and h(z) =
0+ 2% + 2% + 23 + 22 + 1in Zz[z).
Initialization

so(z)1, s1(x)<0, to(x)<0, t1(x)<+1.

TCL Exhibit 1009
Page 100

§2.6 Finite fields 83

Iteration 1
qz)z+ 1, r(z)2® + 27 + 2% + 2% + =,
s(z)1, t(x)+z+1,
g(x)2® + 28 + 25+ 23 + 22+ 1, h(z)a® + 27 + 25 + 22 + 1,
s2(2)+0, s1(x)1, ta(z)1, t1(x)x + 1.
Iteration 2
g(x)z+1, r(x)zd + 22+ +1,
s(z)z + 1, t(z)2?,
g(@)a® + 2"+ 28 + 22+ 1, h(z)25 + 22 + 2+ 1,
sa(x)¢1, s1(z)x + 1, ta(z)2x + 1, t1(z)+22.
Iteration 3
gx)z® +22+z+1, r(x)2 +2+1,
s(z)at, tx)a® + 2t + 22 + 22 + 2+ 1,
g@)=2® + 22 +x+1, h(z)23 + 2z + 1,
sa(x)—x + 1, s1(z)at, ta(z)22, t1(z)2® + 2t + 23 + 22+ 2+ 1.
Iteration 4
q(z)+x? + 1, r(x)+0,
s(x)ab + 2t + 2+ 1, t(z)ea" + 28 + 22 + 2 + 1,
g(z)+2® + x + 1, h(z)+0,
sa(w)2?, s1(z)z8 + 2 + 2 +1,
to(x)ez® +zxt +28 + 22+ + 1, t(2)ez" + 20 + 22+ 2+ 1.

Hence ged(g(z), h(z)) = 2 + = + 1 and
(zY)g(x) + (@® +2* + 2® + 22 + 2+ Dh(z) =2° + o+ 1. O

2.6.3 Arithmetic of polynomials

2.224

2.225

A commonly used representation for the elements of afinitefield F,, where ¢ = p™ and p
isaprime, isapolynomial basisrepresentation. If m = 1, thenF, isjust Z,, and arithmetic
is performed modulo p. Since these operations have already been studied in Section 2.4.2,
it is henceforth assumed that m > 2. The representation is based on Fact 2.198.

Fact Let f(z) € Z,[x] beanirreducible polynomia of degreem. ThenZ,[x]/(f(z)) is
afinitefield of order p™. Addition and multiplication of polynomialsis performed modulo

f(@).

The following fact assures that all finite fields can be represented in this manner.

Fact For eachm > 1, there exists amonic irreducible polynomial of degree m over Z,,.
Hence, every finite field has a polynomial basis representation.

An éefficient algorithm for finding irreducible polynomialsover finitefieldsis presented
in§4.5.1. Tables 4.6 and 4.7 list some irreducible polynomials over the finite field Z.

Henceforth, the elements of thefinite field I, will be represented by polynomiasin
Zp|z] of degree < m. If g(z), h(z) € Fpm, then addition is the usual addition of polyno-
mialsin Zy[z]. The product g(z)h(x) can beformed by first multiplying g(z) and h(z) as
polynomials by the ordinary method, and then taking the remainder after polynomial divi-
sionby f(z). Multiplicative inversesin F,~ can be computed by using the extended Eu-
clidean algorithm for the polynomial ring Z,,[].

TCL Exhibit 1009
Page 101

84 Ch. 2 Mathematical Background

2.226 Algorithm Computing multiplicative inverses in F,m

INPUT: anon-zeropolynomial g(x) € F,m. (Theelementsof thefieldF,,~ arerepresented
asZy[xz]/(f(x)), where f(z) € Zp[z] isanirreducible polynomial of degree m over Z,.)
OUTPUT: g(z)~! € Fpm.
1. Usetheextended Euclidean algorithm for polynomials (Algorithm 2.221) to find two
polynomials s(x) and t(z) € Z,[x] suchthat s(z)g(x) + t(z) f(z) = 1.
2. Return(s(z)).

Exponentiationin F,~ can be done efficiently by the repeated square-and-multiply al-
gorithm (cf. Algorithm 2.143).

2.227 Algorithm Repeated square-and-multiply algorithm for exponentiation in I ,m

INPUT: g(z) € Fpm andaninteger 0 < k < p™ — 1 whose binary representation is
k= ZEZO k;2%. (Thefield F,m isrepresented as Z,[z]/(f(z)), where f(z) € Z,[z] isan
irreducible polynomial of degreem over Z,,.)
OUTPUT: g(x)* mod f(x).
1. Set s(x)«1. If k = 0 thenreturn(s(x)).
2. Set G(z)+g(x).
3. If kg = 1 then set s(z)«—g(x).
4. For i from 1 to ¢ do the following:
4.1 Set G(x)+G(x)? mod f(z).
4.2 If k; = 1 then set s(z)«+G(z) - s(x) mod f(z).
5. Return(s(z)).

The number of Z,-operations for the basic operations in Fp,» is summarized in Ta-

ble2.8.
Operation | Number of Z,,-operations
Addition g(z) + h(x) O(m)
Subtraction g(z) — h(z) O(m)
Multiplication g(z) - h(zx) O(m?)
Inversion g(z)~t O(m?)
Exponentiation g(z)*, k < p™ O((1gp)m?)

Table 2.8: Complexity of basic operationsin Fym .

Insomeapplications(cf. §4.5.3), it may be preferableto useaprimitive polynomial to define
afinitefield.

2.228 Definition An irreducible polynomia f(z) € Z,[z] of degree m is called a primitive
polynomial if z isagenerator of F..., the multiplicative group of all the non-zero elements

inFyn = Zylal /(f(x)). ’

2.229 Fact Theirreducible polynomia f(z) € Z,[x] of degree m is a primitive polynomial if
and only if f(x) dividesz* — 1 for k = p™ — 1 and for no smaller positive integer k.

TCL Exhibit 1009
Page 102

§2.7 Notes and further references 85

2.230 Fact For eschm > 1, there exists amonic primitive polynomial of degreem over Z,. In

fact, there are precisely ¢(p™ — 1)/m such polynomials.

2.231 Example (thefinitefieldFy4 of order 16) It can beverified (Algorithm 4.69) that the poly-

nomid f(z) = z* 4+ z + 1 isirreducible over Z,. Hencethe finitefield Fy4 can be repre-
sented as the set of all polynomiasover F, of degreelessthan 4. That is,

Fou = {aza® + agx® + a1 +ao | a; € {0,1}}.

For convenience, the polynomia asz® + asz? + a1z + ag iS represented by the vector
(agagalao) of Iength 4, and

Fo« = {(asazaiao) | a; € {0,1}}.
The following are some examples of field arithmetic.
(i) Field elements are simply added componentwise: for example, (1011) + (1001) =
(0010).

(i) Tomultiply thefield elements (1101) and (1001), multiply them as polynomialsand
then take the remainder when this product is divided by f(z):

(@B +22+1)- @ +1) = 2%4+25+22+1
B +22+24+1 (mod f(z)).

Hence (1101) - (1001) = (1111).
(iii) The multiplicative identity of Fos is (0001).

(iv) Theinverseof (1011)is(0101). To verify this, observe that
(3 +z+1)- (22 +1) R LR |

= 1 (mod f(z)),

whence (1011) - (0101) = (0001).
f(z) isaprimitive polynomid, or, equivaently, thefield element z = (0010) is agenera-
tor of F54. Thismay be checked by verifying that all the non-zero elementsin [Fo4 can be
obtained as a powers of . The computations are summarized in Table 2.9. |

A list of some primitive polynomials over finite fields of characteristic twois givenin
Table 4.8.

2.7 Notes and further references

§2.1

§2.2

A classic introduction to probability theory is the first volume of the book by Feller [392].
The material on the birthday problem (§2.1.5) is summarized from Nishimuraand Sibuya
[931]. See dso Girault, Cohen, and Campana [460]. The material on random mappings
(§2.1.6) is summarized from the excellent article by Flgjolet and Odlyzko [413].

The concept of entropy wasintroducedin the seminal paper of Shannon[1120]. Theseideas
werethen applied to devel op amathematical theory of secrecy systems by Shannon[1121].
Hellman [548] extended the Shannon theory approach to cryptography, and this work was
further generalized by Beauchemin and Brassard [80]. For an introduction to information
theory see thebooksby Welsh [1235] and Goldie and Pinch [464]. For more completetreat-
ments, consult Blahut [144] and McEliece[829].

TCL Exhibit 1009
Page 103

86

Ch. 2 Mathematical Background

§2.3

§2.4

§2.5

§2.6

| i | z'modz?+z+1 ‘ vector notation |

1 (0001)
0010)
)

(

(

(

z+1 (

2?2+ (

%+ 2? (

2 4z+1 (
2’ +1 (0101)

(

(

(

(

(

(

© 00 O U W N = O

m3+3:
22 +r+1
3 2
-+t +x
2tz +1
242?41
:c3+1

[
W N = O

—
~

Table 2.9: The powers of z modulo f(z) = z* + z + 1.

Among the many introductory-level books on agorithms are those of Cormen, Leiserson,
and Rivest [282], Rawlins [1030], and Sedgewick [1105]. A recent book on complexity
theory is Papadimitriou [963]. Example 2.58 is from Graham, Knuth, and Patashnik [520,
p.441]. For an extensive list of NP-complete problems, see Garey and Johnson [441].

Two introductory-level books in number theory are Giblin [449] and Rosen [1069]. Good
number theory books at a more advanced level include Koblitz [697], Hardy and Wright
[540Q], Ireland and Rosen [572], and Niven and Zuckerman[932]. The most comprehensive
workson the design and analysis of algorithms, including number theoretic algorithms, are
the first two volumes of Knuth [691, 692]. Two more recent books exclusively devoted to
this subject are Bach and Shallit [70] and Cohen [263]. Facts 2.96 and 2.102 are due to
Rosser and Schoenfeld [1070]. Shallit [1108] describes and analyzes three algorithms for
computing the Jacobi symbol.

Among standard referencesin abstract algebraare the books by Herstein [556] and Hunger-
ford [565].

An excellent introduction to finite fields is provided in McEliece [830]. An encyclopedic
treatment of the theory and applications of finite fields is given by Lidl and Niederreitter
[764]. Two books which discuss various methods of representing the elements of afinite
field are those of Jungnickel [646] and Menezes et al. [841].

TCL Exhibit 1009
Page 104

Chapter

Number-Theoretic Reference

Problems
Contentsin Brief
3.1 Introductionandoverview 87
3.2 Theinteger factorizationproblem 89
33 TheRSAproblem. 98
34 Thequadraticresiduosity problem 99
35 ComputingsquarerootsSinZ,« .o 99
3.6 Thediscretelogarithmproblem 103
3.7 TheDiffieHdlmanproblem 113
38 Compositemoduli Lo 114
39 Computingindividual bits oL 114
310 Thesubsetsumproblem 117
3.11 Factoring polynomialsover finitefields. 122
3.12 Notesand further references 125

3.1 Introduction and overview

The security of many public-key cryptosystems relies on the apparent intractability of the
computational problems studied in this chapter. In a cryptographic setting, it is prudent to
makethe assumptionthat theadversary isvery powerful. Thus, informally speaking, acom-
putational problem is said to be easy or tractableif it can be solved in (expected)! polyno-
mial time, at |east for anon-negligiblefraction of all possibleinputs. In other words, if there
is an algorithm which can solve a non-negligible fraction of all instances of a problem in
polynomial time, then any cryptosystem whose security is based on that problem must be
considered insecure.

The computational problems studied in this chapter are summarized in Table 3.1. The
true computational complexities of these problems are not known. That is to say, they are
widely believed to be intractable,? although no proof of thisis known. Generally, the only
lower bounds known on the resources required to solve these problems are thetrivial linear
bounds, which do not provide any evidence of their intractability. It is, therefore, of inter-
est to study their relative difficulties. For this reason, various techniques of reducing one

LFor simplicity, the remainder of the chapter shall generally not distinguish between deterministic polynomial-
time algorithms and randomized a gorithms (see §2.3.4) whose expected running time is polynomial.
2More precisely, these problems are intractable if the problem parameters are carefully chosen.

87

TCL Exhibit 1009
Page 105

88 Ch. 3 Number-Theoretic Reference Problems
| Problem || Description |
FACTORING Integer factorization problem: given a positive integer n, find
its prime factorization; that is, writen = p7*p5* ... pi* where

the p; are pairwise distinct primesand each e; > 1.

RSAP RSA problem (also known as RSA inversion): given a positive
integer n that is a product of two distinct odd primes p and ¢, a
positive integer e such that ged(e, (p — 1)(¢ — 1)) = 1,and an
integer ¢, find an integer m such that m© = ¢ (mod n).

QRP Quadratic residuosity problem: given an odd composite inte-
ger n and an integer a having Jacobi symbol (£) = 1, decide
whether or not a is aquadratic residue modulo n.

SQROOT Squarerootsmodulon: givenacompositeinteger nanda € Q.
(the set of quadratic residues modulo), find a square root of a
modulo n; that is, an integer = suchthat 22 = a (mod n).

DLP Discrete logarithm problem: given a prime p, a generator o of
Z;, and an element 8 € Z;, findtheinteger z, 0 < z < p — 2,
suchthat o* = 8 (mod p).

GDLP Generalized discrete logarithm problem: given a finite cyclic
group G of order n, agenerator « of G, and an element 5 € G,
find theinteger z, 0 < z < n — 1, suchthat o* = .

DHP Diffie-Hellman problem: given a prime p, a generator o of Z,,
and elements a® mod p and o mod p, find a® mod p.

GDHP Generalized Diffie-Hellman problem: givenafinitecyclic group
G, agenerator o of G, and group elements o® and o?, find a.%®.

SUBSET-SUM || Subset sum problem: given a set of positive integers
{a1,aq,... ,a,} and apositiveinteger s, determine whether or
not there is a subset of the a; that sumsto s.

Table 3.1: Some computational problems of cryptographic relevance.
computational problem to another have been devised and studied intheliterature. Thesere-
ductions provideameans for converting any agorithm that solves the second problem into
an agorithm for solving the first problem. The following intuitive notion of reducibility
(cf. §2.3.3) is used in this chapter.

3.1 Definition Let A and B be two computational problems. A is said to polytime reduce to
B, written A <p B, if there is an algorithm that solves A which uses, as a subroutine, a
hypothetical agorithm for solving B, and which runsin polynomial time if the algorithm
for B does.®

Informally speaking, if A polytime reducesto B, then B is at least as difficult as A;
equivalently, A is no harder than B. Consequently, if A is awell-studied computational
problemthat iswidely believed to beintractable, then provingthat A < p B providesstrong
evidence of the intractability of problem B.

3.2 Definition Let A and B be two computational problems. If A <p B and B <p A, then

A and B are said to be computationally equivalent, written A =p B.

31n the literature, the hypothetical polynomial-time subroutine for B is sometimes called an oracle for B.

TCL Exhibit 1009
Page 106

§3.2 The integer factorization problem 89

Informally speaking, if A =p B then A and B are either both tractable or both in-
tractable, as the case may be.

Chapter outline

The remainder of the chapter is organized as follows. Algorithmsfor the integer factoriza-
tion problem are studied in §3.2. Two problemsrelated to factoring, the RSA problem and
the quadratic residuosity problem, are briefly considered in §3.3 and §3.4. Efficient algo-
rithms for computing square rootsin Z,,, p a prime, are presented in §3.5, and the equiva-
lence of the problems of finding square roots modulo a composite integer n and factoring
n is established. Algorithms for the discrete logarithm problem are studied in §3.6, and
the related Diffie-Hellman problem is briefly considered in §3.7. The relation between the
problems of factoring a composite integer n and computing discrete logarithmsin (cyclic
subgroups of) the group Z, is investigated in §3.8. The tasks of finding partia solutions
to the discrete logarithm problem, the RSA problem, and the problem of computing square
roots modulo a composite integer n are the topics of §3.9. The L3-lattice basis reduction
algorithmis presented in §3.10, along with algorithms for the subset sum problem and for
simultaneous diophantine approximation. Berlekamp’s @-matrix algorithm for factoring
polynomialsis presented in §3.11. Finaly, §3.12 provides references and further chapter
notes.

3.2 The integer factorization problem

3.3

3.4

3.5

3.6

The security of many cryptographic techniques depends upon the intractability of the in-
teger factorization problem. A partial list of such protocols includes the RSA public-key
encryption scheme (§8.2), the RSA signature scheme (§11.3.1), and the Rabin public-key
encryption scheme (§8.3). This section summarizes the current knowledge on algorithms
for the integer factorization problem.

Definition The integer factorization problem (FACTORING) is the following: given a
positive integer n, find its prime factorization; that is, writen = p§*p5? - - - p7* wherethe
p; arepairwise distinct primesand each e; > 1.

Remark (primality testing vs. factoring) The problem of deciding whether an integer is
compositeor prime seemsto be, in general, much easier than the factoring problem. Hence,
before attempting to factor an integer, the integer should be tested to make sure that it is
indeed composite. Primality tests are a main topic of Chapter 4.

Remark (splitting vs. factoring) A non-trivial factorization of n is a factorization of the
formn = abwherel < a < nand1 < b < n; a and b are said to be non-trivial factors
of n. Here a and b are not necessarily prime. To solve the integer factorization problem, it
sufficesto study algorithmsthat split n, that is, find anon-trivial factorizationn = ab. Once
found, thefactorsa and b can betested for primality. Theal gorithmfor splitting integerscan
then be recursively applied to a and/or b, if either isfound to be composite. In this manner,
the prime factorization of n can be obtained.

Note (testing for perfect powers) If n > 2, it can be efficiently checked asfollowswhether
or not n is a perfect power, i.e., n = z* for someintegersz > 2, k > 2. For each prime

TCL Exhibit 1009
Page 107

90

Ch. 3 Number-Theoretic Reference Problems

p < lgn, aninteger approximation of n/? iscomputed. Thiscan be done by performing
abinary search for z satisfyingn. = #? intheinterval [2, 2l18"/PJ+1], Theentire procedure
takes O((1g> n) 1glg lgn) bit operations. For the remainder of this section, it will always
be assumed that n is not aperfect power. It followsthat if n iscomposite, thenn hasat least
two distinct prime factors.

Some factoring algorithms are tailored to perform better when the integer n being fac-
tored is of a specia form; these are called special-purpose factoring algorithms. The run-
ning times of such algorithmstypically depend on certain propertiesof the factorsof n. Ex-
amples of specia-purposefactoring algorithmsincludetrial division (§3.2.1), Pollard’srho
algorithm (§3.2.2), Pollard’sp — 1 agorithm (§3.2.3), the éliptic curve algorithm (§3.2.4),
and the special number field sieve (§3.2.7). In contrast, the running times of the so-called
general-purposefactoring algorithms depend solely on the size of n. Examplesof general-
purpose factoring algorithms include the quadratic sieve (§3.2.6) and the general number
field sieve (§3.2.7).

Whenever applicable, special-purposeal gorithms should be employed asthey will gen-
erally be more efficient. A reasonable overall strategy is to attempt to find small factors
first, capitalize on any particular special forms an integer may have, and then, if al else
fails, bring out the general-purpose algorithms. As an example of a general strategy, one
might consider the following.

1. Apply tria division by small primes less than some bound b;.

2. Next, apply Pollard’s rho agorithm, hoping to find any small prime factors smaller
than some bound by, where by > b;.

3. Apply theélliptic curvefactoring algorithm, hoping to find any small factors smaller
than some bound b3, where bs > bs.

4. Finally, apply one of the more powerful general-purpose algorithms (quadratic sieve
or general number field sieve).

3.2.1 Trial division

Onceitisestablished that an integer n iscomposite, before expending vast amounts of time
with more powerful techniques, the first thing that should be attempted istria division by
al “small” primes. Here, “small” isdetermined asafunction of the size of n. Asanextreme
case, trial division can be attempted by all primesup to 1/n. If thisis done, tria division
will completely factor n but the procedurewill take roughly /n divisionsin the worst case
when n isaproduct of two primes of the same size. In general, if the factors found at each
stage are tested for primality, then tria division to factor n completely takes O(p + lgn)
divisions, where p is the second-largest prime factor of n.

Fact 3.7 indicatesthat if trial divisionisused to factor arandomly chosen large integer
n, then the algorithm can be expected to find some small factors of n relatively quickly, and
expend alarge amount of time to find the second largest prime factor of n.

3.7 Fact Let n be chosen uniformly at random from the interval [1, z].

@i If % < a < 1, then the probability that the largest prime factor of n is < z is
approximately 1 + In a.. Thus, for example, the probability that n has a prime factor
> \/zisln2 ~ 0.69.
(i) The probability that the second-largest prime factor of n is < %217 isabout 1.
(iif) Theexpected total number of primefactorsof nislnlnz+ O(1). (If n = [p§*, the
total number of primefactorsof nis}_ e;.)

TCL Exhibit 1009
Page 108

§3.2 The integer factorization problem 91

3.2.2 Pollard’s rho factoring algorithm

Pollard’srho algorithm is a special-purpose factoring al gorithm for finding small factors of
acomposite integer.

Let f : S — S bearandom function, where S is afinite set of cardinality n. Let
xo bearandom element of S, and consider the sequence zg, 1, x2, . . . definedby x;,1 =
f(z;) fori > 0. Since S is finite, the sequence must eventually cycle, and consists of a
tail of expected length /7n /8 followed by an endlessly repeating cycle of expected length
v/mn /8 (seeFact 2.37). A problemthat arisesin somecryptanalytic tasks, includinginteger
factorization (Algorithm 3.9) and the discrete logarithm problem (Algorithm 3.60), is of
finding distinct indices i and j such that «; = «; (acollisionisthen said to have occurred).

An obviousmethod for finding acollisionisto computeand storex; for: = 0, 1,2, . ..
and | ook for duplicates. The expected number of inputsthat must betried beforeaduplicate
isdetectedis /mn/2 (Fact 2.27). Thismethod requires O(+/n) memory and O(+/n) time,
assuming the z; are stored in a hash table so that new entries can be added in constant time.

3.8 Note (Floyd'scycle-finding algorithm) The large storage requirementsin the above tech-
nigque for finding a collision can be eliminated by using Floyd's cycle-finding algorithm.
In this method, one starts with the pair (z1, z2), and iteratively computes (z;, z2;) from
the previous pair (z;—1,x2i—2), until z,, = za,, for some m. If the tail of the sequence
has length A\ and the cycle has length p, then the first time that x,,, = x2,, iSwhenm =
w(1+ [N/ u]). Notethat A < m < A + p, and consequently the expected running time of
thismethod is O(y/n).

Now, let p be a prime factor of acomposite integer n. Pollard’s rho algorithm for fac-
toring n attempts to find duplicates in the sequence of integers zg, z1, 2, . .. defined by
To = 2, 2i11 = f(z;) = 22 + 1 mod p fori > 0. Floyd's cycle-finding algorithm is uti-
lized tofind z,,, and za,,, suchthat x,,, = z2,m (mod p). Sincep dividesn butisunknown,
thisis done by computing the terms z; modulo n and testing if ged(z.,, — x2m,n) > 1.
If also ged(zy, — xom,n) < n, then anon-trivial factor of n is obtained. (The situation
ged(zm — x2m,n) = n occurs with negligible probability.)

3.9 Algorithm Pollard’s rho algorithm for factoring integers

INPUT: a compositeinteger n that is not a prime power.
OUTPUT: anon-trivia factor d of n.
1. Set a2, b<-2.
2. Fori=1,2,... dothefollowing:
2.1 Compute a<—a? + 1 mod n, b<b? + 1 mod n, b<b?+ 1 mod n.
2.2 Computed = ged(a — b, n).
2.3 If 1 < d < n then return(d) and terminate with success.
2.4 1f d = n then terminate the algorithm with failure (see Note 3.12).

3.10 Example (Pollard’s rho algorithm for finding a non-trivial factor of n = 455459) The
following tablelists the values of variablesa, b, and d at the end of each iteration of step 2
of Algorithm 3.9.

TCL Exhibit 1009
Page 109

92 Ch. 3 Number-Theoretic Reference Problems
[o | b [d]
5 26 1
26 2871 1
677 179685 1
2871 155260 1
44380 | 416250 | 1
179685 | 43670 1
121634 | 164403 | 1
155260 | 247944 | 1
44567 68343 | 743
Hence two non-trivial factors of 455459 are 743 and 455459 /743 = 613. 0
3.11 Fact Assuming that the function f(z) = 2% + 1 mod p behaves like a random function,
the expected time for Pollard’srho algorithm to find afactor p of n is O(/p) modular mul-
tiplications. Thisimplies that the expected time to find anon-trivial factor of n is O(n'/4)
modular multiplications.
3.12 Note (options upon termination with failure) If Pollard's rho algorithm terminates with

failure, one option isto try again with a different polynomial f having integer coefficients
instead of f(z) = z? + 1. For example, the polynomia f(z) = x% + ¢ may be used as
longasc # 0, —2.

3.2.3 Pollard’s p — 1 factoring algorithm

3.13

Pollard’s p — 1 factoring algorithm is a special -purpose factoring algorithm that can be used
to efficiently find any prime factors p of a composite integer n for which p — 1 is smooth
(see Definition 3.13) with respect to some relatively small bound B.

Definition Let B be a positive integer. An integer n is said to be B-smooth, or smooth
with respect to a bound B, if all its primefactorsare < B.

The idea behind Pollard’'s p — 1 algorithm is the following. Let B be a smoothness
bound. Let Q be the least common multiple of all powers of primes < B that are < n. If
¢ <mn,thenllng <Ilnn,andsol < _ln—ZJ Thus

In

Q _ H q|_1nn/lnqj7

q<B
wherethe productisover al distinct primesq < B. If pisaprimefactor of n suchthatp—1
is B-smooth, then p — 1]Q, and consequently for any « satisfying ged(a, p) = 1, Fermat’s
theorem (Fact 2.127) impliesthat a® = 1 (mod p). Henceif d = ged(a®? — 1,n), then
pld. Itispossiblethat d = n, in which case the algorithm fails; however, thisis unlikely to
occur if n hasat least two large distinct prime factors.

TCL Exhibit 1009
Page 110

§3.2 The integer factorization problem 93

3.14 Algorithm Pollard’s p — 1 algorithm for factoring integers

INPUT: acomposite integer n that is not a prime power.
OUTPUT: anon-trivial factor d of n.
1. Select a smoothness bound B.
2. Select arandominteger a, 2 < a < n — 1, and computed = ged(a,n). If d > 2
then return(d).
3. For each prime ¢ < B do thefollowing:

3.1 Computel = [122].

3.2 Compute a+a? mod n (using Algorithm 2.143).
4. Computed = ged(a — 1,n).
5. If d =1 or d = n, then terminate the algorithm with failure. Otherwise, return(d).

3.15 Example (Pollard’'sp — 1 algorithmfor finding a non-trivial factor of n = 19048567)

1. Select the smoothness bound B = 19.

2. Select theinteger a = 3 and compute ged(3,n) = 1.
3. Thefollowingtableliststheintermediate values of thevariablesq, I, and a after each

iteration of step 3in Algorithm 3.14:
a1] a |

2 | 24 | 2293244
3 | 15 | 13555889
5 10 | 16937223
7 8 15214586
11 6 9685355
13 6 13271154
17 5 11406961
19 5 554506

4. Computed = gecd (554506 — 1,n) = 5281.
5. Two non-trivial factorsof n arep = 5281 and ¢ = n/p = 3607 (thesefactorsarein

fact prime).
Noticethat p — 1 =5280=25%x3x5x 11,andg — 1 = 3606 = 2 x 3 x 601. That
is, p — 1 is19-smooth, while ¢ — 1 is not 19-smooth. O

3.16 Fact Let n beaninteger having a prime factor p such that p — 1 is B-smooth. The run-
ning time of Pollard’sp — 1 agorithm for finding the factor p is O(B Inn/ In B) modular
multiplications.

3.17 Note (improvements) The smoothnessbound B in Algorithm 3.14 is selected based on the
amount of time one is willing to spend on Pollard’s p — 1 agorithm before moving on to
more general techniques. In practice, B may be between 10° and 106. If the algorithm
terminates with d = 1, then one might try searching over prime numbers ¢, qa, ... ,q
larger than B by first computing a<—a? mod n for 1 < ¢ < [, and then computing d =
ged(a — 1,n). Another variant is to start with a large bound B, and repeatedly execute
step 3 for afew primes ¢ followed by the gcd computation in step 4. There are numerous
other practical improvements of the algorithm (see page 125).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

TCL Exhibit 1009
Page 111

94

Ch. 3 Number-Theoretic Reference Problems

3.2.4 Elliptic curve factoring

Thedetails of the elliptic curve factoring algorithmare beyond the scope of this book; nev-
ertheless, arough outlinefollows. The success of Pollard’sp — 1 algorithm hingesonp — 1
being smooth for some prime divisor p of n; if no such p exists, then the agorithm fails.
Observethat p — 1 isthe order of the group Z,,. The elliptic curve factoring algorithmis a
generalization of Pollard’s p — 1 agorithm in the sense that the group Z, is replaced by a
random elliptic curve group over Z,,. The order of such agroup is roughly uniformly dis-
tributed intheinterval [p+1—2,/p, p+1+2,/p]. If the order of the group chosenis smooth
with respect to some pre-selected bound, the elliptic curve algorithm will, with high prob-
ability, find a non-trivial factor of n. If the group order is not smooth, then the algorithm
will likely fail, but can be repeated with a different choice of elliptic curve group.

The dliptic curve algorithm has an expected running time of Lp[%, /2] (see Exam-
ple 2.61 for definition of L,) to find a factor p of n. Since this running time depends on
the size of the prime factors of n, the algorithm tends to find small such factorsfirst. The
eliptic curve algorithm is, therefore, classified as a special-purpose factoring algorithm. It
is currently the algorithm of choice for finding ¢-decimal digit primefactors, for ¢t < 40, of
very large composite integers.

In the hardest case, when n is a product of two primes of roughly the same size, the
expected running time of the elliptic curve algorithmis Ln[%, 1], whichis the same as that
of the quadratic sieve (§3.2.6). However, the elliptic curve algorithm is not as efficient as
the quadratic sieve in practice for such integers.

3.2.5 Random square factoring methods

3.18

3.19

3.20

The basic idea behind the random square family of methods is the following. Suppose x
and y are integers such that 2 = y? (mod n) butz # +y (mod n). Then n divides
22 —y? = (z—y)(z+y) butn doesnot divideeither (z—y) or (z+y). Hence, ged(z—y, n)
must be a non-trivial factor of n. Thisresult is summarized next.

Fact Letz,y, andn beintegers. If 22 = y? (mod n) butz # £y (mod n), thenged(z—
y,n) isanon-trivial factor of n.

The random square methods attempt to find integers = and y at random so that 22 = 2
(mod n). Then, asshownin Fact 3.19, with probability at least § itisthecasethat z # +y
(mod n), whence ged(z — y, n) will yield anon-trivial factor of n.

Fact Let n bean odd composite integer that is divisible by & distinct odd primes. If a €
7, then the congruence 2 = a2 (mod n) has exactly 2* solutions modulo n, two of
whicharex = aandz = —a.

Example Letn = 35. Thentherearefour solutionsto the congruencez? = 4 (mod 35),
namely x = 2, 12, 23, and 33. O

A common strategy employed by the random sgquare algorithmsfor finding « and y at
random satisfying z2 = > (mod n) isthefollowing. A set consisting of thefirst ¢ primes
S ={p1,p2, ... ,p¢} ischosen; Siscalledthefactor base. Proceedtofind pairsof integers
(ai, b;) satisfying

(i) a2 =b; (mod n); and

TCL Exhibit 1009
Page 112

§3.2 The integer factorization problem 95

(ii) b; = H;:lpj“, eij > 0; that is, b; is p,-smooth.
Next find a subset of the b;’s whose product is a perfect square. Knowing the factoriza-
tions of the b;’s, this is possible by selecting a subset of the b;’s such that the power of
each prime p; appearing in their product is even. For this purpose, only the parity of the
non-negative integer exponents e;; needs to be considered. Thus, to simplify matters, for

each 4, associate the binary vector v; = (v;1,v42, . . . , v) With theinteger exponent vector
(eil, €32, ... ,eit) such that Vij = €45 mod 2. If ¢t +1 pairs (ai, b,,) are obtained, then the
t-dimensional vectors vy, va, . .., v:+1 Must belinearly dependent over Z,. That is, there

must exist anon-empty subset 7' C {1,2,... ,t + 1} suchthat), v; = 0 over Z,, and
hence]], b; isaperfect square. Theset T' can befound using ordinary linear algebraover
Zy. Clearly, [, af is aso aperfect square. Thus setting z = [, a; and y to be the
integer squareroot of [], b; yieldsapair of integers (z, y) satisfying z* = y* (mod n).
If this pair also satisfies z £ +y (mod n), then ged(x — y,n) yields a non-trivial factor
of n. Otherwise, some of the (a;, b;) pairs may be replaced by some new such pairs, and
the processis repeated. In practice, there will be several dependencies among the vectors
V1,2, ... , V1, and with high probability at least one will yield an (x, y) pair satisfying
x £ t+y (mod n); hence, this last step of generating new (a;, b;) pairs does not usually
occur.

This description of the random square methodsis incomplete for two reasons. Firstly,
the optimal choice of ¢, the size of the factor base, is not specified; this is addressed in
Note 3.24. Secondly, a method for efficiently generating the pairs (a;, b;) is not specified.
Several techniques have been proposed. In the simplest of these, called Dixon’s algorithm,
a; ischosen at random, and b; = a? mod n is computed. Next, trial division by elements
in the factor base is used to test whether b; is p,-smooth. If not, then another integer a; is
chosen at random, and the procedureis repeated.

The more efficient techniques strategically select an a; such that b; is relatively small.
Since the proportion of p;-smooth integers in the interval [2, z] becomes larger as = de-
creases, the probability of such b; being p:-smooth is higher. The most efficient of such
techniquesis the quadratic sieve algorithm, which is described next.

3.2.6 Quadratic sieve factoring

Supposeaninteger n isto befactored. Let m = | /n], and consider thepolynomial ¢(z) =
(z 4+ m)? — n. Notethat

q(z) = 2+ 2mx +m? —n =~ 2?4+ 2muz, (3.

which issmall (relativeto n) if = issmall in absolute value. The quadratic sieve algorithm
sdlects a; = (z + m) and tests whether b; = (z + m)? — n is p;-smooth. Note that
a? = (z +m)? = b; (mod n). Noteaso that if aprime p dividesb; then (z +m)? = n

(mod p), and hence n is a quadratic residue modulo p. Thus the factor base need only
contain those primes p for which the L egendre symbol (%) is1 (Definition 2.145). Further-
more, since b; may be negative, —1 isincluded in the factor base. The steps of the quadratic

sieve algorithm are summarized in Algorithm 3.21.

TCL Exhibit 1009
Page 113

96

Ch. 3 Number-Theoretic Reference Problems

3.21 Algorithm Quadratic sieve algorithm for factoring integers

INPUT: acomposite integer n that is not a prime power.
OUTPUT: anon-trivia factor d of n.

1

2.
3.

0o ~N OO

Select the factor base S = {p1,p2,... ,p+}, wherep; = —landp; (j > 2) isthe
(5 — 1)*® prime p for which n is a quadratic residue modulo p.
Computem = |/n].
(Collect t + 1 pairs (a;, b;). The z valuesare chosenintheorder 0, +1,+2,....)
Set i+1. Whilei < t + 1 do thefollowing:
3.1 Computed = g(x) = (x+m)? —n, and test using trial division (cf. Note 3.23)
by elementsin S whether b isp;-smooth. If not, pick anew x and repeat step 3.1.
3.2 If bisp,-smooth, say b = H§:1 p;”, then set a;«—(z + m), bi<b, and v; =
(1)1'1,1)1'2, e ,vit), Wherevij = €4j mod 2 for1l < 7 <t.
33 i«—i+1.

. Use linear algebraover Z, to find anon-empty subset 7' C {1,2,...,¢t 4+ 1} such

that ZieT vV, = 0.

. Compute z = [[,. a; mod n.

. Foreach j, 1 < j <t,computel; = (3 ;creis)/2.

. Computey = H;zl péj mod n.

. If 2 = £y (mod n), thenfind another non-empty subset 7 C {1, 2,... ,t+1} such

that >, v = 0, and go to step 5. (In the unlikely case such a subset T' does not
exist, replace afew of the (a;, b;) pairs with new pairs (step 3), and go to step 4.)

. Computed = ged(z — y,n) and return(d).

3.22 Example (quadratic sieve algorithmfor finding a non-trivial factor of n = 24961)

1

N

© oo ~NO O b~

Select the factor base S = {-1,2,3,5,13,23} of sizet = 6. (7,11, 17 and 19 are

omitted from S since (2) = —1 for these primes.)

. Computem = | /24961 = 157.
. Following is the data collected for the first ¢ 4+ 1 values of z for which ¢(z) is 23-

smooth.
‘ i | x ‘ q(x) | factorization of ¢(z) | a; | oy |
1 —312 —2%.3.13 157 | (1,1,1,0,1,0)
2 3 3 158 | (0,0,1,0,0,0)
3| -1| —625 —54 156 | (1,0,0,0,0,0)
41 2| 320 20.5 159 | (0,0,0,1,0,0)
5] -2 | —936 —23.32.13 155 | (1,1,0,0,1,0)
6| 4| 960 26.3.5 161 | (0,0,1,1,0,0)
7| -6 | —2160 —2*.3%.5 151 | (1,0,1,1,0,0)

. By inspection, v + vz +v5 = 0. (Inthenotation of Algorithm3.21, 7" = {1,2,5}.)
. Compute z = (a1a2a; mod n) = 936.

. Computell =1,1,=3, l3 =2,14=0, l5 =1, l6 =0.

. Computey = —23 - 32 . 13 mod n = 24025.

. Since 936 = —24025 (mod n), another linear dependency must be found.

. By inspection, vz + vg + v7 = 0; thusT = {3,6, 7}.

10.
. Computel1 =1,lo=5,l3=2,14=3,15 =0,l5 = 0.

Compute z = (azagar mod n) = 23405.

TCL Exhibit 1009
Page 114

§3.2 The integer factorization problem 97

3.23

3.24

3.25

3.26

3.27

12. Computey = (—2% - 32 - 5% mod n) = 13922.
13. Now, 23405 # +13922 (mod n), so computeged(z—y,n) = ged (9483, 24961)
109. Hence, two non-trivial factors of 24961 are 109 and 229.

o

Note (sieving) Instead of testing smoothnessby trial divisionin step 3.1 of Algorithm 3.21,
amore efficient technique known as sieving is employed in practice. Observefirst that if p
isan odd primein thefactor baseand p dividesg(z), then p also divides g(x +Ip) for every
integer I. Thus by solving the equation g(z) = 0 (mod p) for = (for example, using the
algorithmsin §3.5.1), one knows either one or two (depending on the number of solutions
to the quadratic equation) entire sequences of other values y for which p dividesg(y).
The sieving process is the following. Anarray Q[] indexed by z, —M < z < M, is
created and the z*" entry isinitiaizedto |1g |¢(z)|]. Let #1, 22 bethesolutionsto g(z) = 0
(mod p), where p isan odd prime in the factor base. Then the value |lgp| is subtracted
from those entries Q[z] inthe array for whichz = z; or 2 (mod p) and —M < z < M.
Thisis repeated for each odd prime p in the factor base. (The case of p = 2 and prime
powers can be handled in a similar manner.) After the sieving, the array entries Q[x] with
valuesnear 0 are most likely to be p;-smooth (roundoff errors must be taken into account),
and this can be verified by factoring ¢(z) by trial division.

Note (running time of the quadratic sieve) To optimize the running time of the quadratic
sieve, the size of the factor base should be judiciously chosen. The optimal selection of
t ~ Ly[%, 3] (see Example 2.61) is derived from knowledge concerning the distribution
of smoath integers close to /n. With this choice, Algorithm 3.21 with sieving (Note 3.23)
has an expected running time of L,,[3, 1], independent of the size of the factors of n.

Note (multiple polynomial variant) In order to collect a sufficient number of (a;, b;) pairs,
the sieving interval must be quite large. From equation (3.1) it can be seen that |¢(x)] in-
creases linearly with |z|, and consequently the probability of smoothness decreases. To
overcome this problem, a variant (the multiple polynomial quadratic sieve) was proposed
whereby many appropriatel y-chosenquadratic polynomialscan beused instead of just ¢(x),
each polynomial being sieved over aninterval of much smaller length. Thisvariant also has
an expected running time of L,, [%, 1], and is the method of choicein practice.

Note (parallelizing the quadratic sieve) The multiple polynomial variant of the quadratic
sieveiswell suited for parallelization. Each node of a parallel computer, or each computer
inanetwork of computers, simply sievesthrough different collections of polynomials. Any
(ai, b;) pair found is reported to a central processor. Once sufficient pairs have been col-
lected, the corresponding system of linear equationsis solved on asingle (possibly parallel)
computer.

Note (quadratic sieve vs. elliptic curve factoring) The élliptic curve factoring algorithm
(§3.2.4) has the same* expected (asymptotic) running time as the quadratic sieve factoring
algorithm in the special case when n is the product of two primes of equal size. However,
for such numbers, the quadratic sieve is superior in practice because the main stepsin the
algorithm are single precision operations, compared to the much more computationally in-
tensive multi-precision elliptic curve operations required in the elliptic curve algorithm.

4This does not take into account the different o(1) termsin the two expressions L, [%, 1].

TCL Exhibit 1009
Page 115

98

Ch. 3 Number-Theoretic Reference Problems

3.2.7 Number field sieve factoring

For severa years it was believed by some people that a running time of Ln[%, 1] was, in
fact, the best achievable by any integer factorization algorithm. This barrier was brokenin
1990 with thediscovery of the number field sieve. Likethe quadratic sieve, the number field
sieveis an agorithm in the random square family of methods (§3.2.5). That is, it attempts
tofindintegersz andy suchthat 22 = y2 (mod n) andx # £y (mod n). Toachievethis
goal, two factor bases are used, one consisting of all prime numbersless than some bound,
and the other consisting of al prime ideals of norm less than some bound in the ring of
integers of a suitably-chosen algebraic number field. The details of the algorithm are quite
complicated, and are beyond the scope of this book.

A specia version of the algorithm (the special number field sieve) applies to integers
of theformn = r¢ — s for small r and |s|, and has an expected running time of L,,[$, ¢,
where c = (32/9)%/3 ~ 1.526.

The general version of the algorithm, sometimes called the general number field sieve,
appliesto all integersand has an expected running time of Ln[é, c], wherec = (64/9)'/3 ~
1.923. Thisis, asymptotically, the fastest algorithm known for integer factorization. The
primary reason why the running time of the number field sieve is smaller than that of the
guadratic sieve is that the candidate smooth numbers in the former are much smaller than
thosein the latter.

The general number field sieve was at first believed to be slower than the quadratic
sieve for factoring integers having fewer than 150 decimal digits. However, experiments
in 1994-1996 have indicated that the general number field sieve is substantially faster than
the quadratic sieve even for numbersin the 115 digit range. Thisimpliesthat the crossover
point between the effectiveness of the quadratic sieve vs. the general number field sieve
may be 110-120 digits. For this reason, the general number field sieve is considered the
current champion of all general-purpose factoring algorithms.

3.3 The RSA problem

3.28

3.29

Theintractability of the RSA problem formsthe basisfor the security of the RSA public-key
encryption scheme (§8.2) and the RSA signature scheme (§11.3.1).

Definition The RSA problem (RSAP) isthe following: given apositiveinteger n thatisa
product of two distinct odd primes p and ¢, apositiveinteger e such that gcd(e, (p—1)(¢—
1)) = 1, and an integer c, find an integer m such that m®¢ = ¢ (mod n).

In other words, the RSA problemisthat of finding e*" roots modul o acompositeinteger

n. The conditionsimposed on the problem parametersn and e ensure that for each integer

c € {0,1,...,n — 1} thereisexactly onem € {0,1,...,n — 1} suchthat m® = ¢

(mod n). Equivaently, the function f : Z,, — Z,, defined as f(m) = m® mod nisa
permutation.

Remark (SQROOQOT vs. RSA problems) Since p — 1 is even, it follows that ¢ is odd. In
particular, e # 2, and hence the SQROOT problem (Definition 3.43) is not a special case
of the RSA problem.

TCL Exhibit 1009
Page 116

§3.4 The quadratic residuosity problem 99

3.30

Asisshownin §8.2.2(i), if the factors of n are known then the RSA problem can be
easily solved. Thisfact is stated next.

Fact RSAP <p FACTORING. That is, the RSA problem polytime reducesto the integer
factorization problem.

Itiswidely believed that the RSA and the integer factorization problems are computa-
tionally equivalent, although no proof of thisis known.

3.4 The quadratic residuosity problem

3.31

3.32

3.33

The security of the Goldwasser-Micali probabilistic public-key encryption scheme (§8.7)
and the Blum-Blum-Shub pseudorandom bit generator (§5.5.2) are both based on the ap-
parent intractability of the quadratic residuosity problem.

Recall from §2.4.5 that if n > 3 isan odd integer, then J,, istheset of al a € Z;,
having Jacobi symbol 1. Recall aso that Q., isthe set of quadratic residues modulo n and
that the set of pseudosquares modulo n is defined by Q,, = J,, — Q.

Definition The quadraticresiduosity problem (QRP) isthefollowing: givenan odd com-
posite integer n and a € J,,, decide whether or not a is aquadratic residue modulo n.

Remark (QRP with a prime modulus) If n is a prime, then it is easy to decide whether
a € Z;, isaquadratic residue modulo n since, by definition, a € Q,, if andonly if (2) =1,
and the L egendre symbol (£) can be efficiently calculated by Algorithm 2.149.

Assume now that n is a product of two distinct odd primes p and ¢. It follows from
Fact 2.137that if a € J,,, thena € Q,, if and only if (%) = 1. Thus, if the factorization of
n is known, then QRP can be solved simply by computing the L egendre symbol (2). This
observation can be generalized to all integersn and leads to the following fact.

Fact QRP <p FACTORING. That is, the QRP polytime reduces to the FACTORING
problem.

On the other hand, if the factorization of » is unknown, then there is no efficient pro-
cedure known for solving QRP, other than by guessing the answer. If n = pg, then the
probability of a correct guessis % since |Qn| = |Qx| (Fact 2.155). It is believed that the
QRPisasdifficult as the problem of factoring integers, although no proof of thisisknown.

3.5 Computing square roots in 7,

The operations of squaring modulo an integer n and extracting square roots modulo an in-
teger n are frequently used in cryptographic functions. The operation of computing square
roots modulo n can be performed efficiently when n is a prime, but is difficult whenn isa
composite integer whose prime factors are unknown.

TCL Exhibit 1009
Page 117

100

Ch. 3 Number-Theoretic Reference Problems

3.5.1 Case (i): n prime

3.34

3.35

3.36

Recall from Remark 3.32that if p isaprime, thenitis easy to decideif a € Z, isaquadratic
residue modulo p. If a is, in fact, a quadratic residue modulo p, then the two square roots
of a can be efficiently computed, as demonstrated by Algorithm 3.34.

Algorithm Finding square roots modulo a prime p

INPUT: an odd primep andanintegera, 1 < a <p— 1.

OUTPUT: the two sgquare roots of a modulo p, provided a is a quadratic residue modul o p.
1. ComputetheLegendresymbol (%) using Algorithm 2.149. If (%) = —1thenreturn(a

does not have a square root modulo p) and terminate.

2. Select integersb, 1 < b < p — 1, at random until oneis found with (;‘j) =—1.(bis

aquadratic non-residue modulo p.)

By repeated division by 2, writep — 1 = 25¢, where ¢ is odd.

Compute ! mod p by the extended Euclidean algorithm (Algorithm 2.142).

Set c+b* mod p and r<a*+1)/2 mod p (Algorithm 2.143).

For i from 1to s — 1 do the following:

6.1 Computed = (r2? -a™1) ' mod D
6.2 If d = —1 (mod p) then set r<r - ¢ mod p.
6.3 Set c<c? mod p.

7. Return(r, —r).

IS CINE

9s—i—

Algorithm 3.34isarandomized al gorithm because of themanner inwhich the quadratic
non-residueb is selected in step 2. No deterministic polynomial-time algorithm for finding
aquadratic non-residue modulo a prime p is known (see Remark 2.151).

Fact Algorithm 3.34 has an expected running time of O((1g p)*) bit operations.

Thisrunning time is obtained by observing that the dominant step (step 6) is executed
s—1times, eachiteration involving amodul ar exponentiationand thustaking O((Ig p) 3) bit
operations(Table 2.5). Sinceintheworst case s = O(lg p), therunningtime of O((1gp)*)
follows. When s is small, theloop in step 6 is executed only a small number of times, and
therunning time of Algorithm 3.34isO((1gp)?) bit operations. This point is demonstrated
next for the special casess = 1 and s = 2.

Specializing Algorithm 3.34tothecase s = 1 yieldsthefollowing simpledeterministic
agorithmfor finding square rootswhenp = 3 (mod 4).

Algorithm Finding square roots modulo a prime p where p = 3 (mod 4)

INPUT: an odd primep wherep = 3 (mod 4), and asquarea € Q.
OUTPUT: the two square roots of a modulo p.

1. Computer = a®+t1/4 mod p (Algorithm 2.143).

2. Return(r, —r).

Specializing Algorithm 3.34 to the case s = 2, and using the fact that 2 is a quadratic
non-residue modulo p whenp = 5 (mod 8), yields the following simple deterministic al-
gorithm for finding square rootswhenp =5 (mod 8).

TCL Exhibit 1009
Page 118

§3.5 Computing square roots in Z,, 101

3.37 Algorithm Finding square roots modulo a prime p where p = 5 (mod 8)

INPUT: an odd primep wherep = 5 (mod 8), and asgquarea € Q5.
OUTPUT: the two sguare roots of a modulo p.

1. Computed = a®~1/% mod p (Algorithm 2.143).

2. 1f d = 1 then compute r = a(?*3)/8 mod p.

3. If d = p — 1 then compute r = 2a(4a)?~>/% mod p.

4. Return(r, —r).

3.38 Fact Algorithms 3.36 and 3.37 have running times of O((lg p)?) bit operations.

Algorithm 3.39 for finding square rootsmodulo p is preferableto Algorithm 3.34 when
p — 1 =25t with s large.

3.39 Algorithm Finding square roots modulo a prime p

INPUT: an odd primep and asquare a € Qp.
OUTPUT: the two sguare roots of a modulo p.
1. Choose random b € Z, until 4> — 4a is a quadratic non-residue modulo p, i.e,
(b274a) -1
- .
2. Let f bethe polynomia z2 — bz + a inZ,[z].
3. Computer = z®*t1/2 mod f using Algorithm 2.227. (Note: r will be an integer.)
4. Return(r, —r).

3.40 Fact Algorithm 3.39 has an expected running time of O((Ig p)?3) bit operations.

3.41 Note (computingsquarerootsinafinitefield) Algorithms3.34, 3.36, 3.37, and 3.39 can be
extended in a straightforward manner to find squarerootsin any finitefield I, of odd order
q =p™, pprime, m > 1. Square rootsin finite fields of even order can aso be computed
efficiently via Fact 3.42.

2777—1

3.42 Fact Each element a € Fym has exactly one square root, namely a

3.5.2 Case (ii): n composite

Thediscussion in this subsection isrestricted to the case of computing square roots modulo
n, where n is a product of two distinct odd primes p and q. However, al facts presented
here generalize to the case where n is an arbitrary composite integer.

Unlike the case where n is a prime, the problem of deciding whether agivena € Z,
is a quadratic residue modulo a composite integer n, is believed to be a difficult problem.
Certainly, if the Jacobi symbol (%) = —1, then a is aquadratic non-residue. On the other
hand, if () = 1, then deciding whether or not a is a quadratic residue is precisely the
quadratic residuosity problem, considered in §3.4.

3.43 Definition Thesquareroot modulon problem (SQROQT) isthefollowing: givenacom-
posite integer n and a quadratic residue « modulon (i.e. a € @), find a square root of a
modulo n.

TCL Exhibit 1009
Page 119

102

Ch. 3 Number-Theoretic Reference Problems

3.44

3.45

3.46

3.47

If the factors p and ¢ of n are known, then the SQROOT problem can be solved effi-
ciently by first finding square roots of a modulo p and modulo ¢, and then combining them
using the Chinese remainder theorem (Fact 2.120) to obtain the square roots of « modulo
n. The steps are summarized in Algorithm 3.44, which, in fact, finds all of the four square
roots of modulo n.

Algorithm Finding square roots modulo . given its prime factors p and ¢

INPUT: an integer n, itsprimefactorsp and ¢, anda € Q,,.
OUTPUT: the four square roots of modulo n.
1. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square
rootsr and —r of a modulo p.
2. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two sgquare
roots s and —s of a modulo q.
3. Usetheextended Euclidean agorithm (Algorithm 2.107) to find integers c and d such
that cp + dg = 1.
. Set z+—(rdq + scp) mod n and y+(rdg — scp) mod n.
5. Return(+z mod n, +y mod n).

N

Fact Algorithm 3.44 has an expected running time of O((lg p)?) bit operations.

Algorithm 3.44 shows that if one can factor n, then the SQROOT problem is easy.
More precisely, SQROOT <p FACTORING. The converse of this statement is also true,
as stated in Fact 3.46.

Fact FACTORING <p SQROQT. That is, the FACTORING problem polytime reduces
to the SQROOT problem. Hence, since SQROOT <p FACTORING, the FACTORING
and SQROOT problems are computationally equivalent.

Justification. Suppose that one has a polynomial-time algorithm A for solving the SQ-
ROQOT problem. This algorithm can then be used to factor a given composite integer n as
follows. Select an integer « at random with ged(z,n) = 1, and compute a = 22 mod n.
Next, algorithm A isrunwith inputsa and n, and asquare root y of a modulo n isreturned.
If y = +2 (mod n), then the trial fails, and the above procedure is repeated with a new
x chosen at random. Otherwise, if y Z £z (mod n), then ged(x — y,n) is guaranteed to
be anon-trivial factor of n (Fact 3.18), namely, p or ¢q. Since a has four square roots mod-
ulon (+z and £z with +z # +z (mod n)), the probability of success for each attempt
is % Hence, the expected number of attempts before a factor of n is obtained is two, and
consequently the procedure runs in expected polynomial time. O

Note (strengthening of Fact 3.46) The proof of Fact 3.46 can be easily modified to estab-
lish the following stronger result. Let ¢ > 1 be any constant. If there is an algorithm A
which, given n, can find a square root modulo n in polynomial time for a ﬁ fraction
of al quadratic residues a € @,,, then the algorithm A can be used to factor n in expected
polynomial time. Theimplication of this statement is that if the problem of factoring n is

difficult, then for aimost all @ € @, itisdifficult to find square roots modulo n.

The computational equivalence of the SQROOT and FACTORING problems was the
basis of thefirst “ provably secure” public-key encryption and signature schemes, presented
in§8.3.

TCL Exhibit 1009
Page 120

§3.6 The discrete logarithm problem 103

3.6 The discrete logarithm problem

3.48

3.49

3.50

3.51

3.52

3.53

The security of many cryptographic techniques depends on the intractability of the discrete
logarithm problem. A partial list of these includes Diffie-Hellman key agreement and its
derivatives (§12.6), EIGamal encryption (§8.4), and the EIGamal signature scheme and its
variants (§11.5). This section summarizes the current knowledge regarding algorithms for
solving the discrete logarithm problem.

Unless otherwise specified, algorithmsin this section are described in the general set-
ting of a (multiplicatively written) finite cyclic group G of order n with generator « (see
Definition 2.167). For amore concrete approach, the reader may find it convenient to think
of G as the multiplicative group Z,, of order p — 1, where the group operation is simply
multiplication modulo p.

Definition Let G be afinite cyclic group of order n. Let « be a generator of G, and let
B € G. Thediscretelogarithmof 3 to the base «, denoted log,, 3, is the unique integer z,
0<z<n-1,suchthat g = o”.

Example Letp = 97. Then Zg; isacyclic group of order n = 96. A generator of Zg, is
a = 5. Since53% = 35 (mod 97), log; 35 = 32in Zg;. O

The following are some elementary facts about logarithms.

Fact Let o be agenerator of acyclic group G of order n, and let 3, v € G. Let s bean
integer. Thenlog,, (87v) = (log, B + log,, v) mod n and log,, (3°) = slog, B mod n.

Thegroupsof most interest in cryptography arethe multiplicativegroupF ; of thefinite
field F, (§2.6), including the particular cases of the multiplicative group Z, of the integers
modulo aprime p, and the multiplicative group IF5... of thefinitefield Fom of characteristic
two. Also of interest are the group of units Z, where n is a composite integer, the group
of points on an elliptic curve defined over afinite field, and the jacobian of a hyperelliptic
curve defined over afinitefield.

Definition The discrete logarithm problem (DLP) is the following: given a prime p, a
generator « of Z;, and an element 8 € Z;, find theinteger z, 0 < x < p — 2, such that
a® = (mod p).

Definition Thegeneralized discretelogarithm problem (GDLP) isthefollowing: givena
finitecyclic group G of order n, agenerator « of GG, and an element 3 € G, find theinteger
z,0 <z <n-—1,suchthat o® = .

The discrete logarithm problem in elliptic curve groups and in the jacobians of hyper-
elliptic curves are not explicitly considered in this section. The discretelogarithm problem
inZy is discussed further in §3.8.

Note (difficulty of the GDLP isindependent of generator) Let o and +y be two generators
of acyclicgroup G of order n, andlet 3 € G. Letz = log,, B,y = log,, B, and z = log,, 7
Thena® = =+ = (a*)¥. Consequently z = zy mod n, and

log, 3 = (log,,) (log, 7) ™" mod n.

This means that any algorithm which computes logarithms to the base o can be used to
compute logarithms to any other base y that is also a generator of G.

TCL Exhibit 1009
Page 121

104

Ch. 3 Number-Theoretic Reference Problems

3.54

3.55

Note (generalizationof GDLP) A moregenera formulation of the GDLPisthefollowing:
givenafinitegroup G and elementsc, 5 € G, find aninteger = suchthat o = 3, provided
that such an integer exists. In thisformulation, it is not required that G' be a cyclic group,
and, evenifitis, itisnot required that o be agenerator of G. Thisproblem may be harder to
solve, in general, than GDLP. However, in the case where G isacyclic group (for example
if G isthemultiplicative group of afinitefield) and the order of « isknown, it can be easily
recognized whether an integer z satisfying a* = 3 exists. Thisis because of the following
fact: if G isacyclic group, « isan element of order n in G, and 8 € G, then there exists
an integer x such that o = g if and only if 5™ = 1.

Note (solvingtheDLP inacyclic group G of order n isin essence computing an isomor-
phism between G and Z,,) Even though any two cyclic groups of the same order are iso-
morphic (that is, they have the same structure although the elements may be written in dif-
ferent representations), an efficient algorithm for computing logarithmsin one group does
not necessarily imply an efficient algorithm for the other group. To see this, consider that
every cyclic group of order n isisomorphic to the additive cyclic group Z ., i.e., the set of
integers {0, 1,2, ... ,n — 1} where the group operation is addition modulo n. Moreover,
the discrete logarithm problem in the latter group, namely, the problem of finding an inte-
ger x suchthat az = b (mod n) givena,b € Z,, is easy as shown in the following. First
note that there does not exist asolution z if d = ged(a, n) does not divide b (Fact 2.119).
Otherwise, if d divides b, the extended Euclidean algorithm (Algorithm 2.107) can be used
to find integers s and ¢ such that as 4+ nt = d. Multiplying both sides of this equation by
the integer b/d gives a(sb/d) + n(tb/d) = b. Reducing this equation modulo n yields
a(sb/d) = b (mod n) and hencex = (sb/d) mod n isthe desired (and easily obtainable)
solution.

The known algorithms for the DL P can be categorized as follows:
1. agorithmswhichwork inarbitrary groups, e.g., exhaustive search (§3.6.1), the baby-
step giant-step algorithm (§3.6.2), Pollard’s rho algorithm (§3.6.3);
2. agorithmswhich work in arbitrary groups but are especially efficient if the order of
the group has only small prime factors, e.g., Pohlig-Hellman algorithm (§3.6.4); and
3. theindex-calculusalgorithms (§3.6.5) which are efficient only in certain groups.

3.6.1 Exhaustive search

The most obviousalgorithm for GDL P (Definition 3.52) isto successively computea®, ot
a?,... until 3 is obtained. This method takes O(n) multiplications, where n is the order
of a, and isthereforeinefficient if n islarge (i.e. in cases of cryptographicinterest).

3.6.2 Baby-step giant-step algorithm

Letm = [y/n|, wheren isthe order of «. The baby-step giant-step algorithm is a time-
memory trade-off of the method of exhaustive search and isbased onthefollowing observa-
tion. If 3 = o, thenonecanwritez = im+ 5, where0 < 4, j < m. Hence, o® = o™,
whichimplies 3(a~™)% = of. This suggests the following algorithm for computing z.

TCL Exhibit 1009
Page 122

§3.6 The discrete logarithm problem 105

3.56 Algorithm Baby-step giant-step algorithm for computing discrete logarithms

INPUT: agenerator « of acyclic group G of order n, and an element 3 € G.
OUTPUT: the discrete logarithm z = log,, 5.

1. Setm<«+[/n].

2. Construct a table with entries (7,a’) for 0 < j < m. Sort this table by second
component. (Alternatively, use conventional hashing on the second component to
store the entries in a hash table; placing an entry, and searching for an entry in the
table takes constant time.)

3. Compute o~ and set v+ 0.

4. For i from0tom — 1 do the following:

4.1 Check if v isthe second component of some entry in the table.
4.2 If v = of thenreturn(z = im + j).
4.3 Set vy -a™™.

Algorithm 3.56 requires storage for O(+/n) group elements. The table takes O(+/n)
multiplicationsto construct, and O(+/n 1g n) comparisonsto sort. Having constructed this
table, step 4 takes O(y/n) multiplications and O(y/n) table look-ups. Under the assump-
tion that a group multiplication takes moretime than lg » comparisons, the running time of
Algorithm 3.56 can be stated more concisely as follows.

3.57 Fact The running time of the baby-step giant-step algorithm (Algorithm 3.56) is O(y/n)
group multiplications.

3.58 Example (baby-step giant-step algorithmfor logarithmsin Z7,3) Let p = 113. Theele-
ment o = 3 isagenerator of Z7,5 of order n = 112. Consider 8 = 57. Thenlog; 57 is
computed as follows.

1. Setm«[v/112] = 11.
2. Construct atable whose entries are (j, o’ mod p) for 0 < j < 11:

J 01|23 |4 |5 |6 |7]|8|9]10
3 mod113 || 1|3 |9 |27 |8 |17 |51 |40 | 7|21 | 63
and sort the table by second component:

j 01825 |9 |3]| 7]|6]10]| 4

3 mod113 || 1|3 | 7|9 |17 | 21|27 |40 |51 | 63|81

3. Using Algorithm 2.142, compute o =! = 37! mod 113 = 38 and then compute

a™™ = 38 mod 113 = 58.

4. Next,y = Ba"™ mod 113 fori = 0,1,2,... is computed until a value in the

second row of the tableis obtained. Thisyields:

i 0 1] 2 (3] 4]|5]|6]7
4 =57-58" mod 113 || 57 | 29 | 100 | 37 | 112 | 55 | 26 | 39
Findly, since Ba=™ = 3 = a!, 3 = !% and, therefore, log; 57 = 100. O

3.59 Note (restricted exponents) In order to improve performance, some cryptographic proto-
cols which use exponentiation in Z;, select exponents of a special form, e.g. having small
Hamming weight. (The Hamming weight of an integer is the number of onesin its binary
representation.) Suppose that p is a k-bit prime, and only exponents of Hamming weight ¢
are used. The number of such exponentsis (’j) Algorithm 3.56 can be modified to search
the exponent space in roughly (t’/“Z) steps. The algorithm also appliesto exponentsthat are
restricted in certain other ways, and extendsto al finite groups.

TCL Exhibit 1009
Page 123

106 Ch. 3 Number-Theoretic Reference Problems

3.6.3 Pollard’s rho algorithm for logarithms

Pollard’srho a gorithm (Algorithm 3.60) for computing discretelogarithmsisarandomized
algorithm with the same expected running time as the baby-step giant-step algorithm (Al-
gorithm 3.56), but which requires a negligible amount of storage. For thisreason, it isfar
preferableto Algorithm 3.56 for problemsof practical interest. For simplicity, it isassumed
in this subsection that G is acyclic group whose order n is prime.

The group G is partitioned into three sets S, S, and S5 of roughly equal size based
on some easily testable property. Some care must be exercised in selecting the partition; for
example, 1 ¢ S». Define a sequence of group elements =g, =1, z2, ... by zo = 1 and
{ Bz, ifx; €8,

def

Tiy1 = f(.%‘l) = x? if z; € So, (32)

27
a-x;, ifx;€Ss,

fori > 0. This sequence of group elements in turn defines two sequences of integers
ag,ai, G, ... andbg, by, by, ... satisfyingz; = a® 3% fori > 0: ag = 0, by = 0, and for
1 >0,

ai, if z; € 51,
a;11 =< 2a; modn, if z; € Sa, (3.3)
a; +1modn, ifx; €8s,

and

2b; mod n, if x; € S, (3.4)
bia if x; € 53.
Floyd's cycle-finding algorithm (Note 3.8) can then be utilized to find two group elements
z; and xy; such that #; = x9;. Hence a® % = a%i % and so BP b2 = q%2i=%,
Taking logarithms to the base o of both sides of this |last equation yields
(bi — be;) -log, B = (agi —a;) (mod n).

Provided b; # bs; (mod n) (note: b; = by; occurs with negligible probability), this equa-
tion can then be efficiently solved to determinelog,, 8.

b;+1modn, ifx; €S,
bit1 =

3.60 Algorithm Pollard’s rho algorithm for computing discrete logarithms

INPUT: agenerator « of acyclic group G of prime order n, and an element 5 € G.
OUTPUT: the discrete logarithm = = log,, 5.
1. Set zo41, ap<0, bo<—0
2. Fori=1,2,... dothefollowing:
2.1 Usingthe quantitiesx; 1, a;—1, b;—1, ahd z2;_2, as;—2, ba;—o computed previ-
ously, computex;, a;, b; and xs;, as;, be; Using equations(3.2), (3.3), and (3.4).
2.2 If x; = x2;, then do the following:
Set r<b; — by; mod n.
If r = 0 then terminate the algorithm with failure; otherwise, compute
x = r~1(az; — a;) mod n and return(z).

In the rare case that Algorithm 3.60 terminates with failure, the procedure can be re-
peated by selecting random integers ao, bo intheinterval [1, n — 1], and starting with 2o =
a® 3 Example 3.61 with artificially small parametersillustrates Pollard’srho algorithm.

TCL Exhibit 1009
Page 124

§3.6 The discrete logarithm problem 107

3.61 Example (Pollard'srhoalgorithmfor logarithmsinasubgroup of Z3g;) Theelementa =
2 isagenerator of the subgroup G of Zjg, of order n = 191. Suppose 3 = 228. Partition
theelementsof G into three subsetsaccordingtotherulez € Sy ifx =1 (mod 3),z € S,
ifx =0 (mod 3),andz € S5 if £ =2 (mod 3). Table 3.2 showsthevauesof z;, a;, b;,
Tai, a2, aNd by; at the end of each iteration of step 2 of Algorithm 3.60. Notethat z14 =
Zog = 144. Finally, computer = by — bog mod 191 = 125, 7! = 12571 mod 191 =

136, and 7! (a2 — a14) mod 191 = 110. Hence, log, 228 = 110. O
L [@i [ai [b [[@i [ani [bai |
1 228 0 1 279 0 2
2 279 0 2 184 1 4
3 92 0 4 14 1 6
4 184 1 4 256 2 7
5 205 1 5 304 3 8
6 14 1 6 121 6 18
7 28 2 6 144 12 38
8 256 2 7 235 | 48 152
9 152 2 8 72 48 154
10 304 3 8 14 96 118
11 372 3 9 256 | 97 | 119
12 121 6 18 304 98 120
13 12 6 19 121 5 51
14 144 | 12 | 38 144 10 104

Table 3.2: Intermediate steps of Pollard’s rho algorithm in Example 3.61.

3.62 Fact Let G beagroup of order n, aprime. Assume that the function f : G — G de-
fined by equation (3.2) behaveslike arandom function. Then the expected running time of
Pollard’srho agorithmfor discretelogarithmsin G is O(1/n) group operations. Moreove,
the algorithm requires negligible storage.

3.6.4 Pohlig-Hellman algorithm

Algorithm 3.63 for computing |logarithmstakes advantage of the factorization of theorder n
of thegroup G. Letn = p7'p5? - - - p& bethe primefactorization of n. If z = log,, 5, then
theapproachisto determinex; = x mod p5* for1 < ¢ < r, and then use Gauss'salgorithm
(Algorithm 2.121) to recover z mod n. Each integer z; is determined by computing the
digitslo, l1,. .. ,le,—1 inturnof itsp;-ary representation: xz; = lo+11p;+- - ~+lei,1p$i_1
where0 <1I; <p; — 1.

To see that the output of Algorithm 3.63 is correct, observe first that in step 2.3 the
order of @ isq. Next, at iteration j of step 2.4, y = qlo+that+Li-1" Hence,

—= n/gitt w—lo—l1g——l; 147~ \n
B o= (BT = (artetam i Tyl

— (e

J+1
)zl—lo—llq—n-—lj,lqj’l

1

_ (an/qu)quj+---+le;71q€7
4l ge1—d _
(an/q)l]+ +le—1q _ (Oé)l],

the last equality being true because @ has order q. Hence, log,, 3 isindeed equal to ;.

TCL Exhibit 1009
Page 125

108 Ch. 3 Number-Theoretic Reference Problems

3.63 Algorithm Ponhlig-Hellman algorithm for computing discrete logarithms

INPUT: agenerator « of acyclic group G of order n, and an element g € G.
OUTPUT: the discrete logarithm z = log,, (.
1. Find the primefactorization of n: n = p{*ps? - - - per, wheree; > 1.
2. For ¢ from 1 to r do the following:
(Compute z; = lg + lip; + -+ + lei,lpfi_l, where z; = = mod p5*)
2.1 (Smplify the notation) Set g<—p; and e<—e;.
2.2 Sety+1andi_1<-0.
2.3 Compute a<—a™/4.
2.4 (Computethe!;) For j from 0 to e — 1 do the following:
Compute y<~yali—17 " and B« (By =)/,
Computel,+ logs 3 (e.g., using Algorithm 3.56; see Note 3.67(jii)).
25 Setxi<—lg+lig+ -+ leflqeil.
3. Use Gauss's algorithm (Algorithm 2.121) to compute the integer 2, 0 < x <n — 1,
suchthat = z; (mod pi*) forl <i <r.
4. Return(z).

Example 3.64 illustrates Algorithm 3.63 with artificially small parameters.

3.64 Example (Pohlig-Hellman algorithmfor logarithmsin Z3,,) Let p = 251. The element
a = 71 isagenerator of Z3, of order n = 250. Consider 3 = 210. Then z = log, 210
is computed as follows.

1. The primefactorization of n is 250 = 2 - 53.
2. () (Computex; = x mod 2)
Compute@ = /2 mod p = 250 and 8 = 5™/ mod p = 250. Thenz; =
logyso 250 = 1.
(b) (Compute:cg =z mod 5% = lo + 115+ 1252)
i. Compute@ = o/® mod p = 20.
ii. Computey = 1and 3 = (By')"/® mod p = 149. Using exhaustive
search,® computely = logy, 149 = 2.
iii. Computey = va?modp = 21 and 3 = (By~')"/?*® mod p = 113.
Using exhaustive search, computel; = logy, 113 = 4.
iv. Computey = va*® mod p = 115and B = (By~1)®P~V/125 mod p =
149. Using exhaustive search, compute lo = logy, 149 = 2.
Hence, zo =2+4-5+2-52 =72.
3. Finally, solve the pair of congruencesz = 1 (mod 2), x = 72 (mod 125) to get
z = log,; 210 = 197. O

3.65 Fact Given thefactorization of n, the running time of the Pohlig-Hellman algorithm (Al-
gorithm 3.63) isO(>"'_, ei(Ign + /p:)) group multiplications.

3.66 Note (effectiveness of Pohlig-Hellman) Fact 3.65 implies that the Pohlig-Hellman algo-
rithmisefficient only if each primedivisor p; of n isrelatively small; that is, if n isasmooth

5Exhaustive search is preferable to Algorithm 3.56 when the group is very small (here the order of « is 5).

TCL Exhibit 1009
Page 126

§3.6 The discrete logarithm problem 109

3.67

integer (Definition 3.13). An example of a group in which the Pohlig-Hellman algorithm
is effective follows. Consider the multiplicative group Z,, where p is the 107-digit prime:

p = 227088231986781039743145181950291021585250524967592855
96453269189798311427475159776411276642277139650833937.

Theorder of Zy isn = p— 1 = 2*-104729° - 224737® - 350377*. Sincethe largest prime
divisor of p — 1 isonly 350377, it is relatively easy to compute logarithms in this group
using the Pohlig-Hellman a gorithm.

Note (miscellaneous)

(i) If nisaprime, then Algorithm 3.63 (Pohlig-Hellman) is the same as baby-step giant-
step (Algorithm 3.56).

(ii) Instep 1 of Algorithm 3.63, afactoring algorithm which findssmall factorsfirst (e.g.,
Algorithm 3.9) should be employed; if the order n is not a smooth integer, then Al-
gorithm 3.63 is inefficient anyway.

(iii) Thestoragerequiredfor Algorithm 3.56in step 2.4 can be eliminated by using instead
Pollard’s rho agorithm (Algorithm 3.60).

3.6.5 Index-calculus algorithm

3.68

The index-calculus algorithm is the most powerful method known for computing discrete
logarithms. The technique employed does not apply to al groups, but when it does, it of-
ten gives a subexponential-time algorithm. The algorithm is first described in the general
setting of acyclic group G (Algorithm 3.68). Two examplesare then presented to illustrate
how the index-calculus agorithm works in two kinds of groups that are used in practical
applications, namely Z,, (Example 3.69) and ;.. (Example 3.70).

The index-cal culus agorithm requires the selection of arelatively small subset S of
elements of G, called the factor base, in such away that a significant fraction of elements
of G can be efficiently expressed as products of elementsfrom S. Algorithm 3.68 proceeds
to precompute a database containing the logarithms of all theelementsin S, and then reuses
this database each time the logarithm of a particular group element is required.

The description of Algorithm 3.68 isincomplete for two reasons. Firstly, atechnique
for selecting thefactor base S is not specified. Secondly, amethod for efficiently generating
relations of the form (3.5) and (3.7) is not specified. The factor base .S must be a subset of
G that is small (so that the system of equationsto be solved in step 3 is not too large), but
not too small (so that the expected number of trials to generate arelation (3.5) or (3.7) is
not too large). Suitable factor bases and techniques for generating relations are known for
somecyclic groupsincludingZ,, (see §3.6.5(i)) and IF5.. (see §3.6.5(ii)), and, moreover, the
multiplicative group IF; of agenera finitefield IF,.

Algorithm Index-calculus algorithm for discrete logarithms in cyclic groups

INPUT: agenerator « of acyclic group G of order n, and an element 5 € G.
OUTPUT: the discrete logarithm y = log,, 3.

1. (Sdect afactor base S) Chooseasubset S = {p1,p2, ... ,p:} of G suchthat a“sig-
nificant proportion” of all elementsin G can be efficiently expressed as a product of
elementsfrom S.

2. (Collect linear relationsinvolving logarithms of elementsin S)

TCL Exhibit 1009
Page 127

110 Ch. 3 Number-Theoretic Reference Problems

2.1 Select arandominteger k, 0 < k < n — 1, and compute o*.
2.2 Try towrite o* asaproduct of elementsin S:

t
ok = pri, ¢; > 0. (3.5
i=1

If successful, take logarithms of both sides of equation (3.5) to obtain alinear
relation
t
k=) cilog,pi (mod n). (3.6)
i=1
2.3 Repeat steps 2.1 and 2.2 until ¢ + ¢ relations of the form (3.6) are obtained (¢
isasmall positive integer, e.g. ¢ = 10, such that the system of equationsgiven
by the ¢ + ¢ relations has a unique solution with high probability).

3. (Find the logarithms of elements in S) Working modulo n, solve the linear system
of ¢ + ¢ equations (in t unknowns) of the form (3.6) collected in step 2 to obtain the
valuesof log, p;, 1 < i <t.

4. (Compute y)

4.1 Select arandominteger k, 0 < k < n — 1, and compute 5 - o*.
4.2 Try towrite 3 - o asaproduct of elementsin S:

t
praf =[p dizo0.)
i=1

If theattempt isunsuccessful then repeat step 4.1. Otherwise, taking logarithms
of both sides of equation (3.7) yieldslog,, 8 = (Z:Zl d;log,, p; — k) mod n;
thus, computey = (2;1 d;log, p; — k) mod n and return(y).

(i) Index-calculus algorithm in Z;,

For thefield Z,,, p aprime, the factor base S can be chosen as thefirst ¢ prime numbers. A
relation (3.5) is generated by computing o.* mod p and then using trial division to check
whether this integer is a product of primesin S. Example 3.69 illustrates Algorithm 3.68
in Z,, on a problem with artificially small parameters.

3.69 Example (Algorithm 3.68 for logarithmsin Z3,,) Let p = 229. Theelement o = 6 is
agenerator of Z3,, of order n = 228. Consider 3 = 13. Then log, 13 is computed as
follows, using the index-cal culus technique.

1. Thefactor baseis chosento bethefirst 5 primes: S = {2,3,5,7,11}.
2. The following six relations involving elements of the factor base are obtained (un-
successful attempts are not shown):
6% mod 229 =180 =2%2-3%.5
6% mod 229 = 176 = 2% - 11
62 mod 229 =165 =3-5- 11
62 mod 229 =154 =2-7-11
6143 mod 229 = 198 =2-3%2 .11
62% mod 229 =210=2-3-5-7.

TCL Exhibit 1009
Page 128

§3.6 The discrete logarithm problem 111

3.70

These relations yield the following six equations involving the logarithms of ele-
mentsin the factor base:

100 = 2logg2 +2logg3 +1logg5 (mod 228)
18 = 4logg2+loggll (mod 228)
12 = logg3+loggh +logg 11 (mod 228)
62 = logs2+logg7+logg1l (mod 228)
143 = logg 2+ 2logg3 +logg 11 (mod 228)
206 = logg2+logg3+ loggh +1logg 7 (mod 228).

3. Solving the linear system of six equations in five unknowns (the logarithms z; =
logg pi) yields the solutionslogg 2 = 21, logs 3 = 208, logg 5 = 98, logg 7 = 107,
andlogg 11 = 162.

4. Suppose that theinteger ¥ = 77 is selected. Since 3 - o = 13- 677 mod 229 =
147 = 3 - 72, it follows that

logg 13 = (logg 3 + 2logg 7 — 77) mod 228 = 117. O

(ii) Index-calculus algorithm in I,

The elements of the finite field Fom are represented as polynomiasin Zs[z] of degree at
most m — 1, wheremultiplication is performed modul o afixed irreducible polynomial f(x)
of degreem in Zz[z] (see §2.6). Thefactor base S can be chosen asthe set of al irreducible
polynomiasin Z.[x] of degree at most some prescribed bound b. A relation (3.5) is gener-
ated by computing o* mod f(x) and then using trial division to check whether this poly-
nomial is a product of polynomiasin S. Example 3.70 illustrates Algorithm 3.68in F3..
on aproblem with artificially small parameters.

Example (Algorithm 3.68 for logarithmsin IF3) The polynomial f(z) = 27 + = + 1is
irreducible over Z,. Hence, the elements of the finite field F57 of order 128 can be repre-
sented as the set of al polynomialsin Z[x] of degree at most 6, where multiplication is
performed modulo f(z). The order of F3. isn = 27 — 1 = 127, and o = z is agenerator
of F3-. Suppose 8 = z* + 23 + 22 + z + 1. Theny = log,, 3 can be computed as follows,
using the index-cal culus technique.
1. Thefactor baseischosento betheset of all irreduciblepolynomialsin Z.[z] of degree
amost3: S ={zr,x+ 1,22 +x+1,2° +x+1,2° + 22 + 1}.
2. Thefollowing five relations involving elements of the factor base are obtained (un-
successful attempts are not shown):

2*® mod f(z) = 2% + 2* =2tz +1)?

2% mod f(z) =2® +2° + 2t + 2 =z(r+ 1)z +22+1)
™ mod f(z) = 2% + 2° + 2® + 22 =2%(x+ 1% +2+1)
z* mod f(z) =2° + 2>+ +1 =+ +z+1)

' mod f(x) =28+’ + 2t + 2P+ 2+ + 1= (2% + o+ 1)(2® + 22 +1).

These relations yield the following five equations involving the logarithms of ele-
mentsin thefactor base (for convenienceof notation, let p; = log, x, p2 = log, (x+

TCL Exhibit 1009
Page 129

112

Ch. 3 Number-Theoretic Reference Problems

3.7

3.72

3.73

1), p3 = log, (x? + x + 1), ps = log, (x® + = + 1), and p5 = log, (z® + 2% + 1)):
18 = 4p; +2py (mod 127)
105 p1+2p2+ps (mod 127)
72 2p1 + 2p2 + p3 (mod 127)
45 2p2 +ps (mod 127)
121 = ps+ps (mod 127).
3. Solvingthelinear system of five equationsin fiveunknownsyieldsthevaluesp; = 1,
p2 =7, p3 = 56, py = 31, and p; = 90.
4. Suppose k = 66 is selected. Since

Bof = (@t + 22 + 22 + 2+ 1)2% mod f(z) =2 +2° + 2 = 2(2? + 2+ 1),
it follows that
log, (z* + 2% + 2% +x+1) = (p1 +2p3 — 66) mod 127 = 47. O

Note (runningtime of Algorithm 3.68) To optimizethe running time of the index-calculus
algorithm, the size ¢ of the factor base should be judiciously chosen. The optimal selection
relies on knowledge concerning the distribution of smooth integersin theinterval [1, p — 1]
for the case of Z;, and for the case of F... on the distribution of smooth polynomials (that
is, polynomialsall of whoseirreduciblefactors haverelatively small degrees) among poly-
nomialsin Fy[xz] of degreeless than m. With an optimal choice of ¢, theindex-calculusal-
gorithm as described abovefor Z,, and ... has an expected runningtimeof L, [%, c] where

qg=porqg=2™,andc > 0isaconstant.

Note (fastest algorithmsknown for discretelogarithmsin Z; and ...) Currently, the best
algorithm known for computing logarithmsin F3,.. isavariation of theindex-calculusalgo-
rithm called Coppersmith’salgorithm, with an expected runningtime of Lom [% , ¢] for some
constant ¢ < 1.587. The best algorithm known for computing logarithmsin Z, isavaria-
tion of the index-cal culus a gorithm called the number field sieve, with an expected running
timeof L,[$,1.923]. Thelatest effortsin these directionsare surveyed in the Notes section
(§3.12).

Note (parallelization of the index-cal culus algorithm)

(i) For the optimal choice of parameters, the most time-consuming phase of the index-
calculus algorithm is usually the generation of relations involving factor base loga-
rithms (step 2 of Algorithm 3.68). The work for this stage can be easily distributed
among a network of processors by simply having the processors search for relations
independently of each other. The relations generated are collected by a central pro-
cessor. When enough relations have been generated, the corresponding system of lin-
ear equations can be solved (step 3 of Algorithm 3.68) on asingle (possibly parallel)
computer.

(ii) The database of factor base logarithms need only be computed once for a given fi-
nitefield. Relativeto this, the computation of individual logarithms (step 4 of Algo-
rithm 3.68) is considerably faster.

TCL Exhibit 1009
Page 130

§3.7 The Diffie-Hellman problem 113

3.6.6 Discrete logarithm problem in subgroups of Z;

Thediscretelogarithm problemin subgroupsof Z,, has special interest becauseits presumed
intractability is the basis for the security of the U.S. Government NIST Digital Signature
Algorithm (§11.5.1), among other cryptographic techniques.

Let p beaprimeand g aprimedivisor of p — 1. Let G be the unique cyclic subgroup
of Z,, of order ¢, and let o be agenerator of G. Then the discretelogarithm problemin G is
thefollowing: givenp, ¢, o, and 8 € G, findtheuniqueinteger z, 0 < = < ¢—1, suchthat
o® = (mod p). The powerful index-cal culusa gorithms do not appear to apply directly
inG. Thatis, oneneedsto apply theindex-cal culusagorithminthe group Z; itself inorder
to computelogarithmsin the smaller group G. Conseguently, there are two approachesone
could take to computing logarithmsin G:

1. Use a“square-root” algorithm directly in GG, such as Pollard’s rho algorithm (Algo-
rithm 3.60). The running time of this approachis O(/q).

2. Let v beagenerator of Z7, and let | = (p — 1)/q. Use an index-calculus algorithm
inZ, tofind integers y and z such that « = ¥ and 3 = ~*. Thenz = log, 8 =
(z/D)(y/1)~* mod q. (Sincey and z are both divisible by I, y/1 and 2/ are indeed
integers.) The running time of this approachis LP[%, c| if the number field sieveis
used.

Which of the two approachesis faster depends on the relative size of /g and L,[3, c].

3.7 The Diffie-Hellman problem

3.74

3.75

3.76

The Diffie-Hellman problemis closely related to the well-studied discrete logarithm prob-
lem (DLP) of §3.6. It isof significance to public-key cryptography becauseits apparent in-
tractability formsthe basisfor the security of many cryptographicschemesincluding Diffie-
Hellman key agreement and its derivatives (§12.6), and ElGamal public-key encryption
(§8.4).

Definition The Diffie-Hellman problem (DHP) is the following: given aprime p, a gen-
erator o of Z;, and elements o mod p and a® mod p, find a® mod p.

Definition The generalized Diffie-Hellman problem (GDHP) isthe following: given afi-
nite cyclic group G, a generator o of G, and group elements o® and o, find a®?.

Suppose that the discrete logarithm problem in Z;, could be efficiently solved. Then
given a, p, a® mod p and o mod p, one could first find a from «, p, and a® mod p by
solving a discrete logarithm problem, and then compute (a?)® = a®® mod p. This estab-
lishesthefollowing relation between the Diffie-Hellman problem and the discretel ogarithm
problem.

Fact DHP <p DLP. That is, DHP polytime reduces to the DLP. More generally, GDHP
<p GDLP.

The question then remains whether the GDLP and GDHP are computationally equiv-
aent. Thisremains unknown; however, some recent progressin thisregard is summarized
in Fact 3.77. Recall that ¢ is the Euler phi function (Definition 2.100), and an integer is
B-smoothif al its prime factorsare < B (Definition 3.13).

TCL Exhibit 1009
Page 131

114

Ch. 3 Number-Theoretic Reference Problems

3.77

Fact (known equivalences between GDHP and GDLP)

(i) Letpbeaprimewherethefactorizationof p—1isknown. Supposeasothat ¢(p—1)
is B-smooth, where B = O((ln p)¢) for some constant c¢. Thenthe DHP and DLPin
Z.,, are computationally equivalent.

(if) More generally, let G be afinite cyclic group of order n where the factorization of
n is known. Suppose also that ¢(n) is B-smooth, where B = O((Inn)¢) for some
constant ¢. Then the GDHP and GDLP in G are computationally equivalent.

(iii) Let G beafinitecyclic group of order n where the factorization of n is known. If for
each prime divisor p of n either p — 1 or p + 1 is B-smooth, where B = O((lnn)¢)
for some constant ¢, then the GDHP and GDLPin G are computational ly equivalent.

3.8 Composite moduli

3.78

3.79

3.80

The group of units of Z,,, namely Z , has been proposed for use in several cryptographic
mechanisms, including the key agreement protocols of Yacobi and McCurley (see §12.6
notes on page 538) and the identification scheme of Girault (see §10.4 notes on page 423).
There are connections of cryptographicinterest between the discrete logarithm and Diffie-
Hellman problemsin (cyclic subgroupsof) Z;, , and the problem of factoringn. Thissection
summarizes the results known along these lines.

Fact Letn beacompositeinteger. If the discrete logarithm problemin Z;, can be solved
in polynomial time, then n can be factored in expected polynomial time.

In other words, the discrete logarithm problemin Z is at least as difficult as the prob-
lem of factoring n. Fact 3.79 isa partia converseto Fact 3.78 and states that the discrete
logarithmin Z, is no harder than the combination of the problems of factoring » and com-
puting discrete logarithmsin Z,, for each prime factor p of n.

Fact Letn beacompositeinteger. Thediscretelogarithm problemin Z;, polytimereduces
to the combination of the integer factorization problem and the discrete logarithm problem
in Z,, for each prime factor p of n.

Fact 3.80 states that the Diffie-Hellman problemin Z;, isat least as difficult asthe prob-
lem of factoring n.

Fact Letn = pg where p and ¢ are odd primes. If the Diffie-Hellman problemin Z, can
be solved in polynomial time for a non-negligible proportion of al basesa € Z,, thenn
can be factored in expected polynomial time.

3.9 Computing individual bits

Whilethediscretelogarithm problemin Z; (§3.6), the RSA problem (§3.3), and the problem
of computing square roots modulo a composite integer n (§3.5.2) appear to be intractable,
when the problem parameters are carefully selected, it remains possiblethat it is much eas-
ier to compute some partia information about the solution, for example, its least signifi-
cant bit. It turns out that while some bits of the solution to these problems are indeed easy

TCL Exhibit 1009
Page 132

§3.9 Computing individual bits 115

3.81

3.82

to compute, other bits are equally difficult to compute as the entire solution. This section
summarizes the results known along these lines. The results have applications to the con-
struction of probabilistic public-key encryption schemes (§8.7) and pseudorandom bit gen-
eration (§5.5).

Recall (Definition 1.12) that a function f is called aone-way functionif f(z) is easy
to compute for al z in its domain, but for essentialy all y intherange of f, it is computa-
tionally infeasibleto find any = such that f(z) = y.

Three (candidate) one-way functions

Although no proof is known for the existence of a one-way function, it is widely believed
that one-way functions do exist (cf. Remark 9.12). The following are candidate one-way
functions (in fact, one-way permutations) since they are easy to compute, but their inver-
sion requires the solution of the discrete logarithm problemin Z”, the RSA problem, or the
problem of computing square roots modulo n, respectively:
1. exponentiation modulo p. Let p beaprimeand let o be agenerator of Z,,. The func-
tionis f : Z, — Z,, defined as f(z) = a® mod p.
2. RSA function. Let p and ¢ be distinct odd primes, n = pq, and let e be an integer
such that ged(e, (p — 1)(¢ — 1)) = 1. Thefunctionis f : Z,, — Z, defined as
f(z) = z° mod n.
3. Rabin function. Let n = pq, where p and ¢ are distinct primes each congruent to
3 modulo 4. Thefunctionis f : Q, — Q, defined as f(z) = 2% mod n. (Re-
call from Fact 2.160 that f is a permutation, and from Fact 3.46 that inverting f,
i.e.,, computing principal square roots, is difficult assuming integer factorization is
intractable.)
The following definitions are used in §3.9.1, 3.9.2, and 3.9.3.

Definition Let f : S — S beaone-way function, where S is afinite set. A Boolean
predicate B : S — {0, 1} is said to be ahard predicatefor f if:
(i) B(z) iseasy tocomputegivenz € S; and
(i) anoraclewhich computes B(x) correctly with non-negligible advantage® given only
f(z) (wherex € S) can beusedtoinvert f easily.

Informally, B is a hard predicate for the one-way function f if determining the single
bit B(z) of information about z, givenonly f(z), isasdifficult asinverting f itself.

Definition Let f : S — S beaone-way function, where S isafinite set. A k-bit predi-
cate B®) : S — {0,1}* issaid to be ahard k-bit predicate for f if:
(i) B® (z) iseasy to computegiven z € S; and
(ii) for every Boolean predicate B : {0,1}* — {0,1}, an oracle which computes
B(B™ (z)) correctly with non-negligibleadvantagegiven only f(z) (wherez € S)
can beused to invert f easily.
If sucha B exists, then f issaid to hide & bits, or the & bits are said to be simultaneously
secure.

Informally, B®*) isahard k-bit predicatefor the one-way function f if determining any
partial information whatsoever about B*)(z), given only f(z), is as difficult as inverting
f itsdlf.

61n Definitions 3.81 and 3.82, the probability istaken over all choices of 2 € S and random coin tosses of the
oracle.

TCL Exhibit 1009
Page 133

116

Ch. 3 Number-Theoretic Reference Problems

3.9.1 The discrete logarithm problem in Z; — individual bits

3.83

3.84

3.85

*

Let p bean odd primeand o agenerator of Z,,. Assumethat the discrete logarithm problem
inZ, isintractable. Let 8 € Z,, andlet z = log,, 3. Recall from Fact 2.135 that 3 is
a quadratic residue modulo p if and only if = is even. Hence, the least significant bit of
x is equal to (1 — (£))/2, where the Legendre symbol (%) can be efficiently computed

(Algorithm 2.149). More generally, the following is true. .

Fact Let p be an odd prime, and let « be a generator of Z;. Supposethat p — 1 = 2°,
wheret is odd. Then thereis an efficient algorithm which, given 3 € Z?, computesthe s
least significant bits of « = log,, (.

Fact Letp beaprimeand o agenerator of Z,,. Definethe predicate B : Z,, — {0,1} by

0, ifl<z<(p-1)/2,
B(“’)_{L if(p—l)/2p<a?§p—1.

Then B is ahard predicate for the function of exponentiation modulo p. In other words,

givenp, a, and 3, computing the single bit B(x) of the discretelogarithm z = log,, B isas
difficult as computing the entire discrete logarithm.

Fact Let p beaprimeand o agenerator of Z,. Let k = O(lglgp) be aninteger. Let the
interval [1, p— 1] bepartitionedinto 2% intervals Iy, I1, . . . , I~ _, of roughly equal lengths.
Define the k-bit predicate B*) : Z» —s {0,1}* by B®) (z) = j if x € I;. Then B® is
ahard k-bit predicate for the function of exponentiation modulo p.

3.9.2 The RSA problem — individual bits

3.86

3.87

Let n be a product of two distinct odd primes p and ¢, and let e be an integer such that
ged(e, (p — 1)(¢ — 1)) = 1. Givenn, e, and ¢ = z° mod n (for somexz € Z,), some
information about z is easily obtainable. For example, since e is an odd integer,

()=()=C) =)

and hencethe singlebit of information (%) can be obtained simply by computing the Jacobi
symbol (%) (Algorithm 2.149). There are, however, other bits of information about = that
are difficult to compute, as the next two results show.

Fact Definethe predicate B : Z,, — {0,1} by B(z) = x mod 2; that is, B(z) isthe
least significant bit of x. Then B isahard predicate for the RSA function (see page 115).

