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There are two major categories of channel codes: block and convolutional. Chap-

ter 5 deals mainly with block coding. This chapter deals mainly with convolutional

coding. A linear block code is described by two integers, n and k, and a generator

matrix or polynomial. The integer k is the number of data bits that form an input

to a block encoder. The integer n is the total number of bits in the associated
codeword out of the encoder. A characteristic of linear block codes is that each

codeword n-tuple is uniquely determined by the input message k-tuple. The ratio

k/n is called the rate of the code—a measure of the amount of added redundancy.

A convolutional code is described by three integers, n, k, and K, where the ratio

k/n has the same code rate significance (information per coded bit) that it has for

block codes; however, n does not define a block or codeword length as it does

for block codes. The integer K is a parameter known as the constraint length; it

represents the number of k-tuple stages in the encoding shift register. An important
characteristic of convolutional codes, different from block codes, is that the en-

coder has memory—the n-tuple emitted by the convolutional encoding procedure

is not only a function of an input k-tuple, but is also a function of the previous

K — 1 input k-tuples. In practice, n and k are small integers and K is varied to

control the redundancy.

6.1 CONVOLUTIONAL ENCODING

In Figure 1.2 we presented a typical block diagram of a digital communication

system. A version of this functional diagram, focusing primarily on the convo-

lutional encode/decode and modulate/demodulate portions of the communication
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link, is shown in Figure 6.1. The input message source is denoted by the sequence
m = m1, m2, . . . , m,-, . . . , where each m, represents a binary digit (bit). We

shall assume that each m,- is equally likely to be a one or a zero, and independent

from digit to digit. Being independent, the bit sequence lacks any redundancy; I
that is, knowledge about bit m ,- gives no information about mj (i 7'5 j). The encoder

transforms each sequence m into a unique codeword sequence U = G(m). Even

though the sequence In uniquely defines the sequence U, a key feature of con-
volutional codes is that a given k-tuple within m does not uniquely define its

associated n-tuple within U since the encoding of each k-tuple is not only a function
of that k-tuple but is also a function of the K - 1 input k-tuples that precede it.
The sequence U can be partitioned into a sequence of branch words: U = U1,
U2, . . . , U,-, . . . . Each branch word U, is made up of binary code symbols,

often called channel symbols, channel bits, or coded bits; unlike the input message

bits the code symbols are not independent.

In a typical communication application, the codeword sequence U modulates
a waveform s(t). During transmission, the waveform s(t) is corrupted by noise, |

resulting in a received waveform s(t) and a demodulated sequence Z = Z 1, 22, I
. , Z,-, . . . , as indicated in Figure 6.1. The task of the decoder is to produce

an estimate in = m1, m2, . . . , mi, . . . ,of the original message sequence, using

the received sequence Z together with a priori knowledge of the encoding

procedure.

A general convolutional encoder, shown in Figure 6.2, is mechanized with
a kK-stage shift register and n modulo-2 adders, where K is the constraint length.
The constraint length represents the number of k-bit shifts over which a single
information bit can influence the encoder output. At each unit of time, k bits are

shifted into the first k stages of the register; all bits in the register are shifted k

stages to the right, and the outputs of the n adders are sequentially sampled to

Information Convolutional M d I tsource encode o u a e

m=m1,m2,...,mi,... U=G(m) {s(t)}
Input sequence = U1, U2, . . ., Ui, . ..

  

  

  
Codeword sequence AWGN

where Ui = u1i,. ..,uji,. . .,uni channel

   
     

Information Convolutional

sink decode /A A A

2:21,22,..., l""

where 2] =2“, . . ., zji, . . ., zni
and 2]] is the jth demodulator output
symbol of branch word Zi

 
Demodulate

Za II
E3 3 '9 _a {giltll

Figure 6.1 Encode/decode and modulate/demodulate portions of a communi-
cation link.
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m=m1,m2,...,mi,...

Input sequence
(shifted in k at a time)

kK-stage
shift register

n modulo-2
adders 

Codeword sequence U = U1, U2, . . ., Ui, . ..

where Ui = u1i,..., Ujir-- .,uni
= ith codeword branch

u“ = jth binary code symbol
of branch word Ui

Figure 6.2 Convolutional encoder with constraint length K and rate k/n.

yield the binary code symbols or coded bits. These code symbols are then used
by the modulator to specify the waveforms to be transmitted over the channel.

Since there are n coded bits for each input group of k message bits, the code rate
is k/n message bit per coded bit, where k < n.

We shall consider only the most commonly used binary convolutional en-

coders for which k = 1, that is, those encoders in which the message bits are

shifted into the encoder one bit at a time, although generalization to higher-order
alphabets is straightforward [1, 2]. For the k = 1 encoder, at the ith unit of time,

message bit m,- is shifted into the first shift register stage; all previous bits in the
register are shifted one stage to the right, and as in the more general case, the
outputs of the n adders are sequentially sampled and transmitted. Since there are

n coded bits for each message bit, the code rate is 1/11. The n code symbols
occurring at time t,- comprise the ith branch word, U,- = 111,-, M2,", . . . , uni, where

14,-, (j = 1, 2, . . . , n) is the jth code symbol belonging to the ith branch word.

Note that for the rate l/n encoder, the kK—stage shift register can be referred to

simply as a K—stage register, and the constraint length K, which was expressed
in units of k-tuple stages, can be referred to as constraint length in units of bits.

6.2 CONVOLUTIONAL ENCODER REPRESENTATION

To describe a convolutional code, one needs to characterize the encoding function

G(m), so that given an input sequence In, one can readily compute the output
sequence U. Several methods are used for representing a convolutional encoder,

the most popular being the connection pictorial, connection vectors 0r polynom-
ials, the state diagram, the tree diagram, and the trellis diagram. They are each
described below.
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6.2.1 Connection Representation

We shall use the convolutional encoder, shown in Figure 6.3, as a model for

discussing convolutional encoders. The figure illustrates a (2, 1) convolutional
encoder with constraint length K = 3. There are n = 2 modulo-2 adders; thus

the code rate k/n is %. At each input bit time, a bit is shifted into the leftmost stage

and the bits in the register are shifted one position to the right. Next, the output

switch samples the output of each modulo-2 adder (i.e., first the upper adder,
then the lower adder), thus forming the code symbol pair making up the branch

word associated with the bit just inputted. The sampling is repeated for each

inputted bit. The choice of connections between the adders and the stages of the
register gives rise to the characteristics of the code. Any change in the choice of
connections results in a different code. The connections are, of course, not chosen

or changed arbitrarily. The problem of choosing connections to yield good distance

properties is complicated and has not been solved in general; however, good codes
have been found by computer search for all constraint lengths less than about 20
[3—5].

Unlike a block code that has a fixed word length n, a convolutional code

has no particular block size. However, convolutional codes are often forced into
a block structure. by periodic truncation. This requires a number of zero bits to

be appended to the end of the input data sequence, for the purpose of clearing
orflushing the encoding shift register of the data bits. Since the added zeros carry
no information, the effective code rate falls below k/n. To keep the code rate

close to k/n, the truncation period is generally made as long as practical.

One way to represent the encoder is to specify a set of n connection vectors,
one for each of the n modulo-2 adders. Each vector has dimension K and describes

the connection of the encoding shift register to that modulo-2 adder. A one in the

ith position of the vector indicates that the corresponding stage in the shift register
is connected to the modulo-2 adder, and a zero in a given position indicates that

no connection exists between the stage and the modulo-2 adder. For the encoder

example in Figure 6.3, we can write the connection vector g1 for the upper con-

nections and g; for the lower connections as follows:

g1=111

g2=101

Consider that a message vector m = 1 0 1 is convolutionally encoded with the

encoder shown in Figure 6.3. The three message bits are inputted, one at a time,

at times t1, t2, and t3, as shown in Figure 6.4. Subsequently, (K — 1) = 2 zeros

are inputted at times t4 and t5 to flush the register and thus ensure that the tail

end of the message is shifted the full length of the register. The output sequence
is seen to be 1 1 1 0 0 0 1 0 1 1, where the leftmost symbol represents the

earliest transmission. The entire output sequence, including the code symbols as

a result of flushing, are needed to decode the message. To flush the message from

the encoder requires one less zero than the number of stages in the register, or

K — 1 flush bits. Another zero input is shown at time t6, for the reader to verify

that the corresponding branch word output is then 00.
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U1 5 First[ code symbol

I t b't I Outputnpu l ,
m ; branch word

u l Second
1 code symbol

Figure 6.3 Convolutional encoder (rate é, K = 3). 
6.2.1.1 Impulse Response of the Encoder

We can approach the encoder in terms of its impulse response—that is, the

response of the encoder to a single “one” bit that moves through it. Consider

the contents of the register in Figure 6.3 as a one moves through it.

 

Register Branch word
contents —

“1 L12

1 0 0 1 1

0 1 0 1 0

0 0 1 1 1

Input sequence: 1 0 0

Output sequence: 1 1 1 0 1 1

The output sequence for the input “one” is called the impulse response of the

encoder. Then for the input sequence m = 1 0 1, the output may be found by

the superposition or the linear addition of the time-shifted input “impulses” as

 

follows:

Input m Output

1 1 1 1 0 1 1

0 0 0 0 0 0 0

1 1 1 1 0 1 1

Modulo-2 sum: 1 1 1 0 0 0 1 0 1 1

Observe that this is the same output as that obtained in Figure 6.4, demonstrating

that convolutional codes are linear—just as the linear block codes of Chapter 5.

It is from this property of generating the output by the linear addition of time-

shifted impulses, or the convolution of the input sequence with the impulse re-

sponse of the encoder, that we derive the name convolutional encoder. Often,
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+ Figure 6.4 Convolutionally encoding a
message sequence with a rate is, K = 3

Output sequence: 11 10 00 1O 11 encoder.
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this encoder characterization is presented in terms of an infinite-order generator ‘
matrix [6].

‘ Notice that the eflective code rate for the foregoing example with 3-bit input
sequence and 10-bit output sequence is k/n = %—quite a bit less than the rate %

that might have been expected from the knowledge that each input data bit yields

a pair of output channel bits. The reason for the disparity is that the final data
bit into the encoder needs to be shifted through the encoder. All of the output

channel bits are needed in the decoding process. If the message had been longer,

say 300 bits, the output codeword sequence would contain 604 bits, resulting in
a code rate of 300/604—much closer to %.

Sometimes, the encoder connections are characterized by generator poly-

nomials, similar to those used in Chapter 5 for describing the feedback shift reg-

ister implementation of cyclic codes. We can represent a convolutional encoder

with a set of n generator polynomials, one for each of the n modulo-2 adders.

Each polynomial is of degree K — 1 or less and describes the connection of the

encoding shift register to that modulo-2 adder, much the same way that a con-

nection vector does. The coefficient of each term in the (K — 1)-degree polynomial

is either 1 or 0, depending on whether a connection exists or does not exist between

the shift register and the modulo—2 adder in question. For the encoder example

in Figure 6.3, we can write the generator polynomial g1(X) for the upper con-

nections and g2(X) for the lower connections as follows:

g1(X)=1+X+X2

g2(X)=1+X2

[ 6.2.1.2 Polynomial Representation

|

where the lowest-order term in the polynomial corresponds to the input stage of

the register. The output sequence is found as follows:

U(X) = m(X)g1 (X) interlaced with m(X)g2(X)

First, express the message vector m = l 0 l as a polynomial—that is, m(X) =

l + X2. We shall again assume the use of zeros following the message bits, to

flush the register. Then the output polynomial, U(X), or the output sequence, U,

of the Figure 6.3 encoder can be found for the input message m as follows:

m(X)g1(X) = (1 + X2)(1 + X + X2) = 1 + X + X3 + X4

m(X)g2(X) = (1 + X2)(1 + X2) = 1 + X4

m(X)g1(X) = 1 + X + 0X2 + X3 + X4

m(X)g2(X) = 1 + 0X + 0X2 + 0X3 + X4

U(X) = (1,1) + (1, 0)X + (0, 0)X2 + (1, 0)X3 + (1,1)X4

U = 1 l 1 0 0 0 10 11
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In this example we started with another point of view—that the convolutional

encoder can be treated as a set of cyclic code shift registers. We represented the

encoder with polynomial generators as used for describing cyclic codes. However,

we arrived at the same output sequence as in Figure 6.4, and the same output

sequence as the impulse response treatment of the preceding section. For a good

presentation of convolutional code structure in the context of linear sequential
circuits, see Reference [7].

6.2.2 State Representation and the State Diagram

The state of a rate l/n convolutional encoder is defined as the contents of the

rightmost K — 1 stages (see Figure 6.3). Knowledge of the state together with I

knowledge of the next input is necessary and sufficient to determine the next |
output. Let the state of the encoder at time, ti, be defined as X,- = mi_1, mi_2,

. . . , m,-_K+1. The ith codeword branch, U,-, is completely determined by state

X,- and the present input bit mi; thus the state X,- represents the past history of

the encoder in determining the encoder output. The encoder state is said to be

Markov, in the sense that the probability, P(X,~+1|X.-, Xi_1, . . . , X0), of being
in state X{+1, given all previous states, depends only on the most recent state,

Xi; that is, the probability is equal to P(X,-+1|X,-).
One way to represent simple encoders is with a state diagram; such a re-

presentation for the encoder in Figure 6.3 is shown in Figure 6.5 . The states, shown

in the boxes of the diagram, represent the possible contents of the rightmost

K — 1 stages of the register, and the paths between the states represent the output

branch words resulting from such state transitions. The states of the register are

designated a = 00, b = 10, c = 01, and d = 11; the diagram shown in Figure

6.5 illustrates all the state transitions that are possible for the encoder in Figure

00

 
Output

branch word

 

 I Encoderstate

Legend

Input bit 0

r/ N‘

l\ )l ——— Input bit1
\\ _, / Figure 6.5 Encoder state diagram (rate

10 in K = 3)-
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[ 6.3. There are only two transitions emanating from each state, corresponding to

3 l the two possible input bits. Next to each path between states is written the output
! branch word associated with the state transition. In drawing the path, we use the
1 l convention that a solid line denotes a path associated with an input bit, zero, and
j a dashed line denotes a path associated with an input bit, one. Notice that it is
] not possible in a single transition to move from a given state to any arbitrary

state. As a consequence of shifting-in one bit at a time, there are only two possible

state transitions that the register can make at each bit time. For example, if the

present encoder state is 00, the only possibilities for the state at the next shift are

l 00 or 10.

l Example 6.1 Convolutional Encoding

‘ For the encoder shown in Figure 6.3, show the state changes and the resulting outputcodeword sequence U for the message sequence in = 1 1 0 1 1, followed by
K — 1 = 2 zeros to flush the register. Assume that the initial contents of the register

I are all zeros.

l Solution
Branch
word

State at at time t,-
Input Register State at time
bit m; contents time t,- t,-+1 ul uz

— 0 0 0 0 0 0 0 —
1 1 O 0 0 0 1 0 1 1

1 1 1 0 1 0 1 1 0 1
0 0 1 1 1 1 0 1 0 1

1 1 0 1 0 1 1 0 0 0
1 1 1 0 1 0 1 1 0 1
0 0 1 1 1 1 0 1 0 1

0 0‘9“}, 0 1 0 0 1 1

Vi
/state I.-
state
ti+1

Output sequence: U = 1 1 0 l 0 1 0 0 0 1 0 1 1 1

Example 6.2 Convolutional Encoding

In Example 6.1 the initial contents of the register are all zeros. This is equivalent
to the condition that the given input sequence is preceded by two zero bits (the

encoding is a function of the present bit and the K — 1 prior bits). Repeat Example
6.1 with the assumption that the given input sequence is preceded by two one bits,
and verify that now the codeword sequence U for input sequence m = 1 1 0 1 1
is different than the codeword found in Example 6.1.
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.1.—

Solution

The entry “X” signifies “don’t know.”

