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Pref ac e

This book is intended to provide a comprehensive coverage of digital commu-
nication systems for senior-level undergraduates,first-year graduate students, and
practicing engineers. Even though the emphasis of the book is on digital com-
munications, necessary analog fundamentals are included, since analog wave-
forms are used for the radio transmission of digital signals.

The key feature of a digital communication system is that it deals with a
finite set of discrete messages, in contrast to an analog communication system in
which messages are defined on a continuum. The objective at the receiver of the
digital system is not to reproduce a waveform with precision; it is, instead, to
determine from anoise-perturbed signal which of the finite set of waveforms had
been sent by the transmitter. In fulfillment of this objective, an impressive as-
sortment of signal processing techniques has arisen over the past two decades.

The book develops these important techniques in the context of a unified
structure. The structure, in block diagram form, appears at the beginning of each
chapter; blocks in the diagram are emphasized, as appropriate, to correspond to
the subject of that chapter. Major purposes of the book are (1) to add organization
and structure to a field that has grown rapidly in the last two decades, and (2) to
ensure awareness of the "big picture" even while delving into the details. The
signals and key processing steps are traced from the information source through
the transmitter, channel, receiver, and ultimately to the information sink. Signal
transformations are organized according to functional classes: formatting and
source coding, modulation, channel coding, multiplexing and multiple access,
spreading, encryption, and synchronization. Throughout the book, emphasis is

xxi
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placed on system goals and the need to trade off basic system parameters such
as signal-to-noise ratio, probability of error, and bandwidth (spectral) expenditure.

ORGANIZATION OF THE BOOK

It is assumed that the reader is familiar with Fourier methods and convolution.
Appendix A reviews these techniques, emphasizing those properties that are par-
ticularly useful in the study of communication theory. It is also assumed that the
reader has a knowledge of basic probability and has some familiarity with random
variables. Appendix B builds on these disciplines for a short treatment on statis-
tical decision theory with emphasis on hypothesis testing—so important in the
understanding of detection theory. Chapter 1 introduces the overall digital com-
munication system and the basic signal transformations that are highlighted in
subsequent chapters. Some basic ideas of random variables and the additive white
Gaussian noise (AWGN) model are reviewed. Also, the relationship between
power spectral density and autocorrelation, and the basics of signal transmission
through linear systems, are established. Chapter 2 covers the signal processing
step, known as formatting, the step that renders an information signal compatible
with a digital system. Chapter 2 also emphasizes the transmission of baseband
signals. Chapter 3 deals with bandpass modulation and demodulation techniques.
The detection of digital signals in Gaussian noise is stressed, and receiver optim-
ization is examined. Chapter 4 deals with link analysis, an important subject for
providing overall system insight; it considers some subtleties usually neglected
at the college level. Chapters 5 and 6 deal with channel coding—a cost-effective
way of providing improvement in system error performance. Chapter 5 empha-
sizes linear block coding, and Chapter 6 emphasizes convolutional coding.

Chapter 7 considers various modulation/coding system trade-offs dealing
with probability of bit error performance, bandwidth efficiency, and signal-to-
noise ratio. Chapter 8 deals with synchronization for digital systems. It covers
phase-locked-loop implementation for achieving carrier synchronization; bit syn-
chronization, frame synchronization, and network synchronization; and some fun-
damentals of synchronization as applied to satellite links.

Chapter 9 treats multiplexing and multiple access. It explores techniques
that are available for utilizing the communication resource efficiently. Chapter
10 introduces spread-spectrum techniques and their application in such areas as
multiple access, ranging, and interference rejection. This technology is particu-
larly important for most military communication systems. The subject of source
coding in Chapter 11 deals with data formatting, as is done in Chapter 2; the main
difference between formatting and source coding is that source coding additionally
involves data redundancy reduction. Rather than considering source coding im-
mediately after formatting, source coding has purposely been treated in a later
chapter. It is felt that the reader should be involved with the fundamental pro-
cessing steps, such as modulation and channel coding, early in the 'book, before
examining some of the special considerations of source coding. Chapter 12 covers
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► some basic encryption/decryption ideas. It includes some classical encryption
concepts, as well as some of the proposals for a class of encryption systems called
public key cryptosystems.

If the book is used for atwo-term course, a simple partitioning is suggested:
the first six chapters to be taught in the first term, and the last six chapters in the
second term. If the book is used for aone-term only course, it is suggested that
the course material be selected from the following chapters: 1, 2, 3, 4, 5, 6, 8,

- and lU.
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This book presents the ideas and techniques fiindamental to digital communication
systems. Emphasis is placed on system design goa15 and on the need for trade-
offs among basic system parameters _such as signal-to-noise ratio (SNR), proba-. y.,. ., .
bility~~.~rror, and bandwidth expenditure~ Transmission ban~wic~'ht is-a~f lnl to
~esource~ there is a ~rowingrawareness that bandwidth must be conserved, shared,..~__ . ~.~~ r ~~.., m_~ ,n~e...~,..., _ ~. ~.,~.~ ._. .~s ~.~ ,_~..,
and used efficiently. In general, we shall see that system performance can often

;~be improved through the use of increased transmission bandwidth. However, such
an increase is not always possible, because of physical limitations or- the constraint
of government regulations concerning the allocation and conservation of the us-
able electromagnetic spectrum.

We shall deal with the transmission of information (voice, video, or data)
over a path (channel) that may consist of wires, waveguides, or free space. Fre-
quently, the treatment will be in the context of a satellite communications link.
Communication via satellites has two unique characteristics: (1) the ability to
cover the globe with a flexibility that cannot be duplicated with terrestrial links,
and (2) the availability of bandwidth exceeding anything previously available for
intercontinental communications. Until recently, most satellite communication
systems have been analog in nature. However, digital communication is becoming
increasingly attractive because of the ever-growing demand for data communi-
cation and because digital transmission offers data processing options and flex-
ibilities not available with analog transmission.

The principal feature of a digital communication system (DCS) is that during
a~f n to interval of time, it sends a ~vave~orm_.from~~a~ ~nite~ set'~of possible -.~. ~~ m _... _., o,..~ , _ e~~,.

~̀ ~orin"s, to contrast to an analog communication system, which sends a waveformq__~ ~, ~.~~. ~.~ ~.._~..~,_ ~. ~_~ r.._ ~~_.~. ~_ ~, ~o_-.~-...--~
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from az~.nin.~inite ~ety.Fof~waue~orria,..s~apes_w th theoret~ca~.y,.~,t~fi~ite resolution.In a DCS, the objective at the receiver is not to reproduce a transmitteci~waveformwit precision; it si , instead; to~erinirie from _a noise-perturbed signal which~lwave-ec~"orm._from t_I%e -mite_ set._~f waveforms had.been sent by the transmitter, Animportant measure of system performance in a DCS is the probability ofy error_.__~.- ,~_~.., ~,~_.v......,..~~ ---~F

1.1 DIGITAL COMMUNICATION SIGNAL PROCESSING

i

i
i
t

r
i
7
7

r

1
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1.1.1 Why Digital?

Why are communication systems, military and commercial alike, "going digital"?There are many reasons. The primary advantage is the ease with which digitalsignals, compared to analog signals, are regenerated. Figure 1.1 illustrates an idealbinary digital pulse propagating along a transmission line. The shape of the wave-form is affected by two basic mechanisms: (1) as all transmission lines and circuitshave some nonideal transfer function, there is a distorting effect on the ideal pulse;and (2) unwanted electrical noise or- other interference further distorts the pulsewaveform. Both of these mechanisms cause the pulse shape to degrade as a func-tion of line length, as shown in Figure l.l. During the time that the transmittedpulse can still be reliably identified (before it is degraded to an ambiguous stateby the transmission line), the pulse is amplified by a digital amplifier that recoversits original ideal shape. The pulse is thus "reborn" or regenerated. Circuits thatperform this function at regular intervals along a transmission system are calledregenerative re~eate~s.
~" ~~ ~ Digital circuits are less. subject to distortion and interference than are analogcircuits. Since binary digital circuits operate in one of two states, fully on or fullyoff, to be meaningful a disturbance must be large enough to change the circuitoperating point from one state to the other. Such two-state operation facilitatessignal regeneration and thus prevents noise and other disturbances from accu-

Distance 1 Distance 2 Distance 3 Distance 4 Distance 5
Original Some signal Degraded Signal is badly Amplificationpulse signal distortion signal degraded to regenerate

pulse

..~'a.

~ ~ ~
1 2 3 4 5

Propagation distance--

Figure 1.1 Pulse degradation and regeneration.
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mulating in transmission. Analog signals, however, are not two-state signals; they

can take an infinite variety of shapes. With analog circuits, even a small disturb-

ance can render the reproduced waveform unacceptably distorted. Once the an-

alog signal is distorted, the distortion cannot be removed by amplification. Since,

with analog signals, accumulated noise is irrevocably bound to the signal, analog

signals cannot be completely regenerated. Extremely low error rates producing

high signal fidelity are possible through error detection and correction with digital

techniques, but similar procedures are not available with analog.

There are other important advantages to digital communications. Digital

circuits are more reliable and can be produced at lower cost than analog circuits.

Also, digital hardware lends itself to more flexible implementation than analog

hardware [e.g., microprocessors, digital switching, and large-scale integrated

(LSI) circuits]. The combining of digital signals using time-division multiplexing

(TDM) is simpler than the combining of analog signals using frequency-division

multiplexing (FDM). Different types of digital signals (data, telegraph, telephone,

television) can be treated as identical signals in transmission and switching—a

bit is a bit. Also, for convenient switching, digital messages can he handled in

autonomous groups called packets. Digital techniques lend themselves naturally

to signal processing functions that protect against interference and jamming, or

that provide encryption and privacy; such techniques are discussed in Chapters

10 and 12, respectively. Also, much data communication is computer to computer,

or digital instrument or terminal to computer. Such digital terminations are nat-

urally best served by digital communication links.
Most system choices entail trade-offs; system options are rarely all good or

all bad. Thus far we have discussed only the benefits of digital transmission. What

do you suppose are the costs or liabilities? A major disadvantage of digital trans-

mission is that it typically requires a greater system bandwidth to communicate

the same information in a digital format as compared to an analog format. Through-

out this book we emphasize that bandwidth is a valuable resource, not always
available. Bandwidth-efficient signaling techniques are discussed in Chapters 2
and 7. Another cost of digital transmission is that digital detection requires system

synchronization (Chapter 8), whereas analog signals generally have no such

requirement.

1.x.2 Typical Block Diagram and Transformations

The functional block diagram shown in Figure 1.2 illustrates the signal flow
through a typical DC5. The upper blocks—format, source encode, encrypt, chan-

nel encode, multiplex, modulate, frequency spread, and multiple access—indicate
the signal transformations from the source to the transmitter. The lower blocks
indicate the signal transformations from the receiver to the sink; the lower blocks
essentially reverse the signal processing steps performed by the upper blocks. It
used to be that the only blocks within the dashed lines were the modulator and
de,nodulator, together called a modem. During the past two decades, other signal
processing functions were frequently incorporated within the same assembly as
the modulator and demodulator. Consequently, at present, the term "modem"
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Figure 1.2 Block diagram of atypical digital communication system. (Reprinted with per-
mission from B. Sklar, "A Structured Overview of Digital Commtmications," IEEE Com-
mun. Mag., August 1983, Fig. 1, p. 5. O 1983 IEEE.)

often encompasses all the processing steps shown within the dashed lines of Figure
1.2;.when this is the case, the modem can be thought of as the "brains" of the
system. Note that what constitutes a modem is not a precise concept; some of
the blocks have purposely been shown on the dashed line rather than either inside
or outside the modem. The transmitter and receiver can be thought of as the
"muscles" of the system. The transmitter usually consists of a frequency up-
conversion stage, ahigh-power amplifier, and an antenna. The receiver portion
usually consists of an antenna, a Toes-noise amplifier (LNA), and adown-converter
stage, typically to an intermediate frequency (IF).

Of all the signal processing steps, only formatting, modulation, and demod-
ulation are essential for a DCS; the other processing steps within the modem are
design options for specific system needs. Formatting transforms the source in-
formationinto digital symbols; it makes the information compatible with the signal
processing within a digital communication system. Modulation is the process by
which the symbols are converted to waveforms that are compatible with the trans-
mission channel.

The source encoding step produces analog-to-digital (A/D) conversion (for
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analog sources) and removes redundant or unneeded information. Encryption
prevents unauthorized users from understanding messages and from injecting false
messages into the system. Channel coding, for a given data rate, can reduce the

(probability of error (PE), or reduce the signal-to-noise ratio (SNR) requirement,

~_~ ;`' at the expense of bandwidth or decoder complexity. Channel coding can also
r 1 reduce the system bandwidth requirement at the expense of SNR or PE perform-

~~ n ,~~, ~'~~ance. Frequency spreading can produce a signal that is less vulnerable to inter-
~~,a~~,,~;. ~ ference (both natural and intentional) and can be used to enhance the privacy of

the communicators. Multiplexing and multiple access procedures combine signals
that might have different characteristics or might originate from different sources,
so that they can share a portion of the communications resource.

The flow of the signal processing steps shown in Figure 1.2 represents a
typical arrangement; however, the blocks are sometimes implemented in a dif-
ferent order. For example, multiplexing can take place prior to channel encoding,
or prior to modulation, oi--with atwo-step modulation process (subcarrier and
carrier)—it can be performed between the two modulation steps. Similarly,
spreading can take place anywhere along the transmission chain; its precise lo-
cation depends on the particular technique used. Figure 1.2 illustrates the recip-
rocal aspect of the procedure; any signal processing step that takes place in the
transmitting chain must be reversed in the receiving chain. The figure also indi-
cates that from the source to the modulator a message, also called a baseband
signal or a bit stream, is characterized by a sequence of digital symbols. After
modulation, the message takes the form of a digitally encoded waveform or digital
waveform. Similarly, in the reverse direction, a received message appears as a
digital waveform until it is demodulated. Thereafter it takes the form of a bit
stream for all further signal processing steps. At various points along the signal
route, noise corrupts the waveform s(t) so that its reception must be termed an
estimate s(t). Such noise and its deleterious effects on system performance are
considered in Chapter 4.

Figure 1.3 shows the basic signal processing functions, which maybe viewed
as transformations from one signal space to another. The transformations are
classified into_seven.hasic.groups;.__..__ ,,

1. Formatting and source coding
z 2. Modulation/demodula~ion
~ 3. Channel coding

4. Multiple~ng and multiple access
~'t 5. Spreading

6. Encryption
i
i 7. Synchronization_..._..._ ___.

Although this organization has some inherent overlap, it provides a useful
structure for the book. Beginning with Chapter 2, the seven basic transformations
are considered individually. In Chapter 2 we discuss the basic formatting tech-
niques for transforming the source information into digital symbols, as well as

Signals and Spectra Chap. 1
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Figure 1.3 Basic digital communication transformations. (Reprinted with permission from
B. Sklar, "A Structured Overview of Digital Communications," IEEE Cornmun. Mug.,
August 1983, Fig. 2, p. 6. OO 1983 IEEE.)

the selection of waveforms for making the symbols compatible with baseband
transmission. As seen in Figure 1.3, formatting and source coding are grouped
together; they are similar in that they involve data digitization. Since the term
"source coding" has taken on the connotation of data redundancy reduction in
addition to digitization, it is treated later, as a special formatting case, in Chapter
1L

In Figure 1.3, bandpass modulation demodulation is partitioned into two
basic categories, coherent and noncoherent. The process of demodulation in-
volves the detection of the baseband information. Digital demodulation is typically
accomplished with the aid of reference waveforms. Wheh the references contain
all the signal attributes, particularly phase information, the process is termed
coherent; when phase information is not used, the process is termed noncoherent.
Both techniques are detailed in Chapter 3.

1 Sec. 1.1 Digital Communication Signal Processing 7
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Chapter 4 is devoted to link analysis. In the past, this area has received little
attention in colleges or in textbooks,probably because it was considered straight-
forward and not worthy of detailed discussion. However, of the many speci~-
cations, analyses, and tabulations that support a developing communication sys-
tem, link analysis stands out in its ability to provide overall system insight. in
Chapter 4 we bring together all the link fundamentals that are essential for the
analysis of most communication systems.

Channel coding deals with the techniques used to enhance digital signals so
that they are 1e55 vulnerable to such channel impairments as noise, fading, and
jamming. In Figure 1.3 channel coding is partitioned into two basic categories,
waveform coding and structured sequences. Waveform coding involves the use
of new waveforms, yielding improved detection performance over that of the
original waveforms. Structured sequences involve the use of redundant bits to
determine whether or not an error has occurred due to noise on the channel. One
of these techniques, known as automatic repeat request (ARQ), simply recognizes
the occurrence of an error and requests that the sender retransmit the message;
other techniques, called forward error correction (FEC), are capable of auto-

'~, matically correcting the errors (within specified limitations). Under the heading
of structured sequences, we shall discuss the two prevalent techniques, block
coding and convolutional coding. In Chapter 5 we consider waveform coding and
linear block coding. In Chapter F we consider convolutional coding, Viterbi de-
coding (and other decoding algorithms), hard versus soft decoding procedures,
and interleaving and deinterleaving.

In Chapter 7 we summarize the design goals for a communication system
and present various modulation and coding trade-offs that need to be considered
in the design of a system. We discuss theoretical limitations such as the N~~uist
criterion and the Shannon limit. We also examine bandwidth-efficient modulation
sc es: 

--~--~--_._.-~__.~-.._..

Chapter 8 deals with synchronization. In digital communications, synchro-
nization involves the estimation of both time and frequency. The subject is par-
titioned as shown in Figure 1.3 Coherent systems need to synchronize their fre-., ..__~ _._.w,.
c~u,~ency refeienceywrth the carx~ier~.(~nd possibly subcarrier) in-both~frequency and
phase. For noncoherent systems, phase syric~~ i~an`~~ation is notneeded "'~"~ie °dun-

vd m tal time-synchronization process is s mbol s nchronization. The demo- 
-.~.~,,..~. ___ -- _,_~.__Y _._._._.., Y

du~`afor needs foreknow wfien~to start and end the symbol~et"ection procedure; a
timing error will degrade detection performance. The next time-synchronization
level frame synchronizat~allo_ws the reconstruction of th~ e message;_~nd  ne -
work synchronization allows coordination ~"wi .. .o e~,~users in,.,ox~~e~„„to usen,,,~he
resource efficient y. In Chapter 8 we are concerned with the alignment of the~,~ .._ T
timing of spatially separated periodic processes; the alignment is illustrated for
the case of a satellite communications link.

Chapter 9 deals with multiplexing and multiple access. The two terms mean
~ ~ very similar things. Both involve the idea of resource sharing. The main difference
,! between the two is that multiplexing takes place locally (e.g., on a printed circuit
~ . board, within an assembly, or even within a facility), and multiple access takes

place remotely (e.g., multiple users share the use of a satellite transponder). Mul-
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tle tiplexing involves an algorithm that is known a priori; usually, it is hard-wired
ht- into the system. Multiple access, on the other hand, is generally adaptive and
~~_ may require overhead to enable the algorithm to operate. In Chapter 9 we discuss
~S _ the classical ways of sharing the resource: frequency division, time division, and
In code division. We also consider some of the multiple access techniques that have
he emerged as a result of satellite communications.

Chapter 10 introduces a transformation of primary importance in military
so communications called spreading. The chapter deals with the spread-spectrum
nd techniques that are emerging as important for achieving interference protection,
;S privacy, or flexible access of the communications resource.

u se Chapter 11 treats source coding—techniques that deal with the task of form-
he ing efficient descriptions of source information. Source coding can be applied to
to digital data. and to waveform signals; it can reduce data redundancy and thus
ne reduce data rates. We will see that the advantage of source coding is a reduction
;es of the system resources (i.e., bandwidth) required to describe the information.
~e ~ The final chapter of the book, Chapter 12, deals with encryption and de-
o_ cryption, whose basic goals are privacy and authentication. Privacy refers to
n~ preventing unauthorized persons from extracting information (eavesdropping)
ck from the channel. Authentication refers to preventing unauthorized persons from
nd injecting spurious signals (spoofing) into the channel. In this chapter we highlight
fie_ the data encryption standard (DES) and some current ideas for a class of en-
;s ~ cryption systems called public key cryptosystems.

~~' 1.7.3 Basic Digital Communication Nomenclatureed
ist Some of the basic di ital si nal nomenclature that fre uentl ag g q y ppears in digital
°n communication literature is as follows:

In ormation source: the device roducin~r_ f p g information to be communicated
by means of the DCS. Information sources can be analog or discrete. The

^e output of an analog source can have any. value in a continuous range ofnd amplitudes, whereas the output of a discrete information source takes its
~n value from a mite set. Analog information sources can be transformed into
~0 digital sources through the use of sampling and quantization. Sampling and
' a quantization techniques called formatting and source coding (see Figure 1.3)on are described in Chapters 2 and 11.~t-
~e Textual message: a sequence of characters (see Figure 1,4a). For digital
he transmission, the message will_ be a sequence of digits or symbols from a
nor finite symbol set or alphabet.

Character: a member of an alphabet or set of symbols (see Figure 1.4b).
an Characters may be mapped into a sequence of binary digits. There are several
ce standardized codes used for character encoding, including the American
.pit Standard Code for Information Interchange (ASCII), Extended Binary
es Coded Decimal Interchange Code (EBCDIC), Hollerith, Baudot, Murray,
~1_ and Morse.

1 Sec. 1.1 Digital Communication Signal Processing 9
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HOW ARE YOU?
(a) OK

$9, 567, 276.73

A
lb) 9

H n W

(c►i

1 Binary symbol (k = 1, M = 2)
(d) 10 Quaternary symbol (k = 2, M = 4)

011 8-ary symbol (k = 3, M = 8)

(e) Time 

—T—~-<—T--.~-~--T—~- T is the
symbol duration

Figure 1.4 Nomenclature examples. (a) Textual messages. (b) Characters. (c) Bit
stream (7-bit ASCII). (d) Symbols m;, i = 1, . . . , M, M = 2'`. (e) Bandpass digital
waveform s; (t), i = 1, . . . , M.

Binary digit (bit): the fundamental information unit for all digital systems.
The term bit is also used as a unit of information content; this second usage
is described in Chapter 7.
Bit stream: a sequence' of binary digits (ones and zeros). Sometimes, a se-
quence of two-level pulses is used as a convenient illustration of the bit
stream. The bit stream in Figure 1.4c uses a 7-bit ASCII character code for
representing the message "HOW." A bit stream is often termed a baseband
signal, which implies that its spectral content extends from (or near) do up
to some finite value, usually less than a few megahertz.
Symbol (digital message): groups of k bits considered as a unit or character
mZ, from a mite symbol set or alphabet (see Figure 1.4d). The size of the
alphabet, M, is M = 2k (i.e., k is the number of bits in the symbol). For
transmission, each m; symbol (i = 1, . : . , NI) will be represented by a
corresponding waveform sl(t), s2(t), . . . , sM(t). The symbol, ml, is sent
by transmitting the digital waveform, s;(t), for T seconds, the symbol time
duration. The next symbol is sent during the next time interval, T. The fact
that the symbol set transmitted by the DCS is finite is a primary difference

10 Signals and Spectra Chap. 1
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between a DCS and an analog system. The DCS receiver need only decide
which of the M waveforms was transmitted; however, an analog receiver
must be capable of accurately estimating a continuous range of waveforms.
Digital waveform: a voltage or current waveform (a pulse for baseband trans-
mission, or a sinusoid. for bandpass transmission) that represents a digital
symbol: The waveform characteristics (amplitude, width, position for pulses,
or amplitude, frequency, phase for sinusoids) allow its identification as one
of the symbols in the finite symbol alphabet. Figure 1.4e shows an example
of a bandpass digital waveform. Even though the waveform is sinusoidal,
and consequently has an analog appearance, it is called a digital waveform
because it is encoded with digital information. In the figure, during each
time interval, T, a preassigned frequency indicates the value of a digit.
Data rate: data rate in bits per second (bits/s) is given by R = klT = (1/T)
loge Mbits/5, where k bits identify a symbol from an M = 2k-symbol al-
phabet, and T is the k-bit symbol duration.

1.'9.4 Digital versus Analog Performance Cri4eria

A principal difference between analog and digital communication systems has to
do with the way in which we evaluate their performance. Analog systems draw
their waveforms from a continuum, which therefore forms an infinite set; that is,
a receiver must deal with an infinite number of possible waveshapes. The figure
of merit for the performance of analog communication systems is a fidelity cri-
terion, such as signal-to-noise ratio, percent distortion, or expected mean-square
error between the transmitted and received waveforms.

By contrast, a digital communication system transmits signals that represent
digits. These digits form a mite set or alphabet, and the set is known a priori to
the receiver. A figure of merit for digital communication systems is the probabilit
of incorrectly detecting a digit, or the pro a i ity of error (PE). .

1.2 CLASSIFICATION OF SIGNALS

1.2.1 Deterministic and Random Signals

describe~Tiri terms of probabilities and statistical averages. Such a model, in the
fo  rmo a ~p i-o~aG~ist~c description of the random process, is particularly useful
for characterizing signals and noise in communication systems.

Sec. 1.2 Classification of Signals 11

A signal can be classified as de,,~,term~n~~i~~ meaning~.t.~.~.t there, s...~p nu certainty
with respect to its value at any time, .or as random, meaning that there is some
degree of uncertainty before the signal actually occurs. Deterministic signals or
waveforms are modeled by explicit mathematical expressions, such as x(t) _
5 cos lOt. For a random waveform it is faot possible to write such an explicit
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1.2.2 Periodic and Nonperiod'oc Signals

A signal x(t) is called periodic in time if there exists a constant To > 0 such that

x(t) = x(t + To) for —~ < t < ~ (1.1)

where t denotes time. The smallest value of To that satisfies this condition is called
the period of x(t). The period To defines the duration of one complete cycle of
x(t). A signal for which there is no value of To that satisfies Equation (1.1) is
called a nonperiodic signal.

1.2.3 Analog and Discrete Signals

An analog signal, x(t), is a continuous function of time; that is, x(t) is uniquely
defined for all t. An electrical analog signal arises when a physical waveform (e.g.,
speech), is converted into an electrical signal by means of a transducer. By com-
arison, adiscrete .signal, x(kT), is one that exists only at discrete times; it is
characterized by a sequence of numbers defined for each time, kT, where k is an
integer and T is a fixed time interval.

1.2.4 Energy and Power Signals

An electrical signal can be represented as a voltage, v(t), or a current, i(t), with
instantaneous power p(t) across a resistor ~ defined by

~2(t)p(t) _ ~, (1.2)

or

Pit) = iZ~t)~ (1.3)

In communication systems, power is often normalized by assuming ~J~, to be 1 ~2,
although GJf, may be another value in the actual circuit. If the actual value of the
power is needed, it is obtained by "denormalization" of the normalized value.
For the normalized case, Equations (1.2) and (1.3) have the same form. Therefore,
regardless of whether the signal is a voltage or current waveform, the normali-
zation convention allows us to express the instantaneous power as

p(t) = x~(t) (1.4)
where x(t) is either a voltage or a current signal. The energy dissipated during
the time interval (— T/2, T/2) by a real signal with instantaneous power expressed
by Equation (1.4) can then be written as

Tia
EX = x2(t) dt (1.5)

- T~2

12 Signals and Spectra Chap. 1
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and the average power dissipated by the signal during the interval is

at
P 1 Tiz

x2(t) dt (1.6)x = T J z-~z

1) The performance of a communication system depends on the detected signal
ed energy; higher-energy signals are detected more reliably (with fewer errors) than
of are lower-energy signals—the transmitted energy does the work. On the other

hand, power is the rate at which energy is delivered. It is important for differentis. reasons. The power determines the voltages that must be applied to a transmitter
and the intensities of the electromagnetic fields that one must contend with in
radio systems (i.e., fields in waveguides that connect the transmitter to the an-
tenna, and fields around the radiating elements of the antenna).

In analyzing communication signals it is often desirable to deal with the
waveform energy. We classify x(t) as an enemy signal if, and only if, it has nonzero

ely but finite energy {0 < Ex < ~) for all time, where
g''
'm-

Tii
Ex = lim I x2(t) dt

is T~~ Tia ~ (1.7)
an _ ~ x~(t) dt

In the real world we always transmit signals having finite energy (0 < EX < oo).
However, in order to describe periodic signals, which by definition [Equation
(1.1)] exist for all time and thus have infinite energy, and in order to deal .with
random signals that have infinite energy, it is convenient to dune a class of signals

pith called power signals. A signal is defined to be a power signal if, and only if, it
has mite but nonzero power (0 < PX < ~) for all time, where

'~ • 2)
1 T~2

PX = lim — ~ x~(t) dt (1.8)1~~ T Tiz

The energy and power classifications are mutually exclusive. An energy signal
~ .3) has finite energy but zero average power•, whereas a power signal has finite average

power but infinite energy. A waveform in a system may be constrained in either
~~ its power or energy values. As a general rule, periodic signals and random signals
the are classified as power signals, while signals that are both deterministic and non-
ue. .periodic are classified as energy signals [l, 2].
►re, As mentioned earlier, signal energy and power are both important param-
ali- eters in specifying a communication system. The classification of a signal as either

an energy signal or a power signal is a convenient model to facilitate. the mathe-
~ .4) matical treatment of various signals and noise.

•ing 1.2.5 The Unit Impulse Function
~sed

A useful function in communication theory is the unit impulse or Dirac delta
1.5) .function, 8(t). The impulse function is an abstraction—an infinitely large ampli-

tude pulse, with zero pulse width, and unity weight (area under the pulse), con-

p. 1 Sec. 1.2 Classification of Signals 1~
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centrated at the point where its argument is zero. The unit impulse is characterized
by the following relationships:

c
8(t) dt = 1 (1.9)

8(t) — 0 for t ~ 0 (1.10)
S(t) is unbounded at t = 0 (1.11)

x(t)8(t — to) dt = x(t~) (1.12)

The unit impulse function, 8(t), is not a function in the usual sense. When
operations involve S(t), the convention is to interpret 8(t} as a unit-area pulse of
finite amplitude and nonzero duration, after which the limit is considered as the
pulse duration approaches zero. 8(t — to) can be depicted graphically as a spike
located at t = t~ with height equal to its integral or area. Thus A8(t — to) with
A constant represents an impulse function whose area or weight is equal to A,
that is zero everywhere except at t = to.

Equation (1.12~ic own as the sifting or sampling Rrop_er_t_y_ Qf the unit
impulse function; the,u~iS.imp.~uls~_multipli~z_sele~.is..a_s.a~mpl~_nf--the_function x(t)

„~. evaluated at t — to.

1.3 SPECTRAL DENSITY

,.,,a.~}~e~ectral densi~of~~s,~g~~l characterizes,the distribution of the signal's~y
or power in~the ~~~~uen~,udoman. This concept is particularly important when
c  nosdie'ring filtering in communication systems. We need to be able to evaluate
the signal and noise at the filter output. The energy spectral density (ESD) or the
power spectral density (PSD) is used in the evaluation.

1.3.1 Energy Spectral Density

The total energy of areal-valued energy signal x(t), defined over the interval
( —~, ~), is described by Equation (1.7). Using Parseval's theorem [1], we can
relate the energy of such a signal expressed in the time domain to the energy
expressed in the frequency domain, as follows:

EX = J~ x2(t) dt = J m ~X(f)~2 df (1.13)

where X(f) is the Fourier transform of the nonperiodic signal x(t) (for a review
of Fourier techniques, see Appendix._A~,,.µLet ~~~,fJ denote _the squared ma, _„__ gnitude
spectrum, defined as

— ___- _~_.._ - 
~X(.f) _ ~X~.f)~ 2 (1.14)~~__.-

14 Signals and Spectra Chap. 1
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red The quantity 1Y'x(f) is the waveform energy spectral density (ESD) of the signal
x(t). Therefore, from Equation (L13), we can express the total energy of the signal
x(t) by integrating the spectral density with respect to frequency, as follows:

.9) EX = J ~ ~X~f~ ~f X1.15,
10)

11) This equation states that the energy of a signal is equal to the area under the ~X(f)
versus frequency curve. Energy spectral density describes the signal energy per

12~ unit bandwidth measured in joules/hertz. There are equal energy contributions
both positive and ne_g~~.ive frequency components, since~or a real signal,.from ..~-w-~... ~... ,~ ~.,Pp.. _._ __...

x(t), ~X(f) is an even function of frec~uenc~y. Therefore, the enei gy spectral densityien
of

__.._~...~.......~..~4,.~
is s_y.~nmetrtcalyin frequency about the origin, and. , thus the total energy of the_ _ .

:he signal x(t) can be ex ressed as_.~..--- _.-.-- p _.__~
ike
ith Ex = 2 J '~'X(.f) d.f (1.16)
A

____ _. .___ _ _.... .. _ _. . o._. __,

nit 1.3.2 Power Spectral Density
(t)

The average power, PX, of areal-valued power signal, x(t), is defined in Equation
(1.8). If x(t) is a periodic signal with period To, it is classified as a power signal.
The expression for the average power of a periodic signal takes the form of Equa-
tion (1.6), where the time average is taken over the signal period To, as follows:

1 Toiz
$Y PX T J Toil x2(t) dt (1.17a)

0
en
ate Parseval's theorem for areal-valued periodic signal [1] takes the form
he

1 Toia °°
PX Z~ ~ ~~z x~(t) dt = ~ (cn~~ (1.17b)

n — —~

where the ~cn~ terms are the complex Fourier series coefficients of the periodic
. signal (see. Appendix A).

gal To apply Equation (1.17b), we need only know the magnitude of the coef-
an ~cients, ~c„~. The power spectral density (PSD) function, GX(f), of the periodic
gY signal, x(t), is a real, even, and nonnegative function of frequency that gives the

distribution of the power of x(t) in the frequency domain, defined as
3) °°

Gx(.f) _ ~. ~~n~ 2 s(f — n.fo) (1.18)
n=—°°

;W

de Equation (1.18) defines the power spectral density of a periodic signal, x(t), as a
succession of the weighted delta, functions. Therefore, the PSD of a periodic signal

4~ is a discrete function of frequency. Using the PSD defined in Equation (1.18), we

~ Sec. 1.3 Spectral Density ~5
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can now write the average normalized power of areal-valued signal, as follows:

Px = J ~ GX (f) d.f = 2 Jo~ GX(.f) d.f (1.19)

Equation (1.18) describes the PSD of periodic (power) signals only. If x(t)
is a nonperiodic signal it cannot be expressed by a Fourier series, and if it is a
nonperiodic power signal (having infinite energy) it may not have a Fourier trans-
form. However, we may still express the power spectral density of such signals
in the limiting sense. If we form a truncated version, xT(t), of the nonperiodic
power signal, x(t), by observing it only in the interval (-T12, T/2), then xT(t) has
mite energy, and has a proper Fourier transform, XT(f). It can be shown [2] that

. the power spectral density of the nonperiodic x(t) can then be defined in the limit
as

GX(.f) = lim 1 ~XT(f)~ 2T-,~ T
(1.20)

Example 1.1 Average Noranalized Power

(a) Find the average normalized power in the waveform, x(t) = A cos 2~rfot, using
time averaging.

(b) Repeat part (a) using the summation of spectral coefficients.

Solution

(a) Using Equation (1.17a), wehave

1 To~z
Px = — A Z cost 2~rfot dt

To - zo~z

A 2 ro~2

= Z7,o J T~2 (1 +cos 4~rrfot) dt

A Z A Z
= 27.0 ~ To) - 2

(b) Using Equations (1.18) and (1.19) gives us

n= —~

A
c1=~-~ - 2

(see Appendix A)
cn = 0 for n = 0, ± 2, ± 3, . . .

(A\ Z A 2
GX~f) = t 2) b~f~ — fo) + ~2~ s~f + fo)

~ i
z
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✓s: 1e4 Al7°TOCORRELATION

19~ 1,4.i Au#ocorrelation of an Energy signal

Correlation is a matching process; autocorrelation refers to the matching of a
(̀t) signal with- a delayed version of itself. 'The autocorrelation function, RX(T), of ais a real-valued energy signal, x(t), is defined as

~ns-
~als 

RX(T) = I ~ x(t)x(t + T) dt for — ~ < z < o~ (1.21)>dic
has
that The autocorrelation function, RX(z), provides a measure of how closely the signal
imit matches a copy of itself as the copy is shifted T units in time. The variable T plays

the role of a scanning or searching parameter. RX(T) is not a function of time; it
is only a function of the time difference, T, between the waveform and its shifted

.20) copy.
The autocorrelative function of areal-valued energy signal has the following

properties:

using
2. RX(T) < Rx(0) for all T

symmetrical in T about zero

maximum value occurs at the origin

autocorrelation and ESD form a
Fourier transform pair, as
designated by the double-headed arrows

value at the origin is equal ~to
the energy of the signal

3. Rx~T) ~ ~X~.f)

4. RX(0) = J ~ x2(t) dt

If items 1 through 3 are satisfied, Rx(T) satisfies the properties of an autocorreiation
function. Property 4 can be derived from property 3 and thus need not be included
as a basic test.

1.4.2 Autocorrelation of a Periodic (Power) Signal

The autocorrelation function of areal-valued power signal x(t) is defined as

/ l 1 wiz
RX`TJ = Tim T f Tie x(t)x(t + T) dt for —~ < T < ~ (1.22)

When the power signal, x(t), is periodic with period To, the time average in Equa-
tion (1.22) may be taken over a single period, 7'0, and the autocorrelation function
can be expressed as follows:

1 To~2
RX(T) _ — J x(t)x(t + T) dt

TD To~2
for — ~ < T < ~ (1.23)

Chap. 1 Sec. 1.4 Autocorrelation 1~
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The autocorrelation function of areal-valued periodic signal has properties
similar to those of an energy signal, as follows:

2. RX(T) < Ra(0) for all T

symmetrical in T about zero

maximum value occurs at the origin

3. Rx~T) ~' GX~.f)

1 Ta~2
4. Rx(0) _ — ~ x~(t) dt

T~ T~~2

autocoi7-elation and PSD form a
Fourier transform pair

value at the origin is equal to
the average power of the signal

,~ y
1.5 RANDOM SIGNALS i

The main objective of a communication system is the transfer of information over
a channel. All useful message signals appear random; that is, the receiver does
not know, a priori, which of the possible message waveforms will be transmitted.
Also, the noise that accompanies the message signals is due to random electrical
signals. Therefore, we need to be able to form efficient descriptions of random
signals.

1.5.1 Random Variables

Let a random. variable, X(A), represent the functional relationship between a
random event, A, and a real number. .For notational convenience we shall des-
ignate the random variable by X, and let the functional dependence upon A be
implicit. The random variable may be discrete or .continuous. The distribution
function, Fx(x), of the random variable, X, is given by

FX(x) = P(X —< x) (1.24)

where P(X < x) is the probability that the value taken by the random variable,
X, is less than or equal to a real number, x. The distribution function, FX(x), has
the following properties:

2. Fx~x~) ~ Fx~x2) if x~ ~ x2

Another useful function relating to the random variable, X, is the probability
density function (pdf), denoted pX(x), where

dFX(x)
Px~x) — dx 

(1.25)

1g Signals and Spectra Chap. 1
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eS As in the case of the distribution function, the pdf is a function of a real number,
x. The name "density function" arises from the fact that the probability of the
event xl < X <_ x2 equals

P~xl ~ X ~ x2~ — Y~X ~ x2~ — P~~ { xl~

= Fx(xz) — F'x(x~)
_ ~x2

XI Px~x) dx

The probability density function has the following properties

1• Px(x) > U

2• J~ Px(x) dx = FX(+oo 00 — 1- Fx~ — )—

er Thus, a probability density function is always a nonnegative function with a total
es area of one. Throughout the book we use the designation, pX(x), for the probability
d density function of a continuous random variable. For ease of notation, we will
;al often omit the subscript, X, and write simply, p(x). We will use the designation
,m P(X = xi) for the probability of a random variable, X, where X can take on discrete

values only.

1.5.1.1 Ensemble Averages

a The mean value, mX, or expected value of a random variable, X, is defined
;s- by
be
~n mX = E{X} _ ~ ~ xPx(x) dx (1.26)

,4~ where E{•} is called the expected value operator. The nth moment of a probability
distribution of a random variable, X, is defined by

as E{Xn}  ̀= J ~ x"Px(x) dx (1.27)
~_._

For the_,.purposes of communication system analysis, the most important moments_ _ _of X are the~~~rst two mor~~nts. Thus, n = 1 in Equation (l.-~7) gives mX as
discussed above, whereas n = 2 gives the mean-square value of X, as follows:

E{X2} = J ~ x2pX(x) dx (1.28)

We can also dune central moments, which are the moments of the difference
ity between X and rnX. The second central moment, called the variance ofX, is defined__.~.~.... ,.~,_,_ --~_~_e.a,~...._..._.~... ...~_.___...____.____,___as ~'

:5) var (X) = E{(X — mX)2} = J~ (x — mX)ZPx~x) dx (1.29)

1 Sec. 1.5 Random Signals 1~
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The variance of X is also denoted as ~X, and its square root, o~X, is called the
standard deviation of X. Variance is a measure of the "randomness" of the
random variable X. By specifying the variance of a random variable, we -are
constraining the width of its probability density function. The variance and the
mean-square value are related by

= E{X2} — 2mXE{X} + mX

= E{XZ} — mX

Thus, the variance is equal to the difference between the mean-square value and
the square of the mean.

1.5.2 Random Processes

A random process, X(A, t), can be viewed as a function of two variables, an
event A, and time. Figure 1.5 illustrates a random process. In the figure there are
N sample functions of time, {X~(t)}. each of the sample functions can be regarded
as the output of a different noise generator. For a specific event A„ we have a

x
a~
E
c
mm

20

Sample
unctions

Time
tk

Figure 1.5 Random noise process.
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the single time function, X(A;, t) = X;(t) (i.e., a sample function). The totality of all
the sample functions is called an ensemble. For a specific time tk, X(A, tk) is a random
are variable X(tk), whose value depends on the event. Finally, for a specific event;
the A = A; and a specific time t = tk, X(A„ tk) is simply a number. For notational

convenience we shall designate the random process by X(t), and let the functional
dependence upon A be implicit.

1.5.2.1 Statistical Averages of a Random Process

Because the value of a random process at any future time is unknown (since
the identity of the event A is unknown), a random process whose distribution

and functions are continuous can be described statistically with a probability density
function (pdfj. In general the form of the pdf of a random process will be different
for different times. In most situations it is not practical to determine empirically
the probability distribution of a random process. However, a n~iat dP~vr_iinti~„
consisting of the mean and autocorrelation function are often adequate ~f~~.the

a~ n~ed~,:..~£..,~ommunication systems. We dune the mean of the random process,
are X~t), ds '~ ..,_x~_~.,.,~.~.m~,r,~.~-,-- -.4...~_„n~.- .~_.~..,~,~~~....~~...t.._x~, ._,_,_._,~.~,.~.,M..rd.~,w~M~„

~ded
~e a E{X(tk)} = 1 xpxk(x) dx = mX(tk) (1.30)

where X(tk) is the random variable obtained by observing the random process at
time tk, and the pdf of X(tk), the density over the ensemble of events at time tk,
is designated pXk(x).

We define the autocorrelation function of the random process, X(t), to be
a function of two variables, t, and t2, as shown by

RX(t,, tz) = E{X(t,)X(tz)} (1.31)

where X(tl) and X(tz) are random variables obtained by observing X(t) at times
t, and t2. respectively. The autocorrelation function is a measure of the degree
to which two time samples of the same random process are related.

1.5.2.2 Stationarity

A random process X(t) is said to be stationary in the strict sense if none of
its statistics are affected by a shift in the time origin. A random process is said
to be wide-sense stationary (WSS) if two of its statistics, its mean and autocor-
relation function, do not vary with a shift in the time origin. Thus, a process is
WSS if

E{X(t)} = mX = a constant (1.32)
and

Rx(t~, tz) = RX(tl — t2) (1.33)

Strict-sense stationary implies wide-sense stationary, but not vice versa. Most of
the useful results in communication theory are predicated on random information

yap ~ Sec. 1.5 Random Signals 21
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signals and noise being wide-sense stationary. From a practical point of view it
is not necessary for a random process to be stationary for all time, but only for
some observation interval of interest.

For stationary processes, the autocorrelation function in Equation (1.33)
does not depend on time but only on the difference between t, and t2. That is,
all pairs of values of X(t) at points in time separated by T = t, — t2 have the
same correlation value. Thus, for stationary systems, we can denote RX(tl, t2)
simply as RX(T).

1.5.2.3 Autocorrelation of a Wide-Sense Stationary Random Process

Just as the variance~rovides a measure of randomness.for random variables,~...~,~.,.~ ~.~,..,. .~.~., ~.~ . ,..~. ,...m.~.~..~..~..~~_.
the autocorrelation function provides a similar measure for random processes.
~~or a wide-sense stationary process, the autocorrelation function is only a~unction

of the time difference T = t, t2, that is,

RX(T) = E{X(t)X(t + z)} for —~ < T < ~ (L34)

For a zero mean WSS processes, RX(T) indicates the extent to which the
random values of the process separated by T seconds in time are statistically
correlated. In other words, RX(T) gives us an idea of the frequency response that
is associated with a random process. If RX(T) changes slowly as T increases from
zero to some value, it indicates that, on the average, sample values of X(t) .taken
at t = t, and t = tl + z are nearly the same. Thus, we would expect a frequency
domain representation of X(t) to contain a preponderance of low frequencies. On
the other hand if RX(T) decreases rapidly as T is increased, we would expect X(t)
to change rapidly with time and thereby contain mostly high frequencies.

Properties of the autocorrelation function of areal-valued wide-sense sta-
tionary process are:

1. RX(7) = RX(—T) symmetrical in T about zero

2. RX(T) ~ RX(0) for all T maximum value occurs at the origin
..

_~, ~+ 3. RX(T) H GX(f) ~ autocorrelation and power spectral
density form a Fourier transform pair

4. RX(0) = E{XZ(t)} value at the origin is equal to the
average power of the signal

1.5.3 Time Averaging and Ergodicity

To compute mX and RX(T) by ensemble averaging, we would have to average
across all the sample functions of the process and would need to have complete
knowledge of the first- and second-order joint probability density functions. Such
knowledge is generally not available.

When a random process belongs...,to~,.~ special _class1,known as, an_e~odic~.~. .n...,,.,h,..~~. ~..~.~ t_ ~._.
process, its time averages equal its ensemble averages, and the statistical prop-~._._._.
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~w it ernes of the process can be determined by time averaging over a single sample
y for function of the process. For axa~~om,,~z:oceri,~s,to~~ gadic~.~-ax~»s h~ tation r

i~.,~he~„strict sense. (The converse is not necessary.) However, for communication
1.33) systems, where we are satisfied to meet the conditions Qf,yvide sense stationarity~
at is, vu,~„are int.~~.ested onl.~ i~ the mean and„autocorrelat„~on functions.
e the We can say that a random process is ergodic in the mean if
i , tz) z-i2

mX = lim 1/T X(t) dt (1.35)
T >~ — T~2

and it is ergodic in the autocorrelation function if
Tiz

~bles, - RX(T) = lim 1/T X(t)X(t + T) dt (1.36)
asses. T-~~ -T~z

ict  fon Testing for the ergodicity of a random process is usually very difficult. In
practice one makes an intuitive judgment as to whether it is reasonable to inter-

(1.34) change the time and ensemble averages; A reasonable assumption in the analysisti~,~_... ~,. ,,.. .. ..___~.,,.~...._~,.~___._---
~,~~~~,'~,. of most communication signals_ (in the absence of transient effects) is that the_. __.. _ ~~.. .n__._...,,_._. ,

~h the _rGuadem~aveforms are ergodic in the mean and the`ai~toco~~elation~•fu~c~-on:`~ince
tically ~~ '"' time avera es e ual ensemble avera es for er odic rocesses, fundamental elec-_̀w`~, ,; g 9 g g P
;e that ~ ;~ trical engineering parameters, such as do value, rms value, and average power
from ~ can be related to the moments of an ergodic random process. A summary of these

,taken ~ -,~~ ~`~ i~7relationshi s is:U<„c~ ~t,~~'.', p
,uency `
es. On 1. The quantity mX = E{X(t)} is equal to the do level of the signal.
~t X(t) 2. The quantity mX is equal to the normalized power in the do component.

se sta- 3. The second moment of X(t), E{X2(t)}, is equal to the total average nor-
malized power.