Fact Let k = O(Iglgn) be an integer. Define the k-bit predicate B : 7,, — {0,1}*
by B*)(z) = 2 mod 2*. Thatis, B*) () consists of the k least significant bits of z. Then
B isahard k-bit predicate for the RSA function.

Thusthe RSA function haslg Ig n simultaneously secure bits.

TCL Exhibit 1009
Page 134

§3.10 The subset sum problem 117

3.9.3 The Rabin problem — individual bits
Let n = pq, where p and ¢ are distinct primes each congruent to 3 modulo 4.
3.88 Fact Definethe predicate B : @, — {0,1} by B(z) = z mod 2; that is, B(z) isthe

least significant bit of the quadratic residue x. Then B is a hard predicate for the Rabin
function (see page 115).

3.89 Fact Let k = O(lglgn) bean integer. Define the k-bit predicate B : Q,, — {0,1}*
by B*)(z) = x mod 2*. That is, B(®)(z) consists of the k least significant bits of the
quadratic residue z. Then B(*) isahard k-bit predicate for the Rabin function.

Thus the Rabin function haslg lg n simultaneously secure bits.

3.10 The subset sum problem

The difficulty of the subset sum problem was the basis for the (presumed) security of the
first public-key encryption scheme, called the Merkle-Hellman knapsack scheme (§8.6.1).

3.90 Definition Thesubset sumproblem(SUBSET-SUM) isthefollowing: givenaset {a1, as,
. ,an + Of positive integers, called a knapsack set, and a positive integer s, determine
whether or not there is a subset of the a; that sum to s. Equivalently, determine whether

or not thereexist z; € {0,1},1 <i <n,suchthat >_ ; a;z; = s.

The subset sum problem above is stated as a decision problem. It can be shown that
the problem is computationally equivalent to its computational version which isto actually
determinethe z; suchthat >"7"_; a;z; = s, provided that such z; exist. Fact 3.91 provides
evidence of the intractability of the subset sum problem.

3.91 Fact The subset sum problem is NP-complete. The computational version of the subset
sum problemis NP-hard (see Example 2.74).

Algorithms 3.92 and 3.94 give two methods for solving the computational version of
the subset sum problem; both are exponential-timeal gorithms. Algorithm 3.94 isthefastest
method known for the general subset sum problem.

3.92 Algorithm Naive algorithm for subset sum problem

INPUT: aset of positive integers {ay, as, . . . ,a, } and apositiveinteger s.
OUTPUT: z; € {0,1},1 <14 < n,suchthat >_"" , a;z; = s, provided such z; exist.

1. For each possible vector (21, x2, ... ,2,) € (Z2)™ do thefollowing:
1.1 Computel = >, a;x;.
1.2 If | = sthenreturn(asolutionis (z1, 22, ... , Zn)).

2. Return(no solution exists).

3.93 Fact Algorithm 3.92 takes O(2™) steps and, hence, is inefficient.

TCL Exhibit 1009
Page 135

118 Ch. 3 Number-Theoretic Reference Problems

3.94 Algorithm Meet-in-the-middle algorithm for subset sum problem

INPUT: aset of positiveintegers {a1, as, . .. , a, } and apositive integer s.
OUTPUT: z; € {0,1},1 < i < n,suchthat 3", a;z; = s, provided such z; exist.

1. Sett|n/2).

2. Construct atable with entries (X°°_, aizi, (x1, %2, ... , @) for (z1,xa,... ,2;) €
(Z2)t. Sort thistable by first component.

3. Foreach (w411, 2t 42, .. ,2n) € (Z2)™ ¢, do thefollowing:

31 Computel =s—> 7, 41 aiz; and check, using abinary search, whether [is
the first component of some entry in the table.
32 1fl = Y°!_, a;z; thenreturn(asolutionis (z1, z2, . . . , 2,,)).
4. Return(no solution exists).

3.95 Fact Algorithm 3.94 takes O(n2”/ 2) steps and, hence, isinefficient.

3.10.1 The L3-lattice basis reduction algorithm

The L3-lattice basis reduction algorithm is a crucial component in many number-theoretic
algorithms. Itisuseful for solving certain subset sum problems, and hasbeen used for crypt-
analyzing public-key encryption schemes which are based on the subset sum problem.

3.96 Definition Letz = (z1,22,... ,2,) andy = (y1,y2, - - . , yn) betwovectorsinR"™. The
inner product of z and y isthe real number

<z,y>= T1y1 + T2Y2 + -+ TpYn.
3.97 Definition Lety = (y1,¥2,.-- ,yn) beavectorinR™. Thelength of y isthe real number
Iyl = V<yy> = \Jyi +y5+- +y2

3.98 Definition Let B = {b1,bo,...,b,} beaset of linearly independent vectorsin R" (so
thatm < n). Theset L of al integer linear combinationsof by, bs, ... , b, iscaledalattice
of dimension m; that is, L = Zby + Zbs + - - - + Zb,,,. The set B is caled abasisfor the
lattice L.

A lattice can have many different bases. A basis consisting of vectors of relatively
small lengthsis called reduced. The following definition provides a useful notion of are-
duced basis, and is based on the Gram-Schmidt orthogonalization process.

3.99 Definition Let B = {b1,b2,... ,b,} beabasisfor alattice L C R". Define the vectors
by (1 <i < n)andtherea numbersy; ; (1 < j < i < n)inductively by
L P I (39)
lu’Tv] <b;,b;>’ =7 = 1Y .
i—1
b = bi—Y mibj, 1<i<n. (3.9
j=1

The basis B is said to be reduced (more precisely, Lovasz-reduced) if

1
\Mz‘,j\§§7 for1<j<i<n

TCL Exhibit 1009
Page 136

§3.10 The subset sum problem 119

(where|p; ;| denotes the absolute value of y; ;), and
Il = (3= i) el fort<i<n. (310)
Fact 3.100 explains the sense in which the vectorsin areduced basis are relatively short.

3.100 Fact Let L C R™ bealatticewith areduced basis {b1, b2, ... , b, }.
(i) For every non-zerox € L, ||by | < 2"~ D/2||z]].
(i) Moregeneraly, for any set {a1, as, ... ,a:} of linearly independent vectorsin L,
o] < 20D max(flas |, [lasll,- .- , |ac])), forl <j <t

The L3-lattice basis reduction algorithm (Algorithm 3.101) is a polynomial-timeal go-
rithm (Fact 3.103) for finding areduced basis, given a basis for alattice.

3.101 Algorithm L3-lattice basis reduction algorithm

INPUT: abasis (b1, ba, . .. ,b,) for alattice LinR™, m > n.
OUTPUT: areduced basis for L.
1. by<b1, Bi< < bj, b7 >.
2. For i from 2 to n do the following:
2.1 bi<b;.
2.2 Forjfrom1tod — 1, set p; j< < b;, b5 >/Bj and b} <=} — p;,;b7.
2.3 B+ < bl, b >.
3. k2.
4. Execute subroutine RED(k,k — 1) to possibly update some p; ;.
5. 1f By < (3 - Mi,kfl)Bk—l then do the following:
5.1 Set pui¢—pig -1, BBy + p?Bi-1, pigk-14pBr-1/B, Br+Bi_1By/B,
and Bj_1+B.
5.2 Exchangeby, and by,_;.
5.3 If k > 2 then exchange pux,,; and pg—1 ; for j =1,2,... k. — 2.
S54Fori=k+1,k+2,...,n:
Set t— s v i,k fhisk—1 — pt, AN g 14—t + Lk p—1 i k-
55 k+max(2,k —1).
5.6 Goto step 4.
Otherwise, forl =k — 2,k — 3, ..., 1, execute RED(k,l), and finally set k+k + 1.
6. If k£ < nthen goto step 4. Otherwise, return(by, b, . .. , by,).

RED(k,) If || > 3 then do the following:
1. r+ L05 + ,LLk’lJ, br<br — rby.
2. Forjfrom1tol — 1, set pp j<pir,; — TH;-
3. Uk el — T

3.102 Note (explanation of selected steps of Algorithm 3.101)
(i) Steps1and2initiaizethealgorithmby computingd; (1 <7 <n)andp;; (1 <j <
i < n)asdefinedin equations (3.9) and (3.8), and also B; =< b}, b > (1 < i < n).
(ii) kisavariablesuch that the vectorsby, bo, ... ,bx—1 arereduced (initidly £ = 2in
step 3). The agorithm then attemptsto modify by, sothat by, bo, . .. , by arereduced.

TCL Exhibit 1009
Page 137

120 Ch. 3 Number-Theoretic Reference Problems

(iii) In step 4, the vector by, is modified appropriately so that |, x—1| < 3, and the
areupdatedfor1 < j < k — 1.

(iv) In step 5, if the condition of equation (3.10) is violated for i = k, then vectors by,
and by, are exchanged and their corresponding parameters are updated. Also, k is
decremented by 1 sincethenitisonly guaranteed that b1, bo, . . . , br_o are reduced.
Otherwise, by, is modified appropriately so that |u, ;| < 4 forj =1,2,... k-2,
while keeping (3.10) satisfied. % isthen incremented because now by, bo, . . ., by, are
reduced.

It can be proven that the L3-algorithm terminates after a finite number of iterations.
Note that if L is an integer lattice, i.e. L C Z", then the L3-algorithm only operates on
rational numbers. The precise running time is given next.

3.103 Fact Let L C Z" bealattice with basis {b1, b2, ... ,b,},andlet C € R, C' > 2, besuch
that ||b;||2 < C fori = 1,2,...,n. Thenthe number of arithmetic operations needed by
Algorithm 3.101is O(n* log C), on integers of size O(n log C) hits.

3.10.2 Solving subset sum problems of low density
Thedensity of aknapsack set, as defined bel ow, provides a measure of the size of the knap-
sack elements.

3.104 Definition Let S = {aj,as,... ,a,} beaknapsack set. Thedensity of .S is defined to be
n
" max{lga; |1 <i<n}’

Algorithm 3.105 reduces the subset sum problem to one of finding a particular short
vector in alattice. By Fact 3.100, the reduced basis produced by the L 3-algorithmincludes
avector of length which is guaranteed to be within afactor of 2(»~1)/2 of the shortest non-
zero vector of the lattice. In practice, however, the L3-algorithm usually finds a vector
which is much shorter than what is guaranteed by Fact 3.100. Hence, the L3-algorithm
can be expected to find the short vector which yields a solution to the subset sum problem,
provided that this vector is shorter than most of the non-zero vectorsin the lattice.

3.105 Algorithm Solving subset sum problems using L*-algorithm

INPUT: aset of positive integers {aq, as, . .. ,a,} and aninteger s.
OUTPUT: z; € {0,1},1 < i <n,suchthat >, a;z; = s, provided such z; exist.

1 Letm = [3/n].
2. Forman (n+ 1)-dimensional lattice L with basis consisting of therows of the matrix

1 0 0 -+ 0 ma

01 0 -+ 0 mas

0O 0 1 --- 0 mag

0 0 O 1 man,
1

3 3 3 3 ms

3. Find areduced basis B of L (use Algorithm 3.101).
4. For ech vector y = (y1,¥2, ... ,Yn+1) in B, do thefollowing:

TCL Exhibit 1009
Page 138

§3.10 The subset sum problem 121

41 fy,p1 =0andy; € {—1 L} forali=1,2,...,n,thendothefollowing:

252
Fori=1,2,...,n,setz;<y; + 5.
If Y70, aiz; = s, thenreturn(asolutionis (z1, z2, . .. ,zn)).
Fori=1,2,...,n,seta;+ —y; + 1.
If >0 aiz; = s, thenreturn(asolutionis (z1, z2, . . . , zn)).

5. Return(FAILURE). (Either no solution exists, or the algorithm hasfailed to find one.)

Justification. Let the rows of the matrix A be by, bo, ... ,b,4+1, and let L bethe (n + 1)-

dimensional lattice generated by thesevectors. If (z1, z2, . .. , z,,) iSasolutionto the subset
sum problem, the vector y = Y7, @;b; — byy1 isin L. Notethaty; € {—3, 3} for

i=1,2,...,nandy,.1 = 0. Since ||ly|| = \/y% +y3+---+y2,, thevector y isa
vector of short lengthiin L. If the density of the knapsack set is small, i.e. the a; arelarge,
then most vectorsin L will have relatively large lengths, and hence y may be the unique
shortest non-zero vector in L. If thisisindeed the case, then there is good possibility of the
L3-algorithm finding a basis which includes this vector.

Algorithm 3.105is not guaranteed to succeed. Assuming that the L 3-algorithm always
produces a basis which includes the shortest non-zero lattice vector, Algorithm 3.105 suc-
ceeds with high probability if the density of the knapsack set isless than 0.9408.

3.10.3 Simultaneous diophantine approximation

3.106

3.107

Simultaneousdiophanti neapproximation is concerned with approximating avector (%1 , %2 ,
ey %") of rational numbers (more generally, avector (a1, as, . .. , a,) of rea numbers)
by avector (%, B2 ., %") of rational numberswith asmaller denominator p. Algorithms
for finding simultaneous di ophantine approximation have been used to break some knap-
sack public-key encryption schemes (8.6).

Definition Letd beareal number. Thevector (%, %2, e, %) of rational numbersissaid
to be a simultaneous diophantine approximation of 5-quality to the vector (&, 2 In)

: . bl Lk
of rational numbersif p < ¢q and

<qg%fori=1,2,...,n.

‘ qi

P— —Di
q

(Thelarger ¢ is, the better is the approximation.) Furthermore, it is an unusually good si-

multaneous diophantine approximation (UGSDA) if § > %
Fact 3.107 shows that an UGSDA isindeed unusual.

Fact Forn > 2, the set
q1 Qg2 qn
Sn(‘]) = {<_17_a 7_L) ‘ 0 < g <4q, ng(q17q27"' aQnaq) = 1}
q g q
has at least 2¢™ members. Of these, at most O(g"* ~9)*1) members have at least one é-

quality simultaneous diophantine approximation. Hence, for any fixed § > % the fraction
of membersof S, (¢q) having at least one UGSDA approaches(as ¢ — oo.

Algorithm 3.108 reduces the problem of finding a §-quality simultaneous diophantine
approximation, and hence also a UGSDA, to the problem of finding a short vector in alat-
tice. The latter problem can (usually) be solved using the L3-lattice basis reduction.

TCL Exhibit 1009
Page 139

122 Ch. 3 Number-Theoretic Reference Problems

3.108 Algorithm Finding a §-quality simultaneous diophantine approximation

INPUT: avector w = (%1, %2, . ,%) of rational numbers, and arationa number § > 0.
OUTPUT: aé-quality simultaneous diophantine approximation (%, %2, e %“) of w.

1. Choose aninteger A ~ ¢°.
2. Use Algorithm 3.101 to find areduced basis B for the (n 4 1)-dimensional lattice L
which is generated by the rows of the matrix

g 0 0o -~ 0 0
0 g 0o -~ 0 0
0 0 N - 0 0
A= . .) ,))
0 0 0 - A O
—Aq1 —Ag2 —Ags - —Agn 1
3. Foreachwv = (v1,v2,... ,Un, Unt1) IN B such that v,1 # ¢, dothe following:
3.1 p+vpt1.
3.2 Forifrom 1ton, set i1 (% +pgi).
33 If [p% — pi| < g% foreachi, 1 < i < n,then return(e, 2, Ba),

4. Return(FAILURE). (Either no §-quality simultaneousdiophantine approximation ex-
ists, or the algorithm has failed to find one.)

Justification. Let the rows of the matrix A be denoted by b1, bs, . .. , by4+1. Suppose that

@ g In —quali imation (2L 22 Pn
(ql, L.z) has a §-quality approximation (2B, B). Then the vector
x = pib1 +paba+ -+ pubp + pbpya

= (Mp1g —pa1), A2 — pg2); - - - s AM(Pngq — Pan), p)
isin L and has length less than approximately (1/n + 1)g. Thusz is short compared to the
original basisvectors, which are of length roughly ¢*+°. Also, if v = (v, v2, ... ,Unt1) iS
avector in L of Iengthleﬁthanq,thenthevector(%, %2,... ,%") definedinstep 3isad-

quality approximation. Hencethereisagood possibility that the L 3-algorithmwill produce
areduced basis which includes a vector v that correspondsto a §-quality approximation.

3.11 Factoring polynomials over finite fields

The problem consideredin this section is the following: given apolynomia f(z) € Fy[z],
with ¢ = p™, finditsfactorization f(z) = f1(z)® fa(z)®2 - - - fi(x)*, whereeach f;(z) is
anirreducible polynomial inF,[z] and each e; > 1. (e; iscalled the multiplicity of the fac-
tor f;(z).) Severa situationscall for the factoring of polynomiasover finitefields, such as
index-calculus algorithms in ... (Example 3.70) and Chor-Rivest public-key encryption
(§8.6.2). This section presents an agorithm for square-free factorization, and Berlekamp’s
classical deterministic algorithm for factoring polynomiaswhich is efficient if the under-
lying field issmall. Efficient randomized algorithms are known for the case of large g; ref-
erences are provided on page 132.

TCL Exhibit 1009
Page 140

§3.11 Factoring polynomials over finite fields 123

3.11.1 Square-free factorization

Observefirst that f(x) may be divided by its leading coefficient. Thus, it may be assumed
that f(x) ismonic (see Definition 2.187). This section shows how the problem of factoring
amonic polynomial f(z) may then be reduced to the problem of factoring one or more
monic square-free polynomials.

3.109 Definition Let f(z) € Fy[z]. Then f(z) is square-freeif it has no repeated factors, i.e.,
thereis no polynomial g(z) with deg g(z) > 1 suchthat g(x)? divides f(z). The square-
free factorization of f(z) is f(x) =]_[,’f:1 fi(x)?, where each f;(x) is asquare-free poly-
nomial and ged(f;(z), f;(z)) = 1fori # j. (Someof the f;(x) in the square-free factor-
ization of f(x) may be 1.)

Let f(z) = >, a;z* beapolynomial of degreen > 1. The (formal) derivative of
f(z) isthe polynomial f'(z) = 3.7 a;1 (i + 1)’ If f/(x) = 0, then, becausep is the
characteristic of F,, in each term a;z" of f(z) for which a; # 0, the exponent of z must
be amultiple of p. Hence, f(x) hastheform f(z) = a(z)?, wherea(z) = 31/2 a%%",
and the problem of finding the square-free factorization of f(z) is reduced to finding that
of a(x). Now, it is possiblethat a’(x) = 0, but repeating this process as necessary, it may
be assumed that f’(x) # 0.

Next, let g(z) = ged(f(x), f'(x)). Noting that an irreducible factor of multiplicity &
in f(x) will have multiplicity k — 1 in f/(z) if ged(k, p) = 1, and will retain multiplicity
kin f'(x) otherwise, the following conclusions may be drawn. If g(z) = 1, then f(z)
has no repeated factors; and if g(x) has positive degree, then g(z) is a non-trivial factor
of f(z), and f(z)/g(x) has no repeated factors. Note, however, the possibility of g(x)
having repeated factors, and, indeed, the possibility that ¢’(x) = 0. Nonetheless, g(z) can
berefined further asabove. The stepsare summarizedin Algorithm 3.110. Inthealgorithm,
F' denotes the square-free factorization of afactor of f(x) in factored form.

3.110 Algorithm Square-free factorization

SQUARE-FREE(f (x))
INPUT: amonic polynomial f(z) € F,[z] of degree > 1, where[F, has characteristic p.
OUTPUT: the square-free factorization of f(z).
1. Seti«1, F+1, and compute f'(z).
2. If f'(z) = O then set f(x)« f(z)'/? and F+(SQUARE-FREE(f(z)))P.
Otherwise (i.e. f'(x) # 0) do the following:
2.1 Compute g(z)+ ged(f(z), f'(z)) and h(z)+f(z)/g9(x).
2.2 While h(x) # 1 do the following:
Compute h(z)< ged(h(z), g(z)) and I(x)<h(z)/h(z).
Set F«F - 1(x)t, i<i+1, h(z)<h(z), and g(z)+g(z)/h(z).
2.3 If g(x) # 1 then set g(x)<—g(x)'/P and F<+F - (SQUARE-FREE(g(x)))P.
3. Return(F).

Oncethe square-freefactorization f(z) = Hle fi(z)? isfound, the square-free poly-
nomias f1(z), fa(z),. .. , fx(z) need to be factored in order to obtain the complete fac-
torization of f(x).

TCL Exhibit 1009
Page 141

124 Ch. 3 Number-Theoretic Reference Problems

3.11.2 Berlekamp’s Q-matrix algorithm

Let f(z) = 1'[;?:1 fi(z) beamonic polynomia in F,[x] of degree n having distinct irre-
ducible factors f;(z), 1 < ¢ < t. Berlekamp's Q-matrix algorithm (Algorithm 3.111) for
factoring f(x) isbased on the following facts. The set of polynomials

B = {b(z) € Fyz]/(f(2)) | b(2)" = b(z) (mod f(x))}

is avector space of dimension t over F,,. B consists of precisely those vectors in the null
space of the matrix @ — I,,, where Q isthen x n matrix with (4, j)-entry g;; specified by

n—1
2 mod f(z) = Zqijxj, 0<i<n-—1,
3=0

and where I,, isthe n x n identity matrix. A basis B = {v1(z), v2(z),... ,v(x)} for
B can thus be found by standard techniques from linear algebra. Finally, for each pair of
distinct factors f;(z) and f;(x) of f(x) there exists some vi(z) € B andsomea € F,
such that f;(x) dividesvy(z) — « but f;(x) does not divide vy (z) — o; these two factors
can thus be split by computing ged(f (), vk (z) — «). In Algorithm 3.111, a vector w =

(wo, w1, ... ,w,—_1) isidentified with the polynomia w(z) = Z;’;Ol w;xt.

3.111 Algorithm Berlekamp’s Q-matrix algorithm for factoring polynomials over finite fields

INPUT: asguare-free monic polynomial f(z) of degreen inF,[z].
OUTPUT: the factorization of f(x) into monic irreducible polynomials.

1. Foreachi, 0 <i < n — 1, compute the polynomial
2 mod f(z) = Zqijxj.
j=0

Note that each g;; is an element of IF,,.

2. Formthen x n matrix @ whose (i, j)-entry is g;;.

3. Determineabasis vy, va, . .. , v for the null space of the matrix (Q — I,,), where I,
isthen x n identity matrix. The number of irreduciblefactorsof f(z) isprecisely .

4. Set F«+{f(x)}. (F istheset of factorsof f(z) found so far; their product is equal
to f(z).)

5. For i from 1 to ¢ do the following:

5.1 For each polynomial h(z) € F suchthat deg h(x) > 1 do thefollowing: com-
pute ged(h(x),v;(z) — o) for each o € Fy, and replace h(z) in F by al those
polynomialsin the gcd computations whose degrees are > 1.

6. Return(the polynomialsin F are theirreducible factors of f(x)).

3.112 Fact Therunningtimeof Algorithm 3.111 for factoring asquare-freepolynomial of degree
n over F, is O(n® + tgn?) F,-operations, where ¢ is the number of irreducible factors of
f(z). Themethod is efficient only when ¢ is small.

TCL Exhibit 1009
Page 142

§3.12 Notes and further references 125

3.12 Notes and further references

§3.1

§3.2

Many of the topics discussed in this chapter lie in the realm of algorithmic number the-
ory. Excellent references on this subject include the books by Bach and Shallit [70], Cohen
[263], and Pomerance [993]. Adleman and McCurley [15] give an extensive survey of the
important open problemsin a gorithmic number theory. Two other recommended surveys
are by Bach [65] and Lenstraand Lenstra[748]. Woll [1253] gives an overview of there-
ductions among thirteen of these problems.

A survey of theinteger factorization problemis given by Pomerance [994]. See also Chap-
ters8 and 10 of Cohen[263], and the books by Bressoud [198] and Kaoblitz [697]. Brillhart
et a. [211] provide extensive listings of factorizations of integers of the form b™ + 1 for
“small” nandb = 2,3,5,6,7,10,11, 12.

Bach and Sorenson [71] presented some algorithms for recognizing perfect powers
(cf. Note 3.6), one having aworst-case running time of O(Ig* n) bit operations, and a sec-
ond having an average-case running time of O(Ig® n) bit operations. A more recent algo-
rithm of Bernstein [121] runs in essentially linear time O((lgn)'*t°(). Fact 3.7 is from
Knuth [692)]. Pages 367-369 of this reference contain explicit formulas regarding the ex-
pected sizes of the largest and second largest prime factors, and the expected total number
of prime factors, of arandomly chosen positive integer. For further results, see Knuth and
Trabb Pardo [694], who prove that the average number of bitsin the k*® largest prime fac-
tor of arandom m-bit number is asymptotically equivalent to the average length of the k t®
longest cycle in a permutation on m objects.

Floyd's cycle-finding algorithm (Note 3.8) is described by Knuth [692, p.7]. Sedgewick,
Szymanski, and Yao [1106] showed that by saving a small humber of values from the z;
sequence, acollision can be found by doing roughly one-third thework asin Floyd's cycle-
finding algorithm. Pollard’s rho algorithm for factoring (Algorithm 3.9) is due to Pollard
[985]. Regarding Note 3.12, Cohen [263, p.422] provides an explanation for therestriction
¢ # 0,—2. Brent [196] presented a cycle-finding algorithm which is better on average
than Floyd'scycle-finding algorithm, and applied it to yield afactorization algorithm which
is similar to Pollard’s but about 24 percent faster. Brent and Pollard [197] |ater modified
this algorithm to factor the eighth Fermat number Fs = 22" 4+ 1. Usi ng techniques from
algebraic geometry, Bach [67] obtained the first rigorously proven result concerning the
expected running time of Pollard’s rho agorithm: for fixed k, the probability that a prime
factor p is discovered before step k is at least (%) /p + O(p~%/2) asp — oo.

Thep — 1 agorithm (Algorithm 3.14) is due to Pollard [984]. Severd practical improve-
ments have been proposed for the p — 1 algorithm, including those by Montgomery [894]
and Montgomery and Silverman [895], the latter using fast Fourier transform techniques.
Williams [1247] presented an algorithm for factoring » which is efficient if n» has a prime
factor p suchthat p+1 issmooth. These methodswere generalized by Bach and Shallit [69]
to techniquesthat factor n efficiently provided n has a prime factor p such that the k" cy-
clotomic polynomial @ (p) is smooth. The first few cyclotomic polynomiasare @, (p) =
p—1,®82(p) = p+1,83(p) = p> +p+1,84(p) = p* +1,®5(p) = p* +p> +p*> +p+1,
and ®6(p) = p* —p + 1.

The dlliptic curve factoring algorithm (ECA) of §3.2.4 was invented by Lenstra [756].
Montgomery [894] gave severa practical improvements to the ECA. Silverman and

TCL Exhibit 1009
Page 143

126

Ch. 3 Number-Theoretic Reference Problems

Wagstaff [1136] gave a practical analysis of the complexity of the ECA, and suggested op-
timal parameter selection and running-time guidelines. Lenstraand Manasse [753] imple-
mented the ECA on anetwork of MicroVAX computers, and were successful in finding 35-
decimal digit primefactors of large (at |east 85 digit) compositeintegers. Later, Dixon and
Lenstra [350] implemented the ECA on a 16K MasPar (massively parallel) SIMD (single
instruction, multiple data) machine. The largest factor they found was a 40-decimal digit
prime factor of an 89-digit composite integer. On November 26 1995, Peter Montgomery
reported finding a 47-decimal digit prime factor of the 99-digit compositeinteger 5256 + 1
with the ECA.

Hafner and McCurley [536] estimated the number of integersn < x that can be factored
with probability at least £ using at most ¢ arithmetic operations, by trial division and the
dliptic curve algorithm. Pomerance and Sorenson [997] provided the anal ogous estimates
for Pollard’'sp — 1 algorithm and Williams' p+ 1 algorithm. They concludethat for agiven
running time bound, both Pollard’sp—1 and Williams' p+-1 algorithmsfactor moreintegers
than trial division, but fewer than the elliptic curve algorithm.

Pomerance[994] credits theidea of multiplying congruencesto produceasolutiontoz? =
y? (mod n) for the purpose of factoring n (§3.2.5) to some old work of Kraitchik circa
1926-1929. The continued fraction factoring algorithm, first introduced by Lehmer and
Powers[744] in 1931, and refined morethan 40 years|later by Morrison and Brillhart [908],
was the first redization of a random square method to result in a subexponential-time al -
gorithm. The agorithm was later analyzed by Pomerance [989] and conjectured to have
an expected running time of L, (3, v/2]. If the smoothness testing in the algorithm is done
with the elliptic curve method, then the expected running time dropsto L, [%, 1]. Morrison
and Brillhart were also the first to use the idea of afactor baseto test for good (a;, b;) pairs.
The continued fraction algorithm was the champion of factoring algorithms from the mid
1970s until the early 1980s, when it was surpassed by the quadratic sieve algorithm.

The quadratic sieve (QS) (§3.2.6) was discovered by Pomerance[989, 990]. The multiple
polynomial variant of the quadratic sieve (Note 3.25) is due to P. Montgomery, and is de-
scribed by Pomerance [990]; see also Silverman [1135]. A detailed practical analysis of
the QS is given by van Oorschot [1203]. Several practical improvements to the original
algorithms have subsequently been proposed and successfully implemented. Thefirst seri-
ous implementation of the QS was by Gerver [448] who factored a 47-decimal digit num-
ber. In 1984, Davis, Holdridge, and Simmons [311] factored a 71-decimal digit number
with the QS. In 1988, L enstraand Manasse [753] used the QS to factor a 106-decimal digit
number by distributing the computations to hundreds of computers by electronic mail; see
also Lenstraand Manasse [754]. In 1993, the QS was used by Denny et al. [333] to factor
a 120-decimal digit number. In 1994, the 129-decimal digit (425 bit) RSA-129 challenge
number (see Gardner [440]), wasfactored by Atkinset a. [59] by enlisting the help of about
1600 computers around the world. The factorization was carried out in 8 months. Table 3.3
shows the estimated time taken, in mipsyears, for the above factorizations. A mipsyear is
equivalent to the computational power of acomputer that israted at 1 mips (millioninstruc-
tions per second) and utilized for one year, or, equivalently, about 3 - 1013 instructions.

Thenumber field sievewasfirst proposed by Pollard [987] and refined by others. Lenstraet
a. [752] described the special number field sieve (SNFS) for factoring integers of the form
r¢ — s for small positiver and |s|. A readableintroductionto the algorithm is provided by
Pomerance [995]. A detailed report of an SNFS implementation is given by Lenstra et al.
[751]. Thisimplementation was used to factor the ninth Fermat number Fy = 2°12 4 1,
which is the product of three prime factors having 7, 49, and 99 decimal digits. The gen-
eral number field sieve (GNFS) was introduced by Buhler, Lenstra, and Pomerance [219].

TCL Exhibit 1009
Page 144

§3.12 Notes and further references 127

§3.3

§3.4

§3.5

| Year | Number of digits | mipsyears |

1984 71 0.1

1988 106 140
1993 120 825
1994 129 5000

Table 3.3: Running time estimates for numbers factored with QS

Coppersmith [269] proposed modifications to the GNFS which improve its running time
to Ln[é, 1.902], however, the method is not practical; another modification (also imprac-
tical) allows a precomputation taking L,[%,2.007] time and L,,[£, 1.639] storage, follow-
ing which all integersin a large range of values can be factored in Ln[é, 1.639] time. A
detailed report of a GNFS implementation on a massively parallel computer with 16384
processors is given by Bernstein and Lenstra [122]. See also Buchmann, Loho, and Za-
yer [217], and Galliver, Lenstra, and McCurley [493]. More recently, Dodson and Lenstra
[356] reported on their GNFS implementation which was successful in factoring a 119-
decimal digit number using about 250 mipsyears of computing power. They estimated that
this factorization completed about 2.5 times faster than it would with the quadratic sieve.
Most recently, Lenstra [746] announced the factorization of the 130-decimal digit RSA-
130 challenge number using the GNFS. This number isthe product of two 65-decimal digit
primes. The factorization was estimated to have taken about 500 mips years of computing
power (compare with Table 3.3). The book edited by Lenstra and Lenstra [749] contains
several other articles related to the number field sieve.

The ECA, continued fraction algorithm, quadratic sieve, special number field sieve, and
general number field sieve have heuristic (or conjectured) rather than proven running times
because the analyses make (reasonabl €) assumptions about the proportion of integers gen-
erated that are smooth. See Canfield, Erdds, and Pomerance [231] for bounds on the pro-
portion of y-smooth integers in the interval [2, z]. Dixon's algorithm [351] was the first
rigorously analyzed subexponential -time algorithm for factoring integers. The fastest rig-
orously analyzed algorithm currently known is due to Lenstra and Pomerance [759] with
an expected running time of L, [%, 1]. These algorithms are of theoretical interest only, as
they do not appear to be practical.

TheRSA problem wasintroduced in thelandmark 1977 paper by Rivest, Shamir, and Adle-
man [1060].

The quadratic residuosity problem is of much historical interest, and was one of the main
algorithmic problems discussed by Gauss [444].

An extensive treatment of the problem of finding square roots modulo a prime p, or more
generally, the problem of finding dt* rootsin afinitefield, can befoundin Bach and Shallit
[70]. The presentation of Algorithm 3.34 for finding sguare roots modulo a prime is de-
rived from Koblitz [697, pp.48-49]; a proof of correctness can be found there. Bach and
Shallit attribute the essential ideas of Algorithm 3.34 to an 1891 paper by A. Tonelli. Al-
gorithm 3.39 is from Bach and Shallit [70], who attribute it to a 1903 paper of M. Cipolla

The computational equivalence of computing square roots modulo a composite n and fac-
toring n (Fact 3.46 and Note 3.47) was first discovered by Rabin [1023].

TCL Exhibit 1009
Page 145

128

Ch. 3 Number-Theoretic Reference Problems

§3.6

A survey of the discrete logarithm problem is given by McCurley [827]. See also Odlyzko
[942] for a survey of recent advances.

Knuth [693] attributes the baby-step giant-step algorithm (Algorithm 3.56) to D. Shanks.
The baby-step giant-step algorithmsfor searching restricted exponent spaces (cf. Note 3.59)
are described by Heiman [546]. Supposethat p isak-bit prime, and that only exponents of
Hamming weight ¢ are used. Coppersmith (personal communication, July 1995) observed
that this exponent space can be searchedin & - (’f@ steps by dividing the exponent into two
equal pieces so that the Hamming weight of each pieceist/2; if k ismuch smaller than 2¢/2,
thisis an improvement over Note 3.59.

Pollard srho agorithmfor logarithms (Algorithm 3.60) is dueto Pollard [986]. Pollard also
presented alambda method for computing discrete logarithmswhich is applicable when z,
thelogarithm sought, isknowntolieinacertaininterval. Morespecificaly, if theinterval is
of width w, themethod isexpected to take O (/w) group operationsand requiresstorage for
only O(lg w) group elements. Van Oorschot and Wiener [1207] showed how Pollard’srho
algorithm can be parallelized so that using m processors results in a speedup by afactor of
m. Thishas particular significanceto cyclic groupssuch as dlliptic curve groups, for which
no subexponential-time discrete logarithm algorithm is known.

The Pohlig-Hellman agorithm (Algorithm 3.63) was discovered by Pohlig and Hellman
[982]. A variation which represents the logarithm in a mixed-radix notation and does not
use the Chinese remainder theorem was given by Thiong Ly [1190].

According to McCurley [827], the basic ideas behind the index-cal culus algorithm (Algo-
rithm 3.68) first appeared in the work of Kraitchik (circa 1922-1924) and of Cunningham
(see Western and Miller [1236]), and was rediscovered by several authors. Adleman [8] de-
scribed the method for the group Z,, and analyzed the complexity of thealgorithm. Hellman
and Reyneri [555] gave the first description of an index-calculus algorithm for extension
fieldsF,m with p fixed.

Coppersmith, Odlyzko, and Schroeppel [280] presented three variants of theindex-calculus
method for computing logarithms in Z;: the linear sieve, the residue list sieve, and the
Gaussian integer method. Each has a heuristic expected running time of Lp[%, 1] (cf.
Note3.71). The Gaussian integer method, whichisrelated to the method of ElGamal [369],
wasimplemented in 1990 by LaMacchiaand Odlyzko [736] and was successful in comput-
ing logarithmsin Z,, with p a 192-hit prime. The paper concludesthat it should be feasible
to compute discrete logarithms modul o primes of about 332 bits (100 decimal digits) using
the Gaussian integer method. Gordon[510] adapted the number field sievefor factoringin-
tegersto the problem of computing logarithmsin Z?; his algorithm has a heuristic expected
running time of L,,[3,], wherec = 3%/3 2 2.080. Schirokauer [1092] subsequently pre-
sented a modification of Gordon’s agorithm that has a heuristic expected running time of
Ly[,c], wherec = (64/9)'/3 ~ 1.923 (Note 3.72). This is the same running time as
conjectured for the number field sieve for factoring integers (see §3.2.7). Recently, Weber
[1232] implemented the al gorithms of Gordon and Schirokauer and was successful in com-
puting logarithmsin Z,,, wherep isa40-decimal digit primesuch that p — 1 isdivisibleby a
38-decimal digit (127-bit) prime. More recently, Weber, Denny, and Zayer (personal com-
munication, April 1996) announced the solution of a discrete logarithm problem modulo a
75-decimal digit (248-bit) prime p with (p — 1)/2 prime.

Blake et al. [145] made improvements to the index-calculus technique for ... and com-
puted logarithms in F3:.-. Coppersmith [266] dramatically improved the algorithm and
showed that under reasonabl e assumptions the expected running time of his improved al-

TCL Exhibit 1009
Page 146

§3.12 Notes and further references 129

gorithmis Lom [%, c] for some constant ¢ < 1.587 (Note 3.72). Later, Odlyzko [940] gave
severa refinements to Coppersmith’s algorithm, and a detailed practical analysis; this pa-
per provides the most extensive account to date of the discrete logarithm problemin ...
A similar practical analysiswas also given by van Oorschot [1203]. Most recently in 1992,
Gordon and McCurley [511] reported on their massively parallel implementation of Cop-
persmith’salgorithm, combined with their own improvements. Using primarily a1024 pro-
cessor NCUBE-2 machine with 4 megabytes of memory per processor, they compl eted the
precomputation of logarithms of factor base elements (which is the dominant step of the
algorithm) required to compute logarithmsin F ..+, F3s15, and F3.0: . The calculations for
F340: Were estimated to take 5 days. Gordon and McCurley also completed most of the pre-
computations required for computing logarithms in IF 3505 ; the amount of time to complete
thistask onthe 1024 processor nCUBE-2 was estimated to be 44 days. They concluded that
computing logarithmsin the multiplicative groups of fields as large as Foses till seemsto
be out of their reach, but might be possible in the near future with a concerted effort.

It was not until 1992 that a subexponential-time algorithm for computing discrete loga-
rithms over al finite fields IF, was discovered by Adleman and DeMarrais [11]. The ex-
pected running time of the algorithmisconjecturedtobe L, [%, c| for someconstant c. Adle-
man [9] generalized the number field sieve from algebraic number fields to algebraic func-
tion fieldswhich resulted in an algorithm, called the function field sieve, for computing dis-

crete logarithmsin IF;.. ; the algorithm has a heuristic expected running time of L,n [%, c]
for some constant ¢ > 0 whenlogp < m9(™), and where g is any function such that
0 < g(m) < 0.98 and lim,,—, g(m) = 0. The practicality of the function field sieve has
not yet been determined. It remains an open problem to find an algorithm with a heuristic
expected running time of L[+, ¢] for all finitefields F,.

The algorithms mentioned in the previous three paragraphs have heuristic (or conjectured)
rather than proven running times because the analyses make some (reasonable) assump-
tions about the proportion of integers or polynomials generated that are smooth, and also
becauseit isnot clear when the system of linear equationsgenerated hasfull rank, i.e., yields
a unique solution. The best rigorously analyzed agorithms known for the discrete loga-
rithm problemin Z; and I3, are dueto Pomerance [991] with expected running times of
Ly[,v/2] and Ly [%, v/2], respectively. Lovorn[773] obtained rigorously analyzed algo-
rithms for the fields F 2 and F,» withlogp < m®98, having expected running times of
Ly2[%, 3] and L (%, V2], respectively.

The linear system of equations collected in the quadratic sieve and number field sieve fac-
toring algorithms, and the index-cal culus algorithms for computing discrete logarithmsin
Z, and .., arevery large. For the problem sizes currently under consideration, these sys-
tems cannot be solved using ordinary linear algebratechniques, due to both time and space
constraints. However, the equations generated are extremely sparse, typically with at most
50 non-zero coefficients per equation. The technique of structured or so-called intelligent
Gaussian elimination (see Odlyzko [940]) can be used to reduce the original sparse system
to amuch smaller system that is till fairly sparse. The resulting system can be solved us-
ing either ordinary Gaussian elimination, or one of the conjugate gradient, Lanczos (Cop-
persmith, Odlyzko, and Schroeppel [280]), or Wiedemann algorithms [1239] which were
aso designed to handle sparse systems. LaMacchia and Odlyzko [737] have implemented
some of these algorithms and concluded that the linear algebrastages arising in both integer
factorization and the discrete logarithm problem are not running-time bottlenecks in prac-
tice. Recently, Coppersmith [272] proposed a modification of the Wiedemann algorithm
which allows parallelization of the algorithm; for an analysis of Coppersmith’s algorithm,
see Kaltofen [657]. Coppersmith [270] (see also Montgomery [896]) presented a modifi-

TCL Exhibit 1009
Page 147

130

Ch. 3 Number-Theoretic Reference Problems

cation of the Lanczos algorithm for solving sparse linear equations over IFo; this variant
appearsto be the most efficient in practice.

Asan example of the numbersinvolved, Gordon and McCurley’'s[511] implementation for
computing logarithmsinF3.0. produced atotal of 117164 equationsfrom afactor base con-
sisting of the 58636 irreducible polynomialsin F»[xz] of degree at most 19. The system of
equationshad 2068707 non-zero entries. Structured Gaussian elimination was then applied
to this system, theresult being a16139 x 16139 system of equations having 1203414 non-
zero entries, which was then solved using the conjugate gradient method. Another example
isfrom the recent factorization of the RSA-129 number (see Atkinset a. [59]). Thesieving
step produced a sparse matrix of 569466 rows and 524339 columns. Structured Gaussian
elimination was used to reduce thisto a dense 188614 x 188160 system, which was then
solved using ordinary Gaussian elimination.

Thereare many ways of representing afinitefield, although any two finitefieldsof the same
order are isomorphic (see also Note 3.55). Lenstra[757] showed how to compute an iso-
morphism between any two explicitly given representationsof afinitefield in deterministic
polynomial time. Thus, it is sufficient to find an algorithm for computing discrete loga-
rithmsin one representation of agiven field; this agorithm can then be used, together with
the isomorphism obtained by Lenstra’s algorithm, to compute logarithmsin any other rep-
resentation of the samefield.

Menezes, Okamoto, and Vanstone [843] showed how the discrete logarithm problem for an
elliptic curve over afinitefield IF,, can be reduced to the discrete logarithm problemin some
extension field IF .. For the special class of supersingular curves, k is at most 6, thus pro-
viding a subexponential -time algorithm for the former problem. This work was extended
by Frey and Riick [422]. No subexponential-time algorithm is known for the discrete log-
arithm problem in the more general class of non-supersingular elliptic curves.

Adleman, DeMarrais, and Huang [12] presented a subexponential-timealgorithm for find-
ing logarithms in the jacobian of large genus hyperelliptic curves over finite fields. More
precisely, there exists anumber ¢, 0 < ¢ < 2.181, such that for all sufficiently largeg > 1
and all odd primes p withlogp < (2¢g + 1)%%8, the expected running time of the algo-
rithm for computing logarithms in the jacobian of a genus g hyperelliptic curve over Z,, is
conjectured to be L2441 (%, c].

McCurley [826] invented a subexponential -time algorithm for the discrete logarithm prob-
lem in the class group of an imaginary quadratic number field. See also Hafner and Mc-
Curley [537] for further detail s, and Buchmann and Dulllmann [216] for an implementation
report.

In 1994, Shor [1128] concelived randomized polynomial -timealgorithmsfor computing dis-
crete logarithms and factoring integers on a quantum computer, a computational device
based on quantum mechanical principles; presently it is not known how to build aquantum
computer, nor if thisis even possible. Also recently, Adleman [10] demonstrated the feasi-
bility of using toolsfrom molecular biology to solvean instance of the directed Hamiltonian
path problem, which is NP-complete. The problem instance was encoded in molecul es of
DNA, and the steps of the computation were performed with standard protocols and en-
zymes. Adleman notes that while the currently available fastest supercomputers can exe-
cute approximately 1012 operations per second, it is plausible for a DNA computer to ex-
ecute 102° or more operations per second. Moreover such a DNA computer would be far
more energy-efficient than existing supercomputers. It is not clear at present whether it is
feasibleto buildaDNA computer with such performance. However, should either quantum
computers or DNA computers ever become practical, they would have a very significant

TCL Exhibit 1009
Page 148

§3.12 Notes and further references 131

§3.7

§3.8

§3.9

§3.10

impact on public-key cryptography.

Fact 3.77(i) isdue to den Boer [323]. Fact 3.77(iii) was proven by Maurer [817], who also
proved more generally that the GDHP and GDLP in agroup G of order n are computation-
ally equivalent when certain extrainformation of length O(lg n) bitsis given. The extra
information depends only on » and not on the definition of G, and consists of parameters
that define cyclic elliptic curves of smooth order over the fields Z,,, where the p; are the
primedivisors of n.

Waldvogel and Massey [1228] proved that if a and b are chosen uniformly and randomly
fromtheinterval {0, 1,... ,p—1},thevaluesa® mod p areroughly uniformly distributed
(see page 537).

Facts 3.78 and 3.79 are due to Bach [62]. Fact 3.80 is due to Shmuely [1127]. McCurley
[825] refined this result to prove that for specially chosen composite n, the ability to solve
the Diffie-Hellman problem in Z;, for the fixed base o = 16 implies the ability to factor n.

The notion of a hard Boolean predicate (Definition 3.81) was introduced by Blum and Mi-
cali [166], who also proved Fact 3.84. The notion of ahard k-bit predicate (Definition 3.82)
was introduced by Long and Wigderson [772], who also proved Fact 3.85; see also Peralta
[968]. Fact 3.83 is dueto Peralta[968]. Theresults on hard predicates and k-bit predicates
for the RSA functions (Facts 3.86 and 3.87) aredueto Alexi et al. [23]. Facts 3.88 and 3.89
are due to Vazirani and Vazirani [1218].

Yao [1258] showed how any one-way length-preserving permutation can be transformed
into a more complicated one-way length-preserving permutation which has a hard predi-
cate. Subsequently, Goldreich and Levin[471] showed how any one-way function f can be
transformed into aone-way function g which has a hard predicate. Their constructionisas
follows. Definethefunction g by g(p,) = (p, f(z)), wherepisabinary string of the same
length as z, say n. Then g isalso aone-way functionand B(p,z) = Y. ; p;z; mod 2 is
ahard predicatefor g.

Hastad, Schrift, and Shamir [543] considered the one-way function f(z) = «® mod n,
wheren isaBluminteger and « € Z),. Under the assumption that factoring Blum integers
isintractable, they proved that all the bits of thisfunction areindividually hard. Moreover,
the lower half aswell as the upper half of the bits are simultaneously secure.

The subset sum problem (Definition 3.90) is sometimes confused with the knapsack prob-
lemwhich is the following: given two sets {a1,as, ... ,a,} and {b1,bs, ... ,b,} of pos-
itive integers, and given two positive integers s and ¢, determine whether or not thereisa
subset S of {1,2,... ,n}suchthat 3, _ga; <sand), ¢ b; > t. The subset sum prob-
lem is actually a specia case of the knapsack problemwhen a; = b; fori = 1,2,... ., n
and s = t. Algorithm 3.94 is described by Odlyzko [941].

The L3-lattice basis reduction algorithm (Algorithm 3.101) and Fact 3.103 are both due to
Lenstra, Lenstra, and Lovasz [750]. Improved algorithms have been given for lattice basis
reduction, for example, by Schnorr and Euchner [1099]; consult also Section 2.6 of Cohen
[263]. Algorithm 3.105for solving the subset sum probleminvolving knapsacks sets of low
density is from Coster et al. [283]. Unusually good simultaneous diophantine approxima-
tions werefirst introduced and studied by Lagarias[723]; Fact 3.107 and Algorithm 3.108
are from this paper.

TCL Exhibit 1009
Page 149

132

Ch. 3 Number-Theoretic Reference Problems

§3.11

A readableintroductionto polynomial factorization algorithmsisgiven by Lidl and Nieder-
reiter [764, Chapter 4]. Algorithm 3.110 for square-freefactorization is from Geddes, Cza-
por, and Labahn [445]. Yun [1261] presented an algorithm that is more efficient than Algo-
rithm 3.110 for finding the square-free factorization of a polynomial. The running time of
thealgorithmisonly O(n?) Z,-operationswhen f () isapolynomial of degreen inZ,[z].
A lucid presentation of Yun'salgorithmis provided by Bach and Shallit [70]. Berlekamp’s
Q-matrix algorithm (Algorithm 3.111) wasfirst discovered by Prange [999] for the purpose
of factoring polynomials of theform 2™ — 1 over finitefields. The algorithm was |ater and
independently discovered by Berlekamp [117] who improved it for factoring general poly-
nomialsover finite fields.

There is no deterministic polynomial-time algorithm known for the problem of factoring
polynomials over finite fields. There are, however, many efficient randomized algorithms
that work well even when the underlying field is very large, such as the algorithms given
by Ben-Or [109], Berlekamp [119], Cantor and Zassenhaus [232], and Rabin [1025]. For
recent work along these lines, see von zur Gathen and Shoup [1224], as well as Kaltofen
and Shoup [658].

TCL Exhibit 1009
Page 150

Chapter

Public-Key Parameters

Contentsin Brief

41 Introduction. 133
4.2 Probabilisticprimalitytests. 135
4.3 (True) Primalitytests 142
44 Primenumber generation 145
45 Irreduciblepolynomialsover Z, 154
46 Generatorsand elementsof highorder 160
47 Notesand furtherreferences 165

4.1 Introduction

The efficient generation of public-key parametersis a prerequisite in public-key systems.
A specific example is the requirement of a prime number p to define afinite field Z,, for
use in the Diffie-Hellman key agreement protocol and its derivatives (§12.6). In this case,
an element of high order in Z,, is also required. Another example is the requirement of
primes p and ¢ for an RSA modulusn = pq (§8.2). In this case, the prime must be of
sufficient size, and be “random” in the sense that the probability of any particular prime
being selected must be sufficiently small to preclude an adversary from gaining advantage
through optimizing a search strategy based on such probability. Prime numbers may be
required to have certain additional properties, in order that they do not make the associated
cryptosystems susceptible to specialized attacks. A third exampleis the requirement of an
irreducible polynomial f(z) of degree m over thefinitefield Z,, for constructing the finite
field Fym. Inthiscase, an element of high order inF ... is aso required.

Chapter outline

The remainder of §4.1 introduces basic concepts relevant to prime number generation and
summarizessomeresults onthedistribution of primenumbers. Probabilistic primality tests,
the most important of which is the Miller-Rabin test, are presented in §4.2. True primality
tests by which arbitrary integers can be proven to be prime are the topic of §4.3; sincethese
tests are generally more computationally intensive than probabilistic primality tests, they
are not described in detail. §4.4 presents four algorithms for generating prime numbers,
strong primes, and provable primes. §4.5 describes techniques for constructing irreducible
and primitive polynomials, while §4.6 considers the production of generatorsand elements
of high ordersin groups. §4.7 concludes with chapter notes and references.

133

TCL Exhibit 1009
Page 151

134 Ch. 4 Public-Key Parameters

4.1.1 Approaches to generating large prime numbers

To motivate the organization of this chapter and introduce many of the relevant concepts,
the problem of generating large prime numbersisfirst considered. The most natural method
is to generate a random number n of appropriate size, and check if it is prime. This can
be done by checking whether n is divisible by any of the prime numbers < /n. While
more efficient methods are required in practice, to motivate further discussion consider the
following approach:

1. Generate as candidate a random odd number n of appropriate size.
2. Test n for primality.
3. If n iscomposite, return to thefirst step.

A slight modificationisto consider candidatesrestricted to some search sequence start-
ing fromn; atrivial search sequencewhichmay beusedisn,n+2,n+4,n+6,.... Us
ing specific search sequences may allow one to increase the expectation that a candidateis
prime, and to find primes possessing certain additional desirable propertiesa priori.

In step 2, the test for primality might be either atest which proves that the candidate
is prime (in which case the outcome of the generator is called a provable prime), or a test
which establishesaweaker result, such asthat n is* probably prime” (in which case the out-
come of the generator is called a probable prime). In the latter case, careful consideration
must be given to the exact meaning of this expression. Most so-called probabilistic primal-
ity tests are absolutely correct when they declare candidates n to be composite, but do not
provideamathematical proof that » is primein the case when such anumber is declared to
be “probably” so. Inthe latter case, however, when used properly one may often be ableto
draw conclusions more than adequatefor the purposeat hand. For thisreason, suchtestsare
more properly called compositeness tests than probabilistic primality tests. True primality
tests, which allow oneto conclude with mathematical certainty that a number isprime, also
exist, but generally require considerably greater computational resources.

While (true) primality tests can determine (with mathematical certainty) whether atyp-
ically random candidate number is prime, other techniques exist whereby candidatesn are
specially constructed such that it can be established by mathematical reasoning whether a
candidate actually is prime. These are called constructive prime generation techniques.

A final distinction between different techniquesfor prime number generationisthe use
of randomness. Candidates are typically generated as a function of arandom input. The
technique used to judge the primality of the candidate, however, may or may not itself use
randomnumbers. If it doesnot, thetechniqueisdeterministic, and theresultisreproducible;
if it does, the techniqueis said to be randomized. Both deterministic and randomized prob-
abilistic primality tests exist.

In some cases, prime numbers are required which have additional properties. For ex-
ample, to make the extraction of discrete logarithmsin Z, resistant to an algorithm due to
Pohlig and Hellman (§3.6.4), it isarequirement that p — 1 have alarge primedivisor. Thus
techniques for generating public-key parameters, such as prime numbers, of specia form
need to be considered.

4.1.2 Distribution of prime numbers

Let 7r(x) denote the number of primesin the interval [2, z]. The prime number theorem

(Fact 2.95) states that 7w(x) ~ ﬁ.l In other words, the number of primes in the interval

Hf f(x) and g(z) are two functions, then f(z) ~ g(x) means that lim, o0 J;((:g =1.

TCL Exhibit 1009
Page 152

§4.2 Probabilistic primality tests 135

41

4.2

4.3

[2, 2] isapproximately equal to .= . The prime numbersare quite uniformly distributed, as
the following three results illustrate.

Fact (Dirichlettheorem) If gcd(a, n) = 1, thenthereareinfinitely many primescongruent
to a modulo n.

A more explicit version of Dirichlet’s theorem is the following.

Fact Let 7(z, n,a) denote the number of primesintheinterval [2, z] which are congruent
to a modulo n, where ged(a,n) = 1. Then

T
¢(n)lnz’
In other words, the prime numbers are roughly uniformly distributed among the ¢(n) con-
gruenceclassesin Z,,, for any vaue of n.

m(x,n,a) ~

Fact (approximationfor thenth primenumber) Let p,, denotethe nth primenumber. Then
pn ~ nlnn. Moreexplicitly,

nlnn < p, < n(lnn+Inlnn) forn > 6.

4.2 Probabilistic primality tests

4.4

Theagorithmsin this section are methods by which arbitrary positive integers aretested to
provide partial information regarding their primality. More specifically, probabilistic pri-
mality tests have the following framework. For each odd positive integer n, aset W(n) C
Zy, is defined such that the following properties hold:

(i) givena € Z,, itcanbecheckedindeterministic polynomia timewhethera € W (n);
(i) if nisprime, then W (n) = @ (the empty set); and
(iii) if n is composite, then #W (n) > 3.

Definition If n is composite, the elements of W (n) are called witnesses to the compos-
iteness of n, and the elements of the complementary set L(n) = Z,, — W(n) are called
liars.

A probabilistic primality test utilizesthese properties of the sets W (n) inthefollowing
manner. Suppose that n is an integer whose primality is to be determined. Aninteger a €
Z, is chosen at random, and it is checked if a € W (n). The test outputs “composite” if
a € W(n), andoutputs“prime” if a ¢ W(n). Ifindeeda € W (n), thenn issaid tofail the
primality test for thebasea; inthiscase, n issurely composite. If a ¢ W (n), thenn issaid
to pass the primality test for the base «; in this case, no conclusion with absolute certainty
can be drawn about the primality of n, and the declaration “ prime” may be incorrect. 2

Any single execution of thistest which declares” composite” establishes thiswith cer-
tainty. On the other hand, successive independent runs of thetest all of which returnthe an-
swer “prime” allow the confidencethat theinput isindeed primeto beincreased towhatever
level isdesired — the cumulative probability of error ismultiplicative over independent tri-
als. If thetest isrun ¢ times independently on the composite number n, the probability that
n is declared “prime” all ¢ times (i.e., the probability of error) isat most ($)°*.

2This discussion illustrates why a probabilistic primality test is more properly called a compositeness test.

TCL Exhibit 1009
Page 153

136 Ch. 4 Public-Key Parameters

4.5 Definition Aninteger n whichisbelieved to be prime on the basis of a probabilistic pri-
mality test is called a probable prime.

Two probabilistic primality tests are covered in this section: the Solovay-Strassen test
(84.2.2) and the Miller-Rabin test (§4.2.3). For historical reasons, the Fermat test is first
discussed in §4.2.1; thistest is not truly a probabilistic primality test since it usually fails
to distinguish between prime numbers and special composite integers called Carmichael
numbers.

4.2.1 Fermat’s test

Fermat’stheorem (Fact 2.127) assertsthat if nisaprimeand aisanyinteger, 1 < a < n-—1,
thena™ ! = 1 (mod n). Therefore, given an integer n whose primality is under question,
finding any integer a in thisinterval such that this equivalenceis not true suffices to prove
that n is composite.

4.6 Definition Let n be an odd compositeinteger. Aninteger a, 1 < a < n — 1, such that
a™ ! #1 (mod n) is called a Fermat witness (to compositeness) for n.

Conversely, finding an integer a between 1 and n — 1 suchthat a®~! = 1 (mod n)
makes n appear to be aprime in the sense that it satisfies Fermat’s theorem for the base a.
This motivates the following definition and Algorithm 4.9.

4.7 Definition Let n be an odd compositeinteger and let a beaninteger, 1 < a < n — 1.
Then n is said to be a pseudoprimeto the base a if a”~! = 1 (mod n). Theinteger a is
called aFermat liar (to primality) for n.

4.8 Example (pseudoprime) The compositeinteger n = 341 (= 11 x 31) isa pseudoprime
tothebase 2 since 2%4° = 1 (mod 341). O

4.9 Algorithm Fermat primality test

FERMAT (n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’
1. For i from 1 to ¢ do the following:
1.1 Choosearandomintegera,2 <a <n — 2.
1.2 Computer = a™~! mod n using Algorithm 2.143.
1.3 If r # 1 then return(* composite”).

2. Return(“prime”).

If Algorithm 4.9 declares “composite”, then n is certainly composite. On the other
hand, if the algorithm declares “prime” then no proof is provided that n is indeed prime.
Nonetheless, since pseudoprimes for a given base a are known to be rare, Fermat's test
provides a correct answer on most inputs; this, however, is quite distinct from providing
a correct answer most of the time (e.g., if run with different bases) on every input. In fact,
it does not do the latter because there are (even rarer) composite numbers which are pseu-
doprimesto every base a for which ged(a,n) = 1.

TCL Exhibit 1009
Page 154

§4.2 Probabilistic primality tests 137

4.10 Definition A Carmichael number n isacompositeinteger suchthat a”~! =1 (mod n)

4.11

4.12

413

for all integers a which satisfy ged(a, n) = 1.

If n isaCarmichael number, then the only Fermat witnesses for n are those integers
a,1 <a<n-—1,forwhichged(a,n) > 1. Thus, if the prime factors of n areal large,
then with high probability the Fermat test declaresthat » is“prime”, even if the number of
iterations ¢ is large. This deficiency in the Fermat test is removed in the Solovay-Strassen
and Miller-Rabin probabilistic primality tests by relying on criteriawhich are stronger than
Fermat’s theorem.

This subsection is concluded with some facts about Carmichael numbers. If the prime
factorization of n is known, then Fact 4.11 can be used to easily determine whether n isa
Carmichael number.

Fact (necessary and sufficient conditions for Carmichael numbers) A composite integer
n isaCarmichael number if and only if the following two conditions are satisfied:

(i) nissquare-free, i.e, nisnot divisible by the square of any prime; and
(if) p — 1 dividesn — 1 for every prime divisor p of n.

A consequence of Fact 4.11 is the following.
Fact Every Carmichael number isthe product of at least three distinct primes.

Fact (boundsfor the number of Carmichael numbers)

(i) There are an infinite number of Carmichael numbers. In fact, there are more than
n?/7 Carmichael numbersin theinterval [2, n], oncen is sufficiently large.
(ii) Thebest upper bound known for C'(n), the number of Carmichael numbers < n, is:

C(n) < nl—{1+o(1)}1nln1nn/lnlnn for n — oo.

The smallest Carmichael number isn = 561 = 3 x 11 x 17. Carmichael numbers are
relatively scarce; there are only 105212 Carmichael numbers < 101°.

4.2.2 Solovay-Strassen test

414

4.15

The Solovay-Strassen probabilistic primality test was the first such test popularized by the
advent of public-key cryptography, in particular the RSA cryptosystem. Thereis no longer
any reason to use this test, because an alternativeis available (the Miller-Rabin test) which
isboth more efficient and always at |least as correct (see Note 4.33). Discussion is nonethe-
lessincluded for historical completeness and to clarify this exact point, since many people
continueto reference this test.

Recall (§2.4.5) that (%) denotes the Jacobi symbol, and is equivalent to the Legendre
symbol if n is prime. The Solovay-Strassen test is based on the following fact.

Fact (Euler's criterion) Let n be an odd prime. Then a(=Y/2 = (£) (mod n) for all
integers a which satisfy ged(a,n) = 1.

Fact 4.14 motivates the following definitions.

Definition Let n bean odd compositeinteger and let a beaninteger, 1 < a <n — 1.

(i) If eitherged(a,n) > 1ora"=1/2 = (£) (mod n), thena iscalled an Euler witness
(to compositeness) for n.

TCL Exhibit 1009
Page 155

138 Ch. 4 Public-Key Parameters

(i) Otherwise, i.e, if ged(a, n) = 1anda(™~1/2 = (2£) (mod n), thenn issaid to be
an Euler pseudoprimeto the base a. (That is, n acts like aprimein that it satisfies
Euler’s criterion for the particular base a.) Theinteger a is called an Euler liar (to
primality) for n.

4.16 Example (Euler pseudoprime) The compositeinteger 91 (= 7 x 13) isan Euler pseudo-
primeto the base 9 since 9%° = 1 (mod 91) and () = 1. O

Euler’'scriterion (Fact 4.14) can be used as abasis for aprobabilistic primality test be-
cause of the following result.

4.17 Fact Letn be an odd compositeinteger. Then at most ¢(n)/2 of al the numbersa, 1 <
a <n —1,areEuler liarsfor n (Definition 4.15). Here, ¢ is the Euler phi function (Defi-
nition 2.100).

4.18 Algorithm Solovay-Strassen probabilistic primality test

SOLOVAY-STRASSEN(n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’
1. For i from 1 to ¢t do the following:
1.1 Choosearandomintegera,2 <a <mn — 2.
1.2 Computer = a("~1/2 mod n using Algorithm 2.143.
13 If r #1andr # n — 1 then return(* composite”).
1.4 Compute the Jacobi symbol s = (£) using Algorithm 2.149.
15 If r £ s (mod n) then return (“composite”).
2. Return(“prime’).

If ged(a,n) = d, then d isadivisor of 7 = a(®~1)/2 mod n. Hence, testing whether
r # 1isstep 1.3, diminates the necessity of testing whether ged(a,n) # 1. If Algo-
rithm 4.18 declares “ composite”, then . is certainly composite because prime numbers do
not violate Euler’s criterion (Fact 4.14). Equivalently, if n isactually prime, then the algo-
rithm always declares“prime”’. Onthe other hand, if n is actually composite, then sincethe
basesa instep 1.1 are chosen independently during eachiteration of step 1, Fact 4.17 can be
used to deduce the following probability of the algorithm erroneously declaring “prime”.

4.19 Fact (Solovay-Strassen error-probability bound) Let » be an odd composite integer. The
probability that SOLOVAY-STRASSEN(n,t) declaresn to be “prime” isless than (1)°.

4.2.3 Miller-Rabin test

The probabilistic primality test used most in practice is the Miller-Rabin test, also known
as the strong pseudoprimetest. Thetest is based on the following fact.

4.20 Fact Letn beanodd prime, andlet n — 1 = 2°r wherer isodd. Let a be any integer
such that ged(a,n) = 1. Then either a” = 1 (mod n) or a®’” = —1 (mod n) for some
J,0<yj<s—1

Fact 4.20 motivates the following definitions.

TCL Exhibit 1009
Page 156

84.2 Probabilistic primality tests 139

4.21

4.22

4.23

4.24

Definition Letn be an odd compositeinteger and let n — 1 = 2%r wherer isodd. Let a
be aninteger in theinterval [1,n — 1].

(i) fa” # 1 (mod n) andif a*'” # —1 (mod n) foral j,0 < j < s —1,thenais
called a strong witness (to compositeness) for n.

(i) Otherwise, i.e., if either ™ = 1 (mod n) or a®” = —1 (mod n) for some 5, 0 <
j < s—1,thennissad to be astrong pseudoprimeto the base a. (That is, n acts
like a primein that it satisfies Fact 4.20 for the particular base a.) The integer a is
caled astrong liar (to primality) for n.

Example (strong pseudoprime) Consider the compositeinteger n = 91 (= 7 x 13). Since
91—-1=90=2x45,s=1andr = 45. Since9” = 9% = 1 (mod 91), 91 isastrong
pseudoprimeto the base 9. The set of all strong liarsfor 91 is:

{1,9,10,12,16,17,22,29, 38,53, 62,69, 74, 75,79, 81, 82,90}.

Notice that the number of strong liars for 91 is 18 = ¢(91)/4, where ¢ is the Euler phi
function (cf. Fact 4.23). |

Fact 4.20 can be used as abasisfor aprobabilistic primality test dueto thefollowing result.
Fact If n isan odd compositeinteger, then at most i of all thenumbersa,1 <a <n-1,

arestrong liarsfor n. In fact, if n # 9, the number of strong liarsfor n is at most ¢(n)/4,
where ¢ is the Euler phi function (Definition 2.100).

Algorithm Miller-Rabin probabilistic primality test

MILLER-RABIN(n,t)
INPUT: an odd integer n > 3 and security parameter ¢t > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?”’
1. Writen — 1 = 2°r such that r is odd.
2. For i from 1 to ¢ do the following:
2.1 Choosearandomintegera,2 < a <n — 2.
2.2 Computey = a” mod n using Algorithm 2.143.
23 Ify #1andy # n — 1 then do the following:
71.
Whilej < s—1andy # n — 1 dothefollowing:
Compute y<y? mod n.
If y = 1 then return(“ composite”).
Jj<j+1
If y # n — 1 then return (“composite”).
3. Return(“prime’).

Algorithm 4.24 tests whether each base o satisfies the conditions of Definition 4.21(i).
Inthefifth line of step 2.3, if y = 1, thena?’” = 1 (mod n). Sinceit is also the case that
a? ' # 41 (mod n), it followsfrom Fact 3.18 that n is composite (in fact ged(a? ™ —
1,n) isanon-trivia factor of n). Inthe seventh line of step 2.3,if y # n — 1, thena isa
strong witness for n. If Algorithm 4.24 declares “composite”, then n is certainly compos-
ite because prime numbers do not violate Fact 4.20. Equivalently, if n is actualy prime,
then the algorithm always declares “ prime”’. On the other hand, if n is actually composite,
then Fact 4.23 can be used to deduce the following probability of the algorithm erroneously
declaring “ prime”.

TCL Exhibit 1009
Page 157

140 Ch. 4 Public-Key Parameters

4.25 Fact (Miller-Rabin error-probability bound) For any odd composite integer n, the proba-
bility that MILLER-RABIN(n,t) declaresn to be “prime” islessthan (3)*.

4.26 Remark (number of strong liars) For most composite integers n, the number of strong
liars for n is actually much smaller than the upper bound of ¢(n)/4 given in Fact 4.23.
Consequently, the Miller-Rabin error-probability bound is much smaller than (i)t for most
positive integersn.

4.27 Example (some composite integers have very few strong liars) The only strong liars for
the compositeinteger n = 105 (= 3 x 5 x 7) are 1 and 104. More generaly, if £ > 2 and
n isthe product of thefirst & odd primes, there are only 2 strong liars for n, namely 1 and
n — 1. O

4.28 Remark (fixed bases in Miller-Rabin) If a; and a» are strong liars for n, their product
aias isvery likely, but not certain, to also be astrong liar for n. A strategy that is some-
times employedisto fix the bases a in the Miller-Rabin algorithm to be thefirst few primes
(compositebases areignored because of the preceding statement), instead of choosing them
at random.

4.29 Definition Letp;,ps,... ,p: denotethefirst ¢ primes. Then; isdefined to be the small-
est positive compositeinteger which isastrong pseudoprimeto all thebasespy, po, - . . , p:-

The numbers); can be interpreted as follows. to determine the primality of any integer
n < 1y, itissufficient to apply the Miller-Rabin algorithm to n with the bases a being the
first ¢ prime numbers. With this choice of bases, the answer returned by Miller-Rabin is
always correct. Table 4.1 givesthevalueof ¢, for 1 <t < 8.

[|
2047

1373653
25326001
3215031751
2152302898747
3474749660383
341550071728321
341550071728321

0 O T W N s+

Table 4.1: Smallest strong pseudoprimes. Thetablelistsvaluesof «x, the smallest positive composite
integer that is a strong pseudoprime to each of thefirst ¢t prime bases, for 1 <t < 8.

4.2.4 Comparison: Fermat, Solovay-Strassen, and Miller-Rabin
Fact 4.30 describes the rel ationshi ps between Fermat liars, Euler liars, and strong liars (see
Definitions 4.7, 4.15, and 4.21).

4.30 Fact Let n bean odd composite integer.

(i) If aisanEuler liar for n, thenitisalso a Fermat liar for n.
(i) If aisastrongliar for n, thenitisalso an Euler liar for n.

TCL Exhibit 1009
Page 158

§4.2 Probabilistic primality tests 141

4.31 Example (Fermat, Euler, strong liars) Consider the composite integer n = 65 (= 5 x
13). The Fermat liars for 65 are {1, 8, 12,14, 18,21, 27,31, 34, 38,44, 47,51,53,57,64}.
The Euler liars for 65 are {1, 8, 14,18,47,51,57,64}, while the strong liars for 65 are
{1,8,18,47,57,64}. O

For a fixed composite candidate n, the situation is depicted in Figure 4.1. This set-

Fermat liars for n

Euler liars for n

strong liars for n

Figure 4.1: Relationships between Fermat, Euler, and strong liars for a composite integer n.

tlesthe question of therelative accuracy of the Fermat, Solovay-Strassen, and Miller-Rabin
tests, not only in the sense of therelative correctness of each test on afixed candidate n, but
also in the sense that given n, the specified containments hold for each randomly chosen
base a. Thus, from acorrectnesspoint of view, the Miller-Rabin test is never worsethan the
Solovay-Strassen test, which in turn is never worse than the Fermat test. Asthe following
result shows, thereare, however, some compositeintegersn for which the Solovay-Strassen
and Miller-Rabin tests are equally good.

4.32 Fact If n =3 (mod 4), thena isan Euler liar for n if and only if it isastrong liar for n.

What remainsis a comparison of the computational costs. Whilethe Miller-Rabin test
may appear more comple, it actually requires, at worst, the same amount of computation
as Fermat’stest in terms of modular multiplications; thusthe Miller-Rabintest is better than
Fermat'stest in al regards. At worst, the sequence of computations defined in MILLER-
RABIN(n,1) requires the equivalent of computing a("~1)/2 mod n. It is also the case that
MILLER-RABIN(n,1) requires less computation than SOLOVAY-STRASSEN(n,1), the
latter requiring the computation of a(™~1/2 mod n and possibly a further Jacobi symbol
computation. For this reason, the Solovay-Strassen test is both computationally and con-
ceptually more complex.

4.33 Note (Miller-Rabin is better than Solovay-Strassen) In summary, both the Miller-Rabin
and Solovay-Strassen tests are correct in the event that either their input is actually prime,
or that they declaretheir input composite. Thereis, however, no reason to use the Solovay-
Strassen test (nor the Fermat test) over the Miller-Rabin test. The reasonsfor this are sum-
marized below.

(i) The Solovay-Strassen test is computationally more expensive.
(ii) The Solovay-Strassentest isharder toimplement sinceit a so involves Jacobi symbol
computations.
(iii) Theerror probability for Solovay-Strassenis bounded above by (%)t, whilethe error
probability for Miller-Rabin is bounded above by (1)".

TCL Exhibit 1009
Page 159

142

Ch. 4 Public-Key Parameters

(iv) Any strong liar for n is also an Euler liar for n. Hence, from a correctness point of
view, the Miller-Rabin test is never worse than the Solovay-Strassen test.

4.3 (True) Primality tests

4.34

The primality tests in this section are methods by which positive integers can be proven
to be prime, and are often referred to as primality proving algorithms. These primality
tests are generally more computationally intensive than the probabilistic primality tests of
§4.2. Consequently, before applying one of thesetests to a candidate prime n, the candidate
should be subjected to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).

Definition Aninteger n whichisdetermined to be prime on the basis of aprimality prov-
ing algorithm s called a provable prime.

4.3.1 Testing Mersenne numbers

4.35

4.36

4.37

Efficient algorithms are known for testing primality of some special classes of numbers,
such as Mersenne numbers and Fermat numbers. Mersenne primes n are useful because
the arithmetic in thefield Z,, for such n can be implemented very efficiently (see §14.3.4).
The Lucas-Lehmer test for Mersenne numbers (Algorithm 4.37) is such an a gorithm.

Definition Let s > 2 beaninteger. A Mersenne number is an integer of theform 25 — 1.
If 25 — 1 isprime, thenit is called a Mersenne prime.

The following are necessary and sufficient conditions for a Mersenne number to be prime.

Fact Let s > 3. The Mersenne number n = 2% — 1 isprimeif and only if the following
two conditions are satisfied:
(i) sisprime; and
(i) the sequence of integers defined by ug = 4 and uy+1 = (u? — 2) mod n for k > 0
satisfies us_2 = 0.

Fact 4.36 leadsto the following determini stic polynomial-timealgorithm for determin-
ing (with certainty) whether a Mersenne number is prime.

Algorithm Lucas-Lehmer primality test for Mersenne numbers

INPUT: aMersenne number n = 25 — 1 with s > 3.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?”’
1. Usetrial division to check if s has any factors between 2 and | /s]. If it does, then
return(“ composite”).
2. Set u+4.
3. For k from 1to s — 2 do the following: compute u<—(u? — 2) mod n.
4. If uw = 0 then return(“prime”). Otherwise, return(* composite”).

It is unknown whether there are infinitely many Mersenne primes. Table 4.2 lists the
33 known Mersenne primes.

TCL Exhibit 1009
Page 160

§4.3 (True) Primality tests 143

Index M; | decimal Index M; | decimal
i digits j digits
1 2 1 18 3217 969
2 3 1 19 4253 1281
3 5 2 20 4423 1332
4 7 3 21 9689 2917
5 13 4 22 9941 2993
6 17 6 23 11213 3376
7 19 6 24 19937 6002
8 31 10 25 21701 6533
9 61 19 26 23209 6987
10 89 27 27 44497 13395
11 107 33 28 86243 25962
12 127 39 29 110503 33265
13 521 157 30 132049 39751
14 607 183 31 216091 65050
15 1279 386 327 756839 | 227832
16 2203 664 337 859433 | 258716
17 2281 687

Table 4.2: Known Mersenne primes. The table shows the 33 known exponents M, 1 < 5 < 33, for
which 2Mi — 1 isa Mersenne prime, and also the number of decimal digitsin 25 — 1. The question
marks after j = 32 and j = 33 indicate that it is not known whether there are any other exponents s
between Ms; and these numbers for which 2% — 1 isprime.

4.3.2 Primality testing using the factorization of n — 1

This section presentsresults which can be used to provethat an integer n is prime, provided
that thefactorization or apartial factorization of n—1 isknown. It may seem odd to consider
atechnique which reguiresthe factorization of n — 1 as a subproblem — if integers of this
size can be factored, the primality of n itself could be determined by factoring n. However,
thefactorization of n — 1 may be easier to computeif n hasaspecial form, such asaFermat
number n. = 22" + 1. Another situation where the factorization of n — 1 may be easy to
computeis when the candidate n is “ constructed” by specific methods (see §4.4.4).

4.38 Fact Let n > 3 beaninteger. Then n is primeif and only if there exists an integer a
satisfying:
(i) et =1 (mod n); and
(i) a»Y/a %1 (mod n) for each prime divisor g of n — 1.

This result follows from the fact that Z;, has an element of order n — 1 (Definition 2.128)
if and only if n is prime; an element a satisfying conditions (i) and (ii) has order n — 1.

4.39 Note (primality test based on Fact 4.38) If n is a prime, the number of elements of order
n — lisprecisely ¢(n — 1). Hence, to prove a candidate n prime, one may simply choose
aninteger a € Z, at random and uses Fact 4.38 to check if a hasorder n — 1. If thisis
the case, then n is certainly prime. Otherwise, another a € Z,, is selected and the test is
repeated. If n isindeed prime, the expected number of iterations before an element a of
order n — 1 isselected is O(Inlnn); thisfollows since (n — 1)/é(n — 1) < 61lnlnn for

TCL Exhibit 1009
Page 161

144

Ch. 4 Public-Key Parameters

4.40

4.4

4.42

n > 5 (Fact 2.102). Thus, if such an a is not found after a “reasonable” number (for ex-
ample, 12 In1n n) of iterations, then n is probably composite and should again be subjected
to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).3 Thismethod is, in
effect, a probabilistic compositeness test.

The next result givesamethod for proving primality which requiresknowledge of only
apartial factorization of n — 1.

Fact (Pocklington'stheorem) Let n > 3 beaninteger,andletn = RF + 1 (i.e. F divides
n — 1) where the prime factorization of F'is F' = H;:1 quj. If there exists an integer a
satisfying:

(i) a® 1 =1 (mod n); and

(ii) ged(a™V/% —1,n) =1foreachj,1<j<t,
then every primedivisor p of n is congruent to 1 modulo F'. It followsthat if F > /n—1,
thenn isprime.

If n isindeed prime, then the following result establishes that most integers a satisfy
conditions (i) and (ii) of Fact 4.40, provided that the prime divisorsof F' > /n — 1 are
sufficiently large.

Fact Letn = RF + 1 bean odd primewith F > /n — 1 and gcd(R, F') = 1. Let the
distinct prime factorsof F' beqs, g2, - . . , ¢:- Thenthe probability that a randomly selected
basea,1 < a < n — 1, satisfies both: (i) a”~' = 1 (mod n); and (i) ged(a(*~D/% —
1,n) =1foreachj, 1 <j <tis[[;_;(1-1/g;) > 13,1 1/g;.

Thus, if the factorization of adivisor F' > /n — 1 of n — 1 isknown then to test n for
primality, one may simply choose random integers a in the interval [2,n — 2] until oneis
found satisfying conditions (i) and (ii) of Fact 4.40, implying that »n is prime. If suchan a
is not found after a “reasonable’” number of iterations,* then n is probably composite and
this could be established by subjecting it to a probabilistic primality test (footnote 3 also
applies here). Thismethod is, in effect, a probabilistic compositeness test.

The next result givesamethod for proving primality which only requiresthefactoriza-
tion of adivisor F' of n — 1 that is greater than ¢/n. For an example of the use of Fact 4.42,
see Note 4.63.

Fact Letn > 3 beanoddinteger. Letn = 2RF + 1, and suppose that there exists an
integer o satisfying both: (i) = = 1 (mod n); and (i) ged(a»~D/9 — 1,n) = 1 for
each primedivisor g of F'. Letx > 0 andy bedefinedby 2R = zF + yand0 <y < F.
If F > ¢nandif y? — 4z isneither 0 nor a perfect square, then n is prime.

4.3.3 Jacobi sum test

The Jacobi sum test is another true primality test. The basic ideais to test a set of con-
gruences which are analogues of Fermat's theorem (Fact 2.127(i)) in certain cyclotomic
rings. The running time of the Jacobi sum test for determining the primality of an integer
n is O((Inn)°»n1nn) pit operations for some constant c. Thisis“amost” a polynomial-
time algorithm since the exponent In In In n acts like a constant for the range of values for

3 Another approach isto run both algorithms in parallel (with an unlimited number of iterations), until one of
them stops with a definite conclusion “prime” or “composite’.
The number of iterations may betaken to be T where PI' < (3)'%0, andwhere P = 1 —[T5_, (1—1/g;).

TCL Exhibit 1009
Page 162

§4.4 Prime number generation 145

n of interest. For example, if n < 2%!2, thenInlnlnn < 1.78. The version of the Ja-
cobi sum primality test used in practice is arandomized algorithm which terminateswithin
O(k(Inn)e!nInInn) steps with probability at least 1 — (3)* for every k > 1, and always
givesacorrect answer. One drawback of the algorithmisthat it does not produce a“ certifi-
cate” which would enable the answer to be verified in much shorter time than running the
algorithm itself.

The Jacobi sum test is, indeed, practical in the sense that the primality of numbersthat
are severa hundred decimal digits long can be handled in just a few minutes on a com-
puter. However, the test is not as easy to program as the probabilistic Miller-Rabin test
(Algorithm 4.24), and the resulting codeis not as compact. The details of the algorithm are
complicated and are not given here; pointersto the literature are given in the chapter notes
on page 166.

4.3.4 Tests using elliptic curves

Elliptic curveprimality proving algorithmsare based on an elliptic curve anal ogue of Pock-
lington’s theorem (Fact 4.40). The version of the algorithm used in practice is usually re-
ferred to as Atkin's test or the Elliptic Curve Primality Proving algorithm (ECPP). Under
heuristic arguments, the expected running time of this algorithm for proving the primality
of an integer n has been shown to be O((In n)%+<) it operations for any ¢ > 0. Atkin's
test hasthe advantage over the Jacobi sum test (§4.3.3) that it produces a short certificate of
primality which can be used to efficiently verify the primality of the number. Atkin'stest
has been used to prove the primality of numbers more than 1000 decimal digits long.

The details of the algorithm are complicated and are not presented here; pointersto the
literature are given in the chapter notes on page 166.

4.4 Prime number generation

This section considers algorithms for the generation of prime numbers for cryptographic
purposes. Four algorithms are presented: Algorithm 4.44 for generating probable primes
(see Definition 4.5), Algorithm 4.53 for generating strong primes (see Definition 4.52), Al-
gorithm 4.56 for generating probableprimesp and ¢ suitablefor useinthe Digital Signature
Algorithm (DSA), and Algorithm 4.62 for generating provabl e primes (see Definition 4.34).

4.43 Note (prime generation vs. primality testing) Prime number generation differs from pri-
mality testing as described in §4.2 and §4.3, but may and typically does involve the | atter.
The former alows the construction of candidates of afixed form which may lead to more
efficient testing than possible for random candidates.

4.4.1 Random search for probable primes

By the prime number theorem (Fact 2.95), the proportion of (positive) integers < x that
areprimeis approximately 1/ Inz. Since half of all integers < x are even, the proportion
of odd integers < z that are primeis approximately 2/ In . For instance, the proportion
of all odd integers < 2512 that are prime is approximately 2/(512 - In(2)) ~ 1/177. This
suggests that a reasonable strategy for selecting a random k-bit (probable) primeisto re-
peatedly pick random k-bit odd integers n until oneisfound that is declared to be “ prime”

TCL Exhibit 1009
Page 163

146

Ch. 4 Public-Key Parameters

4.44

4.45

4.46

4.47

by MILLER-RABIN(n,t) (Algorithm 4.24) for an appropriate value of the security param-
eter ¢ (discussed below).

If arandom k-bit odd integer n isdivisible by asmall prime, it isless computationally
expensive to rule out the candidate n. by trial division than by using the Miller-Rabin test.
Since the probability that a random integer n has a small prime divisor is relatively large,
before applying the Miller-Rabin test, the candidate n should be tested for small divisors
below a pre-determined bound B. This can be done by dividing »n by all the primes below
B, or by computing greatest common divisors of n and (pre-computed) products of several
of the primes < B. The proportion of candidate odd integers » not ruled out by this trial
division inggpr(l_%) which, by Mertens stheorem, isapproximately 1.12/ In B (here
p ranges over prime values). For example, if B = 256, then only 20% of candidate odd
integersn passthetrial division stage, i.e., 80% are discarded beforethe more costly Miller-
Rabin test is performed.

Algorithm Random search for a prime using the Miller-Rabin test

RANDOM-SEARCH(k;,t)
INPUT: aninteger k, and a security parameter ¢ (cf. Note 4.49).
OUTPUT: arandom k-bit probable prime.
1. Generate an odd k-bit integer n at random.
2. Usetria division to determine whether n is divisible by any odd prime < B (see
Note 4.45 for guidance on selecting B). If it isthen go to step 1.
3. If MILLER-RABIN(n,t) (Algorithm 4.24) outputs “prime” then return(n).
Otherwise, go to step 1.

Note (optimal trial division bound B) Let E denote the time for a full k-bit modular ex-
ponentiation, and let D denote the time required for ruling out one small prime as divisor
of ak-bit integer. (Thevaues E and D depend on the particular implementation of long-
integer arithmetic.) Then the trial division bound B that minimizes the expected running
time of Algorithm 4.44 for generating ak-bit primeisroughly B = E//D. A moreaccurate
estimate of the optimum choice for B can be obtained experimentally. The odd primes up
to B can be precomputed and stored in atable. If memory is scarce, avaue of B that is
smaller than the optimum value may be used.

Since the Miller-Rabin test does not provide amathematical proof that a number isin-
deed prime, the number n returned by Algorithm 4.44 is a probable prime (Definition 4.5).
It isimportant, therefore, to have an estimate of the probability that » isin fact composite.

Definition The probability that RANDOM-SEARCH(k,t) (Algorithm 4.44) returns a
composite number is denoted by py, ;.

Note (remarks on estimating py, ;) It is tempting to conclude directly from Fact 4.25 that
Pt < (i)t. Thisreasoning is flawed (although typically the conclusion will be correct in
practice) since it does not take into account the distribution of the primes. (For example, if
all candidatesn were chosen from a set S of composite numbers, the probability of erroris
1.) The following discussion elaborates on this point. Let X represent the event that n is
composite, and let Y; denote the event than MILLER-RABIN(n,t) declares n to be prime.
Then Fact 4.25 statesthat P(Y;|X) < (i)t. What isrelevant, however, to the estimation of
P+ ISthequantity P(X|Y;). Supposethat candidatesn aredrawn uniformly and randomly

TCL Exhibit 1009
Page 164

4.4 Prime number generation 147
§ g

4.48

fromaset S of odd numbers, and suppose p is the probability that » is prime (this depends
onthe candidate set S). Assumealsothat 0 < p < 1. Thenby Bayes' theorem (Fact 2.10):
P(X)P(V;|X) _ P(YX) 1 <1>t

P(X|Y,) = < < = ,
since P(Y;) > p. Thusthe probability P(X |Y;) may beconsiderably larger than (1) if pis
small. However, the error-probability of Miller-Rabinis usually far smaller than (1)* (see
Remark 4.26). Using better estimates for P(Y;|X) and estimates on the number of k-bit
prime numbers, it has been shown that py, ; is, in fact, smaller than (i)t for al sufficiently
large k. A moreconcreteresult isthefollowing: if candidatesn are chosen at random from
the set of odd numbersin theinterval [3, z], then P(X|Y;) < (1) for al z > 10%.

4

Further refinementsfor P(Y;|X') allow the following explicit upper boundson p, ; for
variousvaluesof k and t. ®

Fact (some upper boundson py, , in Algorithm 4.44)
(i) pra < k242VEfork > 2.
(ii) pre < k322171242 Vik for (t = 2,k > 88) or (3 < t < k/9, k > 21).
(i) pry < 55k27% 4 TE15/427R/272 4 192~ R/4=St for /9 < t < k/4,k > 21.
(V) pry < TK°/427K/2=2t fort > k /4, k > 21.

For example, if k = 512 and t = 6, then Fact 4.48(ii) gives ps12.6 < (1)%5. Inother
words, the probability that RANDOM-SEARCH(512,6) returnsa512-bit compositeinteger
is less than (3)®®. Using more advanced techniques, the upper bounds on p; ¢ given by
Fact 4.48 have beenimproved. These upper boundsarise from complicated formulaewhich
are not given here. Table 4.3 lists some improved upper bounds on p, ; for some sample
valuesof k£ and ¢t. Asan example, the probability that RANDOM-SEARCH(500,6) returns
a composite number is < (3)%2. Notice that the values of pj,, implied by the table are
considerably smaller than (1) = (3)*.

t
k 1 2 3 4 5 6 7 8 9 10

100 5 14 20 25 29 33 36 39 41 44
150 8 20 28 34 39 43 47 51 54 57
200 | 11 25 34 41 47 52 57 61 65 69
250 | 14 29 39 47 54 60 65 70 75 79
300 | 19 33 44 53 60 67 73 78 83 88
350 | 28 38 48 58 66 73 80 86 91 97
400 | 37 46 55 63 72 80 87 93 99 105
450 | 46 54 62 70 78 85 93 100 106 112
500 | 56 63 70 78 85 92 99 106 113 119
550 | 65 72 79 86 93 100 107 113 119 126
600 | 75 82 88 95 102 108 115 121 127 133

Table 4.3: Upper bounds on py, for sample values of k£ and ¢. Anentry j corresponding to k and ¢
impliespy.,. < (3)7.

5The estimates of py, ; presented in the remainder of this subsection were derived for the situation where Al-
gorithm 4.44 does not use trial division by small primes to rule out some candidates n. Sincetrial division never
rules out a prime, it can only give a better chance of rejecting composites. Thus the error probability g ; might
actualy be even smaller than the estimates given here.

TCL Exhibit 1009
Page 165

148

Ch. 4 Public-Key Parameters

4.49

4.50

4.51

Note (controllingtheerror probability) In practice, oneisusually willing to tolerate an er-
ror probability of (%)80 when using Algorithm 4.44 to generate probable primes. For sam-
ple values of k, Table 4.4 lists the smallest value of ¢ that can be derived from Fact 4.48
for which py,, < (3)%°. For example, when generating 1000-bit probable primes, Miller-
Rabin with ¢ = 3 repetitions suffices. Algorithm 4.44 rules out most candidates . either
by trial division (in step 2) or by performing just one iteration of the Miller-Rabin test (in
step 3). For thisreason, the only effect of selecting alarger security parameter ¢ on therun-
ning time of the algorithmwill likely beto increase thetime required in thefinal stagewhen
the (probable) primeis chosen.

L el e [kTe] [k[e] [K]e] [kT¢]
00 | 27] [500]6 500 | 3 1300 | 2 1700 | 2
150 | 18 | | 550 950 1350 1750
200 | 15 600 1000 1400 1800
250 | 12 650 1050 1450 1850
300 | 9 700 1100 1500 1900
350 | 8 750 1150 1550 1950
400 | 7| | 800 1200 1600 2000
1450 | 6| | 850 1250 1650 2050

Wk R R otct
WWwwwwww
NN DNDNDNDNDND
NN DNNNDDND

Table 4.4: For sample k, the smallest ¢ from Fact 4.48 is given for which py. . < (3)%°.

Remark (Miller-Rabin test with base a = 2) The Miller-Rabin test involves exponenti-
ating the base a; this may be performed using the repeated square-and-multiply algorithm
(Algorithm 2.143). If a = 2, then multiplication by a isasimple procedurerel ative to mul-
tiplying by a in general. One optimization of Algorithm 4.44 is, therefore, to fix the base
a = 2 whenfirst performing the Miller-Rabin test in step 3. Since most composite numbers
will fail the Miller-Rabin test with base a = 2, this modification will lower the expected
running time of Algorithm 4.44.

Note (incremental search)

(i) An dternative technique to generating candidates n at random in step 1 of Algo-
rithm 4.44 istofirst select arandom &-bit odd number n ¢, and then test the s numbers
n=ng,ng+2,n0+4,...,n9+2(s—1) for primality. If al these s candidatesare
found to be composite, the algorithmis said to havefailed. If s = c-1In 2% wherecisa
constant, the probability g, + s that thisincremental search variant of Algorithm 4.44
returns a composite number has been shown to be less than 532~V for some con-
stant 6. Table4.5 givessomeexplicit boundsonthiserror probability for £ = 500 and
t < 10. Under reasonable number-theoretic assumptions, the probability of the algo-
rithm failing has been shown to be less than 2e~2¢ for large k (here, e ~ 2.71828).

(if) Incremental search has the advantage that fewer random bits are required. Further-
more, the trial division by small primesin step 2 of Algorithm 4.44 can be accom-
plished very efficiently as follows. First the values R[p] = no mod p are computed
for each odd primep < B. Each time 2 is added to the current candidate, the values
inthetable R are updated as R[p]«(R[p] +2) mod p. The candidate passesthetrial
division stage if and only if none of the R[p] values equal 0.

(iii) If B islarge, an alternative method for doing the trial divisionistoinitialize atable
S[iJ«0for0 < i < (s — 1); theentry S[i] corresponds to the candidate ny + 2i.
For each odd primep < B, ng mod p is computed. Let j be the smallest index for

TCL Exhibit 1009
Page 166

84.4 Prime number generation 149

t
c 1 2 3 4 5 6 7 8 9 10
1717 37 51 63 72 81 &8 96 103 110

5113 32 46 58 68 77 85 92 99 105
10 | 11 30 44 56 66 75 83 90 97 103

Table 4.5: Upper bounds on the error probability of incremental search (Note 4.51) for £ = 500
and sample values of ¢ and ¢. An entry j corresponding to c and ¢ implies goo,¢,s < (%)J, where
s=c-1n2%%,

which (ng +25) = 0 (mod p). Then S[j] and each p*® entry after it areset to 1. A
candidate ng + 2: then passes the trial division stage if and only if S[i] = 0. Note
that the estimate for the optimal trial division bound B given in Note 4.45 does not
apply here (nor in (ii)) since the cost of division is amortized over al candidates.