Branch
word at

State at time 1‘:
Input Register State at time

blt m,- contents time I; ti+1 M1 ”2

— 1 1 x 1 x l 1 -

1 1 1 l 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 0

0 0 1 1 1 1 0 1 0 1
1 1 0 1 0 1 1 0 0 0
1 1 l 0 l 0 1 1 0 1
0 0 1 1 1 1 0 1 0 1
0 0 0 1 0 1 0 0 l 1

‘7
jstate I,-
state

31+! _

Output sequence: U = 1 0 1 0 0 1 0 0 0 1 0 1 1 1

By comparing this result with that of Example 6.1, we can see that each branch

word of the output sequence U is not only a function of the input bit, but is also

a function of the K — 1 prior bits.

6.2.3 The Tree Diagram

Although the state diagram completely characterizes the encoder, one cannot

easily use it for tracking the encoder transitions as a function of time since the

diagram cannot represent time history. The tree diagram adds the dimension of
time to the state diagram. The tree diagram for the covolutional encoder shown

in Figure 6.3 is illustrated in Figure 6.6. At each successive input bit time the

encoding procedure can be described by traversing the diagram from left to right,
each tree branch describing an output branch word. The branching rule for finding
a codeword sequence is as follows: If the input bit is a zero, its associated branch

word is found by moving to the next rightmost branch in the upward direction.

If the input bit is a one, its branch word is found by moving to the next rightmost
branch in the downward direction. Assuming that the initial contents of the en-

coder is all zeros, the diagram shows that if the first input bit is a zero, the output
branch word is 00 and, if the first input bit is a one, the output branch word is

11. Similarly, if the first input bit is a one and the second input bit is a zero, the

second output branch word is 10. Or, if the first input bit is a one and the second

input bit is a one, the second output branch word is 01. Following this procedure
we see that the input sequence 1 1 0 1 1 traces the heavy line drawn on the tree
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00 a

00
11 a

11
10 c

10
00 b

01
11 b

11
01 c

00
01 d

01
10 d

1 w[J a

1 0000 a
11

11 a
10

11 b
01

10 c
11

10 c
00

00 b
01

01 d
10

11 b
00

11 a
11

01 c
10

00 b
01

01 d
11

01 c
00

10 d
01

10 d
10 _

Figure 6.6 Tree representatlon of

t1 t2 t3 t4 t5 encoder (rate %, K = 3).

diagram in Figure 6.6. This path corresponds to the following output codeword
sequence11101010001.

The added dimension of time in the tree diagram (compared to the state

diagram) allows one to dynamically describe the encoder as a function of a par-
ticular input sequence. However, can you see one problem in trying to use a tree
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diagram for describing a sequence of any length? The number of branches increase
as a function of 2’“, where L is the number of bits in the input sequence. You
would quickly run out of paper, and patience.

6.2.4 The Trellis Diagram

Observation of the Figure 6.6 tree diagram shows that for this example, the struc-

‘ ture repeats itself at time is, after the third branching (in general, the tree structurerepeats after K brrmchings, where K is the constraint length). We label each node
' in the tree of Figure 6.6 to correspond to the four possible states in the shift

register, as follows: a = 00, b = 10, c = 01, and d = 11. The first branching of
the tree structure, at time t1, produces a pair of nodes labeled a and b. At each
successive branching the number of nodes double. The second branching, at time

I 12, results in four nodes labeled a, b, c, and d. After the third branching there
are a total of eight nodes; two of them are labeled a, two are labeled b, two are

| labeled 0, and two are labeled d. We can see that all branches emanating fromtwo nodes of the same state generate identical branch word sequences. From this
point on, the upper and the lower halves of the tree are identical. The reason for
this should be obvious from examination of the encoder in Figure 6.3. As the
fourth input bit enters the encoder on the left, the first input bit is ejected on the
right and no longer influences the output branch words. Consequently, the input
sequences] 0 0 x y. . .andO 0 0 x y. . . .where the leftmost bitisthe earliest
bit. generate the same branch words after the {K = 3)rd branching. This means
that any two nodes having the same state label. at the same time if, can be merged
since all succeeding paths will be indistinguishable. If we do this to the tree struc-
ture of Figure 6.6, we obtain another diagram, called the trellis. The trellis dia—

 
State a = 00 .1— 1— ¢_—

 

 

\11 ‘ \\11 11 __ Codeword

\\ - _ branch

b = 10 o 7

C = 01 o

d = 11 o '10 10 10

Legend

lnput bit 0

————— Input bit 1

Figure 6.7 Encoder trellis diagram (rate v}, K = 3).
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se gram, by exploiting the repetitive structure, provides a more manageable encoder
)u | description than does the tree diagram. The trellis diagram for the convolutional

I encoder of Figure 6.3 is shown in Figure 6.7.
In drawing the trellis diagram, we use the same convention that we intro-

duced with the state diagram—that a solid line denotes the output generated by

an input bit, zero, and a dashed line denotes the output generated by an input

 

c- bit, one. The nodes of the trellis characterize the encoder states; the first row
re nodes correspond to the state a = 00, the second and subsequent rows correspond
ie to the states b = 10, c = 01, and d = 11. At each unit of time the trellis requires

ift 2"—1 nodes to represent the 2’“1 possible encoder states. The trellis in our ex-
of ample assumes a fixed periodic structure after trellis depth 3 is reached (at time
:h I t4). In the general case, the fixed structure prevails after depth K is reached. After
16 this point, each of the states can be entered from either of two preceding states.
re Also, each of the states can transition to one of two states. Of the two outgoing
re branches, one corresponds to an input bit zero and the other corresponds to an
In input bit one. On Figure 6.7 the output branch words corresponding to the state
is transitions appear as labels on the trellis branches.
3r

1e

1e 6.3 FORMULATION OF THE

ut CONVOLUTIONAL DECODING PROBLEM
st

is 6.3.1 Maximum Likelihood Decoding
:d

"- If all input message sequences are equally likely, a decoder that achieves the
1- minimum probability of error is one that compares the conditional probabilities,

also called the likelihood functions, P(ZIU(’“)), where Z is the received sequence

and U‘m) is one of the possible transmitted sequences, and chooses the maximum.
The decoder chooses U‘m') if

rd P(Z|U(’"')) = max P(ZIU(’")) (6.1)
I all U0")

The maximum likelihood concept, as stated in Equation (6.1), is a fundamental

development of decision theory (see Appendix B); it is the formalization of a
“common-sense” way to make decisions when there is statistical knowledge of
the possibilities. In the binary demodulation treatment in Chapters 2 and 3 there
were only two equally likely possible signals, s1(t) or s2(t), that might have been
transmitted. Therefore, to make the binary maximum likelihood decision, given

a received signal, meant only to decide that s1(t) was transmitted if

p(z|sl) > p(zIS2)

otherwise, to decide that s2(t) was transmitted. The parameter z represents z( T),
the receiver output at a symbol duration time t = T. However, when applying
maximum likelihood to the convolutional decoding problem, there are typically

a multitude of possible codeword sequences that might have been transmitted.
To be specific, an L-bit codeword sequence is a member of a set of 2L possible
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sequences. Therefore, in the maximum likelihood context, we can say that the |
decoder chooses a particular U‘m') as the transmitted sequence if the likelihood
P(ZIU(’"')) is greater than the likelihoods of all the other possible transmitted
sequences. Such an optimal decoder, which minimizes the error probability (for I
the case where all transmitted sequences are equally likely), is known as a max-

imum likelihood decoder. The likelihood functions are given or computed from

the specifications of the channel.
We will assume that the noise is additive white Gaussian with zero mean

and the channel is memoryless, which means that the noise affects each code

symbol independently of all the other symbols. For a convolutional code of rate I
1/n, we can therefore express the likelihood, P(ZIU(’")) as follows: |

P(ZIU(’")) = H P(Z:IU$’”)) = H H P(zjilu§?")) (6-2) |1': 1 1‘: 1 j= 1

where Z,- is the ith branch of the received sequence Z, US“) the ith branch of a
particular codeword sequence U0"), 21-; the jth code symbol of Z,-, and uj’i") the jth
code symbol of UV"), each branch comprising n code symbols. The decoder prob-
lem consists of choosing a path through the trellis of Figure 6.7 (each possible

path defines a codeword) such that
x n

H H P(zj,-lu}Z-")) is maximized (6.3)i = 1 j = 1

Generally, it is computationally more convenient to use the logarithm of the
likelihood function since this permits the summation, instead of the multiplication,
of terms. We are able to use this transformation because the logarithm is a

monotonically increasing function and thus will not alter the final result in our
codeword selection. We can define the log-likelihood function 'yU(m) as

yU(m) = logP(Z|U(’")) = E logP(Z,~lU§’")) = 2 E logP(zJ-,-|u}£")) (6.4)i = 1 i = 1 j = 1

The decoder problem now consists of choosing a path through the tree of Figure
6.6 or the trellis of Figure 6.7 such that yU(m) is maximized. For the decoding of
convolutional codes, either the tree or the trellis structure can be used. In the

tree representation of the code, the fact that the paths remerge is ignored. Since
the number of possible sequences for an L-symbol-long sequence is 2’“, maximum
likelihood decoding of an L-bit—long received sequence, using a tree diagram,
requires the “brute force” or exhaustive comparison of 2’“ accumulated log-like-
lihood metrics, representing all the possible different codewords that could have
been transmitted. Hence it is not practical to consider maximum likelihood de-

coding with a tree structure. It is shown in a later section that with the use of the
trellis representation of the code, it is possible to configure a decoder which can
discard the paths that could not possibly be candidates for the maximum likelihood
sequence. The decoded path is chosen from some reduced set of surviving paths.
Such a decoder is still optimum in the sense that the decoded path is the same
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as the decoded path obtained from a “brute force” maximum likelihood decoder,

but the early rejection of unlikely paths reduces the decoding complexity.
For an excellent tutorial on the structure of convolutional codes, maximum

likelihood decoding, and code performance, see Reference [8]. There are several

algorithms that yield approximate solutions to the maximum likelihood decoding

problem, including sequential [9, 10] and threshold [11]. Each of these algorithms
is suited to certain special applications, but are all suboptimal. In contrast, the

Viterbi decoding algorithm performs maximum likelihood decoding and is there-

fore optimal. This does not imply that the Viterbi algorithm is best for every

application; there are severe constraints imposed by hardware complexity. The
Viterbi algorithm is considered in Sections 6.3.3 and 6.3.4.

6.3.2 Channel Models: Hard versus Soft Decisions

Before specifying an algorithm that will determine the maximum likelihood de-
cision, let us describe the channel. The codeword sequence U0"), made up of
branch words, with each branch word comprised of n code symbols, can be con-

sidered to be an endless stream, as opposed to a block code, in which the source

data and their codewords are partitioned into precise block sizes. The codeword

sequence shown in Figure 6.1 emanates from the convolutional encoder and enters

the modulator, where the code symbols are transformed into signal waveforms.

| The modulation may be baseband (e.g., pulse waveforms) or bandpass (e.g., PSK
I or FSK). In general, 6 symbols at a time, where (f is an integer, are mapped into

I signal waveforms s,-(t), wherei = 1,2, . . . ,M = 28. When€ = 1, the modulator
| maps each code symbol into a binary waveform. The channel over which the

waveform is transmitted is assumed to corrupt the signal with Gaussian noise.

When the corrupted signal is received, it is first processed by the demodulator
and then by the decoder.

Consider that a binary signal, transmitted over a symbol interval (0, T), is

represented by s1(t) for a binary one and sz(t) for a binary zero. The received
signal is r(t) = s,~(t) + n(t), where n(t) is a zero-mean Gaussian noise process.
In Sections 2.9 and 3.4 we described the detection of r(t) in terms of two basic

steps. In the first step, the received waveform is reduced to a single number, z(T)
= a, + no, where a,- is the signal component of z( T) and no is the noise component.

The noise component, no, is a zero-mean Gaussian random variable, and thus

z( T) is a Gaussian random variable with a mean of either a1 or a; depending on
whether a binary one or binary zero was sent. In the second step of the detection

process a decision was made as to which signal was transmitted, on the basis of
comparing z(T) to a threshold. The conditional probabilities of z(T), p(zls 1), and
p(z|s2) are shown in Figure 6.8, labeled likelihood of s1 and likelihood of s2. The
demodulator in Figure 6.1, converts the set of time-ordered random variables,

{z(T)}, into a code sequence, Z, and passes it on to the decoder. The demodulator
output can be configured in a variety of ways. It can be implemented to make a
firm or hard decision as to whether z( T) represents a zero or a one. In this case,
the output of the demodulator is quantized to two levels, zero and one, and fed
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Figure 6.8 Hard and soft decoding decisions.

into the decoder (this is exactly the same threshold decisionthatwas made in Chapters

2 and 3). Since the decoder operates on the hard decisions made by the demod-

ulator, the decoding is called hard-decision decoding.