4. The quantity E{X2(t)} is equal to the root-mean-square (rms) value of the
voltage or current signal.

S. The variance, aX, is equal to the average normalized power in the time-
varying or ac component of the signal

b. If the process has zero mean (i.e., mX = rreX = 0), then crX = E{XZ}, and
it the variance is the same as the mean-square value, or the variance represents

thetotal power in the normalized load.
7. The standard deviation, QX, is the rms value of the ac component of the

signal.
8. If mX = 0, then QX is the rms value of the signal.

average 1.5.4 Power. Spectral Density of a Random Process

~mplete
~s. Such A random process, X(t), can generally be classified as a power signal having a

power spectral density (PSD); GX(f), of the form shown in Equation (1.20). GX(f)
e~odic is particularly useful in communications systems, because it describes the dis-
al prop- tribution of a signal's power in the frequency domain. The PSD enables us to
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evaluate the signal power that will pass through a network having known fre-
quency characteristics. We summarize the principal features of PSD functions as
follows:

1. GX(f) >— 0 and is always real valued

2, Gx~.f) = Gx~ — .f) for X(t) real-valued

3. GX(f) H RX(T) PSD and autocorrelation form a
Fourier transform pair

4. PX _ (' ~ GX~ f~ d f relationship between average
J normalized power and PSD

Figure 1.6a illustrates a single sample waveform from a WSS random pro-
cess, X(t). The waveform is a binary random sequence with unit-amplitude pos-
itive and negative (bipolar) pulses. The positive and negative pulses occur with
equal probability. The duration of each binary digit is T seconds, and the average
or do value of the random sequence is zero. Figure 1.6b shows the same sequence
displaced T~ seconds in time; this sequence is therefore denoted X(t — ~r~). Let
us assume that X(t) is ergodic in the autocorrelation function so that we can use
time averaging instead of ensemble averaging to find RX(T). The value of Rx(T,)
is obtained by taking the product of the two sequences X(t) and X(t — Tl) and
finding the average value. using- Equation (1.36). Equation (1.36) is accurate for
ergodic processes only in the limit. However, integration over an integer number
of periods can- provide us with an estimate of Rx(T). Notice that RX(T,) can be
obtained by a positive or negative shift of X(t). Figure 1.6c illustrates such a
calculation, using the single sample sequence (Figure 1.6a) and its shifted replica
(Figure 1.6b). The cross-hatched areas under the product curve X(t)X(t — T,)
contribute to positive values of the product, and the dotted areas contribute to
negative values. The sequences can be further shifted by T2, T3i . . . ,each shift
yielding a point on the overall autocorrelation function RX(T) shown in Figure
1.6d. Every random bit stream has an autocorrelation plot of the general shape
shown in Figure 1.6d. The plot peaks at RX(0) [the best match occurs when T
equals zero, since R(T) ~ R(0) for all T], and it declines as T increases. Figure
1.6d shows points corresponding to RX(0) and RX(TI).

The analytical expression for the autocorrelation function RX(T) shown in
Figure 1.6d, is [1]

1 — ~T for ~T~ <— T
Rx(`r) _ (1.37)

0 for ~T~ > T

The autocorrelation funetion allows us to express a random signal's power spectral
density directly. Since the PSD and the autocorrelation function are Fourier trans-
forms of each other, the PSD, GX(f ), of the random binary sequence can be found,
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using Table A.l, as the transform of RX(T) in Equation (1.37). GX(f) is shown
below, and its general shape is illustrated in Figure 1.6e.

GxCf) = T (si~~~T~Z _ T since fT (1.38)

where

sin pry
sinc y = (1.39)

Try

Notice that the area under the PSD curve represents the average power in
the signal. One convenient measure of bandwidth is the width of the main spectral
lobe. Figure 1.6e illustrates that the bandwidth of a signal is inversely related to
the symbol duration or pulse width. Figures 1.6f j repeat the steps shown in
Figures 1.6a—e, except that the bit duration is shorter. Notice that the shape of
the shorter-bit-duration RX(T) is narrower, shown in Figure 1.6i, than it is for the
longer-bit-duration RX(T), shown in Figure 1.6d. In Figure 1.6i, KX(T,) = 0; in
other words, a shift of TI in the case of the shorter-bit-duration example is enough
to produce a zero match, or a complete decorrelation between the shifted se-
quences. Since the pulse duration, T, is shorter in Figure 1.6f, and the bit rate is
higher than in Figure 1.6a, the bandwidth occupancy in Figure 1.6j is greater than
the lower-bit-rate bandwidth occupancy shown in Figure 1.6e.

1.5.5. Noise in Communication Systems

The term noise refers to unwanted electrical signals that are always present in
electrical systems. The presence of noise superimposed on a signal tends to ob-
scure or mask the signal; it limits the receiver's ability to make correct symbol
decisions, and thereby limits the rate of information transmission. Noise arises
from a variety of sources, both man-made and natural. Man-made noise includes
such sources as spark-plug ignition noise, switching transients, and other radiating
electromagnetic signals. Natural noise includes electrical circuit and component
noise, atmospheric disturbances, and galactic sources.

Good engineering design can eliminate much of the noise or its undesirable
effect through~Ti tering, shelding,f the ~c~ioice o~~6moc~uTa~i n, anc~ ht e selection of

_ ~__anwo~timum~wrece~ fiev r site. For example, sensitive radio astronomy measurements
are typically located at remote desert locations, far from man-made noise sources.
However, there is one natur Ee of noise,__~~llesl_r~iPY~al or I ~ .~,
that cannot

- f
be e~minated. Thermal noise [4, 5] is caused by the thermal motion
in all dissipative components—resistors, wires, and so on. The same

electrons that are responsible for electrical conduction are also responsible for
thermal noise. -

We can describe thermal noise as a zero-mean Gaussian random process.
A Gaussian process, n(t), is a random function whose value, n, at any arbitrary
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time, t, is statistically characterized by the Gaussian probability density function,
n(n>~

r 2
p(n) ~ 12~ exp L — 2 (~l ~ (1.40)

L \ /
where QZ is the variance of n. The normalized or standardized Uaussian density
function of a zero-mean process is obtained by assuming that Q = 1. This nor-
malized pdf is shown sketched in Figure l .7.

We will often represent a random signal as the sum of a Gaussian noise
random variable and a do signal:

z = a + n

where z is the random signal, a the do component, and n the Gaussian noise
random variable. The pdf p(z) is then expressed as

Piz) — Q 12~r eXp [ Z (~ Q a)2] (1.41)

where, as before, Q2 is the variance of n. The Gaussian distribution is often used
as the system noise model because of a theorem, called the centrnl limit theorem
[3], which states that under very general conditions the probability distribution
of the sum of j statistically independent random variables approaches the Gaussian
distribution as j ~ ~, no matter what the individual distribution functions may
be. Therefore, even though individual noise mechanisms might have other than

z
pin) = 

v 12~r eXp ~ 2 ~a~ J

f

!i
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.ion, Gaussian distributions, the aggregate of many such mechanisms will tend toward
the Gaussian distribuCion.

.40) x.5.5.1 White 1~'oise

The primary spectral characteristic of thermal noise is that its power spectral
isity density is the same for all frequencies of interest in most communication systems;
nor- in other words, a thermal noise source emanates an equal amount of noise power'

per unit bandwidth at all frequencies—from do to about 1012 Hz. Therefore, a
oise Simple model for thermal noise assumes that its power spectral density Gn(f) is

flat for all frequencies, as shown in Figure 1.8a, and is denoted as follows:

Gn(f) = N0 wattslhertz (1.42)
oise 2

where the factor of 2 is included to indicate that Gn(f) is a two-sided power spectral

.41) 
density. When the noise power has such a uniform spectral density, we refer to
it as white noise. The adjective "white" is used in the sense that white light
contains equal amounts of all frequencies within the visible band of electromag-

ised netic radiation.
rem The autocorrclation function of white noise is given by the inverse Fourier
tion transform of the noise power spectral density (see Table A.1) denoted as follows:
sian
nay Rn~T~ — ~ ~ 1{Gn(.f)} = 2~ 8(T) (1.43)
han

Thus the autocorrelation of white noise is a delta function weighted by the factor
No/2 and occurring at T = 0, as seen in Figure 1.8b. Note that Rn(T) is zero for
T ~ 0; that is, any two different samples of white noise, no matter how close
together in time they are taken, are uncorrelated.

The average power, Pn, of white noise is infinite because its bandwidth is
infinite. This can be seen by combining Equations (1.19) and (1.42) to yield.

Pn — ~~ 2° df = ~ (1.44)

G~(f)

0

(a)

R~1?)

Np/2

f 7
0

(b)

Figure 1.8 (a) Power spectral density of white noise. (b) Autocorrelation funaion
of white noise.
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Although white noise is a useful abstraction, no noise process can truly be white;
however, the noise encountered in many real systems can be assumed to be ap-
proximately white. We can only observe such noise after it has passed through
a real system which will have a finite bandwidth. Thus, as long as the bandwidth
of the noise is appreciably larger than that of the system, the noise can he con-
sidered to have an infinite bandwidth.

The delta function in Equation (1.43) means that the noise signal, n(t), is
totally decorrelated from its time-shifted version, for any T > 0. Equation (1.43)
indicates that any two different. samples of a white noise process are uncorrelated.
Since thermal noise is a Gaussian process and the samples are uncorrelated, the
noise samples are also independent [3]. Therefore, the effect on the detection
process of a channel with additive white Gaussian noise (AWGN) is that the noise
affects each transmitted symbol independently. Such a channel is called a mem-
oryless channel. The term "additive" means that the noise is simply superimposed
or added to the signal—that there are no multiplicative mechanisms at work.

Since thermal noise is .present in all communication Systems and is the prom-
inent noise source for most systems, the thermal noise characteristics—additive,
white, and. Gaussian—are most often used to model the noise in communication
systems. Since zero-mean Gaussian noise is completely characterized by its var-
iance, this model is particularly simple to use in the detection of signals and in
the design of optimum receivers. In this book we shall assume, unless otherwise

_ stated, that the system is corrupted by additive zero-mean white Guussian noise,
even though this is sometimes an oversimplification.

1.6 SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

Having developed a set of models for signals and noise, we now consider the
characterization of systems and their effects on such signals and noise. Since a
system can be characterized equally well in the time domain or the frequency
domain, techniques will be developed in both domains to analyze the response
of a linear system to an arbitrary input signal. 'The signal, applied to the input of
the system, as shown in Figure 1.9, can be described either as atime-domain
signal, x(t), or by its Fourier transform, X(f). The use of time-domain analysis
yields the time-domain output, y(t), and in the process, h(t), the characteristic
or irrepulse response of the network, will be defined. When the input is considered
in the frequency domain, we shall define a frequency transfer function, H(f), for
the system, which will determine the frequency-domain output, Y(,f). The system
is assumed to be linear and time invariant. It is also assumed that ther~~o

energy in

Input ~ Linea ~putputnetwork I

x(t) hit) y(t) Figure 1.9 Linear system and its key
X~f) H(f) Y~f) parameters.
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ite; 1.6.1 Impulse Response
ap-
igh The linear time-invariant system or network illustrated in Figure 1.9 is charac-
dth terized in the time domain ,by an impulse response, h(t), which is the response
on- when the input is equal to a unit impulse 8(t); that is,

h(t) = y(t) when x(t) = 8(t) (1.45)is
43) The response of the network to an arbitrary input x(t) is then found by the con-
ed. volution of x(t) with h(t), where *denotes the convolution operation (see Section
the A.5):
ion
,ise y(t) = x(t) ~ h(t) = I ~ x(T)h(t — T) dT (1.46)
'm-
sed The system is assumed to be causal, which means that there can be no output

prior to the time, t = 0, when the input is applied. Therefore, the lower limit of
>m- integration can be changed to zero, and we can express the output y(t) as
ve,
ion y(t) = Jo x(T)h(t — T) dT (1.47)
'QY-

1 in Equations (1.46) and (1.47) are called the superposition integral or the convolution
rise _.~_...w..._.__..._.~_. ___...._..._..__. .~antegral.
~Se

__.___.._~______

1.6.2 Frequency Transfer Function

The frequency-domain output signal, Y(f ), is obtained by taking the Fourier trans-
form of both sides of Equation (1.46). Since convolution in the time-domain trans-
forms to multiplication in the frequency domain (and vice versa), Equation (1.46)

the yields

e a Y(.f) = X(,f)H(.f) (1.48)Icy
nse or
t of y~ f~

H~.f) — (1.49)ain
X~,f)psis

tic provided, of course, that X(f) ~ 0 for all f. Here H(f) _ ~{h(t)}, the Fourier
red transform of the impulse response function, is called the frequency transfer func-
for tion or the frequency response of the network. In general, H(f) is complex and
em can be written as

-riO ~~.f) _ ~H~f)~ e~ecs~ (1.50)
where ~H(f)~ is the magnitude response. The phase response, 8(f), is defined as

Im {H(f)}
8(f) =tan-i (1.51)Re {H(f)}

;y where the terms "Re" and "Im" denote "the real part of 99 and "the imaginary
part of," respectively.
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A

The frequency transfer function of a linear time-invariant network can easily
be measured in the laboratory with a sinusoidal generator at the input of the
network and an oscilloscope at the output. When the input waveform x(t) is
expressed as

x(t) = A cos 2~rfo t

the output of the network will be

Y(r) _ ~ ~h'(.fo)~ cos [2~trf~t + 8(fo)] (1.52)

The input frequency, fo, is stepped through the values of interest; at each step,
the amplitude and phase at the output are measured.

1.6.2.1 Random Processes and Linear Systems

If a random process forms the input to atime-invariant linear system, the
output will also be a random process. That is, each sample function of the input
process yields a sample function of the output process. The input power spectral
density, GX(f ), and the output power spectral density, GY(f ), are related as
follows:

GY(.f) = Gx(.f) ~H(f)~Z (1.53)

Equation (1.53) provides a simple way of finding the power spectral density out
of atime-invariant linear system when the input is a random process.

In Chapters 2 and 3 we consider the detection of signals in Gaussian noise.
We will utilize a fundamental property of a Gaussian process applied to a linear
system, stated as follows: It can be shown that if a Gaussian process, X(t), is
applied to atime-invariant linear filter, the random process, Y(t), developed at
the output of the filter is also Gaussian [6].

1.6.3 Distortionless Transmission

What is required of a network for it to behave like an ideal transmission line?
The output signal from an ideal transmissio,.~....~~ may~have some time delay
compared to Elie input; 'and i~may have a different amplitude than the input -(just
a scale change), but otherwise i ~ must have no distortion=it~~~~rni~-hav~-t~~ie~.,~.._v....~_~._.m......___ ~...~.~..~...
s ape as the,in~ut~rTherefore, for ideal distortionless transmission, we can de-
scri~e _th~_ouzput.,si~n 1 as ~~~'~~' `."~~~~ ...~.._...,~..~..~_~_. ...__..._. __a. _ ___._.ev_..~~.__.M ,~_~,_,~~.--

y(c) = Kx(r - to) (1.54)

were K and to are constants. Taking the Fourier transform of both sides (see
Section A.3.1), we write

3'~f) = KX~.f)e -.ia~fto (1._55)

Substituting the expression (1.55) for Y(f) into Equation (1.49), we see that the
required system transfer function for distortionless transmission is

H~.f) = Ke-~Z~fto (1.56)
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asily Therefore, to achieve idea! distortionless trc~nsmissinn, the overall system re-
' the spouse must have a constant magnitude response, and its phase shift must be
t) is linear with frequency. It is not enough that the system amplify or attenuate all

frequency components equally. All of the signal's frequency components must
also arrive with identical time delay in order to add up correctly. Since time delay,
to, is related to phase shift, 6, and radian frequency, w = 2~rrf , as follows,

to (seconds) = 8 (radians) 
1.571.52) 2~rf (radians/second) ~ ~

step, it is clear that phase shift must be proportional to frequency in order for the time
delay of all components to be identical. In practice, a signal will be distorted in
passing through some parts of a system. Phase or amplitude correction (equali-
zation) networks may be introduced elsewhere in the system to correct for this

the distortion. It is the overall input-output characteristic of the system that deter-
nput mines its performance.
ctral
d as 1.6.3.1 Ideal Filter

1.53) One cannot build the ideal network described in Equation (1.56). The prob-
lem is that Equation (1.56) implies an infinite bandwidth capability, w i~e er  the`

~ out bandwidth of a system is defined as the interval of positive frequencies over which
the magnitude ~H(f)) remains within a specified value. In Section 1.7 various

Oise. measures of bandwidth are enumerated..As,_._ an apn~oximation to the ideal ir~ini~,e-
inear bandwidth network let a truncated network that asses,t~~ iS _us ,choose .wttl~t~ui-_dis~-~, .—__ .._._ __,.

toi-Tiori; all frequency components_between Band f~ where ~"~is the,~lo.We.~.c,~off
~d at ___._ _..~,..

frequency and fu"s theupper cutoff frequency, as shown_i~.,.,~„~g„u,~~~..~a1~0, Ea~~
of~~hese networks ~is called an ideal"~tier:~ Outside the range f~ < f, <.~,.~.,,,.~~~ch..~.~~w..._.~~K.
is called the passband, the ideal ~ltcr :is . assumed to have a response of zero
magii~t~de:"The effective width of the passband is specified by the~filter bandw itfi
~s = ~fu - fe) hertz.