4.4.2 Strong primes

4.52

The RSA cryptosystem (§8.2) uses a modulus of the form n = pq, where p and ¢ are dis-
tinct odd primes. The primes p and ¢ must be of sufficient size that factorization of their
product is beyond computational reach. Moreover, they should be random primes in the
sense that they be chosen as afunction of arandom input through a process defining a pool
of candidates of sufficient cardinality that an exhaustiveattack isinfeasible. In practice, the
resulting primes must also be of a pre-determined bitlength, to meet system specifications.
The discovery of the RSA cryptosystem led to the consideration of several additional con-
straintson the choice of p and ¢ which are necessary to ensuretheresulting RSA system safe
from cryptanalytic attack, and the notion of a strong prime (Definition 4.52) was defined.
These attacks are described at length in Note 8.8(iii); as noted there, it is now believed that
strong primes offer little protection beyond that offered by random primes, since randomly
selected primes of the sizes typically used in RSA moduli today will satisfy the constraints
with high praobability. On the other hand, they are no less secure, and require only minimal
additional running time to compute; thus, thereislittle real additional cost in using them.

Definition A prime number p is said to be astrong primeif integersr, s, and ¢ exist such
that the following three conditions are satisfied:

(i) p — 1 hasalarge prime factor, denoted ;
(il) p+ 1 hasalarge prime factor, denoted s; and
(iii) » — 1 hasalarge prime factor, denoted ¢.

In Definition 4.52, aprecise qualification of “large” depends on specific attacks that should
be guarded against; for further details, see Note 8.8(iii).

TCL Exhibit 1009
Page 167

150 Ch. 4 Public-Key Parameters

4.53 Algorithm Gordon’s algorithm for generating a strong prime

SUMMARY: astrong prime p is generated.

1. Generatetwo largerandom primes s and ¢ of roughly equal bitlength (see Note 4.54).

2. Select aninteger i¢. Find the first prime in the sequence 2it + 1, fori = ig,49 +
1,70+ 2,... (see Note 4.54). Denote this prime by r = 2it + 1.

3. Compute pg = 2(s"~2 mod r)s — 1.

4. Select an integer jo. Find thefirst primein the sequence py + 2jrs, for j = jo, jo +
1,j0 + 2, ... (see Note 4.54). Denote this primeby p = pg + 2jrs.

5. Return(p).

Justification. To see that the prime p returned by Gordon's algorithm is indeed a strong
prime, observe first (assuming r # s) that s”~! = 1 (mod r); thisfollows from Fermat’s
theorem (Fact 2.127). Hence, pp = 1 (mod r) and py = —1 (mod s). Finaly (cf. Defi-
nition 4.52),

(i) p—1=po+2jrs —1=0 (mod r), and hencep — 1 has the prime factor r;
(i) p+1=po+2jrs+1=0 (mod s), and hencep + 1 hasthe prime factor s; and
(iii) » — 1 =2it =0 (mod t), and hencer — 1 has the prime factor ¢.

4.54 Note (implementing Gordon’s algorithm)

(i) The primes s and ¢ required in step 1 can be probable primes generated by Algo-
rithm 4.44. TheMiller-Rabin test (Algorithm 4.24) can be used to test each candidate
for primality in steps 2 and 4, after ruling out candidates that are divisible by asmall
primelessthan somebound B. See Note 4.45 for guidanceon selecting B. Sincethe
Miller-Rabin test is a probabilistic primality test, the output of this implementation
of Gordon’s agorithm is a probable prime.

(if) By carefully choosing the sizes of primes s, ¢ and parameters i, jo, one can control
the exact hitlength of the resulting prime p. Note that the bitlengths of » and s will
be about half that of p, while the bitlength of ¢ will be slightly less than that of .

4.55 Fact (runningtimeof Gordon’salgorithm) If the Miller-Rabintest isthe primality test used
insteps 1, 2, and 4, the expected time Gordon’ salgorithmtakesto find astrong primeisonly
about 19% more than the expected time Algorithm 4.44 takes to find arandom prime.

4.4.3 NIST method for generating DSA primes

Some public-key schemes require primes satisfying various specific conditions. For exam-
ple, the NIST Digital Signature Algorithm (DSA of §11.5.1) requires two primes p and ¢
satisfying the following three conditions:
(i) 2199 < ¢ < 2190; that is, ¢ is a160-bit prime;

(i) 28! < p < 2T for aspecified L, where L = 512 + 641 for some 0 < [< 8; and

(iii) g dividesp — 1.
This section presents an algorithm for generating such primes p and g. In the following,
H denotes the SHA-1 hash function (Algorithm 9.53) which maps bitstrings of bitlength
< 264 t0 160-hit hash-codes. Where required, an integer = intherange0 < = < 29 whose
binary representationisz = 2512971 + 2422972 + -+ - + 2922 + 212 + 0 should be
converted to the g-bit sequence (z4—124—2 - - - z22120), and vice versa

TCL Exhibit 1009
Page 168

84.4 Prime number generation 151

4.56 Algorithm NIST method for generating DSA primes
INPUT: aninteger [,0 <1 < 8.
OUTPUT: a 160-bit prime ¢ and an L-bit prime p, where L = 512 + 641 and ¢|(p — 1).
1. Compute L = 512 + 641. Using long division of (L — 1) by 160, find n, b such that
L —1=160n+ b, where0 < b < 160.
2. Repeat the following:
2.1 Choose arandom seed s (not necessarily secret) of bitlength g > 160.
2.2 ComputeU = H(s)®H((s + 1) mod 29).
2.3 Form g from U by setting to 1 the most significant and least significant bits of
U. (Notethat q isa 160-bit odd integer.)
2.4 Test g for primality using MILLER-RABIN(qg,t) for ¢t > 18 (see Note 4.57).
Until ¢ isfound to be a (probable) prime.
3. Seti«+0, j«2.
4. Whilei < 4096 do the following:
4.1 For k from 0 ton do the following: set Vi< H ((s + j + k) mod 29).
4.2 For theinteger T defined below, let X = W + 2L~1, (X isan L-hit integer.)
W = Vo + V32160 4 14,9320 4 ... 4 Vn712160(n—1) + (V,, mod 2b)2160n'
4.3 Computec = X mod 2gandsetp = X —(c—1). (Notethatp = 1 (mod 2q).)
4.4 If p > 25~ then do the following:
Test p for primality using MILLER-RABIN(p,t) for t > 5 (see Note 4.57).
If p isa(probable) prime then return(q,p).
45 Seti<—i+1,jj+n+1.
5. Gotostep 2.

4.57 Note (choice of primality test in Algorithm 4.56)

(i) The FIPS 186 document where Algorithm 4.56 was originally described only speci-
fiesthat arobust primality test beusedin steps2.4and 4.4, i.e., aprimality test where
the probability of a composite integer being declared primeis at most (%)80. If the
heuristic assumption is made that ¢ isarandomly chosen 160-bit integer then, by Ta-
ble4.4, MILLER-RABIN(q,18) isarobust test for the primality of . If p isassumed
to be a randomly chosen L-bit integer, then by Table 4.4, MILLER-RABIN(p,5) is
arobust test for the primality of p. Since the Miller-Rabin test is a probabilistic pri-
mality test, the output of Algorithm 4.56 is a probable prime.

(ii) Toimprove performance, candidate primes g and p should be subjected to trial divi-
sion by all odd primes|essthan some bound B beforeinvoking the Miller-Rabin test.
See Note 4.45 for guidance on selecting B.

4.58 Note (“weak’ primescannot beintentionally constructed) Algorithm 4.56 hasthe feature
that the random seed s is not input to the prime number generation portion of the algorithm
itself, but rather to an unpredictable and uncontrollable randomization process (steps 2.2
and4.1), the output of whichisused asthe actual random seed. This precludesmanipulation
of theinput seed to the primenumber generation. If the seed s and counter s aremadepublic,
then anyone can verify that ¢ and p were generated using the approved method. Thisfeature
preventsa central authority who generatesp and ¢ as system-wide parametersfor usein the
DSA from intentionally constructing “weak” primes ¢ and p which it could subsequently
exploit to recover other entities' private keys.

TCL Exhibit 1009
Page 169

152

Ch. 4 Public-Key Parameters

4.4.4 Constructive techniques for provable primes

4.59

4.60

4.61

Maurer’'s agorithm (Algorithm 4.62) generates random provable primes that are almost
uniformly distributed over the set of all primes of a specified size. The expected time for
generating aprimeisonly slightly greater than that for generating aprobable prime of equal
size using Algorithm 4.44 with security parameter ¢ = 1. (In practice, one may wish to
chooset > 1 in Algorithm 4.44; cf. Note 4.49.)

The main idea behind Algorithm 4.62 is Fact 4.59, which is a slight modification of
Pocklington’s theorem (Fact 4.40) and Fact 4.41.

Fact Letn > 3 beanoddinteger, and supposethat n = 1 + 2Rq where ¢ isan odd prime.
Suppose further that ¢ > R.
(i) If there exists an integer a satisfyinga™ ! = 1 (mod n) and ged(a?? — 1,n) =1,
then n is prime.
(i) If nisprime, the probability that arandomly selected basea, 1 < a < n—1, satisfies
a" ! =1 (mod n)and ged(a?®? — 1,n) = 1is(1 —1/q).

Algorithm 4.62 recursively generates an odd prime ¢, and then chooses randomintegers R,
R < g, until n = 2Rq + 1 can be proven prime using Fact 4.59(i) for some base a. By
Fact 4.59(ii) the proportion of such basesis1 — 1/¢ for primen. On the other hand, if n is
composite, then most bases a will fail to satisfy the conditiona™~! =1 (mod n).

Note (description of constants c and m in Algorithm 4.62)

(i) The optimal value of the constant ¢ defining the tria division bound B = ck? in
step 2 depends on the implementation of long-integer arithmetic, and is best deter-
mined experimentally (cf. Note 4.45).

(ii) The constant m = 20 ensuresthat I is at least 20 bits long and hence the interval
from which R is selected, namely [I + 1, 21], is sufficiently large (for the values of
k of practical interest) that it most likely contains at |east onevalue R for whichn =
2Rq + 1isprime.

Note (relativesizer of ¢ with respect to n in Algorithm 4.62) Therelative size r of ¢ with
respect to n is defined to be r = lg ¢/ g n. In order to assure that the generated primen is
chosen randomly with essentially uniform distribution from the set of all k-bit primes, the
size of the prime factor ¢ of n — 1 must be chosen according to the probability distribution
of thelargest primefactor of arandomly selected k-bit integer. Since ¢ must be greater than
Rinorder for Fact 4.59to apply, therelative size r of ¢ isrestricted to beingin theinterval
[%, 1]. 1t can be deduced from Fact 3.7(i) that the cumulative probability distribution of the
relative size r of the largest prime factor of alarge random integer, given that r is at least
1,is(1+1gr) for 3+ <r < 1. Instep 4 of Algorithm 4.62, the relative size r is generated
according to this distribution by selecting arandom number s € [0, 1] and then setting r» =
25~1 If k < 2m then r is chosen to be the smallest permissible value, namely % in order
to ensure that the interval from which R is selected is sufficiently large (cf. Note 4.60(ii)).

TCL Exhibit 1009
Page 170

§4.4 Prime number generation 153

4.62 Algorithm Maurer's algorithm for generating provable primes

PROVABLE_PRIME(k)

INPUT: apositive integer k.

OUTPUT: a k-bit prime number n.

1. (If kissmall, then test randomintegersbytrial division. Atable of small primes may
be precomputed for this purpose.)
If & < 20 then repeatedly do the following:
1.1 Select arandom k-bit odd integer n.
1.2 Usetrial division by all primeslessthan /n to determine whether n is prime.
1.3 If nis primethen return(n).
2. Set c+0.1 and m+—20 (see Note 4.60).

. (Trial division bound) Set B<—c - k? (see Note 4.60).

. (Generate r, the size of ¢ relative to n — see Note 4.61) If k& > 2m then repeatedly
do the following: select arandom number s in the interval [0, 1], set <2571, until
(k — k) > m. Otherwise (i.e. k < 2m), set r<0.5.

. Compute g« PROVABLE PRIME(|r - k| 4 1).

. Set I+|2F1/(29)].

. success«0.

. While (success = 0) do the following:

8.1 (select a candidate integer n) Select arandom integer R in the interval [T +
1,2I] and set n+2Rq + 1.
8.2 Usetrial divisionto determinewhether n isdivisibleby any primenumber < B.
If it is not then do the following:
Select arandom integer a intheinterval [2,n — 2].
Compute b<—a"™~! mod n.
If b = 1 then do the following:
Compute b<—a?F mod n and d<— ged(b — 1, n).
If d = 1 then success«+1.

AW

o ~NOoO O

9. Return(n).

4.63 Note (improvementsto Algorithm 4.62)

(i) A speedup can be achieved by using Fact 4.42 instead of Fact 4.59(i) for proving
n = 2Rq+ 1 primein step 8.2 of Maurer’salgorithm — Fact 4.42 only requiresthat
q be greater than ¢/n.

(i) If acandidaten passesthetrial division (in step 8.2), then aMiller-Rabin test (Algo-
rithm 4.24) with the single base a = 2 should be performed on n; only if n passes
thistest should the attempt to proveits primality (the remainder of step 8.2) be under-
taken. Thisleadsto afaster implementation dueto the efficiency of the Miller-Rabin
test with asingle base a = 2 (cf. Remark 4.50).

(iii) Step 4 requires the use of real number arithmetic when computing 2°~!. To avoid
these computations, one can precompute and store alist of such valuesfor aselection
of random numbers s € [0, 1].

4.64 Note (provableprimesvs. probable primes) Probable primesare advantageousover prov-
able primesin that Algorithm 4.44 for generating probable primeswith ¢ = 1 is dightly
faster than Maurer’s algorithm. Moreover, the latter requires more run-time memory due

TCL Exhibit 1009
Page 171

154 Ch. 4 Public-Key Parameters

to its recursive nature. Provable primes are preferable to probable primesin the sense that
the former have zero error probability. In any cryptographic application, however, there
is always a non-zero error probability of some catastrophic failure, such as the adversary
guessing a secret key or hardware failure. Since the error probability of probable primes
can be efficiently brought down to acceptably low levels (see Note 4.49 but note the depen-
dence on t), there appears to be no reason for mandating the use of provable primes over
probable primes.

4.5 Irreducible polynomials over 7,

Recall (Definition 2.190) that a polynomial f(z) € Z,[z] of degreem > 1 issaid to be
irreducible over Z, if it cannot be written as a product of two polynomialsin Z,[x] each
having degree less than m. Such a polynomial f(z) can be used to represent the elements
of thefinite field F,,m asF,m = Z,[z]/(f(z)), the set of al polynomiasin Z,[z] of de-
greelessthan m wherethe addition and multiplication of polynomialsis performed modulo
f(z) (see§2.6.3). Thissection presentstechniquesfor constructingirreduciblepolynomials
over Z,, wherep isaprime. The characteristic two finite fields Fo- are of particular inter-
est for cryptographic applications because the arithmetic in these fields can be efficiently
performed both in software and in hardware. For this reason, additional attention is given
to the special case of irreducible polynomiasover Z,.

The arithmetic in finite fields can usually be implemented more efficiently if theirre-
ducible polynomial chosen hasfew non-zero terms. Irreducibletrinomials, i.e., irreducible
polynomials having exactly three non-zero terms, are considered in §4.5.2. Primitive poly-
nomials, i.e., irreducible polynomials f (z) of degreem inZ,[x] for which z is agenerator
of F ., the multiplicative group of thefinitefield F,m = Z,[x]/(f(x)) (Definition 2.228),
arethetopic of §4.5.3. Primitive polynomialsare also used in the generation of linear feed-
back shift register sequences having the maximum possible period (Fact 6.12).

4.5.1 Irreducible polynomials

If f(z) € Zy[z] isirreducibleover Z, and a isanon-zeroelementinZ,, thena- f (x) isaso
irreducible over Z,,. Hence it suffices to restrict attention to monic polynomialsin Z,[x],
i.e., polynomials whose leading coefficient is 1. Observe also that if f(z) isanirreducible
polynomial, then its constant term must be non-zero. In particular, if f(z) € Za[z], then
its constant term must be 1.

Thereis aformulafor computing exactly the number of monic irreducible polynomi-
asinZ,[z] of afixed degree. The Mobius function, which is defined next, is used in this
formula.

4.65 Definition Let m beapositive integer. The Mobius function y is defined by

1, ifm=1,
u(im) =< 0, if m isdivisible by the square of aprime,
(—1)*, if m isthe product of distinct primes.

4.66 Example (Mabiusfunction) The following table gives the values of the Mdbius function
w(m) for thefirst 10 values of m:

TCL Exhibit 1009
Page 172

§4.5 Irreducible polynomials over Z,, 155

wm) [1] 1| —1[0|—-1|1|—-1]0]0] 1

O

4.67 Fact (number of monicirreducible polynomials) Let p beaprimeand m apositiveinteger.

(i) Thenumber N,,(m) of monicirreducible polynomialsof degreem in Z[x] is given
by the following formula:

Ny(m) = %Zu(d)pm/d,
dl

where the summation ranges over all positive divisors d of m.
(ii) Theprobability of arandommonicpolynomial of degreem inZ ,[z] beingirreducible
over Zj, isroughly % More specifically, the number N, (m) satisfies
1 < Np(m) ~ i
2m — p™ m
Testing irreducibility of polynomialsin Zj[z] is significantly simpler than testing pri-
mality of integers. A polynomial can betested for irreducibility by verifying that it has no

irreduciblefactors of degree < | % |. Thefollowing result leadsto an efficient method (Al-
gorithm 4.69) for accomplishing this.

4.68 Fact Letp beaprimeandlet k be apositive integer.
(i) The product of al monic irreducible polynomialsin Z,[x] of degree dividing k is
equal to " — z.
(ii) Let f(x) beapolynomial of degreem inZ,[x]. Then f(z) isirreducible over Z,, if
and only if ged(f(z),2?" — z) = 1foreachi, 1 <i < L5

4.69 Algorithm Testing a polynomial for irreducibility

INPUT: aprime p and a monic polynomial f(x) of degreem inZ,[x].
OUTPUT: an answer to the question: “Is f(x) irreducible over Z,?’
1. Setu(x)+x.
2. Forifrom1to || do thefollowing:
2.1 Compute u(z)+u(z)? mod f(z) using Algorithm 2.227. (Notethat u(z) isa
polynomia in Z,,[z] of degree less than m.)
2.2 Compute d(z) = ged(f (), u(z) — z) (using Algorithm 2.218).
2.3 If d(z) # 1 thenreturn(“reducible”).
3. Return(“irreducible”).

Fact 4.67 suggests that one method for finding an irreducible polynomial of degree m
in Zy|z] is to generate a random monic polynomial of degree m in Z,[z], test it for irre-
ducibility, and continue until an irreducible one is found (Algorithm 4.70). The expected
number of polynomialsto be tried before anirreducible one is found is approximately m.

TCL Exhibit 1009
Page 173

156 Ch. 4 Public-Key Parameters

4.70 Algorithm Generating a random monic irreducible polynomial over Z,,

INPUT: aprime p and a positiveinteger m.
OUTPUT: amonic irreducible polynomia f(z) of degreem in Z,[z].
1. Repeat the following:
1.1 (Generate a random monic polynomial of degree m in Z|[z])
Randomly select integersag, a1, az, . .. ,a,—1 between0 and p — 1 withag #
0. Let f(x) bethepolynomia f(z) = 2™ +an,_12™ 1 +- - -+azr?+a1z+ag.
1.2 Use Algorithm 4.69 to test whether f () isirreducible over Z,,.
Until f(z) isirreducible.
2. Return(f(x)).

Itisknownthat the expected degree of theirreduciblefactor of |east degree of arandom
polynomial of degreem inZ,[z] is O(lg m). Hence for each choice of f(x), the expected
number of times steps 2.1 — 2.3 of Algorithm 4.69 are iterated is O(lg m). Each iteration
takes O((1g p)m?) Z,-operations. These observations, together with Fact 4.67(ii), deter-
mine the running time for Algorithm 4.70.

4.71 Fact Algorithm 4.70 has an expected running time of O(m3(lgm)(lgp)) Z,-operations.

Given oneirreducible polynomial of degree m over Z,,, Note 4.74 describes amethod,
which is more efficient than Algorithm 4.70, for randomly generating additional such poly-
nomials.

4.72 Definition LetF, beafinitefield of characteristic p, andlet o € F,. A minimum polyno-
mial of a over Z,, isamonic polynomial of least degreein Z,,[z] having o as aroot.

4.73 Fact LetF, beafinitefield of order ¢ = p™, and let o € F,,.
(i) The minimum polynomial of « over Z,,, denoted m,(z), is unique.
(ii) mq(z) isirreducible over Z,,.
(iii) The degree of m,(x) isadivisor of m.
(iv) Let t be the smallest positive integer such that o = a. (Note that such a t exists
since, by Fact 2.213, o™ = a.) Then
t—1

me(z) = H(w — api). 4.1

=0

4.74 Note (generating new irreducible polynomials from a given one) Suppose that f(y) isa
givenirreducible polynomial of degree m over Z,,. Thefinitefield IF,» can then be repre-
sented asF,m = Zp[y]/(f(y)). A random monic irreducible polynomial of degreem over
Z,, can be efficiently generated as follows. First generate a random element « € IF» and
then, by repeated exponentiation by p, determine the smallest positive integer ¢ for which
o' = a. If t < m, then generate anew random element o € F,m and repeat; the probabil -
ity that t < m isknownto beat most (Igm)/q™/2. If indeed t = m, then computem., ()
using the formula (4.1). Then m(x) is arandom monic irreducible polynomial of degree
minZ,|[x]. Thismethod hasan expected runningtime of O(m3(lg p)) Z,-operations(com-
pare with Fact 4.71).

TCL Exhibit 1009
Page 174

§4.5 Irreducible polynomials over Z,, 157

4.5.2 Irreducible trinomials

If apolynomial f(z) inZ2[z] hasan even number of non-zeroterms, then f (1) = 0, whence
(z + 1) isafactor of f(x). Hence, the smallest number of non-zero terms an irreducible
polynomial of degree > 2 in Zs[z] can haveisthree. Anirreducibletrinomial of degree m
in Zs[x] must be of the form =™ + z* +1,wherel < k < m — 1. Choosing anirreducible
trinomial f(z) € Zs[z] of degree m to represent the elements of the finite field Fom =
Zs[z]/(f(z)) can lead to afaster implementation of the field arithmetic. The following
facts are sometimes of use when searching for irreducible trinomials.

4.75 Fact Let m be apositive integer, and let k& denote an integer in theinterval [1,m — 1].
(i) If thetrinomial ™ + z* + 1 isirreducible over Z, then soisz™ + ™% + 1.
(@ii) If m =0 (mod 8), thereis noirreducibletrinomial of degree m in Zs|x].
(iii) Supposethat eitherm =3 (mod 8)orm =5 (mod 8). Thenanecessary condition
for 2™ + z* + 1 to beirreducible over Z, isthat either k or m — k must be of the
form 2d for some positive divisor d of m.

Tables4.6 and 4.7 list aniirreducibletrinomial of degreem over Z, for eachm < 1478
for which such atrinomial exists.

4.5.3 Primitive polynomials

Primitive polynomials were introduced at the beginning of §4.5. Let f(z) € Z,[z] bean
irreduciblepolynomial of degreem. If thefactorization of theinteger p” — 1 isknown, then
Fact 4.76 yields an efficient algorithm (Algorithm 4.77) for testing whether or not f(z) is
a primitive polynomial. If the factorization of p™ — 1 is unknown, there is no efficient
agorithm known for performing this test.

4.76 Fact Let p beaprimeand let the distinct primefactorsof p™ — 1 bery, 7o, ... ,7:. Then
anirreducible polynomia f(z) € Zy[z] is primitiveif and only if for each ¢, 1 < i < ¢
P/ £ 1 (mod f(x)).
(That is, z isan element of order p™ — 1 inthefield Z,[x]/(f(x)).)

4.77 Algorithm Testing whether an irreducible polynomial is primitive

INPUT: aprime p, apositiveinteger m, the distinct primefactorsry, ro, ... ,rs Of p™ — 1,
and amonic irreducible polynomia f(z) of degreem inZ[z].
OUTPUT: an answer to the question: “Is f(x) a primitive polynomia?’
1. For i from 1to ¢ do thefollowing:
1.1 Computel(z) = z®" ~D/" mod f(z) (using Algorithm 2.227).
1.2 If i(x) = 1 then return(“ not primitive”).
2. Return(“primitive”).

There are precisely ¢(p™ — 1)/m monic primitive polynomials of degreem in Z,[x]
(Fact 2.230), where ¢ is the Euler phi function (Definition 2.100). Since the number of
monicirreduciblepolynomialsof degreem inZ,[x] isroughly p™ /m (Fact 4.67(ii)), it fol-
lows that the probability of a random monic irreducible polynomial of degreem in Z,,[x]

TCL Exhibit 1009
Page 175

158 Ch. 4 Public-Key Parameters

m] k[m[k[m] K] m] k[[m[k]| m] k][m][k]|
2 1 93 2 193 15 || 295 48 || 402 | 171 || 508 9 || 618 | 295
3 1 94 | 21 || 194 87 || 297 5 || 404 65 || 510 69 || 620 9
4 1 95 | 11 || 196 3 || 300 5 || 406 | 141 511 10 || 622 | 297
5 2 97 6 || 198 9 || 302 41 || 407 71 || 513 26 || 623 68
6 1 98 | 11 || 199 34 || 303 1 || 409 87 || 514 67 || 625 | 133
7 1] 100 | 15 || 201 14 || 305 | 102 || 412 | 147 || 516 21 || 626 | 251
9 1] 102 | 29 || 202 55 || 308 15 || 414 13 || 518 33 || 628 | 223
10 3 || 103 9 || 204 27 || 310 93 || 415 | 102 || 519 79 || 631 | 307
11 2 || 105 4 || 207 43 || 313 79 || 417 | 107 || 521 32 || 633 | 101
12 3 || 106 | 15 || 209 6 || 314 15 || 418 | 199 || 522 39 || 634 39
14 5| 108 | 17 || 210 7 || 316 63 || 420 7 || 524 | 167 || 636 | 217
15 1 110 | 33 || 212 | 105 || 318 45 || 422 | 149 || 526 97 || 639 16
17 3 111 | 10 || 214 73 || 319 36 || 423 25 || 527 47 || 641 1
18 3 113 9 || 215 23 || 321 31 || 425 12 || 529 42 || 642 | 119
20 3 118 | 33 || 217 45 || 322 67 || 426 63 || 532 1| 646 | 249
21 2 119 8 || 218 11 || 324 51 || 428 | 105 || 534 | 161 || 647 5
22 1] 121 | 18 || 220 7 || 327 34 || 431 | 120 || 537 94 || 649 37
23 5] 123 2 || 223 33 || 329 50 || 433 33 || 538 | 195 || 650 3
25 3 || 124 | 19 || 225 32 || 330 99 || 436 | 165 || 540 9 || 651 14
28 1] 126 | 21 || 228 | 113 || 332 89 || 438 65 || 543 16 || 652 93
29 2 || 127 1] 231 26 || 333 2 || 439 49 || 545 | 122 || 654 33
30 1| 129 5] 233 74 || 337 55 || 441 7 || 550 | 193 || 655 88
31 3 || 130 3 || 234 31 || 340 45 || 444 81 || 551 | 135 || 657 38
33 | 10 || 132 | 17 || 236 5| 342 | 125 || 446 | 105 || 553 39 || 658 55
34 7 134 | 57 || 238 73 || 343 75 || 447 73 || 556 | 153 || 660 1
35 2| 135 | 11 || 239 36 || 345 22 || 449 | 134 || 558 73 || 662 21
36 9 || 137 | 21 || 241 70 || 346 63 || 450 47 || 559 34 || 663 | 107
39 4 || 140 | 15 || 242 95 || 348 | 103 || 455 38 || 561 71 || 665 33
41 3 || 142 | 21 || 244 | 111 || 350 53 || 457 16 || 564 | 163 || 668 | 147
42 7 || 145 | 52 || 247 82 || 351 34 || 458 | 203 || 566 | 153 || 670 | 153
44 5 || 146 | 71 || 249 35 || 353 69 || 460 19 || 567 28 || 671 15
46 1| 147 | 14 || 250 | 103 || 354 99 || 462 73 || 569 77 || 673 28
47 5] 148 | 27 || 252 15 || 358 57 || 463 93 || 570 67 || 676 31
49 9 || 150 | 53 || 253 46 || 359 68 || 465 31 || 574 13 || 679 66
52 3 || 151 3 || 255 52 || 362 63 || 468 27 || 575 | 146 || 682 | 171
54 9 || 153 1| 257 12 || 364 9 || 470 9 || 577 25 || 684 | 209
55 7| 154 | 15 || 258 71 || 366 29 || 471 1] 580 | 237 || 686 | 197
57 4 || 155 | 62 || 260 15 || 367 21 || 473 | 200 || 582 85 || 687 13
58 | 19 || 156 9 || 263 93 || 369 91 || 474 | 191 || 583 | 130 || 689 14
60 1] 159 | 31 || 265 42 || 370 | 139 || 476 9 || 585 88 || 690 79
62 | 29 || 161 | 18 || 266 47 || 372 | 111 || 478 | 121 || 588 35 || 692 | 299
63 1] 162 | 27 || 268 25 || 375 16 || 479 | 104 || 590 93 || 694 | 169
65 | 18 || 166 | 37 || 270 53 || 377 41 || 481 | 138 || 593 86 || 695 | 177
66 3 || 167 6 || 271 58 || 378 43 || 484 | 105 || 594 19 || 697 | 267
68 9 || 169 | 34 || 273 23 || 380 47 || 486 81 || 59 | 273 || 698 | 215
71 6 || 170 | 11 || 274 67 || 382 81 || 487 94 || 599 30 || 700 75
73 | 25 || 172 11| 276 63 || 383 90 || 489 83 || 601 | 201 || 702 37
74 | 35 || 174 | 13 || 278 5| 385 6 || 490 | 219 || 602 | 215 || 705 17
76 | 21 || 175 6 || 279 5 || 386 83 || 492 7 || 604 | 105 || 708 15
79 9 || 177 8 || 281 93 || 388 | 159 || 494 17 || 606 | 165 711 92
81 4 || 178 | 31 || 282 35 || 390 9 || 495 76 || 607 | 105 || 713 41
84 5] 180 3 || 284 53 || 391 28 || 497 78 || 609 31 || 714 23
86 | 21 || 182 | 81 || 286 69 || 393 7 || 498 | 155 || 610 | 127 || 716 | 183
87 | 13 || 183 | 56 || 287 71 || 394 | 135 || 500 27 || 612 81 || 718 | 165
89 | 38 || 185 | 24 || 289 21 || 39 25 || 503 3 || 614 45 || 719 | 150
9 | 27 || 186 | 11 || 292 37 || 399 26 || 505 | 156 || 615 | 211 || 721 9
92 | 21 || 191 9 || 294 33 || 401 | 152 || 506 23 || 617 | 200 || 722 | 231

Table 4.6: Irreducible trinomials ™ + z* + 1 over Z,. For eachm, 1 < m < 722, for which an
irreducibletrinomial of degree m in 7 [z] exists, the table liststhe smallest k for which 2™ + 2% +1
isirreducible over Z;.

TCL Exhibit 1009
Page 176

84.5 Irreducible polynomials over Z,, 159

[m] Kl m[k]| m] kK[| m[K[m[k]| m] kK[[m][k]
724 | 207 || 831 | 49 937 | 217 || 1050 | 159 || 1159 | 66 || 1265 | 119 || 1374 | 609
726 5| 833 | 149 938 | 207 || 1052 | 291 || 1161 | 365 || 1266 71| 1375| 52
727 | 180 || 834 | 15 942 | 45| 1054 | 105 || 1164 | 19| 1268 | 345 | 1377 | 100
729 | 58| 838 | 61 943 | 24| 1055 | 24 || 1166 | 189 || 1270 | 333 || 1380 | 183
730 | 147 || 839 | 54 945 | 77 || 1057 | 198 || 1167 | 133 || 1271 | 17| 1383 | 130
732 | 343 || 841 | 144 948 | 189 || 1058 | 27 || 1169 | 114 || 1273 | 168 || 1385 | 12
735 | 44 || 842 | 47 951 | 260 || 1060 | 439 || 1170 | 27|| 1276 | 217 || 1386 | 219
737 5| 844 | 105 953 | 168 || 1062 | 49 || 1174 | 133 || 1278 | 189 || 1388 | 11
738 | 347 || 845 2 954 | 131 || 1063 | 168 || 1175 | 476 || 1279 | 216|| 1390 | 129
740 | 135 || 846 | 105 956 | 305 || 1065 | 463 || 1177 | 16| 1281 | 229 || 1391 3
742 | 85 || 847 | 136 959 | 143 || 1071 7\ 1178 | 375 || 1282 | 231 || 1393 | 300
743 | 90 || 849 | 253 961 | 18| 1078 | 361 || 1180 | 25| 1284 | 223 || 1396 | 97
745 | 258 || 850 | 111 964 | 103 || 1079 | 230 || 1182 | 77| 1286 | 153 || 1398 | 601
746 | 351 || 852 | 159 966 | 201 || 1081 | 24 || 1183 | 87| 1287 | 470 1399| 55
748 | 19 || 85| 29 967 | 36 || 1082 | 407 || 1185 | 134 || 1289 | 99| 1401 | 92
750 | 309 || 857 | 119 969 | 31| 1084 | 189 || 1186 | 171 || 1294 | 201 || 1402 | 127
751 | 18 || 858 | 207 972 7 1085 | 62| 1188 | 75| 1295| 38| 1404 | 81
753 | 158 || 860 | 35 975 | 19| 1086 | 189 || 1190 | 233 || 1297 | 198 || 1407 | 47
754 | 19| 861 | 14 977 | 15| 1087 | 112 || 1191 | 196 || 1298 | 399 || 1409 | 194
756 | 45 || 862 | 349 979 | 178 || 1089 | 91 || 1193 | 173 || 1300| 75| 1410| 383
758 | 233 || 865 1 982 | 177 || 1090 | 79 || 1196 | 281 || 1302 | 77| 1412| 125
759 | 98 || 866 | 75 983 | 230 || 1092 | 23 || 1198 | 405 || 1305 | 326 || 1414 | 429
761 3 || 868 | 145 985 | 222 || 1094 | 57 || 1199 | 114 || 1306 | 39 || 1415| 282
762 | 83 || 870 | 301 986 3 (| 1095 | 139 || 1201 | 171 || 1308 | 495 || 1417 | 342
767 | 168 || 871 | 378 988 | 121 || 1097 | 14 || 1202 | 287 || 1310| 333 | 1420| 33
769 | 120 || 873 | 352 990 | 161 || 1098 | 83 || 1204 | 43 || 1311 | 476 || 1422| 49
772 71| 876 | 149 991 | 39| 1100 | 35| 1206 | 513 || 1313 | 164 || 1423 | 15
774 | 185 || 879 | 11 993 | 62 || 1102 | 117 || 1207 | 273 || 1314 | 19| 1425| 28
775 | 93| 81| 78 994 | 223 || 1103 | 65| 1209 | 118 || 1319 | 129 || 1426 | 103
777 | 29 || 882 | 99 996 | 65| 1105 | 21| 1210 | 243 || 1321 | 52| 1428 | 27
778 | 375 || 884 | 173 998 | 101 || 1106 | 195 || 1212 | 203 || 1324 | 337 | 1430| 33
780 | 13 || 887 | 147 999 | 59 || 1108 | 327 || 1214 | 257 || 1326 | 397 || 1431| 17
782 | 329 || 889 | 127 || 1001 | 17 || 1110 | 417 || 1215 | 302 || 1327 | 277 || 1433| 387
783 | 68 || 890 | 183 || 1007 | 75 || 1111 | 13| 1217 | 393 || 1329 | 73|| 1434 | 363
785 | 92| 892 | 31| 1009 | 55| 1113 | 107 || 1218 | 91 || 1332 | 95| 1436| 83
791 | 30 || 894 | 173 || 1010 | 99 || 1116 | 59 || 1220 | 413 || 1334 | 617 || 1438 | 357
793 | 253 || 895 | 12 || 1012 | 115 || 1119 | 283 || 1223 | 255 || 1335| 392 || 1441 | 322
794 | 143 || 897 | 113 || 1014 | 385 || 1121 | 62| 1225| 234 || 1337 | 75| 1442| 395
798 | 53 || 898 | 207 || 1015 | 186 || 1122 | 427 || 1226 | 167 || 1338 | 315|| 1444 | 595
799 | 25 || 900 1] 1020 | 135 || 1126 | 105 || 1228 | 27 || 1340 | 125|| 1446 | 421
801 | 217 || 902 | 21 || 1022 | 317 || 1127 | 27 || 1230 | 433 || 1343 | 348 || 1447 | 195
804 | 75| 903 | 35| 1023 7 (| 1129 | 103 || 1231 | 105 || 1345| 553 || 1449 | 13
806 | 21 || 905 | 117 || 1025 | 294 || 1130 | 551 || 1233 | 151 || 1348 | 553 || 1452 | 315
807 71 906 | 123 || 1026 | 35|| 1134 | 129 || 1234 | 427 || 1350 | 237 || 1454 | 297
809 | 15 (| 908 | 143 || 1028 | 119 || 1135 9|l 1236 | 49| 1351 | 39| 1455| 52
810 | 159 || 911 | 204 || 1029 | 98 || 1137 | 277 || 1238 | 153 || 1353 | 371 || 1457 | 314
812 | 29 || 913 | 91| 1030 | 93 || 1138 | 31| 1239 41| 1354 | 255 1458 | 243
814 | 21 || 916 | 183 || 1031 | 68 || 1140 | 141 || 1241 | 54| 1356 | 131 || 1460 | 185
815 | 333 || 918 | 77 || 1033 | 108 || 1142 | 357 || 1242 | 203 || 1358 | 117 || 1463 | 575
817 | 52 || 919 | 36| 1034 | 75| 1145 | 227 || 1246 | 25| 1359 | 98| 1465| 39
818 | 119 || 921 | 221 || 1036 | 411 || 1146 | 131 || 1247 | 14| 1361 | 56| 1466 | 311
820 | 123 || 924 | 31 || 1039 | 21 || 1148 | 23 || 1249 | 187 || 1362 | 655|| 1468 | 181
822 | 17 || 926 | 365 || 1041 | 412 || 1151 | 90 || 1252 | 97 || 1364 | 239 || 1470| 49
823 9 || 927 | 403 || 1042 | 439 || 1153 | 241 || 1255 | 589 || 1366 1| 1471 25
825 | 38| 930 | 31| 1044 | 41| 1154 | 75| 1257 | 289 || 1367 | 134 || 1473 | 77
826 | 255 || 932 | 177 || 1047 | 10 || 1156 | 307 || 1260 | 21| 1369 | 88| 1476| 21
828 | 189 || 935 | 417 || 1049 | 141 || 1158 | 245 || 1263 | 77 || 1372 | 181 || 1478| 69

Table 4.7: Irreducibletrinomialsz™+2"+1 over Z,. For eachm, 723 < m < 1478, for whichan
irreducibletrinomial of degree m in 7, [z] exists, the table givesthe smallest k for which 2™ 4+ z* +1
isirreducible over Z,.

TCL Exhibit 1009
Page 177

160 Ch. 4 Public-Key Parameters
being primitiveis approximately ¢(p™ — 1)/p™. Using the lower bound for the Euler phi
function (Fact 2.102), this probability can be seento be at least 1/(6Inlnp™). This sug-
gests the following algorithm for generating primitive polynomials.

4.78 Algorithm Generating a random monic primitive polynomial over Z,,

INPUT: aprimep, integer m > 1, and the distinct prime factorsry, o, ... , 7 of p™ — 1.
OUTPUT: amonic primitive polynomial f(x) of degreem inZ,|x].
1. Repeat the following:
1.1 Use Algorithm 4.70 to generate a random monic irreducible polynomial f(x)
of degreem inZy[z].
1.2 Use Algorithm 4.77 to test whether f(x) is primitive.
Until f(x) isprimitive.
2. Return(f(z)).

For eachm, 1 < m < 229, Table 4.8 lists a polynomial of degree m that is primitive
over Zs. If there exists a primitive trinomial f(z) = ™ + x* + 1, then the trinomial with
thesmallest & islisted. If no primitive trinomial exists, then a primitive pentanomial of the
form f(z) = 2™ + xF + zF2 + 2P + Lislisted.

If p™ — 1 is prime, then Fact 4.76 implies that every irreducible polynomial of de-
greem inZ,[x] isalso primitive. Table4.9 gives either aprimitivetrinomial or aprimitive
pentanomial of degree m over Z, where m is an exponent of one of the first 27 Mersenne
primes (Definition 4.35).

4.6 Generators and elements of high order

Recall (Definition 2.169) that if G isa (multiplicative) finite group, the order of an element
a € G istheleast positive integer ¢ such that a! = 1. If there are n elementsin G, and if
a € G isan element of order n, then G issaid to be cyclic and a is called a generator or a
primitive element of G (Definition 2.167). Of special interest for cryptographic applications
are the multiplicative group Z,, of the integers modulo a prime p, and the multiplicative
group IF5,.. of thefinitefield Fom of characteristic two; these groupsare cyclic (Fact 2.213).
Also of interest is the group Z;, (Definition 2.124), where n is the product of two distinct
odd primes. This section deals with the problem of finding generators and other elements
of highorderinZ}, F5..., and Z,,. See §2.5.1 for background in group theory and §2.6 for
background in finite fields.

Algorithm 4.79 is an efficient method for determining the order of a group element,
giventhe primefactorization of the group order n. The correctnessof the algorithmfollows
from the fact that the order of an element must dividen (Fact 2.171).

TCL Exhibit 1009
Page 178

84.6 Generators and elements of high order 161

kor kor kor kor

m (kl,kz,kg,) m (kl,kz,kg,) m (kl,kg,kg) m (kl,kg,kg)
2 1 59 22,21,1 116 71,70, 1 173 100, 99, 1
3 1 60 1 117 20,18, 2 174 13
4 1 61 16,15,1 118 33 175 6
5 2 62 57, 56, 1 119 8 176 119,118, 1
6 1 63 1 120 118,111, 7 177 8
7 1 64 4,31 121 18 178 87
8 6,51 65 18 122 60, 59, 1 179 34,331
9 4 66 10,9,1 123 2 180 37,36,1
10 3 67 10,9,1 124 37 181 7,6,1
11 2 68 9 125 108, 107, 1 182 128, 127,1
12 7,4,3 69 29,27,2 126 37,36,1 183 56
13 4,31 70 16,15,1 127 1 184 102,101, 1
14 12,11,1 71 6 128 29,27,2 185 24
15 1 72 53, 47,6 129 5 186 23,22,1
16 532 73 25 130 3 187 58,57,1
17 3 74 16,15,1 131 48,47,1 188 74,73,1
18 7 75 11,10,1 132 29 189 127,126, 1
19 6,51 76 36,35,1 133 52,51,1 190 18,17,1
20 3 7 31,30, 1 134 57 191 9
21 2 78 20,19,1 135 11 192 28,27,1
22 1 79 9 136 126, 125, 1 193 15
23 5 80 38,37,1 137 21 194 87
24 4,31 81 4 138 8,71 195 10,9,1
25 3 82 38,35,3 139 8,53 196 66, 65, 1
26 8,71 83 46,45, 1 140 29 197 62,61, 1
27 871 84 13 141 32,31,1 198 65
28 3 85 28,27,1 142 21 199 34
29 2 86 13,12,1 143 21,20,1 200 42,41,1
30 16,15,1 87 13 144 70, 69, 1 201 14
31 3 88 72,71,1 145 52 202 55
32 28,27,1 89 38 146 60, 59, 1 203 8,71
33 13 90 19,18, 1 147 38,37, 1 204 74,73,1
34 15,14,1 91 84,83, 1 148 27 205 30, 29,1
35 2 92 13,12,1 149 110, 109, 1 206 29,28, 1
36 11 93 2 150 53 207 43
37 12,10, 2 94 21 151 3 208 62, 59, 3
38 6,51 95 11 152 66, 65, 1 209 6
39 4 96 49, 47,2 153 1 210 35,32,3
40 21,19,2 97 6 154 129, 127, 2 211 46,45, 1
41 3 98 11 155 32,341 212 105
42 23,22,1 99 47,45, 2 156 116, 115, 1 213 8,71
43 6,51 100 37 157 27,26,1 214 49,48, 1
44 27,26,1 101 7,6,1 158 27,26,1 215 23
45 4,31 102 77,76,1 159 31 216 196, 195, 1
46 21,20,1 103 9 160 19,18, 1 217 45
47 5 104 11,10, 1 161 18 218 11
48 28,27,1 105 16 162 88,87,1 || 219 19,18,1
49 9 106 15 163 60, 59, 1 220 15,14,1
50 27,26,1 107 65, 63, 2 164 14,13,1 221 35,34,1
51 16,15,1 108 31 165 31,30,1 222 92,91,1
52 3 109 7,6,1 166 39,38, 1 223 33
53 16,15,1 110 13,12,1 167 6 224 31,30, 1
54 37,36,1 111 10 168 17,15, 2 225 32
55 24 112 45,43, 2 169 34 226 58,57,1
56 22,21,1 113 9 170 23 227 46,45, 1
57 7 114 82,81,1 171 19,18,1 228 148,147, 1
58 19 115 15,14, 1 172 7 229 64, 63, 1

Table 4.8: Primitive polynomials over Z,. For each m, 1 < m < 229, an exponent k is given for
which thetrinomial ™ +2* +1 isprimitive over Zs. If no such trinomial exists, a triple of exponents
(K1, k2, k3) is given for which the pentanomial ™ + %t 4 2*2 + z*3 + 1 isprimitive over Z,.

TCL Exhibit 1009
Page 179

162

Ch. 4 Public-Key Parameters

4.79

[J] m] k(ki ko ks) |
1 2 1

2 3 1

3 5 2

4 7 1,3

5 13 none (4,3,1)

6 17 3,5,6

7 19 none (5,2,1)

8 31 3,6,7,13

9 61 none (43,26,14)
10 89 38

11 107 none (82,57,31)

12 127 1, 7,15, 30, 63

13 | 521 | 32,148,158, 168

14 607 105, 147, 273

15 | 1279 | 216,418

16 | 2203 | none (1656,1197,585)

17 2281 715, 915, 1029

18 | 3217 | 67,576

19 | 4253 | none (3297,2254,1093)
20 | 4423 | 271, 369, 370, 649, 1393, 1419, 2098
21 9689 84, 471, 1836, 2444, 4187
22 | 9941 | none (7449,4964,2475)
23 | 11213 | none (8218,6181,2304)
24 | 19937 | 881, 7083, 9842

25 | 21701 | none (15986,11393,5073)
26 | 23209 | 1530, 6619, 9739

27 | 44497 | 8575, 21034

Table 4.9: Primitivepolynomials of degree m over Z,, 2™ —1 aMersenne prime. For each exponent
m = Mj of the first 27 Mersenne primes, the tablelists all valuesof k, 1 < k < m/2, for which
thetrinomial ™ + z* + 1 isirreducible over Z,. If no such trinomial exists, a triple of exponents
(K1, ko, k3) islisted such that the pentanomial 2™ + z*1 + z*2 + z*3 4 1 isirreducible over Z,.

Algorithm Determining the order of a group element

INPUT: a(multiplicative) finite group G of order n, an element a € G, and the prime fac-
torization n = p$'p5? - - - pit.
OUTPUT: the order ¢ of a.
1. Sett<n.
2. For i from 1to & do the following:
2.1 Sett«t/pit.
2.2 Compute a;+at.
2.3 Whilea; # 1 dothefollowing: compute a;<—aj* and set t«t - p;.
3. Return(t).

Supposenow that G isacyclic group of order n. Thenfor any divisor d of n the number
of elementsof order d in G isexactly ¢(d) (Fact 2.173(ii)), where ¢ isthe Euler phi function
(Definition 2.100). In particular, G has exactly ¢(n) generators, and hence the probability
of arandom element in G being a generator is ¢(n)/n. Using the lower bound for the Eu-
ler phi function (Fact 2.102), this probability can be seento beat least 1/(61nlnn). This

TCL Exhibit 1009
Page 180

84.6 Generators and elements of high order 163

4.80

4.81

4.82

4.83

suggests the following efficient randomized algorithm for finding a generator of a cyclic
group.

Algorithm Finding a generator of a cyclic group

INPUT: acyclic group G of order n, and the prime factorization n = p{*ps? - - - pi*.
OUTPUT: agenerator o of G.

1. Choose arandom element « in G.
2. For i from1to k do the following:

2.1 Compute b+a"/?: .
22 If b =1thengoto step 1.

3. Return(c).

Note (group elements of high order) In some situations it may be desirable to have an el-
ement of high order, and not a generator. Given agenerator « in acyclic group G of order
n, and given adivisor d of n, an element 3 of order d in G can be efficiently obtained as
follows: 8 = o™/, If ¢ isaprime divisor of the order n of acyclic group G, then the fol-
lowing method finds an element 5 € G of order ¢ without first having to find a generator
of G: select arandom element g € G and compute 5 = ¢™/9; repeat until 3 # 1.

Note (generatorsof F3..) Thereare two basic approachesto finding agenerator of F3...
Both techniques require the factorization of the order of ..., namely 2™ — 1.

(i) Generateamonic primitive polynomial f(x) of degreem over Z, (Algorithm 4.78).
Thefinite field Fom can then be represented as Z»[z]/(f(x)), the set of all polyno-
mials over Z, modulo f(z), and the element o = x is agenerator.

(ii) Select the method for representing elements of Fom first. Then use Algorithm 4.80
with G = F5,. andn = 2™ — 1 to find agenerator « of F3...

If n = pq, wherep and ¢ aredistinct odd primes, then Z, isanon-cyclic group of order
¢(n) = (p — 1)(¢ — 1). The maximum order of an element in Z;, islem(p — 1,q — 1).
Algorithm 4.83 isamethod for generating such an element whichrequiresthefactorizations
ofp—1landqg—1.

Algorithm Selecting an element of maximum order in Z},, where n = pq

INPUT: two distinct odd primes, p, ¢, and the factorizationsof p — 1 and ¢ — 1.
OUTPUT: an element « of maximum order lem(p — 1, — 1) in Z},, wheren = pq.
1. Use Algorithm 4.80 with G = Z, andn = p — 1 to find agenerator a of Z,,.
2. UseAlgorithm 4.80 with G = Z, andn = ¢ — 1 to find agenerator b of Z,.
3. Use Gauss's agorithm (Algorithm 2.121) to find an integer o, 1 < o < n — 1,
satisfying a = a (mod p) anda = b (mod q).
4. Return(a).

TCL Exhibit 1009
Page 181

164

Ch. 4 Public-Key Parameters

4.6.1 Selecting a prime p and generator of Z,

4.84

4.85

4.86

In cryptographic applications for which a generator of Z,, is required, one usualy has the
flexibility of selectingthe primep. To guard against the Pohlig-Hellman algorithm for com-
puting discretelogarithms (Algorithm 3.63), asecurity requirement isthat p— 1 should con-
taina“large” primefactor . Inthis context, “large” meansthat the quantity , /g represents
an infeasible amount of computation; for example, ¢ > 2'6°, This suggests the following
algorithm for selecting appropriate parameters (p, o).

Algorithm Selecting a k-bit prime p and a generator o of Z

INPUT: the required bitlength k& of the prime and a security parameter ¢.
OUTPUT: ak-bit prime p such that p — 1 has a prime factor > ¢, and a generator a of Z.
1. Repeat the following:
1.1 Select arandom k-bit prime p (for example, using Algorithm 4.44).
1.2 Factorp — 1.
Until p — 1 hasaprimefactor > t.
2. Use Algorithm 4.80 with G = Z,, andn = p — 1 to find a generator a of Z,.
3. Return(p,a).

Algorithm 4.84 isrelatively inefficient as it requires the use of an integer factorization
algorithmin step 1.2. An alternative approach is to generate the prime p by first choosing
alarge prime g and then selecting relatively small integers R at random until p = 2Rqg + 1
isprime. Sincep — 1 = 2Rgq, thefactorization of p — 1 can be obtained by factoring R. A
particularly convenient situation occurs by imposing the condition R = 1. In this case the
factorization of p — 1 issimply 2¢. Furthermore, since ¢(p — 1) = ¢(2q) = ¢(2)o(q) =
q — 1, the probability that arandomly selected element o € Z,, isagenerator is % ~ %

Definition A safeprimep isaprimeof theformp = 2¢ + 1 where g isprime.

Algorithm 4.86 generates a safe (probable) prime p and agenerator of Z .

Algorithm Selecting a k-bit safe prime p and a generator « of Z

INPUT: the required bitlength & of the prime.
OUTPUT: ak-bit safe prime p and a generator o of Z,.

1. Do thefollowing:
1.1 Select arandom (k — 1)-bit prime ¢ (for example, using Algorithm 4.44).
1.2 Compute p<—2q + 1, and test whether p is prime (for example, using trial divi-
sion by small primes and Algorithm 4.24).
Until p isprime.
2. Use Algorithm 4.80 to find a generator o of Z,.
3. Return(p,a).

TCL Exhibit 1009
Page 182

84.7 Notes and further references 165

4.7 Notes and further references

§4.1

§4.2

Severa books provide extensive treatments of primality testing including those by Bres-
soud [198], Bach and Shallit [70], and Koblitz [697]. The book by Kranakis [710] offers
amoretheoretical approach. Cohen [263] gives acomprehensive treatment of modern pri-
mality tests. Seeasothesurvey articlesby A. Lenstra[747] and A. Lenstraand H. Lenstra
[748]. Facts 4.1 and 4.2 were proven in 1837 by Dirichlet. For proofs of these results, see
Chapter 16 of Ireland and Rosen [572]. Fact 4.3 is due to Rosser and Schoenfeld [1070].
Bach and Shallit [70] have further results on the distribution of prime numbers.

Fact 4.13(i) was proven by Alford, Granville, and Pomerance[24]; seealso Granville[521].
Fact 4.13(ii) is due to Pomerance, Selfridge, and Wagstaff [996]. Pinch [974] showed that
there are 105212 Carmichael numbers up to 101°.

The Solovay-Strassen probabilistic primality test (Algorithm 4.18) is due to Solovay and
Strassen [1163], as modified by Atkin and Larson [57].

Fact 4.23 was proven independently by Monier [892] and Rabin [1024]. The Miller-Rabin
test (Algorithm 4.24) originated in the work of Miller [876] who presented it as a non-
probabilistic polynomial -timeal gorithm assuming the correctness of the Extended Riemann
Hypothesis (ERH). Rabin [1021, 1024] rephrased Miller’s algorithm as a probabilistic pri-
mality test. Rabin’s algorithm required a small number of gcd computations. The Miller-
Rabin test (Algorithm 4.24) is asimplification of Rabin’s algorithm which does not require
any gcd computations, and is due to Knuth [692, p.379]. Arazi [55], making use of Mont-
gomery modular multiplication (§14.3.2), showed how the Miller-Rabin test can be imple-
mented by “divisionless modular exponentiations” only, yielding a probabilistic primality
test which does not use any division operations.

Miller [876], appealing to the work of Ankeny [32], proved under assumption of the Ex-
tended Riemann Hypothesisthat, if n isan odd compositeinteger, then itsleast strong wit-
nessis less than c(Inn)?, where ¢ is some congtant. Bach [63] proved that this constant
may be taken to be ¢ = 2; see also Bach [64]. As a consequence, one can test n for pri-
mality in O((lgn)®) bit operations by executing the Miller-Rabin algorithm for all bases
a < 2(Inn)2. This gives a deterministic polynomial-time algorithm for primality testing,
under the assumption that the ERH istrue.

Table 4.1 is from Jaeschke [630], building on earlier work of Pomerance, Selfridge, and
Wagstaff [996]. Arnault [56] found the following 46-digit composite integer

n = 1195068768795265792518361315725116351898245581

that is a strong pseudoprimeto all the 11 prime bases up to 31. Arnault also found a337-
digit composite integer which is a strong pseudoprimeto all 46 prime bases up to 199.

TheMiller-Rabin test (Algorithm 4.24) randomly generates¢ independent bases a and tests
to see if each is a strong witness for n. Let n be an odd composite integer and let t =
[11gn]. Insituations where random bits are scarce, one may choose instead to generate
asingle random base ¢ and usethe bases a,a + 1,... ,a + t — 1. Bach [66] proved that
for arandomly chosen integer a, the probability that a,a + 1,... ,a +t — 1 areal strong
liarsfor n is bounded above by n—1/4t°(1); in other words, the probability that the Miller-
Rabin algorithm using these bases mistakenly declares an odd composite integer “prime”
isat most n—1/4+o(1) | Peraltaand Shoup [969] later improved this bound to n —1/2+o(1),

TCL Exhibit 1009
Page 183

166

Ch. 4 Public-Key Parameters

§4.3

Monier [892] gave exact formulas for the number of Fermat liars, Euler liars, and strong
liars for composite integers. One consequence of Monier’s formulasis the following im-
provement (in the case where n is not a prime power) of Fact 4.17 (see Kranakis [710,
p.68]). If n > 3 isan odd compositeinteger having r distinct prime factors, and if n = 3

(mod 4), then there are at most ¢(n)/2"~! Euler liarsfor n. Another consequenceisthe
following improvement (in the case where n has at least three distinct prime factors) of
Fact 4.23. If n > 3 isan odd composite integer having r distinct prime factors, then there
areat most ¢(n) /2"~ ! strongliarsfor n. Erddsand Pomerance[373] estimated the average
number of Fermat liars, Euler liars, and strong liarsfor compositeintegers. Fact 4.30(ii) was
proven independently by Atkin and Larson [57], Monier [892], and Pomerance, Selfridge,
and Wagstaff [996].

Pinch [975] reviewed the probabilistic primality tests used in the Mathematica, Maple V,
Axiom, and Pari/GP computer algebra systems. Some of these systems use a probabilistic
primality test known as the Lucas test; a description of this test is provided by Pomerance,
Selfridge, and Wagstaff [996].

If anumber n iscomposite, providinganon-trivial divisor of n isevidence of itscomposite-
nessthat can be verified in polynomial time (by long division). In other words, the decision
problem “isn composite?’ belongs to the complexity class NP (cf. Example 2.65). Pratt
[1000] used Fact 4.38 to show that this decision problemis also in co-NP. That is, if n is
prime there exists some evidence of this (called a certificate of primality) that can be veri-
fied in polynomial time. Note that the issue hereis not in finding such evidence, but rather
in determining whether such evidence exists which, if found, allows efficient verification.
Pomerance [992] improved Pratt’s results and showed that every prime n has a certificate
of primality which requires O(In n) multiplications modulo n for its verification.

Primality of the Fermat number F}, = 22" 4 1 can be determined in deterministic polyno-
mial time by Pepin'stest: for k > 2, F}, isprimeif andonly if 5(F+=1)/2 = —1 (mod Fy).
For the history behind Pepin’'stest and the Lucas-Lehmer test (Algorithm 4.37), see Bach
and Shallit [70].

In Fact 4.38, the integer a does not have to be the samefor all . More precisely, Brillhart
and Selfridge [212] showed that Fact 4.38 can be refined as follows: an integer n > 3 is
primeif and only if for each prime divisor ¢ of n — 1, there exists an integer a, such that

a?~' =1 (mod n) and a7 £ 1 (mod n). The sameis true of Fact 4.40, which is
due to Pocklington [981]. For a proof of Fact 4.41, see Maurer [818]. Fact 4.42 isdueto

Brillhart, Lehmer, and Selfridge [210]; a simplified proof is given by Maurer [818].

The origina Jacobi sum test was discovered by Adleman, Pomerance, and Rumely [16].
The algorithm was simplified, both theoretically and agorithmically, by Cohen and H.
Lenstra [265]. Cohen and A. Lenstra [264] give an implementation report of the Cohen-
Lenstra Jacobi sum test; see also Chapter 9 of Cohen [263]. Further improvements of the
Jacobi sum test are reported by Bosma and van der Hulst [174].

Elliptic curves were first used for primality proving by Goldwasser and Kilian [477], who
presented a randomized algorithm which has an expected running time of O((In n)**) bit
operationsfor most inputsn. Subsequently, Adleman and Huang [13] designed a primality
proving agorithm using hyperelliptic curves of genus two whose expected running time
is polynomial for all inputs n. This established that the decision problem “is n prime?”’
isin the complexity class RP (Definition 2.77(ii)). The Goldwasser-Kilian and Adleman-
Huang algorithms are inefficient in practice. Atkin’'s test, and an implementation of it, is
extensively described by Atkin and Morain [58]; see also Chapter 9 of Cohen [263]. The

TCL Exhibit 1009
Page 184

84.7 Notes and further references 167

§4.4

§4.5

largest number proven primeas of 1996 by ageneral purpose primality proving algorithmis
a 1505-decimal digit number, accomplished by Morain [903] using Atkin’stest. Thetotal
time for the computation was estimated to be 4 years of CPU time distributed among 21
SUN 3/60 workstations. See aso Morain [902] for an implementation report on Atkin's
test which was used to provethe primality of the 1065-decimal digit number (23539 4-1)/3.

A proof of Mertens's theorem can be found in Hardy and Wright [540]. The optimal trial
division bound (Note 4.45) was derived by Maurer [818]. Thediscussion (Note4.47) onthe
probability P(X|Y:) is from Beauchemin et al. [81]; the result mentioned in the last sen-
tence of this note is due to Kim and Pomerance [673]. Fact 4.48 was derived by Damgard,
Landrock, and Pomerance [300], building on earlier work of Erdds and Pomerance [373],
Kim and Pomerance[673], and Damgard and L androck [299]. Table4.3isTable 2 of Dam-
géard, Landrock, and Pomerance [300]. The suggestionsto first do a Miller-Rabin test with
base a = 2 (Remark 4.50) and to do an incremental search (Note 4.51) in Algorithm 4.44
were made by Brandt, Damgard, and Landrock [187]. The error and failure probabilities
for incremental search (Note 4.51(i)) were obtained by Brandt and Damgard [186]; consult
this paper for more concrete estimates of these probabilities.

Algorithm 4.53 for generating strong primesisdueto Gordon [514, 513]. Gordonoriginally
proposed computing pg = (s"~! —r*71) mod rs in step 3. Kaliski (personal communica-
tion, April 1996) proposed the modified formulapy = (2s"~2 mod r)s — 1 which can be
computed more efficiently. Williams and Schmid [1249] proposed an algorithm for gener-
ating strong primes p with the additional constraint that p — 1 = 2¢ where ¢ is prime; this
algorithmis not as efficient as Gordon’salgorithm. Hellman and Bach [550] recommended
an additional constraint on strong primes, specifying that s — 1 (where s is alarge prime
factor of p+ 1) must have alarge primefactor (see §15.2.3(v)); thisthwarts cycling attacks
based on L ucas sequences.

TheNIST method for prime generation (Algorithm 4.56) isthat recommended by the NIST
Federal Information Processing Standards Publication (FIPS) 186 [406].

Fact 4.59 and Algorithm 4.62 for provable prime generation are derived from Maurer [818].
Algorithm 4.62 is based on that of Shawe-Taylor [1123]. Maurer notes that the total diver-
sity of reachable primes using the original version of his algorithm is roughly 10% of all
primes. Maurer also presents amore complicated al gorithm for generating provable primes
with a better diversity than Algorithm 4.62, and provides extensive implementation details
and analysisof the expected running time. Maurer [812] providesheuristicjustification that
Algorithm 4.62 generates primes with virtually uniform distribution. Mihailescu [870] ob-
served that Maurer’s algorithm can be improved by using the Eratosthenes sieve method
for tria division (in step 8.2 of Algorithm 4.62) and by searching for aprime . in an appro-
priateinterval of the arithmetic progression2q+1,4qg+1,6¢+1, . .. instead of generating
R’'sat randomuntil n = 2Rq + 1 is prime. The second improvement comes at the expense
of areduction of the set of primes which may be produced by the algorithm. Mihailescu’s
paper includes extensive analysis and an implementation report.

Lidl and Niederreiter [764] provide acomprehensivetreatment of irreducible polynomials;
proofs of Facts 4.67 and 4.68 can be found there.

Algorithm 4.69 for testing apolynomial for irreducibility is dueto Ben-Or [109]. Thefast-
est algorithm known for generating irreducible polynomialsis dueto Shoup [1131] and has
an expected running time of O(m? lgm +m? g p) Z,-operations. Thereis no determinis-
tic polynomial-time algorithm known for finding an irreducible polynomial of a specified

TCL Exhibit 1009
Page 185

168

Ch. 4 Public-Key Parameters

§4.6

degree m in Zy[z]. Adleman and Lenstra[14] give a deterministic algorithm that runsin
polynomial time under the assumption that the ERH is true. The best deterministic algo-
rithm known is due to Shoup [1129] and takes O(m*,/p) Z,-operations, ignoring powers
of log m and log p. Gordon [512] presents an improved method for computing minimum
polynomials of elementsin Fom.

Zierler and Brillhart [1271] provide atable of al irreducible trinomials of degree < 1000
in Zz[z]. Blake, Gao, and Lambert [146] extended this list to all irreducible trinomials of
degree < 2000 in Zy[x]. Fact 4.75isfrom their paper.

Table 4.8 extends a similar table by Stahnke [1168]. The primitive pentanomials z™ +
xF 4+ xh2 4 2ks 4 1 listed in Table 4.8 have the following properties: (i) k1 = ko + ks;
(ii) ko > ks; and (iii) k3 is as small as possible, and for this particular value of ks, ko is
as small as possible. The rational behind this form is explained in Stahnke's paper. For
each m < 5000 for which the factorization of 2™ — 1 is known, Zivkovié [1275, 1276]
gives a primitive trinomia in Zs[z], one primitive polynomia in Zs[z] having five non-
zero terms, and one primitive polynomial in Z[z] having seven non-zero terms, provided
that such polynomials exist. The factorizations of 2™ — 1 are known for al m < 510 and
for some additional m < 5000. A list of such factorizations can be found in Brillhart et
a. [211] and updates of the list are available by anonymousftp from sabl e. ox. ac. uk
inthe/ pub/ mat h/ cunni ngham directory. Hansen and Mullen [538] describe some
improvementsto Algorithm 4.78 for generating primitive polynomials. They aso give ta-
bles of primitive polynomials of degree m in Z,[x] for each prime power p™ < 105° with
p < 97. Moreover, for each such p and m, the primitive polynomial of degree m over Z,,
listed has the smallest number of non-zero coefficients among all such polynomials.

The entries of Table 4.9 were obtained from Zierler [1270] for Mersenne exponents M ;,
1 < j <23, andfrom Kuritaand Matsumoto [719] for Mersenne exponents M 5,24 < j <
27.

Let f(z) € Zp|z] beanirreducible polynomial of degree m, and consider the finite field
Fpm = Zy[z]/(f(x)). Then f(z) is called anormal polynomial if the set {a:,wp,a:pz, ce
2#" "} forms a basis for F,~ over Z,; such abasis is called a normal basis. Mullin et
a. [911] introduced the concept of an optimal normal basisin order to reduce the hardware
complexity of multiplying field elementsin thefinitefield Fom . A VLS| implementation of
thearithmeticinFy» which usesoptimal normal basesisdescribed by Agnew etal. [18]. A
normal polynomial which is aso primitiveis called a primitive normal polynomial. Dav-
enport [301] proved that for any prime p and positive integer m there exists a primitive
normal polynomial of degreem inZ,[x]. See aso Lenstraand Schoof [760] who general-
ized this result from prime fields Z,, to prime power fields F,. Morgan and Mullen [905]
giveaprimitive normal polynomial of degree m over Z,, for each prime power p™ < 10%°
with p < 97. Moreover, each polynomial has the smallest number of non-zero coefficients
among all primitive normal polynomialsof degreem over Z,,; in fact, each polynomial has
at most five non-zero terms.

No polynomial-timealgorithmis known for finding generators, or even for testing whether
an element isagenerator, of afinitefield F, if thefactorization of ¢ — 1 isunknown. Shoup
[1130] considered the problem of deterministically generating in polynomial time a subset
of I, that contains a generator, and presented a sol ution to the problem for the case where
the characteristic p of F, issmall (e.g. p = 2). Maurer [818] discusses how his algorithm
(Algorithm 4.62) can be used to generate the parameters (p, «), wherep isaprovableprime
and v isagenerator of Z,.

TCL Exhibit 1009
Page 186

Chapter

Pseudorandom Bits and Sequences

Contentsin Brief

51 Introduction. 169
5.2 Randombitgeneration 171
5.3 Pseudorandom bitgeneration. 173
54 Statigticaltests 175
5.5 Cryptographically secure pseudorandom bit generation 185
56 Notesand furtherreferences 187

5.1 Introduction

The security of many cryptographic systems depends upon the generation of unpredictable
quantities. Examples include the keystream in the one-time pad (§1.5.4), the secret key in
the DES encryption algorithm (§7.4.2), the primes p, ¢ in the RSA encryption (§8.2) and
digital signature (§11.3.1) schemes, the private key a in the DSA (§11.5.1), and the chal-
lenges used in challenge-response identification systems (§10.3). In all these cases, the
guantities generated must be of sufficient size and be “random” in the sense that the proba-
bility of any particular value being sel ected must be sufficiently small to preclude an adver-
sary from gaining advantage through opti mi zing asearch strategy based on such probability.
For example, the key space for DES has size 256, If a secret key k were selected using a
true random generator, an adversary would on average haveto try 255 possible keys before
guessing the correct key k. If, on the other hand, a key k were selected by first choosing a
16-bit random secret s, and then expanding it into a 56-bit key & using a complicated but
publicly known function f, the adversary would on average only need to try 21° possible
keys (obtained by running every possible value for s through the function f).

This chapter considers techniques for the generation of random and pseudorandom
bits and numbers. Related techniques for pseudorandom bit generation that are generally
discussed in the literature in the context of stream ciphers, including linear and nonlinear
feedback shift registers (Chapter 6) and the output feedback mode (OFB) of block ciphers
(Chapter 7), are addressed el sewhere in this book.

Chapter outline

The remainder of §5.1 introduces basic concepts relevant to random and pseudorandom
bit generation. §5.2 considers techniques for random bit generation, while §5.3 considers
some techniques for pseudorandom bit generation. §5.4 describes statistical tests designed

169

TCL Exhibit 1009
Page 187

170

Ch.5 Pseudorandom Bits and Sequences

to measure the quality of arandom bit generator. Cryptographically secure pseudorandom
bit generatorsarethetopic of §5.5. §5.6 concludeswith referencesand further chapter notes.

5.1.1 Background and Classification

5.1

5.2

5.3

5.4

Definition A randombit generator is adevice or agorithm which outputs a sequence of
statistically independent and unbiased binary digits.

Remark (randombitsvs. random numbers) A random bit generator can be used to gener-
ate (uniformly distributed) random numbers. For example, arandom integer in theinterval
[0, n] can be obtained by generating arandom bit sequence of length |1gn| + 1, and con-
verting it to an integer; if the resulting integer exceeds n, one option is to discard it and
generate a new random bit sequence.

§5.2 outlines some physical sources of random bits that are used in practice. Ideally,
secretsrequiredin cryptographic algorithmsand protocol s should be generated with a(true)
random bit generator. However, the generation of random bitsis an inefficient procedurein
most practical environments. Moreover, it may beimpractical to securely storeand transmit
alarge number of random bitsif these are required in applications such as the one-time pad
(§6.1.1). In such situations, the problem can be ameliorated by substituting a random bit
generator with a pseudorandom bit generator.

Definition A pseudorandom bit generator (PRBG) is a deterministic! algorithm which,
givenatruly random binary sequenceof length k, outputsabinary sequenceof lengthl > &k
which “appears’ to be random. The input to the PRBG is called the seed, while the output
of the PRBG is called a pseudorandom bit sequence.

The output of aPRBG is not random; in fact, the number of possible output sequencesis at
most asmall fraction, namely 2% /2!, of all possible binary sequencesof lengthi. Theintent
isto takeasmall truly random sequence and expand it to a sequence of much larger length,
in such away that an adversary cannot efficiently distinguish between output sequences of
the PRBG and truly random sequences of length 1. §5.3 discusses ad-hoc techniques for
pseudorandom bit generation. In order to gain confidence that such generators are secure,
they should be subjected to avariety of statistical tests designed to detect the specific char-
acteristics expected of random sequences. A collection of such testsis givenin §5.4. As
the following example demonstrates, passing these statistical tests is a necessary but not
sufficient condition for a generator to be secure.

Example (linear congruential generators) A linear congruential generator produces a
pseudorandom sequence of numbers 1, s, 3, . . . according to the linear recurrence

T, = arp_1+bmodm, n>1;

integersa, b, and m are parameter swhich characterizethe generator, while x isthe (secret)
seed. While such generators are commonly used for simulation purposes and probabilistic
algorithms, and pass the statistical tests of §5.4, they are predictable and hence entirely in-
secure for cryptographic purposes: given a partial output sequence, the remainder of the
sequence can be reconstructed even if the parameters a, b, and m are unknown. O

1Deterministic here meansthat given the same initial seed, the generator will always produce the same output
seguence.

TCL Exhibit 1009
Page 188

§5.2 Random bit generation 171

A minimum security requirement for a pseudorandom bit generator is that the length
% of the random seed should be sufficiently large so that a search over 2% elements (the
total number of possible seeds) is infeasible for the adversary. Two genera requirements
arethat the output sequences of a PRBG should be statistically indistinguishablefrom truly
random sequences, and the output bits should be unpredictableto an adversary with limited
computational resources; these requirements are captured in Definitions 5.5 and 5.6.

5.5 Definition A pseudorandom bit generator is said to pass all polynomial-time? statistical
testsif no polynomial-timealgorithm can correctly distinguish between an output sequence
of the generator and a truly random sequence of the same length with probability signifi-
cantly greater that 3.

5.6 Definition A pseudorandom bit generator is said to pass the next-bit test if there is no
polynomial-time algorithm which, on input of the first I bits of an output sequence s, can
predict the (I 4 1)** bit of s with probability significantly greater than 1.

Although Definition 5.5 appears to impose a more stringent security requirement on
pseudorandom bit generators than Definition 5.6 does, the next result asserts that they are,
in fact, equivalent.

5.7 Fact (universality of the next-bit test) A pseudorandom bit generator passes the next-bit
test if and only if it passes all polynomial-time statistical tests.

5.8 Definition A PRBG that passes the next-bit test (possibly under some plausible but un-
proved mathematical assumption such asthe intractability of factoring integers) iscaled a
cryptographically secure pseudorandom bit generator (CSPRBG).

5.9 Remark (asymptotic nature of Definitions 5.5, 5.6, and 5.8) Each of the three definitions
above are given in complexity-theoretic terms and are asymptotic in nature because the no-
tion of “polynomial-time” is meaningful for asymptotically large inputs only; the resulting
notionsof security arerelativein the same sense. To be more precisein Definitions5.5, 5.6,
5.8, and Fact 5.7, a pseudorandom bit generator is actually afamily of such PRBGs. Thus
the theoretical security results for afamily of PRBGs are only an indirect indication about
the security of individual members.

Two cryptographically secure pseudorandom bit generators are presented in §5.5.

5.2 Random bit generation

A (true) random bit generator requires a naturaly occurring source of randomness. De-
signing a hardware device or software program to exploit this randomness and produce a
bit sequencethat is free of biases and correlationsis a difficult task. Additionally, for most
cryptographic applications, the generator must not be subject to observation or manipula
tion by an adversary. This section surveys some potential sources of random bits.

Random bit generators based on natural sources of randomness are subject to influence
by external factors, and also to mafunction. It is imperative that such devices be tested
periodically, for example by using the statistical tests of §5.4.

2The running time of the test is bounded by a polynomial in the length I of the output sequence.

TCL Exhibit 1009
Page 189

172

Ch.5 Pseudorandom Bits and Sequences

(i) Hardware-based generators

Hardware-based random bit generatorsexpl oit the randomnesswhich occursin some phys-
ical phenomena. Such physical processes may produce bits that are biased or correlated, in
which case they should be subjected to de-skewing techniques mentioned in (iii) below.
Examples of such physical phenomenainclude:

1. elapsed time between emission of particles during radioactive decay;

2. thermal noise from a semiconductor diode or resistor;

3. the frequency instability of afree running oscillator;

4. theamount ametal insul ator semiconductor capacitor ischarged during afixed period
of time;

5. air turbulence within a sealed disk drive which causes random fluctuations in disk
drive sector read latency times; and

6. sound from a microphone or video input from a camera.

Generators based on the first two phenomenawould, in general, have to be built externally
to the device using the random bits, and hence may be subject to observation or manipula-
tion by an adversary. Generators based on oscillators and capacitors can be built on VLS
devices; they can be enclosed in tamper-resistant hardware, and hence shielded from active
adversaries.

(ii) Software-based generators

Designing a random bit generator in software is even more difficult than doing so in hard-
ware. Processes upon which software random bit generators may be based include:

1. the system clock;

2. elapsed time between keystrokes or mouse movement;

3. content of input/output buffers;

4. user input; and

5. operating system values such as system load and network statistics.

The behavior of such processes can vary considerably depending on various factors, such
asthe computer platform. It may also be difficult to prevent an adversary from observing or
mani pulating these processes. For instance, if the adversary hasaroughideaof whenaran-
dom sequencewas generated, she can guessthe content of the system clock at that timewith
ahigh degree of accuracy. A well-designed software random bit generator should utilize as
many good sources of randomness as are available. Using many sources guards against the
possibility of afew of the sources failing, or being observed or manipulated by an adver-
sary. Each source should be sampled, and the sampl ed sequences should be combined using
acomplex mixing function; one recommended technique for accomplishing thisisto apply
acryptographic hash function such as SHA-1 (Algorithm 9.53) or MD5 (Algorithm 9.51) to
a concatenation of the sampled sequences. The purpose of the mixing functionis to distill
the (true) random bits from the sampled sequences.

(iii) De-skewing

A natural source of random bits may be defective in that the output bits may be biased (the
probability of the source emitting a1 is not equal to %) or correlated (the probability of
the source emitting a1 depends on previous bits emitted). There are varioustechniquesfor
generating truly random bit sequences from the output bits of such a defective generator;
such techniques are called de-skewing techniques.

TCL Exhibit 1009
Page 190

§5.3 Pseudorandom bit generation 173

5.10 Example (removing biasesin output bits) Suppose that a generator produces biased but

uncorrelated bits. Suppose that the probability of al isp, and the probability of a0 is1—p,
where p is unknown but fixed, 0 < p < 1. If the output sequence of such a generator is
groupedinto pairsof bits, witha10 pair transformedtoal, a01 pair transformedto a0, and
00 and 11 pairs discarded, then the resulting sequenceis both unbiased and uncorrelated. O

A practical (although not provable) de-skewing techniqueis to pass sequences whose
bits are biased or correlated through a cryptographic hash function such as SHA-1 or MD5.

5.3 Pseudorandom bit generation

A one-way function f (Definition 1.12) can be utilized to generate pseudorandom bit se-
guences (Definition 5.3) by first selecting arandom seed s, and then applying thefunctionto
the sequenceof valuess, s+1, s+2, . .. ; theoutput sequenceis f(s), f(s+1), f(s+2),. ...
Depending on the properties of the one-way function used, it may be necessary to only keep
afew bits of the output values f(s +) in order to remove possible correlations between
successive values. Examples of suitable one-way functions f include a cryptographic hash
function such as SHA-1 (Algorithm 9.53), or ablock cipher such as DES (§7.4) with secret
key k.

Although such ad-hoc methods have not been proven to be cryptographically secure,
they appear sufficient for most applications. Two such methods for pseudorandom bit and
number generation which have been standardized are presented in §5.3.1 and §5.3.2. Tech-
niquesfor the cryptographically secure generation of pseudorandom bits are givenin §5.5.

5.3.1 ANSI X9.17 generator

5.11

Algorithm5.11isaU.S. Federal Information Processing Standard (FIPS) approved method
from the ANSI X9.17 standard for the purpose of pseudorandomly generating keys and
initialization vectors for use with DES. E}, denotes DES E-D-E two-key triple-encryption
(Definition 7.32) under a key k; the key k should be reserved exclusively for use in this
algorithm.

Algorithm ANSI X9.17 pseudorandom bit generator

INPUT: arandom (and secret) 64-bit seed s, integer m, and DES E-D-E encryption key k.
OUTPUT: m pseudorandom 64-bit strings x1, za, . . . , Tm-
1. Compute the intermediate value I = E} (D), where D is a 64-bit representation of
the date/time to asfine aresolution asis available.
2. For i from 1 to m do the following:
21 i+ Ep(I® s).
22 s« Ep(z; @ 1).
3. Return(zy, 2, ... , Tm)-

Each output bitstring ; may be used asan initialization vector (V) for one of the DES
modes of operation (§7.2.2). To obtain aDES key from x;, every eighth bit of z; should be
reset to odd parity (cf. §7.4.2).

TCL Exhibit 1009
Page 191

174

Ch.5 Pseudorandom Bits and Sequences

5.3.2 FIPS 186 generator

5.12

5.13

5.14

Thealgorithms presented in this subsection are FI PS-approved methodsfor pseudorandom-
ly generating the secret parameters for the DSA (§11.5.1). Algorithm 5.12 generates DSA
privatekeysa, while Algorithm 5.14 generatesthe per-message secrets k to beusedin sign-
ing messages. Both algorithmsuse asecret seed s which should berandomly generated, and
utilizeaone-way function constructed by using either SHA-1 (Algorithm 9.53) or DES (Al-
gorithm 7.82), respectively described in Algorithms 5.15 and 5.16.

Algorithm FIPS 186 pseudorandom number generator for DSA private keys

INPUT: an integer m and a 160-bit prime number q.
OUTPUT: m pseudorandom numbersas, as, . .. ,a, intheinterval [0, ¢ — 1] which may
be used as DSA private keys.
1. If Algorithm 5.15 is to be used in step 4.3 then select an arbitrary integer b, 160 <
b < 512;if Algorithm 5.16 is to be used then set b+ 160.
2. Generate arandom (and secret) b-bit seed s.
3. Definethe 160-bit stringt = 67452301 ef cdab89 98badcfe 10325476
c3d2elf 0 (in hexadecimal).
4. For i from 1 to m do the following:
4.1 (optional user input) Either select a b-bit string y;, or set y;<—0.
4.2 z;+(s +y;) mod 2°.
4.3 a;+G(t, z;) mod q. (G is either that defined in Algorithm 5.15 or 5.16.)
4.4 s+(1+ s+ a;) mod 2°.

5. Return(ay, as, ... , am).

Note (optional user input) Algorithm 5.12 permits a user to augment the seed s with ran-
dom or pseudorandom strings derived from alternate sources. The user may desire to do
thisif she does not trust the quality or integrity of the random bit generator which may be
built into a cryptographic modul e implementing the algorithm.

Algorithm FIPS 186 pseudorandom number generator for DSA per-message secrets

INPUT: an integer m and a 160-bit prime number q.
OUTPUT: m pseudorandom numbers k1, ks, . . . , kn, intheinterval [0, ¢ — 1] which may
be used as the per-message secret numbers & in the DSA.
1. If Algorithm 5.15 isto be used in step 4.1 then select an integer b, 160 < b < 512;
if Algorithm 5.16 is to be used then set b<—160.
2. Generate arandom (and secret) b-bit seed s.
3. Definethe 160-bit string ¢t = ef cdab89 98badcfe 10325476 c3d2elf0
67452301 (in hexadecimal).
4. For i from 1 to m do the following:
4.1 k;+G(t,s) mod q. (G isether that defined in Algorithm 5.15 or 5.16.)
4.2 s+(1+ s+ k;) mod 2°.
5. Return(k:l, kay..on km)

TCL Exhibit 1009
Page 192

85.4 Statistical tests 175

5.15 Algorithm FIPS 186 one-way function using SHA-1

INPUT: a160-bit string ¢ and a b-bit string ¢, 160 < b < 512.
OUTPUT: a160-hit string denoted G(¢, c).

. Break up t into five 32-bit blocks: ¢ = H || Hz||Hs|| Ha|| Hs.

2. Pad c with 0’sto obtain a 512-bit message block: X «—c||052~?.
3. Divide X into 16 32-bit words: zgx .. .x15, and set m<1.

4. Execute step 4 of SHA-1 (Algorithm 9.53). (Thisaltersthe H;’s.)
5. The output is the concatenation: G(t, ¢) = H, || Ha||Hs|| Hy| Hs.

=

5.16 Algorithm FIPS 186 one-way function using DES

INPUT: two 160-bit stringst and c.
OUTPUT: a160-bit string denoted G (¢, c).
1. Break up t into five 32-bit blocks: ¢ = tg||t1||t2]|¢3]|ta-
2. Break up c into five 32-bit blocks: ¢ = col|c1||cz2||es]|ca.
3. For i from 0 to 4 do thefollowing: x;<t; & c;.
4. For i from 0 to 4 do the following:
4.1 b1¢C(i+4)mod5s D24C(i43)mods5-
4.2 a14¢-Ti, a2¢T(i41)mods D T(it4)mods-
4.3 A«ayl|az, B<b}| ba, wherebd) denotesthe 24 least significant bits of b;.
4.4 Use DESwith key B to encrypt A: y;<—DESg(A).
4.5 Break up y; into two 32-bit blocks: y; = L;||R;.
5. For i from0 to 4 do thefollowing: z;<—L; ® R(i+2)mods ® L(i+3)mods-
6. The output is the concatenation: G(t, ¢) = zo| 21| 22| 23| 2.

5.4 Statistical tests

This section presents some tests designed to measure the quality of a generator purported
to bearandom bit generator (Definition 5.1). Whileit isimpossibleto give amathematical
proof that agenerator isindeed arandom bit generator, the tests described here help detect
certain kinds of weaknessesthe generator may have. Thisisaccomplished by taking asam-
pleoutput sequence of the generator and subjectingit to various statistical tests. Each statis-
tical test determines whether the sequence possesses a certain attribute that a truly random
sequence would be likely to exhibit; the conclusion of each test is not definite, but rather
probabilistic. An example of such an attributeis that the sequence should have roughly the
same number of 0’sas 1’s. If the sequenceis deemed to havefailed any one of the statistical
tests, the generator may be rejected as being non-random; alternatively, the generator may
be subjected to further testing. On the other hand, if the sequence passes all of the statisti-
cal tests, the generator is accepted as being random. More precisely, the term “ accepted”
should be replaced by “not rejected”, since passing the tests merely provides probabilistic
evidence that the generator produces sequences which have certain characteristics of ran-
dom sequences.

§5.4.1 and §5.4.2 provide some relevant background in statistics. §5.4.3 establishes
some notation and lists Golomb’s randomness postulates. Specific statistical tests for ran-
domness are described in §5.4.4 and §5.4.5.

TCL Exhibit 1009
Page 193

176

Ch.5 Pseudorandom Bits and Sequences

5.4.1 The normal and chi-square distributions

5.17

5.18

5.19

The normal and x2 distributions are widely used in statistical applications.

Definition If theresult X of an experiment can be any real number, then X issaid to be
acontinuous random variable.

Definition A probability density function of acontinuousrandomvariable X isafunction
f(z) which can be integrated and satisfies:

(i) f(z) >0fordlz eR;
(i) [, f(z)de = 1;and
(i) foral a,be R, P(a < X <b) = [f(z)da.
(i) The normal distribution

Thenormal distribution arisesin practice when alarge number of independent random vari-
ables having the same mean and variance are summed.

Definition A (continuous) random variable X has anormal distribution with mean p, and
variance o2 if its probability density function is defined by

_ _ 2
fla) = = 127T exp {7(202/” }, —00 < < 00.

Notation: X is said to be N(u,0?). If X is N(0,1), then X is said to have a standard
normal distribution.

A graph of the N (0, 1) distribution is given in Figure 5.1. The graph is symmetric

0.45 T T T T
0.4
0.35
0.3
0.25
0.2
0.15
0.1

0.05

Figure 5.1: Thenormal distribution N (0, 1).

about the vertical axis, and hence P(X > z) = P(X < —x) for any z. Table 5.1 gives
some percentiles for the standard normal distribution. For example, the entry (o = 0.05,
x = 1.6449) meansthat if X isN(0, 1), then X exceeds 1.6449 about 5% of the time.

Fact 5.20 can be used to reduce questions about anormal distribution to questionsabout
the standard normal distribution.

TCL Exhibit 1009
Page 194

§5.4 Statistical tests

177

a

0.1

0.05

0.025

0.01

0.005

0.0025 0.001

0.0005

T

1.2816

1.6449

1.9600

2.3263

2.5758

2.8070 | 3.0902

3.2905

Table 5.1: Selected percentiles of the standard normal distribution. If X isarandomvariable having
a standard normal distribution, then P(X > z) = a.

5.20 Fact If therandom variable X is N (u, o2), then therandom variable Z = (X — p)/o is

N(0,1).

(ii) The 2 distribution
The 2 distribution can be used to compare the goodness-of-fit of the observed frequencies
of eventsto their expected frequencies under a hypothesized distribution. The x 2 distribu-
tion with v degrees of freedom arises in practice when the squares of v independent random
variables having standard normal distributions are summed.

5.21 Definition Letv>1 beaninteger. A (continuous) random variable X hasax? (chi-squ-
are) distribution with v degrees of freedomif its probability density function is defined by

flz) =

T(v/2)2v/2

I

1

I(U/Z)—le—z/27

0<x < o0,

z <0,

where T is the gamma function.®> The mean and variance of this distribution are 1 = v,
and o2 = 2v.

A graph of the x2 distribution with v = 7 degrees of freedom is given in Figure 5.2.
Table 5.2 gives some percentiles of the 2 distribution for various degrees of freedom. For

0.12

0.1

0.08

0.06

0.04

T

1

T

1

T

1

5

10

15
X

20

Figure 5.2: The x? (chi-square) distribution with v = 7 degrees of freedom.

example, theentry inrow v = 5 and column o« = 0.05 isz = 11.0705; this means that if
X has ax? distribution with 5 degrees of freedom, then X exceeds 11.0705 about 5% of

the time.

3The gamma function is defined by T'(t) = [2!~ *e~®dz, for t > 0.

TCL Exhibit 1009

Page 195

178 Ch.5 Pseudorandom Bits and Sequences

«
v 0100 0050 0025] 0010] 0005] 0001
1 27055 38415 50239 6.6349 78794 108276
2 4.6052 59915 | 7.3778 9.2103 | 105966 | 13.8155
3 6.2514 7.8147 | 93484 | 113449 | 128382 | 16.2662
4 7.7794 94877 | 111433 | 132767 | 14.8603 | 18.4668
5 9.2364 | 110705 | 128325 | 150863 | 16.7496 | 20.5150
6 || 106446 | 125916 | 144494 | 168119 | 185476 | 224577
7| 120170 | 140671 | 160128 | 184753 | 202777 | 24.3219
8| 133616 | 155073 | 17.5345| 200902 | 21.9550 | 26.1245
9 || 146837 | 169190 | 190228 | 216660 | 235894 | 27.8772
10 || 159872 | 183070 | 204832 | 232093 | 251882 | 295883
11 || 17.2750 | 19.6751 | 219200 | 247250 | 26.7568 | 31.2641
12 || 185493 | 210261 | 233367 | 262170 282995| 32.9095
13 || 198119 | 223620 | 247356 | 27.6882 | 29.8195| 345282
14 || 210641 | 236848 | 261189 | 291412 | 313193 | 361233
15 || 223071 | 249958 | 27.4884 | 305779 | 328013 | 37.6973
16 | 235418 | 262062 | 288454 | 319999 | 342672 | 39.2524
17 || 247690 | 275871 | 301910 | 33.4087 | 357185| 40.7902
18 || 259894 | 1288693 | 315264 | 348053 | 37.1565| 423124
19 || 272036 | 301435 | 328523 | 361909 | 385823 | 43.8202
20 | 284120 | 314104 | 341696 | 37.5662 | 30.9968 | 45.3147
21 | 296151 | 326706 | 354789 | 389322 | 414011| 46.7970
22 || 308133 | 339244 | 367807 | 402804 | 427957 | 48.2679
23| 320069 | 351725 | 380756 | 416384 | 441813 | 49.7282
24| 331962 | 364150 | 39.3641 | 429798 | 455585| 51.1786
25| 343816 | 37.6525 | 40.6465 | 443141 469279 | 526197
26 || 355632 | 388851 | 419232 | 456417 | 482899 | 54.0520
27 || 367412 | 401133 | 431945 | 469629 | 49.6449 | 55.4760
28 || 37.9150 | 413371 | 444608 | 482782 | 509934 | 56.8923
29 | 300875 | 425570 | 457223 | 495879 | 523356 | 58.3012
30 || 402560 | 437730 | 469792 | 50.8922 | 536720 | 50.7031
31 || 414217 | 449853 | 482319 | 521914 | 550027 | 61.0983
63 || 77.7454 | 825287 | 868296 | 920100 | 956493 | 103.4424
127 || 147.8048 | 1543015 | 160.0858 | 166.9874 | 1717961 181.9930
255 || 284.3350 | 2032478 | 3011250 | 3104574 | 3169194 | 3305197
511 | 5523739 | 564.6961 | 5755208 | 5882978 | 597.0978 | 6155149
1023 || 1081.3794 | 1098.5208 | 11135334 | 1131.1587 | 1143.2653 | 1168.4972

Table 5.2: Selected percentiles of the x* (chi-square) distribution. A (v, a)-entry of z in the table
has the following meaning: if X is a random variable having a »? distribution with v degrees of
freedom, then P(X > z) = a.

TCL Exhibit 1009
Page 196

§5.4 Statistical tests 179

5.22

Fact 5.22 relates the normal distribution to the 2 distribution.

Fact If therandom variable X is N (u, 02), o2 > 0, then the random variable Z = (X —
1)?/a? hasax? distribution with 1 degree of freedom. In particular, if X is N(0, 1), then
Z = X? hasax? distribution with 1 degree of freedom.

5.4.2 Hypothesis testing

5.23

A statistical hypothesis, denoted Hyy, is an assertion about a distribution of one or moreran-
domvariables. A test of astatistical hypothesisisaprocedure, based upon observed values
of the random variables, that |eads to the acceptance or rejection of the hypothesis Hy. The
test only provides a measure of the strength of the evidence provided by the data against
the hypothesis; hence, the conclusion of the test is not definite, but rather probabilistic.

Definition The significancelevel « of thetest of astatistical hypothesis H is the proba-
bility of rejecting Hy when it istrue.

In this section, H, will be the hypothesis that a given binary sequence was produced
by arandom bit generator. If thesignificancelevel « of atest of Hy istoo high, thenthetest
may reject sequencesthat were, in fact, produced by a random bit generator (such an error
iscaled aTypel error). On the other hand, if the significance level of atest of Hy istoo
low, then thereis the danger that the test may accept sequences even though they were not
produced by arandom bit generator (such an erroriscalled aTypell error).# Itis, therefore,
important that the test be carefully designed to have a significance level that is appropriate
for the purpose at hand; a significancelevel « between 0.001 and 0.05 might be employed
in practice.

A statistical test isimplemented by specifying astatistic ontherandom sample.® Statis-
ticsare generally chosen so that they can be efficiently computed, and so that they (approxi-
mately) follow an N (0, 1) or ax? distribution (see §5.4.1). Thevalueof the statistic for the
sample output sequence is computed and compared with the value expected for a random
sequence as described below.