The demodulator can also be configured to feed the decoder with a quantized

value of z(T) greater than two levels, or with an unquantized or analog value of
z(I). Such an implementation furnishes the decoder with more information than

is provided in the hard-decision case. When the quantization level of the demod-
ulator output is greater than two, the decoding is called soft-decision decoding.

Eight levels (3-bits) of quantization are illustrated on the abscissa of Figure 6.8.
When the demodulator sends a hard binary decision to the decoder, it sends it a

single binary symbol. When the demodulator sends a soft binary decision, quan-
tized to eight levels, it sends the decoder a 3-bit word describing an interval along

z(T). In effect, sending such a 3-bit word in place of a single binary symbol is
equivalent to sending the decoder a measure of confidence along with the code
symbol. Referring to Figure 6.8, if the demodulator sends 1 1 1 to the decoder,
this is tantamount to declaring the code symbol to be a one with very high con-

fidence, while sending a l 0 0 is tantamount to declaring the code symbol to be

a one with very low confidence. It should be clear that ultimately, every message
decision out of the decoder must be a hard decision; otherwise, one might see

computer printouts that read: “think it’s a 1,” “think it’s a 0,” and so on. The
idea behind the demodulator not making hard decisions and sending more data

(soft decisions) to the decoder can be thought of as an interim step to provide the
decoder with more information, which the decoder then uses for recovering the

message sequence (with better error performance than it could in the case of hard-
decision decoding).

For a Gaussian channel, eight-level quantization results in a performance

improvement of approximately 2 dB in required signal-to-noise ratio compared
to two-level quantization. This means that eight-level soft-decision decoding can

provide the same probability of bit error as that of hard-decision decoding, but
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requires 2 dB less Eb/No for the same performance. Analog (or infinite-level

quantization) results in a 2.2-dB performance improvement over two-level quan-

tization; therefore, eight-level quantization results in a loss of approximately 0.2

dB compared to infinitely fine quantization. For this reason, quantization to more

than eight levels can yield little performance improvement [12]. What price is

paid for such improved soft-decision—decoder performance? In the case of hard—
decision decoding, a single bit is used to describe each code symbol, while for

eight-level quantized soft—decision decoding 3 bits are used to describe each code
symbol; therefore, three times the amount of data must be handled during the

l decoding process. Hence the price paid for soft-decision decoding is an increase

in required memory size at the decoder (and possibly a speed penalty).

Block decoding algorithms and convolutional decoding algorithms have been

devised to operate with hard or soft decisions. However, soft-decision decoding
is generally not: used with block codes because it is considerably more difficult
than hard-decision decoding to implement. The most prevalent use of soft-decision

decoding is with the Viterbi convolutional decoding algorithm, since with Viterbi

decoding, soft decisions represent only a trivial increase in computation.

6.3.2.1 Binary Symmetric Channel

A binary symmetric channel (BSC) is a discrete memoryless channel (see

Section 5.3.1) that has binary input and output alphabets and symmetric transition

probabilities. It can be described by the conditional probabilities

PMD=Pmm=p ma

Pmn=PMm=1—p

as illustrated in Figure 6.9. The probability that an output symbol will differ from

the input symbol is p, and the probability that the output symbol will be identical
to the input symbol is (1 — p). The BSC is an example of a hard-decision channel,
which means that, even though continuous-valued signals may be received by the

demodulator, a BSC allows only firm decisions such that each demodulator output

symbol, zfi, as shown in Figure 6.1, consists of one of two binary values. The
indexing of Z], pertains to the jth code symbol of the ith branch word, Z. The
demodulator then feeds the sequence Z = {Z} to the decoder.

Transition probabilities

1-D 

 
 
 

Received
signals

Transmitted
signals

1
 

Figure 6.9 Binary symmetric channel (hard-decision channel).
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Let U(’") be a transmitted codeword over a BSC with symbol error proba-

bility p, and let Z be the corresponding received decoder sequence. As noted

previously, a maximum likelihood decoder chooses the codeword U‘m') which

maximizes the likelihood, P(ZlU‘ml), or its logarithm. For a BSC, this is equivalent
to choosing the codeword, Um"), that is closest in Hamming distance to Z [8].
Thus Hamming distance is an appropriate metric to describe the distance or close-

ness of fit between U0") and Z. From all the possible transmitted sequences, U0"),

the decoder chooses the U‘m') sequence for which the distance to Z is minimum.

Suppose that U('") and Z are each L-bit-long sequences and that they differ

in dm positions [i.e., the Hamming distance between U0") and Z is dm]. Then,

since the channel is assumed memoryless, the probability that this U(’") was trans-

formed to the specific received Z at distance dm from it can be written

P(ZIU('")) = 17"” (1 - p)L_d’" (6.6)

and the log-likelihood function is

log P(Z|U(’")) = —dm log (1);) + Llog(l — p) (6.7)
If we compute this quantity for each possible transmitted sequence, the second

term will be constant in each case. Assuming that p < 0.5, we can express Equa-
tion (6.7) as

log P(Z|U(’")) = —Adm — B (6.8)

where A and B are positive constants. Therefore, choosing the codeword U‘m')

such that the Hamming distance, d,,,, to the received sequence Z is minimized

corresponds to maximizing the likelihood or log-likelihood metric. Consequently,

over a BSC, the log-likelihood metric is conveniently replaced by the Hamming

distance, and a maximum likelihood decoder will choose, in the tree or trellis

diagram, the path whose corresponding sequence, U‘m'), is at the minimum Ham-

ming distance to the received sequence Z.

6.3.2.2 Gaussian Channel

For a Gaussian channel, each demodulator output symbol, Zji, as shown in

Figure 6.1, is a value from a continuous alphabet. The symbol Zji cannot be labeled
as a correct or incorrect detection decision. Sending the decoder such soft de-

cisions can be viewed as sending a family of conditional probabilities of the dif-

ferent symbols (see Section 5.3.1). It can be shown [8] that maximizing P(Z | U”)
is equivalent to maximizing the inner product between the codeword sequence,

U0") (consisting of binary symbols), and the analog-valued received sequence, Z.
Thus the decoder chooses the codeword U‘m') if it maximizes

E E zjiuffi") (6.9)
i=1j=1

This is equivalent to choosing the codeword Um") that is closest in Euclidean

distance to Z. Even though the hard- and soft-decision channels require different
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ba' metrics, the concept of choosing the codeword U0”) that is closest to the received

led sequence, Z, is the same in both cases. To implement the maximization of Equa-
'Ch tion (6.9) exactly, the decoder would have to be able to handle analog-valued
:nt arithmetic operations. This is impractical because the decoder is generally im-

31- plemented digitally. Thus it is necessary to quantize the received symbols zji.

:fi' Does Equation (6.9) remind you of the demodulation treatment in Chapter 3?
. Equation (6.9) is the discrete version of correlating an input received waveform,

T1 r(t), with a reference waveform, s ,-(t), as expressed in Equation (3.34). The quan-
ler tized Gaussian channel, typically referred to as a soft-decision channel, is the
:11, channel model assumed for the soft-decision decoding described earlier.

6.3.3 The Viterbi Convolutional Decoding Algorithm

I5
) The Viterbi decoding algorithm was discovered and analyzed by Viterbi [13] in

1967. The Viterbi algorithm essentially performs maximum likelihood decoding;

however, it reduces the computational load by taking advantage of the special
7) structure in the code trellis. The advantage of Viterbi decoding, compared with

brute-force decoding, is that the complexity of a Viterbi decoder is not a function
Id of the number of symbols in the codeword sequence. The algorithm involves

3— calculating a measure of similarity, or distance, between the received signal, at
time t,-, and all the trellis paths entering each state at time t.-. The Viterbi algorithm

8) removes from consideration those trellis paths that could not possibly be candi-
dates for the maximum likelihood choice. When two paths enter the same state,

"i the one having the best metric is chosen; this path is called the surviving path.
5d This selection of surviving paths is performed for all the states. The decoder

it, continues in this way to advance deeper into the trellis, making decisions by

lg eliminating the least likely paths. The early rejection of the unlikely paths reduces
is the decoding complexity. In 1969, Omura [14] demonstrated that the Viterbi al-

'-'~ gorithm is, in fact, maximum likelihood. Note that the goal of selecting the op-
timum path can be expressed, equivalently, as choosing the codeword with the
maximum likelihood metric, or as choosing the codeword with the minimum dis—
tance metric.

:11 6.3.4 An Example of Viterbi Convolutional Decoding

For simplicity, a BSC is assumed; thus Hamming distance is a proper distance

L) measure. The encoder for this example is shown in Figure 6.3, and the encoder
trellis diagram is shown in Figure 6.7. A similar trellis can be used to represent
the decoder, as shown in Figure 6.10. The basic idea behind the decoding pro-
cedure can best be understood by examining the Figure 6.7 encoder trellis in

concert with the Figure 6.10 decoder trellis. For the decoder trellis it is convenient
to label each trellis branch at time t,- with the Hamming distance between the

received code symbols and the corresponding branch word from the encoder
trellis. The example in Figure 6.10, shows a message sequence, In, the corre-

 
" sponding codeword sequence, U, and a noise corrupted received sequence, Z =
1 11 01 01 10 01 . . . . The branch words seen on the encoder trellis branches
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Input data sequence m: 1 1 O 1 1

Transmitted codeword U: 11 01 01 00 01

Received sequence 2: 11 01 O1 10 01 - - - I

State a = 00 l__
 

b=100

c=01o 
Figure 6.10 Decoder trellis diagram (rate 2%, K = 3).

characterize the encoder in Figure 6.3, and are known a priori to both the encoder
and the decoder. These encoder branch words are the code symbols that would

be expected to come from the encoder output as a result of each of the state
transitions. The labels on the decoder trellis branches are accumulated by the
decoder 0n the fly. That is, as the code symbols are received, each branch of the
decoder trellis is labeled with a metric of similarity (Hamming distance) between

the received code symbols and each of the branch words for that time interval.
From the received sequence, Z, in Figure 6.10, we see that the code symbols
received at time t1 are 11. In order to label the decoder branches at time 11 with

the appropriate Hamming distance metric, we look at the Figure 6.7 encoder
trellis. Here we see that a state 00 —-> 00 transition yields an output branch word
of 00. But we received 11. Therefore, on the decoder trellis we label the state 00
—-> 00 transition with the Hamming distance between them, namely 2. Looking at

the encoder trellis again, we see that a state 00 —> 10 transition yields an output
branch word of 11, which corresponds exactly with the code symbols we received
at time t1. Therefore, on the decoder trellis, we label the state 00 —> 10 transition
with a Hamming distance of 0. We continue labeling the decoder trellis branches
in this way as the symbols are received at each time t,-. The decoding algorithm
uses these Hamming distance metrics to find the most likely (minimum distance)
path through the trellis.

The basis of Viterbi decoding is the following observation: If any two paths
in the trellis merge to a single state, one of them can always be eliminated in the
search for an optimum path. For example, Figure 6.11 shows two paths merging
at time t5 to state 00. Let us define the cumulative Hamming path metric of a
given path at time t,- as the sum of the branch Hamming distance metrics along
that path up to time t,~. In Figure 6.11 the upper path has metric 4; the lower has
metric l. The upper path cannot be a portion of the optimum path because the
lower path, which enters the same state, has a lower metric. This observation
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holds because of the Markov nature of the encoder state: The present state sum-

' marizes the encoder history in the sense that previous states cannot affect future
states or future output branches.

‘ At each time t,~ there are 2K—l states in the trellis, where K is the constraint
length, and each state can be entered by means of two paths. Viterbi decoding

consists of computing the metrics for the two paths entering each state and elim-

inating one of them. This computation is done for each of the 2’“ 1 nodes at time

t,-; then the decoder moves to time n+1 and repeats the process. The first few

steps in our decoding example are as follows (see Figure 6.12). Assume that the

input data sequence In, codeword U, and received sequence Z are as shown in
I Figure 6.10. Assume that the decoder knows the correct initial state of the trellis.
‘ (This assumption is not necessary in practice, but simplifies the explanation.) At

time t1 the received code symbols are 11. From state 00 the only possible tran-

‘ sitions are to state 00 or state 10, as shown in Figure 6.12a. State 00 —> 00 transition
has branch metric 2; state 00 —> 10 transition has branch metric 0. At time t; there

are two possible branches leaving each state, as shown in Figure 6.12b. The

cumulative path metrics of these branches are labeled Aa, M, AC, and Ad, cor-

responding to the terminating state. At time t3 in Figure 6.120 there are again two

1‘ branches diverging from each state. As a result, there are two paths entering each

i state at time t4. As noted previously, one path entering each state can be elimi-

* nated, namely, the one having the larger cumulative path metric. Should metrics

of the two entering paths be of equal value, one path is chosen for elimination

by using an arbitrary rule. The surviving path into each state is shown in Figure

I 6.12d. At this point in the decoding process, there is only a single surviving path
between times t1 and t2. Therefore, the decoder can now decide that the state

; transition which occurred between t1 and t2 was 00 —-> 10. Since this transition is

1 produced by an input bit one, the decoder outputs a one as the first decoded bit.

' Here we can see how the decoding of the surviving branch is facilitated by having

i drawn the lattice branches with solid lines for input zeros and dashed lines for

l input ones. Note that the first bit was not decoded until the path metric com—

putation had proceeded to a much greater depth into the trellis. For a typical

t1 t2 t3 t4 t5

/ Path metric = 4

State a = 00.__
-. 0\

\.
b=100

c=01lI

d=11o

 
Figure 6.11 Path metrics for two merging paths.
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decoder implementation, this represents a decoding delay which can be as much
as five times the constraint length in bits.

At each succeeding step in the decoding process, there will always be two I
possible paths entering each state; one of the two will be eliminated by comparing
the path metrics. Figure 6.12e shows the next step in the decoding process. Again,
at time Is there are two paths entering each state, and one of each pair can be

eliminated. Figure 6.12f shows the survivors at time Is. Notice that in our example
we cannot yet make a decision on the second input data bit because there still
are two paths leaving the state 10 node at time t2. At time t6 in Figure 6.12g we
again see the pattern of remerging paths, and in Figure 6.12h we see the survivors
at time Is. Also, in Figure 6.12h the decoder outputs one as the second decoded

bit, corresponding to the single surviving path between t2 and t3. The decoder
continues in this way to advance deeper into the trellis and to make decisions on

the input data bits by eliminating all paths but one.

