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Pretface

This book is intended to provide a comprehensive coverage of digital commu-
nication systems for senior-level undergraduates, first-year graduate students, and
practicing engineers. Even though the emphasis of the book is on digital com-
munications, necessary analog fundamentals are included, since analog wave-
forms are used for the radio transmission of digital signals.

The key feature of a digital communication system is that it deals with a
finite set of discrete messages, in contrast to an analog communication system in
which messages are defined on a continuum. The objective at the receiver of the
digital system is not to reproduce a waveform with precision; it is, instead, to
determine from a noise-perturbed signal which of the finite set of waveforms had
been sent by the transmitter. In fulfillment of this objective, an impressive as-
sortment of signal processing techniques has arisen over the past two decades.

The book develops these important techniques in the context of a unified
structure. The structure, in block diagram form, appears at the beginning of each
chapter; blocks in the diagram are emphasized, as appropriate, to correspond to
the subject of that chapter. Major purposes of the book are (1) to add organization
and structure to a field that has grown rapidly in the last two decades, and (2) to
ensure awareness of the “‘big picture’” even while delving into the details. The
signals and key processing steps are traced from the information source through
the transmitter, channel, receiver, and ultimately to the information sink. Signal
transformations are organized according to functional classes: formatting and
source coding, modulation, channel coding, multiplexing and multiple access,
spreading, encryption, and synchronization. Throughout the book, emphasis is
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placed on system goals and the need to trade off basic system parameters such
as signal-to-noise ratio, probability of error, and bandwidth (spectral) expenditure.

ORGANIZATION OF THE BOOK

It is assumed that the reader is familiar with Fourier methods and convolution.
Appendix A reviews these techniques, emphasizing those properties that are par-
ticularly useful in the study of communication theory. It is also assumed that the
reader has a knowledge of basic probability and has some familiarity with random
variables. Appendix B builds on these disciplines for a short treatment on statis-
tical decision theory with emphasis on hypothesis testing—so important in the
understanding of detection theory. Chapter 1 introduces the overall digital com-
munication system and the basic signal transformations that are highlighted in
subsequent chapters. Some basic ideas of random variables and the additive white
Gaussian noise (AWGN) model are reviewed. Also, the relationship between -
power spectral density and autocorrelation, and the basics of signal transmission
through linear systems, are established. Chapter 2 covers the signal processing
step, known as formatting, the step that renders an information signal compatible
with a digital system. Chapter 2 also emphasizes the transmission of baseband
signals. Chapter 3 deals with bandpass modulation and demodulation techniques.
The detection of digital signals in Gaussian noise is stressed, and receiver optim-
ization is examined. Chapter 4 deals with link analysis, an important subject for
providing overall system insight; it considers some subtleties usually neglected
at the college level. Chapters 5 and 6 deal with channel coding—a cost-effective
way of providing improvement in system error performance. Chapter 5 empha-
sizes linear block coding, and Chapter 6 emphasizes convolutional coding.

Chapter 7 considers various modulation/coding system trade-offs dealing
with probability of bit error performance, bandwidth efficiency, and signal-to-
noise ratio. Chapter 8 deals with synchronization for digital systems. It covers
phase-locked-loop implementation for achieving carrier synchronization; bit syn- -
chronization, frame synchronization, and network synchronization; and some fun-
damentals of synchronization as applied to satellite links.

Chapter 9 treats multiplexing and multiple access. It explores techniques
that are available for utilizing the communication resource efficiently. Chapter
10 introduces spread-spectrum techniques and their application in such areas as
multiple access, ranging, and interference rejection. This technology is particu-
larly important for most military communication systems. The subject of source
coding in Chapter 11 deals with data formatting, as is done in Chapter 2; the main
difference between formatting and source coding is that source coding additionally
involves data redundancy reduction. Rather than considering source coding im-
mediately after formatting, source coding has purposely been treated in a later
chapter. It is felt that the reader should be involved with the fundamental pro-
cessing steps, such as modulation and channel coding, early in the book, before
examining some of the special considerations of source coding. Chapter 12 covers

! xxii Preface

Petitioner's Exhibit 1003
Page 018



1 ~ some basic encryption/decryption ideas. It includes some classical encryption
concepts, as well as some of the proposals for a class of encryption systems called
public key cryptosystems.

If the book is used for a two-term course, a simple partitioning is suggested:
the first six chapters to be taught in the first term, and the last six chapters in the
second term. If the book is used for a one-term only course, it is suggested that
the course material be selected from the following chapters: 1, 2, 3, 4, 5, 6, 8,
and 10.
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This book presents the ideas and techniques fundamental to digital communication
systems. Emphasis is placed on system design goals and on the need for trade-
offs among basic system parameters such as signal-to-noise ratio (SNR), proba—
_bility of error, and bandwidth expendlture Transmission bandwidth is'a Tinite
" resource; there is a growing awareness that bandwidth must be conserveéfﬁsﬁ"aﬁfewd~
.and used eff1c1€g_§ly In general, we shall see that system performance ¢an often
“be 1rnproved through the use of increased transmission bandwidth. However, such
an increase is not always possible, because of physical limitations or the constraint
of government regulations concerning the allocation and conservation of the us-
able electromagnetic spectrum.

We shall deal with the transmission of information (voice, video, or data)
over a path (channel) that may consist of wires, waveguides, or free space. Fre- :
i{ quently, the treatment will be in the context of a satellite communications link. |
' Communication via satellites has two unique characteristics: (1) the ability to ‘
cover the globe with a flexibility that cannot be duplicated with terrestrial links,
and (2) the availability of bandwidth exceeding anything previously available for
intercontinental communications. Until- recently, most satellite communication
systems have been analog in naturc. However, digital communication is becoming
increasingly attractive because of the ever-growing demand for data communi-
cation and because digital transmission offers data processing options and flex-
ibilities not available with analog transmission.

The principal feature of a digital communication system (DCS) is that during
a finite interval tlme it sends a waveform from a finite set of possible wave-

”t”'ﬁ“n‘”s”"‘i‘n Contrast to an analo commumcatlon system which sends a waveform

s

A i e enn ey et e e e e e o
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In a DCS, the objective at the receiver is not to reproduce a transmitted wayveform

with precision} it is, instead, {0 determine from a noise-perturbed signal which~
waveform from the finite set of waveforms had been seni by the transmitter. An

important measure ance in a DCS is the probability of error
"“(PE)T‘WW«,—-“»@«' AN R -

1.1 DIGITAL COMMUNICATION SIGNAL PROCESSING

1.1.1 Why Digital?

Why are communication systems, military and commercial alike, ‘‘going digital’*?
There are many reasons. The primary advantage is the ease with which digital
signals, compared to analog signals, are regenerated. Figure 1.1 illustrates an ideal
binary digital pulse propagating along a transmission line. The shape of the wave-
form is affected by two basic mechanisms: (1) as all transmission lines and circuits
have some nonideal transfer function, there is a distorting effect on the ideal pulse;
and (2) unwanted electrical noise or other interference further distorts the pulse
waveform. Both of these mechanisms cause the pulse shape to degrade as a func-
tion of line length, as shown in Figure 1.1. During the time that the transmitted
pulse can still be reliably identified (before it is degraded to an ambiguous state
by the transmission line), the pulse is amplified by a digital amplifier that recovers
its original ideal shape. The pulse is thus “‘reborn’’ or regenerated. Circuits that
perform this function at regular intervals along a transmission system are called
regenerative repeaters. ‘

" Digital circuits are less subject to distortion and interference than are analog
circuits. Since binary digital circuits operate in one of two states, fully on or fully
off, to be meaningful a disturbance must be large enough to change the circuit
operating point from one state to the other. Such two-state operation facilitates
signal regeneration and thus prevents noise and other disturbances from accu-

Distance 1 Distance 2 Distance 3 Distance 4 Distance b
Original Some signal begraded : Signal is badly Amplification
pulse signal distortion signal degraded to regenerate
pulise
| 1 l | ]
1 2 3 4 5

Propagation distance ~————

Figure 1.1 Pulse degradation and regeneration.

Sec. 1.1 Digital Communication Signal Processing 3

Petitioner's Exhibit 1003
Page 023



mulating in transmission. Analog signals, however, are not two-state signals; they
can take an infinite variety of shapes. With analog circuits, even a small disturb-
ance can render the reproduced waveform unacceptably distorted. Once the an-
alog signal is distorted, the distortion cannot be removed by amplification. Since,

- with analog signals, accumulated noise is irrevocably bound to the signal, analog
signals cannot be completely regenerated. Extremely low error rates producing
high signal fidelity are possible through error detection and correction with digital
techniques, but similar procedures are not available with analog.

There are other important advantages to digital communications. Digital
circuits are more reliable and can be produced at lower cost than analog circuits.
Also, digital hardware lends itself to more flexible implementation than analog
hardware [e.g., microprocessors, digital switching, and large-scale integrated
(LSI) circuits]. The combining of digital signals using time-division multiplexing
(TDM) is simpler than the combining of analog signals using frequency-division
multiplexing (FDM). Different types of digital signals (data, telegraph, telephone,
television) can be treated as identical signals in transmission and switching—a
bit is a bit. Also, for convenient switching, digital messages can be handled in
autonomous groups called packers. Digital techniques lend themselves naturally
to signal processing functions that protect against interference and jamming, or
that provide encryption and privacy; such techniques are discussed in Chapters
10 and 12, respectively. Also, much data communication is computer to computer,
or digital instrument or terminal to computer. Such digital terminations are nat-
urally best served by digital communication links. .

Most system choices entail trade-offs; system options are rarely all good or
all bad. Thus far we have discussed only the benefits of digital transmission. What
do you suppose are the costs or liabilities? A major disadvantage of digital trans-
mission is that it typically requires a greater system bandwidth to communicate
the same information in a digital format as compared to an analog format. Through-
out this book we emphasize that bandwidth is a valuable resource, not always
available. Bandwidth-efficient signaling techniques are discussed in Chapters 2
and 7. Another cost of digital transmission is that digital detection requires system
synchronization (Chapter 8), whereas analog signals generally have no such
requirement.

1.1.2 Typical Block Diagram and Transformations

The functional block diagram shown in Figure 1.2 illustrates the signal flow
through a typical DCS. The upper blocks—format, source encode, encrypt, chan-
nel encode, multiplex, modulate, frequency spread, and multiple access—indicate
the signal transformations from the source to the transmitter. The lower blocks
indicate the signal transformations from the receiver to the sink; the lower blocks
essentially reverse the signal processing steps performed by the upper blocks. 1t
used to be that the only blocks within the dashed lines were the modulator and
demodulator, together called a modem. During the past two decades, other signal
processing functions were frequently incorporated within the same assembly as '
the modulator and demodulator. Consequently, at present, the term ‘‘modem’

4 Signals and Spectra Chap. 1
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8- Figure 1.2 Block diagram of a typical digital communication system. (Reprinted with per-
te mission from B. Sklar, ““A Structured Overview of Digital Communications,” IEEE Com-
h- mun. Mag., August 1983, Fig. 1, p. 5. © 1983 IEEE.)
Vs . o . .
2 often encompasses all the processing steps shown within the dashed lines of F igure
m 1.2;.when this is the case, the modem can be thought of as the “‘brains’’ of the
-h system. Note that what constitutes a modem is not a precise concept; some of
the blocks have purposely been shown on the dashed line rather than either inside
or outside the modem. The transmitter and receiver can be thought of as the
“‘muscles’” of the system. The transmitter usually consists of a frequency up-
conversion stage, a high-power amplifier, and an antenna. The receiver portion
W usually consists of an antenna, a low-noise amplifier (LNA), and a down-converter
- stage, typically to an intermediate frequency (IF).
te Of all the signal processing steps, only formatting, modulation, and demod-
ks ulation are essential for a DCS; the other processing steps within the modem are
ks design options for specific system needs. Formatting transforms the source in-
It . formation into digital symbols; it makes the information compatible with the signal
1d processing within a digital communication system. Modulation is the process by
‘1al which the symbols are converted to waveforms that are compatible with the trans-
as mission channel. :
T The source encoding step produces analog-to-digital (A/D) conversion (for
1 Sec. 1.1 Digital Communication Signal Processing 5
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analog sources) and removes redundant or unneeded information. Encryption
prevents unauthorized users from understanding messages and from injecting false
messages into the system. Channel coding, for a given data rate, can reduce the
{probability of error (Pg), or reduce the signal-to-noise ratio (SNR) requirement,
‘at the expense of bandwidth or decoder complexity. Channel coding can also
!{reduce the system bandwidth requirement at the expense of SNR or Pg perform-
‘ance. Frequency spreading can produce a signal that is less vulnerable to inter-
ference (both natural and intentional) and can be used to enhance the privacy of
the communicators. Multiplexing and multiple access procedures combine signals
that might have different characteristics or might originate from different sources,
so that they can share a portion of the communications resource.

The flow of the signal processing steps shown in Figure 1.2 represents a
typical arrangement; however, the blocks are sometimes implemented in a dif-
ferent order. For example, multiplexing can take place prior to channel encoding,
or prior to modulation, or—with a two-step modulation process (subcarrier and
carrier)—it can be performed between the two modulation steps. Similarly,
spreading can take place anywhere along the transmission chain; its precise lo-
cation depends on the particular technique used. Figure 1.2 illustrates the recip-
rocal aspect of the procedure; any signal processing step that takes place in the
transmitting chain must be reversed in the receiving chain. The figure also indi-
cates that from the source to the modulator a message, also called a baseband
signal or a bit stream, is characterized by a sequence of digital symbols. After
modulation, the message takes the form of a digitally encoded waveform or digital
waveform. Similarly, in the reverse direction, a received message appears as a '
digital waveform until it is demodulated. Thereafter it takes the form of a bit
stream for all further signal processing steps. At various points along the signal
route, noise corrupts the waveform s(#) so that its reception must be termed an
estimate §(¢). Such noise and its deleterious effects on system performance are
considered in Chapter 4. .

Figure 1.3 shows the basic signal processing functions, which may be viewed
as transformations from one signal space to another. The transformations are
classified into seven basic. groups:. ...

3}
. Formatting and source coding {
Modulation/demodulation
Channel coding
Multiplexing and multiple accessf
Spreading ‘

Encryption

N vk W

Synchronization........

Although this organization has some inherent overlap, it provides a useful
structure for the book. Beginning with Chapter 2, the seven basic transformations
are considered individually. In Chapter 2 we discuss the basic formatting tech-
niques for transforming the source information into digital symbols, as well as

6 Signals and Spectra Chap. 1
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Bandpass Modulation/Demodulation

m Formatting/Source Coding Coherent Noncoherent
se
1€ Character coding Differential PCM (DPCM) Phase shift Differential phase
it, Sampling Block ¢oding keying (PSK) shift keying
30 Quantization Synthesis/analysis coding Frequgncy shift (DPSK]) .
a- Pulse code modulation (PCM) Redundancy reducing coding keying (FSK) Freque;ncy shift
Amplitude shift keying {FSK)
I- keying (ASK) Amplitude shift
of Continuous phase keying (ASK)
Is modulation Continuous phase
4 (CPM) modulation
S, Hybrids (CPM)
Hybrids
a Channel Coding
if- Waveform Structured Synchronization Multiplexing/Multiple Access
g, Sequences
d M-ary signaling Carrier Frequency division
Y, Antipodal Block synchronization (FDM/FDMA)
0- Orthogonal Convolutional Subcarrier Time division
p- Biorthogonal synchronization (TD M{TDMA)
Transorthogonal Symbol Code division
1€ synchronization (CDM/CDMA)
li- Frame Space division
wd synchronization (SDMA)
Network Polarization division
er Spreading synchronization (PDMA)
al
a ; Direct sequencing
it ' (DS) '
al ; Frequency hopping Encryption
(FH)
n Time hopping (TH) Block
re - Hybrids Data stream
d Figure 1.3 Basic digital communication transformations. (Reprinted with permission from
re B. Skiar, ““A Structured Overview of Digital Communications,”” IEEE Commun. Mag., .
August 1983, Fig. 2, p. 6. © 1983 IEEE.)
the selection of waveforms for making the symbols compatible with baseband
transmission. As seen in Figure 1.3, formatting and source coding are grouped
together; they are similar in that they involve data digitization. Since the term
“*source coding’’ has taken on the connotation of data redundancy reduction in
addition to digitization, it is treated later, as a special formatting case, in Chapter
11.

In Figure 1.3, bandpass modulation/demodulation is partitioned into two
basic categories, coherent and noncoherent. The process of demodulation in-
volves the detection of the baseband information. Digital demodulation is typically

ul accomplished with the aid of reference waveforms. Wheh the references contain
18 all the signal attributes, particularly phase information, the process is termed
h- coherent; when phase information is not used, the process is termed noncoherent.
1S Both techniques are detailed in Chapter 3.

. Sec. 1.1 Digital Communication Signal Processing _ 7
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Chapter 4 is devoted to link analysis. In the past, this area has received little
attention in colleges or in textbooks, probably because it was considered straight-
forward and not worthy of detailed discussion. However, of the many specifi-
cations, analyses, and tabulations that support a developing communication sys-
tem, link analysis stands out in its ability to provide overall system insight. In
Chapter 4 we bring together all the link fundamentals that are essential for the
analysis of most communication systems.

Channel coding deals with the techniques used to enhance digital signals so
that they are less vulnerable to such channel impairments as noise, fading, and
jamming. In Figure 1.3 channel coding is partitioned into two basic categories,
waveform coding and structured sequences. Waveform coding involves the usc
of new waveforms, yielding improved detection performance over that of the
original waveforms. Structured sequences involve the use of redundant bits to
determine whether or not an error has occurred due to noise on the channel. One
of these techniques, known as automatic repeat request (ARQ), simply recognizes
the occurrence of an error and requests that the sender retransmit the message;
other techniques, called forward error correction (FEC), are capable of auto-
matically correcting the errors (within specified limitations). Under the heading
of structured sequences, we shall discuss the two prevalent techniques, block
coding and convolutional coding. In Chapter 5 we consider waveform coding and
linear block coding. In Chapter 6 we consider convolutional coding, Viterbi de-
coding (and other decoding algorithms), hard versus soft decoding procedures,
and interleaving and deinterleaving. ‘

In Chapter 7 we summarize the design goals for a comimunication system
and present various modulation and coding trade-offs that need to be considered
in the design of a system. We discuss theoretical limitations such as the Nyquist,
criterion and the Shannon limit. We also examine bandwidth-efficient modulation -
schemes. .

Chapter 8 deals with synchronization. In digital communications, synchro-
nization involves the estimation of both time and frequency. The subject is par-
titioned as shown in Figure 1.3. Coherent systems need to synchronize thelr fre-
quency reference with the carr,rer).(and possrbly suibcarrier)-in-both- frequency and
phase For. ‘noncoherent systems phase synchronizatici is not needed. The T Iun—

«‘gamental time- synchronuaﬂon process_ is symbol synchronization. The ¢ demo-
dulEteT Eeds To know wihen 1o start and end the symbol détéction procedure; a
timing error will degrade detectron performance. The next time- syn@mﬂq&n

allows 1
work synchronization allgws gg(grdrnatlon wrtnwomemrs,grs in o mg.re;; to use the

Mt e LU R, 4

._fesotrce efficiently. In Chapter 8 we are concerned with the ahgnrnent “of the
tlmlng “of spatlally separated periodic processes; the alignment is illustrated for
the case of a satellite communications link.

Chapter 9 deals with multiplexing and multiple access. The two terms mean
very similar things. Both involve the idea of resource sharing. The main difference
between the two is that multiplexing takes place locally (e.g., on a printed circuit
board, within an assembly, or even within a facility), and multiple access takes
place remotely (e.g., multiple users share the use of a satellite transponder). Mul-

8 Signals and Spectra Chap. 1
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tle tiplexing involves an algorithm that is known a priori; usually, it is hard-wired

ht- into the system. Multiple access, on the other hand, is generally adaptive and
ifi- may require overhead to enable the algorithm to operate. In Chapter 9 we discuss
/s the classical ways of sharing the resource: frequency division, time division, and
In code division. We also consider some of the multiple access techniques that have
he : emerged as a result of satellite communications.

Chapter 10 introduces a transformation of primary importance in military
S0 communications called spreading. The chapter deals with the spread-spectrum
ad techniques that are emerging as important for achieving interference protection,
s, privacy, or flexible access of the communications resource.
se Chapter 11 treats source coding—techniques that deal with the task of form-
he ing efficient descriptions of source information. Source coding can be applied to
to digital data and to waveform signals; it can reduce data redundancy and thus
ne reduce data rates. We will see that the advantage of source coding is a reduction
es of the system resources (i.e., bandwidth) required to describe the information.
e The final chapter of the book, Chapter 12, deals with encryption and de-
0- cryption, whose basic goals are privacy and authentication. Privacy refers to
ng preventing unauthorized persons from extracting information (eavesdropping)
ck from the channel. Authentication refers to preventing unauthorized persons from
nd injecting spurious signals (spoofing) into the channel. In this chapter we highlight
le- the data encryption standard (DES) and some current ideas for a class of en-
s, cryption systems called public key cryptosystems.
;3 1.1.3 Basic Digital Communication Nomenclature
lgs‘r':’ Some of the basic digital signal nomenclature that frequently appears in digital

communication literature is as follows:

;r): Information source: the device producing information to be communicated
o by means of the DCS. Information sources can be analog or discrete. The
;d output of an analog source can have any value in a continuous range of

— : amplitudes, whereas the output of a discrete information source takes its

- value from a finite set. Analog information sources can be transformed into
%O' digital sources through the use of sampling and quantization. Sampling and
’02 quantization techniques called formatting and source coding (see Figure 1.3)
T are described in Chapters 2 and 11.

He‘ Textual message: a sequence of characters (see Figure 1.4a). For digital
he transmission, the message will be a sequence of digits or symbols from a
or finite symbol set or alphabet. :

Character: a member of an alphabet or set of symbols (sec Figure 1.4b).
an Characters may be mapped into a sequence of binary digits. There are several
ce standardized codes used for character encoding, including the American
1t Standard Code for Information Interchange (ASCII), Extended Binary
es Coded Decimal Interchange Code (EBCDIC), Hollerith, Baudot, Murray,
1l- and Morse. '
| Sec. 1.1 Digital Communication Signal Processing 9
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Binéry symbol (k=1, M = 2)
Quaternary symbol (k =2, M = 4)

0t1

i“_T——’%“T‘ﬂ-‘*‘T—»‘ T is the

symbol duration
Figure 1.4 Nomenclature examples. (a) Textual messages. (b) Characters. (c) Bit
stream (7-bit ASCII). (d) Symbols m;, i = 1,. .. , M, M = 2*_(e) Bandpass digital
waveform s; (1), i =1, ..., M.

8-ary symbol (k = 3, M = 8)

Binary digit (bit): the fundamental information unit for all digital systems.
The term bit is also used as a unit of information content; this second usage
is described in Chapter 7.

Bit stream: a sequence of binary digits (ones and zeros). Sometimes, a se-
quence of two-level pulses is used as a convenient illustration of the bit
stream. The bit stream in Figure 1.4c uses a 7-bit ASCII character code for
representing the message ‘““HOW.”’ A bit stream is often termed a baseband
signal, which implies that its spectral content extends from (or near) dc up
to some finite value, usually less than a few meégahertz.

Symbol (digital message): groups of k bits considered as a unit or character
m;, from a finite symbol set or alphabet (see Figure 1.4d). The size of the
alphabet, M, is M = 2* (i.e., k is the number of bits in the symbol). For
transmission, each m; symbol (i 1, ..., M) will be represented by a
corresponding waveform s,(2), $2(2), . . . , sSa(2). The symbol, m;, is sent
by transmitting the’digital waveform, s,(¢), for T seconds, the symbol time
duration. The next symbol is sent during the next time interval, T. The fact
that the symbol set transmitted by the DCS is finite is a primary difference

Signals and Spectra

Chap. 1
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between a DCS and an analog system. The DCS receiver need only decide
which of the M waveforms was transmitted; however, an analog receiver
must be capable of accurately estimating a continuous range of waveforms.

Digital waveform: a voltage or current waveform (a pulse for baseband trans-
mission, or a sinusoid for bandpass transmission) that represents a digital
symbol. The waveform characteristics (amplitude, width, position for pulses,
or amplitude, frequency, phase for sinusoids) allow its identification as one
of the symbols in the finite symbol alphabet. Figure 1.4e shows an example
of a bandpass digital waveform. Even though the waveform is sinusoidal,
and consequently has an analog appearance, it is called a digital waveform
because it is encoded with digital information. In the figure, during each
time interval, T, a preassigned frequency indicates the value of a digit.

‘Data rate: data rate in bits per second (bits/s) is given by R = kK/T = (1/T)
log, M bits/s, where k bits identify a symbol from an M = 2*symbol al-
phabet, and T is the k-bit symbol duration.

1.1.4 Digital versus Analog Performance Criteria

A principal difference between analog and digital communication systems has to
do with the way in which we evaluate their performance. Analog systems draw
their waveforms from a continuum, which therefore forms an infinite set; that is,
a receiver must deal with an infinite number of possible waveshapes. The figure
of merit for the performance of analog communication systems is a fidelity cri-
terion, such as signal-to-noise ratio, percent distortion, or expected mean-square
error between the transmitted and received waveforms.

By contrast, a digital communication system transmits signals that represent
digits. These digits form a finite set or alphabet, and the set is known a priori to
the receiver. A figure of merit for digital communication systems is the probability
of incorrectly detecting a digit, or the probablhty of error (Pg).

-

,1; S R

se- . 1.2 CLASSIFICATION OF SIGNALS

bit

or 1.2.1 Deterministic and Random Signals

nd

up A signal can be classified as deterministic, meaning that there isMnaing

W or as random, meaning that there is some

er degree of uncertainty before the signal actually occurs. Deterministic signals or

he waveforms are modeled by explicit mathematical expressions, such as x(z) =

or 5 cos 10z. For a random waveform it is not possible to write such an explicit
a expression. However, when examined over a long.period, a random waveform,

nt also Igt:grred to as a random process, may exhibit certain regularities that can be

ne _described in terms of probabilities and statistical averages, Such a model, in the

ct “form of a probabilistic description of the random process, is particularly useful

ce for characterizing signals and noise in communication systems.

1 Sec. 1.2 Classification of Signals 11
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1.2.2 Periodic and Nonperiodic Signals

A signal x(¢) is called periodic in time if there exists a constant 7o > 0 such that
x(t) = x(t + To) for —0o <t < @ (1.1

where 7 denotes time. The smallest value of T, that satisfies this condition is called
the period of x(t). The period T, defines the duration of one complete cycle of
x(£). A signal for which there is no value of T, that satisfies Equation (1.1) is
called a nonperiodic signal.

1.2.3 Analog and Discrete Signals

An analog signal, x(t), is a continuous function of time; that is, x() is uniquely
defined for all r. An electrical analog signal arises when a physical waveform (e.g.,
speech) is converted into an electrical signal by means of a transducer. By com-
arison, a discrete signal, x(kT), is onc that exists only at discrete times; it is
characterized by a sequence of numbers defined for each time, kT, where k is an
integer and T is a fixed time interval.

1.2.4 Energy and Power Signals

An electrical signal can be represented as a voltage, v(¢), or a current, (), with
instantaneous power p(t) across a resistor & defined by

_ v
pt) = ) (1.2)
or
pt) = P(OR (1.3)

In communication systems, power is often normalized by assuming R to be 1 €,
although % may be another value in the actual circuit. If the actual value of the
power is needed, it is obtained by ‘‘denormalization’ of the normalized value.
For the normalized case, Equations (1.2) and (1.3) have the same form. Therefore,
regardless of whether the signal is a voltage or current waveform, the normali-
zation convention allows us to express the instantaneous power as

p(t) = x*(1) (1.4

where x(¢) is either a voltage or a current signal. The energy dissipated during
the time interval (— 772, 7/2) by a real signal with instantancous power expressed
by Equation (1.4) can then be written as

/2
ET = f 2(1) dt a.5)
. — T2

12 Signals and Spectra Chap. 1
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and the average power dissipated by the signal during the interval is

P?‘—ljm 2(t) di 1.6)
at T _mx(t) (1.
1) The performance of a communication system depends on the detected signal
energy; higher-energy signals are detected more reliably (with fewer errors) than
ec; are lower-energy signals—the transmitted energy does the work. On the other
0 hand, power is the rate at which energy is delivered. It is important for different
s reasons. The power determines the voltages that must be applied to a transmitter
and the intensities of the electromagnctic fields that one must contend with in
radio systems (i.e., fields in waveguides that connect the transmitter to the an-
tenna, and fields around the radiating elements of the antenna).
In analyzing communication signals it is often desirable to deal with the
waveform energy. We classify x(r) as an energy signal if, and only if, it has nonzero
ely but finite energy (0 < E, < ) for all time, where
g o orT2
m- E. = lim x2(1) dt
" is ' Too J =172 1.7,
an - [ vwa

In the real world we always transmit signals having finite energy (0 < E, < ).

However, in order to describe periodic signals, which by definition [Equation

(1.1)] exist for all time and thus have infinite energy, and in order to deal with

random signals that have infinite energy, it is convenient to define a class of si gnals

‘ith called power signals. A signal is defined to be a power signal if, and only if, it
: has finite but nonzero power (0 < P, < «) for all time, where

1 7/2
2) Po=tim = [ ) ar (1.8)
1w 1 J—172
The energy and power classifications are mutually exclusive. An energy signal
1.3) has finite energy but zero average power, whereas a power signal has finite average
power but infinite energy. A waveform in a system may be constrained in either
Q, its power or energy values. As a general rule, periodic signals and random signals
the are classified as power signals, while signals that are both deterministic and non-
ue. periodic are classified as energy signals [1, 2].
e, As mentioned earlier, signal energy and power are both important param-
ali- eters in specifying a communication system. The classification of a signal as either
an energy signal or a power signal is a convenient model to facilitate the mathe-
1.4) matical treatment of various signals and noise.
ing

1.2.5 The Unit Impulse Function
sed .
; A useful function in communication theory is the unit impulse or Dirac delta
1.5) function, 8(t). The impulse function is an abstraction—an infinitely large ampli-
’ tude pulse, with zero pulse width, and unity weight (area under the pulse), con-
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centrated at the point where its argument is zero. The unit impulse is characterized
by the following relationships:
€

f:, () dr = 1 (1.9)
5(1) = 0 fort#0 (1.10)
d(z) is unbounded at t = 0 (1.11)
f_: X(03(f — 1) di = x(to) (1.12)

The unit impulse function, 8(z), is not a function in the usual sense. When
operations involve 8(¢), the convention is to interpret 3(z) as a unit-area pulse of
finite amplitude and nonzero duration, after which the limit is considered as the
pulse duration approaches zero. 8(¢ — ) can be depicted graphically as a spike
located at ¢ = £, with height equal to its integral or area. Thus Ad(¢ — t,) with
A constant represents an impulse function whose area or weight is equal to A,
that is zero everywhere except at r = /.

Equation (1.12)-is known as the sifting or sampling property of the unit
impulse function; the unit impulse multiplier selects a sample.of-the function x(7)

. evaluated at t = to.

1.3 SPECTRAL DENSITY

~-The spectral density of a signal characterizes the distribution of the signal’s energy
or power in the frequency domain. This concept is particularly important when
considering filtering in communication systems. We need to be able to evaluate
the signal and noise at the filter output. The energy spectral density (ESD) or the

power spectral density (PSD) is used in the evaluation.
1.3.1 Energy Spectral Denéity

The total energy of a real-valued energy signal x(¢), defined.over the interval
(—o, ®), is described by Equation (1.7). Using Parseval’s theorem [1], we can
relate the energy of such a signal expressed in the time domain to the energy
expressed in the frequency domain, as follows:

E.= [ _xcwa= [ x@pds (1.13)
where X(f) is the Fourier transform of the nonperiodic signal x(¢) (for a review
of Fourier techniques, see Appendix A). Let ¥.(f) denote the squared magnitude
spectrum, defined as

i — -

V. (f) = X | (1.14)

e R i
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red The quantity ¥.(f) is the waveform energy spectral density (ESD) of the signal
' x(1). Therefore, from Equation (1.13), we can express the total energy of thc signal
x(t) by integrating the spectral density with respect to frequency, as follows:

.9)

- L“’x(” df | (1.15)
10)
1) - This equation states that the energy of a signal is equal to the area under the ¥.(f)
versus frequency curve. Energy spectral density describes the signal energy per
12) unit bandwidth mecasured in joules/hertz. There are equal energy contributions
_from both posmve and negative. frequency components . SJIICCTOT a real 31gnal
en x(1), |X(f)]1s is an even funcnon of frequency. Theref he"_en_elgy speetral den51ty
of 1S symmetne%m freque»cy about the origin, s the total” energy of the
he SIgnal x(2) can be expressed as
H(C ) oo
ith E =2 [ v df (1.16)
nit 1.3.2 Power Spectral Density
D)
The average power, P,, of a real-valued power signal, x(¢), is defined in Equation
(1.8). If x(¢) is a periodic signal with period Ty, it is classified as a power signal.
The expression for the average power of a periodic signal takes the form of Equa-
tion (1.6), where the time average is taken over the signal period Ty, as follows:
1 Tol2
gy Py= o f o X (D) dt | (1.17a)
0 J -
en ‘
Ee Parseval’s theorem for a real-valued periodic signal [1] takes the form
e
1 To/2 ) ® N
P, = Ef-m" dt= 3 e (1.17b)
where the |c,| terms are the complex Fourier series coefficients of the periodic
signal (see Appendix A).
ral To apply Equation (1.17b), we need only know the magnitude of the coef-
an ficients, |c,|. The power spectral density (PSD) function, Gx(f), of the periodic
gy signal, x(¢), is a real, even, and nonnegative function of frequency that gives the
distribution of the power of x(#) in the frequency domain, defined as
3) i ,
G(f) = 2 l|ea? 8(f — nfo) (1.18)
W e
de Equation (1.18) defines the power spectral density of a periodic signal, x(¢), as a
succession of the weighted delta functions. Therefore, the PSD of a periodic signal
4) is a discrete function of frequency. Using the PSD defined in Equation (1.18), we
9 Sec. 1.3 Spectral Density 15
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can now writc the average normalized power of a real-valued signal, as follows:

= f_l G(f) df = 2f: G.(f) df (1.19)

Equation (1.18) describes the PSD of periodic (power) signals only. If x(r)
is a nonperiodic signal it cannot be expressed by a Fourier series, and if it is a
nonpcriodic power signal (having infinite energy) it may not have a Fourier trans-
form. However, we may still express the power spectral density of such signals
in the limiting sense. If we form a truncated version, x7(t), of the nonperiodic
power signal, x(¢), by observing it only in the interval (— 772, T/2), then x7(¢) has
finite energy, and has a proper Fourier transform, X7(f). It can be shown [2] that
the power spectral density of the nonperiodic x(7) can then be defined in the limit
as - »

G(f) = lim —iXT(f)I2 (1.20) |

Example 1.1 Average Normalized Power

(a) Find the average normalized power in the waveform, x(¢t) = A cos 2wfot, using
time averaging.
(b) Repeat part (a) using the summation of spectral coefficients.

Solution

(a) Using Equation (1.17a), we have

1 Tol2
P, = —f A? cos? 2mfot dt

Ty J—1o2
A2 To/2
- f (1 + cos dufot) dt
0
A2
(To) = ‘5"

(b) Using Equations (1.18) and (1.19) gives us

oc

G(f) = X led*¥(f — nfo)

n= —oc

A
Clzc—-l:E

(see Appendix A)

c, =0 forn =

0,
A 2
G.(f) = ﬁ f~f&+@)&f+m

2

- [ awpar =%
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vs: 1.4 AUTOCORRELATION
19) 1.4.1 Autocorrelation of an Energy Signal

Correlation is a matching process; autocorrelation refers to the matching of a
signal with a delayed version of itself. The autocorrelation function, R.(t), of a

(1)

s a real-valued energy signal, x(¢), is defined as
ns-
1als =
v Rur) = f x(Ox(t + 1 di for —o0 <1< (1.21)
has
that The autocorrelation function, R,(1), provides a measure of how closely the signal
imit matches a copy of itself as the copy is shifted r units in time. The variable 7 plays
the role of a scanning or searching parameter. R.(r) is not a function of time; it
is only a function of the time difference, 7, between the waveform and its shifted \
' The autocorrelative function of a real-valued energy signal has the following
" properties:
) 1. R.(v) = R.(—7) symmetrical in T about zero
usmg
2. R.(1) = R, (0) forallr maximum value occurs at the origin
autocorrelation and ESD form a
3. R.(1) & () Fourier transform pair, as
designated by the double-headed arrows
4, R.(0) = f x2(2) dt value at the origin is equal to
- the energy of the signal
Ifitems 1 through 3 are satisfied, R.(7) satisfies the properties of an autocorrelation
function. Property 4 can be derived from property 3 and thus need not be included
as a basic test.
1.4.2 Autocorrelation of a Periodic (Power) Signal
The autocorrelation function of a real-valued power signal x(¢) is defined as
1 772
Ru(r) = lim ~ f X(Ox(t + D dt for —m<rt<ew  (1.22)
T 1 J—T12
When the power signal, x(¢), is periodic with period T, the time average in Equa-
tion (1.22) may be taken over a single period, Ty, and the autocorrelation function
can be expressed as follows:
1 To/2
Ru(r) = ——f X(Ox(t + D dt  for —o <1< (1.23)
T() — Tol2
Chap. 1 Sec. 1.4 Autocorrelation 17
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The autocorrelation function of a real-valued periodic signal has properties
similar to those of an energy signal, as follows:

1. R.(t) = R.(—7) symmetrical in T about zero
2. R.(7) = R, (0) forall T maximum value occurs at the origin
3. R.(1) « G.(f) autocorrelation and PSD form a

Fourier transform pair

1 To/2 o
4. R.(0) = :—F— f x2(1) dt value at the origin is cqual to
0/~ To2 the average power of the signal

1.5 RANDOM SIGNALS |

The main objective of a communication ‘system is the transfer of information over \
a channel. All useful message signals appear random; that is, the receiver does
not know, a priori, which of the possible message waveforms will be transmitted.
Also, the noise that accompanies the message signals is due to random electrical
signals. Therefore, we need to be able to form efficient descriptions of random
signals.

1.5.1 Random Variables

Let a random variable, X(A), represent the functional relationship between a
random event, A, and a real number. For notational convenience we shall des-
ignate the random variable by X, and let the functional dependence upon A be
implicit. The random variable may be discrete or continuous. The distribution
function, Fx(x), of the random variable, X, is given by

Fx(x) = P(X = x) (1.24)

where P(X =< x) is the probability that the value taken by the random variable,
X, is less than or equal to a real number, x. The distribution function, Fx(x), has’
the following properties: :

1. 0= Fx(x) =1

2. Fx(x1) = Fx(x) if x1 =< x5
3. Fx(—x) =0

4, Fx(+x) =1

Another useful function relating to the random variable, X, is the probability
density function (pdf), denoted px(x), where
' dFx(x)
dx

px(x) = (1.25)

18 Signals and Spectra Chap. 1

Petitioner's Exhibit 1003
Page 038




es As in the case of the distribution function, the pdf is a function of a real number,
x. The name ‘‘density function’” arises from the fact that the probability of the
event x; = X = x, equals

P(XISXS.XZ) = P(XSX;J_) - P(XSX])
Fx(x2) — Fx(x1)

|

il

J;l px(x) dx

The probability density function has the following properties
1 px(x) =0

2 7 px0) dr = Fa(+o) = Fx(=2) = 1

er Thus, a probability density function is always a nonnegative function with a total
es area of one. Throughout the book we use the designation, px(x), for the probability
d. density function of a continuous random variable. For ease of notation, we will
al often omit the subscript, X, and write simply, p(x). We will use the designation
m P(X = x;) for the probability of a random variable, X, where X can take on discrete

values only.

1.5.1.1 Ensemble Averages

a | The mean value, my, or expected value of a random variable, X, is defined
28~ by
be -
on my = E{X} = ~ xpx(x) dx (1.26)
14) where E{-} is called the expected value operator. The nth moment of a probability
distribution of a random variable, X, is defined by
le, . .
as E{X”} = f _x"px(x) dx (1.27)
For the purposes of communication syster_gwa;‘zv{lyS;S the most 1mporta,nwtg£19rnents
~of X are the’ ﬁrst two moments. Thus, » ="1in Equation (1.27) gives my as
discussed above, whereas n = 2 gives the mean-square value of X, as follows:
E{X?*} = f_ x2px(x) dx ; (1.28)
We can also define cenlrd'r;%—;(“)ﬂrﬁrwz;;t}:W:;mch_are the moments of the difference
ity between X and m x - The second central moment, called the variance of X, is deﬁned
as e T
5) var () = B{(X - mx)z} f (&= mapa() (1.29)
A Sec. 1.5 Random Signals 19
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The variance of X is also denoted as 0%, and its square root, oy, is called the
standard deviation of X. Variance is a measure of the ‘‘randomness’’ of the
random variable X. By specifying the variance of a random variable, we are
constraining the width of its probability density function. The variance and the
mean-square value are related by

0% = E{X? - 2mxX + mk}
E{X%} — 2mxE{X} + m}
E{X?} — m%

i

I

Thus, the variance is equal to the difference between the mean-square value and
the square of the mean.