1. Suppose that a statistic X for a random sequence follows a 2 distribution with v
degrees of freedom, and suppose that the statistic can be expected to take on larger
values for nonrandom sequences. To achieve a significance level of «, a threshold
vaue z,, ischosen (using Table 5.2) sothat P(X > z,,) = «. If thevalue X ¢ of the
statistic for the sample output sequencesatisfies Xs > z,, thenthe sequencefailsthe
test; otherwise, it passesthetest. Such atest is called a one-sided test. For example,
if v=>5anda = 0.025, then z, = 12.8325, and one expects a random sequence to
fail thetest only 2.5% of the time.

2. Supposethat astatistic X for arandom sequencefollowsan N (0, 1) distribution, and
supposethat the statistic can be expected to take on both larger and smaller valuesfor
nonrandom sequences. To achieve a significance level of o, athreshold value x, is
chosen (using Table 5.1) so that P(X > z,) = P(X < —z,) = /2. If thevalue

4Actually, the probability 3 of a Type Il error may be completely independent of . If the generator is not a
random bit generator, the probability 3 depends on the nature of the defects of the generator, and isusually difficult
to determine in practice. For this reason, assuming that the probability of a Type Il error is proportional to «cisa
useful intuitive guide when selecting an appropriate significance level for atest.

5A datistic is afunction of the elements of arandom sample; for example, the number of 0’sin a binary se-
guenceisa statistic.

TCL Exhibit 1009
Page 197

180

Ch.5 Pseudorandom Bits and Sequences

X of the statistic for the sample output sequence satisfies Xs > z,, Of Xs < —Zq,
then the sequence fails the test; otherwise, it passes the test. Such atest is called a
two-sided test. For example, if « = 0.05, then z, = 1.96, and one expectsarandom
sequence to fail the test only 5% of thetime.

5.4.3 Golomb’s randomness postulates

5.24

5.25

5.26

5.27

5.28

Golomb’srandomness postul ates (Definition 5.28) are presented here for historical reasons
—they were one of the first attempts to establish some necessary conditions for a periodic
pseudorandom sequenceto ook random. It isemphasized that these conditionsarefar from
being sufficient for such sequences to be considered random. Unless otherwise stated, al
sequences are binary sequences.

Definition Lets = s, s1, s2, ... beaninfinite sequence. The subsegquence consisting of
thefirst n terms of s is denoted by s™ = s, $1,... , Sn—1.
Definition The sequence s = sg, s1, $2,... issaid to be N-periodicif s; = s;4n for

al i > 0. Thesequence s is periodicif it is V-periodic for some positive integer N. The
period of aperiodic sequence s isthe smallest positiveinteger N for which s is N-periodic.
If s isaperiodic sequence of period IV, then the cycle of s is the subsequence ™.

Definition Letsbeasequence. A runof sisasubsequenceof s consisting of consecutive
0’sor consecutive 1’swhich is neither preceded nor succeeded by the same symbol. A run
of 0’siscalled agap, whilearun of 1'sis called a block.

Definition Let s = sg, s1, s2,... beaperiodic sequence of period N. The autocorrela-
tion function of s isthe integer-valued function C'(¢) defined as

N-1
1
Clt) =% D (2si—1)- (2844 1), for0<t<N-1L
1=0

The autocorrelation function C'(¢) measures the amount of similarity between the se-
quence s and a shift of s by ¢ positions. If s is a random periodic sequence of period NV,
then |V - C(¢)| can be expected to be quite small for all valuesof ¢,0 <t < N.

Definition Let s be a periodic sequence of period V. Golomb’s randomness postulates
are the following.
R1: Inthecycle s of s, the number of 1'sdiffersfrom the number of 0’s by at most 1.
R2: Inthecycle sV, at least half the runs have length 1, at least one-fourth have length
2, at least one-eighth have length 3, etc., aslong as the number of runs so indicated
exceeds 1. Moreover, for each of these lengths, there are (almost) equally many gaps
and blocks.®
R3: Theautocorrelation function C(t) istwo-valued. That is for someinteger K,

N-1

N, ift=o0,

SPostulate R2 implies postulate R1.

TCL Exhibit 1009
Page 198

85.4 Statistical tests 181

5.29 Definition A binary sequence which satisfies Golomb’s randomness postulates is called
a pseudo-noi se sequence or a pn-sequence.

Pseudo-noi se sequences arise in practice as output sequences of maximum-length lin-
ear feedback shift registers (cf. Fact 6.14).

5.30 Example (pn-segquence) Consider the periodic sequence s of period N = 15 with cycle
s=0,1,1,0,0,1,0,0,0,1,1,1,1,0, 1.

The following shows that the sequence s satisfies Golomb’s randomness postul ates.

R1: The number of 0’sin s'® is 7, while the number of 1'sis38.

R2: s'® has8 runs. Thereare4 runsof length 1 (2 gaps and 2 blocks), 2 runs of length 2
(1 gap and 1 block), 1 run of length 3 (1 gap), and 1 run of length 4 (1 block).

R3: The autocorrelation function C(t) takes on two values: C(0) = 1 and C(t) = T2
forl <t <14.

Hence, s is a pn-seguence. a

5.4.4 Five basic tests

Let s = sg,$1,82,...,8,_1 beabinary sequence of length n. This subsection presents
five statistical tests that are commonly used for determining whether the binary sequence
s possesses some specific characteristics that a truly random sequence would be likely to
exhibit. It isemphasized again that the outcome of each test is not definite, but rather prob-
abilistic. If asequence passesall fivetests, thereisno guaranteethat it wasindeed produced
by arandom bit generator (cf. Example 5.4).

(i) Frequency test (monobit test)

The purpose of thistest is to determine whether the number of 0’sand 1'sin s are approxi-
mately the same, as would be expected for arandom sequence. Let ng, ny denotethe num-
ber of 0'sand 1'sin s, respectively. The statistic used is

(no —m1)?

n
which approximately follows a x 2 distribution with 1 degree of freedomiif n > 10. 7

X, = (5.1)

(ii) Serial test (two-bit test)

The purpose of this test is to determine whether the number of occurrences of 00, 01, 10,
and 11 as subsequencesof s are approximately the same, as would be expected for arandom
sequence. Let ng, n; denote the number of 0'sand 1’sin s, respectively, and let ngg, no1,
n10, n11 denote the number of occurrences of 00, 01, 10, 11 in s, respectively. Note that
ngo + no1 + n1o + n11 = (n — 1) since the subsequences are allowed to overlap. The
statistic used is

4 2
Xo = —— (nfo +nfy +nfy +ndr) — = (n§+nf) +1 (52)

which approximately follows a2 distribution with 2 degrees of freedom if n > 21.

7In practice, it is recommended that the length n of the sample output sequence be much larger (for example,
n > 10000) than the minimum specified for each test in this subsection.

TCL Exhibit 1009
Page 199

182

Ch.5 Pseudorandom Bits and Sequences

5.31

(iii) Poker test

Letm beapositiveinteger suchthat | ™ | > 5-(2™), andlet k = | |. Dividethesequence
s into k non-overlapping parts each of length m, and let n; be the number of occurrences of
the i type of sequence of lengthm, 1 < i < 2™. The poker test determines whether the
sequences of length m each appear approximately the same number of timesin s, aswould
be expected for arandom sequence. The statistic used is

-
— 2" 2]
Xy = o (Z:n) k (5.3)

which approximately follows a x? distribution with 2™ — 1 degrees of freedom. Note that
the poker test isageneralization of thefrequency test: settingm = 1inthepoker test yields
the frequency test.

(iv) Runs test

The purpose of the runstest is to determine whether the number of runs (of either zeros or
ones; see Definition 5.26) of variouslengthsin the sequence s is as expected for arandom
sequence. The expected number of gaps (or blocks) of length 7 in a random sequence of
lengthnise; = (n—i+3)/2%+2. Letk beequal tothelargest integer i for whiche; > 5. Let
B;, G; bethe number of blocksand gaps, respectively, of lengthi in sforeach:, 1 <i < k.
The statistic used is

. e:)2 6.2
X, = Z@ﬂ“i@ (54)

=1 =1
which approximately follows a x? distribution with 2% — 2 degrees of freedom.

(v) Autocorrelation test

The purpose of thistest isto check for correlations between the sequence s and (non-cyclic)
shifted versions of it. Let d beafixedinteger, 1 < d < |n/2]. The number of bitsin s not
equal to their d-shiftsis A(d) = Zf;odfl $;®si+d, Where @ denotes the XOR operator.
The statistic used is

X5 = 2 (A(d) _n > d) /vn—d (5.5)
which approximately followsan N (0, 1) distribution if n — d > 10. Since small values of
A(d) are as unexpected as |large values of A(d), atwo-sided test should be used.

Example (basic statistical tests) Consider the (non-random) sequence s of lengthn =
160 obtained by replicating the following sequence four times:

11100 01100 01000 10100 11101 11100 10010 01001.

(i) (frequency test) ny = 84, ny = 76, and the value of the statistic X; is0.4.

(ll) (%rla] teﬁ) ngo = 44, ng1 = 40, n1g = 40, n11 = 35, and the value of the statistic
X5 is0.6252.

(iii) (poker test) Herem = 3 and k = 53. The blocks 000, 001, 010, 011, 100, 101, 110,
111 appear 5, 10, 6, 4, 12, 3, 6, and 7 times, respectively, and the value of the statistic
X3i59.6415.

(iv) (runstest) Heree; = 20.25, eo = 10.0625,e3 = 5,and k = 3. Thereare 25,4, 5
blocks of lengths 1, 2, 3, respectively, and 8, 20, 12 gaps of lengths 1, 2, 3, respec-
tively. The value of the statistic X, is31.7913.

TCL Exhibit 1009
Page 200

§5.4 Statistical tests 183

(v) (autocorrelationtest) If d = 8, then A(8) = 100. The vaue of the statistic X5 is
3.8933.

For asignificancelevel of o« = 0.05, the threshold values for X1, X2, X3, X4, and X5 are
3.8415, 5.9915, 14.0671, 9.4877, and 1.96, respectively (see Tables 5.1 and 5.2). Hence,
the given sequence s passes the frequency, serial, and poker tests, but fails the runs and
autocorrelation tests. O

5.32 Note (FIPS 140-1 statistical tests for randomness) FIPS 140-1 specifies four statistical
tests for randomness. Instead of making the user select appropriate significance levels for
these tests, explicit bounds are provided that the computed value of a statistic must satisfy.
A singlebitstring s of length 20000 bits, output from agenerator, is subjected to each of the
following tests. If any of the tests fail, then the generator fails the test.

(i) monobit test. The number n; of 1'sin s should satisfy 9654 < n; < 10346.
(if) poker test. The statistic X5 defined by equation (5.3) is computed for m = 4. The
poker test ispassed if 1.03 < X3 < 57.4.

(iii) runstest. Thenumber B; and G; of blocks and gaps, respectively, of lengthi in s are
counted for each i, 1 < i < 6. (For the purpose of this test, runs of length greater
than 6 are considered to be of length 6.) The runstest is passed if the 12 counts B;,
G;, 1 < i < 6, areeach within the corresponding interval specified by the following

table.
| Length of run | Required interval |
1 2267 — 2733
2 1079 — 1421
3 502 — 748
4 223 — 402
5 90 — 223
6 90 — 223

(iv) long runtest. Thelong runtest is passed if there are no runs of length 34 or more.

For high security applications, FIPS 140-1 mandates that the four tests be performed each
timetherandom bit generator is powered up. FIPS 140-1 allowstheseteststo be substituted
by aternative tests which provide equivalent or superior randomness checking.

5.4.5 Maurer’s universal statistical test

The basic idea behind Maurer’s universal statistical test is that it should not be possible to
significantly compress (without loss of information) the output sequence of a random bit
generator. Thus, if asample output sequence s of abit generator can be significantly com-
pressed, the generator should be rejected as being defective. Instead of actually compress-
ing the sequence s, the universal statistical test computes a quantity that is related to the
length of the compressed sequence.

The universality of Maurer’suniversal statistical test arises becauseit is able to detect
any one of avery genera class of possible defects a bit generator might have. This class
includes the five defects that are detectable by the basic tests of §5.4.4. A drawback of the
universal statistical test over the five basic tests is that it requires a much longer sample
output sequencein order to be effective. Provided that the required output sequence can be
efficiently generated, this drawback is not a practical concern since the universal statistical
test itself is very efficient.

Algorithm5.33 computesthe statistic X, for asampleoutput sequences = s, s1, . . . ,
sn—1 to be used in the universal statistical test. The parameter L is first chosen from the

TCL Exhibit 1009
Page 201

184

Ch.5 Pseudorandom Bits and Sequences

5.33

p Lot | (L] w [o]
0.7326495 | 0.690 9 | 8.1764248 | 3.311
1.5374383 | 1.338 10 | 9.1723243 | 3.356
2.4016068 | 1.901 11 | 10.170032 | 3.384
3.3112247 | 2.358 12 | 11.168765 | 3.401
4.2534266 | 2.705 13 | 12.168070 | 3.410
5.2177052 | 2.954 14 | 13.167693 | 3.416
6.1962507 | 3.125 15 | 14.167488 | 3.419
7.1836656 | 3.238 16 | 15.167379 | 3.421

[BN B N B N U I N [

Table 5.3: Mean p and variance o2 of the statistic X, for random sequences, with parameters L,
K as@Q — oo. Thevariance of X,, iso? = ¢(L, K)? - 01 /K, where ¢(L, K) =~ 0.7 — (0.8/L) +
(1.6 + (12.8/L)) - K~*/F for K > 2.

interval [6, 16]. The sequence s is then partitioned into non-overlapping L-bit blocks, with
any leftover bits discarded; thetotal number of blocksis @+ K, where @ and K aredefined
below. Foreachi, 1 < i < Q+K, letb; betheinteger whose binary representationisthe:th
block. Theblocksare scannedin order. A tableT" is maintained so that at each stage T'[5] is
the position of the last occurrence of the block correspondingto integer 7,0 < j < 2% —1.
Thefirst @ blocksof s areusedtoinitializetableT'; @ should be chosento beat least 1027
in order to have a high likelihood that each of the 27 L-bit blocks occurs at least once in
thefirst @ blocks. The remaining K blocks are used to define the statistic X, as follows.
Foreachi,Q +1<i< Q+ K, let A; =i — T[b;]; A; isthe number of positions since
the last occurrence of block b;. Then
1 Q+K
Xu = .Z Ig A;. (5.6)
i=Q+1

K should be at least 1000 - 2~ (and, hence, the sample sequence s should be at least (1010-
2L . L) bitsin length). Table 5.3 lists the mean x and variance o2 of X, for random se-
guences for some sample choicesof L as@Q — cc.

Algorithm Computing the statistic X,, for Maurer’s universal statistical test

INPUT: abinary sequence s = sg, $1, - - - , S,_1 Of length n, and parameters L, Q, K.
OUTPUT: the value of the statistic X, for the sequence s.
1. Zerothetable T For j from 0 to 27 — 1 do the following: T'[;]«-0.
2. Initializethetable T'. For i from 1 to @ do thefollowing: T'[b;]«.
3. sum<«-0.
4. For i from@Q + 1to @ + K do thefollowing:
4.1 sume—sum + 1g(i — T'[bs]).
4.2 T[b;]+.
. Xy—sum/K.
6. Return(X,).

62

Maurer’'suniversal statistical test uses the computed value of X, for the sample output
sequence s in the manner prescribed by Fact 5.34. To test the sequence s, atwo-sided test
should be used with a significance level « between 0.001 and 0.01 (see §5.4.2).

TCL Exhibit 1009
Page 202

§5.5 Cryptographically secure pseudorandom bit generation 185

5.34 Fact Let X, be the statistic defined in (5.6) having mean 1 and variance o2 as given in
Table 5.3. Then, for random sequences, the stetistic Z,, = (X, —)/ approximately
followsan N (0, 1) distribution.

5.5 Cryptographically secure pseudorandom bit
generation

Two cryptographically secure pseudorandom bit generators (CSPRBG — see Definition 5.8)
are presented in this section. The security of each generator relies on the presumed in-
tractability of an underlying number-theoretic problem. The modular multiplications that
these generators use make them relatively slow compared to the (ad-hoc) pseudorandom
bit generators of §5.3. Nevertheless they may be useful in some circumstances, for exam-
ple, generating pseudorandom bits on hardware deviceswhich aready havethecircuitry for
performing modular multiplications. Efficient techniques for implementing modular mul-
tiplication are presented in §14.3.

5.5.1 RSA pseudorandom bit generator

The RSA pseudorandom bit generator is a CSPRBG under the assumption that the RSA
problemisintractable (§3.3; see also §3.9.2).

5.35 Algorithm RSA pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence z1, 2o, . . . , z; of length [is generated.

1. Setup. Generatetwo secret RSA-like primes p and ¢ (cf. Note 8.8), and computen =
pgand ¢ = (p — 1)(¢ — 1). Select arandom integer e, 1 < e < ¢, such that
ged(e, @) = 1.

2. Select arandom integer z (the seed) in theinterva [1,n — 1].

3. For i from 1 to [do the following:

3.1 z;<xf_; mod n.
3.2 z;+ theleast significant bit of x;.

4. The output sequenceis z1, za, - - - , 2.

5.36 Note (efficiency of the RSA PRBG) If e = 3 is chosen (cf. Note 8.9(ii)), then generating
each pseudorandom bit z; requires one modular multiplication and one modular squaring.
The efficiency of the generator can be improved by extracting the j least significant bits
of z; in step 3.2, where j = clglgn and c is a constant. Provided that n is sufficiently
large, this modified generator is aso cryptographically secure (cf. Fact 3.87). For a mod-
ulus n of afixed bitlength (e.g., 1024 bits), an explicit range of values of ¢ for which the
resulting generator remains cryptographically secure (cf. Remark 5.9) under theintractabil-
ity assumption of the RSA problem has not been determined.

The following modification improves the efficiency of the RSA PRBG.

TCL Exhibit 1009
Page 203

186 Ch.5 Pseudorandom Bits and Sequences

5.37 Algorithm Micali-Schnorr pseudorandom bit generator

SUMMARY: a pseudorandom bit sequenceis generated.
1. Setup. Generatetwo secret RSA-like primesp and ¢ (cf. Note 8.8), and computen =
pgand¢ = (p—1)(¢—1). Let N = |lgn] +1 (thebitlength of n). Select aninteger
e,1 < e < ¢,suchthat gcd(e,p) = 1and80e < N. Letk = |[N(1 — %)J and
r=N—k.
2. Select arandom sequence xzq (the seed) of bitlength r.
3. Generatea pseudorandomsequence of length k- [. For : from 1 to do the following:
3.1 yj<=xf_; mod n.
3.2 z;+ ther most significant bits of y;.
3.3 z;< the k least significant bits of ;.

4. Theoutput sequenceisz || z2 || - - - || 21, where || denotes concatenation.

5.38 Note (efficiency of the Micali-Schnorr PRBG) Algorithm 5.37 is more efficient than the
RSA PRBG since [N(1 — 2)] bits are generated per exponentiation by e. For example,
if e =3 and N = 1024, then k = 341 bits are generated per exponentiation. Moreover,
each exponentiation requiresonly one modular squaring of anr = 683-bit number, and one
modular multiplication.

5.39 Note (security of the Micali-Schnorr PRBG) Algorithm 5.37 is cryptographically secure
under the assumption that the followingistrue: the distribution z¢ mod n for random r-bit
sequences z is indistinguishable by all polynomial-time statistical tests from the uniform
distribution of integersin theinterval [0, n — 1]. Thisassumption is stronger than requiring
that the RSA problem be intractable.

5.5.2 Blum-Blum-Shub pseudorandom bit generator

The Blum-Blum-Shub pseudorandom bit generator (also known as the 22 mod n genera-
tor or the BBS generator) is a CSPRBG under the assumption that integer factorization is
intractable (§3.2). It formsthe basis for the Blum-Goldwasser probabilistic public-key en-
cryption scheme (Algorithm 8.56).

5.40 Algorithm Blum-Blum-Shub pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence z1, zo, . . . , z; Of length [is generated.
1. Setup. Generatetwo large secret random (and distinct) primesp and ¢ (cf. Note 8.8),
each congruent to 3 modulo 4, and computen = pgq.
2. Select arandominteger s (the seed) intheinterval [1, n — 1] such that ged(s, n) = 1,
and compute 2o+ s? mod n.
3. For i from 1 to ! do the following:
3.1 z;<2? |, mod n.
3.2 z;< theleast significant bit of z;.
4. The output sequenceis z1, 22, . . . , 2.

TCL Exhibit 1009
Page 204

85.6 Notes and further references 187

5.41 Note (efficiency of the Blum-Blum-Shub PRBG) Generating each pseudorandom bit z; re-

quiresonemodular squaring. Theefficiency of the generator can beimproved by extracting
the j least significant bitsof z; in step 3.2, where j = ¢lglgn and cisaconstant. Provided
that n is sufficiently large, this modified generator is a so cryptographically secure. For a
modulus n of afixed bitlength (eg. 1024 bits), an explicit range of values of ¢ for which
the resulting generator is cryptographically secure (cf. Remark 5.9) under the intractability
assumption of the integer factorization problem has not been determined.

5.6 Notes and further references

§5.1

Chapter 3 of Knuth [692] isthe definitive referencefor the classic (non-cryptographic) gen-
eration of pseudorandom numbers. Knuth [692, pp.142-166] contains an extensive discus-
sion of what it means for a sequence to be random. Lagarias [724] gives a survey of theo-
retical results on pseudorandom number generators. Luby [774] provides acomprehensive
and rigorous overview of pseudorandom generators.

For a study of linear congruential generators (Example 5.4), see Knuth [692, pp.9-25].
Plumstead/Boyar [979, 980] showed how to predict the output of alinear congruential gen-
erator given only a few elements of the output sequence, and when the parameters a, b,
and m of the generator are unknown. Boyar [180] extended her method and showed that
linear multivariate congruential generators (having recurrence equation z,, = a1x,_1 +
asTp_2+ - -+ ajxn—; + b mod m), and quadratic congruential generators (having recur-
rence equation z,, = ax2_, +bx,_1 + ¢ mod m) are cryptographically insecure. Finally,
Krawczyk [713] generalized these results and showed how the output of any multivariate
polynomial congruential generator can be efficiently predicted. A truncated linear congru-
ential generator is one where afraction of the least significant bits of the x; are discarded.
Frieze et . [427] showed that these generators can be efficiently predicted if the genera-
tor parametersa, b, and m are known. Stern [1173] extended this method to the case where
only m isknown. Boyar [179] presented an efficient algorithm for predicting linear congru-
ential generatorswhen O(log log m) bits are discarded, and when the parameters a, b, and
m are unknown. No efficient prediction algorithms are known for truncated multivariate
polynomial congruential generators. For a summary of cryptanalytic attacks on congruen-
tial generators, see Brickell and Odlyzko [209, pp.523-526].

For a formal definition of a statistical test (Definition 5.5), see Yao [1258]. Fact 5.7 on
the universality of the next-bit test is due to Yao [1258]. For a proof of Yao's result, see
Kranakis [710] and §12.2 of Stinson [1178]. A proof of a generalization of Yao's result
is given by Goldreich, Goldwasser, and Micali [468]. The notion of a cryptographically
secure pseudorandom bit generator (Definition 5.8) was introduced by Blum and Micali
[166]. Blum and Micali also gave aformal description of the next-bit test (Definition 5.6),
and presented thefirst cryptographically secure pseudorandom bit generator whose security
is based on the discrete logarithm problem (see page 189). Universal tests were presented
by Schrift and Shamir [1103] for verifying the assumed properties of a pseudorandom gen-
erator whose output sequences are not necessarily uniformly distributed.

Thefirst provably secure pseudorandom number generator was proposed by Shamir [1112].
Shamir proved that predicting the next number of an output sequence of this generator is
equivaent to inverting the RSA function. However, even though the numbers as a whole
may be unpredictable, certain parts of the number (for example, itsleast significant bit) may

TCL Exhibit 1009
Page 205

188

Ch.5 Pseudorandom Bits and Sequences

§5.2

§5.3

§5.4

be biased or predictable. Hence, Shamir’s generator is not cryptographically secure in the
sense of Definition 5.8.

Agnew [17] proposed a VLS| implementation of arandom bit generator consisting of two
identical metal insulator semiconductor capacitorscloseto each other. Thecellsarecharged
over the same period of time, and then a 1 or 0 is assigned depending on which cell has
agreater charge. Fairfield, Mortenson, and Coulthart [382] described an LS| random bit
generator based on the frequency instability of afree running oscillator. Davis, |haka, and
Fenstermacher [309] used the unpredictability of air turbulence occurring in a sealed disk
drive as arandom bit generator. The bits are extracted by measuring the variationsin the
time to access disk blocks. Fast Fourier Transform (FFT) techniques are then used to re-
move possible biases and correlations. A sample implementation generated 100 random
bits per minute. For further guidance on hardware and software-based techniques for gen-
erating random bits, see RFC 1750 [1043].

The de-skewing technique of Example 5.10 is due to von Neumann [1223]. Elias [370]
generalized von Neumann's technique to a more efficient scheme (one where fewer bits
arediscarded). Fast Fourier Transform techniquesfor removing biases and correlationsare
described by Brillinger [213]. For further ways of removing correlations, see Blum [161],
Santhaand Vazirani [1091], Vazirani [1217], and Chor and Goldreich [258].

Theideaof using aone-way function f for generating pseudorandom bit sequencesisdueto
Shamir [1112]. Shamir illustrated why it isdifficult to provethat such ad-hoc generatorsare
cryptographically secure without imposing some further assumptionson f. Algorithm5.11
isfrom Appendix C of the ANSI X9.17 standard [37]; it is one of the approved methodsfor
pseudorandom bit generation listed in FIPS 186 [406]. Meyer and Matyas [859, pp.316-
317] describe another DES-based pseudorandom bit generator whose output isintended for
use as data-encrypting keys. The four algorithms of §5.3.2 for generating DSA parameters
are from FIPS 186.

Standard references on statistics include Hogg and Tanis [559] and Wackerly, Mendenhall,
and Scheaffer [1226]. Tables5.1 and 5.2 were generated using the Maple symbolic algebra
system [240]. Golomb’s randomness postulates (§5.4.3) were proposed by Golomb [498].

Thefive statistical tests for local randomness outlined in §5.4.4 are from Beker and Piper
[84]. Theserid test (§5.4.4(ii)) isdueto Good [508]. It was generalized to subsequences of
length greater than 2 by Marsaglia[782] who called it the overlapping m-tupletest, and | ater
by Kimberley [674] who called it the generalized serial test. The underlying distribution
theories of the serial test and the runs test (§5.4.4(iv)) were analyzed by Good [507] and
Mood [897], respectively. Gustafson [531] considered alternative statistics for the runstest
and the autocorrelation test (§5.4.4(v)).

There are numerous other statistical tests of local randomness. Many of these tests, includ-
ing the gap test, coupon collector’stest, permutation test, run test, maximum-of-¢ test, col-
lision test, seria test, correlation test, and spectral test are described by Knuth [692]. The
poker test as formulated by Knuth [692, p.62] is quite different from that of §5.4.4(iii). In
the former, a sample sequenceis divided into m-bit blocks, each of whichis further subdi-
vided into [-bit sub-blocks (for somedivisor I of m). The number of m-bit blocks having r
distinct I-bit sub-blocks (1 < r < m/!) is counted and compared to the corresponding ex-
pected numbersfor random sequences. Erdmann [372] gives adetailed exposition of many

TCL Exhibit 1009
Page 206

85.6 Notes and further references 189

§5.5

of these tests, and applies them to sample output sequences of six pseudorandom bit gener-
ators. Gustafson et a. [533] describe acomputer package which implementsvarious statis-
tical tests for assessing the strength of a pseudorandom bit generator. Gustafson, Dawson,
and Goli¢ [532] proposed anew repetition test which measures the number of repetitions of
I-bit blocks. The test requires a count of the number of patterns repeated, but does not re-
quirethe frequency of each pattern. For thisreason, it isfeasibleto apply thistest for larger
valuesof [(e.g. I = 64) than would be permissible by the poker test or Maurer’s universal
statistical test (Algorithm 5.33). Two spectral tests have been developed, one based on the
discrete Fourier transform by Gait [437], and one based on the Walsh transform by Yuen
[1260]. For extensions of these spectral tests, see Erdmann [372] and Feldman [389].

FIPS 140-1 [401] specifies security requirements for the design and implementation of
cryptographic modules, including random and pseudorandom bit generators, for protecting
(U.S. government) unclassified information.

Theuniversal statistical test (Algorithm 5.33) is due to Maurer [813] and was motivated by
source coding algorithms of Elias [371] and Willems [1245]. The class of defects that the
test is able to detect consists of those that can be modeled by an ergodic stationary source
with limited memory; Maurer arguesthat this class includes the possible defects that could
occur in apractical implementation of arandom bit generator. Table 5.3 is due to Maurer
[813], who provides derivations of formul ae for the mean and variance of the statistic X ,,.

Blum and Micali [166] presented the following general construction for CSPRBGs. Let D
be afiniteset, and let f: D — D be a permutation that can be efficiently computed. Let
B: D — {0,1} be aBoolean predicate with the property that B(z) is hard to compute
givenonly z € D, however, B(x) can be efficiently computed giveny = f~1(z). The
output sequence z1, 2, . .. , 2 correspondingto aseed zo € D is obtained by computing
z; = f(zi—1), zi = B(z;), forl < i < [. This generator can be shown to pass the
next-bit test (Definition 5.6). Blum and Micali [166] proposed the first concrete instance of
aCSPRBG, called the Blum-Micali generator. Using the notation introduced above, their
method can be described asfollows. Let p bealargeprime, and e agenerator of Z,. Define
D=127,={1,2,...,p—1}. Thefunction f : D — D isdefinedby f(z) = a® mod p.
Thefunction B : D — {0,1} isdefinedby B(z) = 1if 0 < log, =z < (p —1)/2, and
B(z) = 0iflog, = > (p—1)/2. Assuming theintractability of thediscretelogarithm prob-
leminZ, (§3.6; seeaso §3.9.1), the Blum-Micali generator was proven to satisfy the next-
bit test. Long and Wigderson [772] improved the efficiency of the Blum-Micali generator
by simultaneously extracting O(lglg p) bits (cf. §3.9.1) from each z,;. Kaliski [650, 651]
modified the Blum-Micali generator so that the security depends on the discrete logarithm
problem in the group of points on an elliptic curve defined over afinite field.

The RSA pseudorandom bit generator (Algorithm 5.35) and the improvement mentioned
in Note 5.36 are due to Alexi et a. [23]. The Micali-Schnorr improvement of the RSA
PRBG (Algorithm 5.37) is due to Micali and Schnorr [867], who also described a method
that transforms any CSPRBG into one that can be accelerated by parallel evaluation. The
method of parallelization is perfect: m parallel processors speed the generation of pseudo-
random bits by afactor of m.

Algorithm 5.40 is due to Blum, Blum, and Shub [160], who showed that their pseudoran-
dom bit generator is cryptographically secure assuming the intractability of the quadratic
residuosity problem (§3.4). Vazirani and Vazirani [1218] established a stronger result re-
garding the security of this generator by proving it cryptographically secure under the
weaker assumption that integer factorization isintractable. Theimprovement mentionedin

TCL Exhibit 1009
Page 207

190

Ch.5 Pseudorandom Bits and Sequences

Note 5.41isdueto Vazirani and Vazirani. Alexi et al. [23] proved analogousresultsfor the
modified-Rabin generator, which differs as follows from the Blum-Blum-Shub generator:
in step 3.1 of Algorithm 5.40, let 7 = z2_; mod n; if T < n/2, thenz; = T; otherwise,
T, =n—x.

Impagliazzo and Naor [569] devised efficient constructionsfor aCSPRBG and for auniver-
sal one-way hash function which are provably as secure as the subset sum problem. Fischer
and Stern [411] presented a simple and efficient CSPRBG which is provably as secure as
the syndrome decoding problem.

Yao [1258] showed how to obtain a CSPRBG using any one-way permutation. Levin [761]
generalized this result and showed how to obtain a CSPRBG using any one-way function.
For further refinements, see Goldreich, Krawczyk, and Luby [470], Impagliazzo, Levin,
and Luby [568], and Hastad [545].

A randomfunction f: {0,1}" — {0, 1}"™ isafunctionwhich assignsindependent and ran-
dom values f(z) € {0,1}™ to all argumentsz € {0,1}". Goldreich, Goldwasser, and
Micali [468] introduced a computational complexity measure of the randomness of func-
tions. They defined afunction to be poly-randomif no polynomial-time algorithm can dis-
tinguish between values of the function and true random strings, even when the algorithm
is permitted to select the arguments to the function. Goldreich, Goldwasser, and Micali
presented an algorithm for constructing poly-random functions assuming the existence of
one-way functions. This theory was applied by Goldreich, Goldwasser, and Micali [467]
to develop provably secure protocolsfor the (essentially) storageless distribution of secret
identification numbers, message authentication with timestamping, dynamic hashing, and
identify friend or foe systems. Luby and Rackoff [776] showed how poly-random permu-
tations can be efficiently constructed from poly-random functions. This result was used,
together with some of the design principles of DES, to show how any CSPRBG can be
used to construct a symmetric-key block cipher which is provably secure against chosen-
plaintext attack. A simplified and generalized treatment of L uby and Rackoff’sconstruction
was given by Maurer [816].

Schnorr [1096] used Luby and Rackoff’s poly-random permutation generator to construct
a pseudorandom bit generator that was claimed to pass all statistical tests depending only
on asmall fraction of the output sequence, even when infinite computational resources are
available. Rueppel [1079] showed that this claim is erroneous, and demonstrated that the
generator can be distinguished from a truly random bit generator using only a small num-
ber of output bits. Maurer and Massey [821] extended Schnorr’swork, and proved the ex-
istence of pseudorandom bit generators that pass all statistical tests depending only on a
small fraction of the output sequence, even when infinite computational resourcesare avail-
able. The security of the generators does not rely on any unproved hypothesis, but rather
on the assumption that the adversary can access only alimited number of bits of the gener-
ated sequence. Thiswork isprimarily of theoretical interest since no such polynomial-time
generators are known.

TCL Exhibit 1009
Page 208

Chapter

Stream Ciphers

Contentsin Brief

6.1 Introduction. 191
6.2 Feedback shiftregisters. 195
6.3 StreamciphersbasedonLFSRs 203
6.4 Other streamciphers 212
6.5 Notesand furtherreferences 216

6.1 Introduction

Stream ciphers are an important class of encryption algorithms. They encrypt individual
characters (usualy binary digits) of a plaintext message one at a time, using an encryp-
tion transformation which varies with time. By contrast, block ciphers (Chapter 7) tend to
simultaneously encrypt groups of characters of a plaintext message using a fixed encryp-
tion transformation. Stream ciphers are generally faster than block ciphers in hardware,
and have less complex hardware circuitry. They are also more appropriate, and in some
cases mandatory (e.g., in some telecommunications applications), when buffering is lim-
ited or when characters must be individually processed as they are received. Because they
havelimited or no error propagation, stream ciphersmay al so be advantageousin situations
where transmission errors are highly probable.

There is a vast body of theoretical knowledge on stream ciphers, and various design
principlesfor stream ciphers have been proposed and extensively analyzed. However, there
are relatively few fully-specified stream cipher algorithmsin the open literature. This un-
fortunate state of affairscan partially be explained by the fact that most stream ciphersused
in practice tend to be proprietary and confidential. By contrast, numerous concrete block
cipher proposals have been published, some of which have been standardized or placed in
the public domain. Neverthel ess, because of their significant advantages, stream ciphersare
widely used today, and one can expect increasingly more concrete proposalsin the coming
years.

Chapter outline

Theremainder of §6.1 introduces basic conceptsrelevant to stream ciphers. Feedback shift
registers, in particular linear feedback shift registers (LFSRs), are the basic building block
inmost stream ciphersthat have been proposed; they arestudiedin §6.2. Threegeneral tech-
niquesfor utilizing L FSRsin the construction of stream ciphersare presentedin §6.3: using

101

TCL Exhibit 1009
Page 209

192

Ch. 6 Stream Ciphers

a nonlinear combining function on the outputs of several LFSRs (§6.3.1), using a nonlin-
ear filtering function on the contents of asingle LFSR (§6.3.2), and using the output of one
(or more) LFSRsto control the clock of one (or more) other LFSRs (§6.3.3). Two concrete
proposals for clock-controlled generators, the alternating step generator and the shrinking
generator are presentedin §6.3.3. §6.4 presentsastream cipher not based on L FSRs, namely
SEAL. §6.5 concludes with references and further chapter notes.

6.1.1 Classification

6.1

Stream ciphers can be either symmetric-key or public-key. The focus of this chapter is
symmetric-key stream ciphers; the Blum-Goldwasser probabilistic public-key encryption
scheme (§8.7.2) is an example of a public-key stream cipher.

Note (block vs. stream ciphers) Block ciphers process plaintext in relatively large blocks
(e.g., n > 64 bits). The same function is used to encrypt successive blocks; thus (pure)
block ciphers are memoryless. In contrast, stream ciphers process plaintext in blocks as
small as a single bit, and the encryption function may vary as plaintext is processed; thus
stream ciphers are said to have memory. They are sometimes called state ciphers since
encryption depends on not only the key and plaintext, but also on the current state. This
distinction between block and stream ciphersis not definitive (see Remark 7.25); adding a
small amount of memory to ablock cipher (asin the CBC mode) results in a stream cipher
with large blocks.

(i) The one-time pad
Recall (Definition 1.39) that a Vlernam cipher over the binary alphabet is defined by
c; =m;®k; fori =1,2,3...,

where my, mo, ms, ... arethe plaintext digits, k1, ks, k3, . .. (the keystream) are the key
digits, ¢1, c2, cs, . . . arethe ciphertext digits, and ¢ is the XOR function (bitwise addition
modulo 2). Decryption is defined by m,; = ¢;®k;. If the keystream digits are generated
independently and randomly, the Vernam cipher is called a one-time pad, and is uncondi-
tionally secure (§1.13.3(i)) against a ciphertext-only attack. More precisely, if M, C, and
K arerandom variables respectively denoting the plaintext, ciphertext, and secret key, and
if H() denotes the entropy function (Definition 2.39), then H(M|C) = H(M). Equive-
lently, I(M; C) = 0 (see Definition 2.45): the ciphertext contributes no information about
the plaintext.

Shannon proved that a necessary condition for a symmetric-key encryption schemeto
be unconditionally secureisthat H(K) > H(M). That is, the uncertainty of the secret
key must be at least as great as the uncertainty of the plaintext. If the key has bitlength &,
and the key bits are chosen randomly and independently, then H(K) = k, and Shannon’s
necessary condition for unconditional security becomesk > H(M). The one-time pad is
unconditionally secure regardless of the statistical distribution of the plaintext, and is op-
timal in the sense that its key is the smallest possible among all symmetric-key encryption
schemes having this property.

An obvious drawback of the one-time pad isthat the key should be aslong asthe plain-
text, which increases the difficulty of key distribution and key management. This moti-
vates the design of stream ciphers where the keystream is pseudorandomly generated from
asmaller secret key, with the intent that the keystream appears random to a computation-
ally bounded adversary. Such stream ciphers do not offer unconditional security (since
H(K) < H(M)), but the hopeis that they are computationally secure (§1.13.3(iv)).

TCL Exhibit 1009
Page 210

§6.1 Introduction 193

Stream ciphers are commonly classified as being synchronous or self-synchronizing.

(ii) Synchronous stream ciphers

6.2 Definition A synchronousstream cipher is onein which the keystream is generated inde-
pendently of the plaintext message and of the ciphertext.

The encryption process of a synchronous stream cipher can be described by the equations

Oi+1 = f(o-iyk)7
Zi = g(aiv k)7
¢ = h(zi,mi),

where oy is the initial state and may be determined from the key &, f is the next-state
function, g is the function which produces the keystream z;, and & is the output function
which combines the keystream and plaintext m; to produce ciphertext ¢;. The encryption
and decryption processes are depicted in Figure 6.1. The OFB mode of ablock cipher (see
§7.2.2(iv)) is an example of a synchronous stream cipher.
(i) Encryption (i) Decryption
Plaintext m;;

Ciphertext c;
Key k

mi Keystream z; Ci
o . o
Oit1 State o; Oit1
(F (E -

Figure 6.1: General model of a synchronous stream cipher.

6.3 Note (propertiesof synchronous stream ciphers)

(i) synchronization requirements. In a synchronous stream cipher, both the sender and
receiver must be synchronized — using the same key and operating at the same posi-
tion (state) within that key —to allow for proper decryption. If synchronizationislost
dueto ciphertext digits beinginserted or del eted during transmission, then decryption
fails and can only be restored through additional techniques for re-synchronization.
Techniques for re-synchronization include re-initialization, placing special markers
at regular intervalsin the ciphertext, or, if the plaintext contains enough redundancy;,
trying al possible keystream offsets.

(ii) no error propagation. A ciphertext digit that is modified (but not deleted) during
transmission does not affect the decryption of other ciphertext digits.

(iii) active attacks. As a consequence of property (i), the insertion, deletion, or replay
of ciphertext digits by an active adversary causesimmediate |oss of synchronization,
and hence might possibly be detected by the decryptor. Asaconsegquenceof property
(i), an active adversary might possibly be ableto make changesto selected ciphertext
digits, and know exactly what affect these changes have on the plaintext. Thisillus-
trates that additional mechanisms must be employed in order to provide data origin
authentication and data integrity guarantees (see §9.5.4).

Most of the stream ciphersthat have been proposed to datein theliterature are additive
stream ciphers, which are defined below.

TCL Exhibit 1009
Page 211

194

Ch. 6 Stream Ciphers

6.4 Definition A binary additive stream cipher is a synchronous stream cipher in which the

6.5

keystream, plaintext, and ciphertext digitsare binary digits, and the output function £ isthe
XOR function.

Binary additive stream ciphers are depicted in Figure 6.2. Referring to Figure 6.2, the
keystream generator is composed of the next-state function f and the function g (see Fig-
ure 6.1), and is al'so known as the running key generator.

(i) Encryption (ii) Decryption
Plaintext m;
Ciphertext c;
m; Key k Ci
Keystream z;
Keystream Zi Keystream Zi
k —»o —P—c; k —»@ F—— m;
Generator Generator

Figure 6.2: General model of a binary additive stream cipher.

(iii) Self-synchronizing stream ciphers
Definition A self-synchronizing or asynchronous stream cipher is one in which the key-
stream isgenerated asafunction of the key and afixed number of previousciphertext digits.

The encryption function of a self-synchronizing stream cipher can be described by the
equations

g = (Ci7t7ci7t+17 cee 7Ci71)a
zi = g(oi,k),
ci = h(z,m),
where oy = (c—t,¢—¢41,...,c—1) isthe (non-secret) initial state, & is the key, g is the

function which produces the keystream z;, and h is the output function which combines
the keystream and plaintext m; to produce ciphertext ¢;. The encryption and decryption
processes are depicted in Figure 6.3. The most common presently-used self-synchronizing
stream ciphers are based on block ciphersin 1-bit cipher feedback mode (see §7.2.2(iii)).

(i) Encryption (ii) Decryption

bl () e

Figure 6.3: General model of a self-synchronizing stream cipher.

TCL Exhibit 1009
Page 212

§6.2 Feedback shift registers 195

6.6 Note (propertiesof self-synchronizing stream ciphers)

(i) self-synchronization. Self-synchronizationispossibleif ciphertext digits are deleted
or inserted, because the decryption mapping depends only on a fixed number of pre-
ceding ciphertext characters. Such ciphers are capable of re-establishing proper de-
cryption automatically after loss of synchronization, with only a fixed number of
plaintext characters unrecoverable.

(it) limited error propagation. Supposethat the state of a self-synchronization stream ci-
pher depends on ¢ previous ciphertext digits. If asingle ciphertext digit is modified
(or even deleted or inserted) during transmission, then decryption of up to ¢ subse-
quent ciphertext digits may be incorrect, after which correct decryption resumes.

(iii) active attacks. Property (ii) implies that any modification of ciphertext digits by an
active adversary causes several other ciphertext digits to be decrypted incorrectly,
thereby improving (compared to synchronous stream ciphers) thelikelihood of being
detected by the decryptor. Asaconsequence of property (i), it ismoredifficult (than
for synchronous stream ciphers) to detect insertion, deletion, or replay of ciphertext
digits by an active adversary. This illustrates that additional mechanisms must be
employed in order to provide data origin authentication and dataintegrity guarantees
(see §9.5.4).

(iv) diffusion of plaintext statistics. Since each plaintext digit influences the entire fol-
lowing ciphertext, the statistical properties of the plaintext are dispersed through the
ciphertext. Hence, self-synchronizing stream ciphersmay be moreresistant than syn-
chronous stream ciphers against attacks based on plaintext redundancy.

6.2 Feedback shift registers

Feedback shift registers, in particular linear feedback shift registers, are the basic compo-
nents of many keystream generators. §6.2.1 introduces linear feedback shift registers. The
linear complexity of binary sequencesisstudiedin §6.2.2, while the Berlekamp-Massey al-
gorithm for computing it is presented in §6.2.3. Finally, nonlinear feedback shift registers
arediscussedin §6.2.4.

6.2.1 Linear feedback shift registers

Linear feedback shift registers (LFSRS) are used in many of the keystream generators that
have been proposed in the literature. There are several reasonsfor this:

1. LFSRs are well-suited to hardware implementation;

2. they can produce sequences of large period (Fact 6.12);

3. they can produce sequences with good statistical properties (Fact 6.14); and

4. because of their structure, they can be readily analyzed using algebraic techniques.

6.7 Definition A linear feedback shift register (LFSR) of length L consists of L stages (or
delay elements) numbered 0, 1, ... , L — 1, each capable of storing one bit and having one
input and one output; and a clock which controls the movement of data. During each unit
of time the following operations are performed:

(i) the content of stage 0 is output and forms part of the output sequence;

TCL Exhibit 1009
Page 213

196 Ch. 6 Stream Ciphers

(i) the content of stage ismovedto stage: — 1 foreachi, 1 <i < L —1; and
(iii) the new content of stage L — 1 is the feedback bit s; which is calculated by adding
together modulo 2 the previous contents of a fixed subset of stages0,1,... ,L — 1.

Figure 6.4 depicts an LFSR. Referring to the figure, each ¢; iseither 0 or 1; the closed
semi-circlesare AND gates; and the feedback bit s; isthe modulo 2 sum of the contents of
those stagesi, 0 < i < L — 1, forwhicher_; = 1.

) M
SR N SR T I T

»| Stage | L4 .| Stage ceee Stage »| Stage
L-1 L-2 1 0 output

Figure 6.4: Alinear feedback shift register (LFSR) of length L.

6.8 Definition The LFSR of Figure 6.4 is denoted (L, C(D)), where C(D) = 1+ 1D +
c2D? + - + ¢, DI € Z,[D] is the connection polynomial. The LFSR is said to be non-
singular if the degree of C'(D) is L (that is, ¢, = 1). If theinitial content of stage i is
s; €{0,1} foreachi, 0 <i < L —1,then[sr_1,...,s1,S0] iscaledtheinitial state of
the LFSR.

6.9 Fact If theinitial state of the LFSR in Figure 6.4 is [s1,_1, ... , s1, S0, then the output
seguence s = sg, S1, S2, . - - iISuniquely determined by the following recursion:

sj = (c18j1+ casj_g2 + -+ crs;j—r) mod 2 forj > L.

6.10 Example (output sequence of an LFSR) Consider the LFSR (4,1 + D + D*) depicted
in Figure 6.5. If the initial state of the LFSR is [0, 0, 0, 0], the output sequence is the zero
sequence. The following tables show the contents of the stages D3, D, D1, Dy at the end
of each unit of time ¢ when the initia stateis [0, 1,1, 0].

[Ds [D2 [Dy [Do | [][Ds| Dz [Dy D]
0] 1]1]0 S 1|1]1]0
9
10
11
12
13
14
15| 0

—__o RO -

t
0
1
2
3
4
5
6
7

= =0 00O~ O
_H O OO KOO
=N eNel ==
S oOr OO
== O = O =

1
1
1
0
1
0
1

O - O - ==

The output sequenceiss = 0,1,1,0,0,1,0,0,0,1,1,1,1,0,1,..., and is periodic with
period 15 (see Definition 5.25). O

The significance of an LFSR being non-singular is explained by Fact 6.11.

TCL Exhibit 1009
Page 214

86.2 Feedback shift registers 197

6.11

6.12

6.13

6.14

Stage Stage Stage Stage
3 2 1 0 output
D3 D2 D Do

Figure 6.5: TheLFSR (4,1 + D + D*) of Example 6.10.

Fact Every output sequence (i.e., for al possibleinitia states) of an LFSR (L, C(D)) is
periodicif and only if the connection polynomial C(D) has degree L.

If an LFSR (L, C(D)) is singular (i.e., C(D) has degree less than L), then not all out-
put sequences are periodic. However, the output sequences are ultimately periodic; that
is, the sequences obtained by ignoring a certain finite number of terms at the beginning
are periodic. For the remainder of this chapter, it will be assumed that al LFSRs are non-
singular. Fact 6.12 determines the periods of the output sequences of some special types of
non-singular LFSRs.

Fact (periodsof LFSR output sequences) Let C(D) € Z»[D] be aconnection polynomial
of degree L.

(i) 1f (D) isirreducible over Z, (see Definition 2.190), then each of the 2 — 1 non-
zero initial states of the non-singular LFSR (L, C'(D)) produces an output sequence
with period equal to the least positive integer N such that C(D) divides1 + D in
Zs[D). (Note: it isalways the case that this N isadivisor of 2% — 1.)

(i) 1f C(D) isaprimitivepolynomial (see Definition 2.228), then each of the2 — 1 non-
zeroiinitial states of the non-singular LFSR (L, C'(D)) produces an output sequence
with maximum possible period 2% — 1.

A method for generating primitive polynomiasover Zo uniformly at randomis given
in Algorithm 4.78. Table 4.8 lists a primitive polynomial of degree m over Z,, for each m,
1 <'m < 229. Fact 6.12(ii) motivates the following definition.

Definition If C(D) € Zy[D] is a primitive polynomial of degree L, then (L, C'(D)) is
called amaximum-length LFSR. The output of amaximum-length LFSR with non-zeroini-
tial state is called an m-sequence.

Fact 6.14 demonstrates that the output sequences of maximum-length LFSRs have good
statistical properties.

Fact (statistical properties of m-sequences) Let s be an m-sequence that is generated by
amaximum-length LFSR of length L.
(i) Let k beaninteger, 1 < k < L, and let 5 be any subsequence of s of length 2% +
k — 2. Then each non-zero sequence of length k appears exactly 27~* times as a
subsequenceof 3. Furthermore, the zero sequenceof length & appearsexactly 27— —
1 timesasasubsequenceof 5. In other words, the distribution of patterns having fixed
length of at most L isamost uniform.
(i) s satisfies Golomb’s randomness postulates (§5.4.3). That is, every m-sequenceis
also a pn-seguence (see Definition 5.29).

TCL Exhibit 1009
Page 215

198

Ch. 6 Stream Ciphers

6.15 Example (m-sequence) Since C(D) = 1+ D + D* isaprimitive polynomial over Z,,

theLFSR (4, 1 4 D + D*) isamaximum-length LFSR. Hence, the output sequence of this
LFSR isan m-sequence of maximum possibleperiod N = 24 —1 = 15 (cf. Example6.10).
Example 5.30 verifies that this output sequence satisfies Golomb’s randomness properties.

(|

6.2.2 Linear complexity

6.16

6.17

6.18

6.19

6.20

6.21

This subsection summarizes selected results about the linear complexity of sequences. All
seguences are assumed to be binary sequences. Notation: s denotes an infinite sequence
whose terms are s, s1, S2, - - - ; 8™ denotes a finite sequence of length n whose terms are
80,81, -- ,Sn_1 (See Definition 5.24).

Definition AnLFSRissaidtogenerateasequences if thereissomeinitial statefor which
the output sequence of the LFSR is s. Similarly, an LFSR is said to generate a finite se-
guence s™ if there is some initial state for which the output sequence of the LFSR has s™
asitsfirst n terms.

Definition Thelinear complexity of aninfinite binary sequences, denoted L(s), isdefined
asfollows:
(i) if sisthezerosequences =0,0,0,...,then L(s) = 0;
(ii) if no LFSR generates s, then L(s) = oo;
(iii) otherwise, L(s) isthe length of the shortest LFSR that generates s.

Definition The linear complexity of a finite binary sequence s™, denoted L(s™), is the
length of the shortest LFSR that generates a sequence having s™ asitsfirst n terms.

Facts 6.19 — 6.22 summarize some basic results about linear complexity.

Fact (propertiesof linear complexity) Let s and ¢ be binary sequences.
(i) Forany n > 1, thelinear complexity of the subsequence s™ satisfies0 < L(s™) < n.
(i) L(s™) = 0if and only if s™ isthe zero sequence of length n.
(iii) L(s™) =nifandonlyif s =0,0,0,...,0,1.
(iv) If s isperiodic with period IV, then L(s) < N.
(v) L(sdt) < L(s) + L(t), where s&t denotes the bitwise XOR of s and ¢.

Fact If the polynomial C(D) € Z»[D] isirreducible over Z, and has degree L, then each
of the2% —1 non-zeroinitial statesof thenon-singular LFSR (L, C(D)) producesan output
sequence with linear complexity L.

Fact (expectation and variance of the linear complexity of a random sequence) Let s™ be
chosen uniformly at random from the set of al binary sequences of length n, and let L(s™)
bethelinear complexity of s™. Let B(n) denotethe parity function: B(n) = 0if niseven;
B(n) =1if nisodd.
(i) Theexpected linear complexity of s™ is
n n 4+Bn) 1 (n 2
E(L(s")) = 5 T 13 om <3+9>.

Hence, for moderately largen, E(L(s")) ~ % + 2 if niseven, and E(L(s")) ~
2+ Zifnisodd.

TCL Exhibit 1009
Page 216

§6.2 Feedback shift registers 199

6.22

6.23

6.24

6.25

6.26

(ii) Thevariance of thelinear complexity of s™ is Var(L(s")) =

86 1 (14-B(n) 82-2B(n) L1, 4 4
81 o» 27 81 " n :

9 27 81
Hence, Var(L(s™)) ~ 5% for moderately large n.

922n

Fact (expectation of thelinear complexity of a random periodic sequence) Let s™ be cho-
sen uniformly at random from the set of all binary sequences of length n, wheren = 2°¢ for
somefixed t > 1, and let s be the n-periodic infinite sequence obtained by repeating the
sequence s™. Then the expected linear complexity of sis E(L(s™)) =n—1+27".

The linear complexity profile of abinary sequenceis introduced next.

Definition Let s = sg, s1,... beabinary sequence, and let L denote the linear com-
plexity of the subsequence s = sg,s1,...,sy-1, N > 0. The sequence Ly, Lo, . ..
is called the linear complexity profile of s. Similarly, if s™ = s, s1,...,s,-1 isafinite
binary sequence, thesequence L1, Lo, . .. , L, iscalled thelinear complexity profile of s™.

The linear complexity profile of a sequence can be computed using the Berlekamp-
Massey agorithm (Algorithm 6.30); see aso Note 6.31. The following properties of the
linear complexity profile can be deduced from Fact 6.29.

Fact (propertiesof linear complexity profile) Let Ly, Lo, . .. bethelinear complexity pro-
file of asequence s = s, s1,. ...

(i) Lyy1 > Ly ispossibleonly if Ly < N/2.
(III) |fLN+1 >LN,thenLN+1 +Ly=N+1.

The linear complexity profile of a sequence s can be graphed by plotting the points
(N,Ly), N > 1,inthe N x L plane and joining successive points by a horizontal line
followed by avertical line, if necessary (seeFigure6.6). Fact 6.24 canthen beinterpreted as
sayingthat the graph of alinear complexity profileisnon-decreasing. Moreover, a(vertical)
jumpin the graph can only occur from below theline L = N/2; if ajump occurs, thenitis
symmetric about thisline. Fact 6.25 showsthat the expected linear complexity of arandom
sequence should closely follow theline L = N/2.

Fact (expected linear complexity profile of a random sequence) Let s = sg, s1,... bea
random sequence, andlet L - bethelinear complexity of thesubsequences™ = s, 51, ... ,
sny_1 foreach N > 1. For any fixed index N > 1, the expected smallest j for which
Lyyj > Lyis2if Ly < N/2,0r2+ 2Ly — N if Ly > N/2. Moreover, the expected
increasein linear complexity is2 if Ly > N/2,or N — 2Ly + 2if Ly < N/2.

Example (linear complexity profile) Consider the 20-periodic sequence s with cycle

s = 1,0,0,1,0,0,1,1,1,1,0,0,0,1,0,0,1,1,1,0.

The linear complexity profileof sis1,1,1,3,3,3,3,5,5,5,6,6,6,8,8,8,9,9,10,10, 11,
11,11,11,14,14,14,14,15,15,15,17,17,17,18,18,19,19,19, 19, Figure6.6 shows
the graph of the linear complexity profile of s. O

TCL Exhibit 1009
Page 217

200 Ch. 6 Stream Ciphers

L=1L(sY)

L = N/2line ,”

N

Figure 6.6: Linear complexity profile of the 20-periodic sequence of Example 6.26.

Asisthecasewith al statistical testsfor randomness(cf. §5.4), the condition that ase-
guence s have alinear complexity profile that closely resemblesthat of arandom sequence
is necessary but not sufficient for s to be considered random. This point isillustrated in the
following example.

6.27 Example (limitationsof thelinear complexity profile) Thelinear complexity profile of the
sequence s defined as
1, ifi=2/ —1forsomej >0,
S; = .
0, otherwise,

followstheline L = N/2 asclosely aspossible. Thatis, L(s"V) = [(V + 1)/2] for all
N > 1. However, the sequence s is clearly non-random. O

6.2.3 Berlekamp-Massey algorithm

The Berlekamp-Massey algorithm (Algorithm 6.30) is an efficient algorithm for determin-
ing the linear complexity of afinite binary sequence s™ of length n (see Definition 6.18).
The agorithm takes n iterations, with the Nth iteration computing the linear complexity
of the subsequence sV consisting of the first N terms of s™. The theoretical basis for the
agorithmis Fact 6.29.

6.28 Definition Consider thefinitebinary sequences™¥*! = 54, s1,...,sy_1, sn. For C(D
=1+4c¢1D+---+c DY et (L, C(D)) bean LFSR that generates the subsequence s =
50,81, -- ,SN—1. Thenextdiscrepancy d v isthedifference between sy andthe (N + 1)
term generated by the LFSR: dny = (sy + Zle ¢iSN—;) mod 2.

6.29 Fact Let sV = sg,s1,...,sny_1 beafinite binary sequence of linear complexity L =
L(s™), and let (L, C(D)) be an LFSR which generates s™.

TCL Exhibit 1009
Page 218

§6.2 Feedback shift registers 201

6.30

6.31

6.32

6.33

6.34

6.35

(i) TheLFSR(L,C(D)) alsogenerates sV +1 = s, s1,... ,sn-1, sy if andonly if the
next discrepancy d isequal to 0.
(ii) 1f dy = 0, then L(s™V*1) = L.

(iii) Supposedy = 1. Let m thelargest integer < N such that L(s™) < L(s™), and let
(L(s™), B(D)) bean LFSR of length L(s™) which generatess™. Then (L', C'(D))
isan LFSR of smallest length which generates s’ +1, where

L/_{ L, if L > N/2,
N+1-1L, ifL<N/2,

and C'(D) = C(D) + B(D) - DN—™,

Algorithm Berlekamp-Massey algorithm

INPUT: abinary sequence s™ = sg, s1, S2, ... ,Sp_1 Of lengthn.
OUTPUT: thelinear complexity L(s™) of s™, 0 < L(s"™) < n.
1. Initialization. C(D)«+1, L+0, m« — 1, B(D)«+1, N«O0.
2. While (N < n) dothe following:

2.1 Compute the next discrepancy d. d«(sny + Zle ¢iSN—i) mod 2.
2.2 If d = 1 then do the following:

T(D)+C(D), C(D)«~C(D)+ B(D) - DN—™,

If L < N/2thenL+N +1— L, m«N, B(D)<T(D).
23 NN +1.

3. Return(L).

Note (intermediate resultsin Berlekamp-Massey algorithm) At the end of each iteration
of step 2, (L, C(D)) is an LFSR of smallest length which generates s™. Hence, Algo-
rithm 6.30 can aso be used to compute the linear complexity profile (Definition 6.23) of
afinite sequence.

Fact The running time of the Berlekamp-Massey algorithm (Algorithm 6.30) for deter-
mining the linear complexity of a binary sequence of bitlength n is O(n?) bit operations.

Example (Berlekamp-Massey algorithm) Table 6.1 showsthe steps of Algorithm 6.30 for
computingthelinear complexity of the binary sequences™ = 0,0,1,1,0,1,1,1,00of length
n = 9. Thissequence is found to have linear complexity 5, and an LFSR which generates
itis(5,1+ D3 + D5). O

Fact Let s be afinite binary sequence of length n, and let the linear complexity of s™ be

L. Thenthereisaunique LFSR of length L which generates s™ if and only if L < 7.

An important consegquence of Fact 6.34 and Fact 6.24(iii) is the following.

Fact Let s be an (infinite) binary sequence of linear complexity L, and let ¢ be a (finite)
subsequenceof s of length at least 2. Then the Berlekamp-Massey algorithm (with step 3
modified to return both L and C(D)) on input ¢ determines an LFSR of length L which
generates s.

TCL Exhibit 1009
Page 219

202 Ch. 6 Stream Ciphers

[sn [d] T(D) | C(D) [L] m] BMD) [N]
—] = — 1 0] -1 1 0
0|0 — 1 0] -1 1 1
0|0 — 1 0| -1 1 2
1|1 1 1+ D3 3 2 1 3
1|1 14 D3 1+D+D3 3 2 1 4
0|1 1+D+ D3 1+D+D?>+D%| 3 2 1 5
1 |1|1+D+D*+D3 1+ D+ D? 3 2 1 6
1 |0|1+D+D*+D3 1+ D+ D? 3 2 1 7
1|1 1+ D+ D? 1+D+D?+D%| 5 7|11+D+D%| 8
0 |1 |1+D+D?>+Db 1+ D3+ D° 5 711+D+D?| 9

Table 6.1: Seps of the Berlekamp-Massey algorithm of Example 6.33.

6.2.4 Nonlinear feedback shift registers

This subsection summarizes selected results about nonlinear feedback shift registers. A
function with n bi nary inputs and one binary output is called a Boolean function of n vari-
ables; thereare 22 different Boolean functions of n variables.

6.36 Definition A (general) feedback shift register (FSR) of length L consists of L stages (or
delay elements) numbered 0,1,. .. , L — 1, each capable of storing one bit and having one
input and one output, and a clock which controls the movement of data. During each unit
of time the following operations are performed:

(i) the content of stage 0 is output and forms part of the output sequence;
(i) the content of stage ¢ is moved to stagei — 1 foreachi, 1 <i < L —1;and
(iii) the new content of stage L — 1 isthe feedback bit s; = f(s;j_1,sj-2,...,8j—L),
where the feedback function f isaBoolean functionand s ;_; is the previous content
of stageL — 4,1 <i < L.
If theinitial content of stagei iss; € {0,1} foreach0 <+¢ < L—1,then[sy_1,..., 1, So
iscaled theinitial state of the FSR.

Figure 6.7 depictsan FSR. Notethat if thefeedback function f isalinear function, then
the FSR isan LFSR (Definition 6.7). Otherwise, the FSR is called a nonlinear FSR.

—[f(8j-1,8j-2,... ,8i-L) }

A A A
Sj Sj-1 Sj-2 e 8j—L+1 Sj-1L
»| Stage | o o | Stage | ceee _| Stage | o | Stage | -
L-1 L-2 1 0 output

Figure 6.7: A feedback shift register (FSR) of length L.

6.37 Fact If theinitia state of the FSR in Figure 6.7 is[sy_1,. .. , s1, So, then the output se-
guence s = s, S1, S2, - - . iSuniquely determined by the following recursion:

S = f(S]'_l,Sj_Q,. .. 75j—L) forj > L.

TCL Exhibit 1009
Page 220

§6.3 Stream ciphers based on LFSRs 203

6.38

6.39

6.40

6.41

6.42

6.43

Definition AnFSR issaid to be non-singular if and only if every output sequence of the
FSR (i.e., for all possibleinitia states) is periodic.

Fact AnFSRwithfeedback function f(s;_1, s;j—2, ..., s;—r) isnon-singular if and only
if fisoftheform f =s,_ ®g(sj—1,8j—2,...,8j—r+1) for some Boolean function g.

The period of the output sequence of anon-singular FSR of length L isat most 2.

Definition |f the period of the output sequence (for any initial state) of anon-singular FSR
of length L is 27, then the FSR is called ade Bruijn FSR, and the output sequenceis called
ade Bruijn sequence.

Example (de Bruijn sequence) Consider the FSR of length 3 with nonlinear feedback
function f(z1, z2, x3) = 1®zoPrsPxiz2. Thefollowing tables show the contents of the
3 stages of the FSR at the end of each unit of time ¢t when theinitial stateis |0, 0, 0].

| t | Stage2 | Stagel | StageO | | t | Stage2 | Stagel | StageO |
0 0 0 0 4 0 1 1
1 1 0 0 5 1 0 1
2 1 1 0 6 0 1 0
3 1 1 1 7 0 0 1

The output sequenceis the de Bruijn sequence with cycle 0,0,0,1,1,1,0, 1. |

Fact 6.42 demonstratesthat the output sequence of de Bruijn FSRs have good statistical
properties (compare with Fact 6.14(i)).

Fact (statistical properties of de Bruijn sequences) Let s be a de Bruijn sequence that is
generated by ade Bruijn FSR of length L. Let k beaninteger, 1 < k < L, and let s be any
subsequence of s of length 2% + k — 1. Then each sequence of length % appears exactly
2L—k times as a subsequence of 3. In other words, the distribution of patterns having fixed
length of at most L is uniform.

Note (converting a maximum-length LFSR to a de Bruijn FSR) Let R; be a maximum-
length LFSR of length L with (linear) feedback function f(s;_1,sj_2,...,s;—r). Then
the FSR R, with feedback function Q(ijla Sj—25n s Sj,L) =fa S5j—15j—2°*Sj—L+1
isadeBruijn FSR. Here, 5; denotes the complement of s;. The output sequence of Rs is
obtained from that of R, by simply adding a0 to the end of each subsequenceof L — 1 0's
occurring in the output sequence of R;.

6.3 Stream ciphers based on LFSRs

As mentioned in the beginning of §6.2.1, linear feedback shift registers are widely used
in keystream generators because they are well-suited for hardware implementation, pro-
duce sequences having large periods and good statistical properties, and are readily ana-
lyzed using agebraic techniques. Unfortunately, the output sequences of LFSRs are also
easily predictable, asthe following argument shows. Suppose that the output sequence s of
an LFSR haslinear complexity L. The connection polynomia C(D) of an LFSR of length
L which generates s can be efficiently determined using the Berlekamp-Massey algorithm

TCL Exhibit 1009
Page 221

204

Ch. 6 Stream Ciphers

6.44

6.45

6.46

(Algorithm 6.30) from any (short) subsequence ¢ of s having length at least n = 2L (cf.
Fact 6.35). Having determined C'(D), the LFSR (L, C(D)) can then be initialized with
any substring of ¢ having length L, and used to generate the remainder of the sequence s.
An adversary may obtain the required subsequencet of s by mounting aknown or chosen-
plaintext attack (§1.13.1) on the stream cipher: if the adversary knows the plaintext subse-
guencemy,mo, ... ,m, corresponding to aciphertext sequencecs, cs, . . . , ¢,, the corre-
sponding keystream bits are obtained as m;®¢;, 1 < i < n.

Note (useof LFSRsin keystream generators) Since awell-designed system should be se-
cureagainst known-plaintext attacks, an LFSR should never beused by itself asakeystream
generator. Nevertheless, LFSRs are desirable because of their very low implementation
costs. Three general methodologies for destroying the linearity properties of LFSRs are
discussed in this section:

(i) using anonlinear combining function on the outputs of several LFSRs (§6.3.1);
(ii) using anonlinear filtering function on the contents of asingle LFSR (§6.3.2); and
(iii) using the output of one (or more) LFSRs to control the clock of one (or more) other
LFSRs (§6.3.3).

Desirable properties of LFSR-based keystream generators

For essentially all possible secret keys, the output sequence of an LFSR-based keystream
generator should have the following properties:

1. large period;

2. large linear complexity; and

3. good statistical properties(e.g., as described in Fact 6.14).
It is emphasized that these properties are only necessary conditions for a keystream gen-
erator to be considered cryptographically secure. Since mathematical proofs of security of
such generatorsare not known, such generatorscan only be deemed computationally secure
(§1.13.3(iv)) after having withstood sufficient public scrutiny.

Note (connection polynomial) Since a desirable property of akeystream generator is that
its output sequences have large periods, component L FSRs should always be chosen to be
maximum-length LFSRs, i.e., the LFSRs should be of the form (L, C(D)) where C(D) €
Z»[D] isaprimitive polynomial of degree L (see Definition 6.13 and Fact 6.12(ii)).

Note (known vs. secret connection polynomial) The LFSRs in an LFSR-based keystream
generator may have known or secret connection polynomials. For known connections, the
secret key generally consists of the initial contents of the component LFSRs. For secret
connections, the secret key for the keystream generator generally consists of both theinitial
contents and the connections.

For LFSRs of length L with secret connections, the connection polynomials should be
selected uniformly at random from the set of all primitive polynomialsof degree L over Z.
Secret connections are generally recommended over known connections as the former are
more resi stant to certain attacks which use precomputation for analyzing the particular con-
nection, and becausetheformer are more amenableto statistical analysis. Secret connection
LFSRs have the drawback of requiring extracircuitry to implement in hardware. However,
because of the extra security possible with secret connections, this cost may sometimes be
compensated for by choosing shorter LFSRs.

TCL Exhibit 1009
Page 222

86.3 Stream ciphers based on LFSRs 205

6.47 Note (sparsevs. dense connection polynomial) For implementation purposes, it is advan-

tageous to choose an LFSR that is sparse; i.e., only a few of the coefficients of the con-
nection polynomial are non-zero. Then only a small number of connections must be made
between the stages of the LFSR in order to compute the feedback bit. For example, the con-
nection polynomial might be chosen to beaprimitivetrinomial (cf. Table 4.8). However, in
some L FSR-based keystream generators, special attacks can be mounted if sparse connec-
tion polynomialsare used. Hence, it is generally recommended not to use sparse connection
polynomialsin L FSR-based keystream generators.

6.3.1 Nonlinear combination generators

6.48

6.49

One genera technique for destroying the linearity inherent in LFSRs is to use several LF-
SRsin parallel. The keystream is generated as a nonlinear function f of the outputs of the
component L FSRs; thisconstructionisillustrated in Figure 6.8. Such keystream generators
are called nonlinear combination generators, and f is called the combining function. The
remainder of this subsection demonstrates that the function f must satisfy several criteria
in order to withstand certain particular cryptographic attacks.

—

LFSR 1 -

LFSR 2 = [—— keystream

LFSRn -

(N

Figure 6.8: Anonlinear combination generator. f isa nonlinear combining function.

Definition A product of m distinct variablesis called an m'" order product of the vari-
ables. Every Boolean function f(z1, z2, . .. , 2,) can bewritten asamodulo 2 sum of dis-
tinct m*™ order productsof itsvariables, 0 < m < n; thisexpressioniscalled thealgebraic
normal formof f. The nonlinear order of f isthe maximum of the order of the terms ap-
pearing in its algebraic normal form.

For example, the Boolean function f(x1, z2, 23, 24,25) = 1 ® x2 & x3 B T425 D
x1x324x5 has nonlinear order 4. Note that the maximum possible nonlinear order of a
Boolean function in n variablesis n. Fact 6.49 demonstrates that the output sequence of
anonlinear combination generator has high linear complexity, provided that a combining
function f of high nonlinear order is employed.

Fact Supposethat n maximum-length LFSRs, whoselengths Ly, Lo, ... , L,, arepairwise
distinct and greater than 2, are combined by a nonlinear function f(z1, z2, ... ,z,) (asin
Figure 6.8) which is expressed in algebraic normal form. Then the linear complexity of the
keystreamis f (L4, Lo, ... , Ly). (Theexpression f(L1, Lo, . .. , L,,) isevauated over the
integers rather than over Zs.)

TCL Exhibit 1009
Page 223

206

Ch. 6 Stream Ciphers

6.50 Example (Geffe generator) The Geffe generator, as depicted in Figure 6.9, is defined by

6.51

three maximum-length LFSRswhoselengths L1, Lo, L3 are pairwiserelatively prime, with
nonlinear combining function

f($17$2»1‘3) = 122D (1 + Zﬂz)wg = X122 D 2223 D T3.

The keystream generated has period (27 — 1) - (2%2 — 1) - (2F2 — 1) and linear complexity
L=LiLs+ LoLs+ Ls.

LFSR 1 -———»)
Y
LFSR2[Z»e B—» keystream
A
LFSR 312 J——

Figure 6.9: The Geffe generator.

The Geffe generator is cryptographi cally weak because information about the states of
LFSR 1 and LFSR 3 leaksinto the output sequence. To seethis, let 21 (t), za(t), z5(t), 2(t)
denote the ¢** output bits of LFSRs 1, 2, 3 and the keystream, respectively. Then the cor-
relation probability of the sequence 1 () to the output sequence z(t) is

P(a(t) = 21(t) = Plaa(t) = 1)+ P(xa(t) = 0) - Plas(t) = 21(t))
1 11 3
2ty T 1

Similarly, P(z(t) = x3(t)) = 2. For this reason, despite having high period and mod-
erately high linear complexity, the Geffe generator succumbs to correlation attacks, as de-
scribed in Note 6.51. d

Note (correlation attacks) Suppose that n maximum-length LFSRs Ry, Ra, ... , R, of
lengths Ly, Lo, ... , L, areemployed in anonlinear combination generator. If the connec-
tion polynomials of the LFSRs and the combining function f are public knowledge, then
the number of different keys of the generator is [}, (2% — 1). (A key consists of theini-
tial states of the LFSRs.) Suppose that there is a correlation between the keystream and
the output sequence of R;, with correlation probability p > % If asufficiently long seg-
ment of the keystream is known (e.g., as is possible under a known-plaintext attack on a
binary additive stream cipher), theinitial state of R; can be deduced by counting the num-
ber of coincidences between the keystream and all possible shifts of the output sequence
of Ry, until this number agrees with the correlation probability p. Under these conditions,
finding the initial state of R; will take at most 271 — 1 trials. In the case where there is
a correlation between the keystream and the output sequences of each of R+, Rs, ... , Ry,
the (secret) initial state of each LFSR can be determined independently in a total of about
S (2% — 1) trials; this number is far smaller than the total number of different keys.
In asimilar manner, correlations between the output sequences of particular subsets of the
LFSRs and the keystream can be exploited.

In view of Note 6.51, the combining function f should be carefully selected so that
thereis no statistical dependence between any small subset of the n LFSR sequences and

TCL Exhibit 1009
Page 224

86.3 Stream ciphers based on LFSRs 207

6.52

6.53

6.54

the keystream. This condition can be satisfied if f is chosen to be mt*-order correlation
immune.

Definition Let X, X5, ..., X,, beindependent binary variables, each taking on the val-
ues 0 or 1 with probability £. A Boolean function f(z1,2,... ,,) ism'™-order corre-
lation immuneif for each subset of m random variables X, , X;,, ..., X;, withl <i; <
ig < -+ <'im < n,therandomvariable Z = f(X;, Xo, ... ,X,) isstatisticaly indepen-
dent of therandom vector (X, , Xi,, ... , X,); equivdently, [(Z; X;,, Xip, ... , Xi,,) =
0 (see Definition 2.45).

For example, the function f(z1,22,... ,%,) = 21 D T2 ® --- & T, IS (n — 1)*-
order correlationimmune. In light of Fact 6.49, thefollowing showsthat thereis a tradeoff
between achieving high linear complexity and high correlationimmunity with acombining
function.

Fact If aBooleanfunction f (21, xa, . .. , z,) ismt-order correlationimmune, where 1 <
m < n, then the nonlinear order of f isat most n — m. Moreover, if f isbalanced (i.e.,
exactly half of the output valuesof f are0) thenthenonlinear order of f isat mostn—m—1
forl<m<n-2.

The tradeoff between high linear complexity and high correlation immunity can be
avoided by permitting memory in the nonlinear combination function f. This pointisil-
lustrated by the summation generator.

Example (summation generator) The combining function in the summation generator is
based on the fact that integer addition, when viewed over Z,, is a nonlinear function with
memory whose correlation immunity is maximum. To seethisinthecasen = 2,leta =
12 4 da124+ag and b = by, _12™ 1 - -4+by 2-+by bethebinary representations
of integersa and b. Then the bits of z = a + b are given by the recursive formula:

zj = filaj,bj,cim1) =a;®b;®cim1 0<j<m,
fg(aj,bj,Cj_l) = ajbj © ((Ij @bj)cj_1, 0<3<m-1,

¢j

where ¢; is the carry bit, and c_; = a,, = b,, = 0. Notethat f; is 2"-order corre-
lation immune, while f, is a memoryless nonlinear function. The carry bit c;_; carries
all the nonlinear influence of less significant bits of « and b (namely, a;_1, ... ,a1,a0 and
bj—1,...,b1,bo).

The summation generator, as depictedin Figure 6.10, is defined by n maximum-length
LFSRs whose lengths L1, Lo, ... , L,, are pairwise relatively prime. The secret key con-

Carry

'

s N

Tn
-LFSR n | — keystream

Figure 6.10: The summation generator.

-
-
[}
Py
N
&
M
[]

TCL Exhibit 1009
Page 225

208 Ch. 6 Stream Ciphers

sists of the initial states of the LFSRs, and an initial (integer) carry Cy. The keystream
is generated as follows. Attimej (j > 1), the LFSRs are stepped producing output bits
T1,%2,...,%s, and theinteger sum S; = Y7 | @; + Cj_; is computed. The keystream
bit is .S; mod 2 (the least significant bit of .S;), while the new carry is computed as C; =
|S;/2] (theremaining bits of S;). The period of the keystreamis [T, (2% — 1), whileits
linear complexity is close to this number.

Even though the summation generator has high period, linear complexity, and corre-
lation immunity, it is vulnerableto certain correlation attacks and a known-plaintext attack
based on its 2-adic span (see page 218). a

6.3.2 Nonlinear filter generators

Another general technique for destroying the linearity inherent in LFSRsis to generate the
keystream as some nonlinear function of the stages of a single LFSR; this construction is
illustrated in Figure 6.11. Such keystream generators are called nonlinear filter generators,
and f is called thefiltering function.

- N
L L R L L

| Stage | Lo | Stage | o ceee _»| Stage | o 5| Stage
L-1 L-2 1 0

[/ 1
¢

keystream

Figure 6.11: Anonlinear filter generator. f isa nonlinear Boolean filtering function.

Fact 6.55 describes the linear complexity of the output sequence of a nonlinear filter
generator.

6.55 Fact Suppose that a nonlinear filter generator is constructed using a maximum-length
LFSR of length L and afiltering function f of nonlinear order m (asin Figure 6.11).
(i) (Key'sbound) The linear complexity of the keystreamisat most L., = 37, (%).
(i) For afixed maximum-length LFSR of prime length L, the fraction of Boolean func-
tions f of nonlinear order m which produce sequences of maximum linear complex-
ity L,,, is
P, =~ exp(—Ln/(L-2L)) > e VL.
Therefore, for large L, most of the generators produce sequences whose linear com-
plexity meets the upper bound in (i).

The nonlinear function f selected for afilter generator should include many terms of
each order up to the nonlinear order of f.

TCL Exhibit 1009
Page 226

§6.3 Stream ciphers based on LFSRs 209

6.56 Example (knapsackgenerator) Theknapsack keystream generator is defined by amaxim-
um-lengthLFSR (L, C(D)) andamodulus Q = 2%. Thesecret key consists of I knapsack
integer weights a1, as, . . . , ar, each of bitlength L, and the initial state of the LFSR. Re-
call that the subset sum problem (§3.10) is to determine a subset of the knapsack weights
which add up to a given integer s, provided that such a subset exists; this problem is NP-
hard (Fact 3.91). The keystream is generated as follows: at time j, the LFSR is stepped
and theknapsack sum S; = S°% | z;4; mod Q iscomputed, where [z, . .. , 22, 1] isthe
state of the LFSR at time 5. Finally, selected bits of S; (after S; is converted to its binary
representation) are extracted to form part of the keystream (the [1g L] least significant bits
of §; should be discarded). Thelinear complexity of the keystream isthen virtually certain
tobe L(2F —1).

Since the state of an LFSR is abinary vector, the function which mapsthe LFSR state
to the knapsack sum S; is indeed nonlinear. Explicitly, let the function f be defined by
flz) = Zle z;a; mod Q, wherez = [zr,...,zq,21] isastate. If z and y are two
states then, in general, f(z @ y) # f(z) + f(y). O

6.3.3 Clock-controlled generators

In nonlinear combination generators and nonlinear filter generators, the component LFSRs
are clocked regularly; i.e., the movement of datain all the LFSRsis controlled by the same
clock. The main idea behind a clock-controlled generator isto introduce nonlinearity into
LFSR-based keystream generators by having the output of one LFSR control the clocking
(i.e., stepping) of asecond LFSR. Sincethe second LFSR isclockedin anirregular manner,
the hope is that attacks based on the regular motion of LFSRs can be foiled. Two clock-
controlled generators are described in this subsection: (i) the alternating step generator and
(i) the shrinking generator.

(i) The alternating step generator

The alternating step generator uses an LFSR R; to control the stepping of two LFSRs, R»
and R3. The keystream produced is the XOR of the output sequences of R, and Rs.

6.57 Algorithm Alternating step generator

SUMMARY: acontrol LFSR R; is used to selectively step two other LFSRs, R, and Rs.
OUTPUT: a sequence which is the bitwise XOR of the output sequences of R and Rs.
The following steps are repeated until a keystream of desired length is produced.
1. Register R; is clocked.
2. If the output of Ry is 1 then:
R, isclocked; Rs isnot clocked but its previous output bit is repeated.
(For thefirst clock cycle, the “previous output bit” of Rs istakento be(.)
3. If the output of R; is0 then:
R3 isclocked; R, isnot clocked but its previous output bit is repeated.
(For thefirst clock cycle, the “previous output bit” of R istakento be(.)
4. The output bits of R, and R3 are XORed; the resulting bit is part of the keystream.

More formally, let the output sequences of LFSRs R;, R, and R3 be ag, a1, as, .. .,
bo, b1, ba,...,and ¢y, c1,ca. . ., respectively. Defineb_; = ¢_; = 0. Then the keystream
produced by the alternating step generator is xo, ©1, T2, . . ., Where z; = b,y ® cj_4(j)—1

TCL Exhibit 1009
Page 227

210

Ch. 6 Stream Ciphers

6.58

6.59

and t(j) = (Z{ZO a;) — 1foral j > 0. The aternating step generator is depicted in

Figure 6.12.
'D_. LFSR R,

clock —» » LFSRR; - H—— output

—~ D_. LFSR Rs

Figure 6.12: The alternating step generator.

Example (alternating step generator with artificially small parameters) Consider an al-
ternating step generator with component LFSRs Ry = (3,1 + D? + D3), Ry = (4,1 +
D? 4+ D%, and R = (5,1 + D + D? + D* 4+ D). Suppose that the initial states of R,
R,,and R3 are [0,0,1],[1,0,1,1],and [0, 1, 0, 0, 1], respectively. The output sequence of
R; isthe 7-periodic sequence with cycle
a” = 1,0,0,1,0,1,1.
The output sequence of R isthe 15-periodic sequence with cycle
b = 1,1,0,1,0,1,1,1,1,0,0,0,1,0,0.
The output sequence of R3 is the 31-periodic sequence with cycle
At = 1,0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0,0.

The keystream generated is

z = 1,0,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,1,1,0,.... O

Fact 6.59 establishes, under the assumptionthat R, producesade Bruijn sequence (see
Definition 6.40), that the output sequence of an alternating step generator satisfies the basic
requirements of high period, high linear complexity, and good statistical properties.

Fact (properties of the alternating step generator) Suppose that R, produces ade Bruijn
sequenceof period 2. Furthermore, supposethat R, and Rs are maximum-length LFSRs
of lengths L, and L, respectively, suchthat gcd(L2, L) = 1. Let 2 bethe output sequence
of the alternating step generator formed by R4, Rs, and Rs.
(i) Thesequencex hasperiod 271 - (282 — 1) - (283 — 1),
(i) Thelinear complexity L(x) of x satisfies
(Lo + L3) - 25171 < L(z) < (Lg+ L3) - 251,

(iii) Thedistribution of patternsin x is almost uniform. More precisely, let P be any bi-
nary string of length ¢ bits, wheret < min (L2, L3). If z(¢) denotesany ¢ consecutive
bitsin z, then the probability that z(t) = P is (%)t +0(1/2F27t) 4 O(1 /2%,

Since ade Bruijn sequence can be obtained from the output sequence s of a maximum-

length LFSR (of length L) by simply adding a0 to the end of each subsequenceof L —10's
occurringin s (see Note 6.43), it is reasonable to expect that the assertions of high period,

TCL Exhibit 1009
Page 228

§6.3 Stream ciphers based on LFSRs 211

6.60

6.61

6.62

high linear complexity, and good statistical propertiesin Fact 6.59 also hold when R; isa
maximum-length LFSR. Note, however, that this has not yet been proven.

Note (security of the alternating step generator) The LFSRs R;, R2, R3 should be cho-
sen to be maximum-length LFSRswhose lengths L1, Lo, L3 are pairwiserelatively prime:
ged(Ly, Le) = 1, ged(Lg, Ls) = 1, ged(Ly1, Ls) = 1. Moreover, the lengths should be
about thesame. If Ly =~ I, Ly ~ [, and L3 = [, the best known attack on the aternating
step generator is a divide-and-conquer attack on the control register R; which takes ap-
proximately 2 steps. Thus, if I ~ 128, the generator is secure against all presently known
attacks.

(ii) The shrinking generator

The shrinking generator is arelatively new keystream generator, having been proposed in
1993. Nevertheless, dueto its simplicity and provable properties, it is a promising candi-
date for high-speed encryption applications. In the shrinking generator, acontrol LFSR R,
is used to select a portion of the output sequence of a second LFSR R». The keystream
produced is, therefore, a shrunken version (also known as an irregularly decimated subse-
guence) of the output sequence of R-, as specified in Algorithm 6.61 and depicted in Fig-
ure 6.13.

Algorithm Shrinking generator

SUMMARY: acontrol LFSR R; isused to control the output of asecond LFSR Rs.
The following steps are repeated until a keystream of desired length is produced.

1. Registers R; and R, are clocked.

2. If the output of R; is 1, the output bit of R, forms part of the keystream.

3. If the output of R is 0, the output bit of R, is discarded.

More formally, let the output sequences of LFSRs R; and R, be ag, a1, aq,... and
bo, b1, ba, . .., respectively. Then the keystream produced by the shrinking generator is
0,21, T2, ..., Wherez; = b;;, and, for each j > 0, i, isthe position of the j** 1 in the
sequence ag, ai, as, '

LFSRR; |---t---

\J

clock—se

A

a; =1
LFSR Ro - - OUtpUt b,‘,

L—»discard b;
a; = 0

Figure 6.13: The shrinking generator.

Example (shrinking generator with artificially small parameters) Consider a shrinking
generator with component LFSRs Ry = (3,1 + D + D3) and Ry = (5,1 + D3 + D5).
Supposethat theinitial statesof R; and R, are[1,0,0] and [0, 0, 1, 0, 1], respectively. The
output sequence of R; isthe 7-periodic sequence with cycle

a’” =0,0,1,1,1,0,1,

TCL Exhibit 1009
Page 229

212

Ch. 6 Stream Ciphers

6.63

6.64

while the output sequence of Ry isthe 31-periodic sequence with cycle
v = 1,0,1,0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,1,1,0,1,1,1,0.
The keystream generated is
z = 1,0,0,0,0,1,0,1,1,1,1,1,0,1,1,1,0,... . O

Fact 6.63 establishesthat the output sequence of ashrinking generator satisfiesthebasic
requirements of high period, high linear complexity, and good statistical properties.

Fact (propertiesof theshrinking generator) Let R; and Ry be maximum-length L FSRs of
lengths L, and L, respectively, and let 2 be an output sequence of the shrinking generator
formed by R; and R;.

(i) 1f ged(Ly, Ls) = 1, then z has period (242 — 1) - 2111,

(ii) Thelinear complexity L(z) of = satisfies

Ly-217% < L(z) < Lp-2071

(iii) Supposethat the connection polynomiasfor R; and Ry are chosen uniformly at ran-
dom from the set of all primitive polynomials of degrees L; and Lo over Z,. Then
the distribution of patternsin z isamost uniform. More precisely, if P isany binary
string of length ¢ bitsand z(¢) denotesany ¢ consecutivebitsin z, then the probability
that z(t) = Pis(3)" + O(t/2"2).

Note (security of the shrinking generator) Suppose that the component LFSRs R; and R,
of the shrinking generator have lengths L, and L, respectively. If the connection polyno-
mialsfor R; and R, are known (but not the initial contents of R, and Rs), the best attack
known for recovering the secret key takes O(211 - L3) steps. On the other hand, if secret
(and variable) connection polynomials are used, the best attack known takes O(22%1 - L -
L,) steps. Thereis also an attack through the linear complexity of the shrinking generator
whichtakes O(2%1 - L2) steps (regardless of whether the connectionsare known or secret),
but this attack requires 221 - L, consecutive bits from the output sequenceand is, therefore,
infeasible for moderately large L, and L,. For maximum security, R; and Rs should be
maximum-length LFSRs, and their lengths should satisfy gcd(L4, L2) = 1. Moreover, se-
cret connections should be used. Subject to these constraints, if L; ~ [and Ly ~ [, the
shrinking generator has a security level approximately equal to 22, Thus, if L; ~ 64 and
Ly =~ 64, the generator appearsto be secure against all presently known attacks.

6.4 Other stream ciphers

While the LFSR-based stream ciphers discussed in §6.3 are well-suited to hardware im-
plementation, they are not especially amenable to software implementation. This has led
to several recent proposalsfor stream ciphers designed particularly for fast softwareimple-
mentation. Most of these proposal sare either proprietary, or arerelatively new and have not
received sufficient scrutiny from the cryptographic community; for thisreason, they are not
presented in this section, and instead only mentioned in the chapter notes on page 222.
Two promising stream ciphers specifically designed for fast software implementation
are SEAL and RC4. SEAL is presented in §6.4.1. RC4 is used in commercial products,
and has a variable key-size, but it remains proprietary and is not presented here. Two

TCL Exhibit 1009
Page 230

§6.4 Other stream ciphers 213

other widely used stream ciphers not based on LFSRs are the Output Feedback (OFB; see
§7.2.2(iv)) and Cipher Feedback (CFB; see §7.2.2(iii)) modes of block ciphers. Another
class of keystream generators not based on LFSRs are those whose security relies on the
intractability of an underlying number-theoretic problem; these generatorsare much slower
than those based on LFSRs and are discussed in §5.5.

6.4.1 SEAL

6.65

6.66

SEAL (Software-optimized Encryption Algorithm) is a binary additive stream cipher (see
Definition 6.4) that was proposed in 1993. Sinceit isrelatively new, it has not yet received
much scrutiny from the cryptographic community. However, it is presented here because
it is one of the few stream ciphers that was specifically designed for efficient software im-
plementation and, in particular, for 32-bit processors.

SEAL is a length-increasing pseudorandom function which maps a 32-bit sequence
number n to an L-bit keystream under control of a 160-bit secret key a. In the preprocess-
ing stage (step 1 of Algorithm 6.68), the key is stretched into larger tables using the table-
generation function G, specified in Algorithm 6.67; this function is based on the Secure
Hash Algorithm SHA-1 (Algorithm 9.53). Subsequent to this preprocessing, keystream
generation requires about 5 machine instructions per byte, and is an order of magnitude
faster than DES (Algorithm 7.82).

The following notation is used in SEAL for 32-bit quantities 4, B, C, D, X;, and Y.

o A: bitwise complement of A
e AANB,AV B, A®B: hitwise AND, inclusive-OR, exclusive-OR
o “A < s": 32-bit result of rotating A left through s positions
e “A < s": 32-bit result of rotating A right through s positions
[]

A+ B: mod 232 sum of the unsigned integers A and B

def def

e f(B,C,D)= (BAC)V(BAD); g(B,C,D)= (BAC)V(BAD)V(CAD);
hB,C, D) BacaD

e A||B: concatenation of A and B

o (X1,...,X;)«(Y1,...,Y;): smultaneous assignments (X;«Y;), where

(Y1,...,Y;) isevaluated prior to any assignments.

Note (SEAL 1.0vs. SEAL 2.0) Thetable-generation function (Algorithm 6.67) for thefirst
version of SEAL (SEAL 1.0) was based on the Secure Hash Algorithm (SHA). SEAL 2.0
differsfrom SEAL 1.0 in that the table-generation function for the former is based on the
modified Secure Hash Algorithm SHA-1 (Algorithm 9.53).

Note (tables) Thetable generation (step 1 of Algorithm 6.68) uses the compression func-
tion of SHA-1 to expand the secret key a into larger tables T', S, and R. These tables can
be precomputed, but only after the secret key a has been established. TablesT and S are
2K bytes and 1K byte in size, respectively. The size of table R depends on the desired
bitlength L of the keystream — each 1K byte of keystream requires 16 bytes of R.

TCL Exhibit 1009
Page 231

214

Ch. 6 Stream Ciphers

6.67 Algorithm Table-generation function for SEAL 2.0

Gal(i)

INPUT: a160-bit string a and an integer 4, 0 < 4 < 232,
OUTPUT: a160-bit string, denoted G, (7).

1

2.

Definition of constants. Define four 32-bit constants (in hex): y; = 0x5a827999,
y2 = Ox6ed9ebal, y3 = 0x8f1bbcdc, y, = Oxcab2cld6.

Table-generation function.

(initialize 80 32-bit words Xy, X1,... , X79)

Set Xy + . For j from 1 to 15 do: X ;<— 0x00000000.

For j from16 to 79 do: X + ((X;—3PX;_s®X,;_14BX;_16) < 1).
(initialize working variables)

Break up the 160-bit string a into five 32-bit words: a = HoH, Ho Hs Hy.
(A7B7CaD7E) <~ (H07H17H27H37H4)'

(execute four rounds of 20 steps, then update; ¢ is a temporary variable)
(Round 1) For j from 0 to 19 do the following:

t <« (A+5)+ f(B,C,D)+ E+ X; +v1),

(A,B,C,D,E) + (t,A,B + 30,C, D).