 
Path metric Path metric

[1 t2 T1 2 t2 1 t3
a=00lf2—' ra=2 a=00'\——‘\——° )‘a:3

._ an
._\_\ _

b=100 v kb=0 b—10- kb=3

c = 01 0 RC = 2

d = 11 - )\d = 0

(a) (b)

Path metric

Ra = 3

Ab = 3

RC = 0

Ad = 2

 
(C) (d)

Figure 6.12 Selection of survivor paths. (a) Survivors at t2. {b} Survivors at :3. (c) Metric
comparisons at :4. (d) Survivors al tr. (e) Metric comparisons at I5. (1) Survivors at 15. (g)
Metric comparisons at t6. (h) Survivors at Is.
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Figure 6.12 (Continued)

6.3.5 Path Memory and Synchronization

The storage requirements of the Viterbi decoder grow exponentially with con-

straint length K. For a code with rate 1/n, the decoder retains a set of 2"” paths
after each decoding step. With high probability, these paths will not be mutually

disjoint very far back from the present decoding depth [12]. All of the 2K‘ 1 paths
tend to have a common stem which eventually branches to the various states.

Thus if the decoder stores enough of the history of the 2K ‘1 paths, the oldest bits

I on all paths will be the same. A simple decoder implementation, then, contains

afixed amount ofpath history and outputs the oldest bit on an arbitrary path each

time it steps one level deeper into the trellis. The amount of path storage required,
u, is [12]

u = h2K_1 (6.10)

where h is the length of the information bit path history per state. A refinement,

which minimizes the value of h, uses the oldest bit on the most likely path as the

decoder output, instead of the oldest bit on an arbitrary path. It has been dem-
onstrated [12] that a value of h of4 or 5 times the code constraint length is sufficient

for near-optimum decoder performance. The storage requirement, u, is the basic

limitation on the implementation of Viterbi decoders. The current state of the art
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limits decoders to a constraint length of about K = 10. Efforts to increase coding

gain by further increasing constraint length are met by the exponential increase
in memory requirements (and complexity) that follows from Equation (6.10).

Branch word synchronization is the process of determining the beginning of
a branch word in the received sequence. Such synchronization can take place

without new information being added to the transmitted symbol stream because

the received data appear to have an excessive error rate when not synchronized.

Therefore, a simple way of accomplishing synchronization is to monitor some
concomitant indication of this large error rate, that is, the rate at which the path

metrics are increasing or the rate at which the surviving paths in the trellis merge.

The monitored parameters are compared to a threshold, and synchronization is
then adjusted accordingly.

6.4 PROPERTIES OF CONVOLUTIONAL CODES

6.4.1 Distance Properties of Convolutional Codes

Let us consider the distance properties of convolutional codes in the context of

our simple encoder in Figure 6.3 and its trellis diagram in Figure 6.7. We want
to evaluate the distance between all possible pairs of codeword sequences. As in

the case of block codes (see Section 5.5.2), we are interested in the minimum

distance between all pairs of such codeword sequences in the code, since the
minimum distance is related to the error-correcting capability of the code. Because

a convolutional code is a group or linear code [6], there is no loss in generality

in simply finding the minimum distance between each of the codeword sequences
and the all-zeros sequence. Assuming that the all—zeros input sequence was trans-

mitted, the paths of interest are those that start and end in the 00 state and do
not return to the 00 state anywhere in between. An error will occur whenever the

distance of any other path that merges with the a = 00 state at time t,~ is less than
that of the all-zeros path up to time t;, causing the all-zeros path to be discarded
in the decoding process. In other words, given the all-zeros transmission, an error
occurs whenever the all-zeros path does not survive. The minimum distance for

making such an error can be found by exhaustively examining every path from
the 00 state to the 00 state. First, let us redraw the trellis diagram, shown in Figure

6.13, labeling each branch with its Hamming distance from the all-zeros codeword
instead of with its branch word symbols. The Hamming distance between two

unequal-length sequences will be found by first appending the necessary number
of zeros to the shorter sequence to make the two sequences equal in length.

Consider all the paths that diverge from the all-zeros path and then remerge for
the first time at some arbitrary node. From Figure 6.13 we can compute the

distances of these paths from the all-zeros path. There is one path at distance 5
from the all-zeros path; this path departs from the all-zeros path at time I, and

merges with it at time t4. Similarly, there are two paths at distance 6, one which
departs at time t1 and merges at time t5, and the other which departs at time [1
and merges at time t6, and so on. We can also see from the dashed and solid lines
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State a = 00

b=10a

c=01¢ 
d=11o
 

Figure 6.13 Trellis diagram, labeled with distances from the all-zeros path.

of the diagram that the input bits for the distance 5 path are 1 0 0; it differs in

only one input bit from the all-zeros input sequence. Similarly, the input bits for

the distance 6 paths are 1 1 0 0 and 1 0 1 0 0; each differs in two positions from

the all-zeros path. The minimum distance in the set of all arbitrarily long paths

that diverge and remerge, called the minimum free distance or simply the free

distance, is seen to be 5 in this example. For calculating the error-correcting

capability of the code, we repeat Equation (5.44) with the minimum distance,

dmin, replaced by the free distance, df.

_ (if—1‘1t—L 2 (6.11)
where [x] means the largest integer no greater than x. Setting df = 5, we see
that the code, characterized by the Figure 6.3 encoder, can correct any two chan-
nel errors.

Although Figure 6.13 presents the computation of free distance in a straight-

forward way, a more direct closed-form expression can be obtained by starting

with the state diagram in Figure 6.5. First, we label the branches of the state

diagram as either D0 = 1, D1, or D2, shown in Figure 6.14, where the exponent
of D denotes the Hamming distance from the branch word of that branch to the

all-zeros branch. The self-loop at node a can be eliminated since it contributes

nothing to the distance properties of a codeword sequence relative to the all-zeros

sequence. Furthermore, node a can be split into two nodes (labeled a and e), one

of which represents the input and the other the output of the state diagram. All

paths originating at a = 00 and terminating at e = 00 can be traced on the modified

state diagram of Figure 6.14. We can calculate the transfer function of path

a b c e (starting and ending at state 00) in terms of the indeterminate “place-

holder” D, as D2 D D2 = D5. The exponent of D represents the cumulative tally

of the number of ones in the path, and hence the Hamming distance from the all-

zeros path. Similarly, the paths a b d c e and a b c b c e each have the transfer
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Figure 6.14 State diagram, labeled
according to distance from the all-zeros
path.

 
function D6 and thus a Hamming distance of 6 from the all-zeros path. We now

write the following state equations:

Xb = DzXa + XC

Xe = DXb + DXd (6.12)

X4 = DXb + DXd

Xe = DZXC

where Xa, . . . , Xe are dummy variables for the partial paths to the intermediate
nodes. The transfer function, T(D), sometimes called the generating function of
the code can be expressed as T(D) = Xe/Xa. By solving the state equations shown
in Equation (6.12), we obtain [15 , 16]

D5

1- 2D (6.13)

= D5 + 2D6 + 4D7 + + 26D‘+5 +

 

T(D)
H

The transfer function for this code indicates that there is a single path of distance
5 from the all-zeros path, two of distance 6, four of distance 7, and in general,
there are 2‘ paths of distance 6 + 5 from the all-zeros path, where 6 = 0, 1,
2, . . . . The free distance df of the code is the Hamming weight of the lowest-order
term in the expansion of T(D). In this example df = 5. In evaluating distance
properties, the transfer function, T(D), cannot be used for long constraint lengths
since the complexity of T(D) increases exponentially with constraint length.

The transfer function can be used to provide more detailed information than

just the distance of the various paths. Let us introduce a factor L into each branch
of the state diagram so that the exponent of L can serve as a counter to indicate
the number of branches in any given path from state a = 00 to state e = 00.
Furthermore, we can introduce a factor N into all branch transitions caused by
the input bit one. Thus, as each branch is traversed, the cumulative exponent on
N increases by one, only if that branch transition is due to an input bit one. For
the convolutional code characterized in our Figure 6.3 example, the additional
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factors L and N are shown on the modified state diagram of Figure 6.15. We can
now modify Equations (6.12) as follows:

Xb = DZLNXa + LNXC

X6 = DLXb + DLXd

Xd = DLNXb + DLNXd

Xe = D2LXC

(6.14)

The transfer function of this augmented state diagram is

D5L3N

i — DLU + L)N

D5L3N + D6L4(1 + L)N2 + D7L5(1 + L)2N3 (6.15)

T(D, L, N) =

+ + D£+5L€+3N€+1 +

Thus we can verify some of the path properties displayed in Figure 6.13. There
is one path of distance 5, length 3, which differs in one input bit from the all-
zeros path. There are two paths of distance 6, one of which is length 4, the other

length 5, and both differ in two input bits from the all-zeros path. Also, of the

distance 7 paths, one is of length 5, two are of length 6, and one is of length 7;
all four paths correspond to input sequences that differ in three input bits from
the all-zeros path. Thus if the all-zeros path is the correct path and the noise
causes us to choose one of the incorrect paths of distance 7, three bit errors will
be made.

Figure 6.15 State diagram, labeled
according to distance, length, and
number of input ones.

 
6.4.1.1 Error-Correcting Capability of Convolutional Codes

In the study of block codes in Chapter 5, we saw that the error-correcting
capability, t, represented the number of code symbol errors that could, with max-
imum likelihood decoding, be corrected in each block length of the code. How-
ever, when decoding convolutional codes, the error-correcting capability cannot
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be stated so succinctly. With regard to Equation (6.11), we can say that the code

can, with maximum likelihood decoding, correct t errors within a few constraint |

lengths, where “few” here means 3 to 5. The exact length depends on how the

errors are distributed. For a particular code and error pattern, the length can be

bounded using transfer function methods. A computer program for convolutional

decoding with the Viterbi algorithm, called VITALG, is provided in Appendix E.

The interested reader can use this tool for verifying the capability of Viterbi

decoding of convolutional codes with various choices of code generators, code

rates, constraint lengths, and path memory lengths.

6.4.2 Systematic and Nonsystematic Convolutional Codes

A systematic convolutional code is one in which the input k-tuple appears as part

of the output branch word n-tuple associated with that k-tuple. Figure 6.16 shows

a binary, rate %, K = 3 systematic encoder. For linear block codes, any nonsys-

tematic code can be transformed into a systematic code with the same block

distance properties. This is not the case for convolutional codes. The reason for

this is that convolutional codes depend largely on free distance; making the con-

volutional code systematic, in general, reduces the maximum possible free dis-

tance for a given constraint length and rate.

Table 6.1 shows the maximum free distance for rate % systematic and non-

systematic codes for K = 2 through 8. For large constraint lengths the results

are even more widely separated [17].

input —a-—

\—> Output '

Figure 6.16 Systematic convolutional
encoder, rate %, K = 3.

6.4.3 Catastrophic Error Propagation in Convolutional
Codes

A catastrophic error is defined as an event whereby a finite number of code symbol

errors cause an infinite number of decoded data bit errors. Massey and Sain [18]

have derived a necessary and sufficient condition for convolutional codes to dis-

play catastrophic error propagation. For rate l/n codes with register taps desig-

nated by polynomial generators, as described in Section 6.2.1, the condition for

catastrophic error propagation is that the generators have a common polynomial

factor (of degree at least one). For example, Figure 6.17a illustrates a rate %, K

= 3 encoder with upper polynomial g1(X) and lower polynomial g2(X), as follows:

g1(X) = 1 + X (6.16)
g2(X) = l + X2
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TABLE 6.1 Comparison of Systematic and
Nonsystematic Free Distance, Rate %

I Constraint Free distance Free distance
length systematic nonsystematic

2 3 3
3 4 5
4 4 6
5 5 7
6 6 8
7 6 10
8 7 10 

Source: A. J. Viterbi and J. K. Omura, Principles ofDig-
ital Communication and Coding, McGraw-Hill Book
Company, New York, 1979, p. 251.

The generators g1(X) and g2(X) have in common the polynomial factor, 1 + X,
since

1+X2=(1+X)(1+X)

Therefore, the encoder in Figure 6.17a can manifest catastrophic error

propagation.

. Input HOutput

Figure 6.17 Encoder displaying
catastrophic error propagation. (a)

(b) Encoder. (b) State diagram.
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In terms of the state diagram for any-rate code, catastrophic errors can occur

if, and only if, any closed-loop path in the diagram has zero weight (zero distance |
from the all-zeros path). To illustrate this, consider the example of Figure 6.17. |
The state diagram in Figure 6.17b is drawn with the state a = 00 node split into
two nodes, a and e, as before. Assuming that the all-zeros path is the correct
path, the incorrect path a b d d . . . d c 6 has exactly 6 ones, no matter how

many times we go around the self-loop at node d. Thus for a BSC, for example,
three channel errors may cause us to choose this incorrect path. An arbitrarily

large number of errors (two plus the number of times the self-loop is traversed) I
can be made on such a path. We observe that for rate l/n codes, if each adder |
in the encoder has an even number of connections, the self-loop corresponding

to the all-ones data state will have zero weight, and consequently, the code will i
be catastrophic.

The only advantage of a systematic code, described earlier, is that it can i
never be catastrophic, since each closed loop must contain at least one branch

generated by a nonzero input bit, and thus each closed loop must have a nonzero
code symbol. However, it can be shown [19] that only a small fraction of non-

systematic codes (excluding those where all adders have an even number of taps)
are catastrophic.

6.4.4 Performance Bounds for Convolutional Codes

The probability of bit error, PB, for a binary convolutional code using hard-de-
cision decoding can be shown [8] to be upper bounded as follows:

5 dT(D, N)PB
dN N=1,D=2Vp(1—p)

(6.17)

where p is the probability of channel symbol error. For the example of Figure
6.3, T(D, N) is obtained from T(D, L, N) by setting L = 1 in Equation (6.15).