1.5.2 Random Processes
A random process, X(A, ), can be viewed as a function of two variables, an
event A, and time. Figure 1.5 illustrates a random process. In the figure there are

N sample functions of time, {X;(¢)}. Each of the sample functions can be regarded
as the output of a different noise generator. For a specific event A;, we have a

Xy (1) |

| .
|
B
Xz(t) I

\ Sample
functions

Real number, x
L ]

Time

Figure 1.5 Random noise process.
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the single time function, X(4;, ) = X,(¢) (i.e., a sample function). The totality of all

the - sample functions is called an ensemble. For a specific time t,, X (A, 1) is a random
are variable X (1), whose value depends on the event. Finally, for a specific event,
the A = A; and a specific time ¢ = 1z, X(A;, ) is simply a number. For notational

convenience we shall designate the random process by X(7), and let the functional
dependence upon A be implicit.

1.5.2.1 Statistical Averages of a Random Process

Because the value of a random process at any future time is unknown (since

the identity of the event A is unknown), a random process whose distribution

and functions are continuous can be described statistically with a probability density
function (pdf). In general the form of the pdf of a random process will be different

for different times. In most situations it is not practical to determine empirically

the probability distribution of a random process. However, a partial description

consisting of the mean and autocorrelation function are often adequate for the

. an needs.of communication systems. We define the mean of the random process,

arc X(1), as :

ded %
e a BX(0} = [ w0 dx = mxi) - (130)

ety . ST

R s chmson
S R g R e

where X (#;) is the random variable obtained by observing the random process at
time fz, and the pdf of X(¢,), the density over the ensemble of events at time 7,
is designated px,(x).

We define the autocorrelation function of the random process, X(¢), to be
a function of two variables, ¢, and f;, as shown by

Rx(ti, 2) = E{X(1))X(2)} (1.31)

where X(#1) and X(¢;) are random variables obtained by observing X(¢) at times
t; and ¢,. respectively. The autocorrelation function is a measure of the degree
to which two time samples of the same random process are related.

1.5.2.2 Stationarity

A random process X(?) is said to be stationary in the strict sense if none of
its statistics are affected by a shift in the time origin. A random process is said
to be wide-sense stationary (WSS) if two of its statistics, its mean and autocor-
relation function, do not vary with a shift in the time origin. Thus, a process is
WSS if

E{X()} = mx = a constant (1.32)
and ‘

Rx(ty, t2) = Rx(t; — 1) (1.33)

Strict-sense stationary implies wide-sense stationary, but not vice versa. Most of
the useful results in communication theory are predicated on random information

Sec. 1.5  Random Signals 21
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signals and noise being wide-sense stationary. From a practical point of view it
is not necessary for a random process to be stationary for all time, but only for
some observation interval of interest.

For stationary processes, the autocorrelation function in Equation (1.33)
does not depend on time but only on the difference between ¢, and #,. That is,
all pairs of values of X(¢) at points in time separated by = = t, — f, have the
same correlation value. Thus, for stationary systems, we can denote Rx(¢1, t2)
simply as Rx(7).

1.5.2.3 Autocorrelation of a Wide-Sense Stationary Random Process

Just as the variance provides a measure of randomness for random variables,
the autocorrelation function provides a similar measure for random processes.
“Fora wide-sense stationary process, the autocorrelation function is only afunctlon

of the time difference v = t, — t,, that is,

Rx(1) = E{X(O)X(t + 1)} for —o0 <7 < (1.34)

For a zero mean WSS processes, Rx(t) indicates the extent to which the
random values of the process separated by 7 seconds in time are statistically
correlated. In other words, Rx(t) gives us an idea of the frequency response that
is associated with a random process. If Rx(7) changes slowly as T increases from
zero to some value, it indicates that, on the average, sample values of X(¢) taken
att = t; and t = ¢, + 7 are nearly the same. Thus, we would expect a frequency
domain representation of X(f) to contain a preponderance of low frequencies. On
the other hand if Rx(t) decreases rapidly as 7 is increascd, we would expect X ()
to change rapidly with time and thereby contain mostly high frequencies.

Properties of the autocorrelation function of a real-valued wide-sense sta- |
tionary process are: |

1. Rx(7) = Rx(—1) symmetrical in T about zero
) 2. Rx(1) = Rx(0) forall 7 maximum value occurs at the origin
: T,WM 3. Rx(1) & Gx(f) ’ autocorrelation and power spectral
density form a Fourier transform pair
4. Ry(0) = E{X?*(1)} value at the origin is equal to the

average power of the signal
1.5.3 Time Averaging and Ergodicity

To compute my and Rx(7) by ensemble averaging, we would have to average
across all the sample functions of the process and would need to have complete
knowledge of the first- and second-order joint probability density functions. Such
knowledge is generally not available.

When a random process belongs. to.a special class, known as an ergodzc

process, its time averages equal its ensemble averages, and the statistical prop-
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ow it erties of the process can be determined by time averaging over a single sample

y for function of the process. For arandom.process.to.be ergodic.it-must be stationary
in.the strict sense. (The converse is not necessary.) However, for communication
1.33) systems, whereyyg‘ggggggﬂsﬁgd to meet the conditions, of wide-sense stationarity,
at is, we_are interested_only.in the mean and autocorrelatlon functions.
e the ' We can say that a random process is ergodic in the mean n it
1, 1) 2
my = lim UT X(t) dt (1.35)
T—>c0 —7/2
and it is ergodic in the autocorrelation function if
T2
bles, - Rx(7) = lim UUT XX + 1) dt (1.36)
sses. T -
e TN
1ction Testing for the ergodicity of a random process is usually very difficult. In
practice one makes an intuitive judgment as to whether it is reasonable to inter-
(1.34) , ) change the time and ensemble averages. A reasonable assumption in the analy51s
\JSLN}\X:‘ of most communication 51gnals (in the absence of transient effects) 1s that the
*h the ~ _random waveforms are ergodic in the mean and the antoeerrclation funetion: Sifice
tically '”VV“);"Z,)'«’ 7 time averages equal ensemble averages for ergodic processes, fundamental elec-
;e that o trical engineering parameters, such as dc value, rms value, and average power
s from ~can be related to the moments of an ergodic random process. A summary of these
taken “teoant L(relatmnshlps is:
juency :
es. On 1. The quantity my = E{X(¢)} is equal to the dc level of the signal.
t X(1) 2. The quantity m% is equal to the normalized power in the dc component.

3. The second moment of X(¢), E{X?(¢)}, is equal to the total average nor-
malized power.

4, The quantity VE{X?(¢)} is equal to the root-mean-square (rms) value of the
voltage or current signal.

5, The variance, 0%, is equal to the average normalized power in the time-
varying or ac component of the signal.

se sta-

) 6. If the process has zero mean (i.e., my = mk = 0), then 0% = E{X?}, and
I the variance is the same as the mean-square value, or the variance represents
the total power in the normalized load.

7. The standard deviation, ox, is the rms value of the ac component of the
signal.

8. If my = 0, then oy is the rms value of the signal.

1.5.4 Power Spectral Density of a Random Process

average

omplete

is. Such A random process, X(f), can generally be classified as a power signal having a
power spectral density (PSD); Gx(f), of the form shown in Equation (1.20). Gx(f)

ergodic is particularly useful in communications systems, because it describes the dis-

al prop- tribution of a signal’s power in the frequency domain. The PSD enables us to
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evaluate the signal power that will pass through a network having known fre-
quency characteristics. We summarize the principal features of PSD functions as
follows:

1. Gx(f) =0 and is always real valued
2. Gx(f) = Gx(—f) for X(¢) real-valued

PSD and autocorrelation form a

3. Gx(f) © Rx(7) Fourier transform pair

“ relationship between average

4. Px = j — Gx(f) df normalized power and PSD

Figure 1.6a illustrates a single sample waveform from a WSS random pro-
cess, X(¢). The waveform is a binary random sequence with unit-amplitude pos-
itive and negative (bipolar) pulses. The positive and negative pulses occur with
equal probability. The duration of each binary digit is T seconds, and the average
or dc value of the random sequence is zero. Figure 1.6b shows the same sequence
displaced 7, seconds in time; this sequence is therefore denoted X(¢ — ;). Let
us assume that X(¢) is ergodic in the autocorrelation function so that we can use
time averaging instead of ensemble averaging to find Rx(t). The value of Rx(r1)
is obtained by taking the product of the two sequences X(#) and X(¢ — 7;) and
finding the average value using Equation (1.36). Equation (1.36) is accurate for
ergodic processes only in the limit. However, integration over an integer number
of periods can provide us with an estimate of Rx(t). Noticeé that Rx(t;) can be
obtained by a positive or negative shift of X(#). Figure 1.6¢ illustrates such a
calculation, using the single sample sequence (Figure 1.6a) and its shifted replica
(Figure 1.6b). The cross-hatched areas under the product curve X(£)X(t — 71)
contribute to positive values of the product, and the dotted areas contribute to
negative values. The sequences can be further shifted by 72, 73, . . . , each shift
yielding a point on the overall autocorrelation function Ry (7) shown in Figure
1.6d. Every random bit stream has an autocorrelation plot of the general shape
shown in Figure 1.6d. The plot peaks at Rx(0) [the best match occurs when T
equals zero, since R(1) = R(0) for all 7], and it declines as 7 increases. Figure
1.6d shows points corresponding to Rx(0) and Rx(71).

The analytical expression for the autocorrelation function Rx(7) shown in
Figure 1.6d, is [1]

[
1- ETI for7| = T
Rx(1) = (1.37)

0 for|v| > T ‘

The autocorrelation function allows us to express a random signal’s power spectral
density directly. Since the PSD and the autocorrelation function are Fourier trans-
forms of each other, the PSD, Gx(f), of the random binary sequence can be found,
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Figure 1.6 Autocorrelation and power spectral density.
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Figure 1.6 (Continued)
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using Table A.1, as the transform of Ry(7) in Equation (1.37). Gx(f) is shown
below, and its general shape is illustrated in Figure 1.6e.

o 2
Ge() = T (2N 7 ez g7 (1.38)
wfT
where
sinc y = S0 Ty ' (1.39)
8% .

Notice that the area under the PSD curve represents the average power in
the signal. One convenient measure of bandwidth is the width of the main spectral
lobe. Figure 1.6e illustrates that the bandwidth of a signal is inversely related to
the symbol duration or pulse width. Figures 1.6f—j repeat the steps shown in
Figures 1.6a-e, except that the bit duration is shorter. Notice that the shape of
the shorter-bit-duration Rx(7) is narrower, shown in Figure 1.6i, than it is for the
longer-bit-duration Rx(r), shown in Figure 1.6d. In Figure 1.6i, Rx(v1) = 0; in
other words, a shift of 7, in the case of the shorter-bit-duration example is enough
to produce a zero match, or a complete decorrelation between the shifted se-
quences. Since the pulse duration, T, is shorter in Figure 1.6f, and the bit rate is
higher than in Figure 1.6a, the bandwidth occupancy in Figure 1.6j is greater than
the lower-bit-rate bandwidth occupancy shown in Figure 1.6e.

1.5.5 Noise in Communication Systems

The term noise refers to unwanted electrical signals that are always present in
electrical systems. The presence of noise superimposed on a signal tends to ob-
scure or mask the signal; it limits the receiver’s ability to make correct symbol
decisions, and thereby limits the rate of information transmission. Noise arises
from a variety of sources, both man-made and natural. Man-made noise includes
such sources as spark-plug ignition noise, switching transients, and other radiating
electromagnetic signals. Natural noise includes electrical circuit and component
noise, atmospheric disturbances, and galactic sources.
Good engineering design can eliminate much of the noise or its undesirable
effect through hltermg, shielding, the choice of modulation, and the selection of
......... an optlmum receiver site. For example, sensitive radio astronomy measurements‘\

are typically located at remote desert locations, far from man-made noise sources.
However, WWMMMW%&
that cannot be eliminated. Thermal noise [4, 5] is caused by the thermal motion

- f of electrons in all dissipative components—resistors, wires, and so on. The same
electrons that are responsible for electrical conduction are also responsible for
thermal noise.

We can describe thermal noise as a zero-mean Gaussian random process.
A Gaussian process, x(t), is a random function whose value, n, at any arbitrary
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time, ¢, is statistically characterized by the Gaussian probability density function,

p(n):
1 1 /n\?
p(n) = N cXp |:—' E (;) :| (1.40)

where o7 is the variance of n. The normalized or standardized Gaussian density
Junction of a zero-mean process is obtained by assuming that o = 1. This nor-
malized pdf is shown sketched in Figure 1.7.

We will often represent a random signal as the sum of a Gaussian noise
random variable and a dc signal:

Z=a+n

where z is the random signal, a the dc component, and » the Gaussian noise
random variable. The pdf p(z) is then expressed as

1 1 /z — a\*
p(z)—(I 2“Texp[—5< > )] (1.41)

where, as before, ¢ is the variance of n. The Gaussian distribution is often used
as the system noise model because of a theorem, called the central limit theorem
[3], which states that under very general conditions the probability distribution
of the sum of j statistically independent random variables approaches the Gaussian
distribution as j — o, no matter what the individual distribution functions may
be. Therefore, even though individual noise mechanisms might have other than

Figure 1.7 Normalized (o = 1) Gaussian probability density function.
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ion, , Gaussian distributions, the aggregate of many such mechanisms will tend toward
the Gaussian distribution.

.40) 1.5.5.1 White Noise
. ‘ The primary spectral characteristic of thermal noise is that its power spectral
sty density is the same for all frequencies of interest in most communication systems;
nor- in other words, a thermal noise source emanates an equal amount of noise power
. per unit bandwidth at all frequencies—from dc to about 10'?> Hz. Therefore, a
o1s¢ simple model for thermal noise assumes that its power spectral density G,(f) is
flat for all frequencies, as shown in Figure 1.8a, and is denoted as follows:
N
: G.(f) = =%  watts/ertz (1.42)
oise 2 _
where the factor of 2 is included to indicate that G,,(f) is a two-sided power spectral
41) density. When the noise power has such a uniform spectral density, we refer to

it as white noise. The adjective ‘‘white’” is used in the sense that white light
contains equal amounts of all frequencies within the visible band of electromag-
1sed , netic radiation.

rem The autocorrelation function of white noise is given by the inverse Fourier
ti'OH transform of the noise power spectral density (see Table A.1) denoted as follows:
sian

N
nay Ru(r) = FHGL(N} = =7 8(7) (1.43)
han 2

Thus the autocorrelation of white noise is a delta function weighted by the factor
Nyo/2 and occurring at T = 0, as seen in Figure 1.8b. Note that R,(7) is zero for
T # 0; that is, any two different samples of white noise, no matter how close
together in time they are taken, are uncorrelated.

The average power, P,, of white noise is infinite because its bandwidth is
infinite. This can be seen by combining Equations (1.19) and (1.42) to yield.

“ N,
P, = 7" df = o (1.44)
G, (f)
Rpir)
N0/2 - NG/Z
f T
0 0
(a) ‘ (b)

Figure 1.8 (a) Power spectral density of white noise. (b) Autocorrelation function
of white noise.
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Although white noise is a useful abstraction, no noise process can truly be white;
however, the noisc encountered in many real systems can be assumed to be ap-
proximately white. We can only obscrve such noise after it has passed through
a real system which will have a finite bandwidth. Thus, as long as the bandwidth
of the noise is appreciably larger than that of the system, the noise can be con-
sidered to have an infinite bandwidth.

The delta function in Equation (1.43) means that the noise signal, n(?), is
totally decorrelated from its time-shiftcd version, for any T > 0. Equation (1.43)
indicates that any two different samples of a white noise process are uncorrelated.
Since thermal noise is a Gaussian process and the samples are uncorrelated, the
noise samples are also independent [3]. Therefore, the effect on the detection |
process of a channel with additive white Gaussian noise (AWGN) is that the noise §
affects each transmitted symbol independently. Such a channel is called a mem-
oryless channel. The term ‘‘additive’ means that the noise is simply superimposed §

|

or added to the signal—that there are no multiplicative mechanisms at work.

Since thermal noise is present in all communication systems and is the prom-
inent noise source for most systems, the thermal noise characteristics—additive,
white, and Gaussian—are most often used to model the noise in communication
systems. Since zero-mean Gaussian noise is completely characterized by its var-
iance, this model is particularly simple to use in the detection of signals and in
the design of optimum receivers. In this book we shall assume, unless otherwise
stated, that the system is corrupted by additive zero-mean white Gaussian noise,
even though this is sometimes an oversimplification.

1.6 SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

Having developed a set of models for signals and noise, we now consider the
characterization of systems and their effects on such signals and noise. Since a
system can be characterized equally well in the time domain or the frequency
domain, techniques will be developed in both domains to analyze the response
of a linear system to an arbitrary input signal. The signal, applied to the input of
the system, as shown in Figure 1.9, can be described either as a time-domain
signal, x(z), or by its Fourier transform, X(f). The use of time-domain analysis
yields the time-domain output, y(¢), and in the process, A(¢), the characteristic
or impulse response of the network, will be defined. When the input is considered
in the frequency domain, we shall define a frequency transfer function, H(f), for
the system, which will determine the frequency-domain output, Y(f). The system
—..is assumed to be linear and time invariant. It is also assumed that @T’s‘ﬁo

stored energy in the system at the tifie the input 1§ applied.

Input ————n|  Linear {50t
network
2 x(t) h{t) y(t) Figure 1.9 Linear system and its key
j X{f) H(f) Y(f)  parameters.
|
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ite; 1.6.1 Impulse Response

ap-

1gh - The linear time-invariant system or network illustrated in Figure 1.9 is charac-
dth . terized in the time domain by an impulse response, /4(z), which is the response
on- = when the input is equal to a unit impulse 8(¢); that is,

s h(t) = y(t) when x(¢) = 8(1) (1.45)
43) The response of the network to an arbitrary input x(¢) is then found by the con-
ed. | volution of x(#) with 4(¢), where * denotes the convolution operation (see Section
the . A.5):
ion . :
ise Y0 = 20 < k() = [ x@h(t ~ 1) dn (1.46)
*m- ‘
sed The system is assumed to be causal, which means that there can be no output
» prior to the time, 1 = 0, when the input is applied. Therefore, the lower limit of
m- integration can be changed to zero, and we can express the output y(¢) as
ve, " o
ion y(0) = | x@htt ~ 7 dr (1.47)
Iar_
lin Equatlons (1.46) and (1.47) are called the superposztzon mtegral or the convolution
iise integral. T
ise, T T

1.6.2 Frequency Transfer Function

The frequency-domain output signal, ¥(f), is obtained by taking the Fourier trans-

form of both sides of Equation (1.46). Since convolution in the time-domain trans-

forms to multiplication in the frequency domain (and vice versa), Equation (1.46)
the ’ yields

ca Y(f) = X(F)H(f) | (1.48)
icy
nse or
ain | H() = 20 (1.49)
% |
stic provided, of course, that X(f) # 0 for all f. Here H(f) = %{h(1)}, the Fourier
red transform of the impulse response function, is called the frequency transfer func-
for tion or the frequency response of the network. In general H(f) is complex and
em can be written as
o H(P) = [H(f)| e (1.50)
where |[H(f)| is the magnitude response. The phase response, 6(f), is defined as
— Im {H()}
0(f) = tan™! ———= (1.51)
» Re {H()
sy where the terms ‘“Re’” and ““Im’’ denote ‘‘the real part of*’ and ‘‘the imaginary
part of,”’ respectively.
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The frequency transfer function of a linear time-invariant network can easily
be measured in the laboratory with a sinusoidal generator at the input of the
network and an oscilloscope at the output. When the input waveform x(¢) is
expressed as

x(t) = A cos 2nfot
the output of the network will be
y(2) = A |[H(fo)| cos 2mfot + 68(fo)] (1.52)

The input frequency, fo, 1s stepped through the values of interest; at each step,
the amplitude and phase at the output are measured.

1.6.2.1 Random Processes and Linear Systems

If a random process forms the input to a time-invariant linear system, the
output will also be a random process. That is, each sample function of the input
process yields a sample function of the output process. The input power spectral
density, Gx(f), and the output power spectral density, Gy(f), are related as
follows:

Gy(f) = Gx(f) |[H(? S (1.53)

Equation (1.53) provides a simple way of finding the power spectral density out
of a time-invariant linear system when the input is a random process.

In Chapters 2 and 3 we consider the detection of signals in Gaussian noise.
We will utilize a fundamental property of a Gaussian process applied to a linear
system, stated as follows: It can be shown that if a Gaussian process, X(2), is
applied to a time-invariant linear filter, the random process, ¥(¢), developed at
the output of the filter is also Gaussian [6].

1.6.3 Distortionless Transmission

What is required of a network for it to behave like an ideal transmission line?
compared to the tnput; and it may Have a different amghtudc than the 1nput (]ust
a scale change), but otherwise 1t must have no dlstortlon——rw

shape as the input, Therefore, for 1deal dlstor‘uonless transmlssron we can de-
scribe the output signal as o

A G NV 1t vt s JR— i S

y(1) = Kx(t - to) (1.54)

where K and ¢, are constants. Taking the Fourler transform of both sides (see
Section A.3.1), we write

Y(f) = KX(f)e ~/2mite (1.55)

Substituting the expression (1.55) for Y(f) into Equation (1.49), we see that the
required system transfer function for distortionless transmission is

H(f) = Ke /2mfw (1.56)
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asily Therefore, to achieve ideal distortionless transmission, the overall system re-

" the sponse must have a constant magnitude response, and its phase shift must be

1) is linear with frequency. It is not enough that the system amplify or attenuate all
frequency components equally. All of the signal’s frequency components must
also arrive with identical time delay in order to add up correctly. Since time delay,
t0, is related to phase shift, 6, and radian frequency, w = 2uf, as follows,

8 (radians)
2mf (radians/second)

1.52) fo (seconds) = (1.57)
step, it is clear that phase shift must be proportional to frequency in order for the time -
delay of all components to be identical. In practice, a signal will be distorted in
passing through some parts of a system. Phase or amplitude correction (equali-
zation) networks may be introduced elsewhere in the system to correct for this

, the distortion. It is the overall input—output characteristic of the system that deter-
nput mines its performance.
ctral
d as 1.6.3.1 Ideal Filter
1.53) One cannot build the ideal network described in Equation (1.56). The prob-
lem is that Equation (1.56) implies an infinite bandwidth capability, Where the™
7 out “bandwidth of a system is defined as the interval of positive frequencics over which
the magnitude |H(f)| remains within a specified value. In Section 1.7 various
oise. measures of bandwidth are enumerated. As an approximation to the ideal i
near » bandw1dth netwoﬂg,ﬁlet us._choose a truncated network that passes WlthouLdm
1, is
xd at
of thése networks is called an ideal Filier. Outside the rangc fL < f <,,.fm~wmch
is called the passband, the ideal filter is. assumed to have a response of zero
magnmi """""" & The effective width of the passband is specified by the filter bandwidth
: Wi = (fu — fo) hertz.
line? When f, # 0 and f, # o, the filter is called a bandpass filter (BPF), shown
lelay . in Figure 1.10a. When f, = 0 and f, has a finite value, the filter is called a low-
(ust o pass filter (LPF), shown in Figure 1.10b. When f, has a nonzero value and when
same fu—> oo, the filter is called a high-pass filter (HPF), shown in Figure 1.10c.
1 de- Following Equation (1.56), for the ideal low-pass filter transfer function with
wwwww ' bandwidth W; = f, hertz, shown in Figure 1.10b, we can write the transfer
1.54) , function as follows (letting K = 1):
_ —j8Cf)
(see H(f) = |[H()| e (1.58)
where
1.55) 1 for |f] < f.
[H(f)] = { (1.59)
t the ‘ 0 forlfl=f.
and
1.56) ' eI = p—J2mfro (1.60)
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| H(f)
1

-fy —fg 0 fg 1,
Bandwidth
Wf = fu - fﬂ
(a) |
|
| H(f) |
1
0
f
—fu fo fy
e
Bandwidth
Wi =1,
(b)
[ Hf) ]
1
f
—fg 0 fQ fu > o
(c)

Figure 1.10 Ideal filter transfer function. (a) Ideal bandpass filter. (b} Ideal low-
pass filter. (c) Ideal high-pass filter,

The impulse response A(r) oi’ the ideal low-pass filter, illustrated in Figure 1.11,
is '
Ko = FTHHG} = [ H @) df (1.61)
fu
— f e ~—j2'rrftoej2wft df
- fu
e i g
- f 1€ /
= 2f, sin 2mf, (t — to)
2’11fu(f — ty)
= 2f. sinc 2f.(t — to) (1.62)
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h(t)

h(t - tp)

S

a1 —_— ] Figure 1.11 Impulse response of the
fy ! ideal low-pass filter.

where sinc x is as defined in Equation (1.39). The impulse response shown in
Figure 1.11 is noncausal, which means that it has a nonzero output prior to the
application of an input at time ¢ = 0. Therefore, it should be clear that the ideal
filter described in Equation (1.58) is not realizable.

Example 1.2 Effect of an Ideal Filter on White Noise

White noise with power spectral density G,(f) = No/2, shown in Figure 1.8a, forms
the input to the ideal low-pass filter shown in Figure 1.10b. Find the power spectral
density, Gy(f), and the autocorrclation function, Ry(t), of the output signal.

Solution
Gy(f) = G.(N |H(I?
N,
= for |f| < f.
.11, -2 .
0 otherwise
~ The autocorrelation is the inverse Fourier transform of the power spectral density
.61) o and is given by (see Table A.1)
sin 27f 7
Ry() = Nofu ——F—
2nf.x
= Nof, sinc 2f,7
Comparing this result with Equation (1.62), we see that Ry(r) has the same shape
as the impulse response of the ideal low-pass filter shown in Figure 1.11. In this
example the ideal low-pass filter transforms the autocorrelation function of white
noise (defined by the delta function) into a sinc function. After filtering, we no longer
have white noise. The output noise signal will have zero correlation with shifted
.62) . copies of itself, only at shifts of T = n/2f,, where n is any integer other than zero.
ap. 1 _ Sec. 1.6 Signal Transmission Through Linear Systems 35
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1.6.3.2 Realizable Filters

The very simplest example of a realizable low-pass filter is made up of
resistance () and capacitance (C), as shown in Figure 1.12a; it is called an %C
v ﬁlter, and its transfer function can be expressed as [7]

R 1 1 .
H — — —JjoN .
O = mfac ~ ViT oafaic) ¢ (1.63)

where 8(f) = tan™! 2w fRC. The magnitude characteristic, |H(f)|, and the phase
characteristic, 0(f) are plotted in Figures 1.12b and c, respectwely The low-pass
. filter bandwidth is defined to be its half-power point; this point is the frequency
at Whlch the output sig 12, half of it pea yalue or the
frequéﬂﬁg;;atwivhlch the magmtude of the output voltage has faflen t(5 l/\/f of its
peak value. 7 7
~—The half-power point is generally expressed in decibel (dB) units as the

—3-dB point, or the point which is 3 dB down from the peak, where the decibel

[ H{f} |
R .
O——MM 9 0 1
Input C QOutput J 0.707 - . l Half-power point
T | |
o ° | |
‘1 0 | 1 f
W
2aRC £ 2nqC
(a) (b)
0(f)
_________ UL
| 2
I
| T
~" 1
| 27RC
1 | f
1 |
2nRC T }
4 |
Y o T~
2
(c)
Figure 1.12 RC filter and its transfer function. (a) RC filter. (b) Magnitude char-
acteristic of the RC filter. (c) Phase characteristic of the RC filter.
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is defined as the ratio of two amounts of power, P, and P,, existing at two points.
By definition
ip of
1RC

V3IR,

W/GJ—?,; (1.64a)

number of dB = 10 logo IPTZ = 10 logyo
1

where V and V5 are voltages and R, and R, are resistances. For communication ‘
systems, normalized power is generally used for analysis; in this case, ®; and R,
are set equal to 1 €2, so that

1.63)

yhase P, V2

-pass number of dB = 10 log;o = 7 =10 logm (1.64b)

ency !

gftg: The amplitude response, |H(f)|, can be expressed in decibels by
Vo

s the , [H(f)lap = 20 logyo — 7 = 20 1og10 IH(f)l (1.64c)

«cibel - L

where V; and V, are the input and output voltages, respectively, and where the

input and output resistances have been assumed equal.
From Equation (1.63) it is easy to verify that the half-power point of the
low-pass RC filter corresponds to w = 1/RC radians per second or f = 1/27RC)
hertz. Thus the bandwidth Wy in hertz is 1/(2wRC). The filter shape Jactor is a
oint measure of how well a realizable filter 1 approximates the ideal filter. IW@JIy
- deﬁned as the ratio of the filter bandwidths at the —60—(115 and —6-dB amplitude
- ' as low as about 2. By comparison, the shape factor of the simple RC low-pass

filter is almost 600.

There are several useful approximations to the ideal low-pass filter char-

acteristic. One of these, the Butterworth filter, approximates the ideal low-pass
filter with the following function:

|H,(f)] = m n=1 (1.65)

[ . —

e

whe,g_g f.is the upper —3-dB cutoff toff frequency. The magmtude function, [H(f)|,

is sketched (single sided) for several valies of n in Figure 1.13. Note that as
n gets larger, the magnitude characteristics approach that of the ideal filter. But-
terworth filters are popular because they are the best approximation to the ideal,
in the sense of maximal flatness in the filter passband.

Example 1.3 Effect of an RC Filter on White Noise
White noise with spectral ‘density, G,(f) = Ny/2, shown in Figure 1.8a, forms the

input to the R C filter shown in Figure 1.12a. Find the power spectral density, Gy(f),
and the autocorrelation function, R (1), of the output signal.
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FH() |

f Figure 1.13 Butterworth filter
magnitude response.

Solution
Gr(f) = Gu() [H(PP
N 1
2 1 4+ 2ufRC)?
Ry(0) = F~ G

Using Table A.1, the inverse Fourier transform of Gy(f) is

_ No i

Rem) = g1 ©XP ( *C
As might have been predicted, we no longer have white noise after filtering. The
RC filter transforms the input autocorrelation function of white noise (defined by
the delta function) into an exponential function. For a narrowband filter (a large RC

product), the output noise will exhibit higher. correlation between noise samples of
a fixed time shift than will the output noise from a wideband filter'

1.6.4 Signals, Circuits, and Spectra

Signals have been described in terms of their spectra. Similarly, networks or
circuits have been described in terms of their spectral chardcteristics or frequency
transfer functions. How is a signal’s bandwidth affected(' -as a result of the signal
passing through a filter circuit? Figure 1.14 illustrates two cases of interest. In
Figure 1.14a (case 1), the input signal has a narrowband spectrum, and the filter
transfer function is a wideband function. From Equation (1.48) we see that the
output signal spectrum is simply the product of these two spectra. In Figure 1.14a -
we can verify that multiplication of the two specttal functions will result in a
spectrum with a bandwidth approximately equal to the smaller of the two band-
widths (when one of the two spectral functions goes to zero, the multiplication \
yields zero). Therefore, for case 1, the output signal spectrum is constrained by .
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TAV-NF £
{b)

Figure 1.14 Spectral characteristics of the input signal and the circuit contribute
to the spectral characteristics of the output signal. (a) Case 1: Output bandwidth
is constrained by input signal bandwidth. (b) Case 2: Output bandwidth is con-
strained by filter bandwidth.

the input signal spectrum alone. Similarly, we see that for case 2, in Figure 1.14b,
where the input signal is a wideband signal but the filter has a narrowband transfer
function, the bandwidth of the output signal is constrained by the filter bandwidth;
the output signal will be a filtered (distorted) rendition of the input signal.

The effect of a filter on a waveform can also be viewed in the time domain.
The output, y(#), resulting from convolving an ideal input pulse, x(¢) (having
amplitude V,, and pulse width T), with the impulse response of a low-pass RC
filter can be written as [8]

V(1 — e for0=t<T

y(0) = {V;ne(’”glc fort>T (1.66)
Vi = Vu(l — e~ 796) (1.67)

Let us define the pulse bandwidth, W,,, and the RC filter bandwidth, Wy, as

1

W, = — .
P (1.68)
Wy = ! (1.69)

7 2 )
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The ideal input pulse, x(¢), and its magnitude spectrum IX(f)|, are shown in Figure
1.15. The QRC filter and its magnitude characteristic, |H(f)|, are shown in Figures
1.12a and b, respectively. Following Equations (1.66) to (1.69), three cases arc
illustrated in Figure 1.16. Example 1 illustrates the case where W, << Wy. Notice
that the output response, y(f), is a reasonably good approximation of the input
pulse, x(¢), shown in dashed lines. This represents an example of good fidelity.
In example 2, where W, = Wy, we can still recognize that a pulse had been
transmitted from the output, y(¢). Finally, example 3 illustrates the case where
W, >> W,. Here the presence of the pulse is barely perceptible from the output,
y(z). Can you think of an application where the large filter bandwidth or good
fidelity of example 1 is called for? A precise ranging application, perhaps, where
the pulse time of arrival translates into distance, necessitates a pulse with a steep
rise time. Which example characterizes the binary digital communications appli-
cation? It is example 2. As we pointed out earlier regarding Figure 1.1, one of
the principal features of binary digital communications is that each received pulse

x(t}

VW‘I
1
T T
2 2
(a)
| X(f} )
Vi T
Y f
; 0 i
1 |
-1 1
T T
Signal bandwidth
Wo .
Figure 1.15 (a) Ideal pulse. (b)
(b) Magnitude spectrum of the ideal pulse.
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thlce W, << W,
input (T > 27RC)
lelity.
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where t
utput, (a)
good
where
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appli- _ox( W, ~ W, (1) W, >> Wy
me of Vin ™ (T£27r@'tC) vmr _““7‘ (T =< 27RC)
pulse : v(t) :
t /\ t
(b) (c)
Figure 1.16 Three examples of fiitering an ideal pulse. (a) Example 1: Good-
fidelity output. (b) Example 2: Good-recognition output. (c) Example 3: Poor-
recognition output. -
need only be accurately perceived as being in one of its two states; a high-fidelity
signal need not be maintained. Example 3 has been included for completeness;
it would not be used as a design criterion for a practical system.
1.7 BANDWIDTH OF DIGITAL DATA
1.7.1 Baseband versus Bandpass
An easy way to translate the spectrum of a low-pass or baseband signal, x(7), to
a higher frequency is to multiply or heterodyne the baseband signal with a carrier
wave, cos 2wf.t, as shown in Figure 1.17a. The resulting waveform, x.(¢), is
called a double-sideband (DSB) modulated signal and is expressed as
x(t) = x(¢f) cos 2mf .t (1.70)
From the frequency shifting theorem (see Section A.3.2) the spectrum of the DSB
signal, x.(1), is given by X.(f):
X(f) = 3[X(f - fo) + X(f + fo)l (1.71)
The magnitude spectrum |X(f)| of the baseband signal, x(z), having a bandwidth
‘ f m, and the magnitude spectrum, |X.(f)|, of the DSB signal, x.(¢), having a band-
| pulse. , width Wpsg, are shown in Figure 1.17b and c, respectively. In the plot of X,
Chap. 1 , Sec. 1.7 Bandwidth of Digital Data ' a1
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x(t) —o@——' xc (1) = x(1) cos 2mf .t

cos 27f.t
{local oscillator)

(a)
| X(f} |
/_ —\ ]
—fm 0 fin
Baseband
bandwidth
(b)
| X (P
UsB LSB LSB USB
| |
| |
| —— f
—fo—fm ~f¢ —fe+fm 0 fo = fm fe fottm
«——Wpsg
Double-sideband
bandwidth

{c)

Figure 1.17 Comparison of baseband and double-sideband spectra. (2) Hetero-
dyning. (b) Baseband spectrum. (c) Double-sideband spectrum.

spectral components corresponding to positive baseband frequencies, appear in
the range fo to (fo + fm). This part of the DSB spectrum is called the upper
sideband (USB). Spectral components corresponding to nmegative baseband fre-
quencies appear in the range (fo — fm) to fc. This part of the DSB spectrum is
called the lower sideband (LSB). Mirror images of the USB and LSB spectra
appear in the negative-frequency half of the plot. The carrier wave is sometimes
referred to as a local oscillator (LO) signal, a mixing signal, or a heterodyne
signal. Generally, the carrier wave frequency is much higher than the bandwidth
of the baseband signal; that is,

fe>>fm

42 Signals and Spectra Chap. 1
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From Figure 1.17 we can readily compare the bandwidth f,,, required to transmit
the baseband signal, with the bandwidth Wnsg, required to transmit the DSB
signal; we see that

Woss = 2fm (1.72)

That is, we need twice as much transmission bandwidth to transmit a DSB version
of the signal than we do to transmit its baseband counterpart.

1.7.2 The Bandwidth Dilemma

Many important theorems of communication and information theory are based
on the assumption of strictly bandlimited channels, which means that no signal
power whatever is allowed outside the defined band. We are faced with the di-
lemma that strictly bandlimited signals are not realizable since they imply signals
with infinite duration; nonbandlimited signals, having energy at arbitrarily high
frequencies, appear just as unreasonable. It is no wonder that there is no single
universal definition of bandwidth.

All bandwidth criteria have in common the attempt to specify a measure of
the width, W, of a nonnegative real-valued power spectral density defined for all
frequencies |f| < . Figure 1.18 illustrates some of the most common definitions
of bandwidth; in general, the various criteria are not interchangeable. The single-

Gifl=T sin w{f — f)T 2
U af T
General shape of |
power spectral == o ——

density (PSD)

~1 fe s

ear in ', T (a) T

upper ~—(b) -

d fre-

. 1 f {c) >

um is ,

yectra : f (d) ]

times {e} 35dB >

odyne

Wldth e— (e) 50 dB Py
Figure 1.18 Bandwidth of digital data. (a) Half-power. (b) Noise equivalent. (c) N
Null to null. (d) 99% of power. (e) Bounded PSD (defines attenuation outside
bandwidth) at 35 and 50 dB.
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sided power spectral density, G«(f), for a single heterodyned pulse, x.(t), takes
the analytical form

_ 2
sin w(f fc)T} (1.73)

GX(f) ! I: ‘"(f - fC)T

where f. is the carrier wave frequency and T is the pulse duration. This power
spectral density, whose general appearance is sketched in Figure 1.18, also char-
acterizes a random pulse sequence, assuming that the averaging time is long rela-
tive to the pulse duration. The plot consists of a main lobe and smaller symmetrical
sidelobes. The general shape of the plot is valid for most digital modulation for-
mats; some formats, however, do not have well-defined lobes. The bandwidth
criteria depicted in Figure 1.18 are as follows:

(a) Half-power bandwidth. This is the interval between frequencies at which -
G.(f) has dropped to half-power, or 3 dB below the peak value.

(b) Equivalent rectangular or noise equivalent bandwidth. The noise equivalent
bandwidth was originally conceived to permit rapid computation of output
noise power from an amplifier with a wideband noise input; the concept can
similarly be applied to a signal bandwidth. The noise equivalent bandwidth
W of a signal is defined by the relationship Wy = P./G.(f.), where P, is
the total signal power over all frequencies and Gx(f.) is the value of G.(f)
at the band center (assumed to be the maximum value over all frequencies).

(¢) Null-to-null bandwidth. The most popular measure of bandwidth for digital
communications is the width of the main spectral lobe, where most of the
signal power is contained. This criterion lacks complete generality since
some modulation formats lack well-defined lobes.

(d) Fractional power containment bandwidth. This bandwidth criterion has been
adopted by the Federal Communications Commission (FCC Rules and Reg-
ulations Section 2.202) and states that the occupied bandwidth is the band
that leaves exactly 0.5% of the signal power above the upper band limit and
exactly 0.5% of the signal power below the lower band limit. Thus 99% of
the signal power is inside the occupied band.

(€) Bounded power spectral density. A popular method of specifying bandwidth
is to state that everywhere outside the specified band, G.(f) must have fallen
at least to a certain stated level below that found at the band center. Typical
attenuation levels might be 35 or 50 dB.

(f) Absolute bandwidth. This is the interval between frequencies, outside of
which the spectrum is zero. This is a useful abstraction. However, for all
realizable waveforms, the absolute bandwidth is infinite.

Example 1.4 Strictly Bandiimited Signals
The concept ofa signdl that is strictly limited to a band of frequencies is not realizable.

