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QUALITY CONTROL MECHANISM FOR
THREE-DMNSIONAL GRAPHICS

RENDERING

CROSS—REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of US. patent
application SCJ'Ser. No. 083152.118. filed Dec. 22. 1994.
abandoned. entitled MECHANISM FOR W-
ING SCALABLE AND EX'I'ENSIBLE GRAPHICS

RENDERING. by inventor David levans. assigned to the
assignee of the present application and incorporated herein
by reference.

LIMITED COPYRIGHT WAIVER

A portion of the disclosure of this patent document
centains material to which the claim of copyright protection
is made. The copyright owner has no objection to the
facsimile reproduction by any person of the patent document
or the patent disclosure. as it appears in the U.S. Patent and
Trademark Oflice file or records. but reserves all other rights
whatsoever.

BACKGROUND

1. Field of the Invention

The invention relates to graphics rendering systems. and
more particularly. to software tools for assisting graphics
application developers.

2. Description of Related Art

Graphics rendering is the process of computing a two-
dimensional image (or part of an irnage) from three-
dimensional geometric forms. An object is considered herein
to be three-dimensional if its points are specified with at
least three coordinates each (whether or not the object has
any thickness in all three dimensions). A tenderer is a tool
which performs graphics rendering operations inresponse to
calls thereto. Some renderers are exclusively software. some
are exclusively hardware. and some are implemented using
a combination of both (e.g. software with hardware assist or
acceleration). Renderers typically render scenes into a bufier
which is subsequently output to the graphical output device.
but it is possible for some renderers to write their two-
dlmensional output directly to the output device. A graphics
rendering system (or subsystem). as used herein. refers to all
of the levels of processing between an application program
and a graphical output device. In many prior art systems. the
graphics rendering system is coextensive with the tenderer.
that is. the tenderer is called directly by the application
program without any intervening layers of processing.

Graphics rendering systems typically feature an immedi-
ate mode interface or it retained mode inta'face to the

application program. An immediate mode interface is a truly
procedural interface in which the application program speci-
fies each geometric primitive to the graphics rendering
system every time the image is to be rendered. The rendering
system does not maintain a model database from scene-to-
scene. although the application program may do so. Imme—
diate mode interfaces are highly attractive for rendering
scenes where the model is changing at each frame. such as
for visualization of simulations. previewing of animation
sequences. or reading a series of models from a file. On the
other hand. an immediate mode interface requires that the
entire scene he nansmitted via procedure tails to the ren-
derer at each frame. resulting in high data bandwidth
between application program and renderer. Also. the file
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format for a model is often simply a stream of drawing
commands rather than the model itself. restricting its use-
fulness as a data interchange format. Immediate mode
interfaces are also less conducive to providing toolkit mod-
eling functionality to the application program. and they
usually preclude a user interface toolkit that operates on
obfias in the scene.

In a retained mode system. sometimes called a display list
system. the graphics rendering system maintains a database
representation of the three dimensional model. At each
frame. the rendering system traverses the retained model
database and draws it. This can be instigated by a single call
by the application program to the graphic; rendering system.
instead of a stream of drawing calls describing the entire
scene. When the model changes. the application program
edits or updates the model database and again asks the
rendering system to render the scene. The benefits of a
retained mode system include reduced bandwidth between
the application program and any hardware accelerator. The
file format of the model database also can be used easily as

a data interchange format since it is not merely a list of
procedure calls. The existence of an object database also
provides an additional way of implementing a user interface
toolkit and modeling functionality. Retained mode renderers
can also cache rendering information and can also cache
information for optimization of scene traversal. 0n the other
hand. retained mode rendering systems have a higher oven
head for editing the scene database. and they restrict appli-
cation program design by forcing the scene into a system-
defined data structure. usually a hierarchy. thus requiring
many application programs to maintain a duplicate copy of
the model in their own format.

In Mark A. Tarlton and P. Nong Tarlton. "A Framework
for Dynamic Visual Applications.” Proceedings of the 1992
Symposium on Interactive 3!) Graphics. Cambridge. Mass.
1992. pp. 161—164. incorporated by reference herein. there
is described a retained mode rendering system which imple—
ments a general purpose database system to organize the
model rather than forcing the model to reside in a single
system hierarchy. Such a technique attempts to provide the
benefits of the retained mode system without the drawbacks.

The following list describes some of the graphics reada-
ing systems which. are currently available.

GL7“. Silicon Graphics‘ GL is an irnrncdiate mode ren-
derer used primarily for interactive graphics. 61.. is
described in “Graphics Library Programming Guide.” Sili-
con Graphics Computer Systems. 1991. incorporated by
reference herein. It was designed as an interface to Silicon
Graphics IRIS rendering hardware and does not provide a
file format. hard copy output. modeling capability. or user
interface tools. 61.. supports simple display lists which are
essentially mauos for a sequence of GI. commands. The GL
routines perform rendering operations by issuing commands
to the IRIS hardware.

StarBaseT“. Hewlett-Packard's StarBase is an immediate

mode system that is very similar to GL. sharing most of its
{wines and disadvantages. StarBase is described in "Star-
base Graphics Techniques. Hewlett-Packard Company."
l99l. incorpa'ated by reference herein. Numerous device
drivers are available for StarBase for outputting the rendered
(to. two-dimensional) scene on difl‘erent graphics output
devices ranging from plotters to high~end 3-D graphics work
stations.

RenderManT“. Renda'Man. by Pixar. is an immediate
mode system designed primarily to support high quality
rendering. RenderMan is described in Steve Upstill. "The
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RenderMan Companion.” Addison-Wesley. Reading. Mass.
1990. incorporated by reference herein. As described in
Tony Apodaca. ‘RenderMan Interface Specification Version
4.0 Beta.” January. 1992. incorporated by reference herein.
recent versions of the RenderMan specification provide new
routines that bracket the existing RenderMan calls and allow
difierent renderers to be used The tenderer is specified with
a single call prior to rendering the scene. and it aflects the
entire scene. See also Pixar. “Quick RenderMan Interface
and Implementation Specification.“ 1992. incorporated
herein by reference.

PHIGS. PHIGS is described in PHIGS Committee. A. van

Dam. chair. “PHIGS Flinctional Description. Revision 3.0."
Computer Graphics. 22(3). 1938. pp. 125—218. incorporated
by reference herein. and is a desoendent of OKs-3D.
described in International Standards Organization. “Interna—
tional Standard Information Processing Systems Computer
Gaphics—Graphical Kernel System for ”three Dimensions
(OKs-3D) Emotional Description." 130 Document Number
8805: 198803). American National Standards Institute. New
York. 1938. incorporated by reference herein. PHIGS was a
connnitteeoesigned system for interactive 3-D graphics
display. In PHIGS. the entire model database resides in a
single hierarchy. Application programmers must learn a host
of editing and hierardty manipulation calls in order to
etfectiveiy use the system. PHIGS employs a single tenderer
mat supports all the rendering modes specified available in
PHIGS. and does not support alternative rendaers for pho-
torealism or other efl‘ects.

PBX. PEX is an extension to the X—Windows system.
defined by a serial protocol (for transmitting data between an
application program and the X—Windows system) and a set
of semantics which were originally derived from PHIGS.
PEX has several available APIs. all of which support
retained~mode. immediate-mode. and mixed-mode function

calls for drawing. changing state. etc. PEX is described in
“PEX Protocol Specification. Version 5.0P-X Public Review
Draft.” 14 Sep.. 1990. Massachusetts Institute of
Technology. incorporated by reference herein.

HOOPS”. HOOPS. by Ithaca Software. is described in
Garry Megand and Bob Covey. “HOOPS Reference
Manual. Version 3.0." Ilham Software. 1991. incorporated
by reference herein It is a retained mode 3-D graphics
system. which organizes the model in a hierarchy whose
nodes are accessed through textual strings in much the same
way that files in the UNIX file system are referenced Like
PHIGS. HOOPS supports a single renderer. However.
HOOPS provides more extensive scene editing functionality
than PHIGS.

DORE“l DORE. by Kubota. is an example of a 3-D
graphics system with an object-oriented design. It is
described in “Dore Programmer’s Guide.” Release 5.0.

Kubota Pacific Counselor Inc. 1991. incorporated by refer-
ence herein. DORE was designed so that scene data is
renderabie by many kinds of renderers. rather than a single
monolithic tenderer as provided by PHIGS. Renda'u's can-

not be added dynamically to DORE. however. as the ren—
dering methods are built into the system. In DORE. the
choice of renderers is specified by setting the current ren—

dering style in the DORE “View object“. DORE then also

requires the application program to attach the 11106113] to the
view object before rendering. This restrias DORE to uti—
lizing only one renderer at a time. Then are other design

considerations in Donia that use restrict it to using only one
tenderer at a time: for example. only one set of global
variables is provided for maintaining the rendering state.
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DORE is a retained mode system. To relieve much of the
hassle associated with editing the model hierarchy and to
facilitate dynamic databases and user interaction. DORE
supports application callback objects. whereby an applica-
tion program defines a function to be called when the
callback object is enowntered during scene traversal.

Inventor”. Inventor is an object oriented 3-D graphics

user interaction toolkit that sits on top of the GL graphics
system. Like DORE. inventor supports multiple rendercrs
by having a tenderer-specific “render" method for each
object type. Inventor is it retained mode system with the
entire scene residing in a “scene graph". Inventor has render
action objects that take a model as a parameter. The renderer
is selected by the rendering action that is used when drawing
the model. The render action draws the entire model by
traversing the model and calling the appop'iate rendering
method for each objecL The usual render aaion is the GL
rendering mode. Inventor is described in Werneclre. “The
Inventor Mentor". Addison-Wesley (1994). incorporated by
reference herein.

Other references pertinent to the disclosure herein are the
following. all incuporated by reference herein: Bergman.
Fuchs. and Grant. “Image Rendering by Adaptive
Refinement." Computer Graphics. 20(4). 1986. pp. 29—37;
Catmull. “ASubdivision Algorithm for Computer Display of
Curved Surfaces.” PhD. Thesis. Report UTEC-CSc-M—BB.
Computer Science Department. University of Utah. Salt
Lake City. Utah. December. 1974: Chen. Rushmeier. Miller.
and Tin-net. “A Progressive Multi—Pass Method for Global
Illumination." Computer Graphics. 25(4). 1991. pp.
165—174; (Hark. ‘The Geometry Engine: A VLSI Geometry
System for Graphicsf Computer Graphics. 16(3). 1982. pp.
127—133; Foley. van Dam. Feiner. and Hughes. “Cotnpulet
Graphics: Principles and Practice.” Addison-Wesley.
Reading. Mass. 1990: Haeberli and Alreley. "I'he Accumu-
lation Bufl’er: Hardware Support for High-Quality
Rendering.” Computer Graphics. 24(4). 1990. pp. 309-318:
Kelley. Winner. and Gould. “A Scalable Hardware Render
Accelerator using a Modified Scanline Algorithm." Com-
puter Graphics. 26(2). 1992. pp. 241—248; Maillot. "three-
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When a once-dimensional model is to be rendered into a

scene for display. a classic trade-off exists between the speed
of the rendering operation. on the one hand. and the quality
of the result. on the other hand. For example. wire frame

rendering operates at high speed. but produces a lowquality
result. whereas a ray-tracer requires a much longer time
period to render the same model. but can produce extremely
high-quality results. Thus. an application program which
permits interactive editing of a three-dimensional model
may benefit by using a wire frame renderer to draw inter-
mediate versions on a display. and by using a ray-tracer
renderer to draw the final version for output. However. the
interchangeability of renderers is awkward at best using the
rendering systems described above. Moreover. substitution
of one renderer for another provides only gross control over
the specdlquality trade-of continuum. It would be desirable
to permit an application program to sacrifice a little quality
in order to gain a little speed. or vice versa. It would be
desirable to provide a plurality of gradations on the speed)'
quality trade-oil continuum so that a user or application
program may select exactly the desired position in the
nadwlf.

In the past. application programs have provided users
with control over various incidental parameters of the ten-

daring process. and users have taken advantage of this
control by selecting options which. as a side oiled. allied the
speedi'quality trade—off. For example. by temporarily Dining
06 certain lights. a user can hasten the rendering process at
the expense of quality. The same eifect can be accomplished
by culling objects from the scene before rendering. by
making the output window smaller. by switching from filled
mode to edge mode for a render-er that allows such selection.
and by setting a coarser antialiasing level. In some systems.
several of the parameters which alters the speedlquality
trade-off are made accessible to the user in a single dialog
box. in which the user can select an option for each of the
controllable parameters. This is a highly piecemeal approadt
to the problem Other appficarion programs do allow a user
to select a gross quality for rendering. but usually the user's
selection causes the program to call a completely different
renderer. or at least causes the renderer to use grossly
dilferent rendering methods.

Accordingly. there is a need for a quality control moha-
nism which allows an application program or user to select
a desired point in the overall speedlquality rendering trade-
olf. with relatively fine resolution on the continuum. and
without being concerned with individual rendering pastu-eras.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a medtanism which allows an application program or user to
select a desired point in the overall speedlquality rendering
wade-off. with relatively fine resolution on the continuum.
and without being concerned with individual rendering
parameters.

According to the invention. roughly described. a graphics
rendering system includes a continutu'n. or collection. of
quality control data groups. each of which contains a pin-
rality of quality control type variables. Each oi" the type
variables contains a value which selects among a plurality of

options in a respective trade-oil” between rendering quality
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and rendering speed For example. each of the quality
conu-ol data groups may include a quality control type
variable for “level of detail“; those grwps at the lower end

of the quality continuum may have dtose variables set to
“low“. whereas data groups at the higher end of the con»
tinuum may have this variable set to “high".

In an aspect of the invention. each of the quality control
data groups is associated with a respective quality index.
Thus. an application program can select a point on the
overall rendering speediquality renda'ing trade-03’. merely
by selecting a quality control index value. Moreover. the
application program can make the quality control index
accessible to a user. for example in such an intuitive form as
an iconic “quality knob". The quality knob may have a
number of settings. for example. ranging from 0.0 to 1.0.
each of which corresponds to a respective one of the quality
control data groups. Thus the mechanism permits the user to
have fine control over the rendu'ing speediquality rendering
trade-off. without being concerned with adjustments to the
individual rendering parameters.

HRH DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to particular
embodiments thereof and reference will be made to the
drawings. in which:

FIG. 1 is a simplified block diagram of a computer system
implementing the present invention;

FIG. 2 illustrates a sofnvare architecture employing the
invention;

FIG. 3 is a flowchart illustrating the oviaall flow of a
program using the invention;

FlG.disadetailofstep308inFIG.3;

FIGS. 5. 7. 9. 11 and 12 illustrate object data structures in
memory;

FIG. 6 illustrates a class hierarchy used in an embodiment
of the invention;

FIG. 8 illustrates a model hiu'archy created by an example
program using the invention:

FIG. 10 is a flowchart illustrating the creation of a new
object in memory;

FIG. 13 is a flowchart of an application program proce-
dure to set up a quality collection:

FIG. 14 is a flowchart of an eradication program proce-
dure for obtaining a desired quality index:

FIG. 15 is an illustration of a display icon: and
FIG. 16 is a flowchart of a procedure in a renderer.

DETAEED DESCRIPTION

FIG. 1 is a simplified block diagram of a computer system
implementing the present invention Although certain types
of computer architecttu'es mighttake better advantage of the
invention than odters. the invention can be implemented on

virtually any type of architecture. In the architecture of FIG.
1. a CPU 102. a memory 104. and an U0 subsystem 106 are
all connected to abus 108. The CPU 102 issues signals over

thebus 108 forreadingand writingtothe memy “dos-to
the DO subsystem 106. in order to manipulate data in the
manner described herein. 'ihe CPU issues such signals in

response to sohware instructions that it obtains from the
memory l“. The U0 subsystem 106 may also be capable of
issuing signals over the bus 108 in order to access memory
104 in a particular embodiment. The system can also include
a graphics coprocessor 110. which can offload from the CPU
102 many of the memory-intensive tasks required for ten
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dcring an image. In such situations. the display. illustrated in
FIG. 1 as 114. is often driven by the lit) subsystem 106. In
other systems. a graphics accelerator 112 is concerted to the
bus 108 and to the display 114. In these systems. the display
buffer is typically held inside the graphics accelerator 112
which can not only write specific attributes (cg. colors) to
specific pixels of the display 114 as requested by CPU 102.
but can also draw more complicated primitives on the
display 114 under the command of CPU 102.

The invention is implemented in the patent embodiment
in the form of a set of software tools referred to herein as
Escher. These software tools include a set of software
moccdures and a set of header files which define the variable
names and data slructtn'es used by the procedtn‘es. Escher is
provided to an application program developu on a storage
medium such as a magnetic or optical disk or disks. In one
embodiment. the storage medium contains source code for
Escher. while in another embodiment. the storage medium
contains compiled object code for Escher. In yet another
embodiment. the storage medium contains some source code
and some object code for Escher. The application developer
compiles an application program with Escher and with one
or more renderers and stores the resulting object code on a
storage medium. The combined object code is later read into
memory 104. either entirely or in an overlaid manner. and
executed by the CPU 102.

It should be noted that software and data referred to herein

as being in “memory". could at any given time actually
reside. entirely or in part. in a secondary storage medium
such as a disk. This situation could arise due to such

architectures as overlaid exemtion. or virtual memory. for
example. For simplicity. all such software and data is
considered herein to reside “in memory“ at all pertinent
times. even though it may at some times actually reside
temporarily elsewhere.

FIG. 2 illustrates the logical position of Esclter in a
software architecture. As can be seen. logically. the Escher
procedures 2.2 are disposed between an application pro-
gram 20¢ and a plurality ofrenderers 206. 2.8 and 210. That
is. the application program 204 makes prooedrn-e calls to
Escher prooedurcs via an application program interface
(API). and certain procedures within Esdier (specifically.
certain renderer invocation procedures 212) make procedure
calls to the readiness 206. 2.8 and 210. The application
program 204. when making calls to the renderer invocation
procedures 212. specifies which renderer the renderer invo-
cation p‘ocedtn-es should use. The renderers. in turn. com-
municate with other hardware components 21:! of the
platform. such as a display buffer memory. a graphics
coprocessor 110 if present. andlor a graphics accelerator
112. if present. The Escher procedures. in addition to the
renderer invocation procedures 212. also include render-er
installation procedures 216. quality control management
procedures 21?. model building and editing procedures 218.
view building and editing procedures 20. and several other
kinds of procedures (not shown) which are not patinent to
an understanding of the invention.

FIG. 3 is a flowchart illustrating the overall flow of an
example program which uses the invention. In a step 302.
the application program 204 calls an Escher initialization
procedure (not shown) which. among other things. installs
one or more renderers using the tenderer installation proce-
dures 216. One of the advantages of Escher is that a variety
of difl'erent kinds of renderers can be installed. including
renderers which were not available at the time the applica-
tion program was compiled.

In a step 3.3. the application program calls the quality
control management procedures 21? of Escher in order to
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build one or more “quality collection objects”. each ofwhich
can contain one or more "quality group objects”. A quality
group object is an object coated by the Escher system
according to a predefined data structure. which collects in
one place a number of quality control criteria such as line
style. type of shaders. type of illumination. level of detail.
antialiasing level. and so on.