DSN

T(D, N) — m (6.18)
and

dT(D, N) _ D5
dN N=1 _ (1 — 2D}2 (6'19)

Combining Equations (6.17) and (6.19), we can write

2 l _ If? 5
B < i [p( 9)] l (620)

_ i1 — 4[p(1 — {film}:

For coherent BPSK modulation over an additive white Gaussian noise

(AWGN) channel, it can be shown [8] that the bit error probability is bounded
by

344 Channel Coding: Part 2 Chap. 6

ONE-E-WAY 2004

046 Apple v. One-E-Way
IPR2021-00283



047 ONE-E-WAY 2004 
Apple v. One-E-Way 

IPR2021-00283

 

EC (HID N)
Ps1} Eexd————’ 6.21B Q de N0 p< fNO) div lN=1,D=exp(—Ec/No) ( )

| where

Ec/No = rEb/No

Eb/No = ratio of information bit energy to noise power spectral density

Ec/NO = ratio of channel symbol energy to noise power spectral density

r = k/n = rate of the code

and where Q(x) is defined in Equations (2.42) and (2.43) and tabulated in Table

B.1. Therefore, for the rate % code with free distance df = 5, in conjunction with

coherent BPSK and hard-decision decoding, we can write

liar: E exp (— 55.12%)PB 5 Q Nu 6"" (mo) [1 — 2 exp (—15.,12N0)]2

Q( V5Eb/No)

[l — 2 exp (—E,,/2No)]2

(6.22)

S

6.4.5 Coding Gain

Coding gain is defined as the reduction, usually expressed in decibels, in the

required Eb/No to achieve a specified error probability of the coded system over

an uncoded system with the same modulation and channel characteristics. Table

6.2 lists an upper bound on the coding gains, compared to uncoded coherent

BPSK, for several maximum free distance convolutional codes with constraint

lengths varying from 3 to 9 over a Gaussian channel with hard-decision decoding.

The table illustrates that it is possible to achieve significant coding gain even with

TABLE 6.2 Coding Gain Upper Bounds for Some Convolutional Codes

 Rate =1; codes Rate i codes

K df Upper bound (dB) K df Upper bound (dB)

3 5 3.97 3 8 4.26
4 6 4.76 4 10 5.23
5 7 5.43 5 12 6.02
6 8 6.00 6 13 6.37
7 10 6.99 7 15 6.99
8 10 6.99 8 16 7.27
9 12 7.78 9 18 7.78

Source: V. K. Bhargava, D. Haccoun, R. Matyas, and P. Nuspl, Digital Communications by
Satellite, John Wiley & Sons, Inc., New York, 1981.
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a simple convolutional code. The actual coding gain will vary with the required
bit error probability [20].

Table 6.3 lists the measured coding gains, compared to uncoded coherent

BPSK, achieved with hardware implementation or computer simulation over a
Gaussian channel with soft-decision decoding [21]. The uncoded Eb/No is given

in the leftmost column. From Table 6.3 we can see that coding gain increases as

the bit error probability is decreased. However, the coding gain cannot increase

indefinitely; it has an upper bound as shown in the table. This bound in decibels
can be shown [21] to be

coding gain 5 10 loglo (rdf) (6.23) l
where r is the code rate and df is the free distance. Examination of Table 6.3 also
reveals that at PB = 10—7, for code rates of % and -§-, the weaker codes tend to

be closer to the upper bound than are the more powerful codes.

Typically, Viterbi decoding is used over binary input channels with either
hard or 3-bit soft quantized outputs. The constraint lengths vary between 3 and i

9, the code rate is rarely smaller than %, and the path memory is usually a few

constraint lengths [12]. The path memory refers to the depth of the input bit history

stored by the decoder. From the Viterbi decoding example in Section 6.3.4, one I
might question the notion of a fixed path memory. It seems from the example
that the decoding of a branch word, at any arbitrary node, can take place as soon

as there is only a single surviving branch at that node. That is true; however, to

actually implement the decoder in this way would entail an extensive amount of

processing to continually check when the branch word can be decoded. Instead, ‘
a fixed delay is provided, after which the branch word is decoded. It has been
shown [12, 22] that a fixed amount of path history, namely 4 or 5 times the con-

straint length, is sufficient to limit the degradation from the optimum decoder

performance to about 0.1 dB for the BSC and Gaussian channels. Typical error
performance curves are shown in Figure 6.18 for rate % codes using coherent BPSK
over a soft (8-level) quantized channel, with Viterbi decoding, and a 32-bit path

memory. Also plotted are the transfer function bounds for infinitely fine quantized
received data [12]. Figure 6.19 gives the simulation results for Viterbi decoding

with hard decision quantization [12]. Notice that each increment in constraint

TABLE 6.3 Basic Coding Gain (dB) for Soft Decision Viterbi Decoding

Uncoded Code rate 3 vi 5 5i
Eb/No —- —— —— ——
(dB) P3 K 7 8 5 6 7 6 8 6 9

6.8 10‘3 4.2 4.4 3.3 3.5 3.8 2.9 3.1 2.6 2.6
9.6 10‘5 5.7 5.9 4.3 4.6 5.1 4.2 4.6 3.6 4.2

11.3 10‘7 6.2 6.5 4.9 5.3 5.8 4.7 5.2 3.9 4.8

Upper bound 7.0 7.3 5.4 6.0 7.0 5.2 6.7 4.8 5.7

Source: 1. M. Jacobs, “Practical Applications of Coding,” IEEE Trans. Inf. Theory, vol. IT20, May 1974,
pp. 305—310.
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j Figure 6.18 Bit error probability
_ versus Eb/No for rate % codes using
_ coherent BPSK over a soft quantized
— channel, Viterbi decoding, and a 32-bit

path memory. (Reprinted with

10—7 —L——-L———J—|—'—‘—'—J—'—L—l—‘—'—— permission from J. A. Heller and I. M.
3 4 5 6 7 Jacobs, “Viterbi Decoding for Satellite

Eb/N0 (dB) and Space Communication," IEEE
Trans. Commun. Technol., vol.
COM19, no. 5, October 1971, Fig. 5, p.

—O—O—Simu|ation ————— Upper bound 84, © 1971 IEEE.)
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length improves the required Eb/No by a factor of approximately 0.5 dB at P3 =

10—5. Also, as expected, the 3-bit soft decisions of the channel output result in

approximately a 2-dB gain over the hard quantized BSC.

HWI—hj/‘fi—l
6.4.6 Best Known Convolutional Codes

The connection vectors or polynomial generators of a convolutional code are

usually selected based on the code’s free distance properties. The first criterion

is to select a code that does not have catastrophic error propagation and that has

the maximum free distance for the given rate and constraint length. Then the

number of paths at the free distance df, or the number of data bit errors the paths

represent, should be minimized. The selection procedure can be further refined

by considering the number of paths or bit errors at df + 1, at df + 2, and so on,

until only one code or class of codes remains. A list of the best known codes of

rate %, K = 3 to 9, and rate iv, K = 3 to 8, based on this criterion was compiled

by Odenwalder [3, 23] and is given in Table 6.4. The connection vectors in this
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Figure 6.19 Bit error probability versus Eb/No for rate is codes using coherent
BPSK over a BSC, Viterbi decoding, and a 32-bit path memory. (Reprinted with
permission from J. A. Heller and I. M. Jacobs, “Viterbi Decoding for Satellite
and Space Communication,” IEEE Trans. Commun. Technol., vol. COM19, no.
5, October 1971, Fig. 7, p. 84. © 1971 IEEE.)

table represent the presence or absence (1 or 0) of a tap connection on the cor-

I responding stage of the convolutional encoder. The leftmost term corresponds to

the leftmost stage of the encoder register, and the rightmost term corresponds to

the rightmost stage, following the notation established in Figure 6.3. It is inter-

esting to note that these connections can be inverted (leftmost and rightmost can

be interchanged in the above description). Under the condition of Viterbi decod-

ing, the inverted connections give rise to codes with identical distance properties,

and hence identical performance, as those in Table 6.4.

6.4.7 Convolutional Code Rate Trade-Off

6.4.7.1 Performance with Coherent PSK Signaling

| The error-correcting capability of a coding scheme increases as the number

of channel symbols n per information bit k increases or the rate, k/n, decreases.

However, the channel bandwidth and the decoder complexity both increase with

n. The advantage of lower code rates when using convolutional codes with co-
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TABLE 6.4 Optimum Short Constraint Length Convolutional Codes
(Rate =1: and Rate 1) 

Rate Constraint length Free distance Code vector

& 3 5 111
101

4 6 1111
1011

% 5 7 10111
11001

101111
110101

7 10 1001111
1101101

10 10011111
11100101

1} 9 12 110101111
100011101

111
111
101

1111
f; 4 10 1011

1101

11111

§ 5 12 11011
10101

101111

it 6 13 110101
111001

1001111

11 7 15 1010111
1101101

11101111

it 8 16 10011011
10101001

m- 0" 00

u:—

|n- m

ul- la) 00

Source: J. P. Odenwalder, Error Control Coding Handbook, Linkabit
Corp., San Diego, Calif., July 15, 1976.

herent PSK, is that the required Eb/No is decreased (for a large range of code

rates), permitting the transmission of higher data rates for a given amount of

power, or permitting reduced power for a given data rate. Simulation studies have

shown [16, 22] that for a fixed constraint length, a decrease in the code rate from

i: to % results in a reduction of the required Eb/No of roughly 0.4 dB. However,

the corresponding increase in decoder complexity is about 17%. For smaller val-

ues of code rate, the improvement in performance relative to the increased de-

coding complexity diminishes rapidly [22]. Eventually, a point is reached where

further decrease in code rate is characterized by a reduction in coding gain.
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%

6.4.7.2 Performance with Noncoherent Orthogonal Signaling

In contrast to PSK, there is an optimum code rate of about % for noncoherent

orthogonal signaling. Error performance at rates of %, %, and % are each worse than

those for rate %. For a fixed constraint length, the rate %, %, and % codes typically

degrade by about 0.25, 0.5, and 0.3 dB, respectively, relative to the rate % per-
formance [16].

6.5 OTHER CONVOLUTIONAL DECODING ALGORITHMS

6.5.1 Sequential Decoding

Prior to the discovery of an optimum algorithm by Viterbi, other algorithms had

been proposed for decoding convolutional codes. The earliest was the sequential

decoding algorithm, originally proposed by Wozencraft [24, 25] and subsequently

modified by Fano [2]. A sequential decoder works by generating hypotheses about

the transmitted codeword sequence; it computes a metric between these hy-

potheses and the received signal. It goes forward as long as the metric indicates

that its choices are likely; otherwise, it goes backward, changing hypotheses until,

through a systematic trial-and-error search, it finds a likely hypothesis. Sequential |
decoders can be implemented to work with hard or soft decisions, but soft de-

cisions are usually avoided because they greatly increase the amount of the re-

quired storage and the complexity of the computations.

Consider that using the encoder shown in Figure 6.3, a sequence m =

1 1 0 1 1 is encoded into the codeword sequence U = 1 1 0 1 0 1 0 0 0 1, as

shown in Example 6.1. Assume that the received sequence Z is, in fact, a correct

rendition of U. The decoder has available a replica of the encoder code tree,

shown in Figure 6.6, and can use the received sequence Z to penetrate the tree.
The decoder starts at the time t1 node of the tree and generates both paths leaving

that node. The decoder follows that path which agrees with the received n code

symbols. At the next level in the tree, the decoder again generates both paths

leaving that node, and follows the path agreeing with the second group of n code

symbols. Proceeding in this manner, the decoder quickly penetrates the tree.

Suppose, however, that the received sequence Z is a corrupted version of
U. The decoder starts at the time t1 node of the code tree and generates both

paths leading from that node. If the received it code symbols coincide with one
of the generated paths, the decoder follows that path. If there is not agreement,

the decoder follows the most likely path but keeps a cumulative count on the

number of disagreements between the received symbols and the branch words

on the path being followed. If two branches appear equally likely, the receiver

uses an arbitrary rule, such as following the zero input path. At each new level

in the tree, the decoder generates new branches and compares them with the next

set of it received code symbols. The search continues to penetrate the tree along

the most likely path and maintains the cumulative disagreement count.

If the disagreement count exceeds a certain number (which may increase as
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we penetrate the tree), the decoder decides that it is on an incorrect path, backs
out of the path, and tries another. The decoder keeps track of the discarded

:nt pathways to avoid repeating any path excursions. For example, assume that the
an encoder in Figure 6.3 is used to encode the message sequence m = 1 1 0 l 1
.1y into the codeword sequence U as shown in Example 6.1. Suppose that the fourth
:r- and seventh bits of the transmitted sequence U are received in error, such that:

Time: t1 t2 t3 t4 [5

Message

sequence: m = 1 1 0 1 1

Transmitted

1d sequence: U = 1 1 0 1 0 1 0 0 0 1

“1 Received

3 sequence: Z: 11 00 01 10 01
y- Let us follow the decoder path trajectory with the aid of Figure 6.20. Assume

:s that a cumulative path disagreement count of 3 is the criterion for backing up and
1’ trying an alternative path. On Figure 6.20 the numbers along the path trajectory
al represent the current disagreement count.

3' 1. At time t1 we receive symbols 11 and compare them with the branch words

leaving the first node.

:s 2. The most likely branch is the one with branch word 11 (corresponding to
“I an input bit one or downward branching), so the decoder decides that input
; bit one is the correct decoding, and moves to the next level.
:’ 3. At time t2, the decoder receives symbols 00 and compares them with the

’g' I available branch words 10 and 01 at this second level.
6 4. There is no “best” path, so the decoder arbitrarily takes the input bit zero
.5 (or branch word 10) path, and the disagreement count registers a disagree-
e ment of 1.

5. At time t3, the decoder receives symbols 01 and compares them with the
’f available branch words 11 and 00 at this third level.

h 6. Again, there is no best path, so the decoder arbitrarily takes the input zero

e (or branch word 11) path, and the disagreement count is increased to 2.

" 7. At time 14, the decoder receives symbols 10 and compares them with the
6 available branch words 00 and 11 at this fourth level.

i 8. Again, there is no best path, so the decoder takes the input bit zero (or
.1 branch word 00) path, and the disagreement count is increased to 3.
It 9. But a disagreement count of 3 is the turnaround criterion, so the decoder
g “backs out” and tries the alternative path. The disagreement counter is reset

to 2.

g 10. The alternative path is the input bit one (or branch word 11) path at the t4
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level. The decoder tries this, but compared to the received symbols 10, there

is still a disagreement of 1, and the counter is reset to 3.

11. But, 3 being the turnaround criterion, the decoder backs out of this path,
and the counter is reset to 2. All of the alternatives have now been traversed

at this t4 level, so the decoder returns to the node at t3, and resets the counter
to 1.

