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You hold in your hands a distillation of the work of hundreds of
people representing over a hundred thousand hours ofcollective
brain work:the technical program of the 20th annual SIGGRAPH
conference held in Anaheim, California.

Each year the technical program is modified in many small and
hopefully better ways. This year you will notice that there are more
papers than SIGGRAPHhas accepted in many years, that we have
expanded the number of sessions, and that the number of days
during which papers are presented has grown.

But some things we've modificd do not show up in the papers
themselves. This year the composition ofthe selection committee
is considerably different than in previous years. The SIGGRAPH
conference planning committee mandated “term limits” for
members of the selection committee. This year, no one was a
senior reviewer if they served on the committee for the previous
Iwo years,

Also new this year is the establishment of reviewer ethics
guidelines which sought to achieve a uniform level of protection
for the information contained within SIGGRAPH submissions.

The prospective author’s kit also contained a look into how papers
were processed, judged, and accepted or rejected. This information
was intended to give people an insight into the paper review and
selection mechanism. Since so much of this process deals with
specific papers and people’s opinions of the significance of
someone's ideas, the record and discussion that occurs during this
process is of necessity secret. However, everyone should know
what happensin general,

We received 225 submissions this year, a new record, and
accepted 46 papers, the most since 1978. Andrew Glassner and I
read and discussed every submission and—within the constraints
of load balancing—attempted to assign each submission with the
best senior reviewer for that submission, The review process and
the sclection mecting were very much as in previous years.
Everyoneonthe cornmittee strove to include quality papers over as
wide a range of topics as was feasible. The individual merits of
Papers were extensively discussed and judged by those members of
the committee allowed to attend. As in previous years, those who
had a connection with the institutions or authors represented in a
particular paper were asked to leave the discussion. Wetried ta be
as fair and objective as could be possible.
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Preface

I wish to congratulate the committee on their display ofwisdom
and insight during the selection meeting. The discussion that
occurred in March impressed me with its high professional level
and sensitive consideration given to every possible conflict of
interest.

Of course, as many well know, the SIGGRAPH review process
is far from perfect: I may have sent a submission to the wrong
person, reviewers may misunderstandthe ideas in a paper, or some
critical piece of information may not have reached the author. If
you had a paper rejected unfairly by SIGGRAPH 93, I apologize
for our mistakes. Ifyou have ideas on how we may improve future
cycles of reviewing, SIGGRAPHis eager to hear them. T urge you
please to contact me or Andrew Glassner, the program chair for
SIGGRAPH 94.

Even though we accepted more papers than ever before, the
publication budget for this proceedings was fixed by the severe
financial constraints that SIGGRAPH has been forced to adopt.
We have thus had to be very careful on issues that impact the
ultimate cost of this proceedings. Mostofthe authors of the papers
in this document have struggled valiantly to accomplish the
difficult task of meeting the hard page limits given to them. The
committee considered the content of each paper and carefully set
length and color restrictions. Steve Cunningham and | were given
the unhappy task of enforcing these restrictions and denying many
authors’ desperate pleas for more space.

Those who know me personally know that I am, to put it
delicately, organizationally challenged. Without the crucial
support and help of of a number of people, SIGGRAPH 93 would
probably not have had a technical program this year. These people
have my deep thanks and gratitude: Debbie Buuck, Steve
Cunningham, Mary Kate Haley, Kevin Luster, and Pey Jen Wu. I
also wish to thank the SIGGRAPH 93 cochairs, Bob Judd and
Mark Resch,for establishing an exciting and creative atmosphere
that allowed us to take part in shaping the conference, its content,
andits future.

James T. Kajiya
SIGGRAPH 93 Papers Chair
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This year ACM SIGGRAPH hasselected Dr. Edwin E. Catmull to
receive the Steven A. Coons Award for Outstanding Creative
Contributions to Computer Graphics. Over the past twenty years, Ed
Catmull has made many and noteworthy advances in computer
graphics as an individual researcher, as an inspiring leader in the
field, as a director of organizations, and as a mentor for many.

Ed has made important direct contributions to the field of
computer graphics. With his doctoral dissertation at the University
ofUtah, he introduced the notion of subdivision to pixel level as a
display method, added a fast adaptive subdivision method for bi-
cubic surface patches, and provided thefirst published description of
the ubiquitous 2-buffer visibility algorithm, He also developed the
Catmull-Rom interpolating spline and an early system for generating
animated articulated figures. Atthe New YorkInstitute ofTechnology,
he wrote the first spline inbetweening animation program, At
Lucasfilm, with Alvy Ray Smith, he invented a two-pass image
Warping algorithm.

Inaddition to his own research contributions, Ed has founded and

led three important and influential centers of computer graphics
research and development: the Computer Graphics Laboratory at
New YorkInstitute ofTechnology (NYTT), the Lucasfilm Computer
Division, and Pixar. In each ofthese organizations, he attracted and
developed someofthe best talent in the computer graphics business.
These organizations rose quickly to become leading centers of
research in our field. The common ingredient in these three
Organizations is Catmull and the talented people he attracts and
develops: wherever Catmull goes, exciting things seem to happen.

Engineers at NYIT developedthefirst RGB painting program,
Were pioneers in the use of computer-controlled video equipment,
invented mip-maps, and wrote the Tween and Bop animation
Programs. People working for Ed at Lucasfilm/Pixar made many
contributions to image rendering, including particle systems, the
first shading language,distributed ray tracing, stochastic sampling,
and the Reyes/RenderMansoftware. They also developed yolume
rendering software, digital compositing, the Computer Animation
Production System (CAPS) developed with Walt Disney Pictures.
the Pixar Image Computer, laser inpul/output scanning. and video
and audio editing systems, The group produced a numberof special
effects such as the “Genesis” effect in “Star Trek [; The Wrath of
Khan”and the stained glass man in “The Young Sherlock Holmes,”
short animated films as exemplified by “Andre and Wally B..”
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for

Outstanding Creative Contributions

to Computer Graphics

Ed Catmull

“Red's Dream,” “Luxo Jr.,” and “Tin Toy,” and numerous
commercials.

Four of SIGGRAPH’sfirst five Achievement Award winners
(and six ofeleven overall) have worked for Ed al one time oranother,
“Luxo Jr.” was one of the earliest computer animatedfilms to be
nominated foran Academy Award and “Tin Toy” wasthefirst to win
one. The Academy of Motion Picture Arts and Sciences last year
awarded a Scientifie and Technical Academy Award for the
development of CAPS lo Disney employees and Pixar employees
who reported to Catmull. This year the Academy gave a Scientific
and Technical Academy Award for the RenderMan software to
Catmull and his collaborators! .

Ed Catmull earned the BS in Physics and the BS in Computer
Science (1969) and then the Ph.D. in Computer Science (1974),all
from the University of Utah. Wenote that his doctoral dissertation
committee included Steve Coons and Ivan Sutherland, the first
recipientof the Coons Award. As noted above,his career spansthree
positions as Director of the Computer Graphics Laboratory at the
New York Institute of Technology (1974-79), Vice President and
Managing Director of the Computer Division of Lucasfilm, Ltd,
(1979-1986), and now as President of Pixar.

[Lis impossible to know how manyofus have aimed higher and
worked harder because Ed encouraged us by collaboration or by
being an important figure in the field. tis impossible to know how
manyof us haye taken our researcha little further out on the fringe
because we thoughtit was something that Ed mightdo. His influence
al the person-to-person level is magical, and though difficult to
describe in words, it continues to affect the practice of computer
graphics in subtle and important ways.
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'The colleagues from Pixar sharing the Scientific and Technical
AcademyAward are PatrickHanrahan, Rob Cook, Loren Carpenter,
Tony Apodaca, Darwyn Peachey, andTomPorter.(This list includes
three SIGGRAPH Achievement Award recipients!)

Previous award winners
199] Andries van Dam
1989 David C, Evans

1987 Donald P. Greenberg
1985 Pierre Bézier
1983 Ivan E. Sutherland
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The SIGGRAPH Computer Graphics Achievement Award is
presented to Dr. Patrick M. Hanrahan for his contributions to
rendering systems and algorithms. We recognize his research and
publications on volume rendering, ray tracing, and radiosity
algorithms as well as his role as thearchitect ofthe RenderMan™
interface.

Hanrahanstarted his career in physics and biology at the University
of Wisconsin. He received a BS. Degree in Nuclear Engincering,
graduating first in class of 1977. While at Wisconsin he worked in
the Department of Zoology developing computer models of the
motormervous system olthe nematodeAscaris. During this period he
became interested in models of shape and the potential of the
computer for visualizing the results of simulations. He quickly
recognized the importance of modeling and did some work on
creating models from edge-vertex graphs (SIGGRAPH *82).

Realizing that he needed to know more, he inquired by letter
about a summer position at the NewYork Institute of Technology
(NYIT) Computer Graphics Laboratory. His letter was persuasive
enough to land hima spot for the summer that quickly turned into a
full-timestaffposition, There he was initially responsible for modeling
and animation software and eventually was the Director of the 3D
Animation Systems Group. While at NYIT, Hanrahan published
papers on ray tracing algebraic surfaces (°83) and ‘beam tracing’
polygonal surfaces (°84).

Hanrahan returned to the University of Wisconsin to finish his
dissertation, which ended up having much moreto do with graphics
than biology, and received the Ph.D, in Biophysics in 1985, Aftera
shor stint at Digital's Systems Research Lab in Palo Alto, he
accepted a position at Pixar in 1986 shortly after Pixar separated
from Lucasfilm. He collaborated with Bob Drebin and Loren
Carpenter in developing the first yolume rendering algorithms for
the Pixarimage computer (‘88). Thesealgorithmswere quite different
fromearlier approaches in that they created images directly from
three-dimensionalarrays without theintermediate steps ofconverting
{0 Standard surface representations such as polygons. Volume
rendering is now a major component of scientific and medical
visualization systems.

_ Helater joined the REYES machine group and was responsible
for the rendering softwareandthe praphicsarchitecture. The rendering
IMerluce of the system evolved into the RenderMan standard that
howis widely used in the movie industry!. In particular Hanrahan
Was the principal architect of the RenderMan Interface (Pixar ’88).
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His paper with Jim Lawson describes one ofthe more interesting
aspects of the system, the shading language, whichallows users to
extend the capabilities of the re ndering system by defining new
procedurally defined appearances.

Since 1989 Hanrahan has been on the Facultyof the Computer
Science Department at Princeton University, where he became
tenured as Associate Professor in 199], His goal since returning to
academia is to put computergraphics on a sound mathematical and
scientific foundation, Placed in an environment wherepublicationis
more than encouraged, Hanrahan’s publications have blossomed,
He has been arguably the most prolific single contributor to
SIGGRAPH inthelast few years. His name appears on no fewer than
fivepapers inthis year’s proceedings, He is also extremely interested
in computer graphics education and has won three university teaching
awards since joining Princeton,

Recently Hanrahan made important contributionsto accelerating
radiosity computations through hierarchical methods (91a, 93c). He
has continued his work in volume rendering (91b, 93b). He has
contributed pioneering work for rendering caustics (92), for
investigating wavelets for radiosity (93d), and determining global
visibility (93e). He has discovered a fundamental closed form result
for the radiosity formfactorbetween two polygons (93a). In addition
to these efforts he has also found time to contribute to texturing
through direct manipulation (90a), to develop a shading language
(90b), and to keep up with rendering architectures for parallel
machines.

This extraordinarily bigh level of productivity is due in part to
Hanrahan's ability to find and to cooperate with a wide variety of
collaborators as well as his own creativity. In addition to the students
at Princeton, he has managed to work with colleagues around the
world in both academia and industry, Furthermore, the work just
described has an element of scholarship toit that has often been
elusive in computer graphics, The fast-moving nature ofthe field
often makes work more than a few years old seem out of date,
Hanrahan has been one of those who goes back to the basics both
inside computer graphicsandin the many fields thal can contribute.

Hanrahan's work has a significant ongoing effect on computer
graphics in a wide variety of rendering applications, in the high
quality of his scholarship, andespecially in the force ofhis ideas. His
influence on computer graphics is still accelerating, leaving us
cagerly anticipating his future achievements as well as honoring
those of the past.
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2-D Shape Blending:
An Intrinsic Solution to the Vertex Path Problem

Thomas W. Sederberg’, Peisheng Gao!, Guojin Wang’, and Hong Mu!

Abstract

This paper presents an algorithm for determining the paths along
which corresponding vertices travel in a 2-D shape blending.
Rather than considering the vertex paths explicitly, the algorithm
defines the intermediate shapes by interpolating the intrinsic def-
jnitions of the initial and final shapes. The algorithm produces
shape blends which generally are more satisfactory than those
produced usinglinear or cubic curve paths. Particularly, the algo-
rithm can avoid the shrinkage that normally occurs when rotati
rigid bodies are linearly blended, and avoids kinks in the blen
when there were none in the key polygons.

Categories and Subject Descriptors: 1.3.3 (Computer Graph-
ics]: Picture/Image Generation; 1.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling.

General Terms: Algorithms

Additional Key Words and Phrases: Shape blending, character
animation, numerical algorithms.

1 Introduction

This paper deals with shape blending of 2-D polygons. As
illustrated in Figures 1 and 2, a shape blend algorithm deter-
mines the in-between polygons which provide a smooth trans-
formation between two given 2—D polygons, referred to as the
key polygons.

Shape blending requires the solution of two main subprob-
lems: the vertex correspondence problem (thatis, determining
which vertex on one key polygon will travel to which vertex
on the other key polygon), and the vertex path problem (that
is, determining along what path each vertex will travel).

For 2-D polygonal shapes, a solution to the vertex cor-
respondence problem is presented in [12]. Shape blending of
2-D Beézier curve shapes is addressed in [11]. Various solutions

i thea interpolation of 3-D polyhedra are presented in, 9, 7, 8).
This paper addresses the vertex path problem and is moti-

vated by twofigures from [12]. Figure l.a provides an example
of a shape blend in which the middle shapes is derived from
its neighboring key polygons. This is basically a good shape
blend, except that the dancer’s arm in the middle frame is
only half as long as it is in the key frames.

‘The shape blend in Figure 2.a looks fine except that the
chicken’s neck gets shorter, These shortenings occur because
of the linear path followed by vertices during the shape blend,
as shown by the path travelled by the chicken’s beak.
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b. More Natural Necka. Compressed Neck

Figure 2: Chicken

These problems seriously weaken the practical use of 2-D
shape blending using linear vertex motion, for applications
such as character animation. The contribution of this pa-
per is an improved method for computing in-between frames,
once the correspondence between key polygons has been de-
termined as in [12]. Sample results of the new vertex path
algorithm are shown in Figures 1.b and 2.b.

A referee of paper [12] remarked: “I am unhappy with the
phrase, ‘physically based,’ in this context. The ‘physics’ here
has nothing to do with the physics of chickens,. . . , or any
of the other nominal subjects of interpolation.” That obser-
vation formulates precisely the problem we confront in try-
ing to infer the correct motion between two changing shapes.
While [12] demonstrates that an algorithm which knows noth-
ing about the “physics of a chicken” is able to correlate the
prominent features of two chicken outlines, the accurate com-
putation of motion as a chicken lowers his head really calls for
a model of the chicken’s skeleton, musculature, etc.. What we
seek is a tool that might assist a traditional animator to cre-
ate convincing computer-assisted in-betweens, when the only
information available is contained in the two key frames. The
solution presented here is a heuristic whose justification lies

Engineering Computer Graphics Laboratory
368 Clyde Building
Brigham Young University
Provo, UT 84602
tom@byu.edu

*Zhejiang University, China
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in the fact that it generally seems to work rather well.

1.1. Proposed solution
A polygon definition which lists the Cartesian coordinates of
its vertices might be called an explicit description. An alter-
nate means of defining a polygon is in terms of the lengths
of its edges and the angles at its vertices. Such a polygon
description forms the basis of an approach to geometry, po
ular in elementary education, known as Turtle Graphics [2]
wherein a polygon is defined by instructions such as: walk 10
paces to the cast, turn 45° to the left and proceed 6 paces,
turn 30° to the right and go 5 more paces,....

This paper postulates that the heuristic of blending intrinsic
definitions (edge lengths and vertex angles) of two key poly-
gons will generally produce a more satisfactory in-between mo-
tion than will linear vertex paths. Evidence that this is so is
provided in the figures.

1.2 Related work

Onealternative to linear vertex paths is to define vertex paths
of higher degree. For 3-D polyhedral shape transformations,
[8] proposes using an Hermite cubic path with end tangents
set equal to the vertex normals. While this idea evidently
is effective for the transformations between highly dissimilar
shapes addressed in [8], it would not generally work too well
for character animation since motion does not uniformly occur
norma! to a curve outline.

[14] develops an approach to character animation using
quadratic Bézier vertex paths, By default, vertices travel
along a parabolic arc such that the distance from each ver-
tex to the center of mass of all vertices changes monotonically.
Also,it allows the user to signify a pivot point for appendages.
The current algorithm works with less user interaction.

In other approaches to shape blending, such as Minkowski
sums[7], the vertex path and vertex correspondence problems
are coupled and solved simultaneously. Minkowski sums, how-
ever, blur even gross details such as arms and legs when blend-
ing non-convex objects, and hence are not suitable for charac-
ter animation. Shape blends that operate on an implicit defi-
nition of the curve or surface, {(z,y) = 0 or f(z, y,2) = 0, [6]
likewise don’t currently support the detail required for char-
acter animation.

Of course, the substantial literature on physically based
modelling and synthetic actors is also highly relevant, though
such methods rely on more information than is available tous.

Ideas for modeling with intrinsically defined curves are pro-
posed in [1], and [13] looks at curve and surface kinematics
based on differential equations.

2 Intrinsic shape interpolation
Denote the vertices of the two key polygons by P Ap Pa (t=

- O,1,...,m—1). We assume that both key polygons have the
same number of edges, as will be the case after vertex cor-
respondence is established [12], In this discussion, we use
the convention that counter-clockwise angles are positive. For
convenience, we adopt the notation m =n —1 where n ts the
number of polygon edges.

Our goal is to compute the vertices P;{t = 1,2,...,m) for
the polygon which is “¢” of the way between Py and Pp,
0O<t <1. Po will be taken as the anchor point, and its
position determines the rigid body translation of the shape.
This, along with the directed angles a4, and ag, formed by
the z-axis and the vectors P4,P4, and Pg, Pg,, isdiscussed
further in section 3,

Begin by obtaining the intrinsic definitions of P4 and Pg
y computing the polygon angles and edge lengths shown inigure 3:

64,,45,,(1 = 1,2,..-,m). (1)
16

 
Figure 3: Intrinsic variables

La, = [Pais —P,,| and Lg, = Pass -Pa,|. (2)

The intermediate polygons in the shape blend are then com-puted by interpolating the respective vertex angles and edge
lengths:

2 = (1 = tea, + tang, (3)

8; = (1—t)@,;+t6p,, (1=1,2,...,m). (4)

Lyp=(1—-tLa, +thlg,, (i=0,1,2,...,m). (5)
Unfortunately, the problem is not completely solved at this

point, since the resulting polygon will not generally close. Fig-
ure 4 shows what the chicken and dancer polygons look like
at this stage of the algorithm. It is somewhat surprising that

non-closure

non-closure

Figure 4: Unclosed polygons

these polygons, each with over 200 vertices, come so close to
ending where they started (and this happens typically, in our
experience), But the problem remains, how do we best, adjust
the lengths and angles so that the polygon does close.

There are two solutions to this problem. Thefirst is to leave
the angles unchanged and tweak the lengths (section 2.1).
This turns out to have a straightforward, closed-form solu-
tion, The other approach is to treat the open polygon as a
piece of wire for which we define the physical rules for stretch-
ing and vertex bending. Adjustments to angles and/or edges
can then be computediteratively by determining the equilib-
rium shape when the two open polygon vertices are forced tocoincide.

2.1 Edge Tweaking
To close the polygons by adjusting the edge lengths only, re-
write equation 5 as

£j=(1—1t)L4,+thp, +S, (1 =0,1,2,...,m). (6)

[t seems smart that the magnitudes of 5S; should roughly be
proportional to |L4, — Dy,], since if an edge has the same
length on both key polygons, it ought to have about that same
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length throughout the shape blend. One can dream up simple
examples for which this is not desirable, but for most reason-
able cases, experience has verified this to be wise. Therefore,
define :

Lap, =max{|La,—~Lp,|, Lei}; (1 =0,1,2,...,m). (7)

where Lyoi = 0.0001 x (max;efomj |La, — Lp,|) is needed to
avoid division by zero,

Our goal is to find 59, 5,,..., 5m, so that the objective
function

f(So, Si. -+;5m) = xo Tz
izo~AB;

 

is minimized subject to the two equality constraints (which
force closure of the polygon):

m

1 ($0: S1s--+,5m) = }[1 -t)La, + thy, + Si]cosay =0,
i=O0
m

y2(So,S1,--.5$m) = J[= t)La, + tha, + Si}sin a = 0,
i=0

where oj are the directed angles from the x-axis to the vectors
PjPi+i

oj = oj-1 + 49, (¢=1,2,...,m). (8)

The method of Lagrange multipliers [9] can now solye forthe desired tweak values 5; as follows. Set

®(A1, A2, So, S1,---,5m) = f + Arer + Agee,

where A; and A» are the multipliers.
From

He = Pet + Ar cosa + Agsinay = 0(7 = 0,1,...,m)
Yi-ol(l =), +ilp, + 5;) cosa; =0
yl —t)La, + tL, + 5j]sina; = 0,

we obtain

EA, + Fig =U 9FA, + G9 = V, (9)

where Be
B=)" lp, cos” ay, (10)

7=0

F= >, Lag, sin ajcosa;, (11)i=0
m

G= "Lg, sin? a3, (12)
i=0

v=2{S0-nta +pjoes, (13)i=0
™

v=2{50 —t)La, +ainos) (14)i=0

Thus under the condition EG — F? # 0 we can get
U oF

=| G \/| # & |: (15)
EU

=| F vA F & |: (16)

and

s= ~5Ban, (Arcosa;+Azsin a), (i=0,1,...,m). (17)
Using equations 4, 6, and 8, we can now calculate the co-

ordinates (2;,y;) of the vertices Pi(i = 1,2,...,m)i

aj = aj-itly-jcosaj_1, yy =yi-1+Li-1 sinaj-1. (18)

2.2 Tweaking Lengths and/or Angles
The edge-tweaking-only method generally gives good results
and is relatively fast. Also, as suggested from Figure 4, often
very little edge length adjustment is needed.

However, some simple examples can be found where the
edge lengths may change more than is desirable using the
edge-tweaking-only method. This can be detected by check-
ing the values of $;. In such a case, the required edge length
Syeinenke can be diminished by also allowing the angles toange.

A good solution to this problem is to treat the unclosed
polygon as a piece of wire which can possibly stretch, but
which can only bend at polygon vertices, The stretching stiff-
ness for each polygon edge is inversely proportional to the
change in length experienced by that edge between the two
key frames. Likewise, the bendingstiffness of each angle is in-
versely proportional to the change between key frames of the
respective angle. Thesestiffness values tend to enforcerigidity
for identical portions of the two key polygons.

The shape of the closed intermediate polygon is then com-
puted by forcing the two unclosed joints to coincide, and de-
termining the unique equilibrium shape of the wire. Furtherdetails can be found in Ya].

3 Anchor points and angle lines
Since an intrinsic definition of a polygon is invariant to rigid
body motion, a shape blend must specify translations and
rotations for the intermediate shapes. Translationis specified
using an anchor point path, and rotation is constrained by

designating the rotation function of an angle line. The anchorpoint can be a polygon vertex, or any other point that is well
defined for each step in the shape blend. For example, center
of area is a good anchor point for objects in free fall. For
bodies in free fall, such as a diver, a parabolic anchor path
simulates the effects of gravity,

The angle line can be any line whose association with
each shape in the blend can be determined, such as a non-
degenerate polygon edge, the line between any two points on
the polygon, or a principle axis of a shape (if the major and
minor axes are well defined, ie., the product of inertia is non-

Beh. In Figure 3, the anchor point is Po and the angle line18 Lo-

4 Discussion

Figure 1 shows that the main advantageof using turtle graph-
ics in shape blending is that it helps solve the withering arm
problem. Another benefit is that it can provide more nearly
monotonic angle changes than does linear-vertex-path shape
blending. Figure 5 shows a shape blend, taken from [12], in
which a shape which should undergoa simple rigid body mo-
tion experiences shrinking and kinking, The kinking occurs in
this case because of a poor choice of vertices, a common oc-
currence in linear-vertex-path shape blending. Clearly, turtle
graphics shape blending would have no problem in this case.

A more impelling example is the dancer’s arm which with-
ers under linear vertex path motion. The magnification in
Figure6 illustrates that the intrinsic method produces inher
ently smoother blends than thelinear vertex paths. [12] goes

7
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Figure 5: Shrinking plus kinking

to great lengths investigating how to minimize this angle non-
monotonicity which can occur with linear vertex paths. As an
added benefit of the intrinsic algorithm, this detailed search
for non-monotonic angle changes is rendered unnecessary.

Linear vertex paths Totrinsic blend

Figure 6: Closeup of dancer’s arm

Although slower than the linear patch method, the intrin-
sic algorithm can compute a shape blend for the chicken in
Figure 2.b (which has 230 vertices) in 0.02 seconds using the
method in Section 2.1 and in 0.05 seconds using the method
in Section 2.2, on an HP 730 workstation.

It is easy to contrive examples for which this algorithm
performs poorly, although most of the realistic cases we have
tried produced goodresults. In cases where some adjustment
is called for, additional constraints can be imposed, such as
specifying that the distance between specified pairs of non-
adjacent polygon vertices should change monotonically from
one key frame to the next. See [4] for moredetails.

AAA0b
Digitized from book

MAeb
Blended Blended Given

Figure 7; Cantering Horse

Experience suggests that this algorithm may work well
enough for many applications to character animation. The
sequence of a cantering horse in Figure 7 was taken from the
classic photographic study, Animals in Motion [10], first pub-
lished in 1887, The top four figuresare digilizations of actual
photographs from the book. In the bottom row, the middle
two figures are shape blends interpolating the first and last
figures. The vertex correspondence was determined using the
18

 

algorithm in [12], and the vertex paths were computed using
the algorithm in this paper. The horse’s two left legs were
treated as independent shape blends,
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Abstract

Wepresent a method forsolving the following problem: Givenaset
of data points scatteredin three dimensions and an initial tmangular
mesh Mo, produce a mesh M, of the same topological type as Mo,
thatfits the data well and has a small numberof vertices. Our ap-
proachis to minimize an energy function that explicitly models the
competing desires of conciseness of representation and fidelity to
the data, We show that mesh optimization can be effectively used
in at least two applications: surface reconstruction from unorga-
nized points, and mesh simplification (the reduction of the number
of vertices in an initially dense mesh oftriangles).

CR Categories and Subject Descriptors: 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting,
Three-Dimensional Shape Recovery, Range Data Analysis, Model
Simplification.

1 Introduction

The mesh optimization problem considered in this paper can be
roughly stated as follows: Given a collection of data points X in
R? and an initial triangular mesh Mp near the data, find a mesh M
ofthe sametopological type as Mo that fits the data well and has a
small numberof vertices.

As an example, Figure 7b shows a set of 4102. data points sampled
from the object shownin Figure 7a. The inputto the mesh optimiza-
tion algorithm consists of the points together with the initial mesh
shown in Figure 7c. The optimized mesh is shown in Figure 7h,
Notice that the sharp edges and comers indicated by the data have
been faithfully recovered andthat the numberof vertices has been
significantly reduced (from 1572 to 163). 
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To solve the mesh optimization problem we minimize an energy
Junction that captures the competing desires of tight geometric fit
and compactrepresentation. The tradeoffbetween geometric fit and
compactrepresentation is controlled via a user-selectable parameter
Crep. A large value of c,., indicates that a sparse representation is
to be strongly preferred over a dense one, usually at the expense of
degradingthe fit.

We use the input mesh Mo as a starting point for a non-linear
optimization process, During the optimization we vary the number
of vertices, their positions, and their connectivity. Although we can
five no guarantee of finding a global minimum, we have mun the
method on a wide variety of data sets; the method has produced
good results in all cases (see Figure |).

Wesee at least two applications of mesh optimization: surface
reconstruction and mesh simplification.

The problem of surface reconstruction from sampled data occurs
in many scientific and engineering applications, In [2], we outlined
a two phase procedure for reconstructing a surface from a setof un-
organized dala points. The goal of phase one is to determine the
topological type of the unknownsurface and to obtain a crude es-
timate of its geometry. An algorithm for phase one was described
in [5]. The goal of phase two is to improvethe fit and reduce the
numberof faces. Mesh optimization can be used for this purpose.

Although we were originally led to consider the mesh optimiza-
tion problem by our research on surface reconstruction, the algo-
rithm we have developed can also be applied to the problem ofmesh
simplification, Mesh simplification, as considered by Turk [15] and
Schroederetal, [10], refers to the problem of reducing the numberof
faces in a dense mesh while minimally perturbing the shape. Mesh
optimization can be used to solve this problem as follows: sample
data points Y from the initial mesh and use the initial mesh as the
starting point Mo of the optimization procedure. For instance, Fig-
ure 7q shows a Wiangular approximation of a minimal surface with
2032 vertices. Application of our mesh optimization algorithm to
a sample of 6752 points (Figure 7r) from this mesh produces the
meshes shown in Figures 7s (487 vertices) and 7t (239 vertices).
The mesh of Figure 7s corresponds to a relatively small value of
Crep, and therefore has more vertices than the mesh of Figure 7t
which corresponds to a somewhatlarger value of c,.y.

Theprincipal contributions ofthis paperare:

« [presents an algorithm forfitting a meshof arbitrary topolog-
ical type to a set of data points (as opposed to volume data,
etc.). During the fitting process, the number and connectivity
of the vertices, as well as their positions, are allowed to vary.

« [t casts mesh simplification as an optimization problem with
an energy function that directly measures deyiation of the fi-
nal mesh from the original. As a consequence, the final mesh
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Figure 1: Examples of mesh optimization. The meshes in the top row are theinitial meshes Mo; the meshes in the bottom row are the
corresponding optimized meshes. The first 3 columns are reconstructions; the last 2 columns are simplifications.

SimplicialcomplexK
vertices:{1}, {2}, {3}

edges: {1,2}, {2,3}, {1,3}
faces: {1,2,3}

Topologicalrealization|K\ ic realization (V)

3 9,0k))

 =<

 
Figure 2: Example of mesh representation: a mesh consisting of a
single face.

naturally adapts to curvature variations in the original mesh.

* It demonstrates how the algorithm’s ability to recover sharp
edges and comers can be exploited to automatically segment
the final mesh into smooth comected components (see Fig-
ure 7i).

2 Mesh Representation
Intuitively, a mesh is a piecewise linear surface, consisting of tnan-
gular faces pasted together along their edges. For our purposes it
is important to maintain the distinction between the connectivity of
the vertices and their geometric positions, Formally, a mesh M is
apair (A, V), where: Ais a simplicial complex representing the
connectivity of the vertices, edges, and faces, thus determining the
topological type of the mesh; V = {vi,...,vm}, vi © RS is
a set of vertex positions defining the shape of the mesh in R? (its
geometric realization).

A simplicial complex A’ consists ofa set ofvertices {1,...,m},
together with a set of non-empty subsets of the vertices, called the
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simplices of A’, such thal any set consisting of exactly one vertex is
a simplex in A’, and every non-empty subset of a simplex in 4 is
again a simplex in KW(cf. Spanier [14]). The O-simplices {t} € K
are called vertices, the l-simplices {i,j} € A’ are called edges, and
the 2-simplices {i, 7, k} © A’ are called faces.

A peometric realization of a mesh as a surface in R® can be
obtained as follows. For a given simplicial complex A’, form
its topological realization |K'| in R.™ by identifying the vertices
{1,...,m)} with the standard basis vectors {e,,...,@m}of R™.
For each simplex s € Alet |s| denote the convexhull ofits vertices
in R™, and let |K| = Usex|s|. Let 6 : R™ — R* be the linear
mapthat sendsthe i-th standard basis vectore, € R™ tov, € R®
(see Figure 2),

The geametric realization of M is the image ¢y(|A|), where we
write the map as }y to emphasize that it is fully specified by the
set of vertex positions V = {vi,...,¥m}. The map vy is called
an embeddingif itis 1-1, thatis if dv(|A{) is not self-intersecting.
Only a restncted set of vertex positions V result in @y being an
embedding.

If @y is an embedding, any point p € @y(|K|) can be parame-
terized byfinding its umique pre-image on |.A’|. The vector b € | ']
with p = dy(b) ts called the barycentric coordinate vector of p
(with respect to the simplicial complex A’). Note that barycentric
coordinate vectors are convex combinations of standard basis vec-

iors.e, € R™ corresponding to the vertices of a face of KX. Any
barycentric coordinate vector has at most three non-zero entries; it
has only two non-zero eniriesifit lies on an edgeof |A'|, and only
oneifit is a vertex.

3 Definition of the Energy Function
Recall that the goal of mesh optimization is to obtain a mesh that
provides a good fit to the point set X and has a small number of
vertices. We find a simplicial complex / and a set of vertex posi-
tions V defining a mesh Mf = (A’, V) that minimizes the energy
function

E( K, V) = Eas( V) + Prenl KC) de Eapring A, V).

The first two terms correspond to the twostated goals; the third term
is motivated below.
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The distance energy Fay: is equalto the sumofsquared distances
from the points X = {x1,...,xn} tothe mesh,

Exin( KV) = > (xi, dv(|K)-

The representation enetgy Eye, penalizes meshes with a large
numberof vertices. It is set to be proportional to the number of
vertices m of K:

Evep(K) = crapm.

The optimization allows vertices to be both added to and removed
from the mesh. When a vertex is added,the distance energy Pais:
is likely to be reduced; the term /,., makes this operation incur
a penalty so that vertices are not added indefinitely. Similarly, one
wants to remove vertices from a dense mesh even if Ey. increases
slightly; in this case £,., acts to encourage the vertex removal. The
user-specified parameter c,., provides a controllable trade-off be-
tweenfidelity of geometric fil and parsimonyof representation.

We discovered, as others have before us [8], that minimizing
East + Evep does not produce the desired results. As an illus-
tration of what can go wrong, Figure 7d showsthe result of min-
imizing aise alone. The estimated surface has several spikes in
regions where there is no data, These spikes are a manifestation of
the fundamental problem that a minimum of Eis: + Evep may not
exist,

To guarantee the existence of a minimum [6], we add the third
term, the spring energy E’spring- It places on each edge of the mesh
a spring of rest length zero and spring constant «:;

Espring( K\V) = or Bllv; = vel?
(ken

Tt is worthwhile emphasizing that the spring energy is not a
smoothness penalty. Our intent is not to penalize sharp dihedral
angles in the mesh, since such features may be present in the un-
derlying surface and should be recovered. We view Eypring a8 @
regulanzing term that helps guide the optimization to a desirable
local minimum. As the optimization convergesto the solution, the
magnitude of spring can be gradually reduced. We return to this
issue in Section 4.4.

For some applications we want the procedure to be scale-
invariant, which is equivalent to defining a unitless energy function
£. To achieve invariance under Euclidean motion and uniform scal-
ing, the points X andtheinitial mesh Mo are pre-sealed uniformly
(9 fit in a unit cube. After optimization, a post-processing step can
undothis initial transformation.

4 Minimization of the Energy Function
Our goalis to minimize the energy function

E(K.V) = Baise(B,V) + Brep(K) + Bepring(K,V)

Over the sel of simplicial complexes A’ homeomorphicto the ini-
tial simplicial complex /g, and the vertex positions V defining the
embedding. We now presentan outline of our optimization algo-
rithm, a pseudo-code version of which appears in Figure 3. The
details are deferred to the next two subsections.

To minimize E(K, V) over both A and V’, wepartition the prob-
M Into two nested subproblems: an inner minimization over V for
Xed simplicial complex A’, and a outer minimization over K’.
th Section 4.1 we describe an algorithm that solves the inner min-
zation problem, It finds E(K) = minv ELK, V), the energy

le
fi
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OptimizeMesh( Ky .Va) {
Ki Ko
V := OptimizeVertexPositions(.A'o Vo)

— Salve the outer minimization problem.

repeal {
(K",V'):= GenerateLegalMove( KV’)
V' = OptimizeVertexPositions(A’',V")
if B(K',V") < E(K,V) then

(KV) =(K'V')
endif

| until convergence
retum (A.V)

}

— Solve the inner optimization problem
— E(K)=minv E(K,V)
—forfixed simplicial complex K.
OptimizeVertexPositions(.A’.V’) {

repeat{
— Compute barycentric coordinates byprojection.
B := ProjectPoints(4,V)

— Minimize E(.K,V,B) over V using conjugate gradients.
\’ := ImproveVertexPositions(8)

} until convergence
retum V

GenerateLegalMove( ’,V’) {
Select a legal move K => A’.
Locally modify V to obtain V' appropriate for A’'.
retum (',V")

}

Figure 3: An idealized pseudo-code version of the minimization
algorithm,

of the best possible embedding ofthe fixed simplicial complex K,
and the corresponding vertex positions V’, given an initial guess for
V. This corresponds to the procedure OptimizeVertexPositions in
Figure 3,

Whereas the inner minimization is a continuous optimization
problem, the outer minimization of E'( A’) overthe simplicial com-
plexes A” € A (procedure OptimizeMesh)is a discrete optimization
problem. An algorithm forits solution is presented in Section 4.2.

The energy function £( A, V) depends on two parameters c,.p
and «. The parameter c-.p controls the tradeoff between concise-
ness and fidelity to the data and should be set by the user. The pa-
rameter «, on the other hand, is a regularizing parameter that, ide-
ally, would be chosen automatically. Our method of setting x is
described in Section 4.4.

4.1 Optimization for Fixed Simplicial Complex
(Procedure OptimizeVertexPositions)

In this section, we consider the problem of finding a set of vertex
positions V that minimizes the energy function Bi 4, V) foragiven
simplicial complex A’. As Eyep(K) does nol depend on V, this
amounts to minimizing Egyoe(K,V) + Bspring( K,V).

To evaluate the distance energy Ey,.1(A,W), it is necessary to
computethe distance of each data point x, to. M = @v(|/|). Each
of these distancesis itself the solution to the minimization problem

d’(x,, dv (JA|)) =, min lx, — @v(bs)Il?,
bye ri

in which the unknown is the barycentric coordinate vector b, €
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\K| c R™ ofthe projection of x, onto M. Thus, minimizing
E(K,V)forfixed is equivalent to minimizing the new objective
function

Yo lis: — de (bill? + LapeinolA¥)t=]

Vile dv (bait + SO sllvy ~ vel?
=] {pekper

E(K,V, B)

over the vertex positions V = {v1,...,Vm}.vi € R? andthe
barycentric coordinates B = {by,..., bn}, b: € |A| Cc R™.

To solvethis optimization problem (procedure OptimizeVertex-
Positions), our methodalternates between two subproblems:

1. For fixed vertex positions V, find optimal barycentric coordi-
nate vectors 8 by projection (procedure ProjectPoints).

2. Forfixed barycentric coordinate vectors B, find optimal vertex
positions V’ by solving a linear least squares problem (proce-
dure |mproveVertexPositions).

Because we find optimal solutions to both of these subproblems,
E(&. V, B) can neverincrease, and sinceit is bounded from below,
it must converge. In principle, one could iterate until some formal
convergencecriterion is met. Instead, as is common, we perform
a fixed numberofiterations. As an example, Figure 7e shows the
result of oplimizing the mesh ofFigure 7c over the vertex positions
while holding the simplicial complexfixed.

It is conceivable that procedure OptimizeVertexPositions retums
a set V of vertices for which the meshis self-intersecting, i.e. @y is
notan embedding. Whileit is possible to checkaposteriori whether
dy is an embedding, constraining the optimization to always pro-
duce an embedding appears to bedifficult. This has not presented a
problem in the examples we have nin.

4.1.1 Projection Subproblem
(Procedure ProjectPoints)

The problem of optimizing £( A, V, B) over the barycentric coor-
dinate vectors B = {b,,...,b,}, while holding the vertex posi-
tions V = {vi,...,Vm} and the simplicial complex Aconstant,
decomposes into m separate optimization problems:

b; = argmin||x; — ¢v(b)||
ber]

In other words, b; is the barycentric coordinale vector corespond-
ing to the point p € éy(|A'|) closest to x,.

A naive approach to computing b, is to project x; onto all of the
faces of JM, and then find the projection with minimaldistance. To
speed up the projection, wefirst enter the faces of the mesh into a
spatial partitioning data structure (similar to the one used in [16)]).
Then for each point x, only a nearby subset ofthe faces needs to be
considered, and the projection step takes expected time O(n). For
additional speedup weexploitcoherence betweeniterations. Instead
of projecting each point globally onto the mesh, we assumethat a
point’s projection lies in a neighborhoodofits projectionin the pre-
viousiteration, Specifically, we project the point ontoall facesthat
share a vertex with the previous face. Although this is a heuristic
that can fail, it has performed well in practice.

4.1.2 Linear Least Squares Subproblem
(Procedure ImproveVertex Positions)

Minimizing 1(A’, V, B) overthe vertex positions V while holding
B and A fixed is a linear least squares problem.It decomposesinto
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three independent subproblems, one for each of the three coordi:
nates of the vertex positions. We will write down the problem for
the first coordinate.

Let « be the number of edges (1-simplices) in A’; note that ¢ is
O(m). Let v* be the m-yector whosei-th elementis the first coor-
dinate of v;. Let d’ be the (n +-e)-vector whosefirst n elements are
the first coordinates of the data points x,, and whoselast e elements
are zero. With these definitions we can express the least squares
problem forthe first coordinate as minimizing || Av’ — d?||* over
v’. The design matrix A is an (n +e) x m matrix ofscalars. The
first n rows of A are the barycentric coordinate vectors b,. Each of
the trailing e rows contains 2 non-zero entries with values 4/« and
—,/« in the columns correspondingto the indices of the edge’s end-
points. The first n rows of the least squares problem correspond to
East(K,V), while the last e rows correspond to Eypring( A, V),
An important feature of the matrix A is that it contains at most 3
non-zero entries in each row,for a total of O(n + m) non-zero en-
tries.