In a step 304. the application program calls the view-
buildinglcditing procedtn'es 22. of Escher in (inlet to build
one or more ‘Wiew objects". A view object is an object
created by the Escher system according to a predefined data
structure. which collects in one place a number of viewing
criteria such as a camera position. illumination. a hardware
destination (“draw context") into which a two-dimensional
image is to be rendu-ed. as well as a choice of renderers.
among other things. Step 3“ can also include a call to an
Escher procedure to select a quality group for use in the
rendering process.

In a step 306. the application program makes calls to the
model-buildingfediting procedures 218 ofEscher. in order to
build one or more models. A model is represented in Escher
as a hierarchy of one or more objects. each of which
describes a geometry (shape). a material attribute
(describing the appearance of a airfare). a style (such as
filled surfaces. edges only or points only). a transform
(describing the relative position. orientation and size of
truce-dimensional objects with rmpoct to world space). or a
grwp (which merely contains funher objects at the next
level down in the hierarchy). As the term is used herein. a
“model" can constitute only a single object. such as a
geometry object. without any hierarchically-defined sub-
objects.

In a step 308. the application program calls the renderer
invocation prooedtn'es 212 in order to have Escher render
one or more of the models created by the application
program. to one or more of the views defined by the
application program. The API for the rendu'ed invocation
procedures 212 includes both immediate-mode calls as well
as retained-mode calls. For immediate-mode calls. the appli-
cation program passes in only non~hierarchical data struc»
tures to reader. The Escher system passes the structures
immediately to the specified renderer. without caching any
intermediate results. For material. style and transform
objects. the Escher system merely adjusts the uncut “state"
of the view. thereby alfecting the rendering of subsequently
received geometries. For retained-mode calls to the render-er
invocation procedures 212. the object passed by the appli—
cation program 2“ can be an entire hierarchically defined
model: the rennin-er invocation procedures 212 automati-
cally traverse this model. making appropriate calls to the
specified renderer at appoprinte points in the traversal.

In both immediate-mode calls and retained-mode calls.

the application program 294 specifies to the tenderer invo-
cation procedures 212 both the object to render and a view
object. The current “state” of rendering is always maintained
within the data structure of the view object. so the applica-
tion program can render the same model to more than one
view at the same time merely by inter-spacing calls which
specify one view object and calls that specify another view
object. These calls will not iota-fen: with each other (unless.
of course. both view objects designate the same draw
context). The two view objects could specify the same or
difierent render-us. and the draw context specified in the
view objects can be for output to the same or dilferent kinds
of output devices (such as two difl‘erent windows on a single
display. or one for a display and one for a printer). Moreover.
the application program 204 can intennix immediate-mode
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calls and retained—mode calls for the same view. thereby
allowing the application developer to optimize the storage
andlor traversal of difierent parts of a scene difierently.

Some of these possibilities are illustrated in an example
flowchart shown in FIG. 4. In a step 402. the application

program calls the renderer invocation Irocedures 212 speci-
fying a first model and a first view object. In a step 404. the
application program calls the tenderer invocation proce-
dures specifying the first model and a second view object. In
a step 606. the application program calls the tenderer
invocation procedtn'es specifying a second model and the
first view object. In a step 408. the application program calls
the renderer invocation procedures specifying the second
model and the second view object. In a step 410. the

application program calls the rendaer invocation proce-
dures specifying a third model and the first view object. andso on.

The independence of an Escher view object (including
identification of renduer) from the model to be rendered.

also provides enormous flexibility in the sequence of opera-
tions performed by the application program 204. For
example. renderers need not be installed (step 302) until just
prior the calls to the renderer invocation procedures 212
(step 308). View objects also do not need to be defined or
completed (step 304) until after a model is prepared (step
306). Thus an application program might build a model. or
part of a model. and allow a use" to select a. tenderer otfly
afterwards. Choice of renderer can be made using. for

example. a pop-up browse window which ofl’ers a number of
already installed renderers. and which also oh’ers the user an
ability to install yet another tenderer at that time. The
application program can then render the model (or models)
using the chosen tenderer. subsequently edit the model or
build new ones. audior change the choice of renderers. and
render the model(s) again. and so on. Such flexibility is
made possible because the choice of renderer is not bound
up in the model as it is being built. but rather. the application
program specifies the render-er in its calls to the renderer
invocation procedures 212 of Escher.

A simple C—language application program 204 is set forth
in Appendix A hereto. in this example. the program first calls
the Escher initialization routine. which installs both a wire
Erame renda‘er and a Zrbufier tenderer. Next. an application

routine ExSetupQualityColleetiom) is called to set up and
initialize a quality collection object. This procedure is
described in more detail hereinafier.

Next. a view object (‘wiew") is created and a particular
renderer (the wire frame rendercr) is associated with the
view. A camera object and a draw context object are also
associated with the view object. The program then creates a

model (“group") and adds in a polygon object (“polygon“).
a line object (“line“). a nansform object (“transform") and
a group object (“subGroup”). The application program then
adds toms object (“tor-us". a form of geometry object). to the
group object. Next. a user-specified quality index is estab-
lished for the view object and the model is traversed and
rendered using the renthzrer specified in the view object. The
tenderer specified in the view object is then changed to the
Z-bidfrr type renderer. and the same model is rendered again
using the tenderer specified in the view object.

Before continuing. it will be worthwhile to set fix-d:
certain naming conventions used in the C~language source
code incaporated into the present description. In this
description. names that begin with the prefix E1 (Escher
type) are data types defined in the Escher source code.
Names that begin with the prefix EC (Escher constant) are
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constants defined in the Escher source code. Names that

begin with the prefix Er (Escher routine) are procedure
names which are callable by the application program. Names

beginning with the prefix El (ESCl'ICI internal) are names of
internal Escher procedures which are called only by other
Escher procedures. Many of these have counterpart Er
procedures which are called by the application program. and
which essentially do nothing more than call the correspoad-
ing Ei procedure. For this reason. E: and El procedure names
are used interchangeably herein. Finally. names having the
prefix Bg (Escher global) are global variables.

The names of Escher routines begin with El or Er. and are

followed by subwords which begin with capital letters. The
form of most Escher procedure names as used herein is
ErFoo_DoSomething. where Foo is the type of data that the
function is to operate on and DoScmething is the operation
which the routine is to perform on that kind of data. For
example. a procedure to create a new polygon object is
named ErPolygon_New. Other naming conventions will be
mentioned as they arise.

The difierent primary steps of an application program. as
illustrated in FIG. 3. will now be described in more detail.

I. REJDE‘RER INSTALLATION

The installation of renderers for EScher uses a generalized
extension mechanism which is also used for installing other
extensions such as shaders. Extensions for Macintosh imple-
mentations are files. stored in mass storage in the hardware
of FIG. 1. with a data fork and a resoume fork. The data fork
contains the code to be loaded by the Escher system. and the
resource fork identifies the code fragments in the data fork.

When an application program 2“ operating on a Macin-
tosh makes a call to the Escher procedure Elnitializet }. the
Escher system looks for all extension files in an extension
folder on the computer system. All files that are found and
that contain appropriate resource infonnation are then con-
sidered available for use by the application program. The
extension file specifies an initialization routine. which takes
all the necessary steps to “register" the services that it
provides with the Escher system as well as a termination
routine.

Escher extensions are loaded into a generalized object

hierarchy in the Escher runtisnc environment. Escher‘s
object lucrarchy has an “open” architectin'e which allows
any application to “plug in“ a subclass at any of several
levels in the hierarchy. Renderers are one of the object
classes that may be subclassed.
A. Escher Object System

An object in the Escher system is identified by two
handles. namely an object class and an object type. The
object class is a pointer of type EtObjectClassPrivate. and
the object type is a longword. Because the parent class of
each subclass in the Escher class hierarchy provides a
certain behavior. Escher stores object private data and object
classes in a layered manner. For example. a subclass of the
renderer class is abstraetly laid out in the manner illustrated
in FIG. 5. FIG. 5 shows an object “class" 502. which is a

contiguous region of memy containing pointers to all the
methods associated with the tenderer. in this case a wire
frame (WP) renderer. Since the wire frame renderer is
subclassed from the tenderer class. the renderer class is
subclassed from a “shared object" class. and the “shared

object" class is subclassed from the generalized “object“
class. the method tables 502 first list the methods associated
with the object class (region 504). These methods include
dispose object. duplicate object and unregister object.
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among other things. All object class method tables point to
the same set of Escher- procedures in mere entries. unless

these entries have been overridden on initialization by one of
the descendant classes represented in a particular method
table 502. The class 502 next contains a region 506. con-
taining pointers to a set of methods appropriate for all
objects in a “shared object” class. As it happens. there are no
“shared object” methods. so no space is allocated in this
layer. The region 506 is followed by a region 508 containing
pointers to a set of methods appropriate for all rendercrs.
There is no layer specifically for the wire frame renderer
class because. by convention in the Escher design. [eat
classes have no method tables of their own.

Region 512 stores all of the data for an instance of class

502. This region is organized in the same manner as region
5.2. Specifically. it contains first all of the data which is

appropriate to any instance of an object class in region 514.
followed by all the data appropriate for any instance of a
shared object class in region 5115. followed by all the data
appropriate for any instance of a renderer object in region
518. Unlike the class data 502. the instance data 512 also

contains a region 52. containing all the data appropriate for
an instance of a wire frame renderer object. The object data
in region 514 contains merely a pointa to the method tables
502. which are common for all instances of wire frame

renderer objects. The shared object data in region 516
contains a reference count. and the renderer object data in
region 518 and the wire frame tenderer data in region 520
are described hereinafter.

Also shown in FIG. 5 for illustrative purposes is a second
instance of an object in the wire frame renderer class. The
second instance has all its data contained in region 522. in
the same format as the data of the first instance in region
512. The object data in region 524 of this data points to the
same object class method table 502 as does the object data
for the first instance. Note that the second instance in FIG.

5 is provided only to illustrate the relationship between
classes and instance data in Escher’s object mhanism. It is
unlikely that more than one instance ofa wire frame renderer
in particular would ever coexist in a single instantiation of
an application program. but this is not precluded.

At this time. it will be useful to describe the class

hire-arch); used in the Escher system. This hierarchy is
extensive. and only those classes which are pertinent to an
understanding of the invention are illustrated in FIG. 6.
Referring to FIG. 6. it can be seen that the Etflbject class is
the parent class to all classes in the hierarchy. The EtShare—
dObject class is subclassed under EtObject. as are other
classes not here pertinent. Subclassed under the EtShare
dObject class is an EtShapeObject class. an EtRendererOb-
ject class. an EtSetObject class. an EtDrawContext class. an
EtViewObject class. an EtQualityCollection Object class
and an BtQualityGroupObject class. Subclassed under the
HShapcOhject class are an EtStyleObject class. an Et'l‘rans-
fortnObject class. an EtCarneraObjecl class. an EtiightOb—
ject class. an HGeometryObject class. an EtGroupObjea
class. and an EtShaderObject class. and subclassed under the
Echder-erObject class are a ZBulfer class and a WireFrame
class. Subclassed under the EtStylcObject class is a Back-
facingStyle class. among others. Subclassed under the
Et’IranstImObject class are a Rotate class. a Scale class and
a Translate class. among others not shown. Subclassed trade
the EtGeornetryObject class are classes for Line. Point.

Polygon. Polytine. Torus and Triangle objects. among oth—
ers. Snbdassed under the EtGroupObjeet class are an
EtijghtGroup class. an Etlnl'oGroup class and an EtDisplay-
Group class. the last of which has subclasses Elfider-
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edGronp and EtListGroup. This class hierarchy describes
the storage of method tables and instance data for each of the
classes included in the hierarchy. The classes at the ends of
the hierarchy (ie. the “leaves“ of the tree structures) are
known as “leaf" classes.

B. Registering a Renderer
The basis for object subclassing in Escher is that Escher

builds its method tables dynamically at system start-up time
using an extensions mechanism. Every object class in the
system. including render-er object classes. is “registered"
under the control of the Erlnitialize procedure called by the
application program so that their functionality is available
when required As each extension is loaded. Escher obtains
the address of the extension's initialization function from the
resotn'ce fork of the extension file. It then invokes that
function.

The following is a C-language initialization procedure.
called ErWFJegister. used by the wire frame renderer
extension.

 

Cwyright Ill 1994 Apph Com. Im.
315m ErWILRegiaterf

void}
l
EgWFReniemess = thsJeg'mm

(EcRM_WuaFrune,
"mm"

“mildews
n (B‘Wlass = NULL) {

return (ECFaiillt'e):
i
Wha_0vmklefieememypemwmlnd

{Eng
Firm—POEM
W_Geometry_Polygnn);

Emmmmmmyponwmmn
(EgWFRemler-aclns.
WW,
ErWF_Geamen-y_l’ol¥§°nl:

Erm_0vafide6eunenflypebmww
[EgWFReIfiemClam
mwfltu.
EIW'F_Gmmetty_.PblyLine)i

wmmenmwmww
(EgWFRenderuClass.
W.
ErWF__Gecmen-y__l’olyl..iue);

ErRuKherClaas_0verrideGeatnen-flyananetlnd
mamas.

W_Gecnnetrflype_fioim):
ErWLGeoaneIrtLPohn;

ErRenderuClass_OvmideGeometrfi§-peanh-lethnd
ngWlasa.
Whom.
W_Geomen-y_Marher)t

ErRendererClasL ‘

(naming. .WWW
ErW'iLGecmen-yJDeoompositim);

a" Track mforms and attributes '1

Erllendererclus_0verride1tans§orm'lypechmgeflelhod(
EKWFRenchceChS,

wMethod

W_Updm1hnefmnuionslt
EWMOVWMMWM

teammates.
ErWF_UpdamAtn-ibme8et):

rerun-n 03cm};
l 

When a class is registered. it supplies methods which
determine the behavior of instances of the class. The class
supplies these methods to Escher via a metahandler. A

metahandlcr is a function which maps Escher method types
to function pointers. Escher asks the metahandler function to
giveit amethodofacertain type.andi.fthe metahandler
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knows the method type. it returns its corresponding roethod.
If the metahandler does not know the method type being
asked for. it returns NULL. As can be seen. the first step of
ErWF_Register registers the new wire frame subclass by
calling the tenderer class's registration method
ErRendererClass_Register procedure with an identification
of the wire frame renderer‘s metahandler. ErWF_

MetaHandler. as an argument. The wire frame rendu'er's
metahandler is as follows:

M

Copyrighl O 1994 Apple Computer. Inc.
smic EtchtionPo'tnter Wfiflemflandlefl

} Ethdethodlype DEW)
switch (MW) 1

case WWW
rerun (commentator) ErW'LNew:

case mmjmm
rem (BMW) ErWF.

ease MWJMW
return (Emmet)WM

case mmwmlam
mum Wm) EWF_Cmoe1'.

case Echkthod'lype_0bjectDelete1
rum Whiter] ErWF_De|ette;

case EeMelhod’Im_ObjmtRend:
rem-n (BtFtnrdonPohter) EiWFJead‘.

case _Ob‘yectAllx:h:
moan (EtFunctionPointer) EinLAnach:

case W_Objecflhverse:
return (Ed’unctionfloimer) BiWF_Tmerse:

me MJtajectwm:
return (BMW) EiWF_Write:

m:
return NULL:

l
l 

Escher will call the metahandler once for each entry in its
method table. each time requesting the identification of a
dllferent wire frame method.

The EtRendererObject class includes a method table for
rendering geometric shapes. Eva-y renderer must movide a
method to renderat least three basicgeometrytypes: point.
line and triangle. The renderer can provide methods for
rendering more complex geometry types as well. Thus. after
registering a metahandler. the wire frame ErW'FfiRegistt-r
procedure above calls the renderer class procedure
ErRendererClass_OvenideGeometry1ypeDrawMethod to
establish the geometry draw methods that it supports. As can
be seen the wire frame renderer registers procedures for
rendering geometries of type polygon. triangle. line.
polyline (sequence of connected lines) and points. arnong
others.

The ErWILRegistt-r procedure also overrides certain
transfmnmefltodsandamibtltesdmedtodsinamcthod
table of the tenderer class. ‘

ltcanheseenthattltroughtheobjedmechanismof
Escher. new renderers can be installed at runtirne into the

Escher system merely by having them subclass themselves
under the EtRenda‘u'Object class.

11 BUHDING A VIEW OBJECT
A. Data Structures

As mentioned. a view object is a data structure which
contains. among other things. camera infatuation. lighting
information. traverser or state information as well as an
indication of a choice of renderers. A view object is an
instance of the class EtViCWObjed which. as indicated in
FIG. 6. is a subclass of the class EtSharedObjed. which is
itself a subclass under the class EtObject. Accordingly.
following the format of FIG. 5. a view objoa has the fennel
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of FIG. 7 in memory. Specifically. a region of memory 702
is allocated to contain pointers to the methods ofEtVieth-
ject class. and this region 702 contains pointers 7.4 to object
methods and pointers 706 to shared object methods. The
EtViewObject class is a leaf class. so in accordance with the
Escher convention. the class omits a method table specifi-
cally for view object methods. Note also that in the present
embodiment. there are no shared object methods either.

”the struettu'e also includes instance data for the view

objea in region 710 of memory. This region contains
instance data specific to the object class in a portion 712
(pointing to the object class 702). instance data specific to
the shared object class in a portion 714 (containing a
reference count). and instance data specific to the view
object class in a portion 716. The view object data is a data
structure of type EtViewPrivate which is set out below.
 

Copyright ll) 1994 Apple Comm. Inc.
(wadef strum EtVnWPriVate {'1'-

' flags'1’

msiped int stunted : 1:
analyzed int millennial-Rog: 1'.
unsigned int viewOwnsRmxlerer: 1;
long mucous:
insisted long passNurrber;fl

' (Meets that make q:- the View'I

Ethendcruobject tenderer-Object:
ERendererOhject saveRestoreltenchrerOhject'.
mtWale ‘nnthret:
mtWises ‘rendcrerClass:
EtleltyGroupOhjoct quality;
EtanConteHObject draowIzen;
EtCamcraOlflocl carom:
Wont lights;
EtShaderObjeet annosflterictihader.
EWI: W
EtShnd-crOhjeet foregrounfihader;
mun'bmefiet comm-image
EtldlerCallhstk idlelCallback;
void 'idlerData;

} EJVIewPrivne; 

As can be seen. a view object includes. among other
things. a pointer (*rendererClass} to the methods of a current
chosen renderer. a pointer (‘renderen to the instance data of
the lament render-er. a draw context object. a camera object.
fighting objects (lights). several shader objects. and a quality
group object.

