

US006091760A

United States Patent [19]

Giallorenzi et al.

6,091,760 [11] **Patent Number:**

Jul. 18, 2000 **Date of Patent:** [45]

[54]	NON-RECURSIVELY GENERATED
	ORTHOGONAL PN CODES FOR VARIABLE
	RATE CDMA

[75] Inventors: Thomas R Giallorenzi, Herriman; Samuel C Kingston, Salt Lake City; Lee A Butterfield, W. Jordan; William T Ralston, Riverton; Leon L Nieczyporowicz, West Jordan; Alan E

Lundquist, Salt Lake City, all of Utah

[73] Assignee: L-3 Communications Corporation,

New York, N.Y.

[21] Appl. No.: 09/329,473

Jun. 10, 1999 [22] Filed:

Related U.S. Application Data

[63]	Continuation-in-part of application No. 09/328,546, Jun.	9,
	1999.	

[60] Provisional application No. 60/091,070, Jun. 29, 1998.

[51] Int. Cl.⁷ H04B 7/216 **U.S. Cl.** **375/140**; 370/208; 370/342 [52]

[58]

375/141, 145, 146; 370/203, 208, 320, 335, 342, 441, 479

[56] References Cited

U.S. PATENT DOCUMENTS

3,810,019	5/1974	Miller 375/260
5,151,919	9/1992	Dent
5,204,876	4/1993	Bruckert et al 375/1
5,329,547	7/1994	Ling
5,418,813	5/1995	Schaffner et al 375/205
5,442,625	8/1995	Gitlin et al 370/18
5,515,396	5/1996	Dalekotzin
5,548,613	8/1996	Kaku et al
5,659,573	8/1997	Bruckert et al 375/200
5,729,124	3/1998	Lu 324/76.24
5,748,668	5/1998	Tomita et al 375/200
5,751,761	5/1998	Gilhousen 375/200
5,757,767	5/1998	Zehavi 370/208
5,805,567	9/1998	Ramesh
5,805,584	9/1998	Kingston et al 370/342
		=

5,825,835	10/1998	Kingston et al 375/367
5,851,187	12/1998	Thomas, III et al 600/447
5,864,548	1/1999	Liu
5,926,488	7/1999	Khayrallah 371/37.01
5,936,972	8/1999	Meidan et al 371/20.1
5,995,807	11/1999	Magnier et al 455/67.6

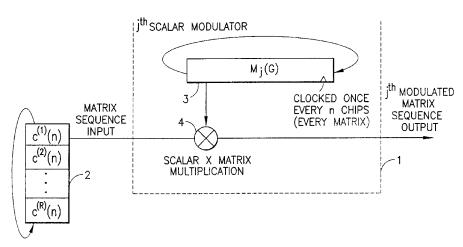
OTHER PUBLICATIONS

Multiplexing Of Telephone Signals By Walsh Functions, Davidson, I.A., Applications Of Walsh Functios, 1971 Proceedings, Apr. 13, 1971, pp. 177-179.

"Multiplex Systems Using Sums Of Walsh Functions As Carriers", Hubner, H., Applications Of Walsh Functions, 1971 Proceedings, Apr. 13 1971, pp. 180–191.

"The Use Of Walsh Functions For Multiplexing Signals", Davidson, I.A., Applications Of Walsh Functions, 1970 Proceedings, pp. 23-25.

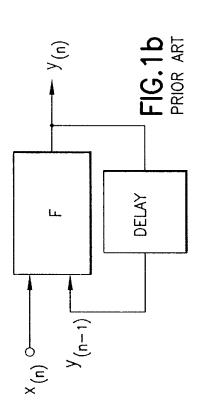
"On The Transmission Of Walsh Modulated Multiplex Signals", Hubner H., Applications Of Walsh Functions, 1970 Proceedings, pp. 41-45.


"Analog And Digital Multiplexing By Means Of Walsh Functions", Hubner, H., Applications Of Walsh Functions, 1970 Proceedings, pp. 238-247.

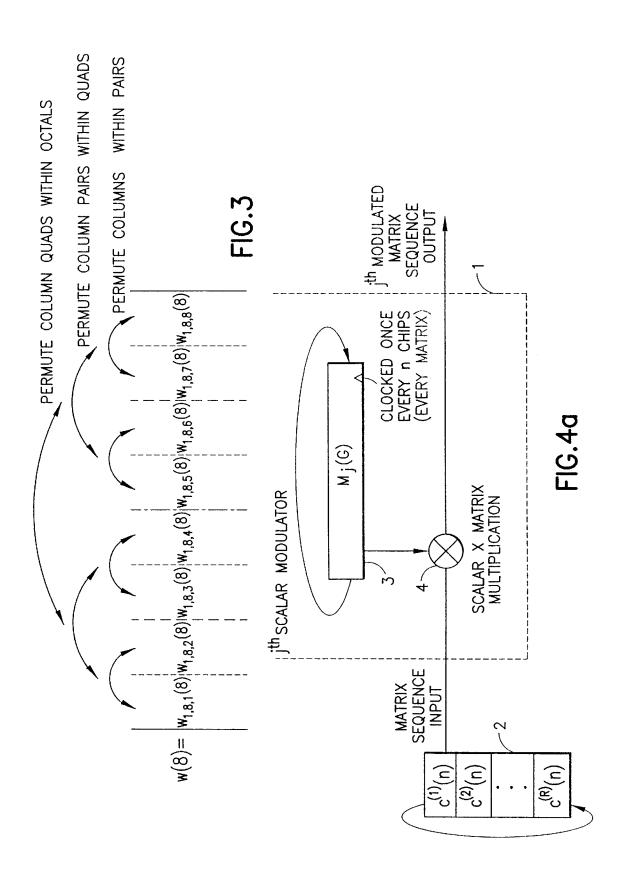
Primary Examiner—Young T. Tse Attorney, Agent, or Firm-Perman & Green, LLP