line? When fe ~ 0 and fu ~ ~, the filter is called a bandpass filter (BPF), shown
delay in Figure 1.10a. When fe = 0 and fu has a finite value, the filter is called a low-
j( ust pass filter (LPF), shown in Figure 1. lOb. When fe has a nonzero value and when
~~~ ,fu ~ ~, the filter is called ahigh-pass filter• (HPF), shown in Figure 1.lOc.
1 de- Following Equation (1.56), for the ideal low-pass filter transfer function with

bandwidth W f = f u hertz, shown in Figure 1. l Ob; we can write the transfer
1.54) function as follows (letting K = 1):

(see Hof) = IH(.f)) e -iecf~ (1.58)
where

1.55)
~ 
H~ f)I _ ~ 1 for ~ f ~ < f u 

(1.59)
.t the 0 for ~ f ~ >_ f U

and

1.56) e ->e<s~ = e -.i2~fto (1.60)

iap. 1 Sec. 1.6 Signal Transmission Through Linear Systems 33

Petitioner's Exhibit 1003 
Page 053



~ H(f) ~

~ ~ i ~ ~ f
— f~ —fg 0 fQ fu

=—
Bandwidth

Wf = f„ — fQ
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i i ~ f
—fA 0 fp f~ ->

(c1
Figure 1.10 Ideal filter transfer function. (a) Ideal bandpass filter. (U) Ideal low-
pass filter. (c) Ideal high-pass filter.

The impulse response h(t) of the ideal low-pass filter, illustrated in Figure 1.11,
is

h(t) _ ~-1{H(f)} = J~ H(f)e'2~ft d f (1.61)

f„
- fu e -j2irf r~e.jz'~f t df

fu e j2arf<r _ ro> (~ f
— fu J

2,~u S1I1 ZTf,f ult — Z0~

2-rtf u(t - to)

= 2fu sinc 2fu(t - to) (1.62)
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h(t)

t

Figure 1.11 Impulse response of the
ideal low-pass filter.

where sinc x is as defined in Equation (1.39). The impulse response shown in
Figure 1.11 is noncausal, which means that it has a nonzero output prior to the
application of an input at time t = 0. Therefore, it should be clear that the ideal
filter described in Equation (1.58) is not realizable.

Example 1.2 Effect of an Ideal Filter on White Noise
White noise with power spectral density Gn(f) = No/2, shown in Figure 1.8a, forms
the input to the ideal low-pass filter shown in Figure 1.lOb. Find the power spectral
density, GY(f), and the autocorrelation function, Ry~T~, of the output signal

Solution

Gr(.f) = Gn(.f) ~H(.f)~2
No, _ 2 for~f~<fu

.11, 
0 otherwise

The autocorrelation is the inverse Fourier transform of the power spectral density
.61) and is given by (see Table A.1)

RrtT) = No.fu 
sin 2~rfuT

Z7T,f uT

= Nofu sine 2fuT

Comparing this result with Equation (1.62), we see that R Y(T) has the same shape
as the impulse response of the ideal low-pass filter shown in Figure 1.11. In this
example the ideal low-pass filter transforms the autocorrelation function of white
noise (defined by the delta function) into a sinc function. After filtering, we no longer
have white noise. The output noise signal will have zero correlation with shifted

62) copies of itself, only at shifts of T = n/2fu, where n is any integer other than zero.

gyp. 1 Sec. 1.6 Signal Transmission Through Linear Systems 35

i ~ f~ i

Petitioner's Exhibit 1003 
Page 055



O

1.6.3.2 Realizable Filters

The very simplest example of a realizable low-pass filter is made up of
resistance (~) and capacitance (C), as shown in Figure 1.12a; it is called an °Jt,C
filter, and its transfer function can be expressed as [7]

H(.f) = I =
1 + j2~rf~.0

e-ietf~ (1.63)

where 8(f) =tan-' 2~rf~J~.C. The magnitude characteristic, ~H(f)~, and the phase
characteristic, 8(f) are plotted in Figures 1.12b and c, respectively. The low-pass

._filter_ bandwidth is defined to _be..its_. half-.power point; this point is the fregu~.~zcy_. ,~_~..
at which the output signal, power has fallen to_o~e half of its peak value, or the
fre uenc at„which the magnitude of the output voltage has falleri~to 1/~ of itsq Y w._
peak value. ~'
''~--'i'he half-power point is generally expressed in decibel (dB) units as the

— 3-dB point, or the point which is 3 dB down from the peak, where the decibel

H(fl

:!L

o—~M~~ -p---0 1

Input C~` Output I 0.707 I Half-power point

f
1 0 1

2~r3tC Wf 2~r~RC

( a) (b1

0 (f)

f

Figure 1.12 ~Jt,C filter and its transfer function. (a) °Ji,C filter. (b) Magnitude char-
acteristic of the ~J?C filter. (c) Phase characteristic of the ~J?C filter.

36 Signals and Spectra Chap. 1

- lcl

Petitioner's Exhibit 1003 
Page 056



is defined as the ratio of two amounts of power, P1 and P2, existing at two points.
By definition

ip of
P 2

' ~'C number of dB = 10 log, Pi = 10 loglo 
Vi~~l 

(1.64a)

1.63) 
where Vl and V2 are voltages and ~,, and GTi,2 are resistances. For communication
systems, normalized power is generally used for analysis; in this case, GJ?,i and GJ?,2
are set equal to 1 SZ, so that

phase p2 V2
-pass number of dB = 10 loglo P1 = 10 loglo Vi (1.64b)
«ncy
.r the
of its The amplitude response, ~H(f)~, can be expressed in decibels by

s the ~H(f)~as = 20 logo V~ = 20 login ~H(f)~ (1.64c)
:cibel - -

oint

where Vl and VZ are the input and output voltages, respectively, and where the
input and output resistances have been assumed equal.

From Equation (1.63) it is easy to verify that the half-power point of the
low-pass ~C filter corresponds tow = 1/JtC radians per second or f = 1/(2~r~'JtC)
hertz. Thus the bandwidth Wf in hertz is 1l(2~r~C). The filter shape facto~,.r is a
measure of how well. a r~a~zable_filter approximates. the ideal ~Iter. It is t ly
defined as the ratio of the Ater bandwidths at the ￼-60=c~CB"anc~"`￼~=~B am litude_.
response points. Asharp-cutoff bandpass ~ ter can be made with a shape factor
as low as about 2. By comparison, the shape factor of the simple GJ3.0 low-pass
Ater is almost 600.

There are several useful approximations to the ideal low-pass filter char-
acteristic. One of these, the Butterworth filter, approximates the ideal low-pass
filter with the following function:

yap. 1

n>_1 (1.65)

where f,~is_the u_p~er —3-dB cutoff frequency. The magnitude function, ~H(f)~,
is sketched (single sided) for several alu`es of n in Figure 1.13. Note that as
n gets larger, the magnitude characteristics approach that of the ideal Ater. But-
terworth filters are popular because they are the best approximation to the ideal,
in the sense of maximal flatness in the filter passband.

Example 1.3 Effect of an ~tC Filter on White Noise

White noise with spectral density, Gn(f) = N„!2, shown in Figure 1.8a, forms the
input to the GJ~.0 Ater shown in Figure 1.12a. Find the power spectral density, GY(f),
and the autocorrelation function, Ry~T), of the output signal.
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GSA

H!f)

fu

Solution

f Figure 1.13 Butterworth Ater
magnitude response.

Gr(f) = Gn~f) IH(f)I Z

No 1

R r~T~ _ '°- ~IGY~.f~~

Using Table A.1, the inverse Fourier transform of GY(f) is

R AT) = 4~C eXp (— °J~,C}

As might have been predicted, we no longer have white noise after filtering. The
~JtC filter transforms the input autocorrelation function of white noise (defined by
the delta function) into an exponential function. For a narrowband Ater (a large °J~.0
product), the output noise will exhibit higher. correlation between noise samples of
a fixed time shift than will the output noise from a wideband ~lte~.

1.6.4 Signals, Circuits, and Spectra

Signals have been described in terms of their spectra. Similarly, networks or
circuits have been described in terms of their spectral char~eteristics or frequency
transfer functions. How is a signal's bandwidth affected as a result of the signal
passing through a filter circuit? Figure 1.14 illustrates two cases of interest. In
Figure 1.14a (case 1), the input signal has a narrowba~d spectrum, and the Ater
transfer function is a wideband function. From Equation (1.48) we see that the
output signal spectrum is simply the product of these two spectra. In Figure 1.14a
we can verify that multiplication of the two spectral functions will result in a
spectrum with a bandwidth approximately equal to the smaller of the two band-

~` widths (when one of the two spectral functions goes to zero, the multiplication
yields zero). Therefore, for case 1, the output signal spectrum is constrained by
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Input Signal
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X ff)
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0

la)

X(f) ~

f

Filter Transfer
Function

H(f)

f
0

H(fl

f

Figure 1.14 Spectral characteristics of the input signal and the circuit contribute
to the spectral characteristics of [he output signal. (a) Case 1: Output bandwidth
is constrained by input signal bandwidth. (b) Case 2: Output bandwidth is con-
strained by filter bandwidth.

the input signal spectrum alone. Similarly, we see that for case 2, in Figure 1.14b,
where the input signal is a wideband signal but the filter has a narrowband transfer

,function, the bandwidth. of the output signal is constrained by the filter bandwidth;
;. The the output signal will be a filtered (distorted) rendition of the input signal.
ed by The effect of a filter on a waveform can also be viewed in the time domain.
;e ~.0 The output, y(t), resulting from convolving an ideal input pulse, x(t) (having
des of amplitude V„T and pulse width T), with the impulse response of a low-pass °J~,C

Ater can be written as [8]

(V~ (1 — e - t~~c) for. 0 ~ t _< T
3'~t) = j Vie-~t. z~i~c fort > T (1.66)

ks or where
zency
~i nal V;n = Vm(1 — e -Ti~.c) (1.67)g
st. In Let us define the pulse bandwidth, Wp, and the GJi,C filter bandwidth, Wf, as
Ater

~t the 1
1.14a u'p — T (1.68)

t in a and
band- -
;ation 1
ed by Wf 2~r~.0 (1.69)
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The ideal input pulse, x(t), and its magnitude spectrum ~X(f)~, are shown in Figure

1.15. The GJ~.0 Ater and its magnitude characteristic, ~H(f)(, are shown in Figures

1.12a and b, respectively. Following Equations (1.66) to (1.69), three cases are

illustrated in Figure 1.16. Example 1 illustrates the case where Wp « Wf. Notice

that the output response, y(t), is a reasonably good approximation of the input

pulse, x(t), shown in dashed lines. This represents an example of good fidelity.

In example 2, where Wp = Wf, we can still recognize that a pulse had been

transmitted from the output, y(t). Finally, example 3 illustrates the case where

Wp » Wf. Here the presence of the pulse is barely perceptible from the output,

y(t), Can you think of an application where the large filter bandwidth or- good

fidelity of example 1 is called for? A precise ranging application, perhaps, where

the pulse time of arrival translates into distance, necessitates a pulse with a steep

rise time. .Which example characterizes the binary digital communications appli-

cation? It is example 2. As we pointed out earlier regarding Figure 1.1, one of

the principal features of binary digital communications is that each received pulse

x 111

t

(a)

Xlfl

T T
2 2
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i
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Ia)
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~ Yltl I ~ Y(tI ~i i ~ i
t ' t

(b) (c)

Figure 1.16 Three examples of filtering an ideal pulse. (a) Example 1: Good-
fidelity output. (U) Example 2: Good-recognition output. (c) Example 3: Poor-
recognition output.

need only be accurately perceived as being in one of its two states; ahigh-fidelity
signal need not be maintained. Example 3 has been included for completeness;
it would not be used as a design criterion for a practical system.

1.7 BANDiNIDTH OF DIGITAL DATA

1.7.1 ~aseband versus Bandpass

An easy way to translate the spectrum of a low-pass or baseband signal, x(t), to
a higher frequency is to multiply or heterodyne the baseband signal with a carrier
wave, cos 2~rf~t, as shown in Figure 1.17a. The resulting waveform, x~(t), is
called adouble-sideband (DSB) modulated signal and is expressed as

x~(t) = x(t) cos 2~rf~t (1.70)

From the frequency shifting theorem (see Section A.3.2) the spectrum of the DSB
signal, x~(t), is given by X~(f):

X~(.f) = z[X(.f — f~) + X(.f + f~)l (1.71).
The magnitude spectrum ~X(f)~ of the baseband signal, x(t), having a bandwidth
,f»~, and the magnitude spectrum, ~X~(f)~, of the DSB signal, x~(t), having a band-

t pulse. width WDSB, are shown in Figure 1.17b and c, respectively. In the plot of ~X~(f)~,
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x(t) x~(t) = x~t) cos 2~rf~t

cos 2~rf~t
( local oscillator)

(a)

Xlfl

f
-fm 0 fm

ji
Baseband
bandwidth

( b)

X~lfl

USB LSB LSB USB

f

-f~ - fm -f~ -f~ + fm 0 f~ - fm f~ f~ -1- fm

—WDSB-~j
Double-sideband ~

bandwidth

lcl

Figure 1.1'~ Comparison of baseband and double-sideband spectra. (a) Hetero-

~ dyning. (b) Baseband spectrum. (c) Double-sideband spectrum.

spectral components corresponding to positive baseband frequencies, appear in

the range f ~ to (f ~ + f„Z), This part of the DSB spectrum is called the upper

sideband (USB). Spectral components corresponding to negative baseband fre-

quencies appear in the range (f~ — f,,i) to f~. This part of the DSB spectrum is

called the lower sideband (LSB). Mirror images of the USB and LSB spectra

appear in the negative-frequency half of the plot. The carrier wave is sometimes

referred to as a local oscillator (LO) signal, a mixing signal, or a heterodyne

signal. Generally, the carrier wave frequency is much higher than the bandwidth

of the baseband signal; that is,

fc » fm
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From Figure 1.17 we can readily compare the bandwidth f,,,, required to transmit
the baseband signal, with the bandwidth WnsB, required to transmit the DSB
signal; we see that

~'T'nsH = 2fm (1,.72)

That is, we need twice as much transmission bandwidth to transmit a DSB version
of the signal than we do to transmit its baseband counterpart.

1.7.2 The Bandwidth Dilemma

Many important theorems of communication and information theory are based
on the assumption of strictly bandlimited channels, which means that nn signal
power whatever is allowed outside the defined band. ~1Ve ai-e faced with the di-
lemma that strictly bandlimited signals are not realizable since they imply signals
with infinite duration; nonbandlimited signals, having energy at arbitrarily high
frequencies, appear just as unreasonable. It is no wonder that there is no single
universal definition of bandwidth.

All bandwidth criteria have in common the attempt to specify a measure of
the width, W, of a nonnegative real-valued power spectral density defined for all
frequencies ~ f ~ < ~. Figure 1.18 illustrates some of the most common definitions
of bandwidth; in general, the various criteria are not interchangeable. The single-

gar in
upper
d fre-
um is
~ectra
:times
dyne

.width

General shape of ~
power spectral ~ — — — —
density (PSD) ~ ~

~ ~

i ~ ~

~ ~ fc
T (a1—

lb)

(~I—
(d)—

( e) 35 d

(e) 50 d

Figure 1.18 Bandwidth of digital data. (a) Half-power. (b) Noise equivalent. (c)
Null to null. (d) 99% of power. (e) Bounded PSD (defines attenuation outside
bandwidth) at 35 and 50 dB.

rsin n(f — f~)T 2
Gx lf) = 

TL ~r(f — f~)T J

f
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sided power spectral density, GX(f), fora single heterodyned pulse, x~(t), takes
the analytical form

GX(.f) = T sin ~r(.f — .f~)T z
(1.73)

where f ~ is the carrier wave frequency and T is the pulse duration. This power
spectral density, whose general appearance is sketched in Figure 1.18, also char-
acterizes arandom pulse sequence, assuming that the averaging time is long rela-
tive to the pulse duration. The plot consists of a main lobe and smaller symmetrical
sidelobes. The general shape of the plot is valid for most digital modulation for-
mats; some formats, however, do not have well-defined lobes. The bandwidth
criteria depicted in Figure 1.18 are as follows:

(a) Half-power bandwidth. This is the interval between frequencies at which
GX(f) has dropped to half-power, or 3 dB below the peak value.

(b) Equivalent rectangular or noise equivalent bandwidth. The noise equivalent
bandwidth was originally conceived to permit rapid computation of output
noise power from an amplifier with a wideband noise input; the concept can
similarly be applied to a signal bandwidth. The noise equivalent bandwidth
WN of a signal is defined by the relationship WN = PX/Gx(f~), where PX is
the total signal power over all frequencies and Gx(f ~) is the value of Gz(f )
at the band center (assumed to be the maximum value over all frequencies).

(c) Null-to-null bandwidth. The most popular measure of bandwidth for digital
communications is the width of the main spectral lobe, where most of the
signal power is contained. This criterion lacks complete generality since
some modulation formats lack well-defined lobes.

(d) Fractional power containment bandwidth. This bandwidth criterion has been
adopted by the Federal Communications Commission (FCC Rules and Reg-
ulations Section 2.202) and states that the occupied bandwidth is the band
that leaves exactly 0.5% of the signal power above the upper band limit and
exactly 0.5% of the signal power below the lower band limit. Thus 99% of
the signal power is inside the occupied band.

(e) Bounded power spectral density. A popular method of specifying bandwidth
is to state that everywhere outside the specified band, GX(f) must have fallen
at least to a certain stated level below that found at the band center. Typical
attenuation levels might be 35 or 50 dB.

(~ Absolute bandwidth. This is the interval between frequencies, outside of
which the spectrum is zero. This is a useful abstraction. However, for all
realizable waveforms, the absolute bandwidth is infinite.

Example 1.4 Strictly Bandiimited Signals

The concept of a signal that is strictly limited to a band of frequencies is not realizable.
Prove this by showing that a strictly bandlimited signal must also be a signal of infinite
time duration.
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Solution

Let x(t) be a signal, with Fourier transform X(f), that is strictly Limited to the band
of frequencies centered at -+- f~ and of width 2W. We may express X(f) in terms of
an ideal filter transfer function, H(f), illustrated in Figure 1.19x, as follows:

X~.f) = X'~.f)H~.f) (1.74)

where, X'(f) is the Fourier transform of a signal x'(t), not necessarily bandlimited,
where

H(f) = rect (f 2~ ̀l + rect (f 2W ̀ l
/ \ /

H(f)

— f~ — W —f~ —f~ + W

(a)

' f
f~ — W f~ f~ + W

<---- — 21N ~-

h1t)

> been
l Reg-
band
it and
9% of

width
fallen
ypical

ide of
For all

izable.
'nfinite

;hap. 1

1 1
2W 2W

(b)

Figure 1.19 Transfer function and impulse response for a strictly bandlimited
signal. (a) Ideal bandpass Ater. (b) Ideal bandpass impulse response.
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e:~

and where

reef f i for — W< f c W
(2W) 0 for ~f~ > W

We can express X(f) in terms of X'(f) as

X(.f) _ ~X Cf) for (.f~ — ~') ~ ~f~~ ~ (.f~ + ~')
0 otherwise

Multiplication in the frequency domain, as seen in Equation (1.74), transforms to
convolution in the time domain as follows:

x(t) = x'(t) * h(t) (1.76)

where h(t), the inverse Fourier transform of H(f), can be written as (see Tables A.1
and A.2)

h(t) = 2W (sine 2Wt) cos 2~rf~t

and is illustrated in Figure 1.19b. We note that h(t) is of infinite duration. It follows,
therefore, that x(t) obtained in Equation (1.76) by convolving x'(t) with h(t) is also
of infinite duration and therefore is not realizable.

1.~ CONCLUSION

In this chapter, the goals of the book have been outlined and the basic nomen-
clature has been defined. The fundamental concepts of time-varying signals, such
as classification, spectral density, and autocorrelation, have been reviewed. Also,
random signals have been considered, and white Gaussian noise, the primary noise
model in most communication systems, has been characterized, statistically and
spectrally. Finally, we have treated the important area of signal transmission
through linear systems and have examined some of the realizable approximations
to the ideal case. We have also established that the concept of an absolute band-
width is an abstraction, and that in the real world we are faced with the need to
choose a definition of bandwidth that is useful for our particular application. In
the remainder of the book, each of the signal processing steps introduced in this
chapter will be explored in the context of the typical system block diagram ap-
pearing at the beginning of each chapter.
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ins to

(1.76)

:s A.1 PROBLEMS

1.1. Classify the following signals as energy signals or power signals. Find the normalized
energy or normalized power of each.

Mows,
is also

>men-
such

Also,
noise
y and
fission
~tions
band-
;ed to
~n. In
n this
m ap-

(a) x(t) = A cos 2~rfo t

(b) x(t) _ ~A cos 2~rfat
0

(c) x(t) _ ~A exp (—at)
0

(d) x(t) =cost + 5 cos 2t

for—~<t<~

for — To/2 <_ t ~ To/2, where To = 1/f o
elsewhere

fort>O,a>0
elsewhere

for —~<t<~

1.2. Determine the energy spectral density of a square pulse x(t) _. rect (t/T~, where
rect (t/T) equals 1, for —T!2 <_ t ~ T/2, and equals 0, elsewhere. Calculate the
normalized energy Ex in the pulse.

1.3. Find an expression for the average normalized power in a periodic signal in terms
of its complex Fourier series coefficients.

1.4. Using time averaging, find the average normalized power in the waveform x(t) _
10 cos lOt + 20 cos 20t.

1.5. Repeat Problem 1.4 using the summation of spectral coefficients.
1.6. Determine which, if any, of the following functions have the properties of autocor-

relation functions. Justify your determination. [Note: ~^{R(T)} must be a nonnegative
function. Why?]

(a) x(T) 1 for —1 <_ T <_ 1
0 otherwise

(b) x(T) = 8(T) +sin 2~rfa~

(c) x(T) = exP ~IT~~
►83. (d) x(T) = 1 — ~T~ for —1_ z ~ 1
Sons,

1.7. Determine which, if any, of the following functions have the properties of power
w-Hill spectral density functions. Justify your determination.

(a) X(.f) = 8(.f) +cost 2~f
., vol. (b) X(f) = 10 + 8(f — 10)
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(c) X(f) = exp (-2~r ~f - 10~)

(d) X(f) = exp [-2T(f Z - 10)]

1.8. Find the autocorrelation function of x(t) = A cos (2~rfot + ~) in terms of its period,
To - lJfo. Find the average normalized power of x(t), using Px = R(0).

1.9. (a) Use Che results of Problem 1.8 to find the autocorrelation function, R(T), of
waveform x(t) = 10 cos lOt + 20 cos 20t.

(b) Use the relationship PX = R(0) to find the average normalized power in x(t).
Compare the answer with the answers to Problems 1.4 and 1.5.

1.10. For the function x(t) = 1 +cos 2~rrfot, calculate (a) the average value of x(t); (b)
the ac power of x(t); (c) the r-ms value of x(t).

1.11. Consider a random process given by X(t) = A cos (2~rfo t + ~), where A and fo are
constants and ~ is a random variable that is uniformly distributed over (0; 2~r). If
X(t) is an ergodic process, the time averages of X(t) in the limit as t ~ ~ are equal
to the corresponding ensemble averages of X(t).
(a) Use time averaging over an integer number of periods to calculate the approx-

imations to the first and second moments of X(t).
(b) Use Equations (1.26) and (1.28) to calculate the ensemble-average approxima-

tions to the first and second moments of X(t). Compare the results with your
answers in part (a).

1.12. The Fourier transform of a signal, x(t) is defined by X(f) = sinc f, where the sinc
function is as de~~ed in Equation (1.39). Find the autocoiTelation function, RX(T),
of the signal x(t).

1.13. Use the sampling property of the unit impulse function to evaluate the following
integrals.

(a) J ~ cos 6t8(t - 3) dt

(b) ~ ~ 108(t)(1 + t)-' dt

(c) J ~ 8(t + 4)(t2 + 6t + 1) dt

(d) f ~ exp (-tz)S(t -~ 2) dt

1.14. Find Xl(f) * X2(f) for the spectra shown in Figure P1.1.
1.15. The two-sided power spectral density, GX(f) = 10-6f2, of a waveform x(t) is shown

in Figure P1.2.
(a) Find the normalized average power in x(t) over the frequency band from 0 to

10 kHz.
(b) Find the normalized average power contained in the frequency band from 5 to

6 kHz.
1.16. Decibels are logarithmic measures of power ratios, as described in Equation (1.64a).

Sometimes, a similar formulation is used to express nonpower measurements in
decibels (referenced to some designated unit). As an example, calculate how many
deciUels of hamUurger meat you would buy to feed 2 hamburgers each to a group
of 100 people. Assume that you and the butcher have agreed on the unit of "Z pound
of meat" (the amount in one hamburger) as a reference unit.
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i.17. Consider the Butterworth low-pass amplitude response given in Equation (1.65).
(a) Find the value of n so that ~H(f)~z is constant to within ±l dB over the range

~.f~ ~ 0.9fu.
(b) Show that as n approaches infinity, the amplitude response approaches that of

an ideal low-pass filter.
1.18. Consider the network in Figure ,1.9, whose frequency transfer function is I~(f). An

impulse 8(t) is applied at the input. Show that the response y(t) at the output is the
inverse Fourier transform of H(f).

1.19. An example of a holding circuit, commonly used in pulse systems, is shown in Figure
P1.3. Determine the impulse response of this circuit.

xlt) + 9(t) v(t)
E Integrator

Input Output

Delay t~
Figure P1.3

1.20. Given the spectrum ,

GX(f) = 10-4 
sm [~r(f — 10010-4] z

~~f - 
16110-4 }
I
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Find the value of the signal bandwidth using the following bandwidth definitions
(a) Half-power bandwidth.
(b) Noise equivalent bandwidth.
(c) Null-to-null bandwidth.
(d) 99% of power bandwidth.
(e) Bandwidth beyond which the attenuation is 35 dB.
(t~ Absolute bandwidth.
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The first essential signal processing step, formatting, makes the source signal
compatible with digital processing. Transmit formatting is a transformation from
source information to digital symbols (in the receive chain, formatting is the re-
verse transformation). When there is data redundancy reduction or data compres-
sion, in addition to formatting, the process is termed source coding. Some authors
consider formatting to be a special case of source coding. We treat formatting
(and baseband transmission) in this chapter, and treat. source coding as a special
case of 'the efficient description of source information in Chapter 11. In Figure
2.1 the main formatting topics are highlighted—character coding, sampling, quan-
tization, and pulse code modulation (PCM).

A signal whose spectrum extends from (or near) do up to some finite value,
usually less than a few megahertz, is called a baseband or low-pass signal. Such
a signal is implied whenever we use the term "information," "message," or
"data." For the transmission of baseband signals by a digital communication
system, the information is formatted so that it is represented by digital symbols.
Then, pulse waveforms are assigned that represent these symbols; this step is
referred to as pulse modulation or basebared modulation. These waveforms can
then be transmitted over a cable.

Baseband signals are not appropriate for propagation through many trans-
mission media. Baseband signals whose spectrum has been shifted to a frequency
band that is more appropriate for propagation through a transmission medium are
called bandpass modulation signals or simply bandpass signals. Bandpass signals
have their spectral content clustered in a band of frequencies near a value called
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~~:

the carf~ier,f'requency. In Chapter 3 we deal with the modulation and demodulation
of these bandpass signals.

2.1 B/~aSEBAPdD SYSTEMS

In Figure 1.2 we presented a block diagram of a typical digital communication
system. A version of this functional diagram, focusing primarily on the formatting
and transmission of ba,seband signals, is shown in Figure 2.2. Data already in a
digital format would bypass the formatting function. Textual information is trans-
formed into binary digits by use of a coder. Analog information is formatted using
three separate processes: sampling, quantization, and coding. In all cases, the
formatting step results in a sequence of binary digits.

These digits are to be transmitted through a baseband channel, such as a
pair of wires or a coaxial. cable. However, no channel can be used for the trans-
mission of binary digits without first transforming the digits to waveforms that
are compatible with the channel. For baseband channels, compatible waveforms
are pulses.

In Figure 2.2, the conversion from binary digits to pulse waveforms takes
place in the block labeled waveform encoder, also called a baseband modulator.
The output of the waveform encoder is typically a sequence of pulses with char-
acteristics that correspond to the binary digits being sent. After transmission
through the channel, the received waveforms are detected to produce an estimate
of the transmitted digits, and then the final step, (reverse) formatting, recovers
an estimate of the source information.

Digital
information

Format
Information Textual r------ ---------~

source information
~

~
~ Waveform

Analog ~ ~ encoder Transmitter
information ~ Sampler Quantizer Coder I (modulator)

~-- — --------- — -- -----J

Binary Pulse Channel
digits waveforms

Format
r--- -----------

Analog ~ Low-pass
information filter Decoder

( Waveform Receiver~
~ detector

Information Textual
~
i

sink information L — _ _ _ — _ _ _ _ _ _ — J

Digital -
information

Figure 2.2 Formatting and transmission of baseband signals.
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elation 2.2 FORMATTING TEXTUAL DATr4 (CHARACTER CODIfVG)

The original form of most communicated data (except for computer-to-computer
transmissions) is either textual or analog. If the data consist of alphanumeric text,
they will be character encoded with one of several standard formats, examples
of which are, the American Standard Code for Information Interchange (ASCII),

cation the Extended Binary Coded Decimal Interchange Code (EBCDIC), Baudot, and
fatting Hollerith. The textual material is thereby transformed into a digital format. The
y in a ASCII format is shown in Figure 2.3; the EBCDIC format is shown in Figure 2.4.
trans- The bit numbers signify the order of serial transmission, where- bit number 1 is
using the first signaling element. Character coding, then, is the step that transforms text
s, the into binary digits (bits). Sometimes, existing character codes are modified to meet

specialized needs. For example, the 7-bit ASCII code (Figure 2.3) can be modified
h as a to include an added bit for error detection purposes (see Chapter 5). On the other
trans- hand, sometimes the code is truncated to a 6-bit ASCII version, which provides
s that capability for only 64 characters instead of the 128 characters allowed by 7-bit
forms ASCII.

takes
!lator. 2.3 MESSAGES, CHARACTERS, AND SYMBOLS
char-

ission Textual messages are comprised of a sequence of alphanumeric characters. When
:imate digitally transmitted the characters are first encoded into a sequence of bits, called
rovers a bit stream or baseband signal. Groups of k bits can then be combined to form

new digits, or symbols, from a finite symbol set or alphabet of M = 2k such
symbols. A system using a symbol set size of M is referred to as an M-ary system.
The value of k or M represents an important initial choice in the design of any
digital communication system. For k = 1, the system is termed binary, the size
of the symbol set is M = 2, and the modulator uses one of the two different
waveforms to represent the binary "one" and the other to represent the binary
"zero." For this special case, the symbol and the bit are the same. For k = 2,

smitter the system is termed quaternary or 4-ary (M = 4). At each symbol time, the
modulator uses one of the four different waveforms that represents the symbol.
The partitioning of the sequence of message bits is determined by the specification
of the symbol set size, M. The following example should help clarify the rela-

~nnei tionship between the terms "message," "character," "symbol," "bit," and "dig-
ital waveform."

2.3.1 Example of Messages, Characters, and Symbols
:elver

Figure 2.5 shows examples of bit stream partitioning, based on the system spec-
i~cation for the values of k and M. The textual message in the figure is the ward
"THINK." Using 6-bit ASCII character coding (bit numbers 1 to 6 from Figure
2.3) yields a bit stream comprised of 30 bits. In Figure 2.Sa, the symbol set size,
111, has been chosen to be 8 (each symbol represents an 8-ary digit). The bits are
therefore partitioned into groups of three (k = log2 8); the resulting 10 numbers

hap. 2 Sec. 2.3 Messages, Characters, and Symbols 55
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Message (text): "THINK"

T H I `N K

Character coding ~~ (-- ~ r A ~ ~ — --' ~ _--1
(6-bitASCI1~: 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0

8-ary digits
( symbols): 1 2 0 4 4 4 3 4 6 4

8-ary waveforms: s~ (t) s2 (t) sp(t) sq(t) sq(t) sglt) s3(t) sq(t) sg(t) sq(t)

(a)

T H I N K

Character coding ' " ' ' '" ' " '

(6-bitASCIII: 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0

32-ary digits
(symbols: 5 1 4 17 25 20

32-arywaveforms: s51t) si(t) sq(t) s~~~t) s25(t) s20(t)

fib)

Figure 2.5 Messages, characters, and symbols. (a) 8-ary example. (b) 32-ary

example.

represent the 10 octal symbols to be transmitted. The transmitter must have a
repertoire of eight waveforms, s;(t), where i = 1, . . . , S, to represent the possible
symbols, any one of which may be transmitted during a symbol time. The final
row of Figure 2.Sa lists the 10 waveforms that an 8-ary modulating system trans-
mits to represent the textual message "THINK."

In Figure 2.Sb, the symbol set size, M; has-been chosen to be 32 (each symbol
represents a 32-ary digit). The bits are therefore taken five at a time, and the
resulting group of six numbers represent the six 32-ary symbols to be transmitted.
Notice that there is no need for the symbol boundaries and the character bound-
aries to coincide. The first symbol represents s of the first character, "T." The
second symbol represents the remaining 6 of the character "T" and 6 of the next
character, "H," and so on. It is not necessary that the characters be partitioned
more aesthetically. The system sees the characters as a string of digits to be
transmitted; only the end user (or the user's teleprinter machine) ascribes textual

5~ Formatting and Baseband Transmission Chap. 2
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meaning to the final delivered sequence of bits. In this 32-ary case, a transmitter
needs a repertoire of 32 waveforms, s;(t), where i = 1, . . . , 32, one for each
possible symbol that may be transmitted. The final row of the figure lists the six

--, waveforms that a 32-ary modulating system transmits to represent the textual
~ p message "THINK."

2.4 FORMATTING ANALOG INFORMATION

If the information is analog, it cannot be character encoded as in the case of
,t~ textual data; the information must first be transformed into a digital format. The

process of transforming an analog waveform into a form that is compatible with
a digital communication system starts with sampling the waveform to produce a
discrete pulse-amplitude-modulated waveform, as described below.

2.4.1 The sampling Theorem

0 o The link between an analog waveform and its sampled version is provided by
what is known as the sampling process. This process can be implemented in
Several ways, the most popular being the sample-and-hold operation. In this op-
eration, aswitch and storage mechanism (such as a transistor and a capacitor, or
a shutter and a filmstrip) form a sequence of samples of the continuous input
waveform. The output of the sampling process is called pulse amplitude modu-
lation (PAM) because the successive output intervals can be described as a se-

~ quence of pulses with amplitudes derived from the input waveform samples. The
analog waveform can be approximately retrieved from a PAM waveform by simple
low-pass filtering. An important question is: How closely can a filtered PAM
waveform approximate the original input waveform? This question can be an-
swered by reviewing the sampling theorem, which states [1]: A bandlimited signal
having no spectral components above f,,, hertz can be determined uniquely by
values sampled at uniform intervals of TS seconds, where

have a 3 1
~ossible T,. <— 2~,m (2.1)
1e final
i trans- This particular statement is also known as the uniform sampling theorem. Stated

another way, the upper limit.. on TS can be expressed in terms of the sampling
symbol rate, denoted fs = 1/TS. The restriction, stated in terms of the sampling rate, is
end the known as the Nyquist criterion. The statement is
mitted.
bound- f S ~ 2f m (2.2)
'." The The sampling rate f S = 2f,,, is also called the Nyquist rate. The Nyquist criterion
he next is a theoretically sufficient condition to allow an analog signal to be reconstructed
itioned completely from a set of uniformly spaced discrete-time samples. In the sections
s to be that follow, the validity of the sampling theorem is demonstrated using different
textual sampling approaches.

Chap. 2 Sec. 2.4 Formatting Analog Information 59
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2.4.1.1 Impulse Sampling

Here we demonstrate the validity of the sampling theorem using the fre-

quency convolution property of the Fourier transform. Let us first examine the

case of ideal sampling with a sequence of unit impulse functions. Assume an

analog waveform, x(t), as shown in Figure 2.6a, with a Fourier transform, X(f),

which is zero outside the interval (— f m < f < f m), as shown in Figure 2.6b. The

sampling of x(t) can be viewed as the product of x(t) with a periodic train of unit

impulse 'functions, xs(t), shown in Figure 2.6c and defined as follows:

xs(t) _ ~ s(t — nTs)
n= —o°

(2.3)

where TS is the sampling period and 8(t) is the unit impulse or Dirac delta function

defined in Section 1.2.5. Let us choose TS = 1/2f,,,, so that the Nyquist criterion

is just satisfied.
The sifting property of the impulse function (see Section A.4.1) states that

x(t)8(t — t~) = x(to)8(t — t„)' (2.4)

x(t)

t
0

(a)

i Xlfl

f
- fm 0 fm

(b)

xb lt) = E S(t - nTs) Xg (f) _ ~ E Slf - nf s )

n = -~ 
TS n = -~

1 1/TS

t 
f

-4T5 -2TS 0 2T5 4T5 -2fS -f s 0 fs 2f5

(c) 
ld)

xs(t) = x(tlxb It)

t
-4T5 -2TS 0 2T5 4TS

(e)

Xslfl

f
-2fs -fs -fm 0 fm fs 2f5

(f)

Figure 2.G Sampling theorem using the frequency convolution property of the Fourier

transform.
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the fre-
~ine the
ume an
1, X(f),
5b. The
of unit

Using this property, we can see that xs(t), the sampled version of x(t), shown in
Figure 2.6e, is given by

xs(t) = x(t)xs(t) _ ~ x(t)8(t — nTS)
n=.m

n=—~

(2.5)

Using the frequency convolution property of the Fourier transform (see Section
A.5.3), the time-domain product x(t)xb(t) of Equation (2.5) transforms to the fre-

~2 3~ quency-domain convolution X(f) * Xs(f), where Xs(f) is the Fourier transform
of the impulse train xs(t),

unction 1
riterion ~ Xs(.f) _ — ~ ~(.f — n.fs) (2.6)

TS n= _~

:es that and where fs = 1/TS is the sampling frequency. Notice that the Fourier transform
(2.4) of an impulse train is another impulse train; the values of the periods of the two

trains are reciprocally related to one another. Figures 2.6c and d illustrate the
impulse train xs(t) and its Fourier transform Xs(f), respectively.

Convolution with an impulse function simply shifts the original function, as
• follows:

We can solve for the transform, Xs(f), of the sampled waveform as follows:

XS(.f) = X(.f) * X s(.f) X(.f) * [ 1~+ ~ s(.f — n.fs)
is n--~ ~2.0~

1 ~ X(.f _ n.fs)
~ ~S n = — o0

We therefore conclude that within the original bandwidth, the spectrum XS(f) of
f the sampled signal xs(t) is, to within a constant factor (1/TS), exactly the same

as that of x(t). In addition, the spectrum repeats itself periodically in frequency
every f S hertz. The sifting property of an impulse function makes the convolving
of an impulse train with another function easy to visualize. The impulses act as
sampling functions. Hence, convolution can be performed graphically by sweep-
ing the impulse train, Xs(f), in Figure 2.6d past the transform, ~X(f)~, in Figure
2.6b. This sampling of ~X(f)~ at each step in the sweep replicates ~X(f)~ at each
of the frequency positions of the impulse train, resulting in (XS(f )~, shown in Figure

~-- t
2.6f.

When the sampling rate is chosen, as it has been here, such that fs = 2fm,
each spectral replicate is separated from each of its neighbors by a frequency
band exactly equal to f,. hertz, and the analog waveform can theoretically be
completely recovered from the samples, by the use of filtering. However, a Aterurier
with infinitely steep sides would be required. It should be clear that if f S > 2f m,
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the replications will move farther apart in frequency, as shown in Figure 2.7a,

making it easier to perform the filtering operation. A typical low-pass filter char-

acteristic that might be used to separate the baseband spectrum from those at

higher frequencies is shown in the figure. When the sampling rate is reduced,

such that f,. < 2fm, the replications will overlap, as shown in Figure 2.7b, and

some information will be lost. This phenomenon, the result of undersampling

(sampling at too low a rate), is called abasing. The Nyquist rate, f S = 2f m, is

the sampling rate below which abasing occurs; to avoid abasing, the Nyquist

criterion, f,. >— 2f m, must be satisfied.

~ XS ~ f} ~ Filter characteristic to
recover waveform

Xslfl

f

f

Figure 2.7 Spectra for various sampling rates. (a) Sampled spectrum (f S > 2f„~).

(b) Sampled spectrum (,fs < 2fm)•

As a matter of practical consideration, neither waveforms of engineering
interest nor realizable bandlimiting filters are strictly bandlimited. These signals
and filters can, however, be considered to be "essentially" bandlimited. By this
we mean that a bandwidth can be determined beyond which the spectral com-
ponents are attenuated to a level that is considered negligible.

2.4.1.2 Natural Sampling

Here we demonstrate the validity of the sampling theorem using the fre-
quency shifting property of the Fourier transform. Although instantaneous sam-
pling is a convenient model, a more practical way of accomplishing the sampling

of a bandlimited analog signal, x(t), is to multiply x(t), shown in Figure 2.~a, by
the pulse train or switching waveform, xP(t), shown in Figure 2.8c. Each pulse

in xp(t) has width T andamplitude 1IT. Multiplication by xp(t) can be viewed as
the opening and closing of a switch. As before, the sampling frequency is dcs-
ignated fs, and its reciprocal, the time period between samples, is designated Ts.
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Figure 2.8 Sampling theorem using the frequency shifting property of the Fourier
transform.

The resulting sampled-data sequence, xs(t), is illustrated in Figure 2.8e and is
expressed as

ineering
signals xs(t) = x(t)xp(t) (2.9)
By this The sampling here is termed natural sampling, since the top of each pulse in the

•al com- xs(t) sequence retains the shape of its corresponding analog segment during the
pulse interval. Using Equation (A.13), we can express the periodic pulse train
xn(t) as a Fourier series in the form

the fre- xp(t) _ ~ CnE~2~n'fs` (2.10)
pus sam- "- -°"
ampling where the sampling rate, fs = 1/T,., is chosen equal to 2f„Z, so that the Nyquist
2.8a, by criterion is just satisfied. From Equation (A.24), cn = (1/TS) sine (nTITS), where
~h pulse T is the pulse width, 1/T is the pulse amplitude, and
ewed as
is des- sin pry

sinc y =
ated TS. 'Ty

Chap. 2 Sec. 2.4 Formatting Analog Information 63

Petitioner's Exhibit 1003 
Page 083



~-

The envelope of the magnitude spectrum of the pulse train, seen as a dashed line
in Figure 2.8d, has the characteristic sine shape. Combining Equations (2.9) and
(2.10), we can express x.s(t) as

Xs~t) = x(t) ~ C•neJ2~nfst - (2.11)
n — —oo

The transform, XS(f ), of the sampled waveform is found as follows:

Xs~f~ _ ~ JC~t~ ~~ CneJ2~r~.fst1 ~2.12~

n --

For linear systems, we can interchange the operations of summation and Fourier
transformation. Therefore, we can write

x

- Xs~f~ — ~j 
Cn~{X~t~B~2~rrn.fst~ ~2..13~

rz — — x

Using the frequency translation property of the Fourier transform (see Section
A.3.2), we solve for X,S(f) as follows:

x

Xsvf) — ~ ~n~'v.f — n.fs/ (2.14)
n __~

{

Similar to the unit impulse sampling case, Equation (2.14) and Figure 2.8f illustrate
that XS(f) is a replication of X(f), periodically repeated \in frequency every f.s E
hertz. In this natural-sampled case, however, we see that XS(f) is weighted by
the Fourier series coefficients of the pulse train, compared to a constant value in
the impulse-sampled case. It is satisfying to note that in the limit, as the pulse
width. T, approaches zero, c„ approaches 1/TS for all n (see the example that
follows), and Equation (2.14) converges to Equation (2.8).

Example 2.1 Comparison of Impulse Sampling and Natural Sampling

Consider a given waveform, x(t), with Fourier transform, X(f). Let'XS,(f) be the
spectrum of x.s, (t), which is the result of sampling x(t) with a unit impulse train xs(t).
Let XSZ(f) be the spectrum of xsZ(t), the result of sampling x(t) with- a pulse train,
xp(t), with pulse width, T, amplitude llT and period, TS. Show that in the limit, as
T approaches zero, X,.,(f) = X52(f).

.Solution

From Equation (2.8},

TS n _ _ x

and from Equation (2.14),

„_ _x
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hed line As the pulse width T ~ 0, and the pulse amplitude approaches infinity (the area of

?.9) and the pulse remains unity), xn(t) —> x s(t). Using Equation (A.14), we can solve for c„
in the limit as follows:

1 rsiz
C yi = 11111 — 

xp~j~B—J2arnfst C~l

~2.1 ]~ T 0 TS —T l2

1 T /2 7
xs/t1E,—J2~rrrzfst 

CCt~' — TS/2 \ I
s

Since, within the range of integration, — TS/2 to TS/2, the only contribution of xs(t)
(2.12) is that due to the impulse at the origin, we can write

1 T i2 1
C = ~ t e —~2Trnfst C~r =

Fourier TS -T ~2 ~ ~ TS

Therefore, in the limit, X,.~(f) = XSZ(f) for all n.

(2.13) 2.4.1.3 Sample-and-Hold Operation

Section The simplest and thus most popular sampling method, sample and hold, can
be described by the convolution of the sampled pulse train, [x(t)xs(t)], shown in
Figure 2.6e, with a unity amplitude rectangular pulse, p(t), of pulse width Tr .

(2.14) This time convolution results in the flat-top sampled sequence, xS(t);

Ilustrate r °` l (2.15)
°very fs = p(t) * Lx(t) ~ 8(t — nTs)Jn=—~
;hted by
value in The Fourier transform, XS(f), of the time convolution in Equation (2.15) is the
he pulse frequency-domain product between the transform P(f) of the rectangular pulse
iple that and the periodic spectrum, shown in Figure 2.6f, of the impulse-sampled data:

n--~

f) be the = P~f) X~.f) * r1 ~ s~.f — n.fs)J ~ X2.16)
~ain x fi(t). { LTS n— _~
Ilse train.
limit, as = P~f) 1 ~ X~f — nfs)

Ts n. _~

where P(f) is of the form TS sinc fTs. The effect of this product operation results
in a spectrum similar in appearance to the natural-sampled example presented in
Figure 2.8f. The most obvious effect of the hold operation is the significant at-
tenuation of the higher-frequency spectral replicates (compare Figure 2.8f to Fig-
ure 2.6f), which is a desired effect. Additional analog postfiltering is usually re-
quired to finish the filtering process by further attenuating the residual spectral
components located at the multiples of the sample rate. A secondary effect of the
hold operation is the nonuniform spectral gain, P(f), applied to the desired base-
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band spectrum shown in Equation (2.16). The postfiltering operation can com-

pensate for this attenuation by incoc-porating the inverse of P(f) aver the signal

passband.

2.4.2 d~iliasing

Figure 2.9 is a detailed view of the positive half of the baseband spectrum and

one of the replicates from Figure 2.7b. It illustrates abasing in the frequency

domain. The overlapped region, shown in Figure 2.9b, contains that part of the

spectrum which is abased due to undersampling. The abased spectral components

', represent ambiguous data that can be retrieved only under special conditions (see

Section 11.4.4, on subband coding). In general, the ambiguity is not resolved and

the ambiguous data appear in the frequency band between (fS — f,n) and fm.

Figure 2.10 illustrates that a higher sampling rate, fs, can eliminate the abasing

by separating the spectral replicates; the resulting spectrum in Figure 2.lOb cor-

responds to the case in Figure 2.7a. Figures 2.11 and 2.12 illustrate two ways of

eliminating abasing using antialiasing filters. In Figure 2.11 the analog signal is

pre filtered so that the new maximum frequency, f;,1, is reduced to fsl2 or less.

Thus there are no abased components seen in Figure 2.11b, since fS. > 2f;,Z.

Eliminating the abasing terms prior to sampling is good engineering practice.

When the signal structure is well known, the abased terms can be eliminated after

sampling, with a Toes-pass filter operating on the sampled data [2]. In Figure 2.12

the abased components arc removed by postfiltering after sampling; the filter

cutoff frequency, f'm, removes the abased components; f °,Z 'needs to be less than

X(f)

,7 fm fS

( a1

XS (f)

f

f

Figure 2.9 Abasing in the frequency domain. (a) Continuous signal spectrum.

(b) Sampled signal spectrum.

~R„, .#
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Figure 2.10 Higher sampling rate eliminates aliasing. (a) Continuous signal spec-
trum. (b) Sampled signal spectrum.

Xlf)

\ti ~
0 f;,, fm fs

( a)
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p 0 fs fm fs fm fs fs + fm fs + frr,
2
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(b)

Figure 2.11 Sharper-cuPoff filters eliminate aliasing. (a) Continous signal spec-
trum. (b) Sampled signal spectrum.
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0 fm fs

(a)

XSIf1

fS — fm

(b)

f

Figure 2.12 Postfilter eliminates abased portion of spectrum. (a) Continuous sig-

nal spectrum. (b) Sampled signal spectrum.

(fs — fm)• Notice that the filtering techniques for eliminating the abased portion

of the spectrum in Figures 2.11 and 2.12 will result in a loss of some of the signal
information. For this reason, the sample rate, cutoff bandwidth, and Ater type

selected for a particular signal bandwidth are all interrelated.
Realizable filters require a nonzero bandwidth for the transition between the

passband and the required out-of-band attenuation. 'This is called the transition

bandwidth. 1'o minimize the system sample .rate, we desire that the antialiasing
Ater have a small transition ,bandwidth. Filter complexity and cost rise sharply
with narrower transition bandwidth, so a trade-off is required between the cost
of a small transition bandwidth and the costs of the higher sampling rate, which
are those of more storage and higher transmission rates. In many systems the
answer has been to make the transition bandwidth between 10 and. 20% of the
signal bandwidth. If we account for the 20% transition bandwidth of the antialias-
ing filter, we have an engineer's version of the Nyquist sampling rate:

fs >_ 2.2fm (2.17)

Figure 2.13 provides some insight into abasing as seen in the time domain.
The sampling instants of the solid-line sinusoid have been chosen so that the
sinusoidal signal is undersampled. Notice that the resulting ambiguity allows one
to draw a totally different (dashed-line) sinusoid, following the undersampled
points.
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Figure 2.13 Alias frequency generated by sub-Nyquist sampling rate.

Example 2.2 Sampling Rate for aHigh-Quality Music System

We wish to produce ahigh-quality digitization of a 20-kHz bandwidth music source.
VJe are to determine a reasonable sample rate for this source. By .the engineer's
version of the Nyquist rate, in Equation (2.17), the sampling rate should be greater
than 44.0 ksamples/s. As a matter of comparison, the standard sampling rate for the
compact disc digital audio player is 44.1 ksamples/s, and thc standard sampling rate
for studio-quality audio is 48.0 ksamples/s.

i portion
he signal
lter type

weep the
ransition
tialiasing

sharply
the cost

:e, which
terns the
% of the
antialias-

(2.17)

domain.
that the

flows one
,rsampled

2.4.3 Signal Interface for a Digital System

Let us examine four ways in which analog source information can be described.
Figure 2.14 illustrates the choices. Let us refer to the waveform in Figure 2.14a
as the original analog waveform. Figure 2.14b represents a sampled version of
the original waveform,. typically referred to as natural-sampled data or PAM

v ~ (t)

Time

vz(t)

Time

(a)

v31t1

Time

1c)

lb)

Y4~t1

Time

(d)

Figure 2.14 Amplitude and time coordinates of source data. (a) Original analog
waveform. (b) Natural-sampled data. (c) Quantized samples. (d) Sample and hold.
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(pulse amplitude modulation). Do you suppose that the sampled data in Figure
2.14b are compatible with a digital system? No, they are not, because the am-
plitude of each natural sample still has an infinite number of possible values; a
digital system deals .with a finite number of symbols. Even if the sampling is flat-
top sampling, the possible pulse values form an infinite set, since they reflect all
the possible values of the continuous analog waveform. Figure 2.14c illustrates
the original waveform represented by discrete pulses. Here the pulses have flat
tops and the pulse amplitude values are limited to a finite set. Each pulse is
expressed as. a level from a mite number of predetermined levels; each such level
can be represented by a symbol from a mite alphabet. The pulses in Figure 2.14c
are referred to as quantized samples; such a format is the obvious choice for
interfacing with a digital system. The format in Figure 2.14d may be construed
as the output of asample-and-hold circuit. When the sample values are quantized
to a mite set, this format can also interface with a digital system. After quanti-
zation, the analog waveform can still be recovered, but not precisely; improved
reconstruction fidelity of the analog waveform can be achieved by increasing the
number of quantization levels (requiring increased system bandwidth). Signal dis-
tortion due to quantization is treated in the following sections (and in Chapter
11).

2.5 SOURCES OF CORRUPTION

The analog signal recovered from the sampled, quantized, and transmitted pulses
will contain corruption from several sources. The sources of corruption are related
to (1) sampling and quantizing effects, and (2) channel effects. These effects are
considered in the sections that follow.

2.5.1 Sampling and Quantizing Effects

2.5.1.1 Quantization Noise

The distortion inherent in quantization is a round-off or truncation error.
The process of encoding the PAM waveform into a quantized waveform involves
discarding some of the original analog information. This distortion, introduced by
the need to approximate the analog waveform with quantized samples, is referred
to as quantization noise; the amount of such noise is inversely proportional to
the number of levels employed in the quantization process. The signal-to-noise
ratio of quantized pulses is treated in Section 2.5.3.

2.5.1.2 ~uantizer Saturation

The quantizer (or analog-to-digital converter) allocates L levels to the task
of approximating the continuous range of inputs with a finite set of outputs. The
range of inputs for which the difference between the input and output is small is
called the operating range of the converter. If the input exceeds this range, the
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Figure difference between the input and the output .becomes large, and we say that the
he am- converter is operating in saturation. Saturation errors, being large, are more ob-
lues; a ~ jectionable than quantizing noise. Generally, saturation is avoided by the use of
is flat- automatic gain control (AGC), which effectively extends the operating range of
lect all the converter. Chapter 11 covers quantizer saturation in greater detail.
istrates
ive flat 2.5.1.3 Timing Jitter

pulse is Our analysis of the sampling theorem predicted precise reconstruction of
;h level the signal based on uniformly spaced samples of the signal. If there is a slight
e 2.14c fitter in the osition of the sam le, the sam lin is no lon er uniform. Althou h

~ p p p g g grice for exact reconstruction is still possible if the sample positions are accurately known,
istrued the jitter is usually a random process and thus the sample positions are not ac-
antized curately known. The effect of the jitter is equivalent to frequency modulation
quanti- (FM) of the baseband signal. If the jitter is random, a Toes-level wideband spectral
proved contribution is induced whose properties are very close to those of the quantizing
;ing the noise. If the jitter exhibits periodic components, as might be found in data ex-
nal dis- tracted from a tape recorder, the periodic FM will induce low-level spectral lines
chapter in the data. Timing jitter can be controlled with very good power supply isolation

and .stable clock references.

2.5.2 Channel Effects

2.5.2.1 Channel Noise
l pulses Thermal noise, interference from other users, and interference from circuit
related switching transients can cause errors in detecting the pulses carrying the digitized
;cts are samples. Channel-induced errors can degrade the reconstructed signal quality

quite quickly. This rapid degradation of output signal quality with channel-induced
errors is called a threshold effect. If the channel noise is small, there will be no
problem detecting the. presence of the waveforms. Thus small noise does not
corrupt the reconstructed signals. In this case, the only noise present in the re-
construction is the quantization noise. On the other hand, if the channel noise is

i error. large enough to affect our ability to detect the waveforms, the resultant detection
evolves error causes reconstruction errors. A large difference in behavior can occur for
zced by very small changes in channel noise level.
~eferred
onal to 2.5.2.2 Intersymbol Interference
o-noise The channel is always bandlimited. A. bandlimited channel disperses or

spreads a pulse waveform passing through it (see Section 1.6.4). When the channel
bandwidth is much greater than the pulse bandwidth, the spreading of the pulse
will be slight. When the channel bandwidth is close to the signal bandwidth, the

he task spreading will exceed a symbol duration and cause signal pulses to overlap. This
its. The overlapping is called intersymbol interference (ISI). Like any other source of
small is interference, ISI causes system degradation (higher error rates); it is a particularly
ige, the insidious form of interference because raising the signal power to overcome the
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interference will not improve the error performance. Details of how ISI is handled
are presented in Section 2.11.

2.5.3 Signal-to-Noise Ratio for Quantized Pulse

Figure 2. l 5 illustrates an L-level linear quantizer for an analog signal with a peak-
to-peak voltage range of Vpp = Vp (— Vn) = 2Vp volts. The quantized pulses
assume positive and negative values, as shown in the figure. The step size between
quantization levels, called the quartile interval, is denoted q volts. When the
quantization levels are uniformly distributed over the full range, the quantizer is
called a uniform or linear quantizer. Each sample value of the analog waveform
is approximated with a quantized pulse; the approximation will result in an error
no larger than ql2 in the positive direction or — q/2 in the negative direction. The
degradation of the signal due to quantization is therefore limited to half a quartile
interval, ±q12 volts.

A useful figure of merit for the uniform quantizer is the quantizer variance
(mean-square error assuming zero mean). If we assume that the quantization error,
e, is uniformly distributed over a single quartile interval q-wide (i.e., the analog
input takes on all values with equal probability), the quantizer error variance is
found to be

62 f + q~2
e 2p (e) de (2.18a)

- ,1 - q/2

+ q/2 1 2

= J, qi2 e2 — de = q2 (2.18b)
9

Quantized
values

Vp
------------- ----- -

~p - qI2
Vp — 3q/2 q volts

5Q/2

3q/2 '''

q/2
-------- L levels Vpp a

—Q/2

—3q/2

— 5q/2

— Vp + 3q/2
-Vp + q/2 
-Vp------ ----- -

Figure 2.15 Quantization levels.
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andled wherep(e) = 1/q is the (uniform) probability density function of the quantization
error. The variance, v2, corresponds to the average quantization noise power.
The peak power of the analog signal (normalized to 1 SZ) can be expressed as

i peak- Vp = (V2p) 2 = ~ 2~~ 2 = L 4 2 (2.19)
pulses
;tween where L is the number of quantization levels. Equations (2.18) and (2.19) combined
en the yield the ratio of peak signal power to average quantization noise power (SlN)q,
tizer is assuming that there are no errors due to ISI or channel noise:
veform S L2 Z/4
n error (N) _ ~12 = 3L2 (2.20)
~n. The ~ q q
uantile It is intuitively satisfying to see that (SIN)q improves as a function of the number

of quantization levels squared. In the limit (as L ~ ~), the signal approaches the
3riance pAM format (with no quantization), and the signal-to-quantization noise ratio is
i error, infinite; in other words, with an infinite number of quantization levels, there is
analog zero quantization noise.
ance is

2.6 PULSE CODE MODULATION
(2.18a)

Pulse code modulation (PCM) is the name given to the class of baseband signals