Prove this by showing that a strictly bandlimited signal must also be a signal of infinite
time duration. .
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takes Solution

Let x(¢) be a signal, with Fourier transform X(f), that is strictly limited to the band
of frequencies centered at *f. and of width 2W. We may express X(f) in terms of
an ideal filter transfer function, H(f), illustrated in Figure 1.19a, as follows:

(1.73)

X(f) = X'(HH() (1.74)
ower
char-
yrela-
strical
n for-
width

where, X'(f) is the Fourier transform of a signal x’(z), not necessarily bandlimited,
where

H) = rect (f 2—ch> + rect (%—) (1.75)

. H(f)
which

valent
yutput
ot can
width
P, is
G.(f)
cies).
ligital
of the
since

~f.— W ~f

. . W fo-W f fo+W

; been
| Reg-
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!
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Figure 1.19 Transfer function and impulse response for a strictly bandlimited
signal. (a) Ideal bandpass filter. (b) Ideal bandpass impulse response.
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and where

rect N _Jr o for -W<f<W
Gw) =10 forifi>w

We can express X(f) in terms of X'(f) as
ﬂﬁ:Vﬁ)fmm—WmU#ﬂh+m

0 otherwise

Multiplication in the frequency domain, as seen in Equation (1.74), transforms to
convolution in the time domain as follows:

x(t) = x'(t) * h(1) (1.76)

where A(?), the inverse Fourier transform of H(f), can be written as (see Tables A.1
and A.2)

h(?) = 2W (sinc 2W¢) cos 27f.t

and is illustrated in Figure 1.19b. We note that h(¢) is of infinite duration. It follows,
therefore, that x(¢) obtained in Equation (1.76) by convolving x' () with A(¢) is also
of infinite duration and therefore is not realizable.

1.8 CONCLUSION

In this chapter, the goals of the book have been outlined and the basic nomen-
clature has been defined. The fundamental concepts of time-varying signals, such
as classification, spectral density, and autocorrelation, have been reviewed. Also,
random signals have been considered, and white Gaussian noise, the primary noise
model in most communication systems, has been characterized, statistically and
spectrally. Finally, we have treated the important area of signal transmission
through linear systems and have examined some of the rcalizable approximations
to the ideal case. We have also established that the concept of an absolute band-
width is an abstraction, and that in the real world we are faced with the need to
choose a definition of bandwidth that is useful for our particular application. In
the remainder of the book, cach of the signal processing steps introduced in this
chapter will be explored in the context of the typical system block diagram ap-
pearing at the beginning of each chapter.
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‘ms to

(1.76)
BLEMS
:s ALl PRO
1.1. Classify the following signals as energy signals or power signals. Find the normalized
energy or normalized power of each.
llows, _ _
's also (a) x(2) = A cos 2wfot for —oo < ¢t < o0
(b) x(1) = A cos 2wfot for —T4/2 =t < Ty/2, where T, = 1/f,
0 elsewhere
_JAexp(—at) fort>0,a>0
© x(0) = {0 elsewhere
ymen- (d) x(z) = cost + Scos 2t for —0o <t <
z;mh 1.2. Determine the energy spectral density of a square pulse x(¢) = rect (¢/T), where
?0’ rect (¢/T) equals 1, for —7/2 < ¢t = T/2, and equals 0, elsewhere. Calculate the
noise normalized energy E, in the pulse.
}’ énd 1.3. Find an expression for the average normalized power in a periodic signal in terms
iss10n of its complex Fourier series coefficients.
wions 1.4. Using time averaging, find the average normalized power in the waveform x(¢) =
band- 10 cos 107 -+ 20 cos 201,
ed ;O 1.5. Repeat Problem 1.4 using the summation of spectral coefficients.
n. h'n 1.6. Determine which, if any, of the following functions have the properties of autocor-
n this relation functions. Justify your determination. [Note: %{R(t)} must be a nonnegative
m ap- function. Why?]
_J1 for -1 =1=1
@ x(r) = {0 otherwise
(b) x(t) = 8(1) + sin 2wfoT
() x(7) = exp (|7])
)
83. @x(@) =1-h for-l=sr=1
Sons,
L.7. Determine which, if any, of the following functions have the properties of power
woHill spectral density functions. Justify your determination.
(@) X(f) = 8(f) + cos® 2nf
., vol.
vo (b) X(f) = 10 + 5(f — 10)
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1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14.
1.15.

48

() X(f) = exp (—2m |f — 10
(d) X(f) = exp [-2w(f? - 10)]

Find the autocorrelation function of x(¢) = A cos 2nfof + &) in terms of its period,

To = l/fo. Find the average normalized power of x(z), using P, = R(0).

(a) Use the results of Problem 1.8 to find the autocorrelation function, R(r), of
waveform x(z) = 10 cos 10t + 20 cos 20z.

(b) Use the relationship P, = R(0) to find the average normalized power in x(t).
Compare the answer with the answers to Problems 1.4 and 1.5. i

For the function x(¢) = 1 + cos 2nfyf, calculate (a) the average value of x(¢); (b)

the ac power of x(); (c) the rms value of x(¢).

Consider a random process given by X(r) = A cos 2mfet + &), where A and f, are

constants and ¢ is a random variableé that is uniformly distributed over (0, 2m). If

X(?) is an ergodic process, the time averages of X(¢) in the limit as  — » are equal

to the corresponding ensemble averages of X(7).

(a) Use time averaging over an integer number of periods to calculate the approx-
imations to the first and second moments of X(#).

(b) Use Equations (1.26) and (1.28) to calculate the ensemble-average approxima-
tions to the first and second moments of X(z). Compare the results with your
answers in part (a).

The Fourier transform of a signal, x(¢) is defined by X(f) = sinc f, where the sinc

function is as defined in Equation (1.39). Find the autocorrelation function, R;(7),

of the signal x(7).

Use the sampling property of the unit impulse function to evaluate the following

integrals.

(a) fi@ cos 613(t — 3) dt
(b) j_m 106(5)(1 + 1)~ d
© fwm S(r + 4)(e2 + 61 + 1) dr

) f exp (—18(t —'2) dt

Find X,(f) * X,(f) for the spectra shown in Figure P1.1.

The two-sided power spectral density, G,(f) = 107¢f2, of a waveform x(z) is shown

in Figure P1.2.

(a) Find the normalized average power in x(f) over the frequency band from 0 to
10 kHz.

(b) Find the normalized average power contained in the frequency band from $ to
6 kHz.

. Decibels are logarithmic measures of power ratios, as described in Equation (1.64a).

Sometimes, a similar formulation is used to express nonpower measurements in
decibels (referenced to some designated unit). As an example, calculate how many
decibels of hamburger meat you would buy to feed 2 hamburgers each to a group
of 100 people. Assume that you and the butcher have agreed on the unit of ‘*3 pound
of meat’’ (the amount in one hamburger) as a reference unit.
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1.17. Consider the Butterworth low-pass amplitude response given in Equation (1.65).

(a) Find the value of n so that |H(f)|” is constant to within +1 dB over the range
If] = 0.91...

(b) Show that as n approaches infinity, the amplitude response approaches that of
an ideal low-pass filter.

1.18. Consider the network in Figure 1.9, whosc frequency transfer function is H(f). An
impulse 8(¢) is applied at the input. Show that the response y(¢) at the output is the
inverse Fourier transform of H(f).

1.19. An example of a holding circuit, commonly used in pulse systems, is shown in Figure
P1.3. Determine the impulse response of this circuit.

x(t) + g(t) y(1)

Input Output

) Figure P1.3

1.20. Given the spectrum ,

sin [w(f — 106)10—4]}2 :

Gx(f) = ]0_4{ ’TT(f _ 106)10-—4
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Find the value of the signal bandwidth using the following bandwidth definitions:
(a) Half-power bandwidth.

(b) Noise equivalent bandwidth.

(c) Null-to-null bandwidth.

(d) 99% of power bandwidth. _

(e) Bandwidth beyond which the attenuation is 35 dB.

(f) Absolute bandwidth.
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The first essential signal processing step, formatting, makes the source signal
compatible with digital processing. Transmit formatting is a transformation from
source information to digital symbols (in the receive chain, formatting is the re-
verse transformation). When there is data redundancy reduction or data compres-
sion, in addition to formatting, the process is terméd source coding. Some authors
consider formatting to be a special case of source coding. We treat formatting
(and baseband transmission) in this chapter, and treat source coding as a special
case of the efficient description of source information in Chapter 11. In Figure
2.1 the main formatting topics are highlighted—character coding, sampling, quan-
tization, and pulse code modulation (PCM).

A signal whose spectrum extends from (or near) dc up to some finite value,
usually less than a few megahertz, is called a baseband or low-pass signal. Such
a signal is implied whenever we use the term ‘‘information,”” ‘‘message,”” or
‘‘data.”’ For the transmission of baseband signals by a digital communication
system, the information is formatted so that it is represented by digital symbols.
Then, pulse waveforms are assigned that represent these symbols; this step is
referred to as pulse modulation or baseband modulation. These waveforms can
then be transmitted over a cable.

Baseband signals are not appropriate for propagation through many trans-
mission media. Baseband signals whose spectrum has been shifted to a frequency
band that is more appropriate for propagation through a transmission medium are
called bandpass modulation signals or simply bandpass signals. Bandpass signals
have their spectral content clustered in a band of frequencies near a value called

52 Formatting and Baseband Transmission Chap. 2
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the carrier frequency. In Chapter 3 we deal with the modulation and demodulation
of these bandpass signals.

2.1 BASEBAND SYSTEMS

In Figure 1.2 we presented a block diagram of a typical digital communication
system. A version of this functional diagram, focusing primarily on the formatting
and transmission of baseband signals, is shown in Figure 2.2. Data already in a
digital format would bypass the formatting function. Textual information is trans-
formed into binary digits by use of a coder. Analog information is formatted using
three separate processes: sampling, quantization, and coding. In all cases, the
formatting step results in a sequence of binary digits.

These digits are to be transmitted through a baseband channel, such as a
pair of wires or a coaxial cable. However, no channel can be used for the trans-
mission of binary digits without first transforming the digits to waveforms that
are compatible with the channel. For baseband channels, compatible waveforms
are pulses.

In Figure 2.2, the conversion from binary digits to pulse waveforms takes
place in the block labeled waveform encoder, also called a baseband modulator.
The output of the waveform encoder is typically a sequence of pulses with char-
acteristics that correspond to the binary digits being sent. After transmission
through the channel, the received waveforms are detected to produce an estimate
of the transmitted digits, and then the final step, (reverse) formatting, recovers

an estimate of the source information.
Digital
information
Format
Information Textual e l
source information = | * |
| | Waveform
Analog | < I encoder > Transmitter
information —+—{ Sampler —>—{Quantizer—> Coder " i > (modulator)
|
R > [
Binary Pulse Channel
digits waveforms
Format
e : !
1
Analog Low-pass |
information El filter Decoder [=¢ ! Waveform " Receiv
| I detector . hecelver -
Information Textual | |
sink information L — — _J
Digital
information
Figure 2.2 Formatting and transmission of baseband signals.-
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lation 2.2 FORMATTING TEXTUAL DATA (CHARACTER CODING)

The original form of most communicated data (except for computer-to-computer
transmissions) is either textual or analog. If the data consist of alphanumeric text,
they will be character encoded with one of several standard formats, examples
of which are, the American Standard Code for Information Interchange (ASCII),

cation the Extended Binary Coded Decimal Interchange Code (EBCDIC), Baudot, and

latting Hollerith. The textual material is thereby transformed into a digital format. The

yina ASCII format is shown in Figure 2.3; thc EBCDIC format is shown in Figure 2.4.

trans- . The bit numbers signify the order of serial transmission, where bit number 1 is

_using the first signaling element. Character coding, then, is the step that transforms text

s, the into binary digits (bits). Sometimes, existing character codes are modified to meet
specialized needs. For example, the 7-bit ASCII code (Figure 2.3) can be modified

hasa to include an added bit for error detection purposes (see Chapter 5). On the other

trans- hand, sometimes the code is truncated to a 6-bit ASCII version, which provides

s that capability for only 64 characters instead of the 128 characters allowed by 7-bit

forms ASCIL )

takes

Hator. 2.3 MESSAGES, CHARACTERS, AND SYMBOLS

char-

ission Textual messages are comprised of a sequence of alphanumeric characters. When

imate digitally transmitted the characters are first encoded into a sequence of bits, called

:OVers a bit stream or baseband signal. Groups of k bits can then be combined to form

new digits, or symbols, from a finite symbol sct or alphabet of M = 2* such

symbols. A system using a symbol set size of M is referred to as an M-ary system.

The value of k£ or M represents an important initial choice in the design of any

digital communication system. For £ = 1, the system is termed binary, the size

of the symbol set is M = 2, and the modulator uses one of the two different

~ waveforms to represent the binary ““one’” and the other to represent the binary

e “‘zero.”” For this special case, the symbol and the bit are the same. For k = 2,
the system is termed quaternary or 4-ary (M = 4). At each symbol time, the
modulator uses one of the four different waveforms that represents the symbol.
The partitioning of the sequence of message bits is determined by the specification
of the symbol set size, M. The following example should help clarify the rela-
tionship between the terms ‘‘message,”” symbol,’” “*bit,”” and ‘‘dig-
ital waveform.”’.

smitter

N

35 ¢t

annel character,

N

2.3.1 Example of Messages, Characters, and Symbols
e Figure 2.5 shows examples of bit stream partitioning, based on the system spec-
ification for the values of & and M. The textual message in the figure is the word
“THINK.”’ Using 6-bit ASCII character coding (bit numbers 1 to 6 from Figure
2.3) yields a bit stream comprised of 30 bits. In Figure 2.5a, the symbol set size,
M, has been chosen to be 8 (each symbol represents an 8-ary digit). The bits are
therefore partitioned into groups of three (k = log, 8); the resulting 10 numbers
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Message (text): “THINK"
T H f ) N K
/——A N A N r“—A N — N —A N

Character coding .
(6-bit ASCII): 001010000100100100011100110100

— A N

{symbols): 1 2 0 4 4 4 3 4 6 4
B-ary waveforms: s{t) sp(th splt)  salt) sq(t)  sa(t) sg{t)  salt)  sglt)  salt)
(a)
T H | N K
— N ~ ~— N — ~

Character coding
(6-bit ASCII): 001010000100100100011100110100

Sary s S R A .

(symbols): ) 1 4 17 25 20

32-ary waveforms: s (1) s¢(t) sq(t) s97(1) spg(t) soplt)
(b)

Figure 2.5 Messages, characters, and symbols. (a) 8-ary example. (b) 32-ary
example.

represent the 10 octal symbols to be transmitted. The transmitter must have a
repertoire of eight waveforms, si(1), wherei =1, . . ., 8, torepresent the possible
symbols, any one of which may be transmitted-during a symbol time. The final
row of Figure 2.5a lists the 10 waveforms that an 8-ary modulating system trans-
mits to represent the textual message ““THINK.”

In Figure 2.5b, the symbol set size, M, has been chosen to be 32 (each symbol
represents a 32-ary digit). The bits are therefore taken five at a time, and the
resulting group of six numbers represent the six 32-ary symbols to be transmitted.
Notice that there is no need for the symbol boundaries and the character bound-
aries to coincide. The first symbol represents § of the first character, ““T.”” The
second symbol represents the remaining § of the character ““T"" and % of the next
character, ““H,’” and so on. It is not necessary that the characters be partitioned
more aesthetically. The system sees the characters as a string of digits to be
transmitted; only the end user (or the user’s teleprinter machine) ascribes textual
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mecaning to the final delivered sequence of bits. In this 32-ary case, a transmitter

needs a repertoire of 32 wavcforms, s;(f), where i = 1, ..., 32, one for each

possible symbol that may be transmitted. The final row of the figure lists the six
- waveforms that a 32-ary modulating system transmits to represent the textual
)0 message “‘“THINK.”

l 2.4 FORMATTING ANALOG INFORMATION

If the information is analog, it cannot be character encoded as in the case of
textual data; the information must first be transformed into a digital format. The
process of transforming an analog waveform into a form that is compatible with
a digital communication system starts with sampling the waveform to produce a
discrete pulse-amplitude-modulated waveform, as described below.

1)

2.4.1 The Sampling Theorem

—

00 The link between an analog waveform and its sampled version is provided by

- what is known as the sampling process. This process can be implemented in
several ways, the most popular being the sample-and-hold operation. In this op-
eration, a switch and storage mechanism (such as a transistor and a capacitor, or
a shutter and a filmstrip) form a sequence of samples of the continuous input
waveform. The output of the sampling process is called pulse amplitude modu-

; lation (PAM) because the successive output intervals can be described as a se-

) quence of pulses with amplitudes derived from the input waveform samples. The
analog waveform can be approximately retrieved from a PAM waveform by simple
low-pass filtering. An important question is: How closely can a filtered PAM
waveform approximate the original input waveform? This question can be an-
swered by reviewing the sampling theorem, which states [1]: A bandlimited signal
having no spectral components above f,, hertz can be determined uniquely by
values sampled at uniform intervals of T, seconds, where

have a ‘ 1

ossible I, = —2~f— (2.1)

1¢ final " .

1 trans- This particular statement is also known as the uniform sampling theorem. Stated
another way, the upper limit on 7, can be expressed in terms of the sampling

symbol rate, denoted f; = 1/7,. The restriction, stated in terms of the sarnplmg rate, is

ind the known as the Nyquist criterion. The statement is

bound- o= 26 .2

".>> The The sampling rate f; = 2f,, is also called the Nyquist rate. The Nyquist criterion

he next is a theoretically sufficient condition to allow an analog signal to be reconstructed

titioned completely from a set of uniformly spaced discrcte-time samples. In the sections

s to be that follow, the validity of the sampling theorem is demonstrated using different

textual sampling approaches.
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2.4.1.1 Impulse Sampling

Here we demonstrate the validity of the sampling theorem using the fre-
guency convolution property of the Eouricr transform. Let us first examine the

case of ideal sampling with a sequence of unit impulse functions. Assumc an
analog waveform, x(¢), as shown in Figure 2.6a, with a Fourier transform, X(f),
which is zero outside the interval (—fm < f < fm),as shown in Figure 2.6b. The
sampling of x(7) can be viewed as the product of x(#) with a periodic train of unit
impulse functions, x5(t), shown in Figure 2.6c and defined as follows:

xs(t) = D, d( — nTy) (2.3)

n= —o

where T, is the sampling period and () is the unit impulse or Dirac delta function

defined in Section 1.2.5. Let us choose T, = 1/2f m, so that the Nyquist criterion

is just satisfied.

The sifting property of the

impulse function (see Scction A.4.1) states that

x(1)d(t — to) = x(10)8(t — to) 2.4)
' x(t)
I X(f)1
i ‘ f
0 ! —f, 0 fn
(a) (b)
x5 (1) = z 8(t - nTy) xﬁ(f’)=Ti T 8(f-nfy
nﬂwoo nz—oo
‘11‘111111 ”TST S‘ |
t ' 1 t L f
—4T, -2T, O 2T, 4T, ~2f —f, 0 £, 26
(c) (d)
x5(t) = x(t)xg (1) [ X(F) ]
T 1 ‘ t ' f L t { | I ! f
—4T, —2T, O 2T, 4T, —2f, ~f,~fm 0 fm T 2f,
(e) (f)

Figure 2.6 Sampling theorem using the frequency convolution property of the Fourier

transform.
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Using this property, we can see that x.(¢), the sampled version of x(¢), shown in

the fre- Figure 2.6e, is given by

iine the
ume an
1, X(H),
5b. The
of unit

o

S x(0)8(t — nTy)
= 2.5)

a0

2 X(”ZTS)S(I - nTs)

n= —

Il

x,(1) = x(t)xs(t)

i

Using the frequency convolution property of the Fourier transform (see Section
A.5.3), the time-domain product x(#)xs(¢) of Equation (2.5) transforms to the fre-
quency-domain convolution X(f) * Xs(f), where X5(f) is the Fourier transtorm
of the impulse train xs(¢),

(2.3

unction
riterion

X =+ S 8 -~ nf) Y

S np= —o0

es that and where f, = 1/T, is the sampling frequency. Notice that the Fourier transform

24 of an impulse train is another impulse train; the values of the periods of the two
trains are reciprocally related to one another. Figures 2.6¢ and d illustrate the
impulse train x5(¢) and its Fourier transform X3(f), respectively.
Convolution with an impulse function simply shifts the original function, as
follows: '

X(f) *3(f — nfy) = X(f - nfy) : @.7)

We can solve for the transform, X,(f), of the sampled waveform as follows:

I

Xs(H) = X(f) * Xs(f) = X(f) [Ti 2 8 - nfs)]

S = —o0

(2.8)

I

”Tl“ > X(f - nfy)
We therefore conclude that within the original bandwidth, the spectrum X (f) of
the sampled signal x,(¢) is, to within a constant factor (1/7), exactly the same
as that of x(#). In addition, the spectrum repeats itself periodically in frequency
every f, hertz. The sifting property of an impulse function makes the convolving
of an impulse train with another function easy to visualize. The impulses act as
sampling functions. Hence, convolution can be performed graphically by sweep-
ing the impulse train, Xs(f), in Figure 2.6d past the transform, |X(f)|, in Figure
2.6b. This sampling of |X(f)| at each step in the sweep replicates |[X(f)| at each
of the frequency positions of the impulse train, resulting in |X(f)|, shown in Figure
2.6f. .
v o ' When the sampling rate is chosen, as it has been here, such that f; = 2f...,
"' each spectral replicate is separated from each of its neighbors by a frequency
band exactly equal to f, hertz, and the analog waveform can theoretically be
completely recovered from the samples, by the use of filtering. However, a filter
with infinitely steep sides would be required. It should be clear that if f; > 2f,,,

urier
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the replications will move farther apart in frequency, as shown in Figure 2.7a,
making it easier to perform the filtering operation. A typical low-pass filter char-
acteristic that might be used to separate the baseband spectrum from those at
higher frequencies is shown in the figure. When the sampling rate is reduced,
such that f, < 2f,., the replications will overlap, as shown in Figure 2.7b, and
some information will be lost. This phenomenon, the result of undersampling
(sampling at too low a rate), is called aliasing. The Nyquist rate, fi = 2fn, is
the sampling rate below which aliasing occurs; to avoid aliasing, the Nyquist
criterion, fs = 2f.., must be satisfied. '

| X (F) | Filter characteristic to
s recover waveform
from sampled data

VAVAVIAVAVAS

~2f,

| ‘ f
—2f, —

s

(b)

Figure 2.7 Spectra for various sampling rates. (a) Sampled spectrum (f; > 2f).
(b) Sampled spectrum (fs < 2fm).

As a matter of practical consideration, neither waveforms of engineering
interest nor realizable bandlimiting filters are strictly bandlimited. These signals
and filters can, however, be considered to be ‘‘essentially’ bandlimited. By this
we mean that a bandwidth can be determined beyond which the spectral com-
ponents are attenuated to a level that is considered negligible.

2.4.1.2 Natural Sampling

Here we demonstrate the validity of the sampling theorem using the fre-
quency shifting property of the Fourier transform. Although instantaneous sam-
pling is a convenient model, a more practical way of accomplishing the sampling
of a bandlimited analog signal, x(¢), is to multiply x(¢), shown in Figure 2.8a, by
the pulse train or switching waveform, x,(t), shown in Figure 2.8c. Each pulse
in x,(z) has width T and amplitude 1/T. Multiplication by x,(¢) can be viewed as
the opening and closing of a switch. As before, the sampling frequency is des-
ignated f., and its reciprocal, the time period between samples, is designated T.
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*h pulse
ewed as
ris des-
ated 7.

Chap. 2

x (1)

| X{H)
0 ! Zf 0 fm f
(a) (b)
- jemnfst
xpltl= 2 PRGY

—4T ~2T 0 2T 4T
(e (f)

Figure 2.8 Sampling theorem using the frequency shifting property of the Fourier
transform.

The resulting sampled—data sequence, x,(2), is 111ustrated in Figure 2.8e and is
expressed as

x() = x(Dxp (1) 2.9

The sampling here is termed natural sampling, since the top of each pulse in the
x,(#) sequence retains the shape of its corresponding analog segment during the
pulse interval. Using Equation (A.13), we can express the periodic pulse train
x,(t) as a Fourier series in the form

o

x,(0) = 3 c,elr (2.10)

n= —oo

where the sampling rate, s = 1/T, is chosen equal to 2fm, so that the Nyquist
criterion is just satisfied. From Equation (A.24), ¢, = (1/T) sinc (nT/T), where
T is the pulse width, 1/T is the pulse amplitude, and
sin my

Ty

sincy =
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The envelope of the magnitude spectrum of the pulse train, seen as a dashed line
in Figure 2.8d, has the characteristic sinc shape. Combining Equations (2.9) and
(2.10), we can cxpress x,(f) as

x, (1) = x(t) S c.eT ’ (2.11)

N —o0

The transform, X,(f), of the sampled waveform is found as follows:

X.(f) = @{x(t) > ‘cneﬂ“"f“} (2.12)

n= —nas

For linear systems, we can interchange the operations of summation and Fourier
transformation. Therefore, we can write

o

X(f) = 2 caFx)em (2.13)

pp o 00

Using the frequency translation property of the Fourier transform (see Section
A.3.2), we solve for X,(f) as follows:

o

X, (f) = 2 . X(f — nfy) (2.14)

n= —x

Similar to the unit impulse sampling case, Equation (2.14) and Figure 2.8f illustrate
that X,(f) is a replication of X(f), periodically repeated ‘in frequency every f;
hertz. In this natural-sampled case, however, we see that X,(f) is weighted by
the Fourier series coefficients of the pulse train, compared to a constant value in
the impulse-sampled case. It is satisfying to note that in the limit, as the pulse
width, T, approaches zcro, ¢, approaches 1/T; for all n (see the example that
follows), and Equation (2.14) converges to Equation (2.8).

Example 2.1 Comparison of Impulse Sampling and Natural Sampling

Consider a given waveform, x(¢), with Fourier transform, X(f). Let' X;(f) be the
spectrum of x,;(¢), which is the result of sampling x(#) with a unit impulse train x5(?).
Let X,(f) be the spectrum of x(¢), the result of sampling x(r) with a pulse train,
x,(1), with pulse width, T, amplitude 1/7 and period, T;. Show that in the limit, as
T approaches zero, X (f) = X(f).

Solution

From Equation (2.8),

£

2 X(f - nf.c)

= e

X:l(f) = __:[1_‘_

and from Equation (2.14),

%

XJZ(f) = E ch(f - nf:)

= —%
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As the pulse width T— 0, and the pulse amplitude approaches infinity (the area of
the pulse remains unity), x,(¢) = x5(¢). Using Equation (A.14), we can solve for ¢,
in the limit as follows:

hed line
2.9) and

1 (o2 ot
¢ =lim—~[ x,(t)e IFTIsE dt
" oo Ty ST »(1)

(2.11)

1 (T2 )
= Ff x5(2)e I iy
s

—T5/2

Since, within the range of integration, —T,/2 to T,/2, the only contribution of xs(z)

(2.12) is that due to the impulse at the origin, we can write
1 [me s 1
. n = 3()e A gt = —
Fourier ¢ T, J-12 (D)e Ts

Therefore, in the limit, X (f) = X»(f) for all .

2.13) 2.4.1.3 Sample-and-Hold Operation

The simplest and thus most popular sampling method, sample and hold, can
be described by the convolution of the sampled pulse train, [x(z)xs(¢)], shown in
Figure 2.6e, with a unity amplitude rectangular pulse, p(z), of pulse width 7.
This time convolution results in the flat-top sampled sequence, x(t):

Section

(2.14)
xs(8) = p(0) * [x()xs(1)]

llustrate > : (2.15)

thted by S

value in The Fourier transform, X,(f), of the time convolution in Equation (2.15) is the

he pulse frequency-domain product between the transform P(f) of the rectangular pulse

iplc that and the periodic spectrum, shown in Figure 2.6f, of the impulse-sampled data:

X(f) = P(f)?f{x(t) > 8 — nTS)}

f) be the _ ‘ 1S _

et P() {X(f) . [ R nm]} 2.16)

ilse train,

> limit, 1 -

e e =P X X(¢ — nfo)
where P(f) is of the form T sinc f7T,. The effect of this product operation results
in a spectrum similar in appearance to the natural-sampled example presented in
Figure 2.8f. The most obvious effect of the hold operation is the significant at-
tenuation of the higher-frequency spectral replicates (compare Figure 2.8f to Fig-
ure 2.6f), which is a desired effect. Additional analog postfiltering is usually re-
quired to finish the filtering process by further attenuating the residual spectral
components located at the multiples of the sample rate. A secondary effect of the
hold operation is the nonuniform spectral gain, P(f), applied to the desired base-
Chap. 2 Sec. 2.4 Formatting Analog Information 65
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band spectrum shown in Equation (2.16). The postfiltering operation can com-
pensate for this attenuation by incorporating the inverse of P(f) over the signal
passband.

2.4.2 Aliasing

Figure 2.9 is a detailed view of the positive half of the baseband spectrum and
one of the replicates from Figure 2.7b. It illustrates aliasing in the frequency
domain. The overlapped region, shown in Figure 2.9b, contains that part of the
spectrum which is aliased due to undersampling. The aliased spectral components
represent ambiguous data that can be retrieved only under special conditions (see
Section 11.4.4, on subband coding). In general, the ambiguity is not resolved and
the ambiguous data appear in the frequency band between (fs — fn) and f,.
Figure 2.10 illustrates that a higher sampling rate, f;, can eliminate the aliasing

by separating the spectral replicates; the resulting spectrum in Figure 2.10b cor-

responds to the case in Figure 2.7a. Figures 2.11 and 2.12 illustrate two ways of
eliminating aliasing using antialiasing filters. In Figure 2.11 the analog signal is
prefiltered so thal the new maximum frequency, f,., is reduced to fs/2 or less.
Thus there are no aliased components seen in Figure 2.11b, since fy > 2fm.
Eliminating the aliasing terms prior to sampling is good engineering practice.
When the signal structure is well known, the aliased terms can be climinated after
sampling, with a low-pass filter operating on the sampled data [2]. In Figure 2.12
the aliased components arc removed by postfiltering after sampling; the filter
cutoff frequency, » removes the aliased components; f. needs to be less than

| X1

Aliased
components

Figure 2.9 Aliasing in the frequency domain. (a) Continuous signal spectrum.
(b) Sampled signal spectrum.
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/
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Figure 2.10 Higher sampling rate eliminates aliasing. (a) Continuous signal spec-
trum. (b) Sampled signal spectrum.

| X(h)
\
N
AN
N
N ] f
0 frn fm fs
(a)
[ Xs(0) |
N\ / \
\ \
\\ // \\
< N
1 N f
0 fo = fn 1\ fn fg fot+ fn fs+
2
fin fo~
(b)

Figure 2.11 Sharper-cutoff filters eliminate aliasing. (a) Continous signal spec-
trum. (b) Sampled signal spectrum.
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| X(f} ]
' f
0 fm f
(a)
[ X ()
Aliased
components
" f
0 fo b fs fm fs fo+fn
2
- fm
(b)

Figure 2.12  Postfilter eliminates aliased portion of spectrum. (a) Continuous sig-
nal spectrum. (b) Sampled signal spectrum.

(fs — fwm). Notice that the filtering techniques for eliminating the aliased portion
of the spectrum in Figures 2.11 and 2.12 will resuldt in a loss of some of the signal
information. For this reason, the sample rate, cutoff bandwidth, and filter type
selected for a particular signal bandwidth are all interrelated.

Realizable filters require a nonzero bandwidth for the transition between the
passband and the required out-of-band attenuation. This is called the transition
bandwidth. To minimize the system sample rate, we desire that the antialiasing
filter have a small transition bandwidth. Filter complexity and cost risc sharply
with narrower transition bandwidth, so a trade-off is required between the cost
of a small transition bandwidth and the costs of the higher sampling rate, which
are those of more storage and higher transmission rates. In many systems the
answer has been to make the transition bandwidth between 10 and 20% of the
signal bandwidth. If we account for the 20% transition bandwidth of the antialias-
ing filter, we have an engineer’s version of the Nyquist sampling rate:

fs=2.2fm (2.17)

Figure 2.13 provides some insight into aliasing as seen in the time domain.
The sampling instants of the solid-line sinusoid have been chosen so that the
sinusoidal signal is undersampled. Notice that the resulting ambiguity allows one
to draw a totally different (dashed-line) sinusoid, following the undersampled
points.
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7
/4\

§ ‘ Sampling ~ - Signal at alias

T e

instants frequency

Figure 2.13 Alias frequency generated by sub-Nyquist sampling rate.

Example 2.2 Sampling Rate for a High-Quality Music System

We wish to produce a high-quality digitization of a 20-kHz bandwidth music source.
We are to determine a reasonable sample rate for this source. By the engineer’s
version of the Nyquist rate, in Equation (2.17), the sampling rate should be greater
than 44.0 ksamples/s. As a matter of comparison, the standard sampling rate for the
compact dise digital audio player is 44.1 ksamples/s, and the standard sampling rate
for studio-quality audio is 48.0 ksamples/s.

2.4.3 Signal Interface for a Digital System

Let us examine four ways in which analog source information can be described.
Figure 2.14 illustrates the choices. Let us refer to the waveform in Figure 2.14a
as the original analog waveform. Figure 2.14b represents a sampled version of

the original waveform, typically referred to as natural-sampled data or PAM
i portion v

he signal
Iter type vild val(t)
ween the

ransition

tialiasing h ﬂ ﬂ h |
: sharply Time h Time
{b)

the cost
e, which
tems the
% of the
antialias-

(a)

y3(t) yalt)

(2.17)

» domain. ﬂ ﬂ H H [

i that the

llows one
rsampled Figure 2.14 Amplitude and time coordinates of source data. (a) Original analog
waveform. (b) Natural-sampled data. (¢) Quantized samples. (d) Sample and hold.

Time - Time

(c) , (d)
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(pulse amplitude modulation). Do you suppose that the sampled data in Figure
2.14b are compatible with a digital system? No, they are not, because the am-
plitude of each natural sample still has an infinite number of possible values; a
digital system deals with a finite number of symbols. Even if the sampling is flat-
top sampling, the possible pulse values form an infinite set, since they reflect all
the possible values of the continuous analog waveform. Figure 2.14c illustrates
the original waveform represented by discrete pulses. Here the pulses have flat
tops and the pulse amplitude values are limited to a finite set. Each pulse is
expressed as a level from a finite number of predetermined levels; each such level
can be represented by a symbol from a finite alphabet. The pulses in Figure 2.14c
are referred to as quantized samples; such a format is the obvious choice for
interfacing with a digital system. The format in Figure 2.14d may be construed
as the output of a sample-and-hold circuit. When the sample values are quantized
to a finite set, this format can also interface with a digital system. After quanti-
zation, the analog waveform can still be recovered, but not precisely; improved
reconstruction fidelity of the analog waveform can be achieved by increasing the
number of quantization levels (requiring increased system bandwidth). Signal dis-
tortion due to quantization is treated in the following sections (and in Chapter
1D).

2.5 SOURCES OF CORRUPTION

The analog signal recovered from the sampled, quantized, and transmitted pulses
will contain corruption from several sources. The sources of corruption are related
to (1) sampling and quantizing effects, and (2) channel effects. These effects are
considered in the sections that follow.

2.5.1 Sampling and Quantizing Effects

2.5.1.1 Quantization Noise

The distortion inherent in quantization is a round-off or truncation error.
The process of encoding the PAM waveform into a quantized waveform involves
discarding some of the original analog information. This distortion, introduced by
the need to approximate the analog waveform with quantized samples, is referred
to as quantization noise; the amount of such noise is inversely proportional to
the number of levels employed in the quantization process. The signal-to-noise
ratio of quantized pulses is treated in Section 2.5.3.

2.5.1.2 Quantizer Saturation

The quantizer (or analog-to-digital converter) allocates L levels to the task
of approximating the continuous range of inputs with a finite set of outputs. The
range of inputs for which the difference between the input and output is small is
called the operating range of the converter. If the input exceeds this range, the

70 ' Formatting and Baseband Transmission Chap. 2

Petitioner's Exhibit 1003
Page 090




Figure difference between the input and the output becomes large, and we say that the

he am- converter is operating in saturation. Saturation errors, being large, are more ob-
lues; a ~ jectionable than quantizing noise. Generally, saturation is avoided by the use of
is flat- automatic gain control (AGC), which effectively extends the operating range of
Tect all the converter. Chapter 11 covers quantizer saturation in greater detail.
istrates
we flat 2.5.1.3 Timing Jitter
lse is Our analysis of the sampling theorem predicted precise reconstruction of
‘h level . , . . . .
the signal based on uniformly spaced samples of the signal. If there is a slight
e2.14c .. ; .. S .
ice for jitter in the posm.on gf the samr?le, Fhe sampling is no longer uniform. Although
sstrued exact reconstruction is still possible if the sample positions are accurately known,
. the jitter is usually a random process and thus the sample positions are not ac-
antlzefi curately known. The effect of the jitter is equivalent to frequency modulation
quanti- (FM) of the baseband signal. If the jitter is random, a low-level wideband spectral
proved contribution is induced whose properties are very close to those of the quantizing
ng the noise. If the jitter exhibits periodic components, as might be found in data ex-
Elal dis- tracted from a tape recorder, the periodic FM will induce low-level spectral lines
“hapter in the data. Timing jitter can be controlled with very good power supply isolation
and stable clock references. '
2.5.2 Channel Effects
2.5.2.1 Channel Noise
| pulses Thermal noise, interference from other users, and interference from circuit
related switching transients can cause errors in detecting the pulses carrying the digitized
cts are samples. Channel-induced errors can degrade the reconstructed signal quality
quite quickly. This rapid degradation of output signal quality with channel-induced
errors is called a threshold effect. If the channel noise is small, there will be no
problem detecting the presence of the waveforms. Thus small noise does not
corrupt the reconstructed signals. In this case, the only noise present in the re-
construction is the quantization noise. On the other hand, if the channel noise is
1 error. large enough to affect our ability to detect the waveforms, the resultant detection
avolves error causes reconstruction errors. A large difference in behavior can occur for
iced by very small changes in channel noise level.
eferred
onal to 2.5.2.2 Intersymbol Interference
0-noIse The channel is always bandlimited. A bandlimited channel disperses or
spreads a pulse waveform passing through it (see Section 1.6.4). When the channel
bandwidth is much greater than the pulse bandwidth, the spreading of the pulse
will be slight. When the channel bandwidth is close to the signal bandwidth, the
he task spreading will exceed a symbol duration and cause signal pulses to overlap. This
its. The ~ overlapping is called intersymbol interference (ISI). Like any other source of
small is interference, ISI causes system degradation (higher error rates); it is a particularly
1ge, the insidious form of interference because raising the signal power to overcome the
Chap. 2 ' Sec. 2.5 Sources of Corruption 71
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interference will not improve the error performance. Details of how 1SIis handled
are presented in Section 2.11.

2.5.3 Signal-to-Noise Ratio for Quantized Pulses

Figure 2.15 illustrates an L-level linear quantizer for an analog signal with a peak-
to-peak voltage range of V,,, = V, — (=V,) = 2V, volts. The quantized pulses
assume positive and negative values, as shown in the figure. The step size between
quantization levels, called the quantile interval, is denoted g volts. When the
quantization levels are uniformly distributed over the full range, the quantizer is
called a uniform or linear quantizer. Each sample value of the analog waveform
is approximated with a quantized pulse; the approximation will result in an error
no larger than ¢/2 in the positive direction or —g/2 in the negative direction. The
P degradation of the signal due to quantization is therefore limited to half a quantile
interval, =g¢/2 volts. ’
A useful figure of merit for the uniform quantizer is the quantizer variance
(mean-square error assuming Zero mean). If we assume that the quantization error,
e, is uniformly distributed over a single quantile interval g-wide (i.e., the analog
input takes on all values with equal probability), the quantizer error variance is
found to be
+q/2
2 J- " ep(e) de 2.182)

-4

+q/2
féeﬂwzi (2.18b)

9
Ii

i

bq/2

3q/2

. q/2
Quar;tlZEd ____________ L levels Vop

vaiues —q/2

Figure 2.15 Quantization levels.
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andled ' where p(e) = 1/q is the (uniform) probability density function of the quantization
' error. The variance, a2, corresponds to the average quantization noise power.
The peak power of the analog signal (normalized to 1 {}) can be expressed as

: 2 2 2.2

\ peak- Vi = (%’E) = <%ﬁ> - 2.19)
pulses
stween where L is the number of quantization levels. Equations (2.18) and (2.19) combined
en the yield the ratio of peak signal power to average quantization noise power (S/N)g,
tizer is assuming that there are no errors due to ISI or channel noise:
veform 2.2
n error (%) = 1;1231/24 = 3L* (2.20)
n. The 4
uantile It is intuitively satisfying to see that (S/N), improves as a function of the number

of quantization levels squared. In the limit (as L — =), the signal approaches the
nance PAM format (with no quantization), and the signal-to-quantization noise ratio is
1error, infinite; in other words, with an infinite number of quantization levels, there is
analog zero quantization noise.
ance is

2.6 PULSE CODE MODULATION

(2.18a)

Pulse code modulation (PCM) is the name given to the class of baseband signals
obtained from the quantized PAM signals by encoding each quantized sample into
a digital word [3]. The source information is sampled and quantized to one of L
levels; then each quantized sample is digitally encoded into an €-bit (€ = log, L)
codeword. For baseband transmission, the codeword bits will then be transformed
to pulse waveforms. The essential featurcs of binary PCM are shown in Figure
2.16. Assume that an analog signal, x(¢), is limited in its excursions to the range
—4to +4 V. The step size between quantization levels has been set at 1 V. Thus
eight quantization levels are employed; these are located at —3.5, —2.5, ...,
+3.5 V. We assign the code number 0 to the level at —3.5 V, the code number
1 to the level at —2.5 V, and so on, until the level at 3.5 V, which is assigned
the code number 7. Each code number has its representation in binary arithmetic,
ranging from 000 for code number 0 to 111 for code number 7.