(Round 2) For j from 20 to 39 do the following:

t + ((A+<5)+nh(B,C,D)+ E+ X; + y2),

(A,B,C,D,E) «+ (t,A,B + 30,C, D).

(Round 3) For j from 40 to 59 do the following:

t + ((A+<5)+g(B,C,D)+E+ X; +y3),

(A,B,C,D,E) + (t,A,B + 30,C, D).

(Round 4) For ;5 from 60 to 79 do the following:

t + ((A+<5)+nh(B,C,D)+ E+ X; + ya),

(A,B,C,D,E) + (t,A,B + 30,C, D).

(update chaining values)

(H07H17H27H37H4) — (H() +AH +B,Hy,+C,Hs +D,Hy + E)
(completion) The value of G, (i) is the 160-bit string Hy|| H, || Hs || Hs|| H .

6.68 Algorithm Keystream generator for SEAL 2.0

SEAL (a,n)

INPUT: a 160-hit string a (the secret key), a (non-secret) integer n, 0 < n < 232 (the
sequence number), and the desired bitlength L of the keystream.

OUTPUT: keystream y of bitlength L/, where L’ is the least multiple of 128 whichis > L.

1

Table generation. Generate the tables T', S, and R, whose entries are 32-bit words.
Thefunction F used below isdefined by F, (i) = H} 45, Where HUH{ HiHLH} =
G (]i/5]), and where the function G, is defined in Algorithm 6.67.

1.1 For i from0to 511 do thefollowing: T'[i]«F, (7).

1.2 For j from 0 to 255 do the following: S[j]« F,(0x00001000 + j).

1.3 For k from0to4 - [(L —1)/8192] — 1 do: R[k]+F,(0x00002000 + k).
Initialization procedure. Thefollowing is a description of the subroutine
Initialize(n,l, A, B,C,D,ni,ny,ns, ny) Whichtakesasinput a32-bit word n
and an integer [, and outputseight 32-bitwords A, B, C, D, n1, na, ng, and ny. This
subroutineis used in step 4.

A<n®R[4l], B+ (n — 8)®R[4l + 1], C+(n < 16)®R[4l + 2],
D+ (n < 24)® R[4l + 3].

TCL Exhibit 1009
Page 232

§6.4 Other stream ciphers

215

For j from 1 to 2 do the following:
P+ ANOx000007fc, B<~—B + T[P/4], A«(A <=9
P<+BA0x000007fc, C<+-C + T[P/4], B<(B <9
P+ CA0x000007fc, D« D + T[P/4], Ce((] —9
P+ DAOx000007fc, A+ A+ T[P/4], D« (D < 9
(nl, ng, N3, n4)<*(D, B, A, C)
P+ ANOX000007fc, BB + T[P/4], A«(A <= 9).
P+ BA0x000007fc, C+C + T[P/4], B<—(B —9).
P+ CA0x000007fc, D<—D +T[P/4], C+(C < 9).
P+ DA0x000007fc, A+ A +T[P/4], D«(D < 9).
3. Initialize y to be the empty string, and [<—0.
4. Repeat the following:

=

N —

4.1 Executetheprocedurel niti alize(n,l, A, B,C, D,ny,ng,ng,ny).

4.2 For i from 1 to 64 do the following:

P+ AN 0x000007fc, B+ B + T[P/4], A«(A < 9), B+ B®A,

Q+ BAOX000007fc, C+CaT[Q/4], B+(B < 9), C+C + B,

P<—(P + C)AOX000007fc, D+ D + T[P/4], C+(C = 9), D+D&C,
Q + D)A0x000007fc, A+ ADT[Q/4], D« (D —9), A+~A+ D,

—(
(P + A)A0x000007fc, B« B@T[P/4], A+(A —9),
+(Q + B)A0x000007fc, C+C +T[Q/4], B«(B —9),
(P + C)A0x000007fc, D«+D&T[P/4], C+(C —9),

Qe(Q + D)A0x000007fc, A«—A+T[Q/4], D« (D —9),

yey | (B + S[ai — 4) || (Cas[ai - 3)) | (D + S[4i — 2)) || (A®S[4i - 1).

If yis > L bitsin length then return(y) and stop.

Ifiisodd, set (A, C)«(A+ny, C+ng). Otherwise, (A4, C)«(A+ns, C+ny).

43 Setl«l+1.

6.69 Note (choice of parameter L) In most applications of SEAL 2.0 it is expected that . <
219: |arger values of L are permissible, but come at the expense of a larger table R. A
preferred method for generating a longer keystream without requiring a larger table R is
to compute the concatenation of the keystreams SEAL (a,0), SEAL(a,1), SEAL(a,2),. .

Since the sequence number isn < 232, akeystream of length up to 2°! bits can be obtained

6.70

in this manner with L = 219,

Example (testvectorsfor SEAL 2.0) Supposethekey a isthe 160-bit (hexadecimal) string

67452301 ef cdab89 98badcfe 10325476 c3d2elfO,

n = 0x013577af, and L = 32768 bits. Table R consists of words R[0], R[1], ...

5021758d ce577c11 fa5bd5dd 366d1b93 182cff 72 ac06d7c6
2683ead8 fabe3573 82a10c96 48c483bd ca92285c 71f e84c0
bd76b700 6fdcc20c 8dadal5l 4506dd64

Thetable T consists of words T'[0], T'[1], ... , R[511]:

92b404e5 56588ced 6clacd4e bf 053f 68 09f 73a93 cd5f 176a
b863f 14e 2b014a2f 4407e646 38665610 222d2f 91 4d941a21

3af 3a4bf 021e4080 2a677d95 405c7db0 338e4ble 19ccf 158

, R[15]:

TCL Exhibit 1009
Page 233

216

Ch. 6 Stream Ciphers

Thetable S consists of words S[0], S[1],. .. , S[255]:

907cle3d ce7lef Oa 48f559ef 2b7ab8bc 4557f 4b8 033e9b05
4f deOef a 1aB845f 94 38512c3b d4b44591 53765dce 469ef a02

bd7dea87 fd036d87 53aa3013 ec60e282 leaef 8f9 0b5a0949
The output y of Algorithm 6.68 consists of 1024 words y[0], y[1], . .. ,y[1023]:

37a00595 9b84c49c adbele05 0673530f 0ac8389d c5878ec8
da6666d0 6da71328 1419bdf 2 d258bebb b6ad42a4d 8a3lla72

547df de9 668d50b5 ba9e2567 413403c5 43120b5a ecf9d062
The XOR of the 1024 words of y is 0x098045fc. a

6.5 Notes and further references

§6.1

§6.2

Although now dated, Rueppel [1075] provides a solid introduction to the analysis and
design of stream ciphers. For an updated and more comprehensive survey, see Rueppel
[1081]. Another recommended survey is that of Robshaw [1063].

The concept of unconditional security was introduced in the seminal paper by Shannon
[1120]. Maurer [819] surveystherole of information theory in cryptography and, in partic-
ular, secrecy, authentication, and secret sharing schemes. Maurer [811] devised arandom-
ized stream cipher that is unconditionally secure “with high probability”. More precisely,
an adversary is unableto obtain any information whatsoever about the plaintext with prob-
ability arbitrarily close to 1, unless the adversary can perform an infeasible computation.
Thecipher utilizesapublicly-accessible source of random bitswhoselengthis much greater
than that of all the plaintext to be encrypted, and can conceivably be made practical. Mau-
rer’s cipher is based on theimpractical Rip van Winkle cipher of Massey and Ingermarsson
[789], which is described by Rueppel [1081].

Onetechniquefor solving the re-synchronization problem with synchronous stream ciphers
isto have the receiver send aresynchronization request to the sender, whereby anew inter-
nal state is computed as a (public) function of the original internal state (or key) and some
public information (such as the time at the moment of the request). Daemen, Govaerts,
and Vandewalle [291] showed that this approach can result in a total loss of security for
some published stream cipher proposals. Proctor [1011] considered the trade-off between
the security and error propagation problems that arise by varying the number of feedback
ciphertext digits. Maurer [808] presented various design approachesfor self-synchronizing
stream ciphersthat are potentially superior to designs based on block ciphers, both with re-
spect to encryption speed and security.

Anexcellentintroductionto thetheory of both linear and nonlinear shift registersisthe book
by Golomb [498]; see also Selmer [1107], Chapters 5 and 6 of Beker and Piper [84], and
Chapter 8 of Lidl and Niederreiter [764]. A lucid treatment of m-sequencescan befoundin
Chapter 10 of McEliece[830]. Whilethe discussioninthischapter hasbeen restricted to se-
quences and feedback shift registers over the binary field Z,, many of the results presented
can be generalized to sequences and feedback shift registers over any finite field I,

TCL Exhibit 1009
Page 234

§6.5 Notes and further references 217

The results on the expected linear complexity and linear complexity profile of random se-
quences (Facts 6.21, 6.22, 6.24, and 6.25) are from Chapter 4 of Rueppel [1075]; they also
appear in Rueppel [1077]. Dai and Yang [294] extended Fact 6.22 and obtained bounds
for the expected linear complexity of an n-periodic sequence for each possible value of n.
The bounds imply that the expected linear complexity of a random periodic sequence is
close to the period of the sequence. The linear complexity profile of the sequence defined
in Example 6.27 was established by Dai [293]. For further theoretical analysis of thelinear
complexity profile, consult the work of Niederreiter [927, 928, 929, 930].

Facts 6.29 and 6.34 are due to Massey [784]. The Berlekamp-Massey algorithm (Algo-
rithm 6.30) isdueto Massey [784], and is based on an earlier algorithm of Berlekamp [118]
for decoding BCH codes. While the algorithm in §6.2.3 is only described for binary se-
quences, it can be generalized to find the linear complexity of sequences over any field.
Further discussion and refinements of the Berlekamp-Massey a gorithm are given by Blahut
[144]. There are numerous other algorithms for computing the linear complexity of a se-
quence. For example, Games and Chan [439] and Robshaw [1062] present efficient algo-
rithms for determining the linear complexity of binary sequences of period 2™; these algo-
rithms have limited practical use since they require an entire cycle of the sequence.

Jansen and Boekee [632] defined the maximum order complexity of a sequence to be the
length of the shortest (not necessarily linear) feedback shift register (FSR) that can gener-
ate the sequence. The expected maximum order complexity of a random binary sequence
of length n is approximately 21g n. An efficient linear-time algorithm for computing this
complexity measure was also presented; see also Jansen and Boekee [631].

Another complexity measure, the Ziv-Lempel complexity measure, was proposed by Ziv and
Lempel [1273]. Thismeasurequantifiestherateat which new patternsappear in asequence.
Mund [912] used a heuristic argument to derive the expected Ziv-Lempel complexity of a
random binary sequence of a given length. For a detailed study of the relative strengths
and weaknesses of the linear, maximum order, and Ziv-Lempel complexity measures, see
Erdmann [372].

Kolmogorov [704] and Chaitin [236] introduced the notion of so-called Turing-Kolmogorov
-Chaitin complexity, which measures the minimum size of the input to a fixed universal
Turing machinewhich can generateagiven sequence; seealso Martin-Lof [783]. Whilethis
complexity measureis of theoretical interest, thereis no agorithm known for computing it
and, hence, it has no apparent practical significance. Beth and Dai [124] have shown that
the Turing-Kolmogorov-Chaitin complexity is approximately twice the linear complexity
for most sequences of sufficient length.

Fact 6.39 is due to Golomb and Welch, and appears in the book of Golomb [498, p.115].
Lai [725] showed that Fact 6.39 is only true for the binary case, and established necessary
and sufficient conditionsfor an FSR over agenera finite field to be nonsingul ar.

Klapper and Goresky [677] introduced a new type of feedback register called a feedback
with carry shift register (FCSR), which is equipped with auxiliary memory for storing the
(integer) carry. An FCSR is similar to an LFSR (see Figure 6.4), except that the contents
of the tapped stages of the shift register are added as integers to the current content of the
memory to form asum S. The least significant bit of S (i.e., S mod 2) is then fed back
into thefirst (leftmost) stage of the shift register, while the remaining higher order bits(i.e.,
|S/2]) are retained as the new value of the memory. If the FCSR has L stages, then the
space required for the auxiliary memory is at most 1g L bits. FCSRs can be conveniently
analyzed using the algebra over the 2-adic numbersjust as the algebra over finite fieldsis
used to analyze LFSRs.

TCL Exhibit 1009
Page 235

218

Ch. 6 Stream Ciphers

§6.3

Any periodic binary sequence can be generated by a FCSR. The 2-adic span of a periodic
sequence is the number of stages and memory bitsin the smallest FCSR that generatesthe
sequence. Let s be a periodic sequence having a 2-adic span of T'; note that T" is no more
thanthe period of s. Klapper and Goresky [678] presented an efficient algorithm for finding
an FCSR of length T which generates s, given 27" + 2[1g T'| + 4 of theinitia bits of s. A
comprehensive treatment of FCSRs and the 2-adic span is given by Klapper and Goresky
[676].

Notes 6.46 and 6.47 on the selection of connection polynomialswere essentially first point-
ed out by Meier and Staffelbach [834] and Chepyzhov and Smeets [256] in relation to
fast correlation attacks on regularly clocked LFSRs. Similar observations were made by
Coppersmith, Krawczyk, and Mansour [279] in connection with the shrinking generator.
More generally, to withstand sophisticated correlation attacks (e.g., see Meier and Staffel-
bach [834]), the connection polynomials should not have low-weight polynomia multiples
whose degrees are not sufficiently large.

Klapper [675] provides examples of binary sequences having high linear complexity, but
whose linear complexity islow when considered as sequences (whose el ements happen to
beonly 0 or 1) over alarger finitefield. Thisdemonstratesthat high linear complexity (over
Z5) by itself isinadequate for security. Fact 6.49 was proven by Rueppel and Staffelbach
[1085].

The Geffe generator (Example 6.50) was proposed by Geffe [446]. The Pless generator
(Arrangement D of [978]) was another early proposal for a nonlinear combination genera-
tor, and uses four JK flip-flops to combine the output of eight LFSRs. This generator also
succumbs to a divide-and-conquer attack, as was demonstrated by Rubin [1074].

The linear syndrome attack of Zeng, Yang, and Rao [1265] is a known-plaintext attack on
keystream generators, and isbased on earlier work of Zeng and Huang[1263]. It iseffective
when the known keystream B canbewrittenintheform B = A® X, where A isthe output
sequence of an LFSR with known connection polynomial, and the sequence X is unknown
but sparse in the sense that it contains more 0’s than 1's. If the connection polynomials of
the Geffe generator are al known to an adversary, and are primitive trinomials of degrees
not exceeding n, then theinitial states of the three component LFSRs (i.e., the secret key)
can be efficiently recovered from a known keystream segment of length 37n bits.

The correlation attack (Note 6.51) on nonlinear combination generators was first devel-
oped by Siegenthaler [1133], and estimates were given for the length of the observed
keystream required for the attack to succeed with high probability. The importance of
correlation immunity to nonlinear combining functions was pointed out by Siegenthaler
[1132], who showed the tradeoff between high correlation immunity and high nonlinear or-
der (Fact 6.53). Meier and Staffelbach [834] presented two new so-called fast correlation
attackswhich are more efficient than Siegenthal er’ s attack in the case where the component
L FSRs have sparse feedback polynomials, or if they have low-weight polynomia multiples
(e.g., each having fewer than 10 non-zero terms) of not too large a degree. Further exten-
sions and refinements of correlation attacks can be found in the papers of Mihaljevi¢ and
Golic [874], Chepyzhov and Smeets [256], Goli¢ and Mihaljevi¢ [491], Mihaljevit and J.
Golit [875], Mihaljevit [873], Clark, Golit, and Dawson [262], and Penzhorn and Kilhn
[967]. A comprehensive survey of correlation attacks on L FSR-based stream ciphersisthe
paper by Goli€ [486]; the cases where the combining function is memoryless or with mem-
ory, aswell aswhen the LFSRs are clocked regularly or irregularly, are al considered.

The summation generator (Example 6.54) was proposed by Rueppel [1075, 1076]. Meier

TCL Exhibit 1009
Page 236

86.5 Notes and further references 219

and Staffelbach [837] presented correl ation attacks on combination generatorshaving mem-
ory, cracked the summation generator having only two component LFSRs, and as a result
recommended using several LFSRs of moderate |engths rather than just afew long LFSRs
in the summation generator. As an example, if a summation generator employs two LF-
SRs each having length approximately 200, and if 50 000 keystream bits are known, then
Meier and Staffelbach’s attack is expected to take less than 700 trials, where the dominant
step in each trial involves solving a400 x 400 system of binary linear equations. Dawson
[312] presented another known-plaintext attack on summation generators having two com-
ponent LFSRs, which requires fewer known keystream bits than Meier and Staffelbach’s
attack. Dawson’s attack is only faster than that of Meier and Staffelbach in the case where
both LFSRsarerelatively short. Recently, Klapper and Goresky [678] showed that the sum-
mation generator has comparatively low 2-adic span (see page 218). More precisely, if a
and b are two sequences of 2-adic span Az(a) and A2(b), respectively, and if s is the re-
sult of combining them with the summation generator, then the 2-adic span of s is at most
A2(a) + A2(b) + 2[1g(A2(a))] + 2[1g(A2(b))] + 6. For example, if m-sequences of period
2L —1for L = 7,11,13, 15, 16, 17 are combined with the summation generator, then the
resulting sequence has linear complexity nearly 272, but the 2-adic span is less than 218,
Hence, the summation generator is vulnerable to a known-plaintext attack when the com-
ponent LFSRs are all relatively short.

The probability distribution of the carry for addition of n random integers was analyzed by
Staffelbachand Meier [1167]. It was proventhat thecarry isbalanced for evenn and biased
foroddn. Forn = 3 thecarry isstrongly biased, however, the biasconvergesto 0 asn tends
to oo. Goli€ [485] pointed out theimportance of the correlation between linear functions of
the output and input in general combinerswith memory, and introduced the so-called linear
sequential circuit approximation method for finding such functions that produce correl ated
sequences. Goli€ [488] used thisas abasisfor developing alinear cryptanalysistechnique
for stream ciphers, and in the same paper proposed a stream cipher called GOAL, incorpo-
rating principles of modified truncated linear congruential generators (see page 187), self-
clock-control, and randomly generated combiners with memory.

Fact 6.55(i) isdueto Key [670], while Fact 6.55(ii) was proven by Rueppel [1075]. Massey
and Serconek [794] gave an alternate proof of Key’'s bound that is based on the Discrete
Fourier Transform. Siegenthaler [1134] described a correlation attack on nonlinear filter
generators. Forré [418] has applied fast correlation attacks to such generators. Anderson
[29] demonstrated other correlations which may be useful inimproving the success of cor-
relation attacks. An attack called the inversion attack, proposed by Goli¢ [490], may be
more effective than Anderson’s attack. Goli€ also providesalist of design criteriafor non-
linear filter generators. Ding [349] introduced the notion of differential cryptanalysis for
nonlinear filter generatorswherethe LFSR is replaced by asimple counter having arbitrary
period.

The linear consistency attack of Zeng, Yang, and Rao [1264] is a known-plaintext attack
on keystream generators which can discover key redundancies in various generators. It is
effectivein situationswhereit is possible to single out acertain portion &, of the secret key
k, and form alinear system of equations Az = b where the matrix A is determined by %1,
and b is determined from the known keystream. The system of equations should have the
property that it is consistent (and with high probability has a unique solution) if k1 isthe
true value of the subkey, while it isinconsistent with high probability otherwise. In these
circumstances, one can mount an exhaustive search for &4, and subsequently mount a sepa-
rate attack for theremaining bitsof &. If thebitlengthsof &, and k arel; and, respectively,
the attack demonstratesthat the security level of the generator is 2!t + 2!—1 rather than 2"

TCL Exhibit 1009
Page 237

220

Ch. 6 Stream Ciphers

The multiplexer generator was proposed by Jennings [637]. Two maximum-length LFSRs
having lengths L1, L, that are relatively prime are employed. Let h be a positive integer
satisfying h < min(L4,1g Lo). After each clock cycle, the contents of a fixed subset of h
stages of thefirst LFSR are selected, and converted to an integer ¢ intheinterval [0, Lo — 1]
usingal — 1 mapping 6. Finaly, the content of stage ¢ of the second LFSR is output as
part of the keystream. Assuming that the connection polynomialsof the LFSRs are known,
the linear consistency attack provides a known-plaintext attack on the multiplexer gener-
ator requiring a known keystream sequence of length N > L, + L,2" and 251+ linear
consistency tests. Thisdemonstratesthat the choice of the mapping 6 and the second LFSR
do not contribute significantly to the security of the generator.

Thelinear consistency attack has also been considered by Zeng, Yang, and Rao [1264] for
the multispeed inner-product generator of Massey and Rueppel [793]. In this generator,
two LFSRsof lengths L; and L, are clocked at different rates, and their contents combined
at the lower clock rate by taking the inner-product of the min(L, Lo) stages of the two
LFSRs. The paper by Zeng et a. [1266] is a readable survey describing the effectiveness
of the linear consistency and linear syndrome attacks in cryptanalyzing stream ciphers.

The knapsack generator (Example 6.56) was proposed by Rueppel and Massey [1084] and
extensively analyzed by Rueppel [1075], however, no concrete suggestionson selecting ap-
propriate parameters (thelength L of the LFSR and the knapsack weights) for the generator
were given. No weaknesses of the knapsack generator have been reported in the literature.

Theideaof using the output of aregister to control the stepping of another register was used
in severa rotor machines during the second world war, for example, the German Lorenz
SZ40 cipher. A description of this cipher, and a so an extensive survey of clock-controlled
shift registers, is provided by Gollmann and Chambers [496].

The aternating step generator (Algorithm 6.57) was proposed in 1987 by Gunther [528],
who also proved Fact 6.59 and described the divide-and-conquer attack mentioned in
Note 6.60. The aternating step generator is based on the stop-and-go generator of Beth
and Piper [126]. In the stop-and-go generator, a control register R, is used to control the
stepping of another register R» as follows. If the output of R, is 1, then R, is clocked; if
the output of R; is0, then R, isnot clocked, however, its previous output is repeated. The
output of R isthen XORed with the output sequenceof athird register R3 whichisclocked
at the samerate as R; . Beth and Piper showed how ajudicious choice of registers R;, Ra,
and R3 can guarantee that the output sequence has high linear complexity and period, and
good statistical properties. Unfortunately, the generator succumbs to the linear syndrome
attack of Zeng, Yang, and Rao [1265] (see also page 218): if the connection polynomials of
R and R, are primitive trinomials of degree not exceeding n, and known to the adversary,
then theinitial states of the three component LFSRs (i.e., the secret key) can be efficiently
recovered from a known-plaintext segment of length 37n bits.

Another variant of the stop-and-go generator i sthe step- 1/step-2 generator dueto Gollmann
and Chambers[496]. This generator uses two maximum-length registers R, and R, of the
same length. Register R; is used to control the stepping of R, asfollows. If the output of
R, is0, then R; isclocked once; if the output of R, is1, then Rs is clocked twice before
producing the next output bit. Zivkovi¢ [1274] proposed an embedding correlation attack
on Ry whose complexity of O(2%2), where L, isthe length of Rs.

A cyclic register of length L isan LFSR with feedback polynomia C(D) = 1+ D*. Goll-
mann [494] proposed cascading n cyclic registers of the same prime length p by arranging
them serially in such away that all except thefirst register are clock-controlled by their pre-
decessors; the Gollmann p-cycle cascade can be viewed as an extension of the stop-and-go

TCL Exhibit 1009
Page 238

86.5 Notes and further references 221

generator (page 220). Thefirst register is clocked regularly, and its output bit is the input
bit to the second register. In general, if the input bit to the :** register (for i > 2) at time
tis a¢, then the it* register is clocked if a; = 1; if a; = 0, the register is not clocked but
its previous output bit is repeated. The output bit of the ;" register is then X ORed with a;,
and the result becomestheinput bit to the (i + 1)t register. The output of thelast register is
the output of the p-cycle cascade. Theinitial (secret) stage of a component cyclic register
should not be the all-0’s vector or the all-1's vector. Gollmann proved that the period of the
output sequenceisp™. Moreover, if p isaprime such that 2 is a generator of Z?, then the
output sequence has linear complexity p™. This suggestsvery strongly using long cascades
(i.e, n large) of shorter registersrather than short cascades of longer registers. A variant of
the Gollmann cascade, called an m-sequence cascade, has the cyclic registers replaced by
maximum-length L FSRs of the same length L. Chambers[237] showed that the output se-
quence of such an m-sequence cascade has period (2 — 1) and linear complexity at |east
L(2F — 1)L, Park, Lee, and Goh [964] extended earlier work of Menicocci [845] and re-
ported breaking 9-stage m-sequence cascades where each LFSR has length 100; they also
suggested that 10-stage m-sequence cascades may be insecure. Chambers and Gollmann
[239] studied an attack on p-cycle and m-sequence cascades called lock-in, which results
in areduction in the effective key space of the cascades.

The shrinking generator (Algorithm 6.61) was proposed in 1993 by Coppersmith,
Krawczyk, and Mansour [279], who also proved Fact 6.63 and described the attacks men-
tionedin Note6.64. Theirregular output rate of the shrinking generator can be overcomeby
using ashort buffer for the output; theinfluence of such abuffer is analyzed by Kessler and
Krawczyk [669]. Krawczyk [716] mentions some techniques for improving software im-
plementations. A throughput of 2.5 Mbits/secis reported for a C language implementation
on a33MHz IBM workstation, when the two shift registers each have lengthsin the range
61-64 bits and secret connections are employed. The security of the shrinking generator is
studied further by Goli€ [487].

A key generator related to the shrinking generator is the self-shrinking generator (SSG) of

Meier and Staffelbach [838]. The self-shrinking generator uses only one maximum-length
LFSR R. The output sequence of R is partitioned into pairs of bits. The SSG outputs a
0 if apairis 10, and outputsa 1 if apairis11; 01 and 00 pairs are discarded. Meier and
Staffelbach proved that the sel f-shrinking generator can beimplemented asashrinking gen-

erator. Moreover, the shrinking generator can be implemented as a self-shrinking genera-

tor (whose component LFSR is not maximum-length). More precisely, if the component
LFSRs of a shrinking generator have connection polynomias C+ (D) and Cy(D), its out-
put sequence can be produced by a self-shrinking generator with connection polynomial

C(D) = C1(D)? - C2(D)%. Meier and Staffelbach also proved that if the length of Ris L,
then the period and linear complexity of the output sequence of the SSG are at least 2 12/2!

and 2LE/21-1 respectively. Moreover, they provided strong evidence that this period and
linear complexity isin fact about 2Z—1. Assuming arandomly chosen, but known, connec-
tion polynomial , the best attack presented by Meier and Staffelbach on the SSG takes 2079
steps. More recently, Mihaljevi€ [871] presented a significantly faster probabilistic attack
on the SSG. For example, if L = 100, then the new attack takes 2°7 steps and requires a
portion of the output sequence of length 4.9 x 108, The attack does not have an impact on
the security of the shrinking generator.

A recent survey of techniques for attacking clock-controlled generatorsis given by Goll-
mann [495]. For some newer attack techniques, see Mihaljevic [872], Goli¢ and O’ Connor
[492], and Golit [489]. Chambers[238] proposed a clock-controlled cascade composed of
LFSRs each of length 32. Each 32-bit portion of the output sequence of acomponent LFSR

TCL Exhibit 1009
Page 239

222

Ch. 6 Stream Ciphers

§6.4

is passed through an invertible scrambler box (S-box), and the resulting 32-bit sequenceis
used to control theclock of the next LFSR. Baum and Blackburn[77] generalized the notion
of aclock-controlled shift register to that of aregister based on afinite group.

SEAL (Algorithm 6.68) was designed and patented by Coppersmith and Rogaway [281].
Rogaway and Coppersmith [1066] report an encryption speed of 7.2 Mbytes/sec for an as-
sembly language implementation on a50 M Hz 486 processor with I = 4096 bits, assuming
precomputed tables (cf. Note 6.66).

Although the stream cipher RC4 remains proprietary, alleged descriptions have been pub-
lished which are output compatiblewith certified implementationsof RC4; for example, see
Schneier [1094]. Bldcher and Dichtl [156] proposed a fast software stream cipher called
FISH (Fibonacci Shrinking generator), which is based on the shrinking generator principle
applied to the lagged Fibonacci generator (also known as the additive generator) of Knuth
[692, p.27]. Anderson[28] subsequently presented aknown-plaintext attack on FI SH which
requires a few thousand 32-bit words of known plaintext and a work factor of about 24°
computations. Anderson also proposed a fast software stream cipher called PIKE based on
the Fibonacci generator and the stream cipher A5; adescription of A5isgiven by Anderson
[28].

Wolfram[1251, 1252] proposed astream cipher based on one-dimensional cellular automa-
tawith nonlinear feedback. Meier and Staffelbach [835] presented aknown-plaintext attack
onthiscipher which demonstrated that key lengthsof 127 bits suggested by Wolfram [1252]
areinsecure; Meier and Staffelbach recommend key sizes of about 1000 bits.

Klapper and Goresky [679] presented constructionsfor FCSRs (see page 217) whose output
sequences have nearly maximal period, are balanced, and are nearly de Bruijn sequencesin
the sense that for any fixed non-negative integer ¢, the number of occurrences of any two
t-bit sequences as subsequences of a period differs by at most 2. Such FCSRs are good
candidates for usage in the construction of secure stream ciphers, just as maximum-length
LFSRswereusedin §6.3. Goresky and Klapper [518] introduced ageneralization of FCSRs
called d-FCSRs, based on ramified extensions of the 2-adic numbers(d isthe ramification).

TCL Exhibit 1009
Page 240

Chapter

Block Ciphers

Contentsin Brief

7.1 Introductionandoverview 223
7.2 Background and general concepts 224
7.3 Classical ciphersand historical development 237
74 DES . . . 250
75 FEAL e 259
7.6 IDEA e 263
7.7 SAFER, RC5, and other block ciphers 266
7.8 Notesand furtherreferences oL 271

7.1 Introduction and overview

Symmetric-key block ciphersare the most prominent and important elementsin many cryp-
tographic systems. Individualy, they provide confidentiality. As afundamental building
block, their versatility allows construction of pseudorandom number generators, stream ci-
phers, MACs, and hash functions. They may furthermore serve as a central component in
message authenti cation techniques, dataintegrity mechanisms, entity authentication proto-
cols, and (symmetric-key) digital signatureschemes. Thischapter examinessymmetric-key
block ciphers, including both general concepts and details of specific algorithms. Public-
key block ciphers are discussed in Chapter 8.

No block cipher isideally suited for all applications, even one offering ahigh level of
security. Thisisaresult of inevitable tradeoffs requiredin practical applications, including
those arising from, for example, speed requirements and memory limitations (e.g., code
size, data size, cache memory), constraints imposed by implementation platforms (e.g.,
hardware, software, chipcards), and differing tol erancesof applicationsto propertiesof var-
iousmodesof operation. Inaddition, efficiency must typically betraded off against security.
Thusit is beneficial to have a number of candidate ciphers from which to draw.

Of the many block ciphers currently available, focusin this chapter is given to a sub-
set of high profile and/or well-studied algorithms. While not guaranteed to be more secure
than other published candidate ciphers (indeed, this status changes as new attacks become
known), emphasis is given to those of greatest practical interest. Among these, DES is
paramount; FEAL has received both serious commercia backing and alarge amount of in-
dependent cryptographicanalysis; and IDEA (originally proposed asaDESreplacement) is
widely known and highly regarded. Other recently proposed ciphers of both high promise
and high profile (in part due to the reputation of their designers) are SAFER and RC5. Ad-
ditional ciphers are presented in less detail.

223

TCL Exhibit 1009
Page 241

224

Ch. 7 Block Ciphers

Chapter outline

Basic background on block ciphers and agorithm-independent concepts are presented in
§7.2, including modes of operation, multiple encryption, and exhaustive search techniques.
Classical ciphersand cryptanalysisthereof areaddressedin §7.3, including historical details
on cipher machines. Modern block ciphers covered in chronological order are DES (§7.4),
FEAL (§7.5), and IDEA (§7.6), followed by SAFER, RC5, and other ciphersin §7.7, col-
lectively illustrating awide range of modern block cipher design approaches. Further notes,
including details on additional ciphers(e.g., Lucifer) and referencesfor the chapter, may be
foundin §7.8.

7.2 Background and general concepts

Introductory material on block ciphersis followed by subsections addressing modes of op-
eration, and discussion of exhaustive key search attacks and multiple encryption.

7.2.1 Introduction to block ciphers

71

Block ciphers can be either symmetric-key or public-key. The main focus of this chapter is
symmetric-key block ciphers; public-key encryption is addressed in Chapter 8.

(i) Block cipher definitions

A block cipher isafunction (see §1.3.1) which maps n-bit plaintext blocksto n-bit cipher-
text blocks; n is called the blocklength. It may be viewed as a simple substitution cipher
with large character size. The function is parameterized by a k-bit key K,! taking values
from a subset K (the key space) of the set of alk-bit vectors V;,. It is generally assumed
that thekey is chosen at random. Use of plaintext and ciphertext blocks of equal size avoids
data expansion.

To alow unique decryption, the encryption function must be one-to-one (i.e., invert-
ible). For n-bit plaintext and ciphertext blocks and a fixed key, the encryption functionis
abijection, defining a permutation on n-bit vectors. Each key potentialy defines a differ-
ent bijection. The number of keysis |K|, and the effective key sizis g |K[; this equals the
key length if all k-bit vectors are valid keys (IC = V). If keys are equiprobable and each
defines a different bijection, the entropyof the key spaceisaso lg |K|.

Definition An n-bit block cipheris afunction £ : V,, x K — V,,, such that for each
key K € K, E(P, K) is an invertible mapping (the encryption functiorfor K) from V,,
to V,,, written E (P). The inverse mapping is the decryption function, denotedD (C').
C = Ek(P) denotes that ciphertext C' results from encrypting plaintext P under K.

Whereas block ciphers generally process plaintext in relatively large blocks (e.g., n >
64), stream cipherstypically process smaller units (see Note 6.1); the distinction, however,
isnot definitive (see Remark 7.25). For plaintext messages exceeding one block in length,
various modes of operation for block ciphers are used (see §7.2.2).

The most general block cipher implements every possible substitution, as per Defini-
tion 7.2. To represent the key of such an n-bit (true) random block cipher would require

IThis use of symbols k and K may differ from other chapters.

TCL Exhibit 1009
Page 242

§7.2 Background and general concepts 225

lg(2™!) =~ (n — 1.44)2™ bits, or roughly 2™ times the number of bits in a message block.
This excessive bitsize makes (true) random ciphers impractical. Nonetheless, it is an ac-
cepted design principle that the encryption function corresponding to a randomly selected
key should appearto be arandomly chosen invertible function.

7.2 Definition A (true)random cipheisann-bit block cipher implementingall 2! bijections
on 2™ elements. Each of the 2™! keys specifies one such permutation.

A block cipher whose block size n istoo small may be vulnerable to attacks based on
statistical analysis. One such attack involvessimplefrequency analysis of ciphertext blocks
(see Note 7.74). Thismay be thwarted by appropriate use of modes of operation (e.g., Al-
gorithm 7.13). Other such attacks are considered in Note 7.8. However, choosing too large
avalue for the blocksize n may create difficulties as the complexity of implementation of
many ciphers growsrapidly with block size. In practice, consequently, for larger n, easily-
implementabl e functions are necessary which appearto be random (without knowledge of
the key).

An encryption function per Definition 7.1 is a deterministic mapping. Each pairing of
plaintext block P andkey K mapsto auniqueciphertext block. Incontrast, in arandomized
encryption technique (Definition 7.3; see also Remark 8.22), each (P, K') pair is associated
with aset Cp g of eligible ciphertext blocks; each time P is encrypted under K, an out-
put R from arandom source non-deterministically selects one of these eligible blocks. To
ensureinvertibility, for every fixed key K, the subsets C' p, k) over al plaintexts P must be
disoint. Since the encryption function is essentially one-to-many involving an additional
parameter R (cf. homophonic substitution, §7.3.2), the requirement for invertibility implies
data expansion, which is a disadvantage of randomized encryption and is often unaccept-
able.

7.3 Definition A randomized encryptiomapping is afunction E from a plaintext space V,,
to a ciphertext space V,,,, m > n, drawing elements from a space of random numbers R
=V;. Eisdefinedby E : V,, x K xR — V,,, suchthat foreachkey K € X and R € R,
E(P, K, R), dso written EE(P), maps P € V, to V,,,; and an inverse (corresponding
decryption) function exists, mapping V,,, x K — V,,.

(ii) Practical security and complexity of attacks

The objective of ablock cipher is to provide confidentiality. The corresponding objective
of an adversary isto recover plaintext from ciphertext. A block cipher istotally brokenif a
key can befound, and partially brokenif an adversary is ableto recover part of the plaintext
(but not the key) from ciphertext.

7.4 Note (standard assumptions) To evaluate block cipher security, it is customary to always
assume that an adversary (i) has access to all datatransmitted over the ciphertext channel;
and (ii) (Kerckhoffs’ assumption) knows all details of the encryption function except the
secret key (which security consequently rests entirely upon).

Under the assumptions of Note 7.4, attacks are classified based on what information
a cryptanalyst has access to in addition to intercepted ciphertext (cf. §1.13.1). The most
prominent classes of attack for symmetric-key ciphers are (for afixed key):

1. ciphertext-only-no additional informationis available.
2. known-plaintext- plaintext-ciphertext pairs are avail able.

TCL Exhibit 1009
Page 243

226 Ch. 7 Block Ciphers

3. chosen-plaintext ciphertexts are available corresponding to plaintexts of the adver-
sary’schoice. A variationisan adaptive chosen-plainteattack, where the choice of
plaintexts may depend on previous plaintext-ciphertext pairs.

Additional classes of attacks are given in Note 7.6; while somewhat more hypothetical,
these are nonetheless of interest for the purposes of analysis and comparison of ciphers.

7.5 Remark (chosen-plaintext principle) It is customary to use ciphers resistant to chosen-
plaintext attack even when mounting such an attack is not feasible. A cipher secure against
chosen-plaintext attack is secure against known-plaintext and ciphertext-only attacks.

7.6 Note (chosen-ciphertextand related-key attacks) A chosen-ciphettesit operates un-
der the following model: an adversary is allowed access to plaintext-ciphertext pairs for
some number of ciphertexts of his choice, and thereafter attempts to use this information
to recover the key (or plaintext corresponding to some new ciphertext). In arelated-key at-
tack, an adversary is assumed to have access to the encryption of plaintexts under both an
unknown key and (unknown) keys chosen to have or known to have certain relationships
with this key.

With few exceptions (e.g., the one-time pad), the best available measure of security for
practical ciphersisthe complexity of the best (currently) known attack. Various aspects of
such complexity may be distinguished as follows:

1. data complexity- expected number of input data units required (e.g., ciphertext).

2. storage complexity expected number of storage units required.

3. processing complexityexpected number of operationsreguired to processinput data
and/or fill storage with data (at least one time unit per storage unit).

Theattack complexitys the dominant of these (e.g., for linear cryptanalysison DES, essen-
tially thedatacomplexity). When parall€elizationis possible, processing complexity may be
divided across many processors (but not reduced), reducing attack time.

Given a data complexity of 2™, an attack is always possible; this many different n-
bit blocks completely characterize the encryption function for afixed k-bit key. Similarly,
given aprocessing complexity of 2%, an attack is possible by exhaustivekey search (§7.2.3).
Thus as a minimum, the effective key size should be sufficiently large to preclude exhaus-
tive key search, and the block size sufficiently large to preclude exhaustive data analysis.
A block cipher is considered computationally securi these conditions hold and no known
attack has both data and processing complexity significantly lessthan, respectively, 2" and
2%, However, see Note 7.8 for additional concerns related to block size.

7.7 Remark (passive vs. active complexity) For symmetric-key block ciphers, data complex-
ity is beyond the control of the adversary, and is passive complexitfplaintext-ciphertext
pairs cannot be generated by the adversary itself). Processing complexity is active com-
plexitywhich typically benefits from increased resources (e.g., parallelization).

7.8 Note (attacks based on small block size) Security concerns which arise if the block size
n istoo small include the feasibility of text dictionary attacksnd matching ciphertext at-
tacks. A text dictionary may be assembled if plaintext-ciphertext pairs become known for
afixed key. Themorepairsavailable, thelarger the dictionary and the greater the chance of
locating a random ciphertext block therein. A complete dictionary results if 2™ plaintext-
ciphertext pairs become known, and fewer suffice if plaintexts contain redundancy and a
non-chaining mode of encryption (such as ECB) isused. Moreover, if about 2”/2 such pairs

TCL Exhibit 1009
Page 244

§7.2 Background and general concepts 227

7.9

7.10

are known, and about 2"/2 ciphertexts are subsequently created, then by the birthday para-
dox one expects to locate a ciphertext in the dictionary. Relatedly, from ciphertext blocks
alone, as the number of available blocks approaches 2"/2, one expects to find matching ci-
phertext blocks. These may reveal partial information about the corresponding plaintexts,
depending on the mode of operation of the block cipher, and the amount of redundancy in
the plaintext.

Computational and unconditional security are discussed in §1.13.3. Unconditional se-
curity is both unnecessary in many applications and impractical; for example, it requires
as many hits of secret key as plaintext, and cannot be provided by a block cipher used to
encrypt more than one block (due to Fact 7.9, since identical ciphertext implies matching
plaintext). Nonetheless, results on unconditional security provide insight for the design of
practical ciphers, and has motivated many of the principles of cryptographic practice cur-
rently in use (see Remark 7.10).

Fact A cipher providesperfect secrecgunconditional security) if the ciphertext and plain-
text blocks are statistically independent.

Remark (theoretically-motivated principles) The unconditional security of the one-time-
pad motivates both additive stream ciphers (Chapter 6) and the frequent changing of cryp-
tographic keys (§13.3.1). Theoretical results regarding the effect of redundancy on unicity
distance (Fact 7.71) mativate the principle that for plaintext confidentiality, the plaintext
data should be asrandom as possible, e.g., via data-compression prior to encryption, use of
random-bit fields in message blocks, or randomized encryption (Definition 7.3). Thelatter
two techniques may, however, increase the data length or allow covert channels.

(iii) Criteria for evaluating block ciphers and modes of operation
Many criteriamay be used for evaluating block ciphersin practice, including:

1. estimated security level. Confidencein the (historical) security of acipher growsif it
has been subjected to and withstood expert cryptanalysis over a substantial time pe-
riod, e.g., several years or more; such ciphers are certainly considered more secure
than those which have not. Thismay includethe performanceof selected cipher com-
ponents relative to various design criteriawhich have been proposed or gained favor
in recent years. The amount of ciphertext required to mount practical attacks often
vastly exceeds a cipher’s unicity distance (Definition 7.69), which provides a theo-
retical estimate of the amount of ciphertext required to recover the unique encryption
key.

2. key size. Theeffectivebitlength of the key, or more specifically, theentropy of thekey
space, defines an upper bound on the security of acipher (by considering exhaustive
search). Longer keys typically impose additional costs (e.g., generation, transmis-
sion, storage, difficulty to remember passwords).

3. throughput. Throughput is related to the complexity of the cryptographic mapping
(see below), and the degree to which the mapping is tailored to a particular imple-
mentation medium or platform.

4. block size. Block size impacts both security (larger is desirable) and complexity
(larger is more costly to implement). Block size may aso affect performance, for
example, if padding is required.

5. complexity of cryptographic mapping. Algorithmic complexity affects the imple-
mentation costs both in terms of development and fixed resources (hardware gate

TCL Exhibit 1009
Page 245

228

Ch. 7 Block Ciphers

count or software code/datasize), aswell asreal-time performancefor fixed resources
(throughput). Some ciphersspecifically favor hardwareor softwareimplementations.

6. data expansion. It is generally desirable, and often mandatory, that encryption does
not increase the size of plaintext data. Homophonic substitution and randomized en-
cryption techniques result in data expansion.

7. error propagation. Decryption of ciphertext containing bit errors may result in vari-
ous effects on the recovered plaintext, including propagation of errors to subsequent
plaintext blocks. Different error characteristics are acceptable in various applica-
tions. Block size (above) typically affects error propagation.

7.2.2 Modes of operation

7.1

712

A block cipher encrypts plaintext in fixed-size n-bit blocks (often n = 64). For messages
exceeding n bits, the simplest approach is to partition the message into n-bit blocks and
encrypt each separately. This el ectronic-codebook (ECB) mode has disadvantages in most
applications, motivating other methods of employing block ciphers (modes of operation)
on larger messages. The four most common modes are ECB, CBC, CFB, and OFB. These
are summarized in Figure 7.1 and discussed below.

In what follows, Ex denotes the encryption function of the block cipher E' parame-
terized by key K, while El}l denotes decryption (cf. Definition 7.1). A plaintext message
r = x1...2 iSassumed to consist of n-bit blocks for ECB and CBC modes (see Algo-
rithm 9.58 regarding padding), and r-bit blocks for CFB and OFB modes for appropriate
fixedr < n.

(i) ECB mode

Theelectronic codeboofeCB) mode of operationisgivenin Algorithm7.11 andillustrated
in Figure 7.1(a).

Algorithm ECB mode of operation

INPUT: k-bit key K; n-bit plaintext blocks z1, . .. , ;.

SUMMARY: produce ciphertext blocks ¢, . . . , ¢;; decrypt to recover plaintext.
1. Encryption: for1 < j <t, ¢; « Ex(z;).
2. Decryption: for 1 < j < t, z; + Ex'(c)).

Properties of the ECB mode of operation:

1. Identical plaintext blocks (under the same key) result in identical ciphertext.

2. Chaining dependencies. blocks are enciphered independently of other blocks. Re-
ordering ciphertext blocks results in correspondingly re-ordered plaintext blocks.

3. Error propagation: oneor morebit errorsin asingle ciphertext block affect decipher-
ment of that block only. For typical ciphers E, decryption of such ablock isthen ran-
dom (with about 50% of the recovered plaintext bitsin error). Regarding bits being
deleted, see Remark 7.15.

Remark (use of ECB mode) Since ciphertext blocks are independent, malicious substi-
tution of ECB blocks (e.g., insertion of a frequently occurring block) does not affect the
decryption of adjacent blocks. Furthermore, block ciphers do not hide data patterns—iden-
tical ciphertext blocks imply identical plaintext blocks. For this reason, the ECB mode is
not recommended for messages longer than one block, or if keys are reused for more than

TCL Exhibit 1009
Page 246

§7.2 Background and general concepts 229

a) Electronic Codebook (ECB) b) Cipher-block Chaining (CBC)

-1
key — E oo key n Y E_ 1
T; —+—w=—(p o key

Cj

Y
key—>o E

" z;:w]-

¢j

(i) encipherment (i) decipherment

(i) encipherment (ii) decipherment

c) Cipher feedback (CFB), r-bit characters/r-bit feedback

r-bit shift r-bit shift
- -
Cj—1
e e o]
n Cj—1
A Y
key—=o¢ FE r E o<— key
n
A Y
leftmost
7 bits 9; 9;
T
Tj = (] > > =] > T, =
Cj
(i) encipherment (i) decipherment

d) Output feedback (OFB), r-bit characters/n-bit feedback

Oj-1
L =1V & ;

E o<— key

key—»o FE n

;5 Lt
(i) encipherment (ii) decipherment

Figure 7.1: Common modes of operation for arbit block cipher.

TCL Exhibit 1009
Page 247

230

Ch. 7 Block Ciphers

713

714

715

7.16

asingle one-block message. Security may be improved somewhat by inclusion of random
padding bits in each block.

(ii) CBC mode

The cipher-block chainingdCBC) mode of operation, specified in Algorithm 7.13 and il-
lustrated in Figure 7.1(b), involves use of an n-bit initialization vector, denoted V.

Algorithm CBC mode of operation

INPUT: k-bit key K; n-bit IV; n-bit plaintext blocks z1, . .. , z;.

SUMMARY: produce ciphertext blocks ¢y, . . . , ¢;; decrypt to recover plaintext.
1. Encryption: ¢y < IV. For1 < j <t, ¢; < Ex(cj_16z;).
2. Decryption: ¢g <~ IV. For1 < j <t, z; < cj_1®E (c)).

Properties of the CBC mode of operation:

1. Identical plaintexts: identical ciphertext blocks result when the same plaintext is en-
ciphered under the same key and V. Changing the IV, key, or first plaintext block
(e.g., using a counter or random field) resultsin different ciphertext.

2. Chaining dependencies: the chaining mechanism causes ciphertext c; to depend on
x; and all preceding plaintext blocks (the entire dependency on preceding blocksis,
however, contained in the value of the previous ciphertext block). Consequently, re-
arranging the order of ciphertext blocks affects decryption. Proper decryption of a
correct ciphertext block requires a correct preceding ciphertext block.

3. Error propagation: asingle bit error in ciphertext block c; affects decipherment of
blocks c¢; and ¢;+1 (since z; depends on c; and c¢;—1). Block z; recovered from c;
istypically totally random (50% in error), while the recovered plaintext =, ; has bit
errors precisely where c¢; did. Thus an adversary may cause predictable bit changes
in x;41 by altering corresponding bits of c;. See also Remark 7.14.

4. Error recovery: the CBC modeis self-synchronizingr ciphertext autokeysee Re-
mark 7.15) in the sense that if an error (including loss of one or more entire blocks)
occursinblock ¢; but not ¢;1, ¢4 iscorrectly decrypted to z ;5.

Remark (error propagationin encryption) Although CBC modedecryptionrecoversfrom
errorsin ciphertext blocks, modificationsto a plaintext block x ; during encryption alter all
subsequent ciphertext blocks. Thisimpactsthe usability of chaining modesfor applications
requiring random read/write access to encrypted data. The ECB modeis an alternative (but
see Remark 7.12).

Remark (self-synchronizing vs. framing errors) Although self-synchronizingin the sense
of recovery from bit errors, recovery from “lost” bits causing errors in block boundaries
(framing integrity errors) is not possible in the CBC or other modes.

Remark (integrity of IV in CBC) While thel V' in the CBC mode need not be secret, its
integrity should be protected, since malicious modification thereof allows an adversary to
make predictable bit changes to the first plaintext block recovered. Using a secret IV is
one method for preventing this. However, if message integrity is required, an appropriate
mechanism should be used (see §9.6.5); encryption mechanismstypically guarantee confi-
dentiality only.

TCL Exhibit 1009
Page 248

§7.2 Background and general concepts 231

717

7.18

719

(iii) CFB mode

Whilethe CBC mode processes plaintext n bitsat atime (using an n-bit block cipher), some
applicationsrequirethat r-bit plaintext unitsbe encrypted and transmitted without del ay, for
somefixed r < n (oftenr = 1 or r = 8). In this case, the cipher feedbackCFB) mode
may be used, as specified in Algorithm 7.17 and illustrated in Figure 7.1(c).

Algorithm CFB mode of operation (CFB-r)

INPUT: k-bit key K; n-bit I'V; r-bit plaintext blocks z1, ... ,z, (1 <7 < n).
SUMMARY: produce r-bit ciphertext blocks ¢y, . . . , ¢,,; decrypt to recover plaintext.
1. Encryption: I; < IV. (I; istheinput valuein ashift register.) For 1 < j < u:
(@ Oj < Ex(I;). (Compute the block cipher output.)
(b) t; < ther leftmost bits of O;. (Assumethe leftmost isidentified as bit 1.)
(©) ¢j + z;@t;. (Transmit the r-bit ciphertext block c;.)
(d) Ij41 < 2" - I; + c¢; mod 2. (Shift ¢; into right end of shift register.)
2. Decryption: I; + IV. For1 < j < w, uponreceiving c;:
xj < c;®t;, wheret;, O; and I; are computed as above.

Properties of the CFB mode of operation:

1. Identical plaintexts: as per CBC encryption, changing the I'V' results in the same
plaintext input being enciphered to a different output. The IV need not be secret
(although an unpredictable IV may be desired in some applications).

2. Chaining dependencies: similar to CBC encryption, the chaining mechanism causes
ciphertext block c; to depend on both x; and preceding plaintext blocks; consequent-
ly, re-ordering ciphertext blocks affects decryption. Proper decryption of a correct
ciphertext block requiresthe preceding [n/r] ciphertext blocksto be correct (so that
the shift register contains the proper value).

3. Error propagation: one or more bit errors in any single r-bit ciphertext block c; af-
fects the decipherment of that and the next [n/r] ciphertext blocks (i.e., until n bits
of ciphertext are processed, after which the error block ¢; has shifted entirely out of
the shift register). The recovered plaintext :c; will differ from z; precisely in the bit
positions c; was in error; the other incorrectly recovered plaintext blocks will typi-
cally berandom vectors, i.e., have 50% of bitsin error. Thusan adversary may cause
predictable bit changesin z; by altering corresponding bits of c;.

4. Error recovery: the CFB maode is self-synchronizing similar to CBC, but requires
[n/r] ciphertext blocksto recover.

5. Throughput: for r < n, throughput is decreased by afactor of n/r (vs. CBC) in that
each execution of FE yields only r bits of ciphertext output.

Remark (CFB use of encryption only) Since the encryption functiof is used for both
CFB encryption and decryption, the CFB mode must not be used if the block cipher F isa
public-key algorithm; instead, the CBC mode should be used.

Example (ISO variant of CFB) The CFB mode of Algorithm 7.17 may be modified as
follows, to allow processing of plaintext blocks (characters) whose bitsize s isless than the
bitsize r of the feedback variable (e.g., 7-bit characters using 8-bit feedback; s < r). The
leftmost s (rather than) bits of O; are assigned to t;; the s-bit ciphertext character c; is
computed; the feedback variableis computed from c; by pre-prepending (on the left) » — s
1-bits; the resulting r-bit feedback variable is shifted into the least significant (LS) end of
the shift register as before. a

TCL Exhibit 1009
Page 249

232

Ch. 7 Block Ciphers

7.20

7.21

7.22

(iv)

OFB mode

The output feedbackOFB) mode of operation may be used for applications in which all
error propagation must be avoided. It is similar to CFB, and allows encryption of various
block sizes (characters), but differsin that the output of the encryption block function E
(rather than the ciphertext) serves as the feedback.

Two versions of OFB using an n-bit block cipher are common. The SO version (Fig-
ure 7.1(d) and Algorithm 7.20) requires an n-bit feedback, and is more secure (Note 7.24).
The earlier FIPS version (Algorithm 7.21) allows r < n bits of feedback.

Algorithm OFB mode with full feedback (per ISO 10116)

INPUT: k-bit key K; n-bit IV; r-bit plaintext blocks z1, ... ,z, (1 < r < n).
SUMMARY: produce r-bit ciphertext blockscy, . .. , ¢, ; decrypt to recover plaintext.

1

2.

Encryption: I; < IV. For 1 < j < u, given plaintext block
(@ Oj < Ex(I;). (Compute the block cipher output.)
(b) t; + ther leftmost bits of O;. (Assumethe leftmost isidentified as bit 1.)
(©) ¢j + z;®t;. (Transmit the r-bit ciphertext block c;.)
(d) I;41 + Oj. (Update the block cipher input for the next block.)
Decryption: I < IV. For 1 < j < u, uponreceiving c;:
x; < c;®t;, wheret;, O;, and I; are computed as above.

Algorithm OFB mode with r-bit feedback (per FIPS 81)

INPUT: k-bit key K; n-bit IV; r-bit plaintext blocks z1, ... ,z, (1 < r < n).
SUMMARY: produce r-bit ciphertext blocks ¢y, . . . , ¢,; decrypt to recover plaintext.
As per Algorithm 7.20, but with “I;,1 < O;” replaced by:

Iit1 <27 - I; +t; mod 2™. (Shift output ¢; into right end of shift register.)

Properties of the OFB mode of operation:
1. Identical plaintexts: asper CBC and CFB modes, changingthe I'V resultsin the same

2.
3.

plaintext being enciphered to a different output.

Chaining dependencies: the keystream is plaintext-independent (see Remark 7.22).
Error propagation: one or more bit errors in any ciphertext character c; affectsthe
decipherment of only that character, inthe precisebit position(s) ¢; isin error, causing
the corresponding recovered plaintext bit(s) to be complemented.

. Error recovery: the OFB mode recovers from ciphertext bit errors, but cannot self-

synchronize after loss of ciphertext bits, which destroys alignment of the decrypting
keystream (in which case explicit re-synchronization is required).

. Throughput: for » < n, throughput is decreased as per the CFB mode. However,

inal cases, since the keystream is independent of plaintext or ciphertext, it may be
pre-computed (given the key and IV).

Remark (changing IV in OFB) Thd'V', which need not be secret, must be changed if an
OFB key K isre-used. Otherwise an identical keystream results, and by XORing corre-
sponding ciphertextsan adversary may reduce cryptanalysisto that of arunning-key cipher
with one plaintext as the running key (cf. Example 7.58 ff.).

Remark 7.18 on public-key block ciphers applies to the OFB mode as well as CFB.

TCL Exhibit 1009
Page 250

§7.2 Background and general concepts 233

7.23 Example (counter mode) A simplification of OFB involves updating the input block asa
counter, 1,1 = I; + 1, rather than using feedback. This both avoids the short-cycle prob-
lem of Note 7.24, and allowsrecovery from errorsin computing £. Moreover, it providesa
random-access property: ciphertext block 7 need not be decrypted in order to decrypt block
i+ 1. O

7.24 Note (OFB feedback size) In OFB with fuli-bit feedback (Algorithm 7.20), the keystre-
am is generated by the iterated function O; = Ex(O;—1). Since Ek is a permutation,
and under the assumption that for random K, E'x is effectively arandom choice among al
(2™)! permutationson n elements, it can be shown that for afixed (random) key and starting
value, the expected cycle length before repeating any value O ; isabout 271, On the other
hand, if the number of feedback bitsisr < n asallowed in Algorithm 7.21, the keystream
is generated by theiteration O; = f(O,_1) for some non-permutation f which, assuming
it behaves as arandom function, has an expected cycle length of about 2"/2. Consequently,
it is strongly recommended to use the OFB mode with full n-bit feedback.

7.25 Remark (modes as stream ciphers) It is clear that both the OFB mode with full feedback
(Algorithm 7.20) and the counter mode (Example 7.23) employ ablock cipher asakeystre-
am generator for astream cipher. Similarly the CFB mode encryptsacharacter stream using
the block cipher as a (plaintext-dependent) keystream generator. The CBC mode may also
be considered a stream cipher with n-bit blocks playing the role of very large characters.
Thus modes of operation allow one to define stream ciphers from block ciphers.

7.2.3 Exhaustive key search and multiple encryption

A fixed-size key defines an upper bound on the security of ablock cipher, dueto exhaustive
key search (Fact 7.26). While this reguires either known-plaintext or plaintext containing
redundancy, it has widespread applicability since cipher operations (including decryption)
are generally designed to be computationally efficient.

A design technique which complicates exhaustive key search is to make the task of
changing cipher keys computationally expensive, while allowing encryption with a fixed
key to remainrelatively efficient. Examples of cipherswith this property include the block
cipher Khufu and the stream cipher SEAL.

7.26 Fact (exhaustive key search) For aabit block cipher with k-bit key, given asmall num-
ber (e.g., [(k + 4)/n]) of plaintext-ciphertext pairs encrypted under key K, K can bere-
covered by exhaustive key search in an expected time on the order of 2%~ operations.

Justification: Progress through the entire key space, decrypting a fixed ciphertextC with
each trial key, and discarding those keys which do not yield the known plaintext P. The
target key isamong the undiscarded keys. The number of false alarms expected (non-target
keyswhich map C to P) depends on the relative size of k& and n, and follows from unicity
distance arguments; additional (P’, C") pairs suffice to discard false darms. One expects
to find the correct key after searching half the key space.

7.27 Example (exhaustive DES key search) For DES= 56, n = 64, and the expected re-
quirement by Fact 7.26 is 2% decryptions and a single plaintext-ciphertext pair. d

If the underlying plaintext is known to contain redundancy as in Example 7.28, then
ciphertext-only exhaustive key search is possible with arelatively small number of cipher-
texts.

TCL Exhibit 1009
Page 251

234 Ch. 7 Block Ciphers

7.28 Example (ciphertext-only DES key search) Suppose DESis used to encrypt 64-bit blocks
of 8 ASCII characters each, with one bit per character serving as an even parity bit. Trial
decryptionwith anincorrect key K yieldsall 8 parity bits correct with probability 2—8, and
correct parity for ¢ different blocks (each encrypted by K) with probability 2 8. If thisis
used asafilter over all 256 keys, the expected number of unfilteredincorrect keysis2°6 /28¢,
For most practical purposes, t = 10 suffices. g

(i) Cascades of ciphers and multiple encryption

If ablock cipher is susceptible to exhaustive key search (due to inadequate keylength), en-
cipherment of the same message block more than once may increase security. Varioussuch
techniques for multiple encryption of n-bit messages are considered here. Once defined,
they may be extended to messages exceeding one block by using standard modes of oper-
ation (§7.2.2), with E denoting multiple rather than single encryption.

7.29 Definition A cascade cipheisthe concatenation of L > 2 block ciphers (called stages),
each with independent keys. Plaintext isinput to first stage; the output of stage isinput to
stage i + 1; and the output of stage L is the cascade’s ciphertext output.

In the simplest case, all stages in a cascade cipher have k-bit keys, and the stage in-
puts and outputs are al n-bit quantities. The stage ciphers may differ (general cascade of
ciphers), or dl beidentical (cascade of identical ciphers).

7.30 Definition Multiple encryptiorissimilar to acascade of L identical ciphers, but the stage
keys need not be independent, and the stage ciphers may be either ablock cipher E or its
corresponding decryption function D = E 1.

Two important cases of multiple encryption are double and triple encryption, asillus-
trated in Figure 7.2 and defined below.

(a) double encryption

les| 0<—ﬁ

plaintext 4|
P

| ciphertext
C

(b) triple encryption (K1 = K3 for two-key variant)

K Ko Ks
plailr;text4> E(l) A - E(z) B > E(S) Hciphgrtext

Figure 7.2: Multiple encryption.

7.31 Definition Double encryptioris defined as E(z) = Ek,(Ex, (x)), where Ex denotesa
block cipher E with key K.

TCL Exhibit 1009
Page 252

§7.2 Background and general concepts 235

7.32 Definition Triple encryptioris defined as E(z) = ES) (E) (EY) (x))), where EY) de-
notes either Ex or D = Ex'. Thecase E(z) = Ek,(Dx,(Ek, (v))) is caled E-D-E
triple-encryption; the subcaseK’; = K3 is often called two-key triple-encryption.

Independent stage keys K1 and K, are typically used in double encryption. Intriple
encryption (Definition 7.32), to save on key management and storage costs, dependent stage
keys are often used. E-D-E triple-encryptionwith K; = K> = K3 is backwards compati-
blewith (i.e., equivalent to) single encryption.

(ii) Meet-in-the-middle attacks on multiple encryption

A naive exhaustivekey search attack on doubleencryptiontriesall 22* key pairs. Theattack
of Fact 7.33 reduces time from 22*, at the cost of substantial space.

7.33 Fact For ablock cipher with a k-bit key, aknown-plaintext meet-in-the-middlettack de-
feats double encryption using on the order of 2% operations and 2* storage.

Justification(basic meet-in-the-middle): Noting Figure 7.2(a), given a (P, C) pair, com-
pute M; = E;(P) under al 2% possible key values K = i; store all pairs (M;, 1), sorted
or indexed on M; (e.g., using conventional hashing). Decipher C under all 2* possibleval-
ues Ky = j, and for each pair (M;, j) where M; = D;(C), check for hits M; = M;
against entries M; in the first table. (This can be done creating a second sorted table, or
simply checking each M ; entry as generated.) Each hit identifies a candidate solution key
pair (i, j),since E;(P) = M = D;(C). Using asecond known-plaintext pair (P’, C") (cf.
Fact 7.35), discard candidate key pairs which do not map P’ to C’.

A concept anal ogousto unicity distancefor ciphertext-only attack (Definition 7.69) can
be defined for known-plaintext key search, based on the following strategy. Select a key;
check if it is consistent with a given set (history) of plaintext-ciphertext pairs; if so, |abel
the key ahit. A hit that is not the target key is afalse key hit.

7.34 Definition The number of plaintext-ciphertext pairs required to uniquely determine akey
under a known-plaintext key search is the known-plaintext unicity distance. Thisis the
smallest integer ¢ such that a history of length ¢ makes false key hits improbable.

Using Fact 7.35, the (known-plaintext) unicity distance of a cascade of L random ci-
phers can be estimated. Less than one false hit is expected whent > Lk /n.

7.35 Fact For an L-stage cascade of random block cipherswith n-bit blocks and k-bit keys, the
expected number of false key hits for a history of length ¢ is about 25—,

Fact 7.35 holds with respect to random block ciphers defined as follows (cf. Defini-
tions 7.2 and 7.70): given n and k, of the possible (2™)! permutations on 2" elements,
choose 2* randomly and with equal probabilities, and associate these with the 2% keys.

7.36 Example (meet-in-the-middle — double-DES) Applying Fact 7.33to DES €. 64, k =
56), the number of candidate key pairs expected for one (P, C) pair is 248 = 2F . 2k /27,
and thelikelihood of afalsekey pair satisfying asecond (P’, C’) sampleis2~16 = 248 /an,
Thuswith high probability, two (P, C') pairssufficefor key determination. Thisagreeswith
the unicity distance estimate of Fact 7.35: for L = 2, ahistory of length ¢ = 2 yields 216
expected false key hits. O

TCL Exhibit 1009
Page 253

236 Ch. 7 Block Ciphers

A naive exhaustive attack on all key pairs in double-DES uses 2112 time and negligi-
ble space, while the meet-in-the-middle attack (Fact 7.33) requires 25° time and 2% space.
Note 7.37 illustrates that the latter can be modified to yield atime-memory trade-off at any
point between these two extremes, with the time-memory product essentially constant at
2112 (e.g., 272 time, 240 space).

7.37 Note (time-memory tradeoff — double-encryption) In the attack of Example 7.36, memory
may be reduced (from tables of 256 entries) by independently guessing s bits of each of K1,
K, (for any fixed s, 0 < s < k). Thetables then each have 2*~* entries (fixing s key bits
eliminates 2° entries), but the attack must be run over 2¢ - 2¢ pairs of suchtablesto allow all
possiblekey pairs. Thememory requirementis2-2%—* entries (each n+ k — s bits, omitting

s fixed key hits), whiletimeisontheorder of 225.25—5 = 2k+s_Thetime-memory product
is 22kt

7.38 Note (generalized meet-in-the-middle trade)oferiationsof Note 7.37 allow time-space
tradeoffs for meet-in-the-middle key search on any concatenation of L > 2 ciphers. For L
even, meeting between thefirst and last L /2 stages results in requirements on the order of
2 - 2(kL/2)=s gpace and 2(FL/2)+s time, 0 < s < kL/2. For L odd, meeting after the
first (L — 1)/2 and beforethelast (L + 1)/2 stages results in requirements on the order of
2. 2k(E=1)/2 = s gpace and 2F(E+1)/2 + 5 time, 1 < s < k(L — 1)/2.

For ablock cipher with k-bit key, a naive attack on two-key triple encryption (Defini-
tion 7.32) involvestrying all 22 key pairs. Fact 7.39 notes a chosen-plaintext alternative.

7.39 Fact For an n-bit block cipher with k-bit key, two-key triple encryption may be defeated
by a chosen-plaintext attack requiring on the order of 2* of each of the following: cipher
operations, words of (n + k)-bit storage, and plaintext-ciphertext pairs with plaintexts cho-
sen.

Justification(chosen-plaintext attack on two-key triple-encryption): Using 2* chosen plain-
texts, two-key triple encryption may be reduced to double-encryption as follows. Noting
Figure 7.2(b), focus on the case where the result after the first encryption stage is the all-
zero vector A = 0. For all 2* values K; = i, compute P; = E; '(A). Submit each result-
ing P; asachosen plaintext, obtaining the corresponding ciphertext C;. For each, compute
B; =E; L(Cy), representing an intermediate result B after the second of three encryption
stages. Notethat the values P; also represent candidatevalues B. Sort thevalues P; and B;
in atable (using standard hashing for efficiency). Identify the keys corresponding to pairs
P; = B; ascandidate solution key pairs K1 = i, Ko = j to the given problem. Confirm
these by testing each key pair on a small number of additional known plaintext-ciphertext
pairs as required.

While generally impractical due to the storage requirement, the attack of Fact 7.39 is
referred to as a certificational attackon two-key triple encryption, demonstrating it to be
weaker than triple encryption. This motivates consideration of triple-encryption with three
independent keys, although a penalty is athird key to manage.

Fact 7.40, stated specifically for DES (n = 64, k = 56), indicates that for the price
of additional computation, the memory requirement in Fact 7.39 may be reduced and the
chosen-plaintext condition relaxed to known-plaintext. The attack, however, appears im-
practical even with extreme parall€elization; for example, for lg¢ = 40, the number of op-
erationsis still 289,

TCL Exhibit 1009
Page 254

§7.3 Classical ciphers and historical development 237

7.40 Fact If ¢ known plaintext-ciphertext pairs are available, an attack on two-key triple-DES
requires O(t) space and 220~'8* gperations.

(iii) Multiple-encryption modes of operation

In contrast to the single modesf operation in Figure 7.1, multiple modesre variants of

multiple encryption constructed by concatenating selected single modes. For example, the

combination of three single-mode CBC operations provides triple-inner-CBC; an alterna-
tiveistriple-outer-CBC, the composite operation of triple encryption (per Definition 7.32)
with one outer ciphertext feedback after the sequential application of three single-ECB op-

erations. With replicated hardware, multiple modes such as triple-inner-CBC may be pipe-

lined allowing performance comparable to single encryption, offering an advantage over

triple-outer-CBC. Unfortunately (Note 7.41), they are often less secure.

7.41 Note (security of triple-inner-CBC) Many multiple modes of operation are weaker than
the corresponding multiple-ECB mode (i.e., multiple encryption operating as a black box
with only outer feedbacks), and in some cases multiple modes (e.g., ECB-CBC-CBC) are
not significantly stronger than single encryption. In particular, under some attacks triple-
inner-CBC issignificantly weaker than triple-outer-CBC; against other attacks based on the
block size (e.g., Note 7.8), it appears stronger.

(iv) Cascade ciphers

Counter-intuitively, it is possible to devise examples whereby cascading of ciphers (Def-
inition 7.29) actually reduces security. However, Fact 7.42 holds under a wide variety of
attack models and meaningful definitions of “breaking”.

7.42 Fact A cascade of n (independently keyed) ciphersis at least as difficult to break as the
first component cipher. Corollary: for stage ciphers which commute (e.g., additive stream
ciphers), acascadeis at least as strong as the strongest component cipher.

Fact 7.42 doesnot apply to product ciphersconsisting of component cipherswhich may
have dependent keys (e.g., two-key triple-encryption); indeed, keying dependenciesacross
stages may compromise security entirely, asillustrated by atwo-stage cascade wherein the
components are two binary additive stream ciphers using an identical keystream —in this
case, the cascade output is the original plaintext.

Fact 7.42 may suggest the following practical design strategy: cascade a set of key-
stream generators each of which relies on one or more different design principles. It is not
clear, however, if thisis preferableto onelarge keystream generator which relieson asingle
principle. The cascade may turn out to be less secure for afixed set of parameters (number
of key bits, block size), since ciphers built piecewise may often be attacked piecewise.

7.3 Classical ciphers and historical development

Theterm classical ciphersefersto encryption techniques which have becomewell-known
over time, and generally created prior to the second half of the twentieth century (in some
cases, many hundreds of years earlier). Many classical techniques are variations of sim-
ple substitution and simple transposition. Some techniques that are not technically block
ciphersare a'so included here for convenience and context.

TCL Exhibit 1009
Page 255

238 Ch. 7 Block Ciphers

Classical ciphers and techniques are presented under §7.3 for historical and pedagogi-
cal reasonsonly. They illustrate important basic principles and common pitfalls. However,
since these techniques are neither sophisticated nor secure against current cryptanalytic ca-
pabilities, they are not generally suitable for practical use.

7.3.1 Transposition ciphers (background)

For a simple transpositiortipher with fixed period ¢, encryption involves grouping the
plaintext into blocks of ¢ characters, and applying to each block a single permutation e on
the numbers 1 through ¢. More precisely, the ciphertext corresponding to plaintext block
m =my...mgiSc = Ec(m) = meq)...mey). Theencryptionkey is e, which implic-
itly defines ¢; the key space /C has cardinality ¢! for a given value ¢t. Decryption involves
use of the permutation d which inverts e. The above correspondsto Definition 1.32.

The mathematical notation obscures the simplicity of the encryption procedure, asis
evident from Example 7.43.

7.43 Example (simple transposition) Consider a simple transposition cipher withh = 6 and
e=(641352). Themessagem = CAESAR isencrypted to ¢ = RSCEAA. Decryption
uses theinverse permutationd = (3 6 4 2 5 1). The transposition may be represented by
atwo-row matrix with the second indicating the position to which the element indexed by
the corresponding number of the first is mappedto: (5273372 %). Encryption may be done

by writing a block of plaintext under headings“3 6 4 2 5 17, and then reading off the

characters under the headings in numerical order. a

7.44 Note (terminology: transposition vs. permutation) While the term “transposition” is tra-
ditionally used to describe a transposition cipher, the mapping of Example 7.43 may alter-
nately be called apermutatioron the set {1,2, ... ,6}. Thelatter terminology is used, for
example, in substitution-permutation networks, and in DES (§7.4).

A mnemonic keyword may be used in place of akey, although this may seriously de-
crease the key space entropy. For example, for n = 6, the keyword “CIPHER” could be
used to specify the column ordering 1, 5, 4, 2, 3, 6 (by a phabetic priority).

7.45 Definition Sequential composition of two or more simple transpositions with respective
periodsty, ts,... ,t; iscaled acompound transposition.

7.46 Fact Thecompoundtransposition of Definition 7.45isequivalent to asimpletransposition
of period ¢ = lem(ty, ... ,t;).

7.47 Note (recognizing simple transposition) Although simple transposition ciphers alter de-
pendencies between consecutive characters, they are easily recognized because they pre-
serve the frequency distribution of each character.

7.3.2 Substitution ciphers (background)

Thissection considersthefollowingtypesof classical ciphers: simple (or mono-al phabetic)
substitution, polygram substitution, and homophonic substitution. The difference between
codesand ciphersisalso noted. Polyal phabetic substitution ciphersareconsideredin§7.3.3.

TCL Exhibit 1009
Page 256

§7.3 Classical ciphers and historical development 239

7.48

7.49

7.50

7.51

(i) Mono-alphabetic substitution

Suppose the ciphertext and plaintext character sets are the same. Let m = mymaoms.. ..
be a plaintext message consisting of juxtaposed charactersm,; € A, where A is somefixed
character alphabet suchas A = {A,B,...,Z}. A simple substitution ciphesr mono-
alphabetic substitution ciphemploys a permutation e over A, with encryption mapping
E.(m) = e(my)e(mz)e(ms) Here juxtaposition indicates concatenation (rather than
multiplication), and e(m;) is the character to which m; is mapped by e. This corresponds
to Definition 1.27.

Example (trivial shift cipher/Caesar cipher) A shift ciphés asimple substitution cipher
with the permutation e constrained to an al phabetic shift through k charactersfor somefixed
k. Moreprecisely, if | A| = s, and m; is associated with the integer values, 0 < i < s — 1,
then ¢; = e(m;) = m; + k mod s. The decryption mapping is defined by d(c;) = ¢; —
k mod s. For Englishtext, s = 26, and characters A through Z are associated with integers
0 through 25. For k = 1, the message m = HAL is encrypted to ¢ = IBM. According to
folklore, Julius Caesar used thekey k = 3. O

The shift cipher can betrivially broken because there areonly s = | A| keys(eg., s =
26) to exhaustively search. A similar comment holds for affine ciphers (Example 7.49).
More generally, see Fact 7.68.

Example (affine cipher— historical) The affine cipher on a26-letter alphabet is defined by
ek (z) = ax+b mod 26, where0 < a,b < 25. Thekey is(a,b). Ciphertextc = e (z) is
decrypted using dx (¢) = (c — b)a~* mod 26, with the necessary and sufficient condition
for invertibility that gcd(a, 26) = 1. Shift ciphersare asubclass defined by a = 1. O

Note (recognizing simple substitution) Mono-al phabetic substitution alters the frequency
of individual plaintext characters, but does not ater the frequency distribution of the overall
character set. Thus, comparing ciphertext character frequenciesto atable of expected letter
frequencies (unigram statistics) in the plaintext language allows associations between ci-
phertext and plaintext characters. (E.g., if the most frequent plaintext character X occurred
twelve times, then the ciphertext character that X mapsto will occur twelve times).

(ii) Polygram substitution

A simple substitution cipher substitutes for single plaintext letters. In contrast, polygram
substitution cipher@volve groups of characters being substituted by other groups of char-
acters. For example, sequences of two plaintext characters (digrams) may be replaced by
other digrams. The same may be done with sequences of three plaintext characters (tri-
grams), or more generally usingn-grams.

In full digram substitution over an alphabet of 26 characters, the key may be any of the
262 digrams, arranged in atablewith row and column indices corresponding to thefirst and
second charactersin the digram, and the table entries being the ciphertext digrams substi-
tuted for the plaintext pairs. There are then (262)! keys.

Example (Playfair cipher — historical) A digram substitution may be defined by arrang-
ing the characters of a 25-letter alphabet (I and J are equated) inab x 5 matrix M. Adja
cent plaintext characters are paired. The pair (p1, p2) isreplaced by thedigram (c3, c4) @
follows. If p; and p» arein distinct rows and columns, they define the corners of a subma-
trix (possibly M itself), with the remaining cornerscs and cy; c3 is defined asthe character
in the same column as p;. If p; and p, arein a common row, c3 is defined as the charac-
ter immediately to the right of p; and ¢4 that immediately right of p» (thefirst columnis

TCL Exhibit 1009
Page 257

240

Ch. 7 Block Ciphers

7.52

viewed as being to the right of the last). If p; and p, are in the same column, the charac-
tersimmediately (circularly) below them are ¢ and ¢4. If p1 = p2, an infrequent plaintext
character (e.g., X) isinserted between them and the plaintext is re-grouped. While crypt-
analysis based on single character frequenciesfails for the Playfair cipher (each letter may
be replaced by any other), cryptanalysis employing digram frequencies succeeds. a

The key for a Playfair cipher isthe 5 x 5 sguare. A mnemonic aid may be used to
more easily remember the square. An exampleis the use of a meaningful keyphrase, with
repeated | etters del eted and the remaining al phabet charactersincluded a phabetically at the
end. The keyphrase “PLAYFAIR IS A DIGRAM CIPHER” would define a square with
rowsPLAYF, IRSDG, MCHEB, KNOQT, VWXY Z. Toavoid thetrailing charactersalways
being from the end of the alphabet, a further shift cipher (Example 7.48) could be applied
to the resulting 25-character string.

Use of keyphrases may seriously reduce the key space entropy. This effect is reduced
if the keyphraseis not directly written into the square. For example, the non-repeated key-
phrase characters might be written into an 8-column rectangle (followed by the remaining
alphabet letters), the trailing columns being incomplete. The 25-character string obtained
by reading the columns vertically is then used to fill the 5 x 5 square row by row.

Example (Hill cipher — historical) An n-gram substitution may be defined using an in-
vertiblen x n matrix A = a;; asthe key to map an n-character plaintext m; ...m, toa
ciphertext n-gram¢; = Z;‘Zl aijmj,i =1,...,n. Decryptioninvolvesusing A~!. Here
characters A—Z, for exampl e, are associated with integers 0-25. This polygram substitution
cipher isalinear transformation, and falls under known-plaintext attack. O

(iii) Homophonic substitution

The idea of homophonic substitution, introduced in §1.5, is for each fixed key k to asso-
ciate with each plaintext unit (e.g., character) m a set S(k, m) of potentia corresponding
ciphertext units (generally al of common size). To encrypt m under &, randomly choose
one element from this set as the ciphertext. To allow decryption, for each fixed key this
one-to-many encryption function must be injective on ciphertext space. Homophonic sub-
stitution resultsin ciphertext data expansion.

In homophonic substitution, |S(k, m)| should be proportional to the frequency of m in
the message space. The motivation isto smooth out obviousirregularitiesin the frequency
distribution of ciphertext characters, which result from irregularities in the plaintext fre-
guency distribution when simple substitution is used.

While homophonic substitution complicates cryptanalysis based on simple frequency
distribution statistics, sufficient ciphertext may nonetheless allow frequency analysis, in
conjunction with additional statistical properties of plaintext manifested in the ciphertext.
For example, inlong ciphertextseach element of S (k, m) will occur roughly the same num-
ber of times. Digram distributions may a so provide information.

(iv) Codes vs. ciphers

A technical distinction is made between ciphersand codes. Ciphers are encryption tech-
niqueswhich are applied to plaintext units (bits, characters, or blocks) independent of their
semantic or linguistic meaning; the result is called ciphertext. In contrast, cryptographic
codes operate on linguistic units such as words, groups of words, or phrases, and substitute
(replace) these by designated words, letter groups, or number groups called codegroups.
The key isadictionary-like codebooklisting plaintext units and their corresponding code-
groups, indexed by the former; a corresponding codebook for decoding is reverse-indexed.

TCL Exhibit 1009
Page 258

§7.3 Classical ciphers and historical development 241

When thereis potential ambiguity, codesin this context (vs. ciphers) may be qualified
as cryptographic codebooks, to avoid confusion with error-correcting codes (EC-codes)
used to detect and/or correct non-malicious errors and authentication codes (A-codes, or
MACs as per Definition 9.7) which provide data origin authentication.

Several factors suggest that codes may be more difficult to break than ciphers: the key
(codebook) is vastly larger than typical cipher keys,; codes may result in data compression
(cf. Fact 7.71); and statistical analysisis complicated by the large plaintext unit block size
(cf. Note 7.74). Opposing this are several major disadvantages: the coding operation not
being easily automated (rel ative to an algorithmic mapping); and identical encryption of re-
peated occurrences of plaintext unitsimplies susceptibility to known-plaintext attacks, and
allowsfrequency analysisbased on observed traffic. Thisimpliesaneed for frequent rekey-
ing (changing the codebook), which is both more costly and inconvenient. Consequently,
codes are not commonly used to secure modern telecommunications.

7.3.3 Polyalphabetic substitutions and Vigenére ciphers

7.53

7.54

7.55

(historical)

A simple substitution cipher involves a single mapping of the plaintext aphabet onto ci-
phertext characters. A more complex alternative is to use different substitution mappings
(called multiple alphabets) on various portions of the plaintext. This results in so-called
polyalphabetic substitutio(also introduced in Definition 1.30). In the simplest case, the
different alphabets are used sequentially and then repeated, so the position of each plain-
text character in the source string determineswhich mappingisappliedtoit. Under different
aphabets, the same plaintext character is thus encrypted to different ciphertext characters,
precluding simple frequency analysis as per mono-al phabetic substitution (§7.3.5).

The simple Vigenére cipher is a polyal phabetic substitution cipher, introduced in Ex-
ample 1.31. The definition is repeated here for convenience.

Definition A simple Vigenereipher of period ¢, over an s-character alphabet, involves
at-character key k1ks ... k:. The mapping of plaintext m = mimams ... to ciphertext
¢ = cyieocs ... isdefined onindividual charactersby c; = m; + k; mod s, where subscript
1in k; istaken modulo ¢ (the key is re-used).

The simple Vigenere uses t shift ciphers (see Example 7.48), defined by ¢ shift values
k;, each specifying one of s (mono-al phabetic) substitutions; &; is used on the characters
in position ¢, ¢ + s, ¢ + 2s, In general, each of the ¢ substitutions is different; thisis
referred to as using ¢ aphabets rather than a single substitution mapping. The shift cipher
(Example 7.48) isasimple Vigenere with period ¢ = 1.

Example (Beaufortvariants of Vigenéere) Compared to the simple Vigenere mapping =
m; + k; mod s, the Beaufort ciphehasc; = k; — m; mod s, andisitsowninverse. The
variant Beauforthas encryption mapping ¢; = m; — k; mod s. O

Example (compound Vigenéere) The compound Vigenére has encryption mapping =
m; + (k! + k? 4+ -+ + k7') mod s, wherein general thekeysk7, 1 < j < r, havedistinct
periods ¢;, and the subscript i in k7, indicating the ith character of k7, is taken modulo t;.
This correspondsto the sequential application of » simple Vigeneres, and isequivalent to a
simple Vigenére of period lem(t1, . .. , t.). O

TCL Exhibit 1009
Page 259

242 Ch. 7 Block Ciphers

7.56 Example (single mixed alphabet Vigeneére) A simple substitution mapping defined by a
general permutation e (not restricted to an al phabetic shift), followed by asimple Vigenére,
is defined by the mapping ¢; = e(m;) + k; mod s, withinversem; = e~*(¢; — k;) mod s.
Analternativeisasimple Vigenerefollowed by asimple substitution: ¢; = e(m; +k; mod
s), withinversem; = e~ 1(c;) — k; mod s. O

7.57 Example (full Vigenere) In asimple Vigenere of period;, replace the mapping defined by
theshift value k; (for shifting character m;) by ageneral permutation e; of thealphabet. The
result is the substitution mapping ¢; = e;(m;), where the subscript i in e; is taken modulo
t. The key consists of ¢ permutationses, . .. , e;. O

7.58 Example (running-key Vigenére) If the keystrearh; of a simple Vigenéreis as long as
the plaintext, the cipher is called arunning-key cipher. For example, the key may be mean-
ingful text from a book. O

While running-key ciphersprevent cryptanalysisby the Kasiski method (§7.3.5), if the
key has redundancy, cryptanalysis exploiting statistical imbalances may nonetheless suc-
ceed. For example, when encrypting plaintext English characters using a meaningful text
as arunning key, cryptanalysisis possible based on the observation that a significant pro-
portion of ciphertext characters results from the encryption of high-frequency running text
characters with high-frequency plaintext characters.

7.59 Fact A running-key cipher can be strengthened by successively enciphering plaintext un-
der two or more distinct running keys. For typical English plaintext and running keys, it
can be shown that iterating four such encipherments appears unbreakable.

7.60 Definition An auto-key cipheis a cipher wherein the plaintext itself serves as the key
(typically subsequent to the use of aninitial priming key).

7.61 Example (auto-key Vigeneére) In arunning-key Vigenére (Example 7.58) with ag-char-
acter alphabet, define apriming keyk = k1ks . .. ks. Plaintext characters m; are encrypted
asc; = m; +k;modsforl < i <¢(simplestcase: ¢t = 1). Fori > ¢, ¢; = (m; +
m;—¢) mod s. An aternative involving more keying material is to replace the simple shift
by afull Vigenerewith permutationse;, 1 < i < s, defined by the key k; or character m;:
forl <i<t, ¢ =e(m;),andfori >t c; =em, ,(m;). O

An aternative to Example 7.61 is to auto-key a cipher using the resulting ciphertext
asthe key: for example, fori > ¢, ¢; = (m; + ¢;—) mod s. This, however, is far less
desirable, asit provides an eavesdropping cryptanalyst the key itself.

7.62 Example (Vernam viewed as a Vigenere) Consider a simple Vigenere defined by =
m; + k; mod s. If the keystream is truly random and independent — as long as the plain-
text and never repeated (cf. Example 7.58) — this yields the unconditional ly secure Vernam
cipher (Definition 1.39; §6.1.1), generalized from a binary to an arbitrary alphabet. O

7.3.4 Polyalphabetic cipher machines and rotors (historical)

The Jefferson cylinders a deceptively simple device which implements a polyal phabetic
substitution cipher; conceived in the late 18th century, it had remarkable cryptographic

TCL Exhibit 1009
Page 260

§7.3 Classical ciphers and historical development 243

strength for its time. Polyal phabetic substitution ciphers implemented by a class of rotor-
based machines were the dominant cryptographic tool in World War I1. Such machines, in-
cluding the Enigma machine and those of Hagelin, have an alphabet which changes con-
tinuously for avery long period before repeating; this provides protection against Kasi ski
analysis and methods based on the index of coincidence (§7.3.5).

(i) Jefferson cylinder

The Jefferson cylinde(Figure 7.3) implements a polyal phabetic substitution cipher while
avoiding complex machinery, extensive user computations, and Vigenére tableaus. A solid
cylinder 6incheslongissliced into 36 disks. A rod inserted throughthe cylinder axisallows
the disks to rotate. The periphery of each disk is divided into 26 parts. On each disk, the
letters A—Z areinscribed ina(different) randomordering. Plaintext messagesare encrypted
in 36-character blocks. A reference bar is placed along the cylinder’s length. Each of the
36 wheelsisindividualy rotated to bring the appropriate character (matching the plaintext
block) into position along the referenceline. The 25 other parallel reference positions then
each define a ciphertext, from which (in an early instance of randomized encryption) oneis
selected as the ciphertext to transmit.

s

F
o) s Z
A\K L\M o
S\J\E\H\Y . S

Figure 7.3: The Jefferson cylinder.

The second party possesses a cylinder with identically marked and ordered disks (1—
36). The ciphertext is decrypted by rotating each of the 36 disksto obtain charactersaong
afixed reference line matching the ciphertext. The other 25 reference positions are exam-
ined for arecognizable plaintext. If the original messageis not recognizable (e.g., random
data), both parties agree beforehand on an index 1 through 25 specifying the offset between
plaintext and ciphertext lines.

To accommodate plaintext digits 0-9 without extra disk sections, each digit is per-
manently assigned to one of 10 letters (a,e,i,o,u,y and f,|,r,s) which is encrypted as above
but annotated with an overhead dot, identifying that the procedure must be reversed. Re-
ordering disks (1 through 36) altersthe polyal phabetic substitution key. The number of pos-
sible orderingsis 36! ~ 3.72 x 10%!. Changing the ordering of |etters on each disk affords
25! further mappings (per disk), but is more difficult in practice.

(ii) Rotor-based machines — technical overview

A simplified generic rotor machine (Figure 7.4) consists of anumber of rotors (wired code-
wheels) each implementing a different fixed mono-al phabetic substitution, mapping achar-
acter at itsinput face to one on its output face. A plaintext character input to the first rotor
generates an output which is input to the second rotor, and so on, until the final ciphertext
character emerges from the last. For fixed rotor positions, the bank of rotors collectively
implements a mono-alphabetic substitution which is the composition of the substitutions
defined by the individual rotors.

To provide polyal phabetic substitution, the encipherment of each plaintext character
causes various rotors to move. The simplest case is an odometer-like movement, with a
single rotor stepped until it completes afull revolution, at which time it steps the adjacent

TCL Exhibit 1009
Page 261

244 Ch. 7 Block Ciphers

A

»
»

_ \ \ \
plaintext— A =] | ol | = A
B :\:—I o = B
cl —I—/ﬂl— ces]\ E=||cC
D =] - | = | D— ciphertext
= | / | / - | / = | E
N

Figure 7.4: A rotor-based machine.

rotor one position, and so on. Stepping a rotor changes the mono-al phabetic substitution
it defines (the active mapping). More precisely, each rotor R; effects a mono-a phabetic
substitution f;. R; can rotateinto ¢; positions (e.g., t; = 26). When offset j placesfrom a
reference setting, R; mapsinput a to f;(a — j) + j, where both theinput to f; and the final
output are reduced mod 26.

Thecipher key is defined by the mono-al phabeti c substitutions determined by the fixed
whedl wirings and initial rotor positions. Re-arranging the order of rotors provides addi-
tional variability. Providing a machine with more rotors than necessary for operation at
any onetime alows further keying variation (by changing the active rotors).

7.63 Fact Two propertiesof rotor machines desirable for security-related reasons are: (1) long
periods; and (2) state changes which are amost al “large’.

The second property concerns the motion of rotors relative to each other, so that the
sub-mappings between rotor faces change when the state changes. Rotor machines with
odometer-like state changes fail to achieve this second property.

7.64 Note (rotor machine output methods) Rotor machineswere categorized by their method of
providing ciphertext output. In indicating machines, ciphertext output characters are indi-
cated by means such as lighted lamps or displayed charactersin output apertures. In print-
ing machines, ciphertext is printed or typewritten onto an output medium such as paper.
With on-line machines, output characters are produced in electronic form suitable for di-
rect transmission over telecommunications media.

(iii) Rotor-based machines — historical notes

A number of individual sare responsiblefor the devel opment of early machinesbased on ro-
tor principles. In 1918, the American E.H. Hebern built thefirst rotor apparatus, based onan
earlier typewriting machi nemodified with wired connectionsto generateamono-al phabetic
substitution. The output was originally by lighted indicators. Thefirst rotor patent wasfiled
in 1921, theyear Hebern Electric Code, Inddecamethefirst U.S. cipher machine company
(andfirst to bankrupt in 1926). The U.S. Navy (circa1929-1930 and some years thereafter)
used a number of Hebern's five-rotor machines.

In October 1919, H.A. Koch filed Netherlands patent no.10,700 (“ Geheimschrijfma-
chine” — secret writing machine), demonstrating a deep understanding of rotor principles;
no machine was built. In 1927, the patent rights were assigned to A. Scherbius.

The Germaninventor Scherbiusbuilt arotor machinecalled the Enigma. Model A was
replaced by Model B with typewriter output, and a portable Model C with indicator lamps.

TCL Exhibit 1009
Page 262

§7.3 Classical ciphers and historical development 245

7.65

7.66

The company set upin 1923 dissolved in 1934, but thereafter the Germansused the portable
battery-powered Enigma, including for critical World War 11 operations.

In October 1919, threedaysafter Koch, A.G. Damm filed Swedish patent n0.52,279 de-
scribing a double-rotor device. His firm was joined by the Swede, B. Hagelin, whose 1925
modification yielded the B-21 rotor machine (with indicating lamps) used by the Swedish
army. The B-21 had keywheelsvith varying number of teeth or gears, each of which was
associated with a settable two-state pin. The period of the resulting polyal phabetic substi-
tution was the product of the numbers of keywhedl pins; the key was defined by the state of
each pin and theinitial keywheel positions. Hagelin later produced other models: B-211 (a
printing machine); a more compact (phone-sized) model C-36 for the French in 1934; and
based on alterations suggested by Friedman and others, model C-48 (of which over 140 000
were produced) which was called M-209 when used by the U.S. Army as a World War 11
field cipher. His 1948 Swiss factory later produced: model C-52, a strengthened version of
M-209 (C-48) with period exceeding 2.75 x 10° (with keywheels of 47, 43, 41, 37, 31, 29
pins); CD-55, a pocket-size version of the C-52; and T-55, an on-line version of the same,
modifiable to use a one-time tape. A further model was CD-57.

Note (Enigma details) The Enigmainitially had three rotorsR;, each with 26 positions.