The EtRendererPrivate structure is defined as follows:

 

(kipyrishttlt 199¢AppleContpuMlnc
WFMIWII:{

EtiObject View;
strum Enter-imam 'slmc;
strum EWW 'gmupa;
strumW *shaden;
start EtRendererAm'ilmteSetPI-ivste 'atn-ibuaeSen
mt Momma 'styles:
mtWW *u-ansfoms;
snnct EtViewSttdiosPrivate ‘atndios;
}Wt 

This structttre contains pointers to a series of stacks which
indicate the uncut state of a traversal. As described in more
detail below. these state stacks a repushed each time
Escher's traverser opens a “group” object in a model and
begins traversing the next level of the hierarchy. These
stacks are popped up to the prior state when the traverser
roommates its work at all lower levels of the model hierarchy
and closes a “group" object.
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The EtRendereIClass data structure is defined as follows:

 

Copyright 0 1994 Apple Comm, 111:.
typedet ml EtRendererClass I
Etllendeiwlnfo rentittea'lnfio;
EtltcndethewMet‘ltod mam;
EtchdererStarlMedtod atartReleerer.
WWW member:
EtltendctetC-scefluednd cancellicnderec
EtltmdererSy-nchtethod syneltmderee
Emma.“ 9mm
ERendelerFopMethod popRenduer;
memeVfibleMednd isBBothiBibk;
BRerdfler’l'raceRayMethod onceRay;
Hammerstein alartRerlieringCache,
EtRendercddZacheValidMetlnd isReIxieriogCacheVahd.
BReaielerCleuCanheMednd chukencbrlngCache.
EtMethod'I‘able ‘geometryDr-awMethods;
EtMetide‘able mammogram-
Walsh ‘sltziernnwlbflnds;
EMethocl'Ihble 'ahattrfletfletlntk:
EtMethrxflhble HWMetlmtk
EtMcthodI'able 'mltliolh'awhledmds.
EtMeIhodTable 'srudioGetMethoda;
MMSNB 'atthnwhdeflmds;
EtMethodTaHe 'styhflothietlnds:
Etflediod'l‘able "styleChange-dhdelthock;
EtMetlndThble ‘mfianrawMednds:
EtHelhodTilhk ’mbnnfielldfihads:
Wraith ’u'mhmmngedMethock;
Walsh ‘mhleflnds:
Whawmmod Mme-Method:
Emma-mm WWW;
maybDfiwW stth‘mwhlodDd;
Warm WWW.
MAWS¢WWW attribmeSetanhlethod;
mmamibmmmwnd attribmeSeGeMflnd:
mmamwcmmdnd OMWW;
mAwflamanMetlmd ath‘ibtteanMfllnd:
EtRetlinrcrAttribtncGetMetlnd am-ibttefietldctlni:
} norm; 

It will be recalled that the initialization procedure of the
wire frame tenderer set forth above establishes a metahan—
dlcr which Escher can call to override certain methods of the

tenderer class. Escher places the pointers renamed by the
metahandler in the FtRendererClass structure fields defined

above for the corresponding methods. It will also be recalled
that the wire frame render-er initialization procedure over-
rides some methods in particular certain geometry drawing
methods using a ErRendererClass_
OveflidermeuylypeDrawMethod procedure. This pro—
cedure writes the pointer to the specified renderer procedure
into the method table pointed to by
‘gcometryDrawMethods. thereby overriding default meth-
ods set up by the Escher system originally on initialization.
The EtMethod'I‘abIe data structure is merely a list of point-
ers; for *geometryDrawMelhods. each entry in the table
points to the procedure for rendering a corresponding geom»
etry type. for example point. line. triangle. etc. The corre-
spondence between locations in this table and geometry
types is fixed at compile time.

One other field in the EtRendu'aClass data structure

which bears mentioning is the geometryDrawMethod field.
This field contains a pointer a procedure which Escher will
call if it has been asked to draw a geometry type which the
went renderer does not support {i.e. the method table entry
in I'georneti'yDranethods for the geometry is NULL).
That We decomposes the specified geometry into
similar geometries as described in more detail hereinafter. In
the present embodiment. the decomposition procedure can—
not be overridden. In another embodiment of the invention.
however. a rendera can override this decomposition method
in order to optimize the process.

10

16

The EtQualityGroupObject structure is described herein-after.
B. Procedures

The process of building a view object in step 304 (FIG. 3)
is basically the process of writing desired information into
the view object data structure. The example application
program in Appendix A will be used to illustrate the process.
1. (healing a View Objed

After initialization and establishment of a quality
collection. the application program creates a new view
object by calling view=ErView_New(). This procedure
merely mates a new instance of an object in the Etfiew0b~
ject class and fills it with default data.
2. Setting the Renderet

A tenderer can be attached to a view objea by calling an
15 Escher procedure ErView_SetRendere-r and passing in the

view objed and the renderer object. This call will increment
the reference count of the renderer passed in. If a tandem:
object is already set. its reference count is decremented.

A rendercr can also be set by rendaer type widiout first
20 having to obtain an instance of a renderer object. In this case.

the application program calls the Escher routine ErView__
SetRendererByType. and this is the procedure which is
called by the example program in Appendix A. The param—
eters passed to this procedme are the view object and a type

25 designation. which is a fair-character code designating a
type of renderer (for example. wire frame or Z—buffer). The
Escher procedure ErVie'wJetRendcrerByType determines
what renderer has been registered of the type specified and
if such a tenderer has been registered. writes a pointer to the

so renderer instance data into the appropriate entry of the
specified view object.
3. Setting the Camera

Before setting the camera. a camera object must be
created and initialized The example program in Appendix A

35 accomplishes this by writing the comma paspcctive data
into an appropriate perspeaiveData data structure and
assigning it to a camera object using the Escher procedure
ErViewAngleAspectCamera__NewData. Once a camera
object is obtained. it can be associated with the view object
by calling ErView_SetCamera passing in the view object
and the camera object. This all will increment the reference
count of the miners object passed in. If the camera object
was already set. its reference count will be decremmtcd. The
example program in Appendix A then disposes of the camera

45 object using the Escher function ErObjectJispose since
the camera object is no longer separately needed.
4. Setting the Drawing Context

Before setting the draw context. a draw context object
must be dented and initialized In the example program in

so AppendixA.thisisacoompiishedbysertingupanappro—
priate data structure pbrmapData and passing it to the Escher
procedure ErPixmapDrawContextJewData. The draw
context object is then associated with the view object using
the call ErWew_SetDrawContext and passing in the view

55 object and the draw context object. The application program
example in Appendix A then disposes of the draw context
object by passing it to the Escher function ErObjed__
Dispose.

Other characteristics of the view can also be specified in
so a similar manner. such as lighting and shaders.

5. Selecting the Rendering Quality Level
This is described in more detail hereinafta'.

It can be seen that the building and editing of one view
object'15 entirely separate from the building and editing of

65 another view object. so more than one view object
(including those which specify the same or dilferent
renderers) can coexist without interfering with each other.
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In. ammo A MODEL

The modeling paradigm used in Escher can be best
understood by comparison to the modeling paradigms used
in two existing products available from Apple Computer:
QuickDraw and QuickDraw GK. QuickDraw GX is
described in Apple Computer.. "Quick~Draw GK Program-
mer‘s Overview” (1994). incorporated herein by reference.
Both QuickDraw and QuickDraw GX perform two-
dimensional graphics processing rather than three-
dimensional processing. The Quickan two dimensional
graphics system features a mocedural interface and a global
graphics state which defines the color. transfer mode and
pattern of the shapes that it draws. “Wren the Quickme
shape drawing routines are called. Quicthaw draws the
shape according to the variables in its graphics state. An
application program can manipulate the graphics state
through the use of «her calls to QuickDraw.

QuickDraw GX differs from QuickDraw in that rather
than a [rocemral interface with a systemwuaintained graph—
ics state. shapes are represented as objects that encapsulate
all information needed to draw them. There is no system-

maintained graphics state. Because shapes are objects.
QuickDraw GK can provide utilities to operate on such
shapes that Quicerraw cannot. because Quicerraw's rou-
tines only draw images to a pixel map. QuickDrawGX
provides functionality to operate on shapes. such as “hit"
testing and geometric intersection.

The main data type in QuickDraw GX is a “shape”. which
encapsulates geometry and other drawing information.
Shapes are drawn tin-ough a “View port" which transforms
the shapes into “view device” coordinates. When a shape is
passed to QuickDraw GX for drawing. the shape is drawn
through each view port that is attached to the shape. A view
port may overlap several view devices. in which case the
shape is drawn to each view device at its correct resolution.
QuickDraw GX shapes can be organized into hierarchies
through the use of the “picture shape”. Each shape has a
“type" associated with it that indicates whether it is a line.
polygon. curve. etc. Access to shapes is through a procedural
interface and handle.

Quicerraw GX’s shape drawing procedure can be called
at any time to draw a shape. The ordering of shapes being
drawn on top of each other is dependent on the cutter in
which they are drawn. No state information is retained
between drawing commands. except for internal caching
information. since each shape encapsulates all the informa-
tion needed to draw that shape including the view port. view
device. color. transfer mode and drawing style.

The Escher system difers significantly from QuickDraw
and QuickDraw GK due to the nature of three-dimensional
rendering algorithms and the typically larger volumes of
data required to describe a three-dimensional model

Escher shapes do not encapsulate all information required
to draw themselves. Rather. Esther maintains a “state“ that

provides additional information on how a shape is to be
rendered. much as the original QuickDraw maintains a
drawing state for the foregound color in the graphics port.
Escher's state mechanism allows hierarchical models to be

built which specify information such as color or drawing
style that is inherited by shapes at lower levels of the
hierarchy. The medtanisrn provides increased flexibility in
instancing amodel to be used several times in a scenebut
with varying attributes without respccifying the geometry.
Escher also differs from QuickDraw fix in that the drawing
area for rendering is specified in Escher prior to the render-
ing of the image. through attachment to a view object. rather
than being attached to every shape as in Quickme GX.

10

15

35

45

55

65

22

18

Escher provides several data types to encapsulate geom-
etry and appearance in a model hierarchy. The general
classes of data types are geometry. “attribute set". style.
transform and group. It is advantageous to separate appear-
ance into several types of data in this manner due to the
typical complexity of threedirnensional models. Even
simple titres-dimensional shapes may require hundreds or
thousands of geometric shapes in order to produce any
semblance of realism. To create a realistic-appearing scene

of any complexity. such as a room in a house. may require
hundreds of thousands or even millions of geometric shapes.

When dealing with models of this magnitude. it is often
advantageous to apply a single appearance diaracter'istic to
a large group of geometric shapes. thereby saving memory
and simplifying the building and editing of such a model.
The above data types facilitate these goals.

In QuickDraw GX model hierarchies. transform map-
pings of a “picture shape" are considered concatenated with
those of the shapes that they encompass. This provides a
means of referencing the same shape more than once. and
using transform mappings to move or transform the shape
without having a second copy of it stored in memory. Such
concatenation is accomplished in QuickDraw GX through a
state mechanism which keeps a record of the “turnout
transformation mapping" as a model hierarchy is traversed.
QuickDraw GX picture hierarchies are n-aversed from top to
bottom. left to right. As shapes lower in the hierarchy are
traversed. their transform mappings are concatenated with
the current n-ansforrn mapping. After all shapes inside a

plume shape have been drawn. the traversal returns to the
previous picture. if any. and resumes traversal of its 'shapes.
This is called “top-down traversal". When returning from a
traversal. the current transformation mapping is restored to
what it was before the picture shape was entered. This
mechanism can be thought of as stack of mappings that is
pushed and popped during traversal. When the root picture
shape is finished drawing. the current mapping is NULL.

Escher provides a similar traversal mechanism although
due to increased complexity of tluce~dimensional models.
more than merely a transform mapping is inherited Appear-
ances and styles are inherited as well.

Whereas in QuickDraw GK. there is no “otrrent trans
form mapping" unless the QuickIhaw GX system is tra-
versing a picture. in Escher it is possible for an application
program to push and pop the uncut state itself. In fact.

application-specific hierarchical data structure. if desired.
and through careful sequencing of calls to the Escher
procedures 2.2. can simulate a system hierarchy. This
feature is extremely advantageous for application programs
that use complex application-specific hierarchical data
structures. such as animation systems. or when porting an

existing application program that already has its own data
structures. The PHIGS prior art system and other retained-
mode systems require that the entire model reside in a single
hierardty. and GL treats each object inquendently. Escher.
on the other hand. allows a mixture. An application program
can set the state. draw a number of independent geometric

objects. then have the Escher- system render- a model built
and stored in the Escher system‘s data structure- then draw
more independent geometric objects. and so on.

FIG. 3 is a graph of a simple model hierarchy which is
built by the example application program in Appendix A. It
includes two levels. the first (root) level encapsulated by the

EtDisplayGroupObject called “group” and the second
encapsulated by the BflfisplayGroupObjeu called "sub-
Group”. Each EtDisplayGroupObject can be thought of as a
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node in the hierarchy. Each node can have associated
therewith style objects. geometry objects. transfonn objects
and otha group objects (as in FIG. 8). as well as shatter
objects and attributes set objects.

Escher supports two lcinds of EtDisplayGroupObjects.
namely Ihose in the subclass EtOrdereonup and EtList-
Group. Objects attached to an instance in the HIJstGroup
class have no order except the order in which they Were
added to the group. During traversal. when Escher encoun-
ters a list group object. each object in the list is processed
(“escorted”) in the sequence in which it was added to the
group (riginally. Referring to FIG. 8. once the group group
is opened. during a traversal. Escher will execute
backfacingstyle. then polygon. then line. then transform.
then subGroup. in that sequence. since that was the sequence
with which they were added to group. Thus the changes to
the rendering state which are caused by back‘facingStyle will
apply to both polygon and line. Whereas the changes to the
rendering state caused by transfmn will apply only to the
objects in subGroup. The Escher API includes calls which
permit the application program to add objects to the begin«
ning of the list. to the end of the list. or between objects
already on the list.

A group object of subclass EtOrderedGroup is similar to
a list group object. except that the traverse: sorts the object
attached to a group according to type before they are
executed In particular. objects are escorted in the following
sequence: transform objects. style objects. attribute set
objects. shaders. geometries and additional groups.

For both kinds of group objects. when a subgroup is
opened. the then-current state of the render-er is inherited
Objects in the subgroup can change any characteristic of the
state for subsequently executed objeds in the subgroup (or
in subgroups of the subgroup). but upon return to the parent
grwp. the state is restored to its condition before the
traverser entered the subgroup.

Group objects also have a "state” associated with them.
although this is not to be confused with the “state" of the
traverse: The state of a group is merely a collection of flags
that define aspects of how the group is to behave. Most of
the flags are not important for an understanding of the
present invention. but it may be helpful to understand one
such flag. namely “in-line”.

In modeling applications. it sometimes can be useful to
group a set of materials or styles together into a bundle that
can be referenced several times in a model. However. if such

a bundle is created using the normal pushing and popping of
traverser state as described above. these objects will not
have the desired efl’ect on the model as the group will pop
the state after it is executed by the traverse; Accordingly. the
application program can set the “in-line" flag of the group
object. thereby specifying that entry to the group and exit
frrnnthegrcuparenottopushorpopthestateofdre
traverses: 'Ihe Escher API provides procedure calls to set.
clear and get the current value of this flag.
A. Data Structures

As with the procedure for building a view. it will be
helpful to described certain data structures before describing
the Escher procedures which an application program can callto build a model.

In the example application program in Appendix A. the
groups group and subgroup are ordered display group
objects. They have a type EtDisplayGroup. which in the
class hierarchy of FIG. 6. has a class ancestry of
EIGroupObject. EtShapeObject. BtSharedObject. and ulti-
mately EtObject. Accordingly. they are represented in
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memory with data structures as shown in FIG. 9.
Specifically. the ordaed display group class method table is
contained in a block of memory 902. and the instance data
for group and subGroup are contained in blocks 904 and
906. respectively. The orda'ed display group class 902
begins with the region 908 containing pointers to object
methods. similarly to region 504 in FIG. 5. Region 903 is
followed by region 910. which contains pointers to all
methods specific to shared objects (there are none in the
present embodiment). This is followed by a region 912.
containing pointers to all shape object methods. and this is
followed by a region 914 containing pointers to the methods
specific to group objecu. The last-mentioned data structure.
EtGroupClass. has the following typedef:
 

Copyright 0 1999 Apple Coupons. Inc.
typedef slruct EtGmupClass 1

EtGmAcoqubjectMednd accept:
ElGruque‘lObjectLjstMettnd ptObjectList;
EtGmeotntObjoctsMednd WObjects:
Emmjectfletbd add:
EtG-rowAddObjectBefmeMethod addBefme:
Etthoupnddtilbjccmflerhledrod addAfter.
mammjmmm remove;
EtGroupEmptyMefliod empty:

} BMW: 

As can be seen. it includes entries for pointers to several
methods. including. among other things. a method to add an
object to the end of the poop (add). and methods to add an
object at a specific location within the list of objects already
assigned to a group (addbefore and addafter).

After region 914. the tendered display group class method
table 902 contains pointers to the methods specific to display
groups in a region 916. This data structure.
EtDisplayGroupClass. is defined as follows:
 

Copyright fl) 1994 Apple Compiler, Inc.
typerkf mm anisplayompcnss {

1008 displayGIquUniquumber
WW botmtlingBox;
WW bouflcngaainre
EtDiaplayGMeriekMechod pick:

} EmisptamewClm: 

The methods in the EtDisplayGroupClass are not perti-
nent to an understanding of the invention. except to note that
the class does not contain pointers to any drawing methods.
As previously explained these methods are identified in a

view object rather than a group object. so that they can be
overridden by a tenderer. Any drawing method which is
identified in the class for an object would become part of the
model being built. would become intertwined with the

model itself. and would be dilficult to change when an
application program desires to render the model using a
different renderer. Such an arrangement would also make it
diEcult to have more than one tenderer active simulta-
neously as previously described.

Referring again to the method table 9.2. as is typical of
the design of the Escher system with respect to leaf classes
in the class hierarchy (FIG. 6). lhe table contains no methods
specific to ordered display groups.

The data su'tlctln'e of the instance data for subGroup is the
same for that of group. so only the data structure for group
will be described As with the data stmcttue of instance data

block 512 in FIG. 5. the block 9“ begins with object data
in region 920. specifically a pointer to the ordered display
group class block 902. This is followed by a region 922.

23
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containing the shared object data. specifically a reference
count. This is followed by a region 924. containing the shape
object data (which is also very short). The shape object data
region 924 is followed by a region 9‘26 containing the object
data for group objects. or which there is none in the [recent
embodiment.

The region 926 is followed by a region 928 containing the
instance data for display group objects. Such data includes
only the “state" flags described above. Region 928 is fol-
lowed by a region 930. which contains the data specific to
an instance of an ordered display youp object. This data has
a format defined as follows. where EtDLlet is a typodef for
a doubly linked list:
 

Copyright c 1994 m1: cm, Inc.
typedef mmmevm{

EtDLList "Iramhrrms:
EtDLList ‘Slybs:
EtDLLiat *atn-ibmeSet;
midst "sharlers;
EtDLList 'geolnetr'ses'.
EtDIList "gmws:

} EarthredDisplayflroupPr-ivnae: 

As can be seen. the region 930 contains pointers to six
doubly linked lists. one for each of the types of objects
which can be added to a display group object. For
completeness. note that ii group were a list display group
rather than an adored display youp. the only difference
would be the strut-tine of region 93.. Specifically. region
930. which would have a structure defined as

BtlistDisplayGroupPr-ivate. would contain only a pointer to
a single doubly linked list for all the objects which are added
to the display group.

In addition to the FLDisplayGroupObject structure. the
example application program in Appendix A also uses an
ElStyleObject data structure. an EtGeometryoject data
structm'e. and an EthansformObject data structure. These
structures all refer to classes of objects which. like
EIGrOupObject are subclassed from the EtShapeObject class
(see FIG. 6). As with other objects described herein. they
each referto a method table like 902m FIG. 9. and contain

private instance data. like region 904 or 9.6 in FIG. 9. These
three classes are each subdassed from the same parent class
(BShapeObject) as is EGroupObjecdsee FIG. 6). and mere-
fore the first three layers of both the class data and the
instance data will have the same structure as shown in FIG.