The ordinate in Figure 2.16 is labeled with quantization levels and their code
numbers. Each sample of the analog signal is assigned to the quantization level
closest to the value of the sample. Beneath the analog waveform, x(z), are seen
four representations of x(¢), as follows: the natural sample values, the quantized
sample values, the code numbers, and the PCM sequence.

Note that in the example of Figure 2.16, each sample is represented by a 3-
bit codeword. If the signal, x(¢), had been quantized to 16 levels, a 4-bit codeword
would be needed to characterize each sample, or if x(¢) had been quantized to
four levels, a 2-bit codeword would be needed. From Equation (2.20) it can be
seen that the greater the number of quantization levels, the lower will be the
quantization noise. Hence quantization noise performance can be traded off ver-
sus data rate.

(2.18b)
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Code

Quantization

number level x(t) (V)
4 x(t)
7 3.5
6 2.5 // \\
2 A
5 1.5 ,/ \\
1/
4 0.5 ‘T\
0 : i \\ t
3 -0.5 ‘ t f ~
-1 : i t \\
2 -1.5 4
-2 | { | | ! \
1 —2 | | |
T L | i | : \\
0 -3.5 } | | : '
) | | | l
4 | i l s
| | | | I | |
i 1 | | l | I
Natural sample value 1.3 3.6 2.3 0.7 -0.7 —-2.4 —-3.4
Quantized sample value 1.5 35 2.5 0.5 -0.5 —-2.5 ~3.5
Code number 5 7 6 4 3 1 0
PCM sequence 101 111 110 100 011 001 000

Figure 2.16 Natural samples, quantized samples, and pulse code modulation. (Reprinted
with permission from Taub and Schilling, Principles of Communication Systems, McGraw-
Hill Book Company, New York, 1971, Fig. 6.5-1, p. 205.)

2.7 UNIFORM AND NONUNIFORM QUANTIZATION -

2.7.1 Statistics of Speech Amplitudes

Speech communication is a very important and specialized area of digital com-
munications. Human speech is characterized by unique statistical propérties; one
such property is illustrated in Figure 2.17. The abscissa represents speech signal
magnitudes, normalized to the root-mean-square (rms) value of such magnitudes
through a typical communication channel, and the ordinate is probability. For
most voice communication channels, very low speech volumes predominate; 50%
of the time, the voltage characterizing detected speech energy is less than one-
fourth of the rms value. Large amplitude values are relatively rare; only 15% of
the time does the voltage exceed the rms value. We see from Equation (2.18b)
that the quantization noise depends on the step size (size of the quantile interval).
When the steps are uniform in size the quantization is known as uniform quan-
tization. Such a system would be wasteful for speech signals; many of the quan-
tizing steps would rarely be used. In a system that uses equally spaced quanti-
zation levels, the quantization noise is the same for all signal magnitudes.
Therefore, with uniform quantization, the signal-to-noise ratio (SNR) is worse for
low-level signals than for high-level signals. Nonuniform quantization can provide
fine quantization of the weak signals and coarse quantization of the strong signals.
Thus in the case of nonuniform quantization, quantization noise can be made
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- Speech signal magnitudes relative Figure 2.17 Statistical distribution of
- to the rms of such magnitudes single-talker speech signal magnitudes.
—
_,— proportional to signal size. The effect is to improve the overall SNR by reducing
g the noise for the predominant weak signals, at the expense of an increase in noise
—3.4 for the rarely occurring strong signals. Figure 2.18 compares the quantization of
—35 a strong versus a weak signal for uniform and nonuniform quantization. The stair-
0 case-like waveforms represent the approximations to the analog waveforms (after
000 quantization distortion has been introduced). The SNR improvement that non-
. uniform quantization provides for the weak signal should be apparent. Nonuni-
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form quantization can be used to make the SNR a constant for all signals within
the input range. For voicc signals, the typical input signal dynamic range is 40
decibels (dB), where a decibel is defined in terms of the ratio of power P, to power
Pll

P
number of dB = 10 logo ;3 (2.21)

1

With a uniform quantizer, weak signals would experience a 40-dB-poorer SNR
than that of strong signals. The standard telephone technique of handling the large
range of possible input signal levels is to use a logarithmic-compressed quantizer
instead of a uniform one. With such a nonuniform compressor the output SNR
is independent of the distribution of input signal levels.

2.7.2 Nonuniform Quantization

One way of achieving nonuniform quantization is to use a nonuniform quantizer
characteristic, shown in Figure 2.19a. More often, nonuniform quantization is
achieved by first distorting the original signal with a logarithmic compression
characteristic, as shown in Figure 2.19b, and then using a uniform quantizer. For
small magnitude signals the compression characteristic has a much steeper slope
than for large magnitude signals. Thus a given signal change at small magnitudes
will carry the uniform quantizer through more steps than the same change at large

Output

Input

(a)

Output Output

s
Ve
/

7 >Compression

I~

Ve No compression

Input Input

bl (c)

Figure 2.19 (a) Nonuniform quantizer characteristic. (b) Compression charac-
teristic. (¢) Uniform quantizer characteristic.
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within magnitudes. The compression characteristic effectively changes the distribution
> is 40 of the input signal magnitudes so that there is not a preponderance of low mag-
power nitude signals at the output of the compressor. After compression, the distorted
signal is used as the input to a uniform (linear) quantizer characteristic, shown
in Figure 2.19c. At the receiver, an inverse compression characteristic, called
(2.21) expansion, is applied so that the overall transmission is not distorted. The pro-
cessing pair (compression and expansion) is usually referred to as companding.

r SNR
e large 2.7.3 Companding Characteristics
intizer
t SNR The early PCM systems implemented a smooth logarithmic compression function.
Today, most PCM systems use a piecewise linear approximation to the logarithmic
compression characteristic. In North America a p-law compression characteristic
is used:
ntizer loge[1 + p( |x| /xmax)]
. = sgn x 2.22
tion is Yy max loge(l + I-L) g ( )
ession
r. For where
" slope . _[+1 forx=z=0
itudes SENX = | forx <0
tlarge
and where p is a positive constant, x and y represent input and output voltages,
and Xmax and Ymax are the maximum positive excursions of the input and output
voltages, respectively. The compression characteristic is shown in Figure 2.20a
for several values of w. The. standard value for p is 255. Notice that w = 0
corresponds to linear amplification (uniform quantization).
1.0 1.0
0.8} 0.8
% s
£ =
2 06 = 06
> >
5 04 El 0.4
g 3
o
0.2 0.2
0 0 02 04 06 08 10
ut V Input, | X {/Xmax » Input, | x /X max
(a) ’ {b)
Figure 2.20 Compression characteristics. (a) w-law characteristic. (b) A-law
characteristic.
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Another compression characteristic, used mainly in Europe, is the A-law
characteristic, defined as

A Pman) K 1

i max T < S -

Y 1 + log. A SEN X 0 Xmax A

y = 2.23)
" 1 + log.[A( x| /Xmax)] - x| <1

; 1 + lOge A A Xmax

where A is a positive constant and x and y are as defined in Equation (2.22). The
A-law compression characteristic is shown in Figure 2.20b for several values of
A. A standard value for A is 87.6. See Chapter 11 for a more detailed treatment
of u-law and A-law companding characteristics.

- 2.8 BASEBAND TRANSMISSION
2.8.1 Waveform Representation of Binary Digits

We need to represent PCM binary digits by electrical pulses in order to transmit
them through a baseband channel. Such a representation is shown in Figure 2.21.
Codeword time slots are shown in Figure 2.21a, where the codeword is a 4-bit
representation of each quantized sample. In Figure 2.21b, each binary one is
represented by a pulse and each binary zcro is represented by the absence of a
pulse. Thus a sequence of electrical pulses having the pattern shown in Figure
2.21b can be used to transmit the information in the PCM bit stream, and hence
the information in the quantized samples of a message.

At the receiver, a determination must be made as to the presence or absence
of a pulse in each bit time slot. It will be shown in Section 2.9 that the likelihood
of correctly detecting the presence of a pulse i$ a function of the pulse energy
(or area under the pulse). Thus there is an advantage in making the pulse width,
T', in Figure 2.21b as wide as possible. If we increase the pulse width to the
maximum possible (equal to the bit time duration, T), we have the waveform
shown in Figure 2.21c. Rather than describe this waveform as a sequence of
present or absent pulses, we can describe it as a sequence of transitions between
two levels. When the waveform occupies the upper voltage level it represents a
binary one; when it occupies the lower voltage level it represents a binary zero.

2.8.2 PCM Waveform Types

Figure 2.22 illustrates the most commonly used PCM waveforms. The various
waveforms are classified into the following groups:

1. Nonreturn-to-zero (NRZ)
2. Return-to-zero (RZ),

3. Phase encoded

4. Multilevel binary
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kelibood Figure 2.21 Example of waveform representation of binary digits. (a) PCM se-
¢ encrgy quence. (b) Pulse representation of PCM. (c) Pulse waveform (transition between
;e width, two levels).
‘h to the
raveform The NRZ group is probably the most commonly used PCM waveform. It
uence of can be partitioned into the following subgroups: NRZ-L (L for level), NRZ-M (M
between for mark), and NRZ-S (S for space). NRZ-L is used extensively in digital logic.
resents a A binary one is represented by one level and a binary zero is represented by
\ry Zero. another level. There is a change in level whenever the data change from a one

to a zero or from a zero to a one. With NRZ-M, the one, or mark, is represented

by a change in level, and the zero, or space, is represented by no change in level.

This is often referred to as differential encoding. NRZ-M is used primarily in

: various magnetic tape recording. NRZ-S is the complement of NRZ-M: A one is repre-
sented by no change in level, and a zero is represented by a change in level.

The RZ waveforms consist of unipolar-RZ, bipolar-RZ, and RZ-AMI. These

codes find application in baseband data transmission and in magnetic recording.

With unipolar-RZ, a one is represented by a half-bit-wide pulse, and a zero is

represented by the absence of a pulse. With bipolar-RZ, the ones and zeros are

represented by opposite-level pulses that are one-half-bit wide. There is a pulse
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present in each bit interval. RZ-AMI (AMI for ““alternate mark inversion’’) is the
coding scheme most often used in telemetry systems. The ones are represented
by equal-amplitude alternating pulses. The zeros are represented by the absence
of pulses.
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The phase-encoded group consists of bi-d-L (bi-phase-level), better known
as Manchester coding; bi-&-M (bi-phase-mark); bi-$-S (bi-phase-space); and delay
modulation (DM), or Miller coding. The phase-encoding schemes are used in
magnetic recording systems and optical communications and in some satellite
.telemetry links. With bi-¢-L, a one is represented by a half-bit-wide pulse posi-
tioned during the first half of the bit interval; a zero is represented by a half-bit-
wide pulse positioned during the second half of the bit interval. With bi--M, a
transition occurs at the beginning of every bit interval. A one is represented by
a second transition one-half bit interval later; a zero is represented by no second
transition. With bi-¢-S, a transition also occurs at the beginning of every bit
interval. A one is represented by no second transition; a zero is represented by
a second transition one-half bit interval later. With delay modulation [4], a one
is represented by a transition at the midpoint of the bit interval. A zero is rep-
resented by no transition, unless it is followed by another zero. In this casc, a
transition is placed at the end of the bit interval of the first zero. Reference to
the illustration in Figure 2.22 should help to make these descriptions clear.

Many binary waveforms use three levels, instead of two, to encode the binary
data. Bipolar RZ and RZ-AMI belong to this group. The group also contains
formats called dicode and duobinary. With dicode-NRZ, the one-to-zero or zero-
to-one data transition changes the pulse polarity; without a data transition, the
zero level is sent. With dicode-RZ, the one-to-zero or zero-to-one transition pro-
duces a half-duration polarity change; otherwise, a zero level is sent. The three-
level duobinary signaling scheme is treated in Section 2.12.

One might ask why there are so many PCM waveforms. Are there really so
many unique applications necessitating such a variety of waveforms to represent
digits? The reason for the large selection relates to the differences in performance
that characterize each waveform [5]. In choosing a coding scheme for a particular
application, somc of the parameters worth examining are the following:

1. Dc component. Eliminating the dc energy from the signal’s power spectrum
enablcs the system to be ac coupled. Magnetic recording systems, or systems
using transformer coupling, have little sensitivity to very low frequency sig-
nal components. Thus low-frequency infermation could be lost.

2. Self-Clocking. Symbol or bit synchronization is required for any digital com-
munication system. Some PCM coding schemes have inherent synchronizing
or clocking features that aid in the recovery of the clock signal. For example,
the Manchester code has a transition in the middle of every bit interval
whether a one or a zero is being sent. This guaranteed transition provides
a clocking signal. '

3. Error detection. Some schemes, such as duobinary, provide the means of

yrms. detecting data errors without introducing additional error-detection bits into
the data sequence.

s the 4. Bandwidth compression. Some schemes, such as multilevel codes, increase

nted the efficiency of bandwidth utilization by allowing a reduction in required

ence bandwidth for a given data rate; thus there is more information transmitted

per unit bandwidth.
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5. Differential encoding. This technique is useful because it allows the polarity
of differentially encoded waveforms to be inverted without affecting the data
detection. In communication systems wherc waveforms sometimes expe-
rience inversion, this is a great advantage. Differential encoding is treated
in greater detail in Section 3.6.2.

6. Noise immunity. The various PCM waveform types can be further char-
acterized by probability of bit error versus signal-to-noise ratio. Some of the
schemes are more immune than others to noise. For example, the NRZ
waveforms have better error performance than does the unipolar RZ
waveform.

2.8.3 Spectral Attributes of PCM Waveforms

The most common criteria used for comparing PCM waveforms and for selecting
one waveform type from the many available are: spectral characteristics, bit syn-
chronization capabilities, error-detecting capabilities, interference and noise im-
munity, and cost and complexity of implementation. Figure 2.23 shows the spec-
tral characteristics of some of the most popular PCM waveforms. The figure plots
power spectral density in watts/hertz versus normalized bandwidth (frequency
times pulse width). The spectral characteristic of a PCM waveform establishes

the required system bandwidth and indicates how efficiently the bandwidth is
being used. Bandwidth efficiency is addressed in detail in Chapter 7. The features
that are easily observed in Figure 2.23 are the energy content at low frequency
and the bandwidth requirements. Notice that the NRZ and duobinary schemes
5‘2 T [ T I T | T l T I T | T I T [ T l T
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Figure 2.23 Spectral densities of various PCM waveforms.
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rity have large spectral components at low frequency. Notice also that the bi-phase

ata schemes have no energy at dc. However, bi-phasc requires a relatively large
pe- system bandwidth, as does the dicode scheme. The methods that are particularly
ted bandwidth efficient are the duobinary and delay modulation. Duobinary signaling
is treated in Section 2.12.

ar-

the

[RZ 2.9 DETECTION OF BINARY SIGNALS IN GAUSSIAN NOISE

RZ

Once the digital symbols are transformed into electrical waveforms, they can then
be transmitted through the channel. During a given signaling interval, T, a binary
system will transmit one of two waveforms, denoted s,(¢) and s2(t). The trans-
mitted signal over a symbol interval (0, T) is represented by

ting (1) = s1(2) 0=t=T fora binary I

syn- ‘ s2(f) 0=rt=T  forabinary 0

im-

pec- 1 The signal, r(), received by the receiver is represented by

’IOt; r(t) =s0) +n(t)  i=1,2, 0=<t=T 2.24)
nc :

shes where 7(1) is a zero-mean additive white Gaussian noise (AWGN) process.

h is Figure 2.24 highlights the two separate steps involved in signal detection.
ures ~ The first step consists of reducing the received waveform, r(¢) (whether baseband
:ncy E or bandpass), to a single number, z(t = T). This operation can be performed by
:mes , a linear filter followed by a sampler, as shown in block 1 of Figure 2.24, or

, optimally by a matched filter or correlator, which will be treated in later sections.
n ’ The initial conditions of the filter or correlator are set to zero just prior to the
- f arrival of each new symbol. At the end of a symbol duration, 7, the output of
| block 1 yields the sample, z(T), sometimes called the fest statistic. We have
: assumed that the input noise is a Gaussian random process, and we have stated

7 that the input filter is linear. A linear operation on a Gaussian random process
- will produce a second Gaussian random process [6]. Thus the filter output noise
B is Gaussian. If a nonlinear detector is used, the output noise will not be Gaussian
i : Step 1 Step 2

i AWGN L Recever N

| _ | Threshold
. 59 (1) | Linear Sampleatt=T | comparison
_ s;(t) = or I filter ﬁ')*.t : H L 5(t)
' sp(t) rt) = | h(t) 2(t) = . ; 1
_ s{t) +n(t) a;(t) + ng(t) | 7dT) = v
Binary waveform | | Ha

- L0 z(T)=
- . Optimum receiver consists a(T) + ng(T)

20 of correlator or

' ‘matched filter matched to
$4 (T) — Sy (T)
Figure 2.24 Two basic steps in digital signal detection.
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and the following analysis will not apply. The output of block 1, sampled at ¢ =
T, yields

AT) = a(T) + no(T) i=1,2 (2.25)

where a,(T) is the signal component of Z2(T) and no(T) is the noise component.
To shorten the notation, we sometimes write Equation (2.25) as z = a; t+ no.
The noisc component, He, iS & Zero-mean Gaussian random variable, and thus
2(T) is a Gaussian random variable with a mean of either a; or a, depending on
whether a binary one or binary zero was sent. The probability density function
(pdf) of the Gaussian random noise, no, can be expressed as

(1) S S, [——1—<'—’i’>2] (2.26)
p\no 0_0\/-5; P 2 oo .

where o3 is the noise variance. Thus it follows from Equations (2.25) and (2.26)
that the conditional probability density functions (pdfs), p(z}s;) and p(z]s2) can
be expressed as

_ 1 _ l Z — ai z

p@ls1) = e exp [ 3 <-—% ) } (2.27)
( lS ) = 1 ex ‘:_._ l(g__—__a.})z] 2 28)

plas) = A P LT 2\ oo '

These conditional pdfs are illustrated in Figure 2.25. The rightmost conditional
pdf, p(zls.), illustrates the probability density of the detector output, z(T), given
that s,(z) was transmitted. Similarly, the leftmost conditional pdf, p(z|s,), illus-
trates the probability density of z( T) given that s,(¢) was transmitted. The abscissa,
z(T), represents the full range of possible sample output values from block 1 of
Figure 2.24.

The second step of the signal detection process consists of comparing the
test statistic, z(T), to a threshold level, v, in block 2 of Figure 2.24, in order to
estimate which signal, s;(¢) or 52(2), has been transmitted. The filtering operation
in block 1 does not depend on the decision criterion in block 2. Thus the choice
of how best to implement block 1 can be independent of the particular decision
strategy (choice of the threshold setting, ).

Likelihood of s; Likelihood of s4
p(zlsy) plzlsy)

|

I

I !
l

| [
|

& z(T)
, a2 (T &y
; 70
i
! Figure 2.25 Conditional probability density functions: p(zls1) and p(z]s2).
84 _ Formatting and Baseband Transmission Chap. 2

Petitioner's Exhibit 1003
Page 104




= o . Once areceived waveform, r(z), is transformed to a number z(T), the actual
shape of the waveform is no longer important; all waveform types that are trans-

25) formed to the same value of z(T) are identical for detection purposes. We will
see in Section 2.9.2 that a maiched filter receiver in block 1 of Figure 2.24 is one
:nt. ~ that maps all signals of equal energy into the same point, z(7T). Therefore, the
Ho. signal energy (not its shape) is the important paramcter in the detection process.
hus Thus the detection analysis for baseband signals is the same as that for bandpass
on signals. The final step in block 2 is to make the decision
ion o
2T) = y (2.29)
Hz
2600 where H, and H, are the two possible (binary) hypotheses. Choosing H; is equiv-
alent to deciding that signal s,(7) was sent, and choosing 1 is equivalent to
.26) deciding that signal s,(¢) was sent. The inequality relationship indicates that hy-
can pothesis H; is chosen if z(T) > vy, and hypothesis H, is chosen if z(T) < v. If

z(T) = v, the decision can be an arbitrary one.
.27) 2.9.1 Maximum Likelihood Receiver Structure

A popular criterion for choosing the threshold level, v, for the binary decision is

.28) based on minimizing the probability of error. The computation for this minimum
- error value of y = «, starts with forming an inequality expression between the
>nal ratio of conditional probability density functions and the signal a priori proba-
ven bilities. The conditional density function, p(zls;), is also called the likelihood of
Tus- s;. Thus the formulation as shown below is called the likelihood ratio test (see
ssa, Appendix B).
1 of Hy
| o pGEs) L P(sy) (2.30)
the ‘ | p@Els2) 1, P(s1)
;T Lo where P(s;) and P(s2) are the a priori probabilities that s,(z) and s,(#), respec-
ttion tively, are transmitted, and H; and H, are the two possible hypotheses. The rule
oice for minimizing the error probability in Equation (2.30) states that we should choose
sion hypothesis H, if the ratio of likelihoods is greater than the ratio of a priori
probabilities.

It is shown in Section B.3.1 that if P(s;) = P(s;), and if the likelihoods,
p(zls) @ = 1, 2), are symmetrical, the substitution of Equations (2.27) and (2.28)
into (2.30) yields

Hy
a, + a
An =z =2
2 2

= Yo 2.31)

where a; is the signal component of z(T) when s,(¢) is transmitted, and a, is the

m signal component of z(7) when s»(7) is transmitted. The threshold level, o, rep-
resented by (a1 + a2)/2, is the optimum threshold for minimizing the probability
of making an incorrect decision for this important special case. This strategy is
known as the minimum error criterion.
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For equally likely signals, the optimum threshold, <o, passes through the

_intersection of the likelihood functions, as shown in Figure 2.25. Thus by following

Equation (2.31), the decision stage effectively selects the hypothesis that corre-
sponds to the signal with the maximum likelihood. For example, given an arbitrary
detector output value, z,(T), for which there is a nonzero likelihood that z.(T)
belongs to either signal class 51(2) or s2(¢), one can think of the likelihood test
as a comparison of the likelihood values p(zals1) and p(z4|s2). The signal corre-
sponding to the maximum pdf is chosen as the most likely to have been trans-
mitted. In other words, the detector chooses s,(7) if

p(zals1) > p(zdls2) (2.32)

Otherwise, the detector chooses s2(1). A detector that minimizes the error prob-
ability (for the case where the signal classes are equally likely) is also known as
a maximum likelihood detector. :

Figure 2.25 illustrates that Equation (2.32) is just a ‘‘common sense’’ way
to make a decision when there exists statistical knowledge of the classes. Given
the detector output value, z.(T), we see in Figure 2.25 that z,(T) intersects the
likelihood of s,(¢) at a value p;, and it intersects the likelihood of s, () at a value
p2. What is the most reasonable decision for the detector to make? For this ex-
ample, choosing class s1(7), which has the greater likelihood, is the most sensible
choice. If this was an M-ary instead of a binary example, there would be a total
of M likelihood functions representing the M signal classes to which a received
signal might belong. The maximum likelihood decision would then be to choose
the class that had the greatest likelihood of all M likelihoods. Refer to Appendix
B for a review of decision theory fundamentals.

2.9.1.1 Error Probability

For the binary example in Figure 2.25, there are two ways in which errors
can occur. An error, e, will occur when s,(z) is sent, and channel noise results
in the receiver output signal, z(T), being less than -yo. The probability of such an
occurrence is

P(elsl)'= P(H|sy) = fjlp(zlsl) dz (2.33)

This is illustrated by the shaded area to the left of yo in Figure 2.25. Similarly,
an error occurs when s»(7) is sent, and the channel noise results in z(T) being
greater than +y,. The probability of this occurrence is

Plelsa) = P(Hils2) = f " sy dz 2.34)

The probability of an error is the sum of the probabilities of all the ways that an
error can occur. For the binary case, we can express the probability of bit error,
Pjg, as follows:

2
PB = 2 P(e, S,') (235)

i=1
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Combining Equations (2.33) to (2.35), we can write

ng
e- PB = P(e|Sl)P(Sl) + P(C]SZ)P(Sz) (2363)
r
TS; or equivalently,
th Py = P(H,|s)P(s\) + P(H|s;)P(s2) (2.36b)
1s- That is, given that signal s;(¢) was transmitted, an error results if hypothesis H,
is chosen; or given that signal s,(r) was transmitted, an error results if hypothesis
2) H , is chosen. For the case where the a priori probabilities are equal, that is, P(s,)
b = P(S2) = %;
as Pp = 3P(Hals1) + $P(H\ls2) - (2.37)
2y and because of the symmetry of the probability density functions .
ﬁn Py = P(H|s;) = P(Hls2) (2.38)
e
ue The probability of a bit error, Pg, is numerically equal to the area under the “‘tail’’
X< of either likelihood function, p(z|s,) or p(z|s,), falling on the “‘incorrect’’ side of
sle the threshold. We can therefore compute Py by integrating p(z)s,) between the
tal limits —o0 and 7y, or as shown below, by integrating p(z]s2) between the limits
ed Yo and oo:
ise o
lx Po= [ L pGs) de (2.39)
where yo = (a1 + a,)/2 is the optimum threshold from Equation (2.31). Replacing
the likelihood p(z]s,) with its Gaussian equivalent from Equation (2.28), we have
S o 1 1 /2 —aN\>T g
Its P | - (A2 |y .
where o3 is the variance of the noise out of the correlator.
33) Let u = (z — a»)/oo. Then oy du = dz and
s o0 1 u? a; — as
Ps= | ) du = g% 2.41
ly’ B u=(a1—a2l200 \/ 21 exp < 2) “ Q( 20'0 ) ( )
ng
where Q(x), called the complementary error function or co-error function, is a
commonly used symbol for the probability under the tail of the Gaussian distri-
) bution. It is defined as
an | 00 = —= ["exp (— 5) du 2.42)
or, V2w Jx 2 ’ .
Note that the co-error function is defined in several ways (see Appendix B);
35) ' however, all definitions are essentially equivalent. Q(x) cannot be evaluated in
‘ ‘closed form. It is presented in tabular form in Table B.1. Good approximations
12 Sec. 2.9 Detection of Binary Signals in Gaussian Noise 87
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to Q(x) by simpler functions can be found in Reference [7]. One such approxi-
mation, valid for x > 3, is :

O(x) = L ex (— Ef) (2.43)
xV2w P 2 ' '

We have optimized (in the sense of minimizing P5) the threshold level, v,
but have not optimized the filter in block 1 of Figure 2.24; we next consider
optimizing this filter by maximizing the argument of Q(x) in Equation (2.41).

2.9.2 The Matched Filter

A matched filter is a linear filter designed to provide the maximum signal-to-noise
power ratio at its output for a given transmitted symbol waveform. Consider that
a known signal s(¢) plus AWGN, n(t), is the input to a linear, time-invariant filter
followed by a sampler, as shown in Figure 2.24. At time ¢ = T, the receiver
output, z(T), consists of a signal component, a;, and a noise component, ny. The
variance of the output noise (average noise power) is denoted by o3, so that the
ratio of the instantaneous signal power to average noise power, (S/N)r, at time
t = T, out of the receiver in block 1, is

S a?
— = — 2.44
<N>T ob . ( )

We wish to find the filter transfer function, Ho(f), that maximizes Equation (2.44).
We can express the signal, a(z), at the filter output, in terms of the filter transfer
function, H(f) (before optimization), and the Fourier transform of the input signal,
as follows:

aty = [ H S df (2.49)

whére S(f) is the Fourier transform of the input signal, s(¢). If the two-sided power
spectral density of the input noise is No/2 watts/hertz, then using Equations (1.19)
and (1.53), we can express the output noise power, a3, as-

2 _ No (7

Op = 2

H()I df (2.46)

We then combine Equations (2.44) to (2.46) to express (S/N)z, as follows:

2

‘ | HDs@er= af

S
i _ (2.47)
(N T N2 [ IHGP df
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pproxi- We next find that value of H(f) = Ho(f) for which the maximum (S/N)s is
achieved, by using Schwarz’s inequality. One form of the inequality can be stated

as
(2.43) o 2 o ) ®
| wrwac | = [ @l [ Ip@Pd @)
evel., Y, The equality holds if fi(x) = kf5 (x), where k is an arbitrary constant and * in-
onsider dicates complex conjugate. If we identify H(f) with f1(x) and S(f) ¢*™7 with
41). f2(x), we can write
w0 2 o0 o
| [ E®swermtas | = [T P as [T Isopdr @49
to-noise Substituting into Equation (2.47) yields
der that S 5 (e
wt filter (7\7) == IS(HI? df (2.50)
receiver r NoJ==
Ng. The or
that the S . ' _
, at time 2) - 2=
max <N>T N 2.51)
where the energy, E, of the input signal s(¢) is
(2.44) -
E= [ IS0 df 2.52)
m (2.44). Thus the maximum output (S/N); depends on the input signal energy and the
tra‘nsfer power spectral density of the noise, not on the particular shape of the waveform
1t signal, that is used.
The equality in Equation (2.51) holds only if the optimum filter transfer
function, Ho(f), is employed, such that v
2.45 , .
@49 HU) = Ho(f) = kS*(e 27 2.53)
2d power or
ms (1.19) h(r) = F~{kS*(f)e 2T} (2.54)
Since s(¢) is a real-valued signal, we can write from Equations (A.29) and (A.31),
(2.46) fks(T -1 0=t=T
h(t) = 0 elsewhere 2.53)
wS:

Thus the impulse response of a filter that produces the maximum output signal-
to-noise ratio is the mirror image of the message signal, s(¢), delayed by the symbol
time duration, T. Note that the delay of T seconds makes Equation (2.55) causal,
.47 that is, the delay of T seconds'makes /(z) a function of positive time in the interval
0 = 1 = T. Without the delay of T seconds, the response, s(—1¢), is unrealizable
because it describes a response as a function of negative time.
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2.9.3 Correlation Realization of the Matched Filter

The term matched filter is often used synonymously with product integrator or
correlator. Equation (2.55) and Figure 2.26a illustrate the matched filter’s basic
property: The impulse response of the filter is a delayed version of the mirror
image (rotated on the ¢ = 0 axis) of the signal waveform. Therefore, if the signal
waveform is s(¢), its mirror image is s(—¢), and the mirror image delayed by T
seconds is s(T — f). The output, z(¢), of a causal filter can be described in the
time domain as the convolution of a received input waveform, r(t), with the im-
pulse response of the filter (see Section A.5):

2(¢) = r(t) * h(2) = fot r(’r)h(l — 1) dr (2.56)

Substituting /(z) of Equation (2.55) into h(z — 7) of Equation (2.56) and arbitrarily
setting the constant k equal to unity, we get

Aty = fo @[T — (6 — 7)) dr o5
= [ r@s(r -1+ 7y de
When ¢ = T, we can write Equation (2.57) as
T '
«T) = fo r(0)s(r) dr 2.58)

The operation of Equation (2.58), the product integration of the received signal,
(), with a replica of the transmitted waveform, s(¢), over one symbol interval
is known as the correlation of r(t) with s(¢). Consider that a received signal, r(1),
is correlated with each prototype signal, si{(1) ¢ = 1, ..., M), using a bank of
M correlators. The signal s,(f) whose product integration or correlation with r(¢)

i yields the maximum output z,(T) is the signal that matches r(z) better than all the

:' other s;(1), j # i. We will subsequently use this correlation characteristic for the
optimum detection of signals.

2.9.3.1 Comparison of Convolution and Correlation

It is important to note that the correlator output and the matched filter output
are the same only at time t = T. For a sine-wave input, the output of the correlator,
i z(1), is approximately a linear ramp for 0 = ¢ = T. However, the matched filter
T output is approximately a sine-wave amplitude modulated by a linear ramp for

0 = t < T. The comparison is shown in Figure 2.26b. To understand the similarities
and differences between a matched filter and a product integrator, one might first
ask: What are the similarities between convolution as expressed in Equation (2.56)
and correlation as expressed in Equation (2.58)? With correlation, we simply
multiply two functions together and integrate (compute the area under their prod-
uct curve). We are calculating how closely two waveforms match each other in
a given time period. With convolution, we sweep (step) two functions past one
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s{t) s(—1) h(t) =s{T — 1)

tor or
basic
nirror T -T T
signal

Signal waveform - ) Mirror image of tmpulse response
[ by T signal waveform of matched filter
in the (al

1€ im-

A4«—— Correlator output
(2.56) s

H 7 Q“ Matched filter
trarily ; outout

7

2.57) ' | /f\/ I\ | |
) U T

N

(2.58) U
(b)
signal, .
terval Figure 2.26 Correlator and matched filter. (a) Matched filter characteristic. (b)
L r(r) Comparison of correlator and matched filter outputs.
s T ’ :
:}r}lk ((g another and calculate a sequence of correlations (one for each step). The matched
llrthe filter, used as a demodulator, only utilizes the correlation made at the symbol
%r the duration, 7. Since the matched filter output and the correlator output are identical
' at the sampling time ¢ = T, the matched filter and correlator functions, pictured
in Figure 2.27, are used interchangeably.
2.9.4 Application of the Matched Filter
utput . . .. ' .
slator In Equation (2.41) we found that the optimum decision threshold resulted in
{ filter Pg = Ql(a: ~ a»)/20y]. Finding the optimum threshold alone is not sufficient to
np for ‘ optimize the detection process. To minimize Pp, we also need to select an op-
arities timum filter to maximize the argument of Q(x). Thus we need to determine the
1t first linear filter that maximizes (a; — a2)/20,, or equivalently, that maximizes
(2.56) (ay — ax)
simply o2 — 2.59)
"prod- _ :
‘her in where (a1 — aa) is the difference of the signal components at the filter output,
st one at time ¢ = T, and the square of this difference signal is the instantaneous power
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r(t) = 5{t) + n{t) ——>{h(T - t) b———2z(T)

Matched to
sp(t) — so(t)
(a)
oo 7
Lo (1) = sp(t) :
| |
| T .
r(t) = s;{t) + n{t) ‘ [0 _____1_._| - z(T)
| : | Figure 2.27 Equivalence of matched
bmmm e - filter and correlator. (a) Matched filter.
(b) (b) Correlator.

of the difference signal. In Section 2.9.2 we described a filter that maximizes the
output signal-to-noise ratio—the matched filter. Consider a filter that is matched
to the input difference signal [s((¢) — s2(z)]. From Equations (2.44) and (2.51),
the ratio of the instantaneous signal power to average noise power, (S/N)r, at
time ¢+ = T out of this matched filter can be expressed as

S\ _(a —axf’  2E4
<N>T -k (2.60)

where Ny/2 is the two-sided power spectral density of the noise at the filter input,
and E, is the energy of the difference signal at the filter input:

T
Ey= f [s1(r) — s2(OF dt 2.61)

Thus, using Equations (2.41) and (2.60), we have

Py = Q(\/ZEW‘{O) (2.62)

2.9.5 Error Probability Performance of Binary Signaling

2.9.5.1 Unipolar Signaling

Figure 2.28a illustrates an example of a baseband waveform used for unipolar
signaling where

si() = A 0<tr=<T for binary 1 (2.63)

s2(t) = 0 O0=st=T for binary 0

where A > 0 is the amplitude of signal s;(z). Assume that the unipolar signal plus
white Gaussian noise is present at the input of a matched filter, with sampling
time ¢+ = T. The correlator detector for such a signal type is shown in Figure
2.28b. The correlator multiplies and integrates the incoming signal, r(¢), with the
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(a)

Reference signal

tched 1t = sl =A
i filter.
H
C 3 T ! A Figure 2.28 Detection of unipolar
. . = —» g * . : .

r(t) L) 2(T) >0 H< 70 sift) baseband signaling. (a) Unipolar

zes the 2 signaling example. (b) Correlator
(b) detector.

atched
(2.51), . :
V)7, at difference of the prototype signals [s,(f) — s2(¢)] = A, and after a symbol du-

ration, T, compares the result, z(7), with the threshold, vo. When #(¢) = s,(¢) +
n(t), the signal component, a(7), of z(T) is found, using Equation (2.58), to be

(2.60) T
a(T) = E{z(T)} = E{fo A% + An(r) dt} = A%T
" input, -where E{-} is the expected value operator. This follows since E{n(#)} = 0. Sim-
ilarly, when r(¢) = s2(¢) + n(z), then a>(7) = 0. Thus the optimum threshold is
.61) Yo = (a1 + a>)/2 = 3A”T. If the correlator output, z(T), is greater than v,, the
signal is declared to be s;(#); otherwise, it is declared to be s,(7).
The energy difference signal, from Equation (2.61), is E; = A*T. Then the
bit error performance at the output is obtained from Equation (2.62) as follows:

(2.62) 3 Eqs\ AT\ \/E
Pp =0 \/2N0~ = Q .l = Q N, (2.64)

where the average energy per bit is E, = A2T/2.