To solve the least squares problem, we use the conjugate gradient
method (cf, [3]). This is an iterative method guaranteed to find the
exact solution in as manyiterations as there are distinct singular val-
ues of A, ie. in at most m iterations. Usually far fewer iterations
are required to get a result with acceptable precision. For exam-
ple, wefind that for m as large as 10°, as few as 200iterations are
sufficient,

The two time-consuming operations in eachiteration of the con-
Jugate gradient algorithm are the multiplication of A by an (m + €)-
vector and the multiplication of A? by an m-vector. Because A is
sparse, these two operations can be executed in O(n + m) time. We
store A in a sparse form that requires only O(m + m) space. Thus,
an acceptable solution to the least squares problem is obtained in
O(n +m) time, In contrast, a typical noniterative method for soly-
ing dense least squaresproblems, such as OR decomposition, would
require O((n + m)m*) timeto find an exactsolution,

4.2. Optimization over Simplicial Complexes
(Procedure OptimizeMesh)

To solve the outer minimization problem, minimizing £(A) over
4, we define a set of three elementary transformations, edge col-
lapse, edge split, and edge swap, taking a simplicial complex &to
another simplicial complex A! (see Figure 4).

We define a Jegal move to be the application of one of these el-
ementary transformations to an edge of A that leaves the topolog-
ical type of A unchanged, The set of elementary transformations
is complete in the sense that any simplicial complex in K can be
obtained from Jo through a sequenceoflegal moves’.

Our goal then is to find such a sequence taking us from A’g to a
minimum of /(.A’). We do this using a variant of random descent:
we randomly select a legalmove, A => A‘. If E(K') < £(K),
we accept the move, otherwise we try again. If a large number of
trials fails to produce an acceptable move, we terminate the search.

More elaborate selection strategies, such as steepest descent or
simulated annealing, are possible. As we have obtained good re-
sults with the simple strategy of random descent, we have not yet
implemented the otherstrategies.

Identifying Legal Moves An edge split transformation is always
a legal move,as it can never change the topological type of. The
other (wo transformations, on the other hand, can cause a change of

‘In fact, we prove in [6] that edge collapse and edge split are suffi-
cient, we include edge swapto allow the optimization procedure to “tunnel”
through small hills in the energy function,
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edge collapse edgesplit edge swap

Figure 4: Local simplicial complex transformations

topological type, so tests must be performed to determineif they are
legal moves.

We define an edge {1,7} € K to be a boundary edgeif it is a
subset of only one face {i,j,k} € KK, anda vertex {i} to be a
boundary vertex if there exists a boundary edge {7,7} € K.

An edge collapse transformation K = K’' that collapsesthe edge
{t, 7} € & isa legal moveif andonly if the following conditions
are satisfied (proofin [6]):

¢ Forall vertices {k} adjacent to both {i} and {7} ({i, k} EK
and {7,k} € A’), {t, 9, k} is a face of Kr.

@ If {i} and {7} are both boundary vertices, {1, 7} is a boundary
edge,

« A has more than 4 vertices ifneither {7} nor {7} are boundary
vertices, or A’ has more than 3 vertices if either {i} or {7} are
boundary vertices.

An edge swap transformation K = ’' that replaces the edge
{i,9) € &with {k, 1} € K' isa legal moveif and only if {4,1} ¢RK.

4.3 Exploiting Locality

Theidealized algorithm described so far is too inefficient to be of
practical use, In this section, we describe some heuristics which
dramatically reduce the running time. These heuristics capitalize
onthe fact that a local change in the structure of the mesh leayes the
optimal positions ofdistant vertices essentially unchanged.

4.3.1 Heuristics for Evaluating the Effect of Legal Moves

Our Strategy for selecting legal moves requires evaluation of
£(K") = miny E(K',V)for a simplicial complex A’! obtained
from A through a legal move.Ideally, we would use procedure Op-
timizeVertexPositions of Section 4.1 for this purpose,as indicated in
Figure 3. In practice, however,this is too slow. Instead, we use Fast
local heuristics to estimate theeffectof a legal move on the energy
function.

digiof the heuristics is based on extracting a submeshin the
fae othood of the transformation, along with the subset of the
7 Points projecting onto the submesh. The changein overall en-
ae aaaies by only considering the contribution ofthe sub-
sie and the Corresponding pointset. This estimate is always pes-

‘slic, as full optimization would only further reduce the energy.
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Figure 6: Twolocal optimizations to evaluate edge swap

Therefore, the heuristics never suggest changes that will increase
the true energy of the mesh.

Definition ofneighborhoods in a simplicial complex To refer to
neighborhoods in a simplicial complex, we need to introduce some
further notation. We write s’ < s to denote that simplex s’ is anon-
empty subset of simplex s. Forsimplex s € A’, star(s; AK’) = {s' €
K : s <.s'} (Figure 5).

Evaluation ofEdge Collapse To evaluate a transformation A’ =
A’ collapsing an edge {1, j} into asingle vertex {h} (Figure 4), we
take the submeshto be star({z}; A’) U star({j}; A’), and optimize
over the single vertex position y,, while holding all other vertex
positions constant.

Because we perform only a small number ofiterations (for rea-
sons of efficiency), the initial choice of v), greatly influences the
accuracy of the result. Therefore, we attempt three optimizations,
with v,, Starting at v;, v), and 4(v, + v,),.and acceptthe best one.

The edge collapse should be allowed only if the new mesh does
not intersectitself. Checking for this would be costly; instead we
settle for a less expensive heuristic check. If, after the local opti-
mization, the maximum dihedral angle of the edges in star({h}; A’)
is greater than somethreshold, the edge collapseis rejected.

Evaluation of Edge Split The procedure is the same as for edge

collapse, except that the submesh is defined to be star({i, a} K),
and theinitial value of the new vertex vj, is chosen to be (v. +-v;).

Evaluation of Edge Swap To evaluate an edge swap transfor-
mation K = &" that replaces an edge {1,9} © A with
{k,(} © K', we consider two local optimizations, one with sub-
mesh star( {k}; A’), varying vertex v,, and one with submesh
star({(}; A’), varying vertex v) (Figure 6). The changein energyis
taken to best ofthese. As is the case in evaluating an edge collapse,
we reject the transformation if the maximum dihedralangleafter the
local optimization exceedsa threshold,
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4.3.2 Legal Move Selection Strategy
(Procedure GenerateLegalMove)

The simple strategy for selecting legal moves described in Sec-
tion 4.2 can be improved by exploiting locality. Instead of selecting
edges completely atrandom, edgesare selected from a candidate set.
This candidate set consists of all edges that may lead to beneficial
moves, and initially contains all edges.

To generate a legal move, we randomly removean edge from the
candidate set, We first considercollapsing the edge, accepting the
move if it is legal and reduces the total energy. Lf the edge col-
lapse is not accepted, we then consider edge swap and edge split
in that order. If one of the transformations is accepted, we update
the candidate set by adding all neighboring edges. The candidate
set becomes very useful toward the end of optimization, when the
fraction of beneficial moves diminishes.

4.4 Setting of the Spring Constant

Weview the spring energy /’,,-ing a8 a reguiarizing term that helps
guide the optimization process to a good minimum, The spring con-
stant « determines the contribution of this term to the total energy.
We have obtained good results by making successivecalls to proce-
dure OptimizeMesh, each with a different value of «, according to a
schedule that gradually decreases «.

Asan example,to obtain the final mesh in Figure 7h starting fom
the mesh in Figure 7c, we successively set « to 107*, 107°, 107+
and 107(see Figures 7f-7h). This same schedule was used in all
the examples.

5 Results

5.1 Surface Reconstruction

From the set of points shown in Figure 7b, phase one of our re-
construction algorithm [5] produces the mesh shown in Figure 7c;
this mesh has the correct topological type, butit is rather dense,is
far away from the data, and lacks the sharp features of the origi-
nal model (Figure 7a), Using this mesh as a starting point, mesh
optimization produces the mesh in Figure 7h.

Figures 7i-7k,7m-7o show two examples of surface reconstruc-
tion from actual laser range data (courtesy of Technical Arts, Red-
mond, WA), Figures 7j and 7n show sets ofpoints obtained by sam-
pling two physical objects (a distributor cap and a golf club head)
with a laser range finder. The outputs of phase one are shownin Fig-
ures 7k and 7o, The holes presentin the surface of Figure 7k are ar-
tifacts of the data, as self-shadowing prevented some regions of the
surface from being scanned. Adaptive selection of scanning paths
preventing such shadowingis an interesting area of future research.
In this case, we manually filled the holes, leaving a single bound-
ary al the bottom. Figures 71 and 7p show the optimized meshes
obtained with our algorithm.

5.2 Mesh Simplification

For mesh simplification, we first sample a set of points randomly
from the original mesh using uniform random sampling over area.
Next, we add the vertices of the mesh to this point set. Finally,
to more faithfully preserve the boundaries of the mesh, we sample
additional points from boundary edges.

As an example of mesh simplification, we start with the mesh
containing 2032 vertices shown in Figure 7q. From it, we obtain
a sample of 6752 points shownin Figure 7r (4000 randompoints,
2032 vertex points, and 720 boundary points). Mesh optimization,
With Creep = 107°, reduces the mesh down to 487 vertices (Fig-
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Table 1: Performancestatistics for meshes shown in Figure 7.

ure 7s). By setting cy.) = 107*, we obtain a coarser mesh of 239
vertices (Figure 71).

As these examples illustrate, basing mesh simplification on a
measure of distance between the simplified mesh and the orginal
has a numberof benefits:

» Vertices are dense in regions of high Gaussian curvature,
whereas a few large faces span the flat regions.

« Long edges are aligned in directionsof low curvature, and the
aspect ratios of the triangles adjust to local curvature.

« Edges andverticesof the simplified meshare placed near sharp
features of the original mesh.

5.3 Segmentation

Mesh optimization enables usto detect sharp features in the under-
lying surface. Using a simple thresholding method, the optimized
mesh can be segmented into smooth components, To this end, we
build a graph in which the nodes are the faces of mesh. Two nodes
of this graph are connected if the two corresponding faces are ad-
jacent and their dihedral angle is smaller than a given threshold.
The connectedcomponentsof this graph identify the desired smooth
segments. As an example, Figure 7i shows the segmentation of the
optimized mesh into 11 components. After segmentation, vertex
normals cari be estimated from neighboring faces within each com-
ponent, and a smoothly shaded surface can be created (Figure 7m).

$5.4 Parameter Settings and Performance Statistics

Table 1 lists the specific parameter values of c,.p and nm used to
generate the meshesin the examples, along with other performance
statistics. In all these examples, the table entry “varied" refers to
a spring constant schedule of {107*, 107°, 10~*, 107" }.. In fact,
all meshes in Figure | are also created using the same parameters
(except that c,-; was changed in two cases). Execution times were
obtained on a DEC uniprocessor Alpha workstation.

6 Related Work

Surface Fitting There is a large body ofliterature on fitting em-
beddings of a rectangular domain; see Bolle and Vemuri [1] for a
review. Schudy and Ballard [1], 12] fit embeddings of a sphere to
point data. Goshtasby [4] works with embeddings of cylinders and
ton. Sclaroff and Pentland (13) consider embeddings of a deformed
superquadric. Miller et al. [9] approximate an isosurface of volume
data by fitting a mesh homeomorphic to a sphere. While it appears
that their method could be extended to finding tsosurfaces of arbi-
trary topologicaltype,it it less obvious how it could be modified to
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handle pointinstead of volume data. Mallet [7] discusses interpola-
tion of functions over simplicial complexesofarbitrary topological
type:

Our method allows fitting of a parametric surface of arbitrary
topological type to a set of three-dimensionalpoints. In [2], we
sketched an algorithm forfitting a mesh offixedvertex connectivity
(o the data. The algorithm presented here is an extension ofthis idea
in which wealso allow the numberof vertices and their connectivity
to vary. To the best ofourknowledge,this has not been donebefore.

Mesh Simplification Two notable papers discussing the mesh
simplification problem are Schroeder etal. [10] and Turk [15].

The motivation of Schroederetal. is to simplify meshes gener-
ated by “marching cubes”that may consist of more than a million
triangles. In their iterative approach,the basic operation is removal
of a vertex and re-triangulation of the hole thus created, The crite-
rion for vertex removal in the simplest case (intenor vertex not on
edge or comer)is the distance from the vertex to the plane approx-
imating its surrounding vertices, [t is worthwhile noting that this
criterion only considers deviation of the new mesh from the mesh
created in the previousiteration; deviation from the original mesh
does not figure in the strategy.

Turk's goal is to reduce the amountofdetail in a mesh while re-
maining faithful to the original topology and geometry, His basic
idea is to distribute points on the existing mesh that are to become
the new vertices. He then creates a triangulation containing both old
and new vertices, and finally removesthe old vertices. The density
of the new vertices is chosen to be higherin areas of high curvature.

The principal advantage ofour meshsimplification method com-
pared to the techniques mentioned aboveis that we cast mesh sim-
plification as an optimization problem: we find a new mesh of lower
complexity that is as close as possible to the original mesh, This is
recognized as a desirable property by Turk (Section 8, p. 63): “An-
other topic is finding measures of how closely matched a given re-
tiling is to the original model. Can such a quality measure be used
{o guide the re-tiling process?”. Optimization automatically retains
more vertices in areas of high curvature, and leads to faces that are
elongated along directions of low curvature, another property rec-
ognized as desirable by Turk.

7 Summary and Future Work
We have described an energy minimization approachto solving the
mesh optimization problem. The energy function weuseconsists of
three terms: a distance energy that measures the closeness offit, a
representation energy that penalizes meshes with a large number of
vertices, and a regulanzing term that conceptually places springs of
rest length zero on the edges of the mesh. Our minimization algo-
rithm partitions the problem into two nested subproblems: an inner
continuous minimization and an outer discrete minimization. The
search space consists of all meshes homeomorphic to the startingmesh,

Mesh optimization has proven effective as the second phase of
our method for surface reconstruction from unorganized points, as
discussed in [5]. (Phase two is responsible for improving the geo-
metric fit and reducing the numberofvertices of the mesh produced
in phase one.)

_ Our method has also performed well for mesh simplification, that
's, the reduction ofthe numberofverticesin a dense triangularmesh.
It produces meshes whose edges align themselvesalongdirections
Of low curvature, and whosevertices concentrate in areas of high
Gaussian curvature. Because the energy does not penalize surfaces
with sharp dihedral angles, the method can recover sharp edges andcomers.

i
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A number of areas of furure researchstill remain, including:

a Investigate the use of more sophisticated optimization meth-
ods, such as simulated annealing for discrete optimization and
quadratic methodsfor non-linear least squares optimization,in
order to avoid undesirable local minima in the energy and to
accelerate convergence.

® Gain more insight into the use of the spring energy as a regu-
larizing term, especially in the presence of appreciable noise.

« Improve the speed ofthe algorithm and investigate implemen-
tations on parallel architectures.

e Develop methods forfitting higher order splines to more accu-
rately and concisely model curved surfaces.

« Experiment with sparse, non-uniform, and noisy data.

« Extend the current algorithm to other distance measures such
as maximum error (L™ norn)or average error (L) norm), in-
stead of the current £° norm.
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(q) Original mesh My
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|
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Figure 7: Examples of surface reconstruction and mesh simplification
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Abstract

This paper describes a new approach to texture mapping.
A global method to lower the distortion of the mapped
image is presented; by considering a general optimization
function we view the mapping as an energy-minimization
process. We have constructed an interactive texture tool,
which is fast and easy to use, to manipulate atlases in
texture space. We present the tool’s large set of inter-
active operations on mapping functions. We also intro-
duce an algorithm which automatically generates an atlas
for any type of object. These techniques allow the map-
ping of different textures onto the same object and handle
non-continuous mapping functions, needed for complicated
mapped objects.
CR Categories and subject descriptors: [.3.3 [Computer
Graphics] Picture/Image Generation. 1.3.7 [Computer Graphics]
Graphics and Realism - Color, Shading and Texture.
Additional Keywords: Texture Mapping, Texture Map Dis-
tortion, Realistic Rendering, Interaction.

1 Introduction.

Texture mapping is a method in Computer Graphics to en-
hance the richness of computer-generated images [3, 13]. A
texture is a 2D image to be mapped onto a synthetic 3D
object. The 2D space of the texture image is often called
texture space. Each point on the object has to be asso-
ciated with an element in texture space. One ofthefirst
algorithms used the parametric representation of patches to
find texture addresses |3]. With this method, some prob-
lems may occur at the junction of two patches [4]. Another
method is to project the texture onto the object using an
intermediate 3D shape like a box or a cylinder [2]. Also,
some applications have been developed to provide direct
drawing onto the object, in which the user interactively
modifies the texture via the mapping function {12}.
“ Thomson Digital Image, 20-22, rue Hégésippe Moreau, 75018 Paria,
France.
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In addition, the rendering of an object mapped with a
pre-existing image, such as a digitized one, has been im-
proved using dedicated techniques [3, 8, 2, 1]. We are in-
terested in the case of 2D textures. In general, there is no
natural mapping from the texture to the object: the im-
age is necessarily distorted (see (13]). Also, there is a need
for interactive tools to help the user define how to map
a pre-defined image onto a surface, or to improve a map-
ping function. We present new methods for solving these
problems.

Wefirst propose, in section two, a mathematical formula-
tion for the distortion of the mapped image. After deriving
a general formula for the deformation energy, we describe
simplified formulae, fast enough to be used inside an inter-
active loop to improve the mapping function.

Section three is devoted to the notion of an atlas, derived
from a mathematical notion and adapted to the special case
of textures. In the first subsection curvature is used to

build an ultrametric for automatically creating atlases on
any object. In the second subsection a set of interactive
functions is presented for manipulating atlases.

We address only the case of polygonized surfaces. This
simplifies the definition of the mapping function to one that
depends only on the position in the texture plane of the
points associated to all vertices. Our texture mapping toal
is designed for a naive user who is not necessarily a special-
ist in image synthesis, The interface is very intuitive for the
basic functions, and also provides some contro! structures
which free the user from repetitive tasks. This program
could be used, for example, by fashion designers to map
woven or leather textures onto polygonal surfaces describ-
ing shoes, clothes or seats.

2 Deformation measures.

The first problem one has to solve when mapping textures
is to define the quality of the final rendered object. We
propose to measure the distortion introduced by the map-
ping as the deformation energy £. In the first subsection,
we derive a general formula for E. We then propose, in
the following subsections, a simplified formula for B, whose
minimization can be done in real-time, and which gives yery
good visual results.
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2.1 General formula.

Suppose that the surface on which we want to map textures
is defined by a parametric function:

@:U—-+€

U being an open set of IR? and € Euclidean ordinary 3-
space: to each point (u,v) of U, @ associates a point o(u, v)
on the surface; ¢ thus defines a trivial mapping function
onto the surface (for example, in [5], the surface is a bicubic
patch, and the mapping function is exactly given by the
parameterization), It should be noticed that any regular
surface can be defined in this way, at least locally.

If the texture is to be mapped onto an elastic suriace,
one can measure the deformation of the texture through @
by computing the elastic deformation of the planar section
when one applies @to it. We use the first fundamental form
Ty (9, chap 2.5, 4.2] to measure at each point (u,v) € U the
differences of lengths and angles between the initial plane
and the tangent plane of the surface. Denoting by V¢ the
Jacobian Matrix of @, we let

Ig(u,v) =Vd > Vd (1)

Io particular, /, is the identity matrix of IR* if and only
if @ is an (infinitesimal) isometry, which means that the
mapping function does not distort the image. Let Id be
the identity matrix of IR?, and || || be any norm defined
on the set of 2x 2 matrices. We can take as a measure of

deformation energy at a point (u, v) of parameter space the
quantity ||Z,(u,v}—[d|[*, known by mechanical engineers
as the Green-Lagrange deformation tensor. The deforma-
tion energy £ can then be defined over the whole underlying
set U since

E(U) =|fit ~Id)|? dudv =[fvelr dudv (2)
This equation can be written as (see Appendix A):

_ 467 1.2, 06 ddbi2, O67 2a 1+ Ae Bu) ta 1)"dudv (3)
If the surface is defined locally by non-overlapping regions,
then the total energy is obtained by summingall the ener-
gies of each region Uj: E = 5°, E(U:).

2.2 Interpretation in the Linear The-
ory of Elasticity.

We may imagine that our surface is made of rubber, and
that we want to deform it in such a way that it can be
equated with the texture image. If the material is isotropic,
the elastic energy depends only on two parameters \ and
u (see (17, 6]). Writing tr(e) for the trace of matrix e (the
sum of its diagonal terms), then:

B < i [ A (tx(e))? + wtr(e*)
assuming that A+> 0 and yu > 0, which express that E

is positive definite. Since only the ratio ~*is significant for
comparing mapping distortions, we can take uw = 1, The

(4)
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Fig. 1: Two squares of elastic material with different values
of A were stretched in u direction.

coefficient \ characterizes how the material is deformed or-

thogonally to the direction of a tensile stress. All existing
materials have a positive A, referring the fact that any ob-
ject shrinks in direction » when one stretches it along u.
With \ = 0 the deformation in u and v are independent.
Figure 1 shows the influence of the sign of 4 on the shape
of a deformed object. Equation 3 correspond to the case
A=0, = 1. For texture mapping, except in very special
cases, the best results are obtained with by setting A = 0.
It is important to note that two symmetrical surfaces have
the same deformation energy. This implies that it is not
possible to determine whether the mapping function inverts
the image or not. We will show in section 2.4 that this may
lead to problems.

2.3. Triangulated surfaces.

 
Fig. 2: Locally, the mapping function is an affine appli-
cation A which associates triangle MiM2Mz with triangle
mmam. It is the inverse function of ¢.

The deformation of the mapped image can be computed
by evaluating the deformation of each triangle. As a re-
sult, the parametric function @ is affine (see figure 2), and
its gradient is the associated linear map. Write Mi and
mi, 1 © {1,2,3}, for the vertices in IR* and their associ-
ated positions in texture plane. Then ¢ is defined by nine
numbers. Hf the previous formula is expanded, the total
energy can be expressed as the sum of rational fractions
of mj, with numerator of degree 8 and denominator of de-
gree 6. To find the best mapping function, one has to find
the coordinates of all m,’s that minimize this energy. The
solution can only be computed numerically, using an op-
timization method. The efficient algorithms need to know
the gradient of the energy. Even in the simplest case of
triangulated surfaces, the expression is complex and long
to process. One can remark that most of the existing finite
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element programs are built to treat linear elasticity”. They
are highly optimized, but cannot be used to solve texture
mapping problems. Thus, to be fast enoughfor interactive
applications, the optimization process requires a simplified
form of the energy equation that we present below.

In [i] a flattening algorithm is proposed for parametric
patches. It is based on a relaxation procedure and runs
incrementally. We want to find a global minimum for any
type of polyhedral surface, using energy-minimization tech-
niques. The method to be presented here will tackle the
problem from a different point of view.

2.4 A simple, distance based energy.
If the surface is triangulated, its first fundamental form is
completely characterized by the length of its edges. Fur-
thermore, the lengths measured in IR? and in the texture
plane are all the same if and only if the mapping function is
an isometry. This is a consequence of the fact that two tri-
angles are isometric as soon as their three edges have same
lengths. Let’s introduce the length energy FE), The simplest
form of energy that preserves length is the following:

Ey = (||rms — ms||? — || Ms — MG|I?)* (5)
(J)EEAgen JM— M(|°

Using the squared norm gives us a simple form for the gra-
dient. E; represents the energy of a spring net initially
lying on the surface, and for which each spring induces a
force proportional to the square of the distance (instead of
the distance, as for classical springs). This give a higher
energy for the most elongated springs thanis given by the
classical spring response, and thus increases the mean elon-
gation, but lowers the maximum elongation, Thefinal state
is not very different from what would be obtained with
standard springs, but using this formula we obtain a faster
optimization algorithm. Normalization (that is, dividing
by the term || M; — M;||*) is chosen so that the energy does
not change when the surface is subdivided by splitting each
triangle into four similar parts. Without such a normaliza-
tion, an object with very different face sizes would not be
processed correctly. This would be the case, for example,
if the surface is constructed from hierarchical splines.

Taking the symmetry of formula 5 into account, the part
of the energy depending on point7is:

(rms — rrel|?—||Mi — Mill?)*
EE, = 2 : ~——Tafi= Mazmpadjacent tm ra;

The energy gradient is a degree three polynomial:

bE (Ilr— mal]? — || Mi — Mal?)
Dz, 8 xMae(rs — Ze)
BE, (|r: — rr ||?—||Mi — Mul?)
Oui m2 [Mi— Mal ee
This form of energy is easy to compute and gives good re-

“Although in linear elasticity theory, the displacement of any
point is supposed to remain small compared to the object, this is
not the case in a rotation, for example. Such an approximation
Rives very bad results when applied to texture mapping.
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Fig. 3.a: Object 1 and object 2
 

 
aCN.

 

Fig. d.c: Rendered objects.

Fig. 3: Problems with length based energy.
sults as long as the surface is simple. But when the surface
is difficult to map (when the total curvature is too large),
some triangles reverse their orientations. One can notice
this effect in figure 3. In figure 3a we show two objects:
object 1 on the left and object 2 on the right. Object 2 is
just object 1 with a little band added near the equator. In
figure 3b we see the results of minimization, orthogonally
mapped into texture space: the contraction becomes too
high at the center and the best solution to preserve the
lengths is to “fold” the map. This is a direct consequence
of the fact that the energies of two symmetrical triangles
are the same. The same problem occurs with linear springs.
If one compresses a spring along its axis, it bends and its
projection onto its axis may overlap. This phenomenon is
named buckling (see [7]) in elasticity. The final result is
chaotic, in the sense that compressing two almost identical
springs may produce two very different results.

The two main problems with energy measure £; are that,
firstly, the final state ofthe map becomes unstable when the
object is complex. We can see for example in figure 3 that
the symmetry along the X and Y axes is broken in the map.
The result may depend strongly on small numerical errors.
Secondly, the rendering is poor when sometriangles have
reversed their orientations. The patterns are multiplied,
and grouped bytriples, with opposite orientations. Such a
final state is not acceptable.

2.5 A surface and length based energy.
To solve the problem of overlapping regions in the texture
map, a second term can be added in the energy formula.
It is chosen so that wrongly-oriented triangles will have
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a high energy. Energy £, is defined using the difference
of signed areas for each triangle. It can be computed with
cross products in IR? and determinantsin the texture plane,
Thefinal energy is a linear combination of £; and £,. By
default we take the arithmetic mean.

2

For this definition, the surface is implicitly supposed to
be orientable, and with all triangles M;M,;M, described
in a direct sense, according to the normal. Again we

[detram}, mmzmt) aa || acai; A MiMeE   
=

Mi Mj M, triangle

 

|| acne; 0 M:M,   

 
= t

a.

Fig. 4: Object 2 from figure 3 optimized with E = a; +
(l—a)é,.
normalize &,. The dimensions of E,; and E, are identical,
which justifies the final form:

E=ak; + (i-a)E,

where a is a real coefficient to be taken between 0) and 1.

Gradient VE is a degree three polynomial in x; and y;
which can be quickly computed. Thus, a conjugate gradient
method can be used to find the best mapping function [18].
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Case a = 1 correspond to £; andis not satisfactory. Fig-
ure 4 shows that a =0 is not good either. The problem is
that there are an infinite number of tnangles with the same
surface. In particular, when a vertex is translated in a par-
allel direction with the opposite edge, the surface does not
change. This explains why triangles appear so stretched
close to the border of the object. However, we have mea-
sured the surface differences surface, and our experience is
that the differences between planar and 3-D triangles was
less than 0.1%. A good result is obtained in figure 4 by
combining both terms of the energy. Depending on the ge-
ometry, the optimal visual effect is obtained by tuning a
between 0 and 1. In many cases, a = ¢ is satisfactory.

There are still some objects for which optimization with
any value of a would give bad results. In these cases, the
problem results from the fact that the object is too com-
plicated to be mapped with a single image. The solutionis
then to use atlases, as we will show in the next section.

3 Use of atlases.

As we have noticed in the previous section, a global contin-
uous mapping function may excessively distort the image
of acomplex or a highly curved object. The natural way ta
solve this problem is ta split the object into several inde-
pendent regions. The practice has been to do so implicitly
using the construction of the object. For example in [16], a
textured teapot is split into three parts whose shape comes
from the patch description. To be as general as possible, we
disconnect the texturing regions from the 3-D representa-
tion of the surface: the user may want to represent a surilace
mapped only partially (for example, an object with a logo
stuck on), with different textures, such as a patchwork, or
with local discontinuities (as on some clothes). Thus we
introduce a data structure called an “atlas” which is de-

rived from the notion of atlas used in differential geometry
[14, 21]. In our case, an atlas is composed of a set of charts
{di,..,@n}, where each #; is an application from a subset
U; of the surface to the Euclidean plane, such that:

* {U,,..-.Un} is a cover of the surface,

« each #; is continuous inside the faces, and discontinu-
ities are allowed along edges

«fori # j, é: and @; do not overlap except on the edges.

Each chart is associated to ita own image. The words atlas
and chart have here slightly different meanings than the
ones mathematicians give them, due to differences in the
regularity and boundary conditions, but the main idea of
atlases is kept: the covering of a surface.

Good atlases are closely linked to the geometry of the
object and can be difficult to build. Hence in the first sub-
section we present an algorithm to automatically build an
atlas from scratch, Then we describe in the second subsec-

tion an interactive tool which makes easy the manipulation
of atlases and of texture mappings for a given polyhedral
surface.

3.1 A creation tool.

To automatically define an atlas, it seems natural to use the
curvature information: a surface is developable (isometric
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to a plane) if and only if the curvature matrix has a zero
determinant [9, pp. 194-197]. In fact, a first rough subdivi-
sion of the surface in buckets is made using only the normal
vectors of the surface and then the curvature informationis

used to control the merging of adjacent buckets and obtain
the atlas. Then the regions are flattened on the texture
plane (a more detailed description of the whole process can
be found in [15]). The curvature informationis essential in
our computation. Let us describe first how we proceed to
get this information.

§,1.1 Computing the curvature.

There exist precise but costly algorithms to compute the
curvature of a polyhedral surface [19]. Simce interactive
visual feedback is one of our main goals, we designed a
yery fast algorithm, whose results are accurate enough for
our needs. Let u be a tangent vector to the surface and
N the Gauss map [21] which associates to each point of
the surface the unit normal vector at that point. The unit

normal vector is represented as a point on the unit sphere
S*. Curvature in direction u is defined by the formula(9,
pp. 135-151):

C(u) = u-dN(u) (7)

Weuse finite differences to approximate derivatives. Nor-
mals must be evaluated at three close, non-aligned locations
to evaluate the three coefficients of the curvature matrix”.

Weuse smoothed normals coming from the rendering pro-
cedure. We put normal N at the center of gravity of the
face, G. We get the point G, normal N, and a set of ver-
tices §; associated to normals N;. With this data we seek

to evaluate dN: we must find a symmetrical linear map £
in the tangent plane P = (G,{N}*) suchthat, for all i,
L(GS) draws nearer to N; — N, Formula 7 shows that
the matrix of the linear map C£ is also a curvature matrix.
To eliminate the case of non-planar facets, all differences
N; — N are projected in plane P. Coefficients of curva-
ture are then computed using a least-squares method. The
reader is referred to Appendix B for the details.

3.1.2 Subdividing the surface.

The Gauss map defines for éach surface a partition of S*
into areas of various densities. To efficiently define an atlas
of connected regions related to curvature information, we
introduce the buckets induced by a homogeneous cover C
of S* as shown in figure 5: the buckets are the maximal
connected regions of the surface, composed of faces which
normal vectors belong to the same element of C.

A connectivity graph Gg is built from the sets of buck-
ets, adding an edge between two buckets when they have a
common boundary (see figure 6).

3.1.3 Merging of buckets.

To keep control of the distortion when merging two adja-
cent regions of the subdivision, we define a notion of simi-
larity on the set of buckets. To each bucket 3 we compute

“Three coefficients because the curvature matrix is
symmetric.

 
Squaring of the unit cube. Its projection on S?.

Fig. 5: Uniform cover of the sphere S*.

 
Fig. 6: The battered surface is represented by the buck-
ets whose connectivity graph is on the right of the figure.
One can see how this surface is simplified: only 6 average
directions are kept from theinitial surface.

the following information which will be used in defining the
similarity:

« Ng: average of normal to faces in bucket /3.

e As: average of directions of maximal curvature.
Besides these geometric attributes, we use the connectiv-
ity graph Gq defined in the last subsection. Between two
neighboring buckets 3, and ($2 we introduce the similarity
d(G1, Be):

Na, — Np,
\|Na, — Nap ||

d(1,82) = (1—|8N - Mp, |)? + (1 — |5N - Ap,|)?

6N =

An ultrametric (see [10]) on the set of regions is then de-
fined by:

d(1,R2) = d(f1, G2)min
ALER, , BoERs

Given a threshold value d, we build a segmentation of the
object by merging all region whose distances are below d.
The edges of the connectivity graph are sorted with respect
to their corresponding similarity values in a preprocessing
phase in which we sort the edges of graph Gy according to
d. The selection of the n first edges on the connectivity
graph will trigger n successive unions of the adjacent re-
gions associated with the edges. The user can then choose
the number of charts in the atlas by selecting a number
corresponding to the number of edges in Gp.

3.1.4 Flattening the regions.

Once the segmentation is computed, the last step is to flat-
ten the regions in order to define the charts. We use a
region growing algorithm in which new faces are added in

a
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such a way that the surface’s geometry is not distorted too
much and so that the final energy offattened pieces not too
high, Wefirst pick up one face of each region, orthogonally
flatten it with respect to its normal, and then depth-first
traverse the faces graph from theinitial facet. For each new
vertex M; adjacent to two already fixed points, the location
m, of Md; in texture space is computed taking the average
of the Aje(M;) over all the triangles MiM;M, such that

1. Mj and M, have the corresponding points mj; and mz
in texture plane and

2. Aje(M;) is such that the following two triangles are
similar:

e the triangle defined by the projection of M; M; and
My,orthogonally w.rt. the face M; M; My and

e the triangle (Aj. (Mi), my, me).

This atlas creation algorithm is useful if the surface is com-
plex, but it may not be entirely satisfying. For this reason
we provide the set of interactive functions to manipulate
atlases described below.

3.2 An interactive tool.

As emphasized in [12], interactivity is important when tex-
turing 3D shapes.

3.2.1 Drawing an atlas,

 
Fig. 7: Sphere portion associated with a two-charts atlas.

To visualize an atlas on the screen, we use two displays, one
showing a wire frame projection of the polyhedral surface
and the other showing the chart represented by the same
network of polygons after the mapping transformation (sce
Figure 7). The chart is put in a special Terture view. The
current chart and the selected points are highlighted in all
the views.

3.2.2. Data structures.

To compute the texture mapping inside a face, the posi-
tions in the texture plane of all of its vertices are needed.
Then, the rendering is computed using an algorithm simi-
lar to color calculation for Gourand shading [11, 20]. Since
local discontinuities are allowed along edges, a vertex may
have as many 2-D positions as there are faces adjacent to
it. Thus, an atlas depends on the location in the texture
plane of the angles (v;, f;) where v; is a vertex belonging
to face f; (see Figure §.a). To avoid redundancies, angles
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are regrouped in sectors: sets of connected angles for which
the mapping function is continuous (see Figure 8.b). The
mapping function is then defined by a position in the tex-
ture plane for each sector. Al! sectors belonging to the
same vertex are stored in a linked list. Pointers to thelist

heads are stored in an array associated with the 3-D ver-
tices of the surface. Access to a sector and data structure

modifications can be computed in almost constant time.

 
Fig. 8.b: The charts,
involving three sectors.

Fig. 8.a: A vertex on
the 3-D polyhedron.

Fig. 8: Case of a vertex corresponding to three sectors and
six angles.

3.2.3 Interactive functions.

To modify an existing atlas, the user is provided with sev-
eral types of interactive functions which operate in the tex-
ture plane.

Positioning functions let the user adjust the scale,
stretch, angle and position of the whole atlas or of each
chart using linear transformations. Finer-grained opera-
tions are obtained by selecting only a group of sectors. A
function to align a set of sectors in the z or y direction is
also provided. This simple function is very useful when one
wants the edges of the charts to exactly match the border
of a texture.

The constraint function marks sectors for the optimiza-
tion procedure. Sectors can befixed in z, y, or along both
axes. With this function, one can adjust sectors in the
mapped image so that a specific pattern lies precisely on a
given place of the surface, and let all the rest of the texture
be optimized.

The cut function defines discontinuities in the charts.

Cuts can be seen as the snips of a tailor’s scissors inside
the piece of material that may stretch or shrink during the
optimization procedure. The user gives a path along the
edges which must not self-intersect. The chart is then possi-
bly separated into several charts, or may be only internally
cut.

The merge function reconnects charts along a given
path. Faces connected do not necessarily belong to differ-
ent charts. The user can either select the connection path,
or pick two charts and let the program find the common
edges and the best displacement to attach the first chart to
the second.

‘The optimization function improves the charts, taking
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into account the user specified constraints, Parameter a of

the energy can be adjusted for special cases.

Note the difference between the constraint and the merge
function: using the constraint function, one may fix sectors
together corresponding to the adjacent path of two charts,
producing the same visual result in a texture space as a
merge between these two charts. But a call to the opti-
mization function will lead to different results:

« when the charts haye been merged, the optimization is
performed on the resulting charts and globally reduces the
distortion. The sectors belonging to the common path may
have moved during this process.

es on the other hand, when the sectors of the common

path have been fixed together, two optimization processes
are performed independently, one for each chart, keeping
the fixed sector in the same position in the texture space.

4 Applications in the field of anima-
tion.

The tool we have described has been built principally for
static objects. Nevertheless, it appears that special effects
in animation could be obtained very easily.

One example consists in moving and distorting some
charts of the object. The result is a sliding texture onto
a fixed shape. For example, one can draw a scrolling text
onto any shape by simply translating down the chart of the
object.

Another example involves interpolated objects. In this
case, it is generally difficult to obtain a deformation that
mimics an elastic deformation. Optimizing the mapping
function with the criterion described previously can replace
the 3-d elasticity system by a 2-d optimization which is
simpler and faster. To obtain a realistic deformation of a
textured object, one has to optimize the chart of the un-
deformed object, then apply any geometric transformation
to it, and optimize again constraining the edge points not
to move. This constraint corresponds to the fact that the
piece of texture used for the object does not change with
time. We made a short test animation in which the defor-

mation was obtained by interpolating between key-objects,
and it appeared that the mapping function could also be
interpolated, thus requiring only a few optimizations, one
for each key.

5 Remarks on Figures.

Let us add some comments on the figures appearing at the
end of the paper:

* Figure 9 shows thedifferent effects obtained using cylin-
drical and spherical projections of a checkerboard as a tex-
ture mapping onto the Utah teapot. We also display the
same teapot textured with our tool, thus demonstrating
automatic creation of an atlas and the use of interactive

functions. Here the atlas is composed of four charts: the
spout, the handle, the cap and the body of the teapot. The
common boundaries of the cap and the body of the teapot
are fixed in the texture plane to ensure visual continuity
between the two charts. We see in this figure that the dis-
tortion is yery low.
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« The last two pictures illustrate the capabilities of at-
lases. Each shows geometrical objects whose atlases have
been split into several charts (4 charts per object).

6 Conclusion.

We have presented a method for measuring the deforma-
tion energy of the mapping of an image onto a surface. The
measure proposed here is an approximation of the integral
of the Green-Lagrange deformation tensor. It can be min-
imized in real time and gives accurate results.

We have also addressed the problem of segmenting a 3D ob-
ject in regions on which the mappingis not too distorted.
We solved the problem by introducing the concept of an
atlas together with interactive functions to edit and ma-
nipulate atlases and data structures which are efficient for
these operations, We described a method which for any
object automatically generates atlases, and we showed how
to efficiently merge charts on an existing atlas. Efficient
merging uses segmentation techniques based on curvature
and ultrametrics. Specific data structures are proposed to
handle atlasesefficiently.
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A Derivation of equation 5.

All norms on the vector space of 2 x 2 matrices being equivalent,
we take the Euclidean norm. It is basis independent because an: 1 ;
easy calculation shows that ||M|| = tr(M4‘M)%, tr being the
trace i.e. the sumof diagonal coefficients, Now
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B Computation of the curvature ma-

trix.

Let n; and s; be the projected normals and vertices on P, written
in the samebasis, G being the origin. By the definition of P,
the projection of N is the zero-vector. In a basis of the tangentoy XL a 6
plane, the curvature matrix is written as C = ( 5 . Wec

S> |lOss - nll?

; 2
We set ox = D> 877, ay = 30 s!°, ony = Do sifs!, and we get:
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Abstract

We describe an efficient method for constructing a smooth
surface that interpolates the vertices of a mesh of arbitrary
topological type. Norma! vectors can also be interpolated at
an arbitrary subset of the vertices, The method improves
on existing interpolation techniques in that it is fast, robust
and general.

Our approach ts to compute a control mesh whose
Catmull-Clark subdivision surface interpolates the given
data and minimizes a smoothness or “fairness” measure of
the surface. Following Celniker and Gossard, the norm we
use is based on a linear combination of thin-plate and mem-
brane energies. Even though Catmull-Clark surfaces do not
possess closed-form parametrizations, we show that therel-
evant properties of the surfaces can be computed efficiently
and without approximation. In particular, we show that (1)
simple, exact inberpolation conditions can be derived, and
(2) the fairness norm and its derivatives can be computed
exactly, without resort to numerical integration.