9. The leaf class (Backfacingstyle) acmally used in the
example program in the EtStyleObject class is a subclass of
the BtStyleObject class. so the fotn'th and last layer of the
class methods for that object will contain pointers to the
methods specific to style objects. The fourth layer of the
instance data contains private data appropriate to all style
objects. it any. and the fifth and last layer contains data
appropriate to backfacing style objects.

Similarly. the leaf class (translate) morally used in the
example program in the Efl‘ransfnrmObject class is a sub-
class of the FirmsformObject class (see FIG. 6). so the
forn'th and last layer of the class methods for the transform
object contains pointers to methods specifically for n-ans-
form objects. The fourth layer of instance data for the
transform object contains data specific to transform objects.
and the fifth and last layer contains data specific to translate
transfcrm objects.

The example program creates drree objeds (polygon. line.
torus) whicharegeometry objects.audallofthetnareinleaf
classes which are subclasses of the EIGeometryObject class
(see FIG. 6). Thus the fourth and last layer of the class
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method table for each of these objects contains pointers to
methods specifically for geometry objects. The fourth layer
of the instance data for each of these objects contains data
Specifically for any geomen-y object. and the fifth and last
layer of the instance data for each of these objects contains
data specifically for polygon. line and torus objects. respec-
tively.

In Escher. whereas attribute sets (containing attributes
such as diffuse color) define surface appearance
characteristics. styles tell a renderer how to draw a geomet-
ric shape. For example. a polygon can be rendered as a solid
filled shape. or with its edges only. Another example is that
surfaces can be rendered smoothly or with a faceted appear-
ance. Yet another example. indicated by a backfacing style
object (subclass of EtStyleObject). determines whether or
not shapes that face away from the camera are to be
displayed. EcBackfacingStyle_RemoveBackfacing. the
characteristic used in the example program in Appendix A.
specifies that shapes that face away from the camera are not
to be drawn. The private data for a backfacing style object
contains a longword which contains a constant indicating
whether both front and backfacing surfaces are to be drawn.
whether backfacing surfaces are to be removed. or whether
backfacing surfaces that do not have turn-sided attributes are
to have their normals flipped so that they always face toward
the camera. An application program specifies style charac-
teristics in a model by creating an apjn‘cpriate style object
and adding it at a desired position in a group object of the
model.

For geometry objects. the private data in the last layer of
instance data contains information necessary to describe a
particular geometry. For example. the private data in the last
layer of a polygon object specifies the number of vertices.
the vertices and certain attributes not here relevant. The

private data in the last layer of a line object contains the
locations of the two end points of the line. as well as some
attribute data. and the private data in the last layer of a torus
object contains an origin an orientation. at major radius and
a minor radius. as well as some attribute data.

Anansform object allows the coordinate system contain»
ing geometric shapes to be changed thereby allowing
objeds to be positioned and oriented in space. Transforms
are useful because they do not alter the geometric represen-
tation of objects (the vertices or other data that describe the
shape). rather they are applied as matrices at rendering time.
temporarily “moving” an object in space. This allows a
single object to be referenced multiple times with difierent
transformations in a model. providing the ability to have an
object placed in many dinerent locations within a scene. An
application program specifies a transform by creating an
appopr'iate transform object. from a subclass of the Et'l'rans—
fOIIwbject class (FIG. 6). and adding it at an appropriate
position in an appropriate group in a model. A transform
specified by an application program remains in the form
specified until the time of rendering. at which point Escher
converts the transformation to a temporary matrix that is
applied to subsequent objects in the group. Matrices are
premultiplied to vectors of an object. Escher transformations
pre-nmltiply the etc-rent transformation matrix: therefore.
application programs specify transformations that are to be
concatenated in reverse order. This is consistent with the

application of matrices in a hierarchy. That is. matrices that
are specified at the top of the hierarchy are applied last. and
matrices specified just prior to an object are applied first.

Escher summits a number ofdifierent kinds of transforms.
each of which is specified to Escher by using an object from
a respective subclass of Et'lkansfonnObject. Three Such
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subclasses are illustrated in FIG. 6 (Rotate. Scale and
Translate). The Bscha AP! provides procedures for creating
and disposing of transform objects. drawing them in imrnc
diaie mode. setting their contents to new data. getting the
private data of a transform object. mining a Iransfca'm object
to a file. and so on. The private data in the lowest layer of
instance data for a translate transform object. which is the
leaf class used in the example program in Appendix A.
specifies the x. y and z coordinates of translation.
B. Procedures

1. EirOrderedDisplayGoup Newi)
Referring to Appendix A and FIG. 8. the exariqale appli»

cation program begins building the model of group 802 by
first creating the new ordered display group object group.
using the prooedure ErOrderedDisplayGroupJewO.
Escher‘s object creation mechanism is a recursive mecha
nism which is illustrated generally in the flowchart of FIG.
10. Note that the class method table for the (adored display
group class was treated during initialization upon registra-
tion of the ordered display group class. so only a block of
instance data needs to be treated and initialized in the new

object mechanism.
Referring to FIG. 10. first. in a step 1002. the leaf class‘s

‘New‘ procedure calls its parent class ‘New’ procedure with:
(a) the static variable which. when the leaf class was
registered. points to the top of that leaf class‘s method table.
and (b) the size of the leaf class‘s Private data structure. In
a step 1004. each higher class's ‘New’ procedure then calls
its respective parent class‘s ‘New‘ procedtn'e with: (a) the
object class pointer passed to it. and (b) the size needed by
all descendent classes so far plus the size needed by the
unrest class‘s private data slrucurre. In a step 1006. the
ultimate parent class‘s ‘New’ pricedure (EiObject_New())
(a) allocates memory space for the private data structures
needed for its own Private data plus the Private data for all
descendent classes. This space will contain the entire block
of instance data for the newly created object. It then (b)
initializes its own Private data structure (by writing the
Object Class pointer passed to it into the top of the newly
allocated memory block). and (c) returns to its caller (which
is the next lower class‘s ‘New’ procedure). retin'ning a
pointer to the newly allocated memory block. In a step 1.08.
each lower class‘s ‘New' procedure then: (a) calls its own
Get procedure to get a pointer to the current class's own
private data structtn‘e widtin the newly allocated instance
data block; (b) initializes its own Private data structure; and
(c) returns to its caller (which is the next lower class’s ‘New’
procedure). rettn'ning a pointer to the newly allocated
memory block. The Leaf class’s ‘Ncw’ procedure does the
same. excels that the caller is typically the application
program rather than a subclass‘s ‘New‘ prooedtne.

A few sample ones of Escher's ‘New' proccdtn'es will
illustrate better how this is achieved. The ‘New' procedure
for an cult-red display group object. which is the routine
called by the application program. is as follows:
 

Copyright 0 199a Apple Comm. Im.
WtBtOnhedDispayaroupJewr

void}
l

EtGmwObiecI
HolderedDisplaflmtpPr-ivw ’ordeied:

m:encompewczommyowcmWWWYGNWWD;
iftlamp)!

rem (NULL):
}
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continued

arched = EiOidedeliqalametp_Get0rdeudDisplajfioq’(gluxp):
WWW
orthacd—astyles
ordered—mttribmeSet
ordered—9M
«detect—99mm
«thud-4W
rem W);

 

 

As can be seen this routine first calls the 'New‘ procedure
of its parent class. EiDisplayGroupJewO with the pointer
to the ordered display group class method tables EgOrdered~
DisplayChoupClass and the size of the private data structure
EtOrderedDisplayGroinrivate needed in the lowest layer
of the instance data for the object being treated. When that
procedure returns. the block of instance data has been
allocated and higher levels have been initialized. After some
error checking. the EifideredDisplayGroupJewO proce-
dure gets a pointer (ordered) to the ordered display group
private data structure of the allocated block. and initializes
all of the doubly linked Lists to NULL. The procedure then
returns to the application program. retaining the pointer to
the newly created instance data block.

The ‘New‘ procedure of the display group class is as
follows:

 

Copyrighic 1994App1eCompm. Inc.
MetapObjcct misplaWewl

EOhjectClaas Objecicnss,

{ im'glnd [ans Mime)
Mow mwGroIp;
WWI-lute "groupPl-ivate;
Bitten-rt (ObjectChss);
newGi-onp = Eierthobhc-tchas.

sizeofiEtDisplayGioupPrmte'' ) + dansize);
“(MU-l) = NUIL) {

} renal-n {NEIL}:
”Private = EmisplnyGlDLIp_GetDiqahyGrow (naval-ow);Emma Whale);
Waivers—rm = Bebephmmwnwe

BcbisplayChOIrpSmMIdLUseBomdunsll-ox
EcDisplametpSmeMaLUaeflomfingSphfie
BcfiaphyGtomStaleMastPi-shd
(WWW):

1}!!!“ (my 

As can be seen. this procedtn-e first calls its own parent
class‘s ‘New’ procedtn'e EiGroup_New. passing the pointer
to the object class and a data size given by the size of private
data needed by the parent class plus the amount of memory
space neededfortheprivatedataofobjeds inthegroup
class (EtDisplayGroupPrivate). After error checking.
EiDisplayGroanewO gets a pointer groupPrivate to the
group object’s private data and initializes it. The procedtu'e
then reunns to its caller. BiOrderedDisplayGroupfiNewO.

The ‘New’ procedure in the EtGroupObject class is as
follows:

 

Copyright c 199-: Apple Comm. inc.
WW_N¢W(

EtObjectClaas ObjacIClass,

{ maisned long dataSiae}
MetapObject newGroup:
Elm (objectClaas):
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continued

it (newfiroup -= NULL)

I rem NULL:

xterm-n newGroup:
 

The above procedure follows the same outline as the
'New’ procedures for the display group class and the ordered
display group class- with the variation that there is no private
data specifically for the class EtGroupObject. Thus the
EiGroup_New0 procedure does not initialize any private
data. and the data size which it passes to the ‘New' proce-
dure of the parent class. EiShape_Nevv0. is the same as the
data size which is passed by the display group class‘s 'New’
procedure to EiGroupJewtf).

The procedures continue up through the ‘New‘ procedure
of the EtObject class. It will be appreciated that Escher uses
the same recursive mechanism to create objects in every
class of the class hierarchy. Moreover. it will be appreciated
that Escher uses similar recursive techniques to perform the
functions of a large number of the Escher AP! calls.
2. ErGroupFAddObjccfl)

Referring again to the example application program in
Appendix A. after a new ordered display group object group
is created the program creates a back-facing style object and
adds it to the group. This part of the example program is not
important for an understanding of the invention. but rather
is included merely to iIIUStrate that such an object can be
added to a group.

Next. the exarmfle yogi-am creates a polygon object
polygon using the Escher procedure ErPolygon__New().
This procedure operates similarly to the 'New‘ procedures
described above with respect to the creation of an ordered
display group object. and need not be described again. The
example program then adds polygon to group using the
Escher API call FrerdedObieClO. The latter proce-
dure is as follows:

 

Copyright 0 1991 Apple Comma. Im.
moot-ammmbm

EGmtpObjeet smup.
EWhfiect Object)

{
Wm ‘empCh-fi:
EiAsam (grasp):
EiAasert (object):

if (EM—Ammobimlm object) = BeObiecflrpeaniid)
WWMBWW NULL);
rem NUIL:

l
mipClass : EiShape_GerSuhCla.-tehlefltods(gmtp.

EcShape‘Iy-pe_(houp):
WWW):
WWW:
retina ('gmupClass—tadd‘] (grow. object) :
 

As can be seen. this procedure receives as arguments the
object to add to the group. and the group to which it is to be
added. After some bookkeeping opa'ations. the procedure
calls EiGroup_AcocptObject 0. an Escher procedure. in
order to determine whether the specified object is of a type
which can be addedtothe specified kind of group object. For
example. if the specified object is a light object. it cannot be
added to an ordered display group. In the present case. the
result is valid. since a polygon can be added to an EtOr-
deredDisplayGroup object.
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The procedure then obtains a pointer groupclass to the
FtGroupObject class method table for the specified ordered
display group object. by calling the “get subclass methods“
procedure of EtGroupOhject‘s parent class. EtShapeObject.
The than calls the “add object” procedure pointed
to in that method table and returns to the application
program.

The pointer in the method table to the “add object“
procedure for the specified kind of group object was written
there din-lug initialization when the EtOrdu’edGroup class
registered itself. The specified “add object" procedure is as
follows:

 

Copyright c 1.994 Apple Computer, Inc.
Etflml’csition Bimtayflnflmwbject (
W group.
EtObject abject)

l
Wig![afloml’rivatc ‘gmupDam:
EtGIoupPositbn mkssition;
EtDLList 'theLiati
Ethiechrpe obiecflwc:
W);
Mob”);
groupData = EiOtderedDisplameup_GetOmIeredDiqaleyGtow
(group):
W);

objeerlype : EMMbjeeum object}:
if(W = EcOlziecflyper't-hd) l

EiEl'Ior_Post (EcEnoLlnvalidObjectFoerup.
Ein-ningflwaagq

“Invalid object browned grog): ‘3: s“.
EiObjectClaLGctName {EiObject_GctClaes (objamlm:

return (NULL);
}
liteList = EiOnleredDisplamew_GetObjectList(groupo

DEW
ECTnte);

30111.35! = NULL) {

} tench (NULL):
wPosition = EWWMM. Objocl):
if (newamm'‘ n = NULL) {

} return (N'IIIL);
mmmr (Min. (EtDlListNode ‘hewl’osition‘t;
term {newPoeition};

 

Referring to this procedure. it can be seen that it first uses
the ordered display group class's “get” procedure to obtain
a pointer groupData to the private data of the specified
ordered display group object. The procedure then obtains the
type of the specified object to add (which is a geometry
object) and. after some error checking. calls
EiOrderedDisplayGroup‘GetObjeclistO to obtain a
pointer. tbeList. to the particular doubly linked list of the
ordered display group object for geometry objects. The
procedure calls EiGroupPositionjenfi) to create a new list
“position" object. and calls EiDUJstéInsertNodeLasd) to
insert the new “position” object at the end of the doubly
linked list. The procedure then returns to its caller.
fifioudedObjccq).

For completeness. it will be appreciated that the proce-
dure for adding an object to a list display group object is very
similar to that for adding an object to an ordered display
group object. except that there is only one doubly linked list
in a list display group object. It is therefore unnecessary to
deterrnineoneofsixliststowhichtheobjectistobeadded.
Itwillalsobeapfi'eciatedfltatinadditiontoan add-object
procedure. Escher‘s API also includes procedures to add an
object after a specified position in the list of the group. add
an object before a specified position in a list of the group.
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remove an object from a specified position in a list of the
group. iterate forward and backward through a list of the
group. as well as other procedures.
3. FrObject_Di8pose()

After adding an object to the group. the example program
inAppendix A “disposes" of the polygon object since it is no
longer needed in the application program (apart from in;
presence in the model being created). So far as the appli-
cation program is concerned. the polygon object has been
deleted. However. in actuality. the Escher ErObject_
Disposeo procedure does not at this time delete the polygon
object and die—allocate its memory space. Instead. since
polygon is a shared object. Escher merely decrements the
reference count in the shared object private data for the
polygon object. The reference count was set to 1 when
polygon was created. and was incremented by 1 when it was
added to group. Thus the application program‘s called to
Bflbjeclfiisposd) merely decrements the reference count
from 2 to 1. If the decrementing of the reference count
reduces it to 0. then Escher actually deletes the object and
de-allocates its memory space.
4. New Line Object

The example program in Appendix A next creates a new
line object line. adds it to the allotted display group object
group. and then "disposes“ of the line object line. The
Escher procedure calls to accomplish this are similar to
those described above with respect to the polygon object
polygon. and need not be repeated here.
5. Adding a Transform Object

After placing a style object and two geometry objects into
the ordered display group group. the example program in
Appendix A creates a translate transform object and adds it
to the group. The transform object transform is created by
calling the Escher procedure HTranslate'I‘r-ansfcrLNewo.
which operates in a recursive manner similarly to
FrOrderedDisplayGroupJewO as described above. The
example program’s subsequent calls to ErGroup_
AddObjecttfgroup. transform) and ErObject_Dispose
(transform) operate as described above. Note that although
the example program adds the transform object to the
ordered display group object after it has already added two
geometry objects. the nature of an ordered display group
calls for Ir'ansfomr objects to be executed trior to geometry
objects. Escher ensures this dtaraaaisfic by placing the
transform object on a sqsarate doubly linked list within the
ordered display group object group exclusively for
h'ansfonns. and placing the geometry objects in a douth
linked list exclusively for geometry objects. Upon renda'ing.
as described hereinafter. Escher will traverse the transits-m

abject list before it traverses the geometry object list.
6. Creation and Addition subGroup

After adding the transform obicct to the ordered display
group object group. the exarnple program in Appendix A
creates a new orda‘ed display group subGroup by calling
ErOrderedDisplayGroupJew[). This procedure is
described above. The example program then adds subGroup
to the previously crested coda-ed display group object
group. using the EGroudedobjectO Escher procedure
also described above. The example program has thus now
nested the hierarchy illustrated in FIG. 8. The example
program then creates a new geometry object. spedlieally a
torus geometry object toms using an Escher procedure
ErTorus_New(). which operates similarly to ErPolygon_
NewO described above. It then adds torus to subGroup using
FrGroup_AddObject(). and disposes of both torus and
subGroup using ErObjectjisposeO. At this point. the
entire model illustrated in FIG. 8 has been built and the
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example program moves on to step 308 (FIG. 3). renda'ing
the model to the view.

IV. RENDERING THE MODE?!) THE VIEWS

In Escher. the rendering of objects to a view takes place
between calls to ErView_StartRenderi.ns() and ErView_
EndchderingO. These procedures merely initialize relevant
data slructtn‘es prior to rendering (including pushing an
initial state onto a traversal stack) and clean up various
bookkeeping information after rendering. respectively. They
also include calls to the render-er‘s own start and end
procedures. so that the tenderer can do the same. The

renderer‘s start and end procedures were specified to Escher
upon registration of the renderer and are identified in appro-
priate method tables. Specifically. the renderer‘s end-
rendering procedure was returned by the renderer‘s rnctah-
andler in response to being called with the EcMeflrod'Iype_
EndRenderer constant.

Escher supports mulli-pass rendering in Web Escher
traverses the model more than once. calling app-update
tenderer procedures each time. Escher indicates that a
re-traverse is required by returning a status flag.
EcViewStatus_ReTraverse. from the ErView_
EndRendu'ingO procedure. When the application program
calls ErView_EndRender-ing(). that procedure in turn calls
the renderer‘s end-rendering procedure. In the case of the
wireframe renderer. this procedure is called BrWFwfinfi).
The render-er returns the re-traverse flag to Escher’s
BrView_EndRendea-ing() procedure. which in turn returns
the same to the application program as EcViewStatus_
ReTraverse Thus the preferred technique'[S for the appli-
cation program to place the model drawing calls inside a do
loop which repeats for as long as ErWew_EndRendering0
realms EcViewStatusJeTravcrse. This is the format used

in the example program in Appendix A.