2.9.5.2 Bipolar Signaling

nipolar Figure (2.29a) illustrates an example of a bipolar baseband waveform, where
s1(1) = +A O0=t=T for binary 1 (2.65)
(2.63) s2() = —A O0=¢t=T forbinary 0

Binary waveforms that are the negative of one another, such as the bipolar pair

aal plus above, where s1(¢) = —s2(t), are called antipodal signals. A correlator receiver
umpling for this antipodal type of waveform can be configured as shown in Figure 2.29b.
Figure One correlator multiplies and integrates the incoming signal #(z) with the prototype
vith the signal, s(¢); the second correlator multiplies and integrates r(¢) with s,(¢). The
Chap. 2 Sec. 2.9 Detection of Binary Signals in Gaussiah Noise 93

Petitioner's Exhibit 1003
Page 113



S;(t)
A
0 ‘ ! t
0 T 2T 3T 4T 5T
__A -
(a)
Reference signal
81 (t) =A
T Z4q (T)
Jo
+ H
; z(T) 1 R
r{t) ——> Refser(etr)\?ingnal 2(T) = yg st
2 / Hy
jT Figure 2.29 Detection of bipolar
0 | z2(T baseband signaling. (a) Bipolar
signaling example. (b) Correlator
(b} detector.

correlator outputs are designated z,(T) (i = 1, 2). The point‘in the decision space,
72(T), is formed from the difference of the correlator outputs, as follows:

AT = z1(T) — z2(T) (2.66)
and the decision is made according to Equation (2.31). For antipodal signals,
i a; = —a,; therefore, yo = 0. Thus if the rest statistic, z(T), is positive, the signal

is declared to be s1(¢), and if it is negative, it is declared to be s2(¢).
The energy difference signal, E; = (2A)?T. Then the bit error performance
from Equation (2.62) is

| AT 2E
Py =0 N | = 19, Wf (2.67)

where the average energy per bitis E, = A*T. Figure 2.30 illustrates curves of P
versus E,/N for unipolar and bipolar signaling. In examining the two curves, we
can see a 3-dB error performance improvement for bipolar compared to unipolar
signaling. This difference could have been predicted by the factor-of-2 difference
in the coefficient of E, in Equation (2.67) compared with Equation (2.64). In
Chapter 3 we shall see that the error performance of bandpass antipodal signaling
(e.g., coherently detected binary phase shift keying) is the same as that for base-
band antipodal signaling (matched filter reception). Also, we shall see that the
error performance of bandpass orthogonal signaling (e.g., coherently detected
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space, Figure 2.30 Bit error performance of unipolar and bipolar signaling.
(2.66) frequency shift keying) is the same as that for baseband unipolar signaling
ignals, (matched filter reception).
signal
mance 2.10 MULTILEVEL BASEBAND TRANSMISSION
The system bandwidth required for binary PCM signaling may be very large. What
might we do to reduce the required bandwidth? One possibility is to use multilevel
(2.67) signaling. Consider a binary PCM bit stream with data rate R bits per second.
Instead of transmitting a pulse waveform for each bit, we first partition the data
sof Py into k-bit groups. We then use M = 2*level pulses for transmission. Each pulse
es, we waveform can now represent a k-bit symbol in a symbol stream of rate R/k symbols
1ipolar per second. Thus multilevel signaling, where M > 2, can be used to reduce the
erence number of symbols transmitted per second, or thus to reduce the bandwidth re-
4). In quirements of the channel. Is there a price to be paid for such bandwidth re-
naling duction? Of course there is; it is discussed below.
- base- Consider the task that the pulse receiver must perform; it needs to distinguish
1at the between the possible Icvels of each pulse. Can the receiver distinguish among the
tected eight possible levels of each octal pulse in Figure 2.31a as easily as it can distin-
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Figure 2.31 Pulse code modulation signaling. (a) Eight-level signaling. (b) Two-
level signaling.

o [

11 010 0

guish between the two possible levels of each binary pulse in Figure 2.31b? The

transmission of an 8-level (compared to a 2-level) pulse requires a greater amount

of energy for equivalent detection performance. (It is the amount of signal energy
i that determines how reliably a signal will be detected.) For equal average power
in the binary and the octal pulses, it is easier to detect the binary pulses because
H the detector has more signal energy per level for making a binary decision than
an 8-level decision. What price does a system designer pay if he or she chooses
the transmission waveform to be the easier-to-detect binary PCM, rather than
eight-level PCM? The engineer pays the price of needing three times as much
system bandwidth for a given data rate, compared to the octal pulses, since each
octal pulse must be replaced with three binary pulses (each one-third as wide as
the octal pulses). One might ask: Why not use binary pulses with the same pulse
duration as the original octal pulses, and suffer the information delay? For some
cases this might be appropriate, but for most communication systems, such an
increase in delay cannot be tolerated; the six o’clock news must be received at
six o’clock. In Chapter 7 we examine in detail the trade-off between signal power
and system bandwidth.
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2.10.1 PCM Word Size

How many bits shall we assign to each analog sample? For digital telephone
channels, each speech sample is PCM encoded using 8 bits, yielding 2% or 256
levels per sample. The choice of the number of levels, or bits per sample, depends
on how much distortion we are willing to tolerate with the PCM format. It is useful
to develop a general relationship between the required number of bits per analog
sample (the PCM word size) and the allowable quantization distortion. Let the
magnitude of the quantization distortion error, |e|, be specified not to exceed a
me ’ fraction, p, of the peak-to-peak analog voltage, V,,, as follows:

lel = pVpp (2.68)

Since the quantization error can be no larger than ¢/2, where g is the quantile
interval, we can write

, 1% ‘
’elmax = (_21 = z—f (269)

where L is the number of quantization levels. Then

1%
ne —2%3- = pVpp 2.70)
B 1
2 = L = — levels 2.71)
. 2p
1.
¢ = log, — bits 2.72)
2p

It is important that we do not confuse the idea of bits per PCM word, denoted
by ¢ in Equation (2.72), with the M-level transmission concept of & data bits per

The symbol. The following example should clarify the distinction.
ount Example 2.3 Quantization Levels and Multilevel Signaling
ergy The information in an analog waveform, with maximum frequency f,, = 3 kHz, is
ywer to be transmitted over an M-level PCM system, where the number of pulse levels
ause is M = 16. The quantization distortion is specified not to exceed = 1% of the peak-
than to-peak analog signal.
10S€S
than (a) What is the minimum number of bits/sample, or bits/PCM word, that should be
nuch used in this PCM system?
each . - . . . . .
le as (b) What is the minimum required sampling rate, and what is the resulting bit trans-
issi ?

sulse mission rate?
;I(l)me (c) What is the PCM pulse or symbol transmission rate?

an
xd at In this example we are concerned with two types of levels: the number of quantization
wer levels for fulfilling the distortion requirement, and the 16 levels of the multilevel

PCM pulses.
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Solution

(a) Using Equation (2.72), we calculate

£ = log, 0—1(—)5 = log, 50 = 5.6

Therefore, use £ = 6 bits/sample to meet the distortion requirement.

(b) Using the Nyquist sampling criterion, the minimum sampling rate f, = 2f,, =
6000 samples/second (samples/s). From part (a), each sample will give rise to a
PCM word composed of 6 bits. Therefore, the bit transmission rate R = €f, =
36,000 bits/s.

(¢) Since multilevel pulses are to be used with M = 2* = 16 levels, k = log, 16 =
4 bits/symbol. Therefore, the bit stream will be partitioned into groups of 4 bits
to form the new 16-level PCM digits, and the resulting symbol transmission rate
R, is R/k = 36,000/4 = 9000 symbols/s.

2,11 INTERSYMBOL INTERFERENCE

Figure 2.32a highlights the major filtering aspects of a typical baseband digital
system; there are circuit reactances throughout the system—in the transmitter,
in the receiver, and in the channel. The pulses at the input might be impulse-like
samples, or flat-top samples. In either case, they are low-pass filtered at the
transmitter to confine them to some desired bandwidth. Channel reactances can
cause amplitude and phase variations that distort the pulses. The receiving filter,
called the equalizing filrer, should be configured to compensate for the distortion

X1 X2
{ XK} Transmitting M > Channel > Receiving —i(OH Detector f———>— {>A<k}
[ filter o \V filter a
b I t=kT
| | — T e
1 X3 '
= T ke
Noise
(a)
X1 X2 Pulse 1 Pulse 2
/
{34} H(f) > Detector Xk
[ h(t) S P
| : LN
| . |
I '
T 1B = T b Noise
(b)
Figure 2.32 Intersymbol interference in the detection process. (a) Typical baseband digital
system. (b) Equivalent model.
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caused by the transmitter and the channel {8]. In a binary system with a commonly
used PCM format, such as NRZ-L, the detector makes symbol decisions by com-
paring the received bipolar pulses to a threshold; for example, the detector decides
that a binary one was sent if the received pulse is positive, and that a binary zero
was sent if the received pulse is negative. Figure 2.32b illustrates a convenient
model for the system, lumping all the filtering effects into one overall equivalent
system transfer function, H(f):

2f =

g H(f) = H(OH(HH,() (2.73)
s = where H,(f) characterizes the transmitting filter, H.(f) the filtering within the
channel, and H,(f) the receiving or equalizing filter. The characteristic H(f), then,
16 = represents the composite system transfer function due to all of the filtering at
? 4 bits various locations throughout the transmitter/channel/receiver chain. Due to the
on rate effects of system filtering, the received pulses overlap one another as shown in
Figure 2.32b; the tail of one pulse ‘‘smears’” into adjacent symbol intervals so as
to interfere with the detection process; such interference is termed intersymbol
interference (ISI). Even in the absence of noise, imperfect filtering and system
bandwidth constraints lead to ISI. In practice, H.(f) is usually specified, and the
problem remains to determine H,(f) and H,(f) such that the ISI of the pulses are

digital minimized at the output of H,.(f).
nitter, Nyquist [9] investigated the problem of specifying a received pulse shape
se-like so that no ISI occurs at the detector. He showed that the theoretical minimum
at the system bandwidth needed to detect R, symbols/s, without ISI, is R /2 hertz. This
>s can occurs when the system transfer function, H(f), is made rectangular, as shown
filter, in Figure 2.33a. When H(f) is such an ideal filter with bandwidth 1/27, its impulse
ortion response, the inverse Fourier transform of H(f) (from Table A.1) is A(z) = sinc

(¢/T), shown in Figure 2.33b. Thus A4(¢) is the received pulse shape resulting from

the application of an impulse at the input of such an ideal system. Nyquist

established that if each pulse of a received sequence is of the form A(¢), the

R pulses can be detected without ISI. The bandwidth required to detect 1/7 such

= { Xt pulses (symbols) per second is equal to 1/2T; in other words, a system with
bandwidth W = 12T = R,/2 hertz can support a maximum transmission rate of

2W = 1/T = R, symbols/s (Nyquist bandwidth constraint) without ISI. Figure

H(f) h(t)

T — o
- %
f
1 o 1 t
2T 2T
(a) {b)

Figure 2.33 Nyquist channels for zero ISI. (a) Rectangular system transfer func-

tion H(f). (b) Received pulse shape h(t) = sinc (/7).
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2.33b illustrates how ISI is avoided. The figure shows two successive received
pulses, A(z) and A(7 — T). Even though A(¢) has a long tail, it passes through zero
at the instant that h(z — T) is sampled (at ¢ = T) and therefore causes no de-
gradation to the detection process. With such an ideal received pulse shape, the
maximum possible symbol transmission rate per hertz, called the symbol-rate
packing, is 2 symbols/s/Hz, without ISL.

What does the Nyquist bandwidth constraint say about the maximum number
of bits/s/Hz that can be received without ISI? It says nothing about bits, directly.
The constraint deals only with pulses or symbols, and the ability to detect their
amplitude values without distortion from other pulses. The assignment of how
many bits each symbol represents is a separate issue. In theory, each symbol can
represent M levels or k bits (M = 2%);as kor M increases in value, so does the

complexity of the system. For example, when k = 6 bits/symbol, each symbol
" represents M = 64 levels. The number of bits/s/Hz that a system can support is
referred to as the bandwidth efficiency of the system; this subject is treated sep-
arately in Chapter 7.

For most communication systems (with the exception of spread-spectrum
systems, covered in Chapter 10), our goal is to reduce the required system band-
width as much as possible; Nyquist has provided us with a basic limitation to
such bandwidth reduction. What would happen if we tried to force a system to
operate at smaller bandwidths than the constraint dictates? We would find that
restricting the bandwidth would spread the pulses in time; this would degrade the
system'’s error performance, due to the increase in ISI.

2.11.1 Pulse Shaping to Reduce [S|

The Nyquist requirement for a sinc (¢/T) received pulse shape is not physically
realizable since it dictates a rectangular bandwidth characteristic and ar infinite
time delay. Also, with such a characteristic, the detection process would be very
sensitive to small timing errors. In Figure 2.33b the pulse A(?) has zero value in
adjacent pulse times only when the sampling is performed at exactly the correct
sampling time; timing errors will produce ISI. Therefore, we cannot implement
systems using the Nyquist bandwidth; we need to provide some ‘‘excess band-
width” beyond the theoretical minimum. One frequently used system transfer
function, H(f), is called the raised cosine filter. It can be expressed as '

1 for |f] <2Wo — W
H() = COSZG ‘f—‘iwﬂ—'wz—%) for 2Wo — W< Ifl <W (274
- (4]
0 for |f| > W

where W is the absolute bandwidth, and W, = 1/27T represents the minimum
Nyquist bandwidth for the rectangular spectrum and the —6-dB bandwidth (or
half-amplitude point) for the raised cosine spectrum. The difference (W — Wo)
is termed the excess bandwidth; notice that W = W, for the rectangular spectrum.
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d The roll-off factor is defined to be r = (W — Wy)/Wo. It represents the excess

0 bandwidth divided by the filter —6-dB bandwidth (i.e., the fractional excess band-
- width). For a given W,, r specifies the required excess bandwidth (as a fraction
e of Wo) and characterizes the steepness of the filter roll-off. The raised cosine
e characteristic is illustrated in Figure 2.34a for roll-off values of.r = 0, r = 0.5,
and r = 1.0. The r = 0 roll-off is the Nyquist minimum-bandwidth case. Notice
T that when r = 1.0, the required excess bandwidth is 100%; a system with such
8 an overall spectral characteristic can provide a symbol rate of R, symbols/s using
ir a bandwidth of R, hertz (twice the Nyquist bandwidth), thus yielding a symbol-
" v
n [ H{f) |
. .
M r=0
s 1.0 / r=05
- r=1.0
n
0.5
-
0
0 i ! | f
it S S S IO I 21 31
e T 4T 2T 4T AT 2T 41 T
—Wo Wo
(a)
h(t)/2Wq
y
e
Y
n
ot
1t
T
r=1.0
r=0.5
=0
4) t
3T
mn
r (b)
7) Figure 2.3¢ Raised cosine filter characteristics. (a) System transfer function. (b)
1. System impulse response.
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rate packing of 1 symbol/s/Hz. The corresponding impulse response for the H(f)
of Equation (2.74) is

cos Rm(W — Wy)t]
1 — 4W — Wo?

h(t) = 2Wo(sinc 2Wot) (2.75)
The impulse response is shown in Figure 2.34b for r = 0,7 = 0.5,and r = 1.0.

Recall that for zero ISI, we shall choose the system received pulse shape
to be equal to h(t); we can only do this approximately, since strictly speaking,
the raised cosine pulse spectrum is not precisely physically realizable. A realizable
frequency characteristic must have a time response that is zero prior to the pulse
turn-on time, which is not the case for the family of raised cosine characteristics.
These unrealizable filters are noncausal (the filter impulse response begins at time
t = —o). However, adelayed version of h(1), say h(t — o), may be approximately
generated by real filters if the delay fo is chosen such that A(z — 1) = 0, for r <
0. Notice in Figure 2.34b that timing errors will still result in some IST degradation
for r = 1. However, the problem is not as serious as it is for r = 0, because the
tails of the A(r) waveform are of much smaller amplitude for r = 1 than they are
forr = 0. '

The Nyquist bandwidth constraint states that the theoretical minimum re-
quired system bandwidth, W, for a symbol rate of R, symbols/s without ISI, is
L R./2 hertz. A more general relationship between required bandwidth and symbol
s , transmission rate involves the filter roll-off factor r, and can be stated as

? W = i1 + PR, (2.76)

Thus with r = 0, Equation (2.76) describes the required bandwidth for ideal rec-
tangular filtering, also referred to as Nyquist filtering. Bandpass-modulated signals
(baseband signals that have been shifted in frequency), such as amplitude shift
keying (ASK) and phase shift keying (PSK), require twice the transmission band-
width of the equivalent baseband signals (see Section 1.7.1). Such frequency-
o translated signals, occupying twice their baseband bandwidth, are often called
double-sideband (DSB) signals. Therefore, for ASK- and PSK-modulated signals,
the relationship between the required DSB bandwidth, Wpss, and the symbol
transmission rate, R, is

Wpss = (1 + MR, ‘ 2.77)

Example 2.4 Bandwidth Requirements

(a) Find the minimum required bandwidth for the baseband transmission of a four-
level PCM pulse sequence having a data rate of R = 2400 bits/s if the system
transfer characteristic consists of a raised cosine spectrum with 100% excess
bandwidth (» = 1).

(b) The same PCM sequence is modulated onto a carrier wave, so that the baseband
spectrum is shifted and centered at frequency fo. Find the minimum required
DSB bandwidth for transmitting the modulated PCM sequence. Assume that the
system transfer characteristic is the same as in part (a).
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Solution

(a) M = 2*;since M = 4 levels, then k = 2,

R 2400
Symbol or pulse rate R, = m = - = 1200 symbols/s

Minimum bandwidth W = §(1 + AR, = 3(2)(1200) = 1200 Hz

Figure 2.35a illustrates the baseband PCM received pulse in the time domain—
an approximation to the £(r) in Equation (2.75). Figure 2.35b illustrates the Four-
ier transform of A(r)—the raised cosine spectrum. Notice that the required band-
width, W, starts at zero frequency and extends to f = 1/7; it is twice the size
of the Nyquist theoretical minimum bandwidth.

hit - tg) H(f)
¢
Lo ' _1 0 1
to - ot T T T
1
—w- $“’|
(a) (b)

Figure 2.35 (a) Shaped pulse. (b) Baseband raised cosine spectrum.

(b) As in part (a),
R, = 1200 symbols/s
Wpse = (1 + PR, = 2(1200) = 2400 Hz

Figure 2.36a illustrates the modulated PCM received pulse. This waveform can
be viewed as the product of a high-frequency sinusoidal carrier wave and a wave-
form with the pulse shape of Figure 2.35a. The single-sided spectral plot in Figure
2.36b illustrates that the modulated bandwidth, Wpsg, is

WDsnz(fo+‘;‘1)*(fo—‘]f>=%

When the spectrum of Figure 2.35b is shifted up in frequency, the negative and
positive halves of the baseband spectrum are shifted up in frequency, thereby
doubling the required transmission bandwidth. As the name implies, the DSB
signal has two sidebands: the upper sideband (USB), derived from the baseband

positive half, and the lower sideband (I.SB), derived from the baseband negative
half.
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Figure 2.36 (a) Modulated shaped pulse. (b) DSB-modulated raised cosine spectrum.

Example 2.5 Digital Telephone Circuits
Compare the system bandwidth requirements for a 3-kHz analog telephone voice
circuit versus a PCM voice circuit. Assume that the sampling rate for the analog-
to-digital (A/D) conversion is 8000 samples/s. Also, assume that each voice sample
is quantized to one of 256 levels (8-bit quantization).

Solution

The result of the sampling and quantization process yields a PAM signal such that
each pulse (symbol) has one of 256 different levels. From Equation (2.76) we can
write that the required system bandwidth (without ISI) for R, symbols/s is

R;
W= > hertz

where the equality sign holds true only for Nyquist filtering. For binary PCM, having
L = 256 levels, each sample is converted to € = log, L = 8 bits. Therefore, the
system bandwidth required to transmit voice using PCM with 8-bit words is

R,
Weenm = (loge L) 5 hertz

= (8 bits/symbol)(8000 symbols/s) = 32 kHz

The 3-kHz analog voice circuit will generally require approximately 4 kHz of band-
width (including some bandwidth separation between channels, called guard bands).
Therefore, the PCM format using 8-bit quantization requires at least eight times the
bandwidth required by the analog format.

2.11.2 Equailization

In practical systems, the frequency response of the channel is not known with
sufficient precision to allow for a receiver design that will compensate for the
intersymbol interference (ISI) for all time. In practice, the filter for handling ISI
at the receiver contains various parameters that are adjusted on the basis of mea-
surements of the channel characteristics. The process of thus correcting the chan-
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nel-induced distortion is called equalization. A transversal filter—a delay line
with T-second taps (where 7T is the symbol duration)—is a common choice for
the equalizer filter. The outputs of the taps are amplified, summed, and fed to a
decision device. The tap coefficients, c,, are set to subtract the effects of inter-
ference from symbols that are adjacent in time to the desired symbol. Consider
that there are (2N + 1) taps with coefficients ¢c_n, ¢ —na+1, . .

of the input samples, {x.}, and tap coefficients as

N

Ye = 2 CnXk—n k =

n=-N

By defining the matrices y, ¢, and x as

Y-2n
Y=1Y ¢ =
Yon
F XN 0
X-N+1 X-nN
X = XN XN—-1
0 0
] 0

C-N
Co

CN

OO

XN-2

0
0

—2N, ..

X _N+1

XN

0

we can simplify the computation for {y,} as follows:

y = xc

., 2N

XN-—1

XN .J

Sec. 2.11

Algorithm for

{ coefficient adjustment

’ ., ¢n as shown
in Figure 2.37. Output samples, {y,}, of the equalizer are then expressed in terms

(2.78)

(2.79)

(2.80)

(2.81)

» YKk

Figure 2.37 Transversal filter,
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The criterion for selecting the ¢, coefficients is typically based on the min-
‘ imization of either peak distortion or mean-square distortion. Minimizing peak
: distortion can be accomplished by selecting the ¢, coefficients so that the equalizer
output is forced to zero at N sample points on either side of the desired pulse.
That is, ,

_Jr fork=0 ‘
Ye = {0 fork = =1, 22,..., =N (2.82)

We then solve for ¢, by combining Equations (2.79) to (2.81) and solving 2N + 1
simultaneous equations. Minimizing the mean-square distortion similarly results
in 2N + 1 simultaneous equations.

There are two general types of automatic equalization. The first, preset
equalization, transmits a training sequence that is compared at the receiver with
a locally generated sequence. The differences between the two sequences are
used to set the coefficients ¢,. With the second method, adaptive equalization,
the coefficients are continually and automatically adjusted directly from the trans-
mitted data. A disadvantage of preset equalization is that it requires an initial
training session, which must be repeated after any break in transmission. Also,
a time-varying channel can degrade in ISI since the coefficients are fixed. Adaptive
equalization can perform well if the channel error performance is satisfactory.
However, if the error performance is poor, received channel errors may not allow
the algorithm to converge. A common solution employs preset equalization ini-
tially to provide good channel error performance; once normal transmission be-
gins, the system switches to an adaptive algorithm. A significant amount of re-
search and development has taken place in the area of equalization during the
past two decades [8, 10, 11].

2.12 PARTIAL RESPONSE SIGNALING

In 1963, Adam Lender [12, 13] showed that it is possible to transmit 2W symbols/s
with zero ISI, using the theoretical minimum bandwidth of W hertz, without in-
finitely sharp filters. Lender used a technique called duobinary signaling, also
referred to by the names partial response signaling and correlative coding. The
basic idea behind the duobinary technique is to introduce some controlled amount
of ISI into the data stream rather than trying to eliminate it completely. By in-
troducing correlated interference between the pulses, and by changing the de-
tection procedure, Lender, in effect, ““canceled out’’ the interference at the de-
tector, and thereby achieved the ideal symbol-rate packing of 2 symbols/s/Hz, an
amount that had been considered unrealizable.

2.12.1 Duobinary Signaling
To understand how duobinary signaling introduces controlléd ISI, let us look at

a model of the process. We can think of the duobinary coding operation as if it
were implemented as shown in Figure 2.38. Assume that a sequence of binary
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Figure 2.38 Duobinary signaling.
set
;th symbols {x} is to be transmitted at the rate of R symbols/s over a system having
ire an ideal rectangular spectrum of bandwidth W = R/2 = 1/2T hertz. You might
", ask: How is this rectangular spectrum, in Figure 2.38, different from the unreal-
18- izable Nyquist characteristic? It has the same ideal characteristic; but we are not
ial trying to implement the ideal rectangular filter. It is only the part of our equivalent
50, model that is used for developing a filter that is easier to approximate. Before
ve being shaped by the ideal filter, the pulses pass through a simple digital filter, as
ry. shown in the figure. The digital filter incorporates a one-digit delay; to each in-
oW coming pulse, the filter adds the value of the previous pulse. In other words, for
ni- every pulse into the digital filter, we get the summation of two pulses out. Each
He- pulse of the sequence {y,} out of the digital filter can be expressed as
trlfe— Y = X + Xk—1 (283)
Hence the {y:} amplitudes are not independent; each y, digit carries with it the
memory of the prior digit. The ISI introduced to each y digit comes only from
the preceding x,_, digit. This correlation between the pulse amplitudes of {y.}
can be thought of as the controlled ISI introduced by the duobinary coding. Con-
trolled interference is the essence of this novel technique, because at the detector,
ls/s such controlled interference can be removed as easily as it was added. The {ye}
in- sequence is followed by the ideal Nyquist filter that does not introduce any ISI.
Iso At the receiver sampler, in Figure 2.38, we would expect to recover the sequence
Che {y«}, exactly in the absence of noise. Since all systems experience noise contam-
unt ination, we shall refer to the received {y«} as the estimate of {y,} and denote it
in- {9«}. Removing the controlled interference with the duobinary decoder yields an
de- estimate of {x,} which we shall denote as {£e}.
de- -
an 2.12.2 Duobinary Decoding
If the binary digit x, is equal to =+ 1, then using Equation (2.83), y, has one of
three possible values: +2, 0, or —2. The duobinary code results in a three-level
; output: in general for M-ary transmission, partial response signaling results in
cat 2M — 1output levels. The decoding procedure involves the inverse of the coding
if it procedure, namely, subtracting the x,_; decision from the ¥« digit. Consider the
ary following coding/decoding example.
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Example 2.6 Duobinary Coding and Decoding

Use Equation (2.83) to demonstrate duobinary coding and decoding for the following
sequence: {x,} =00 10110 Consider the first bit of the sequence to be a startup
digit, not part of the data.

Solution
Binary digit sequence {x;}: 0 0 1 0 1 1 0
Bipolar amplitudes {x,}: ' -1 -1 +1 -1 +1 +1 ~1
Coding rule: y, = Xz + Xi1: -2 0 0 0 2 0
Decoding decision rule: If y, = 2, decide that £, = +1 (or binary one)

If § = —2, decide that £, = —1 (or binary Zero).

Ify, = 0, decide opposite of the previous decision.
Decoded bipolar sequence {£4}: -1 +t -1 +1 +1 -1
Decoded binary sequence {£4}: 0 1 0 1 1 0

The decision rule simply implements the subtraction of each £,_, decision from each
$4. One drawback of this detection technique is that once an error is made, it tends
to propagate, causing further errors, since present decisions depend on prior deci-
sions. A means of avoiding this error propagation is known as precoding.

2.12.3 Precoding

Precoding is accomplished by first differentially encoding the {x} binary sequence
into a new {w} binary sequence as follows:

W= e ®we1 (2.84)

where the symbol @ represents modulo-2 addition (equivalent to the logical ex-
clusive-or operation) of the binary digits. The rules of modulo-2 addition are as
follows: '

090 =0
091 =1
1®0 =1
1®1=0

The {w,} binary sequence is then converted to a bipolar pulse sequence, and the
coding operation proceeds in the same way as it did in Example 2.6. However,
with precoding, the detection process is quite different from the detection of
ordinary duobinary, as shown below in Example 2.7. The precoding model is
shown in Figure 2.39; in this figure it is implicit that the modulo-2 addition pro-
ducing the precoded {w} sequence is performed on the binary digits, while the
digital filtering producing the {y.} sequence is performed on the bipolar pulses.
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ision.
Example 2.7 Duobinary Precoding
t1o-1 ; Illustrate the duobinary coding and decoding rules when using the differential pre-
1 0 coding of Equation (2.84). Assume the same {x,} sequence as that given in Example
: 2.6.
‘om each
, it tends Solution
for deci Binary digit sequence {x,}: 0 0 1 0 1 1 0
Precoded sequence wy = x; @ wy_y: 0 0 1 1 0 1 1
Bipolar sequence {w}: -1 -1 +1 +1 -1 +1 +1
Coding rule: y, = wi + we_1: -2 0 +2 0 0 +2
>quence
Decoding decision rule: If y, = =2, decide that £, = binary zero.
(2.84) ‘ If §» = 0, decide that £, = binary one.
fical ex- Decoded binary sequence {£:}: 0o 1 0 1 1 0
1are as
: The differential precoding enables us to decode the {§;} sequence by making
a decision on each received sample singly, without resorting to prior decisions which
could be in error. The major advantage is that in the event of a digit error due to
noise, such an error does not propagate to other digits. Notice that the first bit in
the differentially precoded binary sequence {w,} is an arbitrary choice. If the startup
bit in {w,} had been chosen to be a binary one instead of a binary zero, the decoded
result would have been the same.
and the . . .
ywever, | 2.12.4 Duobinary Equivalent Transfer Function
stion of
1del is In Section 2.12.1 we described the duobinary transfer function as a digital filter
on pro- : incorporating a one-digit delay, followed by an ideal rectangular transfer function.
hile the . Let us now examine an equivalent model. The Fourier transform of a delay can
pulses. be described as ¢ />™7 (see Section A.3.1); therefore, the input digital filter of
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Figure 2.38 can be characterized with the frequency transfer function, H,(f), as

follows:
H(f) = 1 + ¢ 27T (2.85)
The transfer function of the ideal rectangular filter, designated H»(f), is shown
below.
T for|f] < L
H,(f) = 2T (2.86)

0 elsewhere

The overall equivalent transfer function H.(f), of the digital filter cascaded with
the ideal rectangular filter is then given by

1
H.(f) = Hi(HH(f) for |f] < T
= (1 + e 2T (2.87)
= T(e/™T + ¢ /™) —imIT
| |
2T cos wfT  for |f] < ==
|H.(f)| = 2T (2.88)
0 elsewhere

Thus H.(f), the composite transfer function for the cascaded digital and rectan-
gular filters, has a gradual roll-off to the band edge, as can be seen in Figure
2.40a. The transfer function can be approximated by using realizable analog fil-
tering; a separate digital filter is not needed. The duobinary equivalent H.(f) is
called a cosine filter [14] (not to be confused with the raised cosine filter described
in Section 2.11.1). The corresponding impulse response, k.(1), found by taking
the inverse Fourier transform of H.(f) in Equation (2.87), is

. 4 R t — T
h.(t) = sinc (?) + sinc < T ) (2.89)

and is plotted in Figure 2.40b. For every impulse, 8(¢), at the input of Figure 2.38,

the output is k.(¢) with an appropriate polarity. Notice that there are only two
nonzero samples, at T-second intervals, giving rise to controlled ISI from the
adjacent bit. The introduced ISI is eliminated by use of the decoding procedure
discussed in Section 2.12.2. Although the cosine filter is noncausal and thercfore -
nonrealizable, it can be easily approximated. The implementation of the precoded
duobinary technique described in Section 2.12.3 can be accomplished by first
differentially encoding the binary sequence {x;} into the sequence {w,} (see Ex-

ample 2.7). The pulse sequence {w,} is then filtered by the equivalent cosine
characteristic described in Equation (2.88).

3
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Figure 2,40 Duobinary transfer function and pulse shape. (a) Cosine filter. (b)
Impulse response of the cosine filter.

2.12.5 Comparison of Binary with Ducbinary Signaling

The duobinary technique introduces correlation between pulse amplitudes,
whereas the more restrictive Nyquist criterion assumes that the transmitted pulse
amplitudes are independent of one another. We have shown that ducbinary sig-
naling can exploit this introduced correlation to achieve zero ISI signal trans-
mission, using a smaller system bandwidth than is otherwise possible. Do we get
this performance improvement without paying a price? Such is hardly ever the
case with engineering design options; there is almost always a trade-off involved.
We saw that duobinary coding requires three levels, compared to the usual two
levels for binary coding. Recall our discussion in Section 2.10, where we compared
the performance and the required signal power for making eight-level PCM de-
cisions versus two-level PCM decisions. For a fixed amount of signal power, the
case of making reliable decisions is inversely related to the number of levels that
must be distinguished in each waveform. Therefore, it should be no surprise that
although duobinary signaling accomplishes the zero ISI requirement with mini-
mum bandwidth, duobinary also requires more power than binary signaling, for
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equivalent performance against noise. For a given probability of bit error (P B)
duobinary signaling requires approximately 2.5 dB greater SNR than binary sig-
naling, while using only 1/(1 + r) the bandwidth that binary signaling requircs
[13], where r is the filter roll-off.

2.12.6 Polybinary Signaling

Duobinary signaling can be cxtended to more than three digits or levels, resulting
in greater bandwidth efficiency; such systems are called polybinary [13, 15]. Con-
sider that a binary message with two signaling levels is transformed into a signal
with j signaling levels, numbered consecutively from zero to (j — 1) The trans-
formation from binary to polybinary takes place in two steps. First, the original
sequence {xx}, consisting of binary ones and zeros, is converted into another
binary sequence {yx}, as follows: The present binary digit of sequence {y«} is
formed from the modulo-2 addition of the (j — 2) immediately preceding digits
of sequence {y«} and the present digit x,. For example, let

Yie = xk®yk—l®y1<~2® Yi-3 (2.90)

L Here x represents the input binary digit and y, the kth encoded digit. Since the
expression involves (j — 2) = 3 bits preceding yx, there are j = 5 signaling levels.
Next, the binary sequence {y} is transformed into a polybinary pulse train {zx}
by adding algebraically the present bit of sequence {y«} to the (j — 2) preceding
bits of {y.}. Therefore, z« modulo-2 = x, and the binary elements one and zero
are mapped into even- and odd-valued pulses in the sequence {z.}. Note that each
digit in {z,} can be independently detected despite the strong-correlation between
bits. The primary advantage of such a signaling scheme is the redistribution of
the spectral density of the original sequence {x}, s0 as to favor the low frequen-
cies, thus improving system bandwidth efficiency.

2.13 CONCLUSION

In this chapter we have considered the first important step in any digital com-
munication system, transforming the source information (both textual and analog)
to a form that is compatible with a digital system. We treated various aspects of
sampling, quantization (both uniform and nonuniform), and pulse code modulation
(PCM). We also considered the selection of PCM waveforms for the transmission
of baseband signals through the channel. _

We described the detection of binary signals plus Gaussian noise in terms
of two basic steps. In the first step the received waveform is reduced to a single
number, z(7), and in the second step a decision is made as to which signal was
transmitted, on the basis of comparing z(7) to a threshold. We discussed how to
best choose this threshold. We also showed thata linear filter known as a matched
filter or correlator is the optimum choice for maximizing the output signal-to-noise
ratio, and thus minimizing the probability of error.

We defined intersymbol interference (ISI) and explained the importance of
Nyquist’s work in establishing a theoretical minimum bandwidth for symbol de-
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tection without I1S1. We also introduced the duobinary concept of adding a con-

1 trolled amount of 1SI to achieve an improvement in bandwidth efficiency at the
55 expense of an increase in power.
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18 PROBLEMS
0
d 2.1. You want to ransmit the word “HOW"’ using an 8-ary system. )
€ (a) Encode the word “HOW" into a sequence of bits, using 7-bit ASCII coding,

followed by an eighth bit for error detection, per character. The eighth bit is

of chosen so that the number of ones in the 8 bits is an even number. How many
e- total bits are there in the message?
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(b) Partition the bit stream into & = 3 bit segments. Represent each of the 3-bit
segments as an octal number (symbol). How many octal symbols are there in
the message?

(¢) If the system were designed with 16-ary modulatlon how many symbols would
be used to represent the word *“HOW”’?

(d) If the system were designed with 256-ary modulation, how many symbols would
be used to represent the word “HOW™*?

2.2. We want to transmit 800 characters/s, where each character is represented by its
7-bit ASCII codeword, followed by an eighth bit for error detection, per character,
as in Problem 2.1. A multilevel PCM format with M = 16 levels is used.

(a) What is the effective transmitted bit rate?
(b) What is the PCM symbol rate?

- 2.3. We wish to transmit a 100-character alphanumeric message in 2 s, using 7-bit ASCII
coding, followed by an cighth bit for error detection, per character as in Problem
2.1. A multilevel PCM format with M = 32 levels is used.
(a) Calculate the effective transmitted bit rate and the PCM symbol rate.
(b) Repeat part (a) for 16-level PCM, eight-level PCM, four-level PCM, and binary
PCM.

2.4. Given an analog waveform that has been sampled at its Nyquist rate, f, using natural
sampling, prove that a waveform (proportional to the original waveform) can be
recovercd from the samples, using the recovery techniques shown in Figure P2.1.
The parameter mf; is the frequency of the local oscillator, where m is an integer.

X4 (t)
Naturally
sampled PAM H(f)
1
rcos (2rmft) | I I
f
Local fs f
oscillator > 2 Figure P2.1

2.5. An analog signal is sampled at its Nyquist rate 1/T,, and quantized using L quan-
tization levels. The derived digital signal is then transmitted on some channel.
(a) Show that the time duration, T, of one bit of the transmitted binary encoded
signal must satisfy 7 =< T./(log; L).
(b) When is the equality sign valid?
2.6. Determine the number of quantization levels that are implied if the number of bits
per sample in a given PCM code is (a) 5; (b) 8; (¢) x.
2.7. Determine the minimum sampling rate necessary to sample and perfectly reconstruct
the signal x(f) = sin (6280¢)/(62801).
2.8. Consider an audio signal with spectral components limitcd to the frcquency band
300 to 3300 Hz. Assume that a sampling rate of 8000 samples/s will be used to generate
a PCM signal. Assume that the ratio of peak signal power to average quantization
noise power at the output needs to be 30 dB.
(a) What is the minimum number of uniform quantization levels needed, and what
is the minimum number of bits per sample needed?
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the 3-bit (b) Calculate the system bandwidth (as specified by the main spectral lobe of the

: there in ' signal) required for the detection of such a PCM signal.
2.9. A waveform, x(¢) = 10 cos (1000 + =/3) + 20 cos (2000t + =/6) is to be uniformly
ols would : : sampled for digital transmission.
: (a) What is the maximum allowable time interval between sample values that will
ols would ensure perfect signal reproduction?
(b) If we want to reproduce 1 hour of this waveform, how many sample values need
ted by its to be stored?
sharacter, : 2.10. (a) A waveform that is bandlimited to 50 kHz is sampled every 10 ws. Show graph-

ically that these samples uniquely characterize the waveform. (Use a sinusoidal
example for simplicity. Avoid sampling at points where the waveform equals

Zero.)
bit ASCII ' (b) If samples are taken 30 s apart instead of 10 s, show graphically that wave-
| Problem v forms other than the original can be characterized by the samples.

2.11. Use the method of convolution to illustrate the effect of undersampling the waveform
x(¢) = cos 2wfyt for a sampling rate of f; = 3f,.

nd binary 2.12. (a) Sketch the complete p. = 10 compression characteristic that will handle input
voltages in the range —5to +5 V.

ng natural ' (b) Plot the corresponding expansion characteristic.

n) can be . (c) Draw a l6-level nonuniform quantizer characteristic that corresponds to the

re P2.1. , w = 10 compression characteristic.

Integer. 2.13. Assume a binary sequence with equally likely binary levels. The sequence can be
represented by either a bipolar or a unipolar signal set. Show that if the corresponding
bipolar signal and unipolar signal have the same peak-to-peak amplitude separation,
the bipolar signal uses less average power than the unipolar signal.

2.14. Assume that in a binary digital communication system, the signal component out of
the correlator receiveris a{(T) = +1or —1 V with equal probability. If the Gaussian
noise at the correlator output has unit variance, find the probability of a bit error.

2.15. A bipolar binary signal, s;(1), is a +1- or —1-V pulse during the interval (0, 7).
Additive white Gaussian noise having two-sided power spectral density of 1073
W/Hz is added to the signal. If the received signal is detected with a matched
filter, determine the maximum bit rate that can be sent with a bit error probabil-

_ ity of Pg < 1073,

g L quan- 2.16. Bipolar pulse signals, s;(r) (i = 1, 2), of amplitude *1 V are received in the presence
nnel. of Gaussian noise with ¢? = 0.1 V2 Determine the optimum (minimum prob-
y encoded - ability of error) detection threshold, yo, for matched filter detection if the a priori
probabilities are: (a) P(s;) = 0.5; (b) P(s;) = 0.7; (¢) P(s;) = 0.2. (d) Explain the
effect of the a priori probabilities on the value of yy. [Hint: Refer to Equations (B.10)

ver of bits to (B.12).]
2.17. A binary communication system transmits signals s;(¢) G = 1, 2). The receiver test
sconstruct statistic, z(T) = a; + no, where the signal component, a;, is either a; = +1 or
a, = —1, and the noise component, r, is uniformly distributed, yielding the con-

:ncy band ditional density functions p(z|s;) given by

ogencrgte L for —0.2=2z=1.8

lantization ’ plelsy) = {0 otherwise

t _Jt for -18=z=02
and wha , p(s2) = {0 otherwise
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Find the .probability of a bit error, P, for the case of equally likely signaling and
the use of an optimum decision threshold.

2.18. The information in an analog waveform, whose maximum frequency f,, = 4000 Hz,
is to be transmitted using a 16-level PCM system. The quantization distortion must
not exceed * 1% of the peak-to-peak analog signal.

(a) What is the minimum number of bits per sample or bits per PCM word that
should be used in this PCM system?

(b) What is the minimum required sampling rate, and what is the resulting bit rate?

(c) What is the PCM pulse or symbol transmission rate?

2.19. (a) What is the theorctical minimum system bandwidth needed for a 10-Mbits/s signal
using 16-level PCM without ISI?
(b) How large can the filter roll-off factor be if the allowable system bandwidth is
1.375 MHz? :

2.20. A voice signal (300 to 3300 Hz) is digitized such that the quantization distortion <
+0.1% of the peak-to-peak signal voltage. Assume a sampling rate of 8000 samples/s
and a multilevel PCM format with M = 32 levels. Find the theoretical minimum
system bandwidth that avoids ISI.

2.21. A binary waveform of 9600 bits/s is converted to an octal waveform that is trans-
mitted over a system having a raised cosine roll-off filter characteristic. The system
has a conditioned (equalized) response out to 2.4 kHz.

(a) What is the octal symbol rate?
(b) What is the roll-off factor of the filter characteristic?

2.22. A voice signal in the range 300 to 3300 Hz is sampled at 8000 samples/s. We may
transmit these samples directly as PAM, or we may first convert them into codewords
using PCM.

(a) What is the minimum system bandwidth required for the detection of PAM with
no ISI and with a filter roll-off characteristic of r = 1?

(b) Using the same filter roll-off characteristic, what is the minimum bandwidth
required for the detection of binary PCM if the samples are quantized to eight
levels?

(¢) Repeat part (b) using 128 quantization levels.

2.23. A signal in the frequency range 300 to 3300 Hz is limited to a peak-to-peak swing
of 10 V. It is sampled at 8000 samples/s and the samples are quantized to 64 evenly
spaced levels. Calculate and compare the bandwidths and ratio of peak signal power
to rms quantization noise if the quantized samples are transmitted either as binary
pulses or as four-level pulses. Assume that the system bandwidth is defined by the
main spectral lobe of the signal.

2.24. An analog signal is to be converted to a binary PCM signal and transmitted over a
channel that is bandlimited to 100 kHz. Assume that 32 quantization levels are used
and that the overall equivalent transfer function is of the raised cosine type with
roll-off » = 0.6.