12. At the t3 node, the decoder compares the symbols received at time t3, namely

01, with the untried 00 path. There is a disagreement of 1, and the counter
is increased to 2.

13. At the t4 node, the decoder follows the branch word 10 that matches its t4

code symbols of 10. The counter remains unchanged at 2.

14. At the t5 node, there is no best path, so the decoder follows the upper branch,
as is the rule, and the counter is increased to 3.

15. At this count, the decoder backs up, resets the counter to 2, and tries the

alternative path at node t5. Since the alternate branch word is 00, there is

a disagreement of 1 with the received code symbols 01 at time t5, and the

counter is again increased to 3.

16. The decoder backs out of this path, and the counter is reset to 2. All of the
alternatives have now been traversed at this t5 level, so the decoder returns

to the node at t4 and resets the counter to 1.

17. The decoder tries the alternative path at t4, which raises the metric to 3

since there is a disagreement in two positions of the branch word. This time

the decoder must back up all the way to the time t; node because all of the

other paths at higher levels have been tried. The counter is now decremented
to zero.

18. At the t2 node, the decoder now follows the branch word 01, and because

there is a disagreement of 1 with the received code symbols 00 at time 12,
the counter is increased to 1.

The decoder continues in this way. As shown in Figure 6.20, the final path,

which has not increased the counter to its turnaround criterion, yields the correctly

decoded message sequence, 1 1 0 1 1. Sequential decoding can be viewed as a

trial-and-error technique for searching out the correct path in the code tree. It

performs the search in a sequential manner, always operating on just a single path
at a time. If an incorrect decision is made, subsequent extensions of the path will

be wrong. The decoder can eventually recognize its error by monitoring the path

metric. The algorithm is similar to the case of an automobile traveler following

a road map. As long as the traveler recognizes that the passing landmarks cor-

respond to those on the map, he continues on the path. When he notices strange
landmarks (an increase in his dissimilarity metric) the traveler eventually assumes

that he is on an incorrect road, and he backs up to a point where he can now

recognize the landmarks (his metric returns to an acceptable range). He then tries
an alternative road.
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6.5.2 Comparisons and Limitations of Viterbi and

Sequential Decoding

The major drawback of the Viterbi algorithm is that while error probability de-

creases exponentially with constraint length, the number of code states, and con-

sequently decoder complexity, grows exponentially with constraint length. On
the other hand, the computational complexity of the Viterbi algorithm is inde-

pendent of channel characteristics (compared to hard-decision decoding, soft-
decision decoding requires only a trivial increase in the number of computations).

Sequential decoding achieves asymptotically the same error probability as max-

imum likelihood decoding but without searching all possible states. In fact, with

sequential decoding the number of states searched is essentially independent of

constraint length, thus making it possible to use very large (K = 41) constraint  
_- O
|

(A)

 
 

 

 

Rate 1/2, K = 7, Viterbi hard decision

Rate 1/3, K = 7, Viterbi, hard decision

_; O
l

A

U ncoded BPS K
Biterrorprobability,PB

| 
o 2 4 6 8 10 12 14

Eb/No (dB)

 
Figure 6.21 Bit error performance for various Viterbi and sequential decoding
schemes using coherent BPSK over an AWGN channel. (Reprinted with permis-
sion from J. K. Omura and B. K. Levitt, “Coded Error Probability Evaluation

for Antijam Communication Systems,” IEEE Trans. Commun., vol. COM30, no.
5, May 1982, Fig. 4, p. 900. © 19821EEE.)
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lengths. This is an important factor in providing such low error probabilities. The
major drawback of sequential decoding is that the number of state metrics
searched is a random variable. For sequential decoding, the expected number of

poor hypotheses and backward searches is a function of the channel SNR. With
a low SNR, more hypotheses must be tried than with a high SNR. Because of
this variability in computational load, buffers must be provided to store the ar-
riving sequences. Under low SNR, the received sequences must be buffered while
the decoder is laboring to find a likely hypothesis. If the average symbol arrival
rate exceeds the average symbol decode rate, the buffer will overflow, no matter

how large it is, causing a loss of data. The sequential decoder typically puts out
error-free data until the buffer overflows, at which time the decoder has to go

through a recovery procedure. The buffer overflow threshold is a very sensitive
function of SNR. Therefore, an important part of a sequential decoder specifi-

cation is the probability of buffer overflow.

In Figure 6.21, some typical PB versus Eb/N0 curves for these two popular
solutions to the convolutional decoding problem, Viterbi decoding and sequential

decoding, illustrate their comparative performance using coherent BPSK over an
AWGN channel. The curves compare Viterbi decoding (rates % and % hard deci-

sion, K = 7) versus Viterbi decoding (rates % and % soft decision, K = 7) versus
sequential decoding (rates is and =1: hard decision, K = 41). One can see from
Figure 6.21 that coding gains of approximately 8 dB at P3 = 10—6 can be achieved
with sequential decoders. Since the work of Shannon [26] foretold the potential
of approximately 11 dB of coding gain compared to uncoded BPSK, it appears
that the major portion of what is theoretically possible can already be
accomplished.

6.5.3 Feedback Decoding

A feedback decoder makes a hard decision on the data bit at stage j based on
metrics computed from stages j, j + 1, . . . , j + m, where m is a preselected
positive integer. Look-ahead length, L, is defined as L = m + 1, the number of
received code symbols, expressed in terms of the corresponding number of en-
coder input bits that are used to decode an information bit. The decision of whether
the data bit is zero or one depends on which branch the minimum Hamming

distance path traverses in the look-ahead window from stage j to stage j + m.
The detailed operation is best understood in terms of a specific example. Let us
consider the use of a feedback decoder for the rate % convolutional code shown

in Figure 6.3. Figure 6.22 illustrates the tree diagram and the operation of the
feedback decoder for L = 3. That is, in decoding the bit at branch j, the decoder

considers the paths at branches j, j + 1, and j + 2.

Beginning with the first branch, the decoder computes 2’“ or eight cumulative
Hamming path metrics and decides that the bit for the first branch is zero if the
minimum distance path is contained in the upper part of the tree, and decides one
if the minimum distance path is in the lower part of the tree. Assume that the
received sequence isZ = 1 1 0 0 0 1 0 0 0 1. We now examine the eight paths
from time t1 through time [3 in the block marked A in Figure 6.22, and compute
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metrics comparing these eight paths with the first six received code symbols (three
branches deep times two symbols per branch). Listing the Hamming cumulative

path metrics (starting from the top path), they are:

Upper-half metrics: 3, 3, 6, 4

Lower-half metrics: 2, 2, 1, 3

We see that the minimum metric is contained in the lower part of the tree. There-

fore, the first decoded bit is one (characterized by a downward movement on the
tree). The next step is to extend the lower part of the tree (the part that survived)
one stage deeper, and again compute eight metrics, this time from t2 through 14.
Having decoded the first two code symbols, we now slide over two code symbols
to the right and again compute the path metrics for six code symbols. This takes
place in the block marked B in Figure 6.22. Again, listing the metrics from top
path to bottom path, they are:

Upper-half metrics: 2, 4, 3, 3

Lower-half metrics: 3, 1, 4, 4

For the assumed received sequence, the minimum metric is found in the lower
half of block B. Therefore, the second decoded bit is one.

The same procedure continues until the entire message is decoded. The
decoder is called afeedback decoder because the detection decisions arefed back
to the decoder in determining the subset of code paths that are to be considered

| next. On the BSC, the feedback decoder can perform nearly as well as the Viterbi
decoder [17] in that it can correct all the more probable error patterns, namely
all those of weight (df — l)/2 or less, where df is the free distance of the code.
An important design parameter for feedback convolutional decoders is L, the look-
ahead length. Increasing L increases the coding gain but also increases the decoder
implementation complexity.

6.6 INTERLEAVING AND CONCATENATED CODES

Throughout this chapter and Chapter 5 we have assumed that the channel is
memoryless, since we have considered codes that are designed to combat random
independent errors. A channel that has memory is one that exhibits mutually
dependent signal transmission impairments. An example of such a channel is a
fading channel, particularly when the fading varies slowly compared to one symbol
time. Another type of impairment, called multipath, involves signal arrivals at
the receiver over two or more paths of different lengths. The effect is that the

signals arrive out ofphase with each other, and the cumulative received signal
is distorted. High-frequency (HF) and tropospheric propagation radio channels
suffer from such phenomena. Also, some channels suffer from switching noise
and other burst noise (e.g., telephone channels or channels disturbed by pulse

jamming). All of these time-correlated impairments result in statistical dependence
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among successive symbol transmissions. That is, the disturbances tend to cause
errors that occur in bursts, instead of as isolated events.

Under the assumption that the channel has memory, the errors no longer

can be characterized as single randomly distributed bit errors whose occurrence

is independent from bit to bit. Most block or convolutional codes are designed

to combat random independent errors. The result of a channel having memory

on such coded signals is to cause degradation in error performance. Coding tech-

niques for channels with memory have been proposed [27, 28], but the greatest

problem with such coding is the difficulty in obtaining accurate models of the
often time-varying statistics of such channels. One technique, which only requires

a knowledge of the duration or span of the channel memory, not its exact statistical
characterization, is the use of time diversity or interleaving.

Interleaving the coded message before transmission and deinterleaving after

reception causes bursts of channel errors to be spread out in time and thus to be

handled by the decoder as if they were random errors. Since, in all practical cases,

the channel memory decreases with time separation, the idea behind interleaving

is to separate the codeword symbols in time. The intervening times are similarly

filled by the symbols of other codewords. Separating the symbols in time effec-

tively transforms a channel with memory to a memoryless one, and thereby en-
ables the random—error-correcting codes to be useful in a burst-noise channel.

The interleaver shuffles the code symbols over a span of several block

lengths (for block codes) or several constraint lengths (for convolutional codes).
The span required is determined by the burst duration. The details of the bit
redistribution pattern must be known to the receiver in order for the symbol stream
to be deinterleaved before being decoded. Figure 6.23 illustrates a simple inter-

leaving example. In Figure 6.23a we see seven uninterleaved codewords, A
through G. Each codeword is comprised of seven code symbols. Let us assume
that the code has a single-error-correcting capability within each seven-symbol

sequence. If the memory span of the channel is one codeword in duration, such
a seven-symbol-time noise burst could destroy the information contained in one
or two codewords. However, suppose that, after having encoded the data, the

code symbols were then interleaved or shuffled, as shown in Figure 6.23b. That
is, each code symbol of each codeword is separated from its preinterleaved neigh-

bors by a span of seven symbol times. The interleaved stream is then used to
modulate a waveform that is transmitted over the channel. A contiguous channel

noise burst occupying seven symbol times is seen in Figure 6.23b, to affect one

code symbol from each of the original seven codewords. Upon reception, the
stream is first deinterleaved so that it resembles the original coded sequence in

Figure 6.23a. Then the stream is decoded. Since each codeword possesses a single-
error-correcting capability, the burst noise has no degrading effect on the final
sequence.

Interleaving techniques have proven useful for all the convolutional and
block codes described here and in Chapter 5. Two types of interleavers are com-

monly used, block interleavers and convolutional interleavers. They are each
described below.
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6.6.1 Block lnterleaving

A block interleaver accepts the coded symbols in blocks from the encoder, per- i
mutes the symbols, and then feeds the rearranged symbols to the modulator. The ’
usual permutation of the block is accomplished by filling the columns of an M-
row-by N-column (M X N) array with the encoded sequence. After the array is
completely filled, the symbols are then fed to the modulator one row at a time
and transmitted over the channel. At the receiver, the deinterleaver performs the

inverse operation; it accepts the symbols from the demodulator, deinterleaves

them, and feeds them to the decoder. Symbols are entered into the deinterleaver ‘
array by rows, and removed by columns. Figure 6.24a illustrates an example of
an interleaver with M = 4 rows and N = 6 columns. The entries in the array \
illustrate the order in which the 24 code symbols are placed into the interleaver.

The output sequence to the transmitter consists of code symbols removed from i
the array by rows, as shown in the figure. The most important characteristics of
such a block interleaver are as follows:

1. Any burst of less than N contiguous channel symbol errors results in isolated
errors at the deinterleaver output that are separated from each other by at

least M symbols.

2. Any bN burst of errors, where b > 1, results in output bursts from the

deinterleaver of no more than [b] symbol errors. Each output burst is sep-
arated from the other bursts by no less than M — [b] symbols. The notation

[x] means the smallest integer no less than x, and [x] means the largest
integer no greater than x.

3. A periodic sequence of single errors spaced N symbols apart results in a

single burst of errors of length M at the deinterleaver output.

4. The interleaver/deinterleaver end-to-end delay is approximately 2MN sym-

bol times. To be precise, only M(N — 1) + 1 memory cells need to be filled
before transmission can begin (as soon as the first symbol of the last column

of the M x N array is filled). A corresponding number needs to be filled at
the receiver before decoding begins. Thus the minimum end-to-end delay is

(2MN — 2M + 2) symbol times, not including any channel propagation
delay.

5. The memory requirement is MN symbols for each location (interleaver and

deinterleaver). However, since the M X N array needs to be (mostly) filled

before it can be read out, a memory of 2MN symbols is generally imple-

mented at each location to allow the emptying of one M X N array while

the other is being filled, and vice versa.

Example 6.3 Interleaver Characteristics

Using the M = 4, N = 6 interleaver structure of Figure 6.24a, verify each of the
block interleaver characteristics described above.
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N = 6 columns 

1 5 9 13 17 21

2 6 10 14 18 22
M = 4 rows

3 7 11 15 19 23

4 8 12 16 20 24 

Interleaver

I output sequence 1, 5, 9, 13, 17, 21, 2, 6, ' - -

(a)

 

26 00:06?
I @®111519

4 8 12 16 20 24 

(b) I
 

 

 

13 17 21

Figure 6.24 Block interleaver
example. (a) M X N block interleaver.
(b) Five-symbol error burst. (c) Nine-

16 20 24 symbol error burst. ((1) Periodic single-
error sequence spaced N = 6 symbols

d) apart.