Note that the calls to ErView_StartRenderingO and
ErView_EndRenderin30 take a view object view as an
argtunenL An application program can call these procedures
in any sequence. specifying different view ohjeds. as long as
the call to ErView_EndRender-ing() for a partiwlar view
objea is subsequent the call to ErViewwStartRenderingO
for the same view objefi. and all thawing calls to that view
are in betwoen. It is also an error to call ErView_

StartRenderingo twice for a particular view object without
calling EIView-EndRenderingtI) for the same view object in
between. and it is an error to call EWew_EndRendet-ing0
for a particular view object without having first called
ErViewMendetingO for that view object. However.
difierent view objects can specify the same tenderer if
desired. since the instance data ft: the diferent view objects
are separate. The example application program in Appendix
A takes a very simple tack in rendering the model twice.
specifically by rendering the model completely using the
view object previously defined. which specifies the wire
frame tenderer. then changing the choice of tenderer in the
view object to point to a Z-buifer renderer. and rendering the
model completely once again to the same. now-changed.
view object.

Between calls to 131'wa_Sta.rtRendering() and FrView_
EndRender-ingo. an application program can make crdls to
either immediate mode Escher drawing procedures or
retained mode Escher drawing procedures. or both. The
immediaternodemuflnestakedatasn'ucttnesuuch asa
polygon data so'tlcttn’e) as parameters. whereas retained
mode routines mite objects (such as an EGeomettyObject)
as parameters. Immediate mode routines do not instigate a
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traversal of any model. whaeas certain retained mode
routines. such as ErDisplayGroupfiDrawO. do instigate a
traversal of a model.

A Traversing a Model
Accordingly. the examine application program in Appen-

dix A makes a single call to Escha’s renderer invocation
procedures 212 (FIG. 2). specifically a call to
ErDisplayGroup_Draw(). The application program passes
in the model to render (represented by the ordered display
group object group which forms the root node of the model
hierarchy) and the view to which the model is to be rendered
(by passing the vieu.r object view). The application program
could at this time also make additional calls to Escher‘s

renderer invocation procedures 212. to render additional
objects (including additional models) into the same view.
The ErDisplayGroup_Draw() procedure is as follows:
 

Oopyfightfi l99¢AppleCnmptlen 1m.
Bullet-us EilJisplayGroterraw(

uncommon: m.
EtiwObject viewObject)

{
1:15am (-rum} tEtDisplayGrotqsObject.

EtVrewObject):
EtVrewPrivase 'vielvPI'iVPl'iV;
EtDisplayGroupState stare:

malt:
viewPrivPr-iv: Einew_GetV)I:W(V'BWObJect):
EiAsserflviewPrivPr-iv 1: NULL);
if (mPrivPrivacmlRerderrrm

reurm fEcSuocees):
Einew_CheekStarted {viewPr‘rvPri-v, 'EiDispkyflmapfiw");
FjDisph‘yerinerfitue (grow. acetate};
if «an: a EcDisplayflrurpStaseMasUDraw) = a) 1

return (EcSuecesa);
}
mm: (EtSlttI-Is f") {EtDisphyGl'oupObth EtVrewOlrject»
Wattle_W
Whit—DrenlererClassv>grotpMetlmris,
Emhmw—W (3101-13));

if (fin: = NULL) {
return (EcSuocees):

}
if «m a EcD‘BplayGrutpSMeWine) 1: o) t

} terms ['func) (yelp, Viewflbject);
if fEiVfiewMquiewObject) 1: EcSueoera) i

rem retrain);
l
result = ('fmc) (arms. Mint-1):
if fEiVmWW‘ ) I= Beam) {

rerun Maine);
i
return result;

 

Referring to the above procedure. after some error
checking. the procedure first determines that group is an
ordered display group by passing group to an Escher
EiDisplayCmoup_Get'lypeIndex() procedure. Itthen obtains
a pointer tune to the draWing method which the ordered
display group class registered dining initialization with the
EtDisplayGrmp class method tables for ordered display
group objects. Ifthe “in-line" flag is set for the object group.
then the procedure next calls the procedure pointed to by
func. passing in group and the view object to which the
group is to be rendered.

Ifthe “in-line" flag for the object group is not set. then the
EiDisplayGronp_Draw0 procedtue flushes" the traversal
state before calling the procedm-e identified by four: and
“pops" the traversal state afterwards.

In one embodiment. the state of traversal is represented as
the arrrent position in a stack which may be pushed and
popped. and which contains at each level a concatenation of
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all of the transform matrices prior to that level. the ctu'rent
style clmractaistics. the current shade: characteristics and
the unseat attribute sets. Each time the traversal state is

‘pushcd”. a new level is created and all of this information
is copied from the prior level to the current level of the stack.
Moreover in this embodiment. the concatenation of trans-

form matrices takes place by actually performing each
matrix rue-multiplication as the transform object is encoun-
tered in the traversal.

In a preferred embodiment. however. the current
transform. the merit style characteristics. the current
attribute sets and the current shader draracteristics are stored

in a plurality of stacks. each of which is pushed only when
necessary. A master ”state” stack maintains a record at each
level of which of the component stacks need to be popped
when the overall traversal slate is popped from that level.
For example. the current transform state is represented using
several component stacks. such as a current “local-to—wm'ld”
matrix stack. an inverse matrix stack. and so on. But instead

of calculating these matrices on each push of the overall
traversal state. only the sequence of transformation matrices.
fnom the lastcalculated matrix to the current position in
traversal of the model. is recorded. The actual calculation is

not performed unless and until it is actually needed. In this
manner. a large number of matrix computations are avoided

II should be noted that in retained mode. Escher pushes
and pops as required during its traversal of the model. In
immediate mode. the application program can also call
Escher push and pop routines so that by careful sequencing
of calls. the application program can perform its own
traversal of its own model database.

Returning to EiDisplayGroup_Draw(). the procedure
pointed to by func is EiView_OrderedDisplayGroup().
which is as follows:

 

Copyright 0 1994 Apple Computer, lac.
EtStanrs31?“..me
Whine! group.
EtVrewObjm viewOlriect)

{
WWW ‘gtoupEData:

yuapliata— EiOrdemdDrglaflrotm_GetOld-eredbiqslay€lmrm
ifmWwMM-mviewObject.

EilrwrsfornLan) = EcFa‘riure 3

WWmoan-Myles.vrethjecl.
EiStyle_Dr-aw)—_ BeFaihn'e r

WWW (numb-mmar-hush
viethiect.
charm) = strain-c II

Emiaphfimpr (Mum-Miracles.
vbwobimt
EiSIradet_Draw) :2 Hellfire II

WWW (growDataéget‘lneh'ies.. CI .
EiGeomerry_Draw)- EcFaihl'e II

Bugamjg Draw (WWW
viewObject.
EiDisplryerpm) =
EcFailure) {

return (Hairline).
I
return (neonates);
 

As can be seen. the above procedure calls a generalized
display group list drawing function EiDisplayGroupUst_
Drawo six times. each time passing in a reference to a
different. care of the six doubly linked lists in the private data
of the (edited display group object group. Specifically. the
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procedure calls the list drawing procedure with a reference
first to the list of transforms. then with the reference to the

list of styles. then with the reference to the list of attribute
sets. then with a reference to the list of shatters. then with a
reference to the list of geometries in the group. and then with
a pointer to the list of subgroups in the group. Each time. the
procedure also passes to the list drawing procedure 3. refer-
ence to the particular procedure which draWS the kind of
objects which are on the list. For example. when the list of
transforms is passed to EiDisplameuflisthO. a ref-
erence to the Escher procedure Ei'l‘ransforrLDt-awo is also
passed. As another example. when the list of geometries is
passed to EiDisplayGroupljst_Draw(). a reference to the
Escher procedure EiGeometry_me() is also passed in.

It will be appreciated that if group were a list display
group object rather than an ordered display group object.
only one call would be made to EiDisplayGroupLjst_Draw
0. This call would pass in a reference to the single list of
objects attached to group. and a reference to a procedure
which both determines the type of each object as it is
encountered on the list. and calls the appropriate Escher
drawing procedure for that type.

The generalized list drawing procedure is as follows:
 

Copyright 0 1994 Apple Comm. Inc.
EtStatus EiDisplayerpLMrawt
m ‘objeemin.
EVWO‘bjEl vicle-ject,
ElSlatus ('draw) (

EtObject
EtWewCijeet

object.
WWI!)

l
mmngs‘.
WMject);
Elnaaert (draw);

if fibjectfist t: NULL) M (EDILLGMghtobjecmPOJH(8N5 =
(EleeroaidoanefnstNoMobjecmm):
for I: N'UIL:
W = (EthothosibiodWiSthdeJextlobjecm

Wade fights» l
P Eimemwva. a); ‘1
if ({‘draw‘l (WWI. viewObject) 1: Hm) I

return {'EcFailnre):
l

l Iwhen {EcSnt-eeas);
} 

Ascanbeseen.thisprocedtn'emere1y loops throughallof
the objects on the doubly linked list which was specified by
the caller. and for each such object. passes the object to the
drawing procedure specified by the caller.

Several of the Escher object drawing procedures which
are called by the list drawing procedure will now be
desm'bed. However. for convenience of description. they
will be described in a difl’erent sequence from that in which
they would called when rendering an ordered display group.
B. Drawing Subgroup Objects of a Display Group Object

Escher traverses the model in a recursive manner. and for

this reason. the Escher procedure which ErViewF
OrderedDisplayCiroupO passes to the list drawing procedure
for group objects encountered in the group object group. is
simply EiDisplayGroupwnrawo. This procedure is
described above.

C. Drawing Geometry Objects in a Display Group Object
The Escher procedure which EiView_

OrdercdDisplayGrouM) identifies to the list drawing routine
for geometry objects is EiGeometry_,Draw0. which is as
follow:
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Copyright 0 1994 Apple Comptuer, Im,
EtStams EithemenyJ-aw

EtGocmaryOhjecl gunnery.
EtVtethject viewObjeet)

EIVtewPrivate ‘vievn
View = EiView_GetVW\{vichbjeet):
inew i: turn);
if (view-xmlkenderins) {

return (ESucceas):
l
EiV‘aew_CheekStat-ted(vicw. 'EiGconteuwaIaW"):
renim ((‘view-xmdmuChsswnmeMcdnd) (geometry,

} viewObjech:
Aacmbemdieabovepmeedtnemerelyperiorms

certainermdaeckingmdthencallsfltegeometrychw
method which was regismed bythegeomtry class. This
rnetlacdisgeneric toaflgwmnyobjecuandisasfollows:

quyriganlQQéAppleCotmmJn-L
staticExStanasEiGeomen-ymldctlndt

EIGeomenyObjecl geometry.
EVIewObject mount)

l
void (" filnc) (

ElGeomctryObject gnome-y.
EW'ic'wDbject vicar):

EVIewPrivaae Wicca;
view = EinewwfictVIewfilewObjnct);
EWiew_ChaekScartod (Vicar. "EiGeom‘n-yjraw”):
func =

EMMableflcuckMethochiew-metclaaso
gemtryDrawMellDCh.
EiGeomen-y_GeflypeImlex(geomylli

if (lint) {
{*flmc) (geometry, vichbject);

l 6196 l
EiGeoIneny_Dec-ompoae(ponztry. viewObject)‘.

}
return (EcStIccesa);

} 

This routine. after error checking. first obtains a pointer
func to the method which the current view’s render: has

registered for geometry objects of the type to be rendered (in
this case. polygons). If tune is NULL. then a decomposition
of the geomary object takes place in a manner hereinafter
described. In the present case. hweva. the wire frame
tenderer has registered E'WF_Geometry_Polygon0 as the
procedure to render polygon objects. (See the discussion
above with respect to ErWI-LRegistefl).) That procedure is
set out in Appendix B.
D. Drawing Geometry Objects Which Require Decomposi-
tion

In the previous section. it was described how Escher
causes a geometry object in a display group to be rendered
in the situation where the view’s renders: has a routine

specifically for the geometry object’s type (Le... polygon).
Renderers to be used with Escher must at least support
routines which will render points. lines and triangles. and
may also support routines which will render high: level
geometries. In an aspect of the invention. the renderer need
not support all geometry types which Escher suppcrts in the
building of a model. Rather. Escher will automatically detect
the absence of a rendering method for a particular geometry
type. and decompose the geometry into less complex parts.
It then resubmits them to the tenderer in this less complex
form

The wire frame renderer of the present embodiment
supports polygon objects. but for purposes of illustration. it
will now be assumed that it does not. This illustration is

hypothetical also because the wire frame renderer‘s method
for rendering triangles. which as will be seen is the geometry
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to which Esd'ier decomposes polygons. is the same wire
frame renderer procedin'e which renders polygons. That is.
the renderer procedure EiWF_Geometry_Polygon() takes
either a triangle or a polygon as an argument. determines
which it is. and renders it using the same code. Never-dieless.
the hypothetical will serve to illustrate Escher’s decompo-
sition technique.
1. Procedures Called On Escher Initialization

The procedure upon initialization for registering a ren-
derer has been previously desrn'i'bed. Classes and subclasses
register themselves as well during initialization. The poly-
gon class. for example. is registered initially by calling the
following function:
 

Copyright c 1994 Apple Comp-m. rm.
EiStanis EiPolyaosLResistcrt

void)
1

EtObjechlaasData objeclclassDaia:
Espolywflcm-'
Emmwegismt

Eioejwtcnssmmnq
caesium
EcGeometry’Typefilygon. “Pulygoll”.
EiPolygotLtuenHandler. NULL.
0})

} return (Windlass =
NULL) 7’ EcFaflmeEcSmcess):
 

This routine creates the class method tables for an object
in the polygon leaf class. As with other creation routines
previously described. the block of memory is allocated and
initialized using a layered technique. with each class‘ 5 class
registration procedure first passing the size required for its
own method tables to its parent class's class registration
procedure. The polygon class is a leaf class. so the size of its
method table is zero. Above the polygon class. each proce-
dure adds on the size of its own method table and recursively
calls its parent dass’s class registration procedure. The
ultimate parent class‘s class registration procedure allocates
memory for the entire block of method tables. initializes its
own portion with pointers to its default methods and realms
to the calling subclass’s class registration procedure 9 On
the way back down to the original caller. each class's class
registration procedure initializes its own method table with
its own default methods. In addition. each class’s class

registration procedure can specify methods to override those
of its parent class. but only at the option of the parent class.
This is accomplished by. when calling the parent class‘s
ciass registration procedure. specify a rnetahandler and. for
some classes. a virtual metaiiaiidler. as arguments to the call.
These metahandlers can be called by the parent class's class
registration procedure. if it so desires. specifying a method
type. and if called. the metahandler returns a pointer to the
procedure desired to override the parent class‘s default
methodofthetypespecifiedeaclassdoesnothavea
ta'ocedure to override the parent class’s default method of a
particular type. the metahandler returns NULL.

In the case of the polygon class registration prooedtn‘e.
only a metahandler is identified to the parent class‘s class
registration procedure. The metahandler is as follows:
 

Copyright c 1994 Apple mm. Inc.
static EfiiunctionPoimer Eil'clysOILMeuHmdlert

EtMethodIype mellnd'lype)
{

awilch (MW) {
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-continued

case mmgmew
rem Winter) sarcoma:

case EcMediotl'l’ypeHOIijectDupiicate:
return Winter) EiPolygon_Duplieare:

case WWW
rem-n Whiter]WW;

caseWWW:
lenim Wm) EiPolygoLBOimclingSphere;

case EcMethodTypc.GeomenyRayP'-ck:
rem ['BlFunctlanointei-l EPolmeayPiek:

can: EeMednrflype_GeometlyBoxPich
return (Efiiimctionl'oimer) EiPolygonJoutPick.‘

case BcMeflndlype,_GeomenySplnePiclz
return (ammonium) EiPolygon_SpberePick:

case ECW#GGOWWMWPOWIZ
retum (EtPimctiouPbinter) BiPolymedowPointPick;

case Eehkthod'Iy-pe_6eomcnyWrndowReetPick:
realm (EtFunctionl’ointer) Eil’olyqufiowRectfizk;

case EMW:
rem-n (EiPunctionPoinm) EiPolygouW:

case EcMethod'I‘ypefileteDecomomion:
mmmhu} EiPolngLDeleteDecomposition:

case RMedxinype_GethttributeSet:
rerun (Ed‘uicfioii’oinw) EiPolygoLGewnibineSet:

caseWW:
renn-n (EM)EiPolygorLSetAtlrilz-mset;

case ijpcm
men-11 {ammo-er) EiPolymRead;

case EcMethodType_ObjectVi"i-itez
return (FEW) EiPolygon_Write_1nmai;

case fiMetbodIYpe__0bjechremae:
retur-n (BMW)WWW;

thfaull'.
rem {Emmhlfl'} NUIL;

}
l

 

 

Of particular relevance to the present discussion. note that
when asked for a geometry decomposition procedure. the
metahandler returns one. namely EiPolygon_Decompose.

This procedure is described hereinafter.
The class registration procedure for the polygon class's

parent class. EtGeomeuyObject. is as follows:
 

Copyright 0 1994 Appk Comm. In;
ElObjectCIass Wiles_fltegm

EtObjcctChasDnta ‘objmlChssDflfl
l

EtObjectClaas objecicm
Whose ‘gcomCIaaa;
mbjecmiasm pamrobjmcimnm;
objeetfllass =

EShpeClassJegisteri
BMW

nwbjxcmnamumnniem
&parel30bjectCIassData,
EcSth_Ger.
W.
EiGemaenyClamMetaHmdhf.
EiGeorneoyCMVirhiaMetnflandh. NUIL.
simf (ElC-eometryClass);

objectClassDfln»:
if (objeetClasa = NULL) 1

return {NULL};
l
muss = EismaaClas_GedSul£hs-ahhlhods (ohjochhas.

RWM_Omw)zIf-

'EgGeomnerniquinnberisuaediumotbodtablesinview‘1

geocfllass—mmea-yllniqueflunber = EgNuuGeenien-yclasees;
seamless-W: = (EtBotuidiosBoxMednd)

EiObjectClassData_GetMeihotK0bjccfla§Data,
Emmy

mmmmsmm = WWW)
EiOlajectClasaDmGeMemod (objectclasaDala.
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mntinued

EcMctbed‘l'y-peJmnfiinsSphem);
seamless-my“: (5W)

EiObjeeChssDaLGetMednd (objectclaesbm
Echinthod’Iype_GeomanyPick):

Wises-Wk = (BtGeonhyPickMetlnl)
EiObiectClassDaLGeMellnd (objectClaseDaa

EcMethod’fipeMBoxPlet):
Whoa—W = (EtGeouneuyPlckMethod)

EiObjectcmGetMedad (ohjeelClIseDm.
EcMethochypeMySphemPiek):

aeonfiiass—wirfiewl’bimfiek = mmmmd)
Biommomobjmmma.

EeMetlnd’lype_GeomyanlowaflPick):
geomClaee—szimbwkeelfiek = (5me

Elohjecacumommoejecchm
EeMemDemrpe_OeometryWReefick);

geonacmzvdmonmoee =W)
Emmcmocm (objectClsssDeta.