CR Categories and Subject Descriptors: 1.3.5 [Com-
puter Graphics]: Computational Geometry and Object
Modeling - curve, surface, solid, and object representations;
J.6 [Computer-Aided Engineering]: Computer-Aided Design
(CAD), G.1.2 [Approximation]: Spline Approximation.
Additional Key Words and Phrases: Computer-aided
geometric design, B-spline surfaces, subdivision surfaces,
thin-plate splines.

1 Introduction

The construction of smooth interpolating surfaces is becorn-
ing increasingly important in a number of applications in-
cluding statistical data modeling, interactive design, and
scientific visualization. Typical input to an interpolating
method is a collection of points to be interpolated, and a

"Work done while a summer intern from the University of Cal-
ifornia, Berkeley.

TWork done while on sabbatical leave from the University of
Washington.

Permission to copy without fee all or part of this material is granied
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
Publication and its date appear, and notice is given that copyingis by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

(1D 1993 ACM-0-89791-601-B/93/08/0035 501,50
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“mesh” that describes the connectivity of the points. Nor-
mal vectors are sometimes also specified at someor all of the
data. points.

If the shape to be modeled is a deformed plane, tech-
niques from function approximation, such as Clough-Tocher
interpolation [5], can be used. An advantage of the Clough-
Tocher interpolant is that the construction is local, meaning
that modification of a data point affects only a local portion
of the surface. However, a drawback of Clough-Tocher in-
terpolation is that there are typically remaining degrees of
freedom not directly constrained by the data. These extra
degrees of freedom are often set using local heuristics and
typically result in surfaces that are not “fair”, that is, sur-
faces having extraneous bumps and wiggles. Another serious
drawback to Clough-Tocher interpolation, and indeed to any
method that requires continuity of parametric derivatives
(so-called parametric continuity), is the inability to model
surfaces of arbitrary topological type (cf. Herron [8]). It is
not. possible, for instance, to model a sphere or a deformed
sphere using a Clough-Tocher interpolant.

Celniker and Gossard [3] recently presented an interpo-
lation method that extends Clough-Tocher interpolation by
setting the remaining degrees of freedom so as to minimize
a fairness norm. The fairness norm they use is quadratic, so
it can be minimized by solving a (sparse) linear system. As
a result, their method is fast enough for interactive design.
However, being based on Clough-Tocher interpolants, their
technique is not capable of describing surfaces of arbitrary
genus.

A number of interpolation methods appropriate for sur-
faces of arbitrary genus have been developed in recent years.
A survey of these can be found in Lounsbery et al. [10]. The
method developed by Shirman and Séquin [14] is a gener-
alization of Clough-Tocher interpolation to surfaces of arbi-
trary topology. The generalization is achieved by replacing
parametric continuity with first order geometric continuity
(continuity of tangent planes). Like Clough-Tocher interpo-
lation, Shirman-Séquin interpolants have degrees of freedom
not directly constrained by the data, and local heuristics
for setting these degrees of freedom have fallen well short of
producing fair surfaces (see Figure 4).

Last year Moreton and Séquin [11] presented a method
capable of producing fair interpolating surfaces of arbitrary
genus. They achieved this in much the same way as Celniker
and Gossard by solving a minimization problem usingfinite
elements. However, rather than using Clough-Tocher ele-
ments and a quadratic fairness norm, Moreton and Séquin
used biquintic Bézier patches and a fairness norm based on

a5
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intrinsic measures of curvature variation. The surfaces pro-
duced are the most impressive to date, but improved shape
and arbitrary genus are obtained at the expense of dramat-
ically increased running time. It appears that Moreton and
Séquin’s method is far too expensive for use in an inter-
active environment today (computation time is on the or-
der of hours). Another shortcoming of their methodis that
it constructs surfaces that are only approximately tangent
plane smooth since inter-patch continuity is modeled using
a penalty function added to the fairness norm. Finally, their
surfaces are only curvature continuous within each biquintic
patch.

Here we present a scheme that combines the speed of Cel-
niker and Gossard’s method with the ability to model tan-
gent plane continuous surfaces of arbitrary genus. We do
this by using a quadratic fairness norm similar to the one
used by Celniker and Gossard together with Catmull-Clark
subdivision surfaces. We show that Catmull-Clark surfaces

offer a number of advantages over previous methods based
on piecewise polynomial elements; these include;

® They are curvature continuous everywhere except at a
finite numberofisolated “extraordinary” points.

» The high order of continuity is obtained with very few
control points, meaning that the dimension of the space
over which the optimizer must search is far lower for
Catmull-Clark surfaces than for the method described

by Moreton and Séquin.

® They reduce to traditional bicubic B-splines when the
points to be interpolated form a regular rectangular
grid. It should therefore be possible to more smoothly
incorporate them into existing geometric modeling sys-
tems.

The use of Catmull-Clark surfaces presents some chal-
lenges, however. First, Catmull-Clark surfaces do not gen-
erally interpolate their control points, so to achieve interpo-
lation, a system ofinterpolation constraints must be solved.
The constraints relate the data points and normals to be
interpolated with points and normals on the final surface.
Formulating the interpolation constraints at first appears
problematic for a Catmull-Clark surface because the surface
is defined as the limit of an infinite number of subdivisions.
Weshow thatit is possible to derive closed farm expressions
for these constraints. A second challenge posed by Catmull-
Clark surfaces is that efficient surface optimization depends
on fast and reliable evaluation of the fairness norm and its
derivatives. We show that it is possible to evaluate the fair-
ness integral and its derivatives eractly, without resort to
numerical integration, even though Catmull-Clark surfaces
do not possess a closed form polynomial representation.

Figure 5 illustrates the basic idea of our approach. The
original mesh is shown in the upper left. Subdividing it us-
ing Catmull-Clark subdivision results in the surface shown
in the lower left. The surface approximates, but does not
interpolate the vertices of the original mesh. By solving the
system of interpolation constraints, we obtain a new mesh
which is shown in the upper center. Subdividing the new
mesh results in the surface in the lower center which does
interpolate the vertices of the original mesh. Unfortunately,
the direct application of the interpolation conditions to the
mesh causes undesirable undulations in the surface. To com-

bat this difficulty, we subdivide the mesh to add new degrees
of freedom, and we set these new degrees of freedom to min-
imize a fairness measure subject to the interpolation con-
straints. The resulting mesh is shown in the upper right of

36

 
Figure 1: Thesituation around a vertex v" of order n.

Figure 5 and the corresponding subdivision surface is shown
in the lower right. Note that minimizing the fairness measure
removes the spurious undulations introduced by the direct
application of the interpolation constraints.

The remainder of the paper is structured as follows. In
Section 2 we provide some necessary background on sub-
division surfaces in general, paying particular attention to
Catmull-Clark surfaces. In Section 3, we derive the linear
constraints on a Catmull-Clark mesh which guarantee that
the surface interpolates given points and normals. We also
show that applying these constraints directly to a mesh re-
sults in a surface which solves the interpolation conditions,
but is unsatisfactory because of spurious wiggles. Then,
in Section 4, we show how to reduce these artifacts by
adding additional degrees of freedom through subdivision,
and then setting them by optimizing a fairness norm based
on the membrane/plate energy. Several implementation de-
tails along with performance statistics are provided in Sec-
tion 5. In Section 6 we present a number of examples, and
provide some comparisons to previous methods. Finally, in
Section 7 we summarize our findings and describe several
avenues of future research.

2 Subdivision Surfaces

In 1974 Chaikin [4] introduced the idea of generating a curve
from a polygon by successively refining the polygon with the
addition of new vertices and edges. In 1978, Catmull and
Clark [2] and Doo and Sabin [6] generalized the idea to sur-
faces. In these schemes, an initial control mesh is refined
by adding new vertices, faces and edges at each subdivision
step. In the limit as the number of subdivision steps goes
to infinity, the control mesh converges to a surface. With
careful choice of the rules by which new vertices, edges and
faces are introduced, it is possible to show that the limiting
surface exists, is continuous, and possesses a continuous tan-
gent plane. The Doo-Sabin subdivision rules generalize the
subdivision rules for biquadratic B-splines, and the Catmull-
Clark subdivision generalizes bicubic B-splines. An example
of a Catmull-Clark surface of genus 3 is shown in Figure
3. A more recent method developed by Loop [9] general-
izes quartic triangular B-splines. We focus on the Catmull-
Clark scheme primarily because of the popularity of bicubic
patches, however, much of the analysis we present is appli-
cable to a wide class of subdivision schemes including those
of Doo-Sabin and Loop.

When dealing with spline surfaces it is often helpful to
maintain the distinction between global and local control
meshes. By a local control mesh, we mean a subset of the
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global mesh that influences a local region of the surface.
Toward this end we use carets to denote global quantities.

Let M° denote the initial mesh, and let M* denote the
mesh produced after i applications of the Catmull-Clark sub-

division step. To describe the i+ 1-st subdivision step, con-
sider the neighborhood of a vertex v' of M* surrounded by
n edge points e},...,e),, and m faces, as shown in Figure 1 for
i = 0. Such a vertex is said to be of order n. As indicated in

Figure 1, a new face point f{*",..., fi7! is placed at the cen-
troid of each face of M’. Each newvodlige point eft}... eft) is
then computed by taking an average of surrounding points.
Specifically,

i. Ut+ethithey =SS
where subscripts are to be taken modulo mn. Finally, a new
vertex point v'*! is computed as

The Catmull-Clark subdivision process is such that:

e The surfaces can be of arbitrary genus since the subdi-
vision rules can be carried out on a mesh of arbitrary
topological type.

After the first subdivision step all faces are quadrilater-
als.

Except at extraordinary vertices (vertices of order n #
4) the limiting surface can be shown to converge to a
bicubic B-spline. The surface is therefore curvature con-
tinuous except at extraordinary vertices.

« The number of extraordinary vertices is fixed, and is
equal to the number of extraordinary vertices in AZ',
the mesh produced after the first subdivision step.

e Near an extraordinary vertex the surface does not pos-
sess a closed form parametrization; it consists of an infi-
nite number of bicubic patches that converge to a limit
point. The surface can be shown to have a well defined
tangent plane at the limit point, but the curvature there
is generally not well defined [1].

3 Interpolation using Subdivi-
sion Surfaces

Given a mesh Jof arbitrarytopological type, the idea is
to generate a control mesh Mf such that. the subdivision
surface it defines interpolates someorall of the vertices of i
It is also possible to constrain the surface to have a specified
normal at each interpolation point.

Nasri [12] generates interpolating surfaces using the bi-
quadratic formulation of Doo and Sabin [6]. Like biquadratic
B-splines, Doo-Sabin surfaces interpolate the centroid of
each face in the control mesh, Thus a linear constraint on

the control vertices can be generated for each interpolation
Point and the resultant system solved for the desired control
mesh’, It appears that Nasri had no simple formulation for
the surface normal at the centroid, and so was unable to
specify normals at these points.

Although Nasri does not mention it, it is possible for the
Coefficient matrix in the linear system to be singular.

a
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To generate interpolating surfaces for other subdivision
schemes we need a method of determining the position and
normal at a set of points on the limit surface. Because the
surface is the result of repeated application of a subdivision
step, we can analyze the behavior of a small neighborhood
of points as they converge to the limit surface in order to
determine the surface properties at the point of convergence.

3.1 Interpolation Conditions

After one subdivision step there arises an arrangement of
vertices that persists (i.e. the same topology will be observ-
able) for any number of subsequent subdivisions. To analyze
the limiting behavior of the surface near a vertex it is there-
fore convenient to introduce a matrix that describes the sub-

division process locally, that is, in the neighborhood of the
vertex [6]. It is not necessary to compute local subdivision
Matrices in practice; they are simply tools used to derive
formulas describing the limiting behavior of the surface.

Let v* be a vertex of order nm of the mesh M, let Vi =
(vt el, .,05, fi,fa) be the column vector of vertices in
the neighborhood of v’, and let V+! be the corresponding
column vector of points in the neighborhood after subdivi-
sion. Since the points in V;{*! are computed by linear com-
binations of the points in V{, we can use a square matrix 5,
to express the subdivision:

vitt = 8. Vi.

For instance, for Catmull-Clark surfaces the matrix Sy is

ae ae ie ae a ae
66i6i1i10606i
616101100

, |6021610i11 0
Si=y+|6 10160011444004000

404400400
400440040
440040004

Repeated subdivision is expressed by repeated multiplica-
tion and hence powers of S,, so

441 _ giz!
m. =5,V,-

The properties of the limit surface will be poverniedby the
properties of V,i*" as i approaches infinity. Since V7? is the
image of V, under Si, the eigenstructure of S, naturally
plays a keyrole.

In Appendix A we analyze the behavior of the limit sur-
face in terms of the matrix S, by building on the analytical
techniques of Doo and Sabin {6] and Ball and Storry [1]. Like
Loop [9], we find that the positions and normals of the limit
surface can be expressed explicitly in terms of the vertices
of the control mesh. However, whereas Loop's analysis was
peculiar to his subdivision surfaces, our analysis applies to
any subdivision scheme whose local matrix S, satisfies the
conditions listed in Appendix A. In particular, our analy-
sis exposes the following simple dependence between the left
eigenvectors of 8, and limit points and normals.

Let Ai > Az > Ag be the three largest eigenvalues of 5,
and let [),l2,l3 be the corresponding left eigenvectors. In

eeA we show that a point v! having a neighborhoodconverges to the point

vy =h-V} (1)
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and the normal vector to the surface at vy™ is given by

N? = C2 % cg (2)

where cg = lo + V;! and cg = Ig - V;), and where “x” denotes
vector cross product. Explicit formulas for l,,l2 and Ig for
Catmull-Clark surfaces can be found in Appendix A.

Equation 1 provides an interpolation condition that is lin-
ear in the control points of V;, but Equation 2 at first
appears to impose a quadratic constraint on V;!’s control
points. Fortunately, we can require a surface to have a given
normal vector N, using the following two linear constraints:

N-ee=0 and N-c3=0 (3)

In addition to providing interpolation constraints, the
limit point and normal vector formulas can also be used
to compute exact points and normal vectors on the surface
for use during rendering [9]. The color images (Figures 3
through 7) have all been computed this way.

3.2 Solving the Interpolation Problem

Ignoring the interpolation of normals for the time being, we
can use the interpolation condition in Equation 1 to compute

a control mesh M° with the property that the subdivision
surface it defines interpolates the vertices of a given mesh J.
It is natural to do this by selecting M°to have the same mesh
topology as i, that is, the same number and connectivity of
vertices, faces, and edges. This approach leads to a square
linear system of the form

Ar=b6 (4)

where z is the column vector of the unknown vertex coor-
dinates in M®°, and 6 is the corresponding column vector
of vertex coordinates of f. The rows of the square matrix
A are determined by the interpolation conditions and mesh
topology. In some cases, the matrix A is singular, so we use
a least-squares solution to Equation 4, An example is shown
in Figure 5. The original mesh is shown in the upperleft.
Subdividingit according to the usual Catmull-Clarkrules re-
sults in the lower-left surface which approximates, but does
not interpolate the vertices of the original mesh. By solving
Equation 4, we obtain a new mesh which is shown in the
upper center. Subdividing the new mesh according to the
usual Catmull-Clark rules gives the surface in the lower cen-
ter which does interpolate the vertices of the original mesh.

4 Fairing
The surface in the lower center of Figure 5 is curvature con-
tinuous almost everywhere and interpolates the vertices of
the original mesh. Nonetheless, for many purposes it is an
unsatisfactory interpolating surface because of its excessive
undulations. These undulations appear to be artifacts of
the interpolation process since they are not indicated by the
shape of the original mesh. For example, the surface has
a number of concavities where the original mesh is convex.
Note that some of the undulations are present in the ordi-
nary approximating Catmull-Clark surface, but they have
become more severe and objectionable in the interpolating
surface. This difference is typical of interpolating and ap-
proximating surfaces,

Nothing in our formulation of the interpolation conditions
in Section 3 prohibits or discourages undulations in the sur-
face, so this type of behaviour should not be surprising, In

an

order to improve the quality of the interpolant, we introduce
additional degrees of freedom into the surface by subdivision,
and then set the degrees of freedom by optimizing a fairness
norm on the surface subject to a set of linear constraints
given by the interpolation conditions.

4.1 Evaluating the Fairness Norm

Celniker and Gossard [3] were able to improve the quality
of interpolating surfaces using a fairness norm based on a
linear combination of the energy of a membrane and a thin
plate. Without any fundamental changes, the norm can be
given directional preferences and nonuniform weighting over
the surface, but for clarity of presentation, we consider the
isotropic uniform case:

E(W) = oBm(W) + BEp(W) (5)

where E,,(W) and E£,(W) denote the membrane and thin-
plate energies respectively:

//Wall? + Wall? du dv
// Wall? oe 2|Wuw (|? + Wow |? du du,

Em(W)
|

E,(W)
lI

and where W(u,v) = (z(u,v), y(u,v),2(u,v)) is a paramet~
ric representation of the surface, where subscripts on W rep-
resent parametric derivatives, and where a and 3 arefreely
selectable weights.

Since the membrane/plate norm is defined in terms of a
parametric representation of the surface, it cannot be di-
rectly applied to Catmull-Clark surfaces since in general
they have no “natural” parametrization near extraordinary
points. The remainder of this section describes how we ex-
tend the definition of the norm in a way that can be used
with Catmull-Clark surfaces. As we show below, the ex-
tended norm will be constructed to be quadratic in the con-
trol points of the mesh. The optimization can consequently
be performed quickly without iteration by solving a linear
system. Moreover, there is a unique minimum since the Hes-
sian of the norm is symmetric and positive definite.

The membrane/plate norm can be evaluated without
modification on a bicubic patch W as follows. First, we
note that the norm can be written as HF = BF, + Ey + E,,
where E, depends only on the x component of W, E, only
on the y component and E. only on the z component of W,
Let P, be a 16-element column vector of positions of the z
coordinates of the control points W. Figure 2(a) schemati-
cally depicts a 16 element contro! net and the bicubic patch
it defines. The # component of the fairness norm for the
patch can be expressed as

E, = PI -K-Ps (6)

where the entries of the 16 x 16 matrix K can be computed
exactly from the integrals in Equation 5 for bicubic B-spline
basis functions. Similar formulas hold for the y and 2 com-
ponents.

Figure 2(b) depicts a mesh that includes an extraordinary
point. The region of the limit surface corresponding to the
central face in the mesh is shown at the center bottom, but
the limit surface is not in general a parametric polynomial,
so we cannot directly apply the membrane/plate norm used
above for a bicubic mesh. However, we can subdivide the
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mesh in Figure 2(b) to obtain the mesh in (c). After sub-
division, the limit surface is divided into four subpatches.
Three of these subpatches (shown shaded in (c)) are bicubic
B-splines, so on these patches we can in principle evaluate
the fairness norm exactly. By repeating this procedure we
can write an infinite series for the fairness norm of the origi-
nal extraordinary patch of Figure 2(b). In order to fully de-
fine the series, we must choose a parametrization for each of
the B-spline subpatches during subdivision. Unfortunately,
the most straightforward way to assign the parametrizations
causes the infinite series for the thin plate energy to diverge
(see Appendix B).

There are several methods that could be applied to over-
come the problem of the divergent series. For instance, we
might try to find an alternate method of parametrizing the
subpatches that leads to convergent sequences. We are cur-
rently investigating this possibility, but we have found that
the following method gives good results. Intuitively, we in-
tend to modify the thin plate energy so that it integrates
to zero for surface patches defined by planar and “regular”
control meshes. For a bicubic mesh it is relatively clear
that a regular mesh is one that is an affine image of Fig-
ure 2(a) since such a mesh has vanishing second derivatives.
As shown in Appendix B, it is possible to generalize the
notion of regularity for meshes containing an extraordinary
vertex. It is also possible to measure the deviation of an
arbitrary mesh of control points P from it’s regular compo-
nent P’. We therefore define the modified thin plate energy
of P to be the thin plate energy of P — P'. In symbols, the
norm we use can be written as

E(P) = a2y,(P) + BE,(P — P’). (7)

We have written this norm as a function of the control
mesh P rather than the limit surface that P defines. This is

to emphasize that the norm is not, strictly speaking, a prop-

erty of the limit surface. It is more appropriate to think
of Equation 7 as a norm on meshes, because it is not gen-
erally the case that E(P*) = E(P™*!) where P* and P*+}
denote the mesh after i and +1 subdivisions, Although this
might be considered a theoretical deficiency, it has posed no
difficulties in practice.

Using the modified norm, the infinite series is a conver-
gent geometric series, so we can express its limiting value
analytically. Appendix B contains the relevant details, but
the result is that we can exactly compute the entries of a
new quadratic form K,, that can be applied around an ex-
traordinary vertex of order 1.

Now that we have defined the local fairness norm for
patches surrounding extraordinary patches, we define the
global fairness norm as the sum of the fairness norms over
each of the patches using the standard membrane/plate
norm for bicubic patches and the modified norm of Equa-

tion 7 for extraordinary patches. We can write the global
fairness norm as P™KP where K is a sparse matrix obtained
from the various KX, by iterating over the individual vertices
and collecting the entries into a global system, and where P
is a column vector containing the x,y and z coordinates of
the control vertices in the global mesh 7°.

4.2. Minimizing the Fairness Norm

Since we have a global expression for the fairness norm, we
are now in a position to express and solve the minimization
problem. Given a mesh J with ¢ vertices, r of which are

a
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(a) (b) (c)

Figure 2: (a) A regular control mesh (above) which gener-
ates a bicubic B-spline patch on the limit surface (below),
(b) A control mesh with an extraordinary point (above),
and the extraordinary surface patch it defines (below). (c)
The contro! mesh after one subdivision (above), and the four
subpatches after subdivision (below). The three bicubic sub-
patches are shaded gray, and the remaining extraordinary
subpatch is shaded white.

constrained to have a specified limit point and s of which
are constrained to have specified normals, we seek the vec-
tor of 3t vertex coordinates P such that the limit surface

satisfies the ar+ 2slinear interpolation conditions and the
fairness norm P7KP is minimized overall possible P.? Be-
cause the constraints are linear and the norm is quadratic in
the unknowns, this problem can be solved directly without
iteration.

If we have only positional constraints, the x,y and z com-
ponents of the mesh are independent, so the whole problem
decouples into three completely independent optimizations,
one for each component of the mesh. If normal vectors are
to be interpolated, the 2,y and z components of the mesh
are no longer independent, so the problem must be solved as
a single optimization. Even so, the x,y and z components
of the mesh remain nearly decoupled (in the sense that the
linear system is block diagonal except for a few off-diagonal
terms) and sparse matrix methods exist that can exploit this
fact [7].

The r position constraints and s normal constraintson the
t mesh points can be represented by the equation BP = D
where B is a (87 +25) x 3¢ matrix and D is a vector of length
3r+2s. Let C be the 3¢by | matrix whose columns span the
null space of B andlet Py be any vector satisfying BPy = D.
Thenall P which satisfy the interpolation constraints can be
written in the form Py + CR for somel-vector R. Therefore
we wish to find the vector R that minimizes:

(P+ CR)” K (PB, + CR) =
RTCTKCR+2R™C’KE + PKI).

Kis symmetric and positive definite, so R is found by setting
the gradient of this function to zero;

c’KCR+C'KAR =0. (8)

*Hachof the £ vertices has three coordinates, so the total num-
ber of unknowns is 3¢. Each position interpolation constraint
Imposes three conditions, one per coordinate, and each normal
vector Constraint imposes the two conditions in Equation 3.
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5 Implementation

For simplicity and speed, our current implementation of the
fairing process uses only positional constraints and exploits
the fact that the linear systems for 2, y and z decouple in
this case. As a result, the implementation is able to compute
the minimum energy mesh by solving three linear systems,
each involying one third as many variables as Equation 8.
To further speed the computation, each of these systems is
solved using sparse-matrix methods.

Given a mesh J whose vertices are to be interpolated, we
must first choose the structure of the mesh M® whose ver-
tices we compute. Our current implementation chooses M°
to have the structure that would result from subdividing J
twice. This choice has two benefits. First, it adds enough
extra degrees of freedom for the fairing to be effective. Sec-
ond, it places enough new vertices between the interpola-

tion points to_ensure that the interpolation conditions for
all vertices of J are independent, making the construction of
a sparse representation of the required null space easy.

Since we are considering a single component x, y or z ata
time and not allowing normal constraints, we can still write
the interpolation conditions as BP = D but now Bis anrxt
matrix and D is a vector of length r. We compute a sparse
set of null-space vectors for B as follows. Suppose the ith
row of B has k non-zero entries in columns (aj, a@2,-.., a).
Because of the way the positional constraints decouple after
two subdivisions, all other entries of B in those k columns
are zero. As a result, it is an easy matter to find k—1
independent null-space column vectors which are zero ex-
cept in rows (a),a@2,..-,@%). Collecting these for each row
of B yields a collection of sparse vectors that completely
span the null space of B unless B contains zero columns. If
(61, 62,...,8m) are the zero columns of B, we complete the
null space by adding the m vectors Q,, 1 < s < _m where Q,
is one in the b,th entry and zero elsewhere.

In addition to the null space, we need a feasible mesh
> which satisfies the constraints. We construct this mesh
as follows. For each row 7 in B, with non-zero entries

in columns (a,,4@2,...,@%), set the entries of Fy at indices
(a1, @2,...,@%) to D; and set any remaining entries of Po to
zero. Then since all the rowsof B sum to one, the resulting
Po will solve the equation BP; = D.

Finally, given the null space basis C and the feasible mesh
Fy, we compute the minimum energy mesh by solving Equa-
tion & three times using sparse LU decomposition, once for
each component of the mesh. If the mesh is a regular square
grid, the bandwidth of the linear system will be O(,/n), and
the linear system will take O(n*) time to solve. The running
time is more difficult to analyze for general meshes, but the
times we have observed to date are consistent with O(n")
performance,

6 Results

Figure 5 shows the complete process of interpolation and
fairing. The original mesh is shown in the top left. The
interpolating mesh is shown at top center. The faired, in-
terpolating mesh is shown at top right. Below each mesh
is the corresponding Catmull-Clark limit surface. Note that
the spurious undulations in the interpolating limit surface
are greatly reduced in the faired interpolating surface. The
additional subdivisions in the faired interpolating mesh pro-
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vide the degrees of freedom necessary to do this. For the
examples presented in this paper, we set a = 0 and @ = 1.

Often it is desirable to fair only a local region of the sur-
face, either to have more control over the fairing or because
the number of vertices in the control mesh is large. In this
case we select a subset of control vertices that are free to

move and compute the solution to the constrained minimiza-
tion over the surface patches affected by this set. Figure 6
illustrates this process. The user has selected a subset of
52 vertices that are allowed to vary during the minimization
process. These vertices are highlighted in red. Other nearby
vertices which influence the minimization, but are not al-
lowed to change, are shown in magenta, After fairing, the
undulations in the faired region have been reduced, but they
persist in the unfaired regions. In this case, the fairing took
-18 seconds on an SGI Crimson workstation.

Lounsbery et al. [10] have done a survey of the previously
published interpolation methods and found that existing lo-
cal interpolation schemes do an unsatisfactory job of con-
structing fair surfaces, even for the simple cases such a data
sampled from a torus. To facilitate comparison with these
methods, we have run our algorithm and a representative
local interpolant, that of Shirman and Séquin [14], on the
same coarsely sampled toroidal data set. The results are
shown in Figure 4. The upper left shows the original mesh
used as input for the interpolants. The upper right shows
the surface produced by the Shirman-Séquin algorithm, The
edd looking specular highlights in the Shirman-Séquin in-
terpolant point out some interpolation artifacts which are
typical of local methods. Global methods tend to have a dif-
ferent appearance, The surface in the lower left of Figure 4 is
a Catmull-Clark surface that interpolates the original mesh
using the methods of Section 3. This surface has different
(lower frequency) artifacts than the Shirman-Séquin inter-
polant, but they are nonetheless objectionable. The surface
in the lower right is an interpolating faired surface computed
using our method, The surface has no visible artifacts, an
observation confirmed by examining the surface from other
viewpoints. The implementation took 36.5 seconds to fair
the entire 600 point mesh at once on an SG] Crimson work-
station,

The result of applying the interpolation algorithm to a
more complicated model is shown in Figure 7. The origi-
nal mesh is shown at the far left. The left center shows the

ordinary approximating Catmull-Clark surface. Note the ar-
tifacts throughout the stem and where the stem meets the
base. These artifacts are accentuated in the interpolating
Catmull-Clark surface shown in the right center, In ad-
dition, the interpolating surface shows severe overshoot at
the bottom of the stem. This type of overshoot is typical
of interpolation without fairing. The far right shows the
faired interpolating Catmull-Clark surface computed using
our method. The artifacts along the stem and where the
stem joins the base have been removed. Fairing the 1273
point mesh took 127.8 seconds on an SG] Crimson worksta-
tion.

7 Conclusions

We have described an efficient method for constructing fair
surfaces that interpolate the vertices of a mesh of arbitrary
topological type; normal vectors can also be interpolated
at an arbitrary subset of the vertices. Our approach is to
compute a control mesh describing a Catmull-Clark surface
that interpolates the given data and minimizes a quadratic
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norm that combines thin plate and membrane energies.
Our method improves on previous techniques by com-

bining many of the strengths of the methods described by
Celniker and Gossard and by Moreton and Séquin. Like
Celniker and Gossard, we use a quadratic norm to achieve
practical fairing at interactive rates. Like Moreton and
Séquin, we use a representation capable of modeling arbi-
trary topological surfaces. In addition, the Catmull-Clark
representation we use provides improved surface continuity
with remarkably few degrees of freedom. Morespecifically,
Celniker-Gossard surfaces meet with only tangent plane con-
tinuity along patch boundaries, and those of Moreton-Séquin
meet with only approximate tangent plane continuity. Our
surfaces, in contrast, are curvature continuous everywhere
except at a finite numberof isolated points.

Our work also provides two new analytical tools for an-
alyzing and manipulating subdivision surfaces: limit point
and normal vector analysis based onleft eigenvectors of the
local subdivision matrix, and a method for developing exact
formulas for evaluating quadratic membrane/plate function-
als and their derivatives.

As a topic for future research, we plan to investigate using
the surfaces produced by our method as a starting point for
minimizing the intrinsic “MVS" norm developed by Moreton
and Séquin. We are also interested in developing subdivision
schemes that are curvature continous everywhere.
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Appendix

A Properties of the Limit Sur-
face

To develop formulas for limit points and normals on sub-
division surfaces, we examine the eigenstructure of the lo-
cal subdivision matrix 5, associated with the subdivision
scheme. (Some of the following analysis appears to have
been developed independently by Sabin [13].)

Let m = 2n +1 denote the size of Sy, and let Ay > Az >
1. & Am denote the eigenvalues of S, with corresponding
right eigenvectors ri,....Tm and left eigenvectors fi, ...,lm. If
S, is not defective, the right eigenvectors form a basis, and
the left eigenvectors can be chosen so that (cf. Golub and
Van Loan[7|)

leery = 845. (9)

Thus, assuming that S, is not defective, the neighborhood
Vi can be expanded uniquely as

Vi = cry +--+ mtn (10)

where the c’s are geometric position vectors and where the
r's are column vectors of scalars. The cx, k = 1,...,m can
be determined by dotting both sides of Equation 10 with I
and using Equation 9:

le Van = Calica tees cele Meet Ombk Tm = Ce. (11)

Using this expansion of V;),

Vi = SiV = Merry to + AGmtm:

For a non-trivial limit to exist as i — oc, it is necessary for
the magnitude of the largest eigenvalue A; to be 1. In this
case,

Ve := lim Va SOT) = (4 ' Va) ry

For a subdvision scheme to beaffine invariant (that is, inde-
pendent of the coordinate system in which the calculation is
performed), the points of M‘*! must be affine combinations
of the points in M*, meaning that each of the rows of S,_
must surm to one. In matrix form:

Sn (Liens 1)? = (1,.,1)7.

In other words, the column vector of 1's is the eigenvector ry
associated with eigenvalue 1. Since r; is a column vector of
I's, every point in the neighborhood converges to the point

a=h:v (12)

di
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on the limit surface. Stated more formally, we have proven
that:

Proposition 1: A point v' of M' with neighborhood V;
and loca] subdivision matrix §,,, converges to the point

v=h-V,

on the limit surface where 1; is the left eigenvector of S,
associated with eigenvalue 1, assuming that 5, satisfies the
following conditions:

i) S, is not defective.
ii) S,, describes an affine invariant process.
iii) The magnitude of the largest eigenvalue is 1 and it has

multiplicity 1.

Using a discrete Fourier analysis similar to the one de-
scribed by Ball and Storry [1], one can show that for
Catmull-Clark surfaces the above conditions on S,, hold and

that ia 2
h= nn+5)(n°, 4,..,4,1,.-,1),

meaning that

= ret4yie +hii
= n(n + 5) (18)

Equation 13 can be used as an interpolation condition on the
points of M' by setting v™ to a point to be interpolated.
Note that the interpolation conditions are on the vertices
of M', not on the vertices of the initial control mesh M°,
since the analysis above requires that each face has exactly
four edges. This apparent restriction poses no problem in
practice since fairing requires the extra degrees of freedom
present in M*.

To develop an interpolation condition on normal vectors,
we must determine the normal vector (if it exists) to the limit
surface at v™. This normal vector can be simply computed
from the eigenstructure of S,, as indicated by the following
proposition.

Proposition 2: The normal vector to a subdivision sur-
face at a limit point uv corresponding to a vertex v' whose
neighborhood is M! is the vector

N™ = eg x 3

where cg = Ie -M and ¢3 = I3- Mm, assuming that the local
subdivision matrix S, satisfies the conditions of Proposition
1 in addition to:

iv) The eigenvalues \) = 1 > Az... are such that Ag = A3 >
Aa.

Proof sketch: The general idea behind the proofis to show
that there is a common plane to which all points in the
neighborhood are converging. The vector N™ will then be
chosen to be perpendicular to this plane. Let uj denote the
vector from o™ to the j-th point pi of the neighborhood M*.
Roughly speaking, if a common plane exists, then it should
be possible to find an expression for a vector N™ that is
perpendicular to each of the w}’s in the limit i + oo. Stated
as an equation, we might seek a vector N™ such that

N* -u} +0
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for 7 = 2,...,m as t— oo, This does not quite work, how-
ever, because each u} is approaching the zero vector, im-
plying that the above condition would trivially hold for any
vector N™. This problem is overcome by considering the
unit vectors i}. Thus, we seek a vector N° such that

N™ ii, +0

for j = 2,...,m as t+ oo.

Uf rj, denotes the entry in the j-th row of r,, then
!

aw py
\|p} — v|

A* (carj2 + esis) + Akcarsa ++:
A*(carja + cars) + Agearia ++ ||

 

At
(c2rj2 + carjs) + Zhearya ++:at

[(cerj2 +esrj3) + Feearya +>: ||

In the limit as i — co,

* a Cotj2 + Cary
a? = lim # =Sess= ; 14

woo 7 lear32 + earjall| (14)
Equation 14 implies that each of the limiting unit vectors
uz, 7 = 2,...,m is a linear combination of the vectors ce
and cg. All the vectors i}? must therefore lie in the plane
spanned by cz and cs. The normal vector N™ we seek is
therefore cop x cy. OF

Again using a discrete Fourier transform technique, one
can show that for Catmull-Clark surfaces,

_ 4+ An
A:=Ag=As 16

 

ca = An cos (2yet + (cos (222) + cos (28+ 15)1 ct

where

An = 1+608(=) + 008(7)4/2(9 + 608 (=2)).
The vector cy is obtained from ¢2 by replacing e} with e},,
and f} with f},1-

B Integrating the fairness func-
tional

In this appendix, we consider the problem of evaluating the
fairness norm of Equation 7 for a patch whose local control
mesh P contains an extraordinary point, such as the one
shown in Figure 2(b). As motivated in Section 4, we will
ultimately evaluate only the non-divergent part of the thin
plate energy corresponding to the deviation of P from its
regular component P'. As we show below, it is not neces-
sary to compute P’ explicity, so we will for the time being
evaluate the energy of P,

The quadratic form K referred to in Equation 6 can be
written as a weighted sum of two quadratic forms K,, and
K,, representing the membrane and plate energies, respec-
tively for a bicubic patch:

K = aKyn + BK.
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Let E(n, P,7) denote the fairness norm of Equation 7 in-
tegrated over a patch containing at most one extraordinary
point of order n whose local mesh is described by the column
vector of control points P, and whoselevel of subdivisionis j.
As outlined in Section 4, when n # 4, we evaluate E(n, P, 7)
by splitting the patch into four subpatches, three of which
are ordinary (shown in gray in Figure 2), and one of the
same form as the original. the This leads to the following
recurrence relation for E(n, P, 7):

B(4,P,j)=P* (oKm +4’BKp) P3

B(n, Pj) = S_ E(4,MP,j +1) + En, MP, 75 +1)k=1

where ,,{@2,93 are matrices that carry P into the local
meshes for the ordinary (shaded) subpatches, and where Q4
is the matrix that carries P into the local mesh for the re-
maining (unshaded) extraordinary subpatch.

The factor of 4? in front of K, reflects the change of in-
tegration variables when a patch is subdivided j times. The
choice of powers of 4 is somewhat arbitrary. It corresponds
to the parametrization assigned to the bicubic subpatches
created when the extraordinary patch is subdivided. We
have chosen powers of 4 since it is the correct factor for
bicubie patches. We are, however, currently experimenting
with methods to select this factor based on n.

The above recurrence can be unrolled to produce an infi-
nite series for E(n, P,0):

on 8

E(n, P,0) = S>S > B(4, M03" P, 3)j=1 k=1

which can be written as

E(n, P,0) = P7K,.P
where

Kn = >(05-")?(Km + #Kp)O",
7=1

and where ;
Kin =)aiKm,k=1

3

K, = es BOTK,M.k=1

The limiting value of the series can be found by expanding
{4 in its basis of eigenveetors:

%=XKAX*

where A is a diagonal matrix containing the eigenvalues of
O4, and where the columns of X are the corresponding right
eigenvectors. Without loss of generality we can assume that
the eigenvalues appear in decreasing order down the diago-
nal. K,, can now be written as

K, = x7 feartatiacatbacj=)
 

Kin

Te {s- 4iA7-*X?™K,XAT! aHj=1

K,
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Since A is diagonal, the ab-th entry of Kim is

(Kmn)ab = (X7KimX)ab9(Aaa)?*(Aoe)?.
j=l

The above series is geometric, so if AauAn, < 1, it converges
to -_

(XTRnX)os
iNaaAw :

Using arguments as in appendix A, it can be shown that the
largest eigenvalue of M4 is one, meaning that the product
AgeAss is at most one, and this occurs only when a =6= 1.
The membrane energy is invariant under translation, which
is reflected in the fact that (X’KmX)i1 is zero; hence
(Km)i1 =0.

A similar analysis for K, shows that

(Km)ab =

(Kp)as = 4(X7KpX)an 549"(Aga)(Age)?
j=l

Thus, (Ky)ab is finite whenever 4Agu Ans < 1. The factor
4AjaAp, can be shown to be one or larger when 1 < a,b <
3. Just as for the membrane energy, the 11 entry poses no
difficulty since (K7K,X);,; = 0, indicating that the thin
plate energy is invariant under translation.

The remaining 8 entries of K, are unbounded for n > 4.
When n = 4 (ie., the ordinary case), 4AcgaAu, = 1, yet we
know that the entries of K, are finite since bicubic patches
have finite thin plate energy. We therefore conclude that
for n = 4, (Kp)as = 0 for 1 < a,b < 3. This reflects the
fact that regular control meshes have zero thin plate energy-
To generalize this idea to arbitrary mn, we simply set the
remaining 8 divergent terms to zero, which is equivalent to
evaluating the norm on P — P’.

To summarize, the quadratic form related to the thin plate
energy is taken to be

= A(X7*K, Xa(K)v=4TaanenaeANaoAw <1
0 otherwise

3
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Figure 3: Upper Left: Tetrahedral mesh with holes. Up-
per Right: The mesh after one Catmull-Clark subdivision.
Lower Left: The mesh after two subdivisions. Lower Right:
The limit surface.

<< ¢
(<I

Figure 5: Top row: Original mesh, Interpolating mesh,
Faired interpolating mesh. Bottom row: Corresponding
Catmull-Clark surfaces. Interpolation introduces wiggles
which are removed byfairing.
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Figure 4: Interpolating a coarsely polygonized torus. Up-
per left: original mesh. Upper right: Shirman-Séquin
interpolation{14]. Lowerleft: Interpolating Catmull-Clark
surface. Lower right: Faired interpolating Catmull-Clark
surface.

 

 €
Figure 6: Lower left: unfaired interpolating surface. Up-
per center: Interactive fairing. Red vertices are allowed to
move. Magenta vertices influence the minimization, but re-
main fixed. Lower right: Result after fairing.

 
Figure 7: From left to right: Original goblet mesh containing 190 vertices. Ordinary Catmull-Clark surface (approximating).
Interpolating Catmull-Clark surface. Faired interpolating Catmull-Clark surface. The far right surface interpolates the
original mesh without the artifacts present in the middle two surfaces.
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Abstract

We describe an algorithm for continuously producing a
3x3 rotation matrix from 9 changing input values that
form an approximate rotation matrix, and we describe the
implementation of that constraint in analog VLSIcircuits.
This constraint is useful when some source (e.g., sensors, a
modeling system, other analog VLSI circuits), produces
a potentially “imperfect” matrix, to be used as a rota-
tion. The 9 values are continuously adjusted over time to
find the “nearest” true rotation matrix, based on a least-
squares metric. The constraint solution is implemented in
analog VLSI circuitry; with appropriate design method-
ology [Kirk 93], adaptive analog VLSIis a fast, accurate,
and low-power computational medium. The implementa-
tion is potentially interesting to the graphics community
because there is an opportunity to apply adaptive analog
VLSI to many other graphics problems.