R; stepped R, which stepped R3 odometer-like, with R also steppingitself; the period was
26 - 25 - 26 ~ 17 000. The key consisted of the initial positions of these rotors (= 17 000

choices), their order (3! = 6 choices), and the state of a plugboard, which implemented
afixed but easily changed (e.g., manually, every hour) mono-alphabetic substitution (26!

choices), in addition to that carried out by rotor combinations.

Note (Hagelin M-209 details) The Hagelin M-209 rotor machineimplementsapolyal pha-
betic substitution using 6 keywheels— more specifically, a self-decrypting Beaufort cipher
(Example7.54), E, (m;) = k;—m; mod 26, of period 101 405 850 = 26-25-23-21-19-17
letters. Thus for afixed ordered set of 6 keywheels, the cipher period exceeds 102. k; may
be viewed as the ith character in the key stream, as determined by a particular ordering of
keywhesdls, their pin settings, and starting positions. All keywheels rotate one position for-
ward after each character is enciphered. The wheels simultaneously return to their initial
position only after aperiod equal to the least-common-multiple of their gear-counts, which
(since these are co-prime) is their product. A ciphertext-only attack is possible with 1000-
2000 characters, using knowledge of the machine'sinternal mechanical details, and assum-
ing natural language redundancy in the plaintext; a known-plaintext attack is possible with
50-100 characters.

7.3.5 Cryptanalysis of classical ciphers (historical)

This section presents background material on redundancy and unicity distance, and tech-
niquesfor cryptanalysis of classical ciphers,

(i) Redundancy

All natural languages are redundant. This redundancy results from linguistic structure. For
example, in English the letter “E” appears far more frequently than “Z”, “Q” is almost al-
ways followed by “U”, and “TH” is a common digram.

An aphabet with 26 characters (e.g., Roman aphabet) can theoretically carry up to
lg 26 = 4.7 bits of information per character. Fact 7.67 indicates that, on average, far less
information is actually conveyed by a natural language.

TCL Exhibit 1009
Page 263

246 Ch. 7 Block Ciphers

7.67 Fact Theestimated averageamount of information carried per character (per-character en-
tropy) in meaningful English alphabetic text is 1.5 hits.

The per-character redundancy of Englishisthusabout 4.7 — 1.5 = 3.2 bits.

7.68 Fact Empirical evidence suggests that, for essentially any simple substitution cipher on a
meaningful message (e.g., with redundancy comparableto English), asfew as 25 ciphertext
characters suffices to allow a skilled cryptanalyst to recover the plaintext.

(ii) Unicity distance and random cipher model

7.69 Definition Theunicity distancef acipher isthe minimum amount of ciphertext (number
of characters) requiredto allow acomputational ly unlimited adversary to recover the unique
encryption key.

The unicity distance is primarily a theoretical measure, useful in relation to uncondi-
tional security. A small unicity distance does not necessarily imply that a block cipher is
insecure in practice. For example, consider a 64-bit block cipher with a unicity distance
of two ciphertext blocks. It may still be computationally infeasible for a cryptanalyst (of
reasonable but bounded computing power) to recover the key, although theoretically there
is sufficient information to allow this.

The random cipher model (Definition 7.70) isasimplified model of ablock cipher pro-
viding a reasonable approximation for many purposes, facilitating results on block cipher
properties not otherwise easily established (e.g., Fact 7.71).

7.70 Definition Let C' and K berandom variables, respectively, denoting the ciphertext block
and the key, and let D denote the decryption function. Under the random cipher model,
Dk (C)isarandomvariableuniformly distributed over al possible pre-imagesof C' (mean-
ingful messages and otherwise, with and without redundancy).

In an intuitive sense, arandom cipher as per the model of Definition 7.70 is arandom
mapping. (A more precise approximation would be as arandom permutation.)

7.71 Fact Under therandom cipher model, the expected unicity distance NV of acipheris Ny =
H(K)/D, where H(K) is the entropy of the key space (e.g., 64 bits for 264 equiprobable
keys), and D isthe plaintext redundancy (in bits/character).

For aone-time pad, the unbounded entropy of the key spaceimplies, by Fact 7.71, that
the unicity distance is likewise unbounded. Thisis consistent with the one-time pad being
theoretically unbreakable.

Data compression reduces redundancy. Fact 7.71 implies that data compression prior
to encryption increases the unicity distance, thus increasing security. If the plaintext con-
tains no redundancy whatsoever, then the unicity distance is infinite; that is, the system is
theoretically unbreakable under a ciphertext-only attack.

7.72 Example (unicity distance — transposition cipher) The unicity distance of asimple trans-
position cipher of period ¢ can be estimated under the random cipher model using Fact 7.71,
and the assumption of plaintext redundancy of D = 3.2 bits/character. In this case,
H(K)/D = lg(t)/3.2 and for t = 12 the estimated unicity distance is 9 characters,
which is very crude, this being less than one 12-character block. For ¢ = 27, the esti-
mated unicity distance is a more plausible 29 characters; this can be computed using Stir-
ling's approximation of Fact 2.57(jii) (t! ~ +/2xt(t/e)t, for larget and e = 2.718) as
H(K)/D =1g(#)/3.2 =~ (0.3t) - 1g(t/e). O

TCL Exhibit 1009
Page 264

§7.3 Classical ciphers and historical development 247

7.73 Example (unicity distance — simple substitution) The number of keysfor a mono-al phab-
etic substitution cipher over alphabet A is|C| = s!, where s = |.A|. For example, s = 26
(Roman alphabet) yields 26! ~ 4 x 1026 keys. Assuming equiprobablekeys, an estimate of
the entropy of the key space is then (cf. Example 7.72) H(K) = 1g(26!) ~ 88.4 bits. As-
suming Englishtext with D = 3.2 hitsof redundancy per character (Fact 7.67), atheoretical
estimate of the unicity distance of asimple substitution cipher is H(K)/D = 88.4/3.2 ~
28 characters. This agrees closely with empirical evidence (Fact 7.68). d
(iii) Language statistics
Cryptanalysis of classical ciphers typically relies on redundancy in the source language
(plaintext). In many cases adivide-and-conquer approachis possible, whereby the plaintext
or key is recovered piece by piece, each facilitating further recovery.

Mono-alphabetic substitution on short plaintext blocks (e.g., Roman alphabet char-
acters) is easily defeated by associating ciphertext characters with plaintext characters
(Note7.50). Thefrequency distribution of individual ciphertext characterscan becompared
to that of single charactersin the source language, as given by Figure 7.5 (estimated from
1964 English text). Thisisfacilitated by grouping plaintext letters by frequency into high,
medium, low, and rare classes; focussing on the high-frequency class, evidence support-
ing trial letter assignments can be obtained by examining how closely hypothesized assign-
ments match those of the plaintext language. Further evidenceis available by examination
of digram and trigram frequencies. Figure 7.6 gives the most common English digrams as
apercentageof all digrams; notethat of 262 = 676 possible digrams, the top 15 account for
27% of al occurrences. Other examples of plaintext redundancy appearing in the cipher-
text include associations of vowelswith consonants, and repeated letters in pattern words
(e.g., “that”, “soon”, “three”).

13 _% 1251

124
114
10
9 .
8 17 7.26 7.00 E
7 1]] 654
6.12 —

6 5.49 [
5 .
4 .
3 .

271
2 154 1% 2 192 173
1 o067 0.99

0.16 ’—| 011 0.19 0.09
0

ABCDEFGHI JKLMNOPQRSTUVWXYZ

9.25

399 414

Figure 7.5: Frequency of single characters in English text.

7.74 Note (large blocks preclude statistical analysis) Awrbit block size implies 2™ plaintext
units (“characters’). Compilation of frequency statistics on plaintext units thus becomes
infeasible as the block size of the simple substitution increases; for example, thisis clearly
infeasible for DES (§7.4), wheren = 64.

TCL Exhibit 1009
Page 265

248

Ch. 7 Block Ciphers

Cryptanalysisof simpletransposition ciphersissimilarly facilitated by sourcelanguage
statistics (see Note 7.47). Cryptanalyzing transposed blocks resembl es solving an anagram.
Attempts to reconstruct common digrams and trigrams are facilitated by frequency statis-
tics. Solutions may be constructed piecewise, with the appearance of digrams and trigrams
intrial decryptions confirming (partial) success.

%

3.05 321

2.30
213
24181 1.83 1.90

15113, 1531|136 128 |1.22130/ |1.28

1 -

0 AN AT ED EN ER ES HE IN ON OR RE ST TE TH TI
Figure 7.6: Frequency of 15 common digrams in English text.

Cryptanalysis of polyal phabetic ciphersis possible by various methods, including Ka-
siski’s method and methods based on the index of coincidence, as discussed below.

(iv) Method of Kasiski (vs. polyalphabetic substitution)

Kasiski’'s method provides a general technique for cryptanalyzing polyal phabetic ciphers
with repeated keywords, such as the simple Vigenére cipher (Definition 7.53), based on the
following observation: repeated portions of plaintext encrypted with the same portion of
the keyword result in identical ciphertext segments. Consequently one expects the num-
ber of characters between the beginning of repeated ciphertext segmentsto be a multiple of
the keyword length. Ideally, it suffices to compute the greatest common divisor of the var-
ious distances between such repeated segments, but coincidental repeated ciphertext seg-
ments may also occur. Nonetheless, an analysis (Kasiski examination) of the common fac-
tors among all such distancesis possible; the largest factor which occurs most commonly
isthe most likely keyword length. Repeated ciphertext segments of length 4 or longer are
most useful, as coincidental repetitions are then less probable.

The number of |ettersin the keyword indicates the number of a phabets¢ inthe polyal-
phabetic substitution. Ciphertext characters can then be partitioned into ¢ sets, each of
which is then the result of a mono-al phabetic substitution. Trial valuesfor ¢ are confirmed
if the frequency distribution of the (candidate) mono-al phabetic groups matches the fre-
guency distribution of the plaintext language. For example, the profile for plaintext English
(Figure 7.5) exhibits a long trough characterizing uvwayz, followed by a spike at a, and
preceded by thetriple-peak of rst. Theresulting mono-al phabetic portionscan besolvedin-
dividually, with additional information available by combining their solution (based on di-
grams, probablewords, etc.). If the source language is unknown, comparing the frequency
distribution of ciphertext charactersto that of candidatelanguages may allow determination
of the source language itself.

(v) Index of coincidence (vs. polyalphabetic substitution)

The index of coincidenc@éC) is a measure of the relative frequency of lettersin a cipher-
text sample, which facilitates cryptanalysis of polyal phabetic ciphers by alowing determi-
nation of the period ¢ (as an aternative to Kasiski’s method). For concreteness, consider a
Vigenere cipher and assume natural language English plaintext.

TCL Exhibit 1009
Page 266

§7.3 Classical ciphers and historical development 249

Let the ciphertext al phabet be {ao, a1, . .. ,a,—1}, andlet p; bethe unknown probabil -
ity that an arbitrarily chosen character in arandom ciphertext is a;. The measure of rough-
nessmeasures the deviation of ciphertext characters from a flat frequency distribution as
follows:

n—1 1 2 n—1 1
MR- 3 (-3 = Xoat - 2 .
=0 =0

The minimum valueis MR,,;, = 0, corresponding to aflat distribution (for equiprobable
ai, p; = 1/m). The maximum va ue occurswhen the frequency distribution of p; hasgreat-
est variahility, correspondingto amono-al phabetic substitution (the plaintext frequency dis-
tribution is then manifested). Define this maximum value MR max = kp — 1/n, Wherek,
correspondsto > p;2 when p; are plaintext frequencies. For English as per Figure 7.5, the
maximumvalueisMR = k, — 1/n = 0.0658 — 0.0385 = 0.0273. (Thisvarieswith letter
frequency estimates; x, = 0.0667, yielding x, — 1/n = 0.0282 is commonly cited, and is
usedin Table 7.1.) While MR cannot be computed directly from a ciphertext sample (since
the period ¢ is unknown, the mono-al phabetic substitutions cannot be separated), it may be
estimated from the frequency distribution of ciphertext characters as follows.

Let f; denotethe number of appearancesof a; in an L-character ciphertext sample (thus
> fi = L). Thenumber of pairs of lettersamong these L is L(L — 1) /2, of which f;(f; —
1)/2 arethe pair (a;, a;) for any fixed character a,. Define IC as the probability that two
characters arbitrarily chosen from the givenciphertext sample are equal:

oo Zico (5) _ X ffi-1) 72

(S) L(L-1)

Independent of this given ciphertext sample, the probability that two randomly chosen ci-
phertext charactersareequal is Zf;ol p;2. Thus (comparing word definitions) IC isan esti-
mate of >~ p;2, and by equation (7.1), thereby an estimate of MR + 1/n. Moreover, IC can
be directly computed from a ciphertext sample, alowing estimation of MR itself. Since
MR variesfrom0to x, — 1/n, oneexpects|C to rangefrom 1/n (for polyal phabetic sub-
stitution with infinite period) to «,, (for mono-al phabetic substitution). More precisely, the
following result may be established.

7.75 Fact For apolyalphabetic cipher of period ¢, E(IC) as given below is the expected value
of the index of coincidence for a ciphertext string of length L, where n is the number of
aphabet characters, k. = 1/n, and x,, isgivenin Table 7.1:

1 L—-t t—1 L
EIC)=-.=2". R .
(I€) I T ey o |
(pin k, isintended to denote a plaintext frequency distribution, whilether in x,. denotesa
distribution for random characters.) For Roman-al phabet languages, n = 26 implies k.. =
0.03846; for the Russian Cyrillic alphabet, n = 30.

Kr (7.3)

7.76 Example (estimating polyalphabetic period using IC) Tabulating the expected valuesfor
IC for periodst = 1,2,... using Equation (7.3) (which is essentialy independent of L
for large L and small t), and comparing this to that obtained from a particular ciphertext
using Equation (7.2) allows a crude estimate of the period ¢ of the cipher, e.g., whether itis
mono-al phabetic or polyal phabetic with small period. Candidate valuest in the range thus
determined may be tested for correctness by partitioning ciphertext charactersinto groups
of letters separated by ¢ ciphertext positions, and in one or more such groups, comparing
the character frequency distribution to that of plaintext. O

TCL Exhibit 1009
Page 267

250 Ch. 7 Block Ciphers

Language [x, |
French 0.0778
Spanish | 0.0775
German 0.0762
Italian 0.0738
English 0.0667
Russian 0.0529

Table 7.1: Estimated roughness constagt for various languages (see Fact 7.75).

A polyal phabetic period ¢ may be determined either by Example 7.76 or the alternative
of Example 7.77, based on the same underlying ideas. Once ¢ is determined, the situation
is as per after successful completion of the Kasiski method.

7.77 Example (determining period by ciphertext auto-correlation) Given a sample of polyal-
phabetic ciphertext, the unknown period ¢ may be determined by examining the number of
coincidences when the ciphertext is auto-correlated. More specifically, given a ciphertext
samplecics ... cp, Startingwith ¢ = 1, count the total number of occurrencesc; = c;4 for
1<i¢<L—t. Repeafort=2,3,... andtabulate the counts (or plot a bar graph). The
actua period t* isrevealed asfollows: for valuest that are amultiple of ¢*, the counts will
be noticeably higher (easily recognized as spikes on the bar graph). In fact, for L appro-
priately large, one expects approximately L - «,, coincidencesin this case, and significantly
fewer in other cases. d

In the auto-correlation method of coincidences of Example 7.77, the spikes on the bar
graphreveal the period, independent of the sourcelanguage. Oncethe periodisdetermined,
ciphertext charactersfrom like al phabets can be grouped, and the profile of single-character
letter frequencies among these, which differsfor each language, may be used to determine
the plaintext language.

7.4 DES

The Data Encryption Standard (DES) is the most well-known symmetric-key block cipher.
Recognized world-wide, it set a precedent in the mid 1970s as the first commercial-grade
modern algorithm with openly and fully specified implementation details. It is defined by
the American standard FIPS 46-2.

7.4.1 Product ciphers and Feistel ciphers

The design of DES isrelated to two general concepts: product ciphers and Feistel ciphers.
Each involvesiterating a common sequence or round of operations.

The basic idea of a product cipher (see §1.5.3) is to build a complex encryption func-
tion by composing several simple operations which offer complementary, but individually
insufficient, protection (note cascade ciphersper Definition 7.29 useindependent keys). Ba-
sic operations include transpositions, transations (e.g., XOR) and linear transformations,
arithmetic operations, modular multiplication, and simple substitutions.

TCL Exhibit 1009
Page 268

§7.4 DES 251

7.78 Definition A product cipheicombinestwo or moretransformationsinamanner intending

that the resulting cipher is more secure than the individual components.

7.79 Definition A substitution-permutatio{SP) networkis a product cipher composed of a

number of stages each involving substitutions and permutations (Figure 7.7).

plaintext

H‘ H‘ H‘ H""ciphertext

Figure 7.7: Substitution-permutation (SP) network.

Many SP networks areiterated ciphers as per Definition 7.80.

7.80 Definition Aniterated block ciphersablock cipher involving the sequential repetition of

7.81

aninternal function called around function. Parametersincludethe number of rounds, the
block bitsize n, and the bitsize k of theinput key K from which r subkeyd<; (round keys)
are derived. For invertibility (allowing unique decryption), for each value K ; the round
function is a bijection on the round input.

Definition A Feistel cipheiis an iterated cipher mapping a 2¢-bit plaintext (Lo, Ro), for
t-bit blocks Ly and Ry, to aciphertext (R,., L..), through an r-round processwherer > 1.
For1 < i < r,round: maps (L;—1,R;—1) K (L;, R;) asfollows: L; = R;_1, R, =
L,_1®f(R;—1, K;), where each subkeykK; is derived from the cipher key K.

Typically inaFeistel cipher, » > 3 and oftenis even. The Feistel structure specifically
orders the ciphertext output as (R, L,.) rather than (L, R,.); the blocks are exchanged
from their usual order after the last round. Decryption is thereby achieved using the same
r-round process but with subkeys used in reverse order, K. through K ; for example, the
last round is undone by simply repeating it (see Note 7.84). The f function of the Feistel
cipher may be a product cipher, though f itself need not be invertibleto allow inversion of
the Feistel cipher.

Figure 7.9(b) illustrates that successive rounds of a Feistel cipher operate on alternat-
ing halves of the ciphertext, while the other remains constant. Note the round function of
Definition 7.81 may also be re-writtento eliminate L;: R, = R;_2®f(R;—1, K;). Inthis
case, thefinal ciphertext output is (R, R._1), with input labeled (R_+, Ry).

TCL Exhibit 1009
Page 269

252 Ch. 7 Block Ciphers

7.4.2 DES algorithm

DES s aFeistel cipher which processes plaintext blocks of n = 64 bits, producing 64-bit
ciphertext blocks (Figure 7.8). The effective size of the secret key K is k = 56 bits; more
precisely, the input key K is specified as a 64-bit key, 8 bits of which (bits 8,16, ... ,64)
may be used as parity bits. The 256 keysimplement (at most) 256 of the 264! possible bijec-
tionson 64-bit blocks. A widely held belief isthat the parity bits were introduced to reduce
the effective key size from 64 to 56 bits, to intentionally reduce the cost of exhaustive key
search by afactor of 256.

K K
/vi/ 56 plaintext P i 56
ciphertext C
64 * key K 64 *
p——= DES ——C ¢c——= DES™ [—™ P

Figure 7.8: DES input-output.

Full detailsof DES aregivenin Algorithm 7.82 and Figures 7.9 and 7.10. An overview
follows. Encryption proceedsin 16 stages or rounds. From theinput keyK, sixteen 48-bit
subkeys K; are generated, onefor each round. Within each round, 8fixed, carefully selected
6-to-4 bit substitution mappings (S-boxesy';, collectively denoted S, are used. The 64-bit
plaintext is divided into 32-bit halves Ly and Ry. Each round is functionally equivalent,
taking 32-bit inputs L;_; and R;_; from the previous round and producing 32-bit outputs
L;and R; for1 < < 16, asfollows:

L; = Ry (7.4)
R, = L, @f(Ri_l, KZ'), where f(Ri—h Kl) = P(S(E(R7_1) @Kl))(75)

Here E isafixed expansion permutation mapping R;_1 from 32 to 48 bits (all bits are used
once; some are used twice). P is another fixed permutation on 32 bits. Aninitial bit per-
mutation (IP) precedesthe first round; following the last round, the left and right halves are
exchanged and, finally, the resulting string is bit-permuted by the inverse of IP. Decryption
involvesthe same key and algorithm, but with subkeys applied to the internal roundsin the
reverse order (Note 7.84).

A simplified view is that the right half of each round (after expanding the 32-bit input
to 8 characters of 6 bits each) carries out a key-dependent substitution on each of 8 charac-
ters, then uses a fixed bit transposition to redistribute the bits of the resulting charactersto
produce 32 output bits.

Algorithm 7.83 specifies how to compute the DES round keys K;, each of which con-
tains 48 bits of K. These operations make use of tables PC1 and PC2 of Table 7.4, which
are called permuted choice &nd permuted choice 2. To begin, 8 bits g k16, - - - , k¢a) Of
K arediscarded (by PC1). The remaining 56 bits are permuted and assigned to two 28-bit
variables C' and D; and then for 16 iterations, both C' and D are rotated either 1 or 2 bits,
and 48 hits (K;) are selected from the concatenated result.

TCL Exhibit 1009
Page 270

§7.4 DES 253

7.82 Algorithm Data Encryption Standard (DES)

INPUT: plaintext m; . .. mg4; 64-bitkey K = k1 ... k¢a (includes 8 parity bits).
OUTPUT: 64-hit ciphertext block C' = ¢; .. . cg4. (For decryption, see Note 7.84.)
1. (key schedule) Compute sixteen 48-bit round keys K; from K using Algorithm 7.83.
2. (Lo, Ry) + IP(mimg...me4). (UseIP from Table 7.2 to permute bits; split the
result into left and right 32-bit halves Ly = msgmsg - . . mg, Ro = msrmyg - . . m7.)
3. (16 rounds) for ¢ from 1 to 16, compute L; and R; using Equations (7.4) and (7.5)
above, computing f(R;_1, K;) = P(S(E(R;—1) @ K;)) asfollows:
(& Expand R;_1 = ry72 ... 7320 from 32to 48 bitsusing F per Table 7.3:
T + E(szl) (ThUST =T327r172... 7‘32T1.)
(b) T + TOK,. Represent T" as eight 6-bit character strings: (B1,...,Bg) =
T'.
(C) T" (Sl (Bl), SQ(BQ), . Sg(Bg)) (Here Sz(Bl) maps B; = bibsy... b6
to the 4-bit entry in row r and column ¢ of .S; in Table 7.8, page 260 where
r = 2-by + bg, and babsbybs isthe radix-2 representation of 0 < ¢ < 15. Thus
S51(011011) yieldsr = 1, ¢ = 13, and output 5, i.e., binary 0101.)
(d) T < P(T"). (Use P per Table 7.3to permutethe 32 bitsof 7" = t1ts . . . t32,
yleldl ngtietz. .. t25.)
4. biby...bgy + (R16, Llﬁ). (EXChangeflna' blOCkSng, Rlﬁ.)
5. C«+ IP‘l(ble ...bg4). (Transposeusing IP~ from Table 7.2; C' = bygbs . . . bas.)

IP Pt
58 |50 (42| 34| 2| 18| 10| 2 40 | 8 | 48| 16| 56| 24 | 64 | 32
60 | 52|44 36| 28| 20|12 4 39| 7|47 15| 5| 23| 63| 31
62 | 54|46 | 38|30 22| 14| 6 38| 6|46 | 14| 54| 22| 62| 30
64 | 56 | 48| 40| 32| 24| 16| 8 37 | 5|45 13|53 |21)|61| 29
57149 | 41| 33| 25| 17 911 36 | 4|44 |12 | 52| 20| 60| 28
50|51 (43|35 |27|19| 11| 3 35|13 |43 |11 |51| 19, 5| 27
61 |53 (45|37 29| 21| 13| 5 34|12 |42|10| 50| 18| 58 | 26
63 | 55| 47| 39| 31| 23|15]| 7 33|14 9|49 | 17| 57| 25

Table 7.2: DES initial permutation and inverse (IP and1b).

E P
32 1 2 3| 4| 5 16 7120 | 21
4| 5 6 7] 8 9 29| 12| 28 | 17
8| 910 11|12) 13 1|115| 23| 26
12 | 13| 14| 15| 16 | 17 5|18 | 31| 10
16|17 | 18| 19| 20| 21 2| 8|24 14
20|21 (22| 23| 24| 25 32| 27 3 9
24125 | 26| 27| 28| 29 19| 13| 30 6
28|29 |30| 31| 32 1 211 4|25

Table 7.3: DES per-round functions: expansidnand permutationP.

TCL Exhibit 1009
Page 271

254 Ch. 7 Block Ciphers

(a) twisted ladder (b) untwisted ladder
‘ input ‘ input ‘
mimsz - - 64 me4q

initial

IP) permutation
64
A
‘ Lo Ro
48
K
32 \ 32
Y 32

I
Ko

Y]

i T

‘ Lis ‘ Rys
— Kie

irregular swap

‘ R16 LlG
64
A Y
[p—1 inverse T p-2
permutation
64
output output
cicg - C64

Li=Ri-1
Ri=Li—1® f(Ri—1, K;)

Figure 7.9: DES computation path.

TCL Exhibit 1009
Page 272

§7.4 DES 255

Ri—1 K;

BQi 48
expansion @

48
)

48

V
L L 1] [[1| exeve

LT [T Jaxave

P) permutation
32

f(Ri—1,Ki) = P(S(E(Ri—1) ® K3))

Figure 7.10: DES inner functiory.

7.83 Algorithm DES key schedule

INPUT: 64-bitkey K = k; ... kg4 (including 8 odd-parity bits).
OUTPUT: sixteen 48-bit keys K;, 1 < i < 16.
1. Definewv;, 1 < i < 16 asfollows: v; = 1fori € {1,2,9,16}; v; = 2 otherwise.
(These are | eft-shift values for 28-bit circular rotations below.)
2. T + PCL(K); represent T' as 28-bit halves (Cy, Dy). (UsePClin Table 7.4 to select
bits from K: CO = k57k49 - k36, Dy = k63k55 . k4)
3. For ¢ from 1 to 16, compute K; asfollows. C; < (Ci—1 <> v;), D; + (D;—1 ¢
v;), K; + PC2(C}, D;). (Use PC2in Table 7.4 to select 48 bits from the concatena-
tion bibs ... bsg of C; and D;. K; = bigbi7...b3a. ‘<’ denotes|eft circular Shlft)

If decryptionis designed asasimplevariation of the encryptionfunction, savingsresult
in hardware or software code size. DES achievesthis as outlined in Note 7.84.

7.84 Note (DES decryption) DESdecryptionconsistsof theencryptionalgorithmwith thesame
key but reversed key schedule, using in order K16, K15, ... , K1 (see Note 7.85). This
works as follows (refer to Figure 7.9). The effect of IP ! is cancelled by IP in decryp-
tion, leaving (R, L16); consider applying round 1 to thisinput. The operation on the |eft
half yields, rather than Lo® f(Ro, K1), now R16® f (L1s, K16) Which, since L1g = Ris
and Rig = Lls@f(le), KIG), is equal to Lls@f(Rw, K16)®f(R15, K16) = L15. Thus
round 1 decryption yields (R15, L1s), i.€., inverting round 16. Note that the cancellation

TCL Exhibit 1009
Page 273

256 Ch. 7 Block Ciphers

PC1 PC2

57 49| 41| 33| 25| 17 9 14 | 17 | 11 | 24 1 5

1(58|50|4 | 34| 26| 18 3128 15 6|21 10

10 2|59 |51|43| 3| 27 23 1 19 | 12 4| 26 8

19 | 11 3|60| 52| 44| 36 16 71 27| 20| 13 2

above for C;; below for D; 41 | 52 | 31| 37 | 47 | 55

63| 55|47 | 39| 31| 23| 15 30| 40| 51| 45| 33| 48

7162 54| 46| 38| 30| 22 44 | 49 | 39 | 56 | 34 | 53

14 6|61|53|45| 37|29 46 | 42 | 50 | 36| 29 | 32
21 | 13 5128 20| 12 4

Table 7.4: DES key schedule bit selections (PC1 and PC2).

of each round is independent of the definition of f and the specific value of K ;; the swap-
ping of halves combined with the XOR processisinverted by the second application. The
remaining 15 rounds are likewise cancelled one by one in reverse order of application, due
to the reversed key schedule.

7.85 Note (DES decryption key schedule) Subkelss, ... , K16 may be generated by Algo-
rithm 7.83 and used in reverse order, or generated in reverse order directly asfollows. Note
that after K¢ is generated, the original values of the 28-bit registers C' and D are restored
(each has rotated 28 bits). Consequently, and due to the choice of shift-values, modifying
Algorithm 7.83 as follows generates subkeysin order K¢, . .. , K1: replace the left-shifts
by right-shift rotates; change the shift value v; t0 0.

7.86 Example (DES test vectors) The plaintext “Now is the time for all ", represented as a
string of 8-hit hex characters (7-bit ASCII characters plusleading 0-bit), and encrypted us-
ing the DES key specified by the hex string K = 0123456789ABCDEF results in the
following plaintext/ciphertext:

P =4E6F772069732074 68652074696D6520 666F7220616C6C20
C = 3FA40E8A984D4815 6A271787AB8883F9 893D51ECAB563B53. (]

7.4.3 DES properties and strength

There are many desirable characteristics for block ciphers. These include: each bit of the
ciphertext should depend on all bitsof thekey and al bits of the plaintext; there should beno
statistical relationship evident between plaintext and ciphertext; altering any single plain-
text or key bit should alter each ciphertext bit with probability %; and altering a ciphertext
bit should result in an unpredictable change to the recovered plaintext block. Empirically,
DES satisfies these basic objectives. Some known properties and anomalies of DES are
given below.

(i) Complementation property

7.87 Fact Let E denote DES, and = the bitwise complement of z. Theny = Ex (z) implies
Yy = B (). That is, bitwise complementing both the key K and the plaintext x resultsin
complemented DES ciphertext.

Justification: Compare the first round output (see Figure 7.10) to(L, Ry) for the uncom-
plemented case. The combined effect of the plaintext and key being complemented results

TCL Exhibit 1009
Page 274

§7.4 DES 257

7.88

7.89

7.90

in the inputs to the XOR preceding the S-boxes (the expanded R;_; and subkey K;) both
being complemented; this double complementation cancels out in the XOR operation, re-
sulting in S-box inputs, and thus an overall result f(Rg, K1), as before. This quantity is
then XORed (Figure 7.9) to L (previously L), resultingin L, (rather than L;). Thesame
effect follows in the remaining rounds.

The complementation property isnormally of no helpto acryptanalystin known-plain-
text exhaustive key search. If an adversary has, for a fixed unknown key K, a chosen-
plaintext set of (z,y) data(Py, C1), (P1,C2), then Co = Ex (Py) impliesCo = Ex(Py).
Checking if the key K with plaintext P, yields either C; or C; now rules out two keys
with one encryption operation, thus reducing the expected number of keys required before
success from 25° to 254, Thisis not apractical concern.

(ii) Weak keys, semi-weak keys, and fixed points

If subkeys K; to K¢ are equal, then the reversed and original schedules create identical
subkeys: K7 = Ki6, K2 = K5, and so on. Consequently, the encryption and decryption
functions coincide. These are called weak keys (and also: palindromic keys).

Definition A DESweak keysakey K suchthat Ex (Ek (z)) = z foral z, i.e., defining
aninvolution. A pair of DES semi-wealkeysisapair (K1, K2) with Ex, (Ek, (z)) = .

Encryption with one key of a semi-weak pair operates as does decryption with the other.

Fact DES hasfour weak keys and six pairs of semi-weak keys.

Thefour DES weak keys arelisted in Table 7.5, along with corresponding 28-bit vari-
ables Cy and Dy of Algorithm 7.83; here {0}/ represents j repetitions of bit 0. Since Cy
and D, areall-zero or al-one bit vectors, and rotation of these has no effect, it follows that
all subkeys K; are equal and an involution results as noted above.

The six pairs of DES semi-weak keysarelisted in Table 7.6. Note their defining prop-
erty (Definition 7.88) occurs when subkeys K, through K4 of the first key, respectively,
equal subkeys K16 through K; of the second. Thisrequiresthat a 1-bit circular left-shift of
each of Cy and D, for thefirst 56-hit key resultsinthe (Cy, Dy) pair for the second 56-bit
key (see Note 7.84), and thereafter |eft-rotating C; and D; one or two bits for the first re-
sultsin the same value as right-rotating those for the second the same number of positions.
Thevaluesin Table 7.6 satisfy these conditions. Given any one 64-bit semi-weak key, its
paired semi-weak key may be obtained by splitting it into two halves and rotating each hal f
through 8 bits.

Fact Let E denote DES. For each of thefour DESweak keys K, thereexist 232 fixed points
of Ek,i.e, plaintextsz suchthat Ex (z) = x. Similarly, four of thetwelve semi-wesk keys
K each have 232 anti-fixed points, i.ez suchthat Ex (z) = .

The four semi-weak keys of Fact 7.90 arein the upper portion of Table 7.6. Theseare
called anti-palindromic keys, since for thesd(; = K14, K2 = K15, and so on.

(iii) DES is not a group

For afixed DES key K, DES defines a permutation from {0, 1}54 to {0, 1}64. The set of
DES keys defines 2°6 such (potentially different) permutations. If this set of permutations
was closed under composition (i.e., given any two keys K1, Ko, thereexistsathird key K3
suchthat Ex, (¢) = Exk, (Ek, (z)) for al z) then multiple encryption would be equivalent
to single encryption. Fact 7.91 states that thisis not the case for DES.

TCL Exhibit 1009
Page 275

258

Ch. 7 Block Ciphers

7.91

7.92

wesk key (hexadecima) | Co | Do |
0101 0101 0101 0101 | {0}*® | {0}*®
FEFE FEFE FEFE FEFE | {1}*® | {1}*®
1F1F 1F1F OEOE OEOE | {0}*® | {1}*®
EOEO EOEO F1F1 FiF1 | {1}*® | {0}*®

Table 7.5: Four DES weak keys.

| ¢co | Do | semi-weak key pair (hexadecimal) | & | Do |
{01}** | {01}** |01FE O1FE O1FE O1FE, FEO1 FEO1 FEO1 FEO1|{10}'*|{10}*
{01}* | {10}** | 1IFEO 1FEO OEF1 OEFl1, EO1F EO1F F10E F10E| {10} |{01}**
{01}*| {0}*® |01E0 01EO 01F1 01F1, E001 E001 F101 F101|{10}*| {0}*®
{01}**| {1}*®|1FFE 1FFE OEFE OEFE, FELF FELF FEOE FEOE|{10}'*| {1}*®
{0}*® | {01}** |011F 011F 010E 010E, 1F01 1F01 OEO1 OEO1| {0}*®|{10}*
{1}*® | {01}'* | EOFE EOFE F1FE F1FE, FEEO0 FEEO FEF1 FEF1| {1}*®|{10}**

Table 7.6: Six pairs of DES semi-weak keys (one pair per line).

Fact The set of 256 permutations defined by the 26 DES keys is not closed under func-
tional composition. Moreover, alower bound on the size of the group generated by com-
posing this set of permutationsis 10249,

The lower bound in Fact 7.91 isimportant with respect to using DES for multiple en-
cryption. If the group generated by functional composition was too small, then multiple
encryption would be |ess secure than otherwise believed.

(iv) Linear and differential cryptanalysis of DES

Assuming that obtaining enormous numbers of known-plaintext pairs is feasible, linear
cryptanalysis provides the most powerful attack on DES to date; it is not, however, con-
sidered athreat to DESin practical environments. Linear cryptanalysisisalso possiblein a
ciphertext-only environment if some underlying plaintext redundancy isknown (e.g., parity
bits or high-order O-bitsin ASCII characters).

Differential cryptanalysisis one of the most general cryptanalytic tools to date against
moderniterated block ciphers, including DES, Lucifer, and FEAL among many others. Itis,
however, primarily achosen-plaintext attack. Further information on linear and differential
cryptanalysisisgivenin §7.8.

Note (strength of DES) The complexity (se§7.2.1) of the best attacks currently known
against DESisgivenin Table 7.7; percentagesindicate success rate for specified attack pa-
rameters. The ‘processing complexity’ column provides only an estimate of the expected
cost (operation costs differ across the various attacks); for exhaustive search, the cost isin
DES operations. Regarding storage complexity, both linear and differential cryptanaysis
require only negligible storage in the sense that known or chosen texts can be processed
individually and discarded, but in a practical attack, storage for accumulated texts would
be required if ciphertext was acquired prior to commencing the attack.

TCL Exhibit 1009
Page 276

§7.5 FEAL 259

attack method data complexity storage processing
known | chosen | complexity complexity
exhaustive precomputation | — 1 256 1 (table lookup)
exhaustive search 1 — negligible 25
linear cryptanalysis 213 (85%) — for texts 213
238 (10%) — for texts 250
differential cryptanalysis | — 247 for texts 247
255 — for texts 255

Table 7.7: DES strength against various attacks.

7.93 Remark (practicality of attack models) To be meaningful, attack comparisons based on
different models (e.g., Table 7.7) must appropriately weigh the feasibility of extracting (ac-
quiring) enormous amounts of chosen (known) plaintexts, which is considerably more dif-
ficult to arrange than acomparable number of computing cycleson an adversary’sown ma-
chine. Exhaustive search with one known plaintext-ciphertext pair (for ciphertext-only, see
Example 7.28) and 25° DES operationsis significantly morefeasiblein practice (e.g., using
highly parallelized custom hardware) than linear cryptanalysis (L C) requiring 243 known
pairs.

While exhaustive search, linear, and differential cryptanalysisallow recovery of aDES
key and, therefore, the entire plaintext, the attacks of Note 7.8, which becomefeasible once
about 232 ciphertexts are available, may be more efficient if the goal is to recover only part
of the text.

7.5 FEAL

The Fast Data Encipherment Algorithm (FEAL) isafamily of algorithmswhich has played
acritica role in the development and refinement of various advanced cryptanalytic tech-
niques, including linear and differential cryptanalysis. FEAL-N maps 64-bit plaintext to
64-hit ciphertext blocks under a 64-bit secret key. Itisan N-round Feistel cipher similar to
DES (cf. Equations(7.4), (7.5)), but with afar smpler f-function, and augmented by initial
and final stages which XOR the two data halves as well as XOR subkeys directly onto the
data halves.

FEAL was designed for speed and simplicity, especially for software on 8-bit micro-
processors (e.g., chipcards). It uses byte-oriented operations (8-bit addition mod 256, 2-bit
|eft rotation, and X OR), avoids bit-permutations and table look-ups, and offers small code
size. Theinitial commercially proposed version with 4 rounds (FEAL-4), positioned as a
fast dternative to DES, was found to be considerably less secure than expected (see Ta-
ble 7.10). FEAL-8 was similarly found to offer less security than planned. FEAL-16 or
FEAL-32 may yet offer security comparableto DES, but throughput decreases as the num-
ber of roundsrises. Moreover, whereasthe speed of DESimplementationscan beimproved
through very large lookup tables, this appears more difficult for FEAL.

Algorithm 7.94 specifiesFEAL-8. The f-function f(A,Y") mapsan input pair of 32 x
16 bits to a 32-bit output. Within the f function, two byte-oriented data substitutions (S-
boxes) Sy and S; are each used twice; each maps a pair of 8-bit inputs to an 8-bit output

TCL Exhibit 1009
Page 277

260 Ch. 7 Block Ciphers

row column number
O [[2] [B[MBI 6]] (7] 8] [o] [[10] | [11] [(2] [[13] [[14] [[15]
1
O] T14] 4713] 1 2[a5] 1a] 8] 3] 10] 6] 12 5] 9] of 7
1] 0|15 7| 4| 14| 2| 13| 1|/ 10| 6| 12 11 9 5 3 8
2] 4| 1(14| 8| 13| 6| 2| 11| 15| 12 9 7 3] 10 5 0
3] ||15| 12| 8| 2| 4| 9| 1| 7| 5/ 11 3| 14 10 0 6| 13
Sa
0] ||15| 1| 8|14 6| 11| 3| 4| 9| 7 2| 13 12 0 5/ 10
[1] 3|13 4| 7|/ 15| 2| 8| 14| 12| O 1{ 10 6 9| 11 5
2] 0|14 7| 11| 10| 4| 13| 1|l 5| 8| 12 6 9 3 2| 15
[3] 13| 8| 10| 1 3(15| 4| 2| 11| 6 7| 12 0 5/ 14 9
S3
0] |10 O] 9|14|| 6| 3|15| 5 1| 13| 12 7 11 4 2 8
[1] 13| 7| 0| 9 3| 4| 6|10 2| 8 5 14 12 11 15 1
2] 13| 6| 4| 9 8(15| 3| Of 11| 1 2| 12 5/ 10| 14 7
[3] 111013 O 6 9| 8| 7 4| 15| 14 3 11 5 21 12
S
[0] 7113|114 3| 0| 6| 9| 10 1| 2 8 5 1| 12 4| 15
[1] 13| 8| 11| 5 6| 15| O 3 41 7 20 12 1| 10| 14 9
2] 10| 6| 9| Ofl 12| 11| 7| 13| 15| 1 3| 14 5 2 8 4
[3] 3(15| 0| 6|/ 10| 1| 13| 8 9| 4 5 11 12 7 2| 14
Ss
[0] 2112| 4| 1| 7|10| 11| 6| 8| 5 3| 15 13 0| 14 9
1] || 14| 12| 2|12| 4| 7|13| 1| 5| 0| 15| 10 3 9 8 6
2] 4| 2| 1|11| 10| 13| 7| 8| 15| 9| 12 5 6 3 o 14
3] 11| 8| 12| 7 1114 2| 13 6| 15 0 9 10 4 5 3
Se
[0] 12| 1|10]| 15 9| 2| 6| 8 0| 13 3 4 14 7 5/ 11
1] || 10| 15| 4| 2| 7(12| 9| 5| 6| 1| 13| 14 0] 11 3 8
2] 9|14| 15| 5 2| 8|12 3 7! 0 4| 10 1| 13 11 6
[3] 4| 3| 2|12 9(5|15| 10| 11| 14 1 7 6 0 8| 13
S7
[0] 4(11| 2| 14|/ 15| 0| 8| 13 3| 12 9 7 5/ 10 6 1
1] || 13| o 11| 7| 4| 9| 1| 10| 14| 3 5| 12 2| 15 8 6
2] 1| 4| 11|13|/ 12| 3| 7| 14| 10| 15 6 8 0 5 9 2
3] 6(11|13| 8 1| 4] 10| 7 9| 5 0| 15 14 2 3| 12
Ss
[0] 13| 2| 8| 4 6(15| 11| 1| 10| 9 3| 14 5 0| 12 7
1] 1|15| 13| 8|/ 10| 3| 7| 4| 12| 5 6| 11 0| 14 9 2
2] 7111 4| 1| 9|12| 14| 2| 0| 6| 10| 13 15 3 5 8
3] 2 114 7 41 10| 8| 13| 15| 12 9 0 3 5 6| 11

Table 7.8: DES S-boxes.

TCL Exhibit 1009
Page 278

§7.5 FEAL 261

(see Table 7.9). Sy and S; add asingle bit d € {0, 1} to 8-bit arguments = and y, ignore
the carry out of the top bit, and left rotate the result 2 bits (ROT2):

Sa(z,y) = ROT2(x + y + d mod 256) (7.6)

The key schedule uses a function fx (A, B) similar to the f-function (see Table 7.9; A;,
B;, Y, t;, and U; are 8-bit variables), mapping two 32-bit inputs to a 32-bit outpuit.

| [U« fAY) [U« fx(AB) |

t1 = (AoPA1)BYo | AodA:

ty = (A20A3)BY1 | A2BAs

Ui = || Si(t1,t2) S1(t1,t29Bo)
U2 = So(t27U1) S()(tz,U1EBBl)
Uo = So(Ao,U1) SO(AO7U1@BQ)
U3 = S1(A3,U2) Sl(A37U2@B3)

Table 7.9: OutputU = (Uy, Uy, Uz, Us) for FEAL functionsf, fx (Algorithm 7.94).

Astheoperations of 2-bit rotation and X OR are both linear, the only nonlinear elemen-
tary operationin FEAL is addition mod 256.

7.94 Algorithm Fast Data Encipherment Algorithm (FEAL-8)

INPUT: 64-bit plaintext M = my ...mgy; 64-bitkey K = k1 ... kes.
OUTPUT: 64-bit ciphertext block C = ¢; . . . cg4. (FOr decryption, see Note 7.96.)
1. (key schedule) Compute sixteen 16-bit subkeys K; from K using Algorithm 7.95.
2. DeﬂneML =mq---m3o, Mp = ms33 - -mg4.
3. (Lo, Ro) + (M, Mg) ® ((Ks, Ko), (K10,K11)). (XOR initia subkeys.)
4. Ry <+ Ro®Ly.
5. Forifrom1lto8do: L; + R;—1, R, + Li_1®f(Ri—1, K;—1). (Use Table 7.9 for
f(A, Y) with A = R,_1 = (A(), Al,AQ, A3) andY = K, 1= (Yo, Yl))
. Lg < LsDRs.
. (RS,LS) — (Rg,Lg) D ((Klg,Klg), (K14,K15)). (XOR final Sl,lbkeys.)
8. C + (Rs, Ls). (Notethe order of the fina blocksis exchanged.)

~N o

7.95 Algorithm FEAL-8 key schedule

INPUT: 64-bitkey K = ki ... k4.
OUTPUT: 256-hit extended key (16-bit subkeys K;, 0 < i < 15).
1. (initiaize) U2 « 0, U « k.. kgo, U < kaz... kea.
2. U (Uo, Uy, Us, Us) for 8-bit U;. Compute Ko, ... , K15 asi runsfrom1to 8:
@ U « fr(U2 u-Dgut=-3), (fx isdefined in Table 7.9, where A and
B denote 4-byte vectors (Ag, A1, A, As), (Bo, B1, B2, Bs).)
(b) Ko o= (Up,U1), Koi1 = (Uz,Us), UD < U.

7.96 Note (FEAL decryption) Decryptionmay be achieved using Algorithm 7.94 with the same
key K and ciphertext C' = (Rs, Ls) asthe plaintext input M, but with the key schedule
reversed. Morespecifically, subkeys((K12, K13), (K14, K15)) areused for theinitial XOR
(step 3), ((Ks, K9), (K10, K11)) for the finad XOR (step 7), and the round keys are used
from K7 back to K (step 5). Thisisdirectly analogousto decryptionfor DES (Note 7.84).

TCL Exhibit 1009
Page 279

262

Ch. 7 Block Ciphers

7.97

7.98

7.99

7.100

Note (FEAL-N) FEAL with 64-bit key can be generalizedto N-rounds, N even. N = 2%
isrecommended; x = 3 yields FEAL-8 (Algorithm 7.94). FEAL-N uses N + 8 sixteen-bit
subkeys: Ky, ..., Ky_1, respectively, inround i; Ky, ..., Kxy3 for the initiad XOR,;
and Knya4,... Kn47 for thefinad XOR. The key schedule of Algorithm 7.95 is directly
generalized to compute keys Ky through K7 asi runsfrom1to (N/2) + 4.

Note (FEAL-NX) Extending FEAL-N to use a 128-bit key resultsin FEAL-NX, with al-
tered key schedule as follows. The key is split into 64-bit halves (K1, Kg). K is parti-
tioned into 32-bit halves (K r1, Kg2). For1 < ¢ < (N/2) + 4, define Q; = Kri®Kgo
fori = 1mod3; Q; = Kgrifori = 2mod 3; and Q; = Kgo fori = 0 mod 3.
The second argument (U~ D @U(—3)) to fx in step 2aof Algorithm 7.95 is replaced by
U-DgUl-3)aQ,. For Kr = 0, FEAL-NX matches FEAL-N with K, as the 64-bit
FEAL-N key K.

Example (FEAL test vectors) For hex plaintexd/ = 00000000 00000000 and hex
key K = 01234567 89ABCDEF, Algorithm 7.95 generates subkeys (K, ..., K;) =
DF3BCA36 F17ClAEC 45A5B9C7 26EBAD25, (Kg,...,Ki5) = 8B2AECBY
AC509D4C22CD479B ABD50CB5. Algorithm 7.94 generates FEAL-8 ciphertext C' =
CEEF2C86 F2490752. For FEAL-16, the corresponding ciphertextis C’ = 3ADEOD2A
D84DOB6F; for FEAL-32, C” = 69BOFAE6 DDED6BOB. For 128-bit key (K, Kr)
with K = Kr = K as above, M has corresponding FEAL-8X ciphertext C" =
92BEB65D0OE9382FB. O

Note (strength of FEAL) Table7.10 givesvarious published attackson FEAL; LC and DC
denote linear and differential cryptanalysis, and times are on common personal computers
or workstations.

attack data complexity storage processing
method known | chosen complexity complexity
FEAL-4—-LC 5 — 30K bytes 6 minutes
FEAL-6—-LC 100 — 100K bytes 40 minutes
FEAL-8—-LC 224 10 minutes
FEAL-8-DC 27 pairs | 280K bytes 2 minutes
FEAL-16—-DC — 229 pairs 230 operations
FEAL-24—-DC — 245 pairs 246 operations
FEAL-32-DC — 266 pairs 287 operations

Table 7.10: FEAL strength against various attacks.

TCL Exhibit 1009
Page 280

§7.6 IDEA 263

7.6 IDEA

The cipher named IDEA (International Data Encryption Algorithm) encrypts 64-bit plain-
text to 64-bit ciphertext blocks, using a 128-hit input key K. Based in part on a novel
generalization of the Feistel structure, it consists of 8 computationally identical roundsfol-
lowed by an output transformation (see Figure 7.11). Round r usessix 16-bit subkeys K’ fr),
1 <4 < 6, totransform a64-bit input X into an output of four 16-bit blocks, which arein-
put to the next round. The round 8 output enters the output transformation, employing four
additional subkeys Ki(g), 1 < ¢ < 4 to producethefinal ciphertext Y = (Y1, Ya, Ys, Ya).
All subkeysare derived from K.

A dominant design concept in IDEA is mixing operations from three different alge-
braic groups of 2™ elements. The corresponding group operations on sub-blocks a and b of
bitlength n = 16 are bitwise XOR: a®b; additionmod 2™: (a+b) AND Ox FFFF, denoted
afb; and (modified) multiplication mod 2™ +1, with 0 € Z,» associated with 2™ € Zgn 4 1:

a®b (see Note 7.104).
plaintext (X1, X2, X3, X4)
X1 X2 subkeys Kf”) for round r X3 X4
16 16 16 16
) !
Kl ——
16
round 1
| >< |
* * * o round r
L[] L] L] L]
L4 L4 (] . (2 S T S 8)
output
K — -~ K K{—» K | transformation
16 16 16. 16
Y1 Y2 ciphertext (Y1, Y2, Y3, Ya) Ys Ya
@D bitwise XOR

FH addition mod 216
(® muitiplication mod 26 + 1 (with 0 interpreted as 2'6)

Figure 7.11: IDEA computation path.

TCL Exhibit 1009
Page 281

264 Ch. 7 Block Ciphers

7.101 Algorithm IDEA encryption

INPUT: 64-bit pIaintext M=mq... med, 128-bit key K=Fk... klzg.
OUTPUT: 64-bit ciphertext block Y = (Y7, Y2, Ys, Y4). (For decryption, see Note 7.103.)
1. (key schedule) Compute 16-bit subkeys K™, ... | K" for rounds1 < r < 8, and
K fg), .., K ig) for the output transformation, using Algorithm 7.102.
2. (Xl,Xg, X3,X4) «— (m1 ..My, M7 ... MM32, N33 ... 148, 149 . . .m64),
where X is a 16-bit data store.
3. For round r from 1 to 8 do:
@ X1« X10K", X, X,0K, Xo X, BK), X3+ XsB K.
(b) to Ké’r)Q(Xl@Xg), t1 Kér)@(to H (XQ@X4)), to 1o H .
(C) X1+ XqBt1, Xy + XyPts, a + XoPto, Xo +— X3Bt1, X3 < a.
4. (output transformation) Y7 < X@ng), Yy + X4®K£9), Yo + X3 EEKSQ), Y3 +
X, 8K,

7.102 Algorithm IDEA key schedule (encryption)

INPUT: 128-bitkey K = ky ... k12s.

OUTPUT: 52 16-hit key sub-blocks K Z.(T) for 8 rounds r and the output transformation.
1. Orderthesubkeys K" ... k" k@ . kP, k® . K® K. K.
2. Partition K into eight 16-bit blocks; assign these directly to the first 8 subkeys.

3. Do thefollowing until all 52 subkeys are assigned: cyclic shift K left 25 bits; parti-
tion the result into 8 blocks; assign these blocks to the next 8 subkeys.

The key schedule of Algorithm 7.102 may be converted into a table which lists, for
each of the 52 keys blocks, which 16 (consecutive) bits of the input key K formiit.

7.103 Note (IDEA decryption) Decryption is achieved using Algorithm 7.101 with the cipher-
text Y provided as input M, and the same encryption key K, but the following change
to the key schedule. First use K to derive al encryption subkeys K ,fr); from these com-
pute the decryption subkeys K ’E” per Table 7.11; then use K ’Er) inplaceof K i(’") in Algo-
rithm 7.101. In Table 7.11, — K; denotes the additive inverse (mod 219) of K;: the integer
u = (21 — K;) AND OXFFFF,0 < u < 2'6 — 1. K; ! denotesthe multiplicativeinverse
(mod 216 + 1) of K;, als0in {0,1,...,2'6 — 1}, derivable by the Extended Euclidean al-
gorithm (Algorithm 2.107), which on inputsa > b > 0 returnsintegers z and y such that
ar + by = ged(a,b). Usinga = 218 + 1and b = K;, theged is always 1 (except for
K; = 0, addressed separately) and thus K, = y, 0r 26 41+ y if y < 0. When K; = 0,
thisinput is mapped to 216 (sincetheinverseis defined by K;0K; * = 1; see Note 7.104)
and (26)~1 = 216 isthen defined to give K, * = 0.

7.104 Note (definition of®) InIDEA, a®b correspondsto a (modified) multiplication, modulo
2'6+1, of unsigned 16-bitintegersa and b, where(€ Zo:s isassociated with 2'6 € Z3:6
asfollows? if a = 0 orb = 0, replaceit by 2!6 (whichis= —1 mod 2'¢ + 1) prior to
modular multiplication; and if the result is 216, replace this by 0. Thus, ® maps two 16-
bit inputsto a 16-bit output. Pseudo-codefor © is as follows (cf. Note 7.105, for ordinary

2Thus the operands of ® are from a set of cardinality 2'6 (Z%16,.,) esare those of @ and EB.

TCL Exhibit 1009
Page 282

§7.6 IDEA 265

7.105

7.106

7.107

ondr | K0 | KD | KD | KD [KD [&]
(K{lo_r))_l _Kélo—'r‘) _K?(’IO—T) (Kilo—'r))_l Kég—'r) KéQ—T)
10—7)y — 10— 10—r 10—7)y — 9—r 9—r
a0t | Zicho-n | o | oy oo | o
(K£10—1‘)),1 _Kélo—r) _K?()IO—T) (Kilo—r)),l _ _

(V)
IN =3
.
© A
oo

ﬁ
I

Table 7.11: IDEA decryption subkey&” (" derived from encryption subkeyg ™.

multiplication mod 216 + 1), for ¢ a 32-bit unsigned integer: if (a = 0) » + (0x10001
— b) (since 216p = —b), elseif (b = 0) r < (0x10001 — a) (by similar reasoning), else
{c < ab; r < ((c AND OXFFFF) — (¢ >> 16));if (r < 0) r + (0x10001 + r)}, with
return value (r AND OxFFFF) inall 3 cases.

Note (implementingib mod 2™+ 1) Multiplication mod 216 + 1 may be efficiently imple-
mented asfollows, for 0 < a,b < 216 (cf. §14.3.4). Letc = ab = co - 232 + cy - 2% 4 ¢,
wherecg € {0,1}and 0 < cr, e < 2'6. To computec’ = ¢ mod (216 + 1), first obtain
cr, and cx by standard multiplication. For a = b = 216, notethat ¢y = 1, ¢, = cg = 0,
andc’ = (—1)(—1) = 1,since2!6 = —1 mod (26 +1); otherwise, co = 0. Consequently,
d =cp—cy+ecoifer > ey, whiled =cp —cy + (216 + 1) if ¢, < ey (sincethen
—216 < ¢p —cy < 0).

Example (IDEA testvectors) Sampledatafor IDEA encryption of 64-bit plaintexd/ us-
ing 128-bitkey K isgiveninTable7.12. All entriesare 16-bit valuesdisplayed in hexadeci-
mal. Table 7.13 details the corresponding decryption of the resulting 64-bit ciphertext C

under the same key K. O

128-bitkey K = (1,2,3,4,5,6,7,8) 64-bit plaintext M = (0, 1,2, 3)
rl| &7 k7| kP KD KV KV x| X] X X
1|[0001 [0002 | 0003 | 0004 | 0005 | 0006 [[00f0 | 00F5 | 010a | 0105
2 || 0007 | 0008 | 0400 | 0600 | 0800 | 0200 || 222f | 21b5 | f 45e | €959
3 || 0c00 | 0e00 | 1000 | 0200 | 0010 | 0014 || Of 86 | 39be | 8ee8 | 1173
4 || 0018 | 001c | 0020 | 0004 | 0008 | 000c || 57df | ac58 | c65b | badd
5 || 2800 | 3000 | 3800 | 4000 | 0800 | 1000 || 8e81 | badc | f77f | 3ada
6 || 1800 | 2000 | 0070 | 0080 | 0010 | 0020 || 6942 | 9409 | e21b | 1c64
7 || 0030 | 0040 | 0050 | 0060 | 0000 | 2000 || 99d0 | c7f6 | 5331 | 620e
8 || 4000 | 6000 | 8000 | a000 | cO00 | €001 || 0a24 | 0098 | ec6b | 4925
9 || 0080 | 00cO | 0100 | 0140 | — | —|[11fb | ed2b | 0198 | 6de5

Table 7.12: IDEA encryption sample: round subkeys and cipher{e&t X», X3, X4).

Note (security of IDEA) For the full 8-round IDEA, other than attacks on weak keys (see
page 279), no published attack is better than exhaustive search on the 128-bit key space.
The security of IDEA currently appears bounded only by the weaknesses arising from the
relatively small (compared to its keylength) blocklength of 64 bits.

TCL Exhibit 1009
Page 283

266 Ch. 7 Block Ciphers

K =(1,2,3,4,5,6,7,8) C = (11f b,ed2b,0198,6de5)
r K/(lr) K/(2r) K/:(gr) K/Y) K/gr) K/ér) Xl X2 X3 X4
1|feOl |ff40 | ffOO | 659a | cO00 | e001 || d98d | d331 | 27f6 | 82h8
2| fffd | 8000 | a000 | cccc | 0000 | 2000 || bc4d | e26b | 9449 | a576
3| ab56 | ffbO | ffcO | 52ab | 0010 | 0020 || Oaa4 | f 7ef | da9c | 24e3
4| 554b | ff90 | e000 | fe01 | 0800 | 1000 || ca46 | fe5b | dc58 | 116d
51332d | ¢c800 | dOOO | fffd | 0008 | 000c || 748f | 8f 08 | 39da | 45cc
6| 4aab | ffeO | ffed | cO01 | 0010 | 0014 || 3266 | 045e | 2f b5 | b02e
7| aa9%96 | f000 | f200 | ff81 | 0800 | 0a00 || 0690 | 050a | 00fd | 1dfa
8| 4925 | fc00 | fff8 | 552b | 0005 | 0006 || 0000 | 0005 | 0003 | 000c
9| 0001 |fffe |fffd | c0O01 — — || 0000 | 0001 | 0002 | 0003

Table 7.13: IDEA decryption sample: round subkeys and varialfl&s, X», X3, X4).

7.7 SAFER, RC5, and other block ciphers

7.7.1 SAFER

SAFER K-64 (Secure And Fast Encryption Routine, with 64-bit key) is an iterated block
cipher with 64-bit plaintext and ciphertext blocks. It consists of r identical roundsfollowed
by an output transformation. The original recommendation of 6 rounds was followed by a
recommendation to adopt aslightly modified key schedule (yielding SAFER SK-64, which
should be used rather than SAFER K-64 — see Note 7.110) and to use 8 rounds (maximum
r = 10). Both key schedules expand the 64-bit external key into 2r + 1 subkeys each of 64-
bits (two for each round plus one for the output transformation). SAFER consists entirely
of simple byte operations, aside from byte-rotations in the key schedule; it is thus suitable
for processors with small word size such as chipcards (cf. FEAL).

Details of SAFER K-64 are given in Algorithm 7.108 and Figure 7.12 (see also page
280 regarding SAFER K-128 and SAFER SK-128). The X OR-addition stage beginning
each round (identical to the output transformation) XORs bytes 1, 4, 5, and 8 of the (first)
round subkey with the respectiveround input bytes, and respectively adds (mod 256) there-
maining 4 subkey bytesto the others. The XOR and addition (mod 256) operationsareinter-
changed in the subsequent addition-X OR stage. The S-boxes are an invertible byte-to-byte
substitution using onefixed 8-bit bijection (see Note 7.111). A linear transformation f (the
Pseudo-Hadamard Transform) usedin the 3-level linear layer was specially constructed fol
rapid diffusion. Theintroduction of additivekey biasesin the key schedul e eliminatesweak
keys(cf. DES, IDEA). In contrast to Feistel-like and many other ciphers, in SAFER the op-
erationsused for encryption differ from thosefor decryption (see Note 7.113). SAFER may
be viewed as an SP network (Definition 7.79).

Algorithm 7.108 uses the following definitions (L, R denote |eft, right 8-bit inputs):

1. f(L,R) = (2L + R, L+ R). Addition hereis mod 256 (also denoted by);
2. tables S and Sy, and the constant table for key biase$B;[j] as per Note 7.111.

TCL Exhibit 1009
Page 284

§7.7 SAFER, RC5, and other block ciphers

267

- Xg 64-bit plaintext

'S
<4

T 4_61 Kiq1,....8]
S

-

-

-
N e
N
4 - <
A -

SV \ \ \ \ \ \ \
round 1 H o) o) H H o) o) H %Kzl“ ----- 8]
\ \ \ \ \ \ \ \
IR
IR
s s s

round i
(2<i<r)

- Kj,41[1,...,8]

54—@47 o0 -«

L]

L]

L]

output i
transformation ?
Y: 64-bit ciphertext

P bitwise XOR
FH addition mod 28
flz,y) = (2zBy,zBy)

Figure 7.12: SAFER K-64 computation path founds).

TCL Exhibit 1009
Page 285

268 Ch. 7 Block Ciphers

7.108 Algorithm SAFER K-64 encryption (r rounds)

INPUT: r, 6 <r < 10; 64-bit plaintext M = my ---mgg and key K = ky - - - k4.
OUTPUT: 64-bit ciphertext block Y = (Y1, ..., Ys). (For decryption, see Note 7.113.)
1. Compute 64-bit subkeys K, . .. , Ko2,.41 by Algorithm 7.109 with inputs K and .
2. (X1,X2,...,Xg) < (my---mg, mg---mie, ..., M57- " Me4).
3. For i from 1to r do: (XOR-addition, S-box, addition-X OR, and 3 linear layers)
(@ Forj=1,4,5,8: X; < X; ® Ka;_1[j].
Forj =2,3,6,7: X <—X B Ko;_1[4].
(b) Forj =1,4,5,8: X <—S[il Forj =2,3,6,7 X; < Sinv[X;].
(c) Forj=1,4,5,8: XJ<—X EEKQZ[] Forj = 2,3, 6 7. X; +— X; ® Kalj].
(d) Forj =1,3,5,7: (X;, X;11) ¢ F(X;, X;1).
(e) (3/17Y2) <~ f(X17X3)! (Y3,)/4) < f(X57X7)1
(Y5, Ys) « f(X2, X4), (Y7,Y3) = f(Xe, Xs).
For j from1to8do: X; < Yj.
(f) (Y1,Y2) « f(X1, X3), (Y3,Ya) « f(X5, X7),
(}/57Y6) <~ f(X27X4)! (Y7>)/8) < f(X67X8)-
For j from1to 8 do: X; < Yj. (Thismimicsthe previous step.)
4. (output transformation):
Forj =1,4,5,8:Y; + X; ® Ko y1[j]. Forj = 2,3,6,7: Y; + X; B K 41[j].

7.109 Algorithm SAFER K-64 key schedule

INPUT: 64-bitkey K = kj - - - kg4; number of roundsr.
OUTPUT: 64-bit subkeys K71, . .., Ka-1+1. K;[j] isbyte j of K; (numberedleft to right).
1. Let RJ[¢] denote an 8-bit data store and let B;[j] denote byte j of B; (Note 7.111).
2. (R[1], R[2],... ,R[8]) = (k1-- ks, ko k16, ..., k57" Kea).
3. (K1[1], K1[2],..., K1[8]) «+ (R[1], R[2],..., R[8]).
4. For i from2to 2r 4 1 do: (rotate key bytes |eft 3 bits, then add in the bias)
(@ Forjfrom1lto8do: R[j] + (R[j] «+ 3).
(b) For j from1to8do: K;[j] + R[j] B B;[j]. (See Note 7.110.)

7.110 Note (SAFER SK-64 — strengthened key schedule) An improved key schedule for Algo-
rithm 7.108, resulting in SAFER SK-64, involves three changes as follows. (i) After ini-
tializing the R[¢] in step 1 of Algorithm 7.109, set R[9] < R[1]®R[2]®--- ®R[8]. (ii)
Change the upper bound on the loop index in step 4afrom 8 to 9. (iii) Replace the iterated
lineinstep4bby: K;[j] < R[((i +j —2) mod 9) + 1] B B;[j]. Thus, key bytes1,... ,8
of R[-] areused for K;; bytes2,... ,9for K»; bytes3,...9,1 for K3, etc. Hereand origi-
nally, B denotes addition mod 256. No attack against SAFER SK-64 better than exhaustive
key search is known.

7.111 Note (S-boxes and key biases in SAFER) The S-box, inverse S-box, and key biasesfor Al-
gorithm 7.108 are constant tables as follows. g + 45. S[0] < 1, Sinv[1] « 0. for ¢ from
1to255do: t < g - S[i — 1] mod 257, S[i] < t, Sinv[t] < 4. Findly, S[128] « 0,
Sinv[0] <= 128. (Since g generates Z3,, Si] isabijectionon {0, 1,. .. ,255}. (Note that
g'%® = 256 (mod 257), and associating 256 with 0 makes S a mapping with 8-bit input
and output.) The additive key biaseare 8-bit constants used in the key schedule (Algo-
rithm 7.109), intended to behave as random numbers, and defined B, [j] = S[S[9:+j]] for i
from2to2r+1and;j from1to8. Forexample: B, = (22,115,59, 30,142,112,189,134)
and Bz = (143, 41,221, 4,128, 222, 231, 49).

TCL Exhibit 1009
Page 286

§7.7 SAFER, RC5, and other block ciphers 269

7.112 Remark (S-box mapping) The S-box of Note 7.111 is based on the functio® (z) = ¢~
mod 257 usingaprimitiveelement g = 45 € Zss7. Thismappingisnonlinear with respect
to both Z5; arithmetic and the vector space of 8-tuples over F» under the XOR operation.
Theinverse S-box is based on the base-g logarithm function.

7.113 Note (SAFER K-64 decryption) For decryption of Algorithm 7.108, the same kel and
subkeys K; are used as for encryption. Each encryption step is undone in reverse order,
from last to first. Begin with an input transformation (X OR-subtraction stage) with key
K5,-1 toundotheoutput transformation, replacing modular addition with subtraction. Fol-
low with r decryption rounds using keys K, through K (two-per-round), inverting each
round in turn. Each starts with a 3-stage inverse linear layer using fin (L, R) = (L —
R, 2R — L), with subtraction here mod 256, in a 3-step sequence defined as follows (to
invert the byte-permutati ons between encryption stages):

Level 1 (forj =1,3,5, 7) (Xj, Xj+1) — finv(Xja Xj+1).

Levels2 and 3 (each): (Y1,Y2) ¢+ finv (X1, X5), (Y3,Ys) < finv (X2, X6),

(Y5,Ys) < finv(X3,X7), (Y7,Y3) < finv(X4, X3g); for j from1to8do: X; < Yj.

A subtraction-X OR stage follows (replace modul ar addition with subtraction), then anin-
verse substitution stage (exchange S and S 1), and an X OR-subtraction stage.

7.114 Example (SAFER testvectors) Using 6-round SAFER K-64 (Algorithm 7.108) on the 64-
bit plaintext M = (1,2,3,4,5,6,7,8) withthekey K = (8,7,6,5,4,3,2,1) resultsin
the ciphertext C' = (200, 242, 156, 221, 135, 120, 62, 217), written as 8 bytes in decimal.
Using 6-round SAFER SK-64 (Note 7.110) on the plaintext M above with the key K =
(1,2,3,4,5,6,7,8) resultsin the ciphertext C' = (95, 206, 155, 162, 5,132, 56,199). O

7.7.2 RC5

The RC5 block cipher has aword-oriented architecturefor variableword sizesw = 16, 32,
or 64 hits. 1t hasan extremely compact description, and is suitablefor hardware or software.
The number of roundsr and the key byte-length b are also variable. Itis successively more
completely identified as RC5—w, RC5—w/r, and RC5—w/r/b. RC5-32/12/16 is considered
acommon choice of parameters; » = 12 roundsare recommended for RC5-32, andr = 16
for RC5-64.

Algorithm 7.115 specifies RC5. Plaintext and ciphertext are blocks of bitlength 2w.
Each of r rounds updates both w-bit data halves, using 2 subkeysin aninput transformation
and 2 morefor each round. The only operationsused, al on w-bit words, are addition mod
2% (H), XOR (), and rotations (left «<— and right —). The XOR operation islinear, while
the addition may be considered nonlinear depending on the metric for linearity. The data-
dependent rotations featured in RC5 are the main nonlinear operation used: x «— y denotes
cyclically shifting aw-bit word left y bits; the rotation-count y may be reduced mod w (the
low-order lg(w) bits of y suffice). The key schedule expands a key of b bytesinto 27 + 2
subkeys K; of w bits each. Regarding packing/unpacking bytes into words, the byte-order
is little-endian: forw = 32, the first plaintext byte goes in the low-order end of A, the
fourthin A’s high-order end, thefifth in B’slow order end, and so on.

TCL Exhibit 1009
Page 287

270 Ch. 7 Block Ciphers

7.115 Algorithm RC5 encryption (w-bit wordsize, r rounds, b-byte key)
INPUT: 2w-bit plaintext M = (A, B); r; key K = K[0]... K[b—1].
OUTPUT: 2w-hit ciphertext C. (For decryption, see Note 7.117.)
1. Compute 2r + 2 subkeys Ko, ... , Ko,4+1 by Algorithm 7.116 from inputs K and r.
2. A+ AB Ky, B+ BH K;. (Useaddition modulo 2*.)
3. Forifrom1ltordo: A<+ ((A®B) < B)BH Ky, B+ ((B®A) +> A)BK3;11.
4. TheoutputisC <+ (A, B).

7.116 Algorithm RC5 key schedule

INPUT: word bitsize w; number of roundsr; b-bytekey K[0]... K[b — 1].
OUTPUT: subkeys Ky, . .. , K211 (Where K; isw hits).

1. Letu = w/8 (number of bytes per word) and ¢ = [b/u] (number of words K fills).
Pad K on the right with zero-bytes if necessary to achieve a byte-count divisible by
u(ie, K[j] < 0forb<j<c-u—1). ForifromOtoc—1do: L; « %, 2%
Kl[i-u+ j] (i.e, fill L; low-order to high-order byte using each byte of K[~fonce).

2. Ko+ P,; forifromlto2r+1do: K; + K; 1 BQ,. (UseTable7.14.)

3.1+0,7+0,A« 0,B <+ 0,t <« max(c,2r + 2). For s from 1 to 3¢ do:

(@ Ki+ (K;BABB) <3, A« K;, i < i+ 1mod (2r +2).
(b) Lj < (L, BABB) <> (ABB), B+ Lj, j < j+1modec.
4. Theoutputis Ko, K1, ... ,Kor11. (The L; are not used.)

7.117 Note (RC5 decryption) Decryption uses the Algorithm 7.115 subkeys, operating on ci-
phertext C' = (A, B) as follows (subtraction is mod 2, denoted 5). For ¢ from r down
toldo B «+ ((BH Kait1) — A)®A, A + (AB Ky;) — B)®B. Finadly M +
(AB Ky, BEK)).

w : 16 32 64
P, : B7El | B7TE15163 | B7E15162 8AED2A6B
Qu :

9E37 | 9E3779B9 | 9E3779B9 7F4A7C15

Table 7.14: RC5 magic constants (given as hex strings).

7.118 Example (RC5-32/12/16 test vectors) For the hexadecimal plaintedd = 65C178B2
84D197CCand key K =5269F149 D41BA015 2497574D 7F153125, RC5with
w = 32,r = 12, and b = 16 generates ciphertext C = EB44E415 DA319824. O

7.7.3 Other block ciphers

LOKI'91 (and earlier, LOKI’ 89) was proposed asa DES aternativewith alarger 64-bit key,
amatching 64-bit blocksize, and 16 rounds. It differsfrom DES mainly in key-scheduling
and the f-function. The f-function of each round uses four identical 12-to-8 bit S-boxes,

TCL Exhibit 1009
Page 288

§7.8 Notes and further references 271

4 input bits of which select one of 16 functions, each of which implements exponentia-
tion with afixed exponent in a different representation of GF(28). While no significant ex-
ploitable weaknesses have been found in LOKI’91 when used for encryption, related-key
attacks (see page 281) are viewed as a certificational weakness.

Khufu and Khafre are DES-like ciphers which were proposed as fast software-oriented
alternatives to DES. They have 64-bit blocks, 8 x 32 bit S-boxes, and a variable number
of rounds (typicaly 16, 24, or 32). Khufu keys may be up to 512 bits. Khafre keys have
bitlength that is a multiple of 64 (64 and 128-bit keys are typical); 64 key bits are XORed
onto the data block before thefirst and thereafter following every 8 rounds. WhereasaDES
round involves eight 6-to-4 bit S-boxes, one round of Khufu involves a single 8-to-32 hit
table look-up, with a different S-box for every 8 rounds. The S-boxes are generated pseu-
dorandomly from the user key. Khafre uses fixed S-boxes generated pseudorandomly from
aninitial S-box constructed from random numbers published by the RAND corporationin
1955. Under the best currently known attacks, 16-round Khufu and 24-round Khafre are
each more difficult to break than DES.

7.8 Notes and further references

§7.1

§7.2

The extensive and particularly readable survey by Diffie and Hellman [347], providing a
broad introduction to cryptography especially noteworthy for its treatment of Hagelin and
rotor machines and the valuable annotated bibliography circa 1979, is a source for much
of the materia in §7.2, §7.3, and §7.4 herein. Aside from the appearance of DES [396] in
the mid 1970s and FEAL [884] later in the 1980s, prior to 1990 few fully-specified seri-
ous symmetric block cipher proposals were widely available or discussed. (See Chapter 15
for Pohlig and Hellman's 1978 discrete exponentiation cipher.) With the increasing feasi-
bility of exhaustive search on 56-bit DES keys, the period 1990-1995 resulted in a large
number of proposals, beginning with PES [728], the preliminary version of IDEA [730].
The Fast Software Encryptioworkshops (Cambridge, U.K., Dec. 1993; Leuven, Belgium,
Dec. 1994; and again Cambridge, Feb. 1996) were amajor stimulusand forum for new pro-
posals.

Themost significant cryptanal ytic advancesover the 1990-1995 period were M atsui’slinear
cryptanalysis[796, 795], and the differential cryptanalysisof Biham and Shamir [138] (see
also [134, 139]). Extensions of these included the differential-linear analysis by Langford
and Hellman [741], and thetruncated differential analysisof Knudsen [686]. For additional
background on linear cryptanalysis, see Biham [132]; see also Matsui and Yamagishi [798]
for a preliminary version of the method. Additional background on differential cryptanal-
ysisis provided by many authorsincluding Lai [726], Lai, Massey, and Murphy [730], and
Coppersmith[271]; athough more efficient 6-round attacks are known, Stinson [1178] pro-
vides detail ed examples of attacks on 3-round and 6-round DES. Regarding both linear and
differential cryptanalysis, see also Knudsen [684] and Kaliski and Yin [656].

Lai [726, Chapter 2] providesan excellent conciseintroductionto block ciphers, including a
lucid discussion of design principles(recommendedfor all block cipher designers). Regard-
ing text dictionary and matching ciphertext attacks (Note 7.8), see Coppersmith, Johnson,
and Matyas [278]. Rivest and Sherman [1061] provide a unified framework for random-
ized encryption (Definition 7.3); acommon example is the use of random “salt” appended

TCL Exhibit 1009
Page 289

272 Ch. 7 Block Ciphers

to passwords prior to password encryption in some operating systems (§10.2.3). Fact 7.9is
dueto Shannon [1121], whose contributions are many (see below).

The four basic modes of operation (including k-bit OFB feedback) were originally defined
specifically for DESin 1980 by FIPS81[398] andin 1983 by ANSI X3.106[34], while SO
8732[578] and ISO/IEC 10116 [604], respectively, defined these modes for general 64-bit
and general n-bit block ciphers, mandating n-bit OFB feedback (see @l so Chapter 15). Bras-
sard[192] givesaconcise summary of modesof operation; Daviesand Price[308] providea
comprehensivediscussion, including OFB cycling (Note 7.24; see also Jueneman [643] and
Davies and Parkin [307]), and a method for encrypting incomplete CBC final blocks with-
out data expansion, which isimportant if plaintext must be encrypted and returned into its
original store. See Voydock and Kent [1225] for additional requirementson I'V's. Recom-
mendingr = s for maximum strength, 1SO/IEC 10116 [604] specifiesthe CFB variation of
Example 7.19, and provides extensive discussion of properties of the various modes. The
counter mode (Example 7.23) was suggested by Diffie and Hellman [347].

The 1977 exhaustive DES key search machine (Example 7.27) proposed by Diffieand Hell-
man [346] contained 106 DES chips, with estimated cost US$20 million (1977 technol ogy)
and 12-hour expected search time; Diffie later revised the estimate upwards one order of
magnitudein aBNR Inc. report (US$50 million machine, 2-day expected search time, 1980
technology). Diffie and Hellman noted the feasibility of a ciphertext-only attack (Exam-
ple 7.28), and that attempting to preclude exhaustive search by changing DES keys more
frequently, at best, doubles the expected search time before success.

Subsequently Wiener [1241] provided agate-level designfor aUS$1 million machine (1993
technology) using 57 600 DES chips with expected success in 3.5 hours. Each chip con-
tains 16 pipelined stages, each stage completing in one clock tick at 50 MHz; a chip with
full pipeline completes akey test every 20 nanoseconds, providing a machine 57 600 x 50
times faster than the 1142 years noted in FIPS 74 [397] as the time required to check 2°%°
keysif onekey can betested each microsecond. Comparablekey search machines of equiv-
alent cost by Eberle [362] and Wayner [1231] are, respectively, 55 and 200 times slower,
although the former does not require a chip design, and the latter uses a general-purpose
machine. Wiener also noted adaptations of the ECB known-plaintext attack to other 64-bit
modes (CBC, OFB, CFB) and 1-hit and 8-bit CFB.

Even and Goldreich [376] discuss the unicity distance of cascade ciphers under known-
plaintext attack (Fact 7.35), present a generalized time-memory meet-in-the-middle trade-
off (Note 7.38), and give severa other concise results on cascades, including that under
reasonabl e assumptions, the number of permutations realizable by a cascade of L random
cipher stagesis, with high probability, 2.

Diffie and Hellman [346] noted the meet-in-the-middle attack on double encryption (Fact
7.33), motivating their recommendation that multiple encipherment, if used, should be at
least three-fold; Hoffman [558] credits them with suggesting E-E-E triple encryption with
three independent keys. Merkle's June 1979 thesis [850] explains the attack on two-key
triple-encryption of Fact 7.39 (see also Merkle and Hellman [858]), and after noting Tuch-
man’sproposal of two-key E-D-E tripleencryptionin aJune 1978 conferencetalk (National
Computer Conference, Anaheim, CA; see also [1199]), recommended that E-D-E be used
with three independent keys: Ex3(Exs(Ex1(x))). The two-key E-D-E idea, adopted in
ANSI X9.17[37] and SO 8732 [578], was reportedly conceived circaApril 1977 by Tuch-
man's colleagues, Matyas and Meyer. The attack of Fact 7.40 is due to van Oorschot and
Wiener [1206]. See Coppersmith, Johnson, and Matyas [278] for a proposed construction
for atriple-DES agorithm. Other techniques intended to extend the strength of DES in-

TCL Exhibit 1009
Page 290

§7.8 Notes and further references 273

§7.3

cludethe DESXproposal of Rivest asanalyzed by Kilian and Rogaway [672], and the work
of Biham and Biryukov [133].

Hellman [549] proposesatime-memory tradeoff for exhaustive key search on acipher with
N = 2™ ciphertextsrequiring achosen-plaintext attack, O(N2/3) timeand O(N?/3) space
after an O(IV) precomputation; search time can be reduced somewhat by use of Rivest's
suggestion of distinguished points (see Denning [326, p.100]). Kusuda and Matsumoto
[722] recently extended this analysis. Fiat and Naor [393] pursue time-memory tradeoffs
for more general functions. Amirazizi and Hellman [25] note that time-memory tradeoff
with constant time-memory product offers no asymptotic cost advantage over exhaustive
search; they examine tradeoffs between time, memory, and paralel processing, and using
standard parallelization techniques, propose under a simplified model a search machine ar-
chitecture for which doubling the machine budget (cost) increases the solution rate four-
fold. Thisapproach may be applied to exhaustive key search on double-encryption, as can
the parallel collision search technique of van Oorschot and Wiener [1207, 1208]; see aso
Quisquater and Delescaille [1017, 1018].

Regarding Note 7.41, see Biham [131] (and earlier [130]) as well as Coppersmith, John-
son, and Matyas[278]. Biham'sanalysison DES and FEAL showsthat, in many cases, the
use of intermediate data as feedback into an intermediate stage reduces security. 15 years
earlier, reflecting on his chosen-plaintext attack on two-key triple-encryption, Merkle [850,
p.149] noted “multiple encryption with any cryptographic system is liable to be much less
secure than a system designed originally for the longer key”.

Maurer and Massey [822] formalize Fact 7.42, where “break” means recovering plaintext
from ciphertext (under aknown-plaintext attack) or recoveringthekey; theresultshold also
for chosen-plaintext and chosen-ciphertext attack. They illustrate, however, that the ear-
lier result and commonly-held belief proven by Even and Goldreich [376] — that a cascade
is as strong as any of its component ciphers — requires the important qualifying (and non-
practical) assumption that an adversary will not exploit statistics of the underlying plaintext;
thus, the intuitive result is untrue for most practical ciphertext-only attacks.

Kahn [648] is the definitive historical reference for classica ciphers and machines up to
1967, including much of §7.3 and the notes below. The selection of classical ciphers pre-
sented largely follows Shannon’slucid 1949 paper [1121]. Standard referencesfor classical
cryptanalysisinclude Friedman[423], Gaines[436], and Sinkov [1152]. Morerecent books
providing expository material on classical ciphers, machines, and cryptanalytic examples
include Beker and Piper [84], Meyer and Matyas [859], Denning [326], and Davies and
Price [308].

Polyalphabetic ciphers were invented circa 1467 by the Florentine architect Alberti, who
devised a cipher disk with alarger outer and smaller inner wheel, respectively indexed by
plaintext and ciphertext characters. Letter alignments defined a simple substitution, modi-
fied by rotating the disk after enciphering afew words. Thefirst printed book on cryptogra-
phy, Polygraphia, written in 1508 by the German monk Trithemius and published in 1518,
containsthefirst tableau— a square table on 24 characterslisting al shift substitutionsfor a
fixed ordering of plaintext al phabet characters. Tableau rowswere used sequentially to sub-
gtitute one plaintext character each for 24 |etters, where-after the same tableau or one based
on adifferent al phabet ordering was used. In 1553 Belaso (from Lombardy) suggested us-
ing an easily changed key (and key-phrases as memory aids) to define the fixed al phabetic
(shift) substitutionsin a polyal phabetic substitution. The 1563 book of Porta (from Naples)
noted the ordering of tableau letters may define arbitrary substitutions (vs. simply shifted

TCL Exhibit 1009
Page 291

274 Ch. 7 Block Ciphers

aphabets).

Various polyal phabetic auto-key ciphers, wherein the key changes with each message (the
alteration depending on the message), were explored in the 16th century, most significantly
by the Frenchman B. de Vigenére. His 1586 book Traicté des Chiffreproposed the com-
bined use of amixed tableau (mixed al phabet on both the tableau top and side) and an auto-
keying technique (cf. Example 7.61). A single character served as a priming key to select
the tableau row for the first character substitution, where-after the ith plaintext character
determined the al phabet (tableau row) for substituting the next. The far less secure smple
Vigenere cipher (Definition 7.53) isincorrectly attributed to Vigenere.

The Playfair cipher (Example 7.51), popularized by L. Playfair in England circa 1854 and
invented by the British scientist C. Wheatstone, was used asaBritish field cipher [648, p.6].
J. Mauborgne (see aso the Vernam and PURPLE ciphers below) is credited in 1914 with
the first known solution of this digram cipher.

The Jefferson cylinder was designed by American statesman T. Jefferson, circa 1790-1800.
In 1817, fellow American D. Wadsworth introduced the principle of plaintext and cipher-
text a phabetsof different lengths. Hisdisk (cf. Alberti above) implemented acipher similar
to Trithemius' polyal phabetic substitution, but wherein the various al phabets were brought
into play irregularly in a plaintext-dependent manner, foreshadowing both the polyal pha-
betic ciphers of later 20th century rotor machines, and the concept of chaining. The inner
disk had 26 letterswhile the outer had an additional 7 digits; onefull revolution of thelarger
caused the smaller to advance 7 charactersinto its second revolution. Thedriving disk was
awaysturned in the same clockwise sense; when the character reveal ed through an aperture
inthe plaintext disk matched the next plaintext character, that visible through a correspond-
ing ciphertext aperture indicated the resulting ciphertext. In 1867, Wheatstone displayed
an independently devised similar device thereafter called the Wheatstone disc, receiving
greater attention although less secure (having disks of respectively 26 and 27 characters,
the extra character a plaintext space).

Vernam [1222] recorded hisideafor telegraph encryptionin 1917; apatent filed in Septem-
ber 1918 wasissued July 1919. Vernam'’s device combined astream of plaintext (5-bit Bau-
dot coded) characters, viaX OR, with akeystream of 5-bit (key) values, resultingin the Ver-
nam cipher(aterm often used for related techniques). This, thefirst polyal phabetic substi-
tution automated using el ectrical impul ses, had period equal to thelength of the key stream;
each 5-hit key value determined one of 32 fixed mono-al phabetic substitutions. Credit for
the actual one-time systemoesto J. Mauborgne (U.S. Army) who, after seeing Vernam’s
device with arepeated tape, realized that use of a random, non-repeated key improved se-
curity. While Vernam’s device was a commercia failure, a related German system engi-
neered by W. Kunze, R. Schauffler, and E. Langlotz was put into practice circa 1921-1923
for German diplomatic communications; their encryption system, which involved manu-
aly adding a key string to decimal-coded plaintext, was secured by using as the numerical
key a random non-repeating decimal digit stream — the original one-time pad. Pads of 50
numbered sheetswere used, each with 48 five-digit groups; no padswere repeated aside for
oneidentical pad for a communicating partner, and no sheet was to be used twice; sheets
were destroyed once used. The Vernam cipher proper, when used as a one-time system, in-
volvesonly 32 alphabets, but provides more security than rotor machineswith afar greater
number of alphabets because the latter eventually repeat, whereasthereistotal randomness
(for each plaintext character) in selecting among the 32 Vernam alphabets.

The matrix cipher of Example 7.52 was proposed in 1929 by Hill [557], providing a practi-
cal method for polygraphi c substitution, albeit alinear transformati on susceptibleto known-

TCL Exhibit 1009
Page 292

§7.8 Notes and further references 275

plaintext attack. Hill also recognized that using aninvolution asthe encryption mapping al-
lowed the same function to provide decryption. Recent contributions on homophonic sub-
stitution include Ginther [529] and Jendal, Kuhn, and Massey [636].

Among the unrivalled cryptanal ytic contributions of the Russian-born American Friedman
is his 1920 Riverbank Publication no.22 [426] on cryptanalysis using the index of coinci-
dence. Friedman coined the term cryptanalysisn 1920, using it in his 1923 book Elements
of Cryptanalysi§425], a 1944 expansion of which, Military Cryptanalysis[423], remains
highly recommended. The method of Kasiski (from West Prussia) was originally published
in 1863; see Kahn [648, pp.208-213] for adetailed example. Thediscussionon IC and MR
followsthat of Denning [326], itself based on Sinkov [1152]. Fact 7.75followsfrom astan-
dard expectation computation weighted by «,, or «, depending on whether the second of a
pair of randomly selected ciphertext charactersis from the same ciphertext al phabet or one
of thet — 1 remaining a phabets. The valuesin Table 7.1 are from Kahn [648], and vary
somewhat over time as languages evolve.

Friedman teaches how to cryptanalyze running-key ciphersin his (circa 1918) Riverbank
Publication no.16, Methods for the Solution of Running-Key Ciphers; the two basic tech-
niquesare outlined by Diffieand Hellman [347]. Thefirstisaprobable wordbttack wherein
an attacker guesses an (e.g., 10 character) word hopefully present in underlying text, and
subtracts that word (mod 26) from all possible starting locationsin the ciphertext in hopes
of finding a recognizable 10-character result, where-after the guessed word (as either par-
tial running-key or plaintext) might be extended using context. Probable-word attacks also
apply to polyal phabetic substitution. The second technique is based on the fact that each
ciphertext letter ¢ resultsfrom apair of plaintext/running-key letters (m;, m’), and is most
likely to result from such pairswherein both m,; and m/, are high-frequency characters; one
isolates the highest-probability pairs for each such ciphertext character value ¢, makestrial
assumptions, and attemptsto extend apparently successful guesses by similarly decrypting
adjacent ciphertext characters; see Denning [326, p.83] for a partial example. Diffie and
Hellman [347] note Fact 7.59 as an obvious method that is little-used (modern ciphers be-
ing more convenient); their suggestion that use of four iterative running keysisunbreakable
follows from English being 75% redundant. They also briefly summarize various scram-
bling techniques (encryption via analog rather than digital methods), noting that analog
scramblers are sometimes used in practice due to lower bandwidth and cost requirements,
athough such known techniques appear relatively insecure (possibly an inherent character-
istic) and their use is waning as digital networks become prevalent.

Denning [326] tabulates digramsinto high, medium, low, and rare classes. Konheim [705,
p.24] provides transition probabilities p(t|s), the probability that the next letter is ¢ given
that the current character is s in English text, in atable also presented by H. van Tilborg
[1210]. Single-letter distributions in plaintext languages other than English are given by
Davies and Price [308]. The letter frequenciesin Figure 7.5, which should be interpreted
only as an estimate, were derived by Meyer and Matyas[859] using excerptstotaling 4 mil-
lion characters from the 1964 publication: W. Francis, A Standard Sample of Present-Day
Edited American English for Use with Digital Computers, Linguistics Dept., Brown Uni-
versity, Providence, Rhode Island, USA. Figure 7.6 is based on data from Konheim [705,
p.19] giving an estimated probability distribution of 2-grams in English, derived from a
sample of size 67 320 digrams.

See Shannon [1122] and Cover and King [285] regarding redundancy and Fact 7.67. While
not proven in any concrete manner, Fact 7.68 is noted by Friedman [424] and generally
accepted. Unicity distance was defined by Shannon[1121]. Related issues are discussed in
detail in various appendices of Meyer and Matyas [859]. Fact 7.71 and the random cipher

TCL Exhibit 1009
Page 293

276

Ch. 7 Block Ciphers

§7.4

model are due to Shannon [1121]; see also Hellman [548].

Diffie and Hellman [347] give an instructive overview of rotor machines (see also Denning
[326]), and notetheir usein World War |1 by the Americansin their highest level system, the
British, and the Germans (Enigma); they also give Fact 7.63 and the number of characters
required under ciphertext-only and known-plaintext attacks (Note 7.66). Beker and Piper
[84] provide technical details of the Hagelin M-209, as does Kahn [648, pp.427-431] who
notes its remarkable compactness and weight: 3.25 x 5.5 x 7 inches and 6 Ib. (including
case); see also Barker [74], Morris[906], and Rivest [1053]. Daviesand Price [308] briefly
discussthe Enigma, noting it was cryptanalyzed during World War 11 in Poland, France, and
thenin the U.K. (Bletchley Park); see also Konheim [705].

The Japanese PURPL E cipher, used during World War 11, was a polyal phabetic cipher crypt-
analyzed August 1940 [648, p.18-23] by Friedman’s team in the U.S. Signa Intelligence
Service, under (Chief Signal Officer) Mauborgne. The earlier RED cipher used two rotor
arrays, preceding it, the ORANGE system implemented a vowel s-to-vowels, consonants-
to-consonants cipher using sets of rotors.

The concept of fractionation, related to product ciphers, is noted by Feistel [387], Shannon
[1121], and Kahn [648, p.344] who identifies thisideain an early product cipher, the WWI

German ADFGVXfield cipher. As an example, an encryption function might operate on
ablock of ¢ = 8 plaintext charactersin three stages as follows: the first substitutes two
symbols for each individual character; the second transposes (mixes) the substituted sym-
bolsamong themsel ves; the third re-groups adjacent resulting symbol s and maps them back
to the plaintext alphabet. The action of the transposition on partial (rather than complete)
characters contributes to the strength of the principle.

Shannon [1121, §5 and §23-26] explored the idea of the product of two ciphers, noted the
principles of confusion and diffusion (Remark 1.36), and introduced the idea of a mixing
transformationF’ (suggesting a preliminary transposition followed by a sequence of alter-
nating substitution and simple linear operations), and combining ciphersin aproduct using
an intervening transformation F'. Transposition and substitution, respectively, rest on the
principlesof diffusion and confusion. Harpes, Kramer, and Massey [541] discussagenera
model for iterated block ciphers (cf. Definition 7.80).

The name Lucifer is associated with two very different algorithms. The first is an SP net-
work described by Feistel [387], which employs (bitwise nonlinear) 4 x 4 invertible S-
boxes; the second, closely related to DES (albeit significantly weaker), is described by
Smith [1160] (see aso Sorkin [1165]). Principles related to both are discussed by Feis-
tel, Notz, and Smith [388]; both are analyzed by Biham and Shamir [138], and the latter in
greater detail by Ben-Aroya and Biham [108] whose extension of differential cryptanaly-
sis allows, using 236 chosen plaintexts and complexity, attack on 55% of the key space in
Smith’s Lucifer — still infeasible in practice, but illustrating inferiority to DES despite the
longer 128-hit key.