obtained from the quantized PAM signals by encoding each quantized sample into

(2.18b) a digital word [3]. The source information is sampled and quantized to one of L
levels; then each quantized sample is digitally encoded into an ~-bit (~ =loge L)
codeword. For baseband transmission, the codeword bits will then be transformed
to pulse waveforms. The essential features of binary PCM are shown in Figure
2.16. Assume that an analog signal, x(t),_ is limited in its excursions to the range
— 4 to +4 V. The step size between quantization levels has been set at 1 V. Thus
eight quantization levels are employed; these are located at — 3.5, — 2.5, . . . ,
+3.5 V. We assign the code number 0 to the level at —3.5 V, the code number
1 to the .level at — 2.5 V, and so on, until the level at 3.5 V, which is assigned
the code number 7. Each code number has its representation in binary arithmetic,
ranging from 000 for code number 0 to 111 for code number 7.

The ordinate in Figure 2.16 is labeled with quantization levels and their code
numbers. Each sample of the analog signal is assigned to the quantization level
closest to the value of the sample. Beneath the analog waveform, x(t), are seen
four representations of x(t), as follows: the natural sample values, the quantized
sample values, the code numbers, and the PCM sequence.

Note that in the example of Figure 2.16, each sample is represented by a 3-
bit codeword. If the signal, x(t), had been quantized to 16 levels, a 4-bit codeword
would be needed to characterize each sample, or if x(t) had been quantized to
four levels, a 2-bit codeword would be needed, From Equation (2.20) it can be
seen that the greater the number of quantization levels, the lower will be the
quantization noise. Hence quantization noise performance can be traded off ver-
sus data rate.
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Code Quantization
number level x~t) (V)

4~
7 3.5

6 2.5

5 1.5

4 0.5

3 —0.5

2 — 1.5

1 —2.5

0 —3.5

x1

3

2

1

~ I i

~1 i
I ~_2

~ ~_ 3

— 4

Natural sample value 1.3 3.6 2.3 0.7 —0.7 —2.4 —3.4

Quantized sample value 1.5 3.5 2.5 0.5 —0.5 — 2.5 —3.5

Code number 5 7 6 4 3 7 0

PCM sequence 101 111 110 100 011 001 000

Figure 2.16 Natural samples, quantized samples, and pulse code modulation. (Reprinted
with permission from Taub and Schilling, Principles of Communication Systems, McGraw-
Hill Book Company, New York, 1971, Fig. 6.5-1, p. 205.)

2.7 UNIFORM AND NONUNIFORM QUANTIZATION

2.7.1 Statistics of Speech Amplitudes

t

Speech communication is a very important and specialized area of digital com-
munications. Human speech is characterized by unique statistical properties; one
such property is illustrated in Figure 2.17. The abscissa represents speech signal
magnitudes, normalized to the root-mean-square (rms) value of such magnitudes
through a typical communication channel, and the ordinate is probability. For
most voice communication channels, very low speech volumes predominate; 50%
of the time, the voltage characterizing detected speech energy is less than one-
fourth of the rms value. Large amplitude values are relatively rare; only 15% of
the time does the voltage exceed the rms value. We see from Equation (2.18b)
that the quantization noise depends on the step size (size of the quantile interval).
When the steps are uniform in size the quantization is known as uniform quan-
tization. Such a system would be wasteful for speech signals; many of the quan-
tizing steps would rarely be used. In a system that uses equally spaced quanti-
zation levels, the quantization noise is the same for all signal magnitudes.
Therefore, with uniform quantization, the signal-to-noise ratio (SNR) is worse for
low-level signals than for high-level signals. Nonuniform quantization can provide
fine quantization of the weak signals and coarse quantization of the strong signals.
Thus in the case of nonuniform quantization, quantization noise can be made
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Figure 2.17 Statistical distribution of
single-talker speech signal magnitudes.

proportional to signal size. The effect is to improve the overall. SNR by reducing
the noise for the predominant weak signals, at the expense of an increase in noise
for the rarely occurring strong signals. Figure 2.18 compares the quantization of
a strong versus a weak signal for uniform and nonuniform quantization. The stair-
case-like waveforms represent the approximations to the analog waveforms (after
quantization distortion has been introduced). The SNR improvement that non-
uniform quantization provides for the weak signal should be apparent. Nonuni-

Quantizing levels
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76

9
7 $5 6

5 4

34

--
3 2

2 7
1

0- -- 0

Uniform quantization ~ Nonuniform quantization

Figure 2.18 Uniform and nonuniform quantization of signals.
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form quantization can be used to make the SNR a constant for all signals within
the input range. For voice signals, the typical input signal dynamic range is 40
decibels (dB), where a decibel is defined in terms of the ratio of power PZ to power
P1:

number of dB = 10 logo p~ (2.21)

With a uniform quantizer, weak signals would experience a 40-dB-poorer SNR
than that of strong signals. The standard telephone technique of handling the large
range of possible input signal levels is to use alogarithmic-compressed quantizer
instead of a uniform one. With such a nonuniform compressor the output SNR
is independent of the distribution of input signal levels.

2.7.2 Nonuniform Quantization

One way of achieving nonuniform quantization is to use a nonuniform quantizer
characteristic, shown in Figure 2.19a. More often, nonuniform quantization is
achieved by first distorting the original signal with a logarithmic compression
characteristic, as shown in Figure 2.19b, and then using a uniform quantizer. For
small magnitude signals the compression characteristic has a much steeper slope
than for large magnitude signals. Thus a given signal change at small magnitudes
will carry the uniform quantizer through more steps than the same change at large

Output

Input

( a1

Output

i
i
i

~ Compression

,~~No compression
i
ii
i

Input Input

(b) (c1

Figure 2.19 (a) Nonuniform quantizer characteristic. (b) Compression charac-
teristic. (c) Uniform quantizer characteristic.

Output
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within magnitudes. The compression characteristic effectively changes the distribution
is 40 of the input signal magnitudes so that there is not a preponderance of low mag-

power nitude signals at the output of the compressor. After compression, the distorted
signal is used as the input to a uniform (linear) quantizer characteristic, shown
in Figure 2.19c. At the receiver, an inverse compression characteristic, called

(2,21) expansion, is applied so that the overall transmission is not distorted. The pro-
cessing pair (compression and expansion) is usually referred to as companding.

r SNR
large

~ntizer
t SNR

~ntizer
lion is
ession
:r. For
• slope
itudes
t large

wt

2.7.3 Companding Characteristics

The early PCM systems implemented a smooth logarithmic compression function.
Today, most PCM systems use a piecewise linear approximation to the logarithmic
compression characteristic. In North America a µ-law compression characteristic
is used:

loge[1 + µ( ~x~ lxmaX)ly = yma~ 1pg~(1 + w) Sgri x (2.22)

where
+ 1 for x >— 0sgn x = _ 1 for x < 0

and where µ is a positive constant, x and y represent input and output voltages,
and xmaX and ymax are the maximum positive excursions of the input and output
voltages, respectively. The compression characteristic is shown in Figure 2.20a
for several values of µ. The .standard value for µ is 255. Notice that µ = 0
corresponds to linear amplification (uniform quantization).

.~
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Figure. 2.20 Compression characteristics. (a) µ-law characteristic. (b) A-law
characteristic.
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Another compression characteristic, used mainly in Europe, is the A-law
characteristic, defined as

i
i

A( ~-xI ~xmax) s n x 0 c ~x~ 1
ymax c —1 ~- lOge A g' xmax A

y = (2.23)
1 -I- IOge~Al ~X~ ~Xmax~~ S 11 a 1< ~ X ~ G 1,ymax ~ + IOge A g A xmax

where A is a positive constant and_ x and y are as defined in Equation (2.22). The
A-law compression characteristic is shown in Figure 2.24b for several values of
A. A standard value for A is 87.6. See Chapter 11 for a more detailed treatment
of µ-law and A-law companding characteristics.

2.8 Bi~SEBAND TRANSMISSION

2.x.1 Waveform Representation of binary Digits

We need to represent PCM binary digits by electrical pulses in order to transmit
them through a baseband channel. Such a representation is shown in Figure 2.21.
Codeword time slots are shown in Figure 2.21a, where the codeword is a 4-bit
representation of each quantized sample. In Figure 2.21b, each binary one is
represented by a pulse and each binary zero is represented by the absence of a
pulse. Thus a sequence of electrical pulses having, the pattern shown in Figure
2.21b can be used to transmit the information in the PCM bit stream, and hence
the information in the quantized samples of a message.

At the receiver, a determination must be made as to the presence or absence
of a pulse in each bit time slot. It will be shown in Section 2.9 that the likelihood
of correctly detecting the presence of a pulse is a function of the pulse energy
(or area under the pulse). Thus there is an advantage in making the pulse width,
T', in Figure 2.21b as wide as possible. If we increase the pulse width to the
maximum possible (equal to the bit time duration, T), we have the waveform
shown in Figure 2.21c. Rather than describe this waveform as a sequence of
present or absent pulses, we can describe it as a sequence of transitions between
two levels. When the waveform occupies the upper voltage level it represents a
binary one; when it occupies the lower voltage level it represents a binary zero.

2.8.2 PCM Waveform Types

Figure 2.22 illustrates the most commonly used PCM waveforms. The various
waveforms are classified into, the following groups:

1. Nonreturn-to-zero (NRZ)
2. Return-to-zero (RZ),
3. Phase encoded
4. Multilevel binary
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kelihood Figure 2.21 Example of waveform representation of binary digits. (a) PCM se-
e energy quence. (b) Pulse representation of PCM. (c) Pulse waveform (transition between
~e width, two levels).
th to the
Waveform The NRZ group is probably the most commonly used PCM waveform. It
uence of can be partitioned into the following subgroups: NRZ-L (L for level), NRZ-M (M
between for mark)., and NRZ-S (S for space). NRZ-L is used extensively in digital logic.
resents a A binary one is represented by one level and a binary zero is represented by
iry zero. another level. There is a change in- level whenever the data change from a one

to a zero or from a zero to a one. With NRZ-M, the one, or mark, is represented
by a change in level, and the zero, or space, is represented by no change in level.
This is often referred to as differential encoding. NRZ-M is used primarily in

various magnetic tape recording. NRZ-S is the complement of NRZ-M: A one is repre-
sented by no change in level, and a zero is represented by a change - in level.

The RZ waveforms consist of unipolar-RZ, bipolar-RZ, and RZ-AMA. These
codes end application in baseband data transmission and in magnetic recording.
With unipolar-RZ, a one is represented by ahalf-bit-wide pulse, and a zero is
represented by the absence of a pulse. With bipolar-RZ, the ones and zeros are
represented by opposite-level pulses that are one-half-bit wide. There is a pulse
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0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T Figure 2.22 Various PCM waveforms.

present in each bit interval. RZ-AMI (AMI for "alternate mark inversion99 ) is the

coding scheme most often used in telemetry systems. The ones are represented

by equal-amplitude alternating pulses. The zeros are represented by the absence

of pulses.
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The phase-encoded group consists of bi-~-L (bi-phase-level), better known
as Manchester coding; bi-~-M (bi-phase-mark); bi-~-S (bi-phase-space); and delay
modulation (DM), or Miller coding. The phase-encoding schemes are used in
magnetic recording systems and optical communications and in some satellite
telemetry links. With bi-~-L, a one is represented by ahalf-bit-wide pulse posi-
tioned during the first half of the bit interval; a zero is represented by a half-bit-
wide pulse positioned during the second half of the bit interval. With bi-~-M, a
transition occurs at the beginning of every bit interval. A one is represented by
a second transition one-half bit interval later; a zero is represented by no second
transition. With bi-~-S, a transition also occurs at the beginning of every bit
interval. A one is represented by no second transition; a zero is represented by
a second transition one-half bit interval later. With delay modulation [4], a one
is represented by a transition at the midpoint of the bit interval. A zero is rep-
resented by no transition, unless it is followed by another zero. In this case, a
transition is placed at the end of the bit interval of the first zero. Reference to
the illustration in Figure 2.22 should help to make these descriptions clear.

Many binary waveforms use three levels, instead of two, to encode the binary
data. Bipolar RZ and RZ-AMI belong to this group. The group also contains
formats called dicode and duobinary. With dicode-NRZ, the one-to-zero or zero-
to-one data transition changes the pulse polarity; without a data transition, the
zero level is sent. With dicode-RZ, the one-to-zero or zero-to-one transition pro-
duces ahalf-duration polarity change; otherwise, a zero level is sent. The three-
level duobinary signaling scheme is treated in Section 2.12.

One might ask why there are so many PCM waveforms. Are there really so
many unique applications necessitating such a variety of waveforms to represent
digits? The reason for the large selection relates to the differences in performance
that characterize each waveform [S]. In choosing a coding scheme for a particular
application, some of the parameters worth examining are the following:

1. Dc component. Eliminating the de energy from the signal's power spectrum
enables the system to be ac coupled. Magnetic recording systems, or systems
using transformer coupling, have little sensitivity to very low frequency sig-
nal components. Thus low-frequency information could be lost.

2. Self-Clocking. Symbol or bit synchronization is required for any digital com-
munication system. Some PCM coding schemes have inherent synchronizing
or clocking features that aid in the recovery of the clock signal. For example,
the Manchester code has a transition in the middle of every bit interval
whether a one or a zero is being sent. This guaranteed transition provides
a clocking signal

3. Error detection. Some schemes, such as duobinary, provide the means of
arms. detecting data errors without introducing additional error-detection bits into

the data sequence.
s the 4. Bandwidth compression. Some schemes, such as multilevel codes, increase
anted the efficiency of bandw- dth utilization by allowing a reduction in required
ence bandwidth for a given data rate; thus there is more information transmitted

per unit bandwidth.
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5. Differential encoding. This technique is useful because it allows the polarity

of differentially encoded waveforms to be inverted without affecting the data

detection. In communication systems where waveforms sometimes expe-

rience inversion, this is a great advantage. Differential encoding is treated

in greater detail in Section 3.6.2.

6. Noise imrriunity. The various PCM waveform types can be further char-

acterized by probability of bit error versus signal-to-noise ratio. Some of the

schemes are more immune than others to noise. For example, the NRZ

waveforms have better error performance than does the unipolar RZ

waveform.

2.8.3 Spectral Attributes of PCIVI Waveforms

The most common criteria used for comparing PCM waveforms and for selecting

one waveform type from the many available are: spectral characteristics, bit syn-

chronization capabilities, error-detecting capabilities, interference and noise im-

munity, and cost and complexity of implementation. Figure 2.23 shows the spec-

tral characteristics of some of the most popular PCM waveforms. The figure plots

power spectral density in wattslhertz versus normalized bandwidth (frequency

times pulse width). The spectral characteristic of a PCM waveform establishes

the required system bandwidth and indicates how efficiently the bandwidth is

being used. Bandwidth efficiency is addressed in detail in Chapter 7. The features

that are easily observed in Figure 2.23 are the energy content at low frequency

and. the bandwidth requirements. Notice that the NRZ and duobinary schemes
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e
rity have large spectral components at low frequency. Notice also that the bi-phase
' ata schemes have no energy at dc. However, bi-phase requires a relatively large
pe- system bandwidth, as does the dicode scheme. The methods that are particularly
.ted bandwidth efficient are the duobinary and delay modulation. Duobinary signaling

is treated in Section 2.12.
Zar-
the

(RZ 2.9 DL~TECTION OF BINARY SIGNALS IN GAUSSIAN NOISE
RZ

Once the digital symbols are transformed into electrical waveforms; they can then
be transmitted through the channel. During a given signaling interval, T, a binary
system will transmit one of two waveforms, denoted s~(t) and sz(t). The trans-
mitted signal over a symbol interval (0, T) is represented by

ting s, (t) 0 <_ t <_ T for a binary 1
'yn- S `~ t~ - ~s2(t) 0 ~ t -< T for a binary 0im-
pec- The signal, r(t), received by the receiver is represented by
dots j~(t) = s;(t) + n(t) i = 1, 2; 0 <- t ~ T (2.24);ncy
shes where n(t) is a zero-mean additive white Gaussian noise (AWGN) process.
:h is Figure 2.24 highlights the two separate steps involved in signal detection.
ures The first step consists of reducing the received waveform,. r(t) (whether baseband
°ncy or bandpass), to a single number, z(t - 7~. This operation can be performed by
;mes a linear filter followed by a sampler, as shown in block 1 of Figure 2.24, or

optimally by a matched filter or correlator, which will be treated in later sections.
The initial conditions of the Ater or coi-relator are set to zero just prior to the
arrival of each new symbol. At the end of a symbol duration, T, the output of
block 1 yields the sample, z(T), sometimes called the test statistic. We have
assumed that the input noise is a Gaussian random process, and we have stated
that the input Ater is linear. A linear operation on a Gaussian random process
will produce a second Gaussian random process [6]. Thus the filter output noise
is Gaussian. If a nonlinear detector is used, the output noise will not be Gaussian

Step 1 Step 2
AWGN ~ Receiver ~

~ Sample at t = T ~ Threshold
S1 fit) ~ Linear ~ comparison

s~(t) = or E filter s;(t)
s2 (t) r(t1 = ~ hltl z(tl = ~ H ~s;lt) + n(t) ~ a;lt) + np(t1 ~ zIT) < ~y

Binary waveform I ~ H2
L ____- ----------J z(T1=

Optimum receiver consists a; (T) + np (T)2 0 of correlator or
matched filter matched to

s ~ (t) - sz(tl
Figure 2.24 Two basic steps in digital signal detection.
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and the following analysis will not apply. The output of block 1, sampled at t =

T, yields
z~7') = ar~~ + no(7') i = 1, 2 ~ (2.25)

where a;(T) is the signal component of z(1') and no(T) is the noise component.

To shorten the notation, we sometimes write Equation (2.25) as z = a; + no.

The noise component, no, is a zero-mean Gaussian random variable, and thus

z(T) is a Gaussian random variable with a mean of either al or a2 depending on

whether a binary one or binary zero was sent. The probability density function

(pd#~ of the Gaussian random noise, no, can be expressed as

s 
(~ z

P~no) = 
6 ~ 2~rr 

exp L Z ~~~~ ~ (2.26)
0

where 6o is the noise variance. Thus it follows from Equations (2.25) and (2.26)

that the conditional probability density functions (pdfs), p(z~s,) and p(z~s2) can

be expressed as
a

P~z~sl) = 
6 1 2~r eXp L — 2 ~ ~~al/ ~ 

(2.27)
o \

r \ 2

p(z~s2) — 1 exp I 2 ~z 6pa2 I ~ (2.28)
Q~ 2~r L /

These conditional pdfs are illustrated in Figure 2.25. The rightmost conditional

pdf, p(z~sl), illustrates the probability density of the detector output, z(T), given

that sl(t) was transmitted. Similarly, the leftmost conditional pdf, p(z~s2), illus-

trates the probability density of z(~ given that s2(t) was transmitted. The abscissa,

z(7~, represents the full range of possible sample output values from block 1 of

Figure 2.24.
The second step of the signal detection process consists of comparing the

test statistic, z(T), to a threshold level', y, in block 2 of Figure 2.24, in order to

estimate which signal, s,(t) or s2(t), has been transmitted. The filtering operation

in block 1 does not depend on the decision criterion in block 2. Thus the choice

of how hest to implement block 1 can be independent of the particular decision

strategy (choice of the threshold setting, y).

Likelihood of s2 Likelihood of s~
P(z I s2) Plz I s al

--~--- ~p~ --------- — ~ — —
~ ~

~ ~
P2---- --------t-- —

z(T)

a2 za(T) a~

7p

Figure 2.25 Conditional probability density functions: p(Z~s~) and p(z~s2).
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A

= Once a received waveform, r(t), is transformed to a number z(7~, the actual
shape of the waveform is no longer important; all waveform types that are trans-

25~ formed to the same value of z(7~ are identical for detection purposes. We will
see in Section 2.9.2 that a matched filter receiver in block 1 of Figure 2.24 is one

;nt. that maps all signals of equal energy into the same point, z(T). Therefore, the
no• signal energy (not its shape) is the important parameter in the detection process.
hus Thus the detection analysis for baseband signals is the same as that for bandpass
on signals. The final step in block 2 is to make the decision

:ion HI
z(T) < y (2.29)

HZ

.26~ where H1 and H2 are the two possible (binary) hypotheses. Choosing H1 is equiv
alent to deciding that signal s~(t) wassent, and choosing Hz is equivalent to

.26) deciding that signal sz(t) was sent. The inequality relationship indicates that hy-
can pothesis H1 is chosen if z(T) > y, and hypothesis HZ is chosen if z(T) < y. If

z(T) = y, the decision can be an arbitrary one.

27)

.28)

anal
ven
lus-
ssa,
1 of

the
;r to
~tion
oice
sion

2.9.1 Maximum Likelihood Receiver Structure

A popular criterion for choosing the threshold level, y, for the binary decision is
based on minimizing the probability of error, The computation for this minimum
error value of y = yo starts with forming an inequality expression between the
ratio of conditional probability density functions and the signal a priori proba-
bilities. The conditional density function, p(z~sl), is also called the likelihood of
s~. Thus the formulation as shown below is called the likelihood ratio test (see
Appendix B).

P(z~si) ~' P(s2)
P~z~s2) Hz P~S~)

(2.30)

where P(s~) and P(sz) are the a priori probabilities that s~(t) and sz(t), respec-
tively, are transmitted, and H1 and HZ are the two possible hypotheses. The rule
for minimizing the error probability in Equation (2.30) states that we should choose
hypothesis Hl if the ratio of likelihoods is greater .than the ratio of a priori
probabilities.

It is shown in Section 8.3.1 that if P(s~) = P(sz), and if the likelihoods,
p(z~st) (i = 1, 2), are symmetrical, the substitution of Equations (2.27) and (2.28)
into (2.30) yields

z(7~ <1 a 1 + a2 (2.31)rIZ 2 = y~
where al is the signal component of z(T) when s,(t) is transmitted, and a2 is the

~T~ signal component of z(T) when s2(t) is transmitted. The threshold level, yo, rep-
resented by (a, + aZ)/2, is the optimum threshold for minimizing the probability
of making an incorrect decision for this important special case. This strategy is
known as the minimurra error criterion.
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For equally likely signals, the optimum threshold, yo, passes through the

intersection of the likelihood functions, as shown in Figure 2.25. Thus by following

Equation (2.31), the decision stage effectively selects the hypothesis that corre-

sponds to the signal with the maximum likelihood. For example, given an arbitrary

detector output value, za(T), for which there is a nonzero likelihood that za(T)

belongs to either signal class s,(t) or s2(t), one can think of the likelihood test

as a comparison of the likelihood values p(zQ~s,) and p(za~sz). The signal corre-

sponding to the maximum pdf is chosen as the most likely to have been trans-

mitted. In other words, the detector chooses s,(t) if

P~zu~s~) > P~za~S2) (2.32)

Otherwise, the detector chooses s2(t). A detector that minimizes the error prob-

ability (for the case where the signal classes are equally likely) is also known as

a maximum likelihood detector.
Figure 2.25 illustrates that Equation (2.32) is just a "common sense" way

to make a decision when there exists statistical knowledge of the classes. Given

the detector output value, zQ(T), we see in Figure 2.25 that za(~ intersects the

likelihood of s~(t) at a value p,, and it intersects the likelihood of s~(t) at a value

p2. What is the most reasonable decision for the detector to make? For this ex-

ample, choosing class s, (t), which has the greater likelihood, is the most sensible

choice. If this was an M-ary instead of a binary example, there would be a total

of M likelihood functions representing the M signal classes to which a received

signal might belong. The maximum likelihood decision would then be to choose

the class that had the greatest likelihood of all M likelihoods. Refer to Appendix

B far a review of decision theory fundamentals.

2.9.1.1 Error Probability

For the binary example in Figure 2.25, there are two ways in which errors

can occur. An error, e, will occur when s 1(t) is sent, and channel noise results

in the receiver output signal, z(T), being. less than yo. The probability of such an

occurrence is

P(e~s,) = P(HZ~sI) = f ry~ p(z~s~) dz (2.33)

This is illustrated by the shaded area to the left of yo in Figure 2.25. Similarly,

an error occurs when s2(t) is sent, and the channel noise results in z(T) being

greater than yo. The probability of this occurrence is

P~e~sz) = P~Hi~S2) = J~ P(z~sz) dz (2.34)
yo

The probability of an error is the sum of the probabilities of all the ways that an

error can occur. For the binary case, we can express the probability of bit error,

PB, as follows:
2

P~ _ ~ P~e~ s~)
r=i

(2.35)
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he Combining Equations (2.33) to (2.35), we can write
ng
•e_ PB = P~e~s,)P~s~) + I'~~~Sz)1'~Sz) (2.36x)
ry
1,~ or equivalently,
;st Pa = P(HZ~s~)P(S~) + P(I~~~s2)P(S~) (2.36b)~e-
~S- That is, given that signal sl(t) was transmitted, an error results if hypothesis H2

is chosen; or given that signal s2(t) was transmitted, an error results if hypothesis
2~ Hl is chosen. For the case where the a priori probabilities are equal, that is, P(s, )

= P(sz) = i,
~b-
as PB = 2P(H2~s t ) + 2P(H1(s2) (2.37)

and because of the symmetry of the probability density functionsay
en Ps = P~Hz~s~) = 1'(H~~s2) (2.38)he
ue The probability of a bit error, PB, is numerically equal to the area under the "tail"
;X_ of either likelihood function, p(z~s~) or p(z~sz), falling on the "incorrect" side of
ale the threshold. We can therefore compute PB by integrating p(z~sl) between the
tal limits —~ and yo, or as shown below, by integrating p(z{sz) between the limits
ed yo and ~:
u se
lix 1'a = p(z~s2) dz (2.39)1yo —~a~+a2~,z

where y~ _ (al + a2)l2 is the optimum threshold from Equation (2.31). Replacing
the likelihood p(z~s2) with its Gaussian equivalent from Equation (2.28), we have

ors 2l
lts PB — (~ 1 2~ exp ~ — 1 (z Qa2~ J dz (2.40)
an J~o =cup+a2~~a Qo 2 ~ Q

where Q~ is the variance of the noise nut of the con-elator.
33~ Let u = (z — a2)/o-0. Then Qo du = dz and

PB = u Z~r 
exp ~ — 21 du = Q I a 12~oa2J (2.41)~y~ Iu—<u~ _uz~,2Qo

ng
where Q(x), called the complementary error function or co-error function, is a
commonly used symbol for the probability under the tail of the Gaussian distri-

34) bution. It is defined as

a\
an Q(x) = 1 exp ~ — 21 du (2.42)
~r, 2~' ~X~

Note that the co-error function is defined in several ways (see Appendix B);
35) however, all definitions are essentially equivalent. Q(x) cannot be evaluated in

closed form. It is presented in taUular form in Table B.1. Good approximations
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to Q(x) by simpler functions can be found in Reference [7]. Onc such approxi-
mation, valid for x > 3, is

a

~~X~ ~ x 12~r eXp 
(— 21 (2.43)

' ~ /

We have optimized (in the sense of minimizing Pte) the threshold level, 'y,
but have not optimized the filter in block 1 of Figure 2.24; we next consider
optimizing this filter by maximizing the argument of Q(x) in Equation (2.41). .

i 2.9.2 T'he Matched Filter

A matched filter is a linear filter designed to provide the maximum signal-to-noise
power ratio at its output for a given transmitted symbol waveform. Consider that
a known signal s(t) plus AWGN, n(t), is the input to a linear, time-invariant Ater
followed by a sampler, as shown in Figure 2.24. At time t = T, the receiver
output, z(T), consists of a signal component, a;, and a noise component, n~. The
variance of the output noise (average noise power) is denoted by 6~, so that the
ratio of the instantaneous signal power to average noise power, (SlN)T, at time
t = T, out of the receiver in block 1, is

(~'l = a? (2.44)
\N/ r ~o

We wish to end the filter transfer function, Ho(f ), that maximizes Equation (2.44).
We can express the signal, a(t), at the filter output, in terms of the filter transfer
function, H(f) (before optimization), and the Fourier transform of the input signal,
as follows:

f

air) = J~ H~.f)S~f)e'z~f~ d f (2.45)

where S(f) is the Fourier transform of the input signal, s(t). If the two-sided power
spectral density of the input noise is No/2 watts/hertz, then using Equations (1.19)
and (1.53), we can express the output noise power, Qo, as

Qo = 2~ J ~ (H(f)~z df (2.46)

We then combine Equations (2.44) to (2.46) to express (S/N)T, as follows:

z

Jw H~.f)s~.f)e'z~fz d f

(S~l (2.47)
\~/ T 2 ~ H 2 dNod J ~ I (f)I f
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pproxi- We next find that value of H(f) = Ho(f) for which the maximum (S/N)T is
achieved, by using Schwarz's inequality. One form of the inequality can be stated
as

(2.43)
J ~ f►(X)f2(x) ~x

~
~ ~ ~ ~.f~(x)~2 dx J ~ ~.fz~x)~2 dx (2.48)

evel, y, The equality holds if f,(x) = kf2(x), where k is an arbitrary constant and * in-
onsider dicates complex conjugate. If we identify H(f) with f 1(x) and S(f) e'Z~f ~ with
41). f2(x), we can write.

f ~ H~.f)S(.f)e.,z~sz d f 12 ~ J - ~ ~H(.f)~Z d.f J ~ ~S(.f)~2 df (2.49)

to-noise Substituting into Equation (2.47) yields
.der that

s ~~ntfilter f ~S(f)~Z df (2.50)
receiver N , N~, 

~

no. The or
that the
at time ~ S 1 = 2E 

(2.51)max —
NlT No

where the energy, E, of the input signal s(t) is
(2.44)

E = f ~ ~S(.f)~2 d.f (2.52)

►n (2.44). Thus the maximum output (S/N)T depends on the input signal energy and the
transfer power spectral density of the noise, not on the particular shape of the waveform

~t signal, that is used.
The equality in Equation (2.51) holds only if the optimum ~Iter transfer

function, H~(f), is employed, such that
(2.45)

Hof) _ ~o~f) = kSX~f)e-.i2~fT (2.53)

~d power or

ins (1.19) h(t) _ ~- '{kS*(f)e-~2~fT} (2.54)

Since s(t) is areal-valued signal, we can write from Equations (A.29) and (A.31),

(2.46)
h(t) - ~~5~~ - r) ~lsewhere (2.55)

~̀'S' Thus the impulse response of a filter that produces the maximum output signal-
to-noise ratio is the mirror image of the message signal, s(t), delayed by the symbol
time duration, T. Note that the delay of T seconds makes Equation (2.55) causal;

~2 4~~ that is, the delay of T seconds~makes h(t) a function of positive time in the interval
U <_ t ~ T. Without the delay of T seconds, the response, s(- t), is unrealizable
because it describes a response as a function of negative time.
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..;~

2.9.3 Correlation Realization of the fiAatched Filter

The term matched filter is often used synonymously with product integrator car

correlator. Equation (2.55) and Figure 2.26a illustrate the matched filter's basic

property: The impulse response of the filter is a delayed version of the mirror

image (rotated on the t = 0 axis) of the signal waveform. Therefore, if the signal

waveform is s(t), its mirror image is s( —t), and the mirror image delayed by ~'

seconds is s(T — t). The output, z(t), of a causal Ater can be described in the

time domain as the convolution of a received input waveform, r(t), -with the im-

pulse response of the filter (see Section A.5):

z(t) = r(t) ~ h(t) _ ~o~ r(T)h(t — T) dT (2.56)

Substituting h(t) of Equation (2.55) into h(t — T) of Equation (2.56) and arbitrarily

setting the constant k equal to unity, we get

Z~t~ = J t Y~T~S~T - ~1 - T~~ (~T
~ ~2.57~

= 11 Y~T~S~~ - t -~ T~ C~7
0

When t = T, we can write Equation (2.57) as

z~ T> = 1a7, r~T>S~T> dT ~2.5g>

The operation of Equation (2.58), the product integration of the received signal,

r(t), with a replica of the transmitted waveform, s(t), over one symbol interval

is known as the correlation of r(t) with s(t). Consider that a received signal, r(t),

is correlated with each prototype signal, s;(t) (i = 1, . . . , M), using a bank of

M correlators. The signal s~(t) whose product integration or correlation with r(t)

yields the maximum output zr(T) is the signal that matches r(t) better than all the

other s,(t), j ~ z. We will subsequently use this correlation characteristic for the

optimum detection of signals.

2.9.3.1 Comparison of Convolution and Correlation

It is important to note that the correlator output and the matched Ater output
are the same only attime t = T. For asine-wave input, the output of the correlator,

z(t), is approximately a linear ramp for 0 ~ t ~ T. However, the matched filter
output is approximately asine-wave amplitude modulated by a linear ramp for
0 ~ t ~ T. The comparison is shown in Figure 2.26b. To understand the similarities
and differences between a matched filter and a product integrator, one might first
ask: What are the similarities between convolution as expressed in Equation (2.56)
and correlation as expressed in Equation (2.58)? With correlation, we simply
multiply two functions together and integrate (compute the area under their prod-
uct curve). Vde are calculating how closely two waveforms match each other in
a given time period. With convolution, we sweep (step) two functions past one
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Figure 2.26 Correlator and matched filter. (a) Matched filter characteristic. (b)
Comparison of correlator and matched filter outputs.

another and calculate a sequence of correlations (one for each step). The matched
filter, used as a demodulator, only utilizes the correlation made at the symbol
duration, T. Since the matched filter output and the correlator output are identical
at the sampling time t = T, the matched filter and correlator functions, pictured
in Figure 2.27, are used interchangeably.

2.9.4 Application of the Matched Filter

In Equation (2.41) we found that the optimum decision threshold resulted in
PB = Q[(a, — a2)/2Q~1. Finding the optimum threshold alone is riot sufficient to
optimize the detection process. To minimize PB, we also need to select an op-
timum filter to maximize the argument of Q(x). Thus we need to determine the
linear Ater that maximizes (al — a2)/2~0, or equivalently, that maximizes

tai 6pa2)Z (2.59)

where (a, — a2) is the difference of the signal components at the filter output,
at time t = T, and the square of this difference signal is the instantaneous power
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r(t) = s~(t) + nitl h(T — t) z(T)

Matched to
s~ (t) — sZ (t)

(a)

s ~ (t) — s2(t) j
~ T

rlt) = s;it) + n(t) zlT)
i •o i
~ ~ Figure 2.27 Equivalence of matched

' ~- - - - - - - - - - - - - - - ~ filter and correlator. (a) Matched filter.
(b) (b) Correlator.

of the difference signal. In Section 2.9.2 we described a filter that maximizes the
output signal-to-noise ratio—the matched filter. Consider a filter that is matched
to the input difference signal [si(t) — s z(t)]. From Equations (2.44) and (2.51),
the ratio of the instantaneous signal power to average noise power, (S/N)T, at
time t =Tout of this matched filter can be expressed as

S (ai — a2)~ ZEd (2.60)
(N) z Qo No

where No/2 is the two-sided power spectral density of the noise at the filter input,
and Ed is the energy of the difference signal at the Ater input:

T
Ear = J [S~~t) — SZ~t)~2 dt (2.61)n

Thus, using Equations (2.41) and (2.60), we have

PB = Q 2N 
(2.62)

\ o/

2.9.5 Error Probability Performance of Binary Signaling

2.9.5.1 Unipolar Signaling

Figure 2.28a illustrates an example of a baseband waveform used for unipolar
signaling where

s ~ (t) = A 0 —< t< T for binary 1 (2.63)
s2(t) = 0 0 <— t~ T for binary 0

where A > 0 is the amplitude of signal sl(t). Assume that the unipolar signal plus
white Gaussian noise is present at the input of a matched filter, with sampling
time t = T. The correlator detector for such a signal type is shown in Figure
2.28b. The correlator multiplies and integrates the incoming signal, r(t), with the
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Figure 2.28 Detection of unipolar
baseband signaling. (a) Unipolar
signaling example. (b) Correlator
detector.

difference of the prototype signals [sl(t) - s2(t)] = A, and after a symbol du-
ration, T, compares the result, z(T), with the threshold, y~. When r(t) = s~(t) -i-
n(t), the signal component, a,(T), of z(T) is found, using Equation (2.58), to be

al(T) = E{Z(T)} = E~ JT A Z + An(t) dt } =AZ T
o

,where E{•} is the expected value operator. This follows since E{n(t)} = 0. Sim-
ilarly, when r(t) = s2(t) + n(t), then a2(T) = 0. Thus the optimum threshold is
yo = (al + a2)/2 = 2A Z T. If the correlator output, ,z(T), is greater than yo, the
signal is declared to be s t (t); otherwise, it is declared to be s2(t).

The energy difference signal, from Equation (2.61), is Ed = A2T. Then the
bit error performance at the output is obtained from Equation (2.62) as follows:

(2.62) 2
1's = Q No = Q ~ = Q Nb (2.64)

0 0

where the average energy per bit is Eb = A Zl/2.

2.9.5.2 Bipolar Signaling
nipolar Figure (2.29a) illustrates an example of a bipolar baseband waveform, where

sl(t) _ +A 0 < t ~ T for binary 1 (2.65)
(2.63) sZ(t) _ -A 0 <_ t <- T for binary 0

Binary waveforms that are the negative of one another, such as the bipolar pair
1al plus above, where sl(t) _ -s2(t), are called antipodal signals. A correlator receiver
~mpling for this antipodal type of waveform can be configured as shown in Figure 2.29b.
Figure One correlator multiplies and integrates the incoming signal r(t) with the prototype

vith the signal, sl(t); the second correlator multiplies and integrates r(t) with s2(t). The
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correlator outputs are designated zr(T) (i = 1, 2). The paint in the decision space,
z(T), is formed from the difference of the correlator outputs, as follows:

z(T) = z~(T) — z2(T) (2.66)

and the decision is made according to Equation (2.31). For antipodal signals,
a i = — az ;therefore, yo = 0. Thus if the test statistic, z(T), is positive, the signal
is declared to be sl(t), and if it is negative, it is declared to be s2(t).

The energy difference signal, Ed = (2A)2T. Then the bit error performance
from Equation (2.62) is

z
Pa = Q 2No~ = Q No (2.67)

where the average energy per bit is Eb = A2T. Figure 2,30 illustrates curves of PB
versus Eb/No for unipolar and bipolar signaling. In examining the two curves, we
can see a 3-dB error performance improvement for bipolar compared to unipolar
signaling. This difference could have been predicted by the factor-of-2 difference
in the coefficient of Eb in Equation (2.67) compared with Equation (2.64). In
Chapter 3 we shall see that the error performance of bandpass antipodal signaling
(e.g., coherently detected binary phase shift keying) is the same as that for base-
band antipodal signaling (matched Ater reception). Also, we shall see that the
error performance of bandpass orthogonal signaling (e.g., coherently detected
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Figure 2.30 Bit error performance of unipolar and bipolar signaling.

frequency shift keying) is the same as that for baseband unipolar signaling
(matched Ater reception).

2.y0 MULTILEVEL BASEBAND TRANSMISSION

The system bandwidth required for binary PCM signaling may be very large. What
might we do to reduce the required bandwidth? One possibility is to use multilevel

(2.6~) signaling. Consider a binary PCM bit stream with data rate R bits per second.
Instead of transmitting a pulse waveform for each bit, we first partition the data

> of PB into k-bit groups. We then use M = 2k-level pulses for transmission. Each pulse
es, we waveform can now represent a k-bit symbol in a symbol stream of rate R/k symbols
Bipolar per second. Thus multilevel signaling, where M ~> 2, can be used to reduce the
erence number of symbols transmitted per second, or thus to reduce the bandwidth re-
i4). In quirements of the channel. Is there a price to be paid for such bandwidth re-
naling duction? Of course there is; it is discussed below.
base- Consider the task that the pulse receiver must perform; it needs to distinguish
iat the between the possible levels of each pulse. Can the receiver distinguish among the
;tected eight possible levels of each octal pulse in Figure- 2.31a as easily as it can distin-
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Figure 2.31 Pulse code modulation signaling. (a) Eight-level signaling. (b) Twa
level signaling.

guish between the two possible levels of each binary pulse in Figure 2.31b? The
transmission of an 8-level (compared to a 2-level) pulse requires a greater amount
of energy for equivalent detection performance. (It is the amount of signal energy
that determines how reliably a signal will be detected.) For equal average power
in the binary and the octal pulses, it is easier to detect the binary pulses because
the detector has more signal energy per level for making a binary decision .than
an 8-level decision. What price does a system designer pay if he or she chooses
the transmission waveform to be the easier-to-detect binary PCM, rather than
eight-level PCM? The engineer pays the price of needing three times as much
system bandwidth for a given data rate, compared to the octal pulses, since each
octal pulse must be replaced with three binary pulses (each one-third as wide as
the octal pulses). One might ask: Why not use binary pulses with the same pulse
duration as the original octal pulses, and suffer the information delay? For some
cases this might be appropriate, but for most communication systems, such an
increase in delay cannot be tolerated; the six o'clock news must be received at
six o'clock. In Chapter 7 we examine in detail the trade-off between signal power
and system bandwidth.
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2.10.1 FCM Word Size

How many bits shall we assign to each analog sample? For digital telephone
channels, each speech sample is PCM encoded using 8 bits, yielding 28 or 256
levels per sample. The choice of the number of levels, or bits per sample, depends
on how much distortion we are willing to tolerate with the PCM format. It is useful
to develop a general relationship between the required number of bits per analog
sample (the PCM word size) and the allowable quantization distortion. Let the
magnitude of the quantization distortion error, ~e~, be specified not to exceed a

me fraction, p, of the peak-to-peak analog voltage, VPp, as follows:

~ e~ ~ PVp~ (2.68)
Since the quantization error can be no larger than q/2, where q is the quantile
interval, we can write

q = VPP 
~2. G9~~ e~,~~dx — 2 2L

where L is the number of quantization levels.Then

Vppne 2~ ~ P Vnn (2.70)

2e = L >_ 2 levels (2.71)
P

~ >— loge 2 bits (2.72)
P

It is important that we do not confuse the idea of bits per PCM word, denoted
by ~ in Equation (2.72), with the M-level transmission concept of k data bits per

The symbol. The following example should clarify the distinction.
ount Example 2.3 Quantization Levels and Multilevel Signaling

~ergy The information in an analog waveform, with maximum frequency f,,, = 3 kHz, is
ewer to be transmitted over an M-level PCM system, where the number of pulse levels
ause is M = 16. The quantization distortion is specified not to exceed ± 1% of the peak-
than to-peak analog signal.

poses
than (a) What is the minimum number of bits/sample, or bits/PCM word, that should be
ouch used in this PCM system?
each
ie as (b) What is the minimum required sampling rate, and what is the resulting bit trans-
~ulse mission rate?

;ome
h an

Cc) What is the PCM pulse or symbol transmission rate?

;d at In this example we are concerned with two types of levels: the number of quantization
ewer levels for fulfilling the distortion requirement, and the 16 levels of the multilevel

PCM pulses.
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Solution

(a) Using Equation (2.72), we calculate
f

1
~ ~ 1~g2 0.02 — log2 50 = 5.6

Therefore, use ~ = 6 bits/sample to meet the distortion requirement.

(b) Using the Nyquist sampling criterion, the minimum sampling rate fs = 2f,,, _
6000 samples/second (samples/s). From part (a), each sample will give rise to a
PCM word composed of 6 bits. Therefore, the bit transmission rate R =ifs =
36,000 bits/s.

(c) Since multilevel pulses are to be used with M = 2k = 16 levels, k = log2 16 =
4 bits/symbol. Therefore, the bit stream will be partitioned into groups of 4 bits
to form the new 16-level PCM digits, and the resulting symbol transmission rate
RS :s R/k = 36,000/4 = 9000 symbols/s.

2.11 INTERSYMBOL INTERFERENCE

Figure 2.32a highlights the major filtering aspects of a typical baseband digital
system; there are circuit reactances throughout the system—in the transmitter,
in the receiver, and in the channel. The pulses at the input might be impulse-like
samples, or flat-top samples. In either case, they are low-pass filtered at the
transmitter to confine them to some desired bandwidth. Channel reactances can
cause amplitude and phase variations that distort the pulses. The receiving Ater,
called the equalizing filter, should be configured to compensate for the distortion

X, x2

~ t Transmitting Receiving
i xk' I I filter i ~ Channel filter Detector { xk }

i I i i t=kT
i I --~ T I<--

x3 '
~I T I-<—

Noise

(al

x ~ x2 Pulse 1 Pulse 2

a ~
~ ~ ~~~

~ T F'`— Noise

Detector ; xk}
t = kT

~ xk~

x3
—~i T {~—

(b)

Figure 2.32 Intersymbol interference in the detection process. (a) Typical baseband digital
system. (h) Equivalent model.
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~~

caused by the transmitter and the channel [8]. In a binary system with a commonly
used PCM format, such as NRZ-L, the detector makes symbol decisions by com-
paring the received bipolar pulses to a threshold; for example, the detector decides
that a binary one was sent if the received pulse is positive, and that a binary zero
was sent if the received pulse is negative. Figure 2.32b illustrates a convenient
model for the system, lumping all the filtering effects into one overall equivalent
system transfer- function, H(f):

2f,,, _
se to a
ifs =

2 16 =
f 4 bits
~n rate

digital
Hitter,
>e-like
at the
~s can
filter,
ortion

'_ {xk~

xk1

Hof)

T --

1 0 1
2T 2T

(a)

h(t)

Figure 233 Nyquist channels for zero ISI. (a) Rectangular system transfer func-
tion H(f). (b) Received pulse shape h(t) = sine (t/~.

H(f) _ ~:(.f).H~(.f)Hr(f) (2.73)
where H~(f) characterizes the transmitting filter, H~(f) the filtering within the
channel, and Hr(f) the receiving or equalizing filter. The characteristic H(f ), then,
represents the composite system transfer function due to all of the filtering at
various locations throughout the transmitter/channeUreceiver chain. Due to the
effects of system filtering, the received pulses overlap one another as shown in
Figure 2.32b; the tail of one pulse "smears" into adjacent symbol intervals so as
to interfere with the detection process; such interference is termed intersymbol
interference (ISI). Even in the absence of noise, imperfect filtering and system
bandwidth constraints lead to ISI. In practice, H~(f) is usually specified, and the
problem remains to determine Ht(f) and H,.(f) such that the ISI of the pulses are
minimized at the output of H,(f ).

Nyquist [9) investigated the problem of specifying a received pulse shape
so that no ISI occurs at the detector. He showed that the theoretical minimum
system bandwidth needed to detect RS symbols/s, without ISI, is RS12 hertz. This
occurs when the system transfer function,. H(f), is made rectangular, as shown
in Figure 2.33x. When H(f) is such an ideal filter with bandwidth 1/2T, its impulse
response, the inverse Fourier transform of H(f) (from Table A.1) is h(t) = sine
(t/T), shown in Figure 2.33b. Thus h(t) is the received pulse shape resulting from
the application of an impulse at the input of such an ideal system. Nyquist
established that if each pulse of a received sequence is of the form h(t), the
pulses can be detected without ISI. The bandwidth required to detect 1/T such
pulses (symbols) per second is equal to 1/2T; in other words, a system with
bandwidth W = 1/2T = R,.12 hertz can support a maximum transmission rate of
2W = 1/T = RS symbols/s (Nyquist bandwidth constraint) without ISI. Figure
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2.33b illustrates how ISI is avoided. The figure shows two successive received

pulses, h(t) and h(t — T). Even though h(t) has a long tail, it passes through zero

at the instant that h(t — ?') is sampled (at t = T) and therefore causes no de-

gradation to the detection process. With such an ideal received pulse shape, the

maximum possible symbol transmission rate per hertz, called the symbol-rate

packing, is 2 symbols/s/Hz, without ISI.

What does the Nyquist bandwidth constraint say about the maximum number

of bitslslHz that can be received without ISI? It says nothing about bits, directly.

The constraint deals only with pulses or symbols, and the ability to detect their

amplitude values without distortion from other pulses. The assignment of how

many bits each symbol represents is a separate issue, In theory, each symbol can

represent M levels or k bits (M = 2'`); as k or M increases in value, so does the

complexity of the system. For example, when k = 6 bits/symbol, each symbol

represents M = 64 levels. The number of bits/s/Hz that a system can support is

referred to as the bandwidth efficiency of the system; this subject is treated sep-

arately in Chapter 7.
For most communication systems (with the exception of spread-spectrum

systems, covered in Chapter 10), our goal is to reduce the required system band-

width as much as possible; Nyquist has provided us with a basic limitation to

such bandwidth reduction. What would happen if we tried to force a system to

operate at smaller bandwidths than the constraint dictates? We would find that

restricting the bandwidth would spread the pulses in time; this would degrade the

system's error performance, due to the increase in ISI.

2.11.1 Puise Shaping to Reduce ISI

The Nyquist requirement for a sinc (t/~ received pulse shape is not physically

realizable since it dictates a rectangular bandwidth characteristic and ar. infinite

time delay. Also, with such a characteristic, the detection process would be very

sensitive to small timing errors. In Figure 2.33b the pulse h(t) has zero value ui

adjacent pulse times only when the sampling is performed at exactly the correct

sampling time; timing errors will produce ISI. Therefore, we cannot implement

systems using the Nyquist bandwidth; we need to provide some "excess band-

width" beyond the theoretical minimum. One frequently used system transfer

function, H(f), is called the raised cosine filter. It can be expressed as

H(.f) _

1 for ~ f ~< 2 Wa — W

z ~~r ~f~ + W — 

2Wo~
cos 

4 W — Wo 
for 2 Wo — W < (f ~ < W (2.74)

0 for' f ~ > W

where W is the absolute bandwidth, and Wo = ll2T represents the minimum

Nyquist bandwidth for the rectangular spectrum and the — 6-dB bandwidth (or

half-amplitude point) for the raised cosine spectrum. The difference (W — Wo)

is termed the excess bandwidth; notice that W = Wo for the rectangular spectrum.
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The roll-off factor is defined to be r = (W — Wo)/Wo. It represents the excess
bandwidth divided by the filter — 6-dB bandwidth (i.e., the fractional excess band-
width). For a given Wo, r specifies the required excess bandwidth (as a fraction
of Wo) and characterizes the steepness of the Ater roll-off. The raised cosine
characteristic is illustrated in Figure 2.34a for roll-off values of.r = 0, r = 0.5,
and r = 1.0. The r = 0 roll-off is the Nyquist minimum-bandwidth case. Notice
that when r = 1.0, the required excess bandwidth is 100%; a system with such
an overall spectral characteristic can provide a symbol rate of IZ,. symbols/s using
a bandwidth of R S hertz (twice the Nyquist bandwidth), thus yielding a symbol-

H(f)

f

t

- (b)

Figure 2.34 Raised cosine filter characteristics. (a) System transfer function. (b)
System impulse response.
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~~

rate packing of 1 symbol/s/Hz. The corresponding impulse response for the H(f)

of Equation (2.74) is

h(t) = 2Wo(sinc 2Wat)
cos [2~r(W — Wo)t]

(2.75)
1 _ 4(yy _ ~,yo)tz

The impulse response is shown in Figure 2.34b for r = 0, r = 0.5, and r = 1.0.
Recall that for zero ISI, we shall choose the system received pulse shape

to be equal to h(t); we can only do this approximately,. since strictly speaking,
the raised cosine pulse spectrum is not precisely physically realizable. A realizable
frequency characteristic must have a time response that is zero prior to the pulse
turn-on time, which is not the case for the family of raised cosine characteristics.
These unrealizable filters are noncausal (the filter impulse response begins at time
t = — ~). However, a delayed version of h(t), say h(t — to), may he approximately
generated by real filters if the delay to is chosen such that h(t — to) = 0, fort
0. Notice in Figure 2.34b that timing errors will still result in some ISI degradation
for r = 1. However, the problem is not as serious as it is for r — 0, because the
tails of the h(t) waveform are of much smaller amplitude for r = 1 than they are
for r = 0.

The Nyquist bandwidth constraint states that the theoretical minimum re-
quired system bandwidth, W, for a symbol rate of R,. symbols/s without ISI, is
R s/2 hertz. A more general relationship between required bandwidth and symbol
transmission rate involves the Ater roll-off factor r, and can be stated as

W = L(1 + r)RS (2.76)

Thus with r = 0, Equation (2.76) describes the required bandwidth for ideal rec-
tangularfiltering, also referred to as Nyquist f ltering. Bandpass-modulated signals
(baseband signals that have been shifted in frequency), such as amplitude shift
keying (ASK) and phase shift keying (P5K), require twice the transmission band-
width of the equivalent baseband signals (see Section 1.7.1). Such frequency-
translated signals, occupying twice their baseband bandwidth, are often called
double-sideband (DSB) signals. Therefore, for ASK- and PSK-modulated signals,
the relationship between the required DSB bandwidth, WDSB, and the symbol
transmission rate, R,., is

wDSB = C 1 + r)R, (2.77)

Example 2.4 Bandwidth Requirements

(a) Find the minimum required bandwidth for the baseband transmission of a four-
level PC1VI pulse sequence having a data rate of R = 2400 bits/s if the system
transfer characteristic consists of a raised cosine spectrum with 100% excess
bandwidth (r = 1).

(b) The same PCM sequence is modulated onto a carrier wave, so that the baseband
spectrum is shifted" and centered at frequency f~. Find the minimum required
DSB bandwidth for transmitting the modulated PCM sequence. Assume that the
system transfer characteristic is the same as in part (a).
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Solution
(a) M = 2k; since M = 4 levels, then k = 2,

Symbol or pulse rate RS = R _ 2400
k 2 = 1200 symbols/s

Minimum bandwidth W = z(1 + r)R S = 2(2)(1200) = 1200 Hz

Figure 2.35a illustrates the baseband PCM received pulse in the time domain—
an approximation to the h(t) in Equation (2.75). Figure 2.35b illustrates the Four-
ier transform of h(t)—the raised cosine spectrum. Notice that the required band-
width, W, starts at zero frequency and extends to f = llT; it is twice the"size
of the Nyquist theoretical minimum bandwidth.

h(t — t~) H(f)

t

(a) (b)

Figure 2.35 (a) Shaped pulse. (b) Baseband raised cosine spectrum.

(b) As in part (a),

R S = 1200 symbols/s

WDSB = (1 + r)R, = 2(]200) = 2400 Hz

Figure 2.36a illustrates the modulated PCM received pulse. This waveform can.
be viewed as the product of ahigh-frequency sinusoidal carrier wave and a wave-
form with the pulse shape of Figure 2.35a. The single-sided spectral plot in Figure
2:36b illustrates that the modulated bandwidth, WDSB, is

1 /f _ l\ 2
WDss = fo + 7, — I v 7, I = 7,

\ /
When the spectrum of Figure 2.35b is shifted up in frequency, the negative and
positive halves of the baseband spectrum are shitted up in frequency, thereby
doubling the required transmission bandwidth. As the name implies,- the DSB
signal has two sidebands:'the upper sideband (USB), derived from the baseband
positive half, and the lower sideband.(LSB), derived from the baseband negative
half.

f
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h(t - to)

( a)

H(f)

LSB ~ USB

t f
0 f~ — 1/T f~ fp + 1/T

= 2/T

Figure 2.36 (a) Modulated shaped pulse. (b) DSB-modulated raised cosine spectrum.

Example 2.5 Digital Telephone Circuits

Compare the system bandwidth requirements fora 3-kHz analog telephone voice
circuit versus a PCM voice circuit. Assume that the sampling rate for the analog-
to-digital (A/D) conversion is 8000 samples/s. Also, assume that each voice sample
is quantized to one of 256 levels (8-bit quantization).

Solution

The result of the sampling and quantization process yields a PAM signal such that
each pulse (symbol) has one of 256 different levels. From Equation (2.76) we can
write that the required system bandwidth (without ISI) for R S symbols/s is

W ~ RS hertz

where the equality sign holds true only for Nyquist filtering. For binary PCM, having
L = 256 levels, each sample is converted to ~ = Iog2 L = 8 bits. Therefore, the
system bandwidth required to transmit voice using PCM with 8-bit words is

R
WPci,z > (logZ L) 2S hertz

>_ 2(8 bitslsymbol)(8000 symbols/s) = 32 kHz

The 3-kHz analog voice circuit will generally require approximately 4 kHz of band-
width (including some bandwidth separation between channels, called guard bands).
Therefore, the PCM format using 8-bit quantization requires at least eight times the
bandwidth required by the analog format.

2.1'9.2 Equalization

In practical systems, the frequency response of the channel is not known with
sufficient precision to allow for a receiver design that will compensate for the
intersymbol interference (ISI) for all time. In practice, the Ater for handling ISI
at the receiver contains various parameters that are adjusted on the basis of mea-
surements of the channel characteristics. The process of thus correcting the chan-
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nel-induced distortion is called equalization. A transversal flter—a delay line
with T-second taps (where T is the symbol duration)—is a common choice for
the equalizer flter. The outputs of the taps are amplified, summed, and fed to a
decision device. The tap coefficients, cn, are set to subtract the effects of inter-
ference from symbols that are adjacent in time to the desired symbol. Consider
that there are (2N + 1) taps with coefficients c _ N, c _,~,+, , • • . , cN as shown
in Figure 2.37. Output samples, {yk}, of the equalizer are then expressed in terms
of the input samples, {xk}, and tap coefficients as

N

yk = ~ Cnxk-n K = -2ND . . . ~ ZN ~2.~g}
n- -N

By defining the matrices y, c, and x as

.y -2N C -N

y = yo c = co (2.79)

y2N CN

x-N+1 x-N O ... ... ..

X = X'N .k'N-1 XN_2 ... X -N+1 x-N ~Z.BO~

0 ~ "' xN xN- 1
~ ~ ~ "' ~ xN

we can simplify the computation for {yk} as follows:

y = xc (2.81)

Yk

Figure 2.37 Transversal ~Iter.
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The criterion for selecting the cn coefficients is typically based on the min-
imization of either peak distortion or mean-square distortion. Minimizing peak
distortion can he accomplished by selecting the cn coefficients so that the equalizer

output is forced to zero at N sample points on either side of the desired pulse.

That is,