CR Categories and Subject Descriptors: C.1.2—
[Processor Architectures]: Multiprocessors - par-
allel processors; C.1.3—[Processor Architectures];
Other Architecture Styles; 1.3.1—[Computer Graph-
ies}: Hardware Architecture - raster display devices;
1.3.3—[Computer Graphics]: Picture/Image Gener-
ation; 1.3.5—[Computer Graphics]: Computational
Geometry and Object Modeling; [.3.7—[Computer
Graphics]: Three-Dimensional Graphics and Realism
General Terms: Algorithms, Graphics, Hardware
Additional Key Words and Phrases: Animation, ro-
tation, robotics, simulation, constraint solution, interac-
tion, adaptive, analog, CMOS, VLSI.

1 Introduction

This paper has two main purposes. First, we demonstrate
the implementation of a nontrivial constraint technique in
analog VLSI. Second, since some of the computer graphics
community may not be familiar with recent developments
in analog VLSI technology, we describe some of the po-
tential benefits. We believe that analog VLSI has great
potential as a computation medium for implementing ren-
dering, modeling, and interactive operations.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made ordistributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1993 ACM-0-89791-601-8/93/008/0045 $01.50
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1.1 Computation in Computer Graphics

There is a history of digital VLSI acceleration in com-
puter graphics: geometry engines [Clark 82], hard-
ware frame buffer assists [Rhoden 89], vector generators
[Barkans 90], systems [Voorhies 88] [Fuchs 89], etc. Most
high-performance graphics workstations have a substan-
tial amount of special purpose digital chips to provide
the kind of interactive performance that we have come
to expect. Most of this silicon is dedicated to render-
ing tasks, although it can be argued that the geometric
transformations performed in hardware constitute mod-
eling hardware.

Any computational medium used for graphics needs
to be able to perform mathematical operations accurately
and precisely. The bulk of simulation and modeling cal-
culations for computer graphics are performed in soft-
ware. For instance, for physically-based modeling, the
shapes and motions of graphical objects are computed
according to the physics underlying the simulation. This
process requires the solution of differential] equations (for
converting the relation / = ma into position and veloc-
ity). As we consider collisions between objects, we may
also be required to solve for roots of nonlinear equations.
For modeling, we require the ability to accurately and
precisely solve a variety of mathematical equations.

Applying real physical constraints to computer graph-
ics models requires great computational resources. Even
telatively simple simulations, involving only a few primi-
tives, may consume many seconds of CPU time on a fast
computer, The traditional arguments are that CPU price-
performance doubles every year, and that massive paral-
lelism will save us. We claim that current digital com-
putation approaches are approximately a factor of 10,000
times too slow for real-time simulation of complex scenes.

In order to be effective in addressing this problem, a
computational medium must be fast and accurate. [f we
can produce a technology which can accurately and pre-
cisely compute the solutions of equations, we can then use
the technology to construct computer graphics hardware.
Wehope that adaptive analog VLSI can be used to realize
the goal of performing graphics calculations thousands of
limes faster than is possible today.

1.2 Adaptive Analog VLSI

There has been increasing interest recently in using ana-
log VLSI [Mead 89] for a variety of computational tasks.
Mead and others have pursued the paradigm of using ana-
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log transistors to model components of neural systems.
Related research has focused on increasing the accuracy
and precision of computation with analog VLSI (Kirk 93],
and on developing a design methodology for creating ana-
log VLSI circuits which can be adjusted to perform to the
desired accuracy [Kirk 91]. These techniques make ana-
log VLSI more tractable for quantitative computation.

This is not the first appearance of analog computation
in computer graphics. Certainly, there is some amount
of analog hardware in every graphics system, at least in
the form of a D/A (digital-to-analog) converter in the
path to the video monitor. There have also been more
extensive uses of analog, however. For instance, Vector
General implemented matrix multiplication for the pur-
pose of performing coordinate transformations in analog
circuitry, although not in analog VLSI.

Jt is important to note that in these discussions, we
have chosen a particular constraint to demonstrate the
general technique of implementing a constraint in analog
VLSI. There are many other examples of useful constraint
computation that could be formulated in a similar fashion
[Platt 89] [Barzel 92], and also could be implemented in
analog hardware. The particular constraint that we have
chosen to implement is meant to be representative of a
large set of possibilities. Our example raises the exciting
prospect of implementation of extensive hardware model-
ing assists in analog VLSI. ‘There are also many rendering
tasks which are appropriate for analog VLSI hardware im-
plementation, but we won't discuss them in this paper.
We have chosen to describe a constraint technique thatis
appropriate for interactive input devices, and has appli-
cation to modeling as well.

1.3. The Rotation Matrix Constraint

The constraint technique that we have chosen is the ortho-
normalization of a rotation matrix, We chose the 3x3 ma-

trix formulation becauseit is easier to perform coordinate
transformations with the same underlying computational
modules that are used to implement the constraints. In
Sec, 4, we describe several computational blocks that we
can also use to construct coordinate transformation hard-

ware. The matrix formulation is also complex enough to
be interesting as an example problem for hardware.

real world
input

 
 
 

 
 

 
 
 

“imperfect” Rotation improved
rotation i Matrix rotation ugmatrix M!"t)|Constraint matrix MOY

output to
application

Figure 1: A system-level view of the rotation matrix con-
straint enforcement, and how the result of applying the
constraint might be used.

The rotation matrix constraint is particularly useful as
part of an interactive system, as shown in Fig. 1. For vir-
tual reality applications, a sensor may be used to produce
a 3D orientation, in the form of a 3x3 rotation matrix.
Sensots are often flawed, noisy, or otherwise inaccurate
and do not provide sufficient and reliable information for

producing an accurate rotation matrix. In such cases, we
then wish to continuously produce a “best estimate” ro-
tation matrix, based on the sensor measurements. One
example of such a system involves producing rotation ma-
trices from approximate inputs from sensors or interactive
devices. The system produces approximate rotation ma-
trices over time from angular velocity w(t), according to
the following relation:

M'(t) =w x M(t) (1)
Such a system would produce an approximate rotation
matrix at each time step, and may accumulate errors over
time. The errors could be corrected by the constraint
technique described in this paper.

A similar task exists in robotics applications. We
might have a sensor which can detect the position of an
end effector of a rabot arm, and also a measure of the con-
trol inputs. In practice, a robot arm is often controlled by
providing joint angle control inputs. However, the control
may be inaccurate, and there may be “slop” in the joints.
We may want to then compute an estimate of the actual
joint angles, which, if the arm segments are rigid, must
be pure rotations.

There are also many applications to physically-based
modeling. When solving constraint equations for motion
of rigid bodies, we may produce values that are inaccurate
due to accumulating arithmetic roundoff errors, integra-
tion step size, or approximations in our model. When
combined to form a rotation matrix to describe the ori-

entation of a body, the errors may cause the introduction
of scaling or skewing into the matrix. The constraint
technique described in this paper will allow us to auto-
matically adjust for these errors.

In Sec. 2, we describe the constraint algorithm that we
use to produce the rotation matrix. In Sec. 3, we intro-
duce in more detail the technology used for the implemen-
tation (analog VLSI), and explain why we believe that it
has great potential to be useful for computer graphics.
In Sec. 4, we present a block diagram description of the
constraint chip.

2. The Constraint Algorithm

Our goal is to produce a 3x3 rotation matrix containing
no scale or skew components, given 9 numbers which are
already nearly a rotation matrix.

For a mathematically perfect rotation matrix M,

MM7 =1 (2)

where J is the identity matrix.
Wedefine the function f():

F(M) =(MM? —1);(MMT-J) (3)
where the double-dot operator (:) denotes the sum of
products of terms of the two matrices, producing a scalar
result, analogous to the dot product of two vectors. When
M is a rotation matrix (or reflection), f(M) in Eqn. 3 is
equal to zero, and when M is not purely a rotation matrix,
f(M) #4 0. Since f(.M)is always greater than or equal to
zero, M is a rotation matrix when f(M) is minimized.

We perform continuous gradient descent to minimize
the function f(), as follows:

M'(t) = —e VF(M(t)) (4)
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where epsilon is a parameter which determines the speed
of the descent. Appendix 1 describes the derivation of
our gradient calculation method in detail.

The analog VLSI implementation does not suffer from
many of the problems of digital implementations, since
analog circuits can operate in continuous time. For in-
stance, in a digital implementation, Euler’s method might
be used to solve Eqn. 4. With large step sizes, Euler’s
method frequently becomes unstable. With small step
sizes, Euler’s method may converge slowly or not at all.
Other techniques, such as the conjugate gradient method,
may improve the performancein digital implementations.
The continuous nature of an analog implementation, how-
ever, avoids this type of problem entirely.

As the computation proceeds, two kinds of changes
are occurring. First, the imperfect input matrix may be
changing over time. Second, based on our optimization
process, the output matrix will be changing to fulfill our
rotation matrix constraint. Since the analog VLSI circuit
operates very quickly, and in continuous time, the opti-
mization can occur at a much finer time scale than the

changing of the input matrix.

3. Adaptive Analog VLSI

There has been increasing interest recently in using ana-
log VLSI [Mead 89] for a variety of computational tasks.
One of Mead’s insights is that rather than developing an
entirely new manufacturing technology for producing ana-
log VLSI chips, we can produce analog CMOS VLSIchips
using standard digital CMOS VLSI processes. The key
element in this strategy is to produce designs that are tol-
erant to the device variations that are presentin a digital
production process. Another component of this design
philosophyis the exploration of architectures and circuits
that are tolerant of device variations.

Other research has focused on increasing the accuracy
and precision of computation with analog VLSI [Kirk 93],
and on developing a design methodology for creating ana-
log VLSI circuits which can be adjusted to perform to
the desired accuracy [Kirk 91]. This work can be charac-
terized as using adaptation and optimization to harness
analog VLSI for more “conventional computing” applica-
tions. This approach is attractive because analog transis-
tors provide a rich computational gamut. Fig. 2 (upper)
shows the current flowing through an analog transistor as
its gate voltage is varied. Fig. 2 (lower) shows the cur-
rent as the source-to-drain voltage is varied, while hold-
ing the gate yoltage constant. These figures are meant
as a qualitative demonstration of the variety of current-
voltage responses available from a single transistor. Note
the regions of roughly linear, exponential, and quadratic
I-V relation.

It is possible make analog circuits more quantitatively
useful, by designing compensatable circuit building blocks
that can be adjusted to perform more closely to some
performance metric. For example, let us assume that onr
goal is to build a “perfect” analog multiplier. In ana-
log VLSI, we can easily build a circuit which computes
an “imperfect” multiply-like operation, but the “perfect”
multiply is more elusive. We can design a multiplier that
is monotonic within some input range, and operates in
four quadrants (the sign of the output is correct for all
combinations of inputs’ sign), Without extreme care in
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Figure 2: The upper graph shows the drain current of a
single transistor, as the gate voltage is varied from 0 to
5 volts. The family of curves represents varying the dif-
ference between the source and drain voltage. The lower
graph shows the drain current as the source-to-drain volt-
age difference is varied from 0 to 5 volts. The family of
curves represents varying the gate voltage. The analog
VLSI multipliers discussed in Sec. 3 operate in the nearly
linear region to the right of the upper graph and to the
left of the lower graph.

the design, however, the “multiplier” would have a num-
ber of drawbacks. The circuit’s response might deviate
significantly from the desired linear function of its inputs

f(z,y)=z*y (5)

The “multiplier” would also, very likely, have nonzero
input offsets*.

A compensated multipher has adjustable parameters
which allow for the improvement of the linear range of
behavior, as well as the cancellation of input offsets. A
description of how to design, build, and optimize com-
pensatable components is presented in detail in [Kirk 93}.
Sec. 5 presents some measurements from chips imple-
mented and compensated using these techniques.

4 Applying Analog VLSI to the Constraint Problem

Now that we have described the desired constraints (in
Sec. 2) and the substrate technology of adaptive analog
VLSI (Sec. 3), we will explain, at a block diagram level,

Hnputoffsets are present for an analog multiplier f(a, y) = x+y
when f(z, 0) # 0 or f(0,y) # 0,

q7
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how we use analog VLSI to solve the constraint problem.
These block diagrams represent a hierarchical decompo-
sition of the chip that we built.

As one might guess from the form of the equations
of the derivation in Sec. 2, the circuit architecture is a
nested, structured hierarchy of dot products, with some
additional computation.

Ix

I< I<

 
Figure 3: A functional block containing two dot products.
The inputs are the matrix column vectors X and Y, and
the outputs are the scalars X .X and X-Y.

We can think of the nine input values, the “imperfect”
rotation matrix, as the three 3D basis vectors, X, Y, and
Z, (the three columns of the matrix). We can see by
examining Eqn. 13 that the computation of the various
components of the gradient, mpg, requires dot products
of the matrix basis vectors. Appendix | describes the
calculation of npg. Fig. 3 shows a functional block which
computes two of the six basis vector dot products that
are required.

Fig. 4 shows a set of three functional blocks (from
Fig. 3) which together compute the six 3D basis vector
dot products that are required to form the gradient, npq,
as shown in Eqn. 13. The details of the circuit, the device
layout, and the compensation procedure for the multiplier
and dot product blocks are presented in [Kirk 93].

Fig. 5 shows the use of the basis vector inputs and
three of the dot product results to produce the gradient
components for one of the basis vectors, in this case, X.

Fig. 6 shows a set of three constraint blocks, from
Fig. 5, which together compute all of the components of
the gradient for the correction of the imperfect matrix.
The combination of these three constraint blocks and the

three dot product blocks from Fig. 4 forms the gradient
calculation hardware. X], X35, X4, Y, Y2, Ys, Z1, 23,
and 24 are the nine derivative components. Together,
they form the gradient, which we will use to optimize the
components of the matrix M. Descending along the di-
rection of the gradient will produce a matrix whichfulfills
our constraints.

We use the derivative terms from Fig. 6 to add or

 
Figure 4: A collection of three dot product blocks, from
Fig. 3. With the 3D basis vector inputs X, Y, and Z,
they compute the six dot products required to enforce the
constraints.
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Figure 5: A basis vector constraint block, using the out-
puts from Fig. 4. This computational element imple-
ments the rotation matrix constraint for one of the three
matrix column vectors.

subtract from the original input values of the matrix, M.
Since the circuits are analog and operate in continuo
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Figure 6: A collection of three constraint blocks, from
Fig. 5. The combination of these three constraint blocks
and the three dot product blocks from Fig. 3 forms the
gradient calculation hardware.

time, we can integrate these corrections on capacitors,
and use the gradient components to set the level of cur-
rent to add/subtract. Thus, this circhit structure can
be use to continuously track and correct a (potentially
flawed) matrix that changes over time. Fig. 7 shows the
connections required to provide the feedback from the cal-
culated gradient components to modify the input matrix
components. The gradient calculation occurs in contin-
tous time, using the analog VLSI hardware. The input
can change continuously, or discretely (using the “reset”
input in Fig. 7), and the constraint solution will track the
input.

Fig. 8 shows a schematic view of the the rotation ma-
trix constraint solution box connected as part of a sys-
tem. Given a source of approximate rotation matrices
M'" (4), the constraint enforcement produces rotation ma-
trices M°“*(t), which can be used for modeling, rendering,
or control applications.

5 Results

We have designed, implemented, fabricated, and tested
chips which contain compensated multipliers, dot prod-
ucts, and constraint blocks, as described in Fig. 3 through
Fig. 6. The design is modular (similar to the structure
of the figures), so that we are confident that the system
will work, given the partial test results. We have tested
all of the components, and present the data in this pa-
per. This section contains measured chip data for the
compensated multiplier, (along with some raw data for
the uncompensated version), and the dot product with
hierarchical compensation, We also present a software
simulation of the constraint process in action, using the

i.
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Figure 7; An example of a gradient descent process, as
employed to enforce the rotation matrix constraint. The
feedback from the gradient calculation modifies the effec-
tive inputs to the constraint gradient calculation box. As
the constraintis satisfied, the output, M°*(£) settles to a
rotation matrix, if M'"(t) is not changing, or is changing
at a slower time scale. Note the “reset” input to the in-
tegrator box. [If the input matrix M'"(t) changes discon-
tinuously, we want to restart the constraint optimization
from the new matrix, and we can accomplish this using
the integrator reset.
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Figure 8: A system-level view of the rotation matrix con-
straint enforcement, and how the result of applying the
constraint might be used.

constraint, technique described herein.
Fig. 9 shows the results of the raw multiplier before

compensation. Note the nonzero offsets, as evidenced
by the nonzero slope line formed by the square symbols.
That line represents the results of multiplying zero by a
set of other quantities, so should be horizontal, at zero.

Fig. 10 shows the output of a compensated multiplier
circuit. Note that the “zero” line (again delineated by
the square symbols), is much closer to horizontal at zero,
due to the effects of the compensation. It is appropri-
ate to discuss accuracy and precision at this time. As a
multiplier, the circuit is highly accurate: it computes a
function that is very close to the desired f(z,y) = kay.
The precision is more difficult to quantify than the accu-
racy, however. The relative error quantity (0.1%) seems
to indicate 10 bits of precision, although noise may re-
duce the repeatable precision to somewhatless than that.
Although in this case we have only compensated forfirst-
order effects of device variations, it is possible to design
circuits which compensate for higher order nonlinearities
as well, In order to use compensated components to pro-
duce an accurate and precise computational system, care
must be taken to consider the quality and magnitude of
errors that can be tolerated at each stage of the compu-
tation.

Fig. 11 shows the compensated voltage-in, voltage-out.
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Figure 9: The output from an uncompensated multiplier
circuit (actual measured chip data), The analog multi-
plier circuit has not been adapted to compensate for in-
put offsets and other device variations. Note the nonzero
offsets, as evidenced by the nonzero slope line formed by
the square symbols. That line represents the results of
multiplying zero by a set of other quantities, so should be
horizontal, at zero.
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Figure 10: The output from a compensated multiplier
circuit (actual measured chip data), The relative error
(ourput error / input range) is less than 0.1% over most
of the operating range. At extreme (large) inputs, the
relative error may be as large as 2%. For this application,
the precision is most important for small values.

multiplier performance. The signa] presented in this fig-
ure is an intermediate value in the hierarchical constraint
computation, Its nonlinearity and nonzero offset charac-
teristics reflect the fact that this output contains biases
to compensate for variations in the next stage of com-
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putation, These curves represent the sum of the multi-
plier output and the compensation input for a subsequent
computational element. [Kirk 93] contains more detailed
descriptions of hierarchical compensation techniques.

outputiyvoleos) 
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Figure 11: The output of a multiplier, after nearly lin-
ear current-to-voltage conversion (actual measured chip
data).

Fig. 12 shows the three multiply components of a com-
pensated dot product. Note that the offset correction is
very accurate, but that the linearity is somewhat less ac-
curate,
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Figure 12: The 3 components of a dot product (actual
measured chip data). The characteristics of the three
multiply operations are similar, with respect to the input
offset magnitudes and shape of nonlinearities.

Fig. 13 shows the results of a simulation of our con-
straint technique in action.
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Figure 13: The results of a software simulation of our
coustraint technique in action. The outer curved octant
represents the manifold of a set of points transformed us-
ing the input imperfect matrix. The inner, more spherical
shape represents the same points (and more) transformed
through the constrained rotation matrix. The lines drawn
between the two shapes represent the constraint optimiza-
tion path taken by our algorithm.

5.1 Expected Performance

We compare the expected performance of the continuous-
time analog VLSI rotation constraint chip to a software
implementation on a fast digital computer. Using the
constraint algorithm described in this paper, and Euler’s
method to perform the optimization, we expect that the
orthonormalized matrix can be produced in about 75 mi-
croseconds on a roughly 100 Mflop workstation.

The multiplier core used in the analog VLSI rotation
constraint chip can easily be run at product rates in ex-
cess of 2 Mhz [Denyer 81]. Since the multipliers and con-
straint circuitry operate in continuous time, we expect
convergence at a much greater rate than in the discrete
digital case. The analog VLSI rotation constraint chip
should produce an orthonormalized matrix in roughly 2-
3 microseconds. So, the current implementation should
outperform a general-purpose digital solution by about
a factor of 25, and we believe that this is a conserva-
tive estimate. Furthermore, the analog VLSI solution is
extremely low cost, and low power, and leaves the work-
station processor free to pursue other tasks. The analog
VLSI chips were fabricated in 2.0 micron CMOSusing the
MOSIS fabrication service, and dissipate power on the
order of microwatts. The entire constraint solution cir-

cuit consumes roughly 2 squaremillimeters of chip area.
Finally, faster multiplier circuits can be used to further
increase the analog VLSI performance.
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6 Conclusions

We describe a constraint technique for producing orthog-
onal, unit scale rotation matrices from “imperfect” in-
puts. The technique is potentially useful in a system
which produces a sequence of approximate rotation ma-
trices over time. Additional potential applications are
covered briefly in Sec. 1.

Wealso describe the emerging and evolving technol-
ogy of adaptive analog VLSI and speculate on its possible
value to the field of computer graphics. In the example of
the rotation system above, an analog VLSI rotation ma-
trix constraint solver could enforce the rotation constraint
continuously as the matrix is updated.

Interpreting this result with a broader view, we have
demonstrated the implementation of a nontrivial con-
straint in analog VLSI. This is significant because it im-
plies a future of implementing “hardware for modeling” in
the form of hardware constraint solution. Current digital
implementations of constraint systems cannot compute
real time constraint solutions for models containing more
than a few bodies.

Many of the tasks in computer graphics simulation
and modeling involve the solution of various types of
mathematical equations. The development of analog
VLSI technology for accurate and precise computation
[Kirk 93], makes it possible to build analog hardware to
solve these equations. The use of CMOS VLSI fabri-
cation makes analog implementations scalable and mass
producible. Therefore, adaptive analog VLSI presents an
exciting opportunity to consider building hardware to ac-
celerate modeling toa level of performance commensurate
with that of digital rendering hardware. We believe that
Analog VLSI has the potential to be a significant tool for
computer graphics.
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Appendix 1: Derivation of Constraint Equations

The expression A: A can be written:

A: A=)0 ApAye (6)
ik

So, we can rewrite Eqn. 3 as:

£(M) = $0(()>My Mix) — 5x)(> Ma Mex) — 5x)
jk i e

(7)
where 6;, indicates the identity matrix (6;; = 1 when
t= and 0 otherwise).

[In order to use Eqn. 7 to enforce a constraint, we would
like to pose it in a form which allows us to do some sort
of optimization. More specifically, in order to perform a
gradient descent operation, we require a gradient. So, we
compute the gradient, using Einstein Summation Nota-
tion (ESN):

a

Wf = a (8)
= 2(Mi; Mix — 5jx)(8ep5jq Mex + Mejbep6gn) (9)
= 4(MigMix — b9%)Mpr (10)

We wish to use Eqn. 8 to perform gradient descent to
minimize the function f(), as follows:

M'(t) = —e VF(M(t)) (11)
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where epsilon is a parameter which determines the speed
of the descent.

We define 7 as the gradient of f():

Mpg = 4(MigMix — 9%)Mpx (12)

We can also simplify MigMix by introducing B,, B,,
and B, as basis vectors of the matrix M, and Dj, as the
dot product of B; and B;:

A(B, “2B, = Sq)Mpk
4(Dak = Sk)Mok

(13)

(14)

Since the dot products are symmetric, there are only
6 unique D,,, terms: the 3 diagonal terms, Dy,, D2, and
Da3, and the three unique cross terms, Dy2 (or P21), Dos
(or Ds3), and Dis (or Dsy).

So, the following set of equations describe a form of
the gradient descent process:

"pq

new old
Mog =Mpq —€ Tq (15)

and we can absorb the 4 from Eqn. 13 into e€, since € is
an arbitrary constant.

We have the following set of 9 equations for the com-
ponents of the gradient:

(Du —1)Mii + Di2aMai + DisMai

Dor Mii + (.D22 — 1)Ma + Dax3Mar
Day Mi, + DapMai +(Dsa — 1)Mai
(Dui —1)Mi2 + Di2Mo2 + Dia Ma2
Da Mi2 + (Do2 — 1)Mo2 + Dos Mae
Dai Miz + D32M22 + (Das —1)Ma2
(Pu —1)Mis + DizM23 + DisM3z
Da, Mia + (Daz — 1)Mo2 + DasMaa
Dg, Mig + Da2Mo3 + (Daz — 1)Maa

(16)
(17)

(18)
(19)

(20)

(21)
(22)

nm =

m2 =
ma =

hm =

rh =

n=

mB. =

in = (23)
m3 = (24)

We can define B, = X, Bz = Y, and By = Z, so
we can now write the discrete time step gradient descent
optimization as:

ld
gee = old _ 25, (25)

yrew = ytd _ en, (28)
grew=B46 apg (27)

and, we can now write 7 in terms of X,Y, and Z:

me = (Du -—1)X, — Dew -— Dik (28)
m2 = DaX, —(Dee—1)¥i — Daahi (29)
m3 = DayX,— Da2Yi — (Daa—1)2; (30)
my = (Dir —1)X2-—Dp¥2—DisdZ2 (31)
m2 = DeyX2 —(Da2 —1)¥2 — Dos Z2 (32)
mes = DayX2—Dg2¥2—(Dsa—1)Z2 (33)
nar = (Diy —1)X3 — Diz Ya — Dig Za (34)

maz = Da,X3 —(D22z —1)¥a — Doads (35)
qsa = Da, X3 — Daa ¥3 — (Daa — 1)2 (36)
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Correcting for Short-Range Spatial
Non-Linearities of CRT-based Output Devices

R. Victor Klassen

Xerox Webster Research Center

ABSTRACT

Mostgraphical output devices exhibit what has been termed spatial
non-linearity: the effect of setting two adjacent pixels to a given
value is not the same as the sum of the effects of setting those two
pixels to the same value in isolation: checkerboards of different
frequencies do not have the same apparent luminance. We present
a method applicable to bit-mapped devices for compensating for
short-range spatial non-linearity in error-diffused images. The
modification to error diffusion is such that it can be used with

any error diffusion technique. In essence, it consists of finding
the influence of the neighbouring (output) pixels when making the
decision of whether to tum on a given pixel, and passing errors
computed accordingly.

CR Descriptors: 8.4.2 [Input/Output and Data Com-
munications}: Input/Output Devices — Image display; 1.3.1
[Computer Graphics]: Hardware Architecture — Raster display
devices 1.3.3 [Computer Graphics]: Picture/image generation —
Display algorithms; 1.3.6 [Computer Graphics]; Methodology
and Techniques; 1.4.3 [Image Processing]: enhancement.

1 Introduction

While the full-colour display is becoming more and more
common, bit-mapped CRTs remain commonplace as well. These
have advantages in terms of speed, resolution, and cost that cannot
be matched by colour displays. Occasionally it is necessary to
display an image on such a device. Moreover, certain colour-
table animation techniques rely on the use of single bit-planes
of a full-colour display. Here the full colour display is being
used to simulate a bit-mapped display with a very fast frame
update rate. A common method of converting from full-colour
Continuous tone to black and white binary is to error diffuse the
luminance component. Various forms oferror diffusion have been
Suggested[7, 14, 6, 8, 3, 15, 13]; the particular choice of error
diffusion technique has relatively litle effect on the appearance
of an image whenit is displayed on a sufficiently high-resolution
monitor.

"Xerox Corporation, Webster Research Center, Building 128-27E, 800
Phillips Road, Webster, NY 14580.
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Deive, Atlanta, GA 30332-0280
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The value of gamma-correction of colour displays (or better
still instrumented compensation)[2, 4], is well known. On a bit-
mapped display the concept of gamma-correction is meaningless.
As Naiman has noted, CRTs exhibit spatial non-linearities ([10],
pp39—48), as can be easily seen by displaying a checkerboard
of period two pixels adjacent to a checkerboard of twice that
period, When viewed from a sufficient distance to cause the
coarser checkerboard to appear smooth, these two images should
in principle appear the same intensity. On most output devices
they do not. (An LCD display may be an exception),

Much has been said about correcting for neighbourhood
effects in prints. Commonly, it is based on a simple model of
circular pixels with greater than unit area [12, 1, 11, 5]. For the
SIGGRAPHaudience, two more important display devices are the
CRTandthe film recorder. We begin with the simplest example:
the bit-mapped CRT. Bit-mapped CRTs are so commonthat most
readers of this paper are likely to have one. The improvement
can be quite striking, as shown by figures ] and 2. A linearity
assumption (i¢. that the phosphors are not saturated) allows the
extension to greyscale and colour monitors, and to film recorders.

2 SIMPLE CRT CORRECTION

The general idea behind neighbourhood-based compensation is
that the intensity generated at a pixe] depends not only on the
setting of that pixel but also on the intensity of the neighbouring
pixels. The CRT is a special case. Here the non-linearities
are primarily in the amplifiers driving the electron gun(s), so it is
sufficient to consider only theleft and right neighbours (whichever
have been visited). An isolated pixel does not contribute as much
intensity as it would with its neighbour on. (The amplifiers
aren't fast enough to tum the electron beam on and off in one
pixel). Neighbours in adjacent scanlines have no effect under this
assumption.

To test the assumption of independent scanlines, display
four images: with a) alternate scanlines b) alternate columns c)
alternate pairs of scanlines, and d) alternate pairs of columns
intensified. If scanlines are independent, a) and c) should have
the same intensity. In the unlikely event that b) and d) appear the
same, the monitor has excellent high frequency response, and no
correction is necessary, If flicker causes a problem with interlaced
displays when displaying single scanlines it can be alleviated by
using a checkerboard and changing only the vertical frequency.

The second assumption is one of single neighbours
contributing. This can be tested using a pattern of decreasing
frequency vertical lines. For the (SONY) monitors we tested,
the difference between single and double pixel lines was much
greater than that between double and tiple pixel width lines, so
the assumption appears safe.
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Figure 1 A radiosity-like scene, error diffused without correction. Note the dark band in the shadow.

To correct for the presence or absence of a neighbouring
pixel, the algorithm in the CRT case is as follows:

for each pixel

if no neighbouring output pixel is on (white)
if value (including errors passed in) > threshold — 4

set the pixel
quantization error = value — (1 — 4 )

else value < threshold — &

quantization error = value

else a neighbouring output pixel is on

if value (including errors passed in) > threshold
set the pixel
quantization error = value — |

else value < threshold

quantization error = value

Diffuse quantization error in the normal way

55

If there is no neighbouring pixel on, the effect of turning the
current pixel on is reduced. This is reflected both in the turn-on
decision, and in the calculation of the quantization error.

The specification deliberately leaves open the choice of error
diffusion algorithm, including the order in which pixels are visited.
Left and right neighbours are treated equally, althoughin reality
pixels are only affected by the state of their left neighbours. The
result of processing some pixels in right to left order, rather than
lefi to right, results in the same average intensity overall, with
a slight phase shift.

The value of & must be determined experimentally: to do
so, display a checkerboard containing 2x2 squares adjacent to a
region of mid-grey that has been error diffused using the modified
error diffusion algorithm. Vary ¢ across the error diffused region
(Figure 3), and find the point where the two regions have the same
luminance. We have found values in the 5-30% range apply to
the monitors wetried. Figure 4 is a photograph of a screen with
the pattern of Figure 3 displayed on the screen. The crossover
point on the screen photographed is about midway across the
figure (the process of photographing and printing the image may
have changed the crossover point in the picture).
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3 GREY SCALE MONITOR OR FILM RECORDER

The difference between a bil-mapped monitor and a greyscale
one is the frame buffer behind it. Both employ an electron
beam directed at phosphors; the spatial non-linearity effects are
identical. As long as images displayed on greyscale monitors do
not have high frequency information in them, their spatial non-
linearities will be hidden. Where high contrast edges appear, the
non-linearities can affect image quality. Fortunately, spatial non-
linearities due to gun amplifier non-linearity are close enough
to intensity invariant that the methods above can be safely
generalized.

 

Before proceeding to correct for spatial non-linearities, it
should be ascertained that the monitor is corrected for gun non-
linearities. Given an otherwise corrected monitor, the value of &
can be determined as above, using patterns of full-on, full-off.

 
Figure 3 Finding the value of 6. The checkerboard has period It is not normal to error diffuse images unless the display
two pixels. Below is an error diffused version of a 50% is operating from a low depth frame buffer (eg. 8 bits for all
a€y with 6 varying from 0 (at the left) to 20%. Figure three components). If it is, the error diffusion algorithm can be

Showsthe result of displaying this pattern on a CRT. adjusted in the same way as described above. In the typical
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Figure 4 The result of displaying a pattern similar to thal shown in Figure 3.

case of a 24 (or higher) bit frame buffer, error diffusion can
still be applied, without the quantization step. Normally there
would be no error generated, butthe alteration to the input values
can still be applied, possibly generating out-of-gamut values. For
example, a white pixel immediately followed by a black pixel
would lead to a request for a negative pixel value for the second
one, A remappingof the input(reducing the contrast) can prevent
such negative pixel values entirely, A partial contrast reduction
can make such negative pixel values infrequent. This is similar
to eliminating phosphortrails in temporally varying displays, as
described in [9]

4 SUMMARY & CAVEAT

We have described a simple technique for improving the tonal
reproduction accuracy of CRTs, For bit-mapped displays, it
serves the usval function of gamma correction. For regular
CRTs it performs in image regions of high spatial frequency what
gamma correction or instrumented compensation does in image
regions of low spatial frequency. The method involves very
little extra computation over that required for conventional error
diffusion, and is simple to implement and calibrate. It should
be noted that the generalization to print is complicated by the
larger neighbourhoods affecting pixels, two (spatial) dimensional
interactions, and non-linear colour mixing in the case of coloured
printing.
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Abstract

We believe that navigation in information spaces is best sup-

ported by tapping into our natural spatial and geographic ways
of thinking. To this end, we are developing a new computer
interface model called Pad.

The ongoing Pad project uses a spatial metaphor for com-
puter interface design, lt provides an intuitive base for the
support of such applications as electronic marketplaces, infor-
mation services, and on-line collaboration. Pad is an infinite
two dimensional information plane that is shared among users,
much as a network file system is shared, Objects are organized
geographically; every object occupies a well defined region on
the Pad surface.

For navigation, Pad uses “portals” - magnifying glasses that
can peer into and roam over different parts of this single infi-
nite shared desktop; links to specific items are established and
broken continually as the portal’s view changes. Portals can
recursively look onto other portals. This paradigm enables the
sort of peripheral activity generally found in real physical work-
ing envirouments. The apparent size of an object to any user
determines the amount of detail it presents. Different users can
share and view multiple applications while assiguing each a de-
sired degree of interaction, Documents can be visually nested
and zoomed as they move back and forth between primary and
secondary working attention. Things can be peripherally acces-
sible.

In this paper we describe the Pad interface. We discuss how
to efficiently implement its graphical aspects, and weillustrate
some of our initial applications.

1 Introduction

Imagine that the computer screen is a section of wall about the
size of a typical bulletin board or whiteboard. Any area of this
strface can then be accessed comfortably without leaving one’s
chair. Imagine further that by applying extraordinarily good
eyesight and eye-hand coordination, a user can both read and
write as comfortably on any micron wide section of this surface
as on any larger section. This would allow the full use of a sur-
face which is several million pixels long and high, on which one
can comfortably create, move, read and compare information at
many different scales.
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The above scenario would, if feasible, put vast quantities of
information directly at the user’s fingertips. For example, sev-
eral million pages of text could be fit on the surface by reducing
it sufficiently in scale, making any number of on-line informa-
tion services, encyclopedias, etc., directly available. In practice
one would arrange such a work surface hierarchically, to make
things easier to find. In a collaborative environment, one could
then see the layout (in miniature) of many other collaborators’
surfaces at a glance.

The above scenario is impossible because we can't read or
write at microscopic scale. Yet the concept is very natural since
it mimics the way we continually manage to find things by giving
everything a physical place, A good approximation to the ideal
depicted would be to provide ourselves with some sort of sys-
tem of ‘magic magnifying glasses’ through which we can read,
write, of create cross-references on an indefinitely enlargeable
(‘zoomable’) surface. This paper describes the Pad interface,
which is designed using these principles.

1.1 Overview of the Paper

We begin section one with a brief summary of the basic ideas
aud components of the Pad Model, We then finish section one
with a comparison of Pad to the window/icon paradigm and
a summary of prior work. Section two is a description of a
typical Pad application, and section three covers the principles
of the Pad system, Section four covers several issues in our
implementation of Pad, and section five lists some ongoing and
future projects. Finally, section six presents our conclusions and
acknowledgments.

1.2 Basic Pad Model

The Pad Surface is an infinite two dimensional information

plane that is shared among users, much as a network file sys-
tem is shared. [tis populated by Pad Objects, where we define
a Pad Object to be any entity that the user can interact with
(examples ate: a text file that can be viewed or edited, a clock
program, a personal calendar). Pad Objects are organized geo-
graphically; every object occupies a well defined region on the
Pad surface.

To make themselves visible, Pad Objects can create two types
of “ink”, graphics and portals, and place them on the Pad
Surface. A graphic is simply any sort of mark such as a bitmap
or a vector, Portals are used for navigation, they are like mag-
nifying glasses that can peer into and roam over different parts
of the Pad Surface. A portal may have a highly magnified view
or a very broad, panoramic view, and this view can be easily
changed. The screen itself is just a special “root” portal.

A portal is not like a window, which represents a dedicated
link between a section of screen and a specific thing (e.g.. a Unix
shell in X-Windows or a directory in the Macintosh Finder). A
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portal is, rather, a view into the single infinite shared desktop;
links to specific items are established and broken continually as
the portal’s view changes. Also, unlike windows, portals can
recursively look onto (and into) other portals.

Figure 1 shows a very large financial document on the Pad
surface. The small portal at the top of the figure shows an
overview of the entire report. The two other portals show suc-
cessive closeups of portions of the report.

1.3 Object/Portal Interaction
A Pad object may look quite different when seen through dif-
ferent portals. There are two techniques that allow objects vary
their appearance: semantic zooming and portalfilters.

Every object visible on the screen has a magnification that
depends upon the sequence of portals it is being seen through.
As the magnification of an object changes, the user generally
finds it useful to see different types of information abont that
object. For example, when a text document is small on the
screen the user may only want to see its title. As the object
is magnified, this may be angmented by a short summary or
outline. At some point the entire text is revealed. We call this
semantic zooming.

Semantic zooming works using the expose event, which says
that a particular portion of the Pad Surface will be rendered at
a particular magnification. When an object receives this event
it generates the display items needed to give an appropriate
appearance al that magnification.

Objects can also manage portal filters - portals that show
aon-literal views of cooperating objects. For example, a portal
may show all objects that contain tabular data as a bar chart,
but display other objects as would any other portal. This would
enable an application to embed a bar chart within a document
by placing in it a portal filter that looks onto an object that
contains tabular data, Another application can then allow text
or spreadsheet style editing of the tabular data itself by some
user, These edits will be seen as changes in the bar chart by
any user who is looking at the document.

The effect is that the bar chart filter portal will “see” any
tabular data as a bar chart, but will see other objects in the
usual way. Portal filters work by intercepting the expose event
for objects which it knows haw to render. It then asks the abject
or objects for any information it needs to create the display
items to render them.

Another interesting portal filter would be a control modifier.
Imagine for example that a paint program has several types of
brush. Normally one would click on an image of a particular
brush to select it, When seen through a control modifier portal
filter, each brush image would appear as a panel of parameter
controls with which the user can change that brush’s internal
state (width, spattering law, etc), The sameportal filter could
be used to modify the controls of any application on Pad that
recognizes its message conventions,

1.4 Pad vs. the Window/Icon Paradigm
An importantdistinction between the Pad universe and the uni-
verse of other window systems is that. in Pad every interaction
object possesses a definite physical location. In this sense Pad
is a two dimensional virtual reality, Yet a user's changing view
can allow objects to appear larger or smaller.

This paradigm allows for the sort of peripheral activity found
in real physica] working environments, Each object on a user's
screen commands a degree of altention commensurate with how
big the object appears to that user. This allows each object
to vary the amount of detail it presents to each user. Different
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users can share and view multiple applications while assigning
to each one a desired degree of interaction. Documents can
be visually nested and zoomed as they move back and forth
between primary and secondary working attention. Things can
be peripherally accessible.

For example, on the Macintosh desktop a user double clicks
on a folder icon to see the contents of a directory in a window.
But to see the contents of any folder within that folder, the user
must double click to create a separate window.

In comparison, a user of Pad generally views a directory
through a portal. The contents of any subdirectories are vis-
ible, in miniature, through sub-portals. This allows the user a
peripheral awareness of a snbdirectory’s contents, without the
user having to perform any explicit action. In this sense, Pad is
better suited to non-command user interfaces[16}.

1.5 Prior and related work

A numberof researchers developed ways to visually structure in-
teractive information that offer an alternative to windows/icons.
One of the first such systems was the Spatial Data Management
System [4] at MIT, which presented an information landscape
on two screens: one screen for a panoramic overview and an-
other (application) screen providing a closer view. The user
could either pan locally around on the application screen or else
could go directly to an area by pointing on the panoramic view.

On the other hand, Hypertext systems[15][10] allow the user
to jump from one place to another in a conceptual information
space. A notable problem with the current state of hypertext
systems is the difficulty of knowing one’s location in this space;
unless the application is designed very carefully the user can
easily get lost.

In other related work, many desktop publishing systems pro-
vide tiny “thumbnail sketches” of images that are stored on disk.
To open an image file the user simply points to these miniature
images instead of specifying a file name.

A unique approach to providing peripheral information has
been developed by George Furnas at Bellcore Applied Research.
His Fisheye user interface[8] shows information of current in-
terest in great detail, while showing a progressively less detailed
view of surrounding information,

Also, some of the components of fast image zooming have
existed for a while, Williams(25) las used a pyramid of im-
ages for texture filtering, and Burt[2] for image processing, both
based on the prior work of Tanimoto[22]. The Bad Windows
interface[19] allows drawings to be accessed at multiple levels of
detail.

Three dimensional interactive virtual offices that allow a user

to change viewpoint are being developed by Mackinlay et. al.
as well as Feiner [12][6]. Changes of scale have long been used
in computer graphics for both entertainment and for scientific
yisualization.[4] One notable early example was the molecular
simulation work of Nelson Max[13).