Feistel’s product cipher Lucifer [387], instantiated by a blocksize n = 128, consists of an
unspecified number of alternating substitution and permutation (transposition) stages, using
afixed (unpublished) n-bit permutation P and 32 parallel identical S-boxes each effecting
amapping So or S; (fixed but unpublished bijections on {0, 1}4), depending on the value
of one key bit; the unpublished key schedule requires 32-bits per S-box stage. Each stage
operateson al n bits; decryptionis by stage-wiseinversion of P and S;.

The structure of so-called Feistel ciphers (Definition 7.81) was first introduced in the Lu-
cifer algorithm of Smith [1160], the direct predecessor of DES. This 16-round agorithm

TCL Exhibit 1009
Page 294

§7.8 Notes and further references 277

with 128-bit key operates on alternating half-blocks of a 128-bit message block with asim-
plified f function based on two published invertible4 x 4 bit S-boxes S, and .S, (cf. above).
Feistel, Notz, and Smith [388] discuss both the abstract Feistel cipher structure (suggesting
itsuse with non-invertible S-boxes) and SP networksbased on invertible (distinct) S-boxes.
Suggestions for SP networks include the use of single key bits to select one of two map-
pings (afixed bijection or itsinverse) from both S-boxes and permutati on boxes; decryption
then usesareversed key schedulewith complemented key. They al so noted the multi-round
avalanche effeadf changing a single input bit, subsequently pursued by Kam and Davida
[659] inrelation to SP networksand S-boxes having acompletenegroperty: for every pair
of bit positions, j, there must exist at least two input blocks z, y which differ only in bit ¢
and whose outputsdiffer in at least bit j. Moresimply, afunctioniscompletef each output
bit dependson all input bits. Webster and Tavares [1233] proposed the more stringent strict
avalanche criterion: whenever oneinput bit is changed, every output bit must change with
probability 1/2.

DESresulted from IBM’s submissionto the 1974 U.S. National Bureau of Standards(NBS)
solicitation for encryption algorithms for the protection of computer data. The original
specification is the 1977 U.S. Federal Information Processing Standards Publication 46
[396], reprintedinitsentirety as Appendix A in Meyer and Matyas[859]. DESisnow spec-
ified in FIPS 462, which succeeded FIPS 46—1; the same cipher isdefined in the American
standard ANSI X3.92[33] and referredto asthe Data Encryption Algorithm (DEA). Differ-
ences between FIPS 46/46—-1 and ANSI X3.92 included the following: these earlier FIPS
required that DES be implemented in hardware and that the parity bits be used for parity;
ANSI X3.92 specifies that the parity bits maybe used for parity. Although no purpose was
stated by the DES designersfor the permutationsIPand IP~1, Preneel et al. [1008] provided
some evidence of their cryptographic value in the CFB mode.

FIPS 81 [398] specifies the common modes of operation. Davies and Price [308] provide a
comprehensivediscussion of both DES and modes of operation; seealso Diffieand Hellman
[347], and the extensive treatment of Meyer and Matyas [859]. The survey of Smid and
Branstad [1156] discusses DES, itshistory, andits usein the U.S. government. Test vectors
for various modes of DES, including the ECB vectors of Example 7.86, may be found in
ANSI X3.106 [34]. Regarding exhaustive cryptanalysisof DES and related i ssues, see also
the notes under §7.2.

The 1981 publication FIPS 74 [397] notes that DES is not (generally) commutative under
two keys, and summarizes weak and semi-weak keys using the term dual keysgo include
both (weak keys being self-dual); see also Davies [303] and Davies and Price [308]. Cop-
persmith [268] noted Fact 7.90; Moore and Simmons [900] pursue weak and semi-weak
DES keys and related phenomenamore rigorously.

The 56-bit keylength of DES was criticized from the outset as being too small (e.g., see
Diffieand Hellman [346], and p.272 above). Claimswhich have repeatedly arisen and been
denied (e.g., see Tuchman [1199]) over the past 20 years regarding built-in weaknesses of
DES (e.g., trap-door S-boxes) remain un-substantiated. Fact 7.91issignificant inthat if the
permutation group were closed under composition, DES would fall to a known-plaintext
attack requiring 228 steps — see Kaliski, Rivest, and Sherman [654], whose cycling exper-
iments provided strong evidence against this. Campbell and Wiener [229] prove the fact
conclusively (and give the stated lower bound), through their own cycling experiments uti-
lizing collision key search and an idea outlined earlier by Coppersmith [268] for establish-
ing alower bound on the group size; they attribute to Coppersmith the same result (in un-
published work), which may also be deduced from the cycle lengths published by Moore
and Simmons [901].

TCL Exhibit 1009
Page 295

278

Ch. 7 Block Ciphers

§7.5

Countless papers have analyzed various properties of DES; Davies and Price [308, pp.73-
75] provide a partial summary to 1987. Subsequent to the discovery of differentia crypt-
analysis(DC) by Biham and Shamir, Coppersmith[271] explainshow DES was specifically
designed 15 yearsearlier to counter DC, citing national security concernsregarding the de-
sign team publishing neither the attack nor design criteria; then givesthe (relevant) design
criteria— some already noted by others, e.g., see Hellman et a. [552] — for DES S-boxes
and the permutation P, explaining how these preclude DC. Coppersmith notes elements of
DC were present in the work of den Boer [322], followed shortly by Murphy [913]. DES
was not, however, specifically designed to precludelinear cryptanalysis (L C); Matsui [797]
illustrates the order of the 8 DES S-boxes, while a strong (but not optimal) choice against
DC, isrelatively weak against LC, and that DES can be strengthened (vs. DC and LC) by
carefully re-arranging these. Despite Remark 7.93, a DES key has actually been recovered
by Matsui [795] using L C under experimental conditions (using 243 known-plaintext pairs
from randomly generated plaintexts, and 243 complexity running twelve 99 MHz machines
over 50 days); such aresult remains to be published for exhaustive search or DC.

Ben-Aroyaand Biham [108] notethat often suggestionsto redesign DES, some based on de-
sign criteriaand attemptsto specifically resist DC, have resulted in (sometimesfar) weaker
systems, including the RDES (randomized DES) proposal of Koyama and Terada [709],
which fall to variant attacks. Thelessonisthat inisolation, individual design principlesdo
not guarantee security.

DES dternatives are sought not only due to the desire for a keylength exceeding 56 hits,
but also because its bit-oriented operations are inconvenient in conventional software im-
plementations, often resulting in poor performance; this makes triple-DES less attractive.
Regarding fast software implementations of DES, see Shepherd [1124], Pfitzmann and A3
mann [970], and Feldmeier and Karn [391].

FEAL stimulated the devel opment of a sequence of advanced cryptanal ytic techniques of
unparalleled richnessand utility. While it appearsto remain relatively secure when iterated
asufficient number of rounds (e.g., 24 or more), this defeatsits original objective of speed.
FEAL-4 aspresented at Eurocrypt’ 87 (Abstracts of Eurocrypt’ 87, April 1987) wasfoundto
have certain vulnerabilities by den Boer (unpublished Eurocrypt’ 87 rump session talk), re-
sulting in Shimizu and Miyaguchi [1126] (or see Miyaguchi, Shiraishi, and Shimizu [887])
increasing FEAL to 8 rounds in the final proceedings. In 1988 den Boer [322] showed
FEAL-4 vulnerableto an adaptive chosen plaintext attack with 100 to 10 000 plaintexts. In
1990, Gilbert and Chassé [455] devised a chosen-plaintext attack (called a statistical meet-
in-the-middle attack) on FEAL-8 requiring 10 000 pairs of plaintexts, the bitwise XOR of
each pair being selected to be an appropriate constant (thus another early variant of differ-
ential cryptanalysis).

FEAL-N with N rounds, and its extension FEAL-NX with 128-bit key (Notes 7.97 and
7.98) were then published by Miyaguchi [884] (or see Miyaguchi et a. [885]), who nonethe-
less opined that chosen-plaintext attacks on FEAL-8 were not practical threats. However,
improved chosen-plaintext attacks were subsequently devised, as well as known-plaintext
attacks. Employing den Boer’s G function expressing linearity in the FEAL f-function,
Murphy [913] defeated FEAL-4 with 20 chosen plaintexts in under 4 hours (under 1 hour
for most keys) on aSun 3/60 workstation. A statistical method of Tardy-Corfdir and Gilbert
[1187] then allowed a known-plaintext attack on FEAL-4 (1000 texts; or 200 in an an-
nounced improvement) and FEAL-6 (2 x 10 000 texts), involving linear approximation of
FEAL S-boxes. Thereafter, thefirst version of linear cryptanalysis (L C) introduced by Mat-
sui and Yamagishi [798] allowed known-plaintext attack of FEAL-4 (5 texts, 6 minutes on

TCL Exhibit 1009
Page 296

§7.8 Notes and further references 279

a 25MHz 68040 processor), FEAL-6 (100 texts, 40 minutes), and FEAL-8 (228 texts, in
time equival ent to exhaustive search on 50-bit keys); the latter bettersthe 238 texts required
for FEAL-8 by Biham and Shamir [136] in their known-plaintext conversion of differen-
tial cryptanalysis (DC). Biham and Shamir [138, p.101] later implemented a DC chosen-
plaintext attack recovering FEAL-8 keys in two minutes on a PC using 128 chosen pairs,
the program requiring 280K bytes of storage. Biham [132] subsequently used L C to defeat
FEAL-8 with 224 known-plaintextsin 10 minutes on a personal computer. Ohta and Aoki
[943] suggest that FEAL-32 is as secure as DES against DC, while FEAL-16 is as secure
as DES against certain restricted forms of LC.

Differential-linear cryptanalysisvas introduced by Langford and Hellman [741], combin-
ing linear and differential cryptanalysis to alow areduced 8-round version of DES to be
attacked with fewer chosen-plaintexts than previous attacks. Aoki and Ohta [53] refined
these ideas for FEAL-8 yielding a differential-linear attack requiring only 12 chosen texts
and 35 days of computer time (cf. Table 7.10).

Test vectors for FEAL-N and FEAL-NX (Example 7.99) are given by Miyaguchi [884].
The DC attack of Biham and Shamir [137], which finds FEAL-N subkeys themselves, is
equally aseffectiveon FEAL-NX. Biham [132] notesthat an L C attack on FEAL-N is pos-
siblewith lessthan 264 known plaintexts (and complexity) for upto N = 20. For additional
discussion of properties of FEAL, see Biham and Shamir [138, §6.3].

§7.6

The primary referencefor IDEA isLai [726]. A preliminary versionintroduced by Lai and
Massey [728] was named PES (Proposed Encryption Standard). Lai, Massey, and Murphy
[730] showed that a generalization (see below) of differential cryptanalysis (DC) allowed
recovery of PES keys, albeit requiring all 264 possible ciphertexts (cf. exhaustive search
of 2128 gperations). Minor modifications resulted in IPES (Improved PES): instage r, 1 <
r < 9, thegroup operationskeyed by K y) and K. y) (Band® inFigure7.11) werereversed
from PES; the permutation on 16-bit blocks after stager, 1 < r < 9, was dtered; and
necessary changes were made in the decryption (but not encryption) key schedule. IPES
was commercialized under the name IDEA, and is patented (see Chapter 15).

Theingeniousdesign of IDEA issupported by acareful analysisof theinteractionand age-
braicincompatibilitiesof operationsacrossthegroups (F2™, @), (Zg», B), and (Z3. 1, ©).
The design of the MA structure (see Figure 7.11) resultsin IDEA being “complete” after a
singleround; for other security properties, seeLai [726]. Regarding mixing operationsfrom
different algebraic systems, see also the 1974 examination by Grossman [522] of transfor-
mations arising by alternating mod 2™ and mod 2 addition (&), and the use of arithmetic
modulo 232 — 1 and 232 — 2 in MAA (Algorithm 9.68).

Daemen [292, 289] identifies several classes of so-called weak keys for IDEA, and notes a
small modification to the key schedule to eliminate them. Thelargest is aclass of 25! keys
for which membership can be tested in two encryptions plus a small number of computa-
tions, whereafter the key itself can be recovered using 16 chosen plaintext-difference en-
cryptions, on the order of 216 group operations, plus2'” key search encryptions. The prob-
ability of arandomly chosen key beinginthisclassis 2% /2128 = 277 A smaller number
of weak key blocks were observed earlier by Lai [726], and dismissed as inconsequential.
The analysis of Meier [832] revealed no attacks feasible against full 8-round IDEA, and
supports the conclusion of Lai [726] that IDEA appears to be secure against DC after 4 of
its 8 rounds (cf. Note 7.107). Daemen [289] a so references attacks on reduced-round vari-
ants of IDEA. Whilelinear cryptanalysis (LC) can be applied to any iterated block cipher,

TCL Exhibit 1009
Page 297

280

Ch. 7 Block Ciphers

§7.7

Harpes, Kramer, and Massey [541] provide a generalization thereof; IDEA and SAFER K-
64 are argued to be secure against this particular generalization.

Lai, Massey, and Murphy [730] (see also Lai [726]) generalized DC to apply to Markov
ciphers(which they introduced for this purpose; DES, FEAL, and LOKI are all examples
under the assumption of independent round keys) including I DEA; broadened the notion of

adifferencefrom that based on @ to: AX = X ® (X*)~! where ® is a specified group
operationand (X *)~! isthegroupinverseof an element X *; and defined an i-round differ-
ential (as opposed to an i-round characteristic used by Biham and Shamir [138] on DES) to

be apair (a, 8) such that two distinct plaintexts with difference AX = « resultsin apair
of round 7 outputs with difference 3.

Decimal values corresponding to Tables 7.12 and 7.13 may befoundin Lai [726]. A table-
based alternative for multiplication mod 21¢ + 1 (cf. Note 7.104) is to look up the anti-log
of log, (a) + log,(b) mod 26, relative to a generator a of Z3:6,,; the required tables,
however, are quite large.

Massey [787] introduced SAFER K-64 with a 64-bit key and initially recommended 6
rounds, giving a reference implementation and test vectors (cf. Example 7.114). It is not
patented. Massey [788] then published SAFER K-128 (with areference implementation),
differing only in its use of a non-proprietary (and backwards compatible€) key schedule ac-
commodating 128-bit keys, proposed by a Singapore group; 10 rounds were recommended
(12 maximum). Massey [788] gave further justification for design components of SAFER
K-64. Vaudenay [1215] showed SAFER K-64 is weakened if the S-box mapping (Re-
mark 7.112) is replaced by a random permutation.

Knudsen [685] proposed the modified key schedule of Note 7.110 after finding aweakness
in 6-round SAFER K-64 that, while not of practical concernfor encryption (with 24° chosen
plaintexts, it finds 8 bits of the key), permitted collisionswhen using the cipher for hashing.
Thisand asubsequent certificational attack on SAFER K-64 by S. Murphy (to be published)
lead Massey (“ Strengthened key schedule for the cipher SAFER”, posted to the USENET
newsgroup sci.crypt, September 9 1995) to advise adoption of the new key schedule, with
the resulting algorithm distinguished as SAFER SK-64 with 8 rounds recommended (min-
imum 6, maximum 10); an analogous change to the 128-bit key schedule yields SAFER
SK-128 for which 10 rounds remain recommended (maximum 12). A new variant of DC
by Knudsen and Berson [687] using truncated differentialgbuilding on Knudsen [686])
yields a certificational attack on 5-round SAFER K-64 with 245 chosen plaintexts; the at-
tack, which doesnot extendto 6 rounds, indicatesthat security islessthan argued by Massey
[788], who also notes that preliminary attempts at linear cryptanalysis of SAFER were un-
successful.

RC5 was designed by Rivest [1056], and published along with areference implementation.
Themagic constants of Table 7.14 are based on the golden ratio and the base of natural log-
arithms. The data-dependent rotations (which vary across rounds) distinguish RC5 from
iterated ciphers which have identical operations each round; Madryga [779] proposed an
earlier (less elegant) cipher involving data-dependent rotations. A preliminary examination
by Kaliski and Yin [656] suggested that, while variations remain to be explored, standard
linear and differential cryptanalysis appear impractical for RC5-32 (64-bit blocksize) for
r = 12: their differential attacks on 9 and 12 round RC5 require, respectively, 24%, 262
chosen-plaintext pairs, while their linear attacks on 4, 5, and 6-round RC5-32 require, re-
spectively, 237, 247, 257 known plaintexts. Both attacks depend on the number of rounds
and the blocksize, but not the byte-length of the input key (since subkeys are recovered di-

TCL Exhibit 1009
Page 298

§7.8 Notes and further references 281

rectly). Knudsenand Meier [689] subsequently presented differential attackson RC5which
improved on those of Kaliski and Yin by afactor up to 512, and showed that RC5 has so-
called weak keysindependent of the key schedule) for which these differential attacks per-
form even better.

LOKI was introduced by Brown, Pieprzyk, and Seberry [215] and renamed L OK |’ 89 after
the discovery of weaknesses lead to the introduction of LOKI'91 by Brown et al. [214].
Knudsen [682] noted each LOKI’89 key fell into a class of 16 equivalent keys, and the
differential cryptanalysis of Biham and Shamir [137] was shown to be effective against
reduced-round versions. LOKI'91 failed to succumb to differential analysis by Knudsen
[683]; Tokitaet al. [1193] later confirmed the optimality of Knudsen's characteristics, sug-
gesting that LOKI’89 and LOKI’ 91 were resistant to both ordinary linear and differential
cryptanalysis. However, neither should be used for hashing as originally proposed (see
Knudsen [682]) or in other modes (see Preneel [1003]). Moreover, both are susceptible
to related-key attackéNote 7.6), popularized by Biham [128, 129]; but see also the ear-
lier ideas of Knudsen [683]. Distinct from these are key clustering attackgee Diffie and
Hellman [347, p.410]), wherein a cryptanalyst first finds a key “close” to the correct key,
and then searches a cluster of “nearby” keysto find the correct one.

8 x 32 hit S-hoxes first appeared in the Snefru hash function of Merkle [854]; here such
fixed S-boxes created from random numbers were used in its internal encryption mapping.
Regarding large S-boxes, see also Gordon and Retkin [517], Adams and Tavares [7], and
Biham [132]. Merkle [856] again used 8 x 32 S-boxes in Khufu and Khafre (see aso
§15.2.3(viii)). In this 1990 paper, Merkle gives a chosen-plaintext differential attack de-
feating 8 rounds of Khufu (with secret S-box). Regarding 16-round Khafre, aDC attack by
Biham and Shamir [138, 137] requires somewhat over 1500 chosen plaintexts and one hour
on a personal computer, and their known-plaintext differential attack requires 237> plain-
texts; for 24-round K hafre, they require 253 chosen plaintexts or 2°8-% known plaintexts.
Khufu with 16 rounds was examined by Gilbert and Chauvaud [456], who gave an attack
using 243 chosen plaintexts and about 243 operations.

CAST isadesign procedure for afamily of DES-like ciphers, featuring fixed m x n bit
S-boxes (m < n) based on bent functions. Adams and Tavares [7] examine the construc-
tion of large S-boxesresistant to differential cryptanaysis, and give apartial example (with
64-bit blocklength and 8 x 32 bit S-boxes) of a CAST cipher. CAST ciphershave variable
keysize and numbers of rounds. Rijmen and Preneel [1049] presented a cryptanal ytic tech-
nique applicableto Feistel cipherswith non-surjectiveround functions (e.g., LOKI'91 and
an example CAST cipher), noting cases where 6 to 8 roundsis insufficient.

Blowfishisal6-round DES-like cipher dueto Schneier [1093], with 64-bit blocks and keys
of length up to 448 bits. The computationally intensive key expansion phase creates eigh-
teen 32-hit subkeys plus four 8 x 32 bit S-boxes derived from the input key (cf. Khafre
above), for atotal of 4168 bytes. See Vaudenay [1216] for a preliminary analysis of Blow-
fish.

3-WAY isablock cipher with 96-bit blocksize and keysize, dueto Daemen [289] and intro-
duced by Daemen, Govaerts, and Vandewalle [290] along with a reference C implementa-
tion and test vectors. It was designed for speed in both hardware and software, and to resist
differential and linear attacks. Its coreis a 3-bit nonlinear S-box and alinear mapping rep-
resentable as polynomia multiplication in Z32.

SHARK isan SP-network block cipher dueto Rijmen et a. [1048] (coordinatesfor arefer-
ence implementation are given) which may be viewed as a generalization of SAFER, em-
ploying highly nonlinear S-boxes and theideaof MDS codes (cf. Note 12.36) for diffusion

TCL Exhibit 1009
Page 299

282

Ch. 7 Block Ciphers

to allow a small number of rounds to suffice. The block ciphers BEAR and LION of An-
derson and Biham [30] are 3-round unbalanced Feistel networks, motivated by the earlier
construction of Luby and Rackoff [776] (see aso Maurer [816] and Lucks [777]) which
provides a provably secure (under suitable assumptions) block cipher from pseudorandom
functions using a 3-round Feistel structure. SHARK, BEAR, and LION all remain to be
subjected to independent analysisin order to substantiate their conjectured security levels.

SKIPJACK isaclassified block cipher whose specification is maintained by the U.S. Na-
tional Security Agency (NSA). FIPS 185 [405] notes that its specification is available to
organi zations entering into a Memorandum of Agreement with the NSA, and includesin-
terface details (e.g., it has an 80-hit secret key). A public report contains results of a pre-
liminary security evaluation of this 64-bit block cipher (* SKIPJACK Review, Interim Re-
port, The SKIPJACK Algorithm”, 1993 July 28, by E.F. Brickell, D.E. Denning, S.T. Kent,
D.P. Maher, and W. Tuchman). See also Roe[1064, p.312] regarding curiousresults on the
cyclic closure tests on SKIPJACK, which give evidence related to the size of the cipher
keyspace.

GOST 28147-89isaSoviet government encryptiona gorithmwith a32-round Feistel struc-
ture and unspecified S-boxes; see Charnes et al. [241].

RC2 isablock cipher proprietary to RSA Data Security Inc. (asis the stream cipher RC4).
WAKE isablock cipher dueto Wheeler [1237] employing akey-dependent table, intended
for fast encryption of bulk data on processors with 32-bit words. TEA (Tiny Encryption
Algorithm) is a block cipher proposed by Wheeler and Needham [123g].

TCL Exhibit 1009
Page 300

Chapter

Public-Key Encryption

Contentsin Brief

81 Introduction. 283
8.2 RSA public-ckeyencryption oo 285
8.3 Rabinpublic-keyencryption 292
8.4 ElGamal public-key encryption. 294
85 McEliecepublic-key encryption 298
8.6 Knapsack public-key encryption 300
8.7 Probabilistic public-key encryption 306
8.8 Notesand further references 312

8.1 Introduction

This chapter considers various techniques for public-key encryption, aso referred to as
asymmetric encryption. As introduced previously (§1.8.1), in public-key encryption sys-
tems each entity A hasapublic key e and a corresponding private key d. In secure systems,
thetask of computing d given e iscomputationally infeasible. The public key definesan en-
cryption transformation E., while the private key defines the associated decryption trans-
formation D,4. Any entity B wishing to send a message m to A obtains an authentic copy
of A’spublickey e, usesthe encryption transformation to obtain the ciphertextc = E.(m),
and transmits ¢ to A. To decrypt ¢, A applies the decryption transformation to obtain the
original messagem = Dy(c).

The public key need not be kept secret, and, in fact, may be widely available—only its
authenticity is required to guarantee that A is indeed the only party who knows the corre-
sponding privatekey. A primary advantage of such systemsisthat providing authentic pub-
lic keysisgeneraly easier than distributing secret keys securely, as required in symmetric-
key systems.

The main objective of public-key encryption is to provide privacy or confidentiality.
Since A’sencryptiontransformationis public knowledge, public-key encryption a onedoes
not provide data origin authentication (Definition 9.76) or data integrity (Definition 9.75).
Such assurances must be provided through use of additional techniques(see §9.6), including
message authentication codes and digital signatures.

Public-key encryption schemes are typically substantially slower than symmetric-key
encryption algorithms such as DES (§7.4). For this reason, public-key encryption is most
commonly used in practice for the transport of keys subsequently used for bulk data en-
cryption by symmetric algorithms and other applications including data integrity and au-
thentication, and for encrypting small data items such as credit card numbers and PINs.

283

TCL Exhibit 1009
Page 301

284 Ch. 8 Public-Key Encryption

Public-key decryption may also provide authentication guaranteesin entity authentication
and authenticated key establishment protocols.

Chapter outline

Theremainder of the chapter isorganized asfollows. §8.1.1 providesintroductory material.
TheRSA public-key encryption schemeispresentedin §8.2; related security and implemen-
tation issues are also discussed. Rabin's public-key encryption scheme, which is provably
as secure as factoring, is the topic of §8.3. §8.4 considersthe ElIGamal encryption scheme;
related security and implementation issues are also discussed. The McEliece public-key
encryption scheme, based on error-correcting codes, is examined in §8.5. Although known
to beinsecure, the Merkle-Hellman knapsack public-key encryption schemeis presentedin
§8.6 for historical reasons— it was the first concrete realization of a public-key encryption
scheme. Chor-Rivest encryption is also presented (§8.6.2) as an example of an as-yet un-
broken public-key encryption scheme based on the subset sum (knapsack) problem. §8.7
introduces the notion of probabilistic public-key encryption, designed to meet especially
stringent security requirements. §8.8 concludes with Chapter notes and references.

The number-theoretic computational problems which form the security basis for the
public-key encryption schemes discussed in this chapter arelisted in Table 8.1.

public-key encryption scheme

computational problem |

RSA integer factorization problem (§3.2)
RSA problem (§3.3)
Rabin integer factorization problem (§3.2)
square roots modulo composite n (§3.5.2)
ElGamal discrete logarithm problem (§3.6)
Diffie-Hellman problem (§3.7)
generalized ElGamal generalized discrete logarithm problem (§3.6)
generalized Diffie-Hellman problem (§3.7)
McEliece linear code decoding problem
Merkle-Hellman knapsack subset sum problem (§3.10)
Chor-Rivest knapsack subset sum problem (§3.10)
Goldwasser-Micali probabilistic | quadratic residuosity problem (§3.4)
Blum-Goldwasser probabilistic | integer factorization problem (§3.2)
Rabin problem (§3.9.3)

Table 8.1: Public-key encryption schemes discussed in this chapter, and the related computational
problems upon which their security is based.

8.1.1 Basic principles

Objectives of adversary

The primary objective of an adversary who wishesto “attack” a public-key encryption sch-
emeisto systematically recover plaintext from ciphertext intended for some other entity A.
If thisis achieved, the encryption scheme is informally said to have been broken. A more
ambitious objectiveis key recovery —to recover A’s private key. If thisis achieved, the en-

TCL Exhibit 1009
Page 302

§8.2 RSA public-key encryption 285

cryption schemeisinformally said to have been completely broken since the adversary then
has the ability to decrypt all ciphertext sent to A.

Types of attacks

Since the encryption transformations are public knowledge, a passive adversary can al-
ways mount a chosen-plaintext attack on a public-key encryption scheme (cf. §1.13.1). A
stronger attack is a chosen-ciphertext attack where an adversary selects ciphertext of its
choice, and then obtains by some means (from the victim A) the corresponding plaintext
(cf. §1.13.1). Two kinds of these attacks are usually distinguished.

1. Inanindifferent chosen-ciphertext attack, the adversary is provided with decryptions
of any ciphertextsof itschoice, but these ciphertextsmust be chosen prior toreceiving
the (target) ciphertext c it actually wishes to decrypt.

2. Inanadaptivechosen-ciphertext attack, the adversary may use (or haveaccessto) A’s
decryption machine (but not the private key itself) even after seeing the target cipher-
text c. The adversary may reguest decryptions of ciphertext which may berelated to
both the target ciphertext, and to the decryptions obtained from previous queries; a
restriction isthat it may not request the decryption of the target c itself.

Chosen-ciphertext attacks are of concern if the environment in which the public-key en-
cryption scheme is to be used is subject to such an attack being mounted; if not, the exis-
tence of achosen-ciphertext attack istypically viewed as a certificational weakness against
aparticular scheme, although apparently not directly exploitable.

Distributing public keys

The public-key encryption schemes described in this chapter assume that there is a means
for the sender of a message to obtain an authentic copy of the intended receiver’s public
key. In the absence of such a means, the encryption scheme is susceptible to an imperson-
ation attack, asoutlinedin §1.8.2. Thereare many techniquesin practice by which authentic
public keys can be distributed, including exchanging keys over a trusted channel, using a
trusted public file, using an on-line trusted server, and using an off-line server and certifi-
cates. These and related methods are discussed in §13.4.

Message blocking

Some of the public-key encryption schemes described in this chapter assume that the mes-
sage to be encrypted is, at most, some fixed size (bitlength). Plaintext messages longer
than this maximum must be broken into blocks, each of the appropriate size. Specific tech-
niques for breaking up a message into blocks are not discussed in this book. The compo-
nent blocks can then be encrypted independently (cf. ECB mode in §7.2.2(i)). To provide
protection against manipulation (e.g., re-ordering) of the blocks, the Cipher Block Chaining
(CBC) modemay be used (cf. §7.2.2(ii) and Example 9.84). Sincethe CFB and OFB modes
(cf.§7.2.2(iii) and §7.2.2(iv)) employ only single-block encryption (and not decryption) for
both message encryption and decryption, they cannot be used with public-key encryption
schemes.

8.2 RSA public-key encryption

The RSA cryptosystem, named after itsinventorsR. Rivest, A. Shamir, and L. Adleman, is
the most widely used public-key cryptosystem. It may be used to provide both secrecy and
digital signatures and its security is based on the intractability of the integer factorization

TCL Exhibit 1009
Page 303

286

Ch. 8 Public-Key Encryption

problem (§3.2). This section describes the RSA encryption scheme, its security, and some
implementation issues; the RSA signature schemeis coveredin §11.3.1.

8.2.1 Description

8.1

8.2

8.3

Algorithm Key generation for RSA public-key encryption

SUMMARY: each entity creates an RSA public key and a corresponding private key.
Each entity A should do the following:
1. Generatetwo large random (and distinct) primesp and ¢, each roughly the same size.
2. Computen =pgand¢ = (p — 1)(g — 1). (See Note 8.5.)
3. Select arandominteger e, 1 < e < ¢, such that ged(e, ¢) = 1.
4. Use the extended Euclidean a gorithm (Algorithm 2.107) to compute the uniquein-
tegerd, 1 < d < ¢, suchthated =1 (mod ¢).
5. A’spublickey is(n,e); A'sprivatekey isd.

Definition Theintegerse and d in RSA key generation are called the encryption exponent
and the decryption exponent, respectively, while n is called the modulus.

Algorithm RSA public-key encryption

SUMMARY: B encrypts amessage m for A, which A decrypts.

1. Encryption. B should do the following:
(a) Obtain A’s authentic public key (n, e).
(b) Represent the message as an integer m in the interval [0, n — 1].
(c) Computec = m® mod n (e.g., using Algorithm 2.143).
(d) Send the ciphertext ¢ to A.

2. Decryption. To recover plaintext m from ¢, A should do the following:
(8) Usethe private key d to recover m = ¢ mod n.

Proof that decryption works. Sinceed = 1 (mod ¢), there exists an integer & such that
ed =1+ k¢. Now, if ged(m, p) = 1 then by Fermat’s theorem (Fact 2.127),

mP 1 =1 (mod p).
Raising both sides of this congruenceto the power k(g — 1) and then multiplying both sides
by m yields
mAtEP=D@=D = 1 (mod p).

Ontheother hand, if ged(m, p) = p, thenthislast congruenceisagain valid since each side
is congruent to 0 modulo p. Hence, in all cases

m* =m (mod p).
By the same argument,

me? =

m (mod q).
Finally, since p and ¢ are distinct primes, it follows that

m® =m (mod n),

TCL Exhibit 1009
Page 304

§8.2 RSA public-key encryption 287

8.4

8.5

and, hence,

cd=m)%=m (mod n).

Example (RSA encryptionwith artificially small parameters)

Key generation. Entity A chooses the primesp = 2357, ¢ = 2551, and computesn =
pg =6012707and ¢ = (p—1)(¢—1) = 6007800. A choosese = 3674911 and, using the
extended Euclidean algorithm, finds d = 422191 suchthat ed = 1 (mod ¢). A’s public
key isthepair (n = 6012707, e = 3674911), while A’s private key isd = 422191.
Encryption. To encrypt a message m = 5234673, B uses an agorithm for modular expo-
nentiation (e.g., Algorithm 2.143) to compute

¢ = m®modn = 5234673374911 mod 6012707 = 3650502,

and sendsthisto A.
Decryption. To decrypt ¢, A computes

¢ modn = 3650502422191 mod 6012707 = 5234673. O

Note (universal exponent) The number A = lem(p — 1,¢ — 1), sometimes called the uni-
versal exponent of n, may be used instead of ¢ = (p — 1)(¢ — 1) in RSA key generation
(Algorithm 8.1). Observethat A is a proper divisor of ¢. Using A can result in a smaller
decryption exponent d, which may result in faster decryption (cf. Note 8.9). However, if p
and g arechosen at random, then ged(p—1, ¢— 1) isexpected to be small, and consequently
¢ and A will beroughly of the same size.

8.2.2 Security of RSA

8.6

Thissubsection discussesvarioussecurity issuesrel ated to RSA encryption. Variousattacks
which have been studied in the literature are presented, as well as appropriate measures to
counteract these threats.

(i) Relation to factoring

Thetask faced by apassive adversary isthat of recovering plaintext m from the correspond-
ing ciphertext ¢, given the public information (n, e) of the intended receiver A. Thisis
called the RSA problem (RSAP), which was introduced in §3.3. Thereis no efficient algo-
rithm known for this problem.

One possible approach which an adversary could employ to solving the RSA problem
is to first factor n, and then compute ¢ and d just as A did in Algorithm 8.1. Once d is
obtained, the adversary can decrypt any ciphertext intended for A.

On the other hand, if an adversary could somehow compute d, then it could subse-
quently factor n efficiently as follows. First notethat sinceed = 1 (mod ¢), thereis an
integer k such that ed — 1 = k¢. Hence, by Fact 2.126(i), a**~' = 1 (mod n) for all
a € Z,. Leted — 1 = 2%, wheret is an odd integer. Then it can be shown that there
existsani € [1, s] suchthat a2 "t # 41 (mod n) and a2t = 1 (mod n) for at least half
of dl a € Z*; if a and i are such integersthen ged(a? ¢ — 1,n) isanon-trivial factor
of n. Thus the adversary simply needs to repeatedly select random a € Z;, and check if
ani € [1,s] satisfying the above property exists; the expected number of trias before a
non-trivial factor of n isobtained is 2. This discussion establishes the following.

Fact Theproblem of computingthe RSA decryptionexponent d fromthepublickey (n, e),
and the problem of factoring n, are computationally equivalent.

TCL Exhibit 1009
Page 305

288

Ch. 8 Public-Key Encryption

When generating RSA keys, it is imperative that the primes p and ¢ be selected in such a
way that factoring n = pq is computationally infeasible; see Note 8.8 for more details.

(ii) Small encryption exponent e

In order to improve the efficiency of encryption, it is desirable to select asmall encryption
exponent e (see Note 8.9) such ase = 3. A group of entitiesmay al have the same encryp-
tion exponent e, however, each entity in the group must have its own distinct modulus (cf.
§8.2.2(vi)). If an entity A wishes to send the same message m to three entities whose pub-
lic moduli are nq, na, n3, and whose encryption exponents are e = 3, then A would send
¢; = m® mod n;, fori = 1,2,3. Since these moduli are most likely pairwise relatively
prime, an eavesdropper observing c1, ¢z, c3 can use Gauss's algorithm (Algorithm 2.121)
tofind asolution z, 0 < = < mynans, to the three congruences

x=c1 (mod nq)
=cy (mod n2)
=c3 (mod n3).

Since m® < ninans, by the Chinese remainder theorem (Fact 2.120), it must be the case
that z = m?3. Hence, by computing theinteger cuberoot of 2, the eavesdropper can recover
the plaintext m.

Thus a small encryption exponent such as e = 3 should not be used if the same mes-
sage, or even the same message with known variations, is sent to many entities. Alter-
natively, to prevent against such an attack, a pseudorandomly generated bitstring of ap-
propriate length (taking into account Coppersmith’s attacks mentioned on pages 313-314)
should be appended to the plaintext message prior to encryption; the pseudorandom bit-
string should be independently generated for each encryption. This process is sometimes
referred to as salting the message.

Small encryption exponents are also a problem for small messages m, becauseif m <
n'/¢, then m can be recovered from the ciphertext ¢ = m® mod n simply by computing
the integer e** root of ¢; salting plaintext messages also circumvents this problem.

(iii) Forward search attack

If the message spaceis small or predictable, an adversary can decrypt a ciphertext ¢ by sm-
ply encrypting all possible plaintext messages until ¢ is obtained. Salting the message as
described above is one simple method of preventing such an attack.

(iv) Small decryption exponent d

Aswas the case with the encryption exponent e, it may seem desirable to select asmall de-
cryption exponent d in order to improvetheefficiency of decryption.! However, if ged(p —
1,q — 1) issmall, asistypically the case, and if d has up to approximately one-quarter as
many bits as the modulus n, then there is an efficient algorithm (referenced on page 313)
for computing d from the public information (n, e). This algorithm cannot be extended to
the case where d is approximately the same size as n. Hence, to avoid this attack, the de-
cryption exponent d should be roughly the same size as n.

(v) Multiplicative properties
Let m, and mo be two plaintext messages, and let ¢; and co be their respective RSA en-
cryptions. Observe that

(mim2)® = mim§ = cica (mod n).

LIn this case, one would select d first and then compute e in Algorithm 8.1, rather than vice-versa.

TCL Exhibit 1009
Page 306

§8.2 RSA public-key encryption 289

In other words, the ciphertext corresponding to the plaintext m = myms mod nisc =
c1c2 mod n; thisis sometimes referred to as the homomor phic property of RSA. This ob-
servation leads to the following adaptive chosen-ciphertext attack on RSA encryption.
Supposethat an active adversary wishesto decrypt aparticular ciphertextc = m® mod
n intended for A. Suppose also that A will decrypt arbitrary ciphertext for the adversary,
other than c itself. The adversary can conceal ¢ by selecting a random integer z € Z;,
and computing ¢ = cz® mod n. Upon presentation of ¢, A will compute for the adversary

m = (¢)? mod n. Since
m = ©¢ = 29 = mz (mod n),

the adversary can then compute m = m2~! mod n.

Thisadaptive chosen-ciphertext attack should be circumvented in practice by imposing
somestructural constraintson plaintext messages. |f aciphertext cisdecryptedto amessage
not possessing this structure, then c is rejected by the decryptor as being fraudulent. Now,
if a plaintext message m has this (carefully chosen) structure, then with high probability
ma mod n will not for x € Z. Thus the adaptive chosen-ciphertext attack described in
the previous paragraph will fail because A will not decrypt ¢ for the adversary. Note 8.63
provides a powerful technique for guarding against adaptive chosen-ciphertext and other
kinds of attacks.

(vi) Common modulus attack

The following discussion demonstrates why it is imperative for each entity to choose its
own RSA modulus .

It is sometimes suggested that a central trusted authority should select a single RSA
modulus n, and then distribute a distinct encryption/decryption exponent pair (e;,d;) to
each entity in anetwork. However, as shownin (i) above, knowledgeof any (e;, d;) pair a-
lows for the factorization of the modulusn, and hence any entity could subsequently deter-
minethe decryption exponentsof all other entitiesin the network. Also, if asingle message
were encrypted and sent to two or more entities in the network, then there is atechnique by
which an eavesdropper (any entity not in the network) could recover the message with high
probability using only publicly available information.

(vii) Cycling attacks
Let c = m*® mod n beaciphertext. Let k beapositiveinteger such that " =c (mod n);
since encryption is a permutation on the message space {0, 1, ... ,n — 1} such an integer
k must exist. For the same reason it must be the case that ¢ ' = m (mod n). This ob-
servation leadsto thefollowing cycling attack on RSA encryption. An adversary computes
c® mod n, ¢ mod n, ¢’ mod n, ... until cisobtained for thefirst time. If ¢ modn =
¢, then the previous number in the cycle, namely ¢ mod n, is equal to the plaintext m.
A generalized cycling attack is to find the smallest positive integer u such that f =

ged(c®” —¢,n) > 1. If
" =c¢ (modp) and ¢ Z¢ (mod q) (8.1

then f = p. Similarly, if
" #c¢ (modp) and ¢ =¢ (mod q) (8.2

then f = ¢. In either case, n has been factored, and the adversary can recover d and then
m. On the other hand, if both

u

¢® =c¢ (mod p) and ¢ =¢ (mod q), (8.3)

TCL Exhibit 1009
Page 307

290

Ch. 8 Public-Key Encryption

then f = nandc®” = ¢ (mod n). Infact, u must be the smallest positive integer &
for which ¢ = ¢ (mod n). Inthis case, the basic cycling attack has succeeded and so
m=c""" mod n canbe computed efficiently. Since (8.3) is expected to occur much less
frequently than (8.1) or (8.2), the generalized cycling attack usually terminates before the
cycling attack does. For this reason, the generalized cycling attack can be viewed as being
essentially an algorithm for factoring n.

Sincefactoring n isassumed to beintractable, these cycling attacks do not pose athreat
to the security of RSA encryption.

(viii) Message concealing

A plaintext messagem, 0 < m < n — 1, inthe RSA public-key encryption schemeis said
to beunconcealedif it encryptstoitself; that is, m¢ = m (mod n). Thereareawayssome
messages which are unconcealed (for examplem = 0, m = 1,andm = n — 1). Infact,
the number of unconcealed messagesiis exactly

[1+ged(e—1,p—1)]-[1+ged(e—1,¢—1)].

Sincee — 1, p— 1 and g — 1 areall even, the number of unconceal ed messagesis aways at
least 9. If p and ¢ are random primes, and if e is chosen at random (or if e is chosen to be
asmall number suchase = 3 or e = 216 + 1 = 65537), then the proportion of messages
which are unconcealed by RSA encryptionwill, in general, be negligibly small, and hence
unconceal ed messages do not pose a threat to the security of RSA encryption in practice.

8.2.3 RSA encryption in practice

8.7

8.8

There are numerous ways of speeding up RSA encryption and decryption in software and
hardware implementations. Some of these techniques are covered in Chapter 14, includ-
ing fast modular multiplication (§14.3), fast modular exponentiation (§14.6), and the use
of the Chinese remainder theorem for faster decryption (Note 14.75). Even with these im-
provements, RSA encryption/decryption is substantially slower than the commonly used
symmetric-key encryption algorithms such as DES (Chapter 7). In practice, RSA encryp-
tionis most commonly used for the transport of symmetric-key encryption algorithm keys
and for the encryption of small dataitems.

The RSA cryptosystem has been patented in the U.S. and Canada. Several standards
organizations have written, or are in the process of writing, standards that address the use
of the RSA cryptosystem for encryption, digital signatures, and key establishment. For dis-
cussion of patent and standards issues related to RSA, see Chapter 15.

Note (recommended size of modulus) Given thelatest progressin algorithmsfor factoring
integers(§3.2), a512-bit modulusr providesonly marginal security from concerted attack.
As of 1996, in order to foil the powerful quadratic sieve (§3.2.6) and number field sieve
(§3.2.7) factoring algorithms, a modulus . of at least 768 bits is recommended. For long-
term security, 1024-bit or larger moduli should be used.

Note (selecting primes)
(i) As mentioned in §8.2.2(i), the primes p and ¢ should be selected so that factoring
n = pq is computationally infeasible. The major restriction on p and ¢ in order to
avoid the élliptic curve factoring algorithm (§3.2.4) is that p and ¢ should be about
the same bitlength, and sufficiently large. For example, if a1024-bit modulusn isto
be used, then each of p and ¢ should be about 512 bitsin length.

TCL Exhibit 1009
Page 308

§8.2 RSA public-key encryption 291

(i)

(iii)

Another restriction on the primes p and ¢ is that the difference p — ¢ should not be
too small. If p — g issmall, thenp ~ ¢ and hence p ~ +/n. Thus, n could be
factored efficiently simply by trial division by al odd integers closeto /n. If p and
q are chosen at random, then p — ¢ will be appropriately large with overwhelming
probability.

In addition to these restrictions, many authors have recommended that p and ¢ be
strong primes. A prime p is said to be a strong prime (cf. Definition 4.52) if the fol-
lowing three conditions are satisfied:

(& p — 1 hasalarge primefactor, denoted r;
(b) p+ 1 hasalarge primefactor; and
(¢) r — 1 hasalarge primefactor.

Anagorithm for generating strong primesis presented in §4.4.2. The reason for con-
dition (a) istofoil Pollard’sp — 1 factoring algorithm (§3.2.3) which is efficient only
if n has a prime factor p such that p — 1 is smooth. Condition (b) foilsthep + 1
factoring a gorithm mentioned on page 125 in §3.12, which is efficient only if n has
a prime factor p such that p 4+ 1 is smooth. Finaly, condition (c) ensures that the
cycling attacks described in §8.2.2(vii) will fail.

If the prime p is randomly chosen and is sufficiently large, thenbothp — 1 andp + 1
can be expected to have large prime factors. In any case, while strong primes protect
againstthep— 1 and p+ 1 factoring algorithms, they do not protect against their gen-
eralization, the elliptic curvefactoring algorithm (§3.2.4). The latter is successful in
factoring n if arandomly chosen number of the same size as p (more precisely, this
number is the order of a randomly selected elliptic curve defined over Z,) has only
small primefactors. Additionally, it has been shown that the chances of acycling at-
tack succeeding are negligibleif p and ¢ are randomly chosen (cf. §8.2.2(vii)). Thus,
strong primes offer little protection beyond that offered by random primes. Giventhe
current state of knowledge of factoring algorithms, thereis no compelling reason for
requiring the use of strong primes in RSA key generation. On the other hand, they
are no less secure than random primes, and require only minimal additional running
time to compute; thus thereislittle real additional cost in using them.

8.9 Note (small encryption exponents)

0]

(i)

If the encryption exponent e is chosen at random, then RSA encryption using the re-
peated square-and-multiply algorithm (Algorithm 2.143) takes £ modular squarings
and an expected k/2 (less with optimizations) modular multiplications, where k is
the bitlength of the modulusn. Encryption can be sped up by selecting e to be small
and/or by selecting e with asmall number of 1'sin its binary representation.

The encryption exponent e = 3 is commonly used in practice; in this case, it is nec-
essary that neither p— 1 nor ¢ — 1 bedivisibleby 3. Thisresultsinavery fast encryp-
tion operation since encryption only requires 1 modular multiplication and 1 modular
squaring. Another encryption exponent used in practiceise = 2% + 1 = 65537.
This number has only two 1's in its binary representation, and so encryption using
the repeated square-and-multiply algorithm reguires only 16 modular squarings and
1 modular multiplication. The encryption exponent e = 216 4 1 has the advantage
over e = 3 inthat it resists the kind of attack discussed in §8.2.2(ii), since it is un-
likely the same messagewill be sent to 216 1 recipients. But see also Coppersmith’s
attacks mentioned on pages 313-314.

TCL Exhibit 1009
Page 309

292 Ch. 8 Public-Key Encryption

8.3 Rabin public-key encryption

A desirable property of any encryption scheme is a proof that breaking it is as difficult as
solving a computational problem that is widely believed to be difficult, such asinteger fac-
torization or the discrete logarithm problem. While it is widely believed that breaking the
RSA encryption schemeis as difficult as factoring the modulus n, no such equivalence has
been proven. The Rabin public-key encryption scheme was the first exampl e of a provably
secure public-key encryption scheme — the problem faced by a passive adversary of recov-
ering plaintext from some given ciphertext is computationally equivalent to factoring.

8.10 Algorithm Key generation for Rabin public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.

Each entity A should do the following:
1. Generatetwo large random (and distinct) primes p and g, each roughly the same size.
2. Computen = pq.
3. A’spublickey isn; A'sprivatekey is (p, q).

8.11 Algorithm Rabin public-key encryption

SUMMARY: B encrypts amessage m for A, which A decrypts.
1. Encryption. B should do the following:
(a) Obtain A’sauthentic public key n.
(b) Represent the message as an integer m intherange {0,1,... ,n — 1}.
(c) Computec = m? mod n.
(d) Send the ciphertext c to A.
2. Decryption. To recover plaintext m from ¢, A should do the following:
(8 UseAlgorithm 3.44tofind the four squarerootsm, ms, ms, and my4 of ¢ mod-
ulon.2 (Seealso Note 8.12))
(b) The message sent was either m1, ms, ms, or m4. A somehow (cf. Note 8.14)
decides which of theseis m.

8.12 Note (finding squareroots of ¢ modulon = pg whenp = ¢ = 3 (mod 4)) If p and g are
both chosento be= 3 (mod 4), then Algorithm 3.44 for computing the four square roots
of ¢ modulo n simplifies as follows:

1. Usethe extended Euclidean algorithm (Algorithm 2.107) to find integers a and b sat-
isfying ap + bg = 1. Note that o and b can be computed once and for all during the
key generation stage (Algorithm 8.10).

. Computer = ¢(P+t1/4 mod p.

. Compute s = ¢(9t1)/4 mod q.

. Compute z = (aps + bgr) mod n.

. Computey = (aps — bgr) mod n.

6. Thefour squareroots of ¢ modulon are z, —x mod n, y, and —y mod n.

a b~ owiN

2Inthevery unlikely casethat ged(m, n) # 1, the ciphertext ¢ doesnot have four distinct square roots modulo
n, but rather only one or two.

TCL Exhibit 1009
Page 310

§8.3 Rabin public-key encryption 293

8.13 Note (security of Rabin public-key encryption)

0]

(D)

(iii)

Thetask faced by a passive adversary isto recover plaintext m from the correspond-
ing ciphertext c. Thisis precisely the SQROOT problem of §3.5.2. Recall (Fact 3.46)
that the problems of factoring » and computing square roots modul o n are computa-
tionally equivalent. Hence, assuming that factoring n is computationally intractable,
the Rabin public-key encryption schemeis provably secure against a passive adver-
sary.

While provably secure against a passive adversary, the Rabin public-key encryption
scheme succumbs to a chosen-ciphertext attack (but see Note 8.14(ii)). Such an at-
tack can be mounted asfollows. The adversary selectsarandominteger m € Z), and
computesc = m? mod n. Theadversary then presents c to A’s decryption machine,
which decrypts ¢ and returns some plaintext y. Since A does not know m, and m is
randomly chosen, the plaintext y is not necessarily the same as m. With probability
%, y #Z +m mod n, inwhich case gcd(m — y, n) isone of the primefactors of n. If
y = +m mod n, then the attack is repeated with anew m.3

The Rabin public-key encryption schemeis susceptible to attacks similar to those on
RSA described in §8.2.2(ii), §8.2.2(iii), and §8.2.2(v). Asis the case with RSA, at-
tacks (i) and (iii) can be circumvented by salting the plaintext message, while attack
(v) can be avoided by adding appropriate redundancy prior to encryption.

8.14 Note (use of redundancy)

0]

(i)

A drawback of Rabin’'s public-key scheme is that the receiver is faced with the task
of selecting the correct plaintext from among four possibilities. This ambiguity in
decryption can easily be overcome in practice by adding prespecified redundancy to
theoriginal plaintext prior to encryption. (For example, thelast 64 bits of themessage
may bereplicated.) Then, with high probability, exactly one of the four square roots
my, Mg, ms, my Of alegitimate ciphertext ¢ will possess this redundancy, and the
receiver will select this as the intended plaintext. If none of the sguare roots of ¢
possesses this redundancy, then the receiver should reject ¢ as fraudulent.

If redundancy isused asabove, Rabin’sschemeis no longer susceptibleto the chosen-
ciphertext attack of Note 8.13(ii). If an adversary selects a message m having there-
quired redundancy and gives ¢ = m? mod n to A’s decryption machine, with very
high probability the machinewill return the plaintext m itself to the adversary (since
the other three squarerootsof ¢ will most likely not contain the required redundancy),
providing no new information. On the other hand, if the adversary selects amessage
m which does not contain the required redundancy, then with high probability none
of the four square roots of ¢ = m? mod n will possess the required redundancy. In
this case, the decryption machinewill fail to decrypt ¢ and thuswill not provideare-
sponse to the adversary. Note that the proof of equivalence of breaking the modified
scheme by a passive adversary to factoring is no longer valid. However, if the natu-
ral assumption is made that Rabin decryption is composed of two processes, the first
which findsthefour squarerootsof ¢ mod n, and the second which selectsthedistin-
guished squareroot as the plaintext, then the proof of equivalence holds. Hence, Ra-
bin public-key encryption, suitably modified by adding redundancy, is of great prac-
tical interest.

3This chosen-ciphertext attack is an execution of the constructive proof of the equivalence of factoring n and
the SQROQT problem (Fact 3.46), where A’sdecryption machine is used instead of the hypothetical polynomial-
time algorithm for solving the SQROOT problem in the proof.

TCL Exhibit 1009
Page 311

294 Ch. 8 Public-Key Encryption
8.15 Example (Rabin public-key encryption with artificially small parameters)
Key generation. Entity A choosesthe primesp = 277, ¢ = 331, and computesn = pg =
91687. A’spublickey isn = 91687, while A’s privatekey is (p = 277, ¢ = 331).
Encryption. Suppose that the last six bits of original messages are required to be repli-
cated prior to encryption (cf. Note 8.14(i)). In order to encrypt the 10-bit message m =
1001111001, B replicates the last six bits of 7 to obtain the 16-bit message
m = 1001111001111001, which in decimal notationis m = 40569. B then computes
¢ = m*modn = 40569% mod 91687 = 62111
and sends thisto A.
Decryption. To decrypt ¢, A uses Algorithm 3.44 and her knowledge of the factors of n to
compute the four square roots of ¢ mod n:
my = 69654, mo = 22033, mg = 40569, m, = 51118,
whichin binary are
my = 10001000000010110, mo = 101011000010001,
ms = 1001111001111001, my = 1100011110101110.
Since only m3 has the required redundancy, A decrypts ¢ to ms and recovers the original
messagem = 1001111001.]
8.16 Note (efficiency) Rabin encryptionisan extremely fast operation asit only involvesasin-

gle modular squaring. By comparison, RSA encryptionwith e = 3 takes one modular mul-
tiplication and one modular squaring. Rabin decryptionis slower than encryption, but com-
parablein speed to RSA decryption.

8.4 ElGamal public-key encryption

The ElGamal public-key encryption scheme can be viewed as Diffie-Hellman key agree-
ment (§12.6.1) in key transfer mode (cf. Note8.23(i)). Itssecurity isbased ontheintractabil -
ity of the discretelogarithm problem (see §3.6) and the Diffie-Hellman problem (§3.7). The
basic EIGamal and generalized ElGamal encryption schemes are described in this section.

8.4.1 Basic EIGamal encryption

8.17

Algorithm Key generation for EIGamal public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:
1. Generate alarge random prime p and a generator « of the multiplicative group Z, of
the integers modulo p (using Algorithm 4.84).
2. Select arandominteger a, 1 < a < p — 2, and compute o® mod p (using Algo-
rithm 2.143).
3. A’spublickey is (p, «, a®); A'sprivatekey isa.

TCL Exhibit 1009
Page 312

§8.4 ElGamal public-key encryption 295

8.18

8.19

8.20

Algorithm ElGamal public-key encryption

SUMMARY: B encrypts amessage m for A, which A decrypts.

1. Encryption. B should do the following:
(a) Obtain A’sauthentic public key (p, o, o).
(b) Represent the message as an integer m intherange {0, 1,... ,p — 1}.
(c) Selectarandominteger k,1 <k <p-—2.
(d) Computey = a* mod pandd = m - (a®)* mod p.
(e) Send the ciphertext ¢ = (v, d) to A.

2. Decryption. To recover plaintext m from ¢, A should do the following:
) Usel;[he private key a to compute v?~1~% mod p (note; yP~17% = 72 =

a”).

(b) Rec0\)/er m by computing (y~%) - § mod p.

Proof that decryption works. The decryption of Algorithm 8.18 allows recovery of original
plaintext because

7§ = a®ma® = m (mod p).

Example (ElGamal encryption with artificially small parameters)
Key generation. Entity A selectsthe primep = 2357 and agenerator o« = 2 of Z34-,. A
chooses the private key a = 1751 and computes

a®mod p = 21! mod 2357 = 1185.

A’spublickeyis(p = 2357, a = 2,a% = 1185).
Encryption. To encrypt a message m = 2035, B selects arandom integer £ = 1520 and
computes

v = 2129 mod 2357 = 1430
and
§ = 2035-1185%2% mod 2357 = 697.

B sends~y = 1430 and § = 697 to A.
Decryption. To decrypt, A computes

~P~1=a — 1430%05 mod 2357 = 872,
and recovers m by computing
m = 872-697 mod 2357 = 2035. (]
Note (common systemwide parameters) All entities may elect to use the same prime p
and generator «, in which case p and o need not be published as part of the public key.
Thisresultsin public keys of smaller sizes. An additional advantage of having afixed base
« is that exponentiation can then be expedited via precomputations using the techniques

described in §14.6.3. A potential disadvantage of common system-wide parametersis that
larger moduli p may be warranted (cf. Note 8.24).

TCL Exhibit 1009
Page 313

296

Ch. 8 Public-Key Encryption

8.21

8.22

8.23

8.24

Note (efficiency of EIGamal encryption)

(i) Theencryption processrequirestwo modular exponentiations, namely a* mod p and
(a*)* mod p. These exponentiations can be sped up by selecting random exponents
k having some additional structure, for example, havinglow Hammingweights. Care
must be taken that the possible number of exponents is large enough to preclude a
search via a baby-step giant-step algorithm (cf. Note 3.59).

(ii) A disadvantage of ElIGamal encryptionisthat thereis message expansion by afactor
of 2. That is, the ciphertext is twice as long as the corresponding plaintext.

Remark (randomized encryption) ElGamal encryptionisoneof many encryption schemes
which utilizes randomization in the encryption process. Others include McEliece encryp-
tion (§8.5), and Goldwasser-Micali (§8.7.1), and Blum-Goldwasser (§8.7.2) probabilistic
encryption. Deterministic encryption schemes such as RSA may also employ randomiza-
tionin order to circumvent some attacks (e.g., see §8.2.2(ii) and §8.2.2(iii)). Thefundamen-
tal idea behind randomized encryption (see Definition 7.3) techniquesisto use randomiza-
tion to increase the cryptographic security of an encryption process through one or more of
the following methods:
(i) increasing the effective size of the plaintext message space;
(i) precluding or decreasing the effectiveness of chosen-plaintext attacks by virtue of a
one-to-many mapping of plaintext to ciphertext; and
(i) precluding or decreasing the effectivenessof statistical attacksby levelingtheapriori
probability distribution of inputs.

Note (security of ElIGamal encryption)

(i) The problem of breaking the EIGamal encryption scheme, i.e., recovering m given
p, a, a%, v, andd, is equivalent to solving the Diffie-Hellman problem (see §3.7). In
fact, the ElIGamal encryption scheme can be viewed as simply comprising a Diffie-
Hellman key exchangeto determine asession key a®*, and then encrypting the mes-
sage by multiplication with that session key. For this reason, the security of the El-
Gamal encryption scheme is said to be based on the discrete logarithm problem in
Z,,, athough such an equivalence has not been proven.

(i) Itiscritical that different random integers &k be used to encrypt different messages.
Suppose the same k is used to encrypt two messages m; and mo and the resulting
ciphertext pairs are (y1,01) and (2, d2). Then §1/d2 = mq/me, and m2 could be
easily computed if m; were known.

Note (recommended parameter sizes) Given the latest progress on the discrete logarithm
problemin Z; (§3.6), a 512-bit modulusp provides only marginal security from concerted
attack. As of 1996, amodulus p of at least 768 bits is recommended. For long-term secu-
rity, 1024-bit or larger moduli should be used. For common system-wide parameters (cf.
Note 8.20) even larger key sizes may be warranted. This is because the dominant stage
in the index-calculus algorithm (§3.6.5) for discrete logarithms in Z) is the precomputa-
tion of adatabase of factor base logarithms, following which individua logarithms can be
computed relatively quickly. Thus computing the database of logarithmsfor one particul ar
modulus p will compromise the secrecy of all private keys derived using p.

TCL Exhibit 1009
Page 314

§8.4 ElGamal public-key encryption 297

8.4.2 Generalized EIGamal encryption

The EIGamal encryption scheme is typically described in the setting of the multiplicative
group Z,, but can be easily generalized to work in any finite cyclic group G.

Aswith EIGamal encryption, the security of the generalized EIGamal encryption sch-
eme is based on the intractability of the discrete logarithm problem in the group G. The
group G should be carefully chosen to satisfy the following two conditions:

1. for efficiency, the group operationin G should be relatively easy to apply; and
2. for security, the discrete logarithm problem in G should be computationally infeasi-
ble.
The following is alist of groups that appear to meet these two criteria, of which the first
three have received the most attention.
1. The multiplicative group Z,, of the integers modulo a prime p.
The multiplicative group IF3.. of thefinitefield Fom of characteristic two.
The group of points on an eliptic curve over afinite field.
The multiplicative group IF;, of thefinite field F;, where ¢ = p™, p aprime.
The group of unitsZ;,, where n is a composite integer.
The jacobian of a hyperelliptic curve defined over afinite field.
The class group of an imaginary quadratic number field.

No ok wN

8.25 Algorithm Key generation for generalized EIGamal public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:
1. Select an appropriatecyclic group G of order n, with generator o. (It isassumed here
that G iswritten multiplicatively.)
2. Select arandominteger a, 1 < a < n — 1, and compute the group element «*.
3. A’spublickey is (o, a®), together with adescription of how to multiply elementsin
G; A’sprivatekey isa.

8.26 Algorithm Generalized EIGamal public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.

1. Encryption. B should do the following:
(8 Obtain A’'sauthentic public key (o, a®).
(b) Represent the message as an element m of the group G.
(c) Selectarandomintegerk,1 <k <n— 1.
(d) Computey = of and§ = m - (a®).
(e) Send theciphertext ¢ = (v, d) to A.

2. Decryption. To recover plaintext m from ¢, A should do the following:

(8) Usethe private key a to computey“ and then compute .
(b) Recover m by computing (v~ ¢) - 4.

8.27 Note (common system-wide parameters) All entities may elect to use the same cyclic
group G and generator «, in which case o and the description of multiplicationin G need
not be published as part of the public key (cf. Note 8.20).

TCL Exhibit 1009
Page 315

298

Ch. 8 Public-Key Encryption

8.28

Example (ElGamal encryption using the multiplicative group of Fa=, with artificially
small parameters)

Key generation. Entity A selectsthegroup G to bethe multiplicativegroup of thefinitefield
F94, whose elements are represented by the polynomials over IF, of degreelessthan 4, and
where multiplication is performed modulo the irreducible polynomial f(z) = z* +z + 1
(cf. Example 2.231). For convenience, afield element az2> + asz? + a1z + a isrepre-
sented by the binary string (asasaiag). Thegroup G has order n = 15 and agenerator is
a = (0010).

A chooses the private key a = 7 and computes a® = o = (1011). A’s public key is
a® = (1011) (together with o = (0010) and the polynomial f(x) which defines the mul-
tiplication in G, if these parameters are not common to all entities).

Encryption. To encrypt amessage m = (1100), B selects arandom integer £ = 11 and
computesy = a!! = (1110), (o) = (0100), and§ = m - (a®)!! = (0101). B sends
v = (1110) and § = (0101) to A.

Decryption. To decrypt, A computesy® = (0100), (v*)~! = (1101) and finally recovers
m by computingm = (y~%) - § = (1100). O

8.5 McEliece public-key encryption

8.29

The McEliece public-key encryption schemeis based on error-correcting codes. The idea
behind this schemeisto first select a particular code for which an efficient decoding algo-
rithm is known, and then to disguise the code as a general linear code (see Note 12.36).
Since the problem of decoding an arbitrary linear code is NP-hard (Definition 2.73), ade-
scription of the original code can serve as the private key, while a description of the trans-
formed code serves as the public key.

The McEliece encryption scheme (when used with Goppa codes) has resisted crypt-
analysisto date. It is aso notable as being the first public-key encryption scheme to use
randomization in the encryption process. Although very efficient, the M cEliece encryption
scheme has received little attention in practice because of the very large public keys (see
Remark 8.33).

Algorithm Key generation for McEliece public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.

1. Integersk, n, and t are fixed as common system parameters.

2. Each entity A should perform steps3—7.

3. Chooseak x n generator matrix G for abinary (n, k)-linear code which can correct
t errors, and for which an efficient decoding a gorithm is known. (See Note 12.36.)
Select arandom k x k binary non-singular matrix S.

Select arandomn x n permutation matrix P.

. Compute the & x n matrix G = SGP.

. A’spublickey is (@, t); A'sprivatekey is (S, G, P).

TCL Exhibit 1009
Page 316

88.5 McEliece public-key encryption 299

8.30 Algorithm McEliece public-key encryption

SUMMARY: B encrypts a message m for A, which A decrypts.

1. Encryption. B should do the following:
() Obtain A’sauthentic public key (G, t).
(b) Represent the message as a binary string m of length k.
(c) Choose arandom binary error vector z of length n having at most ¢ 1's.
(d) Computethe binary vector ¢ = mG + z.
(e) Send the ciphertext cto A.

2. Decryption. To recover plaintext m from ¢, A should do the following:
(8 Computec = cP~!, where P! istheinverse of the matrix P.
(b) Use the decoding algorithm for the code generated by G to decode ¢ to .
(c) Computem = mS—1.

Proof that decryption works. Since
¢=cP ' = mG+2)P' = (mSGP+2)P~' = (mS)G + 2P,

and zP~! isavector with at most ¢ 1's, the decoding algorithm for the code generated by
G correctscto m = mS. Findly, mS—! = m, and, hence, decryption works.

A special type of error-correcting code, called a Goppa code, may be used in step 3 of
the key generation. For each irreducible polynomial g(z) of degreet over F o , there exists
abinary Goppa code of length n = 2™ and dimension k¥ > n — m¢t capable of correcting
any pattern of ¢ or fewer errors. Furthermore, efficient decoding algorithms are known for
such codes.

8.31 Note (security of McEliece encryption) There are two basic kinds of attacks known.

(i) Fromthe publicinformation, an adversary may try to computethe key G or akey G’
for aGoppa code eguivalent to the one with generator matrix G. Thereisno efficient
method known for accomplishing this.

(i) Anadversary may try torecover the plaintext m directly given someciphertextc. The
adversary picks k columnsat randomfrom G. If Gy, c, and z;, denote therestriction
of G, cand z, respectively, to these k columns, then (¢ + z) = mG. If z;, = 0 and
if Gy is non-singular, then m can be recovered by solving the system of equations
cr = mGy. Since the probability that z;, = 0, i.e., the selected k bits were not in
error,isonly (", *)/(}). the probability of this attack succeeding is negligibly small.

8.32 Note (recommended parameter sizes) The original parameters suggested by McEliece
weren = 1024,t¢ = 50, and & > 524. Based on the security analysis (Note 8.31), an
optimum choice of parameters for the Goppa code which maximizes the adversary’swork
factor appearstoben = 1024, ¢ = 38, and k > 644.

8.33 Remark (McElieceencryptionin practice) Although the encryption and decryption oper-
ations are relatively fast, the McEliece scheme suffers from the drawback that the public
key isvery large. A (lesssignificant) drawback isthat there is message expansion by afac-
tor of n/k. For the recommended parametersn = 1024, ¢t = 38, k > 644, thepublickey is
about 219 bits in size, while the message expansion factor is about 1.6. For these reasons,
the scheme receiveslittle attention in practice.

TCL Exhibit 1009
Page 317

300

Ch. 8 Public-Key Encryption

8.6 Knapsack public-key encryption

Knapsack public-key encryption schemes are based on the subset sum problem, which is
NP-complete (see §2.3.3 and §3.10). The basic ideais to select an instance of the subset
sum problemthat is easy to solve, and then to disguiseit as an instance of the general subset
sum problem which is hopefully difficult to solve. The original knapsack set can serve as
the private key, while the transformed knapsack set serves as the public key.

The Merkle-Hellman knapsack encryption scheme (§8.6.1) is important for historical
reasons, as it was the first concrete realization of a public-key encryption scheme. Many
variations have subsequently been proposed but most, including the original, have been
demonstrated to be insecure (see Note 8.40), a notable exception being the Chor-Rivest
knapsack scheme (§8.6.2).

8.6.1 Merkle-Hellman knapsack encryption

8.34

8.35

8.36

The Merkle-Hellman knapsack encryption scheme attempts to disguise an easily solved in-
stance of the subset sum problem, called asuperincreasing subset sum problem, by modular
multiplication and a permutation. It is however not recommended for use (see Note 8.40).

Definition A superincreasing sequenceisasequence (b1, bz, . . . , b,) of positiveintegers
with the property that b; > Z};ll b; foreachi, 2 <i <n.
Algorithm 8.35 efficiently solves the subset sum problem for superincreasing sequences.

Algorithm Solving a superincreasing subset sum problem

INPUT: asuperincreasing sequence (b1, bo, . . . , b,) and an integer s which isthe sum of a
subset of the b;.
OUTPUT: (21,22, ... ,2n) Wherez; € {0,1},suchthat .7 | z;b; = s.
1 i<n.
2. Whilei > 1 do the following:
2.1 If s > b; thenz;<-1 and s<—s — b;. Otherwise z;<0.
2.2 i+i— 1.
3. Return((z1, z2, ... ,zp)).

Algorithm Key generation for basic Merkle-Hellman knapsack encryption

SUMMARY: each entity creates a public key and a corresponding private key.
1. Aninteger n is fixed as a common system parameter.
2. Each entity A should perform steps3—7.
3. Choose a superincreasing sequence (b1, ba, . .. , b,) and modulus M such that M >
b1 +by+ -+ bp.
. Select arandominteger W, 1 < W < M — 1, such that ged(W, M) = 1.
Select arandom permutation 7 of theintegers {1,2,... ,n}.
. Compute a; = Wb, (;y mod M fori=1,2,... ,n.
. A’spublickeyis(a1,as,... ,an); A'sprivatekey is (w, M, W, (b1, b2, ... ,bs)).

~No oA

TCL Exhibit 1009
Page 318

§8.6 Knapsack public-key encryption 301

8.37 Algorithm Basic Merkle-Hellman knapsack public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.

1. Encryption. B should do the following:
(8) Obtain A’sauthentic publickey (a1,as, ... ,an).
(b) Represent the message m as abinary string of lengthn, m = mims - - - m,,.
(c) Computetheinteger ¢ = miai + maag + - -+ + Mpay,.
(d) Send the ciphertext c to A.

2. Decryption. To recover plaintext m from ¢, A should do the following:
(@ Computed = W~1c mod M.
(b) By solving a superincreasing subset sum problem (Algorithm 8.35), find inte-

gersry,ro,... , T, T € {07 1}, such that d = r1b1 + 1roby + -+ + ’I‘n,bn.

() Themessagebitsarem; = r.(;),i =1,2,... ,n.

Proof that decryption works. The decryption of Algorithm 8.37 allows recovery of original
plaintext because

d=WwWle = W_lzmiai = Zmibﬂ(i) (mod M).
i=1 i=1

Since0 < d < M,d = %_"" | mbr(;) mod M, and hencethesolution of the superincreas-
ing subset sum problemin step (b) of the decryption givesthe messagebits, after application
of the permutation 7.

8.38 Example (basic Merkle-Hellman knapsack encryptionwith artificially small parameters)
Key generation. Letn = 6. Entity A choosesthe superincreasing sequence (12,17, 33, 74,
157,316), M = 737, W = 635, and the permutation = of {1,2,3,4,5,6} defined by
m(1) =3,7(2) =6,7(3) =1,7(4) = 2, 7(5) = 5, and w(6) = 4. A’spublickey isthe
knapsack set (319, 196, 250, 477, 200, 559), while A’sprivatekey is (7, M, W, (12,17, 33,
74,157,316)).

Encryption. To encrypt the messagem = 101101, B computes

¢ = 319+ 250 + 477+ 559 = 1605

and sendsthisto A.
Decryption. To decrypt, A computesd = W !¢ mod M = 136, and solves the superin-
creasing subset sum problem

136 = 12r1 + 17ro + 33r3 + 74r4 + 15775 + 31676

toget 136 =12+ 17+ 33+ 74. Hence,ry = 1,ro =1, r3=1,ry, = 1,75 = 0,176 = 0,
and application of the permutation 7 yields the message bitsmy, = r3 = 1, ms =1 =0,
m3:7‘1:1,m4:r2:1,m5:r5:0,m6:r4:1. |:|
Multiple-iterated Merkle-Hellman knapsack encryption

One variation of the basic Merkle-Hellman scheme involves disguising the easy superin-
creasing sequence by a series of modular multiplications. The key generation for this vari-
ationisasfollows.

TCL Exhibit 1009
Page 319

302

Ch. 8 Public-Key Encryption

8.39 Algorithm Key generation for multiple-iterated Merkle-Hellman knapsack encryption

SUMMARY: each entity creates a public key and a corresponding private key.

1. Integersn and ¢ are fixed as common system parameters.
. Each entity A should perform steps 3—6.

2
3. Choose a superincreasing sequence (ag‘)),ag’), e ,a%o)).
4. For j from 1to ¢ do the following:
4.1 Choose amodulus M; with M; > agjfl) + aéj’l) ot ad .
4.2 Select aranqlomintgger W;, 1 <W; < M; — 1, such that ged(Wj, M;) = 1.
4.3 Computeal(’) = al(ﬁl)Wj mod M fori=1,2,... ,n.
5. Select arandom permutation 7 of theintegers {1,2,... ,n}.
6. A'spublickeyis(ay,aq,... ,an,), wherea; = aff()i) fori=1,2,...,n; A'sprivate
keyis(m, My, ..., My, Wh,... ,Wt,a§0)7aéo)7 - ,a;(’)).

Encryptionis performedin the same way asin the basic Merkle-Hellman scheme (Al-
gorithm 8.37). Decryption is performed by successively computing d; = ijldjﬂ mod
Mjforj=tt—1,...,1,whered,;, = c. Finaly, the superincreasing subset sum prob-
lemd; = rlaﬁo) + r2a§0) 4+ 70 issolvedfor r;, and the message hits are recovered
after application of the permutation 7.

8.40 Note (insecurity of Merkle-Hellman knapsack encryption)

(i) A polynomial-time algorithm for breaking the basic Merkle-Hellman scheme is
known. Given the public knapsack set, this algorithm finds a pair of integersU’, M’
such that U’ /M’ iscloseto U/M (where W and M are part of the private key, and
U = W~ mod M) and such that theintegers b’ = U’a; mod M, 1 < i < n, form
asuperincreasing sequence. This sequence can then be used by an adversary in place
of (b1, ba,... ,b,) to decrypt messages.

(if) Themost powerful general attack known on knapsack encryption schemesisthetech-
nique discussed in §3.10.2 which reduces the subset sum problem to the problem of
finding a short vector in alattice. It istypically successful if the density (see Defi-
nition 3.104) of the knapsack set is less than 0.9408. Thisis significant because the
density of aMerkle-Hellman knapsack set must be less than 1, since otherwise there
will in general be many subsets of the knapsack set with the same sum, in which case
some ciphertextswill not be uniquely decipherable. Moreover, sinceeachiterationin
the multiple-iterated scheme lowers the density, this attack will succeed if the knap-
sack set has been iterated a sufficient number of times.

Similar techniques have since been used to break most knapsacks schemes that have
been proposed, including the multiple-iterated Merkle-Hellman scheme. The most promi-
nent knapsack scheme that has resisted such attacks to date is the Chor-Rivest scheme (but
see Note 8.44).

8.6.2 Chor-Rivest knapsack encryption

The Chor-Rivest scheme is the only known knapsack public-key encryption scheme that
does not use some form of modular multiplication to disguise an easy subset sum problem.

TCL Exhibit 1009
Page 320

§8.6 Knapsack public-key encryption 303

8.41 Algorithm Key generation for Chor-Rivest public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:
1. Select afinitefield F, of characteristic p, where ¢ = p”, p > h, and for which the
discrete logarithm problem is feasible (see Note 8.45(ii)).

2. Select arandom monic irreducible polynomial f(x) of degree h over Z,, (using Al-
gorithm 4.70). The elements of F, will be represented as polynomiasin Z|[z] of
degree less than h, with multiplication performed modulo f(x).

. Select arandom primitive element g(x) of thefield F, (using Algorithm 4.80).

. For each groundfield element i € Z,,, find thediscretelogarithma; = logg(z)(x+i)
of thefield element (z + ¢) to the base g(x).

. Select arandom permutation 7 on the set of integers {0,1,2,... ,p — 1}.

. Select arandominteger d,0 < d < p" — 2.

. Compute ¢; = (a(;) +d) mod (p" —1),0<i<p—1.

. A'spublickey is((co,c1,... ,cp—1),p, h); A'sprivatekey is (f(z), g(x), w, d).

W

o ~N O Ol

8.42 Algorithm Chor-Rivest public-key encryption

SUMMARY: B encrypts amessage m for A, which A decrypts.
1. Encryption. B should do the following:

(a) Obtain A’sauthentic publickey ((co, c1,- .. ,¢p—1),p, h).

(b) Represent the message m as a binary string of length [lg (?) |, where (7) isa
binomial coefficient (Definition 2.17).

(c) Consider m as the binary representation of an integer. Transform this integer
into a binary vector M = (Mo, M, ... , M,_1) of length p having exactly h
I'sasfollows:

i. Setl«nh.
ii. For i from1 to p do the following: ,
If m > (P}") thenset M; 141, mem — (P}"), I+ — 1. Otherwise,

set M;_14-0. (Note: () =1forn >0; () =0fori>1)

(d) Computec = 327"+ M;c; mod (p" — 1).

(e) Send theciphertext c to A.

2. Decryption. To recover plaintext m from ¢, A should do the following:

(@ Computer = (¢ — hd) mod (p" — 1).

(b) Computeu(z) = g(z)" mod f(x) (using Algorithm 2.227).

(c) Compute s(z) = u(zx) + f(x), amonic polynomial of degree h over Z,,.

(d) Factor s(x) into linear factors over Z,,: s(x) = H;’zl(a; +t;), wheret; € Z,
(cf. Note 8.45(iv)).

(e) Compute abinary vector M = (Mo, M,... ,M,_1)
ponents of M that are 1 have indices 7= 1(t;), 1 < j
components are 0.

(f) The message m is recovered from M asfollows:

i. Set m<—0, l«h.
ii. Forifrom1 top dothefollowing:
If M;_1 = 1thensetm«m + (P7°) and i« — 1.

as follows. The com-
< h. The remaining

TCL Exhibit 1009
Page 321

304

Ch. 8 Public-Key Encryption

Proof that decryption works. Observe that

Since [1%-, Nz + w(i)M

u(z) = g(z)" mod f(z)

= g(mf-hd = ga) =0 M) (mod f(x)
.) " Mi(an(y+d)—hd — () P20 Miar (mod f(2))
_ H 2o = T+ (@)™ (mod f(a).

« and s(z) are monic polynomials of degree h and are congruent

modulo f(z), it must be the case that

p—1

[T+ (i)™,

i=0

s(z) = u(z) + f(z) =

Hence, the h rootsof s(z) al liein Z,,, and applying = ~* to theseroots givesthe coordinates
of M that are 1.

8.43 Example (Chor-Rivest public-key encryption with artificially small parameters)
Key generation. Entity A doesthe following:

1.
2.

. Selectstherandom permutation 7 on {0,

Selectsp = 7Tand h = 4.

Selects the irreducible polynomial f(z) = z* + 3z% + 522 + 62 + 2 of degree 4
over Zr. Theelements of thefinitefield F;4 arerepresented as polynomialsin Zz[z]
of degreeless than 4, with multiplication performed modulo f (x).

. Selects the random primitive element g(x) = 323 4 322 + 6.
. Computes the following discrete logarithms:

ap = logy () = 1028
a1 =logy(,)(x +1) = 1935
az = logy) (z +2) = 2054
a3 = log,,)(x + 3) = 1008
ag = log,(,)(z +4) = 379

a5 = log,(,)(x +5) = 1780
ag = log,(,) (= + 6) = 223.

1,2,3,4,5,6} defined by 7(0) =
4,7(2)=0,7(3) =2,7(4) =1, 7(5) =5, n(6) = 3.

6,m(1) =

. Selects the random integer d = 1702.
. Computes

= (ag + d) mod 2400 = 1925
¢1 = (as + d) mod 2400 = 2081
= (ap + d) mod 2400 = 330
= (a2 + d) mod 2400 = 1356
= (a1 + d) mod 2400 = 1237
— (a5 + d) mod 2400 = 1082
= ()

mod 2400 = 310.

cs as+d
Ce as+d

TCL Exhibit 1009
Page 322

§8.6 Knapsack public-key encryption 305

8.

A’spublickey is ((co, c1, ¢z, 3, ¢4, ¢5,¢6),p = 7,h = 4), while A’s private key is
(f(@),9(x),m,d).

Encryption. To encrypt a message m = 22 for A, B doesthe following:

@
(b)
(©

(d)
()

Obtains authentic A’s public key.

Represents m as abinary string of length 5: m = 10110. (Notethat |1g (})| = 5.)
Uses the method outlined in step 1(c) of Algorithm 8.42 to transformm to the binary
vector M = (1,0,1,1,0,0, 1) of length 7.

Computes ¢ = (cg + c2 + ¢3 + ¢g) mod 2400 = 1521.

Sendsc = 1521 to A.

Decryption. To decrypt the ciphertext ¢ = 1521, A does the following:

@
(b)
(©
(d)
()

(f)

Computesr = (¢ — hd) mod 2400 = 1913.

Computes u(z) = g(z)'°*® mod f(z) = 23 + 322 + 2z + 5.

Computes s(z) = u(z) + f(z) = 2* + 42% + 2% + z.

Factors s(z) = x(z + 2)(x + 3)(x + 6) (S0 ¢1 = 0, t3 = 2, ¢35 = 3, t4 = 6).

The componentsof M that are 1 haveindices7—1(0) = 2, 7~%(2) = 3,77 1(3) = 6,
and 7—1(6) = 0. Hence, M = (1,0,1,1,0,0,1).

Uses the method outlined in step 2(f) of Algorithm 8.42to transform M to theinteger
m = 22, thus recovering the original plaintext. O

8.44 Note (security of Chor-Rivest encryption)

U]

(i)

Whenthe parametersof the system are carefully chosen (see Note 8.45 and page 318),
there is no feasible attack known on the Chor-Rivest encryption scheme. In partic-
ular, the density of the knapsack set (co,c1, ... ,cp—1) IS p/lg(maxc;), which is
large enough to thwart the low-density attacks on the general subset sum problem
(§3.10.2).

It isknown that the system isinsecureif portions of the private key are revealed, for
example, if g(x) and d in some representation of IF,, are known, or if f(z) isknown,
or if w isknown.

8.45 Note (implementation)

0]
(i)

(iii)

(iv)

v)

Although the Chor-Rivest scheme has been described only for the case p aprime, it
extendsto the casewherethe basefield Z, isreplaced by afield of primepower order.
In order to make the discrete logarithm problem feasible in step 1 of Algorithm 8.41,
the parameters p and h may be chosen so that ¢ = p — 1 has only small factors. In
this case, the Pohlig-Hellman algorithm (§3.6.4) can be used to efficiently compute
discrete logarithmsin the finite field IF,,.

In practice, the recommended size of the parametersare p ~ 200 and h =~ 25. One
particular choice of parametersoriginally suggested isp = 197 and h = 24; in this
case, the largest prime factor of 19724 — 1 is10316017, and the density of the knap-
sack setisabout 1.077. Other parameter setsoriginally suggested are {p = 211, h =
24}, {p = 3%, h = 24} (basefield F3s), and {p = 28, h = 25} (base field Fys).
Encryptionisavery fast operation. Decryption is much slower, the bottleneck being
the computation of u(z) in step 2b. Therootsof s(x) in step 2d can be found simply
by trying &l possibilitiesin Z,,.

A major drawback of the Chor-Rivest scheme is that the public key is fairly large,
namely, about (ph - 1g p) bits. For the parametersp = 197 and h = 24, thisis about
36000 bits.

TCL Exhibit 1009
Page 323

306

Ch. 8 Public-Key Encryption

(vi) Thereis message expansion by afactor of g p"/1g (7). Forp = 197 and h = 24,
thisis 1.797.

8.7 Probabilistic public-key encryption

8.46

8.47

A minimal security requirement of an encryption schemeis that it must be difficult, in es-
sentialy all cases, for a passive adversary to recover plaintext from the corresponding ci-
phertext. However, in somesituations, it may be desirableto impose more stringent security
requirements.

The RSA, Rabin, and knapsack encryption schemes are deterministic in the sense that
under afixed public key, aparticular plaintext m is always encrypted to the same ciphertext
c. A deterministic scheme has some or al of the following drawbacks.

1. The schemeis not securefor all probability distributions of the message space. For
example, in RSA themessages(and 1 alwaysget encrypted to themsel ves, and hence
are easy to detect.

2. It is sometimes easy to compute partial information about the plaintext from the ci-
phertext. For example, in RSA if ¢ = m® mod n is the ciphertext corresponding to

G RCRG

since e is odd, and hence an adversary can easily gain one bit of information about
m, namely the Jacobi symbol ().
3. Itiseasy to detect when the same message is sent twice.

Of course, any deterministic encryption scheme can be converted into a randomized
scheme by requiring that a portion of each plaintext consist of a randomly generated bit-
string of a pre-specified length I. If the parameter [is chosen to be sufficiently largefor the
purpose at hand, then, in practice, the attacks listed above are thwarted. However, the re-
sulting randomized encryption schemeis generally not provably secure against the different
kinds of attacks that one could conceive.

Probabilistic encryption utilizes randomnessto attain aprovable and very strong level
of security. There are two strong notions of security that one can strive to achieve.

Definition A public-key encryption schemeissaid to be polynomially secureif no passive
adversary can, in expected polynomial time, select two plaintext messages m, and m4 and
then correctly distinguish between encryptionsof m1 and mo with probability significantly
greater than 1.

Definition A public-key encryption scheme is said to be semantically secure if, for al
probability distributionsover the message space, whatever apassive adversary can compute
in expected polynomial time about the plaintext given the ciphertext, it can also compute
in expected polynomial time without the ciphertext.

Intuitively, apublic-key encryptionschemeis semantically secureif the ciphertext does
not leak any partial information whatsoever about the plaintext that can be computed in
expected polynomial time.

TCL Exhibit 1009
Page 324

§8.7 Probabilistic public-key encryption 307

8.48 Remark (perfect secrecy vs. semantic security) In Shannon’s theory (see §1.13.3(i)), an
encryption scheme has perfect secrecy if a passive adversary, even with infinite computa-
tional resources, can learn nothing about the plaintext from the ciphertext, except possibly
itslength. Thelimitation of this notionisthat perfect secrecy cannot be achieved unlessthe
key is at least as long as the message. By contrast, the notion of semantic security can be
viewed as a polynomially bounded version of perfect secrecy — a passive adversary with
polynomially bounded computational resources can learn nothing about the plaintext from
the ciphertext. It is then conceivable that there exist semantically secure encryption sch-
emes where the keys are much shorter that the messages.

Although Definition 8.47 appears to be stronger than Definition 8.46, the next result
asserts that they are, in fact, equivalent.

8.49 Fact A public-key encryption schemeis semantically secureif and only if it is polynomi-
aly secure.

8.7.1 Goldwasser-Micali probabilistic encryption

The Goldwasser-Micali schemeis a probabilistic public-key system which is semantically
secure assuming the intractability of the quadratic residuosity problem (see §3.4).

8.50 Algorithm Key generation for Goldwasser-Micali probabilistic encryption

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:
1. Select two large random (and distinct) primes p and ¢, each roughly the same size.
2. Computen = pq.
3. Selectay € Z,, suchthat y isaquadratic non-residue modulo n and the Jacobi sym-
bol (£) =1 (y is a pseudosguare modulo n); see Remark 8.54.
4. A’spublickeyis(n,y); A's privatekey isthe pair (p, q).

8.51 Algorithm Goldwasser-Micali probabilistic public-key encryption

SUMMARY: B encrypts amessage m for A, which A decrypts.
1. Encryption. B should do the following:
(a) Obtain A’sauthentic public key (n, y).
(b) Represent the message m asabinary stringm = myms - - - my of length ¢.
(c) Forifrom1ltot do:
i. Pickanz € Z;, a random.
ii. If m; =1 then set ¢;<yx? mod n; otherwise set ¢;<—x2 mod n.
(d) Sendthet-tuplec = (c1,co,...,ct) t0 A,
2. Decryption. To recover plaintext m from ¢, A should do the following:
(@) Forifrom1ltot do:
i. Compute the Legendre symbol e; = (%) (using Algorithm 2.149).
ii. If e; = 1 then set m,;<0; otherwise set m;+1.
(b) The decrypted messageism = mims - - - my.

TCL Exhibit 1009
Page 325

308

Ch. 8 Public-Key Encryption

8.52

8.53

8.54

Proof that decryption works. If amessage bit m; is 0, then ¢; = 22 mod n is a quadratic
residue modulo n. If a message bit m; is 1, then since y is a pseudosguare modulo n,
¢; = yz2 mod n isalso apseudosguare modulo n. By Fact 2.137, ¢; is aquadratic residue
modulon if and only if ¢; is aquadratic residue modulo p, or equivaently (%) = 1. Since
A knows p, she can compute this Legendre symbol and hence recover the message bit m;.

Note (security of Goldwasser-Micali probabilistic encryption) Since x is selected at ran-
domfromZ?, 22 mod n is arandom quadratic residue modulo n, and yz2 mod n isaran-
dom pseudosquare modulo n. Hence, an eavesdropper sees random quadratic residues and
pseudosguares modulo n. Assuming that the quadratic residuosity problem is difficult, the
eavesdropper can do no better that guess each message bit. Moreformally, if the quadratic
residuosity problemis hard, then the Goldwasser-Micali probabilistic encryption schemeis
semantically secure.

Note (message expansion) A magjor disadvantage of the Goldwasser-Micali schemeisthe
message expansion by a factor of Ign bits. Some message expansion is unavoidablein a
probabilistic encryption scheme because there are many ciphertexts corresponding to each
plaintext. Algorithm 8.56 isamajor improvement of the Goldwasser-Micali schemein that
the plaintext is only expanded by a constant factor.

Remark (finding pseudosquares) A pseudosguare y modulo n can be found as follows.
First find a quadratic non-residue a modulo p and a quadratic non-residue b modulo ¢ (see
Remark 2.151). Then use Gauss's algorithm (Algorithm 2.121) to compute the integer v,
0 <y < n—1, satisfying the simultaneous congruencesy = a (mod p), y = b (mod q).
Sincey (= a (mod p)) is a quadratic non-residue modulo p, it is aso a quadratic non-
residue modulo n (Fact 2.137). Also, by the properties of the Legendre and Jacobi symbols

(§2.45), (¥) = (%) (%) = (~1)(—1) = 1. Hence, y is a pseudosquare modul o n.

8.7.2 Blum-Goldwasser probabilistic encryption

8.55

The Blum-Goldwasser probabilistic public-key encryption scheme is the most efficient
probabilistic encryption scheme known and is comparable to the RSA encryption scheme,
both in terms of speed and message expansion. It is semantically secure (Definition 8.47)
assuming the intractability of the integer factorization problem. It is, however, vulnerable
to a chosen-ciphertext attack (see Note 8.58(iii)). The scheme uses the Blum-Blum-Shub
generator (§5.5.2) to generate a pseudorandom bit sequence which isthen X ORed with the
plaintext. Theresulting bit sequence, together with an encryption of the random seed used,
istransmitted to the receiver who uses histrapdoor information to recover the seed and sub-
sequently reconstruct the pseudorandom bit sequence and the plaintext.

Algorithm Key generation for Blum-Goldwasser probabilistic encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:
1. Select two large random (and distinct) primes p, ¢, each congruent to 3 modulo 4.
2. Computen = pq.
3. Usethe extended Euclidean agorithm (Algorithm 2.107) to compute integers a and
b suchthat ap + bg = 1.
4. A’spublickey isn; A’'sprivatekey is (p, q,a,b).

TCL Exhibit 1009
Page 326

§8.7 Probabilistic public-key encryption 309

8.56 Algorithm Blum-Goldwasser probabilistic public-key encryption

SUMMARY: B encrypts amessage m for A, which A decrypts.
1. Encryption. B should do the following:
(a) Obtain A’sauthentic public key n.
(b) Letk = |lgn] and h = |lgk]. Represent the message m asastring m =
myms - - - my Of length ¢, where each m; isabinary string of length A.
(c) Select as a seed z(, arandom quadratic residue modulo n. (This can be done
by selecting arandom integer r € Z, and setting zo <72 mod n.)
(d) For i from 1 tot do thefollowing:
i. Computez; = 951271 mod n.
ii. Let p; bethe h least significant bits of ;.
iii. Computec; = p; ® m;.
() Computez;y; = = mod n.
(f) Sendtheciphertext c = (c1,c2,... ,ct, Ter1) tO A.
2. Decryption. To recover plaintext m from ¢, A should do the following:
(@ Computed; = ((p+1)/4)"*! mod (p — 1).
(b) Computeds = ((g+1)/4)*! mod (¢ — 1).
(c) Computeu = 2| mod p.
(d) Computewv = wfjl mod gq.
(e) Computezy = vap + ubg mod n.
(f) For i from 1 tot do thefollowing:
i. Computex; = z2_, mod n.
ii. Let p; bethe h least significant bits of ;.
iii. Computem; = p; @ ¢;.

Proof that decryption works. Since z; isaquadratic residue modulon, itisasoaquadratic
residue modulo p; hence, mff’*l)/Q =1 (mod p). Observe that

2P = (@) rD/e = g PED/2 = e = a (mod p).

Similarly, x§p+1)/4 =z;_1 (mod p) and so

w,gffrl)/[ly = 21 (mod p).

Repeating this argument yields

u = xfjrl = xg(f;rl)ﬂl)tﬂ = 2o (mod p).

Anaogously,
v = a2 = zy (modq).

Finally, since ap + bqg = 1, vap + ubq = zy (mod p) and vap + ubg = zy (mod q).
Hence, ¢ = vap + ubg mod n, and A recoversthe same random seed that B used in the
encryption, and consequently also recoversthe origina plaintext.

8.57 Example (Blum-Goldwasser probabilistic encryption with artificially small parameters)
Key generation. Entity A selectstheprimesp = 499, ¢ = 547, each congruent to 3 modulo
4, and computesn = pq = 272953. Using the extended Euclidean algorithm, A computes

TCL Exhibit 1009
Page 327

310

Ch. 8 Public-Key Encryption

theintegersa = —57,b = 52 satisfyingap + bg = 1. A’spublickey isn = 272953, while
A’sprivatekey is (p, g, a, b).