(a) Find the maximum PCM bit rate that can be used by this system without intro-
ducing ISL

(b) Find the maximum signal bandwidth that can be accommodated for the analog
signal.

(c) Repeat parts (a) and (b) for an eight-level PCM signal.
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3.1 WHY MODULATE?

Digital modulation is the process by which digital symbols are transformed into
waveforms that are compatible with the characteristics of the channel. In the case
of baseband modulation, these waveforms are pulses, but in the case of bandpass
modulation the desired information signal modulates a sinusoid called a carrier
wave, or simply a carrier; for radio transmission the carrier is converted to an
electromagnetic (EM) field for propagation to the desired destination. One might
ask why it is necessary to use a carrier for the radio transmission of baseband
signals. The answer is as follows. The transmission of EM fields through space
is accomplished with the use of antennas. To efficiently couple the transmitted
EM energy into space, the dimensions of the antenna aperture should be at least
as large as the wavelength being transmitted. Wavelength, \, is equal to c¢/f, where
c, the speed of light, is 3 X 10® m/s. For a baseband signal with frequency f =
3000 Hz, A = 10° m = 60 miles. To efficiently transmit a 3000-Hz signal through
space without carrier-wave modulation, an antenna that spans at least 60 miles
would be required. Even if we were willing to inefficiently transmit the EM energy
with an antenna measuring one-tenth of a wavelength, we are faced with an im-
possible antenna size. However, if the information to be transmitted is first mod-
ulated on a higher frequency carrier, for example a 30-GHz carrier, the equivalent
antenna diameter is then less than % in. For this reason, carrier-wave or bandpass
modulation is an essential step for all systems involving radio transmission.
Bandpass modulation can provide other important benefits in signal trans-
- mission. If more than one signal utilizes a single channel, modulation may be used
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to separate the different signals. Such a technique, known as frequency-division
multiplexing, is discussed in Chapter 9. Modulation can be used to minimize the
effects of interference. A class of such modulation schemes, known as spread-
spectrum modulation, requires a system bandwidth much larger than the minimum
bandwidth that would be required by the message. The trade-off of bandwidth
for interference rejection is considered in Chapter 10. Modulation can also be
used to place a signal in a frequency band where design requirements, such as
filtering and amplification, can be easily met. This is the case when radio-fre-
quency (RF) signals are converted to an intermediate frequency (IF) in a receiver.

3.2 SIGNALS AND NOISE
3.2.1 Noise in Radio Communication Systems

The task of the demodulator or detector is to retrieve the bit stream from the
received waveform, as nearly error free as possible, notwithstanding the distortion
to which the signal may have been subjected. There are two. primary causes for
signal distortion. The first is the filtering effects of the transmitter, channel, and
receiver discussed in Section 2.11. As described there, a nonideal system transfer
function causes symbol ‘‘smearing,”” which can produce intersymbol interference.

The second cause for signal distortion is the noise that is produced by a
variety of sources, such as galaxy noise, terrestrial noise, amplifier noise, and
unwanted signals from other sources. An unavoidable cause of noise is the thermal

Z;(; motion f’f electron§ in any co.nducting media. This n?otion prqd.uces th:ermal noi.se

ass in amphflers a'nd c1rcu1ts‘whlch corrupts the s1gn'a1 in an additive fashion; that is,

~ielr the received signal, r'(t)_, is the sum of the? transmitted signal, s(z), anc} the thermal

an noise, n(z). The statistics of thermal noise have been developed using quantum

oht mechanics and are we!l l_(nown [1]. o '

nd . The prirpary statistical c}}aracterlstlc of thermal r}oiseils t.hat ’the ngise am-

‘ce phtude§ are distributed acco.rdmg to a normal or Gaus§1‘an dlstr{butlon, (_hscussed

ted in Section 1.5.5 and showp in Figure .1.7. The probability density functlon (pdf),

ast p(n), of the zero-mean noise voltage is expressed as

ere ~f 2

= | p(n) = — exp[—1<f)] G.1)

gh f oV2w 2 \o

iles

rgy } where o2 is the noise variance. In Figure 1.7 it can be seen that the most probable

im- ' noise amplitudes are those with small positive or negative values. In theory, the

od- e noise can be infinitely large, but very large noise amplitudes are rare.

ent ‘ The primary spectral characteristic of thermal noise is that its two-sided

ass . - power spectral density, G,.(f) = No/2, is flat for all frequencies of interest for
. radio communication systems. In other words, thermal noise, on the average, has

ns- ' just as much power per hertz in low-frequency fluctuations as in high-frequency

sed fluctuations—up to a frequency of about 102 hertz. When the noise power is
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characterized by a constant power spectral density, as shown in Figure 1.8a, we
refer to it as white noise. Since thermal noise is present in all communication
systems and is the predominant noise source for most systems, the thermal noise
characteristics (additive, white, and Gaussian) are most often used to model the
noise in the detection process and in the design of optimum receivers.

3.2.2 A Geometric View of Signals and Noise

Let us define an N-dimensional orthogonal space as one characterized by a set
of N linearly independent functions, {W(0)}, called basis functions. Any arbitrary
‘ function in the space can be generated by a linear combination of these basis

functions. The basis functions must satisfy the following conditions:

T
fo WU dt = Kdy 0=t=T jk=1...,N (29
| (1 forj=k
O = {0 otherwise (3.25)

where the opcrator 8; is called the Kronecker delta function and is defined by
Equation (3.2b). When the K; constants are nonzero, the signal space is called
f orthogonal. When the basis functions are normalized so that each K; = 1, the
' space is called an orthonormal space. The principal requirement for orthogonality
can be stated as follows: Each {;(¢) function of the sct of basis functions must be
independent of the other members of the set. Each y,(f) must not interfere with
any other members of the set in the detection process. From a geometric point
of view, each U;(¢) is mutually perpendicular to each of the other {(?) for j # k.
An example of such a space with N = 3 is shown in Figure 3.1, where the mutually
perpendicular axes are designated (1), Ua(f), and Wa(2). If Y1) corresponds to
a real-valued voltage or current waveform component, associated with a 1-Q

1[/2(‘[)
___________________ 21—
Ve 7/
amB // // 1
7 7 |
7 e
7 // |
/7 v } am2
7/ Ve
s 4 {
i |
{ |
} I |
| + 1 \[11 ()
| | s
i Signal ; i
! vector S | e
| 1 //
| 1 -
| (4
___________________ L
|« am1 J| Figure 3.1 Vectorial representation of
Ya(t) the signal waveform sn,(?).
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e : resistive load, then using Equations (1.5) and (3.2), the normalized energy in joules

n dissipated in the load in T seconds, due to iy, is
se r
1c Ej = J;) llljl(f) dt = Kj ; (33)

One reason we focus on an orthogonal signal space is that Euclidean distance
measurements, fundamental to the detection process, are easily formulated in
such a space. However, even if the signaling waveforms do not comprise such

et an orthogonal set, they can be transformed into linear combinations of orthogonal

ry waveforms. It can be shown [2] that any arbitrary finite set of waveforms {s,(2)}

s (i = 1,..., M), where each member of the set is physically realizable and of
duration T, can be expressed as a linear combination of N orthogonal waveforms
Uy (2), W2(1), - . ., Un(2), where N = M, such that

a)

51(8) = andn(®) + al(?) + - + ainba(i)

b) 52(1) = ann(t) + axba(1) + -+ + axnlin(r)

)y H H

3 sal(1) = apnUn(1) + anplia(t) + - + apaibin(t)

Es These relationships are expressed in more compact notation as follows:

3 | g .

th sd{t) = 2 ayufe) i=1,..., M (3.4)

nt Jj=1 N=M

k. where

ly

to 1 (7 : . .

0 @ =% s{)t) dt i=1,...,M; 0=¢=T (3:5)

‘ Y j=1,...,N
The coefficient a;; is the value of the () component of signal, s(z). The form
of the {(#)} is not specified; it is chosen for convenience and will depend on the
form of the signal waveforms. The set of signal waveforms, {s«#)}, can be viewed
as a set of vectors, {s;} = {ai, an, . . . , aw}. If, for example, N = 3, we may
plot the vector, s,,, corresponding to the waveform

Sml) = Ampln(8) + @p2lia(t) + amatss(t)

as a point in a three-dimensional Euclidean space with coordinates (@mi, @ma,
a.mm3), as shown in Figure 3.1. The orientation among the signal vectors describes
the relation of the signals to one another (with respect to phase or frequency),
and the amplitude of each vector in the set {s;} is a measure of the signal energy
transmitted during a symbol duration. In general, once a set of N orthogonal
functions has been adopted, each of the transmitted signal waveforms, s{f), is
completely determined by the vector of its coefficients

of .

s,-=(ai1,ai2,...,a,~N) i = 1,...,M (36)
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We shall employ the notation of signal vectors, {s}, or signal waveforms,
{s(1)}, as best suits the discussion. A typical detection problem, conveniently
viewed in terms of signal vectors, is illustrated in Figure 3.2. Vectors s; and s,
represent prototype or reference signals belonging to the set of M waveforms,
{s{1)}. The receiver knows, a priori, the location in the signal space of each
prototype vector belonging to the M-ary set. During the transmission of any signal,
the signal is perturbed by noise so that the resultant vector that is actually received
is a perturbed version (e.g., s; + nors, + n) of the original one, where n represents
a noise vector. The noise is additive and has a Gaussian distribution; therefore,
the resulting distribution of possible received signals is a cluster or cloud of points
around s; and s;. The cluster is dense in the center and becomes sparse with
increasing distance from the prototype. The arrow marked r represents a signal
vector that might arrive at the receiver during some symbol interval. The task of
the receiver is to decide whether r has a close ‘‘resemblance’ to the prototype
s;, whether it more closely resembles s,, or whether it is closer to some other
prototype signal in the M-ary set. The measurement can be thought of as a distance
measurement. The question that the receiver or detector must resolve is: Which
of the prototypes within the signal space is closest in distance to the received
vector, r? The analysis of all demodulation or detection schemes involves this
concept of distance between a received waveform and a set of possible transmitted
waveforms. A simple rule for the detector to follow is to decide that r belongs to
the same class as its nearest neighbor (nearest prototype vector).

Yalt)

yq(t)

] Figure 3.2 Signals and noise in a
Yalt) three-dimensional vector space.

3.2.2.1 Waveform Energy

Using Equations (1.5), (3.4), and (3.2), the normalized energy, £, associated
with the waveform, s:(), over a symbol interval, T, can be expressed in terms of
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rms, the orthogonal components of s(t) as follows:
:ntly , . 2
d s E = f S0 dt = f [2 a,-jdg,(t)J d 3.7)
rms, o oL :
zach T
nal, =[5 a0 S, bt dr (3.8)
ived i P
ents . T
‘ore, = 2 2 ayai L UDe) dt (3.9)
sints ik
with = 2 2 a;ai Kk (3.10)
gnal ok :
sk of N
[ype = Ea%,K_, [ = 1,..'.,M (311)
ther =1
ance Equation (3.11) is a special case of Parseval’s theorem relating the integral of the
hich square of the waveform, s,(¢), to the sum of the square of the orthogonal series
ived coefficients. If orthonormal functions are used (i.e., K; = 1), the normalized
this energy over a symbol duration T is given by
itted N
to : Ei=T3S a (3.12)
3 J=1 .
If there is equal energy, E, in each of the s;(¢t) waveforms, we can write Equation
(3.12) in the form
N
E= > a; foralli (3.13)
j=1
3.2.2.2 Generalized Fourier Transforms
The transformation described by Equations (3.2), (3.4), and (3.5) is referred
to as the generalized Fourier transformation. In the case of ordinary Fourier
transforms, the {{;(¢)} set is comprised of sine and cosine harmonic functions.
But in the case of generalized Fourier transforms, the {{5;(¢)} set is not constrained
to any specific form; it must only satisfy the orthogonality statement of Equation
" (3.2). Any arbitrary integrable waveform set, as well as noise, can be represented
as a linear combination of orthogonal waveforms through such a generalized Four-
ier transformation [2]. Therefore, in such an orthogonal space, we are justified
in using distance (Euclidean distance) as a decision criterion for the detection of
any signal set in the presence of AWGN. The most important application of this
orthogonal transformation has to do with the way in which signals are actually
transmitted and received. The transmission of a nonorthogonal signal set is gen-
erally accomplished by the appropriate weighting of the orthogonal carrier com-
: ponents. For example, in Section 3.5.3 we show that multiple phase shift keying
iated - (MPSK) signals are fully characterized by weighted sine and cosine components
ns of of the carrier.
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Example 3.1 Orthogonal Representation of Waveforms

Figure 3.3 illustrates the statement that any arbitrary integrable waveform set can
be represented as a linear combination of orthogonal waveforms. Figure 3.3a shows
a set of three waveforms, 51(7), s2(1), s3(1).

() Demonstrate that these waveforms do not form an orthogonal set.

(b) Figure 3.3b shows a set of two waveforms, P;(r) and Un(e). Verify that these
waveforms form an orthogonal set.

(¢) Show how the nonorthogonal waveform set in part (a) can be expressed as a
linear combination of the orthogonal set in part (b).

Sq (t)
4———;T————>—‘
L t
1/2 1
:; B Yqit)
: _3r 4,__._1-’*_»‘
T 1
J Si(T)Si(t) dt#0 0 l t
0 fori#j : 1k 7 I |

Sg(ﬂ

2

’I |~

0 : t

1/2 1
Yol1)
1
| l t
0 1/2 1

s (t)

2 -

: ' jT ptowdae={ ] i
_? L 1 t 0o K 0 otherwise
.—-2 -

__3r
{a) ) , (b)

Figure 3.3 Example of an arbitrary signal set in terms of an orthogonal set. (a)
Arbitrary signal set. (b) Orthogonal basis functions.
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Solution

(@) s1(1), s2(1), and s3(r) are clearly not orthogonal, since they do not meet the re-
quirements of Equation (3.2); that is, the time integrated value (over a symbol
duration) of the cross-product of any two of the three waveforms is not zero.
Let us verify this for s,(¢) and s,(¢).

T T2 T
L sy(D)sale) dt = L s1(D)so(t) dt + fT siDs) d

172 ‘ T
- [ Co@at [ -y0d= -1

Similarly, the integral over the interval, T, of each of the cross-products sl(t)s3( t)
and s,(f)s3(¢) results in nonzero values. Hence the waveform set {s()} (i = 1,
2, 3) in Figure 3.3a is not an orthogonal set.

(b) Using Equation (3.2), we verify that y;(¢) and U»(¢) form an orthogonal set as
follows: -

T ’ T{Z T
[, v d = [ ar+ [ -vm =0

(c) We can express the nonorthogonal set {s,(¢)} (i = 1, 2, 3) as a linear combination
of the orthogonal basis waveforms {{,(1)} (j = 1, 2), as follows, by using Equation
(3.5), where K; = T:

s1(2) = (1) — 24(2)
52() = Yy(1) + Ua(1)
53(2) = 24 () — Ya(1)

These relationships illustrate how an arbitrary waveform set {s(¢)} can be ex-
pressed as a linear combination-of an orthogonal set {{:(¢)}, as described in Equa-
tions (3.4) and (3.5). What are the practical applications for being able to describe
s1(1), s2(r), and s5(¢), in terms of (1), ¥,(r), and the appropriate coefficients?
If we want a system for transmitting waveforms s,(2), s2(f), and s5(r), the trans-
mitter and the receiver need only be implemented using the two basis functions
Y1(r) and Y,(2) instead of the three original waveforms. A convenient way in
which an appropriate choicc of a basis function set, {{i{#)}, can be obtained for
any given signal set, {s2)}, is called the Gram—Schmidt orthogonalization pro-
cedure. It is described in Appendix 4A of Reference [3].

3.2.2.3 Representing White Noise with Orthogonal Waveforms

Additive white Gaussian noise (AWGN) can be expressed as a linear com-
bination of orthogonal waveforms in the same way as$ signals. For the signal
detection problem, the noise can be partitioned into two components,

n(t) = A(t) + AL (3.14)
where
N
At) = E npli() (3.15)
j=1
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is taken to be the noise within the signal space, or the projection of the noise
components on the signal coordinates (1), - .., Un(), and

a(t) = n(t) — At (3.16)

is defined as the noise outside the signal space. In other words, /() may be thought
of as the noise that is effectively tuned out by the detector. The symbol A(t)
represents the noise that will interfere with the detection process. We can express
the noise waveform, n(t), as follows:

n(r) = > mult) + Al (3.17)
where |
0= fT n(OAt) di - for allj | (3.18)
i K Jo Ij J .
and
. _
0= fo AOLe) de (3.19)

The interfering portion of the noise, fi(t), expressed in Equation (3.15) will hence-
forth be referred to simply as n(f). We can express n(t) by a vector of its coef-
ficients similar to the way we did for signals in Equation (3.6).

n = (n, N2, .. "N , (3.20)

where n is a random vector with zero mean and Gaussian distribution, and where
the noise components #; (i‘ =1,...,N)are independent.

3.2.2.4 Variance of White Noise

White noise is an idealized process with two-sided power spectral density
equal to a constant, No/2, for all frequencies from — to +. Hence the noise
variance (average noise power, since the noise has zero mean) is

o2 = var [n(0)] = ﬁ; (%) daf = o (3.21)

Although the variance for AWGN is infinite, the variance for filtered AWGN
is finite. For example, if AWGN is correlated with one of a set of orthonormal
functions ;(¢), the variance of the correlator output is given by

2
o2 = var (n)) = E {[JOT n(OWAL) dt] } = j—VZ—O (3.22)

The proof of Equation (3.22) is given in Appendix C. Henceforth we shall assume
that the noise of interest in the detection process is the output noise of a correlator
or matched filter with variance o® = No/2 as expressed in Equation (3.22).

126 _ Bandpass Modulation and Demodulation Chap. 3

Petitioner's Exhibit 1003
Page 146



3.3 DIGITAL BANDPASS MODULATION TECHNIQUES

Bandpass modulation (either analog or digital) is the process by which an infor-
mation signal is converted to a sinusoidal waveform; for digital modulation, such
a sinusoid of duration T is referred to as a digital symbol. The sinusoid has just
three features that can be used to distinguish it from other sinusoids: amplitude,
frequency, and phase. Thus bandpass modulation can be defined as the process
whereby the amplitude, frequency, or phase of an RF carrier, or a combination
of them, is varied in accordance with the information to be transmitted. The
general form of the carrier wave, s(¢), is as follows:

s(t) = A(2) cos 0(¢) (3.23)

where A(7) is the time-varying amplitude and'e(t) is the time-varying angle. It is
convenient to write

8(t) = wot + $(2) (3.24)
so that
s(1) = A(t) cos [wot + d(1)] v (3.29)

where wg is the radian frequency of the carrier and ¢(¢) is the phase. The terms
f and » will each be used to denote frequency. When f is used, frequency in
hertz is intended; when o is used, frequency in radians per second is intended.
The two frequency parameters are related by w = 2wf.

The basic digital modulation/demodulation types are listed in Figure 3.4.
When the receiver exploits knowledge of the carrier’s phase to detect the signals,
the process is called coherent detection; when the receiver does not utilize such
phase reference information, the process is called noncoherent detection. In digital
communications, the terms demodulation and detection are used somewhat in-
terchangeably, although demodulation emphasizes removal of the carrier, and
detection includes the process of symbol decision. In ideal coherent detection,
there is available at the receiver a prototype of each possible arriving signal. These
prototype waveforms attempt to duplicate the transmitted signal set in every re-
spect, even RF phase. The receiver is then said to be phase locked to the incoming
signal. During detection, the receiver multiplies and integrates (correlates) the
incoming signal with each of its prototype replicas. Under the heading of coherent
modulation/demodulation in Figure 3.4 are listed phase shift keying (PSK), fre-
quency shift keying (FSK), amplitude shift keying (ASK), continuous phase mod-
ulation (CPM), and hybrid combinations. The basic bandpass modulation formats
are discussed in this chapter. Some specialized formats, such as offset quadrature
PSK (OQPSK), minimum shift keying (MSK) belonging to the CPM class, and
quadrature amplitude modulation (QAM), are treated in Chapter 7.

Noncoherent demodulation refers to systems employing demodulators that
are designed to operate without knowledge of the absolute value of the incoming
signal’s phase; therefore, phase estimation is not required. Thus the advantage
of noncoherent over coherent systems is reduced complexity, and the price paid
is increased probability of error (Pg). In Figure 3.4 the modulation/demodulation
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Bandpass Modulation/Demodulation

Formatting/Source Coding Coh N h

Character coding Differential PCM (DPCM) Phase shift Diffe_rential phase
Sampling Block coding keying (PSK) - shift keying
Quantization Synthesis/analysis coding Frequency shift (DPSK)
. Pulse code modulation (PCM) Redundancy reducing coding (| Keying (FSK) Frequency shift
i - || Amplitude shift keying {(FSK)
| keying (ASK) Amplitude shift
i Continuous phase keying (ASK)
modulation Continuous phase
(CPM) modulation
Hybrids (CPM)
Hybrids

Channel Coding .

. Waveform Structured Synchronization Multiplexing/Multiple Access
Sequences
M-ary signaling Carrier Frequency division
Antipodal Block synchronization (FDM/FDMA)
Orthogonal Convolutional Subcarrier Time division
Biorthogonal synchronization (TDM/TDMA)}
Transorthogonal Symbol Code division
synchronization (CDM/CDMA)
Frame Space division
synchronization (SDMA)
Network Polarization division
Spreading synchronization (PDMA)

Direct sequencing
(DS) )
Frequency hopping Encryption
(FH)
Time hopping (TH) Block
Hybrids Data stream

Figure 3.4 Basic digital communication transformations.

types that are listed in the noncoherent column, DPSK, FSK, ASK, CPM, and
hybrids, are similar to those listed in the coherent column. We had implied that
phase information is not used for noncoherent reception; how do you account for
the fact that there is a form of phase shift keying under the noncoherent heading?
It turns out that an important form of PSK can be classified as noncoherent (or
differentially coherent) since it does not require a reference in phase with the
received carrier. This “‘pseudo-PSK,” termed differential PSK (DPSK), utilizes
phase information of the prior symbol as a phase reference for detecting the cur-
rent symbol. This is described in Sections 3.6.1 and 3.6.2. i

Figure 3.5 illustratcs examples of the most common digital modulation for-
mats: PSK, FSK, ASK, and a hybrid combination of ASK and PSK (ASK/PSK
or APK). The first column lists the analytic expression, the second is a typical
pictorial of the waveform versus time, and the third is a vectorial schematic, with
the orthogonal axes labeled {U5(2)}. In the general M-ary signaling case, the pro-
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cessor accepts k source bits at a time and instructs the modulator to produce one
of an available set of M = 2k waveform types. Binary modulation, where k = 1,
is just a special case of M-ary modulation. Each example shown in Figure 3.5

illustrates the set of signal waveforms with a particular value chosen for M.
3.3.1 Phase Shift Keying

Phase shift keying (PSK) was developed during the early days of the deep-space
program; PSK is now widely used in both military and commercial communi-
cations systems. The general analytic expression for PSK is

s{0) = \/%cos oot + 6] DTy (3.26)

where the phase term, (), will have M discrete values, typically given by

¢,-(t)=-2—3 i=1.....M

For the binary PSK (BPSK) example in Figure 3.5a, M is 2. The parameter E 1s
symbol energy, T is symbol time duration, and 0 = ¢ = T. In BPSK modulation,
the modulating data signal shifts the phase of the waveform, s{t), to one of two
states, either zero or w (180°). The waveform sketch in Figure 3.5a shows a typical
BPSK waveform with its abrupt phase changes at the symbol transitions; if the
modulating data stream were to consist of alternating ones and zeros, there would
be such an abrupt change at each transition. The signal waveforms can be rep-
resented as vectors on a polar plot; the vector length corresponds to the signal
amplitude, and the vector direction, for the general M-ary case, corresponds to
the signal phase relative to the other M — 1 signals in the set. For the BPSK
_ example, the vectorial picture illustrates the two 180° opposing vectors. Signal
i sets that can be depicted with such opposing vectors are called antipodal signal
] sets.

3.3.2 Frequency Shift Keying

The general analytic expression for FSK modulation is

2F <1<
S0 = | cos (@it + &) 0==T (3.27)

where the frequency term, o;, will have M discrete values, and the phase term,
&, is an arbitrary constant. The FSK waveform sketch in Figure 3.5b illustrates
the typical abrupt frequency changes at the symbol transitions. In this example,
M has been chosen equal to 3, corresponding to the same number of waveform
types (3-ary); note that this M = 3 choice for FSK has been selected to emphasize
the mutually perpendicular axes. In practice, M is usually a nonzero power of 2
(2, 4, 8,16, ...). The signal set is characterized by Cartesian coordinates, such
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that each of the mutually perpendicular axes represents a sinusoid with a different
frequency. As described earlier, signal sets that can be characterized with such
mutually perpendicular vectors are called orthogonal signals. The required fre-
quency spacing between the orthogonal tones is discussed in Section 3.6.4.

3.3.3 Amplitude Shift Keying

For the ASK example in Figure 3.5¢, the general analytic expression is

__[2E{(1) O0=st=T
s{t) = — cos (wot + ¢) i=1.....M (3.28)

where the amplitude term, V2E(¢)/T, will have M discrete values, and the phase
term, ¢, is an arbitrary constant. In Figure 3.5c, M has been chosen equal to 2,
corresponding to two waveform types. The ASK waveform sketch in the figure
can describe a radar transmission example, where the two signal amplitude states
would be V2E/T and zero. The vectorial picture utilizes the same phase—amplitude
polar coordinates as the PSK example. Here we see a vector corresponding to
the maximum-amplitude state, and a point at the origin corresponding to the zero-
amplitude state. Binary ASK signaling (also called on—off keying) was one of the
earliest forms of digital modulation used in radio telegraphy at the beginning of
this century. Simple ASK is no longer widely used in digital communication sys-
tems; therefore, it will not be treated in detail.

3.3.4 Amplitude Phase Keying

For the combination of ASK and PSK (APK) example in Figure 3.5d, the general
analytic expression

2E; <t=<
s{t) = \/—5‘%3) cos [wor + bi2)] ?: ; | T u (3.29)

illustrates the indexing of both the signal amplitude term and the phase term. The
APK waveform picture in Figure 3.5d illustrates some typical simultaneous phase
and amplitude changes at the symbol transition times. For this example, M has
been chosen equal to 8, corresponding to eight waveforms (8-ary). The figure
illustrates a hypothetical eight-vector signal set on the phase—amplitude plane.
Four of the vectors are at one amplitude; the other four vectors are at a different
amplitude; and each of the vectors is separated by 45°. When the set of M symbols
in the two-dimensional signal space are arranged in a rectangular constellation,
the signaling is referred to as quadrature amplitude modulation (QAM); examples
of QAM are considered in Chapter 7.

The vectorial picture for each of the modulation types described in Figure
3.5 (except the FSK case) is characterized on a plane whose polar coordinates
represent signal amplitude and phase. The FSK case is characterized in a Carte-
sian coordinate space, with each axis representing a frequency tone (cos w;t) from
the M-ary set of orthogonal tones.
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3.3.5 Waveform Amplitude Coefficient

The waveform amplitude coefficient appearing in Equations (3.26) to (3.29) has
the same general form, V2E/T, for all modulation formats. This expression is
derived as follows:

s(1) = A cos ot (3.30)

where A is the peak value of the waveform. Since the peak value of a sinusoidal
wavcform equals V2 times the root-mean-square (rms) value, we can write

s(t) = V/2A s COS wf
= V2A2%,, cos ot

Assuming the signal to be a voltage or a current waveform, A2, represents av-
erage power P (normalized to 1 ). Therefore, we can write

s(t) = V2P cos ot (3.31)
Replacing P watts by E joules/T seconds, we get

s(t) = \/2;12 cos wt (3.32)

We shall use either the amplitude notation, 4, in Equation (3.30) or the
designation V2E/T in Equation (3.32). Since the energy in a signal is the key
parameter in determining the error performance of the detection process, it 1s
often morc convenient to use the amplitude notation in Equation (3.32) because
it facilitates solving directly for the probability of error, Pg, as a function of signal
energy.

3.4 DETECTION OF SIGNALS IN GAUSSIAN NOISE
3.4.1 Decision Regions

Consider that the two-dimensional signal space in Figure 3.6 is the locus of the
noise-perturbed prototype binary vectors (s; + n) and (s, + n). The noise vector,
n, is a zero-mean random vector; hence the received signal vector, r, is a random
vector with mean s, or s;. The detector’s task after receiving r is to decide which
of the signals, s; or s, was actually transmitted. The method is usually to decide
on the signal classification that yields the minimum expected Pg, although other
strategies are possible [4]. For the case where M equals 2, with s, and s being
equally likely and with the noise being an additive white Gaussian noise (AWGN)
process, we will see that the minimum-error decision rule is equivalent to choosing
the signal class such that the distance d(r, s;) = | r — s;|| is minimized, where
| x || is called the norm or magnitude of vector x. This rule is often stated in terms
of decision regions. In Figure 3.6, let us construct decision regions in the following
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Region 1
)
Figure 3.6 Two-dimensional signal space, with arbitrary equal-amplitude vectors
s, and s;.

D way. Draw a line connecting the tips of the prototype vectors, s; and s,. Next,

construct the perpendicular bisector of the connecting line. Notice that this bi-
e sector passes through the origin of the space if s; and s, are equal in amplitude.
y For this M = 2 example in Figure 3.6, the constructed perpendicular bisector
s represents the locus of points equidistant between s; and s,; hence the bisector
e describes the boundary between decision region 1 and decision region 2. The
al decision rule for the detector, stated in terms of decision regions, is: Whenever

the received signal r is located in region 1, choose signal s;; when it is located in

region 2, choose signal s,. '

3.4.2 Correlation Receiver

In Section 2.9 we treated the detection of baseband binary signals in Gaussian

noise. Since the detection of bandpass signals employs the same concepts, we
e shall summarize the key findings of that section. We focus particularly on that
T, realization of a matched filter known as a correlator. In addition to binary de-
m tection, we also consider the more general.case of M-ary detection. We assume
h that the only performance degradation is due to AWGN. The received signal, r(t),
ie is the sum of the transmitted prototype signal plus the random noise:
er O0=t=T
3Ig) r(t) = sft) + n(r) —1,.... M (3.33)
ng Given such a received signal, the detection process consists of rwo basic steps.
re In the first step, the received waveform, r(z), is reduced to a single random vari-
ns able, z(T), or a set of random variables, z{T) (i = 1, ..., M), formed at the
ng output of the correlator(s) at time ¢+ = T, where T is the symbol duration. In the
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second step, a symbol decision is made, on the basis of comparing z(T) to a
threshold or on the basis of choosing the maximum z{T). Step 1 can be thought
of as transforming the waveform into a point.in the decision space. Step 2 can
be thought of as determining in which decision region the point is located. For
the detector to be optimized (in the sense of minimizing the error probability), it
is necessary to optimize the waveform-to-random-variable transformation, by
using matched filters or correlators in step 1, and by also optimizing the decision
criterion in step 2.

In Sections 2.9.2 and 2.9.3 we found that the matched filter provides the
maximum signal-to-noise ratio at the filter output at time ¢+ = 7. We described a
correlator as one realization of a matched filter. We can define a correlation
receiver comprised of M correlators, as shown in Figure 3.7a, that transforms a
received waveform, r(¢), to a sequence of M numbers or correlator outputs, z{T) -
(i=1,...,M). Each correlator output is characterized by the following product
integration or correlation with the received signal.

T
2(T) =f0 WOsHdi i=1,.. .M (3.34)

The verb ‘‘to correlate’”” means ‘‘to match.”” The correlators attempt to
match the incoming received signal, r(¢), with each of the candidate prototype
waveforms, s:(¢), known a priori to the receiver. A reasonable decision rule is to
choose the waveform, s(t), that matches best or has the largest correlation with
r(t). In other words, the decision rule is:

Choose the s(¢) whose index

corresponds to the max z(7T) (3.35)
Following Equation (3.4), any signal set, {s(#)} (( = 1, ..., M), can be
expressed in terms of some set of basis functions, {¢{1)} (j = 1, ..., N), where

N = M. Then the bank of M correlators in Figure 3.7a may be replaced with a

bank of N correlators, shown in Figure 3.7b, where the set of basis functions

{li(8)} form reference signals. The decision stage of this receiver consists of

logic circuitry for choosing the signal, s{t). The choice of si(¢) is made according

to the best match of the coefficients, a;;, seen in Equation (3.4), with the set of
outputs {z(7)}. When the prototype waveform set, {s{?)}, is an orthogonal set,

the receiver implementation in Figure 3.7a is identical to that in Figure 3.7b (dif-

fering perhaps by a scale factor). However, when {s(t)} is not an orthogonal set,

the receiver in Figure 3.7b, using N correlators instead of M, with reference signals 3
{W(1)}, can represent a cost-effective implementation. We examine such an ap-
plication for the detection of multiple phase shift keying (MPSK) in Section 3.5.3.
For the other applications in this chapter, we shall assume a correlator receiver
with reference signals {s:{¢)}..

In the case of binary detection, the correlation receiver can be configured
as a single matched filter or product integrator, as shown in Figure 3.8a, with
the reference signal being the difference between the binary prototype signals,

; s1(t) — s2(t). The output of the correlator, z(7), is fed directly to the decision
stage.
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Figure 3.7 (a) Correlator receiver with reference signals {s,(1)}. (b) Corrclator
receiver with reference signals {{i(2)}.

For binary detection, the correlation receiver can also be drawn, as shown
in Figure 3.8b, as two matched filters or product integrators, each of which is
matched to one of the prototype reference signals, s,(¢) or sx(z). The decision
stage can then be configured to follow the rule in Equation (3.35), or the correlator
outputs, z{7T) (i = 1, 2), can be differenced to form

A7) = z(T) — z(T) (3.36)

as shown in Figure 3.8b. Then, z(T), called the test statistic, is fed to the decision
stage, as in the case of the single correlator. In the absence of noise, an input

Sec. 3.4 Detection of Signals in Gaussian Noise 135

Petitioner's Exhibit 1003
Page 155



Reference
signal
s1(t) = spft) Decision
stage
7 2(T) = ay(T) + ng(T) H
) J 2(T) = v p—a st}
: (a)
Reference
signals
S](t)
! T z4(T)
i J Decision
stage
H" A
() | s(t) 2T =z 4 = sil0)
Ho

(b}

Figure 3.8 Binary correlator receiver. (a) Using a single correlator..(b) Using
two correlators. ’

waveform, si7), yields the output, z(T) = a«(T), a signal-only component. The
input noise, n(z), is a Gaussian random process. Since the correlator is a linear
device, the output noise is also a Gaussian random process {4]. Thus the output
of the correlator, sampled at ¢ = T, yields

(T = alT) + no(T) i=1,2

where no(T) is the noise component. To shorten the notation we sometimes ex-
press z(T) as a; + ng. The noise component, no, is a zero-mean Gaussian random
variable, and thus z(T) is a Gaussian random variable with a mean of either a;
or a, depending on whether a binary one or binary zero was sent.

3.4.2.1 Binary Decision Threshold

For the random variable, z(T), Figure 3.9 illustrates the two conditional
probability density functions (pdfs), p(z]s;) and p(z]s2), with mean value of a, and
a,, respectively (these pdfs are also called the likelihood of s, and the likelihood
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Figure 3.9 Conditional probability density functions: p(als1), p(zlsa).
of s,, respectively):
1 1/z - a)\*
p(als;) = ——=exp [— = ( (3.37a)
ooV2m 2 To
1 1/z— a 2
plalsz) = exp [- s ( (3.37b)
ooV2m 2 To

where o3 is the noise variance. In Figure 3.9 the rightmost likelihood, p(zls1),
illustrates the probability density of the detector output, z(7), given that s;(z) was
transmitted. Similarly, the leftmost likelihood p(z)s,), illustrates the probability
density of z(T) given that s,(f) was transmitted. The abscissa, z(T), represents
the full range of possible sample output values from the correlation receiver in
Figure 3.8.

With regard to optimizing the binary decision threshold for deciding in which
region a received signal is located, we found in Section 2.9.1 that the minimum
error criterion for equally likely binary signals corrupted by Gaussian noise can
be stated as follows:

g+ an

AT) = = o (3.38)
H> 2

where a; is the signal component of z(T) when s;(¢) is transmitted, and a; is the
signal component of z(T) when s»(f) is transmitted. The threshold level, v, rep-
resented by (a; + a»)/2, is the optimum threshold for minimizing the probability
of making an incorrect decision given equally likely signals and symmetrical like-
lihoods. The decision rule in Equation (3.38) states that hypothesis H, should be
selected [equivalent to deciding that signal s,(z) was sent} if z(T) > vo, and hy-
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pothesis H, should be selected [equivalent to deciding that s»(¢) was sent] if z(T)
< vo. If z(T) = 7o, the decision can be an arbitrary one. For equal-energy, equally
likely antipodal signals, where s,(f) = —s,(¢)and a; = — a2, the optimum decision
rule becomes

)

«T) 2 yo = 0 . (3.39)

or

decide s(7) if zi(T) > zo(T)

decide sx(f)  otherwise (3.39b)

In the next section we illustrate the use of correlators and matched filters
for the coherent detection of PSK and FSK modulation. In later sections we
consider noncoherent detection, and we treat the error performance of various
modulation types.

3.5 COHERENT DETECTION

3.5.1 Coherent Detection of PSK

The detector shown in Figure 3.7 can be used for the coherent detection of any
digital waveforms. Such a carrelating detector is often referred to as a maximum
likelihood detector. Consider the following binary PSK (BPSK) example Let

si(t) = \/% cos (wot + ) 0st=T (3.40a)
[2E
(1) = T cos (wo? + ¢ + )
[2E
=~ N7 cos (wo? + &) 0=st=T (3.40b)
n(t) = zero-mean white Gaussian random process
where the phase term, ¢, is an arbitrary constant, so that the analysis is unaffected |
by setting & = 0. The parameter, E, is the signal energy per symbol, and Tis the .
symbol duration. For this antipodal case, only a single basis function is needed.
.

If an orthonormal signal space is assumed in Equations (3.4) and (3.5) (i.e., K; =
1), we can express a basis function, (), as follows:

2
Y(2) = \/;cos wet for0=¢=T (3.41)
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Thus we may express the transmitted signals s,(¢) in terms of {s;(#) and the coef-
ficients a;(1):

s{t) = an(2) (3.42a)
s1(0) = andn(t) = VE(1) ‘ (3.42b)
s2(1) = axn(r) = _\/Elbl(t) (3.42¢)

Assume that s,(¢) was transmitted. Then the expected values of the product in-
tegrators in Figure 3.7b, with reference signals Us;(¢) and —1s;(¢), are found as

follows:

E{zis1} = E { L ' VEG(1) + n(t)(1) dr} (3.43a)
T

E{zzls1} = E { L —VEW(t) = n(H)(1) dt} (3.43b)

T2 2
E{zi|s1} = E {J:) —f\/Ecos2 wot + n(t) \[fcos wol dt} = VE (3.44a)

E{za)s1} = E {LT — %\/E cos? wet — n(t) \[:gr cOs wo? dt} = —VE (3.44b)

where E{-} denotes the ensemble average, referred to as the expected value. Equa-
tion (3.44) follows because E{n(1)} = 0. The decision'stage must decide which
signal was transmitted by determining its location within the signal space. For
this example, the choice of s (¢) = V2T cos wet normalizes E{z(T)} to be
+V/E. The prototype signals {s;(r)} are the same as the reference signals {:()}
except for the normalizing scale factor. The decision stage chooses the signal with
the largest value of z(T). Thus, the received signal in this example is judged to
be 5:(¢). The error performance for such coherently detected BPSK systems is
treated in Section 3.7.1.