At Xerox PARCthere has been a large body of interesting
work on enabling groups to remotely share a common drawing
surface for collaborative work.[(11][14][21] This is part of their
larger ongoing research effort in shared “Media Spaces”[1]. Sim-
ilarly, the Rendezvous system at Bellcore is a general meta-
system for building shared “conversational” interfaces for tele-
conferencing situations(9], as is the work of Smith et. al.[20]

2 An Example Application

The multiscale daily/monthly calendar is a study of “semantic
zooming”. Figures 2 through 4 show what the calendar looks
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Figure 2: As you approach the calendar object the large scale
display items fade out and disappear.

 
Figure 3: The calendar object generates smaller scale display
items only for the area visible on the user’s screen. Display items
that are off the screen may be garbage collected and destroyed.

like at Various successive magnifications. At any level, the user
can type or draw on the calendar. As the user zooms away from
the scale at which the annotations were drawn they becomefirst
translucent, then invisible. [In this way, a user can overlay many
levels of annotation on a calendar without confusion.

The major problem with an application of this type is that
il can involve a large number of display items, since the spatial
density of display items on the Pad grows geometrically as the
user zooms into the calendar. Yet at any one time only a fairly
small number of display itemsis visible, since as the user zooms
in the screen occupies an ever smaller absolute area on the Pad.

We address this problem by designing the calendar object as
an expandable semantic tree, and identifying display items with
different nodes of this tree. Each time the calendar is displayed
this semantic tree is traversed. As each nodeis reached, display
items are generated as needed. Individual display items are
ephemeral - if an item is off the screen for a while it is quietly
removed by the calendar object. In this way the total number
of display items always remains manageably small.

This general notion of a geographic database that will expand
and self-prune as the user roams around the Pad has now been
encapsulated in a Scheme library called an “ephemeral database
manager”. We plan to apply this library to other Pad applica-
tions that have an inherently tree structured semantics.

3 System Structure

In this section we introduce the abstract data types needed to
implement Pad. First we will describe the concepts necessary
for display, then those needed to support interaction.

3.1

A Pad address A =(z,y,z) has both a location and ascale, and
defines the linear transformation T4 : (u,v) — (x+u2*, y+v2*).
Here 2 represents the logs of scale.

A Pad region R = [A,w,h] is a rectangle defined by an
address together with a raster width and height (w./). A region

Addresses and Regions
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Figure 4; The user’s annotations are created in ink that also
fades out al greater magnifications.

  
covers the portion of the Pad surface from 7'4(0,0) to T'4(wi, h),
or from (z,y) to (x + w2*,y + A2*).

3.2 Display Items

The lowest level entities in the Pad universe are the display
items, which come in two basic types: graphic and portal. Dis
play items are the only entities actually visible on the user’s
screen. A graphic consists of a raster image / and an address
A. Every display item is said to have a region [A, /, J], which
is the portion of the pad surface which it occupies.

A portalis a graphic that has an additional address, called
its look-on L. Using its raster image / as a mask, a portal have
as its “look-on” the region [/, /,,,/,] on the Pad surface. The
portion of the Pad surface which the look-on covers and which
is not masked by the portal’s graphic is visible at the location
of the portal’s region, This raster masking enables a portal to
give a shaped view onto the Pad surface. Thus, a portal can be
square, round, or even shaped like some well known corporate
logo.

Werefer to a display item’s A; as its “scale”, ln general, a dis-
play item becomes visible on the screen only after being viewed
through a succeasion of portals, each of which may transform
it. We refer to a display item’s apparent z, as it is seen on the
screen, as its “magnification”.

The image on the user's screen is created from a set of dis-
play items. There is one portal associated with the user’s screen
called the “root portal”; the display process consists of render-
ing the root portal. This means rendering the region of the Pad
surface which the root portal looks onto. Those display items
that overlap the root portal’s look-on are rendered. This pro-
cedure is then applied recursively to render any display item
whichts itself a portal,

As the display process recurses throngh each portal, the trans-
formation T(A)T—"'(L) is applied, where A is that portal’s ad-
dress and J is that portal’s lJook-on. This recursion can be
expanded to compute the location of any display item on the
screen. Suppose item 7 is viewed through successively nested
portals p;...p_. Then to determine where (and at what mag-
nification) to display i on the screen, we apply the transforma-
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tion:

T~"(Lroot)T(Ap, )T™"(Lp,)--.T(Ap, JT'(Ly, )T(Aa)

Incrementing the z component of a display item’s address will
increase its magnification. Incrementing the z component of a
portal’s look-on will double the size of its looked on region —
and will therefore decrease the magnification of every item seen
through it. (Think of it as increasing the viewer's altitude.)

There are several other properties of primitive display items
which are important to note:

Visibility Range: Each graphic object can have a range of
magnification outside of which it is invisible. This is im-
portant since most display items are only useful within a
certain range of magnification.

Transparency Range: Similarly, each graphic can have a
range of magnification outside of which the graphic is trans-
parent. This allows objects to fade away gracefully as they
are magnified up or down. Transparency is achieved by
masking with a patterned pixel mask at screen resolution.

Private Display Items: Display items may be attached to a
portal, in which case they are only visible when viewed
through that portal and their addresses are relative to that
of the portal. This creates a hierarchy of display items and
is used to implement the filters described below.

3.3 Pad Objects

Graphics and Portals suffice to make an interesting multi-scale
drawing program. However to use Pad as a system for building
general user interfaces requires a higher level structure called a
Pad Object to interpret events and control these display items so
they behave as a single application. In Pad an object consists of
a region together with a package of code and data which respond
to event messages. An object’s behavior is specified by the
application developer, In order to make itself seen, each object
manages a collection of display items, creating, modifying, and
deleting them.

Pad Objects receive events from the user's mouse and key-
board, plus timer events, channel events (events representing
other types of input, e.g. the output of a process), and expose
events which inform the object that some portion of itself will
become visible on someone’s screen, Eyents which would nor-
mally have an x-y location have instead an address, and this ad-
dress is transformed if the event passes through a portal before
being received by an object which is interested in it. Similarly,
an expose event covers a region rather than just a rectangle, and
this region is also transformed by portals so that each object can
be informed which portion of its region will be rendered and at
what magnification.

Objects are maintained in an order, just as display items have
a drawing order, so that if two or more objects are at the mouse
address the mouse events are sent to the one in front. The
object may use this event for its own purposes, or it may pass
the event on to the objects behind it, or it may transform the
event's address and pass it on to some other part of the Pad.
Events thus passed may go unused by the objects below, in
Which case the original object may then tse the event for its
Own purposes,

3.4 Display
Display is complicated by the fact that objects may be continu-
ally creating and destroying display items. Before we can create
the display wefirst need to give each object an opportunity to
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know at what magnification it will be called upon to appear,
since this will probably influence what display items it chooses
to show.

Therefore display is a two phase process. In the first phase,
each object gathers all the necessary information about what
portions of it will appear on the screen and at what magnifica-
tions. During this first phase display items may be spawned. In
the second phase the screen image is actually drawn.

During phase one each portal is displayed by having the Pad
object that controls it communicate with all objects that in-
tersect the portal’s look-on region. This process begins with a
special root object, which controls the user’s root portal. For a
portal controlled by an object O, the procedureis as follows:

* Q, sends an expose event for the portal’s look-on region.
This event will be received by all objects whose regions
intersect the portal’s look-on region.

® for each object O thal responds:

— O; tells O2 to produce display items for itself with
the proper magnification and clip. If O2 controls any
portals, the procedure is invoked for them recursively.

— any display items that O, receives back, it attaches to
the portal.

This process continues recursively until all items large enough
to see on the screen are accounted for.

In the second phase, each portal is painted from its accuma-
lated list of display items. This process starts with the root
portal, and continues on through all portals seen by the root
portal, and then recursively through those portals. Nate that
if two portals on the screen have overlapping look-on regions,
their lists may have display items in common.

3.5 Interacting Objects and Portals

Semantic zooming is implemented by having the object's display
method depend upon its magnification. The object is always
told its magnification during display phase one.

Portal filters are implemented as follows. Consider the case
of the bar chart filler portal described earlier, Suppose this
portal filter is managed by object O,. During phase one of
the portal display procedure, O, sends an expose event for this
portal, and receives a number of acknowledgments. Suppose O,
has just received such an acknowledgment from object Oz. O,
queries O2 to find out whether Op, is a tabular object. If yes,
then QO, gets the tabular data from O2, builds its own display
items for the bar chart, and attaches these to the portal. If no,
then O,; asks Og to producealist of display items as usual, The
effect is that the filter portal will “see” any tabular data as a
bar chart, but will see other objects in the usual way,

4 Implementation Details

The Pad system is written in three layers, a real-time display
layer written in C++, a Scheme interpreter providing an inter-
face to the C++ layer, and a collection of Scheme code imple
menting the Pad application interface, [t currently runs under
X Windows and MS-DOS. The X Windows version has been

compiled and ron on SanOS, AIX and Linux. The soarce code
of the most recent released version is available via anonymous
FTP from cs.nyu.edu in the directory pub/local/perlin.

6)
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4.1 Rendering Display Items
lt is absolutely essential to our system that arbitrarily scaled
bitmaps can be displayed in real time. Without an algorithm
to achieve this, our desktop model woald either require special
purpose hardware, or else would lose real-time response. Either
scenario would limit the model's general usefulness on typical
currently available graphical workstations. The method we use
to render the raster image of a graphic item depends upon the
item's magnification. The following decisions are based on our
trial and error experiences; they reflect our best results in “tun-
ing” this process.

Weuse four different techniques for drawing the raster image
of a graphic, depending on the range of magnification m.

em > 16. At the largest magnifications it is quickest to
simply draw individual filled squares for each pixel.

*1>m> 16. At moderate magnifications we use look up
tables indexed by the byte pattern, amount of magnifica-
tion, and bits of shift to properly position the result within
the destination word. Different tables are used depending
on the depth of the image.

* m= 1. With no magnification we only need to worry about
the amount of shift necessary to position the result.

* yi < m <1. To demagnify images we index into a pre-
computed pyramid of images.[25] This precomputation is
done at the time a graphic is created; it creates about a
3/2 speed penalty to that process. Since graphic items are
generally reused over many screen refreshes, this penalty is
not usually a problem in practice.

¢ m < 7gq- Beyond some amount of demagnification the
bitmap is not visible and need not be drawn at all.

These techniques yield a display time for each object approxi-
mately proportional to the size of the entire screen image, In
practice this tends to keep refresh time dependent only upon
screen resolution, not upon image complexity.

4,2 Address Space Limits

Addresses are implemented using floating point arithmetic, so
we cannot claim an “infinite” address space for our current sys-
tem, A true unbounded address space could be achieved by
using extended integer arithmetic. Even in its current form, the
space provided is astronomical. Suppose our numbers have a 48
bit mantissa and we have a 2!” by 2!screen. To position an
object on the screen uses 12 of those 48 bits, leaving a minimum
of 36 bits of precision to position our look-on anywhere within
the square —1 < s,y < 1. This means, for example, that you
could lay out 2°% by 25° pages of text in that area.

5 Ongoing and Future Work

5.1 Shared Object Space

Perhaps our most importantgoal is to create a truely distributed
Pad system, where Pad objects can exist on remote machines
and can migrate from machine to machine. When Pad objects
are distributed over many computers the problem of updating
the display of a region on one’s screen becomes a combined dis-
tributed database and computational geametry problem. This
is the subject of ongoing research,[7] and is beyond the scope
of this paper. For in-depth discussions of the implementation
problems we refer the readers to Preparata & Shamos[18] for an
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overview of computational geometry and to Edelsbrunner[5] for
an optimal data structure for rendering.

5.2 Continuous Zoom

Early prototypes have used discreet zoom levels to achieve high
performance. We have also implemented a continuous zoom
algorithm (based on Bresenham's midpoint line drawing algo-
rithm) that allows continuous scaling of raster images at ap-
proximately half the speed of discreet zooming on unenhanced
bitmapped workstations. The algorithm uses table lookups to
greatly speed up the calculation.

5.3 Hierarchical Text Editor

A number of generalizations of familiar applications to the hi-
erarchical domain suggest themselves. A multiscale text editor
is a generalization of a traditional text editor, with the added
capabilities that text can appear at many different sizes, with
recursively inserted text. Therefore the screen structure is no
longer a two dimensional array - it is more like a set of nested
boxes. This allows a more direct look-and-feel for hypertext -
footnotes and references can be embedded in their entirety at
the point of reference. Successive zooming by the user gradually
expands the contents seen of the work referenced. Text is struc-
tured as hypertext — a text string may contain embedded links
to other text strings. The structure of the document can be
an arbitrary directed graph. Visually, text that is linked to ap-
pears to be at the location of the link, only smaller. Contents of
a hyperlink can be accessed without a disruptive sudden change
in the view of the text that references it.

Text can also be made semantically zoomable: When text is
visibly small it appears only as a title. As the user zooms in,
this expands to include an abstract. Further zooming reveals
first an outline with short text descriptions, then finally the full
text.

There are several options for where exactly to visually place
linked-to text. The text can appear in miniature either be-
neath the lines of parent text or, alternatively, superimposed
on the parent text. The latter option requires zoom-dependent
translucency. As the user zooms in, text seen through hyper-
links “fades up" and the visually larger text that references it
simultaneously “fades out”.

Text can be visible simultaneously in any namberof portals.
Each view must maintain a certain amount of state informa-

tion. For example, there needs to be a cursor for each view,
This means that if the mouse is over a particular portal, and
the user types, the insertion point is at the cursor of that view.
Since portals can contain ownership attributes, they can be used
to restrict access to parts of a document. Text visibility through
any particular portal depends upon the text's ownership - pub-
lic (shared by many users) or private (seen by only one user).
Public text can contain links to private text. In general, the
visibility attributes of text can vary, depending upon whether
the text is being viewed by its owner or by someone else.

5.4 An Infinitely Scalable Painting Program

We have, together with Luis Velho, begun applying multiscale
principles to an infinitely detailable painting program|17]. Orga-
nizing ap infinite multiscale canvas is straightforward, requiring
only a Quad-tree. Unfortunately, simulating the application of
a paint brush requires a compositing operation - an alpha blend-
ing of the underlying image with the brush image.

Since this operation is non-commutative,it is easy to run into
probleins. For example, Let's say the user zooms way in to paint
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Figure 5: Overview of branching tree story. The story begins
with a single sentence. The branches of the tree represent story
paths - as the reader zooms into different branches, different
stories unfold.

a scene at a fine scale, then pulls out to paint an atmospheric
wash at a coarse scale, and finally zooms back in to touch up
fine scale details. How should the system implement this? A
straightforward approach, used by Williams{26], is to immedi-
ately apply the coarse scale operations to the finer level pixels.
But this is computationally prohibitive for highly scaled scenes,
since the numberoffine scale pixels affected grows exponentially
with the difference between coarse and fine scale.

Clearly a pyramid of some kind is called for, But because
of non-commutativity, successive operations at different levels
cannot be separated into a traditional Laplacian or similar mul-
tilevel pyramid (as they could be in, say, a strictly additive
system). Our solution is to use B-spline wavelets. We break the
brush image inio its component wavelet basis, and apply inde-
pendently at each level of a wavelet basis pyramid. Then the
B-spline wavelet reconstruction will produce the correct result.
We have implemented this to a one-dimensional canvas, and are
how working on a two or more dimensional version.

5.5 Multiple Narrative Paths

Pad is a good way to store documents with hierarchy and mul-
tiple narrative pathways. Side discussions in a textbook can be
embedded in situ. This allows for some in teresting possibilities.
For example, a novel may be written with bifurcations, allowing
its reader to explore many interleaving stories - a sort of visual
Alezandria Quartet. For example, we have been creating a user
gamseable novel literally shaped into a tree, as seen in figures

5.6 Cooperative Pad Applications
bg bs onset. of high bandwidth consumer information ser-
ispce provides a viable look-and-feel for information brows-
Shave the customer zooms in to an information service, the
Stale,Boe level (and hence the information content) in-
86 the oomed-down browsing can be made freely available,
More ni customer can be billed at successively higher rates forPecific data.
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Figure 6; One level of zoom into branching tree story, At this
scale the narrative contains ome or two paragraphs of detail.

For example, the title and a brief synopsis of a video may
be accessible at low zoom levels. Higher zoom levels actually
play the movie. At the browsing level, the customer might see
geographically arranged clusters of films that may beof related
interest (e.g. films by a particular director).

Similarly, our Pad Map project will provide a substantial
user community with access to a shared map of Manhattan,
annotated with information about cultural events. The users
will be able to add their own annotations, such as restaurant
or movie reviews, or just graffiti. As part of the Pad system,
annotations could be at any scale, and contain links to other
annotations: though it is desirable to keep all the reviews of
a given film together, portals could make them visible at each
theatre which is showing that film. The project will explore the
mechanisms necessary manage user contributions without any
one user monopolizing or degrading the system for others.

Our Shared Spreadsheet project re-casls the spreadsheet
application in a more hierarchical and sharable form. For ex-
ample, hierarchy can be imposed by placing spreadsheet A in a
cell of spreadsheet B, and designating a particular cell of A to
be the value that appears in B’s cell when the magnification of
A is low. The value of sharing such a spreadsheet among users
comes {rom immediate access to the latest data, and the elim-
ination of the need to merge copies of the spreadsheet which
have been updated independently, etc.

Eventually, as display and communication technology im-
proves, pleces of display surface scattered around a work envi-
ronment will become more common — on walls, desks, electronic
PostIt'™ notes[24]. Pad is well suited to such a distributed enyi-
ronment, since it places the user at a floating location in an in-
formation geography. The Windows/Icon/Menu/Pointer model
is less well suited to this, since it is motivated by the desire to
create a “desktop” metaphor on a single display screen,

6 Conclusions

We have described a new kind of graphical space that has a
number of advantages over traditional window systems. Its key
advantage is that it allows a user or a group of users to share and
view mulliple applications in a manner that assigns them vari-
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Figure 7; Two levels of zoom into branching tree story. Here
we can see the story beginning to take a definite shape - in one
possible narrative path.

ous levels of importance, with easy visual nesting and zooming
of documents as they move from peripheral to primary working
attention.

As compared to standard current window models, this system
makes it easier for the user to exploit visual memory of places
to organize informationally large workspaces.

We believe that this approach enriches
tion/window paradigm in a fundamental way.

the worksta-
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Abstract

We describe two instances in which precise mechanical cal-
ibration of yirtual environments equipment has been re-
placed by automated algorithmic calibration through soft-
ware that encapsulates the hardware design and uses a goal-
based approach to adjust calibration parameters. We de-
seribe a back-projection system for adjusting the assumed
locations of beacons in a head-mounted display tracking sys-
tem; the calculated errors in the navigation system are used
to compute adjustments to the beacon positions to reduce
such errors. In a second application, a piggyback head-
tracking/hand-tracking system is calibrated by a similar re-
duction of computed errors.

CR Categories: [.3.m [Computer Graphics]: Miscella-
neous; [.3.7 [Computer Graphics]: 3-dimensional Graphics
and Realism — Virtual Reality; 1.4.8 [Image Processing]
Scene Analysis — Photometry

Additional Keywords:
autocalibration,

Virtual environments, tracking,

1 Introduction

A numberof calibration issnes for virtual environments (VE)
hardware are approached with standard engineering tech-
niques in which the accuracy of the calibration is directly
dependent on the accuracy of the assemblies in the VE ma-
chinery. This approach is successful to a degree but has sev-
eral drawbacks. First, it makes the machinery very sensitive
to rough handling. Second, frequent realignment may be re-
quired, which may be time-consuming and may be necessary
so frequently that extended use of the equipment becomes
impossible. Third, modifications of the machinery become
very difficult,

We therefore take a goal-based approach to these prob-
lems, applying methods learned in computer graphics to
solve engineering problems. Instead of requiring precise cal-
ibration of parts, we ask the systems to autocalibrate, a
notion that was inspired in part by the auto-assembling sys-
tems of Barzel and Barr [BB88] but which first appearedeke
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in Wang’s dissertation [Wan90]. This allows us to write a
program encoding the design of the system that uses the
system's observations to adjust itself. Since realignment can
sometimes actually be done while the machinery is in use,
rather than in a separate calibration phase, the first and sec-
ond problems above are reduced. And because the software
that implements the autocalibration encodes the intent of
the design, the mechanical design can be modified in paral-
lel with software modification, helping to reduce the third
problem. In this paper, we discuss two sample applications:
calibration of a head-tracking system and of a piggyback
hand tracker attached to the head-tracking unit.

Westress that the techniques here serve the general goal
of head-tracking. The current interest in Virtual Reality,
evidenced by the attention it has attracted in both the tech-
nical literature and the media, may well have led to unjus-
tified expectations. There is a belief that “any day now”
the technology will become available. But there are three
substantial obstacles: (1) for comfort, the units need small,
high-resolution displays; (2) graphics hardware must be ca-
pable of real-time, low-latency image generation; (3) a low-
latency, high-accuracy system for head tracking in unpre-
pared, possibly-noisy environments is necessary. We are ad-
dressing the third of these issues. There is as yet no tracking
system that is lightweight and works in unprepared environ-
ments and in large spaces. As far as we know, no one has
demonstrated a working head-tracking system for a room-
sized environment (about 15’ x 15’). The ceiling tracker
described here is a start: the environment is large and ex-
pandable and the equipment, although heavy, is bearable.
We envision an eventual system in which methods similar
to those described here are used to calibrate the system's
view of its environment. The algorithms may differ, but the
principle — having the system modelits sources of error and
calibrate itself against them — will remain.

We wish to make one more point: the two examples pre-
sented in this paper give details of a general principle, and
this general principle is applicable to cases other than the
ones we describe. In short, as one designs a tracker (or other
electro-mechanical assembly), one has the opportunity to
leave some physical parameters fixed but unknown, and to
then determine their exact values after construction. Doing
this kind of post-construction calibration does, however, te-
quire that some aspecis of the system be overdetermined.
In the head-tracker example below, we could not have per-
formed autocalibration if the tracker computed its position
from just three LED beacons, since there would be no “error
measure” as we computed the position-the equations would
be exactly determined rather than overdetermined. Simi-
larly, without multiple samples in the hand-tracking appli-
cation, we could not determine the orientation matrix. So
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the principle is this: if one wishes to use autocalibration,
the system must have a surplus of information and 4 way to
measure whether this information is internally consistent.
The cost of obtaining this surplus of information is a design
tradeoff, and should be considered during the design rather
than after.

2 Operation of the Ceiling Tracker

Most current head trackers achieve a large working volume
at the expense of accuracy and precision. However, some
virtual environments applications require a large working
volume and some minimum tracking precision.

A team at UNC-CH has developed an optoelectronic
tracking system capable of tracking head motion with pre-
cision of approximately 0.2 degrees orientation and 1 mm
translation. (A description of this system and its design
can be found in the references [WAB* 92] [WAB*90],). Sys-
tem accuracy has not been measured precisely, but has been
found to be very adequate for the purposes of head-mounted
display (HMD) applications. At present, the working vol-
ume is a 10° by 12’ area, but the tracking area can in princi-
ple be expanded arbitrarily by adding LED-studded ceiling
panels.

The method used by the optoelectronic tracker is concep-
tually similar to celestial navigation. A mariner observes
the angles between some number of stars and the horizon,
and then, knowing the stars’ locations in the heavens, deter-
mines the vessel’s position. Similarly, we observe a number
of ceiling-mounted infrared LEDs, and knowing their po-
sitions, we compute the location (and orientation) of the
head-tracking unit.

To be more precise, we have a helmet with cameras
mounted on it. Some of the ceiling LEDs are rapidly flashed
in a known sequence, and each oneis possibly sighted by
a camera. The choice of subset and sequence is not preset,
but is determined “on the fly” as it is learned which LEDs
are visible to which cameras. The cameras are lateral-effect
photodiodes with lenses, and each can report the centroid
of a spot of light that strikes its surface. The centroid’s lo-
cation is reported in image plane coordinates, r and y, We
call these pholocoordinates(see Figure 1).

The placements of the cameras on the helmet are known,
as are the locations of the principal! points of the lens systems
and the placements of the photodiodes’ image planes within
the camera casings. Thus, when the camera reports the
photocoordinates of LED image on its image plane, we can
compute the line, in head space, along which the LED must
lie. We call this line a back-projection, because it is the result
of projecting the ray from the photodiode back through the
lens system and outward.

Now, given several back-projections in head space, and
given the true locations of the LEDs in world space, where
must the head be in world space so as to cause the back-
projections to pass through their respective LEDs? With
three (sufficiently general) back-projections, an unique so-
lution can be found, With more than three, we have an
overdetermined system and we compute a bestfit according
to a least-squares criterion, using a method called “space-
resection by collinearity” (abbreviated “CA” for “collinear-
ity algorithm”). We briefly describe CA in Section 3.1; full
details can be found elsewhere [AW91]. Several questions
about this tracker design that are often raised are discussed
in an Appendix.
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Figure 1: The geometry of the head-tracking system.

3 Explaining the Problem
The current design uses an adjustable superstructure to sup-
port the ceiling panels. The adjustments are needed be-
catise any conceivable support structure would bend under
the loading of the panels, giving an undesirable curvature to
the ceiling’s surface.

With the current design of 10° by 12” (30 2’ by 2* panels),
the leveling process requires about 90 minutes of operator
time, with specialized equipment.

Weplan to build another, larger ceiling without this su-
perstructure. The panels will be of the samesize, but will
drop directly into the standard ceiling grid, replacing the
acoustic tiles found in many buildings. This ceiling will be
18° by 30°; the expense of a comparable-size superstructure
is prohibitive, and leveling time would be several hours.

Standard ceiling grids are by no means flat, and we have
therefore developed the autocalibration technique described
here to determine the location of the LEDs after the panels
are installed. Before describing that technique, however, we
give more details of the collinearity algorithm.

3.1 The collinearity algorithm
The collinearity algorithm (CA) works by observing many
(typically 10 to 20) LEDs and then computing a best es-
timate of headmount position and orientation. When an
LED shines onto a photodiode, the photodiode reports the
centroid of the LED's image on its face, Since the algo-
nthm knows the headmount geometry, it is able to com-
pute, in head space, where the back-projection emerges and
in what direction it is pointed. Somewhere along this back-
projection lies the LED (see Figure 2).

Thus

R(p + Ad)+h=t, A>0 Qa)

where ¢ the is location of the LED in world space, R is the
matrix that takes vectors in head coordinates to world coor-

dinates (i.e., R defines the orientation of the head-mount),
h is the world-space coordinates of the origin of the head-
mount coordinate system; and p and d are the basepoint and
direction (unit vector) of the back-projection ray in head-
coordinates; 4 is the distance from the camera to the LED,
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Figure 2: The back-projection ray from the camera towards
the ceiling.

Equation 1 actually consists of three scalar equations, one
for each of the 2-, y-, and z-components. We can solve
the z component for \ and substitute this into the 2 and y
components. This eliminates A and leaves us with two scalar
equations in the unknowns Ff and h.

Many LEDsare seen at the same moment. Each of these
generates two scalar equations. So each observation, which
sights 12 to 20 LEDs, constructs a system of 24 to 40 equa-
tions in the unknowns A and h. CA seeks those values of R

and A that minimize the residuals of these equations in the
least-squares sense. These values are found by applying a
multidimensional Newton’s method.

The method is most successful when given an initial guess
very close to the optimal solution. In practice, this is easy to
supply. The optical tracker typically provides updates every
12 to 20 milliseconds, and a person does not move far in that
interval. Thus, for the initial guess, the algorithm merely
uses the value of the previous update, which is guaranteed
to be close.

4 Autocalibration: Rationale and

Description
We have pointed out that it is very desirable to be able to
construct the ceiling with loose tolerances, and he able to
determine the locations of the LEDs afterward. CA does not
depend upon any particular configuration of LED beacons —
all places are alike to it, [t does, however, require an exact

paowledge of the locations of the LEDs, wherever they may
An “engineering” approach to achieving agreement be-

tween the physical geometry of the beacons and their soft-
Ware representation is prohibitively expensive. Therefore,

we sought a way to determine the locations of the LEDs
using existing hardware and some numerical processing.

The collinearity algorithm was derived from photgram-
metric methods. Our LED calibration method, which makes
use of CA as one step, was based primarily on influences
from mathematics and computer graphics rather than the
photgrammetry literature. We have since learned, however,
that our approach has parallels in that literature, although
we have found no exact analog. Nonethless, we strongly
recommend that others working on optical tracking sys-
tems consult the photogrammetryliterature [Sla80] for many
ideas which, with slight modifications, may prove valuable
in tracking.

Webegin with an estimate of the beacon locations. We
then take several thousand headmount observations (collect-
ing 25,000 observations takes about 45 minutes) from a va-
riety of positions, and use CA to “fit” the position of each
observation to its beacon data. Of course, we know only ap-
proximately where the LEDs are, but fitting the headmount
position to the beacon data allows some of the error in the
beacon location estimates to cancel. The CA solution for
the location of the headmount at each of these thousands of

observations is likely to be rather bad: the sum of squares
value will be large. To return to the marine analogy,it is as
though the several circles of positions on the earth, each de-
termined by a single star, failed to intersect at a single point,
and instead intersected pairwise at several different points
that surrounded a large region. The mariner estimates the
vessel’s position as somewhere at the center of the region,
and begins to doubt the accuracy of the almanac’s star lo-
cations.

After this initial set of observations, we derive the back-
projections from each of these computed headmount loca-
tions, to yield “sightings” of the LEDs from roughly known
positions. An LED sighted from several positions should be
located at the intersection of the back-projections extending
from those positions, but in general, the back-projections
do not come together at a point, but tend instead to cluster
im a particular region. We therefore adjust our estimate of
each LED to be closer to this back-projection cluster. (The
mariner, after several sets of inconsistent observations, de-
cides to correct the almanac). This is the second step of our
autocalibration.

After we adjust all the LEDs, the old observation positions
are no longer optimal solutions in CA. So, we apply CA again
to the observation positions, using the same data as before,
but with the new beacon location estimates. (The mariner
re-computes the vessel’s position on each of the previous
days, and now has circles of position that come closer to
intersecting at single points), Thus we repeat thefirst step.
We now continue, alternating between the two steps in this
fashion, adjusting first one set of parameters and then the
other, until we have settled to some configuration.

Jt seems surprising at first that this process converges at
all; it is even more surprising to see how fast and how ac-
curately it converges. We tested this by perturbing three of
the ceiling panels as shown in Figure 4, and then running the
algorithm. The average error-vector magnitudes for thefirst
five full iterations were 13.1 mm, 4.7 mm, 3.2 mm, 2.5 mm,
2.2mm, and 1.9mm. After 20 iterations, which takes about
two hours for 25,000 observations, the average error vector is
down to 1.1 mm. Figure 5 is a computer-generated picture
of the tracker ceiling. The beacons on the tilted panels are
clearly visible.

The adjustment made to an LED’s location depends on
its relationship to the back-projections associated with il.
A back-projection, in general, passes nearby the LED's es-
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timated location. The vector drawn from the LED's esti-

mated position to the back-projection’s closest approach to
that position is the error vector for that back-projection.
A given LED has many back-projections, for each of which
there is an associated error vector. We average these error
vectors, and use this average as the adjustment to the LED’s
estimated position.

In a sense, each observation of an LED “votes” in the
adjustment. An observation typically sees many LEDs, and
cannot find a position from which to spear all its LEDs with
its back-projections. The smallest adjustment possible for
each LED that would completely satisfy an observation’s
collinearity conditions, would be an adjustment along the
error vector. However, such an adjustment might conflict
with the adjustment required by another observation.

The averaging is thus done as a compromise among the
needs of the various observations that sight a given LED.
It is possible to determine a new position for the LED that
actually minimizes the sum of the squared lengths of the
error vectors, but it is computationally expensive, and the
averaging method works well and fast in practice,

4.1 Concerns About Noise: the Method

in Practice

The autocalibration method was originally tried with sim-
ulated data so that it could be evaluated in the absence of
noise and other complicating factors. It was found to be
quite effective, providing rapid convergence. Performance
on real data was not nearly as good — for reasons we now
discuss.

First, the photodiode readings are noisy. The photocoor-
dinates have as much as 12 microns of uncertamty. If the
LED is a meter away from the camera, which has a 50-mm
lens, the back-projection will miss by more than .25 mm even
if headmount’s position and orientation are exactly correct.

Second, the system of equations produced by each obser-
vation assumes that the LEDs are sighted simultaneously,
and this is not true in practice. The LEDs are sampled in
sequence, and each sample may take as much as a millisec-
ond. If the user’s head is turning at the (reasonable) rate of
180 degrees per second, the LED is 1 m. away from the axis
of rotation, and 20 LEDS are sampled for the observation,
then in the 20 milliseconds of sampling, the back-projection
to the first LED may have traveled 6 cm. This causes the
system of equations given by the observation data to be in-
consistent, so that it cannot be satisfied by any position and
orientation. The fact that the equations cannot be satis-
fied implies that the back-projections are simply wrong, and
hence will “pull on” the LEDs wherever the observation set-
tles.

Third, acquiring the right spatial distribution of observa-
tions is surprisingly difficult. The LEDs in the corner of the
ceiling are typically seen in many fewer observations than
the ones in the center. And when the LEDs in the corner

are seen, it tends to be from one direction. Naturally, an
LED in the corner can be seen only from one octant: be-
low ceiling height and beneath the ceiling. But diversity
in the angles from which the LED is seen is helpful. If an
LEDis seen from within a narrow coneofpositions, then the
location of the back-projection cluster is more sensitive to
the errors mentioned earlier; a slight distortion in the back-
projections’ placement tends to disperse the cluster, denying
the LED a strong centering influence.

Three observations can be made about the first. source

of ertor. First, in addition to using superior photodiodes
and electronics, the error can be reduced by using lenses of
longer focal length. With longer focal lengths, the 12-micron
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error in the LED image location would translate to an even
narrower error cone for the corresponding back-projection.
The primary disadvantage of the resulting small fields of
view is that they can slip between the LEDs and fail to
see any at all, Second, one can allow the headmount to
sit. still, accumulating photocoordinates, and average them
over time to distill a more accurate reading. Unfortunately,
with thousands of observations required, data acquisition
for calibration would be very time-consuming. Third and
most important, however, sensor noise error is insignificant
in comparison to the other two sources of error.

The second source of error comes from the motion of the

headmount. Again, for calibration purposes, we could take
data points only when the headmountis still, But this again
would make data acquisition intolerably slow. In practice,
we have found that moving the headmount slowly helps sub-
stantially in reducing this error. A better solution is to
change the system of equations to take into account the
headmount velocity, both linear and rotational. This would
require a minimum of six LEDs per observation to obtain a
fully-determined system, but typical counts are already 12
to 20 LEDs per observation. This is future work.

The third problem is being addressed by an graphics ap-
plication that assists in data acquisition. A top view (map)
of the ceiling is displayed on a nearby workstation, on which
LEDs presently observed are marked. (This is needed be-
cause the LEDs emit infrared light, invisible to the naked
eye.) The least-sampled LEDs are marked in a different
color, allowing the operator to direct his efforts to sighting
those LEDs. During the calibration process, in addition,
certain LEDs are identified as having unusually large error
vectors, meaning that their associated back-projections do
not cluster tightly enough. A second run of data collection
can be made, and special attention paid to these trouble
spots.

In addition to the precautions and program assistance
mentioned above, the calibration algorithm tests for high
error vectors and culls out observations for which CA can-

not. find a satisfactory solution. (This is similar to comput-
ing robust. statistics by eliminating outliers.) In this way,
the algorithm is made somewhat more tolerant of operator
mistakes or wild readings from the sensors (which are very
rare).

Two features of the automated calibration method have

not yet mentioned. First, the ceiling tracker is in frequent
use. We can simply collect the observations during use and
use these in an off-line calibration computation, so that we
can keep the tracking system aligned without downtime. At
present the system does not need frequent recalibration, and
we do separate calibration runs, allowing us to collect only
“eood” data (ie., data taken with slow head motion). Sec-
ond, the entire algorithm is subject to a kind of systematic
error: if we apply a rigid motion to our estimates of the bea-
con locations, CA converges exactly as well as before. This
means that if one wishes to calibrate the system in absolute
coordinates (relative to some frameof reference for the room
in which the ceiling tracker sits), one may have to apply a
rigid motion to the computed beacon positions so taht the
estimated lcoations of a few key beacons are their actual po-
sitions as determined, for example, by measurements from
the walls of the room,

5 Using a Headmounted Magnetic
Tracker for Handtracking

Although the optical tracker gives satisfactory accuracy over
a large working volume, its design does not lend itself to
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hand tracking for several reasons: the bulkiness of the cam-
eras, the geometry of the situation (the user’s body may
obscure the hand’s “view” of the ceiling, and the hand may
not be held upright), and the dynamic range requirements
on photodiode sensitivity (because of changing distances
from the ceiling). We have found, however, that magnetic
trackers [RBSJ79] usually provide satisfactory performance
within a small tracking volume, although in our environment
they report significantly distorted position and orientation
outside of a range of about five feet. Since one’s hands never
gel farther than a few feet from one’s head, we decided to
place a magnetic source on the headmount and track hand
motion from there.

Ultimately, however, we want to know the hand’s location
in the ceiling coordinate system. The optical tracker reports
the head location in ceiling space, the magnetic sourcelies at
some fixed location in head space, and the Polhemus tracking
system reports the hand’s location in source space. We com-
pose the change-of-coordinate transformations among these
three systems to get the hand’s location in ceiling space.

Of course, the fixed location of the magnetic source within
head space must be known before we can compose the trans-
forms. As before, we have two choices: engineering, i.e.,
careful placement of the source on a precise rigid mount
attached to the headframe, and autocalibration, in which
we place the source approximately and then infer its po-
sition precisely using autocalibration. We chose the latter
approach.

5.1 The calibration problem and solution
We attach the magnetic source to the headmount with a
rigid Plexiglas framework whose position is known within a
few inches, and whose orientation is easy to measure within
about 10 degrees. These are clearly not adequate measure-
ments: if the hand is held 3’ from the source, a 1 degree error
in the measurement of the source’s orientation would cause

a 15 mm error in the computation of the hand’s placement.
Our calibration approach is simple. We take simultane-

ous optical tracker and magnetic tracker readings, and use
them to recover the placement of the source within head
space. The algorithm starts with a very approximateesti-
mate of the source’s placement, such as might be obtained
by inspection.

Westart. by fixing the Polhemus sensor at. some location
in ceiling space. The exact location is not important — it
need only stay still.

Now consider what should happen (if the system were
calibrated properly) as the headmount moves about in the
proximity of the sensor. We receive readings from the op-
tical and magnetic trackers. The optical tracker produces
the Cetling-from-Head transform, and the magnetic tracker
Provides the Source-from-Sensortransform. [f the Head-
Jrom-Source is correct, then the composition of these trans-
forms, Ceiling-from-Head x Head-from-Source x Source-
from-Sensor, should remain constant and should be the
Ceiling-from-Sensor transform, which is constant because
the sensor is not. moving) (see Figure 3.

If, for observation i, R; is the reported Ceiling-from-Head
transform, Tj is the reported Source-from-Sensor transform,
S is the unknown but fixed Head-Jrom-Sourcetransform, and
M is the unknown Ceiling-from-Sensor transform, then for
any pair of reports from the trackers,

RST;=M,

Provided the trackers are accurate. But if 5 is wrong, then
as we walk around the room, the sensor’s position and orien-
tation (i.e, M), as computed by the transform composition,

——
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Figure 3: The geometry of the composite tracker during two
different observations, The source is held fixed in the head-

mounted-display coordinate system, and the sensor is fixed
in the world coordinate system, but the relationship of the
head to the world and of the sensor to the source change
with each observation.

will drift, appearing to be in different places, depending on
where weare standing.

After n readings fromndifferent places, we have a system
of n equations,

AST; = M; s=0...n—1,

where 3 ts our (incorrect) estimate of Head-from-Source, and
each M, is computed as A; ST,. We seck the value of S that
will make the Mjs equal (i.e., the value of S that keeps our
reports of the sensor positions and orientation constant).

Onurestimate of S and the readings R,; and T; give rise
to many estimates of the sensor location M;. We might get
closer to the true value of M by taking some compromise
among the Mjs, say, by estimating that it is the average of
the Mys. We actually bias this average slightly by averaging
the matrix entries, and then performing the Gram-Schmidt
process on the rotational part of the matrix. This averaging
and orthonormalization step is likely to prompt objections,
which we address below. For now, we continue with our
description of the algorithm.

Let’s call this resulting average transform Q. If we imag-
ine that this is the correct value for the sensor location, then
we can write the system

RST, =Q,

If @ really were the correct location, then we could take
any one of the equations R;ST; = Q and solve for 5 to
recover that value, since the remaining transforms would be
known, However, when we actually do this we find that we
get different values for S. Why? Because Q is not correct —
but it might be close. Solving for 5 gets us

5, = R7'QT-’,

1=0...n—-1,

1=0...n—1,
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each of which suggests a different value for S. We average
these in exactly the way we did the Mjs to arrive at a new
estimate for S.

This completes one iteration of the algorithm. With our
new estimate of 5 we go back and acquire new Ms, which we
average to get Q, which we substitute back into the system
so we can solve for the S;’s, which we average to get our new
S, We iterate until the value of 5 stabilizes.

5.2 Justification for averaging matrices
Averaging makes sense for points in a linear space like a
plane, but we are trying to use it in a nonlinear space (the
set of 3x3 rotation matrices). But in general, the average of
a set of points on a non-linear space like a sphere is almost
always a point that is not on the sphere. Even so, if all the
points are very close together on the sphere, this averaging
yields a point that is near to a point on the sphere that one
might call the “average.”. The reason is that the local ge-
ometry of the sphere is well approximated by any of the tan-
gent planes within the local region, and so the sphere-based
averaging is a close approximation to the tangent-plane av-
eraging. Since the average of the sphere points does notlie
on the sphere, however,to get a meaningful average we must
project back onto the sphere. The critical properties of the
projection map here are (1) it is continuous in a neighbor-
hood of the sphere, and (2) for points already on the sphere,
the projection is the identity. We now explain why the pro-
cess we used in averaging matrices is analogous.