1 for k = 0 ~ 2.82yk — 0 for k = ± 1, ±2, . . . , ±

We then solve for cn by combining Equations (2.79) to (2.81) and solving 21V + 1

simultaneous equations. Minimizing the mean-square distortion similarly results

in 2N + 1 simultaneous equations.
There are two general types of automatic equalization. The first, preset

equalization, transmits a training sequence that is compared at the receiver with
a locally generated sequence. The differences between the two sequences are
used to set the coefficients cn. With the second method, adaptive equalization,

the coefficients are continually and automatically adjusted directly from the trans-
mitted data. A disadvantage of preset equalization is that it requires an initial
training session, which must be repeated after any break in transmission. Also,
a time-varying channel can degrade in ISI since the coefficients are fixed. Adaptive
equalization can perform well if the channel error performance is satisfactory.
However, if the error performance is poor, received channel errors may not allow

the algorithm to converge. A common solution employs preset equalization ini-

tially to provide good channel error performance; once normal transmission be-

gins, the system switches to an adaptive algorithm. A significant amount of re-
search and development has taken place in the area of equalization during the
past two decades [8, 1'0, 11].

2.12 PARTIAL RESPONSE SIGNALING

In 1963, Adam Lender [12, 13] showed that it is possible to transmit 2 W symbols/s
with zero ISI, using the theoretical minimum bandwidth of W hertz, without in-
finitely sharp filters. Lender used a technique called duobinary signaling, also
referred to by the names partial response signaling and correlative coding. The
basic idea behind the duobinary technique is to introduce some controlled amount
of ISI into the data stream rather than trying to eliminate it completely. By in-
troducing correlated interference between the pulses, and by changing the de-
tection procedure, Lender, in effect, "canceled out" the interference at the de-
tector, and thereby achieved the ideal symbol-rate packing of 2 symbols/s/Hz, an
amount that had been considered unrealizable.

2.12.1 Duobinary Signaling

To understand how duobinary signaling introduces controlled ISI, let us look at
a model of the process. We can think of the duobinary coding operation as if it
were implemented as shown in Figure 2.38. Assume that a sequence of binary
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symbols {xk} is to be transmitted at the rate of R symbols/s over a system having
an ideal rectangular spectrum of bandwidth W = R/2 = 1/2T hertz. You mightask: How is this rectangular spectrum; in Figure 2.38, different from the unreal-izable Nyquist characteristic? It has the same ideal characteristic; but we are not
trying to implement the ideal rectangular filter. It is only the part. of our equivalent
model that is used for developing a filter that is easier to approximate. .Beforebeing shaped by the ideal Ater, the pulses pass through a simple digital filter, asshown in the figure. The digital filter incorporates aone-digit delay; to each in-
coming pulse, the filter adds the value of the previous pulse. In other words, for
every pulse into the digital filter, we get the summation of two pulses out. Fach
pulse of the sequence {yk} out of the digital filter can be expressed as

yk = Xk ~- Xk— i ~2.g3~

Hence the {yk} amplitudes are not independent; each yk digit carries with it the
memory of the prior digit. The ISI introduced to each yk digit comes only from
the preceding xk _i digit. This correlation between the pulse amplitudes of {yk}
can be thought of as the controlled ISI introduced by the duobinary coding. Con-
trolled interference is the essence of this novel technique, because at the detector,
such controlled interference can be removed as easily as it was added. The {yk}
sequence is followed by the ideal Nyquist filter that does not introduce any ISI.
At the receiver sampler, in Figure 2.38, we would expect to recover the sequence{yk}, exactly in the absence of noise. Since all systems experience noise contam-
ination, we sha11 refer to the received {yk} as the estimate of {yk} and denote it{yk}. Removing the controlled interference with the duobinary decoder yields an
estimate of {xk} which we shall denote as {.zk}.

2.12.2 Duobinary Decoding

If the binary digit xk is equal to ± 1, then using Equation (2.83), yk has one of
three possible values: +2, 0, or —2. The duobinary code results in a three-level
output: in general for M-ary transmission, partial response signaling results in
2M — 1 output levels. The decoding procedure involves the inverse of the coding
procedure, namely, subtracting the xk __ i decision from the yk digit. Consider the
following coding/decoding example.
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Example 2.6 Duobinary Coding and Decoding

Use equation (2.83) to demonstrate duobinary coding and decoding for the following

sequence: {xk} = 0 0 1 0 1 1 0. Consider the first bit of the sequence to be a startup

digit, not part of the data.

Solution

Binary digit sequence {xk}: 0 U 1 0 1 1 0

Bipolar amplitudes {xk}: —1 —1 + 1 —1 + 1 + 1 —1

Coding rule: yk = xk + xk _,: —2 0 0 0 2 0

Decoding decision rule: If yk = 2, decide that zk = + 1 (or binary one)

If yk = — 2, decide that zk = - 1 (or binary zero).

If yk = 0, decide opposite of the previous decision.

Decoded bipolar sequence {zk}: —1 + 1 — 1 + 1 + 1 —1

Decoded binary sequence {xk}: 0 1 0 1 1 0

The decision rule simply implements the subtraction of each zk _, decision from each

yk. One drawback of this detection technique is that once an error is made, it tends

to propagate, causing further errors, since present decisions depend on prior deci-

sions. Ameans of avoiding this error propagation is known as precoding.

2.12.3 Preceding

Preceding is accomplished by first differentially encoding the {xk}binary sequence

into a new {wk} binary sequence as follows:

Wk = .xk ~ Wk-1 ~2.g4~

where the symbol O represents modulo-2 addition (equivalent to the logical ex-

clusive-or operation) of the binary digits. The rules of modulo-2 addition are as

follows:
000 = 0

0 01=1

1 00 = 1

1 01 1 =U

The {wk} binary sequence is then converted to a bipolar pulse sequence, and the

coding operation proceeds in the same way as it did in Example 2.6. However,

with preceding, the detection process is quite different from the detection of

ordinary duobinary, as shown below in Example 2.7. The preceding model is

shown in Figure 2.39; inthis ~~gure it is implicit that the modulo-2 addition pro-

ducing the preceded {wk} sequence is performed on the binary digits, while the

digital filtering producing the {yk} sequence is performed on the bipolar pulses.
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ision.
Example 2.7 Duobinary Precoding

+ 1 - i Illustrate the. duobinary coding and decoding rules when using the differential pre-
1 0 coding of Equation (2.84). Assume the same {xk} sequence as that given in Example

2.6.
•om each
it tends So[r~tion

for deci- Binary digit sequence {xk}: 0 0 1 0 1 1 0

Precoded sequence wk = xk O+  wk-1: 0 0 1 1 0 1 1

Bipolar sequence {wk}; -1 -1 + 1 + 1 -1 + 1 + 1

Coding rule: yk = wk + wk _,: -2 0 +2 0 0 +2
;quence

Decoding decision rule: If yk = ±2, decide that xk =binary zero.

(2.84) If yk - 0, decide that zk =binary ope.

;ical ex- Decoded binary sequence {zk}: 0 1 0 1 1 0i are as
The differential precoding enables us to decode the {}~k} sequence by making

a decision on each received sample singly, without resorting to prior decisions which
could be in error. The major advantage is that in the event of a digit error due to
noise, such an error does not propagate to other digits. Notice that the first bit in
the differentially precoded binary sequence {wk} is an arbitrary choice. If the startup
bit in {wk} had been chosen to be a binary one instead of a binary zero, the decoded
result would have been the same.

and the 
2,12,4 Duobinary Equivalent Transfer Function~wever,

~tion of
lodel is In Section 2.12.1 we described the duobinary transfer function as a digital filter
on pra incorporating cone-digit delay, followed by an ideal rectangular transfer function.
hile the Let us now examine an equivalent model. The Fourier transform of a delay can
pulses. be described as e -j2'~fT (see Section A.3.1); therefore, the input digital filter of
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Figure 2.38 can be characterized with the frequency transfer function, H,(f), as
follows:

h'i~f) = 1 + e -~Z~sT (2.85)

The transfer function of the ideal rectangular Ater, designated HZ(f), is shown
below.

T for ~ f (< 1
Hz~f) = 2T (2.86)

0 elsewhere

The overall equivalent transfer function He(f ), of the digital filter cascaded with
the ideal rectangular Ater is then given by

H~~f) = H~~.f)Hz~.f) for ~.f~ ~ 2T

_ (1 + e -'2nfT)T (2.87)

IHe~ f)I — 2T cos ~rfT for ~f~ < 2T 
(2.~8)

0 elsewhere
!'

Thus He(f), the composite transfer function for the cascaded digital and rectan-
gular .filters, has a gradual roll-off to the band edge, as can be seen in Figure
2.4~a. The transfer function can be approximated by using realizable analog fil-
tering; aseparate digital filter is not needed. The duobinary equivalent He(f) is
called a cosine filter [14] (not to be confused with the raised cosine filter described
in Section 2.11.1). The corresponding impulse response, he(t), found by taking
the inverse Fourier transform of He(f) in Equation (2.87), is

he(t) = sine ~T~ + sine f t T T~ (2.89)

and is plotted in Figure 2.40b. For every impulse, 8(t), at the input of Figure 2.38,
the output is he(t) with an appropriate polarity. Notice that there are only two
nonzero samples, at T-second intervals, giving rise to controlled ISI from the
adjacent bit. The introduced ISI is eliminated by use of the decoding procedure
discussed in Section 2.12.2. Although the cosine filter is noncausal and therefore
nonrealizable, it can be easily approximated. The implementation of the precoded
duobinary technique described in Section 2.123 can be accomplished by first
differentially encoding the binary sequence {xk} into the sequence {wk} (see Ex-
ample 2.7). The pulse sequence {wk} is then filtered by the equivalent cosine
characteristic described in Equation (2.88).

1~y.,
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Figure 2.40 Duobinary transfer function and pulse shape. (a) Cosine filter. (b)
Impulse response of the cosine filter.

2.12.5 Comparison of Binary with Duobinary Signaling

The duobinary technique introduces correlation between pulse amplitudes,
whereas the more restrictive Nyquist criterion assumes that the transmitted pulse
amplitudes are independent of one another. We have shown that duobinary sig-
naling can exploit this introduced correlation to achieve zero ISI signal trans-
mission, using a smaller system bandwidth than is otherwise possible. Do we get
this performance improvement without paying a price? Such is hardly ever the
case with engineering design options; there is almost always atrade-off involved.
We saw that duobinary coding requires three levels, compared to the usual two
levels for binary coding. Recall our discussion in Section 2.10, where we compared
the performance and the required signal power for making eight-level PCM de-
cisions versus two-level PCM decisions. For a fixed amount of signal power, the
ease of making reliable decisions is inversely related to the number of levels that
must be distinguished in each waveform. Therefore, it should be no surprise that
although duobinary signaling accomplishes the zero ISI requirement with mini-
mum bandwidth, duobinary also requires more power than binary signaling, for
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equivalent performance against noise. For a given probability of bit error (PB),

duobinary signaling requires approximately 2.5 dB greater SNR than binary sig-

naling, while using only 1/(1 + r) the bandwidth that binary signaling requires

[13], where r is the filter roll-off.

2.12.6 Polybinary Signaling

Duobinary signaling can be extended to more than three digits or levels, resulting

in greater bandwidth efficiency; such systems are called polybinary [13, 15]. Con-

sider that a binary message with two signaling levels is transformed into a signal

with j signaling levels, numbered consecutively from zero to (j — 1). The trans-

formation from binary to polybinary takes place in two steps. First, the original

sequence {xk}, consisting of binary ones and zeros,. is converted into another

binary sequence {yk}, as follows: The present binary digit of sequence {yk} is

! formed from the modulo-2 addition of the (j — 2) immediately preceding digits

of sequence {yk} and the present digit xk. For example, let

yk = xk ~ yk-1 ~ Yk-2 ~ Yk-3 ~2.9~~

Here xk represents the input binary digit and yk the kth encoded digit. Since the

expression involves (j — 2) = 3 bits preceding yk, there are j = 5 signaling levels.

Next, the binary sequence {yk} is transformed into a polybinary pulse train {zk}

by adding algebraically the present bit of sequence {yk} to the (j — 2) preceding

bits of {yk}. Therefore, zk modulo-2 = xk, and the binary elements one and zero

are mapped into even- and odd-valued pulses in the sequence {zk}. Note that each

digit in {Zk} can be independently detected despite the strong correlation between

bits. The primary advantage of such a signaling scheme is the redistribution of

the spectral density of the original sequence {xk}, so as to favor the low frequen-

cies, thus improving system bandwidth efficiency.

2.13 CONCLUSION

In this chapter we have considered the first important step in any digital com-

munication system, transforming the source information (both textual and analog)

to a form that is compatible with a digital system. We treated various aspects of

sampling, quantization (both uniform and nonuniform), and pulse code modulation

(PCM). We also considered the selection of PCM waveforms for the transmission

of baseband signals through the channel.
We described the detection of binary signals plus Gaussian noise in terms

of two basic steps. In the first step the received waveform is reduced to a single

number, z(T), and :in the second step a decision is made as to which signal was

transmitted, on the basis of comparing z(T) to a threshold. We discussed how to

best choose this threshold. We also showed that a linear filter known as a matched

filter or correlator is the optimum choice for maximizing the output signal-to-noise

ratio, and thus minimizing the probability of error.
We defined intersymbol interference (ISI) and explained the importance of

Nyquist's work in establishing a theoretical minimum bandwidth for symUol de-
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), tection without ISI. We also introduced the duobinary concept of adding a con-
;- trolled amount of ISI to achieve an improvement in bandwidth efficiency at tt~e
;s expense of an increase in power.
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le
~s PROBLEMS
~o
'd 2.1. You want to Uransmit the word "HOW" using an 8-ary system.
>e (a) Encode the word "HOW" into a sequence of bits, using 7-bit ASCII coding,

followed by an eighth bit for error detection, per character. The eighth bit is
~f chosen so that the number of ones in the 8 bits is an even number. How many
e- total bits are there in the message?
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(b) Partition the bit stream into k = 3 bit segments. Represent each of the 3-bit
segments as an octal number (symbol). How many octal symbols are there in

. the message?
(c) If the system were designed with 16-ary modulation, how many symbols would

be used to represent the word "HOW" ?
(d) If the system were designed with 256-ary modulation, how many symbols would

be used to represent the word "HOW" ?
2.2. We want to transmit 800 characters/s, where each character is represented by its

7-bit ASCII codeword, followed by an eighth bit for error detection, per character,
as in Problem 2.1. A multilevel PCM format with M = 16 levels is used.
(a) What is the effective transmitted bit rate?
(b) What is the PCM symbol rate?

2.3. We wish to transmit a 100-character alphanumeric message in 2 s, using 7-bit ASCII
coding, followed by an eighth bit for error detection, per character, as in Problem
2.1. A multilevel PCM format with M = 32 levels is used.
(a) Calculate the effective transmitted bit rate and the PCM symbol rate.
(b) Repeat part (a) for 16-level PCM, eight-level PCM, four-level PCM, and binary

PCM.
2.4. Given an analog waveform that has been sampled at its Nyquist rate, f,T, using natural

sampling, prove that a waveform (proportional to the original waveform) can be
recovered from the samples, using the recovery techniques shown in Figure P2.1.
The parameter mfS is the frequency of the local oscillator, where m is an integer.

xS(t) 
x~(tl 

LPF xp(t)

Naturally
sampled PAM Hof)

1
cas (2~rmfs t} f

Local fs fs
oscillator — 2 2 Figure P2.1

2.5. An analog signal is sampled at its Nyquist rate 1/Ts, and quantizedusing L quan-
tization levels. The derived digital signal is then transmitted on some channel.
(a) Show that the time duration, T, of one bit of the transmitted binary encoded

signal must satisfy T ~ TS/(loge L).
(b) When is the equality sign valid?

2.6. Determine the number of quantization levels that are implied if the number of bits
per sample in a given PCM code is (a) 5; (b) 8; (c) x.

2.7. Determine the minimum sampling rate necessary to sample and perfectly reconstruct
the signal x(t) =sin (6280t)/(6280t).

2.8. Consider an audio signal with spectral components limited to the frequency band
300 to 3300 Hz. Assume that a sampling rate of 8000 samples/s will be used to generate
a PCM signal. Assume that the ratio of peak signal power to average quantization
noise power at the output needs to be 30 dB.
(a) What is the minimum number of uniform quantization levels needed, and what

is the minimum number of bits per sample needed?
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(b) Calculate the system bandwidth (as specified by the main spectral lobe of the
signal) required for the detection of such a PCM signal.

2.9. A waveform, x(t) = 10 cos (1000t + ~r/3) + 20 cos (2000t + ~r/6) is to be uniformly
sampled for digital transmission.
(a) What is the maximum allowable time interval between sample values that will

ensure perfect signal reproduction?
(b) If we want to reproduce 1 hour of this waveform, how many sample values need

to be stored?
2.10. (a) A waveform that is bandlimited to 50 kHz is sampled every 10 µs. Show graph-

ically that these samples uniquely characterize the waveform. (Use a sinusoidal
example for simplicity. Avoid sampling at points where the waveform equals
zero.)

(b) If samples are taken 30 µs apart instead of 10 µs, show graphically that wave-
forms other than the original can be characterized by the samples.

2.11. Use the method of convolution to illustrate the effect of undersampling the waveform
x(t) =cos 2-rrfot for a sampling rate of fS = ~fo•

2.12. (a) Sketch the complete µ = 10 compression characteristic that will handle input
voltages in the range - 5 to + 5 V.

(b) Plot the corresponding expansion characteristic.
(c) Draw a 16-level nonuniform quantizer characteristic that corresponds to the

µ = 10 compression characteristic.
2.13. Assume a binary sequence with equally likely binary levels. The sequence can be

represented by either a bipolar or a unipolar signal set. Show that if the corresponding
bipolar signal and unipolar signal have the same peak-to-peak amplitude separation,
the bipolar signal uses less average power than the unipolar signal.

2.14. Assume that in a binary digital communication system, the signal component out of
the correlator receiver is a;(~ _ + 1 or -1 V with equal probability. If the Gaussian
noise at the correlator output has unit variance, find the probability of a bit error.

2.15. A bipolar binary signal, s,(t), is a + 1- or -1-V pulse during the interval (0, 1'~.
Additive white Gaussian noise having two-sided power spectral density of 10-3
W/Hz is added to the signal. If the received signal is detected with a matched
filter, determine the maximum bit rate that can be sent with a bit error probabil-
ity of PB <_ 10 - 3.

2.16. Bipolar pulse signals, s;(t) (i = 1, 2), of amplitude ± 1 V are received in the presence
of Gaussian noise with a 2 = 0.1 VZ. Determine the optimum (minimum prob-
ability of error) detection threshold, yo, for matched filter detection if the a priori
probabilities are: (a) P(s,) = 0.5; (b) P(sl) = 0.7; (c) P(sl) = 0.2. (d) Explain the
effect of the a priori probabilities on the value of y~. [Hint: Refer to Equations (B.10)
to (B.12).]

2.17, A binary communication system transmits signals s;(t) (i = 1, 2). The receiver test
statistic, z(T~ = a; + no, where the signal component, ar, is either a, _ + 1 or
a2 = -1, and the noise component, n~ is uniformly distributed, yielding the con-
ditional density functions p(z~s;) given by

P(zlsl) - ~ for -0.2 <- z ~ 1.8
0 otherwise

P(z~sz) = 2 for -1.8 <_ z ~ 0.2
{0 otherwise
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Find the .probability of a bit error, PB, for the case of equally likely signaling and
the use of an optimum decision threshold.

2.18. The information in an analog waveform, whose maximum frequency f,„ = 4000 Hz,
is to be transmitted using a 16-level PCM system. The quantization distortion must
not exceed ± 1% of the peak-to-peak analog signal.
(a) What is the minimum number of bits per sample or bits per PCM word that

should be used in this PCM system?
(b) What is the minimum required sampling rate, and what is the resulting bit rate?
(c) What is the PCM pulse or symbol transmission rate?

2.19. (a) What is the theoretical minimum system bandwidth needed fora 10-Mbits/s signal
using 16-level PCM without ISI?

(b) How large can the filter roll-off factor be if the allowable system bandwidth is
1.375 MHz?

2.20. A voice signal (300 to 3300 Hz) is digitized such that the quantization distortion ~
±0.1% of the peak-to-peak signal voltage. Assume a sampling rate of 8000 samples/s
and a multilevel PCM format with M = 32 levels. Find the theoretical minimum
system bandwidth that avoids ISL

2.21. A binary waveform of 9600 bits/s is converted to an octal waveform that is trans-
mitted over a system having a raised cosine roll-off filter characteristic. The system
has a conditioned (equalized) response out to 2.4 kHz.
(a) What is the octal symbol rate?
(b) What is the roll-off factor of the filter characteristic?

8.22. A voice signal in the range 300 to 3300 Hz is sampled at 8000 samples/s. We may
transmit these samples directly as PAM, or we may first convert them into codewords
using PCM.
(a) What is the minimum system bandwidth required for the detection of PAM with

no ISI and with a filter roll-off characteristic of r = 1?
(b) Using the same filter roll-off characteristic, what is the minimum bandwidth

required for the detection of binary PCM if the samples are quantized to eight
levels?

(c) Repeat part (b) using 128 quantization levels.
2.23. A signal in the frequency range 300 to 3300 Hz is limited to a peak-to-peak swing

of 10 V. It is sampled at 8000 samples/s and the samples are quantized to 64 evenly
spaced levels. Calculate and compare the bandwidths and ratio of peak signal power
to rms quantization noise if the quantized samples are transmitted either' as binary
pulses or as four-level pulses. Assume that the system bandwidth is defined by the
main spectral lobe of the signal.

2.24. An analog signal is to be converted to a binary PCM signal and transmitted over a
channel that is bandlimited to 100 kHz. Assume that 32 quantization levels are used
and that the overall equivalent transfer function is of the raised cosine type with
roll-off r = 0.6.
(a) Find the maximum PCM bit rate that can be used by this system without intro-

ducing ISL
(b) Find the maximum signal bandwidth that can be accommodated for the analog

signal
(c) Repeat parts (a) and (b) for an eight-level PCM signal
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3.1 WHY MODULATE?

Digital modulation is the process by which digital symbols are transformed into
waveforms that are compatible with the characteristics of the channel In the case
of baseband modulation, these waveforms are pulses, but in the case of bandpass
modulation the desired information signal modulates a sinusoid called a carrier
wave, or simply a carrier; for radio transmission the carrier is converted to an
electromagnetic (EM) field for propagation to the desired destination. One might
ask why it is necessary to use a carrier for the radio transmission of baseband
signals. The answer is as follows. The transmission of EM fields through space
is accomplished with the use of antennas. To efficiently couple the transmitted
EM energy into space, the dimensions of the antenna aperture should be at least
as large as the wavelength being transmitted. Wavelength, A, is equal to c/f ,where
c, the speed of light, is 3 x 10$ m/s. For a baseband signal with frequency f =
3000 Hz, 1~ = 105 m ~ 60 miles. To efficiently transmit a 3000-Hz signal through
space without carrier-wave modulation, an antenna that spans at least 60 miles
would be required. Even if we were willing to inefficiently transmit the ~11N1 energy
with an antenna measuring one-tenth of a wavelength, we are faced with an im-
possible antenna size. However, if the information to be transmitted is first mod-
ulated on a higher frequency carrier, for example a 30-GHz carrier, the equivalent
antenna diameter i5 then less than 2 in. For this reason, carrier-wave or bandpass
modulation is an essential step for all systems. involving radio transmission.

Bandpass modulation can provide other important benefits in signal trans-
mission. If more than one signal utilizes a single channel, modulation may be used
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to separate the different signals. Such a technique, known as frequency-division
multiplexing, is discussed in Chapter 9. Modulation can be used to minimize the
effects of interference. A class of such modulation schemes, known as spread-
spectrum modulation, requires a system bandwidth much larger than the minimum
bandwidth that would be required by the message. The trade-off of bandwidth
for interference rejection is considered in Chapter 10. Modulation can also be
used to place a signal in a frequency band where design requirements, such as
filtering and amplification, can be easily met. This is the case when radio-fre-
quency (RF) signals are converted to an intermediate frequency (IF) in a receiver.

3.2 SIGNALS AND NOISE

3.2.1 Noise in Radio Communication Systems

nto
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The task of the demodulator or detector is to retrieve the bit stream from the
received waveform, as nearly error free as possible, notwithstanding the distortion
to which the signal may have been subjected. There are two. primary causes for
signal distortion. The first is the filtering effects of the transmitter, channel, and
receiver discussed in Section 2.11. As described there; a nonideal system transfer

. function causes symbol "smearing," which can produce intersymbol interference.
The second cause for signal distortion is the noise that is produced by a

variety of sources, such as galaxy noise, terrestrial noise, amplifier noise, and.
unwanted signals from other sources. An unavoidable cause of noise is the thermal
motion of electrons in any conducting media. This motion produces thermal noise
in amplifiers and circuits which corrupts the signal in an additive fashion; that is,
the received signal, r(t), is the sum of the transmitted signal, s(t), and the thermal
noise, n(t). The statistics of thermal noise have been developed using quantum
mechanics and are well known [1].

The primary statistical characteristic of thermal noise is that the noise am-
plitudes are distributed according to a normal or Gaussian distribution, discussed
in Section 1.5.5 and shown in Figure 1.7. The probability density function (pdf~,
p(n), of the zero-mean noise voltage is expressed as

Pin) ~ 12~ eXP L 2 ~~,~ ZJ (3.1)

rgy where Q2 is the noise variance. In Figure 1.7 it can be seen that the most probable
im- noise amplitudes are those with small positive or negative values. In theory, the
od- noise can be infinitely large, but very large noise amplitudes are rare.
ent The primary spectral characteristic of thermal noise is that its two-sided

pass power spectral density, Gn(f) = No/2, is flat for all frequencies of interest for
radio communication systems. In other words, thermal noise, on the average, has

~ns- just as much power per hertz in low-frequency fluctuations as in high-frequency
sed fluctuations—up to a frequency of about 1012 hertz. When the noise power is
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characterized by a constant power spectral density, as shown in Figure 1.8a, we

refer to it as white noise. Since thermal noise is present in all communication

systems and is the predominant noise source for most systems, the thermal noise

characteristics (additive, white, and Gaussian) are most often used to model the

noise in the detection process and in the design of optimum receivers.

3.2.2 A Geometric View of Sigriais and Noise

Let us define an N-dimensional orthogonal space as one characterized by a set

of N linearly independent functions, {~r;(t)}, called basis functions. Any arbitrary

function in the space can be generated by a linear combination of these basis

functions.. The basis functions must satisfy the following conditions:

~oT ~~~t)~k~t) dt = K~B;k ~ ~ t ~ T, J, k = 1, . . . , N (3.2a)

1 for j = k ~ ~
S'k — {0 otherwise 

3.2b

where the operator 8;k is called the Ifronecker delta function and is defined by

Equation (3.2b). Whcn the K; constants are nonzero, the signal space is called

orthogonal. When the basis functions are normalized so that each K; = 1, the

space is called an orthonor-mal space. The principal requirement for orthogonality

can be stated as follows: Each ~;(t) function of the sct of basis functions must be

independent of the other members of the set. Each ~,;(t) must not interfere with

any other members of the set in the detection process. From a geometric point

of view, each ~,(t) is mutually perpendicular to each of the other ~jlk(t) for j ~ k.

An example of such a space with N = 3 is shown in Figure 3.1, where the mutually

perpendicular axes are designated ~,(t), ~z(t), and ~3(t). If ~;(t) corresponds to

a real-valued voltage or cun-ent waveform component, associated with a 1-SZ

~21t)

~' i
8m3 ~~~ ~ ~

i~ i~
~~ i~ ~ am2
i i
i i
---

i ~

i Signal ~
~ vector sm i ~~i ~ i

~~

~am1

J~3(t)

~~ (t)

Figure 3.1 Vectorial representation of
the signal waveform s,,,(t).

s
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resistive load, then using Equations (1.5) and (3.2), the normalized energy in joules
dissipated in the load in T seconds, due to fir„ is

E; = JoT ~;(t) dt = K; (3.3)

One reason we focus on an orthogonal signal space is that Euclidean distance
measurements, fundamental to the detection process, are easily formulated in
such a space. However, even if the signaling waveforms do not comprise such
an orthogonal set, they can be transformed into linear combinations of orthogonal
waveforms. It can be shown [2] that any arbitrary mite set of waveforms {sl(t)}
(i = 1, . . . , M), where each member of the set is physically realizable and of
duration T, can be expressed as a linear combination of N orthogonal waveforms
~,1(t), ~r2(t), . . . , ~rN(t), where N ~ M, such that

sz~t) = aai~i~t) ~' azz~a~t) + ... -~- azr~~~r)

S~t~ = CdMl`I'l~t~ + aM2`Y2~t~ -}- ... -~-. 
(ZMN~N\~~

These relationships are expressed in more compact notation as follows:
N

=1 N<_M

where

1 T
l

i= 1, . . . ,M; Opt<—T (3:5)
j = 1, . . . ,N

The coefficient a~; is the value of the ~,;(t) component of signal, s;(t). The form
of the {~,~(t)} is not specified; it is chosen for convenience and will depend on the
form of the signal waveforms. The set of signal waveforms, {s=(t)}, can be viewed
as a set of vectors, {s1} _ {af,, ai2, . . . , a;N}. If, for example, N = 3, we may
plot the vector, s„2 , corresponding to the waveform

sm(t) = ami~i(t) + am2~2(t) + am3~3(t)

of

~. 3

as a point in athree-dimensional Euclidean space with coordinates (a,,,, , am2,
a„23), as shown in Figure 3.1. The orientation among the signal vectors describes
the relation of the signals to one another (with respect to phase or frequency),
and the amplitude of each vector in the set {s;} is a measure of the signal energy
transmitted during a symbol duration. In general, once a set of N orthogonal
functions has been adopted, each of the transmitted signal waveforms, s~(t), is
completely determined by the vector of its coefficients

st = ~Q;~, arz, . . . , aTrr) i = 1, . . . , M (3.6)
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We shall employ the notation of signal vectors, {s}, or signal waveforms,
{s(t)}, as best suits the discussion. A typical detection problem, conveniently
viewed in terms of signal vectors, is illustrated in Figure 3.2. Vectors s; and sk
represent prototype or' reference signals belonging to the set of M waveforms,
{s;(t)}. The receiver knows, a priori, the location in the signal space of each
prototype vector belonging to the M-ary set. During the transmission of any signal,
the signal is perturbed by noise so that the resultant vector that is actually received
is a perturbed version (e.g. , s; + n or sk + n) of the original one, where n represents
a noise vector. The noise is additive and has a Gaussian distribution; therefore,
the resulting distribution of possible received signals is a cluster or cloud of points
around. s, and sk . The cluster is dense in the center and becomes sparse with
increasing distance from the prototype. The arrow marked r represents a signal
vector that might arrive at the receiver during some symbol interval. The task cif
the receiver is to decide whether r has a close "resemblance" to the prototype
s,, whether it more closely resembles sk, or whether it is closer to some other
prototype signal in the M-ary set. The measurement can be thought of as a distance
measurement. The question that the receiver or detector must resolve is: Which
of the prototypes within the signal space is closest in distance to the received
vector, r? The analysis of all demodulation or detection schemes involves this
concept of distance between a received waveform and a set of possible transmitted
waveforms. A simple rule for the detector to follow is to decide that r belongs to
the same class as its nearest neighbor (nearest prototype vector).

~Zltl

~i31t)

3.2.2.1 Waveform Energy

~i (t)

Figure 3.2 Signals and noise in a
three-dimensional vector space.

Using Equations (1.5), (3.4), and (3.2), the normalized energy, Ez, associated
with the waveform, s;(t), over a symbol interval, T, can be expressed in terms of
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rms, the orthogonal components of s;(t) as follows:
',ntly
ld sk

r T lz
E; = f s?(t) dt = J~ ~~ a~,~,{t)J dt (3.7)

rms, L j
each T
;nal, — Jo ~ arr~r~t) ~ atk~k~t) dt (3.8)
ived ' k

~~ents
yore,

_ ~~ ~ ar~a~k ~~ ~~{t)~k(t) dt (3.9)~ k a
pints
with = ~ ~ al;a;kK;B;k (3.10)
;gnal ~ k
;k of N
type = ~ aK; i = 1, . . . , M (3.11)
ether ~ _ ~
xnce Equation (3.11) is a special case of Parseval's theorem relating the integral of the
hich square of the waveform, s;(t), to the sum of the square of the orthogonal series
ived coefficients. If orthonormal functions are used (i.e., K; = 1), the normalized.
this energy over a symbol duration T is given by

fitted N
;s to E; _ ~ a (3.12)

J=1

If there is equal energy, E, in each of the si(t) waveforms, we can write Equation
(3.12) in the form

N

E _ ~ u for all i (3.13)
~=1

3.2.2.2 Generalized Fourier Transforms

The- transformation described by Equations (3.2), (3.4), and (3.5) is referred
to as the generalized Fourier transformation, In the case of ordinary Fourier
transforms, the {~,{t)} set is comprised of sine and cosine harmonic functions.
But in the case of generalized Fourier transforms, the {~,,(t)} set is not constrained
to any specific form; it must only satisfy the orthogonality statement of Equation
(3.2). Any arbitrary integrable waveform set, as well as noise, can be represented
as a linear combination of orthogonal waveforms through such a generalized Four-
ier transformation [2]. Therefore, in such an orthogonal space, we are justified
in using distance (Euclidean distance) as a decision criterion for the detection of
uny signal set in the presence of AWGN. The most important application of this
orthogonal transformation has to do with the way in which signals are .actually
transmitted and received. The transmission of a nonorthogonal signal set is gen-
erally accomplished by the appropriate weighting of the orthogonal carrier com-
ponents: For example, in Section 3.5.3 we show that multiple phase shift keying

fated (MPSK) signals are fully characterized by weighted sine and cosine components
ns of of the carrier.
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Example 3.1 Orthogonal Representation of Waveforms

Figure 3.3 illustrates the statement that any arbitrary integrable waveform set can

be represented as a linear combination of orthogonal waveforms. Figure 3.3a shows

a set of three waveforms, s,(t), sz(t), s3(t).

(a) Demonstrate that these waveforms do not form an orthogonal set.

(b) Figure 3.3b shows a set of two waveforms, ~,,(t) and ~,2(t). Verify that these

waveforms form an orthogonal set.

(c) Show how the nonorthogonal waveform set in part (a) can be expressed as a

linear combination of the orthogonal set in part (b).

s ~ lt)

- t
— 2
— 3

s2 (t)

2
1
0

s3 (tl

2
1
0

— 1,
--2
—3

t

t

~~ It1

1
0

— 1

~2(t)

1
0

t

t

T T forj=k
~~(t)~k lt) dt = { 0 otherwise

0

(a) (b)

Figure 3.3 Example of an arbitrary signal set in terms of an orthogonal set. (a)

Arbitrary signal set. (b) Orthogonal basis functions.
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Solution
(a) s~(t), s2(t), and s3(t) are clearly not orthogonal, since they do not meet the re-

quirements of Equation (3.2); that is, the time integrated value (over a symbol.
duration) of the cross-product of any two of the three waveforms is not zero.
Let us verify this for s~(t) and s2(t).

JT s,(t)sz(c) dr = JT z s,(c)s2(t) dr + f ~ s,(t)s2(t) dt
0 0 T/2

= ~Tl2 T
( -1)(2) dt + ~~ z (-3)(0) dt = —T

Similarly, the integral over the interval, T, of each of the cross-products sl(t)s3(t)
and sZ(t)s3(t) results in nonzero values. Hence the waveform set {s,(t)} (i 1,
2, 3) in Figure 3.3a is not an orthogonal set.

(b) Using Equation (3.2), we verify that ~,(t) and ~2(t) form an orthogonal set as
follows:

~~ ~,i(t)~,z(t) dt = ~~~~ (1)(1) dt + ~Zz (-1)(1) dt = 0

(c) We can express the nonorthogonal set {s;(t)} (i = 1, 2, 3) as a linear combination
of the orthogonal basis waveforms {~r,(t)} (j = 1, 2), as follows, by using Equation
(3.5), where K; = T:

Si(t) _ ~i(t) — 2~2(t)

Sz(t) _ ~~(t) + ~2(t)

S3~r~ = Zl~Jllr~ - ̀N2lt~

These relationships illustrate how an arbitrary waveform set {s;(t)} can be ex-
pressed as a linear combination of an orthogonal set {~,{t)}, as described in Equa-
tions (3.4) and (3.5). What are the practical applications for being able to describe
sl(t), sz(t), and s3(t), in terms of ~,,(t), ~z(t), and the appropriate coefficients?
If we want a system for transmitting waveforms sl(t), sz(t), and s3(t), the trans-
mitter and the receiver need only be implemented using the two basis functions
~,~(t) and ~rz(t) instead of the three original waveforms. A convenient way in
which an appropriate choice of a basis function set, {~,~{t)}, can be obtained for
any given signal set, {s;(t)}, is called the Gram—Schmidt orthogonalization pro-
cedure. It is described in Appendix 4A of Reference [3].

3.2.2.3 Representing White Noise with Orthogonal Waveforms

Additive white Gaussian noise (AWGN) can be expressed as a linear com-
bination of orthogonal waveforms in the same way as signals. For the signal
detection problem, the noise can be partitioned into two components,

n(t) = n(t) + n(t) (3.14)

where
N

n(t) _ ~ n~~~{t) (3.15)
.i=~
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is taken to be the noise within the signal space, or the projection of the noise

components on the signal coordinates ~1(t), . . . , ~,N(t), and

n(t) = n(t) — n(t) (3.16)

is defined as the noise outside the signal space. In other words, n(t) may be thought

of as the noise that is effectively tuned out by the detector. The symbol n(t)

represents the noise that will interfere with the detection process. We can express

the noise waveform; n(t), as follows:
N

nit) _ ~i ni~J✓fit) -~ n(t) (3.17)
=i

where
T

n~ = K ~o ~(t)~,,{t) dt for all j

and

(3.18)

0 = ~~ n(t)~~,{t) dt (3.19)
u

The interfering portion of the noise, n(t), expressed in Equation (3.15) will hence-

forth be referred to simply as n(t). We can express n(t) by a vector of its coef-

ficients similar to the way we did for signals in Equation (3.6).

n = ~n ~ , nz ~ • • , n1v) (3.20)

where n is a random vector with zero mean and Gaussian distribution, and where

the noise components ni (i~ = 1, . . . , N) are independent.

3.2.2.4 Variance of White Noise

White noise is an idealized process with two-sided power spectral density

equal to a constant, N~12, for all frequencies from — ~ to + ~. Hence the noise

variance (average noise power, since the noise has zero mean) is

Qz =var[n(t)]= J~~2°)df=~ (3.21)

Although the variance for AWGN is infinite, the variance for filtered AWGN

is finite. For example, if AWGN is correlated with one of a set of orthonormal

functions ~,;(t), the variance of the correlator output is given by

( T 2

~2 = var (n;) = E j ~ Jo n(t)~;(t) dt~ ~ = 2° (3.22)
l

The proof of Equation (3.22) is given in Appendix C. Henceforth we shall assume

that the noise of interest in the detection process is the output noise of a correlator

or matched filter with variance Q2 = No/2 as expressed in Equation (3.22).
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3.3 DIGITAL BANDPASS MODULATION TECHNIQUES

Bandpass modulation (either analog or digital) is the process by which an infor-
mation signal is converted to a sinusoidal waveform; for digital modulation, such
a sinusoid of duration T is referred to as a digital symbol. The sinusoid has just
three features that can be used to distinguish it from other sinusoids: amplitude,
frequency, and phase. Thus bandpass modulation can be defined as the process
whereby the amplitude, frequency, or phase of an RF carrier, or a combination
of them, is varied in accordance with the information to be transmitted. The
general form of the carrier wave, s(t), is as follows:

s(t) = A(t) cos 9(t) (3.23)

where A(t) is the time-varying amplitude and 8(t) is the time-varying angle. It is
convenient to write

8(t) = wot + ~(t) (3.24)

so that
s(t) = A(t) cos [coat + ~(t)] (3.25)

where wo is the radian frequency of the carrier and ~(t) is the phase. The terms
f and w will each be used to denote frequency. When f is used, frequency in
hertz is intended; when c,~ is used, frequency in radians per second is intended.
The two frequency parameters are related by w = 2~rrf .

The basic digital modulationldemodulation types are listed in Figure 3.4.
When the receiver exploits knowledge of the carrier's phase to detect the signals,
the process is called coherent detection; when the receiver does not utilize such
phase reference information, the process is called noncoherent detection. In digital
communications, the terms demodulation and detection are used somewhat in-
terchangeably, although demodulation emphasizes removal of the can-ier, and
detection includes the process of symbol decision. In ideal coherent detection,
there is available at the receiver a prototype of each possible arriving signal. These
prototype waveforms attempt to duplicate the transmitted signal set in every re-
spect, even RF phase. The receiver is then said to be phase locked to the incoming
signal. During detection, the receiver multiplies and integrates (correlates) the
incoming signal with each of its prototype replicas. Under the heading of coherent
modulation/demodulation in Figure 3.4 are listed phase shift keying (PSK), fre-
quency shift keying (FSK), aanplitude shift keying (ASK), continuous phase mod-
ulation (CPM), and hybrid combinations. The basic bandpass modulation formats
are discussed in this chapter. Some specialized formats, such as offset quadrature
PSK (OQPSK), minimum shift keying (MSK) belonging to the CPM class, and
quadrature amplitude modulation (QAM), are treated in Chapter 7.

Noncoherent demodulation refers to systems employing demodulators that
are designed to operate without knowledge of the absolute value of the incoming
signal's phase; therefore, phase estimation is not required. Thus the advantage
of noncoherent over coherent systems is reduced complexity, and the price paid
is increased probability of error (PE). In Figure 3.4 the modulation/demodulation
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~-

Formatting/Source Coding

Character coding Differential PCM (DPCM)
Sampling Block coding
Quantization Synthesis/analysis coding
Pulse code modulation (PCM) Redundancy reducing coding

Channel Coding

Waveform Structured
Sequences

M-ary signaling
Antipodal Block
Orthogonal Convolutional
Biorthogonal
Transorthogonal

Band pass Modulation/Demodulation

CnhorPnt N~ncohereni

f-hase shift
keying (PSK)

Frequency shift
keying (FSK)

Amplitude shift
keying (ASK)

Continuous phase
modulation
(CPM)

Hybrids

Synchronization

Carrier
synchronization

Subcarrier
synchronization

Symbol
synchronization

Frame
synchronization

Network

Differential phase
shift keying
(DPSK)

Frequency shift
keying (FSK)

Amplitude shift
keying (ASK)

Continuous phase
modulation
(CPM)

Hybrids

Multiplexing/Multiple Access

Frequency division
(FDM/FDMA)

Time division
(TDM/TDMA)

Code division
(CDM/CDMA)

Space division
(SDMA)

Polarization division
Spreading synchronization (PDMR)

Direct sequencing
(DS)

Frequency hopping Encryption
(FH)

Time hopping (TH} Block
Hybrids Data stream

Figure 3.4 Basic digital commwiication transformations.

types that are listed in the noncoherent column, DPSK, FSK, ASK, CPM, and
hybrids, are similar to those listed in the coherent column. We had implied that
phase information is not used for noncoherent reception; how do you account for
the fact that there is a form of phase shift keying under the noncoherent heading?
It turns out that an important form of PSK can be classified as noncoherent (or
differentially coherent) since it does not require a reference in phase with the
received carrier. This "pseudo-PSK," termed differential PSK (DPSK), utilizes
phase information of the prior symbol as a phase reference for detecting the cur-
rent symbol. This is described in Sections 3.6.1 and 3.6.2.

Figure 3.5 illustrates examples of the most common digital modulation for-
mats: P~K, FSK, ASK, and a hybrid combination of ASK and PSK (ASK/PSK
or APK). The first column lists the analytic expression, the second is a typical
pictorial of the waveform versus time, and the third is a vectorial schematic, with
the orthogonal axes labeled {~r,(t)}. In the general M-ary signaling case, the pro-
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censor accepts k source bits at a time and instructs the modulator to produce one

of an available set of M = 2k waveform types. Binary modulation, where k = l;

is just a special case of M-ary modulation. Each example shown in Figure 3.5

illustrates the set of signal waveforms with a particular value chosen for M.

3.3.1 Phase Shift Keying

Phase shift keying (PSK) was developed during the early days of the deep-space

program; PSK is now widely used in both military and commercial communi-

cations systems. The general analytic expression for PSK is

s;(t) _ ~ cos [wot + ~Z(t)l ~ ~ i ~ T ~ (3.26)

where the phase term, ~~(t), will have M discrete values, typically given by

2~ri

For the binary PSK (BPSK) example in Figure 3.Sa, M is 2. The parameter E is

symbol energy, T is symbol time duration, and 0 ~ t ~ T. In BPSK modulation,

the modulating data signal shifts the phase of the waveform, s;(t), to one of two

states, either zero or ~r (180°). The waveform sketch in Figure 3.Sa shows a typical

BPSK waveform with its abrupt phase changes at the symbol transitions; if the

modulating data stream were to consist of alternating ones and zeros, there would

be such an abrupt change at each transition. The signal waveforms can be rep-

resented as vectors on a polar plot; the vector length corresponds to the signal

amplitude, and the vector direction, for the general M-ary case, corresponds to

the signal phase relative to the other M — 1 signals in the set. For the BPSK

example, the vectorial picture illustrates the two 180° opposing vectors. Signal

sets that can be depicted with such opposing vectors are called antipodal signal

sets.

3.3.2 Frequency Shift Keying

The general analytic expression for FSK modulation is

s;(t) _ ~ cos (W~t + ~) ~ c 1 c T. ~1 
(3.27)

where the frequency term, w„ will have M discrete values, and the phase term,

c~, is an arbitrary constant. The FSK waveform sketch in Figure 3.Sb illustrates

the typical abrupt frequency changes at the symbol transitions. In this example,

M has been chosen equal to 3, corresponding to the same number of waveform

types (3-ary); note that this M = 3 choice for FSK has been selected to emphasize

the mutually perpendicular axes. In practice, M is usually a nonzero power of 2

(2, 4, 8, 16, . . .). The signal set is characterized by Cartesian coordinates, such
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that each of the mutually perpendicular axes represents a sinusoid with a different
frequency. As described earlier, signal sets that can be characterized with such
mutually perpendicular vectors are called orthogonal signals. The required fre-
quency spacing between the orthogonal tones is discussed in Section 3.6.4.

3.3.3 Amplitude Shift Keying

For the ASK example in Figure 3.Sc, the general analytic expression is

s~~ t~ _ 2E~(t) cos (wot + ~) ~ ~ r ~ ~ (3.28)T i=1, . . . ,M

where the amplitude term, 2E;(t)lT, will have li~l discrete values, and the phase
term, ~, is an arbitrary constant. In Figure 3.Sc, M has been chosen equal to 2,
corresponding to two waveform types. The ASK waveform sketch in the figure
can describe a radar transmission example, where the two signal amplitude states
would be 2E/T and zero. The vectorial picture utilizes the same phase—amplitude
polar coordinates as the PSK example. Here we see a vector corresponding to
the maximum-amplitude state, and a point at the origin corresponding to the zero-
amplitude state. Binary ASK signaling (also called on—off keying) was one of the
earliest forms of digital modulation used in radio telegraphy at the beginning of
this century. Simple ASK is no longer widely used in digital communication sys-
tems; therefore, it will not be treated in detail.

3.3.4 Amplitude Phase Keying

For the combination of ASK and PSK (APK) example in Figure 3.Sd, the general
analytic expression

St~ t~ _ 2E1(t) cos [wot + ~Z(t)] ~ c t c T (3.29)T i= 1, . . . ,M

illustrates the indexing of both the signal amplitude term and the phase term. The
APK waveform picture in Figure 3.Sd illustrates some typical simultaneous phase
and amplitude changes at the symbol transition times. For this example, M has
been chosen equal to 8, corresponding to eight waveforms (8-ary). The figure
il]ustrates a hypothetical eight-vector signal set nn the phase—amplitude plane.
Four of the vectors are at one amplitude; the other four vectors are at a different
amplitude; and each of the vectors is separated by 45°. When the set of M symbols
in the two-dimensional signal space are arranged in a rectangular constellation,
the signaling is referred to as quadrature amplitude modulation (QAM); examples
of QAM are considered in Chapter 7.

The vectorial picture for each of the modulation types described in rigure
3.5 (except the FSK case) is characterized on a plane whose polar coordinates
represent signal amplitude and phase. The FSK case is characterized in a Carte-
siancoordinate space, with each axis representing a frequency tone (cos wzt) from
the M-ary set of orthogonal tones.
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3.3.5 Waveform Amplitude Coefficient

The waveform amplitude coefficient appearing in Equations (3.26) to (3.29) has
the same general form, 2ElT, for all modulation formats. This expression is
derived as follows:

s(t) = A cos wt (3.30)

where A is the peak value of the waveform. Since the peak value of a sinusoidal
waveform equals ~ times the root-mean-square (rms) value, we can write

s(t) _ ~A~ms cos cot

— 2Arms COS (At

Assuming the signal to be a voltage or a current waveform, A ms represents av-
erage power P (normalized to 1 SZ). Therefore, we can write

s(t) = 2P cos cat (3.31)

Replacing P watts by E joules/T seconds, we get

s(t) _ ~ cos wt (3.32)

We shall use either the amplitude natation, A, in Equation (3.30) or the
designation 2E/T in Equation (3.32). Since the energy in a signal is the key
parameter in determining the error performance of the detection process, it is
often more convenient to use the amplitude notation in Equation (3.32) because
it facilitates solving directly for the probability of error, PE, as a function of signal
energy.

3.4 DETECTION OF SIGNALS I(V GAUSSIAN NOISE

3.4.1 Decision Regions

Consider that the two-dimensional signal space in Figure 3.6 is the locus of the
noise-perturbed prototype binary vectors (s, + n) and (s2 + n). The noise vector,
n, is a zero-mean random vector; hence the received signal vector, r, is a random
vector with mean s, or s2. The detector's task after receiving r is to decide which
of the signals, sl or sz, was actually transmitted. The method is usually to decide
on the signal classification that yields the minimum expected PE, although other
strategies are possible [4]. For the case where M equals 2, with sl and s2 being
equally likely and with the noise being an additive White Gaussian noise (AWGN)
process, we will see that the minimum-error decision rule is equivalent to choosing
the signal class such that the distance d(r, s;) _ ~~ r — sz ~~ is minimized, where

X II ~s called the norm or magnitude of vector x. This rule is often stated in terms
of decision regions. In Figure 3.6, let us construct decision regions in the following

, t
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~~~• .

~2(t) ~

es

~G ~ It)

Figure 3.6 Two-dimensional signal space, with arbitrary equal-amplitude vectors
sl and sz .

!) way. Draw a line connecting the tips of the prototype vectors, si and sZ. Next,
construct the perpendicular bisector of the connecting line. Notice that this bi-

e sector passes through the origin of the space if sl and s2 are equal in amplitude.
y For this M = 2 example in Figure 3.6, the constructed perpendicular bisector
~ S represents the locus of points equidistant between s, and s2i hence the bisector

describes the boundary between decision region 1 and decision region 2. The
~l decision rule for the detector, stated in terms of decision regions, is: Whenever

the received signal r is located in region 1, choose signal sl; when it is located in
region 2, choose signal sz.

3.4.2 Correlation Receiver

In Section 2.9 we treated - the detection of baseband binary signals in Gaussian
noise. Since the detection of bandpass signals employs the same concepts, we

le shall summarize the key findings of that section. We focus particularly on that
r ~ realization of a matched filter known as a correlator. In addition to binary de-
m tection, we also consider the more general case of M-ary detection. We assume
;h that the only perfarmance degradation is due to AWGN. The received signal, r(t),
~e is the sum of the transmitted prototype signal plus the random noise;
er c c
7g r(t) = s~(t) + n(t) ~ _ l~ : T ~ M (3.33)
~t)
ng Given such a received signal, the detection process consists of two basic steps.
re In the first step, the received waveform, r(t), is reduced to a single random vari-
ns able, z(T), or a set of random variables, z~(T) (i = 1, . . . , M), formed at the
ng output of the correlator(s) at time t = T, where T is the symbol duration. In the
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second step, a symbol decision is made, on the basis of comparing z(T) to a
threshold or on the basis of choosing the maximum z;(T). Step 1 can be thought
of as transforming the waveform into a point.in the decision space. Step 2 can
be thought of as determining in which decision region the point is located. For
the detector to be optimized (in the sense of minimizing the error probability), it
is necessary to optimize the waveform-to-random-variable transformation, by
using matched filters or correlators in step 1, and by also optimizing the decision
criterion in step 2.

In Sections 2.9.2 and 2.9.3 we found that the matched filter provides the
maximum signal-to-noise ratio at the filter output at time t = T. We described a
correlator as one .realization of a matched filter. We can define a correlation
receiver comprised of M correlators, as shown in Figure 3.7a, that transforms a
received waveform, r(t), to a sequence of M numbers or correlator outputs, z,(T)
(i = 1, . . . , M). Each correlator output is characterized by the following product
integration or correlation with the received signal

z;(T) = JoT r(t)s;(t) dt i = 1, . . . , M (3.34)

The verb "to correlate" means "to match." The correlators attempt to
match the incoming received signal, r(t), with each of the candidate prototype
waveforms, s;(t), known a priori to the receiver. A reasonable decision rule is to
choose the waveform, sz(t), that matches best or has the largest correlation with
r(t). In other words, the decision rule is:

Choose the s~(t) whose index (3.35)corresponds to the max z;(T)

Following Equation (3.4), any signal set, {s;(t)} (i = 1, . . . , M), can be
expressed in terms of some set of basis functions, {~,;(t)} (j = 1, . . . , N), where
N <— M. Then the bank of M correlators in Figure 3.7a may be replaced with a
bank of N correlators, shown in Figure 3.7b, where the set. of basis functions
{~,;(t)} form reference signals. The decision stage of this receiver consists of
logic circuitry for choosing the signal, s~(t). The choice of s;(t) is made according
to the best match of the coefficients, a;;, seen in Equation (3:4), with the set of
outputs {Z;(T)}. When the prototype waveform set, {s,(t)}, is an orthogonal set,
the receiver implementation in Figure 3.7a is identical to that in Figure 3.7b (dif-
fering perhaps by a scale factor). However, when {sl(t)} is not an orthogonal set,
the receiver in Figure 3.7b, using N correlators instead of M, with reference signals
{~,;(t)}, can represent acost-effective implementation. We examine such an ap-
plication for the detection of multiple phase shift keying (MPSK) in Section 3.5.3.
For the other applications in this chapter, we shall assume a correlator receiver
with reference signals {s;(t)}. ,

In the case of binary detection, the correlation receiver can be configured
as a single matched filter or product integrator, as shown in Figure 3.8a, with
the reference signal being the difference between the binary prototype signals,
st(t) — s2(t). The output of the correlator, z(T), is fed directly to the decision
stage.
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J o
(b)

Figure 3.7 (a) Correlator receiver with reference signals {s;(t)}. (b) Conelator
receiver with reference signals {fir,{t)}.

For binary detection, the correlation receiver can also be drawn, as shown
in Figure 3.8b, as two matched filters or product integrators, each of which is
matched to one of the prototype reference signals, sl(t) or s2(t). The decision
stage can then be configured to follow the rule in Equation (3.35), or the correlator
outputs, z~(7~ (i = 1, 2), can be differenced to form

z(T) = z~(T) — zz(~ (3.36)

as shown in Figure 3.8b. Then, z(T), called the test statistic, is fed to the decision
stage, as in the case of the single correlator. In the absence of nozse, an input
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Reference
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s ~ (t) — s21t) Decision
stage

T z(T) =a~lT) + n~(T) H1
r1t) ! z(T1 < y s; (t)

J O H2

la1

R eference
signals
s ~ (t)

r!t) s;(t)

waveform, si(t), yields the output, z(T) = a~(T), a signal-only component. The
input noise, n(t), is a Gaussian random process. Since the correlator is a linear
device, the output noise is also a Gaussian random process [4]. Thus the output
of the correlator, sampled at t = T, yields

z(7~ = a;(T) + no(T) i = 1, 2

where no(T) is the noise component. To shorten the notation we sometimes ex-
press z(T) as a; + no. The noise component, no, is a zero-mean Gaussian random
variable, and thus z(T) is a Gaussian random variable with a mean of either a t
or a2 depending on whether a binary one or binary zero was sent.

3.4.2.1 binary Decision Threshold

For the random variable, z(T), Figure 3.9 illustrates the two conditional
probability density functions (pdfs), p(z~s,) and p(i~s2), with mean value of al and
a2i respectively (these pdfs are also called the likelihood of sl and the likelihood