15 19 23

 

Sec. 6.6 Interleaving and Concatenated Codes 361

 

063 ONE-E-WAY 2004
Apple v. One-E-Way

IPR2021-00283



064 ONE-E-WAY 2004 
Apple v. One-E-Way 

IPR2021-00283

 
 

 
 
 
 

 
 

 
 
 
 

 

 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 

 

 
 

 

Solution

1. Let there be a noise burst of five symbol times, such that the symbols shown 1
encircled in Figure 6.24b experience errors in transmission. After deinterleaving
at the receiver, the sequence is

12®456®89101112

13.151617.192021@2324

where the encircled symbols are in error. It is seen that the smallest separation

between symbols in error is M = 4. ‘
2. Let b = 1.5 so that bN = 9. Figure 6.24c illustrates an example of a nine-symbol

error burst. After deinterleaving at the receiver, the sequence is l
12®456®8910®12

13H®1617.2021@®24i
Again, the encircled symbols are in error. It is seen that the bursts consist of no

more than [1.5] = 2 contiguous symbols and that they are separated by at least
M — [1.5] = 4 — l = 3 symbols.

3. Figure 6.24d illustrates a sequence of single errors spaced by N = 6 symbols
apart. After deinterleaving at the receiver, the sequence is

12345678®.®®
13 14 15 16 17 18 19 20 21 22 23 24

It is seen that the deinterleaved sequence has a single error burst of length M =
4 symbols.

4. End-to-end delay: The minimum end-to-end delay due to the interleaver and dein-
terleaver is (2MN — 2M + 2) = 42 symbol times.

5. Memory requirement: The interleaver and the deinterleaver arrays are each of
size M X N. Therefore, storage for MN = 24 symbols is required at each end
of the channel. As mentioned earlier, storage for 2MN = 48 symbols would gen-

erally be implemented.

Typically, for use with a single-error-correcting code the interleaver param-
eters are selected such that the number of columns N overbounds the expected

burst length. The choice of the number of rows M is dependent on the coding
scheme used. For block codes, M should be larger than the code block length,

while for convolutional codes, M should be larger than the constraint length. Thus

a burst of length N can cause at most a single error in any block codeword;

similarly, with convolutional codes, there will be at most a single error in any

decoding constraint length. For t-error-correcting codes, the choice of N need

only overbound the expected burst length divided by t.

6.6.2 Convolutional Interleaving

Convolutional interleavers have been proposed by Ramsey [29] and Forney [30].

The structure proposed by Forney appears in Figure 6.25. The code symbols are
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Figure 6.25 Shift register implementation of a convolutional interleaver/
deinterleaver.

sequentially shifted into the bank of N registers; each successive register provides
J symbols more storage than did the preceding one. The zeroth register provides
no storage (the symbol is transmitted immediately). With each new code symbol
the commutator switches to a new register, and the new code symbol is shifted

in while the oldest code symbol in that register is shifted out to the modulator/
transmitter. After the (N — 1)th register, the commutator returns to the zeroth

register and starts again. The deinterleaver peiforms the inverse operation, and
the input and output commutators for both interleaving and deinterleaving must
be synchronized.

Figure 6.26 illustrates an example of a simple convolutional four-register
(J = 1) interleaver being loaded by a sequence of code symbols. The synchronized
deinterleaver is shown simultaneously feeding the deinterleaved symbols to the

decoder. Figure 6.26a shows symbols 1 to 4 being loaded; the X s represent un—
known states. Figure 6.26b shows the first four symbols shifted within the registers
and the entry of symbols 5 to 8 to the interleaver input. Figure 660 shows symbols
9 to 12 entering the interleaver. The deinterleaver is now filled with message
symbols, but nothing useful is being fed to the decoder yet. Finally, Figure 6.6d
shows symbols 13 to 16 entering the interleaver, and at the output of the dein-
terleaver, symbols 1 to 4 are being passed to the decoder. The process continues
in this way until the entire codeword sequence, in its original preinterleaved form,
is presented to the decoder.

The performance of a convolutional interleaver is very similar to that of a
block interleaver. The important advantage of convolutional over block inter-
leaving is that With convolutional interleaving the end-to-end delay is M(N — 1)
symbols, where M = NJ, and the memory required is M(N — 1)/2 at both ends
of the channel. Therefore, there is a reduction of one-half in delay and memory

over the block interleaving requirements [16].
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Figure 6.26 Convolutional interleaver/deinterleaver example.
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6.6.3 Concatenated Codes

A concatenated code is one that uses two levels of coding, an inner code and an

i outer code, to achieve the desired error performance. Figure 6.27 illustrates the
order of encoding and decoding. The inner code, the one that interfaces with the
modulator/demodulator and channel, is usually configured to correct most of the

channel errors. The outer code, usually a higher-rate (lower-redundancy) code,

then reduces the probability of error to the specified level. The primary reason

for using a concatenated code is to achieve a low error rate with an overall im-

plementation complexity which is less than that which would be required by a

single coding operation. In Figure 6.27 an interleaver is shown between the two

coding steps. This is usually required to spread any error bursts that may appear

at the output of the inner coding operation.

One of the most popular concatenated coding systems uses a Viterbi-de-
coded convolutional inner code and a Reed—Solomon (R—S) outer code, with

interleaving between the two coding steps [23]. Operation of such systems with
Eb/No in the range 2.0 to 2.5 dB to achieve PB = 10‘5 (only about 4 dB away
from the Shannon limit) is now feasible with practical hardware [16]. In this sys-

tem, the demodulator outputs soft quantized code symbols to the inner convo-

lutional decoder, which in turn outputs hard quantized code symbols with bursty

errors to the R—S decoder. (In a Viterbi-decoded system, the output errors tend

to occur in bursts.) The outer R—S code is formed from m—bit segments of the

binary data stream (see Section 5.7.4). The performance of such a (nonbinary)

R—S code depends only on the number of symbol errors in the block. The code
is undisturbed by burst errors within an m-bit symbol. That is, for a given symbol

error, the R—S code performance is the same whether the symbol error is due to

one bit being in error or m bits being in error. However, the concatenated system

performance is severely degraded by correlated errors among successive symbols.
Hence the interleaving between codes needs to take place at the symbol level

(not at the bit level). In the next section we consider a popular consumer appli-
cation of such symbol interleaving in a concatenated system.

Input Outer Interleave Innerdata encode encode

 
  
  

Interference

D _ | Inner D d Ielnter eave decode emo u ate

Figure 6.27 Block diagram of a concatenated coding system.

 Decoded
data  
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6.7 CODING AND INTERLEAVING APPLIED TO THE COMPACT

DISC DIGITAL AUDIO SYSTEM

In 1979, Philips Corp. of the Netherlands and Sony Corp. of Japan defined a

standard for the digital storage and reproduction of audio signals, known as the

compact disc (CD) digital audio system. This CD system has become the world

standard for achieving fidelity of sound reproduction that far surpasses any other

available technique. A plastic disc 120 mm in diameter is used to store the digitized

audio waveform. The waveform is sampled at 44.1 kilosamples/s to provide a

recorded bandwidth of 20 kHz; each audio sample is uniformly quantized to one

of 216 levels (16 bits/sample), resulting in a dynamic range of 96 dB and a total

harmonic distortion of 0.005%. A single disc (playing time approximately 70 min-

utes) stores about 1010 bits in the form of minute pits that are optically scanned
by a laser.

There are several sources of channel errors: (1) small unwanted particles or

air bubbles in the plastic material or pit inaccuracies arising in manufacturing,

and (2) fingerprints or scratches during handling. It is difficult to predict how, on

the average, a CD will get damaged; but in the absence of an accurate channel

model, it is safe to assume that the channel mainly has a burstlike error behavior,

since a scratch or fingerprint will cause several consecutive data samples to be

in error. An important aspect of the system design contributing to the high-fidelity

performance is a concatenated control scheme called the cross-interleave Reed—

Solomon code (CIRC). The data are rearranged in time so that digits stemming

from contiguous samples of the waveform are spread out in time. In this way,

error bursts are made to appear as single random events (see the earlier sections

on interleaving). The digital information is protected by adding parity bytes de-
rived in two Reed—Solomon (R—S) encoders (see Section 5.7.4). Error control

applied to the compact disc depends mostly on R—S coding and multiple layers
of interleaving. Material on the CD is treated in this chapter rather than in Chapter

5 with R—S coding because it follows naturally after the subject of interleaving

and concatenated codes in the previous sections.

In digital audio applications, an undetected decoding error is very serious
since it results in clicks, while occasional detected failures are not so serious

because they can be concealed. The CIRC error-control scheme in the CD system

involves both correction and concealment of errors. The performance specifi-

cations for the CIRC are given in Table 6.5. From the specifications in the table

it would appear that the CD can endure much damage (e. g., 8—mm holes punched

in the disc) without any noticeable effect on the sound quality.

The CIRC system achieves its error control by a hierarchy of the following

techniques:

1. The decoder provides a level of error correction.

2. If the error correction capability is exceeded, the decoder provides a level
of erasure correction (see Section 5.5.5).

3. If the erasure correction capability is exceeded, the decoder attempts to
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TABLE 6.5 Specifications for the CD Cross-Interleave Reed—Solomon Code  

Maximum correctable burst length = 4000 bits (2.5-mm track length on the disc)
Maximum interpolatable burst length = 12,000 hits (8 mm)
Sample interpolation rate One sample every 10 hours at P3 = 10‘4

1000 samples/min at P5 = 10'3
Undetected error samples (clicks) Less than one every 750 hours at P3 = 10‘3

Negligible at PB 5 10’4
New discs are characterized by P5 = 10‘“

conceal unreliable data samples by interpolating between reliable neigh-

boring samples.

4. If the interpolation capability is exceeded, the decoder blanks out or mutes

the system for the duration of the unreliable samples.

6.7.1 CIRC Encoding

Figure 6.28 illustrates the basic CIRC encoder block diagram (within the CD

recording equipment) and the decoder block diagram (within the CD player equip-

ment). Encoding consists of the encoding and interleaving steps designated as: A
interleave, C2 encode, D* interleave, C1 encode, and D interleave. The decoder

steps, consisting of deinterleaving and decoding, are performed in the reverse

order of the encoding steps and are designated as: D deinterleave, C1 decode, D*

deinterleave, C2 decode, and A deinterleave.

Figure 6.29 illustrates the basic system frame time, comprised of six sampling

periods, each made up of a stereo sample pair (16-bit left sample and 16-bit right

sample). The bits are organized into symbols or bytes of 8 bits each. Therefore,

each sample pair contains 4 bytes, and the uncoded frame contains k = 24 bytes.

Figure 6.29a—e summarizes the five encoding steps that characterize the CIRC

system. The function of each of these steps will best be understood when we

consider the decoding operation.

Encoder

5?:235'

I Encoder
l output

i
: Decoder

Decoder I input

Djlfgjuir A deinterleave 02 decode C1 decode

Figure 6.28 CIRC encoder and decoder.
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l—«——— Frame time = 6 sampling periods——h-l| I
| t

Contains 6 sample pairs
(24 symbols or bytes)

  
Scrambles uncorrectable

but detectable byte errors
to facilitate interpolation
between reliable samples

One codeword

| (28 symbols)
? W For the correction of

( i 2 c gé Ag burst errors and error
\ \ / patterns that the C1

\ Parity bytes/
‘

decoder cannot correct

One codeword

(32 symbols)

I a ’ '|
|
I

I|
|
|

W|
I
|
I

I

(c) D“ interleave :
I
|

|
|

For the correction of
most random single-byte
errors and the detection

of the longer burst errors

(d) C1 encode I
I
l

I|
|

l

|
|
|
|
|

I
(e) D interleave Er|

l
r

Figure 6.29 Compact disc encoder. (a) A interleave. (b) C2 encode. (c) D* interleave. ((1)
C1 encode. (e) D interleave.

(a) A interleave. Even-numbered samples are separated from odd—numbered

samples by two frame times in order to scramble uncorrectable but detect-

able byte errors. This facilitates the interpolation process. I
(b) C; encode. Four Reed—Solomon (R—S) parity bytes are added to the

A-interleaved 24—byte frame, resulting in a total of n = 28 bytes. This (28, I
24) code is called the inner code.

(c) D* interleave. Here each byte is delayed a different length, thereby spreading

errors over several codewords. C2 encoding together with D* interleaving

have the function of providing for the correction of burst errors and error

patterns that the C1 decoder cannot correct.

((1) C1 encode. Four R—S parity bytes are added to the k = 28 bytes of the

D*-interleaved frame, resulting in a total of n = 32 bytes. This (32, 28) code
is called the outer code.
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(e) D interleave. The purpose is to cross—interleave the even bytes of a frame

l with the add bytes of the next frame. By this procedure, two consecutivebytes on the disc will always end up in two different codewords. Upon
decoding, this interleaving. together with the C1 decoding, results in the
correction of most random single errors and the detection of longer burst
errors.

6.7.1.1 Shortening the R—S Code

In Section 5.7.4 an (n, k) R—S code is expressed in terms of n = 2’" — 1

total symbols and k = 2'" — 1 — 2t data symbols, where m is the number of
bits per symbol and t is the error-correcting capability of the code in symbols.
For the CD system, where a symbol is made up of 8 bits, a 2-symbol error-
correcting code can be configured as a (255, 251) code. However, the CD system
uses a considerably shorter block length. Any block code (in systematic form)
can be shortened without affecting the number of errors that can be corrected
within a block length. In terms of the (255, 251) R—S code, imagine that 227 of
the 251 data symbols are a set of all-zero symbols (which are not actually trans-
mitted and hence are not subject to any errors). Then the code is really a (28, 24)
code with the same 2-symbol error-correcting capability. This is what is done in
the C1 encoder of the CD system.

We can think of the 28 total symbols out of the C1 encoder as the data symbols

into the C2 encoder. Again, we can configure a shortened 2-symbol error—cor-
recting (255 , 251) code by throwing away 223 data symbols—the result being a
(32, 28) code.