The set€)of 4 * 4 translation-and-rotation matrices is a
subset of A'®; it is curved in much the same way that the
sphere is a curved subset of R°. We can average a collection
of points on the object Q (i.¢., several matrices), in much the
same way as we averaged points on the sphere. Before this
can make sense, though, we must honor the restriction that
the points being averaged should be close to one another.
And the same caveat applies: the R'°-average of a set of
points in @ is not likely to lie in Q, and will need to be pro-
jected back to Q, which is what the Gram-Schmidt. process
does. Note, though, that the Gram-Schmidt process has the
same properties as radial projection: it is a continuous func-
tion of the entries of the matrix (at least for matrices that
are close to rotation matrices), and for a rolation matrix,
the Gram-Schmidt process does nothing.

Still, there remains the question, “How small a region
must the points be gathered in for averaging to make sense?”
On the sphere, it certainly makes sense when all the points
are contained in some hemisphere. For matrices, the averag-
ing of the translational part is simply an average in a linear
space, and needs no justification; for the rotational part, we
believe (but have not proved formally) that the averaging
process makes sense for any collection of (rotation) matri-
ces {A;} for which all the inner products z;, = trace(A;A})
are greater than 1/2. In practice, however, our matrices are
all quite close to one another, and these inner products are
large. Furthermore, the algorithm in practice is far more
robust than we had expected. In a 2D simulation of the
problem, for example, it takes sume effort to give an initial
estimate of the matrix 5S that makes the algorithm diverge.

5.3 Noise in the data, and the algorithm
in practice

The accuracy of this method depends on the accuracy of
the trackers providing the data. The optical and magnetic
trackers, providing the R,’s and 7;’s are noisy. In general, no
choice of S and M satisfies all the equations simultaneously,
It is impossible to determine what the correct values are, and
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we can only hope to get an approximation to the correct S,
Nonetheless, the error in the estimates of S and M, since
they are based on multiple samples, should average out the
random noise from the trackers. The systematic noise (e.g.,
one tracker always reports a slightly scaled z-coordinate)
is not averaged out, but is also inherent in the system; if
such systematic noise were too large, the system would be
unusable in practice. Our experience is that the values of S
and M converge quite rapidly to values that provide quite
good hand-tracking.

There is one important observation about this instance of
autocalibration; the sensor readings from which the calibra-
tion is done must be in fairly general position. In some cases,
for example if the orientation of the headmount remains con-
stant throughout the sampling process and the headmountis
translated only along a single axis, thenalittle linear algebra
shows that the estimates of S and M can all be identical but
nonetheless be incorrect. But if the headmountis tilted and

translated about. all three axes during data gathering, and if
multiple tilts and translations about each axis are included,
then the equations will be sufficiently general to guarantee
convergence (given a good enongh initial estimate of S).

5.4 Remarks on the Method

One nice aspect of this method is that no exact measure-
ments are needed. The location of the sensor somewhere in

lab space may remain unknown. The position of the source
in head space need only be estimated — and thatis the only
measurement necessary: the rest of the information is taken
directly from the tracker sensors themselves.

The calibration procedure takes about 20 minutes in all:
5 minutes to put the sensor in place and gather data, and
about 15 minutes (including graphical display of progress at
each step) to settle on a value for 5.

The number of equations and the “tightness” of the clus-
ter of estimates can give a feel for the accuracy of the esti-
mate. In averaging the Sjs, we can compute a residual for
each, that is the magnitude of the deviation from the aver-
age S; (deviation, here, being the difference in the transla-
tion components of the transforms). The angular deviation
could be treated in precisely the same manner: the angle of
rotation required to get from one transform’s orientation to
the other’s. The root mean square of these residuals can be
used as a reasonable metric for the “tightness” of the esti-
mates of S. In a typical calibration run of 25 measurements,
the RMS value of the deviations from the mean 5; was about
4.6 millimeters.

‘These residuals are not the same as the error in the result,
although they are related. The more equations we use, the
morelikely the resulting transform is to be close to the actual
one. This is somewhat like averaging a random variable -
the variance can be very high, but the longer we average,
the closer we are likely to get to the expected value.

6 Conclusion

We have described two applications of a goal-based approach
to alignment of mechanical systems in VE tracking. In
both cases, the automated calibration simplifies the con-
struction of the systems, and makes it easier to modify the
systems without extensive redesign of hardware or software.
Note that the autocalibration system is designed to calibrate
against a particular source of error, LED position error in the
first case and Polhemus source location error in the second.

Other sources of error in the system will confound the au-
tocalibration process, so that if they are persistent enough,
the autocalibration model should be revised to incorporate
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them as well. As the number of variables to be calibrated
is increased, the number of observations must increase as
well, of course, but in the head-tracking system, we have
calibrated about 3000 variables successfully.

7 Acknowledgments

We would like to thank Al Barr for his initial involvement
in the discussion of autocalibration, which helped to lead us
away from the engineering approach and into the mathemal-
jcal one. Wealso thank J.-F, Wang for having the idea of
autocalibration for headtracking systems in thefirst place.
Henry Fuchs’ persistent demands for greater accuracy and
bigger tracking spaces have provided a constant impetus.
And we both owe a debt to our colleagues who have sup-
ported us in this project, particularly Ron Azuma and Rus-
sell Taylor.

References

fAW91] Ronald Azuma and Mark Ward. Space Resec-
tion by Collinearity: Mathematics behind the
Optical Ceiling Head-Tracker. Technical Re-
port TR91-048, UNC-Chapel Hill Department
of Computer Science, November 1991.

Ronen Barzel and Alan H. Barr. A Modeling
System Based on Dynamic Constraints. Com-
puter Graphics, 22(4):179-188, August 1988.

F, H. Raab, E. B. Blood, T. O. Steiner, and
H. R. Jones. Magnetic Position and Orien-
tation Tracking System. JEEE Transactions
on Aerospace and Electronic Systems, AES-
15(5):709-718, September 1979.

C.C, Slama, editor. Manual of Photogramme-
try. American Society of Photogrammetry, Falls
Church, Va, fourth edition, 1980.

J. F. Wang, R. Azuma, G. Bishop, V. Chi,
J. Eyles, and H. Fuchs. Tracking a Head-
Mounted Display in a Room-sized Environment
with Head-Mounted Cameras. Proc SPIE 1990
Technical Symposium on Optical Engineering
and Photonics in Aerospace Sensing, 1290, 1990.

M. Ward, R. Azuma, R. Bennet, 5. Gottschalk,
and H. Fuchs. A Demonstrated Optical Tracker
with Scalable Work Area for Head-Mounted Dis-

play Systems. In Proceedings of 1992 Symposium
on Interactive 3D Graphics, Cambridge, Mass.,
pages 43-52, March 1992.

Jih-Fang Wang. A Real-time Optical 6D Tracker
for Head-mounted Display Systems. Techni-
cal Report TR90-011, UNC-Chapel Hill Depart-
ment of Computer Science, March 1990.

8 Appendix: Head Tracker Design
Several issues concerning our current tracker design are of-
ten raised by those unfamiliar with it. First, why use exotic,
expensive lateral-effect photodiodes instead of the highly de-
veloped, inexpensive CCD technologies?

The reason is timing. We want updates from the tracking
system every 12 to 20 milliseconds. With CCDs, both the
bandwidth required for data transfer and the image process-
ing necessary per frame were prohibitive. We found it more
feasible to digitize the voltages coming from the lateral-eflect
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photodiodes (the only thing of interest after all in the im-
age that a CCD camera would have seen) and transmit this
comparatively low bandwidth signal.

Second, why use multiple cameras with narrow fields of
view? Why not use a single camera with a wide-angle lens?

The problem here is the limited precision of the photoco-
ordinates. We have observed that, in practice, the photo-
coordinates reported by the camera may be off by as much
as 12 microns. A narrow field of view helps reduce this
problem, but since CA requires disparate angles to operate
effectively (otherwise the matrices involved tend to become
ill-conditioned), this field-of-view requirement compels us to
use multiple cameras,

Lastly, why put cameras on the head and LEDs on the
ceiling, rather than vice versa, since the headmount would
be much lighter with LEDs rather than cameras?

To explain our strategy, we call the cameras on the
walls the “outside-looking-in” approach, and the cameras on
the headmount the “inside-looking-out” approach. “Inside-
looking-out” has three advantages over its counterpart: sen-
sitivity to orientation, economical scalability, and energetics
considerations.

Sensitivity to ortentationis the ability to detect a head ro-
tation. In the current system, a .5 degree turn of the head,
for instance, causes a very significant change in the LEDs’
coordinates on the photodiodes, regardless of their distances
from the camera. By contrast, in the outside-looking-in ap-
proach this change in orientation would be almost impercep-
tible.

An economically scalable system is one in which the cost
of increasing the working volume is low in terms of cost
per unit tracking space. Because of the narrow field-of-view
requirement on the cameras, the outside-looking-in approach
(on a 30 ft? area) would need many cameras mounted on the
walls. Covering the ceiling with LEDsis less expensive.

Energetics refers to how light energy is received from an
LED. Quadrupling the distance between LED and camera,
for instance, decreases the light energy received by a factor
of 16. Furthermore, LEDs do not emit light uniformly in
every direction: most of their power is emitted in the di-
tection they face, and drops off with the angle away from
their axis (depending on the packaging). If the cameras are
wall-mounted, and the LEDs are head-mounted, then, as the
user walks about, many LEDs may be oblique to the cam-
eras, and the distances between user and cameras may vary
a great deal. These two effects combine to make the range
of signal strengths received by the cameras too wide,
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Figure 4: Tilting three panels in the ceiling to test autocalibration.

eeYUMTi]ey) 
Figure 5: Computer display of calibrated beacon locations. The beacons shown in red were insufficiently sampled and could
not be calibrated by the algorithm (see Section 4.1).
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Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton}, Tony D. DeRoset

Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304
+University of Toronto, {University of Washington

Abstract
Toolglass™ widgets are new user interface tools that can appear,
as though on a transparent sheet of glass, between an application
and a traditional cursor. They can be positioned with one hand
while the other positions the cursor. The widgets provide a rich
and concise vocabulary for operating on application objects.
These widgets may incorporate visual filters, called Magic Lens™
filters, that modify the presentation of application objects to
reveal hidden information, to enhance data of interest, or to
suppress distracting information. Together, these tools form a
see-throughinterface that offers many advantages over traditional
controls. They provide a new style of interaction that better
exploits the user's everyday skills, They can reduce steps, cursor
motion. and errors. Many widgets can be provided in a user inter-
face, by designers and by users, without requiring dedicated
screen space. In addition, lenses provide rich context-dependent
feedback and the ability to view details and context simultaneous-
ly. Our widgets and lenses can be combined to form operation
and viewing macros, and can be used over multiple applications.
CR Categories and Subject Descriptors: 13.6 [Computer
Graphics]: Methodology and Techniques—interaction techniques;
1.5.2 [Information Interfaces and Presentation]: User Inter-
faces-interaction styles; 3.3 [Computer Graphics]:
Picture/Image Generation—viewing algorithms; [.3.4 [Computer
Graphics]: Graphics Utilities-graphics editors
Key Words: multi-hand, button, lens, viewing filter, control
panel, menu, transparent, macro
1. introduction

We introduce a new style of graphical user interface, called the
see-through interface. The see-through interface includes semi-
iransparent interactive tools, called Toolglass™ widgets, that are
used in an application work area. They appear on a virtual sheet
oftransparent glass, called a Toolglass sheet, between the applica-
tion and a traditional cursor. These widgets may provide a
customized view of the application underneath them, using
viewingfilters called Magic Lens™filters. Each lens is a screen
region together with an operator, such as ‘‘magnification’’ or

render in wireframe,’’ performed on objects viewed in the
region. The user positions a Toolglass sheet over desired objects
and then points through the widgets and lenses. These tools
create spatial modes that can replace temporal modes in user in-
terface systems.

Two hands can be used to operate the see-through interface. The
user can position the sheet with the non-dominant hand, using a
device such as a trackball or touchpad, at the same time as the
dominant hand positions a cursor (e.g., with a mouse or stylus).
Thus, the user can line up a widget, a cursor, and an application
object in a single two-handed gesture.

Permission to copy without fee all or part of this material is granted
provided that the copies are not madeor distributed for direct
commercial advantage, the ACM copyright notice and thetitle of the
publication and its date appear, and notice is given that copyingts by
Permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission,
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A set of simple widgets called click-through buttons is shown in
figure 1. These buttons can be used to changethe color of objects
below them, The user positions the widget in the vicinity and
indicates precisely which object to color by clicking through the
button with the cursor over that object, as shownin figure 1(b).
The buttons in figure l(c) change the outline colors of objects. In
addition, these buttons include a filter that shows only outlines,
suppressing filled areas. This filter both reminds the user that
these buttons do not affect filled areas and allows the user to

change the color of outlines that were obscured.

 
Figure 1. Click-through buttons. (a) Six wedge objects.
(b) Clicking through a greenfill-color button. (c) Clicking
through a cyan outline-color button.

Many widgets can be placed ona single sheet, as shownin figure
2. The user can switch from one command or viewing mode to
another simply by repositioning the sheet.

 
Figure 2. A sheet of widgets. Clockwise from upperleft:
color palette, shape palette, clipboard, grid, delete button,
and buttonsthat navigate to additional widgets.

Widgets and lenses can be composed by overlapping them,
allowing a large numberof specialized tools to be created from a
small basic set. Figure 3 shows an outline color palette over a
magnifying lens, which makesit easy to pointto individual edges.

 
Figure 3. An outline color palette over a magnifying lens.

The see-through interface has been implemented in the Multi-De-
vice Multi-User Multi-Editor (MMM) framework in the Cedar
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programming language and environment,” running on the SunOS
UNIX™.compatible operating system on Sun Microsystems
SPARCstations and other computers. The Gargoyle graphics
editor,” as integrated into MMM, serves as a complex application
on which to test our interface. We use a standard mousefor the

dominant hand and a MicroSpeed Fast(TRAP™ trackball for the
non-dominant hand. The trackball includes three buttons and a

thumbwheel, which can be used to supply additional parameters
to the interface.

The remainder of this paper is organized as follows. The next
section describes related work. Section 3 descnbes some

examples of the tools we have developed. Section 4 discusses
general techniques for using the see-through interface. Section 5
discusses some advantages of this approach. Section 6 describes
our implementation. Sections 7 and 8 present our conclusions and
plans for future work.

Except for figures 12 and 16,all of the figures in this paperreflect
current capabilities of our software.

2. Related Work

The components of the see-through interface combine work in
four areas: simultaneous use of two hands, movable tools,
transparent tools, and viewing filters. In this section, we describe
related work in these four areas.

Multi-Handed Interfaces

Several authors have studied interfaces that interpret continuous
gestures of both hands. In Krueger's VIDEOPLACEs system,!> the
position and motion of both of a participant’s hands, as seen by a
video camera, determine the behavior of a vanety of on-screen
objects, including animated creatures and B-spline curves.
Buxton and Myers discovered that users naturally overlap the use
of both hands, when this is possible, and that, even when the two
handsare used sequentially, there is still a performance advantage
over single-hand use.”
Other work characterizes the situations under which people
successfully perform two-handed tasks. Guiard presents evidence
that people are well-adapted to tasks where the non-dominant
hand coarsely positions a context and the dominant hand performs
detailed work in that context.4 Similarly, Kabbash presents
evidence that a user’s non-dominant hand performs as well or
better than the dominant hand on coarse positioning tasks.!
Our system takes full advantage of a user's two-handed skills; the
non-dominant hand sets up a context by coarsely positioning the
sheet, and the dominant hand acts in that context, pointing
precisely at objects through the sheet.

Movable Tools

Menus that pop up af the cursorposition are movable tools in the
work area. However, such a menu's position is determined by the
cursor position before it appears, making it difficult to position it
relative to application objects,

Several existing systems provide menus that can be positioned in
the same work area as application objects. For example,
MacDraw “‘tear-off menus*’ allow a pull-down menu to be
positioned in the work area and repositioned by clicking and
dragging its header.!’ Unfortunately, moving these menus takes
the cursor hand away from its task, and they must be moved
wheneverthe user needs to see or manipulate objects under them.

Toolglass sheets can be positioned relative to application objects
and moved without tying up the cursor.

Transparent Tools

Some existing systems that allow menus to be positioned over the
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work area make these menus transparent. For example, the Alto
Markup system!® displays a menu of modes when a mouse button
goes down. Each menu item is drawn as an icon, with the space
between icons transparent, Bartlett’s transparent controls for

interactive graphics use stipple pattems to get the effect of
transparency in X Windows.

While these systems allow the user to continue to see the
underlying application while a menuis in place, they don't allow
the user to interact with the application through the menu and they
don’t use filters to modify the view ofthe application, as does our
interface.

Viewing Filters

Many existing window systems provide a pixel magnifier. Our
Magic Lens filters generalize the lens metaphor to many
representations other than pixels and to many operations other
than magnification. Because they can access application-specific
data structures, our lenses are able to perform qualitatively differ-
ent viewing operations, including showing hidden information
and showing information in a completely different format. Even
when the operation is magnification, our lenses can produce
results of superior quality, since they are not limited to processing
data at screen resolution.

The concept of using a filter to change the way information is
visualized in a complex system has been introduced before.?>:!0:!4
Recent image processing systems support compostition of
overlapping filters.2> However, none of these systems combine
the filtered views with the metaphor of a movable viewing lens.

Other systems provide special-purpose lenses that provide more
detailed views of state in complex diagrams. For example, a
fisheye Jens can enhance the presentation of complicated
graphs.*! Thebifocal display” provides similar functionality for
viewing a large space of documents. The MasPar Profiler’ uses a
tool based on the magnifying lens metaphor to generate more
detail (including numerical data) from a graphical display of a
program.

Magic Lens filters combine viewing filters with interaction and
composition in a much broader way than do previous systems.
They are useful both as a componentofthe see-through interface
and as a general-purpose visualization paradigm, in which the
lenses becomean integral part of the model being viewed.

3. Examples
This section shows several tools that demonstrate features of the

see-through interface. Because we have implemented pnmarily in
the graphical editing domain, most of these tools are tailored to
that application, However, the see-through interface can be used
in a wide variety of other application domains.

Shape and Property Palettes

Palettes are collections of objects or properties that can be added
to a scene. Figure 1 showed two widgets that apply color to
shapes. Similar tools can be designed to apply other graphical
properties, such as type and line styles to an illustration, shading
parameters to a 3D model, or initial values to a simulation. Figure
4 illustrates a widget containing graphical shapes that can be
“pushed through’’ from the tool into the illustration below. In
figure 4(a), the user has positioned a shape palette widget (shown
in cyan) over an illustration (shown in magenta). When theuser
clicks on a shape on the tool, a copy of that shape is added to the
illustration. ‘The widget attaches the copied shape to the cursor
for interactive dragging until the final shape position is achieved
(figure 4(b)).
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Figure 4. Shape palette. (a) Choosing a shape. (b) Placing
the shape,

Figure 5 shows a design for a property palette for setting the face
of text in adocument. Each face (regular, bold, etc.) has an active
region on the right side of the tool. Selecting the text displayed in
this region changesits face.

temporal modes and modes created !

italic|spatialmodes.Becausethesespatial

the user's attention can remain on the

 

 
  
  

 
 

Figure 5. Font face palette. The word “directly” is being
selected and changedto bold face.

Clipboards

Clipboard widgets pick up shapes and properties from underlying
objects, acting as visible instantiations of the copy and paste keys
common in many applications. Clipboards can pick up entire
objects or specific properties such as color, dash pattern or font.
They can hold single or multiple copies of an object. The objects
or properties captured on the clipboard can be copied from the
clipboard by clicking on them,asin the palette tools.
Figure 6 shows a symmetry clipboard that picks up the shape that
the user clicks on (figure 6(a)) and producesall of the rotations of
that shape by multiples of 90 degrees (figure 6(b)). Moving the
clipboard and clicking on it again, the user dropsa translated copy
of the resulting symmetrical shape (figure 6(c)). Clicking the
small square in the upper left comer of the widget clears the
widget so that new shapes can be clipped.

(a) (b) (c)

Figure 6. Symmetry clipboard. (a) Picking up an object.
(b) Rotated copies appear. (c) The copies are moved and
pasted.

Figure 7 shows an example of a type of clipboard that wecall a
rubbing. Tt picks up the fill color of an object when the user
clicks on that object through the widget(figure 7(a)). The widget
also picks up the shape of the object as a reminder of where the
color came from (figure 7(b)). Many fill-color rubbings can be
placed on a single sheet, allowing the user to store several colors
and remember where they came from. Thestored coloris applied
to new shapes when the user clicks on the applicator nib of the
rubbing (figure 7(c)).

 
Figure 7. Fill-color rubbings.(a) Lifting a color. (b) Moving
the clipboard. (c) Applying the color.
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Besides implementing graphical cut and paste, clipboards provide
a general mechanism for building customized libraries of shapes
and properties,

Previewing Lenses

In graphical editing, a lens can be used to modify the visual
properties of any graphical object, to provide a preview of what
changing the property would look like. Properties include color,
line thickness, dash patterns, typeface, arrowheads and drop
shadows. A previewing lens can also be used to see what an
illustration would look like under different circumstances; for

example, showing a colorillustration as it would be rendered on a
black/white display or on a particular printer. Figure 8 shows a
Celtic knotwork viewed through two lenses, one that adds drop
shadows and one that shows the picture in black and white. The
achromatic lens reveals that the drop shadows may be difficult to
distinguish from the figure on a black/whitedisplay.

 
Figure 8. An achromatic lens over a drop shadow lens
over a knotwork, (Knotwork by Andrew Glassner)

Previewing lenses can be parameterized, For example, the drop
shadow lens has parameters to control the color and displacement
of the shadow. These parameters can be included as graphical
controls on the sheet near the lens, attached to input devices such
as the thumbwheel, or set using other widgets.

Selection Tools

Selection is difficult in graphical editing when objects overlap or
share a common edge. Our selection widgets address this
problem by modifying the view and the interpretation of input
actions, For example, figure 9 shows a widget that makesit easy
to select a shape vertex even when it is obscured by other shapes.
This tool contains a wire-frame lens that reveals all vertices by
making shape interiors transparent. Mouse events are modified to
snap to the nearest vertex.

 
(a) (b) (ce)

Figure 9. Vertex selection widget. (a) Shapes. (b) The
widgetis placed. (c) A selected vertex.

 
Figure 10. The local scaling lens. (Tiling by Doug Wyatt)

5
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Figure 10 shows a lens that shrinks each object aroundits own
centroid. This lens makes it easy to select an edge that is
coincident with one or more other edges.
Grids

Figure I1 shows three widgets, each of which displays a different
kind of grid. The leftmost two grids are rectangular with different
spacings. The rightmost grid is hexagonal, Although each grid
only appears whenthe lensis in place, the coordinates ofthe grid
are bound to the scene, so that grid points do not move when the
sheet moves. By clicking on the grid points and moving. the
widget, the user can draw precise shapes larger than the widget.
If the sheet is moved by the non-dominant hand, the user can
quickly switch betweenthe grids during an editing motion,

 
Figure 11. Three grid tools.

Visualization

Figure 12 illustrates the use of tools and lenses to measure
Gaussian curvature in the context of a shaded rendering of a 3D
model. The pseudo-color view indicates the sign and relative
magnitude of the curvature,’ and the evaluation tool displays the
value at the point indicated,

 
Figure 12. Gaussian curvature pseudo-color Jens with
overlaid tool to read the numeric value of the curvature.
(Original images courtesy of Steve Mann)

4, Using the See-ThroughInterface

Widgets and lenses are most effective when supported by
appropriate conventions specifying how to position, size,
organize, and customize them. This section discusses a few of
these issues,

Moving andSizing the Sheetor the Application
A Toolglass sheet can be moved by clicking and dragging on its
border with a mouse or by rolling the trackball. The sheet andall
its widgets can stretch and shrink as a unit when the user works a
a second controller such as a thumbwheel. With these moving
and sizing controls, the user can center a widget on any applica-
tion object and size the widget to cover any screen region. Large
widgets can be used to minimize sheet motion when applying a
widget to several objects. A widget that has been stretched to
cover the entire work area effectively creates a command mode
overthe entire application.

By clicking a button on the trackball, the user can disconnect the
trackball from the sheet and enable its use for scrolling and
zooming a selected application area, If a sheet is over this appli-
cation, the user can now moye an application object to a widget
instead of moving a widget to an object. This is a convenient way
to use the see-through interface on illustrations that are too large
to fit on the screen,

76

 
Managing Sheets

A typical application will have a large numberof widgets in its in-
terface. To avoid clutter, we need a way lo organize these
widgets and sheets, One approach is to put all of the widgets on a
single sheet that can be navigated by scrolling and zooming.
Perlin and Fox's paper in these proceedings'? describes tech-
niquesfor creating and navigating unlimited structures on a single
sheet. A second approachis to have a master sheet that generates
other sheets. Each of these sheets could generate more sheets,
like hierarchical menus. A third technique, used in our prototype,
is to allow a single sheet to show different sets of widgets at dif-
ferent times. The set to display can be selected in several ways:
the user can click a special widget in the set, like the arrows in
HyperCard,™!' that jumps to anotherset. In addition, a master
view providesa table of contents of the available sets allowing the
user fo jump to any one, To use different sets simultaneously, the
user creates additional sheets,

Customizing Sheets

Because sheets can contain an unlimited numberof widgets, they
provide a valuable new substrate on which users can create their
own customized widgets and widgetsets. In effect, the sheets can
provide a user interface editor, allowing users to move and copy
existing widgets, compose macros by overlapping widgets, and
Snap widgets together in new configurations. Indeed, with the
techniques described in this paper, one Toolglass sheet could even
be used to edit another,

5. Advantages of See-Through Tools

In this section, we describe some advantages we see for using the
see-through interface. Most of these advantages result from
placing tools on overlapping layers and from the graphical nature
of the interface.

In most applications, a control panel competes for screen Space
with the work area of the application. Toolglass sheets exist on a
layer above the work area. With proper management of the
sheets, they can provide an unlimited space for tools. The widgets
in use can take up the entire work area. Then, they can be
scrolled entirely off the screen to provide an unobstructed view of
the application or space for a different set of widgets,
The see-through user interface can be used on ny displays, such
as notebook computers or personal digital assistants, that have
little screen real estate for fixed-position control panels. I[t can
also be used on wall-sized displays, where a fixed control panel
might be physically out of reach from some screen positions.
These tools can move with the userto stay close at hand.

A userinterface layer over the desktop provides a natural place to
locate application-independent tools, such as a clipboard that can
copy material from one window to another.

These widgets can combine multiple task steps into a single step.
For example, the vertex selection widget of figure 9 allows the
user to turn on a viewing mode (wire-frame), turn on a command
mode (selection), and point to an object in a single two-handed
gesture,

Mostuserinterfaces have temporal modesthat can cause the same
action to have different effects at different times. With our inter-
face, modes are defined spatially by placing a widget and the
cursor over the object to be operated on. Thus, the user can easily
see what the current modeis (e.g., by the label on the widget) and
how to get out ofit (e.g., move the cursorout of the widget). In
addition, each widget can provide customized feedbackforits op-
eration. For example, a widget that edits text in an illustration can
include a lens that filters out all the objects except text. When
several widgets are visible at once, the feedback in each one
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serves a dual role, It helps the user make proper use of the widget
and it helps the user choose the correct widget.

The visual nature of the see-through interface also allows users to
construct personalized collections of widgets as described above.

6. Implementation
This section provides an overview of our implementation of the
see-throughinterface.

Toolglass Sheets
Wedescribe three Toolglass subsystems: one that handles simul-
ianeous input from two pointing devices and updates the screen
after multiple simultaneous changes, one that modifies pointing
events as they pass through widgets, and one that modifies graph-
ical output as it passes up through each widget.

Multi-Device Inout and Screen Refresh

Our Toolglass software uses the MMM framework.> The see-
throughinterface relies on the following features of MMM.

MMM takes events from multiple input devices, such as the
mouse and trackball, keeps track of which device produced which
event, and places all events on a single queue. It dequeues each
event in order and determines to which application that event
should be delivered. MMM applications are arranged in a
hierarchy that indicates how they are nested on the screen. Each
event is passed to the root application, which may pass the event
on to one of its child applications, which may in tum pass the
event on down the tree. Mouse events are generally delivered to
the most deeply nested application whose screen region contains
the mouse coordinates. However, when the user is dragging or
rubberbanding an object in a particular application, all mouse co-
ordinates go to that application until the dragging or
rubberbanding is completed. Keyboard events go to the currently
selected application.

To support Toolglass sheets, MMM's rules for handling trackball
input were modified. When a sheet is movable, trackball and
thumbwheel events go to the top-level application, which
interprets them as commands to move or resize the sheet.
respectively. When the sheet is not movable, the trackball and
thumbwheel events are delivered to the selected application,
which interprets them as commands to scroll or zoom that appli-cation.

Filtering Input Through Lenses and Widgets

Root Application

Toolglass Text Editor
Sheet ©yaphical Editor

(a) (b)

Figure 13. A simple hierarchy of applications

 
Ordinarily, MMM input events move strictly from the root appli-
cation towards the leaf applications. However, to support the see-
throughinterface, input events must be passed back up this tree.
For example, figure 13(b) shows an application hierarchy, The
left-to-right order at the lower level of this tree indicates the top-
to-bottom order of applications on the screen. Input events are
first delivered to the Toolglass sheet to determine if the user is
interacting with a widget or lens, If so, the event is modified by
the sheet. In any case, the event is returned fo the root applica-
tion, which either accepts the event itself or passes it on to the
child applications that appear farther to the nghtin the tree.
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The data structure that represents an MMM event is modified in
three ways to support Toolglass sheets. First, an event is
annotated with a representation of the parts of the application tree
it has already visited. In figure 13, this prevents the root applica-
tion from delivering the event to the sheet more than once,
Second, an event is tagged with a command string to be
interpreted when it reaches its final application, For example, a
color palette click-through button annotates each mouse-click
event with the command name ‘‘FillColor’’ followed by a color.
Finally, if the widget contains a lens, the mouse coordinates of an
event may be modified so the event will be correctly directed to
the object that appears under the cursor throughthat lens.

FINE
Figure 14. Composing color-changing widgets.

Widgets can be composed by overlapping them. Whenastack of
overlapped widgets receives input (e.g., a mouse click), the input
event is passed top-to-bottom through the widgets. Each widget
in turn modifies the command string that has been assembled so
far. For example, a widget might concatenate an additional com-
mand onto the current command string. In figure 14, a widget
that changesfill colors (figure [4(a)) is composed with a widget
that changes line colors (figure 14(b)) to form a widget that
changes both fill and line colors (figure 14(c)). If the line color
widget is on top, then the command string would be *‘LineColor
blue’’ after passing through this widget, and *‘LineColor blue;
FillColor cyan" after both widgets.

Filtering Output Through Lenses and Widgets

Ordinarily, MMM output is composed from the leaf applications
up. To support lenses, the normal screen refresh composition has
been extended to allow information to flow down and across the

tree as well as up. For example, if the widgets in figure 13
contain one or more lenses, and if any of those lenses is situated
over the graphical editor, each lens must examine the contents of
the graphicaleditor (which is the lens’s sibling in the hierarchy) in
arder to draw itself.

In addition, to improve performance, MMM applications compute
the rectangular bounding box of the regions that have recently
changed, and propagate this box to the root application, which
determines which screen pixels will need to be updated,
Generally, this bounding box is passed up the tree, transformed
along the way by the coordinate transformation between each ap-
plication and the next one up the tree. However, lenses can
modify the set of pixels that an operation affects. A magnifying
lens, for example, generally increases the number of pixels
affected, As a result, the bounding box must be passed to all
lenses that affect it to determine the final bounding box.

Magic LensFilters

A Magic Lens filter modifies the image displayed on a region of
the screen, called the viewing region, by applying a viewing filler
to objects ina model. The inpur region for the lens is defined by
the viewing region and the viewingfilter. It may be the same size
as the viewing region, or different, as in the magnification lens.
For a 3D model, the input region is a cone-shaped volume defined
by the eye point and the viewing region. Input regions can be
used to cull away all model objects except those needed to
produce the lens image. Our current implementations do not
perform this culling; as described below, there are advantages to
lenses that operate on the entire model.

When several lenses are composed, ihe effect is as though the
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model were passed sequentially through the stack of lenses from
bottom to top, with each lens operating on the model in tum. In
addition, when one lens has other lenses below it, it may modify
how the boundaries of these other lenses are mapped onto the
screen within its own boundary. The input region of a group of
lenses taken as a whole can be computed by applying the inverses
of the viewingfilters to the lens boundaries themselves,

Our lenses depend on the implementation of Toolglass sheets to
manage the size, shape and motion of their viewing regions. This
section describes two strategies we have tried for implementing
viewing filters: a procedural method that we call recursive
ambush, and a declarative method that we call model-in madel-
out. We also describe a third method that promises to be
convenient when applicable, called reparameterize-and-clip.
Finally, we discuss issues that arise in the presence of multiple
modeltypes,

Recursive Ambush

In the recursive ambush method, the original model is described
procedurally as a set of calls in a graphics language such as
Interpress™ |? of PostScript.®! The lens is a new interpreter for
the graphics language, with a different implementation for each
graphics primitive. In most cases, the implementation of a given
graphics pnimitive first performs some actions that carry out the
modifying effect of the lens and then calls the previous
implementation of the primitive. For example, a lens that
modifies a picture such thatall of its lines are drawn in red would
modify the ‘*DrawLine*’ primitive to set the color to red and then
call the original **‘DrawLine*’ primitive.

Whenlenses are composed, the previous implementation may not
be the original graphics language primitive, but another lens
primitive that performs yet another modification, making
composition recursive,

Recursive ambush lenses appear to have important advantages.
Because they work at the graphics language level, they work
across many applications, Because they work procedurally, they
need notallocate storage. However, the other methods can also
work at the graphics language level. In addition, recursive
ambush lenses have three major disadvantages, First, making a
new lens usually requires modifying many graphics language
primitives. Second, debugging several composed lenses is
difficult because the effects of several cooperating interpreters are
hard to understand. Finally, performance deteriorates rapidly as
lenses are composed because the result of each lens is computed
many times; the number of computations doubles with the
addition of each lens that overlapsall of the others.

Mode/-/n Model-Out

In the model-in model-out (MIMO) method, we make a copy of
the original modelas the first step. This model might be the data
structure of an editor, a representation of graphics languagecalls,
an array of pixels or some other picture representation, The
implementation walks through this data structure and modifies it
in accordance with the desired behavior of the lens, When
composed with other lenses, a MIMO lens takes each model thar
is produced by each lens underit, produces a modified version of
that model, and associates it with the clipping region formed by
intersecting its clipping region with that of the lens underneath.
The resulting models are passed on to lenses above.

Although MIMO lenses must allocate storage, this investment
pays off in several ways. First, during the rendering ofa single
image, each lens computes its output models only once, and then
saves them for use by any lenses that are overit. In addition, if
the computed model is based on the entire orginal model, then

a4

redrawing the picture after a lens moves is just 4 matter of
changing clipping regions; no new modelfiltering is needed. In
this case, each lens maintains a table of the models it has
produced. Thetable is indexed by the models it has received as
input and when they were last modified. The action of such a lens
often consists of a single table lookup.

MIMO lenses have many other advantages. Given routines to
copy and visit parts of the model, the incremental effort to write a
MIMOlens is small. Many of our lenses for graphical editor data
structures were written in under 20 minutes and consist of under
20 lines of code. Debugging composedlensesis easy because the
intermediate steps can easily be viewed. Finally, MIMO lenses
can perform a large class offiltering functions because they can
access the input model in any order. In particular, they can
compute their output using graphical search and replace,'® as
shown in figure 15 where each line segment is replaced by multi-
ple line segments to create a ‘‘snowflake”’ pattern.

  (a) (b)

 
Figure 15. The snowflake lens. (a) Two triangles. (b)
Snowflake lens over part of the scene.

An important variation of MIMOisto allow the output model to
differ in type from the input model. For example, a lens might
take a graphics language as input and produce pixels as output, In
this case, the lens walks the original model, rather than copyingit,
andallocates data structures of the new model type,

Reparameterize and Clip

If the original image is being produced on the screen by a renderer
with variable parameters, it is easy to implement lenses that show
the effects of varying those parameters. To function, the lens
modifies a renderer parameter and asks the renderer to redraw the
model clipped to the boundary shape of the Jens, For example, a
lens showing the wireframe version of a 3D shaded model can be
implemented this way.

Several reparameterize-and-clip lenses can be composed if the
parameter changes made by these lenses are compatible. In the
region ofoverlap, the renderer re-renders the original modelafter
each of the overlapping lenses has made its changes to the
renderer parameters. The flow of control and performance of a
stack of these lenses is like that of MIMOlenses; a new outputis
computed for each input region received from lenses underneath.
These lenses differ from MIMO in that each output is computed
from the original model, and each outputis always a rendering.

Multiple Model Types

In our discussion above, lenses are used to viewasingle type of
model, such as a graphical editor data structure or a graphical
language. In practice, multiple model types are often present, for
two reasons. First, a lens can overlap multiple applications at the
same time, where the applications have different model types, as
shown above in figure 13. Second, a lens may overlap both an
application and a lens, where the lens output and application
model are of different types. For example, in figure 16, the
wireframe lens converts from a 3D model to a 2D line drawing.
The magnifier lens, which operates on 2D drawings, overlaps both
the original image and the output of the wireframe lens. Rich
illustrations can be produced by permitting lenses to overlap mul-
tiple model types in this way,

Supporting multiple model types requires type conversion and
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type tolerance. When a lens that expects one type of model as
input is moved over a model ofa different type, the system may
automatically convert the model to be of the type required;this is

conversion, For example, all of our applications produce
Interpress graphics languagecalls as part of drawing themselves
on the screen. When a lens that takes Interpress as input is
positioned over one of these applications, that application
converts its mode! to Interpress on demandfor that lens.

 
Figure 16. A bridge made of shaded, 3D blocks showing a
3D wiretrame lens and a 2D magnifier.

Altematively, when presented with a model it does not
understand, a lens can simply pass that model through unchanged;
this is type tolerance, For example, a lens that operates only on a
graphics editor's data structures will only modify the image in the
part of that lens’s boundary that overlaps the graphics editor;
other regions are unchanged.

Composing Widgets and Lenses

Whena widget and a lens are composed, their functions combine.
For example, consider a click-through button on top of a
magnifying lens. Mouse events pass through the button, are
annotated with a command, and then pass through the lens, which
applies the inverseof its transformation to the mouse coordinates.
During screen refresh, the widget adds its appearance to the
output of the lens. If the lensis on top of the widget, input events
are first transformed by the lens and thentested to see if they fall
within the button or not; during refresh, the widget adds its
appearance to the model, which is then acted on by the lens, A
widget and lens can be very tightly coupled. For example, an
editing tool could include a lens that displayed control points or
editing handles implemented as widgets.

Performance

Our sheets and lenses are already fast enough to be useful on
current hardware, but need to be faster for smooth motion. For
example, using our prototype on a SPARCstation 10, we
measured the time it takes to redraw the screen after moving a
wireframe lens of size 70 by 70 pixels over the Penrose tiling of
figure 10, containing 117 filled and outlined shapes. For the
MIMO implementation of the lens, once it has cached its output
scene, it takes an average of 300 milliseconds to repaint the scene,
of which 120 milliseconds are spent drawing the lens interior.
The same lens implemented using recursive ambush takes %15
longer ta redraw the lens interior, which we attribute to the
procedure call overhead of the recursive approach. Computing
the filtered scene for the MIMO lens takes an average of 480
milliseconds for this example. This computation is performed
whenever the illustration under the lens is changed or lens
parameters are modified.

gic Lenses
Figure 17. The Magic Lenseslogo.
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7. Conclusions

Wehave described a new style of user interface, the see-through
interface, based on Toolglass widgets and Magic Lens filters. The
see-throughinterface offers a new design space for user interfaces
based on spatial] rather than temporal modes and provides a
natural medium for two-handed interaction. Because the interface

is movable and overlays the application area, it takes no
permanent screen space and can be conveniently adapted to a
wide range of display sizes. Because the overlaid tools are
selected and broughr to the work area simply by moving the
Toolglass sheet, the user's attention can remain focused on the
work area. Because the operations and views are spatially
defined, the user can work without changing the global context.

The see-through interface provides a new paradigm to support
open software architecture. Because Toolglass sheets can be
moved from one application to another, rather than being tied to a
single application window, they provide an interface to the
common functionality of several applications and may encourage
more applications to provide common functionality. Similarly,
Magic Lensfilters that take standard graphics languages as input
work over many applications.

In addition to their role in user interfaces, Magic Lensfilters pro-
vide a new medium for computer graphics artists and a new tool
for scientific visualization, When integrated into drawing tools,
these filters will enable a new set of effects and will speed the
production of traditional effects. Figure 17 shows a magnifying
lens and a wireframe lens used to produce our Magic Lenses logo.

Integrated into scientific visualization tools, these filters can
enhance understanding by providing filtered views of local
regions of the data while leaving the rest of the view unchanged to
provide context, as was shown in the visualization example in
figure 12.

We hope the see-through interface will prove to be valuable in a
wide variety of applications. While the examples in this paper
stress applications in graphical editing, these tools can potentially
be used in any screen-based application, including spreadsheets,
text editors, multi-media editors, paint programs, solid modelers,
circuit editors, scientific visualizers, or meeting suppor tools.
Consider that most applications have some hidden state, such as
the equations in a spreadsheet, the grouping of objects in a graph-
ical editor, or the position of water pipes in an architectural
model. A collection of widgets and lenses can be provided to
view and edit this hidden state in a way that takes up no
permanent screen space and requires no memorization of com-
mands.

We believe that the see-through interface will increase
productivity by reducing task steps and leaming time, providing
good graphical feedback, and allowing users to construct their
owncontrol panels and spatial modes.