BMW):
Whats-fileieDeeomposhion = WWWM

EiDbjectClamW (objwlChssDan.
leeeenwomifion);

geonfllaee-bgewu'ihneSet = mmmhnsnmmod)
EiOhjectCIflsaDILGeW (objectClifiDula.

mm”_mmimx
seenfllase-mmrm‘hmsm =WW)

EiObjeetClmDmGetMedndtobjeeEhfiDfls.
RW_S¢£AmibulaSer);

ifWines-W = 141.111.) -{was: VERBOSE

Elgamingjsz (Emma-Jam.‘W
“I: 5: 6mm")! registered a NULL decompose fimetbu”.
“BiGeoumn'y_lle3Mer"))L

fiendif

 

l
ifmeomChss—bdeleleneomnpodtkm = NULL) {
mtVERBOSE

Eimt’ost [Retinal-Johanna
EWd

“96 3: Geometry registered a NULL deleteDecompoeitlon finerlon”
WJWG);

fiendif
}
if (geomCIaesmyPiek = Nun.) J.

fifdef VERBOSE
EiWamjnLPbet (EeEnerJoReoovery.

53W
“firs: Geometry regismedaN'lJLLraypickhun-fioe"
“EiGeomtlyJesisMh#endif

soonClass-‘xayfick = Bit'jeomuy__DefuulPick;
}
if (WWW): = NULL) {

hidef VERBOSE
BMW (EcEnoLNoRecovel-y.

law
“I: 5: Geometry resisleled a NULL hex
pick moon",
"EiGeomen-yfigisterm:

unfit
WWW = EflonmenjLDefudtPick;

}
if (Whee-xpheul’ict = NULL) {
mtVERBOSE
EiV-hmingjost ('EcErrorJoReooVery.

13in
"9!: 5: Geometry registered a NULL sphere
pick function”.
"E'fleomtryJeglstd‘fi;

W
geomClm-n-spheuePick =mwfim

I-
if wmwmpomsck = 111.111..) 1

fifdcf VERBOSE
EianinLPoat {Emma

EWW e Geometry
registered a NULL

w‘nfiow point pick flatten".
Wfifimfik
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lendif
seenfllase—WMWPOW = EiGeomy_Defwll?ich

}
if (mmwmwnxm = NULL) 1hidef' VERBOSE

EiWarmw IECEMLNOWI
EWWB 5: Germany registered
a M

window not pick function”.
Wily—ROW»:Mt

ponilassvwimhwkeetfiek = Wfifimfll’kb
}
'1‘
- Not legal to legister mm. beer. method
'1

if [Miss-Mingus): = NULL) -{
Emmfikmw.

WNW at: Gummy reg'uteted aHUD.

bounding box function“.
TflwmhyJegismfl):

nghss-Mndénsflox:
EiGeomu-yJeEwIW:

}
if (mmmpm = NULL) {

fifdef VERBOSE
Elm (EeEmrJoRecovu-y.

Ein“% s: Geometry registereda NULL
bowing sphere fumtim”.

“EiGeomn-yJegistef‘D:#endif

geenflhss-WSprlm =

} EaGeomeny_DefaultBomflmSphue;
BaGeamenyChsscs =

EiMemwaulloot
Egceomeu'yclam

(EgNunGeomuyChsaes + 1] ‘ 51'.sz (EmmyClas ’)):
if Winches» = NULL) {
msmum {ohjecfiilaes};
let-urn (NEIL);

}
Whales[MW] = ObjeCtChss;
if mwmmmobjmchm2 Ec‘Tl'ue)
{

if (EiOhjecxtmesiflermhmuW
objectClnss.
Mtlymmm
Emwmhmfibmm) = Weill“)

l
61mm (Brit-Mm

“Can‘t ream pomen-y attachment”):
}

}
rem (objectClass):
 

As can be seen. this procedure calls its own parent class's
class registration procedure. EiShachlass_Register().
specifying a metettmdlea’ and a virtual metahandler. After
the reunion returns to the above procedure. the procedure
continues by initializing its own method table with pointers
to default pxoeedms. It obtains these pointers using an
Escher procedrn-e. E0bject0assData_GeMethod(). which
among other things. asks file subclass’s metahandler to
provide the pointer to each desired method. One of the
methods which the procedure asks the polygon class‘s
metahandler to identify is a decomposition method. and as
previously pointed out. the method which it identifies is
EiPolygonWsd).

It is noteworthy that in Escher. the decomposition method
is identified in the class method tables for each type of
geometry. not for eadt rendera‘. Thus the decomposition
methods are included as part ofthe model to be rendered. not
aspanoftheviewtowhichitwillberenderedoraspartof
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the renderer. It will be appreciated that in another
embodiment. a renda-er can be Wood to override the
decomposition methods for geometry which it cannot draw
directly. In yet another embodiment. the decomposition
methods can be attadred to the renderer subclass ratherthan

to the geometry subclass.
A description of the geometry class’s metahandler is not

important for an understanding of the invention. but the
geometry class‘s virtual metahandler is set om below:
 

Copyright 0 1994 Apple Cmymn'. Inc.
EtFumtionl’ointer EiGeomenyClass_Vn-nsaihletaliandlcr (

{ mmWM)
switch (W) l

case EcMetlxxlIype_ObjectUnlegister:
return (Winter) ElGenmett'yChss_Unregister};

case EcMeW_ObjectDraw:
return (Humane) EiGoonetryMW):

tkkult:
return (NULL) :

i
} 

Of particular relevance is that when called by the EtSha-
peObjcct class ’5 class registration pocedtn'e. it will return a
pointer to EiGeomeny_Draw() as an object drawing pro-
cedure.

2. Procedures Called During Rendering
Rewriting to EiGeomen'y__DrawMethod() set out above.

as previously mentioned. if the tenderer has not registered a
procedure for drawing geranenies of the type provided to
that procedure. which for the purposes of illustration we are
assuming is the case with respect to polygons. then this
routine will pass the geometry on to EiGeometry_
DecomposeO. That procedure is as follows:
 

WO 1994 Apple (bmpuler, Inc.
newmom

EtGeonnuyObject geomtry,
EtVrewObject view}

EfiecmelryClaaa 'theClass;
theClase = fEKieametryClass -)

EiShape_GetSubChasB-lethoda (gunners-y,
Ecfihavcw_0ww)a

3mm (Miles);
if (finches-momma) {I.

‘mgecmscan'tbedeccmpmed{e.g.,lima.uienfleel

:Ifthiscodepathishihthntmeansthatsombodyisnyingaodecomposeapfimit'rvedntouglnnotbe
decomposedtoreanmt). Unlessapickingorhomdingbca
'mutheismlymncbcompmeamm
‘u-iangle,ornu~hec.thenitnmstbethatarendeueeis
'nctpmvidihgapipelnnfiorfltemicprhnhiveh
*quectionJ‘hiaisaner-mr...‘1'
WM

ECFI'I'Ufiummplemted,
EiEIror_Mecsage(

‘96 s:Renderwdoesnotstpportlrequhndgmetfic
We”,

‘EiGeomen-ymm;
mmficchees);
}
WMMW);

I. rennnfl'theClaesodecc-npoae) Myviewn; 

As can be seen. after some error checking. this procedtne
merely passes the geometry object on to the method iden—
tified in its method table for a decomposition procedln'e. For
polygons. this method was previously registered as
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described above as EiPolygon_Decornpose. which is as
follows:

 

Copy-63110 lmthonputer. In:
static ErStane museum
WI salmon.
EtVIewObjxt view)

i
EPclypnPrivm ‘polygonPr'rv:

lean immediateMode: EcFalae.
ifflCMsmPfl = Efibmced’ctyson 03°13'30“)» I

renn-n (EcFaihne):
}
if (huned‘ratehdodel l

if((EiPclygotLTl-iangulate(polyson. Ecl‘alse. N'U'u... View» =
EcFaihne) l

let-um ['EcFaihire);
}

wet . _if {www.mmm) {
if (t'liiPolymIl-nangul‘ate (polygon.

Ec'lhse.
depolypnPiiv—bdeoormositm
view» = EcFailIxc) {

mum (EcFailwe):
i

I
if ((EiGeomelranwpolngnPfiv-manpoeitim. vlew)} =

EcFailutt) l
rem (EcFailutc):

} i
return ('EcSucot-ss):

} 

The above procedure uses an Escher procedure
EiPolygonm'll-iangulatef) to decompose the polygon into a
bundle of triangles. In one embodiment. the n-iangulation
procedure could create a new EtGroupObject to hold all of
the new triangles. Preferably. however. in order to short-
circuit a level of error dreclting and recursion. since it is
already known that all objects within the group will be
geometry objects. the triangulation procedure places all of
the new triangles in an object of class EtGeornelryBundle- A
geometry bundle is an internal-only geometry object which
can hold only a list of geometries.

The above procedure can operate either in immediate
mode or in retained mode. In immediate mode. it calls the

triangulation procedure with a flag that tells the triangulation
procedure not to save the result of the decomposition. but
rather to simply have it drawn. In retained mode. the above
procedlne calls the triangulation procethlre with a flag
indicating that the decomposition should be saved. as well as
with a reference to a field in which to save it. In the above

procedure. the field into which the n-iangulation procedure
writes a reference to the resulting geometry bundle object. is
polyh‘ivbdecotnposition. which the above procedure then
passes to EiCreontetry_Draw().

EiGeometry_Draw() has been set out above. and in the
manner previously described. after error checking. it merely
calls the method identified in the method table of the

geometry object passed to it. for drawing that type of
geometry. Usually these will he methods registered by the
renderer. but geometry bundle objects are not public. Ren-
derers do not register routines to draw these objects. Instead.
the method table will contain a pointer to Escher’s default
drawing method for geometry bundles. which is as follows:
 

Com-fish! or root Apple Computer. rm.
void Eivrew_6eomn‘yflmdl=(
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-continued 

EIGeomenyOhject
Etvtewobject

Wfimdlehivnne *btlnfle;
long I;
if ("bundle = (EtGemtenmecilePi-‘wate ')

Eit'jeomeny_Get$ubChssData(geomeo-y.
EcGeometrmpe_Geomen-ynmd1e})) {

rem;
}
firti:£ti<btndle—tnnrrfleomefliesti+r){

Eifieomeh‘ymtbuufle—bgeometfiesli]. View):
}

3m”.
vhw}

l 

As can be seen. this procedure merely iterates through the
list of geometry objects in the geometry bundle object
provided to it. and passes each one in mm to EiGeornetly_
DrawO. These are all triangles. so EiGeometry_Draw() will
call the renderer's triangle drawing procedure for each
triangle in the decomposition.

E. Drawing Transform Objects in a Display Group
Object

The Escher procedure which EiView“
OrdcredDisplayGroufi) identifies to the list drawing routine
for transform objects is Ej'Il-ansform Drawn. which is as
follows:

 

CopyrightO 1994 Apple Computer. Inc.
EtStatus EiInnsfonnJM

Etnanshtnflbject t.
EtVtewObject vichbject)

EtVtewl’r‘rvate 'view;
View = Einew_GetVuw(view0hjecl):
return ((‘viw—mmderanlass—tmhmmwhlethod)

(l. V'IEW‘JM'MID;

Mombamflnabovepmcoclmmlycallstm
thmflhmlfm’flleEtTmnsfomObjm clans.
'I'hismettndisgemricmlllmlotmobjectgandis
asbllows:

Copyrighto 1994 App-h Compiler. 1m.
startle EtStalns EMMwW
Em: t.
EtVqubjeot viewohbct)

i
Void (“I“) I

Et’ll'msiu'nlobject n'anafum,
EtVnwObject viewObject):

EtVIewB-ivate 'view:
View = Eivm_GetVzw{vieuflhiect);
EiVnw_Che:Mv'-ew. fiinca_Tt-anslorm'):
ftnu: = Emethnd’fable_0eth{etlmd

(viewamfleruClass—tmfimnflnwflethods.
EmnnsanGethpeWtD;

if (fl-WC) l

} Plus) (a viewObject):
rem ['Ecsueoeas)‘.
 

This routine. after error checking. first obtains a pointer
font: to the method which the current view's rendu‘cr‘s

method table has for executing transform objects of the type 65
to be executed (in this case. translations). Escher-‘5 default
procedure for executing translation transforms is as follows:

20 4'"
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Cwyrigln O 1994- Appl: Compiler. Inc.
void EiVmw_Thnslato(

Enhmfmmt “fineI m.
EVtewOlject viewObjecl)

l
ETl-amlateh'ivale ‘t;
Etiw’IhnsfcrmStau ‘nchtnte. 'state:
EVwPrivate ‘view:
view = Einw_GetVtwtview0hject)

10 if (!(t = (Et'l‘mlatel’rim ll)
EMMGetSubChesDem (trans.

EeItmsformepe_Tramhte))} {
nun-n;

}
it (EiAnributeSmcLChecht

15 view—modera—mansfom—mackfiansformatkm) 41newState = Eihlemrnyjewtsizeofiflflfiewnmfumsm»;
if (Mewsutte) {

2mm;
}
i‘indicetesthatnrvmeetclnsmbeenoaktflated‘i
DEWSMHflags : 0:“rewamnew-zmhte‘cwmtfl‘

state = (EtiIransfiothhte "J moriImeStscLGetTol-lt
chammm—emkmmnm);

EMIWX4_Copy(&mte—>Iocaflo%rm,
msmamn'mtumm};

{
Ethnic-1x4 Imp;

EiMatrix4x4_Sem'mslxte(&nnp.
t—uranalatc .x.
t—uranslamy.
t—btnnshtez)‘.

M4:4_Mulfiply(&nnp,
tnewSm—rbcflowm.
hirsute—1beafloWorldMan-ix);

}
WWW

m—nwduuambnmaamflnnsfoumuon,
[void 'lnewsmc.
ENw_Transfonmtlon_PopJ:

l eke {
I‘Wemtcu'rml=mlate‘curm *!
slate = (Exvmmtfle ‘) EMMIICLGGITOK

vhmefiom—mtwflmsfomdm);
{
5M4“ Imp:
m4n_5eflhmslate (amp,

t—Mramlatex.
t-tn'nnslatey.
t—I-n-anslatu):

defllfipb' (m,
hm—tbcnflb‘lbrm
BWWOW);

l
i‘indicatesthatimmetchssnotboenflhtkted'!
state—om =0;

}
l‘notifirenimutbatcmentunsfimammhhaschmged‘f
EView_’l't-ansfum_513te€hmsed(

“Wt.
EcV-ewStalcfipc_TWaroW3z
 

V. MANAGING AND USING QUALITY
COLLECTIONS

A. Data Structures

A quality collection object is a data structure which
contains a linked list of quality group objeas. A quality
collection object is an instance of the class EQualityCol-
lectionObjec-t which. as indicated in FIG. 6. is a subclass of
the class EtSharedObjoct. which is itself a subclass under the
class Etobjeot. Accordingly. following the format of FIG. 5.
a quality collection objea has the format in memory as
illustrated in FIG. 11. Specifically. aregion of memory 11.2
is allocated to contain pointers to the methods of the
EtQualiryCollectionObject class. and this region 1102 con-
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talus pointers 11.4 to object methods and pointers 1.106 to
shared objea methods (of which there are none}. EtQuali—
tyCollectionObject class is a leaf class. so the class omits a
method table specifically for quality collection object meth~
ods.

The structure also includes instance data for the quality
collection object in region 1110 memory. This region con-
tains instance data specific the object class in a portion 1112
(pointing to the object class 1102). instance data specific to
the shared object class in a portion 1114 (containing a
reference count). and instance data specific to the quality
collection object class in a portion 1116. The quality col-
lection object data is a data structure of type
EQualityCollecfionPrivate. which begins a linked list of
quality group objects.

A quality group objea is a data structure which contains
a group of quality control type variables. each containing a
value which itself Elects among two or more options in a
respective trade-ofl" between rendering quality and rendering
speed. A quality group object is an instance of the class
EtQualityGroupObjt-ct which. as indicated in FIG. 6. is a
subclass of the class BtSharedObject. A quality group object
has the format illustrated in FIG. 12. Specifically. a region
of memory 1202 contains pointers to the methods of the
EiQualityGroupObjcct class. and this region 1202 contains
pointers 1204 to object methods and pointers 12.6w shared
object methods (of which there are none). The structtne also
includes instance data for the quality group object in region
1210 ofmemory. This regioa contains instance data specific
to the object class in a portion 1212 (pointing to the object
class 1202). instance data specific to the shared object class
in a portion 1214 (containing a reference count). and
instance data specific to the quality group object class in a
portion 1216. The quality group object data is a data
structure of type EtQualityGroupObjectPrivate. which
includes the fields set forth in Table 1

TABLE I 

FEED

QI-Blity hate:
Pointer to Previous
13.an in Collection. pointerPointer to Next
BtQInlinGroupObjecIPt-ivate in Collection pointer
List of Guilty "type Erin-inc ant-ct

 

 

Ascanbeseen.apartfi'omthelinlredlistpointersforodra
quality group objects in the quality collection object. the
quality group object includes a field for storing a quality
index value associated with the particular group. In one
embodiment. the quality index is of type float and can range
from 0.0 to 1.0. but in other embodiments the quality index
value can be. for example. an integer. Note that whereas. in
the presently described embodiment the quality index value
is stored in a field in the quality group object. in another
embodiment. the quality index associated with a particular

quality group may be simply a calculated value such as. for
example. nlN. where n is the position of the particular
quality group in the oollection‘s linked list. and N is the total
numba of quality groups in the collection. In yet anothrr
embodiment. the quality index associated with a particular
quality group is merely n. where the particular quality group
is the n‘th quality group in a collection‘s list of quality
groups. Many other techniques can be used in difi‘erent
embodiments for associating a quality index value with
respective quality groups.
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Referring again to Table I. each quality group object also
includes a list of quality type entries. The quality type entries
are a set of variables. each containing a value which selects
among at least two options in a respective trade-off between
rendering quality and rendering speed. For one embodiment.
Table 11 sets ftl'lh the different quality c0ntrol variables and
the different options which are available for that parameter.

 

 

TABIE 11

um RS

REID OPTIONS

Lire Style on. ofi'
Shaders OE. fast. on
mmim OE. fast. on
Level of Deni! on. of
Con‘pute Shadows on. of
Compute mm elf. fast. on
Commie Reflections on. oil?
Backfxing Realm-a] on. oil
Interpolation flat. remand.

rims
Progressive Refirrment on. of
Mial'using Lave! float (CLO—I .0)
MW integer 

It will be appreciated that dih'erent embodiments can include
a Mutant set of parameters in each quality group andi‘or can
include diiferent options for each parameter in the table.
B. Procedures for Establishing a Quality Collection

Referring to Appendix A. the example application pro-
gram establishes a quality collection by calling a procedure
ExSetupQualityCollection(&qualityCollection). This
procedure. which is part of the application program. uses
Escher-provided procedures to build a collection of quality
groups in a desired manner. FIG. 13 is a flow chart of an
ExSetupQualityColletrionU prooedtne which establishes a
quality collection having four quality groups. with quality
indices 0.2. 0.4. 0.6 and 0.8. respectively.

Referring to FIG. 13. in a step 1302. the routine first
creates a new quality collection object. This is accomplished
with a call to an Escher procedure
ErQualityCollectionobject_New(). which allocates space
and initializes the data structures in the same manner as

described above with respect to FIG. 10.
ErQualityCollectionObjedJewtf) returns a pointer to the
new quality collection object. which the procedure of FIG.
13 stores in a variable qualityoollcction.