6.7.2 CIRC Decoding

The inner and outer R—S codes with (n, k) values (32, 28) and (28, 24) each use

four parity bytes. The code rate of the CIRC is (kl/n1)(k2/n2) = 24/32 = 3/4.
From Equation (5.78) the minimum distance of the C1 and C2 R—S codes is dmin
= n — k + l = 5. From Equations (5.79) and (5.50),

dmin _ 1

t _<_ ——2— (6.24)

p s dmin — 1 (6.25)

where t is the error-correcting capability and p is the erasure-correcting capability,
it is seen that the C1 or C2 decoder can correct a maximum of 2 symbol errors

| or 4 symbol erasures per codeword. Or, as described by Equation (5.51), it is
possible to correct any pattern of 0L errors and 'y erasures simultaneously provided
that

dmm 2 2a + 'y + 1 (6.26)

There is a trade-off between error correction and erasure correction; the larger

the error correcting capability used, the smaller will be the erasure correcting
capability.
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The benefits of CIRC are best seen at the decoder, where the processing

steps, shown in Figure 6.30, are in the reverse order of the encoder steps. The
decoder steps are as follows:

1. D deinterleave. This function is performed by the alternating delay lines

marked D. The 32 bytes (Bil, . . . , 3.32) of an encoded frame are applied
in parallel to the 32 inputs of the D deinterleaver. Each delay is equal to the
duration of 1 byte, so that the information of the even bytes of a frame is
cross-deinterleaved with that of the odd bytes of the next frame. I

2. C1 decode. The D deinterleaver and the C1 decoder are designed to correct
a single byte error in the block of 32 bytes and to detect larger burst errors.
If multiple errors occur, the C1 decoder passes them on unchanged, attaching
to all 28 remaining bytes an erasure flag, sent Via the dashed lines (the four
parity bytes used in the C1 decoder are no longer retained). |

3. D* deinterleave. Due to the different lengths of the deinterleaving delay lines

D*(1, . . . , 27), errors that occur in one word at the output of the C1 decoder
are spread over a number of words at the input of the C2 decoder. This
results in reducing the number of errors per input word of the C2 decoder,
enabling the C2 decoder to correct these errors.

4. C2 decade. The C2 decoder is intended for the correction of burst errors that
the C1 decoder could not correct. If the C2 decoder cannot correct these
errors, the 24-byte codeword is passed on unchanged to the A deinterleaver

D Deinterleaver C1 Decoder D" Deinterleaver 02 Decoder A Deinterleaver
. .. (_—A___—.\ /_);__\ r_A_.\

  
Flag signal _...

line         
Figure 6.30 Compact disc decoder.
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28 bytes I I I
per | I | I I

codeword  
C1 OUtPUt codewords After deinterleaving:
after 4 consecutive assuming delay increments
burst detections of 1 byte

Figure 6.31 Example of 4-byte erasure capability. (Rightmost event is at the
earliest time.)

and the associated positions are given an erasure flag via the dashed output

lines, 301, . . . ,3024.

5. A deinterleave. The final operation deinterleaves uncorrectable but detected

byte errors in such a way that interpolation can be used between reliable

neighboring samples.

Figure 6.31 highlights the decoder steps 2, 3, and 4. At the output of the C1

decoder is seen a sequence of four 28-byte codewords that have exceeded the 1

byte per codeword error correction design. Therefore, each of the symbols in

these codewords is tagged with an erasure flag (shown with circles). The D*

deinterleaver provides a staggered delay for each byte of a codeword, so that the

bytes of a given codeword arrive in different codewords at the input to the C2

decoder. If we assume that the delay increments of the D* deinterleaver in Figure

6.31 are 1 byte, it would be possible to correct error bursts of as many as four

consecutive C1 codewords (since the C2 decoder is capable of four erasure cor-

rections per codeword). In the actual CD system, the delay increments are 4 bytes;

therefore, the maximum burst error correction capability consists of 16 consec-
utive uncorrectable C1 words.

6.7.3 Interpolation and Muting

Samples that cannot be corrected by the C2 decoder could cause audible distur-

bances. The function of the interpolation process is to insert new samples, esti-

mated from reliable neighbors, in place of the unreliable ones. If an entire C2

word is detected as unreliable, this would make it impossible to apply interpolation

without additional interleaving, since both even- and odd-numbered samples are

unreliable. This can happen if the C1 decoder fails to detect an error but the C2

decoder detects it. It is the purpose of A deinterleaving (over a span of two frame
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times) to obtain a pattern where even-numbered samples can be interpolated from

reliable odd-numbered samples, or Vice versa.

Two successive unreliable words consisting of 12 sample pairs are shown

in Figure 6.32. A sample pair consists of a sample (2 bytes) from the right audio

channel and a sample from the left audio channel. The numbers indicate the or-

dering of the sets of samples. An encircled sample set denotes an erasure flag.

After A deinterleaving, the unreliable samples shown in the figure are estimated

by a first-order linear interpolation between neighboring samples that stem from
a different location on the disc.

In CD players, another level of error control is provided in case a burst

length of 48 frames is exceeded and 2 or more consecutive unreliable samples
result. In this case the system is muted (audio is softly blanked out), which is not

discernible to the human ear if the muting time does not exceed a few milliseconds.

For a more detailed treatment of the CIRC coding scheme in the CD system, see

References [31—34].

6.8 CONCLUSION

In the last decade, coding emphasis has been in the area of convolutional codes

since in almost every application, convolutional codes outperform block codes

for the same implementation complexity of the encoder—decoder. For satellite
communication channels, forward error correction techniques can easily reduce

the required SNR for a specified error performance by 5 to 6 dB. This coding

gain can translate directly into an equivalent reduction in required satellite ef-
fective radiated power (EIRP), with consequently reduced satellite weight and
cost.

I In this chapter we have outlined the essential structural difference between
block codes and convolutional codes—the fact that rate l/n convolutional codes

have a memory of the prior K — 1 bits, where K is the encoder constraint length.

With such memory, the encoding of each input data bit not only depends on the

value of that bit but on the values of the K — 1 input bits that precede it. We

presented the decoding problem in the context of the maximum likelihood algo-
rithm, examining all the candidate codeword sequences which could possibly be

created by the encoder, and selecting the one that appears statistically most likely;
the decision is based on a distance metric for the received code symbols. The

error performance analysis of convolutional codes is more complicated than the
simple binomial expansion describing the error performance of many block codes.
We laid out the concept of free distance, and we presented the relationship be-

tween free distance and error performance in terms of bounds. We also described

the basic idea behind sequential decoding and feedback decoding and showed

some comparative performance curves and tables for various coding schemes.

Finally, we described a technique, interleaving, that allows the popular block
and convolutional coding schemes to be used over channels that exhibit bursty

noise or periodic fading, without suffering degradation. We used the CD digital
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audio system as an example of how interleaving plays an important role in ame-
liorating the effects of burst noise. 1

Appendix E consists of a FORTRAN program called VITALG for the con-
volutional encoding and Viterbi decoding of messages. The messages can be in l
the form of binary sequences or ASCII characters. The user has a choice of code
rate, constraint length, connection vectors, and path memory length. The program i
can be used to insert errors into a bit stream after it has been encoded. From the

program output, the user sees the error correcting that results from the use of \
hard-decision Viterbi decoding of his chosen message. It should prove interesting

to use the VITALG program for verifying the performance of the optimum Oden- \
walder codes shown in Table 6.4. 1
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PROBLEMS

6.1. Draw the state diagram, tree diagram, and trellis diagram for the K = 3, rate :1; code
generated by

g1(X) = X+ X2

g2(X)=1+X

g3(X)=1+X+X2

6.2. Given a K = 3, rate %, binary convolutional code with the partially completed state
diagram shown in Figure P6.1, find the complete state diagram and sketch a diagram
for the encoder.

6.3. Draw the state diagram, tree diagram, and trellis diagram for the convolutional en—
coder characterized by the block diagram in Figure P62.

6.4. Suppose that you were trying to find the quickest way to get from London to Vienna
by boat or train. The diagram in Figure P6.3 was constructed from various schedules.
The labels on each path are travel times. Using the Viterbi algorithm, find the fastest
route from London to Vienna. In a general sense, explain how the algorithm works,
what calculations must be made, and what information must be retained in the mem—

ory used by the algorithm.

6.5. Consider the convolutional encoder shown in Figure P6.4.

(a) Write the connection vectors and polynomials for this encoder.
(b) Draw the state diagram, tree diagram, and trellis diagram.

6.6. What is the impulse response of the encoder of Problem 6.5? Using the impulse

response, determine the output sequence when the input is 1 0 1. Verify by using

the generator polynomials. ‘

 

6.7. Does the encoder of Problem 6.5 allow catastrophic error propagation? Justify your

answer with an example. i6.8. Find the free distance of the encoder of Problem 6.3 by the transfer function method.

6.9. Let the codewords of a coding scheme be

a=000000 I

b=101010 I

c=010101 |

d=111111

If the received sequence over a binary symmetric channel is 1 1 1 0 1 0 and a

maximum likelihood decoder is used, what will be the decoded symbol?

6.10. Consider that the K = 3, rate % encoder of Figure 6.3 is used over a binary symmetric

channel (BSC). Assume that the initial encoder state is the 00 state. At the output
of the BSC, the sequence Z = (l 1 0 0 0 0 1 0 1 1 rest all “0”) is received.
(a) Find the maximum likelihood path through the trellis diagram, and determine

the first 5 decoded information bits. If a tie occurs between any two merged
paths, choose the upper branch entering the particular state.

(b) Identify any channel bits in Z that were inverted by the channel during
transmission.
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6.11. Determine which of the following rate % codes are catastrophic.
(a) glut) — X3. galX] = 1 + X + X3

Ill.{1)} ng] l. + 1Y1, gflX} : 1 + X3
(C) Ell-X) = 1 + «Y + .Yz, gli-X.) = 1 + X + X3 + X4
{d} 3‘00 = 1 + X + X3 + X4: guX1=1+ X2 + X4
(e) g.(X] = l + X“ + X“ + X7. gatX) = 1 + X3 + X“
(r) ng) = 1 + x3 + X“. gzm = 1 + X + X2 + X4

6.12. (a) Consider a coherently detected BPSK signal encoded with the encoder shown
in Figure 6.3. Find an upper bound on the bit error probability, PB, ifthe available
BANG is 6 dB. Assume hard decision decoding.

(b) Compare PB with the uncoded case and calculate the improvement factor.
6.13. Using sequential decoding, illustrate the path along the tree diagram shown in Figure

6.20 when the received sequence is 0 1 1 1 0 0 0 1 1 1. The backup criterion is
three disagreements.

6.14. Repeat the decoding example of Problem 6.13 using feedback decoding, with a look-
ahead length of 3. In the event of a tie, select the upper half of the tree.

6.15. Figure P6.5 depicts a constraint length 2 convolutional encoder.
(a) Draw the state diagram. tree diagram, and trellis diagram.
0:) Assume that a received message from this encoder is I l 0 0 1 0. Use a feed-

back decoding algorithm with a look-ahead length of 2 to decode the coded
message sequence.

  
lnput-—-I- WC—O Output

Figure P6.5

6.16. Using the branch word information on the encoder trellis of Figure 6.7, decode the
sequence Z = (01 11 00 01 11 rest all “0“}. using hard-decision Viterbi decoding.

6.17. Consider the rate .2; convolutional encoder shown in Figure P6.6. Ln this encoder.
= 2 bits at a time are shifted into the encoder and n = 3 bits are generated at the

encoder output. There are kK = 4 stages in the register, and the constraint length
is K = 2 in units of 21—bit bytes. The state of the encoder is defined as the contents
of the rightmost K — 1 k-tuple stages. Draw the state diagram, the tree diagram,
and the trellis diagram.

6.18. Find the ratio of the predetection signal-to-noise spectral density, Pr/No, in decibels,
required to yield a decoded data rate of 1 Mbit/s with a bit error probability of 10's.
Assume binary noncoherent FSK modulation. Also, assume convolutional encoding
with the following decoder relationship:

Pb = 2000 P‘};

where PB and Pb are bit error probabilities into and out of the decoder, respectively.
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Figure P6.6

6.19. The sequence

1011011000101100

is the input to a 4 x 4 block interleaver. What is the output sequence? The same
input sequence is applied to the convolutional interleaver of Figure 6.26. What is
the output sequence?

6.20. Using the computer program VITALG listed in Appendix E, perform the following
calculations. Let the uncoded message consist of a sequence of binary zeros, where
the number of zeros is 10 times the constraint length of the code being used. Con-

volutionally encode the message and emulate a memoryless AWGN channel by in-
serting random transmission errors into the coded sequence (space the errors at
approximately a uniform distance from one another). Decode the corrupted coded
message using the Viterbi algorithm with the path memory chosen to be five times
the constraint length. Use the code generators described as optimum by Odenwalder
in Table 6.4. Record the errors corrected by the code, and tabulate the maximum
number of errors that can be corrected using each of the following codes:

(a) Rate %, constraint length 3

(b) Rate %, constraint length 3
(c) Rate is, constraint length 5
(d) Rate %, constraint length 5
(e) Rate %, constraint length 7
(f) Rate §, constraint length 7
Explain the results.

6.21. Repeat Problem 6.20. However, instead of a memoryless AWGN channel, emulate
a channel that has memory by inserting error bursts into the coded message. Let a
burst consist of an uninterrupted sequence of errors placed approximately in the
middle of the message. Tabulate the maximum number of errors that can be corrected
using each of the code types (a) through (f) listed in Problem 6.20, and compare the
error-correcting capabilities of the codes with these two different channel environ-
ments. Explain the results.
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6.22. Repeat Problem 6.20, parts (e) and (f), for both the uniformly spaced error pattern
and the burst error pattern (described in Problems 6.20 and 6.21). In each case com-
pare the performance of the Odenwalder generators in Table 6.4 to other generators
of your own choosing. Tabulate the results. Do your findings support the premise
that the Table 6.4 generators are optimum?

6.23. For each of the following conditions, design an interleaver for a communication

system operating over a bursty noise channel at a transmission rate of 19,200 coded
symbols/s.

(a) A contiguous noise burst typically lasts for 250 ms. The system code consists
of a (127, 36) BCH code with dmin = 31. The end-to-end delay is not to exceed
5 s.

(b) A contiguous noise burst typically lasts for 20 ms. The system code consists of I
a rate % convolutional code with a feedback decoding algorithm that corrects an

average of 3 symbols in a sequence of 21 symbols. The end-to-end delay is not

to exceed 160 ms. ‘
6.24. (a) Calculate the probability of a byte (symbol) error after decoding the data stored

on a compact disc (CD) as described in Section 6.7. Assume that the probability
of a channel symbol error for the disc is 10—3. Also assume that the inner and
outer R—S decoders are each configured to correct all 2-symbol errors, and that

the interleaving process results in channel symbol errors being uncorrelated from
one another.

(b) Repeat part (a) for a disc that has a probability of channel symbol error equal
to 10—2.
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