~~~;

I'
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Ib►

Figure 3.8 Binary correlator receiver. (a) Using a single conelator. (b) Using

two correlators.
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a ~ + az
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Figure 3.9 Conditional probability density functions: p(z~s~), p(z~s2).

of sz, respectively):
z

P~Z~sI) _ 
~0 12'~ eXp L 2 \Z °~oail J 

~3.37a)

2l
P~z~sz) _ ~~ 12~ exp ~ — ~ ~z ~oa2~ J (3.37b)

where Qo is the noise variance. In Figure 3.9 the rightmost likelihood, p(z~sl},
illustrates the probability density of the detector. output, z(T), given that s~(t) was
transmitted. Similarly, the leftmost likelihood p(z~s2), illustrates the probability
density of z(T) given that s2(t) was transmitted. The abscissa, z(T), represents
the full range of possible sample output values from the correlation receiver in
Figure 3.8.

With regard to optimizing the binary decision threshold for deciding in which
region a received signal is located, we found in Section 2.9.1 that the minimum
error criterion for equally likely binary signals corrupted by Gaussian noise can
be stated as follows:

z~~ <1 al 2 a2 = 'Yo X3.38)
H2

where a, is the signal component of z(T) when sl(t) is transmitted, and a2 is the
signal component of z(T) when sz(t) is transmitted. The threshold level, y~, rep-
resented by (al. + aZ)12, is the optirriuryc threshold for minimizing the probability
of making an incorrect decision given equally likely signals and symmetrical like-
lihoods. The decision rule in Equation (3.38) states that hypothesis H, should be
selected [equivalent to deciding that signal sl(t) was sent] if z(T) > 'yo, and hy-
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pothesis HZ should be selected [equivalent to deciding that s2(t) was sent] if z(T)
yo. If z(T) = yo, the decision can be an arbitrary one. For equal-energy, equally

likely antipodal signals, where s z(t) _ — s2(t) and ut = — a2, the optimum decision
rule becomes

H~

Hi

or

decide sl(t) if zi(T} > z2(~ (3.39b)decide s2(t) otherbvise

In the next section we illustrate the use of correlators and matched filters
for the coherent detection of PSK and FSK modulation. In later sections we
consider noncoherent detection, and we treat the error performance of various
modulation types.

3.5 COHERENT DETECTION

3.5.1 Coherent Detection of PSK

The detector shown in Figure 3.7 can be used for the coherent detection of any
. digital waveforms. Such a cgrrelating detector is often referred to as a maximum
likelihood detector. Consider the following binary PSK (BPSK) example. Let

s~(t) _ ~ cos (wit + ~) 0 ~ t —< T (3.40a)

s2(t) _ ~ cos (Wot + ~ + ~r)

_ — -~ cos (wot + ~) 0 ~ t <— T (3.40b)

n(t) =zero-mean white Gaussian random process

where the phase term, ~, is an arbitrary constant, so that the analysis is unaffected
by setting ~ = 0. The parameter, E, is the signal energy per symbol, and T is the
symbol duration. ~'or this antipodal case, only a single basis function is needed.
If an orthonormal signal space is assumed in Equations (3.4) and (3.5) (i.e., K~ _
1), we can express a basis function, ~r,(t), as follows:

2
~rl(t) _ ~ cos wot for 0 < t ~ T (3.41)
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Thus we may express the transmitted signals s;(t) in terms of ~,1(t) and the coef-
~cients atilt):

Sr~t) = Q~~~~~t) (3.42a)

sz(t) = az~~~~t) _ —~~~(t) (3.42c)

Assume that s,(t) was transmitted. Then the expected values of the product in-
tegrators in Figure 3.7b, with reference signals ~i(t) and — ~li(t), are found as
follows:

E{Zllsl} = E {Jor ~~i~t) + h(t)~i~t) dt j
J

(3,43a)

E{Z2~s1} = E ~IoT 1~E~i~t) — n~t)~i~t) dt~ (3.43b)

1T2 VE{zl~s,} — E ~ o T ~ cos2 coot + n(t) T cos wot dt } _ ~E (3.44a)
J

T l
E{zz~sl} = E ~ fo T ~ cos2 coot — n(t) T cos wot dt } _ —~ (3.44b)

where E{•}denotes the ensemble average, referred to as the expected value. Equa-
tian (3.44) follows because E{n(t)} = 0. The decision'stage must decide which
signal was transmitted by determining its location within the signal space. For
this example, the choice of ~1(t) = 2/T cos wot normalizes E{zz(T)} to be
±1~. The prototype signals {sl(t)} are the same as the reference signals {~rj(t)}
except for the normalizing scale factor. The decision stage chooses the signal with
the largest value of z~(T). Thus, the received signal in this example is judged to
be sl(t). The error performance for such coherently detected BPSK systems is
treated in Section 3.7.1.

3.5.2 Sampled Matched Filter

In Section 2.9.2 we discussed the basic characteristic of the matched filter—
namely, that its impulse response is a delayed version of the mirror image (rotated
on the t = 0 axis) of the input signal waveform. Therefore, if the signal waveform
is s(t), its mirror image is s(— t) and the mirror image delayed by T seconds is
s(T — t). The impulse response, h(t), of a filter matched to s(t) is then described
by

ht)= s(T — t) 0<—t<—T (3.45~ 0 elsewhere ~

Figure 3. l0a illustrates how a matched filter can be implemented using digital
hardware. The input signal, r(t), is comprised of the prototype signal, s(t), plus
noise, n(t). The bandwidth of the signal is W = 1/2T.r, where the Nyquist sampling
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—~— k modulo-4 k modulo-4

—1 —1
0 1 2 3 0 1 0 1 2 3 0 1

0 —1 0 ~ Shift register
contents at k = 3

t = kTs

Filter weights
matched to s~ (k) °~ — 0 c~ _ —1 cZ = 0 c3 = 1

r(t) = s~ (tl + n(t)
3

~ Z~~ k _ 3 = nEo s~13- n)c~

z~(k=3)=2
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t = kTs

Filter weights
matched to s2(k} cp = 0 c~ = 1 c2 = 0 c3 = —

3
~ z2 J k = 3 Il E O s~ (3 — n)C~

(b) z2 (k = 31 = — 2

Figure 3.10 (a) Sampled matched filter. (b) Sampled matched filter detection
example, in the absence of noise.
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rate f s = 2W = 11TS; hence the sampling interval is equal to TS. At the clock
times oft = kT„ the analog signal is sampled and the samples are shifted into
the register of Figure 3. l0a from left to right. The shift register with its coefficients
co to cN_, approximate a matched ~Iter. Once the received signal has been sam-
pled, the continuous time notation t is changed to k1; or simply k to reflect the
sampled notation

r(k) = s(k) + n(k) k = 0, 1, . . .

where k represents a sample index. The output, z(k), of the sampled matched
Ater, at a time corresponding to the kth sample is

N- 1

z(k) _ ~ r(k — n)cn k = 0, 1, . . . ,modulo-N (3.46)
n=0

where xmodulo-y is defined as the remainder of dividing x by y. For the binary
demodulation application, zr(k)(i = 1, 2) outputs are compared to a threshold at
each value of k = N — 1 corresponding to the end of a symbol. The cn values
are the filter weights constituting the filter impulse response that is matched to
the signal, where n is the index of the weights and the register stages (from left
to right) and k is the index of the samples as they are produced by the sampler.
One can see the similarity between the convolution integral of Equation (2.56)
and the summation of Equation (3.46), especially with regard to the mirror-image
rotation of one of the functions prior to multiplication. Since we assume the noise
to have zero mean, the expected value of a received sample for the binary case
is expressed as

3 E{r(k)} = sZ(k) i = 1, 2 (3.47)

If sl(t) had been transmitted; the expected matched ~Iter outputs would be
N-1

E{z;(k)} _ ~ s,(k — n)cn (3.48)
n=0

where the filter weights, cn, are matched to the corresponding sl(k) for each
n branch.

Example 3.2 Sampled .Matched Filter
Consider the BPSK waveform set

s,(t) =cos wt
and

s2(t) _ —cos mt

Illustrate how a sampled matched biter or correlator, as shown in Figure 3~10a, can
be used to detect a received signal, say sl(t), from the BPSK waveform set, in the
absence of noise.

n
SOII[hOi2

First, the waveform is sampled so that s~(t) is transformed into the set of samples,
{sl(k)}. The sampled matched filter receiver will be shown with two branches, fol-
lowing the analog implementation in Figure 3.8b. 'The top branch is made up of shift
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registers and coefficients matched to the {s,(k)} sample points. The bottom branch
is similarly matched to the {s2(k)} sample points. The four equally spaced sample
points (k = 0, 1, 2, 3) for each of the {s;(Ic)} are as follows (see Figure 3.lOb):

s,(k = 0) = 1, s,(k = 1) = 0, s,(k = 2) _ — 1, s,(k = 3) = 0

s2(k = 0) _ — 1, s2(k = 1) = 0, s2(k = 2) = 1, sz(k = 3) = 0

The cn coefficients represent the delayed mirror-image rotation of the signal to which
the filter is matched. Therefore, c„ = sl(N — 1 — n), where n = 0, . . . , N — 1,
and we can write co = s;(3), c, = s~(2), c2 = s;(1), c3 = s;(0). It is here that the
reader can gain some insight as to why .the convolution operation (with its mirror-
image rotation) results in the appropriate lining up of the received signal samples
with the weights (reference signal).

Consider the top branch in Figure 3.lOb. At the k = 0 clock time, the first
sample, s,(k = 0) = 1, enters the leftmost stage of each register. At the next clock
time, the second sample, s,(k = 1) = 0, enters the leftmost stage of each register;
at this same time the first sample, s,(k = 0) — 1, has been shifted to the next right
stage in each register, and so on. At the k = 3 clock time the sample, s,(k = 3) _
0, enters the leftmost stage; by this time the first sample, s~(k = 0) = 1, has been
shifted into the rightmost stage. The four signal samples are now located in the
registers in mirror-image arrangement compared to the way the prototype waveform,
s~(t), is drawn in Figure 3.lOb. The task of the demodulator is to find the best match
to the incoming signal; the demodulator matches the reference coefficients of each
branch with the incoming signal samples, in the order in which the samples arrive.
Hence the convolution operation is an appropriate expression for describing the
alignment of the incoming waveform samples with the reference coefficients, to max-
imize the correlation in the proper branch.

3.5.3 Coherent Detection of Multiple Phase Shift Keying

Figure 3.11 illustrates the signal space for a multiple phase shift keying (MPSK)
signal set; the figure describes afour-level (4-ary) PSK or quadriphase shift keying
(QPSK) example (M = 4). Binary source digits are collected two at a time, and
for each symbol interval the two sequential digits instruct the modulator as to
which of the four waveforms to produce. For typical coherent M-ary PSK (MPSK)
systems, s;(t) can be expressed as

ZE 2?fl ~ < t ~ T
s;(t) _ —cos wot — — (3.49)

T ( M i=1, . . . ,M

where E is the energy content of sl(t) over each symbol duration T, and wo is the
carrier frequency. If an orthonormal signal space is assumed in Equations (3.4)
and (3.5), we can choose a convenient set of axes, as follows:

~,1(t) _ ~ cos wit (3.SOa)

~,2(t) _ ~ sin wot (3.SOb)

t
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where the amplitude 2/T has been chosen to normalize the expected output of
the detector, as was done in Section 3.5.1. Now s;(t) can be written in terms of
these orthonormal coordinates, giving

S;~t) = a~i~i~t) + arz~z~t) ~ c t c T (3.Sla)i = 1, . . . ,M

_ ~ cos ~ ~~~ ~~(t) + ~ sin ~ Mi~ ~,z(t) (3.Slb)

Notice that Equation (3.51) describes a set of M multiple phase waveforms
(intrinsically nonorthogonal) in terms of only two orthogonal carrier-wave com-
ponents. The M = 4 (QPSI~) case is unique among MPSK signal sets in the sense
that the QPSK waveform set is represented by a combination of antipodal and
orthogonal members. The decision boundaries partition the signal space into M

4 regions; the construction is similar to the procedure outlined in Section 3.4.1
and Figure 3.6 for M = 2. The decision rule for the detector (see Figure 3.11) is
to decide that si(t) was transmitted if the received signal vector falls in region 1,
that sz(t) was transmitted if the received signal vector fa11s in region 2, and so
on. In other words, the decision rule is to choose the ith waveform if zf(T) is the
largest of the correlator outputs (seen in Figure 3.7).

The form of the correlator shown in Figure 3.7a implies that there are always
M product correlators used for the demodulation of MPSK signals. The figure
infers that for each of the M branches, a reference signal with the appropriate
phase shift is configured. In practice, the implementation of an MPSK demod-
ulator follows Figure 3.7b, requiring only N = 2 product integrators regardless
of the size of the signal set M. The savings in implementation is possible because
any arbitrary integrable waveform set can be expressed as a linear combination
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of orthogonal waveforms, as shown in Section 3.2.2. Figure 3.12 illustrates such
a demodulator. The received signal, r(t), can be expressed by combining Equa- ,
tions (3.50) and .(3.51) as follows:

G G
r(t) _ ~ (cos ~t cos wot + sin ~~ sin wot) + n(t) ~= 1— T ~ M (3.52j

where ~Z = 2~rilM, and n(t) is a zero-mean white Gaussian noise process. Notice
in Figure 3.12 that there are only two reference waveforms or basis functions,
~,,(t) — 2/T cos wot for the upper correlator and ~,2(t) = 2/T sin wo t for the
lower correlator. The upper correlator computes

X = Jz
r(t)~1(t) dt (3.53)

0

and the lower correlator computes

Y = ~o~ r(t)~rz(t) dt (3.54)

~ ~ (t) = T cos wpt

(' T
X = J r(t) ~~ (t) dt

~ T O0

~ Com ute
r(t) 2 arctan Y P Choose s~(t)

,y z (t) _ ~ sin wpt )( I N; — 0~ I smallest

~ T

• 0 r T

Y = J r(t)~2(t) dt
0

Figure 3.12 Demodulator for MPSK signals.

Figure 3.13 illustrates that the computation of the received phase angle ~ can be
accomplished by computing the arctan of Y/X, where X can be thought of as the
in-phase component of the received signal, Y is the quadrature component, and
~ is a noisy estimate of the transmitted fit. In other words, the upper correlator
of Figure 3.12 produces an output X, the magnitude of the in-phase projection of
the vector r, and the lower correlator produces an output Y, the magnitude of the
quadrature projection of the vector r. The X and Y outputs of the correlators feed
into the block marked arctan (YlX). The resulting value of the angle ~ is compared
with each of the stored prototype phase angles, ~; . The demodulator selects the
~; that is closest to the angle ~. In other words, the demodulator computes
~ ~; — ~ ~ for each of the ~~ prototypes and chooses the ~~ yielding the smallest
output.
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3.5.4 Coherent Detection of FSK
>4)

FSK modulation is characterized by the information being contained in the fre-
quency of the carrier. A typical set of FSK signal waveforms was described in
Equation (3.27) as

s;(t) _ ~ cos (wit + ~) ~ c 1 c T. M

where E is the energy content of sl(t) over each symbol duration T, and (wZ+ I — wi)
is typically assumed to be an integral multiple of ~r/T. The phase term, ~, is an
arbitrary constant and can be set equal to zero. Assuming that the basis func-

s;(t} tions ~1(t), ~2(t), . . . , ~,.,(t) form an orthonormal set, the most useful form for
{~,~(t)} is shown below.

2
~r,(t) _ ~ cos co,t j = 1, . . . , N (3.55)

where, as before, the amplitude 2/~' normalizes the expected output of the de-
tector. From Equation (3.5) we can write

z
be (~
the ar; = J T cos (unit) ~ T cos w;t dt (3.56)

0
end
for Therefore,
of ~E for i = j

the a`' {0 otherwise (3.57)
;ed
red In other words, the ith prototype signal vector is located on the ith coordinate
the axis at a displacement ~/E' from the origin of the signal space. In this scheme,

tes for the general M-ary case, the distance between any two prototype signal vectors

est sr and s; is constant:

d(S~, s,) = II Sr — S; II = ~ for i ~ j (3.58)
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Figure 3.14 Partitioning the signal space fora 3-ary FSK signal.

Figure 3.14 illustrates the prototype signal vectors and the decision regions
fora 3-ary (M = 3) coherently detected FSK system. As in the PSK case, the
signal space is partitioned into M distinct regions, each containing one prototype
signal vector; here, because the decision region is three-dimensional, the decision
boundaries are planes instead of lines. The optimum decision rule is to decide
that the transmitted signal belongs to the class whose index corresponds to the
region where the received signal is found. In Figure 3.14, a received signal vector
r is shown in region 2. Using the decision rule stated above, the detector classifies
r as signal s2. Since the noise is a Gaussian random vector, there is a probability
greater than zero that r could have been produced by some signal other than s2.
For example, if the transmitter had sent s2, then r would be the sum of signal
plus noise, s2 + nQ, and the decision to choose s2 is correct; however, if the
transmitter had actually sent s3, then r would be the sum of signal plus noise, s3
+ nb and the decision to select sz is an error. The error performance of coherently
detected FSK systems is treated in Section 3.7.3.

3.6 NONCOHERENT DETECTION

3.6.1 Detection of Differential PSf(

Decision
boundary

The name differentidl PSK (DPSK) sometimes needs clarification because two
separate aspects of the modulation/demodulation format are being referred to: the
encoding procedure and the detection procedure. The term differential encoding
refers to the procedure of encoding the data differentially; that is, the presence
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of a binary one or zero is manifested by the symbol's similarity or difference when
compared to the preceding symbol. The term differentially coherent detection of
differentially encoded PSK, the usual meaning of DPSK, refers to a detection
scheme often classified as noncoherent because it does not require a reference
in phase with the received carrier. Sometimes, differentially encoded PSK is co-
herently detected. This will be discussed in Section 3.7.2.

With noncoherent systems, no attempt is made to determine the actual value
of the phase of the incoming signal. Therefore, if the transmitted waveform is

st(t) _ ~ cos [coa t + 8i(t)) ~ ~ t ~ T
T i= 1, . . . ,M

the received signal can be characterized by

r(t) _ ~ cos [c,~ot + 8;(t) + a] + n(t) ~ ~ t c T (3.59)T i= 1, . . . ,M

where c~ is an arbitrary constant and is typically assumed to be a random variable
uniformly distributed between zero and 2~r, and n(t) is an AWGN process.

For coherent detection, matched filters (or their equivalents) are used; for
noncoherent detection, this is not possible because the matched filter output is a
function of the unknown angle a. However, if we assume that a varies slowly
relative to two period dines (2T), the phase difference between two successive
waveforms, 8;(Tl) and 8k(TZ) is independent of a, that is,

[Bk(7'z) + al — [B.i(7'i) + al = Bk~7'z) — Bi~7'i) _ ~r~7'a) (3.60)

The basis for differentially coherent detection of differentially encoded PSK
(DPSK) is as follows. The carrier phase of the previous signaling interval can be
used as a phase reference for demodulation. Its use requires differential encoding
of the message sequence at the transmitter since the information is carried by the
difference in phase between two successive waveforms. '1'o send the ith message
(i = 1, 2, . . . , M), the present signal waveform must have its phase advanced
by ~~ = 2~rilM radians over the previous waveform. The detector, in general,
calculates the coordinates of the incoming signal by correlating it with locally
generated waveforms such as 2/T cos Wot and 2/T sin wot. The detector then
measures the angle between the currently received signal vector. and the previ-
ously received signal vector, as illustrated in Figure 3.15.

In general, DPSK signaling performs less efficiently than PSK, because the
errors in DPSK tend to propagate (to adjacent symbol times) due to the correlation
between signaling waveforms. One way of viewing the difference between PSK
and DPSK is that the former compares the received signal with a clean reference;
in the latter, however, two noisy signals are compared with each other. VVe might
say that there is twice as much noise associated with DPSK signaling compared
to PSK signaling. Consequently, as a first guess, we might estimate that DPSK
manifests a degradation of approximately 3 dB when compared with PSK; this
degradation decreases rapidly with increasing signal-to-noise ratio. The trade-off
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for this performance loss is reduced system complexity. The error performance

for the detection of DPSK is treated. in Section 3.7.5.

3.6.2 Binary Differential PSK Example

The essence of differentially coherent detection in DPSK is that the identity of

the data is inferred from the changes in phase from symbol to symbol.. Therefore,

since the data are detected by differentially examining the waveform, the trans-

mitted waveform would first be encoded in a differential fashion. Figure 3.16a

illustrates a differential encoding of a binary message data stream, m(k), where

k is the sample time index. The differential encoding starts (third row in the figure)

with the first bit of the code bit sequence, c(k = 0), chosen arbitrarily (here taken

to be a one). Then the sequence of encoded bits, c(k), can, in general, be encoded

in one of two ways:
c(k) = c(k — 1) O+ m(k) (3.61)

or
c(k) = c(k — 1) O+ m(k) (3.62)

where the symbol O+  represents modulo-2 addition (defined in Section 2.12.3) and

the overbar denotes complement. In Figure 3.16a the differentially encoded mes-

sage was obtained by using Equation (3.62). In other words, the present code bit,

c(k), is a one if the message bit, m(k), and the prior coded bit, c(k — 1), are the

same, otherwise, c(k) is a zero. The fourth row translates the coded bit sequence,

c(k), into the phase shift sequence, 8(k), where a one is characterized by a 180°

phase shift, and a zero is characterized by a 0° phase shift.
Figure 3.16b illustrates the binary DPSK detection scheme in block diagram

form. Notice that the basic product integrator of Figure 3.7 is the essence of this

detection process; as with coherent PSK, we are still attempting to correlate a

received signal with a reference. The interesting difference here is that the ref-

erence signal is simply a delayed version of the received signal. In other words,

during each symbol time, we are matching a received symbol with the prior symbol

and looking for a correlation or an anticorrelation (180° out of phase).
Consider the received signal with phase shift sequence, 8(k), entering the
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Sample index, k 0 1 2 3 4 5 6 7 8 9 10

Information 1 1 0 1 0 1 1 0 0 1message, m~k)

Differentially
encoded message 1 1 1 0 0 1 1 1 0 1 1
( first bit arbitrary), c(k)

Corresponding
phase shift, B(k)

n n ~ 0 0 ~r ~r ~r 0 ~r ~r

( a)

Decision( Tr(t) s (t)J stage0
Coherent detector

Delay
T Reference

Detected message, m~k) 1 1 0 1 0 1 1 0 0 1

( b)

2/T cos c~pt

r(t)
JO

Decision ~ S~~t)
stage

Delay (____ J
T _~

(c)

Figure 3.16 Differential PSK (DPSK). (a) Differential encoding. (b) Differentially
coherent detection. (c) Optimum differentially coherent detection.

detector of Figure 3.16b, in the absence of noise. The phase, 8(k = 1), is matched
with 8(k = U); they have the same value, ~r; hence the first bit of the detected
output is m(k = 1) = 1. Then 8(k = 2) is matched with 8(k = 1); again they have
the same value, and m(k = 2) = 1. Then A(k = 3) is matched with A(k = 2);
they are different, so that m(k = 3) = 0, and so on.

It must be pointed out that the detector in Figure 3.16b is suboptimum [5]
in the sense of error performance. The optimum differential detector for DPSK
requires a reference carrier in frequency but not necessarily in phase with the
received carrier. Hence the optimum differential detector is shown in Figure 3.16c
[6]. Its performance is treated in Section 3.7.5.
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3.6.3 Noncoherent Detection of FSK

A detector for the noncoherent detection of FSK waveforms described by Equa-
tion (3.27) can be implemented with correlators similar to those shown in Figure
3.7. However, the hardware must be configured as an energy detector, without
exploiting phase measurements. For this reason, the noncoherent detector typi-
cally requires twice as many channel branches as the coherent detector. Figure
3.17 illustrates the in-phase (I) and quadrature (Q) channels used to detect a binary
FSK (BFSK) signal set noncoherently. Notice that the upper two branches are
configured to detect the signal with frequency wl; the reference signals are

2/T cos w,t for the I branch and 2/T sin wlt for the Q branch. Similarly, the
lower two branches arc configured to detect the signal with frequency wz; the
reference signals are 2/T cos wet for the I branch and 2/T sin wzt for the Q
branch. Imagine that the received signal r(t), by chance alone, is exactly of the
form cos w, t + n(t); that is, the phase is exactly zero, and thus the signal com-
ponent of the received signal exactly matches the top-branch reference signal with
regard to frequency and phase. In that event, the product integrator of the top
branch should yield the maximum output. The second branch should yield a near-
zero output (integrated zero-mean noise) since its reference signal 2/T sin co, t

I and Q energy Test statistic
Correlation Squaring summation and decision

r—'~---, r ' —, r—

ZIT COS W ~ t

1 Channel r T Z1 (T~ Z1

J , . ,20
2/T sin w~ t

Z~ -F Z2

2
Q channel f T z21T) ZZJ ~ . ~2

a
Decision

+ Z ~-~-~ stage
rlt)—~ 2/T cos w2t ~ H~

zIT1 c 0
I channel • T Z3~T) z2 HZJ 3( . ,2

0

2/T sin w2 t ~
z3 + z4

Q channel r T Z4 ~T) Z4

J ( . ,20
Figure 3.17 Quadrature receiver.
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is orthogonal to the signal component of r(t). The third and fourth branches should
also yield near-zero outputs since their w2 reference signals are also orthogonal
to the signal component of r(t).

Now, imagine a different scenario; suppose that by chance alone, the re-
ceived signal, r(t), is of the form sin colt + n(t). In that event, the second branch
in Figure 3.17 should yield the maximum output, while the others should yield
near-zero outputs. In actual practice, the most likely scenario is that r•(t) is of the
form cos (colt + ~) + n(t); that is, the incoming signal will partially correlate
with the cos w, t reference and partially correlate with the sin cal t reference. Now
it should be obvious why a noncoherent quadrature receiver uses twice as many
branches as a coherent one; the receiver knows nothing about the incoming sig-
nal's phase. The receiver essentially resolves the signal into an I component and
a Q (90° out of phase) component. In Figure 3.17 the blocks following the product
integrators perform a squaring operation to prevent the appearance of any negative
values. Then for each of the signal types in the set (two in this binary example)
the energy from the I and Q channels is added. The final stage forms the test
statistic, z(T), and chooses the signal with frequency cal or the signal with fre-
quency w2 depending on which pair of energy detectors yielded the maximum
output.

Another possible implementation for noncoherent FSK detection uses band-
pass filters, centered at f; = c~;/2~r, with bandwidth, Wf = 1/T, followed by
envelope detectors,. as shown in Figure 3.18. An envelope detector consists of a
rectifier and a loes-pass filter. The detectors are matched to the signal envelopes
and not to the signals themselves. The phase of the carrier is of no importance
in defining the envelope; hence no phase information is used. In the case of binary
FSK, the decision as to whether a one or a zero was transmitted is made on the
basis of which of two envelope detectors has the largest amplitude at the moment
of measurement. Similarly, for a multiple frequency shift keying (MFSK) system,
the decision as to which of M signals was transmitted is made on the basis of
which of the M envelope detectors has the maximum output.

Even though the envelope detector block diagram of Figure 3.181ooks func-

Bandpass filters centered
at f~ with bandwidth Wf = 1/T

t)
Z~~T~

Filter Envelope
f ~ detector

Filter Envelo e Z2 ~ T) Decisionr;It) = s;(t) + n(t1 f p s;(t)
? detector stage

FiIM r Envelope 
ZM (T)

f detector

Figure 3.18 Noncoherent detection of FSK lasing envelope detectors.
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tionally simpYer than the quadrature receiver of Figure 3.17, the use of filters
usually results in the envelope detector design having greater weight and cost
than the quadrature receiver. Quadrature receivers can be implemented digitally;
thus, with the advent of large-scale integrated (LSI) circuits, they are often the
preferred choice for noncoherent detectors. The detector in Figure 3.18 can also
be implemented digitally by performing discrete Fourier transformations instead
of using analog filters, but such a design is usually more complex than a digital
implementation of the quadrature receiver.

3.6.4 Minimum Required Tone Spacing
for Noncoherent Orthogonal FSK Signaling

Frequency shift keying is usually implemented as orthogonal signaling where each
tone (sinusoid) in the signal set cannot interfere with any of the other tones. In
order for the signal set to be orthogonal, any pair of adjacent tones must have a
frequency separation of a multiple of 1/T hertz. A tone with frequency f;, that is
switched on for a symbol duration of T seconds and then switched off, such as
the FSK tone described in Equation (3.27), can be analytically described by

sZ(t) _ (cos 2~rf Zt) rect (tl~

jl for—T/2<_t~Tl2where rect (t1T) = t 0 for ~ t) > T/2

The Fourier transform of s;(t), from Table A.1, is

{s1(t)} = T sinc (f — f~)T

where the sine function is as defined in Equation (1.39). The spectra of two such
adjacent tones, tone 1 with frequency f, and tone 2 with frequency f2, are plotted
in Figure 3.19.

In order that the two tones not interfere with each other during detection,
the peak of the spectrum of tone 1 must coincide with one of the zero crossings
of the spectrum of tone 2 and similarly, the peak of the tone 2 spectrum must
coincide with one of the zero crossings of the tone 1 spectrum. The frequency
difference between the center of the spectral main lobe and the first zero crossing
represents the minimum required spacing. This corresponds to a minimum tone
separation of 1/T hertz.

Example 3.3 Minimum Tone Spacing for Noncoherent Orthogonal FSK
Consider two waveforms cos (2~rf,t + ~) and cos 2~rrf2t to be used for noncoherent
FSK signaling, where f, > f2. The symbol rate is equal to 1/T symbols/s, where T
is the symbol duration and ~ is a constant arbitrary angle from 0 to 2~rr.

(a) Prove that the minimum tone spacing for noncoherently detected orthogonal FSK
signaling is 1/T.

(b) What is the minimum tone spacing for coherently detected orthogonal FSK
signaling?
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Figure 3.19 Minimum tone spacing for noncoherently detected orthogonal FSK
signaling.

Solution

(a) For the two waveforms to be orthogonal, they must fulfill the orthogonality
constraint of Equation (3.2):

JT cos (2~rf,t + ~) cos 2~rf2 t dt — 0
0

(3.63)

Using the basic trigonometric identities shown in Equations (D.6) and (D.1) to
(D.3), we can write Equation (3,63) as

cos ~ f T cos Z~rflt cos Z~rf2t dt
0

r
— sin ~ J sin 2-rrflt cos 2~rf2 t dt = 0

0
(3.64)

~~s ~ JT ~~os Z~r~fi + f2>t +cos Z~r~f, — f2,r~ dt0

— sin ~ JI [sin 2~r(f, + f2)t +sin 2~r(f, — f2)r] dr = 00 (3.65)

sm 2~r(f ~ + f2)t sin 2~r(f 1 — fz)t T
cos ~ [ 2.~(.f i + .f z) + 2~r(.f ~ — .f z) ~ o

+ sin ~
cos 2~r(f 1 + f2)t + cos 2~r(f 1 — .fz)tl T = 0 (3.66)

sm 2~r(f, + fz)T sin 2~r(f, — fz)Tcos ~ [ 2,~(.f ~ + .f2) + 2~r(.f ~ — .f2)

+ sin
cos 2~r(fl + fz)T — 1 + cos 2~r(f, — fz)T — 1 = 0 (3.67)
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We can assume that f , + f 2» 1 and can thus make the following approximation:

sin 2~r(f, + f2)T ~ cos 2~r(f, + ,fz)T = 0 (3.68)
2~(.f~ + .fz) 2~(f~ + fz)

Then, combining Equations (3.67) and (3.68), we can write

cos ~ sin 2~r(f 1 — f 2)T + sin ~ .[cos 2~rr(f I — ,fz)T — 1] ~ 0 (3.69)

Note that for arbitrary ~, the terms in Equation (3.69) can sum to zero only when
sin 2~rr(f, — f2)T = 0, and simultaneously cos 2a(fl — f2)T = 1.

Since

sin x = 0 for x =nor

and

cos x = 1 for x = 2k~r

where n and k are integers, then both sin x = 0 and cos x = 1 occur simul-
taneously when n = 2k. From Equation (3.69), for arbitrary ~, we can therefore
write: -

2~r(f ~ — f2)T = 2k~r

.f ~ - .f2 = T 
(3.70)

Thus the minimum tone spacing for noncoherent FSK signaling occurs for k = 1:

.fi — .f2=T (3.71)

(b) To find the minimum tone spacing for coherent FSK, where the angle ~ is zero,
we simply rewrite Equation (3.69) with ~ = 0, which gives

sin 2~r(f, — f2)T — 0 (3.72)

.f ~ — .f 2 = 2T (3.73)

Thus the minimum tone spacing for coherent FSK signaling occurs for n = 1 as
follows:

.f ~ — .fz — 2T 
(3.74)

Therefore, for the same symbol rate, coherently detected FSK can occupy less
bandwidth than noncoherently detected FSK and still retain orthogonal signaling.
We can say that coherent FSK is more bandwidth efficient. The subject of band-
width efficiency is addressed in greater detail in Chapter 7.
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3.7 ERROR PERFORMANCE FOR BINARY SYSTEMS

3.7.1 Probability of Bit Error
for Coherently Detected BPSK

An important measure of performance used for comparing digital modulation
schemes is the probability of error, PE. For the correlator or matched filter de-
tector, the calculations for obtaining PE can be viewed geometrically (see Figure
3.6). They involve finding the probability that given a particular transmitted signal
vector, say sl, the noise vector, n, will give rise to a received signal falling outside
region 1. The probability of the detector making an incorrect decision is termed
the probability of symbol error (PE). It is often convenient to specify system
performance by the probability of hit error (PB), even when decisions are made
on the basis of symbols for which M > 2. The relationship between Pa and PE is
treated in Section 3.9.3 for orthogonal signaling and in Section 3.9.4 for multiple
phase signaling.

For convenience, this section is restricted to the coherent detection of BPSK
modulation. For this case the symbol error probability is the bit error probability.
Assume that the signals are equally likely. Also. assume that when signal, s~(t)
(i = 1, 2), is transmitted, the received signal, r(t), is equal to s;(t) + n(t), where
n(t) is an AWGN process. The antipodal signals, s,(t) and s2(t), can be charac-
terized in cone-dimensional signal space as described in Section 3.5.1, where

s~(t) _ ~/E~~~t)
1: 0<_t<T (3.75)

sz~t) _ — ~~~(r)
71)

The decision stage of the detector will choose the sl(t) with the largest correlator
ro, output z,(:1~, or in this case of equal-energy antipodal signals, the detector, using

the decision rule in Equation (3.39a), decides

72) sl(t) if z(7~ > yo = 0 (3.76)sz(t) otherwise
73)

Two types of errors can be made, as shown in Figure 3.9: The first type of
as error takes place if signal s,(t) is transmitted but the noise is such that the detector

measures a negative value for z(T) and chooses hypothesis H2 [the hypothesis
that signal s2(t) was sent]. The second type of error takes place if signal sz(t) is
transmitted but the detector measures a positive value for z(T) and chooses hy-

74~ pothesis H~ [the hypothesis that signal s~(t) was sent].
To calculate the probability of a bit error, Pa, for this binary minimum error

ass detector, we use the relationships developed in Section 2.9, starting with Equation

~d-
Ps = P~HZ~s~)~'~Si) + I'~H~Isz)P~Sz) X3.77)
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For the case when the a priori probabilities are equal, that is, P(sl) = P(s2) = 2,
we can write

PH = ?P(~z~s,) + zP(H~~s2) (3.78)

Because of the symmetry of the probability density functions in Figure 3.9, we
can also write

PB = P(HZ~sI) = P(II,~s2) (3.79)

Thus the probability of a bit error, PR, is numerically equal to the area under the
"tail" of either pdf, p(z~sl) or p(z~s2), that falls on the "incorrect" side of the
threshold. We can therefore compute PB by integrating p(z~s1) between the limits
— ~ and rya, or as shown below, by integrating p(z~s2) between the limits yo and ~.

Pa P(z~sz) dz (3.80)
yo = cu, + uz)iz

where the likelihoods, p(z~s~) (i = 1, 2), are Gaussian functions with mean value,
a;, and the optimum threshold, yo, as shown in Section B.3.1, is equal to
(al + a2)/2. The area-related probability of bit error, PB, is seen to be the shaded
area in Figure 3.9. It is shown in Section B.3.2 that Equation (3:80) reduces to

/ 2 /
PB = J~ 1 exp I — 21 du = Q I a12~~a2~ (3.81)

(a i — az)~2Qo 27~ \ l

where Qo is the standard deviation of the noise out of the correlator. The function,
Q(x), called the complementary er•f•or function or co-error function, is defined as

z
Q(X) _ ~~ Jm exp ~ — 2 ~ du (3.82)x

and is described in greater detail in Sections 2.9 and B.3.2.
For equal-energy antipodal signaling, such as the BPSK format in Equation

(3.75), the receiver output signal components are a, = 1/Eb when sl(t) is sent
and a2 = —1/Eb when s2(t) is sent, where Eb i~ the signal energy per binary
symbol. For AWGN we can replace the noise variance, moo, out of the correlator
with Noll (see Appendix C), so that we can rewrite Equation (3.81) as follows:

2

PB = f 1 exp ~ — 2 ~ du (3.83)J ~2  2~r

= Q Nb (3.84)
0

This result could also have been obtained by noting that the energy difference,
Ed, between the antipodal signal vectors, sl and s2, with amplitudes of ±~/Eb,
as seen in Figure 3.20a, can be computed as the square of the distance between

~;~
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the heads of the antipodal vectors, or in terms of the waveforms

Ed = ~~ [s,(t) — sz(t)]~ dt (3.85)0

= JI s?(t) dt + J T s2(t) dt — 2 J T sl(t)s2(t) dt (3.86)
0 0 0

Assuming equal energy signals,

EU = J T si(t) dt = f T s2(t) dt (3.87)
0 0

L'd = ZL'b - ~L{bP = ZEb~l - P~ ~3.gg~

where

1 T
p = Eb Jo sl(t)s2(t) dt (3.89)

is the time cross-correlation coefficient and Eb is the average energy of the binary
signals, sl(t) and s2(t). The correlation coefficient, p, is a measure of similarity
between the two signals, sl(t) and s2(t), such that

— 1 <— p —< 1 (3.90)

In terms of signal vectors, the cross-correlation coefficient can be written

p =cos 8 (3.91)

where 8 is the angle between the two signal vectors sl and s2 (see Figure 3.6). In
Equation (2.62), we developed an expression for the probability of bit error in
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terms of the energy difference between the two binary signals, as follows

Ed
PB -=Q 2ND

Substituting Equation (3.88) into Equation (3.92), we get

,~,~

(3.92)

PB = Q Eb(~ f~) (3.93)
0

For p = 1 (or 8 = 0), the signals are perfectly correlated (identical). For p = —1

(or 8 = ~r), the signals are anticorrelated (antipodal). Since the binary PSK signals

are antipodal, we can set p = —1, and Equation (3.93) is then identical to Equation

(3.84) .
Note that the bit error probability, PB, for the coherent detection of bandpass

antipodal signals, as seen in Equation (3.~4), is the same as the PB for the matched

filter detection of baseband antipodal (bipolar) signals in Equation (2.67).

3.7.1.1 The Basic SNR Parameter for Digital Communication Systems

The parameter EblNo in Equation (3.84) can be expressed as the ratio of

average signal power to average noise power, S/N (or SNR). By introducing the

signal bandwidth W, we can write the following identities, showing the relationship

between EblNo and SNR for binary signals.

F.b ST S SW S W

Nn No RNa RNo W N (R 
(3.94)

where
S =average modulating signal power

T =bit time duration

R = llT =bit rate

N = No W

Analysis similar to that used for developing PB in Equations (3.84) and (3.93)

is used in finding the PB expressions for other types of modulation. Figure 3.21

illustrates the "waterfall-like" shape of most probability of error curves in the

field of digital communications. The curve describes a system's error probability

performance in terms of available Eb/No. For Eb/N~ ~ xo, PE <— Po. The dimen-

sionless ratio E6lNo is a standard quality measure for digital communications

system performance, Note that optimum digital signal detection implies a cor-

relator (or matched filter) implementation, in which case the signal bandwidth is

equal to the noise bandwidth. Often we are faced with a system model for which

this is not the .case; in practice, we include a factor in the required EblNo that

accounts for such suboptimal detection performance. Required EbIIVo can be con-

sidered ametric that characterizes the performance of one system versus another;
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the smaller the required Eb/No, the more efficient is the system modulation and
detection process fora given probability of error. Figure 3.22 is a plot comparing
the bit error probability, PB, of several binary modulation/demodulation types.
The PB for coherent detection of PSK, as shown in Equation (3.84), is plotted as
the leftmost PB curve.

Example 3.4 Bit Error Probability for BPSK Signaling

Find the bit error probability for a BPSK system with a bit rate of 1 Mbit/s. The
received waveforms, sl(t) = A cos wot and sz(t) _ -A cos wot, are coherently de-
tected with a matched Ater. The value of A is 10 mV. Assume that the single-sided
noise power spectral density is No - 10-11 W/Hz and that signal power and energy
per bit are normalized relative to a 1-~ load.

Solr.~tion

A= 2Tb = 10-Z V T=R= 10-6 s

Thus

z
Eb = 2 T = 5 x 10 -11 J and No = 3.16

PB =Q Nb =Q(3.16)
0

Using Table B.1 or Equation (2.43), we obtain

PB =8 x 10-4

Sec. 3.7 Error Performance for Binary Systems 159
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Figure 3.22 Bit error probability for
Eb/Np (dB) several types of binary systems.

3.7.2 Probability of Bit Error for
Coherently Detected Differentially Encoded PSK

Channel waveforms sometimes experience inversion; for example, when using a
coherent reference generated by aphase-locked loop (see Chapter 8), one may
have phase ambiguity. If the carrier phase were reversed in a DPSK modulation
application, what would be the effect on the message? The only effect would be
an error in the bit during which inversion occurred or the bit just after inversion,
since the message information is encoded in the similarity or difference between
adjacent symbols. The similarity or difference quality remains unchanged if the
carrier is inverted. Sometimes, systems are differentially encoded and coherently
detected, simply to avoid these phase ambiguities.

The probability of bit error for coherently detected, differentially encoded
PSK is given by [7]

PB = 2Q N b 1— Q N b 1 (3.95)
o ~ o J
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This relationship is plotted in Figure 3.22. Notice that there is a slight deg-
radation of error performance compared to the coherent detection of PSK. This
is due to the differential encoding since any single detection error results in tv~~o
decision errors. Error performance for the. more popular differentially coherent
detection (DPSK) is covered in Section 3.7.5.

3.7.3 Probability of Bit Error
for Coherently Detected FSK

Equations (3.83) and (3.84) describe the probability of bit error for coherent an-
tipodal signals. A more general treatment for binary coherent signals (not limited
to antipodal signals) yields the following equation for PB [8]:

PB = 1 ~_ exp ~ — 2 ~ du (3.96)
2'iT ~ C — P EblNo

From Equation (3.91), p =cos 8 is the time cross-correlation coefficient between
signal sl(t) and s2(t), where 8 is the angle between signal vectors sl and s2 (see
Figure 3.6). For antipodal signals such as BPSK, 8 = ~rr, thus p = —1.

For orthogonal signals such as binary FSK (BFSK), 8 = ~r/2, since the s,
and s2 vectors are perpendicular to each other; thus p = 0, as can be verified
with Equation (3.89), and Equation (3.96) can then be written

o~ 2

PB = ~~ J~ exp (— 21 du = Q N (3.97)
/ o

where the co-error function, Q(x), is defined in Equation (3.82). The result could
also have been obtained by noting that the energy difference between the or-
thogonal signal vectors, s, and s2, with amplitudes of ~/Eb, as shown in Figure
3.20b, can be computed as the square of the distance between the heads of the
orthogonal vectors, to be Ed = 2E~. Using this result in Equation (3.92) yields
the same result as in Equation (3.97). Equation (3.97) is plotted in Figure 3.22
(coherent detection of FSK). If we compare Equation (3.97) with Equation (3.84);
we can see that 3 dB (a factor of 2) more EblNo is required for BFSK to provide
the same performance as BPSK. It should not be surprising that the performance
of BFSK signaling is worse than BPSK signaling, since for a given signal power,
orthogonal vectors are spaced closer to one another_ than antipodal vectors.

The bit error probability, PB, for the coherent detection of orthogonal band-
pass signals as seen in Equation (3.97) is the same as the PB for the matched filter
detection of baseband unipolar signals in Equation (2.64). As mentioned earlier,
the details of on—off keying (OOK) are not treated in this book. However, it is
worth noting that the PB, described in Equation (3.97), is also identical to the
error performance for the coherent detection of OOK signaling (matched Ater
reception) .
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i
3.7.4 Probability of Bit Error for

Noncoherently Detected FSK

Consider the equally likely binary FSK signal set, {s,(t)}, defined in Equation
(3.27) as follows:

s~(t) _ ~ Cos (wit + ~) 0 ~ t <_ T, i = 1, 2

The phase term, ~, is unknown and assumed constant. The detector is charac-
terized by M = 2 channels of bandpass filters and envelope detectors, as shown
in Figure 3.18. The input. to the detector consists of the received signal, r(t) _
st(t) + n(t), where n(t) is a white Gaussian noise process with two-sided power
spectral density, No/2. Assume that s,(t) and s2(t) are separated in frequency
sufficiently that they have negligible overlap. We start the probability of error,
PB, computation the same way that we did for coherently detected PSK, with
Equation (3.7~).