3.5.2 Sampled Matched Filter

In Section 2.9.2 we discussed the basic characteristic of the matched filter—
namely, that its impulsc response is a delayed version of the mirror image (rotated
on the t = 0 axis) of the input signal waveform. Therefore, if the signal waveform
is (1), its mirror image is s(—¢) and the mirror image delayed by T seconds is
s(T — t). The impulse response, A(t), of a filter matched to s(¢) is then described
by »

_s(T — 1) O=st=T
h(t) = {0 elsewhere (3.45)

Figure 3.10a illustrates how a matched filter can be implemented using digital
hardware. The input signal, r(¢), is comprised of the prototype signal, s(1), plus
noise, n(#). The bandwidth of the signal is W = 1/2T,, where the Nyquist sampling
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Figure 3.10 (a) Sampled matched filter. (b) Sampled matched filter detection
example, in the absence of noise.
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rate fs = 2W = 1/T,; hence the sampling interval is equal to T;. At the clock
times of t = kT, the analog signal is sampled and the samples are shifted into
the register of Figure 3.10a from left to right. The shift register with its coefficients
o t0 Cnv—1 approximate a matched filter. Once the received signal has been sam-
pled, the continuous time notation ¢ is changed to k7 or simply k to reflect the
sampled notation

rk)y = s(k) + n(k) k=20,1,...
where k represents a sample index. The output, z(k), of the sampled matched
filter, at a time corresponding to the kth sample is

N-1

z2(k)y = > r(k — n)c, k=20,1,..., modulo-N (3.46)

n=0
where x modulo-y is defined as the remainder of dividing x by y. For the binary
demodulation application, z{k)(i = 1, 2) outputs are compared to a threshold at
each value of Kk = N — 1 corresponding to the end of a symbol. The ¢, values
are the filter weights constituting the filter impulse response that is matched to
the signal, where 7 is the index of the weights and the register stages (from left
to right) and 4 is the index of the samples as they are produced by the sampler.
One can see the similarity between the convolution integral of Equation (2.56)
and the summation of Equation (3.46), especially with regard to the mirror-image
rotation of one of the functions prior to multiplication. Since we assume the noise
to have zero mean, the expected value of a received sample for the binary case
is expressed as

3 E{rk)} = s{k) i=1,2 ' (3.47)
If 5:1(?) had been transmitted, the expected matched filter outputs would be

N-1

E{z{k)} = > si(k — n)c, (3.48)

n=0
where the filter weights, c,,, are matched to the corresponding s{k) for each
n branch.
Example 3.2 Sampled Matched Filter
Consider the BPSK waveform set
51(t) = cos wt
and
52(1) = —cos wt
Tustrate how a sampled matched filter or correlator, as shown in Figure 3.10a, can

be used to detect a received signal, say s,(z), from the BPSK waveform set, in the
absence of noise.

Solution

First, the waveform is sampled so that s,() is transformed into the set of samples,
{s1(k)}. The sampled matched filter receiver will be shown with two branches, fol-
lowing the analog implementation in Figure 3.8b. The top branch is made up of shift
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registers and coefficients matched to the {s,(k)} sample points. The bottom branch
is similarly matched to the {s.(k)} sample points. The four equally spaced sample
points (k = 0, 1, 2, 3) for each of the {s,(k)} are as follows (see Figure 3.10b):

sitk =0) =1, sitk = 1) = 0, sk =2) = —1, si(k=3)=0
sk =0) = —1, sk = 1) = 0, salk = 2) = 1, sa2k =3) =0

The ¢, coefficients represent the delayed mirror-image rotation of the signal to which
the filter is matched. Therefore, ¢, = s{N — 1 — n), wheren =0,. .., N — 1,
and we can write ¢o = 5:3), c1 = 542), ¢a = s(1), ¢3 = s5/0). It is here that the
reader can gain some insight as to why the convolution operation (with its mirror-
image rotation) results in the appropriate lining up of the received signal samples
with the weights (reference signal).

Consider the top branch in Figure 3.10b. At the k& = 0 clock time, the first
sample, s;(k = 0) =1, enters the leftmost stage of each register. At the next clock
time, the second sample, s;(k = 1) = 0, enters the leftmost stage of each register;
at this same time the first sample, s;(k = 0) = 1, has been shifted to the next right
stage in each register, and so on. At the k = 3 clock time the sample, s,(k = 3) =
0, enters the leftmost stage; by this time the first sample, s;(k = 0) = 1, has been
shifted into the rightmost stage. The four signal samples are now located in the
registers in mirror-image arrangement compared to the way the prototype waveform,
s1(1), is drawn in Figure 3.10b. The task of the demodulator is to find the best match
to the incoming signal; the demodulator matches the reference coefficients of each
branch with the incoming signal samples, in the order in which the samples arrive.
Hence the convolution operation is an appropriate expression for describing the
alignment of the incoming waveform samples with the reference coefficients, to max-
imize the correlation in the proper branch.

3.5.3 Coherent Detection of Multiple Phase Shift Keying

Figure 3.11 illustrates the signal space for a multiple phase shift keying (MPSK)
signal set; the figure describes a four-level (4-ary) PSK or quadriphase shift keying
(QPSK) example (M = 4). Binary source digits are collected two at a time, and
s tor each symbol interval the two sequential digits instruct the modulator as to
which of the four waveforms to produce. For typical coherent M-ary PSK (MPSK)
systems, s,(¢) can be expressed as

2E 2mi\ 0=t=T
s{t) = 7 cos ((x)ol - ﬂ‘) ; ... M (3.49)

where E is the energy content of s{¢) over each symbol duration 7, and wy is the
carrier frequency. If an orthonormal signal space is assumed in Equations (3.4)
and (3.5), we can choose a convenient set of axes, as follows:

]

(D) = \ﬁ'T-cos wo (3.508)
2 .
Uo(2) = \[T- sin wo? (3.50b)
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tch 2 where the amplitude V2/T has been chosen to normalize the expected output of
1ch the detector, as was done in Section 3.5.1. Now s,(¢) can be written in terms of
:lfé these orthonormal coordinates, giving
ax- O0=tr=T
st) = anP(t) + anP(?) . (3.51a)
i=1..., M
2mi . (2
= VE cos 2 (1) + VE sin 573 U () (3.51b)
K)
ing Notice that Equation (3.51) describes a set of M multiple phase waveforms
nd (intrinsically nonorthogonal) in terms of only two orthogonal carrier-wave com-
to ponents. The M = 4 (QPSK) case is unique among MPSK signal sets in the sense
K) that the QPSK waveform set is represented by a combination of antipodal and
orthogonal members. The decision boundaries partition the signal space into M
= 4 regions; the construction is similar to the procedure outlined in Section 3.4.1
and Figure 3.6 for M = 2. The decision rule for the detector (see Figure 3.11) is
19) to decide that s;(¢) was transmitted if the received signal vector falls in region 1,
that s5(z) was transmitted if the received signal vector falls in region 2, and so
he on. In other words, the decision rule is to choose the ith waveform if z{T) is the
4) largest of the correlator outputs (seen in Figure 3.7).

The form of the correlator shown in Figure 3.7a implies that there are always

M product correlators used for the demodulation of MPSK signals. The figure

Ya) infers that for each of the M branches, a reference signal with the appropriate
phase shift is configured. In practice, the implementation of an MPSK demod-
ulator follows Figure 3.7b, requiring only N = 2 product integrators regardless
of the size of the signal set M. The savings in implementation is possible because

b) any arbitrary integrable waveform set can be expressed as a linear combination
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of orthogonal waveforms, as shown in Section 3.2.2. Figure 3.12 illustrates such
a demodulator. The received signal, r(z), can be expressed by combining Equa-
tions (3.50) and (3.51) as follows:

[2E . . 0=t<T ‘ ‘
r(t) = —T—(cosd>,-coswot +_smd),-smwot) + n(1) i=1,... .M (3.52)

where ¢; = 2mi/M, and n(z) is a zero-mean white Gaussian noise process. Notice
in Figure 3.12 that there are only two reference waveforms or basis functions,
Pi(t) = V2IT cos wot for the upper correlator and (f) = V2/T sin wot for the
lower correlator. The upper correlator computes

T
X = [ 0w d (3.53)
and the lower correlator computes

T .
Y = fo (D) dt (3.54)

¢ | Compute Choose
|, — ol smallest

arctan

x|=<

r(t) ——»

N
x:J O P, (1) dt

N > r 0

- 0

T
Y= J r(1) (1) dt
0

Figure 3.12 Demodulator for MPSK signals.

Figure 3.13 illustrates that the computation of the received phase angle b can be
accomplished by computing the arctan of Y/X, where X can be thought of as the
in-phase component of the received signal, Y is the quadrature component, and
$ is a noisy estimate of the transmitted ¢;. In other words, the upper correlator
of Figure 3.12 produces an output X, the magnitude of the in-phase projection of
the vector r, and the lower correlator produces an output Y, the magnitude of the ;
quadrature projection of the vector r. The X and Y outputs of the correlators feed
into the block marked arctan (Y/X). The resulting value of the angle é is compared
with each of the stored prototype phase angles, ¢;. The demodulator selects the
&; that is closest to the angle ¢. In other words, the demodulator computes

» |&: — &| for each of the ¢; prototypes and chooses the ¢; yielding the smallest

i output.

144 Bandpass Modulation and Demodulation Chap. 3

Petitioner's Exhibit 1003
Page 164



Ch sin wpt

1a-
2)
r .
Y= |r]|sing;
ce
18, i cos wqt
he X=|r|cos
N Noisy estimate Figure 3.13 In-phase and quadrature
3) ¢ = arctan {Y/X) of transmitted 6. sg;{;g?r;ems of the rgcq1vcd signal
3.5.4 Coherent Detection of FSK
4)

FSK modulation is characterized by the information being contained in the fre-
quency of the carrier. A typical set of FSK signal waveforms was described in
Equation (3.27) as

_ _2E O0=t=T
S[([)— TCOS((.D,'t'}‘d)) i=1,,M

where E is the energy content of s,(¢) over each symbol duration T, and (w;, ; — ®;)
is typically assumed to be an integral multiple of «w/T. The phase term, ¢, is an
. arbitrary constant and can be set equal to zero. Assuming that the basis func-
st tions Y;(£), ¥x(1), . . . , Yn(?) form an orthonormal set, the most useful form for
{;()} is shown below.

2
Ylt) = \/;cos wf j=1,...,N (3.55)

where, as before, the amplitude V2/T normalizes the expected output of the de-
tector. From Equation (3.5) we can write

: T .
‘ [2E 2
tEZ : a; = —L -‘]T cos (w;?) \/‘; COs wji dt (356)

ind
tor Therefore,
of - JVE fori= (3.57)
the =0 otherwise '
:Cd . . . .
red In other words, the ith prototype signal vector is located on the ith coordinate
the : axis at a displacement VE from the origin of the signal space. In this scheme,
tes for the general M-ary case, the distance between any two prototype signal vectors
est s; and s; is constant:

ds;, 8;) = ||si — ;|| = V2E fori#j (3.58)
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Figure 3.14 Partitioning the signal space for a 3-ary FSK signal.

Figure 3.14 illustrates the prototype signal vectors and the decision regions
for a 3-ary (M = 3) coherently detected FSK system. As in the PSK case, the
signal space is partitioned into M distinct regions, each containing one prototype
signal vector; here, because the decision region is three-dimensional, the decision
boundaries are planes instead of lines. The optimum decision rule is to decide
that the transmitted signal belongs to the class whose index corresponds to the
region where the received signal is found. In Figure 3.14, a received signal vector
r is shown in region 2. Using the decision rule stated above, the detector classifies
r as signal s,. Since the noise is a Gaussian random vector, there is a probability
greater than zero that r could have been produced by some signal other than s. |

For example, if the transmitter had sent s, then r would be the sum of signal |
plus noise, s; + n,, and the decision to choose s, is correct; however, if the
transmitter had actually sent s;, then r would be the sum of signal plus noise, s3 .

+ n, and the decision to select s, is an error. The error performance of coherently
detected FSK systems is treated in Section 3.7.3.

3.6 NONCOHERENT DETECTION
3.6.1 Detection of Differential PSK
The name differential PSK (DPSK) sometimes needs clarification because two .
separate aspects of the modulation/demodulation format are being referred to: the 4

encoding procedure and the detection procedure. The term differential encoding
refers to the procedure of encoding the data differentially; that is, the presence
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of a binary one or zero is manifested by the symbol’s similarity or difference when
comparcd to the preceding symbol. The term differentially coherent detection of
differentially encoded PSK, the usual meaning of DPSK, refers to a detection
scheme often classified as noncoherent because it does not require a reference
in phase with the received carrier. Sometimes, differentially encoded PSK is co-
‘herently detected. This will be discussed in Section 3.7.2.

With noncoherent systems, no attempt is made to determine the actual value
of the phase of the incoming signal. Therefore, if the transmitted waveform is

B 2E O=t=T
Si([) = T coS [(.00[ + 6,(1‘)] i = 1, o ,M

the received signal can be characterized by

[2E <t <
) = T cos [wot + 02) + a) + n() ?; i =T M (3.59)

where a is an arbitrary constant and is typically assumed to be a random variable
uniformly distributed between zero and 2w, and x(¢) is an AWGN process.

For coherent detection, matched filters (or their equivalents) are used; for
noncoherent detection, this is not possible because the matched filter output is a
function of the unknown angle o. However, if we assume that « varies slowly
he : relative to two period times (27), the phase difference between two successive
waveforms, 67;) and 6x(T>) is independent of «, that is,

pe
. [0:(T2) + o] — [6(T1) + al = 0«(T2) — 0(T)) = &(T2)  (3.60)
he The basis for differentially coherent detection of differentially encoded PSK
or : (DPSK) is as follows. The carrier phase of the previous signaling interval can be
€s. | used as a phase reference for demodulation. Its use requires differential encoding
ity of the message sequence at the transmitter since the information is carried by the
2. . : difference in phase between two successive wavetorms. T'o send the ith message
1al (i =1,2,..., M), the present signal waveform must have its phase advanced
he by &:; = 2mwi/M radians over the previous waveform. The detector, in general,
S3 calculates the coordinates of the incoming signal by correlating it with locally
tly generated waveforms such as V2IT cos wot and V2/T sin wet. The detector then
measures the angle between the currently received signal vector and the previ-
ously received signal vector, as illustrated in Figure 3.15.

In general, DPSK signaling performs less efficiently than PSK, because the
errors in DPSK tend to propagate (to adjacent symbol times) due to the correlation
between signaling waveforms. One way of viewing the difference between PSK
and DPSK is that the former compares the received signal with a clean reference;
in the latter, however, two noisy signals are compared with each other. We might

Vo say that there is twice as much noise associated with DPSK signaling compared
he to PSK signaling. Consequently, as a first guess, we might estimate that DPSK
ng manifests a degradation of approximately 3 dB - when compared with PSK; this
ce degradation decreases rapidly with increasing signal-to-noise ratio. The trade-off
3 Sec. 3.6 Noncoherent Detection 147
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Yol
(31, b-‘)
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Angle signal vector
(ag, by) measured
Currently by detector
received #; B .
signal vector ™ 6= 27i/M
i=1,..., M

V1(t)  Figure 3.15 Signal space for DPSK.

for this performance loss is reduced system complexity. The error performance
for the detection of DPSK is treated in Section 3.7.5. '

3.6.2 Binary Differential PSK Example

The essence of differentially coherent detection in DPSK is that the identity of
the data is inferred from the changes in phase from symbol to symbol. Therefore,
since the data are detected by differentially examining the waveform, the trans-

i mitted waveform would first be encoded in a differential fashion. Figure 3.16a

' illustrates a differential encoding of a binary message data stream, m(k), where

k is the sample time index. The differential encoding starts (third row in the figure)
with the first bit of the code bit sequence, c(k = 0), chosen arbitrarily (here taken
to be a one). Then the sequence of encoded bits, c(k), can, in general, be encoded
in one of two ways:

i

c(k) = clk — 1) ® m(k) (3.61)

or

c(k) = c(k — 1) ®@ m(k) (3.62)

where the symbol ® represents modulo-2 addition (defined in Section 2.12.3) and
the overbar denotes complement. In Figure 3.16a the differentially encoded mes-
sage was obtained by using Equation (3.62). In other words, the present code bit,
c(k), is a one if the message bit, m(k), and the prior coded bit, c(k — 1), are the
same, otherwise, c(k) is a zero. The fourth row translates the coded bit sequence,
c(k), into the phase shift sequence, 0(k), where a one is characterized by a 180°
phase shift, and a zero is characterized by a 0° phase shift.

Figure 3.16b illustrates the binary DPSK detection scheme in block diagram
form. Notice that the basic product integrator of Figure 3.7 is the essence of this
detection process; as with coherent PSK, we are still attempting to correlate a
received signal with a rcference. The interesting difference here is that the ref-
erence signal is simply a delayed version of the received signal. In other words,
during each symbol time, we are matching a received symbol with the prior symbol
and looking for a correlation or an anticorrelation (180° out of phase).

Consider the received signal with phase shift sequence, 0(k), entering the
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Sample index, k 01 213141561 718]9}10

Information
message, m(k) 011 01041

Differentially
encoded message 11|10 011 11|01}
{first bit arbitrary}, c{k)

Corresponding
phase shift, o(k)

(1) - J’T _ | Decision S
0 stage !
Coherent detector
.| Delay
: T Reference
. Detected message, m(k) 1101 0 1 1 0 0 1
i (b)
|
|
| V2/T cos wyt
r(t) T Decision L (1)
0 stage !
! Delay
o T

Figure 3.16 Differential PSK (DPSK). (a) Differential encoding. (b) Differentially
coherent detection. (¢) Optimum differentially coherent detection.

detector of Figure 3.16b, in the absence of noise. The phase, 8(k = 1), is matched
with 8(k = 0); they have the same value, m; hence the first bit of the detected
output is ik = 1) = 1. Then 6(k = 2) is matched with 6(k = 1); again they have
the same value, and #i(k = 2) = 1. Then 6(k = 3) is matched with 8(k = 2);
they are different, so that #i(k = 3) = 0, and so on.

It must be pointed out that the detector in Figure 3.16b is suboptimum [5]
in the sense of error performance. The optimum differential detector for DPSK
requires a reference carrier in frequency but not necessarily in phase with the
received carrier. Hence the optimum differential detector is shown in Figure 3.16¢
[6]. Its performance is treated in Section 3.7.5.

Sec. 3.6 Noncoherent Detection 149

Petitioner's Exhibit 1003
Page 169



3.6.3 Noncoherent Detection of FSK

A detector for the noncoherent detection of FSK waveforms described by Equa-
tion (3.27) can be implemented with correlators similar to those shown in Figure
3.7. However, the hardware must be configured as an energy detector, without
exploiting phase measurements. For this reason, the noncoherent detector typi-
cally requires twice as many channel branches as the coherent detector. Figure
3.17 illustrates the in-phase (I) and quadrature (Q) channels used to detect a binary
FSK (BFSK) signal set noncoherently. Notice that the upper two branches are
configured to detect the signal with frequency w;; the reference signals are
\V/2/T cos ot for the I branch and V2/T sin w7 for the Q branch. Similarly, the
lower two branches arc configured to detect the signal with frequency ,; the
reference signals are \V2/T cos w,t for the I branch and V2/T sin wy! for the Q
branch. Imagine that the received signal #(¢), by chance alone, is exactly of the
form cos w;¢ + n(¢); that is, the phase is exactly zero, and thus the signal com-
ponent of the received signal exactly matches the top-branch reference signal with
regard to frequency and phase. In that event, the product integrator of the top
branch should yield the maximum output. The second branch should yield a near-
zero output (integrated zero-mean noise) since its reference signal V2/T sin ;¢

I and Q energy Test statistic
Correlation Squaring summation and decision
r A N A *\r——“‘_# XA A —
V' 2/T cos wyt
2
1 channel 71 21(T) z]
> J ()2
0
_ z% + z%
V2/T sin wit
- 2
Q channel 7] 22(T) 22
> J > ()2
0 ..
Decision
+Y 2(T) stage
r{t) ——+ v/ 2/T cos wyt <z>—>—— Hi 5t
. z(T) = 0
) - A
2 Ha
I channel 71 23(T) 23
. J (. )2
0
V2/T sin wz'[
zg + zg
2
Q channel 71 24(T) z
- J > ()2
0
Figure 3.17 Quadrature receiver.
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is orthogonal to the signal component of r(¢). The third and fourth branches should

also yield near-zero outputs since their w, reference signals are also orthogonal
- to the signal component of r(?). ’
€ Now, imagine a diffcrent scenario; supposc that by chance alone, the re-
it ceived signal, r(¢), is of the form sin w;z + n(¢). In that event, the second branch
1- in Figure 3.17 should yield the maximum output, while the others should yield
near-zero outputs. In actual practice, the most likely scenario is that r(¢) is of the
form cos (w;t + &) + n(t); that is, the incoming signal will partially correlate
with the cos w; ! reference and partially correlate with the sin w, ¢ reference. Now
it should be obvious why a noncoherent quadrature recciver uses twice as many
branches as a coherent one; the receiver knows nothing about the incoming sig-
nal’s phase. The receiver essentially resolves the signal into an I component and
a Q (90° out of phase) compouent. In Figure 3.17 the blocks following the product
integrators perform a squaring operation to prevent the appearance of any negative
values. Then for each of the signal types in the set (two in this binary example)
the energy from the I and Q channels is added. The final stage forms the test
statistic, z(T), and chooses the signal with frequency w; or the signal with fre-
quency o, depending on which pair of energy detectors yielded the maximum
output. '

Another possible implementation for noncoherent FSK detection uses band-
pass filters, centered at f; = w;/2w, with bandwidth, W, = 1/T, followed by
envelope detectors, as shown in Figure 3.18. An envelope detector consists of a
rectifier and a low-pass filter. The detectors are matched to the signal envelopes
and not to the signals themselves. The phase of the carrier is of no importance
in defining the envelope; hence no phase information is used. In the case of binary
FSK, the decision as to whether a one or a zero was transmitted is made on the
basis of which of two envelope detectors has the largest amplitude at the moment
of measurement. Similarly, for a multiple frequency shift keying (MFSK) system,
the decision as to which of M signals was transmitted is made on the basis of
which of the M envelope detectors has the maximum output.

Even though the envelope detector block diagram of Figure 3.18 looks func-

oA OG0 O

Kis= =iy

~

Bandpass filters centered
at f; with bandwidth W¢ = 1/T

. Z (T
1) Filter . i Envelope
1 "] detector

. z5(T) -
_ _ | Filter . | Envelope | Decision 2
ri(t) = s;{t) + n{t) —> t > etector stage — s;(1)

Y

Zpg (T)

| Filter . | Envelope
fm detector

Figure 3.18 Noncoherent detection of FSK using envelope detectors.
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tionally simpler than the quadrature receiver of Figure 3.17, the use of filters
usually results in the envelope detector design having greater weight and cost
than the quadrature receiver. Quadrature receivers can be implemented digitally;
thus, with the advent of large-scale integrated (LSI) circuits, they are often the
preferred choice for noncoherent detectors. The detector in Figure 3.18 can also
be implemented digitally by performing discrete Fourier transformations instead
of using analog filters, but such a design is usually more complex than a digital
implementation of the quadrature receiver.

3.6.4 Minimum Required Tone Spacing
for Noncoherent Orthogonal FSK Signaling

Frequency shift keying is usually implemented as orthogonal signaling where each
tone (sinusoid) in the signal set cannot interfere with any of the other tones. In
order for the signal set to be orthogonal, any pair of adjacent tones must have a
frequency separation of a multiple of 1/T hertz. A tone with frequency f;, that is
switched on for a symbol duration of T seconds and then switched off, such as
the FSK tone described in Equation (3.27), can be analytically described by

s{t) = (cos 2wf;t) rect (¢/T)

1 for — TR =t =T

where rect (¢/T) = {0 for || > T2

The Fourier transform of s:(¢), from Table A.1, is
F {s{t)} = T sinc (f —f)T

where the sinc function is as defined in Equation (1.39). The spectra of two such
adjacent tones, tone 1 with frequency f; and tone 2 with frequency f,, are plotted
in Figure 3.19.

In order that the two tones not interfere with each other during detection,
the peak of the spectrum of tone 1 must coincide with one of the zero crossings
of the spectrum of tone 2 and similarly, the peak of the tone 2 spectrum must
coincide with one of the zero crossings of the tone 1 spectrum. The frequency
difference between the center of the spectral main lobe and the first zero crossing
represents the minimum required spacing. This corresponds to a minimum tone
separation of 1/T hertz.

Example 3.3 Minimum Tone Spacing for Noncoherent Orthogonal FSK

Consider two waveforms cos 2wf;t + &) and cos 27 f,! to be used for noncoherent
FSK signaling, where f; > f,. The symbol rate is equal to 1/T symbols/s, where T
is the symbol duration and ¢ is a constant arbitrary angle from 0 to 2.

(a) Prove that the minimum tone spacing for noncoherently detected orthogonal FSK
signaling is 1/T.

(b) What is the minimum tone spacing for coherently detected orthogonal FSK
signaling?
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Figure 3.19 Minimum tone spacing for noncoherently detected orthogonal FSK
signaling.

Solution

(a) For the two waveforms to be orthogonal, they must fulfill the orthogonality
constraint of Equation (3.2):

fOT cos mfit + &) cos 2mfat dt = 0 (3.63)

Using the basic trigonometric identities shown in Equations (D.6) and (D.1) to
(D.3), we can write Equation (3.63) as

. ,
cos & J; cos 2mfit cos 2mwf,t dt
T
_ sin ¢f0 sin 2mf1 cos 2mfat dt = 0 (3.64)

cos b jor [cos 2n(f1 + fa)t + cos 2a(fs — F)] dt

— sin ¢ LT [sin 2mw(f; + fo)t + sin 2n(fy — fo)ldt =0 (3.65)
b [sin 2n(fy + fo)r  sin 2m(f - fz)z}’
2n(fy + f2) 2n(fy ~ f2) 0
. cos 2w(f1 + fa)t  cos2mw(f; — fa)t r _
*sing [ (s + fa) 2201 — £ ] =0 660
o [sin 2a(fy + f2)T N sin 2w(f; — fz)T]
2n(fy + f2) 2n(fy = f2)
. cos 2w(fy + f)T — 1 cos 2n(fi — )T — 1|
¥ Sm“’[ wmh + f) T 2m(h = f2) ] =0 G6D
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We can assume that f; + f» >> 1 and can thus make the following approximation:

sin 2m(f, + f2)T _ cos 2a(f1 + f2)T
2u(f1 + f2) T 2m(fi + f2)

=0 (3.68)

Then, combining Equations (3.67) and (3.68), we can write
cos & sin 2m(f, — f2)T + sin ¢ [cos 2u(fy — f)T — 11 =0 (3.69)

Note that for arbitrary ¢, the terms in Equation (3.69) can sum to zero only when
sin 2w(f1 — f2)T = 0, and simultaneously cos 2n(fy — f2)T = 1.

Since
sinx =0 forx = nm
and

cosx = 1 for x = 2k

where n and k are integers, then both sin x = 0 and cos x = 1 occur simul-
taneously when n = 2k. From Equation (3.69), for arbitrary ¢, we can therefore
write:

2"T(f1 - fz)T = 2k

' k (3.70)
fl - f2 = ‘]:

Thus the minimum tone spacing for norncoherent FSK signaling occurs fork = 1:

3.71)

Si=

fi—f2=

(b) To find the minimum tone spacing for coherent FSK, where the angle ¢ is zero,
we simply rewrite Equation (3.69) with ¢ = 0, which gives

sin 2(f, — f2)T = O 3.7
fi—fa= 2_nf (3.73)

Thus the minimum tone spacing for coherent FSK signaling occurs for # = 1 as
follows:

1

fl —fzzi"T‘ (3.74)

Therefore, for the same symbol rate, coherently detected FSK can occupy less
bandwidth than noncoherently detected FSK and still retain orthogonal signaling.
We can say that coherent FSK is more bandwidth efficient. The subject of band-
width efficiency is addressed in greater detail in Chapter 7.
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| 3.7 ERROR PERFORMANCE FOR BINARY SYSTEMS

68) 3.7.1 Probability of Bit Error
for Coherently Detected BPSK

An important measure of performance used for comparing digital modulation

69) schemes is the probability of error, Pg. For the correlator or matched filter de-
tector, the calculations for obtaining Pg can be viewed geometrically (see Figure
en 3.6). They involve finding the probability that given a particular transmitted signal

vector, say s;, the noise vector, n, will give rise to a received signal falling outside
region 1. The probability of the detector making an incorrect decision is termed
the probability of symbol error (Pg). It is often convenient to specify system
performance by the probability of bit error (Pg), even when decisions are made
on the basis of symbols for which M > 2. The relationship between Pz and Pg is
treated in Section 3.9.3 for orthogonal signaling and in Section 3.9.4 for multiple
phase signaling.

ul- For convenience, this section is restricted to the coherent detection of BPSK

e modulation. For this case the symbol error probability is the bit error probability.
Assume that the signals are equally likely. Also. assume that when signal, s{?)
(i = 1, 2), is transmitted, the received signal, r(¢), is equal to s{z) + n(t), where
n(t) is an AWGN process. The antipodal signals, s,(¢) and s,(¢), can be charac-

70) terized in a one-dimensional signal space as described in Section 3.5.1, where

51(8) = VEU(2)
1: 0=r=T ' (3.75)
s2(2) = —VEU(0)

71 :
The decision stage of the detector will choose the s,(¢) with the largest correlator
ro,y output z{7), or in this case of equal-energy antipodal signals, the detector, using
the decision rule in Equation (3.39a), decides
72) s1(8) ifz2(T) > v =0
‘ s2(1) otherwise (3.76)
73)
Two types of errors can be made, as shown in Figure 3.9: The first type of
as error takes place if signal s;(¢) is transmitted but the noise is such that the detector
measures a negative value for z(7T) and chooses hypothesis H, [the hypothesis
that signal s,(7) was sent]. The second type of error takes place if signal s,(¢) is
transmitted but the detector measures a positive value for z(T) and chooses hy-
74) pothesis H, [the hypothesis that signal s,(7) was sent].

To calculate the probability of a bit error, Pg, for this binary minimum error
3sS detector, we use the relationships developed in Section 2.9, starting with Equation
1. (2.36b):

d-
Py = P(Hz!sl)P(Sl) + P(H1|52)P(Sz) (377)
v 3 Sec. 3.7 Error Performance for Binary Systems 155
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For the case when the a priori probabilities are equal, that is, P(s;) = P(s;) =4,
we can write

Py = 3P(H,s)) + 3P(H,|s2) (3.78)

Because of the symmetry of the probability density functions in Figure 3.9, we
can also write

PB = P(Ilesl) = P([I]'Sz) (3.79)

Thus the probability of a bit error, Pg, is numerically equal to the area under the
“tail’” of either pdf, p(z|s1) or p(z|s2), that falls on the “‘incorrect’ side of the
threshold. We can therefore compute Pg by integrating p(z|s,) between the limits
— and 1o, or as shown below, by integrating p(z|s.) between the limits vyp and oo,

P = fvo=(a1+a2)/2 plals2) dz (3.80)

where the likelihoods, p(z|s;) (i = 1, 2), are Gaussian functions with mean value,
a;, and the optimum threshold, yo, as shown in Section B.3.1, is equal to
(a1 + a»)/2. The area-related probability of bit error, Pp, is seen to be the shaded
area in Figure 3.9. It is shown in Section B.3.2 that Equation (3.80) reduces to

3 1 u2 a; — a
—_ —_ d - “1 2 .
PB j;al—az)ﬂoo A\ /2,.n. eXp ( 2) u Q < 20_0 ) (3 81)

where oy is the standard deviation of the noise out of the correlator. The function,
Q(x), called the complementary error function or co-error function, is defined as

1 o u?
0w = = f exp (— —2~) du (3.82)

and is described in greater detail in Sections 2.9 and B.3.2.

For equal-energy antipodal signaling, such as the BPSK format in Equation
(3.75), the receiver output signal components are a; = VE, when s1(f) is sent
and a; = —VE, when sy(¢) is sent, where E, is the signal energy per binary
symbol. For AWGN we can replace the noise variance, o§, out of the correlator
with Ny/2 (see Appendix C), so that we can rewrite Equation (3.81) as follows:

w© 1 uz
Py = fmmexp (— —2-> du (3.83)

_of A
=0\ No (3.84)

This result could also have been obtained by noting that the energy difference,
E;, between the antipodal signal vectors, s; and s,, with amplitudes of =V E,
as seen in Figure 3.20a, can be computed as the square of the distance between
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) VE, VEg
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e
. V2
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1€ Sy
ts V2E
. VEp ®
- N yalo
) , 0
VEp
. Figure 3.20 Binary signal vectors. (a)
- v (b} Antipodal. (b) Orthogonal.
o
d
the heads of the antipodal vectors, or in terms of the waveforms
T ,
) Ea= [ Is:0) = si0F o (3.85)
T T T .
. = [ swar+ [ s =2 [ s d (3.86)
$
Assuming equal energy signals,
) T T
) E, = [ siwar = fo (1) di (3.87)
E; = 2K, — 2Eyp = 2E,(1 — p) (3.88)
n
t where
’ _ 1 fT (Dsa0) di (3.89)
T p - Eb 0 S1 Sz . .
g: is the time cross-correlation coefficient and E, is the average energy of the binary
) B signals, s1(¢) and s,(¢). The correlation coefficient, p, is a measure of similarity
"iz between the two signals, s,(¢) and s,(¢), such that
-1l=p=1 (3.90)
) '7 , In terms of signal vectors, the cross-correlation coefficient can be written
‘ p = cos @ (3.91)
, where 0 is the angle between the two signal vectors s; and s, (see Figure 3.6). In
n i Equation (2.62), we developed an expression for the probability of bit error in
3 Sec. 3.7 Error Performance for Binary Systems 157
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terms of the energy difference between the two binary signals, as follows:

Substituting Equation (3.88) into Equation (3.92), we get

Pp=Q \/wf%’—ﬂ (3.93)

For p = 1 (or 6 = 0), the signals are perfectly correlated (identical). Forp = —1
(or 8 = m), the signals are anticorrelated (antipodal). Since the binary PSK signals
are antipodal, we cansetp = — 1, and Equation (3.93) is then identical to Equation
(3.84).

Note that the bit error probability, Pg, for the coherent detection of bandpass
antipodal signals, as seen in Equation (3.84), is the same as the Pp for the matched
filter detection of baseband antipodal (bipolar) signals in Equation (2.67).

3.7.1.1 The Basic SNR Parameter for Digital Communication Systems

The parameter E»/No in Equation (3.84) can be expressed as the ratio of
average signal power to average noise power, S/N (or SNR). By introducing the
signal bandwidth W, we can write the following identities, showing the relationship
between E,/N, and SNR for binary signals.

Efi-—g_s— SW -—.‘5_1.‘1/ ' (3.94)
No N, RN, RNoW N\R '

where
S = average modulating signal powef
T = bit time duration
R = /T = bit rate
N = NoW

Analysis similar to that used for developing Pp in Equations (3.84) and (3.93)

is used in finding the Py expressions for other types of modulation. Figure 3.21

illustrates the ‘‘waterfall-like”” shape of most probability of error curves in the

field of digital communications. The curve describes a system’s error probability

performance in terms of available E,/No. For Eu/No = Xo, P = Po. The dimen-

sionless ratio E,/No is a standard quality measure for digital communications

i system performance. Note that optimum digital signal detection implies a cor-
1 relator (or matched filter) implementation, in which case the signal bandwidth is
I equal to the noise bandwidth. Often we are faced with a system model for which
this is not the case; in practice, we include a factor in the required E,/Ny that
: accounts for such suboptimal detection performance. Required E,/No can be con-
sidered a metric that characterizes the performance of one system versus another;
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the smaller the required E,/Ny, the more efficient is the system modulation and
detection process for a given probability of error. Figure 3.22 is a plot comparing
the bit error probability, Pg, of several binary modulation/demodulation types.
The Pg for coherent detection of PSK, as shown in Equation (3.84), is plotted as
the leftmost Pg curve.

Example 3.4 Bit Error Probability for BPSK Signaling

Find the bit error probability for a BPSK system with a bit rate of 1 Mbit/s. The
received waveforms, 51(f) = A cos wot and s2(t) = —A cos wpt, arc coherently de-
tected with a matched filter. The value of A is 10 mV. Assume that the single-sided
noise power spectral density is Ny = 107! W/Hz and that signal power and energy
per bit are normalized relative to a 1-Q load.

Solution -
2E, 1
= /=2 = 10"2 = — = 10°°
A T 1 \% T R 1 ]
Thus
A? -1 2E,
Eb~2T~5><10 J and N0_3'16.
[2E,
= — ] = .1
Pp=Q N Q (3.16)
Using Table B.1 or Equation (2.43), we obtain
PB = 8 X 10-4
Sec. 3.7 Error Performance for Binary Systems 159
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Figure 3.22 Bit error probability for
Ep/Ng (dB) several types of binary systems.

3.7.2 Probability of Bit Error for
Coherently Detected Differentially Encoded PSK

Channel waveforms sometimes experience inversion; for example, when using a
coherent reference generated by a phase-locked loop (see Chapter 8), one may
have phase ambiguity. If the carrier phase were reversed in a DPSK modulation
application, what would be the effect on the message? The only effect would be
an error in the bit during which inversion occurred or the bit just after inversion,
since the message information is encoded in the similarity or difference between
adjacent symbols. The similarity or difference quality remains unchanged if the
carrier is inverted. Sometimes, systems are differentially encoded and coherently
detected, simply to avoid these phase ambiguities.

The probability of bit error for coherently detected, differentially encoded
PSK is given by [7]

2E |2E
Ps = 20 —N—O? [1—Q Ni:] (3.95)
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This relationship is plotted in Figure 3.22. Notice that there is a slight deg-
radation of error performance compared to the coherent detection of PSK. This
is duc to the differential encoding since any single detection error results in two
decision errors. Error performance for the more popular differentially coherent
detection (DPSK) is covered in Section 3.7.5.

3.7.3 Probability of Bit Error
for Coherently Detected FSK

Equations (3.83) and (3.84) describe the probability of bit error for coherent an-
tipodal signals. A more general treatment for binary coherent signals (not limited
to antipodal signals) yields the following equation for Pg [8]:

1 ® 2
Pp= — _w |
? Vim \/(T—“Bm‘”‘p( 2) du (3.96)

From Equation (3.91), p = cos 0 is the time cross-correlation coefficient between
signal s;(¢) and s,(¢), where 0 is the angle between signal vectors s; and s, (see
Figure 3.6). For antipodal signals such as BPSK, 6 = «, thus p = —1.

For orthogonal signals such as binary FSK (BFSK), 6 = =/2, since the s,
and s, vectors are perpendicular to each other; thus p = 0, as can be verified
with Equation (3.89), and Equation (3.96) can then be written

1 0 u? ,E[;
P = ee—— —_ — = —
B \/ 21 JVEW/No exp ( 2 ) du Q NO (397)

where the co-error function, Q(x), is defined in Equation (3.82). The result could
also have been obtained by noting that the cnergy difference between the or-
thogonal signal vectors, s; and s, with amplitudes of VE,, as shown in Figure
L 3.20b, can be computed as the square of the distance between the heads of the
orthogonal vectors, to be E; = 2E,. Using this result in Equation (3.92) yields
| the same result as in Equation (3.97). Equation (3.97) is plotted in Figure 3.22
: (coherent detection of FSK). If we compare Equation (3.97) with Equation (3.84),
we can see that 3 dB (a factor of 2) more E,/Nj is required for BFSK to provide
the same performance as BPSK. It should not be surprising that the performance
of BFSK signaling is worse than BPSK signaling, since for a given signal power,
orthogonal vectors are spaced closer to one another than antipodal vectors.
The bit error probability, Pg, for the coherent detection of orthogonal band-
pass signals as seen in Equation (3.97) is the same as the P for the matched filter
detection of baseband unipolar signals in Equation (2.64). As mentioned earlier,
the details of on—off keying (OOK) are not treated in this book. However, it is
worth noting that the Pg, described in Equation (3.97), is also identical to the
error performance for the coherent detection of OOK signaling (matched filter
reception).
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3.7.4 Probability of Bit Error for
Noncoherently Detected FSK

Consider the equally likely binary FSK signal set, {s;(¢)}, defined in Equation
(3.27) as follows:

2F
s{t) = \/7 cos (wit + &) 0=t=T, Pi=1,2

The phase term, &, is unknown and assumed constant. The detector is charac-
terized by M = 2 channels of bandpass filters and envelope detectors, as shown
in Figure 3.18. The input to the detector consists of the received signal, r(t) =
s{t) + n(t), where n(z) is a white Gaussian noise process with two-sided power
spectral density, No/2. Assume that s;(r) and s,(¢) are separated in frequency
sufficiently that they have negligible overlap. We start the probability of error,
Pg, computation the same way that we did for coherently detected PSK, with
Equation (3.78).