8. Plans for Future Work

The see-through interface is a framework that can be used [o
create many new tools in many application domains. Exploring
the current space of possibilities will take many people many
years. Furthermore, this design space will be enlarged by future
software and hardware. We will carry out someof this
exploration ourselves, creating new widgets in different applica-
tion domains, working out taxonomies for the tools we discover,
designing new conventions for composing, editing, navigating,
organizing and triggering these tools, combining them with
existing user interface techniques, and testing them on users
performing real work.

We are building two Toolglass widget toolkits, The first is a
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traditional toolkit in which widgets are created through object-
oriented programming. The second toolkit is based on our
EmbeddedButtons project:® here, users draw new widgets and
collections of widgets using a graphical editor and then apply
behavior to these graphical forms, where the behavior is
expressed in a user customization language.

Weare designing new algorithms to increase the speed of these
tools. It is clear that Magic Lens filters and, to a lesser extent,
Toolglass widgets provide a new way to consume the graphics
power of modern computers.

Finally, we are working to better understand how to model and
implement general composition of widgets and lenses, especially
those that work with multiple model and applications types.
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1 Introduction

Today's user interfaces for most 3D graphics applications still de-
pend heavily on 2D GUIs and keyboard input. There have been
several recent attempts both to extend these user interfaces into 3D
and to describe intermediary 3D widgets' that control application
objects (3; 4; 5; 7; 13; 15). Even though this style ofinteraction is
a straightforward extension ofinteraction through intermediary 2D
widgets such as dials or sliders, we know of no efforts to develop
interactive 3D toolkits akin to UIMX or Garnet [11].

The Brown Graphics Group has had considerable experience us-
ing its Unified Graphics Architecture (UGA) system (16) to seript
3D widgets suchasdeformation racks [14], interactive shadows[9],
parameterized models, and other constrained 3D geometries. Us-
ing this experience, we have developed an interactive toolkit to
facilitate the visual programming of the geometry and behavior of
such interactive models. The toolkit provides both a core set of3D
widget primitives for constructing interactive behaviors based on
constrained affine transformations, and an interactive 3D interface
for combining these primitives into more complex widgets.

This video paper describes the fundamental concepts of the
toolkit and its core set of primitives, In particular, we describe
(i) the conceptual structure of the primitives,(ii) the criteria used
to select a particular primitive widget set that would be expressive
enoughto let us construct a wide range of interactive 3D objects,
and (iii) the constraint relationships among the primitives.

2 Overview of our 3D Toolkit

The traditional approach to designing user interface toolkits is to
create a library of software objects and customize them through
instantiation and specialization within standard programming lan-
guages [12; 15]. Although this approach is extremely powerful, ex-
ploringthe full potential requires that programmers be ableto visual-
ize complex relationships among software objects (¢.2., constraint 
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networks, data- and control-flow graphs). A second paradigm,
based on graphically manipulating function networks [1; 8; 10], is
more accessible to the non-programmer, but still suffers because
inherently geometric relationships must be specified by wiring 2D
boxes together.

Our toolkit uses direct manipulation of 3D widgets to model the
construction of widgets and application objects whose geometric
components are affinely constrained. This paradigmis more natural
than scripting or dataflow programming because the process of
constructing such objects is inherently geometric, and also enables
non-programmers and designers to construct these objects visually.
The scope of these constructions includes, for example, all of the
widgets we have built in the last few years and standard joints such
as slider, pin, and ball joints.

We introduce the notion of primitive 3D widgets that can be
combined with other primitive 3D widgets, using a process called
linking,to establish one or more constraint relations between them.
Jn some cases, the resulting composite objects are still considered
widgets; in others, they are thought ofas the behavioral scaffolding
to which the geometry of application objects can be attached. The
fact that the interface and application objects exist in the same
underlying system, UGA, allows us to blur the distinction between
them. We feel that such blurring is natural for 3D applications in
general, and especially for virtual reality applications.

Linking is related to snapping[3], but differs in requiring explicit
interactive selection of source and destination objects, followed
by explicit user confirmation. This protocol reduces clutier by
eliminating alignment objects, In the interest of simplifying the
user interface,all linking operations are unparameterized, although
in future work, parameterizedlinking for more advancedusers and
more complicated widgets will be explored.

3 Conceptual Structure of Widget Primitives
A primitive widget combines the geometries and behaviors of its
ports andothermore simpleprimitives. Aportisan encapsulation of
one or More constraintvalues and a geometric representation. It can
be loosely considered a data type with the additional] requirement
that ils visual appearancesuggest the meaningofthe data. Ports are
related to one another within a single widget via a network ofbi-
directional constraints. In addition, specific interaction techniques
are associated with each port. Each interaction techniquetells how
to modify a port while maintaining constraints on other ports. For
example, if a user manipulates a point that is constrained to be on
a line, the constraint could be resolved by moving the line with
the point, by restricting the user's interaction so that the point never
leaves the line, or by a combination of the two. We must chooseone
of these as we implement the toolkit, These interaction techniques
can be thoughtofas hints toa constraint solver when the constraint
network is underdetermined so it can provide real-time, precise
interactions.

S1
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In addition to having an internal constraint network, a primitive
widget can be related to another primitive widget by linking a port
of the former to a port ofthe latter. This establishes a constraint
(bi- or uni-directional) between the two ports. Ports are already
constrained by the internal constraint network of a primitive, and
the new constraints must be consistent with the existing constraints.
Therefore, associated with each port is a function that determines
how to attach new constraints to that port and how to modify its
interaction techniques so as to facilitate constraint maintenance.

4 Description of the Toolkit Primitives

Having selected this framework to build our toolkit, we designed a
generalset ofprimitives to allow the interactive construction ofnot
only the various 3D widgets previously scripted,but also application
objects such as parameterized geometric models. These primitives
are intended to be general enough to allow exploration of a wide set
of object designs without having to resort to hand-coding.

We chose a “coordinate system” metaphor as a basis for our
primitives. Each primitive visually represents a OD, 1D, 2D, or 3D
coordinate systemand each can be constrained byaffine transforma-
tions to the coordinate systerns of other primitives. This metaphor
can be used to express a wide variety of user interactions, includ-
ing those of our previous 3D widgets [5; 14; 9]. However, the
coordinate-system metaphor is only a framework for conceptual-
izing the primitives, not a strict definition of them. That is, the
primitives were designed with regard to the sometimes antagonistic
desires both to represent the coordinate system metaphor faithfully
and to provide the semantics most useful for geometric and behav-
joral constructions.

The toolkit has primitives that correspond to position, orienta-
Gon, measure (linear and angular), 2D and 3D Cartesian coordinate
systems, a general extension mechanism for importing an arbitrary
relationship, and the full set of UGA's geometric models.

The two most basic primitives, Point and Ray, encapsulate po-

sition and orientation respectively. Points and Rays Fepresent oD
coordinate system entities; Le., there is only one element’ ofa Point
oraRay and therefore 0coordinatesare required to specify it. (Con-
trast this with a line, which has an infinite numberofelements, each
specified by one coordinate.) The Point primitive, represented by
a small sphere, is an abstraction of a single 3D point, The Ray
primitive, represented by an arrow, corresponds to a based vector,
although weoften treatit asjust a vector (its position being a display
convenience). Both primitives can be freely translated in space, but
only the Raycan be rotated.

Thenotion of distance (linear measure) is represented through
a 1D coordinate system primitive, the Length, represented by two
Points, a port for the 1D coordinate system (represented by a thin
cylinder connecting the Points), and a port for the Length’s measure
(represented by a small markerat the middle of the thin cylinder).
While the Length appears as a boundedline segment,it actually
encapsulates the notion of an infinite 1D coordinate system whose
ongin is at the line's start point (indicated by a small disc) and whose
unit length is equal to the distance between the two points measured
=oecoordinatesystem. We reuse the Point for the endpoints
Lenin's nes the user interaction with the Length. Each of the
axed. Toner can be directlytranslated while theother remains
both endpoints ee cylinder joining the two Points translates
the Length wouahaven amount. An alternate formulation of
translated, Choosing eitheseee move whenever either was
an application, so we s oeisdifficult in the absence of

Angularmensureioe techniquethat seemed most useful.
itive, the Angle, EachReby a two-handed clock-like prim-
outerring of the clock of the clock represents a vector and the

represents the angle betweenthe two vectors.—

"In the sense of sets

a2

 
 
 

2D coordinate

system

Resize Handle

Figure 1; The ports of the Plane primitive.

The most complex primitive, the Plane, represents both a 2D
Cartesian plane and a 3D Cartesian space. We opted to combine
both concepts into a single primitive because users frequently use
the two concepts in conjunction with one another and because the
sets of ports are nearly identical, with a space being a supersetof a
plane. Visualizing an oriented plane requires ports for the plane's
normal, center, and up-vector(similar to the PHIGS VU/P), and for
the size of a unit vector in each of the plane’s axes. In addition,
a port is required for the concept ofthe planeitself (as opposed to
parameters that define the plane). A rectangle in the plane represents
this port; its size determines the magnitude of each unit vector in
the Plane’s coordinate system. We also include a useful port for the
projection of the plane’s up-vector ontothe plane, although this is
not a tequired part of a Cartesian plane. To handle a 3D Cartesian
space, the only additional port required is something to represent
the concept of the space itself. The Plane reuses Points and Rays
and introduces new geometry to represent the concept of the plane
(a rectangle) and the space (a cube at the top of the up vector).

In order that the toolkit be extensible enough to handle new
problem domains, there are also Black-box primitives, each rep-
Tesenting a relationship with some number of ports that lacks a
natural geometric representation. Ports on black-boxes are geomet-
rically represented as labeled buttons. The accompanying video
shows two Black-boxes:an interface to Barr's nonlinear deforma-

tion functions [2] and a PHIGS camera specification [6].
Finally, all the geometric objects in 3D modeling environments

(cubes, spheres, CSGs, etc.) are considered collectively as a single
primitive class called Geometries. In terms ofthe data it represents,
each of the Geometries is essentially equivalenttoa Cartesian space,
although it is not annotated with additional geometry (as is the
Plane primitive). In our system, each geometric object has an
internal boundary representationrelative to a local object coordinate
system. This local coordinate system is used asa default coordinate
system associatedwith a Geometry primitive to make it functionally
equivalent toa Cartesianspace, Since Geometries are not annotated
with the ports of a Plane primitive, linking operations mustinfer
from the context of the link operation which port of the implicit
Canesian space is intended. Linking operations usually apply to
the origin of the Geometry’s local coordinate system, though they
ean apply to the local coordinate system's normal and up-vector,
When the default linking operation chooses the wrong port, the
user canoverride the choice by making the object's local coordinate
system explicit and choosingports directly.

§ Linkingthe Toolkit Primitives

We now deseribe what occurs in the toolkit when a port of one
primitive is linked to a port of another. Again, our choices for
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the semantics of inter-primitive linking are guided by the desire
to stay close to the coordinate-system metaphor andthe desire to
have reasonable behaviors when there is no obvious answer in the
underlying metaphor.

A linking operation generally asserts one of two types of re-
lations: it either establishes a bi-directional equality relationship
between two similarly typed ports or projects one port into the coor-
dinate system of the other port, using their common 3D embedding
as the medium ofprojection.

Consider linking a Point to another Point: here, the first Point
is set to be positionally equivalent to the second Point. However,
linking a Ray toa Rayis slightly different in that the orientation of
the first Ray is madeequivalentto thatof the second Ray, but the po-
sitions of the two Rays remain distinct. Rotating either Ray causes
the other to change, but translating either Ray has no effect on the
other. This choice of how to link two Rays together is ambiguous,
because a Ray actually represents two geometric values,a position
and an orientation, Thus the action is chosen by considering the
context of the linking operation, In linking a Ray toa Ray, the user
typically wants them both to have the same orientation, so only the
orientation values are linked. If a userwishes to equate the positions
of the Rays,then the position port of the Ray must be made explicit
by linking each Ray to a common Point

A different form of linking occurs when a lower-dimensional
primitive is linked to a higher-dimensional one. Such a link causes
the lower-dimensionalprimitive to be geometrically projected onto
the implied span’of the higher-dimensionalprimitive. After this
projection, the lower-dimensional primitive is associated with a
coordinate in the higher-dimensional primitive based on the loca-
tion of the lower-limensional primitive in the span of the higher-
dimensional primitive, This association is then enforced during
subsequent manipulation. Typically, higher-dimensional primitives
are composed ofa numberof lower-limensionalprimitives, each of
which can still be linked to higher-level primitives (¢.g., the center
point of a Plane primitive is a Point primitive and can be linked to
other higher-dimensionalprimitives.)

To illustrate, consider linking a Point to a Plane. This link
operation causes the Point's position to be projected onto the Plane.
The Point is then constrainedto be at the coordinate associated with
that projection point, unless it is moved directly. Whenever the
Plane is manipulated, the Point will remain at the same position
relative to the origin andorientation of the Plane. Yet, if the Point
is manipulated, it will move in the span of the Plane, and thereby
change its associated coordinate in the Plane's span.

Some link operations do not fall directly into either category.
Whenthis occurs, we chose what we considered the most reason-
able solution. For example, we defined the linking of a Geometry
primitive to a Length's measure port as a scale operation on the
Geometry primitive along the axis of the Length. If the Length's
orientation is linked to a principal axis of the Geometry primitive
(or vice versa), then the Length acts asa standard 1Dscale operation
along that axis; otherwise it is a shear.

Figure 2 displays the link behavior that applies to the toolkit
primitives when neither primitive has been linked to anything else.
In cases where one primitive hasalready been linked, very different
behavior may result; space prevents us from defining all these pos-
sibilities. Consider a Point linked to a Plane. The Point becomes
constrained to move only in the Plane. If the Point is subsequently
linked to a second Point, a different table takes into accountthe pre-
existing constraints on the first Point. In this case, the first Point
is constrained to lie at the position of the projection of the second
Point onto the Plane.
 

“In the linear algebra sense; a Length’s span is the line defined
by the endpoints, a Plane’s span is the plane defined by the Plane’s
center point and normal vector,
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6 Implementation details

Thetoolkit is implemented in UGA's scripting language, with ge-
ometry provided by UGA’s interactive solids modeler. The linking
constraints between primitives are established using UGA's object-
dependencynetwork.

User feedback is provided in the course of a linking operation
to aid in link specification. Whenthe userpicks a primitive to be
linked, it is highlighted and the cursor changes to indicate that the
system is waiting for the user to pick the object to link to. After the
user picks the objectto link to, the system indicates its “ready” state
through a cursor change that prompts for a mouse click to confirm
thelink.

Otherhighlightingmethods indicate a primitive's degreesoffree-
dom, For example, a Ray, like other primitive widgets, is green
whenit is created, indicating thatit is unconstrained.If it is linked
to another Ray, its orientation is linked but not its translation, and it
tums yellow to indicate a partial constraint. Whenit is linked again
to a Point, it tums red,indicating thatall ofits degrees of freedom
are constrained. Another possibility would have been to change the
primitive geometries after linking (e.g., a spherical Point primitive
could becomea thin cylinder whenit is linked to a Length, and
could become a disc whenlinked to a Plane, although this strategy
can result in a overly large collection ofshapes).

7 Future Work

The toolkit as described lacks techniques for specifying range limits
on a primitive’s degrees of freedom. These would be especially
useful when modeling the behavior of real-world objects, or when
creating interface objects such as bounded sliders,joints, and dials.
We intend to add this functionality (and perhaps other mequality
constraints too), and also extend the rangeofour toolkit to deal with
other graphics concems, such as surface and volumetric modeling,
scientific data exploration of scalar and vector fields, and behavior
modeling including dynamic simulations.

When twoprimitives are linked together, a single constraint based
on Figure 2 is installed. However, it would often be useful to
have a set of possible link behaviors that the user can select from.
Advancedusets would be able directly select the desired behavior
with only a single link operation.

Once a complex widget has been constructed from primitives,
it is useful to interactively encapsulate it, along with appropriate
parameters, for reuse in a tool library. For example, having con-
structed a shadow widget, the user should be able to easily apply
the same process to any other object.. This amounts to interac-
tively defining a function and embodyingit in a new, higher-level
primitive.

Highly complex widgets linked together from dozens of primi-
tivesmay presentefficiency problems, especially for real-time inter-
action. It may be necessary to optimize the constraint networkafter
the widget has been completed in order to maximize the toolkit's
evaluation speed. It would also be useful to display graphically the
constraint relations between primitives to provide feedback on the
links established on any widget.

8 Conclusions

This toolkit provides a methodology for interactively constructing
the geometric behavior of a variety of 3D widgets and parameter-
ized 3D application objects, so that non-technicalusers can rapidly
and interactively generate constrained 3D objects. Previously, such
widget construction required programming in C or our scripting lan-
guage. Even for experienced programmers,graphical construction
is a more suitable and efficient environmentlo conceive, prototype,
and implement many types of interactive 3D objects.
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Abstract

The EXACT (EXact Area Coverage calculaTion) algo-
rithm presented in this paper solves the Hidden Surface
Elimination (HSE) problem on the subpixellevel.

The use of subpixel masks for anti-aliasing causes
some problems with the HSE on the pixel level that
are difficult to overcome. The approximations of the
well known A-buffer algorithm are replaced by an exact
solution that avoids erratic pixels along intersecting or
touching surfaces.

With EXACT the HSE problem on the subpixel level
is solved with the help of p-masks. P-masks (prior-
ity masks) are subpixel masks that indicate for each
subpixel which one of two given planesis closer to the
viewer. An algorithm to produce the p-masks in an
efficient way and its hardware implementation are pre-
sented. The pmask generator is used in a hardware
implementation of an A-buffer algorithm in the form
of a rendering pipeline. Of course the algorithm can
also be used in software to enhance an existing A-buffer
implementation.

The paper ends with the description of the list pro-
cessing architecture for which the EXACT A-buffer has
been built?.

CR Categories and Subject Descriptors: [.3.1
[Computer Graphics]: Hardware Architecture -

*Wilhelm-Schickard—Institut fiir Informatik, Graphisch—
Interaktive Systeme, Auf der Morgenstelle 10/C9, 7400
Tiibingen, E-mail: andreas@gris.informatik.uni-tuebingen.de,
strasser@gris.informatik.uni-tuebingen.de.

'The experiences described here were gained in a research
project partly supported by the Commission of the Euro-
pean Communities through the ESPRIT II-Project SPIRIT-
workstation, Project No. 2484.

Permission to copy withoutfee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1993 ACM-0-89791-601-8/93/008/0085

86

raster display devices; 1.3.3 [Computer Graphics]:
Picture/Image generation - display algorithms

Additional Key Words and Phrases: anti-aliasing,
A-buffer, priority-masks, exact area coverage calcula-
tion.

1 The Problem:

aliasing

Exact anti-

Rasterizing produces aliasing artifacts. If a box filter is
used to perform anti-aliasing the brightness and color of
edge pixels are functions of the pixel area covered by the
objects as well as of the object colors. The ideal inten-
sity would be described by the formula J = 4 7, (Ai,
where A; and J; are the areas and intensities of the vis-
ible surfaces within the pixel and A is the total pixel
area. Subpixel masks can be used to calculate the frac-
tion of the pixel area covered by an object. However,
if the sample point is outside the polygon, its z-value
is more or less useless for a correct HSE. A complete
hidden surface elimination for the pixel area is required
(5).

2 Current Status

A traditional algorithm that approximately evaluates
the box-filtered intensity is the A-buffer Algorithm de-
scribed by Carpenter [1]. The contributions of surfaces
that cover a pixel partially are arranged in a list that is
sorted front-to-back. Two z-values are stored for each

fragment, Zmin and Zo. When all fragments have
been added to the list, the intensity is calculated in a
process called packing. Beginning with the frontmost
object the contribution is determined using subpixel
masks. For each fragment the exact covered pixel area
is stored in addition to the subpixel mask. In certain
cases the exact area can be used instead of the subpixel
count to calculate the contribution. A subpixel already

a5
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Figure 1: Visible fraction of front fragment([1)).

 
Figure 2: Front fragment should cover the whole pixel.

covered by an opaque object is excluded from further
processing which results in a z-buffer-like behavior on
the subpixel level. The difference to an actual z-buffer
on the subpixellevel is that for each fragment only two
z values are stored per pixel. Intersecting surfaces are
treated with an approximation. Intersection is assumed
if the z ranges of two different objects overlap. It is
further assumed that the two surfaces are oriented as

indicated in Fig. 1.
The visible area of the front fragment is then calcu-

lated as:

ZMOLnext — ZMINfront Vi =
asine (Z2maz — Zmin)front + (Zmaz — ZMiN)pert

The method will fail very often though, because it
depends on assumptions that are hardly ever fulfilled.
For example the surfaces in Fig. 2 are rendered exactly
like the ones in Fig. 1 although one of the objects is not
visible at all.

It should also be mentioned that other even more

troublesome? problem cases exist that are very difficult

2More troublesome: Intersecting surfaces could be forbidden
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Figure 3: Object 1 disappears (z value sampled at pixel
center seems further away).

 
 

Figure 4: Object 2 shines through (z value sampled at
pixel center seems closer).

to handle. If only one z-value is available as it is the
case in the z-buffer things becomeespecially difficult. If
the center of the pixel where the z-values are sampled
is outside of the object the z-values are nearly useless
because they don’t tell anything about the real location
of the object if the slopes in z-direction are not known.

Some of the very common problem cases are shown
in Fig. 3- 5. The bold dashed objects are not drawn
although they should be visible. These problems are
not taken into account with most rendering algorithms.
Fig. 13 shows someof the resulting artifacts; the correct
image is produced with the EXACT method,described
in the following section (Fig. 14).

3 Solution

If two objects (or the planes of the two objects resp.)
intersect within a pixel a subpixel mask is generated
which we call priority mask (p-mask). It indicates in

and don't exist in many implementations of rendering systems.
But objects touching each other as e.g. in Fig. 3 appear in nearly
every picture and cannot be avoided.
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Figure 5: Object 1 disappears, but should be visible,
object 2 is visible (situation similar to Fig. 3).
 

B'=A&B&C A geA&B

 
 

Figure 6: Generation of the modified edge subpixel
masks Anew and Brew from the original edge subpixel
masks A and 8 using the priority mask C. Shownis
the subdivided pixel area, projected on the planes of
two intersecting objects.

which part of the pixel object #1 is the front object
and in which part of the pixel object #2 is the front
object. This subpixel mask is used to modify the edge
subpixel masks of the two objects in the following way
(see Fig. 6):

A&AKBLOC

BRAKBEC
(1)

(2)

Anew

Brew

where

A: edge subpixel mask for object # 1
B: edge subpixel mask for object # 2
C: p-mask for objects #1 and #2,

plane #1 in front of plane #2 = subpixel = |
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Two tasks remain to be solved:

1. The priority mask has to be calculated in an effi-
cient. way.

2. The decision has to be made, when two object
planes intersect: within a pixel’s area.

3.1 The calculation of the priority mask

Virtually any rasterization system uses a unit that in-
terpolates colors and z-values by repeatedly adding in-
crements to a starting value. The priority mask gener-
ator uses the increments for the z value in the x and y

directions dz, = 22”) and dz, = =@). (The values
for the two objects are marked with indices,e.g. dz,,).
The z-values at the pixel centers are known (2; and 23).
If we calculate the difference of the corresponding values
for the two objects we get:

2 = 4-2 (3)

dzz = dz,2—dz2 (4)

dz, = dzyy = dz2y (5)

These parameters describe a plane that indicates,
where plane #1 is in front of plane #2 by the sign of its
z-value. The intersection with the plane z=0 denotes
the border between the two areas where plane #1 or
plane #2 resp. is in front of the other plane.

The representation of this plane with the above men-
tioned parameters resembles very much the representa-
tion of the polygon edges in some rendering systems,
e.g. in the PIXEL PLANESsystem [6]. The mecha-
nisms that exist to generate subpixel masks representing
edges can therefore be used to generate the priority
mask. A scheme producing subpixel masks that exactly
represent the covered fraction of the pixel is described
in [8].

The generation of the priority mask can be done by
software of hardware. Our contribution aims for a hard-

ware solution. If a software solution is considered, sev-
eral criteria can be used to reduce significantly the num-
ber of cases where the priority mask has to be calcu-
lated:

A&B #0 (6)

21min < 22maz and 29min < Zimap (7)

or a much better criterion instead of (7):

2g — 2 < (|d22,2 — dz1,2| + |d22y —dery|)/2 (8)

The first criterion (6) is obvious: if the subpixel
masks of the two objects don’t overlap, none of the ob-
jects can hide the other one.

“7
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Figure 7: Block diagram of the p-mask generation on
the EXACT-Chip

The second criterion is expressed by relations (7). It
eliminates the trivial cases where the z-ranges of the
two objects don’t overlap. The priority mask thus con-
sists of only 1s or only Os, resp. This criterion is not
very strong however, because objects with overlapping
z-ranges do not necessarily have to intersect each other
(see e.g. Fig. 2), Also the values of zmin and 2maz
might not be known, though they could easily be calcu-
lated. This leads us to the stronger criterion expressed
in equation (8). Only if this relation is true, will an
intersection of the two objects occur within the pixel
area. Using this criterion, the case of Fig. 2 is a trivial
case with only Os or Is in the priority mask.

4 Hardware Implementation of
the P-Mask Generation

The block diagram of the p-mask generation in Fig. 7
shows, how the mask is calculated. The block labelled
EXACTtakes two z-values and the corresponding in-
crements as input and calculates from these values the
parameters of the intersection line. These parameters
are used to lookup the final p-mask. The contents of
the corresponding lookup table can simply represent the
order of the planes at the subpixel locations. It should
however, be consistent with the method used for the

generation of the coverage masks. The EXACT chip,
like the render chip in the Spirit workstation [4] uses
the EASA concept’, described in detail in [8].

The design of the EXACTblock (Fig.8) is intended to
exploit parallelism as much as possible. Three parallel
subtractors calculate the z-difference and the differences
of the z-increments. The absolute values of the results

are calculated in the next stage.
The resulting three values (z, dz; and dz, ) are the

parameters of the equation (9) for a straight line, the

3The EASA (Exact Area Subpixel Algorithm) is used to deter-
mine the subpixel mask, In contrast to the conventional approach,
we do not sample at the subpixel centers. Instead, the covered
portion of the pixel area is calculated exactly and converted into
the corresponding subpixel count. The location of the subpixels
is chosen in a way, that preserves the geometry best, For details
see [8]
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Figure 8: The p-mask generation on the EXACT-Chip
(= 12000 Gates)

 
Figure 9: The Dividers on the EXACT-Chip

line of intersection between the two planes (origin of the
coordinate system is the pixel center).

F(z,y) =2+a%dz,+y*dz =0 (9)

This equation has to be normalized so that the pa-
rameters can be used to look up the resulting p-mask.
The normalization could be performed by dividing the

equation by ,/dz2 + dz2. However the square root can
be avoided if we divide by the L,-norm instead of the
L2-norm’. This means that we divide by the sum of
the absolute values of dz, and dzy.

The precision that is required so that the error in-
troduced by the parameter calculation is smaller than
one subpixel can be found if we apply the law of error
propagation. For a 4 x 4 subpixel mask, only four bits
are needed for each normalized parameter.

To keep the dividers simple (Fig. 9), barrel shifters
are used to properly scale the input parameters.

4The Ly norm is also known as Manhattan distance, because,
rather than the shortest distance, it describes the distance be-
tween two points, one would have to walk in a city with a rect-
angular grid of streets.
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Figure 10: If the colors of object 1 and object 2 are
blended (each of them contributing 50% to the final
color), green will be part of the pixel color (25%). If
the color of object 3 is then blended to the pixel color,
green will erroneously still be part. of the final pixel
color.

5 System aspects

The EXACT-hardwareis part of a new graphics system.
The main concepts of its architecture are described in
the following section.

5.1 Processing of lists — the concept of
the A-buffer

A big difference between the A-buffer and a traditional
z-buffer lies in the fact that in the A-buffer lists of

contributions to each pixel are stored whereas in the
2-buffer only one item per pixel has to be stored —
the one currently closest to the viewer. Most rendering
hardware today supports the z-buffer for obvious rea-
sons: the list handling required by the A-buffer is much
more difficult to implement in hardware.

The question that could be asked at this pointis:

Why should we store more than one object per
pixel?

There are several answers to this question. Thefirst
one: Anti-aliasing. The second one: Transparency.

Anti-aliasing of edges implies the blending of the col-
ors of different objects. There are cases in which the
colors can be blended using a normal z-buffer. For ex-
ample, if one object appears in front of an other big
object the colors can be blended with the weight fac-
tors A and (1 — A), A being the pixel area covered by
the second object. But what if three or more objects
contribute to a pixel? A blending in the described way
will lead to errors (see Fig. 10).

The second reason, transparency handling, is obvi-
ous. There may be several transparent, objects covering
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Figure 11: Pipeline of comparators performing n 2z-
buffer operations simultaneously without problem of
buffer access bottleneck. While e.g. the third compara-
tor works on pixel #1, the second comparator works on
pixel #2 and the first comparator is already working on
Pixel #3.

a pixel. They have to be depth-sorted before their col-
ors can be blended using the appropriate transparency
factors and sorting requires that more than one object
is stored.

5.2 The List Processing Pipeline

Which hardware architecture is capable of supporting
an A-buffer like rendering scheme? It is an architecture
that has been known quite a while but normally was
only used as a functional replacement for the z-buffer:
the pixel processing pipeline. Cohen and Demetrescu
presented such a processorpipeline already in 1980 [2],
Systems like the Triangle Processor and Normal Vector
Shader System [3] or PixelFlow [7] form such a pipeline
and use it for what Molnar calls image composition. As
multiple z-buffer operations take place at the same time
(see Fig. 11), the traditional frame buffer access bottle-
neck problem is solved in an elegant way. This might
be a reason for this type of system to be more widely
used in the future. Simply by adding more stages to
the pipeline the rendering speed of the system can be
increased indefinitely. The only penalty is a slightly in-
creased latency time that up to several hundred pipeline
stages doesn’t exceed the frame time.

But now this pipeline architecture can not only be
used as a z-buffer replacement;it is an outstanding ar-
chitecture to perform the list processing required by
the A-buffer algorithm. Schneider proposed in 1988 the
PROOFsystem [9] that uses a pipeline and transfers
not only one object per pixel through the pipeline but
a list of contributing objects for each pixel, similar to a
proposal by Weinberg {10}. The hidden surface elimina-
tion was performed in a special post-processing stage.
The architecture proposed in this paper performs the
wholelist processing in list processors that contain the
EXACT hardware for the hidden surface elimination on

the subpixellevel*.

'Other features of the list processing pipeline, like image pro-
cessing capabilities (filtering with arbitrary kernel) are not sub-
ject of this paper but also are arguments for using such an
architecture.
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Figure 12: List Processor Pipeline Architecture

Fig. 12 shows the block diagram of a list processor
pipeline. The polygon descriptions are distributed in a
round robin fashion among the rasterizer units (RU),
which ensures a good load distribution with minimum
effort. The rasterizers interpolate the z- and color-
values (or resp. normals or texture coordinates) and
send the sorted pixel contributions down to thelist
processors. Each rasterization unit is capable of ren-
dering several thousand objects per second (about 20
MPixel/sec.) and contains a standard RISC Processor
and RAMas well as an ASIC for the pixel generation.

The list processors, realized as ASICs, contain the
described hardware for the EXACTalgorithm and per-
form the modification of the subpixel masks coming
from the RUs as well as the depth-sorting of the pixel
contributions. Visible fragments are inserted into the
lists at their appropriate positions which is important
for transparent objects. Mutually intersecting trans-
parent objects can be handled by splitting the subpixel
mask of one of the objects in two parts: one in front
of, the other behind the second object. The output
of the pipeline consists of a depth sortedlist of object
contributions for each pixel, with nonoverlapping sub-
pixel masks for opaque objects and transparent objects
appearing in the correct sequence.

As eachlist processor can only handle one additional
object per pixel, list processors that receive several ob-
jects concerning one pixelflag all but the last of these
objects as not processed and send them in front of the
already processed list to the next stage. If this stage
didn’t receive an object from its RU for this pixel the
last of the not processed objects is treated by this stage.

a”)
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If any objects remain unprocessed at the end of the
pipeline the concerned pixels are cycled through the
pipeline again to handle the unresolved objects. In or-
der to keep the sequence of the pixels intact a FIFO is
used to store the output of the pipeline during the re-
cycling of the incompletely processed pixels. By adding
several list processors without connected RUs to the
end of the pipeline the probability for such cases can be
significantly reduced.

The output of the pipeline can be directed to one of
two RAM buffers. This allows the rendering of scenes
with changing parts. The static parts are rendered once
into the RAM buffer. Then the RAM serves as input
for the pipeline where only the changing parts have to
be added for each frame. The RAM buffer is also used

in other applications like image processing or form fac-
tor calculations for a radiosity algorithm, In the post-
processing stage the transparency calculations are per-
formed and the subpixel contributions are summed up.

6 Conclusion

A principle of rasterization is, that it produces alias-
ing artifacts. The quest for increased realism by de-
veloping sophisticated illumination models can not be
successful without properly dealing with anti-aliasing.
This problem can be partially solved by increasing the
screen resolution of color monitors, but this is very
costly and limited by physical constraints. On the
other hand anti-aliasing by means of the EXACT A-
buffer solves the problem adequately and offers a better
cost/performance ratio for future display systems.
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Figure 13: Visible artifacts at edges are the result of
using subpixel masks with the standard z-buffer.

 
Figure 14: Same scene with the EXACTalgorithm.
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Abstract

Hundreds of commercial applications used in mainstream design
activities have demonstrated proven demand for 3D graphics ren-
dering products. The demand is for faster and more powerful ren-
derers, thus creating the system design problem of how to achieve
maximum rendering performance from the technology available to
implement the system. This paper describes a graphics rendering ar-
chitecture that takes advantage ofseveral novel architectural fea-
tures: a custom floating point processing core with tailored data
stores and bussing structures, the arrangement ofthese cores into a
SIMD processor for low overhead multiprocessing, and the hyper-
pipelining of the fixed point scan conversion units for low over-
head, high bandwidth pixel generation into an interleaved frame
buffer. These features combine to form a solution to the system de-
sign problem which distinguishes itself by its overall performance
and its ability to maximize performance while minimizing system
size. The resulting architecture is capable of over a half million
gouraud shaded Z-buffered triangles per second, with a sustained
fill rate for gouraud shaded and Z-buffered pixels of 80M pixels per
second. The architecture fits in a desktop workstation.

Introduction

A graphics rendering architecture for a high performance desktop
workstation is described.

3D graphics workstations are used by a broad range of applications
{IRIS92]. Manyofthe applications fall into the categories tradition-
ally called computer-aided design (CAD), where the designer
makes progressive refinements on the shape and dimensioning of a
product based on feedback from visual modeling, and computer-
aided engineering (CAE), where the designer also wishes to analyze
properties of the design such as thermal and stress gradients or
structural strength, in addition to shape and appearance. 3D graph-
ics workstations are used in the following applications, among oth-
ers: car andairplane design, tool design, packaging design, indus-
trial and product design, furniture design, clothing and shoe design,
architectural and civil engineering, production floor and plant de-
sign, geothermal and atmospheric analysis, molecular modeling,
pharmaceutical design, chemical analysis, and film animation and
special effects,
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Application packages today numming on 3D workstations enable de-
sign efforts that are compute intensive, limited only by today’s ren-
derers. The complexity of models that renderers can effectively
handle is far less than the mode] complexity with which users are
attempting to work. This creates tremendous demand for faster and
more powerful graphics rendering systems, How to achieve the
highest performance rendering system from the technology avail-
able is the system design problem that this demand presents to the
system designer.

Further clarification of the graphics rendering system design prob-
lem is necessary. Most graphics renderers today perform rapid, ac-
celerated rendering of 3-sided polygons and straight line segments.
The renderer receives these basic graphics primitives, each primi-
tive with vertex descriptions defined by the application, and per-
forms the calculations to render the primitive as pixel values into
the frame buffer [FOLEY90,SEGAL92,VAND87). The basic
graphics primitives allow close approximation to any arbitrary
curve or surface by sub-dividing the curve into line segments or the
surface into polygonsto the point where the rendered imageis vi-
sually acceptable to the user. For the system designer, the primitives
provide a simple andlimited set of processing algorithmsthat must
be accelerated, enabling the focus to achieve high performancesys-tems.

A top level flow diagram is presented in Figure 1 illustrating the
process for rendering the basic graphics primitives. The graphics
renderer receives polygons or lines from the application process
and performs the steps shown in the flow diagram to render each
polygen or line as color and Z pixel values into the frame buffer.
Details of each processing step are carefully discussed in [FO-
LEY90] and [NEWM79}.

Implementation bottlenecks in a graphics rendering system typical-
ly appear: 1) in the floating point compute power available for the
world coordinate to screen coordinate transformations and for ver-
tex color computations; 2) in the floating or fixed point compute
power available for triangle slope and line slope calculations; 3) in
the rate of generation ofpixel values from the fixed point iterators;
4) and in the achieved pixel bandwidth into the frame buffer.

Commercial architectures have approached these bottlenecks in a
variety of ways. [KIRK90] presents an architecture where the per
vertex and slope calculations are performed on the host CPU and
multiple iteration engines drive an interleaved frame buffer. [AP-
GAR88) also executes the per vertex calculations on the host, but
off-loads mostof the slope calculations to a fixed point engine, and
uses a Unique combination of multiple iteration units to drive pixel
results into an interleaved system memory. [AKELS88,89] describe
an approachutilizing a serial pipeline of floating point processors
for the per vertex calculations, fixed point engines for the slope cal-
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culations, and multiple iteration units to drive an interleaved frame
buffer. The architecture introduced in [TORB87| also uses multiple
floating point processors but arranges them into a MIMD parallel
processor, uses a fixed point slope engine, and multiple iterators to
drive an interleaved frame buffer, [PERS88] uses a single floating
point processor to perform both per vertex and slope calculations,
and a single iterator to drive an interleaved frame buffer. Note that
the interleaved frame buffer is the only feature commontoall the
approaches,and that most approaches use multipleiteration units.

The goal of the architecture described here is to provide a powerful
graphics rendering system, maximizing performance while mini-
mizing size. The architecture utilizes several novel approaches to
overcoming rendering bottlenecks. Floating point performance is
accomplished through the custom design of a highly efficientfloat-
ing point processing core, and by employing multiple cores con-
trolled in a low overhead SIMD parallel processor. The floating
point core is tailored to accommodate both the per vertex calcula-
ions and the triangle andline slope calculations. Fixed pointitera-
tion performance is achieved through hyper-pipelining two identi-
caliteration units, allowing each unit to sustain the pixel generation
requirements of multiple pixel memory busses. Eachiteration unit
is pipelined until technology limits of integration are encountered,
The multiple memory bussesprovide the necessary bandwidth into
the frame buffer memory.

These features result in a graphics rendering system solution distin-
guished by overall performance, and by compactness of size. The
architecture is implemented in a desktop workstation [INDIG93].It
is capableofover 1.3 million depth-cued lines per second,over half
a million gouraud shaded Z-buffered polygons per second, with a
sustained fill rate of 80M gouraud shaded Z-buffered pixels per sec-
ond.

 
Figure 1, Process for rendering basic graphics primitives
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TOP LEVEL SYSTEM VIEW

This section presents a block diagram of the architecture in Figure
2, The key components are briefly introduced, followed by a de-
scription of the overall control structure and the data flow through
the system, The subsequent sections discuss each of these key com-
ponents in detail, describing the critical decisions made to deter-
mine their structure, then detailing the internal operation of each
component. Thefinal section discusses the technology targeted for
the architectural implementation and the implementation results.

The block diagram is shown in Figure 2. The key components are
the FIFO interface to the system bus, the Command Processor (CP),
the SIMDparallel processor, the dual Raster Engines (RE), and the
frame buffer. The SIMD processoris made up of a sequencer, a mi-
crocode store, and multiple Geometry Engines (GE), Each GE is a
custom floating point processing core. Each Raster Engineis a hy-
per-pipelined iteration unit.

The SIMD parallel processor executes all the per vertex calcula-
tions and the slope calculations shown in Figure 1, the REs perform
the fixed pointiteration, and the frame buffer pixel bandwidth is de-
termined by the multiple busses into the frame buffer.

Operation is initiated by the CPU sending polygon andline render-
ing commandsinto the FIFO across the system bus. The FIFO al-
jows the CPU to generate commandsat a rate independent of how
fast the rendering occurs, If the FIFO fills up, an interrupt is gener-
ated to the CPU for exception handling,

The SIMDparallel processoris fed data from the FIFO by the Com-
mand Parser. The CP moves data from the FIFO into the ping-pong
input buffers of the Geometry Engines. The GEs read data from the
ping-pong buffers, perform necessary floating point computations,
and write results to their respective output FIFOs. GE execution is
controlled by the common sequencer and control store.

A bus controller resident in the even Raster Engine reads data from
the GE output FIFOsand transfers the data into the RE input ping-
pong buffers. The REs perform necessary iterations to generate col-
or and Z values and perform the correct pixel updates into the frame
buffer. The odd RE generates pixels for the odd numbered scan
lines of the frame buffer, and the even RE generates pixels for the
even numbered scan lines.

The sections below first discuss the GE custom floating point core
solution, followed by a discussion ofthe control structures required
to arrange the GEs into the SIMD parallel processor. This is fol-
lowed by a description of the hyper-pipelined RE iteration solution.

GEOMETRYENGINE

The goal for the Geometry Engine design is to achieve the maxi-
mum realized floating point performance for graphics algorithms,
ina single chip solution. The algorithms used for evaluating perfor-
manceare the per vertex and slope calculations of Figure 1. The de-
cision is made to combine the per vertex and slope calculations into
a single floating point solution. Slope calculations are comprised of
relatively complex algorithms, difficult to implement in a hard-
wired fashion, and therefore most effectively implemented in a mi-
crocoded processor. Also, the compute cycles required for per ver-
tex calculations is almost evenly balanced with the cycles required
for slope calculations, Combining the per vertex and slope calcula-
lions into the GE relieves the need to design a second microcoded
fixed point processor of similar complexity; and the replication of
GEs in the SIMD parallel processor increases both the per vertex
and slope processing power together.