Encryption. The parameters k and h have the values 18 and 4, respectively. B represents
the message m as a string mymomsmams (t = 5) wherem; = 1001, my = 1100, m3 =

0001,

my = 0000, ms = 1100. B then selects arandom quadratic residue zo = 159201
(= 3992 mod n), and computes:
|i|xi=m?_1modn‘ Di |Ci:pi@mi
1 180539 1011 0010
2 193932 1100 0000
3 245613 1101 1100
4 130286 1110 1110
5 40632 1000 0100

and z¢ = 2 mod n = 139680. B sends the ciphertext

to A.

¢ = (0010, 0000,1100,1110,0100, 139680)

Decryption. To decrypt ¢, A computes

dy = ((p+1)/4)% mod (p — 1) = 463
da = ((g+1)/4)% mod (¢ — 1) = 337

u =% mod p =20
v =23 mod q =24
o = vap + ubg mod n = 159201.

Finally, A uses x(to construct the x; and p; just as B did for encryption, and recoversthe
plaintext m; by XORing the p; with the ciphertext blocks ¢;. |

8.58 Note (security of Blum-Goldwasser probabilistic encryption)

0]

(i)
(iii)

Observe first that n is a Blum integer (Definition 2.156). An eavesdropper sees the
quadratic residue x;1. Assuming that factoring n is difficult, the h least significant
bits of the principal square root z; of z;; modulo n are simultaneously secure (see
Definition 3.82 and Fact 3.89). Thusthe eavesdropper can do no better than to guess
the pseudorandom bits p;, 1 < i < ¢. More formally, if the integer factorization
problem is hard, then the Blum-Goldwasser probabilistic encryption scheme is se-
mantically secure. Note, however, that for a modulus n of a fixed bitlength (e.g.,
1024 bits), this statement is no longer true, and the scheme should only be consid-
ered computationally secure.

Asof 1996, the modulusn should be at least 1024 bitsin length if long-term security
isdesired (cf. Note 8.7). If n isa 1025-bit integer, then k£ = 1024 and h = 10.

As with the Rabin encryption scheme (Algorithm 8.11), the Blum-Goldwasser sch-
emeisalso vulnerableto achosen-ciphertext attack that recoversthe privatekey from
the publickey. Itisfor thisreason that the Blum-Gol dwasser scheme hasnot received
much attention in practice.

8.59 Note (efficiency of Blum-Goldwasser probabilistic encryption)

0]

Unlike Goldwasser-Micali encryption, the ciphertext in Blum-Goldwasser encryp-
tionisonly longer than the plaintext by a constant number of bits, namely & + 1 (the
sizein bits of theinteger z;41).

TCL Exhibit 1009
Page 328

§8.7 Probabilistic public-key encryption 311

(if) The encryption process is quite efficient — it takes only 1 modular multiplication
to encrypt h bits of plaintext. By comparison, the RSA encryption process (Algo-
rithm 8.3) requires 1 modular exponentiation (m© mod n) to encrypt k bits of plain-
text. Assuming that the parameter e is randomly chosen and assuming that an (unop-
timized) modular exponentiation takes 3% /2 modular multiplications, this translates
to an encryption rate for RSA of 2/3 bits per modular multiplication. If one chooses
aspecial vauefor e, suchase = 3 (see Note 8.9), then RSA encryptionisfaster than
Blum-Goldwasser encryption.

(iii) Blum-Goldwasser decryption (step 2 of Algorithm 8.56) isalso quite efficient, requir-
ing 1 exponentiationmodulo p — 1 (step 2a), 1 exponentiation modulo g — 1 (step 2b),
1 exponentiation modulo p (step 2c¢), 1 exponentiation modul o ¢ (step 2d), and ¢ mul-
tiplications modulo n (step 2f) to decrypt ht ciphertext bits. (The time to perform
step 2eisnegligible.) By comparison, RSA decryption (step 2 of Algorithm 8.3) re-
quires 1 exponentiation modulo n (which can be accomplished by doing 1 exponen-
tiation modulo p and 1 exponentiation modulo ¢) to decrypt & ciphertext bits. Thus,
for short messages (< k bits), Blum-Goldwasser decryption is dightly slower than
RSA decryption, while for longer messages, Blum-Goldwasser is faster.

8.7.3 Plaintext-aware encryption

8.60

8.61

8.62

8.63

While semantic security (Definition 8.47) is a strong security requirement for public-key
encryption schemes, there are other measures of security.

Definition A public-key encryption schemeis said to be non-malleableif given a cipher-
text, it is computationally infeasible to generate a different ciphertext such that the respec-
tive plaintexts are related in a known manner.

Fact If apublic-key encryption schemeis non-malleable, it is aso semantically secure.

Another notion of security isthat of being plaintext-aware. In Definition 8.62, valid ci-
phertext means those ci phertext which are the encryptions of |legitimate plaintext messages
(e.g. messages containing pre-specified forms of redundancy).

Definition A public-key encryption schemeis said to be plaintext-awareif it is computa
tionally infeasible for an adversary to produce avalid ciphertext without knowledge of the
corresponding plaintext.

In the “random oracle model”, the property of being plaintext-aware is a strong one
— coupled with semantic security, it can be shown to imply that the encryption schemeis
non-malleable and also secure against adaptive chosen-ciphertext attacks. Note 8.63 gives
one method of transforming any k-bit to k-bit trapdoor one-way permutation (such asRSA)
into an encryption scheme that is plaintext-aware and semantically secure.

Note (Bellare-Rogaway plaintext-awareencryption) Let f beak-bit to k-bit trapdoor one-
way permutation (such as RSA). Let ko and k; be parameters such that 2%0 and 21 steps
each represent infeasible amounts of work (e.g., ko = k; = 128). Thelength of the plain-
text m isfixedtoben = k — ko — k; (€.0., for k = 1024, n = 768). Let G : {0,1}%0 —;
{0,1}"*+* and H : {0,1}"*+* — {0,1}*° be random functions. Then the encryption
function, as depicted in Figure 8.1, is

E(m) = f({m0" & G(r)} || {r & H(m0" & G(r))}),

TCL Exhibit 1009
Page 329

312

Ch. 8 Public-Key Encryption

where m0*1 denotesm concatenated with a string of 0's of bitlength k1, r is a random bi-
nary string of bitlength ko, and || denotes concatenation.

mo¥1 ‘ r

n+ k1 ko

,
PN ©

) -

/ /
mo* @ G(r) r @ H(m0*t @ G(r)) ‘

n + ko + k1 .
m plaintext

¥ r random bit string
E(m) ciphertext

E(m)

Figure 8.1: Bellare-Rogaway plaintext-aware encryption scheme.

Under the assumption that G and H are random functions, the encryption scheme E of
Note 8.63 can be proven to be plaintext-aware and semantically secure. In practice, G and
H can be derived from a cryptographic hash function such as the Secure Hash Algorithm
(8§9.4.2(iii)). In this case, the encryption scheme can no longer be proven to be plaintext-
aware because the random function assumption is not true; however, such ascheme appears
to provides greater security assurances than those designed using ad hoc techniques.

8.8 Notes and further references

§8.1

§8.2

For an introduction to public-key cryptography and public-key encryptionin particular, see
§1.8. A particularly readableintroductionisthe survey by Diffie [343]. Historical noteson
public-key cryptography are given in the notes to §1.8 on page 47. A comparison of the
features of public-key and symmetric-key encryptionisgivenin §1.8.4; see also §13.2.5.
Other recent proposalsfor public-key encryption schemes include those based on finite au-
tomata (Renji [1032]); hidden field equations (Patarin [965]); and isomorphism of polyno-
mials (Patarin [965]).

The RSA cryptosystemwasinventedin 1977 by Rivest, Shamir, and Adleman [1060]. Kal-
iski and Robshaw [655] provide an overview of the major attacks on RSA encryption and

TCL Exhibit 1009
Page 330

§8.8 Notes and further references 313

signatures, and the practical methods of counteracting these threats.

The computational equivalence of computing the decryption exponent d and factoring n
(88.2.2(i)) was shown by Rivest, Shamir and Adleman [1060], based on earlier work by
Miller [876].

Theattack on RSA with small encryption exponent (§8.2.2(ii)) isdiscussed by Hastad [544],
who showed more generally that sending the encryptions of morethan e(e + 1)/2 linearly
related messages (messages of the form (a;m + b;), where the a; and b; are known) en-
ables an eavesdropper to recover the messages provided that the moduli n; satisfy n;, >
2(e+1)(e42)/4 (¢ 4 1)(e+1), Hastad al so showed that sending three linearly related messages
using the Rabin public-key encryption scheme (Algorithm 8.11) is insecure.

The attack on RSA with small decryption exponent d (§8.2.2(iv)) is due to Wiener [1240].
Wiener showed that his attack can be avoided if the encryption exponent e is chosen to be
at least 50% longer than the modulus n. In this case, d should be at least 160 bitsin length
to avoid the square-root discrete logarithm algorithms such as Pollard’s rho algorithm (Al-
gorithm 3.60) and the parallelized variant of van Oorschot and Wiener [1207].

The adaptive chosen-ciphertext attack on RSA encryption (§8.2.2(v)) is due to Davida
[302]. See also the related discussion in Denning [327]. Desmedt and Odlyzko [341] de-
scribed an indifferent chosen-ciphertext attack in which the adversary has to obtain the
plaintext correspondingto about L, [%, %} carefully chosen-ciphertext, subsequent to which
it can decrypt all further ciphertextin L, [3,] time without having to use the authorized

user’s decryption machine.

The common modulus attacks on RSA (§8.2.2(vi)) are due to Del aurentis[320] and Sim-
mons [1137].

Thecycling attack (§8.2.2(vii)) was proposed by Simmonsand Norris[1151]. Shortly after,
Rivest [1052] showed that the cycling attack is extremely unlikely to succeed if the primes
p and ¢ are chosen so that: (i) p — 1 and ¢ — 1 have large prime factors p’ and ¢/, respec-
tively; and (ii) p’ — 1 and ¢’ — 1 have large prime factors p” and ¢”, respectively. Maurer
[818] showed that condition (ii) is unnecessary. Williams and Schmid [1249] proposed the
generalized cycling attack and showed that this attack isreally afactoring algorithm. Rivest
[1051] provided heuristic evidence that if the primes p and ¢ are selected at random, each
having the same bitlength, then the expected time before the generalized cycling attack suc-
ceedsisat least pt/3.

The note on message concealing (§8.2.2(viii)) is dueto Blakley and Borosh [150], who also
extended this work to all composite integers n and determined the number of deranging
exponentsfor afixed n, i.e., exponentse for which the number of unconcealed messagesis
the minimum possible. For further work see Smith and Palmer [1158].

Suppose that two or more plaintext messages which have a (known) polynomial relation-
ship (e.g. my and mo might be linearly related: my = ams + b) are encrypted with the
same small encryption exponent (e.g. e = 3 or e = 26 1 1). Coppersmith et a. [277]
presented a new class of attacks on RSA which enable a passive adversary to recover such
plaintext from the corresponding ciphertext. Thisattack isof practical significance because
various cryptographic protocol s have been proposed which require the encryption of poly-
nomially related messages. Examplesinclude the key distribution protocol of Tatebayashi,
Matsuzaki, and Newman [1188], and the verifiable signature scheme of Franklin and Reiter
[421]. Note that these attacks are different from those of §8.2.2(ii) and §8.2.2(vi) where the
same plaintext is encrypted under different public keys.

Coppersmith [274] presented an efficient algorithm for finding aroot of a polynomial of de-
greek over Z,,, wheren isan RSA-like modulus, provided that there thereisaroot smaller

TCL Exhibit 1009
Page 331

314

Ch. 8 Public-Key Encryption

than n!/*. The algorithm yielded the following two attacks on RSA with small encryption
exponents. If e = 3 andif an adversary knowsaciphertext ¢ and morethan 2/3 of theplain-
text m corresponding to ¢, then the adversary can efficiently recover therest of m. Suppose
now that messages are padded with random bitstrings and encrypted with exponent e = 3.
If an adversary knows two ciphertexts ¢; and ¢, which correspond to two encryptions of
the same message m (with different padding), then the adversary can efficiently recovery
m, provided that the padding is less than 1/9 of the length of n. The latter attack suggests
that caution must be exercised when using random padding in conjunction with asmall en-
cryption exponent.

Let n = pq beak-bit RSA modulus, where p and ¢ are k/2-bit primes. Coppersmith [273]
showed how n can befactored in polynomial timeif the high order & /4 bits of p are known.
Thisimproves an agorithm of Rivest and Shamir [1058], which requires knowledge of the
high order & /3 bits of p. For related theoretical work, see Maurer [814]. Oneimplication of
Coppersmith’s result is that the method of Vanstone and Zuccherato [1214] for generating
RSA moduli having a predetermined set of bitsisinsecure.

A trapdoor in the RSA cryptosystem was proposed by Anderson [26] whereby a hardware
device generates the RSA modulusn = pq in such away that the hardware manufacturer
can easily factor n, but factoring n remains difficult for all other parties. However, Kaliski
[652] subsequently showed how to efficiently detect such trapdoors and, in some cases, to
actually factor the modulus.

The argumentsand recommendationsabout the use of strong primesin RSA key generation
(Note 8.8) are taken from the detailed article by Rivest [1051].

Shamir [1117] proposed a variant of the RSA encryption scheme called unbalanced RSA,
which makes it possible to enhance security by increasing the modulus size (e.g. from 500
bits to 5000 bits) without any deterioration in performance. In thisvariant, the public mod-
ulus n isthe product of two primes p and ¢, where one prime (say q) is significantly larger
in size than the other; plaintext messages m are in the interval [0, p — 1]. For concrete-
ness, consider the situation where p is a 500-bit prime, and ¢ is a 4500-hit prime. Fac-
toring such a 5000-bit modulus n is well beyond the reach of the specia-purpose elliptic
curvefactoring algorithm of §3.2.4 (whose running time depends on the size of the smallest
prime factor of n) and general-purpose factoring algorithms such as the number field sieve
of §3.2.7. Shamir recommends that the encryption exponent e be in the interval [20, 100],
which makes the encryption time with a 5000-bit modulus comparable to the decryption
time with a 500-bit modulus. Decryption of the ciphertext ¢ (= m¢ mod n) is accom-
plished by computingm; = ¢ mod p, whered; = d mod (p — 1). Since0 < m < p,
my isinfact equal to m. Decryptionin unbalanced RSA thusonly involves one exponenti-
ation modulo a500-bit prime, and takesthe sametime asdecryptionin ordinary RSA witha
500-bit modulus. This optimization does not apply to the RSA signature scheme (§11.3.1),
since the verifier does not know the factor p of the public modulus n.

A permutation polynomial of Z,, isapolynomia f(x) € Z,[x] which induces a permuta-
tion of Z,, upon substitution of the elements of Z,,; that is, { f(a)|a € Z} = Z,. INRSA
encryption the permutation polynomial ¢ of Z,, is used, where gcd(e, ¢) = 1. Muller and
Nobauer [910] suggested replacing the polynomial x¢ by the so-called Dickson polynomi-
alsto create a modified RSA encryption scheme called the Dickson scheme. The Dickson
schemewas further studied by Miller and Nobauer [909]. Other suitable classes of permu-
tation polynomials were investigated by Lidl and Muller [763]. Smith and Lennon [1161]
proposed an analogue of the RSA cryptosystem called LUC which is based on Lucas se-
quences. Due to the relationshi ps between Dickson polynomials and the L ucas sequences,

TCL Exhibit 1009
Page 332

§8.8 Notes and further references 315

§8.3

the LUC cryptosystem is closely related to the Dickson scheme. Bleichenbacher, Bosma,
and Lenstra[154] presented a chosen-message attack on the LUC signature scheme, under-
mining the primary advantage claimed for LUC over RSA. Pinch [976, 977] extended the
attacks on RSA with small encryption exponent (§8.2.2(ii)) and small decryption exponent
(§8.2.2(iv)) to the LUC system.

An analogue of the RSA cryptosystem which uses specia kinds of dliptic curvesover Z,,,
wheren is acomposite integer, was proposed by Koyamaet al. [708]. Demytko [321] pre-
sented an analogue where thereis very little restriction on the types of elliptic curves that
can be used. A new cryptosystem based on elliptic curvesover Z,, in which the messageis
heldinthe exponent instead of thegroup element was proposed by Vanstoneand Zuccherato
[1213]. The security of al these schemes is based on the difficulty of factoring n. Kuro-
sawa, Okada, and Tsujii [721] showed that the encryption schemes of Koyama et a. and
Demytko are vulnerableto low exponent attacks (cf. §8.2.2(ii)); Pinch [977] demonstrated
that the attack on RSA with small decryption exponent d (§8.2.2(iv)) also extends to these
schemes. Kaliski [649] presented a chosen-ciphertext attack on the Demytko encryption
scheme (and also a chosen-message attack on the corresponding signature scheme), and
concluded that the present benefits of elliptic curve cryptosystems based on a composite
modulus do not seem significant.

The Rabin public-key encryption scheme (Algorithm 8.11) was proposed in 1979 by Ra-
bin [1023]. In Rabin’s paper, the encryption function was defined to be E(m) = m(m +
b) mod n, where b and n. comprise the public key. The security of this scheme is equiv-
alent to the security of the scheme described in Algorithm 8.11 with encryption function
E(m) = m? mod n. A related digital signature scheme s described in §11.3.4. Schwenk
and Eisfeld [1104] consider public-key encryption and signature schemes whose security
relies on the intractability of factoring polynomialsover Z,,.

Williams [1246] presented a public-key encryption scheme similar in spirit to Rabin’s but
using composite integersn = pg with primesp = 3 (mod 8) and ¢ = 7 (mod 8).
Williams' scheme also has the property that breaking it (that is, recovering plaintext from
some given ciphertext) is equivalent to factoring n, but has the advantage over Rabin’s sch-
emethat thereisan easy procedurefor identifying the intended message from the four roots
of aquadratic polynomial. Therestrictionson theformsof the primesp and ¢ wereremoved
later by Williams [1248]. A simpler and more efficient scheme also having the properties
of provable security and unique decryption was presented by Kurosawa, Ito, and Takeuchi
[720]. Aswith Rabin, all these schemes are vulnerable to a chosen-ciphertext attack (but
see Note 8.14).

It is not the case that all public-key encryption schemes for which the decryption problem
is provably as difficult as recovering the private key from the public key must succumb to
a chosen-ciphertext attack. Goldwasser, Micali, and Rivest [484] were the first to observe
this, and presented a digital signature scheme provably secure against an adaptive chosen-
ciphertext attack (see §11.6.4). Naor and Yung [921] proposed thefirst concrete public-key
encryption scheme that is semantically secure against indifferent chosen-ciphertext attack.
TheNaor-Yung scheme uses two independent keys of a probabilistic public-encryptionsch-
emethat is secure against a passive adversary (for example, the Goldwasser-Micali scheme
of Algorithm 8.51) to encrypt the plaintext, and then both encryptions are sent along with
a non-interactive zero-knowledge proof that the same message was encrypted with both
keys. Following this work, Rackoff and Simon [1029] gave the first concrete construction
for a public-key encryption scheme that is semantically secure against an adaptive chosen-

TCL Exhibit 1009
Page 333

316

Ch. 8 Public-Key Encryption

§8.4

ciphertext attack. Unfortunately, these schemesare all impractical because of the degree of
message expansion.

Damgard [297] proposed simple and efficient methods for making public-key encryption
schemes secure against indifferent chosen-ciphertext attacks. Zheng and Seberry [1269]
noted that Damgard’s schemes are insecure against an adaptive chosen-ciphertext attack,
and proposed three practical schemes intended to resist such an attack. The Damgard and
Zheng-Seberry schemes were not proven to achieve their claimed levels of security. Bel-
lare and Rogaway [93] later proved that one of the Zheng-Seberry schemesis provably se-
cure against adaptive chosen-ciphertext attacks for their random oracle model. Lim and
Lee [766] proposed another method for making public-key schemes secure against adap-
tive chosen-ciphertext attacks; this scheme was broken by Frankel and Yung [419].

The ElGamal cryptosystem wasinvented by ElGamal [368]. Haber and Lenstra (see Ruep-
pel et al. [1083)]) raised the possibility of a trapdoor in discrete logarithm cryptosystems
whereby a modulus p is generated (e.g., by a hardware manufacturer) that is intentionally
“weak”; cf. Note4.58. Here, a“weak” primep isonefor whichthe discretelogarithm prob-
leminZ,, isrelatively easy. For example, p — 1 may contain only small prime factors, in
which case the Pohlig-Hellman a gorithm (§3.6.4) would be especially effective. Another
exampleisaprime p for which the number field sieve for discrete logarithms (page 128) is
especialy well-suited. However, Gordon [509] subsequently showed how such trapdoors
can be easily detected. Gordon also showed that the probability of arandomly chosen prime
possessing such atrapdoor is negligibly small.

Rivest and Sherman [1061] gave an overview and unified framework for randomized en-
cryption, including comments on chosen-plaintext and chosen-ciphertext attacks.

Elliptic curveswerefirst proposed for use in public-key cryptography by Koblitz [695] and
Miller [878]. Recent work on the security and implementation of elliptic curve systems
is reported by Menezes [840]. Menezes, Okamoto, and Vanstone [843] showed that if the
elliptic curve belongsto a special family called supersingular curves, then the discretelog-
arithm problem in the elliptic curve group can be reduced in expected polynomial time to
the discrete logarithm problem in asmall extension of the underlying finite field. Hence, if
asupersingular elliptic curveis desired in practice, then it should be carefully chosen.

A modification of EIGamal encryption employing the group of unitsZ, wheren isacom-
positeinteger, was proposed by McCurley [825]; the scheme has the property that breaking
itisprovably at least as difficult as factoring the modulusn (cf. Fact 3.80). If acryptanalyst
somehow |earnsthe factors of n, thenin order to recover plaintext from ciphertext it is still
left with the task of solving the Diffie-Hellman problem (§3.7) modul o the factors of n.

Hyperelliptic curve cryptosystems were proposed by Koblitz [696] but little research has
since been done regarding their security and practicality.

The possibility of using the class group of an imaginary quadratic number field in public-
key cryptography was suggested by Buchmann and Williams [218], however, the attrac-
tiveness of this choice was greatly diminished after the invention of a subexponential-time
algorithm for computing discrete logarithmsin these groups by McCurley [826].

Smith and Skinner [1162] proposed anal ogues of the Diffie-Hellman key exchange (called
LUCDIF) and EIGamal encryption and digital signature schemes (called LUCEL G) which
use Lucas sequences modulo a prime p instead of modular exponentiation. Shortly there-
after, Laih, Tu, and Tai [733] and Bleichenbacher, Bosma, and Lenstra[154] showed that
the anal ogue of the discrete logarithm problem for Lucas functions polytime reducesto the

TCL Exhibit 1009
Page 334

§8.8 Notes and further references 317

§8.5

§8.6

discrete logarithm problem in the multiplicative group of the finite field IF .. Since there
aresubexponential-timealgorithmsknown for the discretelogarithm problemin thesefields
(cf. §3.6), LUCDIF and LUCEL G appear not to offer any advantages over the original sch-
emes.

The McEliece encryption scheme (Algorithm 8.30) was introduced in 1978 by McEliece
[828]. For information on Goppa codes and their decoding a gorithms, see MacWilliams
and Sloane [778]. The problem of decoding an arbitrary linear code was shown to be NP-
hard by Berlekamp, M cEliece, and van Tilborg[120]. The security of the M cEliece scheme
has been studied by Adamsand Meijer [6], Leeand Brickell [742], van Tilburg[1212], Gib-
son [451], and by Chabaud [235]. Gibson showed that there are, in fact, many trapdoorsto
agiven McEliece encryption transformation, any of which may be used for decryption; this
iscontrary to theresults of Adams and Meijer. However, Gibson notesthat there are proba-
bly sufficiently few trapdoors that finding one by brute forceis computationally infeasible.
The cryptanalytic attack reported by Korzhik and Turkin [707] has not been published in
its entirety, and is not believed to be an effective attack.

The strength of the McEliece encryption scheme can be severely weakened if the Goppa
codeis replaced with another type of error-correcting code. For example, Gabidulin, Para-
monov, and Tretjakov [435] proposed a modification which uses maximum-rank-distance
(MRD) codesin place of Goppacodes. This scheme, and amodification of it by Gabidulin
[434], were subsequently shown to be insecure by Gibson [452, 453].

Thebasic and multiple-iterated M erkle-Hellman knapsack encryption schemes (§8.6.1) we-
reintroduced by Merkle and Hellman [857]. An elementary overview of knapsack systems
isgiven by Odlyzko [941].

Thefirst polynomial-timeattack on the basic Merkle-Hellman scheme (cf. Note 8.40(i)) was
devised by Shamir [1114] in 1982. The attack makes use of H. Lenstra'salgorithm for inte-
ger programming which runsin polynomial time when the number of variablesisfixed, but
isinefficient in practice. Lagarias[723] improved the practicality of the attack by reducing
the main portion of the procedure to a problem of finding an unusually good simultane-
ous diophantine approximation; the latter can be solved by the more efficient L 3-lattice ba-
sisreduction algorithm (§3.10.1). Thefirst attack on the multiple-iterated Merkle-Hellman
scheme was by Brickell [200]. For surveys of the cryptanalysis of knapsack schemes, see
Brickell [201] and Brickell and Odlyzko [209]. Orton [960] proposed a modification to the
multiple-iterated Merkle-Hellman scheme that permits a knapsack density approaching 1,
thus avoiding currently known attacks. The high density also allows for afast digital sig-
nature scheme.

Shamir [1109] proposed afast signature scheme based on the knapsack problem, later bro-
ken by Odlyzko [939] using the L3-lattice basis reduction algorithm.

The Merkle-Hellman knapsack scheme illustrates the limitations of using an NP-complete
problem to design a secure public-key encryption scheme. Firstly, Brassard [190] showed
that under reasonable assumptions, the problem faced by the cryptanalyst cannot be NP-
hard unlessNP=co-NP, whichwould be avery surprising result in computational complex-
ity theory. Secondly, complexity theory is concerned primarily with asymptotic complex-
ity of aproblem. By contrast, in practice one works with aproblem instance of afixed size.
Thirdly, NP-completenessisameasure of the wor st-case compl exity of aproblem. By con-
trast, cryptographic security should depend on the aver age-case complexity of the problem
(or even better, the problem should be intractable for essentially all instances), since the

TCL Exhibit 1009
Page 335

318

Ch. 8 Public-Key Encryption

§8.7

cryptanalyst’stask should be hardfor virtually al instancesand not merely in theworst case.
There are many NP-complete problems that are known to have polynomial-time average-
case algorithms, for example, the graph coloring problem; see Wilf [1243]. Another inter-
esting example is provided by Even and Yacobi [379] who describe a symmetric-key en-
cryption scheme based on the subset sum problem for which breaking the scheme (under a
chosen-plaintext attack) is an NP-hard problem, yet an a gorithm exists which solves most
instances in polynomial time.

The Chor-Rivest knapsack scheme (Algorithm 8.42) was proposed by Chor and Rivest
[261]. Recently, Schnorr and Horner [1100] introduced new agorithms for lattice ba-
sis reduction that are improvements on the L3-lattice basis reduction algorithm (Algo-
rithm 3.101), and used these to break the Chor-Rivest scheme with parameters {p =
103, h = 12}. Since the density of such knapsack setsis 1.271, the attack demonstrated
that subset sum problems with density greater than 1 can be solved via lattice basis re-
duction. Schnorr and Horner also reported some success solving Chor-Rivest subset sum
problems with parameters {p = 151, h = 16}. It remains to be seen whether the tech-
niques of Schnorr and Horner can be successfully applied to the recommended parameter
case{p =197, h = 24}.

Depending on the choice of parameters, the computation of discretelogarithmsin the Chor-
Rivest key generation stage (step 4 of Algorithm 8.41) may be a formidable task. A mod-
ified version of the scheme which does not require the computation of discrete logarithms
in afield was proposed by H. Lenstra[758]. This modified schemeis called the powerline
system and is not a knapsack system. It was proven to be at least as secure as the origina
Chor-Rivest scheme, and is comparablein terms of encryption and decryption speeds.

Quand Vanstone[1013] showed how the M erkle-Hellman knapsack schemescan beviewed
as special cases of certain knapsack-like encryption schemes arising from subset factoriza-
tions of finite groups. They also proposed an efficient public-key encryption scheme based
on subset factorizations of the additive group Z,, of integers modulo n. Blackburn, Mur-
phy, and Stern [143] showed that a simplified variant which uses subset factorizations of
the n-dimensional vector space Z:, over Z isinsecure.

The notion of probabilistic public-key encryptionwas conceived by Goldwasser and Micali
[479], who also introduced the notions of polynomial and semantic security. The equiva
lence of these two notions (Fact 8.49) was proven by Goldwasser and Micali [479] and Mi-
cali, Rackoff, and Sloan [865]. Polynomial security was also studied by Yao [1258], who
referred to it as polynomial-time indistinguishability.

The Goldwasser-Micali scheme (Algorithm 8.51) can be described in a general setting by
using the notion of atrapdoor predicate. Briefly, atrapdoor predicateisaBoolean function
B : {0,1}* — {0, 1} such that given abit v it is easy to choose an x at random satisfy-
ing B(z) = v. Moreover, given a bitstring =, computing B(z) correctly with probability
significantly greater than % is difficult; however, if certain trapdoor information is known,
thenitiseasy to compute B(z). If entity A’spublic key isatrapdoor predicate B, then any
other entity encrypts a message bit m; by randomly selecting an z; such that B(z;) = m;,
andthen sendsz; to A. Since A knowsthetrapdoor information, she can compute B(z ;) to
recover m;, but an adversary can do no better than guess the value of m ;. Goldwasser and
Micali [479] proved that if trapdoor predicates exist, then this probabilistic encryption sch-
emeis polynomially secure. Goldreich and Levin [471] simplified the work of Yao [1258],
and showed how any trapdoor length-preserving permutation f can be used to obtain atrap-
door predicate, which in turn can be used to construct a probabilistic public-key encryption

TCL Exhibit 1009
Page 336

§8.8 Notes and further references 319

scheme.

The Blum-Goldwasser scheme (Algorithm 8.56) was proposed by Blum and Gol dwasser
[164]. The version given here follows the presentation of Brassard [192]. Two probabilis-
tic public-key encryption schemes, one whose breaking is equivalent to solving the RSA
problem (§3.3), and the other whose breaking is equivalent to factoring integers, were pro-
posed by Alexi et a. [23]. The scheme based on RSA isasfollows. Leth = |lglgn],
where (n, e) is entity A’s RSA public key. To encrypt an h-bit message m for A, choose
arandomy € Z; such that the h least significant bits of y equal m, and compute the ci-
phertext ¢ = y¢ mod n. A can recover m by computingy = ¢? mod n, and extracting the
h least significant bits of y. While both the schemes proposed by Alexi et a. are more ef-
ficient than the Goldwasser-Micali scheme, they suffer from large message expansion and
are consequently not as efficient as the Blum-Goldwasser scheme.

Theideaof non-malleablecryptography (Definition 8.60) wasintroduced by Dolev, Dwork,
and Naor [357], who also observed Fact 8.61. The paper gives the example of two con-
tract bidders who encrypt their bids. It should not be possible for one bidder A to see the
encrypted bid of the other bidder B and somehow be able to offer a bid that was slightly
lower, even if A may not know what the resulting bid actualy is at that time. Bellare and
Rogaway [95] introduced the notion of plaintext-aware encryption (Definition 8.62). They
presented the scheme described in Note 8.63, building upon earlier work of Johnson et al.
[639]. Rigorous definitionsand security proofswere provided, aswell as aconcreteinstan-
tiation of the plaintext-aware encryption scheme using RSA as the trapdoor permutation,
and constructing therandom functions G and H fromthe SHA-1 hash function (§9.4.2(iii)).
Johnson and Matyas [640] presented some enhancementsto the plaintext-awareencryption
scheme. Bellare and Rogaway [93] presented various techniques for deriving appropriate
random functions from standard cryptographic hash functions.

TCL Exhibit 1009
Page 337

Chapter

Hash Functions and Data Integrity

Contentsin Brief

9.1 Introduction. 321
9.2 Classficationandframework 322
9.3 Basicconstructionsand general results. 332
9.4 Unkeyed hash functions(MDCs) 338
9.5 Keyed hash functions(MACs) 352
9.6 Dataintegrity and message authentication 359
9.7 Advanced attackson hash functions 368
9.8 Notesand furtherreferences 376

9.1 Introduction

Cryptographic hash functions play a fundamental role in modern cryptography. While re
lated to conventional hash functions commonly used in hon-cryptographic computer a|
cations —in both cases, larger domains are mapped to smaller ranges — they differ in s¢
importantaspects. Our focus is restricted to cryptographic hash functions (hereafter, si
hash functions), and in particular to their use for data integrity and message authentic:
Hash functions take a message as input and produce an output referredrashs a
code, hash-result, hash-value, or simplyhash. More precisely, a hash functidnmaps bit-
strings of arbitrary finite length to strings of fixed length, salits. For a domairD and
rangeR with h : D— R and|D| > | R|, the function is many-to-one, implying that the exis:
tence ofcollisions (pairs of inputs with identical output) is unavoidable. Indeed, restrictir
h to a domain ot-bit inputs (¢t > n), if h were “random” in the sense that all outputs wer:
essentially equiprobable, then abatt™ inputs would map to each output, and two ran
domly chosen inputs would yield the same output with probaliifity (independent of).
The basic idea of cryptographic hash functions is that a hash-value serves as a compa
resentative image (sometimes callediaprint, digital fingerprint, or message digest) of
an input string, and can be used as if it were uniquely identifiable with that string.
Hash functions are used for data integrity in conjunction with digital signature s
emes, where for several reasons a message is typically hashed first, and then the hash
as a representative of the message, is signed in place of the original message (see
ter 11). A distinct class of hash functions, called message authentication codes (MA
allows message authentication by symmetric techniques. MAC algorithms may be vie
as hash functions which take two functionally distinct inputs, a message and a secre
and produce a fixed-size (saybit) output, with the design intent that it be infeasible ir

321

TCL Exhibit 1009
Page 338

322

Ch. 9 Hash Functions and Data Integrity

practice to produce the same output without knowledge of the key. MACs can be us
provide data integrity and symmetric data origin authentication, as well as identificatic
symmetric-key schemes (see Chapter 10).

A typical usage of (unkeyed) hash functions for data integrity is as follows. The h:
value corresponding to a particular messagecomputed at tim&; . The integrity of this
hash-value (but not the message itself) is protected in some manner. At a subsequel
T5, the following test is carried out to determine whether the message has been altere
whether a messageéis the same as the original message. The hash-valtiefomputed
and compared to the protected hash-value; if they are equal, one accepts that the inp
also equal, and thus that the message has not been altered. The problem of presen
integrity of a potentially large message is thus reduced to that of a small fixed-size t
value. Since the existence of collisions is guaranteed in many-to-one mappings, the u
association between inputs and hash-values can, at best, be in the computational se
hash-value should be uniquely identifiable with a single inpuyiractice, and collisions
should becomputationally difficult to find (essentially never occurring in practice).

Chapter outline

The remainder of this chapter is organized as folloy@s2 provides a framework including
standard definitions, a discussion of the desirable properties of hash functions and v
and consideration of one-way function§9.3 presents a general model for iterated ha
functions, some general construction techniques, and a discussion of security obje
and basic attacks (i.e., strategies an adversary may pursue to defeat the objectives ot
function). §9.4 considers hash functions based on block ciphers, and a family of funct
based on the MD4 algorithn§9.5 considers MACs, including those based on block cipht
and customized MAC<9.6 examines various methods of using hash functions to prov
data integrity. §9.7 presents advanced attack metho§8 provides chapter notes witt
references.

9.2 Classification and framework

9.2.1 General classification

9.1

At the highest level, hash functions may be split into two classelseyed hash functions,
whose specification dictates a single input parameter (a messagkgyeathash functions,
whose specification dictates two distinct inputs, a message and a secret key. To fac
discussion, a hash function is informally defined as follows.

Definition A hashfunction (in the unrestricted sense) is a functiowhich has, as a min-
imum, the following two properties:

1. compression — h maps an inpuk of arbitrary finite bitlength, to an outpéf{x) of
fixed bitlengthn.

2. ease of computation — givenh and an inputz, h(x) is easy to compute.

TCL Exhibit 1009
Page 339

§9.2 Classification and framework 323

As defined herehash function implies an unkeyed hash function. On occasion wher
discussion is at a generic level, this term is abused somewhat to mean both unkeyec
keyed hash functions; hopefully ambiguity is limited by context.

For actual use, a more goal-oriented classification of hash functions (bkeysald/s.
unkeyed) is necessary, based on further properties they provide and reflecting requirems
of specific applications. Of the numerous categories in stighcional classification, two
types of hash functions are considered in detail in this chapter:

1. modification detection codes (MDCs)
Also known asmani pulation detection codes, and less commonly asessageintegri-
ty codes (MICs), the purpose of an MDC is (informally) to provide a representativi
image orhash of a message, satisfying additional properties as refined below. Tl
end goal is to facilitate, in conjunction with additional mechanisms{8e&4), data
integrity assurances as required by specific applications. MDCs are a subalass of
keyed hash functions, and themselves may be further classified; the specific clas
of MDCs of primary focus in this chapter are (cf. Definitions 9.3 and 9.4):
(i) one-way hash functions (OWHFs): for these, finding an input which hashes to
a pre-specified hash-value is difficult;
(i) collision resistant hash functions (CRHFs): for these, finding any two inputs
having the same hash-value is difficult.

2. message authentication codes (MACSs)
The purpose of a MAC is (informally) to facilitate, without the use of any additiona
mechanisms, assurances regarding both the source of a message and its integrit
§9.6.3). MACs have two functionally distinct parameters, a message input and a
cret key; they are a subclasslkafed hash functions (cf. Definition 9.7).

Figure 9.1 illustrates this simplified classification. Additional applications of unkeye
hash functions are noted §9.2.6. Additional applications of keyed hash functions in-
clude use in challenge-response identification protocols for computing responses whict
a function of both a secret key and a challenge message; and for key confirmation (De:
tion 12.7). Distinction should be made between a MAC algorithm, and the use of an ML
with a secret key included as part of its message input§@&e2).

It is generally assumed that the algorithmic specification of a hash function is puk
knowledge. Thus in the case of MDCs, given a message as input, anyone may comput
hash-result; and in the case of MACs, given a message as input, anyone with knowled
the key may compute the hash-result.

9.2.2 Basic properties and definitions

To facilitate further definitions, three potential properties are listed (in additieasmof
computation andcompression as per Definition 9.1), for an unkeyed hash functiowith
inputsz, =’ and outputg, v’

1. preimage resistance — for essentially all pre-specified outputs, it is computationally
infeasible to find any input which hashes to that output, i.e., to find any preimage
suchthat(z') = y when given any for which a corresponding input is not known.

2. 2nd-preimageresistance — it is computationally infeasible to find any second input
which has the same output as any specified input, i.e., givierfind a 2nd-preimage
x' # x such that(z) = h(z').

1This acknowledges that an adversary may easily precompute outputs for any small set of inputs, and tr
invert the hash function trivially for such outputs (cf. Remark 9.35).

TCL Exhibit 1009
Page 340

324

Ch. 9 Hash Functions and Data Integrity

9.2

hash functions

unkeyed keyed

/

other other
applications applications

modification
detection

(MDCs)
e

OWHF CRHF

message
authentication
(MACs)

preimage resistant ¢

2nd .
preimage resistant

collision resistant ¢

Figure 9.1: Smplified classification of cryptographic hash functions and applications.

3. collision resistance — it is computationally infeasible to find any two distinct inputs
z, ' which hash to the same output, i.e., such that) = h(z’). (Note that here
there is free choice of both inputs.)

Here and elsewhere, the terms “easy” and “computationally infeasible” (or “hard”) ar
intentionally left without formal definition; it is intended they be interpreted relative to ar
understood frame of reference. “Easy” might mean polynomial time and space; or mc
practically, within a certain number of machine operations or time units — perhaps secor
or milliseconds. A more specific definition of “computationally infeasible” might involve
super-polynomial effort; require effort far exceeding understood resources; specify a low
bound on the number of operations or memory required in terms of a specified security |
rameter; or specify the probability that a property is violated be exponentially small. Tk
properties as defined above, however, suffice to allow practical definitions such as Defi
tions 9.3 and 9.4 below.

Note (alternateterminology) Alternate terms used in the literature are as follows: preim-
age resistant one-way (cf. Definition 9.9); 2nd-preimage resistaneaeveak collision re-
sistance; collision resistances strong collision resistance.

For context, one motivation for each of the three major properties above is now give
Consider a digital signature scheme wherein the signature is applied to the hashfwalue
rather than the message Hereh should be an MDC with 2nd-preimage resistance, oth-
erwise, an adversay may observe the signature of some pattpn h(z), then find an
2’ such that.(z) = h(z’), and claim thatd has signed’. If C' is able to actually choose
the message whicH signs, therC' need only find a collision paifz, ') rather than the
harder task of finding a second preimage:pin this case, collision resistance is also nec-
essary (cf. Remark 9.93). Less obvious is the requirement of preimage resistance for sc
public-key signature schemes; consider RSA (Chapter 11), where pdrag public key

TCL Exhibit 1009
Page 341

§9.2 Classification and framework 325

9.3

9.4

9.5

9.6

9.7

9.8

(e,n). C' may choose a random valye computez = y© mod n, and (depending on the
particular RSA signature verification process used) claimyfigtd’s signature orx. This
(existential) forgery may be of concerndfcan find a preimage such that.(x) = z, and
for which z is of practical use.

Definition A one-way hash function (OWHF) is a hash functioh as per Definition 9.1
(i.e., offering ease of computation and compression) with the following additional prope
ties, as defined above: preimage resistance, 2nd-preimage resistance.

Definition A collision resistant hash function (CRHF) is a hash functioh as per Defini-
tion 9.1 (i.e., offering ease of computation and compression) with the following addition
properties, as defined above: 2nd-preimage resistance, collision resistance (cf. Fact 9.

Althoughin practice a CRHF almost always has the additional property of preimage |
sistance, for technical reasons (cf. Note 9.20) this property is not mandated in Definition ¢

Note (alternateterminology for OWHF, CRHF) Alternate terms used in the literature are
as follows: OWHF= weak one-way hash function (but here preimage resistance is often
not explicitly considered); CRHE strong one-way hash function.

Example (hash function properties)

(i) A simple modulo-32 checksum (32-bit sum of all 32-bit words of a data string) is a
easily computed function which offers compression, but is not preimage resistant
(i) The functiong(x) of Example 9.11 is preimage resistant but provides neither corr
pression nor 2nd-preimage resistance.
(iii) Example 9.13 presents a function with preimage resistance and 2nd-preimage re
tance (but not compression). O

Definition A message authentication code (MAC) algorithm is a family of functiong
parameterized by a secret kieywith the following properties:

1. ease of computation — for a known functionh, given a valuek and an input,
hi(z) is easy to compute. This result is called MAC-value or MAC.

2. compression— hy, maps an input: of arbitrary finite bitlength to an outpat, (z) of
fixed bitlengthn.
Furthermore, given a description of the function fantilyfor every fixed allowable
value ofk (unknown to an adversary), the following property holds:

3. computation-resistance— given zero or more text-MAC paifg:;, hi(x;)), itis com-
putationally infeasible to compute any text-MAC péir, hi(x)) for any new input
x # x; (including possibly foh (z) = hk(z;) for some).

If computation-resistance does not hold, a MAC algorithmis subjéditG forgery. While
computation-resistance implies the propertk®f non-recovery (it must be computation-
ally infeasible to recovek, given one or more text-MAC paifs:;, hi(z;)) for thatk), key
non-recovery does not imply computation-resistance (a key need not always actually be
covered to forge new MACS).

Remark (MAC resistance when key known) Definition 9.7 does not dictate whether MACs
need be preimage- and collision resistant for parties knowing thk {@yFact 9.21 implies
for parties without).

TCL Exhibit 1009
Page 342

326

Ch. 9 Hash Functions and Data Integrity

(i) Objectives of adversaries vs. MDCs
The objective of an adversary who wishes to “attack” an MDC is as follows:

(a) to attack a OWHF: given a hash-valyefind a preimage: such thaty = h(x); or
given one such paifz, h(x)), find a second preimage such that:(z') = h(z).
(b) to attack a CRHF: find any two inpuis z’, such that(z') = h(x).
A CRHF must be designed to withstand standard birthday attacks (see Fact 9.33).

(ii) Objectives of adversaries vs. MACs
The corresponding objective of an adversary for a MAC algorithm is as follows:

(c) to attack a MAC: without prior knowledge of a kéycompute a new text-MAC pair
(z, hi(x)) for some textz # x;, given one or more pairg:;, hi(z;)).
Computation-resistance here should hold whether the #eXts which matching MACs
are available are given to the adversary, or may be freely chosen by the adversary. Sir
to the situation for signature schemes, the following attack scenarios thus exist for MA
for adversaries with increasing advantages:

1. known-text attack. One or more text-MAC pairée;, hi(x;)) are available.

2. chosen-text attack. One or more text-MAC pairéz;, hy(z;)) are available for;
chosen by the adversary.

3. adaptive chosen-text attack. Thexz; may be chosen by the adversary as above, no\
allowing successive choices to be based on the results of prior queries.

As a certificational checkpoint, MACs should withstand adaptive chosen-text attack rege
less of whether such an attack may actually be mounted in a particular environment. St
practical applications may limit the number of interactions allowed over a fixed period
time, or may be designed so as to compute MACSs only for inputs created within the ap
cation itself; others may allow access to an unlimited number of text-MAC pairs, or allc
MAC verification of an unlimited number of messages and accept any with a correct M4
for further processing.

(iii) Types of forgery (selective, existential)

When MAC forgery is possible (implying the MAC algorithm has been technically de
feated), the severity of the practical consequences may differ depending on the degre
control an adversary has over the vatuir which a MAC may be forged. This degree is
differentiated by the following classification of forgeries:

1. selective forgery — attacks whereby an adversary is able to produce a new text-MA
pair for a text of his choice (or perhaps partially under his control). Note that here t
selected value is the text for which a MAC is forged, whereas in a chosen-text att:
the chosen value is the text of a text-MAC pair used for analytical purposes (e.g.
forge a MAC on a distinct text).

2. existential forgery— attacks whereby an adversary is able to produce a new text-MA
pair, but with no control over the value of that text.

Key recovery of the MAC key itself is the most damaging attack, and trivially allows st
lective forgery. MAC forgery allows an adversary to have a forged text accepted as auth
tic. The consequences may be severe even in the existential case. A classic example
replacement of a monetary amount known to be small by a number randomly distribu
betweerp and232 — 1. For this reason, messages whose integrity or authenticity is to |
verified are often constrained to have pre-determined structure or a high degree of verifii
redundancy, in an attempt to preclude meaningful attacks.

TCL Exhibit 1009
Page 343

§9.2 Classification and framework 327

Analogously to MACs, attacks on MDC schemes (primarily 2nd-preimage and cc
sion attacks) may be classified as selective or existential. If the message can be pa
controlled, then the attack may be classified as partially selective (e.§9 Se&(iii)).

9.2.3 Hash properties required for specific applications

Because there may be costs associated with specific properties — e.g., CRHFs are il
eral harder to construct than OWHFs and have hash-values roughly twice the bitlengt|
should be understood which properties are actually required for particular applications,
why. Selected techniques whereby hash functions are used for data integrity, and the
responding properties required thereof by these applications, are summarized in Tabl

In general, an MDC should be a CRHF if an untrusted party has control over the e
content of hash function inputs (see Remark 9.93); a OWHF suffices otherwise, inclu
the case where there is only a single party involved (e.g., a store-and-retrieve applica
Control over precise format of inputs may be eliminated by introducing into the mess
randomization that is uncontrollable by one or both parties. Note, however, that dat:
tegrity techniques based on a shared secret key typically involve mutual trust and dc
address non-repudiation; in this case, collision resistance may or may not be a require

Hash properties requireé Preimage| 2nd- Collision | Details
Integrity application| resistant | preimage| resistant

MDC + asymmetric signature yes yes yest page 324
MDC + authentic channel yes yest page 364
MDC + symmetric encryption page 365
hash for one-way password file} yes page 389
MAC (key unknown to attacker yes yes yest page 326
MAC (key known to attacker) yest page 325

Table 9.1: Resistance properties required for specified data integrity applications.
tResistance required if attacker is able to mount a chosen message attack.
{Resistance required in rare case of multi-cast authentication (see page 378).

9.2.4 One-way functions and compression functions

9.9

9.10

Related to Definition 9.3 of a OWHF is the following, which is unrestrictive with respe
to a compression property.

Definition A one-way function (OWF) is a functiory such that for each in the domain of
f,itis easy to computé(z); but for essentially aly in the range off, it is computationally
infeasible to find any such thaty = f(z).

Remark (OWF vs. domain-restricted OWHF) A OWF as defined here differs from a
OWHF with domain restricted to fixed-size inputs in that Definition 9.9 does not reqt
2nd-preimage resistance. Many one-way functions are, in fact, non-compressing, in w
case most image elements have unique preimages, and for these 2nd-preimage res
holds vacuously — making the difference minor (but see Example 9.11).

TCL Exhibit 1009
Page 344

328

Ch. 9 Hash Functions and Data Integrity

9.11

9.12

9.13

9.14

Example (one-way functions and modular squaring) The squaring of integers modulo a

primep, e.g.,f(z) = 2 — 1 mod p, behaves in many ways like a random mapping. How
ever,f(z) is nota OWF because finding square roots modulo primes is easy (§3.5.1). On
other handg(z) = 2% mod n is a OWF (Definition 9.9) for appropriate randomly choser
primesp andq wheren = pq and the factorization at is unknown, as finding a preimage

(i.e., computing a square root madlis computationally equivalent to factoring (Fact 3.46)
and thus intractable. Nonetheless, finding a 2nd-preimage, and, therefore, collisions, is
ial (givenx, —z yields a collision), and thug fits neither the definition of a OWHF nor a

CRHF with domain restricted to fixed-size inputs. a

Remark (candidateone-wayfunctions) There are, in fact, no known instances of functions
which are provably one-way (with no assumptions); indeed, despite known hash funct
constructions which are provably as securédN&complete problems, there is no assur-
ance the latter are difficult. All instances of “one-way functions” to date should thus mc
properly be qualified as “conjectured” or “candidate” one-way functions. (It thus remai
possible, although widely believed most unlikely, that one-way functions do not exist.)
proof of existence would establish# NP, while non-existence would have devastating
cryptographic consequences (see page 377), although not directly implyrgP.

Hash functions are often used in applications §6t2.6) which require the one-way
property, but not compression. It is, therefore, useful to distinguish three classes of ft
tions (based on the relative size of inputs and outputs):

1. (general) hash functions. These are functions as per Definition 9.1, typically with ad-
ditional one-way properties, which compress arbitrary-length inputstiboutputs.

2. compression functions (fixed-size hash functions). These are functions as per De!
nition 9.1, typically with additional one-way properties, but with domain restricte
to fixed-size inputs —i.e., compressingbit inputs ton-bit outputs;n > n.

3. non-compressing one-way functions. These are fixed-size hash functions as above
except thah = m. These includene-way permutations, and can be more explicitly
described as computationally non-invertible functions.

Example (DESbased OWF) A one-way function can be constructed from DES or any
block cipherE which behaves essentially as a random function (see Remark 9.14), as
lows: f(x) = Ex(x)®z, for any fixed known key:. The one-way nature of this construc-
tion can be proven under the assumption tHias a random permutation. An intuitive ar-
gument follows. For any choice gf finding anyz (and keyk) such thatF, (z)®z = y is
difficult because for any chosen Ej(x) will be essentially random (for any key) and
thus so will E (z)®z; hence, this will equal, with no better than random chance. By
similar reasoning, if one attempts to use decryption and choosesthe probability that
E; ' (z®y) = =z is no better than random chance. Thifs) appears to be a OWF. While
f(z) is not a OWHF (it handles only fixed-length inputs), it can be extended to yield ol
(see Algorithm 9.41). O

Remark (block ciphers and random functions) Regarding random functions and their
properties, seg2.1.6. If a block cipher behaved as a random function, then encryption a
decryption would be equivalent to looking up values in a large table of random numbe
for a fixed input, the mapping from a key to an output would behave as a random mappi
However, block ciphers such as DES are bijections, and thus at best exhibit behavior n
like random permutations than random functions.

TCL Exhibit 1009
Page 345

§9.2 Classification and framework 329

9.15

9.16

9.17

Example (one-wayness w.r.t. two inputs) Considerf(z,k) = Ex(z), whereE repre-
sents DES. This is not a one-way function of the joint infput:), because given any func-
tion valuey = f(z, k), one can choose any kéy and computer’ = E,,*(y) yielding

a preimag€gz’, k). Similarly, f(z, k) is not a one-way function af if k is known, as
giveny = f(z, k) andk, decryption ofy usingk yieldsz. (However, a “black-box” which
computesf(z, k) for fixed, externally-unknowh is a one-way function af.) In contrast,
f(z, k) is a one-way function of; giveny = f(z, k) andz, it is not known how to find

a preimagek in less than abol#® operations. (This latter concept is utilized in one-time
digital signature schemes — s¢.6.2.) O

Example (OWF - multiplication of large primes) For appropriate choices of primgsand

q, f(p, q) = pq is a one-way function: givepandg, computing: = pq is easy, but given
n, findingp andg, i.e.,integer factorization, is difficult. RSA and many other cryptographic
systems rely on this property (see Chapter 3, Chapter 8). Note that contrary to many ¢
way functions, this functiorf does not have properties resembling a “random” funcfion.

Example (OWF - exponentiation in finite fields) For most choices of appropriately large
primesp and any element € Z; of sufficiently large multiplicative order (e.g., a gen-
erator),f(z) = o® mod p is a one-way function. (For examplemust not be such that
all the prime divisors op — 1 are small, otherwise the discrete log problem is feasible b
the Pohlig-Hellman algorithm df3.6.4.) f(z) is easily computed given, z, andp using
the square-and-multiply technique (Algorithm 2.143), but for most chgideis difficult,
given (y, p,), to find anz in the rangé) < = < p — 2 such thatv® mod p = y, due to
the apparent intractability of the discrete logarithm problem (§3.6). Of course, for speci
values off (z) the function can be inverted trivially. For example, the respective preimags
of 1 and—1 are known to b® and(p — 1)/2, and by computing (x) for any small set of
values forz (e.g.,z = 1,2,...,10), these are also known. However, fssentially all y

in the range, the preimage gfis difficult to find. |

9.2.5 Relationships between properties

9.18

9.19

In this section several relationships between the hash function properties stated in the
ceding section are examined.

Fact Collision resistance implies 2nd-preimage resistance of hash functions.

Justification. Supposér has collision resistance. Fix an input. If 2 does not have 2nd-
preimage resistance, then it is feasible to find a distinct impstch thati(z;) = h(z;),

in which casgz;, z;) is a pair of distinct inputs hashing to the same output, contradictin
collision resistance.

Remark (one-way vs. preimage and 2nd-preimage resistant) While the term “one-way”

is generally taken to mean preimage resistant, in the hash function literature it is soi
times also used to imply that a function is 2nd-preimage resistant or computationally ni
invertible. (Computationally non-invertibleis a more explicit term for preimage resistance
when preimages are unique, e.g., for one-way permutations. In the case that two or n
preimages exist, a function fails to be computationally non-invertible if any one can |
found.) This causes ambiguity as 2nd-preimage resistance does not guarantee prein
resistance (Note 9.20), nor does preimage resistance guarantee 2nd-preimage resis
(Example 9.11); see also Remark 9.10. An attempt is thus made to avoid unqualified us
the term “one-way”.

TCL Exhibit 1009
Page 346

330

Ch. 9 Hash Functions and Data Integrity

9.20 Note (collision resistance does not guarantee preimage resistance) Let g be a hash func-

9.21

tion which is collision resistant and maps arbitrary-length inputs it outputs. Consider
the functionk defined as (here and elsewhgte&lenotes concatenation):

_ 1 if has bitlength n
hlw) = { [| g(z), otherwise.

Thenh is an(n + 1)-bit hash function which is collision resistant but not preimage resis
tant. As a simpler example, the identity function on fixed-length inputs is collision and 2n
preimage resistant (preimages are unique) but not preimage resistant. While such pathe
ical examples illustrate that collision resistance does not guarantee the difficulty of find
preimages of specific (or even most) hash outputs, for most CRHFs arising in practic
nonetheless appears reasonable to assume that collision resistance does indeed imply
age resistance.

Fact (implications of MAC properties) Let iy, be a keyed hash function which is a MAC
algorithm per Definition 9.7 (and thus has the property of computation-resistance). Tt
hy is, against chosen-text attack by an adversary without knowledge of thig kiéyoth
2nd-preimage resistant and collision resistant; and (ii) preimage resistant (with respec
the hash-input).

Justification. For (i), note that computation-resistance implies hash-results should not ev
be computable by those without secret KeyFor (ii), by way of contradiction, assume
h were not preimage resistant. Then recovery of the preimege a randomly selected
hash-outpuy violates computation-resistance.

9.2.6 Other hash function properties and applications

Most unkeyed hash functions commonly found in practice were originally designed for t
purpose of providing data integrity (s&2.6), including digital fingerprinting of messages
in conjunction with digital signatures (§9.6.4). The majority of these are, in fact, MDC
designed to have preimage, 2nd-preimage, or collision resistance properties. Because
way functions are a fundamental cryptographic primitive, many of these MDCs, which ty
ically exhibit behavior informally equated with one-wayness and randomness, have b
proposed for use in various applications distinct from data integrity, including, as discus:
below:

1. confirmation of knowledge

2. key derivation

3. pseudorandom number generation

Hash functions used for confirmation of knowledge facilitate commitment to data value
or demonstrate possession of data, without revealing such data itself (until possibly a |
point in time); verification is possible by parties in possession of the data. This resemk
the use of MACs where one also essentially demonstrates knowledge of a secret (but
the demonstration bound to a specific message). The property of hash functions requ
is preimage resistance (see also partial-preimage resistance below). Specific example
clude use in password verification using unencrypted password-image files (Chapter
symmetric-key digital signatures (Chapter 11); key confirmation in authenticated key «
tablishment protocols (Chapter 12); and document-dating or timestamping by hash-c
registration (Chapter 13).

In general, use of hash functions for purposes other than which they were originally «
signed requires caution, as such applications may require additional properties (see be

TCL Exhibit 1009
Page 347

§9.2 Classification and framework 331

9.22

these functions were not designed to provide; see Remark 9.22. Unkeyed hash func
having properties associated with one-way functions have nonetheless been proposec
wide range of applications, including as noted above:

e Kkey derivation—to compute sequences of new keys from prior keys (Chapter 13).
primary example is key derivation in point-of-sale (POS) terminals; here an impc
tant requirementis that the compromise of currently active keys must not compron
the security of previous transaction keys. A second example is in the generatiol
one-time password sequences based on one-way functions (Chapter 10).

e pseudorandom number generation — to generate sequences of numbers which hav
various properties of randomness. (A pseudorandom number generator can be us
construct a symmetric-key block cipher, among other things.) Due to the difficulty
producing cryptographically strong pseudorandom numbers (see Chapter 5), ML
should not be used for this purpose unless the randomness requirements are cl
understood, and the MDC is verified to satisfy these.

For the applications immediately above, rather than hash functions, the cryptographic pi
itive which is needed may bemseudorandom function (or keyed pseudorandom function).

Remark (use of MDCs) Many MDCs used in practice may appear to satisfy addition:
requirements beyond those for which they were originally designed. Nonetheless, the
of arbitrary hash functions cannot be recommended for any applications without care
analysis precisely identifying both the critical properties required by the application a
those provided by the function in question §9.5.2).

Additional properties of one-way hash functions

Additional properties of one-way hash functions called for by the above-mentioned ap
cations include the following.

1. non-correlation. Input bits and output bits should not be correlated. Related to thi
an avalanche property similar to that of good block ciphers is desirable whereby ev
input bit affects every output bit. (This rules out hash functions for which preima
resistance fails to imply 2nd-preimage resistance simply due to the function effi
tively ignoring a subset of input bits.)

2. near-collisionresistance. It should be hard to find any two inputsz’ such thah(z)
andh(z") differ in only a small number of bits.

3. partial-preimage resistance or local one-wayness. It should be as difficult to recover
any substring as to recover the entire input. Moreover, even if part of the input
known, it should be difficult to find the remainder (e.qg.¢ input bits remain un-
known, it should take on averagé ! hash operations to find these bits.)

Partial preimage resistance is an implicit requirement in some of the proposed applicat
of §9.5.2. One example where near-collision resistance is necessary is when only ha
the output bits of a hash function are used.

Many of these properties can be summarized as requirements that there be neithe
cal nor global statistical weaknesses; the hash function should not be weaker with res
to some parts of its input or output than others, and all bits should be equally hard. Sc
of these may be calleckrtificational properties — properties which intuitively appear de-
sirable, although they cannot be shown to be directly necessary.

TCL Exhibit 1009
Page 348

332 Ch. 9 Hash Functions and Data Integrity

9.3 Basic constructions and general results

9.3.1 General model for iterated hash functions

Most unkeyed hash functiorisare designed as iterative processes which hash arbitra
length inputs by processing successive fixed-size blocks of the input, as illustrated in

ure 9.2.
(a) high-level view (b) detailed view
original input =
arbitrary length input hash function h

‘ preprocessing
v
’ append padding bits ‘
v
’ append length block‘

iterated
compression
function

fixed length
output

formatted
inputz =12 - - x4

optional output iterated processing
transformation

compression

function f
€
y
H; 1 ;fﬂ
L
H; Hoy=1V
H;

o]

Y
output h(x) = g(Hy)

output

i

A\

Figure 9.2: General model for an iterated hash function.

A hash inputz of arbitrary finite length is divided into fixed-lengthbit blocksz;. This
preprocessing typically involves appending extra bits (padding) as necessary to attair
overall bitlength which is a multiple of the blocklengthand often includes (for security
reasons — e.g., see Algorithm 9.26) a block or partial block indicating the bitlength of 1
unpadded input. Each bloak then serves as input to an internal fixed-size hash functic
f, thecompression function of i, which computes a new intermediate result of bitlength
for some fixedn, as a function of the previoushbit intermediate result and the next input
blockz;. Letting H; denote the partial result after stagéhe general process for an iterated

TCL Exhibit 1009
Page 349

§9.3 Basic constructions and general results 333

hash function with input = x5 . .. x; can be modeled as follows:
Hy=1V; Hi = f(Hi—1,2;), 1<i<t; h(z) = g(H;). (9.1)

H,;_1 serves as the-bit chaining variable between stagé — 1 and stage, andHj is a
pre-defined starting value @mitializing value (IV). An optional output transformation
(see Figure 9.2) is used in a final step to maprtHst chaining variable to am-bit result
g(Hy); g is often the identity mapping(H:) = H;.

Particular hash functions are distinguished by the nature of the preprocessing, ¢
pression function, and output transformation.

9.3.2 General constructions and extensions

9.23

9.24

9.25

To begin, an example demonstrating an insecure construction is given. Several secure
eral constructions are then discussed.

Example (insecure trivial extension of OWHF to CRHF) In the case that an iterated
OWHF A yielding n-bit hash-values is not collision resistant (e.g., whe¥& birthday
collision attack is feasible — s€®.7.1) one might propose constructing frégna CRHF
using as output the concatenation of the last twlgit chaining variables, so thatteblock
message has hash-valbg_, || H; rather thanH;. This is insecure as the final message
block z; can be held fixed along with/;, reducing the problem to finding a collision on
H;_1 for h. O

Extending compression functions to hash functions

Fact 9.24 states an important relationship between collision resistant compression func
and collision resistant hash functions. Not only can the former be extended to the latter,
this can be done efficiently using Merkle’s meta-method of Algorithm 9.25 (also called t
Merkle-Damgard construction). This reduces the problem of finding such a hash funct
to that of finding such a compression function.

Fact (extending compression functions) Any compression functiotf which is collision
resistant can be extended to a collision resistant hash funkt{taking arbitrary length
inputs).

Algorithm Merkle’s meta-method for hashing

INPUT: compression functiofi which is collision resistant.
OUTPUT: unkeyed hash functignwhich is collision resistant.

1. Supposg maps(n + r)-bit inputs ton-bit outputs (for concreteness, consider
128 andr = 512). Construct a hash functionfrom £, yieldingn-bit hash-values,
as follows.

2. Break an input: of bitlengthb into blocksz 1z, . .. z; each of bitlengthr, padding
out the last block:; with 0-bits if necessary.

3. Define an extra final block; 1, the length-block, to hold the right-justified binary
representation df (presume thak < 27).

4. Letting 0 represent the bitstring of 0's, define then-bit hash-value of: to be
h(x) = Hiv1 = f(Hy || £e+1) computed from:

Hy =0 Hy=f(Hi-1 || 2i), 1<i<t+1.

TCL Exhibit 1009
Page 350

334

Ch. 9 Hash Functions and Data Integrity

9.26

9.27

The proof that the resulting functidnis collision resistant follows by a simple argu-
ment that a collision foh would imply a collision forf for some stagé. The inclusion of
the length-block, which effectively encodes all messages such that no encoded input is
tail end of any other encoded input, is necessary for this reasoning. Adding such a len
block is sometimes called Merkle-Damgard strengthening (MD-strengthening), which i
now stated separately for future reference.

Algorithm MD-strengthening

Before hashing a message= x5 ... z; (Wherez; is a block of bitlengthr appropriate
for the relevant compression function) of bitlengthappend a final length-block,; . 1,
containing the (say) right-justified binary representatiob. ¢ his presumes < 27.)

Cascading hash functions

Fact (cascading hash functions) If either h; or ko is a collision resistant hash function,
thenh(z) = hy(z) || h2(z) is a collision resistant hash function.

If both A1 andhs in Fact 9.27 arer-bit hash functions, theh produce®n-bit out-
puts; mapping this back down to anbit output by am-bit collision-resistant hash func-
tion (h; andhs are candidates) would leave the overall mapping collision-resistah. If
andh, are independent, then finding a collision forequires finding a collision for both
simultaneously (i.e., on the same input), which one could hope would require the produc
the efforts to attack them individually. This provides a simple yet powerful way to (almo
surely) increase strength using only available components.

9.3.3 Formatting and initialization details

9.28

9.29

9.30

Note (datarepresentation) As hash-values depend on exact bitstrings, different data re|
resentations (e.g., ASCIl vs. EBCDIC) must be converted to a common format before cc
puting hash-values.

(i) Padding and length-blocks

For block-by-block hashing methods, extra bits are usually appended to a hash input st
before hashing, to pad it out to a number of bits which make it a multiple of the releva
block size. The padding bits need not be transmitted/stored themselves, provided the se
and recipient agree on a convention.

Algorithm Padding Method 1

INPUT: dataz; bitlengthn giving blocksize of data input to processing stage.
OUTPUT: padded dat&, with bitlength a multiple of..
1. Append tar as few (possibly zero) 0-bits as necessary to obtain a stfinghose
bitlength is a multiple of.

Algorithm Padding Method 2

INPUT: dataz; bitlengthn giving blocksize of data input to processing stage.
OUTPUT: padded data’, with bitlength a multiple of».

1. Append tar a single 1-bit.

TCL Exhibit 1009
Page 351

§9.3 Basic constructions and general results 335

9.31

9.32

2. Then append as few (possibly zero) 0-bits as necessary to obtain azstvithgse
bitlength is a multiple of..

Remark (ambiguous padding) Padding Method 1 ismbiguous — trailing 0-bits of the
original data cannot be distinguished from those added during padding. Such methods
acceptable if the length of the data (before padding) is known by the recipient by ott
means. Padding Method 2 is not ambiguous — each paddedstingesponds to a unique
unpadded string. When the bitlength of the original datais already a multiple of:,
Padding Method 2 results in the creation of an extra block.

Remark (appended length blocks) Appending a logical length-block prior to hashing
prevents collision and pseudo-collision attacks which find second messages of diffel
length, including trivial collisions for random 1Vs (Example 9.96), long-message attacl
(Fact 9.37), and fixed-point attacks (page 374). This further justifies the use of M
strengthening (Algorithm 9.26).

Trailing length-blocks and padding are often combined. For Padding Method 2, a le
gthfield of pre-specified bitlength may replace the finab 0-bits padded if padding would
otherwise cause or more redundant such bits. By pre-agreed convention, the length fie
typically specifies the bitlength of the original message. (If used instead to specify the n.
ber of padding bits appended, deletion of leading blocks cannot be detected.)

(ii) IVs

Whether the IV is fixed, is randomly chosen per hash function computation, or is a functi
of the data input, the same IV must be used to generate and verify a hash-value. If not kni
apriori by the verifier, it must be transferred along with the message. In the latter case, 1
generally should be done with guaranteed integrity (to cut down on the degree of freed
afforded to adversaries, in line with the principle that hash functions should be defined w
a fixed or a small set of allowable 1Vs).

9.3.4 Security objectives and basic attacks

As a framework for evaluating the computational security of hash functions, the objectiv
of both the hash function designer and an adversary should be understood. Based on |
nitions 9.3, 9.4, and 9.7, these are summarized in Table 9.2, and discussed below.

| Hash type]| Design goal | Idealstrength [Adversary’s goal |
OWHF preimage resistance; 2" produce preimage;
2nd-preimage resistande A find 2nd input, same image
CRHF collision resistance on/2 produce any collision
MAC key non-recovery; 2! deduce MAC key;
computation resistance| Py = max(27%,27") | produce new (msg, MAC)

Table 9.2: Design objectives for n-bit hash functions (¢-bit MAC key). P denotes the probability
of forgery by correctly guessing a MAC.

Given a specific hash function, it is desirable to be able to prove a lower bound on the cc
plexity of attacking it under specified scenarios, with as few or weak a set of assumption:
possible. However, such results are scarce. Typically the best guidance available regar

TCL Exhibit 1009
Page 352

336

Ch. 9 Hash Functions and Data Integrity

9.33

9.34

the security of a particular hash function is the complexity of the (most efficient) applica
known attack, which gives aupper bound on security. An attack abmplexity 2¢ is one
which requires approximateB/ operations, each being an appropriate unit of work (e.g
one execution of the compression function or one encryption of an underlying cipher). -
storage complexity of an attack (i.e., storage required) should also be considered.

(i) Attacks on the bitsize of an MDC

Given a fixed messagewith n-bit hashh(z), a naive method for finding an input colliding
with z is to pick a random bitstring’ (of bounded bitlength) and checki{z’) = h(z).
The cost may be as little as one compression function evaluation, and memory is neg
ble. Assuming the hash-code approximates a uniform random variable, the probability
match is2~". The implication of this is Fact 9.33, which also indicates the effort require
to find collisions ifz may itself be chosen freely. Definition 9.34 is motivated by the de¢
sign goal that the best possible attack should require no less than such levels of effort
essentially brute force.

Fact (basic hash attacks) For ann-bit hash functiorh, one may expect a guessing attack
to find a preimage or second preimage witkfnrhashing operations. For an adversary abl
to choose messages, a birthday attack §9e¢& 1) allows colliding pairs of messagesr’
with h(z) = h(z’) to be found in abow2™/? operations, and negligible memory.

Definition An n-bit unkeyed hash function hadeal security if both: (1) given a hash
output, producing each of a preimage and a 2nd-preimage requires approxiiiabgigr-
ations; and (2) producing a collision requires approxima2él# operations.

(ii) Attacks on the MAC key space

An attempt may be made to determine a MAC key using exhaustive search. With a
gle known text-MAC pair, an attacker may compute thbit MAC on that text under all
possible keys, and then check which of the computed MAC-values agrees with that of
known pair. For &-bit key space this requir@é MAC operations, after which one expects
1+ 2t~ candidate keys remain. Assuming the MAC behaves as a random mapping, it
be shown that one can expect to reduce this to a unique key by testing the candidate ke
ing just overt/n text-MAC pairs. Ideally, a MAC key (or information of cryptographically
equivalent value) would not be recoverable in fewer thaoperations.

As a probabilistic attack on the MAC key space distinct from key recovery, note tt
for at-bit key and a fixed input, a randomly guessed key will yield a correct (n-bit) MA!
with probability~ 2~ for t < n.

(iii) Attacks on the bitsize of a MAC

MAC forgery involves producing any inputand the corresponding correct MAC without
having obtained the latter from anyone with knowledge of the key. Far-bit MAC al-

gorithm, either guessing a MAC for a given input, or guessing a preimage for a given M.
output, has probability of success ab@at?, as for an MDC. A difference here, however,
is that guessed MAC-values cannot be verified off-line without known text-MAC pairs
either knowledge of the key, or a “black-box” which provides MACs for given inputs (i.€
a chosen-text scenario) is required. Since recovering the MAC key trivially allows forge
an attack on the-bit key space (see above) must be also be considered here. Ideally, ar
versary would be unable to produce new (correct) text-MAC fairg) with probability

significantly better thamax(27t,27"), i.e., the better of guessing a key or a MAC-value

TCL Exhibit 1009
Page 353

§9.3 Basic constructions and general results 337

9.35

9.36

9.37

9.38

(iv) Attacks using precomputations, multiple targets, and long messages

Remark (precomputationof hash values) For both preimage and second preimage attacks
an opponentwho precomputes a large number of hash function input-output pairs may tr
off precomputation plus storage for subsequent attack time. For example, for a 64-bit h
value, if one randomly selecg$? inputs, then computes their hash values and stores (ha
value, input) pairs indexed by hash value, this precomputati@i(df°) time and space
allows an adversary to increase the probability of finding a preimage (per one subseq
hash function computation) frogt %4 to 224, Similarly, the probability of finding a sec-
ond preimage increases#tdimes its original value (when no stored pairs are known) if
input-output pairs of a OWHF are precomputed and tabulated.

Remark (effect of parallel targetsfor OWHFs) In a basic attack, an adversary seeks a sec
ond preimage for one fixed target (the image computed from a first preimage). If there al
targets and the goal is to find a second preimage for any one ofithiben the probability

of success increasesitaimes the original probability. One implication is that when using
hash functions in conjunction with keyed primitives such as digital signatures, repeated
of the keyed primitive may weaken the security of the combined mechanism in the follo
ing sense. If signed messages are available, the probability of a hash collision increa
r-fold (cf. Remark 9.35), and colliding messages yield equivalent signatures, which an «
ponent could not itself compute off-line.

Fact 9.37 reflects a related attack strategy of potential concern when using iterated
functions on long messages.

Fact (long-messageattack for 2nd-preimage) Let h be an iterated-bit hash function with
compression functioff (as in equation (9.1), without MD-strengthening). kdie a mes-
sage consisting afblocks. Then a 2nd-preimage fb(z) can be found in timé2™/s) + s
operations off, and in space (s +1g(s)) bits, for anys in the rangd. < s < min(t, 2"/2).

Justification. The idea is to use a birthday attack on the intermediate hash-results; a ske
for the choices = ¢ follows. Computeh(z), storing(H;, ¢) for each of the intermediate
hash-result$f; corresponding to theinput blocksz; in a table such that they may be later
indexed by value. Compufe(z) for random choices, checking for a collision involving
h(z) in the table, until one is found; approximat&y/s valuesz will be required, by the
birthday paradox. Identify the indgXrom the table responsible for the collision; the input
ZTj41Tj42 - Tt then collides withe.

Note (implication of long messages) Fact 9.37 implies that for “long” messages, a 2nd-
preimage is generally easier to find than a preimage (the latter takes &'hogstrations),
becoming moreso with the length ef Fort > 2"/2, computation is minimized by choos-
ing s = 2"/2 in which case a 2nd-preimage costs ali{€ executions off (comparable

to the difficulty of finding a collision).

9.3.5 Bitsizes required for practical security

Suppose that a hash function produedst hash-values, and as a representative benchma
assume tha®® (but not fewer) operations is acceptably beyond computational feasbility
Then the following statements may be made regarding

2Circa 1996 2%0 simple operations is quite feasible, &l is considered quite reachable by those with suf-
ficient motivation (possibly using parallelization or customized machines).

TCL Exhibit 1009
Page 354

338

Ch. 9 Hash Functions and Data Integrity

1. For a OWHFn > 80 is required. Exhaustive off-line attacks require at nmjst
operations; this may be reduced with precomputation (Remark 9.35).

2. Fora CRHFpn > 160 is required. Birthday attacks are applicable (Fact 9.33).

3. For a MAC,n > 64 along with a MAC key of 64-80 bits is sufficient for most ap-
plications and environments (cf. Table 9.1). If a single MAC key remains in us
off-line attacks may be possible given one or more text-MAC pairs; but for a prop
MAC algorithm, preimage and 2nd-preimage resistance (as well as collision res
tance) should follow directly from lack of knowledge of the key, and thus securi
with respect to such attacks should depend on the keysize rathes.tfam attacks
requiring on-line queries, additional controls may be used to limit the number of su
queries, constrain the format of MAC inputs, or prevent disclosure of MAC outpu
for random (chosen-text) inputs. Given special controls, values as smaa or
40 may be acceptable; but caution is advised, since even with one-time MAC ke
the chance any randomly guessed MAC being corrextfs and the relevant factors
are the total number of trials a system is subject to over its lifetime, and the con
guences of a single successful forgery.

These guidelines may be relaxed somewhat if a lower threshold of computational infe
bility is assumed (e.g2%* instead 023°). However, an additional consideration to be taker
into account is that for both a CRHF and a OWHF, not only can off-line attacks be carri
out, but these can typically be parallelized. Key search attacks against MACs may als:
parallelized.

9.4 Unkeyed hash functions (MDCs)

A move from general properties and constructions to specific hash functions is now mg
and in this section the subclass of unkeyed hash functions known as modification detec
codes (MDCs) is considered. From a structural viewpoint, these may be categorized b
on the nature of the operations comprising their internal compression functions. From-
viewpoint, the three broadest categories of iterated hash functions studied to date are
functionsbased on block ciphers, customized hash functions, and hash functionsased on
modular arithmetic. Customized hash functions are those designed specifically for hashi
with speed in mind and independent of other system subcomponents (e.g., block ciphe
modular multiplication subcomponents which may already be present for non-hashing g
poses).

Table 9.3 summarizes the conjectured security of a subset of the MDCs subseque
discussed in this section. Similar to the case of block ciphers for encryption (e.g. 8- or
round DES vs. 16-round DES), security of MDCs often comes at the expense of speed,
tradeoffs are typically made. In the particular case of block-cipher-based MDCs, a provs
secure scheme of Merkle (see page 378) with(&te6 (see Definition 9.40) is known but
little-used, while MDC-2 is widely believed to be (but not provably) secure, hasrats,
and receives much greater attention in practice.

9.4.1 Hash functions based on block ciphers

A practical motivation for constructing hash functions from block ciphers is that if an efi
cientimplementation of a block cipher is already available within a system (either in ha
ware or software), then using it as the central component for a hash function may pro\

TCL Exhibit 1009
Page 355

§9.4 Unkeyed hash functions (MDCs) 339

9.39

| [Hash function | n | m | Preimagg| Collision | Comments |
Matyas-Meyer-Oseds| n | n PR 27/2 | for keylength= n
MDC-2 (with DESy | 64 | 128 | 2-2%2 2.25% | rate 0.5

MDC-4 (with DES) | 64 | 128 | 2109 4-2% | rate 0.25

Merkle (with DES) 106 | 128 2112 256 rate 0.276
MD4 512 | 128 2128 220 Remark 9.50
MD5 512 | 128 2128 264 Remark 9.52
RIPEMD-128 512 | 128 2128 264 -

SHA-1, RIPEMD-160]| 512 | 160 2160 280 -

2The same strength is conjectured for Davies-Meyer and Miyaguchi-Preneel hash functions.
bStrength could be increased using a cipher with keylength equal to cipher blocklength.

Table 9.3: Upper bounds on strength of selected hash functions. n-bit message blocks are processed
to produce m-bit hash-values. Number of cipher or compression function operations currently be-
lieved necessary to find preimages and collisions are specified, assuming no underlying weaknesses
for block ciphers (figures for MDC-2 and MDC-4 account for DES complementation and weak key
properties). Regarding rate, see Definition 9.40.

the latter functionality at little additional cost. The (not always well-founded) hope is tha
a good block cipher may serve as a building block for the creation of a hash function wit
properties suitable for various applications.

Constructions for hash functions have been given which are “provably secure” assul
ing certain ideal properties of the underlying block cipher. However, block ciphers di
not possess the properties of random functions (for example, they are invertible — see |
mark 9.14). Moreover, in practice block ciphers typically exhibit additional regularities
or weaknesses (s€8.7.4). For example, for a block ciphé&r, double encryption using
an encrypt-decrypt (E-D) cascade with kdys, K> results in the identity mapping when
K; = K,. In summary, while various necessary conditions are known, it is unclear ex
actly what requirements of a block cipher are sufficient to construct a secure hash functic
and properties adequate for a block cipher (e.g., resistance to chosen-text attack) may
guarantee a good hash function.

In the constructions which follow, Definition 9.39 is used.

Definition An (n,r) block cipher is a block cipher defining an invertible function from
n-bit plaintexts ton-bit ciphertexts using an-bit key. If E is such a cipher, theR';(x)
denotes the encryption efunder keyk.

Discussion of hash functions constructed frarbit block ciphers is divided between
those producingingle-length (n-bit) anddouble-length (2n-bit) hash-values, where single
and double are relative to the size of the block cipher output. Under the assumption tf
computations o£%4 operations are infeasibfethe objective of single-length hash functions
is to provide a OWHF for ciphers of blocklength near= 64, or to provide CRHFs for
cipher blocklengths near = 128. The motivation for double-length hash functions is that
manyn-bit block ciphers exist of size approximately= 64, and single-length hash-codes
of this size are not collision resistant. For such ciphers, the goal is to obtain hash-codes
bitlength2n which are CRHFs.

In the simplest case, the size of the key used in such hash functions is approximat
the same as the blocklength of the cipher (ixehits). In other cases, hash functions use

3The discussion here is easily altered for a more conservative bound®® gperations as used §9.3.5.
Here264 is more convenient for discussion, due to the omnipresence of 64-bit block ciphers.

TCL Exhibit 1009
Page 356

340

Ch. 9 Hash Functions and Data Integrity

9.40

larger (e.g., double-length) keys. Another characteristic to be noted in such hash func
is the number of block cipher operations required to produce a hash output of blockle!
equal to that of the cipher, motivating the following definition.

Definition Leth be an iterated hash function constructed from a block cipher, with co
pression functiory which performss block encryptions to process each successilt
message block. Then thateof his 1/s.

The hash functions discussed in this section are summarized in Table 9.4. The Ma
Meyer-Oseas and MDC-2 algorithms are the basis, respectively, of the two generic
functions in ISO standard 10118-2, each allowing use ofrabit block cipherE and pro-
viding hash-codes of bitlength < n andm < 2n, respectively.

| Hash function | (n,k,m) [Rate]
Matyas-Meyer-Oseas (n,k,n) 1
Davies-Meyer (n,k,n) k/n
Miyaguchi-Preneel (n,k,n) 1
MDC-2 (with DES) | (64,56,128) | 1/2
MDC-4 (with DES) | (64,56,128) | 1/4

Table 9.4: Summary of selected hash functions based on n-bit block ciphers. & = key bitsize (ap-
proximate); function yields m-bit hash-values.

(i) Single-length MDCs of rate 1

The first three schemes described below, and illustrated in Figure 9.3, are closely re
single-length hash functions based on block ciphers. These make use of the following
defined components:

1. a generia-bit block cipherE i parametrized by a symmetric kéy;

2. afunctiongy which maps:-bit inputs to keygs suitable forE (if keys for E are also
of lengthn, g might be the identity function); and

3. afixed (usually:-bit) initial value IV, suitable for use with.

Matyas-Meyer-Oseas Davies-Meyer Miyaguchi-Preneel

x; Hi

P e I e —
b@» 1 [0 }4]

T T

H; H; H;

=
i

Figure 9.3: Three single-length, rate-one MDCs based on block ciphers.

TCL Exhibit 1009
Page 357

§9.4 Unkeyed hash functions (MDCs) 341

9.41

9.42

9.43

9.44

9.45

Algorithm Matyas-Meyer-Oseas hash

INPUT: bitstringz.
OUTPUT:n-bit hash-code of.

1. Inputz is divided inton-bit blocks and padded, if necessary, to complete last block.
Denote the padded message consistingrebit blocks: z1 x5 . . . x;. A constanta-
bit initial value IV must be pre-specified.

2. The output i, defined by: Hy = IV; H; = Egp,_,)(x:)®z;, 1 <i <.

Algorithm Davies-Meyer hash

INPUT: bitstringz.
OUTPUT: n-bit hash-code of.

1. Inputz is divided intok-bit blocks where is the keysize, and padded, if necessary,
to complete last block. Denote the padded message consistikgaitfblocks: z x5
. x4. A constant-bit initial value IV must be pre-specified.
2. The output |3tlt defined by Hy=1V; H; = Ezi (Hi—l)@Hi—la 1< <t

Algorithm Miyaguchi-Preneel hash

This scheme is identical to that of Algorithm 9.41, except the outhut from the previous
stage is also XORed to that of the current stage. More preciHelg redefined as:Hy =
1V; H; = Eg(Hi_l)(xi)@l’i@Hi—ly 1< <t

Remark (dual schemes) The Davies-Meyer hash may be viewed as the ‘dual’ of the Mat-
yas-Meyer-Oseas hash, in the sense thatnd H;_, play reversed roles. When DES is
used as the block cipher in Davies-Meyer, the input is processed in 56-bit blocks (yiel
ing rate56,/64 < 1), whereas Matyas-Meyer-Oseas and Miyaguchi-Preneel process 64-t
blocks.

Remark (black-box security) Aside from heuristic arguments as given in Example 9.13,
it appears that all three of Algorithms 9.41, 9.42, and 9.43 yield hash functions which a
provably secure under an appropriate “black-box” model (e.g., assutiiag the required
randomness properties, and that attacks may not make use of any special properties o
ternal details ofF). “Secure” here means that finding preimages and collisions (in fact
pseudo-preimages and pseudo-collisions -$8€&2) require on the order af* and2"/2
n-bit block cipher operations, respectively. Due to their single-length nature, none of the
three is collision resistant for underlying ciphers of relatively small blocklength (e.g., DES
which yields 64-bit hash-codes).

Several double-length hash functions based on block ciphers are considered next.

(ii) Double-length MDCs: MDC-2 and MDC-4

MDC-2 and MDC-4 are manipulation detection codes requiring 2 and 4, respectively, bloc
cipher operations per block of hash input. They employ a combination of either 2 or 4 iter:
tions of the Matyas-Meyer-Oseas (single-length) scheme to produce a double-length he
When used as originally specified, using DES as the underlying block cipher, they produ
128-bit hash-codes. The general construction, however, can be used with other block
phers. MDC-2 and MDC-4 make use of the following pre-specified components:

TCL Exhibit 1009
Page 358

342 Ch. 9 Hash Functions and Data Integrity

1. DES as the block ciphdf of bitlengthn = 64 parameterized by 86-bit key K;

2. two functiongy andg which map64-bit valuesU to suitable56-bit DES keys as fol-
lows. ForU = ujus . . . ugs, delete every eighth bit starting witly, and set the 2nd
and 3rd bits to ‘10’ forg, and ‘01’ forg:

g(U) = U 10 UqgusUsU7UYULQ - - - UBS-
g(U) = ux 01 U4UsUSUTUYULQ - - - UGS -

(The resulting values are guaranteed not to be weak or semi-weak DES keys, ¢
such keys have bit 2 = bit 3; see page 375. Also, this guarantees the security req

ment thaty(IV) # g(ﬁ/).)
MDC-2 is specified in Algorithm 9.46 and illustrated in Figure 9.4.

X
in1 i in2
in3 ! ! in4
mo o pee] || [e
Y Y
¥ P
Y \/
DORNGE
¢ v
e] [e]s]
out1 out2
Y Y
H; H;

Figure 9.4: Compression function of MDC-2 hash function. E = DES.

9.46 Algorithm MDC-2 hash function (DES-based)

INPUT: stringz of bitlengthr = 64¢ for ¢t > 2.
OUTPUT: 128-bit hash-code of:.

1. Partitionz into 64-bit blocksz;: © = z125 ... z;.

2. Choose the 64-bit non-secret consthsIT/ (the same constants must be used fc
MDC verification) from a set of recommended prescribed values. A default set
prescribed values is (in hexadecimall’ = 0x5252525252525252, IV =
0x2525252525252525.

TCL Exhibit 1009
Page 359

§9.4 Unkeyed hash functions (MDCs) 343

3. Let|| denote concatenation, aﬁtf, OiR the left and righB2-bit halves ofC;. The
outputish(z) = H, || H, defined as follows (fot < i < #):

—~R
Ho=1V; ki=g(Hi—1); C;=FEy,(z;)®z;; H;=CF || G
Hy=IV; k=§H_); C=E (m)ew; H=0C |G~

In Algorithm 9.46, padding may be necessary to meet the bitlength constraint on 1
input z. In this case, an unambiguous padding method may be used (see Remark 9.
possibly including MD-strengthening (see Remark 9.32).

MDC-4 (see Algorithm 9.47 and Figure 9.5) is constructed using the MDC-2 compre
sion function. One iteration of the MDC-4 compression function consists of two sequent
executions of the MDC-2 compression function, where:

1. the two 64-bit data inputs to the first MDC-2 compression are both the same n
64-bit message block;

2. the keys for the first MDC-2 compression are derived from the outputs (chaining va
ables) of the previous MDC-4 compression;

3. the keys for the second MDC-2 compression are derived from the outputs (chain
variables) of the first MDC-2 compression; and

4. the two 64-bit data inputs for the second MDC-2 compression are the outputs (che
ing variables) from the opposite sides of the previous MDC-4 compression.

9.47 Algorithm MDC-4 hash function (DES-based)

INPUT: stringz of bitlengthr = 64t for t > 2. (See MDC-2 above regarding padding.)
OUTPUT: 128-bit hash-code of.

1. Asin step 1 of MDC-2 above.
2. Asin step 2 of MDC-2 above.

3. With notation as in MDC-2, the outputigz) = G, || G, defined as follows (for
1<i<t):

Go=1V; fG\B = ﬁ/;
ki =g(Giv); Ci= By ()@ H;=CF || G
ki =g(Gi—1); Ci = B (z)®i; H;, = a:L | C;F
Ji=g(H;); D= Eji(éi\—/l)@éi\—/l; Gi;=DF || bvz‘R
ji=g(H); D= Bz (Gim1)®Gi-1; Gi= EL | D"

9.4.2 Customized hash functions based on MD4

Customized hash functions are those which are specifically designed “from scratch” for the
explicit purpose of hashing, with optimized performance in mind, and without being co
strained to reusing existing system components such as block ciphers or modular arithm
Those having received the greatest attention in practice are based on the MD4 hash func
Number 4 in a series of hash functions (Message Diga#tjorithms), MD4 was de-
signed specifically for software implementation on 32-bit machines. Security concernsr
tivated the design of MD5 shortly thereafter, as a more conservative variation of MC

TCL Exhibit 1009
Page 360

344

Ch. 9 Hash Functions and Data Integrity

9.48

-~

in1Y Yin2

Gi in3 in4 Gi1
s > MDC-2 compression function [-
outl |H; H, |out2
Gio1 Giaa
in1Ty y in2
in3 in4

—»| MDC-2 compression function |=—

out1 out2

Y Y
G; G

Figure 9.5: Compression function of MDC-4 hash function

Other important subsequent variants include the Secure Hash Algorithm (SHA-1), the hi
function RIPEMD, and its strengthened variants RIPEMD-128 and RIPEMD-160. Parat
eters for these hash functions are summarized in Table 9.5. “Rour8teps per round”
refers to operations performed on input blocks within the corresponding compression ful
tion. Table 9.6 specifies test vectors for a subset of these hash functions.

Notation for description of MD4-family algorithms

Table 9.7 defines the notation for the description of MD4-family algorithms described b
low. Note 9.48 addresses the implementation issue of converting strings of bytes to wo
in an unambiguous manner.

Note (little-endian vs. big-endian) For interoperable implementations involving byte-to-
word conversions on different processors (e.g., converting between 32-bit words and gro
of four 8-bit bytes), an unambiguous convention must be specified. Consider a strearr
bytesB; with increasing memory addressggo be interpreted as a 32-bit word with nu-
merical valuel¥. In little-endian architectures, the byte with the lowest memory addres:
(By) is the least significant bytetV = 22*B, + 215B; + 28B; + B;. In big-endian
architectures, the byte with the lowest address)(iB the most significant byteilV =
224B, +216B, + 28 B; + B,.

(i) MD4
MD4 (Algorithm 9.49) is a 128-bit hash function. The original MD4 design goals were

that breaking it should require roughly brute-force effort: finding distinct messages wi
the same hash-value should take at®dtoperations, and finding a message yielding a

TCL Exhibit 1009
Page 361

§9.4 Unkeyed hash functions (MDCs)

345

| Name | Bitlength | Roundsx Steps per round Relative speed
MD4 128 3 x 16 1.00
MD5 128 4 x 16 0.68
RIPEMD-128 128 4 x 16 twice (in parallel) 0.39
SHA-1 160 4 x 20 0.28
RIPEMD-160 160 5 x 16 twice (in parallel) 0.24

Table 9.5: Summary of selected hash functions based on MDA4.

09
b8
189d
n89

131
ffe
pfc

dbc

| Name | String | Hash value (as a hex byte string) |
MD4 31d6cfe0d16ae931b73c59d7e0c089c0
“a” bde52cb31de33e46245e05fbdbd6fb24
“abc” a448017aaf21d8525fc10ae87aa6729d
“abcdefghijkimnopgrstuvwxyz”| d79elc308aa5bbcdeea8ed63df412da9
MD5 d41d8cd98f00b204e9800998ecf8427¢e
“a” 0ccl175b9c0f1b6a831c399e269772661
“abc” 900150983cd24fb0d6963f7d28e1 772
“abcdefghijkimnopgrstuvwxyz”| ¢3fcd3d76192e4007dfb496cca67e13b
SHA-1 da39a3ee5e6b4b0d3255bfef95601890afd807
“a” 86f7e437faaba7fcel5d1lddch9eaecaecald 77667
“abc” a9993e364706816aba3e25717850c26c9cd0
“abcdefghijkimnopgrstuvwxyz”| 32d10c7b8cf96570ca04ce37f2a19d84240d3
RIPEMD-160 | *” 9c1185a5c5e9fc54612808977ee8f548b2258
“a” 0bdc9d2d256b3ee9daae347be6f4dc835a467
“abc” 8eb208f7e05d987a9b044a8e98c6b087f15a0
“abcdefghijkimnopgrstuvwxyz”| f71c27109c692c1b56bbdceb5b9d2865b3708
Table 9.6: Test vectors for selected hash functions.
| Notation | Meaning |
U, U, W variables representing 32-bit quantities
0x67452301 hexadecimal 32-bit integer (least significant byte: 01)
+ addition modul®3?
u bitwise complement
U< s result of rotating left throughs pos