Ps = 2P(HZ~S~) + ZP(H~~SZ) (3.98)
1 T 1 z
2 Jo p(z~sl) dz + 2 Jo P(z~sz) dz

For the binary case, the test statistic, z(T), is defined by zi(T) — za(T). Assume
that the bandwidth of the filter, Wf, is 1/T, so that the envelope of the FSK signal
is (approximately) preserved at the filter output. If there was no noise at the
receiver, the value of z(T) = 2E/T when st(t) is sent, and z(T) _ — 2E/T
when s2(t) is sent. Because of this symmetry, the optimum threshold is yo = 0.
The pdf p(z~s~) is similar to p(z~sz); that is,

P~z~si) = P~ — z~sa) X3.99)

Therefore, we can write
T

Pa = J p(z~s2) dz (3.100)0
or

Pa = P(zl > z2~s2) (3.101)

where zl and z2 denote the outputs z~(T) and zz(T) from the envelope detectors
shown in Figure 3.1~. For the case where the tone sZ(t) =cos wet is sent, such
that r(t) = sz(t) + n(t), the output, zi(T), is a Gaussian noise random variable
only; it has no signal component. A Gaussian distribution into the nonlinear en-
velope detector yields a Rayleigh distribution at the output [8], so that

a
z2 exp (— zi21 zi ~ 0

p(z~IS2) _ °~° ` 2a~°~ (3.102)
o zi < o
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where Q~ is the noise at the filter output. On the other hand, zz(T) has a Rician
distribution, since the input to the lower envelope detector is a sinusoid plus noise
[S]. The pdf, P(zz~s2), is written as

~ z2 eX _ ~~2 + A 2) I~ z2A zz — ~
— °~o p 2a~o ~ \ ~~ ~ 3.103p(zz~s2) ( )

0 zz<0

where A = 2E/T, and as before, Qo is the noise at the filter output. The function
Io(x), known as the modified zero-order Bessel function of the first kind [9], is
defined as

1 2~,
Io(x) = 2~ Jo exp (x cos 8) d8 (3.104)

When s2(t) is transmitted, the receiver makes an error whenever the en-
velope sample z~(T) obtained from the upper channel (due to noise alone) exceeds
the envelope sample zz(7~ obtained from the lower channel (due to signal plus
noise). Thus the probability of this error can be obtained by integrating p(zl~sz)
with respect to zi from zz to infinity, and then averaging over all possible values
of z2. That is,

PB = P(zi > za~sz)

— Jo~P~zz~sa) JZ P~zi~sa) dzi J dz2 X3.105)
C

f °° z2 (zi + A2) zaA ( zl zi 1
— J o ~o exp ~ — 2~0 ] I~ (a o) [ J zz cro exp ~ 2~0~ dz ~ J dza (3.106)

where A = 2E/T and where the inner integral is the conditional probability of
an error for a fixed value of z2> given that s2(t) was sent, and the outer integral
averages this conditional probability over all possible values of z2. This integral
can be evaluated [10], to yield

2

PB = 2 exp ~ — 4 0l (3.107)
J

Using Equation (1.19), we can express the filter output noise, Qo, as

Qo = 2 ~ 2°~ Wf (3.108)

where Gn(f) = No/2 and Wfis the filter bandwidth. Thus Equation (3.107) becomes
a

P~ = 2 exp ~ — 4No W ~ 
L3.109)

f

Equation (3.109) indicates that the error performance depends on the bandpass
filter bandwidth, and that PB becomes smaller as Wf is decreased. The result is
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valid only when the intersymbol interference (ISI) is negligible. The minimum Wf
allowed (i.e.; for no ISI) is obtained from Equation (2.77) with the ~Itei~ roll-off
factor r = 0. Thus Wf = R bitsls = UT, and we can write Equation (3.109) as

a
PB = l exp - ̀4 T (3.110)2 ( 4No) E

= 2 exp (- 2Nol (3.111)
\ I

where Eh = (1/2)A ZTis the energy per bit. When comparing the error performance
of noncohcrcnt FSK with coherent FSK (see Figure 3.22), it is seen that for the
same PB, noncoherent FSK requires approximately 1 dB more Eb/No than that
for coherent FSK (for PB < 10-4). The noncoherent receiver is easier to imple-
ment, since coherent reference signals need not be generated. Therefore, almost
all FSK receivers use noncoherent detection. It can be seen in the following
section that when comparing noncoherent FSK to noncoherent DPSK, the same
3-dB difference occurs as for the comparison between coherent FSK and coherent
PSK.

As mentioned earlier, the details of on-off keying (OOK) are not treated in
this book. However, it is worth noting that the bit error probability, PB, described
in Equation (3.111) is identical to the PB for the noncoherent detection of OOK
signaling.

3.7.5 Probability of Bit Error for DPSK

Let us define a BPSK signal set

.xl~t~ _ ~ COS ~cupZ -f- ~~ O ~ t ~ T
T (3.112)

xz(t) _ ~ cos (wat + ~ ± ~rr) 0 ~ t ~ T
T

A characteristic of DPSK is that there are no fixed decision regions in the signal
space. Instead, the decision is based on the phase difference between successively
received signals. Then for DPSK signaling we are really transmitting each bit with
the binary signal pair

si(t) _ ~xi~ xi) or ~x2, Xz) ~ ~ t ~ 2T (3.113)
sz(t) _ (xi, xz) or (tea, xi) 4 ~ t ~ 21'

where (x~, x,) (i, j = 1, 2) denotes x;(t) followed by x;(t) defined in Equation
(3.112). The first T seconds of each waveform are actually the last T seconds of
the previous waveform. Note that s,(t) and s2(t) can each have either of two

164 Bandpass Modulation and Demodulation Chap. 3

Petitioner's Exhibit 1003 
Page 184



r

t

t

possible forms and that x,(t) and xz(t) are antipodal signals. Thus the correlation
between sl(t) and s2(t) for any combination of forms can be written as

2T
z(2Z~ _ ~o s,(t)sz(t) dt

(3.114)

— JoT [xi~t)l2 dt — JoT [xi~t)l2 dt = 0

Therefore, pairs of DPSK signals can be represented as orthogonal signals 2T
seconds long. Detection could correspond to noncoherent envelope detection with
four channels matched to each of the possible envelope outputs, as shown in
Figure 3.23a. Since the two envelope detectors representing each symbol are
negatives of each other, the envelope sample of each will be the same. Hence we
can implement the detector as a single channel for s,(t) matched to either (x,, x,)
or (x2, x2), and a single channel for s2(t) matched to either (x; , x2) or (x2, x,), as
shown in Figure 3.23b. The DPSK detector is therefore reduced to a standard
two-channel noncoherent detector. In reality, the Ater can be matched to the
difference signal so that only one channel is necessary. For orthogonal signals,
this operates with the bit error probability in Equation (3.111). Since the DPSK
signals have a bit interval of 2T, the s;(t) signals defined in Equation (3.113) have

r(tl s;itl

(a)

Filters matched to
signal envelopes

x 1~ x t

rat) 
Decision S~~t~stage

x1, X2

(b)

Figure 3.23 DPSK detection. (a) Four-
channel differentially coherent
detection of binary DPSK. (b)
Equivalent ewo-channel detector for
binary DPSK.
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twice the energy of a signal defined over asingle-symbol duration. Thus we may
write PB as

PB = 2 exp I — ~o I (3.115)
l

Equation (3.115) is seen plotted in Figure 3.22, designated as differentially co-
herent detection of differentially encoded PSK, or simply DPSK. This expression
is valid for the optimum DPSK detector shown in Figure 3.16c. For the detector
shown in Figure 3.16b, the error probability will be slightly inferior to that given
in Equation (3.115) [5). When comparing the errUr performance of Equation (3.115)
with that of coherent PSK (see Figure 3.22), it is seen that for the same Pte, DPSK
requires approximately 1 dB more EblNo than does BPSK (for Pa ~ 10-4). It is
easier to implement a DPSK system than a PSK system, since the DPSK receiver
does not need phase synchronization. For this reason, DPSK, although less ef-
ficient than PSK, is sometimes the preferred choice between the two.

3.7.6 Comparison of fit Error Performance for Various
Modulation Types

The PB expressions for the best known of the binary modulation schemes dis-
cussed above are listed in Table 3.1 and are illustrated in Figure 3.22. For PB =
10-4, it can be seen that there is approximately a 4-dB difference between the
best (coherent PSK) and the worst (noncoherent FSK) that were discussed here.
In some cases, 4 dB is a small price to pay for the implementation simplicity
gained in going from coherent PSK to noncoherent FSK; however, for other cases,
even a 1-dB saving is worthwhile. There are other considerations besides P~ and
system complexity; for example, in some cases (such as a randomly fading chan-
nel), a noncoherent system is more desirable because there may be difficulty in
establishing and maintaining a coherent reference. Signals that can withstand
significant degradation before their ability to be detected is affected are clearly
desirable in military and space applications.