Pp

1P(Holsy) + 1P(Hi|sz) (3.98)

1 (7 1 7
EL p(2)s1) dz + EL p(zls2) dz

I

For the binary case, the test statistic, z(T), is defined by z,(T) — z2(T). Assume
that the bandwidth of the filter, Wy, is 1/T, so that the envelope of the FSK signal
is (approximately) preserved at the filter output. If there was no noise at the
receiver, the value of z(T) = V2E/T when s,(¢) is sent, and z(T) = —V2E/T
when s,(2) is sent. Because of this symmetry, the optimum threshold is yo = 0.
The pdf p(z]s,) is similar to p(z|s2); that is,

‘ p(zls1) = p(—z|s2) (3.99)
Therefore, we can write
T
Py = fo p(z2]s2) dz (3.100)
or
Pp = P(z1 > za|s2) (3.101)

where z, and z, denote the outputs z;(7) and z(7) from the envelope detectors
shown in Figure 3.18. For the case where the tone s.(¢) = cos wsf is sent, such
that #(¢) = s2(r) + n(), the output, z,(T), is a Gaussian noise random variable
only; it has no signal component. A Gaussian distribution into the nonlinear en-
velope detector yields a Rayleigh distribution at the output [8], so that

2
41 41
- -t =0
02 cXp ( 20(2)) 21

0 Z]<0

plzils2) = (3.102)
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where o3 is the noise at the filter output. On the other hand, z,(T) has a Rician
distribution, since the input to the lower envelope detector is a sinusoid plus noise
[8]. The pdf, p(za|s2), is written as

: 2+ A2 A
o[ 3)
, pzalsz) =4 7° 90 oo ©(3.103)

0 o~ 2 < 0

where A = V2E/T, and as before, o is the noise at the filter output. The function
Iy(x), known as the modified zero-order Bessel function of the first kind [9], is
defined as

1 27
Io(x) = — f exp (x cos 6) db . (3.104)
27 Jo

When s»(2) is transmitted, the receiver makes an error whenever the en-
velope sample z,(T) obtained from the upper channel (due to noise alone) exceeds
the envelope sample z»(T) obtained from the lower channel (due to signal plus
noise). Thus the probability of this error can be obtaincd by integrating p(zi|s2)
with respect to z; from z, to infinity, and then averaging over all possible values
of z». That is,

Py = P(z, > 22|$2)

= [, plzk) [ | ptzis dzl] dza | (.105)

_ [Tz (22 + A?) 22A fwﬂ 2
_ L U%exp[ o |65 )| | g 5az) 4|4 6106

where A = V/2E/T and where the inner integral is the conditional probability of
an error for a fixed value of z;, given that s,(r) was sent, and the outer integral
averages this conditional probability over all possible values of z,. This integral
can be evaluated [10], to yield

1 A? '
Py = 3 exp (— 47'3) (3.107)
Using Equation (1.19), we can express the filter output noise, o3, as
N
o3 =2 (—2—9) W, (3.108)
where G,(f) = No/2 and Wis the filter bandwidth. Thus Equation (3.107) becomes
| A?
Py = - - 3.109
B =P ( 4N0Wf) (3.109)

Equation (3.109) indicates that the error performance depends on the bandpass
filter bandwidth, and that P becomes smaller as W, is decreased. The result is
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valid only when the intersymbol interference (ISI) is negligible. The minimum W,
allowed (i.e., for no ISI) is obtained from Equation (2.77) with the filter roll-off
factor r = 0. Thus W, = R bits/s = 1/T, and we can write Equation (3.109) as

1 AT
Pp = 5 €Xp (- m) (3.110)
1 E,
=3 exp ( ZNO) (3.111

where E, = (1/2)A?Tis the energy per bit. When comparing the error performance
of noncoherent FSK with coherent FSK (see Figure 3.22), it is seen that for the
same Pp, noncoherent FSK requires approximately 1 dB more E,/N, than that

for coherent FSK (for P = 107%). The noncoherent receiver is easier to imple-

il ment, since coherent reference signals need not be generated. Therefore, almost

i all FSK receivers use noncoherent detection. It can be seen in the following
section that when comparing noncoherent FSK to noncoherent DPSK, the same
3-dB difference occurs as for the comparison between coherent FSK and coherent
PSK.

As mentioned earlier, the details of on—off keying (OOK) are not treated in
this book. However, it is worth noting that the bit error probability, Pg, described
in Equation (3.111) is identical to the P for the noncoherent detection of OOK
signaling.

3.7.5 Probability of Bit Error for DPSK

Let us define a BPSK signal set

x1(t) = \/Ecos (wot + ) O=st=T
T (.112)

[2E
x(t) = —T—cos(w01+¢tw) O0=st=T

A characteristic of DPSK is that there are no fixed decision regions in the signal
space. Instead, the decision is based on the phase difference between successively
received signals. Then for DPSK signaling we are really transmitting each bit with
the binary signal pair

s1(8) = (x1, x1) or (xz2, x2) 0=t=2T (3.113)
sA2) = (x1, x2) or (xz,x1) 0=t=2T

where (x;, x;) (i, j = 1, 2) denotes x(z) followed by x,(¢) defined in Equation
(3.112). The first T seconds of each waveform are actually the last T seconds of
the previous waveform. Note that s;(¢#) and s,(¢) can each have either of two
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’ possible forms and that x,(¢) and x»(¢) are antipodal signals. Thus the correlation
: between s1(¢) and s5(¢) for any combination of forms can be written as

27
Z2T) = jo s1(t)s2(2) dt (3.114)

) = [ ard — [P o= o

Therefore, pairs of DPSK signals can be represented as orthogonal signals 2T
seconds long. Detection could correspond to noncohcrent envelope detection with
four channels matched to each of the possible envelope outputs, as shown in
Figure 3.23a. Since the two envelope detectors representing each symbol are
negatives of each other, the envelope sample of each will be the same. Hence we
can implement the detector as a single channel for s,(¢) matched to either (xy, x1)
or (x2, x2), and a single channel for s,(#) matched to either (xi, x;) or (x2, x1), as
shown in Figure 3.23b. The DPSK detector is therefore reduced to a standard
two-channel noncoherent detector. In reality, the filter can be matched to the
: difference signal so that only one channel is necessary. For orthogonal signals,
: this operates with the bit error probability in Equation (3.111). Since the DPSK
signals have a bit interval of 2T, the s{¢) signals defined in Equation (3.113) have

— w v

N

| Filters matched to
signal envelopes

Decision
r{t)—4 stage [ s;(t)
)
| (a)
7
L
Filters matched to
s signal envelopes
! ,, — b
: rt) —d Decision L . S(1)
stage ! Figure 3.23 DPSK detection. (a) Four-
channel differentially coherent
detection of binary DPSK. (b)

Equivalent two-channel detector for
(b) binary DPSK.
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twice the energy of a signal defined over a single-symbol duration. Thus we may
write Pg as

Pp = —exp (— EE) (3.115)

Equation (3.115) is seen plotted in Figure 3.22, designated as differentially co-
herent detection of differentially encoded PSK, or simply DPSK. This expression
is valid for the optimum DPSK detector shown in Figure 3.16c. For the detector
shown in Figure 3.16b, the error probability will be slightly inferior to that given
in Equation (3.115) [5]. When comparing the error performance of Equation (3.115)
with that of coherent PSK (see Figure 3.22), it is seen that for the same P, DPSK
requires approximately 1 dB more E;/No than does BPSK (for Pz = 10™%). It is
easier to implement a DPSK system than a PSK system, since the DPSK receiver
does not need phase synchronization. For this reason, DPSK, although less ef-
ficient than PSK, is sometimes the preferred choice between the two.

3.7.6 Comparison of Bit Error Performance for Various
Modulation Types

The Py expressions for the best known of the binary modulation schemes dis-
cussed above are listed in Table 3.1 and are illustrated in Figure 3.22. For Py =
1074, it can be seen that there is approximately a 4-dB difference between the
best (coherent PSK) and the worst (noncoherent FSK) that were discussed here.
In some cases, 4 dB is a small price to pay for the implementation simplicity
gained in going from coherent PSK to noncoherent FSK; however, for other cases,
even a 1-dB saving is worthwhile. There are other considerations besides Py and
system complexity; for example, in some cases (such as a randomly fading chan-
nel), a noncoherent system is more desirable because there may be difficulty in
establishing and maintaining a coherent reference. Signals that can withstand
significant degradation before their ability to be dctected is affected are clearly
desirable in military and space applications.

TABLE 3.1 Probability of Error for Selected
Binary Modulation Schemes

Modulation Pp
Coherent PSK 0 25, |
No -
.
Noncoherent DPSK 1 ( E, 3.
exp [ -2
2P\ "N, ,
|
Cohcrent FSK 0 E, ;
No :
Noncoherent FSK 1 /1 E,,)
. SZexp [ -2
] (2w
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3.8 M-ARY SIGNALING AND PERFORMANCE
3.8.1 Ideal Probability of Bit Error Performance

The typical probability of error versus E»/No curve was shown to have a waterfall-
like shape in Figure 3.21. The probability of bit error (Pg) characteristics of various
binary modulation schemes in AWGN also display this shape, as shown in Figure
3.22. What should an ideal Py versus E,/Ny curve look like? Figure 3.24 displays
the ideal characteristic as the Shannon limit. The limit represents the threshold
E,/Ny beclow which reliable communication cannot be maintained. Shannon’s
work is described in greater detail in Chapter 7.

We can describe the ideal curve in Figure 3.24 as follows. For all values of
E,/Ny above the Shannon limit, Py is zero. Once E,/Ny is reduced below the
Shannon limit, Py degrades to the worst-case value of 3. (Note that Pz = 1is not
the worst case for binary signaling, since that value is just as good as Pz = 0; if
the probability of making a bit error is 100%, the bit stream could simply be
inverted to retrieve the correct data.) It should be clear, by comparing the typical
Py curve with the ideal one in Figure 3.24 that the large arrow in the figure
describes the desired direction of movement to achieve improved Pp performance.

Pg
1/2 Typical Pg versus E/Ng curve
Direction of
movement for Pg
improvement
Ideal
/CUFVE
0 - E,/Ng (dB)
Shannon
/ limit _ Figure 3.24 Ideal Pp versus E;/Ny
~-1.6dB - ) . curve.

3.8.2 M-ary Signaling

Let us review M-ary signaling. The processor considers k bits at a time. It instructs
- the modulator to produce one of M = 2* waveforms; binary signaling is the special
case where k = 1. Does M-ary signaling improve or degrade performance? Be
careful with your answer—the question is a loaded one. Figure 3.25 illustrates
the probability of bit error, Ps(M), versus E,/N, for coherently detected orthog-
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Bit error probability, Pg{M}

G bW N =

= OO ~N O®
o

N =
[aNé;]
|

~1.6 dB

1075 | ! l |
-10 -5 0 5 10 15 20

Ey/Ng (dB)

Figure 3.25 Bit error probability for coherently detected M-ary orthogonal sig-
naling. (Reprinted from W. C. Lindsey and M. K. Simon, Telecommunication
Systems Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973, courtesy
of W. C. Lindsey and Marvin K. Simon.)

onal M-ary signaling over a Gaussian channel. Figure 3.26 similarly illustrates
Pg(M) versus E,/N, for coherently detected multiple phase M-ary signaling over
' a Gaussian channel. In which direction do the curves move as the value of k (or
M) increases? From Figure 3.24 we know the directions of curve movement for
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107"

1073

Bit error probability, Pg{M)

1074

107° ]
-10 30 Figure 3.26 Bit error probability for
coherently detected multiple phase
Ep/Ng (dB) signaling.

improved and degraded error performance. In Figure 3.25, as & increases, the
curves move in the direction of improved error performance. In Figure 3.26, as
kincreases, the curves move in the direction of degraded error performance. Such
movement tells us that M-ary signaling produces improved error performance
with orthogonal signaling and degraded error performance with multiple phase
signaling. Can that be true? Why would anyone ever use multiple phase PSK
signaling if it provides degraded error performance compared to binary PSK sig-
naling? It is true, and many systems do use multiple phase signaling. The question,
as stated, is loaded because it implies that error probability versus E,/Ny is the
only performance criterion; there are many others (e.g., bandwidth, power,
throughput, complexity), but in Figures 3.25 and 3.26, error performance is the
characteristic that stands out explicitly.

A performance characteristic that is not explicitly seen in Figures 3.25 and
3.26 is the required system bandwidth. For the curves characterizing M-ary or-
thogonal signals in Figure 3.25, as k increases, the required bandwidth also in-
creases. For the M-ary multiple phase curves in Figure 3.26, as k increases, a
larger bit rate can be transmitted within the same bandwidth. In other words, for
a fixed data rate, the required bandwidth is decreased. Therefore, both the or-
thogonal and multiple phase error performance curves tell us that M-ary signaling
represents a vehicle for performing a system trade-off. In the case of orthogonal
signaling, error performance improvement can be achieved at the expense of
bandwidth. In the case of multiple phase signaling, bandwidth performance can

Lo T T SRV
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be achieved at the expense of error performance. Error performance versus band-
width performance, a fundamental communications trade-off, is treated in greater
detail in Chapter 7.

3.8.3 Vectorial View of MPSK Signaling

| Figure 3.27 illustrates MPSK signal sets for M = 2, 4,'8, and 16. In Figure 3.27a

| we see the binary (k = 1, M = 2) antipodal vectors s; and s, positioned 180°
apart. The decision boundary is drawn so as to partition the signal space into two
regions. On the figure is also shown a noise vector n equal in magnitudc to s;.
The figure establishes the magnitude and orientation of the minimum energy noise
vector that would cause the detector to make a symbol error. .

In Figure 3.27b we see the 4-ary (k = 2, M = 4) vectors positioned 90°
apart. The decision boundaries (only one line is drawn) divide the signal space
into four regions. Again a noise vector n is drawn (from the head of a signal

" vector, normal to the closest decision boundary) to illustrate the minimum energy
noise vector that would cause the detector to make a symbol error. Notice that
the minimum energy noise vector of Figure 3.27b is smaller than that of Figure
3.27a, illustrating that the 4-ary system is more vulnerable to noise than the 2-
ary system (signal energy being equal for each case). As we move on to Figure
3.27¢ for the 8-ary case and Figure 3.27d for the 16-ary case, it should be clear
that for multiple phase signaling, as M increases, we are crowding more signal
vectors into the signal plane. As the vectors are moved closer together, a smaller
amount of noise energy is required to cause an error.

Figure 3.27 adds some insight as to why the curves of Figure 3.26 behave
as they do as k is increased. Figure 3.27 also provides some insight into a basic
trade-off in multiple phase signaling. Crowding more signal vectors into the signal
space is tantamount to increasing the data rate without increasing the system
bandwidth (the vectors are all confined to the same plane). In other words, we
have increased the bandwidth utilization at the expense of error performance.

Decision
line (DL) !

1 . $7 DL {
i 7 :
| A // £
I ; :
I n . |
f————— S n

|

B —~—] ’
$2 \ s s3 7 $1

| /

I s

[ 7

| Y Y

E 7 S4

M=2 M= 4
(a) (b) (c) (d)
Figure 3.27 MPSK signal sets for M = 2, 4, 8, 16.
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nd- Look at Figure 3.27d, where the error performance is worse than any of the other
ater examples in Figure 3.27. How might we ‘‘buy back’’ the degraded error perform-
ance; that is, what can we trade-off so that the distance between neighboring
signal vectors in Figure 3.27d is increased to that in Figure 3.27a? We can increase
the signal strength (make the signal vectors larger) until the minimum distance
from the head of a signal vector to a decision line equals the length of the noise

27a vector in Figure 3.27a. Therefore, in a multiple phase system, as M is increased,
(80° we can either achieve improved bandwidth performance at the expense of error
two ~ performance, or if we increase the E,/Ny so that the error probability is not de-
S1. graded, we can achieve improved bandwidth performance at the expense of in-
Jise creasing E,/Nop.

90° 3.8.4 BPSK and QPSK Have the Same Bit Error Probability

ace ’

nal In Equation (3.94) we stated the general relationship between E,/N, and S/N, for
rgy binary transmission, as follows:

hat E S /1

ure b .

A ) a1
ure

ear where S is the average signal power and R is the bit rate. A BPSK signal with
mal the available E,/N, found from Equation (3.116) will perform with a Px that can
ller ‘be read from the & = 1 curve in Figure 3.26. QPSK can be characterized as two

orthogonal BPSK channels. The QPSK bit stream is usually partitioned into an

ave even and odd (I and Q) stream; each new stream modulates an orthogonal com-

1sic ponent of the carrier at half the bit rate of the original stream. The 1 stream

mal modulates the cos wof term and the Q stream modulates the sin wot term. If the

‘em magnitude of the original QPSK vector has the value A, the magnitude of the 1
we and Q component vectors each has a value of A/V2, as shown in Figure 3.28.

ce. Thus, each of the quadrature BPSK signals has half of the average power of the

original QPSK signal. Hence if the original QPSK waveform has a bit rate of R
bits/s and an average power of S watts, the quadrature partitioning results in each

sin wpt '
4 QPSK
-~ AINZETTTTTTT !
—_—— I'
S !
< |
Quadrature A :
BPSK :
N
1
|
|
1
45° !
. cos wpt .
(n-phase A2 Figure 3.28 In-phase and qua-drau{rc
BPSK BPSK components of QPSK signaling.
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of the BPSK waveforms having a bit rate of R/2 bits/s and an average power of
S/2 watts.

Therefore, the E,/N, characterizing each of the orthogonal BPSK channels,
comprising the QPSK signal, is equivalent to the E,/N, in Equation (3.116) since

it can be written as
E, SR/W\ S /1
No No <R/2> "~ No <R> 3.117)

Thus each of the orthogonal BPSK channels, and hence the composite QPSK
signal, is characterized by the same E,/N, and hence the same Pp performance
as a BPSK signal. The natural orthogonality of the 90° phase shifts between ad-
jacent QPSK symbols results in the bit error probabilities being equal for both
BPSK and QPSK signaling. It is important to note that the symbol error proba-
bilities are not equal for BPSK and QPSK signaling. The relationship between
bit error probability and symbol error probability is treated in Sections 3.9.3 and
3.9.4. :

3.8.5 Vectorial View of MFSK Signaling

In Section 3.8.3, Figure 3.27 provides some insight as to why the error perform-
ance of MPSK signaling degrades as k (or M) increases. It would be useful to
have a similar vectorial illustration for the error performance of MFSK signaling
as seen in the curves of Figure 3.25. Since the MFSK signal space is characterized
by M mutually perpendicular axes, we can only conveniently illustrate the cases,
M = 2 and M = 3. In Figure 3.29a we sce the binary orthogonal vectors s; and
s, positioned 90° apart. The decision boundary is drawn so as to partition the
signal space into two regions. On the figure is also shown a noise vector n, which
represents the minimum noise vector that would cause the detector to make an

CITOT.
Decision
line
2 A e
//
7
s/
%
7
/
v
7/
/// "
s
/
,
/// $1
Ve
Va
7/
M= 2 M=3
(a) (b)
Figure 3.29 MFSK signal sets for M = 2, 3.
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In Figure 3.29b we see a 3-ary signal space with axes positioned 90° apart.
Here decision planes partition the signal space into three regions. Noise vectors
n are shown added to each of the prototype signal vectors s;, s,, and s;; each
noise vector illustrates an example of the minimum noise energy that would cause
the detector to make a symbol crror. The minimum noise energy vectors in Figure
3.29b are the same length as the noise vector in Figure 3.29a. In Section 3.5.4
we stated that the distance between any two prototype signal vectors s; and s; in
an M-ary orthogonal space is constant. It follows that the minimum distance
between a prototype signal vector and any of the decision boundaries remains
fixed as M increases. Unlike the case of MPSK signaling, where adding new
signals to the signal set makes the signals vulnerable to smaller noise vectors,
here in the case of MFSK signaling, adding new signals to the signal set does not
make the signals vulnerable to smaller noise vectors.

It would be convenient to illustrate the point by drawing higher-dimensional
orthogonal spaces, but of course this is not possible. We can only use our ‘‘mind’s
eye’’ to understand that increasing the signal set, M, by adding additional axes,
where each new axis is mutually perpendicular to all the others, does not crowd
the signal set more closely together; thus a transmitted signal from an orthogonal
set is not more vulnerable to a noise vector when the set is increased in size. In
fact, we see from Figure 3.25 that as k increases, the bit error performance
improves. ,

Understanding the error performance improvement of orthogonal signaling,
as illustrated in Figure 3.235, is facilitated by comparing the probability of symbol
error (Pg) versus unnormalized SNR, with Pg versus E,/No. Figure 3.30 repre-
sents a set of Px performance curves plotted against unnormalized SNR for co-
herent FSK signaling. Here we see that Pr degrades as M is increased. Didn’t
we say that an orthogonal signal is not made more vulnerable to a given noise
vector, as the orthogonal sct is increased in size? It is correct that for orthogonal
signaling, with a given SNR it takes a fixed-size noise vector to perturb a trans-
mitted signal into an error region; the signals do not become vulnerable to smaller
noise vectors as M increases. However, as M increases, more neighboring de-
cision regions are introduced; thus the number of ways in which a symbol error
can be made increases. Figure 3.30 reflects the degradation in Pg versus unnor-
malized SNR as M is increased; there are (M — 1) ways to make an error. Ex-
amining performance under the condition of a fixed SNR (as M increases) is not
very useful for digital communications. A fixed SNR means a fixed amount of
energy per symbol; thus as M increases, there is a fixed amount of energy to be
apportioned over a larger number of bits, or there is less energy per bit. The most
useful way of comparing one digital system with another is on the basis of biz-
normalized SNR or E,/Ng. The error performance improvement with increasing
M, seen in Figure 3.25, manifests itself only when error probability is plotted
against F,/Ny. For this case, as M increases, the required E,/N, (to mect a given
error probability) is reduced for a fixed SNR; therefore, we need to map the Figure
3.30 plot into a new plot, similar to Figure 3.25, where the abscissa represents
E,/N, instead of SNR. Figure 3.31 illustrates such a mapping; it demonstrates
that curves manifesting degraded Pr with increasing M (such as Figure 3.30) are
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Figure 3.30 Symbol error probability versus SNR for coherent FSK signaling.
(From Bureau of Standards, Technical Note 167, March 1963.) (Reprinted from
Central Radio Propagation Laboratory Technical Note 167, March 25, 1963,
Fig. 1, p. 5, courtesy of National Bureau of Standards.)

transformed into curves manifesting improved Pz with increasing M. The basic
mapping relationship-is expressed in Equation (3.94):

E, _S(w
No NA\R
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Symbol error probability, Pg (M)
Symbol error probability, Pg (M)
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SNR (dB) Ep/Ng (dB)
{a) (b}

Figure 3.31 Mapping Pg versus SNR into Pg versus F,/N, for orthogonal sig-
naling. (a) Unnormalized. (b) Normalized.

where W is the detection bandwidth. Since
_loga M E

R o
T 1

where T is the symbol duration, we can then write

By _S(_WI \_S(WI
No N <1og2 M) - N< k ) (3.118)

For FSK signaling the detection bandwidth, W in hertz, is typically equal in value
to the symbol rate 1/T, in other words, WT = 1. Therefore,

E, S (1
NN <k> (3.119)

Figure 3.31 illustrates the mapping from P versus SNR to Pg versus E,/N, for
coherently detected M-ary orthogonal signaling. In Figure 3.31a, on the k = 1
curve is shown an operating point corresponding to P = 107* and SNR = 10 dB.
On the & = 10 curve is shown an operating point at the same Pr = 1072 but
with SNR = 13 dB (approximate values taken from Figure 3.30). Here we clearly
see the degradation in error performance as k increases. Consider the same k = 1
and k = 10 cases mapped onto the Figure 3.31b plane, where the abscissa is
E,/N,. The k = 1 case looks exactly the same as it does in Figure 3.31a. But for
the k = 10 case, the required E,/Ny is obtained from Equation (3.119) as follows:
E,/INo = 20(%) = 2 (3 dB), thus showing the error performance improvement as
k is increased. In digital communication systems, error performance is almost
always considered in terms of E,/N,, since such a measurement makes for a
meaningful comparison between one system’s performance and another. There-
fore, the curves of Figures 3.30 and 3.31a are hardly ever seen.

Sec. 3.8 M-ary Signaling and Performance 175

Petitioner's Exhibit 1003
Page 195



3.9 SYMBOL ERROR PERFORMANCE FOR

Symbol error probability, F‘E(M)

M-ARY SYSTEMS (M > 2)

3.9.1 Probability of Symbol Error tor MPSK

For large energy-to-noise ratios, the symbol error performance, Ps(M), for equally
likely coherently detected M-ary PSK signaling can be expressed [9] as follows:

o

Po(M) = 20 \/ ion sin = (3.120)

where Pz(M) is the probability of symbol error, E;, = E,(logx M) is the energy
per symbol, and M = 2* is the size of the symbol set. The Pz(M) performance
curves for coherently detected MPSK signaling are plotted versus E;,/Ny in Figure
3.32.

The symbol error performance for differentially coherent detection of M-

Figure 3.32 Symbol error probability
for coherently detected multiple phase
signaling. (Reprinted from W. C.
Lindsey and M. K. Simon,
Telecommunication Systems
Engineering, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1973, courtesy

-5 0 5 10 15 20 2 30 of W. C. Lindsey and Marvin K.
E,/Ng (dB) Simon.)
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ary DPSK (for large E,/No) is similarly expressed [9] as

2E, T
Pe(M) =2 = sin 3.121
Y ' 3.9.2 Probability of Symbol Error for MFSK
The symbol error performance P(M), for equally likely coherently detected M-
) ary orthogonal signaling can be upper bounded [7] as follows:
E;
Pe(M) =M - 1)O Ne (3.122)
0

oo~

where E; = E,(log, M) is the energy per symbol and M is the size of the symbol
set. The Pg(M) performance curves for coherently detected M-ary orthogonal
signaling are plotted versus E,/N, in Figure 3.33.

The symbol error performance for equally likely noncoherently detected M-
ary orthogonal signaling is [11]

1 EN\ Y : E,
Pe(M) = Mexp (— ]—V—0> > (=1y (?) exp (,/No) (3.123)

Jj=2

where

M M!
(j ) T = (3.124)

is the standard binomial coefficient yielding the number of ways in which J symbols
out of M may be in error. Note that for the binary case, Equation (3.123) reduces
to

Py = 5 exp (— 5}—\70) (3.125)

which is the same result as that described by Equation (3.111). The Pr(M) per-
formance curves for noncoherently detected M-ary orthogonal signaling are plot-
ted versus E/No in Figure 3.34. If we compare this noncoherent orthogonal Pg(M)
performance with the corresponding Pr(M) results for the coherent detection of
orthogonal signals in Figure 3.33, it can be seen that for k > 7, there is a negligible
difference. An upper bound for coherent as well as noncoherent reception of
orthogonal signals is [11]

M -1 E,
< = ~ .
| Pe(M) 5 exp < 2N0> (3.126)

where E; is the energy per symbol and M is the size of the symbol set.
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Symbol error probability, Pg (M)

~1.6 dB

-10 -5 0 5 10 15 20
Ey/Ng (dB)

Figure 3.33 Symbol error probability for coherently detected M-ary orthogonal
signaling. (Reprinted from W. C. Lindsey and M. K. Simon, Telecommunication
Systems Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973, courtesy
of W. C. Lindsey and Marvin K. Simon.)
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Figure 3.34 Symbol error probability for noncoherently detected M-ary orthog-
onal signaling. (Reprinted from W. C. Lindsey and M. K. Simon, Telecommun-
ication Systems Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973,
courtesy of W. C. Lindsey and Marvin K. Simon.)
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3.9.3 Bit Error Probability versus Symbol Error Probability
for Orthogonal Signals

It can be shown [11] that the relationship between probability of bit error (Pg)
and probability of symbol error (Pr) for an M-ary orthogonal signal set is
Py 2k-1 M2

= = (.12
Pr 2 -1 M-1 (3.127)

In the limit as k increases we get

lim fé 1
koo P 2

A simple example will make Equation (3.127) intuitively acceptable. Figure
3.35 describes an octal message set. The message symbols (assumed equally
likely) are to be transmitted on orthogonal waveforms such as FSK. With or-
thogonal signaling, a decision error willl transform the correct signal into any one
of the (M — 1) incorrect signals with equal probability. The example in Figure
3.35 indicates that the symbol comprised of bits 0- 1 1 was transmitted. An error
might occur in any one of the other 2 — 1 = 7 symbols, with equal probability.
Notice that just because a symbol error is made does not mean that all the bits
within the symbol will be in error. In Figure 3.35, if the receiver decides that the
transmitted symbol is the bottom one listed, comprised of bits 1 1 1, two of the
three transmitted symbol bits will be correct; only one bit will be in error. It
should be apparent that Py will be less than or equal to Pz.

Consider any of the bit-position columns in Figure 3.35. For each bit position,
the digit occupancy consists of 50% ones and 50% zeros. In the context of the
first bit position (rightmost column) and the transmitted symbol, how many ways
are there to cause an error to the binary one? There are 2~ = 4 ways (four
places where zeros appear in the column) that a bit error can be made; it is the
same for each of the columns. The final relationship, Pg/Pg, for orthogonal sig-

B.it.
position
0 O T
0 O 1
0 1 0
e CRRER
1 030
1 0 1
1 110
! ! \_7~ Figure 3.35 Example of Py versus Pg.
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naling, in Equation (3.127), is obtained by forming the following ratio: the number

of ways that a bit error can be madc (2 ') divided by the number of ways that

: a symbol error can be made (2* — 1). For the Figure 3.35 example, Pg/Pr =

) 4/7. '

: 3.9.4 Bit Error Probability versus Symbol Error Probability
) for Multiple Phase Signaling

For the case of MPSK signaling, Pg is less than or equal to Pg, just as in the case
of MFSK signaling. However, there is an important difference. For orthogonal
signaling, selecting any one of the (M — 1) erroneous symbols is equally likely.
In the case of MPSK signaling, each signal vector is not equidistant from all of
the others. Figure 3.36a illustrates an 8-ary decision space with the pie-shaped

N regions denoted by the 8-ary symbols in binary notation. If symbol (0 1 1) is
?/ transmitted, it is clear that should an error occur, the transmitted signal will most
‘ likely be mistaken for one of its closest neighbors, (0 1 0) or (1 0 0). The like-
_z lihood that (0 1 1) would get mistaken for (1 1 1) is relatively remote. If the
- assignment of bits to symbols follows the binary sequence shown in the symbol
, decision regions of Figure 3.36a, some symbol errors will usually result in two
- or more bit errors, even with a large signal-to-noise ratio.
(S: For nonorthogonal schemes, such as MPSK signaling, one often uses a bi-
. nary-to M-ary code such that binary sequences corresponding to adjacent symbols
It (phase shifts) differ in only one bit position; thus when an M-ary symbol error

occurs, it is more likely that only one of the % input bits will be in error. A code
. that provides this desirable feature is the Gray code [9]; Figure 3.36b illustrates
é the bit-to-symbol assignment using a Gray code for 8-ary PSK. Here it can be
X seen that neighboring symbols differ from one another in only one bit position.
S [ . . .
" Therefore, the occurrence of a multibit error, for a given symbol error, is much
e
g_

010 001 011 001
Transmitted
symbol
010 000
110 100
101 110 111 101
(a) (b)
Figure 3.36 Binary-coded versus Gray-coded decision regions in an MPSK signal

g. space. (a) Binary coded. (b) Gray coded.
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reduced compared to the uncoded binary assignment seen in Figure 3.36a. Uti-
lizing the Gray code assignment, it can be shown [7] that

_ P _Pe

log, M k

(for P << 1) (3.128)

Recall from Section 3.8.4 that BPSK and QPSK signaling have the same bit error
probability. Here in Equation (3.128) we verify that they do not have the same
symbol error probability. For BPSK, Pr = Pg. However, for QPSK, Pg = 2Pg.

An exact closed-form expression for the bit error probability, Pg, of 8-ary
PSK, together with tight upper and lower bounds on P for M-ary PSK with larger
M, may be found in Lee [12].

3.9.5 Effects of Intersymbol Interference

In the previous sections and in Chapter 2 we have treated the detection of signals
in the presence of AWGN under the assumption that there is no intersymbol
interference (ISI). Thus the analysis has been straightforward, since the zero-
mean AWGN process is characterized by its variance alone. In practice we find
that ISI is often a second source of interference which must be accounted for.
As explained in Section 2.11, ISI can be generated by the use of bandlimiting
filters at the transmitter output, in the channel, or at the receiver input. The result
of this additional interference is to degrade the error probabilities for coherent as
well as for noncoherent reception. Analysis involving ISI in addition to AWGN
] is much more complicated since it involves the impulse response of the channel.
The subject will not be treated here; however, for those readers interested in the
details of the analysis, References [13-18] should prove interesting.

3.10 CONCLUSION

We have catalogued some basic bandpass digital modulation formats, particularly
phase shift keying (PSK) and frequency shift keying (FSK). We have considered
a geometric view of signal vectors and noise vectors, particularly antipodal and
orthogonal signal sets. This geometric view allows us to consider the detection
problem in the light of an orthogonal signal space and signal regions. This view
of the space, and the effect of noise vectors causing transmitted signals to be -
received in the incorrect region, facilitates the understanding of the detection ?
problem and the performance of various modulation and demodulation techniques.
In Chapter 7 we reconsider the subjects of modulation and demodulation, and we
investigate some bandwidth-efficient modulation techniques.
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PROBLEMS

3.1. Determine whether or not s;(¢) and s,(¢) are orthogonal over the interval (—1.5T
<t < 1.5T3), where 5,(f) = cos @nfit + 1), 52(t) = cos @ufyt + &2), and f> =
1/T, for the following cases.
@ fi = fand ¢, = b2
b) fi = %fzanddh = b2
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© f 2f; and ¢y = &2

d) fi = wfrand ¢ = &

(e fi= frand ¢1 = &2 + w/2

® fi=franddr =2+ 7

3.2. (a) Show that the three functions illustrated in Figure P3.1 are pairwise orthogonal

over the interval (-2, 2).

(b) Determine the value of the constant, A, that makes the set of functions in part
(a) an orthonormal set.

(¢c) Express the following waveform, x(¢), in terms of the orthonormal set of part

(b).

il

; (1) = 1 for0<t=2
’ 0  otherwise

Yq(t) Ya(t) Y5t
A-—— A-————]
: A A

-2-10 1 2 -2-10 1 2
Figure P3.1

-2 -1 0

3.3. Consider the functions
(1) = exp (— |f) af},d b =1— Aexp (-2t

Determine the constant, A, such that ¥,(¢) and y,(¢) are orthogonal over the interval
("'OO’ oo)'

Find the expected number of bit errors made in one day by the following continuously
operating coherent BPSK receiver. The data rate is 5000 bits/s. The input digital
waveforms are s,(f) = A cos wef and s5;(f) = —A cos wef, where A = 1 mV and the
single-sided noise power spectral density is No = 10~ !" W/Hz. Assume that signal
power and energy per bit are normalized relative to a 1-() resistive load.

3.5. A continuously operating coherent BPSK system makes errors at the average rate
of 100 errors per day. The data rate is 1000 bits/s. The single-sided noise power
spectral density is Ny = 107 W/Hz.

(a) If the system is ergodic, what is the average bit error probability?

(b) If the value of received average signal power per bit is adjusted to be 107¢ W,
will this received power be adequate to maintain the error probability found in
part (a)?

3.6. If a system’s main performance criterion is bit error probability, which of the fol-
lowing two modulation schemes would be selected for an AWGN channel? Show
computations.

3.4

Binary coherent orthogonal FSK with E,/N, = 12 dB

i

Binary noncoherent orthogonal FSK with E,/N, = 14 dB

3.7. If a system’s main performance criterion is bit error probability, which of the fol-
lowing two modulation schemes would be selected for an AWGN channel? Show
computations.
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13 dB
Binary coherent PSK with E,/N, = 8 dB

Binary noncoherent orthogonal FSK with E,/N,

I

3.8. The bit stream
101010111101010100001 111

is to be transmitted using DPSK modulation. Show four different differentially en-
coded sequences that can represent the data scquence above, and explain the al-
gorithm that generated each.

3.9. (a) Calculate the minimum required bandwidth for a noncoherently detected or-
thogonal binary FSK system. The higher-frequency signaling tone is 1 MHz and
the symbol duration is 1 ms.

(b) What is the minimum required bandwidth for a noncoherent MFSK. system hav-
ing the same symbol duration?

3.10. Consider a BPSK system with equally likely waveforms s;(¢) = cos wgt and s,(1) =
—cos wof. At the matched filter detector, the s,(f) reference is cos (wot + &), where
¢ is a phase error. Calculate the value of the phase error that would increase the
probability of bit error from 2.0 x 1073 to 2.5 x 1072 relative to no phase error for
an AWGN channel.

3.11. Find the probability of bit error, Py, for the coherent matched filter detection of the
equally likely binary FSK signals

s1(2) = 0.5 cos 20007t

s2(t) = 0.5 cos 2020m¢

where the two-sided AWGN power spectral density is N¢/2 = 0.0001. Assume that
the symbol duration is T = 0.01 s.

3.12. Find the optimum (minimum probability of error) threshold, v, for detecting the
equally likely signals s,(£) = V2E/T cos wot and s,(1) = VIE/T cos (wef + ) in
AWGN, using a correlator receiver as shown in Figure 3.7b. Assume a reference
signal of U1(7) = V2/T cos wol.

3.13. A system using matched filter detection of equally likely BPSK signals, s:(z) =
V2EIT cos wot and sx(7) = V2E/T cos (wet + ), operates in AWGN with a received
E,/Nq of 6.8 dB. Assume that E{z(T)} = +VE.

(a) Find the minimum probability of bit error, Pg, for this signal set and E,/N,.

(b) If the decision threshold is vy = 0.1VE, find Pj.

(¢) The threshold of y = 0.1VE is optimum for a particular set of a priori proba-
bilities, P(s;) and P(s>). Find the values of these probabilities (refer to Section
B.2). =

3.14. A binary source with equally likely symbols controls the switch position in a trans-
mitter operating over an AWGN channel, as shown in Figure P3.2. The noise has
two-sided spectral density No/2. Assume antipodal signals of time duration T seconds
and energy E joules. The system clock produces a clock pulse every T seconds, and
the binary source rate is 1/7 bits/s. Under normal operation, the switch is up when
the source produces a binary zero, and it is down when the source produces a binary
one. However, the switch is faulty. With probability, p, it will be thrown in the
wrong direction during a given T-second interval. The presence of a switch error
during any interval is independent of the presence of a switch error at any other
time. Assume that E{z(T)} = =VE,

Chap. 3 Problems 185

Petitioner's Exhibit 1003
Page 205



Binary Waveform ll

source —-{ generator |
l 0

\ so(t] Il

( %) Correi_ator 2T
] receiver

n(t)

Waveform '
Clock | »| generator —T 1 Re'Cer:‘;Fd
sq{th” Faulty sig
switch
Figure P3.2

(a) Sketch the conditional probability functions, p(z|si) and p(z|s,).
(b) The correlator receiver observes r(z) in the interval (0, 7). Sketch the block
. diagram of an optimum receiver for minimizing the bit error probability when it
is known that the switch is faulty with probability, p. i
(¢) Which one of the following two systems would you prefer to have?

p=10.1 and ﬁ—i’)=w
_ Ey _
p=0 and No—-7dB

3.15. (a) Consider a 16-ary PSK system with symbol error probability, P = 10~°. A Gray
code is used for the symbol to bit assignment. What is the approximate bit error
probability?

(b) Repeat part (a) for a 16-ary orthogonal FSK system.

3.16. Consider a coherent orthogonal MFSK system with M = 8 having the equally likely
waveforms s{f) = Acos2nfit, i =1,...,M,0=<t =T, where T = 0.2 ms. The
received carrier amplitude, A, is 1 mV, and the two-sided AWGN spectral density,
Noy/2, is 107! W/Hz. Calculate the probability of bit error, Pg. .

3.17. A bit error probability of P = 1072 is required for a system with a data rate of 100
kbits/s to be transmitted over an AWGN channel using coherently detected MPSK
modulation. The system handwidth is 50 kHz. Assume that the filter has a roll-off
characteristic of r = 1 and that a Gray code is used for the symbol to bit assignment.
(a) What E,/Nj is required for the specified Pg?

(b) What E,/N, is required?

3.18. A differentially coherent MPSK system operates over an AWGN channel with an
E,/Ny of 10 dB. What is the symbol error probability for M = 8 and equally likely
symbols?

3.19. If a system’s main performance criterion is bit error probability, which of the fol-
lowing two modulation schemes would be selected for transmission over an AWGN
channel? Show computations.

E
coherent 8-ary orthogonal FSK with E\Tb = 8 dB
0

coherent 8-ary PSK with % = 13 dB
0

(Assume that a Gray code is used for the MPSK symbol-to-bit assignment.)
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CHAPTER 5

Channel Coding:
Part 1
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Channel coding refers to the class of signal transformations designed to improve
communications performance by enabling the transmitted signals to better with-
stand the effects of various channel impairments, such as noise, fading, and jam-
ming. Usually, the goal of channel coding is to reduce the probability of bit crror
(Pg), or to reduce the required E,/Ny, at the cost of expending more bandwidth
than would otherwise be necessary. The exceptions to this are the combined
modulation and coding techniques for bandlimited channels described in Chapter
7. Why do you suppose channel coding has become such a popular way to provide
pcerformance improvement? The use of large-scale integrated (LSI) circuits has
made it possiblc to provide as much as an 8-dB performance improvement through
coding, at much less cost than through the use of other methods such as higher-
power transmitters or larger antennas.

5.1 WAVEFORM CODING

Channel coding can be partitioned into two study areas, waveform (or signal
design) coding and structured sequences (or structured redundancy), as shown in
Figure 5.1. Waveform coding deals with transforming waveforms into ‘‘better
waveforms,”” to make the detection process less subject to errors. S