In a step 13“. the procedure of FIG. 13 creates a new
quality group object using an Escher routine
ErQualityChoupJquualitylndex). with qualityIndex=
0.2. This routine allocates memory space for the new quality
group object using the technique of FIG. 10. and initializes
the quality index field of the quality group to 0.2.

In the presently described embodiment. the call to pro-
cedure Fa-QualityGrmpObjectJeM) sets the quality index
for the new group permanently. When the group object is
later added to a quality collection. the Escher procedure
which does so (described below) places the new group in the
collection's linked list in the appropriate sequence deter—
mined by the quality index of the quality group. If the quality
index of the group to be added duplicates the quality index
ofa group already ind-recollection. then anerroris reurrned.

In another embodiment. ErQualityGroupObject_New()
does not take an argument. but rather initializes the quality
index field of the new group at a null value. Escher routines
are provided for the application program to set the quality
index of the group subsequently as desired.

Returning to FIG. 13. after the first new quality group is
created. the application [mgr-am sets the parameters in the
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first group as desiredin step 1306. In the presently desenibed
embodiment. each of the quality type parameters set forth in
Table [1 above is assigned a unique four-character code of
type EtQualityType. In order to allow for future
enhancements. application programs do not read and write
the parameter values directly. but rather do so only through
certain Escher routines. Moreover. application programs can
use the Escher routines to determine which quality param-
eters are suworted by the particular version of Escher.
Quality type codes are registered with Apple Computer. Inc..
are available to application program developers. and are
consistent through subsequent upgrades of Escher.

The Escher routines set forth in Table III are used by the
application program to manage the contents of a quality
SIMP-

 

 

TABLE 111

W

Escher Routine Comments

Ersatz-s Roms Lebanon:
ErQuaJityGrow_Getmepe( me. of first
EQualjtyChouprjm-t “type“in the
qialhyfioup. specified quality
W‘onliw’l‘rticl'. GNP, Mm:

value in qualimyp.
EtSfllus WMextlfirpd Rename 4-eheraeter
new Wwoeaypemat Gets the Gmrp's
EthalityGroupObject mane of next “type“
MW. in the specified
more cum}. quality Gm?
ElQualityGroupObject value an the
Wren). will! eve
Emma: qmlioflhpe. ”W (est.void *dan); amialiaaing level)

Data is returned
no mum
"datu". Rena-res
enou- il' the Greta:
has no entry for
the specified
unlit! w-

tesm Weave—Went Sets tin value for
Wt Ihf-1 nullity We

WP: ‘m the

void 'data); group Retina
error if the Group
has no one]! fior
the washed
till-lit! We

Etta-tame Gets the quality
moussenmuLGanutytnmr inlet valt:
wmjm mined with the
91mm Mir amp
amt 'qtah‘rylmkx); specified'a:

qualityGroq-t. andserum the vahae
in qtnhtyhidex. 

The routine to get the quality index associated with a
particular quality group is provided as an indqiendent
routine because the quality index value is not one of the
quality types which are actxssible using EQualilvGroup_
Get'I’ypeDaM) and HQuaIityGrottp__Set'1‘ypeData0. In
another embodiment. however. the index value associated

with a particular quality group can be included as one of the
quality types which are accessible using these routines.

In step 1308. the procedure of FIG. 13 adds the first
quality control group object to the quality collection object
neared in step 13.2. This is accomplished using an Escher
procedure ErQualityCollectioLAddGroupo procedure.
whida is one of several quality collection maintenance
procedures described in Table IV.
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TABLE IV

um N ROUTINE-LS

Escher Routine Commie

nouns Rena-us in qtnlilyGloup a
EerhtyCofleeMGefiihstGroupt pointer to the
ElQualityCollectionObjoct quality group in the
qualityColiectioo. specified quality
BlQInlityQotQObjec-t collection.
‘qmliryfltmm:
EtStatus Ream in mm a
BiQtnlitycMGetNextGmupt pcrimea' to the next
EthuliryCollectionObject quality got;- in tin
qualityCollection. specified quality
my collection.
'qmlio‘Gm);
EtStalus Adds the ancified quality
ElQualil‘yCollectMuM M m the specified
EtQualiry-Oollectionflbject qtnlity coflection
qualityCollect‘nn. Automatically places the
WM new quality smup In
'qtnlityGrow): screed order in the

quality collection linked
list according no the
quality index. Rem an
error if the quality Mex
of the new quality you)
is already associated wrth
anodier group in thecolhctiun.

EtSmus Deletes the specified
EeralityCoflectiOnJeleteGroufi quahry M hurt the
EtQualityColbc‘umObjeet specified quality
qznlityColbction, eolbetion. Since quality
Emalityfimpobjem W are sound Directs.
'qualitmep): this procaine merely

decrements tin reform
count. serially deleting
theohjeetandde-
albeatingmtcryonlyif
meteorit'atgrefietencecosmiszelo.
 

As can be seen. the routine ErQualityCollection_
AddGroupO automatically adds the new quality group to the
collection in sorted order according to the quality index. If
the quality.r index of the new group is already associated with
another group in the collection. an error is renuned.
However. in another embodiment. the Escher routines may
be written to accomodate the possibility of true or more
quality groups having the same quality index in a single
quality collection. Also. as previously mentioned other
embodiments are possible in which the application program
can change the quality index associated with a group as
desired. In such an embodiment. if the quality index is
already assigned to a group in one or more quality collection
objects. it will be appreciated that certain bookkeeping
functions may need to be performed in order to maintain
each affected quality collection in sorted order. andlor in
order to handle duplicate quttlitf,r indices in the same quality
collection.

Returning to FIG. 13. after the first quality group object
has been added to the quality collection object. the proce-
dure qeates a second new quality you!) object in step 310.
this time using a quality index. of 0.4. In step 312. the
procedure sets the parameters in the second quality group
object as desired. and in step 1314. it adds the second quality
group object to the quality collection object in the manner
previously :1me

In steps 1316. 1318 and 1320. a third quality group object.
with a quality index of 0.6. is treated. modified as desired
and added to the quality group object. respectively.
Similarly. in steps 1322. 1324 and 1326. a fotn'th new quality
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group object is created. using a quality index of 0.8. the
parameters are set appropriately in the fourth quality group
object. and it is added to the quality collection object in the
manner previously dead-{bed This completes the application
program procedure ExSetupQualityCollectioN) (step 1328}.

It will be appreciated that in another embodiment. instead
of requiring each application program to set up its own
quality collection. the Escher routines may provide a pro-
cedtn'e merely for creating a default quality collection. Such
a default quality collection may be predefined to include
four or five quality groups. each filled with quality type
values such that the overall progression from the quality

group with the lowest quality index to the quality group with
the highest quality index. follows a monotonically increas-
ing overall quality and a monotonically decreasing overall
speed in the overall qualityispeed trade-oilP continuum.

It will also be appreciated that for the rendering of some

images. a first quality group having a first set of quality type
values may reader with a higher quality and lower speed
than it would with a second group having a second set of

quality type values. whereas a different image may be
rendered at lower quality and higher speed with the first

quality group and at higher quality and lower speed with the
second quality group. Renderings performed with difl’erent
renderers may also experience this same kind of reversal.
Because of these possibilities. the Escher routines do not
enforce any arbitrary conception of which permutations of
quality type values should be associated with a lower or
higher quality index. The application progmn is free to
establish any desired set of quality type values in a given

quality group. regardless of the quality index value associ-
ated with such quality group. It will be appreciated that in
another embodiment. such a relationship may in fact be
enforced.

C. Procedures for Selecting and Getting a Quality Group

An advantage to having several quality groups in a
collection. each associated with a respective quality index
value. is that an application program can ask a user to choose
a desired point in the rendering quality/speed trade-off using
an intuitively appropriate mechanism. Referring again to the
exarnple program in Appendix A. this application program
does so using an application program routine
EXGetDesiredQualityIndesz. FIG. 14 is a flow chart illus»
trating the major steps in such procedure. Referring to FIG.
14. in a step 1402. the In'ocedure displays a quality knob
icon. Such an icon is illustrated in FIG. 15. and as can be
seen. it looks like a knob. It has a needle which is amently

pointing to a quality index value 0.0. and the user can click
on the point of the needle and drag the needle rotationally
around the circle to choose any desired quality index from
0.0 through almost 1.0. In one embodiment. the available
positions on the knob are continuous. allowing the user to
select a quality index with the full granulaciry of the binary
register in which it is stored. In another embodiment. only
discrete values may be selected.

Returning to FIG. 14. in step 1404. the procedure accepts
the user’s quality index selection. In stq: 1406. the desired
quality index is returned to the calling routine.

The renderer is made aware of the selected quality group

by having it attached to either the rendaer object in one
embodiment. or to the view object. in another embodime
In the presently described embodiment. it is attached to the
view object. Escher provides the routines in "Bible V for
seleaing and getting a quality group object.
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TABLE V 

RD FOR TING uau'n' G OUPS

EscherRoutiate (laments___—_—u—u-——

EtStams ErVieW_SclechualiryCh-uup( Selects a quality group
EWiewObject view. from the specified quality
EtQtniiryCollecticnObject collection hi refiners: to
qualityColhttiun. the quality index
noel desiredQualitylndes); specified in

dasheaouniryheundn
specific-dqualuyindex
doeenumatchtheindcx
associatcdwithm
smmysmw'mflr
qlnihycolbcmmtlnn
drieroutinechcmesthe
saline-mew“:
mesrqmlityindex.

EtStatts ErV'rew_G-etQualiryGloup( Returns in graiityGroq: n
BtV‘wObject view. pointer to die quality
mm M object cmfly
'qualiryflrwp): seiected in the specifiedview object. This

procedrre can be used 1:5
the Iprplication program to
manage indflidlnl vahaee
inaqmlirygroth‘his
Macmillan.
eanalsobeusedbya
reulererasaprehfleto
obtnmm‘' gtheindividuai
qulitytypevaluesin
responsetowhichitwil]
Idjtlstitsrenderm'g
procedures.——____—__—_———-—

The example application program in Appendix A uses the
Escher routine ErViewJeleaQualityGroufi) to select to
the view object. the quality group whose quality index
matches. or is nearest to. that specified by the user. It will be

appreciated that difl'erent embodiments can use different
rounding functions for the situation where the desired qual-
ity index does not match that associated with any of the
quality groups in the quality collection. In the present
embodiment. the quality collection with the nearest quality
index value is selected; if the quality indices associated with
two quality groups are equally difierent from the desired
quality index. then the group with the higher quality index
is selected. In another embodiment. the desired quality index

is always rounded up. and in yet another embodiment. the
desired quality index is already rounded down.
D. Renderer Procedures

Each renderer. when called on to render a shape to a

specified view. does so in response to the individual values
of the quality types in the quality group cun’ently assigned
to the view object. Diiferent rendaers can choose to respond
to difl'erent ones of the quality type parameters and to ignore
the others. FIG. 16 is a flow chart of pertinent aspects of a
ErRT_Geometry_Triangle() procedure of a ray-tracer ren-
derer for rendering a triangle.

Referring to FIG. 16. in step 1602. the procedure uses the
above-identified Escher procedure ErView_

GetQualityGroupO. or one like it. to obtain a pointer to the
quality group currently assigned to the view. In step 16“.
the procedtn'e obtains the data for the triangle to be rendered
to the view. In steps 1606. 1608 and 1610. the procedure
looks up the values of two difia'ent quality type parameters
in the era-rent quality group in order to determine which
variation of the triangle rendering procedure should be used.
Specifically. in step 1606. using the Escher procedure
ErQualityGroup_Get’IypeData(). the procedure obtains the
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value for the quality type parameter. “compute reflections”.
Ifthe value is “on”. which represents ahigha—qualityilower—
speed choice. then control passes to step 1608. If “compute
reflections” is “oil”. then control passes to step 1610.

Step 1608 next determines the value of the “compute
shadows” quality type parameter in the current quality
group. If “compute shadow? is “on". then in a step 1612.
the procedure renders the triangle using the value for the
quality type parameter “ray depth". using reflections and
using shadows. If “contpute shadows” is “oil". then the
procedure renders the triangle using the specified ray depth.
using reflections. but no shadows (step 1614).

If “compute reflections” was “011*". then in step 161.. the
procedure makes a similar determination to step 160%. If
“compute shadows" is “on”. then in step 1616. the procedure
renders the triangle using the specified ray depth. computing
shadows. but not computing any reflections- If “compute
shadows” is “011” in step 161.. then in step 1618. the
procedure renders the triangle using the specified ray depth.
but without computing any shadows or reflections.

10

15

43

It can be seen that. for simplicity. the renderer procedure
of FIG. 16 responds only to the “ray depth”. “compute
reflections" and “compute shadows" quality type parameters
in the current quality group object. However. otherrenderers
can respond to many more of the quality type parameters. as
may be appropriate for the partiailar lrind of renderer.

The foregoing description of preferred embodiments of

the present invention has been provided for the purposes of
illustration and description. It is not intended to be exhaus-
tive or to limit the invention to the precise forms disclosed

Obviously. many modifications and variations will be appar-
ent topractitioners skilled in this art. The embodiments were

chosen and described in order to best explain the principles
of the invention and its practical application. thereby
enabling others skilled in the art to understand the invention
for various embodiments and with various modifications as

are suited to the particular use contemplated. It is intended
that the scope of the invention be defined by the following
claims and their equivaients.
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APPENDIE A

W

Copyright ° 1994 Apple Computer, Inc.

[fit I'dtttiiibiitttttfi ti i-tirl‘ 1'01. Dit.tiI-i-tiiti‘tt‘tttt‘itltwttiitia
it
’* Module:it

'* Purpose:

examp1e2.c

Simgle Escher example program.

it
to
it
it
in
wt

ion-ittttt-mnt-aaotilnitattwiioIttat.catut.tic-uttitwutqtoliliinl

‘I

#include

#include
#include
tinclude
#include
#includn
Iinclude
Iinclude
#include
#include
#include
flinclude
#include
“include
flinclude

cstdlib.hb

‘Eecher.h'
‘EecherSystem,h'
'Vieu.h'
'Grnup.h’
'object.h'
'PixmapDrauContext.h'
'Transfcrn.h“
'Geamatrvaalygon.h'
'Geomotry_Line.h'
"Geometry_Torus.h‘'EncherColot.h“
'Eacherfleth.h'
‘Camexa.h'
'Style.h'

void main(
void]

{
BtviewObjeet View;
BtaroupObject group;
BtQuelityCollectienDbject
StfiualityGrcupObjectfloat

It
* Initialize Escher
*/

ErInitiali£e{!;

{u

qualityCollection;
qualityfiroup;
desiredQualityLevel;

- Escablieh a Quality Collection
*1

ExSetupQualityCollectionlEqualityCollection];

It
' Create a View.
'1.

A View associates:
What you‘re drawing to {a window, a pixel map, etc.}.

‘ 2. The tenderer you're drawing with {vireframe, zbuffer,
etc.)

- 3. What you're drawing (groups, polygons, ctc.i

Attorney Docket ND.: RPPL:P—0951HCFIWSH
wsw/app1/0951.001
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- 11'? —

- e. The camera you're using.
* 5. Lights (none used hexe}
" 6. A desired rendering mlityfepeed txadeeff.t

5 *I
View = 3:15“qu ;

It
' Associate a tenderer with the View.

1.0 w}
Ervi ew_5etl1endererfimpeiviem 8cRendereflype_fiire-Frame3 ;

it
* Create a camexa to: the view, and attach to View.

15 *1
{

EtviewAngleAspectCameraData perepectivebata;
EtCameraObject camera;

20 EtPoi‘ntED from = 0.0, 0.0. 1.0 ,
EtPointfiD to - 0.0, 0.0, 0.0 ,
EtVectorBD up = 0.0, 1.0. 0.0 .-

Eloat fieldOfViaw = 10.0,
25 float hither - 0.5,-

Eloat you a 1.5;

perspectivenata.cauermeta.p1acement.cameralocation . from;
perspect iveData .canezanata .placunenl: .pointOflnt-rest . to;

30 perspectivemta.cmraDatnplncement.upVector = up;

perspectiveData.cameraData.rmge.hither = hither;
perspectivenataxmeranata.range.yun = yon;

35 petmctiwmta.cmrannta.viewPort.origin.x = ~1.0;
perepectivenata.eamereDetamiewPort.origin.y - 1.0.-
perspettivenata.cm:aDnta.vieuFort.vidth -: 3.0;
perspectivanata.camerenatamiewport.height - 2.0;

‘10 perepectivenntaiov - fieldotView:
perspectivenata.aspectllation‘o! e 1.0.-

camera . Ervi.ewAngleABpectCarmz-ra_fleunatntaperepeetivebata) ;

45 h
' Attach. to view
'/

ErView_$etCamera (View, camera} ,-

50 f-
' Get rid of application's copy of camera, as the view* now has it.
'/

ErObject_DieposellcaneraJ :
55 }

{t
' Create a pimp DrawContext to draw to, and associate" it with the View.

so -/

Attorney Docket No.: APPL:P-0951HCPIHSH
wavu‘appl/OSSlfiDJ. Client Raf: P551 REP
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EtDrawContext:Obj ect drawcontext ;
EtDrauContextD-ata drachmtextData .-
EtPimp pimap;
EtPimpDrawContextData pimp‘nata ;

5 EtColchGB clearCalor;

ErColorRGB_Set{r-cleer¢olor. 0.5. 0.5. 0.3);

dreuContextData . clearImgeState
J. U drauContextData. . cl earImgenethed

dramantextnata . clearlmgeColor
drauContextDate .paneStete
drauContextnate .makState
drawContextData . doublesutterstate

1 5 draI'ContextDnta . act iveBuffer

Ec'rme;
Ecclear'fl’i thColor:
c 1 earColor ;
Bake 1se ,-
Bernice;
Ban].ee ;
EcProntBuffer;

I‘IIJIIIIIII
pimp . image
pimp . width
pimp , height

2 0 pimp . runway:es
pimp .pixelsize
pimp .pixel'nrpe
pimp . bi tarder
pimp . byteOrder

malloctSlZ " 512 * 4};
512;
512;
2048;
32;
EcFixelType‘fiGB2-l;
BcRndian_Big;
EcBndienJiig;

INIIIIIIIIIII
25

pimpflata.draw€cntextbata = dravContextData;
pimpData.pimep a: pimp;
{-

30 ' Create the draw context
'/

drauCcmtext = ErPimpDraqutext_Newoata(apimapbete) ,-
It

35 . Attach the draw context to the View
‘2‘

BrView_SetDravCantext (View. drawCoutex-t) ;
BrObject_Diepose (drawcontextl ;

l

{1
‘ Set a quality level in the View
'/

deeiredQualityIndex . ExGetDeairedQualityIndexU;
4 5 Etviev_Se lectQual ityGroupt

View, qualitycollectien, desiredDuelityIndex};

40

ft

50 " Create a group to put the gemetric objects & transform in.'/
group = RrOrderedDisplnyGroup__Neun;
ft

* Create a style and add it to the group. Here, we tell
55 * the tenderer to not draw the parts of objects that face* away from the camera.