TABLE 3.1 Probability of Error for Selected
Binary Modulation Schemes

Modulation PB

Coherent PSK 2Eh
Q N~

Noncoherent DPSK 1 E~\p ~ _
2 eX Nol

Coherent FSK Eb
Q No

Noncoherent FSK 1 1 Eblp ~
2 eX 2 No~

~~~
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3,~ y1-~,RY SIGNALING AND PERFORMANCE

3.8.1 Ideal Probability of Bit Error Performance

The typical probability of error versus Eb/No curve was shown to have a waterfall-
like shape in Figure 3.21. The probability of bit error (PB) characteristics ofvarious
binary modulation schemes in AWGN also display this shape, as shown in Figure
3.22. What should an ideal PB versus Eb/No curve look like? Figure 3.24 displays
the ideal characteristic as the Shannon limit. The limit represents the threshold
EblNo below which reliable communication cannot be maintained. Shannon's
work is described in greater detail in Chapter 7.

We can describe the ideal curve in Figure 3.24 as follows. For all. values of
Eb/No above the Shannon limit, PB is zero. Once Eb/No is reduced below the
Shannon limit, PB degrades to the worst-case value of 2. (Note that PB = 1 is not
the worst case for binary signaling, since that value is just as good as PB = 0; if
the probability of making a bit error is 100%, the bit stream could simply be
inverted to retrieve the correct data.) It should be clear, by comparing the typical
PB curve with the ideal one in Figure 3.24 that the large arrow in the figure
describes the desired direction of movement to achieve improved PB performance.

PB

~ ~2 ~ / Typical Pg versus Eb/N~ curve

Direction of
movement for PB

improvement

Ideal
curve

0 p ~ Eh/Np Id6)

Shannon

f^a~/ limit Figure 3.24 Ideal Pp versus EblNo
— 1.6 d B curve.

3.8.2 M-ary Signaling

Let us review M-ary signaling. The processor considers k bits at a time. It instructs
the modulator to produce one of M = 2k waveforms; binary signaling is the special
case where k = 1. Does M-ary signaling improve or degrade performance? Be
careful with your answer—the question is a loaded one. Figure 3.25. illustrates
the probability of hit error, PB(M), versus Eb/No for coherently detected orthog-
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Figure 3.25 Bit error probability for coherently detected M-ary orthogonal sig-
naling. (Reprinted from W. C. Lindsey and M. K. Simon, Telecommunication
Systems Engineering, Prentice-Mall, Inc., Englewood Cliffs, N.J., 1973, courtesy
of W. C. Lindsey and- Marvin K. Simon.)

oval M-ary signaling over a Gaussian channel. Figure 3.26 similarly illustrates
PB(M) versus Eb/No for coherently detected multiple phase M-ary signaling over
a Gaussian channel. In which direction do the curves move as the value of k (or
M) increases? From Figure 3.24 we know the directions of curve movement for
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Figure 3.26 Bit error probaUility for
coherently detected multiple phase
signaling.

improved and degraded error performance. In Figure 3.25, as k increases, the
curves move in the direction of improved error performance. In Figure 3.26, as
k increases, the curves move in the direction of degraded error performance. Such
movement tells us that M-ary signaling produces improved error performance
with orthogonal signaling and degraded error performance with multiple phase
signaling. Can that be true? Why would anyone ever use multiple phase PSK
signaling if it provides degraded error performance compared to binary PSK sig-
naling? It is true, and many systems do use multiple phase signaling. The question,
as stated, is loaded because it implies that error probability versus Eb/No is the
only performance criterion; there are many others (e.g., bandwidth, power,
throughput, complexity), but in Figures 3.25 and 3.26, error performance is the
characteristic that stands out explicitly.

A performance characteristic that is not explicitly seen in Figures 3.25 and
3..26 is the required system bandwidth. For the curves characterizing M-ary or-
thogonal signals in Figure 3.25, as k increases, the required bandwidth also in-
creases. For the M-ary multiple phase curves in Figure 3.26, as k increases, a
larger bit rate can be transmitted within the same bandwidth. In other words, for
a fixed data rate, the required bandwidth is decreased. Therefore, both the or-

s thogonal and multiple phase error performance curves tell us that M-ary signaling
r represents a vehicle for performing a system trade-off. In the case of orthogonal
r signaling, error performance improvement can be achieved at the expense of
r bandwidth. In the case of multiple phase signaling, bandwidth performance can
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be achieved at the expense of error performance. Error performance versus band-
width performance, a fundamental communications trade-off, is treated in greater
detail in Chapter 7.

3.8.3 Vectorial View of MPSK Signaling

Figure 3.27 illustrates MPSK signal sets for M = 2, 4, 8, and 16. In Figure 3.27a
we see the binary (k = 1, M = 2) antipodal vectors s, and s2 positioned 180°
apart. The decision boundary is drawn so as to partition the signal space into two
regions. On the figure is also shown a noise vector n equal in magnitude to s, .
The figure establishes the magnitude and orientation of the minimum energy noise
vector that would cause the detector to make a symbol error.

In Figure 3.27b we see the 4-ary (k = 2, M = 4) vectors positioned 90°
apart. The decision boundaries (only one line is drawn) divide the signal space
into four regions. Again a noise vector n is drawn (from the head of a signal
vector, normal to the closest decision boundary) to illustrate the minimum energy
noise vector that would cause the detector to make a symbol error. Notice that
the minimum energy noise vector of Figure 3.27b is smaller than that of Figure
3.27a, illustrating that the 4-ary system is more vulnerable to noise than the 2-
ary system (signal energy being equal for each case). As we move on to Figure
3.27c for the 8-ary case and Figure 3.27d for the 16-ary case, it should be clear
that for multiple phase signaling, as M increases, we are crowding more signal
vectors into the signal plane. As the vectors are moved closer together, a smaller
amount of noise energy is required to cause an error.

Figure 3.27 adds some insight as to why the curves of Figure 3.26 behave
as they do as k is increased. Figure 3.27 also provides some insight into a basic
trade-off in multiple phase signaling. Crowding more signal vectors into the signal
space is tantamount to increasing the data rate without increasing the system
bandwidth (the vectors are all conned to the same plane). In other words, we
have increased the bandwidth utilization at the expense of error performance.
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Look at Figure 3.27d, where the error performance is worse than any of the other
examples in Figure 3.27. How might we "buy back" the degraded error perform-
ance; that is, what can we trade-off so that the distance between neighboring
signal vectors in Figure 3.27d is increased to that in Figure 3.27a? We can increase
the signal strength (make the signal vectors larger) until the minimum distance
from the head of a signal vector to a decision line equals the length of the noise
vector in Figure 3.27a. Therefore, in a multiple phase system, as M is increased,
we can either achieve improved bandwidth performance at the expense of error
performance, ar if we increase the EblNo so that the error probability is not de-
graded, we can achieve improved bandwidth performance at the expense of in-
creasing EblNo.

3.x.4 BPSK and QPSK Have the Same Bit Error Probability

In Equation (3.94) we stated the general relationship between Eb/No and S/No for
binary transmission, as follows:

Eb S , 1 (3.116)
No No R

where S is the average signal power and R is the bit rate. A BPSK signal with
the available Eb/No found from Equation (3.116) will perform with a P~ that can
be read from the k = 1 curve in Figure 3.26. QPSK can be characterized as two
orthogonal BPSK channels. The QPSK bit stream is usually partitioned into an
even and odd (I and Q) stream; each new stream modulates an orthogonal com-
ponent of the carrier at half the bit rate of the original stream. The I stream
modulates the cos coot term and the Q stream modulates the sin coot term. If the
magnitude of the original QPSK vector has the value A, the magnitude of the I
and Q component vectors each has a value of A/~, as shown in Figure 3.28.
Thus, each of the quadrature BPSK signals has half of the average power of the
original QPSK signal. Hence if the original QPSK waveform has a bit rate of R
bits/s and an average power of S watts, the quadrature partitioning results in each.

sin wpt

—~.
A/~

Quadratu re
BPSK

cos c.~pt
Figure 3.28 In-phase and quadraLure
BPSK components of QPSK signaling.
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of the BPSK waveforms having a hit rate of Rl2 bits/s and an average power of
S/2 watts.

Therefore, the EblNo characterizing each of the orthogonal BPSK channels,
comprising the QPSK signal, is equivalent to the Eb/No in Equation (3.116) since
it can be written as

Eb Sl2 W S 1
No No (Rl2) No (R) 

(3.117)

. Thus each of the orthogonal BPSK channels, and hence the composite QPSK
signal, is characterized by the same E~INo and hence the same PB performance
as a BPSK signal. The natural orthogonality of the 90° phase shifts between ad-
jacent QPSK symbols results in the bit error probabilities being equal for both
BPSK and QPSK signaling. It is important to note that the symbol error proba-
bilities are not equal for BPSK and QPSK signaling. The relationship between
bit error probability and symbol error probability is treated in Sections 3.9.3 and
3.9.4.

3.8.5 Vectorial View of MFSK Signaling

In Section 3.8.3, Figure 3.27 provides some insight as to why the error perform-
ance of MPSK signaling degrades ask (or M) increases. It would be useful to
have a similar vectorial illustration for the error performance of MFSK signaling
as seen in the curves of Figure 3.25. Since the MFSK signal space is characterized
by M mutually perpendicular axes, we can only conveniently illustrate the cases,
M = 2 and M = 3. In Figure 3.29a we sce the binary orthogonal vectors sl and
s2 positioned 90° apart. The decision boundary is drawn so as to partition the
signal space into two regions. On the figure is also shown a noise vector n, which
represents the minimum noise vector that would cause the detector to make an
error.

Decision SZ
line Region 2 ~'~~---------
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In Figure 3.29b we see a 3-ary signal space with axes positioned 90° apart.
Here decision planes partition the signal space into three regions. Noise vectors
n are shown added to each of the prototype signal vectors s1, s2, and s3; each
noise vector illustrates an example of the minimum noise energy that would cause
the detector to make a symbol error. The minimum noise energy vectors in Figure
3.29b are the same length as the noise vector in Figure 3.29a. In Section 3.5.4
we stated that the distance between any two prototype signal vectors s; and s; in
an M-ary orthogonal space is constant. It follows that the minimum distance
between a prototype signal vector and any of the decision boundaries remains
fixed as M increases. Unlike the case of MPSK signaling, where adding new
signals to the signal set makes the signals vulnerable to smaller noise vectors,
here in the. case of MFSK signaling, adding new signals to the signal set does not
make the signals vulnerable to smaller noise vectors.

It would be convenient to illustrate the point by drawing higher-dimensional
orthogonal spaces, but of course this is not possible. We can only use our "mind's
eye" to understand that increasing the signal set; M, by adding additional axes,
where each new axis is mutually perpendicular to all the others, does not crowd
the signal set more closely together; thus a transmitted signal from an orthogonal
set is not more vulnerable to a noise vector when the set is increased in size. In
fact, we see from Figure 3.25 that as k increases, the bit error performance
improves.

Understanding the error pe~-f~ormance improvement of orthogonal signaling,
as illustrated in Figure 3.25, is facilitated by comparing the probability of symbol
error (P~) versus unnormalized SNR, with PE versus Eb/No. Figure 3.30 repre-
sents aset of PE performance curves plotted against unnormalized SNR for co-
herent FSK signaling. Here we see that PE degrades as M is increased. Didn't
we say that an orthogonal signal is not made more vulnerable to a given noise
vector, as the orthogonal sct is increased in size? It is correct that for orthogonal
signaling, with a given 5NR it takes afixed-size noise vector to perturb a trans-
mitted signal into an en~or region; the signals do not become vulnerable to smaller
noise vectors as M increases. However, as M increases., more neighboring de-
cision regions are introduced; thus the number of ways in which a symbol error
can be made increases. Figure 3.30 reflects the degradation in P~ versus unnor-
malized SNR as M is increased; there are (M — 1) ways to make an error. Ex-
amining performance under the condition of a fixed SNR (as M increases) is not
very useful for digital communications. A ffixed SNR means a fixed amount of
energy per symbol; thus as M increases, there is a fixed amount of energy to be
apportioned over a larger number of bits, or there is less energy per bit. The most
useful way of comparing one digital system with another is on the basis of bit-
normalized SNR or Eb/No. The error performance improvement with increasing
M, seen in Figure 3.25, manifests itself only when error probability is plotted
against EblNo. For this case, as M increases, the required EblNo (to meet a given
error probability) is reduced for a fixed SNR; therefore, we need to map the Figure
3.30 plot into a new ptot, similar to Figure 3.25, where the abscissa represents
EblNo instead of SNR. Figure 3.31 illustrates such a mapping; it demonstrates
that curves manifesting degraded PE with increasing M (such as Figure 3.30) are
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Figure 3.30 Symbol error probability versus SNR for coherent FSK signaling.
(From Bureau of Standards, Technical Note 167, March 1963.) (Reprinted from
Central Radio Propagation Laboratory Technical Note 167, March 25, 1963,
Fig. 1, p. 5, courtesy of National Bureau of Standards.)

transformed into curves manifesting improved PE with increasing M. The basic
mapping relationship is expressed in Equation (3.94):

Eb S W
No N R
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Figure 3.31 Mapping PE versus SNR into PE versus Eb/No for orthogonal sig-
naling. (a) Unnormalized. (b) Normalized.

where W is the detection bandwidth. Since

R _ log2 M _ k
T 7'

where T is the symbol duration, we can then write

Eb S WT S WT
No N (loge M) N (k) 

(3.118)

For FSK signaling the detection bandwidth, Win hertz, is typically equal in value
to the symbol rate 1/T, in other words, WT = 1. Therefore,

Eb S 1
No ~ N (k) 

(3.119)

Figure 3.31 illustrates the mapping from P~ versus SNR to PE versus EblNo for
coherently detected NI-ary orthogonal signaling. In Figure 3.31a, on the k = 1
curve is shown an operating point corresponding to PE = 10- ~ and SNR = 10 dB.
On the k = 10 curve is shown an operating point at the same P~ = 10-3 but
with SNR = 13 dB (approximate values taken from Figure 3.30). Here we clearly
see the degradation in error performance as k increases. Consider the same k = 1
and k = 10 cases mapped onto the Figure 3.31b plane, where the abscissa is
EblNo. The k = 1 case looks exactly the same as it does in Figure 3.31a. But for
the k = 10 case, the required Eb/No is obtained from Equation (3.119) as follows:
EblNo = 20(io) = 2 (3 dB), thus showing the error performance improvement as ',
k is increased. In digital communication systems, error performance is almost
always considered in terms of EblNo, since such a measurement makes fora
meaningful comparison between one system's perforrriance and another. There-
fore, the curves of Figures 3.30 and 3.31a are hardly ever seen.
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3.9 SYMBOL ERROR PERFORMANCE FOR
M-ARY SYSTEMS (M > 2)

3.9.1 Probability of Symboi Error for MPSK

For large energy-to-noise ratios, the symbol error performance, PE(M), for equally
likely coherently detected ~I-ary PSK signaling can be expressed [9] as follows:

PE(M) -= 2Q ~2ES sin ~ (3.120)
No M

where PE(M) is the probability of symbol error, ~S = Eb(log2 M) is the energy
per symbol, and M = 2k is the size of the symbol set. The PE(M) performance
curves for coherently detected MPSK signaling are plotted versus E~/No in Figure
3.32.

The symbol error performance for differentially coherent detection of M-

1

M=2k

1~1
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Figure 3.32 Symbol error probability
for coherently detected multiple phase
signaling. (Reprinted from W. C.
Lindsey and M. K. Simon,
Telecomrnu~zication Systems
Engineering, Prentice-Hall, Inc.,

-5 0 5 10 15 20 25 30 Englewood Cliffs, N.J., 1973, courtesy
of W. C. Lindsey and Marvin K.

` Eb/Np (d6) Simon.)
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ary DPSK (for large ESINo) is similarly expressed [9] as

PE(M) ~ 2Q N' sin ? (3.121)
o ~M

3.9.2 Probability of Symbol Error for MFSK

The symbol error performance PE(M), for equally likely coherently detected M-
ary orthogonal signaling can be upper bounded [7] as follows:

PE(M) ~ (M — 1)Q N (3.122)
0

where ES = E~(log2 M) is the energy per symbol and M is the size of the symbol
set. The PE(M) performance curves for- coherently detected M-ary orthogonal
signaling are plotted versus EblNo in Figure 3.33.

The symbol error performance for equally likely noncoherently detected M-
ary orthogonal signaling is [11]

M / /
PE(M) = M exp ~ — Nol ~ (— ly (M~ exp ( N. o~ (3.123)

l , \ ~~l
where

i
(3.124)

M M.
J j! (M — j)!

is the standard binomial coefficient yielding the number of ways in which j symbols
out of M may be in error. Note that for the binary case, Equation (3.123) reduces
to

Pa = 2 exp ~ — 2No) (3.125)

which is the same result as that described by Equation (3.111). The PE(M) per-
formance curves for noncoherently detected M-ary orthogonal signaling are plot-
ted versus EblNo in Figure 3.34. If we compare this noncoherent orthogonal PE(NI)
performance with the corresponding PE(M) results for the coherent detection of
orthogonal signals in Figure 3.33, it can be seen that fork > 7, there is a negligible
difference. An upper bound for coherent as well as noncoherent reception of
orthogonal signals is [11]

PE(M) < M 2 1 exp ~ — 2Na) (3.126)

where ES is the energy per symbol and M is the size of the symbol set.
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Figure 3.33 Symbol error probability for coherently detected M-ary orthogonal
signaling. (Reprinted from W. C. Lindsey and M. K. Simon, Telecommunication
Systems Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973, courtesy
of W. C. Lindsey and Marvin K. Simon.)
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rigure 3.34 Symbol error probability for noncoherently detected M-ary orthog-
onal signaling. (Reprinted from W. C. Lindsey and M. K. Simon, Telecorrzmun-
ication Systems Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973,
courtesy of W. C. Lindsey and Marvin K. Simon.)
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3.9.3 Bit Error Probability versus Symbol Error Probability
for Orthogonal Signals

It can be shown [11] that the relationship between probability of bit error (I'B)
and probability of symbol error (PE) for an M-ary orthogonal signal set is

PB 2k - ~ Ml2PE - ~k ~ = M _ ~ (3.127)

In the limit as k increases we get

PB 1
lim—=-i~->~ PL 2

A simple example will make Equation (3.127) intuitively acceptable. Figure
3.35 describes an octal message set. The message symbols (assumed equally
likely) are to be transmitted on orthogonal waveforms such as FSK. With or-
thogonal signaling, a decision error willl transform the correct signal into any one
of the (M - 1) incorrect signals with equal probability. The example in Figure
3.35 indicates that the symbol comprised of bits 0 1 1 was transmitted. An error
might occur in any one of the other 2'` - 1 = 7 symbols, with equal probability.
Notice that just because a symbol error is made does not mean that all the bits
within the symbol will be in error. In Figure 3.35, if the receiver decides that the
transmitted symbol is the bottom one listed, comprised of bits 1 1 1, two of the
three transmitted symbol bits will be correct; only one bit will be in error. It
should be apparent that PB will be less than or equal to PE.

Consider any of the bit-position columns in Figure 3.35. For each bit position,
the digit occupancy consists of 50% ones and 50% zeros. In the context of the
first bit position (rightmost column) and the transmitted symbol, how many ways
are there to cause an error to the binary one? There are 2k-' = 4 ways (four
places where zeros appear in the column) that a bit error can be made; it is the
same for each of the columns. The final relationship, PBIPE, for orthogonal sig-

eat
position

0 0 0

0 0 1

0 1 0
Transmitted 0 1 1symbol

1 0 0

1 0 1

1 1 0

1 1 1
Figure 3.35 Example of PB versus PF.
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paling, in Equation (3.127), is obtained by forming the following ratio: the number
of ways that a bit error can be made (2k- ') divided by the number of ways that
a symbol error can he made (2~ — 1). For the rigure 3.35 example, PH/PE _
4/7.

3.9.4 Bit Error Probability versus Symbol Error Probability
for Multiple Phase Signaling

e
Y

e
e
~r
~.
:s
e
e
[t

i,
~e
~s
it
ie
~-

Transmit
symbo

(a)

For the case of MPSK signaling, PB is less than or equal to PE, just as in the case
of MFSK signaling. However, there is an important difference. For orthogonal
signaling, selecting any one of the (M — 1) erroneous symbols is equally likely.
In the case of MPSK signaling, each signal vector is not equidistant from all of
the others.. Figure 3.36a illustrates an 8-ary decision space with the pie-shaped
regions denoted by the 8-ary symbols in binary notation. If symbol (0 1 1) is
transmitted, it is clear that should an error occur, the transmitted signal will most
likely be mistaken for one of its closest neighbors, (0 1 0) or (1 0 0). The like-
lihood that (0 1 1) would get mistaken for (1 1 1) is relatively remote. If the
assignment of bits to symbols follows the binary sequence shown in the symbol
decision regions of Figure 3.36a, some symbol errors will usually result in two
or more bit errors, even with a large signal-to-noise ratio.

For nonorthogonal schemes, such as MPSK signaling, one often uses a bi-
nary-to M-ary code such that binary sequences corresponding to adjacent symbols
(phase shifts) differ in only one bit position; thus when an M-ary symbol error
occurs, it is more likely that only one of the k input bids will be in error. A code
that provides this desirable feature is the Gray code [9]; Figure 3.36b illustrates
the bit-to-symbol assignment using a Gray code for 8-ary PSK. Here it can be
seen that neighboring symbols differ from one another in only one bit position.
Therefore, the occurrence of a multibii error, for. a given symbol error, is much

F.

. 3

Tigure 3.36 Binary-coded versus Gray-coded decision regions in an MPSK signal
space. (a) Binary coded. (b) Gray coded.
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reduced compared to the uncoded binary assignment seen in Figure 3.36a. Uti-
lizing the Gray code assignment, it can be shown [7] that

PE PE (for PE « 1) (3.128)PB ~ loge M k

Recall from Section 3.8.4 that BPSK and QPSK signaling have the same hit error
probability. Here in Equation (3.128) we verify that they do not have the same
symbol error probability. For BPSK, PE = PB. However, for QPSK, PE = 2P8.

An exact closed-form expression for the bit error probability, PR, of 8-ary
PSK, together with tight upper and lower bounds on PB for M-ary PSK with larger
M, may be found in Lee [12].

3.9.5 Effects of Intersymbol Interference

In the previous sections and in Chapter 2 we have treated the detection of signals
in the presence of AWGN under the assumption that there is no intersymbol
interference (ISI). Thus the analysis has been straightforward, since the zero-
mean AWGN process is characterized by its variance alone. In practice we find
that ISI is often a second source of interference which must be accounted for.
As explained in Section 2.11, ISI can be generated by the use of bandlimiting
filters at the transmitter output, in the channel, or at the receiver input. The result
of this additional interference is to degrade the error probabilities for coherent as
well as for noncoherent reception. Analysis involving ISI in addition to AWGN
is much more complicated since it involves the impulse response of the channel.
The subject will not be treated here; however, for those readers interested in the
details of the analysis, References [13-18] should prove interesting.

3.10 CONCLUSION

We have catalogued some basic bandpass digital modulation formats, particularly
phase shift keying (PSK) and frequency shift keying (FSK). We have considered
a geometric view of signal vectors and noise vectors; particularly antipodal and
orthogonal signal sets. This geometric view allows us to consider the detection
problem in the light- of an orthogonal signal space and signal regions. This view
of the space, and the effect- of noise vectors causing transmitted signals to be
received in the incorrect region, facilitates the understanding of the detection
problem and the performance of various modulation and demodulation techniques.
In Chapter 7 we reconsider the subjects of modulation and demodulation, and we
investigate some bandwidth-efficient modulation techniques.
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PROBLEMS

3.1. Determine whether or not s,(t) and s2(t) are orthogonal over the interval (-1.ST2
t < 1.STz), where s,(t) =cos (2~f,t + ~,), sZ(t) =cos (2~.f2t + ~2), and f2 =

1/TZ for the following cases.
(a) .f ~ _ .f z and ~ ~ _ ~2
(1b) .fi = 3.fi and ~i = ~a
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Y

(~) .f~ = 2f2 and ~i = ~z
(d) .f~ _ ~f2 and ~~ _ ~z
(e) f, = f2 and ~, = d~2 + ~r12
(~ .f~ _ .fz and ~~ _ ~z + '~

3.2. (a) Show that the three functions illustrated in Figure P3.1 are pairwise orthogonal
over the interval (— 2, 2).

(b) Determine the value of the constant, A, that makes the set of functions in part
(a) an orthonormal set.

(c) Express the following waveform, x(t), in terms of the orthonormal set of part
(b)•

x(t) _ ~ 1 for 0 ~ t ~ 2
0 otherwise

iii (t)

A ---

t

— A — -
-2 —1 0 1 Z

~2 (t)

A -----

t

— A — -
-2 -1 0 1 2

Figure P3.1

3.3. Consider the functions

~U31t1

t

— A — -
-2 —1 0 1 2

~i~t) = exp (— ItI) and ~2 = 1 — A exp ~ -2 ItI)

Determine the constant, A, such that ~,,(t) and ~r2(t) are orthogonal over the interval
( — ~, ~).

3.4. Find the expected number of bit errors made in one day by the following continuously
operating coherent BPSK receiver. The data rate is 5000 bits/s. 'The input digital
waveforms are s,(t) = A cos wot and s2(t) _ —A cos wot, where A = i mV and the
single-sided noise power spectral density is No = 10-" W/Hz. Assume that signal
power and energy per bit are normalized relative to a 1-,~ resistive load.

3.5. A continuously operating coherent BPSK system makes errors at the average rate
of 100 errors per day. The data rate is 1000 bits/s. The single-sided noise power
spectral density is No = 10-10 W/Hz.
(a) If the system is ergodic, what is the average bit error probability?
(b) If the value of received average signal power per bit is adjusted to be 10-6 W,

will this received power be adequate to maintain the error probability found in
Part (a)?

3.6. If a system's main performance criterion is bit error probability, which of the fol-
lowing two modulation schemes would be selected for an AWGN channel? Show
computations.

Binary coherent orthogonal FSK with EbIN~ = 12 dB

Binary noncoherent orthogonal FSK with EblNo = 14 dB

3.7. If a system's main performance criterion is bit error probability, which of the fol-
lowing two modulation schemes would be selected for an AWGN channel? Show
computations.
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Binary noncoherent orthogonal FSK with Eh/N~, = 13 dB

Binary coherent PSK with EblNo - 8 dB

3.8. The bit stream

1010101 1 110101010000111 1

is to be transmitted using DPSK modulation. Show four different differentially en-
coded sequences that can represent the data sequence above, and explain the al-
gorithm that generated each.

3.9. (a) Calculate the minimum required bandwidth for a noncoherently detected or-
thogonal binary FSK system. The higher-frequency signaling tone is 1 MHz and
the symbol duration is 1 ms.

(b) What is the minimum required bandwidth for a noncoherent IvIFSK system hav-
ing the same symbol duration`?

3.10. Consider a BPSK system with equally likely waveforms s,(t) =cos wot and s2(t) _
-cos coot. At the matched Ater detector, the si(t) reference is cos (wot + ~), where
~ is a phase error. Calculate the value of the phase error that would increase the
probability of bit error from 2.0 x 10-3 to 2.5 x ]0- ~ relative to no phase error for
an AWGN channel

3.11. Find the probability of bit error, PB, for the coherent matched filter detection of the
equally likely binary FSK signals

s,(t) = 0.5 cos 2000~rt

sz(t) - O.S cos 2020~rt

where the two-sided AWGN power spectral density is No/2 = 0.0001. Assume that
the symbol duration is T = 0.01 s.

3.12. Find the optimum (minimum probability of error) threshold, o, for detecting the
equally likely signals sl(t) = 2E/T cos wot and s2(t) _ ~/ZE/T cos (wot + ~r) in
AWGN, using a correlator receiver as shown in .Figure 3.7b. Assume a reference
signal of ~r,(t) _ ~ cos coot.

3.13. A system using matched filter detection of equally likely BPSK signals, s,(t) _
2ElT cos Wot and s2(t) = 2ElT cos (wot + ~r), operates in AWGN with a received

EbJNo of 6.8 dB. Assume that E{z(T)} _ ±~/E.
(a) Find the minimum probability of bit error, Pa, for this signal set and E~INo.
(b) If the decision threshold is ry = O.1~E, find PB.
(c) The threshold of y = 0.1~ is optimum for a particular set of a priori proba-

bilities, P(sl) and P(s2). Find the values of these probabilities (refer- to Section
B.2).

3.14. A binary source with equally likely symbols controls the switch position in a trans-
initter operating over an AWGN channel, as shown in Figure P3.2. The noise has
two-sided spectral density No/2. Assume antipodal signals of time duration T seconds
and energy E joules. The system clock produces a clock pulse every T seconds, and
the binary source rate is 1/T bits/s. Under normal operation, the switch is up when
the source produces a binary zero, and it is down when the source produces a binary
one. However, the switch is faulty. With probability, p, it will be thrown in the
wrong direction during a given T-second interval. The presence of a switch error
during any interval is independent of the presence of a switch error at any other
time. Assume that E{z(7~} _ ±~.
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z.,~:z
1.;j..Jr

~~

Binary Waveform ~ n(t)source generator
sZ(tl ~ ti

~ Correlator ZIT)receiver
r(t)Waveform

~ Received
Clock generator signals ~ (t) Faulty

switch

Figure P3.2

(a) Sketch the conditional probability functions, p(z~sl) and p(z~s2).
(b) The correlator receiver observes r(t) in the interval (0, 7~. Sketch the block

diagram of an optimum receiver for minimizing the bit error probability when it
is known that the switch is faulty with probability, p.

(c) Which one of the following two systems would you prefer to have?

p =0.1 and 
No-~

p =0 and No =7dB

3.15. (a) Consider a 16-ary PSK system with symbol error probability, PE = 10-5. A Gray
code is used for the symbol to bit assignment. What is the approximate bit error
probability?

(b) Repeat part (a) fora 16-ary orthogonal FSK system.
3.16. Consider a coherent orthogonal MFSK system with M = 8 having the equally likely

waveforms s;(t) = A cos 2~rf;t, i = 1, . . . , M, 0 <_ t <_ T, where T = 0.2 ms. The
c-eceived carrier amplitude, A, is 1 mV, and the two-saded AWGN spectral density,
No/2, is 10-'I W/Hz. Calculate the probability of bit error, PB.

3.17. A bit error probability of PB = 10-3 is required for a system with a data rate of 100
kbits/s to be transmitted over an AWGN channel using coherently detected MPSK
modulation. The system bandwidth is SO kHz. Assume that the filter has aroll-off
characteristic of r = 1 and that a Gray code is used for the symbol to bit assignment.
(a) What ESINo is required for the specified PB?
(b) What EblNo is required?

3.18. A differentially coherent MPSK system operates over an AWGN channel with an
Eb/No of 10 dB. What is the symbol error probability for M = 8 and equally likely
symbols?

3.19. If a system's main performance criterion is bit error probability, which of the fol-
lowing two modulation schemes would be selected for transmission over an AWGN
channel? Show computations.

coherent 8-ary orthogonal FSK with No = 8 dB

coherent 8-ary PSK with No = 13 dB

(Assume that a Gray code is used for the MPSK symbol-to-bit assignment.)
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Channel coding refers to the class of signal transformations designed to improve
communications performance by enabling the transmitted signals to better with-
stand the effects of various channel impairments, such as noise, fading, and jam-
ming. Usually, the goal of channel coding is to reduce the probability of bit error
(PB), or to reduce the required EblNo, at the cost of expending more bandwidth
than would otherwise be necessary. The exceptions to this are the combined
modulation and coding techniques for bandlimited channels described in Chapter
7. Why do you suppose channel coding has become such a popular way to provide
performance improvement? The use of large-scale integrated (LSI) circuits has
made it possible to provide as much as an 8-dB performance improvement through
coding, at much less cost than through the use of other methods such as higher-
power transmitters or larger antennas.

5.1 VVA1/EFORIlII CODING

Channel coding can be partitioned into two study areas, waveform (or signal
design) coding and structured sequences (or structured redundancy), as shown in
Figure 5. L Waveform coding deals with transforming waveforms into ``better
waveforms," to make the detection process less subject to errors. Structured
sequences deals with transforming data sequences into "better sequences," hav-
ing structured redundancy (redundant bits). The redundant bits can then be used
for the detection and correction of errors. The encoding procedure provides the
coded signal (whether waveforms or structured sequences) with better distance

246 Channel Coding: Part 1 Chap. 5

Petitioner's Exhibit 1003 
Page 208



e

r
h

r
e
s
h

Formatting/Source Coding

Character coding Differential PCM (DPCM)

Sampling Block coding

Quantization Synthesis/analysis coding

Pulse code modulation (PCM~ Redundancy reducing coding

Channel Coding

Wavetorm Structured
Sequences

', M-ary signaling
Antipodal Block
Orthogonal Convolutional
Biorthogonal
Transorthogonal

Spreading

Direct sequencing
(DS)

Frequency hopping
(FHj

Time hopping (TH)
Hybrids

Bandpass Modulation/Demodulation

Coherent Noncoherent

Phase shift
keying (PSK)

Frequency shift
keying (FSK)

Amplitude shift
keying (ASK)

Continuous phase
modulation
(CPM)

Hybrids

Synchronization

Carrier
synchronization

Subcarrier
synchronization

Symbol
synchronization

Frame
synchronization

Network
synchronization

Encryption

Block
Data stream

Figure 5.1 Basic digital communication transformations.

Differential phase
shift keying
(DPSK)

Frequency shift
keying (FSK)

Amplitude shift
keying (ASKS

Continuous phase
modulation
(CPM)

Hybrids

Multiplexing/Multiple Acces

Frequency division
(FDM/FDMA)

Time division
(TDM/TDMA)

Code division
(CDM/CDMA)

Space division
(SDMA)

Polarization division
(PDMA)

properties than those of their uncoded counterparts. First, we consider some
waveform coding techniques. Then, starting with Section 5.3, we treat the more
popular subject of structured sequences.

5.1.1 Antipodal and Orthogonal Signals
~l
n
r

3

Antipodal and orthogonal signals have been discussed in Chapter 3; we shall repeat
the paramount features of these signal classes. The example shown in Figure 5.2
illustrates the analytical representation, s,(t) _ —sz(t) =sin c,>ot, 0 < t —< T, of
an antipodal signal set, as well as its waveform representation and its vectorial
representation. What are some synonyms or analogies that are used to describe
antipodal signals? We can say that such signals are mirror images, or that one
signal is the negative of the other, or that the signals are 18Q° apart.
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Analytic Waveform
representation representation

s ~ (t)

T
s ~ (t) =sin wpt p t

s2(t)

s21t1 = -sin wat p — T t

0 <t<_T

Vector
representation

<_ _ d = 2 ~ — __-~

~~ fit)
s2 s~

Figure 5.2 Example of an antipodal signal set.

The example shown in Figure 5.3 illustrates an orthogonal signal set. We
know that sin x and cos x are orthogonal functions; similarly, sin mx and sin nx,
where m and n are integers and rr2 ~ n, are also orthogonal functions (see Section
A.2.1). In Figure 5.3 we have chosen a pulse waveform example because it pro-
vides aclearer picture of orthogonality. The pulse waveform is described by

s ~(t) _ ~(t) ~ ~ t ~ T (5.1)
S2~t~ _ ~1 ~1 — 2~ ~ C t C 1

where p(t) is a pulse with duration T = T/2, and T is the symbol duration. In
general, a set of equal energy signals s;(t), where i = 1, 2, . . . , M, constitutes

Analytic Waveform Vector

5 ~ (t)

s ~ (t) = p(t1 0 T ~ T t
2

s2 (t)

s2(t)=p(t - 2) 0 T T T t

2
0 <t_<_T

i

J~2(t) ~~~~

~ - E2

~~

~ ~~ (t)

Figure 5.3 Example of a binary orthogonal signal set.
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t

i
j an orthogonal set, if, and only if,

~ 1 ~~ 1 for i = j
E o 0 otherwise

where z,, is called the cross-correlation coefficient, and where E is the signal
energy expressed as

T
0

The waveform representation in Figure 5.3 illustrates that si(t) and sz(t) cannot
interfere with one another because they are disjoint in time. The vectorial repre-
sentation illustrates the perpendicular relationship between orthogonal signals.
Let us consider some alternative descriptions of orthogonal signals or vectors.
We can say that the inner or dot product of two different vectors in the orthogonal
set must equal zero. In a two- or three-dimensional Cartesian coordinate space,
we can describe the signal vectors, geometrically, as being mutually perpendicular

~ to one another. We can say that one vector has zero projection on the. other, ox
., that one signal cannot interfere with the other, since they do not share the same

signal space.
~ _

5.1.2 M-ary Signaling

~ With M-ary signaling, the processor accepts k data bits at a time. It then instructs
the modulator to produce one of M = 2.k waveforms; binary signaling is the special
case where k = 1. Fork > 1, M-ary signaling, as described in Chapter 3, can be
regarded as a waveform coding procedure. ror orthogonal signaling (e.g., MFSK),

n as k increases there will be an improved error performance or a reduction in
S required EblNo, at the expense of bandwidth; nonorthogonal signaling (e.g.,

MPSK) can manifest improved bandwidth efficiency, at the expense of degraded
error performance or an increase in required EblNo. By the appropriate choice
of signal waveforms, one can trade off error performance versus Eb/No perform-
ance, versus bandwidth efficiency. Such trade-offs are treated in greater detail in
Chapter 7.

5.1.3 Waveform Coding with Correlation Deflection

Waveform coding procedures transform a waveform set into an improved wave-
form set. The improved waveform set can then be used to provide improved PB
compared to the original set. The most popular of such waveform codes are re-
ferred to as orthogonal and biorthogonal codes. The encoding procedure en-
deavors to make each of the waveforms in the coded signal set as unalike as
possible; the goal is to render the cross-correlation coefficient, zc„ among all pairs
of signals, as described in Equation (5.2), as small as possible. The smallest pos-
sible value of the cross-correlation coefficient occurs when the signals are anti-
correlated (z r; _ — ]); however, this can be achieved only when the number of
symbols in the set is two (M = 2) and the symbols are antipodal. In general, it
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is possible to make all the cross-correlation coefficients equal to zero [1]. The set
is then said to be orthogonal. Antipodal signal sets are optimum in the sense that
each signal is most distant from the other signal in the set; this is seen in Figure
5.2 where the distance, d, between signal vectors is seen to bed = 21~, where
E represents the signal energy during a symbol duration T, as expressed in Equa-
tion (5.3). Compared to antipodal signals, the distance properties of orthogonal
signal sets can be thought of as "second best" (for a given level of waveform
energy). In Figure 5.3 the distance between the orthogonal signal vectors is seen
to bed = 1/2E.

The cross-correlation between two signals is a measure of the distance be-
tween the signal vectors. The smaller the cross-correlation, the more distant are
the vectors from each other. This can be verified in Figure 5.2, where the antipodal
signals (whose z;; _ —1) are represented by vectors that are most distant from
each other, and in Figure 5.3, where the orthogonal signals (whose zr; = 0) are
represented by vectors that are closer to one another than the antipodal vectors.
It should be obvious that the distance between two identical waveforms (whose
z,; = 1) is zero.

Figure 5.4 illustrates the replacement of a 2-bit data set with an improved
(orthogonal) codeword set. Both the original data set and the codeword replace-
ment set are comprised of the binary digits (1, 0). Also shown in the figure is the

Orthogonal pulse
Orthogonal waveform set

Data set codeword set (bipolar pulses)

0

0 0 0 0 0 0 Generator 1
— 1

+1

0 1 0 1 U 1 U Venerator 2

—1

+1

1 0 0 0 1 1 0 Generator 3

— 1

+1

1 1 0 1 1 0 0 Generator 4

— 1

Figure 5.4 Replacement of dada set with orthogonal codeword set and waveform
set.
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waveform set comprised of bipolar pulses (+ 1, —1) that represents the codeword
set. Equation (5.2) is stated in terms of waveforms. However, when the waveform
set, {sl(t)}, is represented by binary digits, it is easy to show that Equation (5.2)
can be simplified as follows:

Zij —
number of digit agreements —number of digit disagreements

1 for i = j
Z" 0 otherwise

total number of digits (5.4)

where i, j = 1, . . . , M, and M is the size of the codeword set. Using Equation
(5.4), one can quickly verify that the codeword set in Figure 5.4 is orthogonal.
Transmitting data with such an orthogonal set in place of the original data set
results in larger distances among signaling waveforms, and thus yields better error
performance for a given SNR.

Consider a set of M = 2k messages that are t~ be transmitted, using PSK
modulation, over a channel disturbed by additive white Gaussian noise (AWGN).
The transmitter shown in Figure 5.5, stores or generates the M pulse waveforms
of the type shown in Figure 5.4. A message is transmitted by selecting one of
the M waveform generators to phase modulate the carrier; such that the
phase (~; = 0 or ~r) of the carrier during each bit time, 0 <— t < Tb, corresponds
to the amplitudes (j = —1 or 1) of the generating pulse waveform. At the re-
ceiver in Figure 5.6 the noisy signal is demodulated to baseband and fed to the M
correlators (or matched filters). Correlation is performed over a codeword dura-
tion, 0 <— t ~ T, where T = (log2 M)T~ = kTb. With orthogonally coded wave-
forms, in the absence of noise, the outputs of all correlators; except the one cor-
responding to the transmitted codeword, are zero.

5.1.4 Orthogonal Codes

A 1-bit data set can be transformed, using orthogonal codewords of two-digits
each, described by the matrix Hl as follows:

Transmitter

~~

M =2k
Waveforms

±K cos wpt

Phase modulation
by ¢j = 0, n is
equivalent to
amplitude
modulation by
+1 and —1

Figure 5.5 Waveform-encoded phase coherent system (transmitter).
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Receiver

R eference signals
Orthogonal pulse

~ waveform set
-r—

Generator 1

('T Z1

Ja
cos copt Generator 2

~ ~ ~

zf T 2 Decision miJp stage Choose the

r;(t) _ ±K cos wpt + n(t) 
waveform

Generator M (or codeword)
i = 1, 2, . . ., M with the

` Y _~ largest z~

Demodulation to rT ZM

baseband ~

Where T = kTb

Figure 5.6 Waveform coding with correlation detection.

Data set Orthogonal codeword set

0 H1 = C~ 0~
For this, and the following examples, use Equation (5.4) to verify the orthogonality
of the codeword set. To encode a 2-bit data set, we extend the foregoing set both
horizontally and vertically, creating matrix H?.

Data set Orthogonal codeword set

0 0 0 0 0 0

0 1 0 1 0 1 H1 ~1
g2 = -------~------- _

1 0 0 0 1 1 H1 Hl

1 1 0 1 1 0

The -lower_xight_quadrant_is the complement of the prior codeword set. We con-
time the same construction rule to obtain an orthogonal set H3 fora 3-bit data
set.
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Data set Orthogonal codeword set

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0 1 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 1 0 1 1 0 0 1 1 0
~ Hz Hz

3 = ---—--—-—--—i—----- ------— _

1 0 0 0 0 0 0 ~ 1 l 1 1 H2 HZ

1 0 1 0 1 0 1 1 0 1 0

1 1 0 0 0 1 1 1 1 0 0

1 1 1 0 1 1 0 1 0 0 1

In general, we can construct a codeword set, Hk, of dimension 2k x 2k, called a
Hadamard matrix, for a k-bit data set from the Hk _, matrix, as follows:

Hk-~ Hk-~
Hk =

Hk-~ Hk-~

Each pair of words in each codeword set, Hl, H2, H3, . . . , Hk, . . . ,has as
many digit agreements as disagreements [2]. Hence, in accordance with Equation
(5.4), z;; = 0 (for z ~ ~~, and each of the sets is orthogonal.

Just as M-ary signaling with an orthogonal modulation format (such as
MFSK) improves the PB performance, waveform coding with an orthogonally
constructed signal set, in combination with correlation detection, produces exactly
the same improvement. For equally likely, equal-energy orthogonal signals, the
probability of codeword (symbol) error can be upper bounded, as follows [2]:

pE.(k) <- (2k - 1)Q Ek U (5.5)
No

where Q(x) is defined in Equation (2.42). For fixed k, as EbINo is increased, the
bound becomes increasingly tight. For PE(k) <_ 10-3, Equation (5.5) is a good
approximation of the error probability. The relationship between PB(k) and PE(k)
given in Equation (3.127) is repeated here:
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PE(k) 2k — 1 ( .6)

Combining Equations (5.5) and (5.6), the probability of bit error can be bounded
as follows:

yB(k) ~ (2k-~~Q ~~b (5.7)V o

1

m ~O-2

Y

.n

.n0
a
o

~ ~~-3
Y

m

10 -4

10-5

Y_.

,k=1
~f Z
ik =~ ~3
i' 4

5
6

~~

~ 9
X10
,15
~ 20

-1.6 dB

-10 -5 0 5 10 15 20
Eb/N~ (dB)

Figure 5.7 Coherent detectio❑ of orthogonally coded transmission. (Reprinted
from W. C. Lindsey and M. K. Simon, Telecommunication Systems Engineering,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973, courtesy of W. C. Lindsey and
Marvin K. Simon.)
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Pa(k) is plotted in Figure 5.7 for various values of k; the uncoded case corresponds
to the k = 1 curve. The performance improvement fork > 1 should be obvious.
The curves are identical to the orthogonal signaling performance (such as FSK)
of Figure 3.25. What price do we pay for this improvement? We need to expend
more transmission bandwidth. The orthogonal codes can be described as having
(2k — k) redundant digits. For example, the orthogonal H3 matrix above reassigns
3-bit messages into 8-bit codewords, resulting in five redundant digits. Therefore,
the bandwidth is increased by 3 or, in general, by 2k/k. For orthogonal codes, the
required transmission bandwidth increases exponentially with k. Compared to
structured sequences, this type of coding does not utilize bandwidth effzczently.

5.1.5 Biorthogonal Codes

A biorthogonal signal set of M total signals or codewords can be obtained from
an orthogonal set of M/2 signals by augmenting it with the negative of each signal,
as follows:

Hk- ~
Bk =

~k- 1

For example, a 3-bit data set can be transformed into a biorthogonal codeword
set as follows:

Data set Biorthogonal codeword set

0 0 0 1 0 0 0 0

0 0 1 1 0 1 0 1

0 1 0 ~ 1 0 0 1 1

0 1 1 0 1 1 0
B3 = --------------

1 0 0 1 1 1 1

1 0 1 1 1 0 1 0

1 1 0 1 1 1 0 0

1 1 1 1 1 0 0 1

The biorthogonal set is really two sets of orthogonal codes such that each code-
word in one set has its antipodal codeword in the other set. The biorthogonal set
consists of a combination of orthogonal and antipodal signals. With respect to
zi; of Equations (5.2) or (5.4), biorthogonal codes can be characterized as
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1 for i = j

M
zr.; _ —1 for i ~ j, ~ i — J ~ = 2 (5.8)

M
0 fori~j, ~ i—j~~ 2

One advantage of a biorthogonal code over an orthogonal one for the same
data set, is that the biorthogonal code requires one-half as many bits per codeword
(compare the B3 matrix with the H3 matrix). Thus the bandwidth requirements for

1

Y

m ~~ -2

Tr

.n
a0
a
L0
~ ~~-3
'm

10 -4

10-5

_____ k = 1, 2

-----4
5

--6
k =~ ---7

8
9
10
15
20

-1.6 dB

y

1

-10 -5 0 5 10 15 20
Eb/Np (dB1

Figure 5:8- Coherent detection of biorthogonally-coded transmission. (Reprinted
from W. C. Lindsey and M. K. Simon, Telecommunication Systems Engineering,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973, courtesy of W. C. Lindsey and
Marvin K. Simon.)
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biorthogonal codes are one-half the requirements for comparable orthogonal ones.
Since antipodal signal vectors .have better distance properties than. orthogonal
ones, it should come as no surprise that biorthogonal codes perform slightly better
than orthogonal ones. For equally likely, equal-energy biorthogonal signals, the
probability of codeword (symbol) error can be upper bounded, as follows [2]:

P~(k) —< (2k — 2)Q Nb + Q 2~ b (5.9)
~ o 0
r

which becomes increasingly tight for fixed k as EblNo is increased. Pa(k) is a
complicated function of PE(k); we can approximate it with the relationship [2]

P,~(k) = PE~k~
2

The approximation is quite good fork > 3. Therefore, we can write

PB(k) ~ 2 (2k — 2)Q ~b + Q 2N b (5.10)
0 0

The P~ performance of these biorthogonal codes, shown in Figure 5.8, offers
improved performance, compared to the performance of the orthogonal codes
shown in Figure 5.7, and requires only half the bandwidth of orthogonal codes.

5.1.6 Transorthogonal (Simplex) Codes

A code generated from an orthogonal set by deleting the first digit of each code-
word is called a transorthogonal or simplex code. Such a code is~ characterized
Uy

1 for i = j
z~~ _ —1 (5.11)

M — 1 for i ~ j

A simplex code represents the minirrcum energy equivalent (in the error probability
sense) of the equally likely orthogonal set. In comparing the error performance
of orthogonal, biorthogonal, and simplex codes, we can state that simplex coding
requires the minimum. EblNo for a specified symbol error rate. However, for a
large value of k, all three schemes are essentially identical in error performance.
Biorthogonal coding requires half the bandwidth of the others. However, for each
of these codes, bandwidth requirements (and system complexity) grow exponen-
tially with the value of k; therefore, such coding schemes are attractive only when
large bandwidths are available. When bandwidth is not plentiful, the structured
redundancy techniques (see Section 5.3 through Chapter 6) are more attractive
[3). When bandwidth is very scarce, the so-called combined modulation and coding
techniques for bandlimited channels are most promising (see Sections 7.10.6 and
7.10.7).
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5.2 TYPES OF ERROR CONTROL

Before we discuss the details of structured redundancy, let us describe the two
basic ways such redundancy is used for controlling errors. The first, error de-
tection and retransmission, utilizes parity bits (redundant bits added to the data)
to detect that an error has been made. The receiving terminal does not attempt
to correct the error; it simply requests the transmitter to retransmit the data.
Notice that atwo-way link is required for such dialogue between the transmitter
and receiver. The second type of error control, forward error correction (FEC),
requires cone-way link only, since in this case the parity bits are designed for
both the detection and correction of errors. We shall see that not all error patterns
can be corrected; error-correcting codes are classified according to their error-
correcting capabilities.

5.2.1 Terminal Connectivity

Communication terminals are often classified according to their connectivity with
other terminals. The possible connections, shown in Figure 5.9, are termed sim-
plex (not to be confused with the simplex or transorthogonal codes), half-duplex,
and full-duplex. The simplex connection, in Figure 5.9a, is a one-way link. Trans-
missions are made from terminal A to terminal B only, never in the reverse di-
rection. The half-duplex connection, in Figure 5.9b, is a link whereby transmis-
sions may be made in either direction but not simultaneously. Finally, the full-
duplex connection, in Figure 5.9c, is a two-way link, where transmissions may
proceed in both directions simultaneously.

Terminal Terminal
A ~ g

Transmission in only one direction

( a)

Terminal —r Terminal
A ~~ g

4

Transmission in either direction,
but not simultaneously

(b)

Terminal ~ Terminal
A a

Transmission in both directions simultaneously

(~)

Figure 5.9 Terminal connectivity
classifications. (a) Simplex. (b) Half-
duplex. (c) Full-duplex.
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5.2.2 Automatic Repeat Request

When the error control consists of error detection only, the communication system
generally needs to provide a means of alerting the transmitter that an error has
been detected and that a retransmission is necessary. Such error control proce-
dures are known as automatic repeat regr.~est or automatic retransmission query
(ARQ) methods. Figure 5.10 illustrates three of the most popular ARQ procedures.
In each of the diagrams, time is advancing from left to right. The first procedure,
called stop-and-wait ARQ, is shown in Figure S.lOa. It requires ahalf-duplex
connection only, since . the transmitter waits for an acknowledgment (ACK) of
each transmission before it proceeds with the next transmission. In the figure,
the third transmission block is received in error; therefore, the receiver responds
with a negative acknowledgment (NAK), and the transmitter retransmits this third

Transmitter 1 2 3 3 4 5 5

Transmission ~ ~ ~ _~ ~ ~ ~ ~ ~ =Q ~

R eceiver 1 2 3 3 4 5 5

Error Error

1a)

Transmitter

Transmission

R eceiver

Transmitter

Transmission

R eceiver

10

G

~1 1 2 I 3 ) 4 I 5 I 6 ) 7 I 8 I 4 I 9 I 10I 71 I 12 I 13~ 14I 15 I 11 I 16I 17~ 18

\ ~ \ G~i G~~ G~i Qom/ G~i G~i G~i G~i Gam/ Gam/ G~i Phi G~i G~~ G~i Gam/ G~~: P/ P~ Pi ~i/ P/ Pi Pi Pi Pi Pi Pi fir/ Pi P/ Pi Pi Pi

1 2 3 4 5 6 7 8 4 9 10 11 12 13 14 15 11 16

Error Error

(c)

Figare 5.10 Automatic repeat request (ARQ). (a) Stop-and-wait ARQ (half-duplex). (b)
Continuous ARQ with pullback (full-duplex). (c) Continuous ARQ with selective repeat (full-
duplex).
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message block before transmitting the next in the sequence. The second ARQ
procedure, called continuous ARQ with pullback, is shown in Figure S.lOb. Here
a full-dupleX connection is necessary. Both terminals are transmitting simultane-
ously; the transmitter is sending message data and the receiver is sending ac-
knowledgment data. Notice that a sequence number has to be assigned to each
block of data. Also, the ACKs and NAKs need to reference such numbers, or
else there needs to be a priori knowledge of the propagation delays so that the
transmitter knows which messages are associated with which acknowledgments.
In the example of Figure S. lOb there is a fixed separation of four blocks between
the message being transmitted and the, acknowledgment being simultaneously re-
ceived. For example, when message 8 is being sent, a NAK corresponding to the
corrupted message 4 is being received. In this ARQ procedure, the transmitter
"pulls back" to the message in error and retransmits all message data, starting
with the corrupted message. The final method, called continuous ARQ with se-
lective repeat, is shown in Figure 5. l Oc. Here, as with the second ARQ procedure,
a full-duplex connection is needed. However, in this procedure, only the corrupted
message is repeated; then the transmitter continues the transmission sequence
where it had left off instead of repeating any subsequent correctly received
messages.

The choice of which ARQ procedure to choose is a trade-off between the
requirements for efficient utilization of the communications resource and the need
to provide full-duplex connectivity. The half-duplex connectivity required in Fig-
ure S.lOa is less costly than full-duplex; the associated inefficiency can be mea-
sured by the blank time slots. The more efficient utilization illustrated in Figures
S.IOb and c requires the more costly full-duplex connectivity.

The major advantage of ARQ over forward error correction (FEC) is that
error detection requires much simpler decoding equipment and much less redun-
dancy than does error correction. Also, ARQ is adaptive in the sense that infor-
mation is retransmitted only when errors occur. On the other hand, FEC may be
desirable in place of, or in addition to, error detection, for any of the following
reasons:

1. A reverse channel is not available or the delay with ARQ would be excessive.
2. The retransmission strategy is not conveniently implemented.
3. The expected number of errors, without corrections, would require exces-

sive retransmissions.

5.3 STRUCTURED SEQUENCES

In Section 3.8 we considered digital signaling by means of M = 2'` signal wave-
forms. (M-ary signaling),_ where each waveform contains. k bits of information. We
saw that in the case of orthogonal M-ary signaling, we can decrease PB by in-
creasing M (expanding the bandwidth). Similarly, in Section 5.1 we showed that
it is possible to decrease PB by encoding k binary digits into one of M orthogonal
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codewords. The major disadvantage with such orthogonal coding techniques is
the associated inefficient use of bandwidth. The required transmission bandwidth
grows exponentially with k for an orthogonal set of M = 2k waveforms. In this
and subsequent sections we abandon the need far antipodal or orthogonal prop-
erties and focus on a class of encoding procedures known as parity-check codes.

i Such channel coding procedures are classified as structured sequences because
they represent methods of inserting structured redundancy into the source data
so that the presence of errors can be detected or the errors corrected. Structured
sequences are partitioned into two important subcategories as shown in Figure
5.1: block coding and convolutional coding. Block coding (primarily) is treated
in this chapter, and convolutional coding is treated in Chapter 6. These techniques
allow us to attain a PB performance comparable to waveform encoding techniques
but with lower bandwidth requirements. The codewords of these codes (structured
sequences) are usually nonorthogonal [3].

5.3.1 Channel Models

5.3.1.1 Discrete 1Vlemoryless Channel

A discrete memoryless channel (DMC) is characterized by a discrete input
alphabet, a discrete output alphabet, and a set of conditional probabilities, P(j~i)
(1 ~ i ~ M, 1 <— j< Q), where i represents a modulator M-ary input symbol, j
represents a demodulator Q-ary output symbol, and P(j~i) is the probability of
receiving j given that i was transmitted. Each output symbol of the channel de-
pends only on the corresponding input, so that for a given input sequence U =
ul, u2i . . . , Llrn ~ . . . , uN the conditional probability of a corresponding output
sequence Z = zi, z2, • • • , zm, • • . , z,v may be expressed as

N

P~Z~U~ — ~ P~Zm~um~ ~S.I2~
m=1

In the event that the channel has memory (i.e., noise or fading that occurs in
bursts), the conditional probability of the sequence Z would need to be expressed
as the joint probability of all the elements of the sequence. Equation (5.12) ex-
presses the memoryless condition of the channel. Since the channel noise in a
memoryless channel is defined to affect each symbol independently of all the
other symbols, the conditional probability of Z is seen as the product of the in-
dependent element probabilities.

5.3.1.2 Binary Symmetric Channel

A binary symmetric channel (BSC) is a special case of a DMC; the input
and output alphabet sets consist of the binary elements (0 and 1). The conditional
probabilities are symmetric: __

P(0~1) = P(1~0) = p (5.13)
P(1~1) = P(0~0) = 1 — p
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Equation (5.13) states the channel transition probabilities. That is, given that a
channel symbol was transmitted, the probability that. it is received in error is p
(related to the symbol energy), and the probability that it is received correctly is
(1 — p). Since the demodulator output consists of the discrete elements 0 and 1,
the demodulator is said to make a firm or hard decision on each symbol. A
commonly used code system consists of BPSK modulated coded data, hard de-
cision demodulated. Then the channel symbol error probability is found using the
methods discussed in Section 3.7.1 and Equation (3.84) to he

p _ Q ~2E~
N~

where E~/No is the channel symbol energy per noise density, and Q(x) is defined
in Equation (2.42).

When such hard decisions are used in a binary coded system, the demo-
dulator feeds the two-valued code symbols or channel bits to the decoder. Since
the decoder then operates on the hard decisions made by the demodulator, de-
coding with a BSC channel is called hard-decision decoding.

5.3.1.3 Gaussian Channel

We can generalize our definition of the DMC to channels with alphabets that
are not discrete. An example is the Gaussian channel with a discrete input al-
phabet and a continuous output alphabet over the range (—~, ~). 1'hc channel
adds noise to the symbols. Since the noise is a Gaussian random variable, with
zero mean and variance 62, the resulting probability density function (pdf~ of the
received random variable z, conditioned on the symbol uk (the likelihood of uk),
can be written

1 (z _ uk)z
p(z~uk) = exp 2 ~ (5.14)~ 2~r 2~

for all z, where k = 1, 2, . . . , Nl. For this case, memoryless has the same meaning
as it does in Section 5.3.1.1, and Equation (5.12) can be used to obtain the con-
ditional probability for the sequence, Z.

When the demodulator output consists of a continuous alphabet or its quan-
tized approximation (with greater than two quantization levels), the demodulator
is said to make soft decisions. In the case of a coded system, the demodulator
feeds such quantized code symbols to the decoder. Since the decoder then op-
erates on the soft decisions made by the demodulator, decoding with a Gaussian
channel is called soft-decision decoding.

In the case of ahard-decision channel, we are able to characterize the dc-
tection process with a channel symbol error probability. However, in the case of
a soft-decision channel, the detector makes the kind of decisions (soft decisions)
that cannot be labeled as correct or incorrect. Thus, since there- are no arm de-
cisions, there cannot be a probability of making an error; the detector can only
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a formulate a family of conditional probabilities or likelihoods of the different sym-
p bol types.
is It is possible to design decoders using soft decisions, but block code soft-
1, decision decorders are substantially more complex than hard-decision decoders;
A therefore, block codes are usually implemented with hard-decision decoders.. For
c- convolutional codes, both hard- and soft-decision implementations are equally
ie popular. In this chapter we consider that the channel is a binary symmetric channel

(BSC), and hence the decoder employs hard decisions. In Chapter 6 we further
discuss channel models, a5 well as hard- versus soft-decision decoding for con-
volutional codes.
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5.3.2 Code Rate and Redundancy

In the case of block codes, the source data are segmernted into blocks of k data
bits, also called information bits or message bits; each block can represent any
one of 2k distinct messages. The encoder transforms each k-bit data block into a
larger block of n bits, called code bits or channel symbols. The (n — k) bits, which
the encoder adds to each data block, are called redundant bits, parity bits, or
check bits; they carry no new information. The code is referred to as an (n, k)
code. The ratio of redundant bits to data bits, (n — k)/k, within a block is called
the redundancy of the code, and the ratio of data bits to total bits, k/n, is called
the code rate. The code rate can be thought of as the portion of a code bit that
constitutes information. For example, in a rate 2 code, each code bit carries 2 bit
of information.

In this chapter and Chapter 6 we consider those coding techniques that
provide redundancy by increasing the required transmission bandwidth. For ex-
ample, an error control technique that employs a rate 112 code (100% redundancy)
will require double the bandwidth of an uncoded system. However, if a rate 3/4
code is used, the redundancy is 33% and the bandwidth expansion is only 4/3. In
Chapter 7 we consider modulation/coding techniques for bandlimited channels
where complexity, instead of bandwidth, is traded for error performance
improvement.

5.3.3 Parity-Check Codes

5.3.3.1 Single-Parity-Check Code

Parity-check codes use linear sums of the information bits, called parity
symbols or parity bits, for error detection or correction. Asingle-parity check
code is constructed by adding asingle-parity bit to a block of data bits. The parity
bit takes on the value of one or zero as needed to ensure that the summation of
all the bits in the codeword yields an even (or odd)- result. The summation op-
eration is performed using modulo-2 arithmetic (exclusive-or logic), as described
in Section 2.12.3. If the added parity is designed to yield an even result, the method
is termed even parity, and if' designed to yield an odd result, it is permed odd
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Parity
bit

0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1

(a)

1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1
0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0
0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1
1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1
1 . 1 1 0 O T 1 0 1 0 0 0 1 1 0 1 1
1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0~

Horizontal Vertical
parity check parity check Figure 5.11 Parity checks for serial

and parallel transmission. (a) Serial
( b) transmission. (b) Parallel transmission.

parity. Figure S.l la illustrates a serial data transmission (the rightmost bit is the
earliest bit). Asingle-parity bit is added (the leftmost bit in each block) to yield
even parity.

At the receiving terminal, the decoding procedure consists of testing that
the modulo-2 sum of the codeword bits yields a zero result (even parity). If the
result is found to be one instead of zero, the codeword is known to contain errors.
The rate of the code can be expressed as kl(k + 1). Dv you suppose the decoder
can automatically correct a digit that is received in error? No, it cannot. It can
only detect the presence of an odd number of bit errors (if an even number of
bits are inverted, the parity test will appear correct; this represents the case of
an undetected error). Assuming that all bit errors are equally likely and occur
independently, we can write the probability of j errors occurring in a block of n
symbols as

P~J, n) _ (~ )P'~1 — P)n-~ (5.15)

where p is the probability that a channel symbol is received in error, and where
_ _ _ n _ n! ___ _ _.

\J~ J~~n — J)~
is the number of various ways in which j bits out of n may be in error. Thus for
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asingle-parity error-detection code, the probability of an undetected error, P„~,
j within a block of n bits is computed, as follows:

n/2 (for is even)
(n-1)/2 (for n odd)

~'nd = ~ (2J1p2~(1 — p)n-2i (S.lf>)1
J= 1 \ ~

Example 5.1 F,ven-Parity Code
Configure a (4, 3) even-parity error-detection code such that the parity symbol ap-
pears as the leftmost symbol of the codeword. Which error patterns can the code
detect? Compute the probability of an undetected message error, assuming that all
symbol errors are independent events and that the probability of a channel symbol
error is p = 10-3.

Solution
Message Parity Codeword

000 0 0 000
100 1 1 100

. 010 1 1 010
110 0 0 110
001 1 1 001
101 0 0 101
011 0 0 011
111 1 1 111

r---'~--, r--~
parity message

The code is capable of detecting all single- and triple-error patterns. The probability
of an undetected error is equal to the probability that two or four errors occur any-
where in a codeword.

Pnd — ~2 )p2(1 — p)z -f- ~4~p4

= 6p2 — 12ps +spa

= 6(10-~)Z — 12(10-3)3 + 7(10-3)4 = 6 x 10-6

5.3.3.2 Rectangular Code
A rectangular code, also called a product code, can be thought of as a parallel

data transmission, depicted in Figure 5.1 lb. First we form a rectangle of message
bits comprised, of M rows and N columns; then a horizontal parity check is ap-
pended to each row and a vertical parity check is appended to each column,
resulting in an augmented array of dimensions (M + 1) x (N + 1). The rate of
the rectangular code, kln; can then be written as

k MN 
(5.17)

n (M + 1)(N + 1)
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How much more powerful is the rectangular code than the single-parity code,
which is only capable of error detection? Notice that any single bit error will cause
a parity check failure in one of the array columns and in one of the array rows.
Therefore, the rectangular code can correct a single error pattern since the error
is uniquely located at the intersection of the error-detecting row and the error-
detecting column. For the example shown in Figure S.l lb; the array dimensions
are M = N = 5; therefore, the figure depicts a (36, 25) code that can correct a
single error located anywhere in the 36 bit positions. For an error-correcting block
code, we compute the probability that the decoded block has an uncorrected error
by accounting for all the ways in which a message error can be made. Starting
with the probability of j errors in a block of n symbols, expressed in Equation
(5.15), we can write the probability of a message error, also called a block error
or word error, PM, for a code that can correct all t and fewer error patterns:

PM = ~ ~n~p'(1 - p)n-J ~5.10~
j=t+1 ~J

where p is the probability that a channel symbol is received in error. For the
example in Figure S.11b, the code can correct all single error patterns (t = 1)
within the rectangular block of n = 36 bits. Hence the summation in Equation
(5.18) starts with j = 2:

~,M _ ~ ~36~p;~1 _ p~s~-r (5.19)
=2 .1

When p is reasonably small, the first term in the summation is the dominant one;
we can therefore write for this (36, 25) rectangular code example

PM _ ~32~p2(1 _ P134
\ I

The bit error probability, Pte, depends on the particular code and decoder. An
approximation for PB is given in Section 5.5.3.

5.3.4 Coding Gain

Figure 5.12 illustrates the probability of bit error, PH, versus Eb/No for coherent
binary PSK modulation in combination with examples of various (n, k) codes over
a Gaussian channel. The (1, 1) curve illustrates the uncoded PSK performance,
while the (~4, 12) and (127, 92) curves illustrate coded PSK performance using
block codes with (n - k) = 12 parity bits and 35 parity bits, respectively. From
Figure 3.24~we know in which direction the waterfall-like curves move, corre-
sponding to PB performance improvement. Look at the various curves in Figure
5.12. Can you explain why the coded curves (to which we attribute PB perform-
ance improvement) appear to he moving in the wrong direction when compared
with the uncoded curve? Where does the strength of the code. manifest itself? The
curves in Figure 5.12 indicate that the strength of a code is seen only after an
Eb/No threshold has been exceeded (approximately 5.5 dB in this example). For
values of E~,/N~; less than the threshold, the coding manifests itself only as over-
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(127,92)

(24, 12)

( 1, 1) (Uncoded)
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Figure 5.12 Coded versus uncoded bit error performance for coherent PSK with
various (n, k) codes.

head bits resulting in reduced energy per bit, compared to the uncoded case;
before the threshold is exceeded, the redundant bits are simply "excess baggage"
without the ability to improve performance. Once the threshold is exceeded, the
performance improvement of the code more than compensates for the reduction
in energy per coded bit. Therefore, in Figure 5.12, once the threshold value of
EblNo = 5.5 dB is exceeded, the relative positions of the curves reverse them-
selves compared to their positions at less-than-threshold E~INo. Coding gain is
defined as the reduction, expressed in decibels, in the required EblNo to achieve
a specified error performance of an error-correcting coded system over an un-
coded one with the same modulation. For example, in Figure 5.12, for PB = 10 - 5,
the (24, 12) code has a coding gain of about 1.5 dB.

Example 5.2 Coded versus Uncoiled Performance

Compare the message error probability for a communications link with and without
the use of error-correction coding. Assume that the uncoiled transmission charac-
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teristics are: BPSK modulation, Gaussian noise, S/No = 43,776, data rate R = 4800
bits/s. For the coded case, also assume the use of a (15, 11) error-correcting code
that is capable of correcting any single-error pattern within a block of 15 bits. Con-
sider that the demodulator makes hard decisions and thus feeds the demodulated
code bits directly to the decoder, which in turn outputs an estimate of the original
message.

Solution

Following Equation (3.84), let p,; = Q~l2Eb/No and p~ = Q,/2E~/No be the uncoded
and coded channel symbol error probabilities, respectively, where Eb/No is uncoded
bit energy per noise spectral density and E~/No is the coded bit energy per noise
spectral density.

Without coding

Eb S = '9.12 (9.6 dB)
Na RNA

pu = Q Nb = Q(~/18.24) = 1.02 x 10-5 (5.20)
0

where the following approximation of Q(x) from Equation (2.43) was used:
2

Q~x) - x 12~r 
exp ~ 2 ~ for x > 3

The probability that the uncoded message block, P;,~, will be received in error is 1 ',
minus the product of the probabilities that each bit will be detected correctly. Thus

PM = 1 - (1 - p,~)k

= 1 - (1 - Pu)" = 1.12 x 10-4

--..— ~- ~--.--~ (5.21)

probability that all probability that at
11 bits in uncoded least 1 bit out of
block are correct 11 is in error

With coding:
The channel symbol rate, sometimes called the coded bit rate, R~ is 15/11 times the
data biY rate.

R~ = 4800 x ii = 6545 bps

E` s = 6.688 (8.25 dB)
No R~No

The E~INo for each code bit is less than that for the uncoded bit because the channel
bit rate has increased but the transmitter power is assumed to be fixed._ _ i

p~ = Q No = Q( 13.38) = 1.36 x 10-4 (5.22)
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It can be seen by comparing the results of Equation (5.20) with (5.22) that the
channel bit error probability has degraded. More bits must be detected during the
same time interval, and with the same available power; the performance improve-
ment due to the coding is not yet apparent. We now compute the coded message
error rate, P;~, using Equation (5.18).

n=15

1'n~ ` ~ ~15
~(P~)'(1 - P~)'s-'

l=2 .~

The summation is started with j = 2 since the code corrects all single errors
within a block of n = 15 bits. A good approximation is obtained by using only the
first term of the summation. For p~ we use the value calculated in Equation (5.22):

1'ns = ~12)(P~)2~1 - P~)13 = 1.94 x 10-6 (5.23)
i

By comparing the results of Equation (5.21) with (5.23), it is seen that the probability
of message error has improved by a factor of 58 due to the error-correcting code
used in this example.

5.4 LINEAR BLOCI( CODES

Linear block codes (such as the one in Example 5.2) are a class of parity check
codes that can be characterized by the (n, k) notation described earlier. Tie
encoder transforms a block of k message digits (a message vector) into a longer
block of n codeword digits (a code vector), constructed from a given alphabet of
elements. When the alphabet consists of two elements (0 and 1), the code is a
binary code comprised of binary digits (bits). Our discussion of linear block codes
is restricted to binary codes, unless otherwise noted.

The k-bit messages form 2k distinct message sequences referred to as k-
tuples (sequences of k digits). The n-bit blocks can form as many as 2" distinct
sequences, referred to as n-tuples. The encoding procedure assigns to each of the
2k message k-tuples one of the 2n n-tuples. A block code represents aone-to-one
assignment, whereby the 2k message k-tuples are uniquely mapped into a new set
of 2k codeword n-tuples; the mapping can be accomplished via alook-up table.
For linear codes, the mapping transformation is, of course, linear.

5.4.1 Vecfior Spaces

The set of all binary n-tuples, Vn, is called a vector space over the binary field
of two elements (0 and 1). The binary field has two operations, addition and
multiplication, such that the results of all operations are in the same set of two
elements.- The arithmetic operations of addition and multiplication are defined by
the conventions of the algebraic field [4]. For example, in a binary field, the rules
of addition and multiplication are as follows:
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t

Addition Multiplication

0 0+ 0=0 0.0=0

0 O+  1= 1 0. 1= 0

1 C+UO = 1 1 . 0= 0

1 O 1— 0 1 1= 1

The addition operation, designated with the symbol O+ , is the same modulo-2
operation described in Section 2.12.3.

5.4.2 Vector Subspaces

A subset S of the vector space Vn is called a .subspace if the following two con-
ditions are met:

1. The all-zeros vector is in S.
2. The sum of any two vectors in S is also in S (known as the closure property).

These properties are fundamental for the algebraic characterization of linear block
codes. Suppose that V; and V; are two codewords (also called code vectors) in an

1 I

s

• • •s o

•
• . ~ 2~ n-tuples constitute

• ` . • the entire space V~
•

e s ~
0

s • e
•

e o

2k n-tuples constitute Figure 5.13 Linear block-code
the subspace of codewords structure. '
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(n, k) Uinary block code. The code is said to be linear if, and only if, (V; O V,) is
also a code vector. A linear block code, then, is one in which vectors outside the
subspace cannot be created by the addition of legitimate code vectors (members
of the subspace).

For example, the vector space V4 is totally populated by the following 24
= sixteen 4-tuples:

0000 0001 0010 0011 0100 0101 0110 011l

1000 1001 1010 1011 1100 1101 1110 1111

An example of a subset of V4 that forms a subspace is

0000 0101 1010 1111

It is easy to verify that the addition of any two vectors in the subspace can only
yield one of the other members of the subspace. A set of 2k n-tuples is called a
linear block code if, and only if, it is a subspace of the vector space V„ of all n-
tuples. Figure 5.13 illustrates, with a simple geometric analogy, the structure
behind linear block codes. We can imagine the vector space Vn comprised of 2"
n-tuples. Within this vector space there exists a subset of 2k n-tuples comprising
a subspace. These 2k vectors or points, shown "sprinkled" among the more nu-
merous 2" points, represent the legitimate or allowable codeword assignments.
A message is encoded into one of the 2'` allowable code vectors and then trans-
mitted. Because of noise in the channel, a perturbed version of the code vectar
(one of the other 2" vectors in the n-tuple space) may be received. If the perturbed
vector is not too unlike (not too distant from) the valid code vector, the decoder
can decode the message correctly. The basic goals in choosing a particular code,
similar to the goals in selecting a set of modulation waveforms, can be stated in
the context of Figure 5.13 as follows:

1. We want to strive for coding efficiency by packing the Vn space with as
many code vectors as possible. This is tantamount to saying that we only
want to expend a small arreount of redundancy (excess bandwidth).

2. We want the code vectors to be as far apart from one another as possible,
so that even if the vectors experience some corruption during transmission,
they may still be correctly decoded, with a high probability.

5.4.3 A (6, 3) Linear Block Code Example

Examine the following coding assignment that describes a (6, 3) code. There are
2k = 23 = g message vectors, and therefore eight code vectors. There are 2" _

', 26 =sixty-four 6-tuples in the V6 vector space.
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Message vector Code vector

0 00 000000

1 00 1 10100

0 10 01 1010

1 10 1 01 1 10

0 01 101001

1 01 01 1 101

0 1 1 1 1001 1

1 1 1 0001 1 1

It is easy to check that the eight code vectors shown above form a subspace of
V6 (the all-zeros vector is present, and the sum of any two code vectors yields
another code vector member of the subspace). Therefore, these code vectors
represent a linear block code, as defined in Section 5.4.2.

5.4.4 Generator Matrix

If k is large, a table look-up implementation of the encoder becomes prohibitive.
Fora (127, 92) code there are 292 or approximately 5 x 1027 code vectors. If the .
encoding procedure consists of a simple look-up table, imagine the size of the
memory necessary to contain such a large number of code vectors. Fortunately, ' ''
it is possible to reduce complexity by generating the required code vectors as
needed, instead of storing them.

Since a set of code vectors that forms a linear block code is a k-dimensional
subspace of the n-dimensional binary vector space (k < n), it is always possible ~ ;
to end a set of n-tuples, fewer than 2k, that can generate all the 2k member vectors j ;
of the subspace. The generating set of vectors is said to span the subspace. The
smallest linearly independent set that spans the subspace is called a basis of the
subspace, and the number of vectors in this basis set is the dimension of the
subspace. Any basis set of k linearly independent n-tuples V, , V2, . . . , V,~ can
be used to generate the required linear block code vectors, since each code vector
is a linear combination of Vl, VZ, . . . , Vk. That is, each of the set of 2k code
vectors U can be described by

U = m1V1 + mZV2 + ... + yrt~~~~~
where m; — (0 or 1) are the message digits and i = 1, . . . , k.

In general, we can define a generator matrix by the following k x n array:

V1 vll X12 "' ~In

U-v V2 X21 X22 _ ~ ~.~ ~2n 
~5.24~

~k ~kl 71 k2 "' ~kn
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Code vectors, by convention, are usually designated as row vectors. Thus, the
message m, a sequence of k message hits, is shown below as a row vector (1 x k
matrix having one i~ow and k columns).

m = m ~ ~ mz, . . . , mk

The generation of the code vector, U, is written in matrix notation as the product
of m and U, as follows:

U = mG (5.25)
where, in general, the matrix multiplication C = AB is performed in the usual
way by using the rule

I n

c~; =~a~kbk; i=1, . . . , 1_ j=1, . . . ,m
k

where A is an l x n matrix, B is an n x m matrix, and the result C is an l x m
matrix. For the example introduced in the preceding section, we can fashion a
generator matrix as follows:

V1 1 1 U 1 U 0
G = Vz = 0 1 1 0 1 0 (5.26)

V3 1 0 1 0 0 1

where V, , VZ, and V3 are three linearly independent vectors (a subset of the eight
code vectors) that can generate all the code vectors. Notice that the sum of any
two generating vectors does not yield any of the other generating vectors (opposite
of closure). Let us generate the code vector for the message vector 1 1 U, using
the generator matrix of Equation (5.26).

V1

U =[1 1 0] Vz =1•V1+1 •VZ +O•V3
V3

= 1 10100+011010+000000

= 1 0 1 1 1 0 (code vector for the message vector 1 1 0)

Thus the code vector corresponding to a message vector is a linear combination
of the rows of G. Since the code is totally defined by G, the encoder need only
store the k rows of G instead of the total2k vectors of the code. For this example
notice . that the generator array of dimension 3 x 6 replaces the original code
vector array of dimension 8 x 6, representing a reduction in system complexity.

5.4.5 Sys4erroatic Linear Block Codes

A systematic (n, k) linear block code is a mapping from a k-dimensional message - - -
vector to an n-dimensional code vector in such a way that part of the sequence
generated coincides with the k message digits. The remaining (n — k) digits are
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parity digits. A systematic linear block code will have a generator matrix of the
form

G = P ~ Ik

Pig Piz Pi,tn-k> 1 0 ••• 0
Pz~ p22 ... p2,~n-k~ 0 1 ... p (5.27)

p~~ IJk2 ... pk,~n _ k~ p p ... 1

where P is the parity array portion of the generator matrix, p1J = (0 or 1), and
Ik is the k x k identity matrix (ones on the main diagonal and zeros elsewhere).
Notice that with this systematic generator, the encoding complexity is further
reduced since it is not necessary to store the identity matrix portion of the array.
By combining Equations (5.25) and (5.27), each code vector is expressed as
follows:
ui~ ua, . . . , un = Lmi, m2, . . . ,mkt

X Pz~ Pz2 ... P2,(n—k) 0 1 .. ~ p

pkl Pk2 "' j~k,(n—k) ~ ~ "' 1

where

u;=m~p1;+m2P2;+ ... +mkpk; Pori= 1, . . .,(n -k)

= m~-n+k for i = (n - k + 1), . . . , n

Given the message k-tuple

m = m~, m2, . . . , mk

and the general code vector n-tuple

U = u 1 ~ u2, , un

the systematic code vector can be expressed as

U =pi,Pz, . . . ,Pn-k,m~,mz, . . . ,mk (5.28)r
parity bits message bits

where

Pi = miPii + m2pzi + ••• + mkPki

pz = m~Pt2 + mzPzz + ... -{- mkPkz (5.29)

pn—k — mlpl,(n—k) ~ YYl2p2,Cn—k) + ~" + ~kpk,~n — k)

Systematic code vectors are sometimes written so that the message bits occupy
the left-hand portion of the code vector and the parity bits occupy the right-hand
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portion. `This reordering has no effect on the error detection or error correction
properties of the code, and will not be considered further.

For the (E, 3) code example in Section _5.4.3, the code vectors are descl-ibed
as follows:

1 1 0 1 0 0
0 1 1 0 1 0

U = [m~, rn2i m3) 1 0 1 0 0 1 (5.30)
.~„~ ~~.

P I3

U = m, + in3, m~ + m2, mz + m3~ m~~ mz, m3, 
—..--~~ .r '~-,.~ ~-..~`.r (5.31)

u t u2 u3 u4 us u~

Equation (5.31) gives us some insight regarding the structure of linear block codes.
We sec that the redundant digits are produced in a variety of ways. ̀ l he first parity
bit is the sum of the first and third message bits; the second parity bit is the sum
of the first and second message bits, and the third parity bit is the sum of the
second and third message bits. Intuition tells us that such structure, compared to
single-parity checks or simple digit-repeat procedures, may provide greater ability
to detect and correct errors.

5.4.6 Parity-Check I~latrix

Let us dune a matrix, H, called the parity-check matrix, that will enable us to
decode the recezved vectors. For each (k x n) generator matrix, G, there exists
an (n - k) x n matrix, H, such that the rows of G are orthogonal to the rows of
H; that is GHT = 0, where HT is the transpose of H, and 0 is a k x (n - k) all-
zeros matrix. H T is an n x (n - k) matrix whose rows are the columns of I-I and
whose columns are the rows of H. To ful~li the orthogonality requirements, the
components of the H matrix are written

H = [In-k PI]

Hence, the HT matrix is written

In —k

P

1 0 ••• 0
0 1 ••• 0

0 0 ••• 1
pll p12 "' P1,(n -k)

p21 p22 
... 

p2>Cn—k)
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1. No column of H can be all zeros, or else an error in the corresponding code
vector position would not affect the syndrome and would be undetectable.

2. All columns of H must be unique. If two columns of H were identical, errors
in these two corresponding code vector positions would be indistinguishable.

Example 5.3 5yndromc Test

Suppose that code vector U = 1 0 1 1 1 U from the example in Section 5.4.3 is
transmitted and the vector r — 0 0 1 1 1 0 is received; that is, the leftmost bit is
received in error: Find the syndrome vector value S — rgIT and verify that it is equal
to eH T.

Solution
S =rHT

1 0 0
0 1 0

_ [0 0 1 1 1 0] 0 0 1
1 1 U
0 1 1
1 0 1

_ [1, 1 I 1, 1 I 1] _ [1 0 0] (syndrome of corrupted code vector)

Next, we verify that the syndrome of the corrupted code vector is the same
as the syndrome of the error pattern that caused the error.

S = eHT = [1 0 0 0 0 0]HT = [1 0 D] (syndrome of error pattern)

5.4.8 Error Correction

We have detected a single error and. have shown that the syndrome test performed
on either the corrupted code vector, or on the error pattern that caused it, yields
the same syndrome. This should be a clue that we not only can detect the error,
but since there is a one-to-one correspondence between correctable error patterns
and syndromes, we can correct such error patterns. Let us arrange the 2" n-tuples
that represent possible received vectors in an array, called the standard array,
such that the first row contains all. the code vectors, starting with the all-zeros

', vector, and the first column contains all the correctable error patterns. Recall
', from the basic properties of linear codes (see Section 5.4.2) that the all-zeros

vector must be a member of the codeword set. Each row, called a coset, consists
of an error pattern in the first column, called the coset leader, followed by the
code vectors perturbed by that error pattern. The standard array format for an
(n, k) code is as follows:

U1 UZ ... UZ ... UZk

e2 UZ + eZ "' Ui + e2 ." U2k -I- CZ

e3 Uz + e3 "' U; + e3 "' UZk + e3
(5.38)

e; UZ + e~ ... U~ +e~ ... UZk+e;

Q Z,n -- k lJ2 '.~" eZn-k "' VZ '~' eZn-k ' . lJ2k T ~'Zrs -k
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The array contains all 2" n-tuples in the space V„ (each n-tuple appears in only
one location). Each coset consists of 2k n-tuples. Therefore, there are (2n~2k~ —

2"-k cosets. Suppose that a code vector U; is transmitted over a noisy channel.
If the error pattern caused by the channel is a coset leader, the received vector
will be decoded correctly into the transmitted code vector Ui. If the error pattern
is not a coset leader, an erroneous decoding will result.

5.4.x.1 The Syndrome of a Coset

If e; is the coset leader or error pattern of the jth coset, then U; + e; is an
n-tuple in this coset. The syndrome of this n-tuple can be written

Since Ul is a code vector, UHT = 0, and we can write, as in. Equation (5.37)

S = (U; + e,)HT = e;HT (5.39)

From Equation (5..39) it is clear that all members of a coset have the same syn-
drorrce, and in fact, the syndrome is used to estimate the error pattern. The syn-
drome for every coset is different.

5.4.8.2 Error Correction Decoding

The procedure for error correction decoding proceeds as follows:

1. Calculate the syndrome of r using S = rHT.
2. Locate the coset leader (error pattern), e;, whose syndrome equals rHT.
3. This error pattern is assumed to be the corruption caused by the channel.
4. The corrected received vector, or code vector, is identified as U = r + e;.

We can say that we retrieve the valid code vector by subtracting out the
identified error; in modulo-2 arithmetic the operation of subtraction is iden-
tical to that of addition.

5.4.8.3 Locating the Error Pattern

Returning to the example of Section 5.4.3, we arrange the 26 =sixty-four
6-tuples in a standard array as shown in Figure 5.14. The valid code vectors are
the eight vectors in the first row, and the correctable error patterns are the eight
coset leaders in the first column. Notice that all 1-bit error patterns are eorrect-
able. Also notice that after exhausting all 1-bit error patterns, there remains some
error-correcting capability since we have not yet accounted for all sixty-four 5-
tuples. There is one unassigned coset leader; therefore, there remains the capa-
bility of correcting one additional error pattern. We have the flexibility of choosing
this error pattern to be any of the n-tuples in the remaining coset. In Figure 5.14
this final correctable error pattern is chosen, somewhat arbitrarily, to be the 2-
bit error pattern 0 1 0 0 0 1. Decoding will be correct if, and only if, the error
pattern caused by the channel is one of the coset leaders.

We now determine the syndrome corresponding to each of the correctable
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000000 110100 011010 101110 101001 011101 110011 000111

000001 110101 011011 101111 101000 011100 . 110010 000110

000010 110170 011000 101100 101011 011111 110001 000101

000100 110000 011110 101010 101101 011001 110111 000011

001000 111100 010010 100110 100001 010101 111011 001111

010000 100100 001010 111110 111001 001101 100011 010711

100000 . 010100 111010 001170 001001 111101 010071 100111

010001 100101 001011 111111 111000 001100 100010 010110

Figure 5.14 Example of a standard array fora (6, 3) code.

error sequences by computing e;HT for each coset leader, as follows:

1 0 0
0 1 0

~ =e~ 0 0 1
1 1 0
0 1 1
1 0 1

The results are listed in Table 5.1. Since each syndrome in the table is unique,
the decoder can identify the error pattern e to which it corresponds.

TABLE 5.1 Syndrome Look-Up Table

Error pattec-n Syndrome

0 00000 000
0 00001 101
0 00010 01 1
O OQ100 1 10
0 010.00 001
0 10000 010
1 00000 100
0 10001 1 1 1

5.4.8.4 Error Correction Example

As outlined in Section 5.4.8.2, we receive the vector r and calculate its
syndrome using S = rHT. We then use the syndrome look-up table (Table 5.1),
developed in the preceding section, to find the corresponding error pattern. This
error pattern is an-estimate of the error, and we-denote it e. The decoder then
adds e to r to obtain an estimate of the transmitted code vector U.

U =r+e=(U+e)+e=U+(e+e) (5.40)

Petitioner's Exhibit 1003 
Page 240