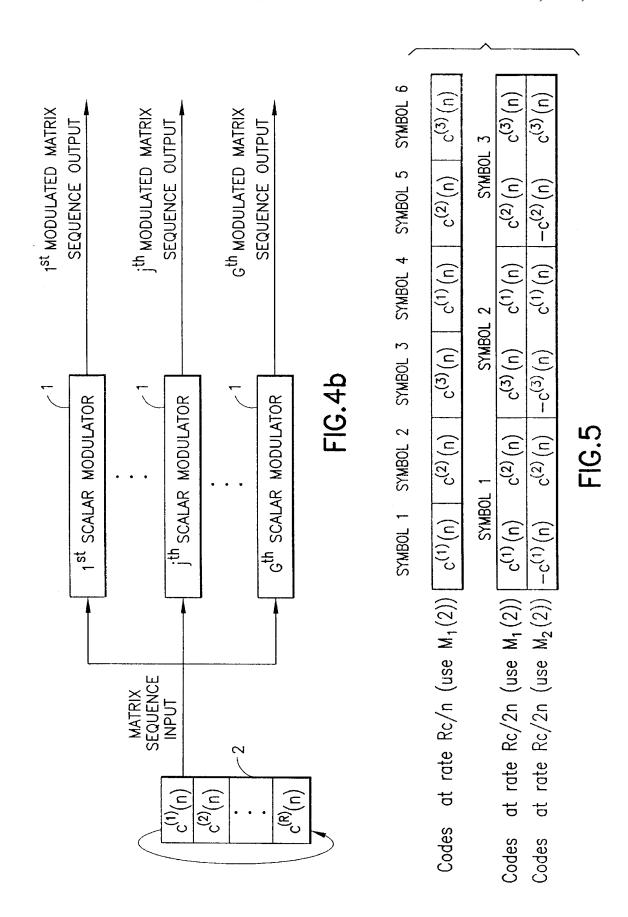
ABSTRACT

A method and apparatus for constructing a series of PN code sets that can be used for multirate synchronous and quasisynchronous CDMA systems. The construction technique produces PN codes that are balanced, and that furthermore do not require any synchronization of neighboring base stations. The method is a non-recursive method that uses a permuted orthogonal matrix to modulate permuted orthogonal matrices to create PN codes that support multirate operation. Furthermore, the codes constructed using the method have very good spectral properties (if chosen properly) when the code length, n, is reasonably large.


20 Claims, 13 Drawing Sheets

/-			·	 	^		10-15-1		······		
SYMBOL 4	w ₁ (n) w ₂ (n)	: w _n (n))L 2	w ₁ (n)	-w ₁ (n) w ₂ (n)	$-w_2(n)$	• • •	w _n (n)	_w _n (n)	TIME	
SYMBOL 3	$w_1(n)$ $w_2(n)$	w _n (n)	SYMBOL 2		w ₁ (n) w ₂ (n)	w ₂ (n)	•••	w _n (n)	w _n (n)		
SYMBOL 2	w ₁ (n) w ₂ (n)	(u) w	1	w ₁ (n)	-w ₁ (n) w ₂ (n)	$-w_2(n)$	• • •	w _n (n)	_wn(n)		
SYMBOL 1	w ₁ (n) w ₂ (n)	(n) w	SYMBOL 1	w ₁ (n)	w ₁ (n) w ₂ (n)	$w_2(n)$	•••	w _n (n)	w _n (n)		ART ART
	code $w_1(n)$ (rate Rc/n) = $\begin{bmatrix} code \ w_2(n) \end{bmatrix}$ (rate Rc/n) =	: code w _n (n) (rate Rc/n) =		(rate	code $w_2(2n)$ (rate Rc/2n) = code $w_3(2n)$ (rate Rc/2n) =	, rate		code $w_{2n-1}(2n)$ (rate Rc/2n) = \lceil	code \mathbf{w}_{2n} (2n) (rate Rc/2n) = $\begin{bmatrix} \\ \end{bmatrix}$		FIG. 1a





			SYMBOL 1	SYMBOL 2	SYMBOL 2 SYMBOL 3 SYMBOL 4	SYMBOL 4
, code 1 at rate Rc/n :	rate	Rc/n =	c ⁽¹⁾ (n)	$c^{(2)}_1(n)$	c ⁽³⁾ (n)	$c^{(1)}_{1}(n)$
, code 2 at rate Rc/n =	rate	Rc/n =	$c^{(1)}_{2}(n)$	$c^{(2)}_{2}(n)$	$c^{(3)}_{2}(n)$	$c^{(1)}_{2}(n)$
•••			•••	•••	•••	•••
code n-1 at rate Rc/n =	rate	Rc/n =	$c^{(1)}_{n-1}(n)$	$c_{n-1}^{(2)}(n)$	$c_{n-1}^{(3)}(n)$	$c_{n-1}^{(1)}(n)$

cell cell

c ⁽⁴⁾ (n)	$c^{(4)}_2(n)$	•••	$c^{(4)}_{n-1}(n)$
$c^{(6)}_{1}(n)$	$c^{(6)}_2(n)$	•••	$c_{n-1}^{(6)}(n)$
c ⁽⁵⁾ (n)	$c^{(5)}_{2}(n)$	•••	$c_{n-1}^{(5)}(n)$
c ⁽⁴⁾ (n)	$c^{(4)}(n)$	•••	$c^{(4)}_{n-1}(n)$
cell 2, code 1 at rate Rc/n =	cell 2, code 2 at rate Rc/n =	• • •	ell 2, code n-1 at rate Rc/n =
cell	cell		≝ 2,

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