*1
{

6 D EtStyleObject backfacings tyle;
backfacingStyle = BrBackfacingSty-leJfiewt

Attorney Docket No. : APPL:P-0951HCF/R5w
usu/appl/OSSLOOI Client Ref: P951 REP
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BaneckfacingSty1e_RemveBackfac-ing} ;
ErG roup_Md0bj ect (backtacin95tyle} .-
ErOhject_Dinose[backfacingfityle];

}

It
' Create e polygon and add it to the groupi
l

{ .EtGeometzyOhJect polygon,-
EtPolygonDato polygonnate;
static: BtVertexED verticeenl = {D, O, 0 , NULL

E i 1. O. 0 1 NULL: RULL 12El, 1.. O

polygonData .verti cos - wreak ces;
polygonnata.num\.'erticea = 3;
polygonData.polygonnttributeSet - NULL;
lu-

* Create polygon object
*/

polygon = BrPolygm_NeIDeta(Epolygotmatai ,-

/t
* Add polygon object to group object
‘f

BrGrOuthddobjecngou-p. polygon) ,-
li-

* Dispose local. reference to polygon - the group
' will. retain its om copy of (12.3., reference to)
* the object.‘ I'.l'

ErObjectJJiepoee {polygon} :
}

ll-
“ Create a line and add it to the group
‘I

{ . .EtGeomecryObject lme;
EtLineData linenata;

£rPoint3D_Set[alineDatLverticeelCI] .point. 2, 2, 0);
lineData.vertices[01.attributeSet . NULL;

ErImintZlLSettalinenatawercicee [1] .point, 2‘ 5. El}-
lineDato.vertices[1] .attxibuteSet a: NULL;

linebataJineJ-XttributeSet - m;

It
' Create line object
‘1

line - E:Line_Neunate{mil-Leann}.-

’r
* Add lioe object to group object

Attorney Docket No.; AppL:P-0951Hcr/wsw
usulappl/0951.uo1
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'1
ErGroup_AddObject (group, line] ;

It
5 - Dispose local reference to line - the group

* will retain its own copy of [i.e., reference to)
* the object.
'a’

BrOhjectJDispose (1 inej ;
10 }

If.
. Create a translation transform and add it to the group

15 ‘l
{

Bt’l‘ransformbject transform;
BtPoint3D transformnats;

20 I"
' Specify translation amounts in x. Y; and z.
'2’

l-ZrI'ou'.nt3fl_3e’c{Gd:ransfor'mlilataI 1, 1!. £2);

25 l'
* create transform object
*/

transform - Er'r'ranslateTrensform_Ne1-r[atrmsformnatsl ;

3D /'
* Add transform object to group objecto-

ErGroup_AddObjeot (group. transform] .-

35 {w
* Dispose local reference to transform - the group
' will retain its own copy of {i.e.. reference to)
" the object.
“I

40 Erobject_l:lispose{trans£oml .-

[I
45 ' Create a group to live within the main group — this shows

* how to create a very simple hierarchy.i

* Also. the torus created to put inside the subgroup shows
* an example of a geometry that is not directly supported by

50 ' the renderer. It mat {internally} be decomposed into
' geometric objects {polygons or triangles, tor crawle)
° that ‘are* directly supported by the renderer.
or! .

{ .5 5 EtGroupOh] eon BubGroup ,-
EtGeonstryObject torus;KtTorusData torusData:

‘(o
60 * Make a. new group.

'/
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aubGroup a ErOrderedDieplayGreup_Rewn ;

If:
' Md. it as an element of the min group.
*/

Ezcroup_mmbject{group, subGroup];

,-

if Make a torus to put into it the subgroup.
6

ErPaintBDfiSettetomsneta.origin, 3, 1', 12);
BrVectoflDfiSetitterusDete.orientetion. O. 1, 0};
ErVector3n_Set(etomeoeta.mjnrnadiue, o, D. l};
Brvector3D_Set{itemsnataminomdium l, o. a};
tor-lenate.tomeAttributaSet a NULL:

(H
" Create torus object
'/

tor-.15 - Efloms_NewData(&torusData},-

{i
" Add torus object to sub group abject
'/

ErGrouthddohj ect (eubGreup. torus} ;

(It
' Dispose local reference to tame - the group
* will retain its can copy of ti.e.. :eterence to}
‘ the object. Do the lane with the newr group - the

*/ main group will retain a reference of its Dun.
t

ErDhject_Diapose {torus} ;
ErObj ect_n:i epose lsuhcroup} ;

}

It
* This is the rendering loop. Render one frame, traversing' the model as many times as tenderer am.
"/

ErviewLStartRendering (view) ;do
ErniepleyGroup_Dtew{group, View} .-

} while (Erviev_EndRenderingtviewi == EWieuStetus_ReTl-evereel ;

{Ir
* New, associate a different tenderer with the view.
" This operation also deletes the tenderer previously* associated Iwith the View.
*I

ErViev_SetRendereerpe{vieu, EcRenderer'n'pe_zBufferl ,-
‘Ifi
I This is the rendering loop again. this time with the other. :enderer.
'/

ErvieHHStartRenderingtvieu} ,-
do {

Ernisplany-oulLDravtgl-oup. View} ;
} while {ErView_EndRendering{view) -- EcViewStatus‘ReTxaverse};

Attorney Docket Nan: APPL:P-0951HCF/wsw
usu/epplr’OSSlJOJ. Client Ref: P951 HS?

43



44

5,777,621

61

-122-

I“
' Gm: rid of retained objects.
'I

5 Erohject_Dispose(v1eu} 3
arabject_Diapoae{group}:

It' Exit Escher
10 */

Brandt“;
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APPE I

Er“? P 1

Copyright ° 1994 Apple Computer, Inc.

Etsutus BrfiF_Gemcry_Polygcm{
5 BtGecmetry-Obj ect gem.

{ EtViewDbj act View]
EtflFPrivate 'priv;
com: BtPolygonnata *pclygonnata;

1 0 count BtTrianglenata ' trianglenata ;
E:RenderPipelinenata prim.-
EtFillStyle fillStyle;
EtObjactType geometrrnrpa;
unsigned long numVertices;

15 EtVarcexBD “vertices:
EmttributeSet gemAttrihuteSet .-

if{ EiView_IaRendaringCancelledFrmIdlarCaI1(View) == acme]
return (EcSucoessl :

20

priv = [BtWPrivate *JEWiev_GetRenderanrivate {View}:

if lEiDrawRegion_GetClipFlagB {priv—urande:1n£o.drauflegiom &

25 EcCliplhakfiflothpoaedl{

} return tEcFailure];
It

30 ' This code does both lines and polylines. Re check the type
‘ of the incaning object, and do the right. thing, which
* mostly means just getting the data from the right place.*I

35 geometrmrpe - Ricematry_6eu‘ypetgeom};
switch {gemcrmrpe} {

case EcGeomecrfly-pe_'rriangle : [
triangleData a: Eminngle_GetDataPointer(gem! .-anVL-rtiaea - 3;

4.0 matrices - (EtVertexan ‘II trimglenata—werticea;
gametributesu .= tnmnribucesn)

trianglenata->trimglekttribute39t:

} break,-
45 case EcGeumetrYrype_Polygon : l

polygonDatn = ErPolygnn_G-etnat.npointer{gem} ;numVerticea -

{unsigned long) polygonData-mmnverticaa;
verticals = {EtVertexiD ') polygonnata- :vertices;

SO gemhttrilmtsSet a (EmttributeSetJ
polygonbata- >polygonAttrihutaSet ,-

break ;
}

55 default : [
E i:rror_Post {Ecsrror_chees1r£rmt .
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EiErrorJ-Iessagei‘is: The gemtnr is not of type
Ecceometryrype_Pclygon nor ScGemtry‘I‘ypeTriangle',

'ErflF_GEmetIY”Polygm '} 3 ;

break;

}

ErWF_SatupPipel inaState (View , apriv- >render1nfo] ;

EWiev_Geam 1 landestate {vi new. at i 1.13 tylel ,-

if i I RrRender_GrovFu11§ta.ti-:Prim (San-i v- >ataticprim,numverticesl H
EiBrxorHPost lEcErmr_ChaeayError.

SiErrorJlessageUu: Out of memory' ,
'Rrwfiflcemetry_volygm'1 I ;

return (EcFailure) ;
}

prim . priui tive'rype EcPOlygon_Primitive;
primwalidfiields a gamma;

primnumvertices = nmnVerticas;
primwrldt'erticaa - priv->static9rim.mrld\rertices;
primdeviceVertioesw = priv->9taticpxim.deviceVu-ciceaw;
prim . vertexFlaga - priv- >staticPrim . vertexFlaga;
primcolors . NULL;

prim.prinfloma1 : priv—rstaticPrim.primHoz-ma.1;
primmrimtolor z priv-:staticPrim.prinflolor;
prim.uor1d?rimfloml - priv—>3:atic9rim.uurldprimflomal,-
prim . renderPrimColor priv— >5taticPrim . renderlirimColor;

if {gamttributeSetl {
atSui tch highl ight Switch;

if t lE:AtttibuteSet_Get f
gemttributeSEt,
EcAttribute'I‘y-pehniffuseColor.
prim.prim€olor} == EcSuccesle
primxalidFields I: BcRender_Sur£aceColor:

}

it I {Ernttribuce£a:_setl
geomattributeSet,
Edict: ribute'rype_nom1 ,
primprimfloml) == EcSucceanI {

prim.valid1?ields In Echender¢5urfacemmh
}

it I (arAttributeSet__Get E
geomhttributESet,
Echttribute'rype_fiigh1ight5tate.
mighlightfiuitch] nu- EcSuccessH {

if (highlightSuitch n Scan)
EtnttributeSet highlightStyle;

h Get the dittuu color firm the highlight style 'I
ErVietLGetl-l ighl ightStyleStatet

view‘ mighlights tyle} :
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if (highlightStyle as lE:Attribut.eSet_G-et(
highligthtyle.
Ecnttrihute'rype_ni£fuaeColor,
prin.prim0010r} .-

Ecs'uccessl) {
prim.valid?ie1ds I- BcRender_SurfaceColor;

}

}

switch {finswlal
case EcFiIIStyle_Fillad:

ErHB_PoldegePipe (prim,
sprint.
(EtPoinc3D 'Mrertices.
numVerticea,
sizeof [Etvertexam .
NULL] :

break,-
caae EcFiIIStyleFEd-gas: /‘ line drawing pipeline i]

ErHF_PolyEdgePipe {prim
fipxim,
{BtPomtSD *Jvertices.
nwnvertices.
sixeof (StVertEXBDJ .
NULL} ;

break,-
case EcFillstyle_Pointa:

Brw?_P01yPointPipe tpriv,
prim.
{EtPointBD '1 avertices [u] .
numVBrticeB.
sizeofi (EtVerte-xm} .
NULL} ;

break;
}

I“ unilplemented yet
if lprimxaerbata) [

} BiMmory_Deletelprim.uaez-Datal ;*I

return (BcSuccess) .-
}
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We claim:

1. A method for creating a representation of a scene
displayable on a graphical output device. comprising the
steps of:

providing a representation of a first object:
providing a plurality of quality control data groups. each

having a plurality of quality control type variables.
each of said type variables containing a value which
selects among a plurality of options in a respective
tradeoli between rendering quality and rendering
speed;

selecting a selected one of said quality control data grctms
to an object drawing subsystem: and

invoking said object drawing subsystem to render said
first object into said scene.

wherein said object drawing subsystem rendas said first
object into said scene in accu'dance with the values in each
of said type variables in said selected quality control data
group.

2. A method according to claim I. wherein said first object
comprises a model containing a plurality of sub-objects.

3. A method according to claim 1. wherein said step of
providing a pltnaliry of quality Control data groups com-
prises the steps of:

providing a plurality of pa'elirninm'y quality control data
groups. each having said plurality of quality control
type variables; and

invoking a value setting procedure with an identification
of a desired one of the quality control type variables. a
desired one of said quality control data groups. and a
desired value to write into said desired variable in said
desired group.

wherein said value setting procedure writes said desired
value into said desired variable in said desired group.

4. A method according to claim 1. wherein said step of

providing a plurality of quality control groups comprises the
steps of:

providing a preliminary plurality of said quality control
data groups; and

involringadata group addingprocedin'eto addadesired
new one of said quality control data groups to said
preliminary phn'ality of quality control data groups.

5. A mediod according to claim 4. wherein each of said
quality control data groups in said preliminary plurality of
quality control data groups has a difl‘erent respective index
value associated therewith.

and wherein said step of providing a plurality of quality
control data groups further comprises the step of asso-
ciating a desired new index value with said desired new
quality control data group. said desired new index
value being difl'erent from the index values associated
with each of said quality control data groups in said
preliminary plurality of quality control data poops.

6. A method according to claim 1. wherein each of said
quality control data groups in said plurality of quality
control data groups has a respective index value associated
therewith.

wherein said step of selecting a selected one of said
quality control data groups comprises the step of invok-
ing a data group selection procedure with a desired
index value.

and wherein said data group selection procedure selects
said selected one of said quality control data groups in
response to said desired index value.

7. Amethod according to claim 6. wherein saiddata group
selection procedure selects said selected one of said quality
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control data groups as one of said quality coon-cl data groups
in said plurality of quality control data groups whose asso-
ciated index value is nearest to said desired index value.

8. A method aeoording to claim 1. wherein a first one of
said quality control type variables contains a value which
selects whether {a} shaders should be computed by a high
quality method: (b) shaders should be computed by a high
speed method: or (c) shaders should not be computed

9. A method according to claim 1. wherein a first one of
said quality control type variables contains a value which
selects a level of detail with which said object drawing

subsystem should render said first object into said scene.
10. Amethod according to claim 1. wherein said plurality

of quality control type variables includes at least two of the
group consisting of:

(a) a line style variable containing a value indicating
whether said object drawing subsystem should render
said first object into said scene with line styles on or off:

(b) a shader variable containing a value indicating
whether said object drawing subsystem should render
said first object into said scene with shaders ofi‘. on or
with a fast shader algorithm;

(c) an illumination variable containing a value indicating
whether said object drawing subsystem should render
said first object into said scene with illumination off. on
or with a fast illumination algoridtm:

(d) a level of derail variable containing a value indicating
whether said object drawing subsystem should render
said first object into said scene with level of detail on
or of:

(e) a compute shadows variable containing a value indi-
cating whether said objeu drawing subsystem should
conrpute shadows when rendering said first object into
said scene:

(0 a compute transparency variable containing a value
indicating whether said object drawing subsystem
should compute transparency when rendering said first
object into said scene;

(g) a compute reflections variable containing a value
indicating whether said object drawing subsystem
should compute reflections when rendering said first
objea into said scene;

(h) a bacirfacing removal variable containing a value
indicating whether said object drawing subsystem
should render said first object into said scene with
baclrfacing removal on or off:

(i) an interpolation variable containing a value indicating
whether said object drawing subsystem should render
said first object into said scene with flat. gouraud or
phong interpolation;

(j) a progressive refinement variable containing a value
indicating whether said object drawing subsystem
should render said first object into said scene with
progressive refinement on or off:

(it) an antialiasing level variable containing a value indi-
cating an antialiasing level with which said object
drawing subsystem should render said first object into
said scene: and

(l) a ray depth variable containing a value indicating a ray
depth with which said object drawing subsystem
should render said first object into said scene.

11. A data processing system having a memory for storing
data for access by software being executed by said data
processing system. said memory having a quality collection
object data structure stored therein. said quality collection
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object data structure including a plurality of quality control
data groups. each having a plurality of quality control type
variables. each of said type variables containing a value
which selects among a plurality of options in a respective
tradeofl between graphics rendering quality and graphics
rendering speed-

further comprising an object drawing subsystem which.
when invoked. renders a first object into a scene in
accordance with the values in each of said type vari-
ables in a selected one of said quality control data
groups.

12. A data processing system according to claim 11.
wherein said memory ftntha: has stored therein a respective
quality control index value associated with each of said
quality control data groups.

13. A data processing system according to claim 11.
wherein said memory further has stored therein:

selection software instructions which. when executed.

select said selected one of said quality control data
groups to said object drawing subsystem.

14. A data processing system according to claim 13.
wherein said memory ftn'ther has stored therein a respective
quality control index value associated with each of said
quality control data groups.

wherein said memtx'y further has stored therein applica-
tion software inatructions which invoke said selection
software instructions with an indication of a desired
quality control index value.

and wherein said selection software instructions include
instructions which. when executed. select said selected

quality control data group in response to said desired
quaLity control index value indicated by said applica—
tion software instructions.

15. A computer readable medium for use with a data

processing system having a memory. an application
program. an object drawing subsystem. and a gapbical
output device. said medium having embodied therein a
pltn'ality of software procedures callable by said application
program. including:

at least one procedure which. in response to calls by said
application program. provides a plurality of quality
control data groups. cad] having a plurality of quality
control type variables. each of said type variables
containing a value which selects among a plurality of
options in a respective tradeotf between rendering
quality and rendu'ing speed;

a data group selection procedure which. in response to a
call by said application program. selects a selected one
of said quality control data groups to an object drawing
subsystem: and

aproeedurewhich.inresponsetoacallbysaidapplica—
tion program. invokes said object drawing subsystem to
render a first object into a scene displayable on said
graphical output device.

wherein said object drawing subsystem renders said first
object into said scene in acorn-dance with the values in
each of said type variables in said selected quality
control data group.
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16. A medium according to claim 15. wherein said first
object comprises a model containing a plurality of sub
objects.

17. A medium according to claim 15. wherein said at least
one procedure which provides a plurality of quality control
data groups. comprises:

a procedure which. in response to a call by said applica-
tion program. provides a plurality of preliminary qual~
ity control data groups. each having said plurality of
quality control type variables: and

a value setting procedure which. in response to a call by
said application program with an identification of a
desired one of the quality control type variables. a
desired one of said quality control data groups. and a
desired value to write into said desired variable in said
desired group. writes said desired value into said
desired variable in said desired grasp.

18. Arnedium according to claim 15. wherein said at least
one procedure which provides a plurality of quality control
data groups. comprises:

a procedure which. in response to a call by said applica-
tion program. provides a preliminary plurality of said
quality conu-ol data groups: and

a data group adding procedure which. in response to seal]
by said application program. adds a desired new one of
said quality control data groups to said preliminary
plurality of quality control data groups.

19.11 medium according to claim 15. wherein each of said
quality control data groups in said plurality of quality
control data groups has a respective index value associated
therewith.

wherein said data group selection procedure is called by
said application program with a desired index value.

and wherein said data group seletxion procedue selects
said selected one of said quality control data groups in
response to said desired index value.

20. A medium acca-ding to claim 19. wherein said data
group selection procedure selects said selected one of said
quality control data groups as one of said quality control data
groups in said plurality of quality control data groups whose
associated index value is nearest to said desired index value.

21. Adata processing system having a memory for storing
data for access by software being executed by said data
processing system. said memory having a quality collection
object data strucmre stored therein. said quality collection
object data structure including a plurality of quality control
data groups. each having a pita-ality of quality control type
variables. each of said type variables containing a value
which selects among a plurality of options in a respective
trade-of between graphics rendering quality and graphics
rendering speed. said memory further having stored therein
software instructions which. when executed. select a

selected one of said quality control data groups to an object
drawing subsystem for rendering.

22. A data processing system according to claim 21.
wherein said memory further has stored therein a respective
quality control index value associated with each of said

quality control data groups.
areas:
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