The GE design goal is met with a custom floating point processing
core. Analysis shows that a custom unit with tailored data stores,
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Figure 2. Block Diagram ofthe architecture

bussing structures, and sequencing contro] achieves higher realized
performance and a more compactsolution than available commer-
cial alternatives. Therefore a custom approach is chosen.

Analysis of the per vertex calculations and the slope calculations
shows an even balance between multiplies and adds, therefore one
multiplier and one adder are chosen for the GE core, The GE design
approach follows the fundamental principle of maximizing the uti-
lization of the most expensive resource: the floating point multiplier
(FMPY) andthe floating point adder (FALU). The following obser-
vations for maximizing utilization are taken into accountin the GE
design: high data bandwidth to the correct operands is needed into
the FMPY and FALU; multiple threads of the same algorithm must
be active simultaneously. Enough bandwidth to appropriate data
storage and data sources is needed to avoid lost cycles waiting on
an operandthatis slow to retrieve. A single thread of execution may
have several additions followed by several multiply operations,
thus wasting the FMPY or the FALU until a result is available from
the other unit. Multiple threads of execution is the solution.

The Geometry Engine block diagram is shown in Figure 3, Six dif-
ferent busses and four ports from the register file drive the fourin-
puts to the FMPY and the FALU, Twoofthe busses provide imme-
diate wrap-around of FMPY and FALUresults back to their inputs.
One bus gives access to the ping-pong buffer loaded by the Com-
mand Parser, while two more busses give accessto a pair of special
data stores. The sixth bus accesses off-chip memory that is used for
expansion, and typically holds the global variables for the GE.

A multi-port register file is included for scratch storage of interme-
diate results. The registerfile is critical to allowing multiple simul-
taneous threads of calculation. Feedback paths from FMPY and
FALUresult outputs are provided for single-threaded operation, but
when two threads conflict by needing the same unit for their next
computation, then one thread mustbestalled by storing the interme-

cy result in the register file until the appropriate unit becomesTee.

Onthe other hand, a multi-port register file is an expensive com-
Modity and its size is limited, Reviewing the per vertex calculations
concludes that the ping-pong buffer and the register file are suffi-
cient to perform the per vertex calculations with maximum FMPY
and FALUutilization. On reviewing the slope calculations, howev-
er, it is noted that frequently data from each vertex ofa triangle, or
both vertices of a line, are needed simultaneously during multi-
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threaded computation. Theregister file cannot be made big enough
to hold the data structures for each vertex. The GE is designed to
have three separate data stores, one for each vertex of a triangle or
for the two vertices of a line, used during the slope calculation pro-
cess. The ping-pong buffer is used to hold the data structure for one
vertex, while the two special data stores hold the data structures for
up to two more vertices.

This extensive memory and bussing structure is wasted without
flexible independentaddressing and flexible control of data move-
ment. This is accomplished through a very wide instruction word
which allowscontrol of the breadth of resources.

The result of the described structure is that simultaneous access can

be made to the ping-pong buffer, the two special data stores, the
global variables memory,the result outputs, and the register file by
any of the four FMPY and FALU inputs. Multiple threads of exe-
cution supported by this accessible bandwidth into the FMPY and
FALU inputs maximizes FMPY and FALU utilization.

GE-DATA
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Figure 3. Geometry Engine block diagram
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GEoperation occurs as follows. The Command Parser loads data
into the ping-pong buffer. The ping-pong buffer allows CP loading
ofdata into one side of the buffer while the GE is executing and ac-
cessing the other side of the buffer. The CP initiates GE execution
by informing the GE sequencer that data is fully loaded. The se-
quencer looks up instructions in the GE microcode store, and these
instructions contro] the execution functions of the GE.Forlines and

triangles, the GE performs per vertex calculations, accessing data
from the ping-pong buffer, then constructs vertex data structures
based on screen space coordinates and puts one vertex data struc-
ture back in the ping-pong buffer and up to two more vertex data
structures into eachof the special data stores. Slope calculations are
then performed, drawing operands from the ping-pong buffer and
the two specialdata stores. Calculated iteration coefficients and ini-
tial values are passed to the Raster Engines by storing them to the
output FIFO,

SIMD PARALLEL PROCESSOR

A single floating point processor cannotachieve the desired perfor-
mance. Therefore multiple floating point processors are used in the
design. The following goals for multiprocessing led to the SIMD
parallel processor solution: 1) a linear performance increase must
be achieved with the addition of Geometry Engines; 2) the multi-
processing solution must have the lowest possible impact over and
above a uniprocessor solution.

Three approaches are considered for the multiprocessing solution.
The first is a pipeline of floating point processors [AKEL88, 89].
Each pipeline stage performs a subsetof the per vertex and slope
computations, passing intermediate results to the next processorin
the pipeline. Each pipeline processor is executing a different set of
code to implement its separate subset ofthe algorithm. This ap-
proach has several disadvantages. The throughputof a pipeline is
the speed of the slowest processingstep. Overall performanceis de-
termined by the processor with the biggest subset of the algorithm
to process. Since the algorithm cannot be divided into perfectly
equal subsets, a less-than-linear performance gain is achieved. Also
note, that to add processors, a new subdivision of the algorithm
must take place and new code mustbe written and tuned. Thefinal
disadvantage of this approach is in the burden of overhead the ap-
proach requires, Although having the advantage ofnot requiring the
distribution mechanism at the head of the pipe needed by the next
two approaches considered, each processor does require its own se-
quencer, microcode store, globals data store, in addition to control
logic to interface each ofthe pipeline stages.

‘The second approach considered is a paralle] MIMD (Multiple In-
struction Multiple Data) array of processors [TORB87]. Each pro-
cessor performs independent execution of the per vertex and slope
calculations for its own polygon or line primitive. Linear perfor-
mance gains are attained when the same kind ofprimitiveis distrib-
uted to each processor, thus satisfying the first multiprocessing
goal. Processors may be added without requiring changesto proces-
sor code. The disadvantage of the MIMDparallel processorlies in
the overhead required to implement such an approach. A parallel
processor requires a distribution function that takes primitives in
the FIFO (received from the CPU) and disburses a primitive to each
of the processors present. A MIMDparallel processoralso requires
that each processor has its own sequencer, microcode store, and
globals data store.

The third approach consideredis a parallel SIMD (Single Instruc-
tion Multiple Data) array of processors. Each processor executes
the same instruction in lockstep, but is computing results for its own
polygonorline primitive. Like the MIMDprocessoralready exam-
ined, the SIMD parallel processor achieves linear performance
gains with the addition of processors when the same kindofprimi-
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tive is distributed to each processor. The advantage of the SIMD ap-
proachis in the low overhead required to implement a multiproces-
sor. All processors share the same sequencer, the same microcode
store, and the same globals data memory. The only implementation
overhead required over a uniprocessing solution is the addition of
the distribution function.Itis worth notingthat this is a simple func-
tion and therefore a small overhead to tolerate, The SIMD parallel
processor is chosen as it optimally achieves the multiprocessing
goals.

Note that a key assumption to accomplishing linear performance
gain from a parallel processor (SIMD or MIMD)is that the same
kind of primitive is distributed to each of the processors(all lines or
all polygons). This requires that the primitives coming through the
FIFO from the CPU arrive in significant groupings oflines together
and polygons together, rather than a fully random distribution of
lines and polygons. For a MIMDprocessor,if the FIFO holdsalter-
nating lines and polygons, the throughput slows down to the rate of
the slower primitive - the polygon. For a SIMD processor, alternat-
ing lines and polygons is a worst case scenario. Performance will
reduceto that of a uniprocessor. Extensive analysis of model data
sets used on 3D workstations shows polygons typically clump in
large bunches and lines do the same. This is particularly true of
CAD/CAE applications. The result is linear performance gain for
parallel processor arrangements.

The unique system features required for SIMD parallel processing
will now be discussed, Please refer to Figure 2. The features includ-
ed for SIMD processing are the distribution function performed by
the CP, sequencing functions to allow SIMD branching, common
bus for the microinstruction, common busforthe globals data store,
and indirect addressing requirements into GE memories. The GE
input ping-pong buffer and output FIFO are also crucial to perfor-mance,

COMMAND PARSER

To describe the operation of the Command Parser, we mustfirst ex-
plain the needs of the distribution function. The purpose of the CP
is to analyze the command and data stream coming through the
FIFO,distribute data accordingly to the GEs, and subsequently ini-
tiate GE execution. To perform this function, the CP must detect
boundaries between primitives, detect whether subsequent primi-
tives are of the same ordifferent kind, and maintain the correct or-
der of primitive disbursement to the GEs.

Please refer to Figure 4 for a diagram of the Command Parser. ‘The
CP is microcoded for flexibility. This allows different routines for
primitives comprised of vertices with different kinds ofattributes,
and the exception handling of polygons with greater than three
sides.

CP operation begins with the arrival of a command token in the
FIFO. The command token causes the CP sequencer to branch to a
routine appropriate for the kind of primitive arriving in the FIFO.
This branch mechanism inherently defines primitive boundaries.
The command token is read from the FIFO andstored in the Current

Command register. A compare function allows branching based on
whetherthe current command tokenjust arrived is identical or dif-
ferent from the last commandtoken received. If the token is identi-

cal, then the arriving primitive can be distributed to the next GE in
the parallel processor. If the token is different, then the GEs that
havealready been loaded with data must swap their input ping-pong
buffer and begin executing before the arriving primitive can be dis-
tributed to the next GE. The token compare mechanism allows the
CP to branch to different routines to handle these two cases.

The CP must determine to which GE the arriving primitive should
be written, A round robin schemeofdistribution is chosen,
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Figure 4. Command Parser block diagram

primitives being loaded in a continuous sequence from GE #0
through to GE #7, and back around, Referring back to Figure 2,
primitive coefficients calculated by the GEs are pulled from the GE
output FIFOs in the same round robin order. A pointer to the GE
that is currently being loaded, and a counter which maintains the
number of GEs that have been loaded since the last execute com-

mand provide the tools to determine for which GE the arriving
primitive is destined. The incrementing and clearing of these
counters is under microcode control. After choosing the appropriate
GE,the CP pulls vertex data from the FIFO and writes it across the
CP-GEBusand into the GE’s ping-pong buffer.

Once all 8 GEs have been loaded, or when the current primitive is
different from the previous primitive, the CP mustinitiate GE exe-
cution. The CP first tells the GE sequencer which GEs are loaded,
passes the GE sequencerthe appropriate address to begin execution,
and then issues the GE sequencer an execute command. An inter-
lock mechanism will stall the CP if the GE is currently executing at
the time of the CP execute command, and will initiate GE execution
only when the previous execution is complete. Once the interlock
mechanism clears, it is an indication that the GE ping-pong buffers
have been swapped, and the CP resumes distribution of primitives
from the FIFO.

GE SEQUENCER

The GE sequencer is shownin Figure 2, The sequencer is based on
a standard uniprocessor design. Flexible branch functions are sup-
ported for jumps and subroutine calls, Branchingis controlled with-
in separate fields of the GE's wide instruction word. This allows
concurrentbranching with the GE datapath control, thus notaffect-
ing datapath performance thru branches.

To this uniprocessor design base are added functions which allow
control of multiple SIMD processors. The GE sequencer has control
to stall each of the GEs independently. This control is used in two
different ways. Thefirst is on receipt of an execute command from
the CP once the GEs areidle. The GE sequencer will decode which
GEs the CP has loaded from information passed by the CP. Those
GEs not loaded will be stalled by the GE sequencerfor the duration
of the primitive execution. The second fashionthe stall control is
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used is for implementing conditional subroutine calls across SIMD
processors. Ifa subset of the processors does not pass the condition,
that subset is stalled by the GE sequencer for the duration of the
subroutine call, while the remaining processors execute the subrou-
line, As an example, conditional subroutine calls are used for im-
plementing the lighting and clipping branches shown in Figure 1.

MICROCODE STORE AND GLOBALS MEMORY STORE

The GE sequencer accesses the next microinstruction from the GE
microcode store (Figure 2). The microinstruction word controlsall
the GE internal functions, as well as the GE sequencer. The piece
of the microinstruction word controlling the GEs is bussed to all the
GEs for simultaneous execution.

Additional memory (not depicted) can be added external to the GEs
as an expansion memory to store global variables required in exe-
cution. The GE Data Bus (Figure 3) of each GE is bussed together
and connected to a globals memory store,

INDIRECT ADDRESSING

As explained in the section above on the Geometry Engine (Figure
3), data is read from the ping-pong buffer and the two special data
stores to perform the slope calculations fora line or triangle. De-
pending uponorientation ofthe primitive on the screen, these data
stores may need to be accessed differently by different processors.
In order to do this effectively in a SIMD processing environment,
indirect addressing is provided into these data stores, This minimiz-
es cycles spent out of SIMD lockstep execution and is crucial to
SIMD performance.

INPUT PING-PONG BUFFER AND OUTPUT FIFO

The GE input ping-pong buffer and the GE output FIFO are also
crucial to SIMD performance, Withouta ping-pong bufferat the in-
put to the GE, the CP would have to load 8 GEs after GE execution
of the previous primitive completes, eliminating significant paral-
lelism. The FIFOat the GE output allowsall GEs to write their re-
sults in lockstep execution. Without the FIFO, a SIMD implemen-
tation would notbe feasible.

RASTER ENGINE

The goalfor the Raster Engine is to obtain the fastest gouraud shad-
ed Z-buffered fill rate in a single chip. It is also desired to be able to
use multiple copies of the same chip to obtain further increases in
rendering performance,

There are two major bottlenecksin rasterization: pixel generation,
and memory bandwidth. Pixel generation, the first bottleneck, can
be increased in two different ways. Contemporary architectures
have traditionally increased the rate of pixel generation by replicat-
ing in parallel the number of fixed pointiterators, utilizing enough
iterators to achieve the desired pixel rate. Hyper-pipelining a single
iteration unit is the approach takenin this architecture. Hyper-pipe-
lining adds pipeline stagesto a single iterator until the desired rate
of pixel generation is achieved. The pipeline stages added to theit-
erator require significantly fewer gates than would be required to
replicate iterators. Therefore, hyper-pipelining is chosen as the min-
imum solution for performance. Memory bandwidth, the second
bottleneck,is increased by using an interleaved frame buffer across
multiple memory banks.

Determiningthe total number ofpipeline stages and the number of
memory busses for the RE is a recursive process, and depends on
the integration limits of technology. To achieve the maximum fill
rates, the ileration pipeline must support a pixel generationrate of

oT
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Figure 5. Raster Engine block diagram

N times the page mode bandwidth of a frame buffer DRAM, where
N is the number of memory busses used. A sample pipeline depth
is analyzed and the die size computed. The conclusion ofthis recur-
sive process led to the resultant architecture with a single hyper-
pipelined RasterEngine driving a five-way interleaved color buffer.

Given a five-way interleave on the color buffer, the pipeline clock
rate is set at five times the DRAM page mode bandwidth, under the
assumptiona pixel is generated every clock. The slowest element of
the RE pipeline is the key to ensuringthe clock rate can be met, and
is what was checked during the recursive analysis. This elementis
the DDAunit ofthe iterators. A DDA unit consists of a two input
adder with a 2:1 multiplexer on one ofits inputs. The outputof the
adderis fed into a register whichis then fed back to the second input
of the adder. The resultant clock rate for a five-way interleave color
buffer drives the number of pipeline stages in the Raster Engine.
The hyper-pipelined Raster Engine has 26 pipeline stages from the
input ping-pongregisters which hold the line and triangleiteration
parametersto the point where pixels are written into the color buff-er.

For the system architecture implemented,it is decided to incorpo-
rate two raster engines to obtain the desired performance on the
desktop.

The RE implementation is now discussed in detail, A diagram ofthe.
Raster Engine is shown in Figure 5. The RE is capable of drawing
rectangle, triangle and line primitives. Each primitive requires a set
of iteration coefficients which are downloaded from the GE FIFOs

into the RE ping-pong buffers. Once the ping-pongbuffers are load-
ed, the RE initiates rendering of the primitive.

The execution units of the Raster Engine consist of four major sec-
tions:

* > edge processor;
* > span processor;

* > per-pixel operators;

* >memory controllers.

The edge processor combines with the span processor to perform
the task of converting a primitive into pixels. The edge processor
decomposes triangles into horizontal spans, and decomposes lines
into pixels. It has twoiterators for computing the beginning and end
X location of the span, and six iterators to computer R,G,B,A,Z,Y
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for the first pixel on the span. Next some terms must be defined. The
major edge ofa triangle connects the vertex with maximum Y co-
ordinate value to the vertex with minimum Y. The edge connecting
the vertex with maximum Y to the vertex with the middle Y value

is called the first minor edge. The edge that runs between the vertex
with the middle Y and the vertex with the minimum Y value is

termed the second minor edge. The edge processor beginsbyiterat-
ing down the major edge andthefirst minor edge. When the proces-
sor detects the middle Y has been crossed, it swaps the first minor
edge with the second minor edge and continues downthetriangle
until the minimum Y coordinate is reached. For each span, the edge
processor computes the initial R,G,B,A,X,Y,Z values forthe first
pixel on the span as well as the numberofpixels that have to be ren-
dered for that span. This information is passed to the span proces-
sor. When drawing lines, only one of the two edgeiterators is used
to generate the X coordinate. The edge processorhas 10 pipe stages
and can generate a new span every other clock,

The span processorhas 6 iterators. These iterators walk through the
pixels on a span and generate the R,G,B,A,X,Z parameters for each
pixel on the span. The processor can generate one or four pixels per
clock, When gouraud shading and/or Z-buffering, the span proces-
sor will generate one pixel per clock in the X direction, When a span
is flat shaded and not Z-buffered, the span processor generates 4
pixels per clock. The block write feature of the VRAMsused in the
color bufferis utilized to write all 4 pixels generated in one memory
cycle, thus quadrupling the fill performance for screen clears and
for rendering flat shaded 2D surfaces. For lines, parameters from
the edge processor get passed through. The span processor has a
pipeline latencyof 3 clocks.

The Raster Engine supports a rich set ofpixel operators required by
commonly used graphics libraries [SEGAL92, VAND87]. Pixels
operators fall into two categories, The first category of operators
modify the color of the pixel, such as logicop and blend. Blend and
logicop are operations performed betweenthe generated source col-
orand the destination colorthat is already stored in the color buffer.
They require readback from the color buffer whichis described be-
low. There are three sets of multipliers to perform the blend fune-
tion for the R,G,B components. These multipliers are followed by
an ALU which performsthe logic operations. These two sections
together contain 10 pipeline stages.

The second category of pixel operators perform tests on pixel pa-
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rameters (o allow conditional updating of color pixel values. Exam-
ples in this category are the Z-compare test and stencil test. The Z-
compare test is used to determinepixelvisibility in the third dimen-
sion. The stencil test is used to provide more general conditional
test operations. The Z-comparisonis done in parallel with blend and
logicop in the same numberofpipeline stages.

There are memory controllers for two separate memory ports on the
Raster Engine: the color buffer port and the Z-buffer port. The color
buffer is a five-way interleaved memory port, and the Z-bufferis a
10-way interleaved memory port. The Z-buffer operation consists
of reading back the old Z value stored in the Z7-buffer, comparing
that Z value with the newly generated Z value and,if the compari-
son passesindicating the new pixelis visible, the new Z value and
colorvalue are written into the Z-buffer and color buffer respective-
ly, Since the Z-buffer requires two accesses (a read and a write) for
every write access to the color buffer, the Z-buffer port is designed
with twice the interleaving of the color buffer to accommodate Z-
buffered fill at the color gouraud shaded updaterates.
As we noted above, a write accessto the color buffer takes 5 clocks.
Similarly, the pipelined read-modify-write access to the Z-buffer
takes 10 clocks. Adjacentpixels along a span are allocated to adja-
cent banks of the Z-buffer interleave. Since it takes 10 clocks to per-
form a read-modify-write, and we have a 10-way interleave, bank
contention does not occur along a span and a one pixel per clock
comparison rate is achieved.

The 10 banks of the Z-buffer interleave share the same page address
to reduce memory controller complexity. There is a single block of
logic for page fault detection. Each bank can access a different col-
umn address within the page. A score boarding technique is used to
keep track of the state of each bank. Whenapixelis dispatched to
a bank, a bit in the score board is set to specify that the bank is busy.
Thus, any pixel accesses to the same bank will be blocked and a
bank contention stall generated to stop pixel flow until the bank is
again idle.

The colorbuffer has a five-way interleave. As explained above, the
pipeline depth is chosen such that five pixels are generated in a sin-
gle VRAM page mode cycle time, allowing contentionless color
fills along a span. Read-modify-write operations to the color frame
buffer (for blend and logicop) are supported at half the fill perfor-
mance ofstraight color wrile operations. Values in the color buffer
are first read into a FIFOin the RE to await the “modify”step ofthe
operation. When the FIFO fills, the contents of the FIFO are then
merged with the newly generated incoming pixel stream and the re-
sult is written back into the color buffer. This two-pass operationis
continued until rendering is complete. The color buffer memory
controller has a 3 clock latency.

The operation of two REs together will be briefly discussed. The
two Raster Engines work on the same primitive together. The ren-
dering task is split based on span number. All even spans of a prim-
itive (when the Y coordinate is even) are rendered by the “even”
Raster Engine; all odd spans are rendered by the “odd” Raster En-
gine. This results in a doubling of fill performance. The edge pro-
cessor in each RE iterates through all spans, but each RE rejects the
Spans that do not belong toit, and the edge processor continuesit-
eration to the next span.

TECHNOLOGY

This section briefly discusses the technology used in the implemen-
tation. The technology targeted for the custom logic design is a 1.0
micron double metal CMOSgate array and standard cell process,
The process can achieve the equivalent of 100K gates on a single
die, The ]M-bit DRAM familyis the targeted memory technology.
The design consists primarily of custom parts and memory compo-

_
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nents. The design contains over a million gates of custom logic, and
is implemented across three 5" x 13” PC boards.

CONCLUSION

A graphics rendering architecture has been described whichis dis-
tinguished by its overall performance, and by its ability to maxi-
mize performance while minimizing system size. The architecture
is shipping as a product in the IRIS Indigo Extreme, A scaled ver-

sion of the architecture was introduced in IRIS Indigo? Elan, The
architecture provides state-of-the-art rendering performance in a
desktop 3D workstation.
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Figure 6. Demonstration of curve and surface approximation Figure 7. Shaded-lighted image (2 directional lights) (Data
using graphicsprimitives. Note effect of increasing tessellation Courtesy of Cisigraph Corporation) has 31774triangles, 827961
depth on image quality, and on the numberofprimitives to ren- pixels and was rendered in 0.13 seconds.der.
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Figure 8. Shaded-lighted image (2 directional lights) (data
courtesy of Cisigraph Corporation) has 77420 triangles,
526235pixels, and was rendered in 0.29 seconds.

Figure 9. Indigo” Extreme graphics renderboard set..
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Leo: A System for Cost Effective

3D Shaded Graphics

Michael F Deering, Scott R Nelson
Sun Microsystems Computer Corporation’

ABSTRACT

A physically compact, low cost, high performance 3D graphics ac-
celerator is presented.It supports shaded rendering of triangles and
antialiased lines into a double-buffered 24-bit true color frame buf-
fer with a 24-bit Z-buffer. Nearly the only chips tised besides stan-
dard memory parts are 11 ASICs (of four types). Special geometry
data reformatting hardware on one ASIC greatly speeds and simpli-
fies the data input pipeline, Floating-point performanceis enhanced
by another ASIC: a custom graphics microprocessor, with special-
ized graphics instructions and features, Screen primitive rasteriza-
tion is carried out in parallel by five drawing ASICs, employing a
new partitioning of the back-end renderingtask, For typical render-
ing cases, the only system performance bottleneck is that intrinsi-
cally imposed by VRAM.

CR Categories and Subject Descriptors: C.1,2 [Processor Archi-
tectures]: Multiprocessors; 1.3.1 [Computer Graphics]: Hardware
Architecture; [1.3.3 [Computer Graphics]: Picture/Image Generation
Display algorithms; 1.3.7 [Computer Graphics]; Three Dimension-
al Graphics and Realism,

Additional Keywords and Phrases: 3D graphics hardware, ren-
dering, parallel graphics algorithms. gouraud shading, antialiased
lines, floating-point microprocessors.

1 INTRODUCTION

To expandthe role of 3D graphics in the mainstrearn computerin-
dustry, cost effective, physically small, usable performance 3D
shaded graphics architectures must be developed. For such systems,
new features and sheer performance at any price can no longer be
the driving force behind the architecture; instead, the focus must be
on affordable desktop systems.

The historical approach to achieving low cost in 3D graphics sys-
tems has been to compromise both performance and image quality.
But now, falling memory componentprices are bringing nearly ideal
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frame buffers into the price range of the volume market: double
buffered 24-bit color with a 24-bit Z-buffer. The challenge is to drive
these memory chips at their maximum rate with a minimum of sup-
porting rendering chips, keeping the total system cost and physical
size to. an absolute minimum. To achieve this, graphics architectures
must be repartitioned to reduce chip count and internal bus sizes,
while still supporting existing 2D and 3D functionality.

This paper describes a mew 3D graphics system, Leo, designed to
these philosophies. Fortypical cases, Leo’s only performance limit
is that intrinsically imposed by VRAM.This was achieved by a
combination of new architectural techniques and advances in VLSI
technology. The result is a system without performance or image
quality compromises, at an affordable cost and small physical size.
The Leo board set is about the size of one and a half paperback nov-
els; the complete workstation is slightly larger than two copies of
Foley and Van Dam [7]. Leo supports both the traditional require-
ments of the 2D X window system and the needs of 3D rendering:
shaded triangles, antialiased vectors, etc.

2 ARCHITECTURAL ALTERNATIVES

A generic pipelinefor 3D shaded graphics is shown in Figure 1. ({7]
Chapter 18 is a good overview of 3D graphics hardware pipeline ts-
sues,) This pipeline is truly generic, as at the top level nearly every
commercial 3D graphics acceleratorfits this abstraction. Where in-
dividual systemsdiffer is in the partitioning of this rendering pipe-
line, especially in how they employ parallelism. Two major areas
have been subject to separate optimization: the floating-point inten-
sive initial stages of processing up to, and many times including,
primitive set-up; and the drawing-intensive operation of generating
pixels within a primitive and Z-buffering theminto the framebuffer.
For low end accelerators, only portions ofthe pixel drawing stages
of the pipeline are in hardware; the floating-point intensive parts of
the pipe are processed by the host in software. As general purpose
processors increase in floating-point power, such systemsare start-
ing to support interesting rendering rates, while minimizing cost
[8]. But, beyond some limit, support ofhigher performance requires
dedicated hardware for the entire pipeline.

There are several choices available for partitioning the floating-
point intensive stages. Historically, older systems performed these
tasks in a serial fashion [2]. In time though, breaking the pipe into
more pieces for more parallelism (and thus performance) meant
that each section was devoting more and more of its time to /O
overhead rather than to real work. Also, computational variance
meant that many portions of the pipe would commonly be idle
while others were overloaded, This led to the data parallel designs
of most recent 3D graphics architectures [12].

i)
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Figure 1: Generic 3D Graphics Pipeline

Here the concept is that multiple parallel computation units can
each processthe entire floating-point intensive task, working in par-
allel on different parts of the scene to be rendered, This allows each
pipe to be given a large task to chew on, minimizing handshake
overhead. But now there is a different load balancing problem. If
one pipe has an extra large task, the other parallel pipes may goidle
waiting for their slowest peer, if the common requirementof in-or-
der execution of tasks is to be maintained. Minor load imbalances

can be averaged out by adding FIFO buffers to the inputs and out-
puts of the parallel pipes. Limiting the maximumsize oftask given
to any one pipe also limits the maximum imbalance,at the expense
of further fragmenting the tasks and inducing additional overhead.

But the most severe performance bottleneck lies in the pixel draw-
ing back-end. The most fundamental constraint on 3D computer
graphics architecture over the last ten years has been the memory
chips that comprise the frame buffer. Several research systems have
attempted to avoid this bottleneck by various techniques [10][4][8],
but all commercial workstation systems use conventional 7-buffer
rendering algorithms into standard VRAMs or DRAMs, Howthis
RAMis organized is an importantdefining feature of any high per-
formance rendering system.

3 LEO OVERVIEW

Figure 2 is a diagram of the Leo system. This figure is not just a
block diagram; it is also a chip level diagram, as every chip in the
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Figure 2: The Leo Block Diagram. Every chip in the system is
represented in this diagram.

system is shownin this diagram. All input data and window system
interactions enter through the LeoCommandchip. Geometry datais
reformatted in this chip before being distributed to the array of Leo-
Float chips below, The LeoFloat chips are microcoded specialized
DSP-like processors that tackle the floating-point intensive stages
of the rendering pipeline. The LeoDraw chips handle all screen
space pixel rendering and are directly connectedto the frame buffer
RAMchips. LeoCross handles the back-end color look-up tables,
double buffering, and video timing, passing the final digital pixel
values to the RAMDAC.
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The development of the Leo architecture started with the con-
straints imposed by contemporary VRAMtechnology, As will be
derived in the LeoDraw section below, these constraints led to the
partitioning of the VRAM controlling LeoDraw chips, and set a
maximum back-end rendering rate. This rate in turn set the perfor-
mance goal for LeoFloat, as well as the data input bandwidth and
processing rate for LeoCommand. After the initial partitioning of
the rendering pipeline into these chips, each chip was subjected to
additional optimization. Throughput bottlenecks in input geometry
format conversion, floating-point processing, and pixel rendering
were identified and overcome by adding reinforcing hardware to
the appropriate chips.

Leo's floating-pomt intensive section uses data parallel partition-
ing. LeoCommand helps minimize load balancing problems by
breaking down rendering tasks to the smallest isolated primitives:
individualtriangles, vectors, dots, portions of pixel rasters, render-
ing attributes, etc., at the cost of precluding optimizations for
shared data in triangle strips and polylines. This was considered
acceptable due to the very low average strip length empirically
observed in real applications. The overhead ofsplitung geometnc
data into isolated primitives is minimized by the use of dedicated
hardware for this task. Another benefit of converting all rendering
operations to isolated primitives is that down-stream processing of
primitives is considerably simplified by only needing to focus on
the isolated case.

4 INPUT PROCESSING: LEOCOMMAND

Feeding the pipe

Leo supports input of geometry data both as programmed [/O and
through DMA.The host CPU can directly store up to 32 data words
in an intemal LeoCommand buffer without expensive read back
testing of input status every few words, This is useful on hoststhat
do not support DMA,or when the host must perform formal con-
versions beyond those supported in hardware. In DMA mode, Leo-
Command employsefficient block transfer protocols on the system
bus to transfer data from system memory to its input buffer, allow-
ing much higher bandwidth than simple programmed I/O, Virtual
memory pointers to application's geometry arrays are passed direct-
ly to LeoCommand, which converts them to physical memory
addresses without operating system intervention (except when a
page is marked as currently non-resident). This frees the host CPU
to perform other computations during the data transfer. Thus the
DMAcan be efficient even for pure immediate-mode applications,
where the geometry is being created on the fly.

Problem: Tower of Babelof input formats

One of the problems modern display systems face is the explosion
of different input formats for similar drawing functions that need to
be supported. Providing optimized microcode for each format
rapidly becomes unwieldy. The host CPU could be used to pretrans-
late the primitive formats, but at high speeds this conversion oper-
ation can itself become a system bottleneck, Because DMA com-
pletely bypasses the host CPU, LeoCommandincludes a program-
mable format conversion unit in the geometry data pipeline. This
reformatter is considerably less complex than a general purpose
CPU,but can handle the most commonly used inputformats, and at
very high speeds,

The geometry reformatting subsystem allows several orthogonal
operations to be applied to input data. This geometric input data is
abstracted as a stream of vertex packets, Each vertex packet may
contain any combination of vertex position, vertex normal, vertex
color, facet normal, facet color, texture map coordinates, pick IDs,
headers, and other information. One conversion supports arbitrary
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re-ordering ofdata within a vertex,allowing a standardized element
order after reformatting. Another operation supports the conversion
of multiple numeric formats to 32-bit IEEE floating-point. The
source data can be &-bit or 16-bit fixed-point, or 32-bit or 64-bit
IEEE floating-point. Additional miscellaneous reformatting allows
the stripping of headers and otherfields, the addition of an internal-
ly generated sequential pick ID, and insertion of constants. The
final reformatting stage re-packages vertex packets into complete
isolated geometry primitives (points, lines, triangles). Chaining bits
in vertex headers delineate which vertices form primitives.

Like some other systems, Leo supports a generalized form oftrian-
gle strip (see Figure 3), where vertex header bits within a strip spec-
ify how the incoming vertex should be combined with previous ver-
tices to form the next triangle. A stack of the last three vertices used
to formatriangle is kept, The three vertices are labeled oldest, mid-
dle, and newest. An incoming vertex of type replace_oldest causes
the oldest vertex to be replaced by the middle,the middle to be re-
placed by the newest, and the incoming veriex becomes the newest.
This corresponds to a PHIGS PLUStriangle strip (sometimes called
a “zig-zag”strip). The replacement type replace_middle leaves the
oldest vertex unchanged, replaces the middle vertex by the newest,
and the incoming vertex becomes the newest. This corresponds to a
triangle star. The replacement type restart marks the oldest and mid-
dle vertices as invalid, and the incoming vertex becomes the newest.
Generalized triangle strips must always start with this code. A trian-
gle will be output only when a replacement operation results in three
valid vertices. Restart corresponds to a “move” operation in
polylines, and allows multiple unconnected variable-length triangle
strips to be described by a single data structure passed in by the user,

VertexCodes2 a 5
1 Restart
2RO
3RO
4RO i a 5
5 RO Triangle Strip
6RO
7 Restart 10
8 RO
9 RO

10 RM a "
11 AM 4
12 RM

aa
15 Restart 16

i He Independent
Triangle18 Restart

19RO 45 720 RO
21 RO 19 1z
22 Restart

23 RO NY Independent24 RO Quad
0

26 RO
27 RO
28 RO
29 RM
30 RM
31 AM
32 AM
33 RO

Triangle Star

 
RO = Replace Oldest 33
RM = Replace Middle Mixed Strip

Figure 3: A Generalized Triangle Strip
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reducing the overhead. The generalizedtriangle strip’s ability to ef-
fectively change from “strip” to “star” mode in the middle ofa strip
allows more complex geometry to be represented compactly, and re-
quires less input data bandwidth. Therestart capability allows sev-
eral pieces ofdisconnected geometry to be passed in one DMA op-
eration. Figure 3 shows a single generalized triangle strip, and the
associated replacement codes. LeoCommand also supports header-
less strips oftriangle vertices either as pure strips, pure stars, or pure
independent triangles.

LeoCommand hardware automatically converts generalized trian-
gle strips into isolated triangles. Triangles are normalized such that
the front face is always defined by a clockwise vertex order after
transformation. To support this, a header bit in each restart defines
the initial face order of each sub-strip, and the vertex order is re-
versed after every replace_oldest. LeoCommand passes each com-
pleted triangle to the next available LeoFloat chip, as indicated by
the input FIFO status that each LeoFloat sends back to Leo-
Command. The order in which triangles have been sent to each
LeoFloatis scoreboarded by LeoCommand,so that processed trian-
gles are let out of the LeoFloat array in the same order as they en-
tered. Non-sequential rendering order is also supported, but the
automatic rendering task distribution hardware works so well that
the performancedifference is less than 3%. A similar, but less com-
plex vertex repackaging is supported for polylines and mullti-
polylines via a move/drawbit in the vertex packet header.

To save IC pins and PC board complexity, the internal Leo data bus-
ses connecting LeoCommand, LeoFloat, and LeoDraw are 16 bits in
size. When colors, normals, and texture map coefficients are being
transmitted on the CF-bus between LeoCommand and the Leo-

Floats, these components are (optionally) compressed from 32-bit
IEEE floating-point into 16-bit fixed point fractions by Leo-
Command, and then automatically reconverted back to 32-bit IEEE
floating-point values by LeoFloat,. This quantization does noveffect
quality. Color components will eventually end up as 8-bit values in
the frame buffer. For normals, 16-bit (signed) accuracy represents a
resolution of approximately plus or minus an inch at one mile. This
optimization reduces the required data transfer bandwidth by 25%.

Input fram off-chip

 
Figure 4: LeoFloat arithmetic function units, registers and data paths.
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5 FLOATING-POINT PROCESSING: LEOFLOAT

After canonical format conversion, the next stages ofprocessing tri-
angles in a display pipeline are: transformation,clip test, face deter-
mination, lighting, clipping (if required), screen space conversion,
and set-up. These operations are cormplex enough to require the use
of a general purpose processor.

Use of commercially available DSP (Digital Signal Processing)
chips for this work has two major drawbacks. First, most such pro-
cessors require a considerable number of surrounding glue chips,
especially when they are deployed as multi-processors, These glue
chips can easily quadruple the board area dedicated to the DSP
chip, as well as adversely affecting power, heat, cost, andreliability.
Second, few ofthese chips have been optimized for 3D graphics.

A better solution might be to augment the DSP witha special ASIC
that would replaceall of these glue chips. Given the expense of de-
veloping an ASIC, we decided to merge that ASIC with a custom
DSP core optimized for graphics.

The resuluing chip was LeoFloat, LeoFloat combines a 32-bit mi-
crocodable floating-point core with concurrent input and output
packet communication subsystems(see Figure 4.), similar to the ap-
proach of[3]. The only support chips required are four SRAM chips
for external microcode store. A number of specialized graphics in-
structions and features make LeoFloatdifferent from existing DSP
processors. Each individual feature only makes a modest incremen-
tal contribution to performance, and indeed many have appeared in
other designs. Whatis novel about LeoFloatis the combination of
features, whose cumulative effect leads to impressive overall sys-
tem performance. The following sections describe some of the
more important special graphics instructions and features.

Double buffered asynchronous I/O register files. All input and
output commands are packaged up by separate I/O packet hardware.
Vaniable length packets of up to 32 32-bit words are automatically
written into (or out of) on-chip double-buffered registerfiles (the I
and © registers). These are mapped directly into microcode register
space. Special instructions allow complete packets to be requested,
relinquished, or queued for transmission in one instruction cycle.

Enoughinternal registers. Most commercial DSP chips support a
very small number of internal fast registers, certainly much smaller
than the data needed by the inner loops of most 3D pipeline algo-
rithms, They attempt to make up for this with on-chip SRAM or
data caches, but typically SRAMs are not multi-ported and the
caches not user-schedulable. We cheated with LeoFloat, We first

wrote the code for the largest important inner loop (triangles),
counted how many registers were needed (288), and built that many
into the chip.

Parallel internal function units. The floating-point core functions
(32-bit IEEE format) include multiply, ALU, reciprocal, and inte-
ger operations, all of which can often be executed in parallel. It is
particularly important that the floating-point reciprocal operation
not ue up the multiply and add units, so that perspective or slope
calculations can proceed in parallel with the rest of geometric pro-
cessing. Less frequently used reciprocal square root hardware is
shared with the integer function unit.

Put all non-critical algorithms on the host. We avoided the neces-
sity of building a high level language compiler (and support instruc-
tions) for LeoFloat by moving any code not worth hand coding in
microcode to the host processor. The result is a small, clean kernel
of graphics routines in microcode. (A fairly powerful macro-assem-
bler with a “C’-like syntax was built to support the hand coding.)

Software pipeline scheduling. One of the most complex parts of
modern CPUs to design and debug is their scoreboard section,
which schedules the execution of instructions across multiple steps
in lime and function unils, presenting the programmer with the
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illusion that individual instructions are executed in one shot. Leo-
Float avoidedall this hardware by using more direct control fields,
like horizontal microprogrammable machines, and leavingit to the
assembler (and occasionally the programmer) to skew one logical
instruction across several physicalinstructions.

Special clip condition codes & clip branch, For clip testing we
employ a modified Sutherland-Hodgman algorithm, which first
computesa vector ofclip condition bits, LeoFloat has a clip test in-
struction that computes these bits (wo at a time, shifting them into
a special clip-bits register, After the bits have been computed, spe-
cial branch instructions decode these bits into the appropriate case:
clip rejected, clip accepted, single edge clip (six cases), or needs
general clipping. There are separate branch instructions for trian-
gles and vectors, (A similar approach was taken in (9].) The branch
instructions allow multiple other conditions to be checked at the
same time, including backfacing and model clipping.

Register Y sort instruction, The first step of the algorithm we used
for setting up triangles for scan conversion sorts the three triangle
vertices in ascending Y order. On a conventional processor this re-
quires either moving a lot of data, always referring to vertex data
through indirect pointers, or replicating the set-up code for all six
possible permutationsoftriangle vertex order. LeoFloat has a special
instruction that takes the results of the last three comparisons and re-
orders part of the R registerfile to place vertices in sorted order.

Miscellaneous. LeoFloat contains many performance features tra-
ditionally found on DSP chips, including an internal subroutine
stack, block load/store SRAM,and integer functions. Also there is
a “kitchen sink” Instruction that initiates multiple housekeeping
functions in one instruction, such as “transmit current output packet
(if not clip pending), request new input packet, extract op-code and
dispatch to next task.”

Code results: equivalent to 150 megaflop DSP. Each 25 MHz
LeoFloat processes the benchmarkisolated triangle (including clip-
test and set-up) in 379 clocks. (With a few exceptions, microcode
instructions issue at a rate of one per clock tick.) The same graphics
algorithm was tightly coded on several RISC processors and DSP
chips (SPARC,i860, C30, etc.), and typically took on the order of
1100 clocks. Thus the 379 LeoFloat instruction at 25 MHz do the

equivalent work ofa traditional DSP chip running at 75 MHz (even
though there are only 54 megaflops of hardware), Of course these
numbers only hold for triangles and vectors, but that's most of what
LeoFloat does. Four LeoFloats assure that floating-point processing
is not the bottleneck for 100-pixelisolated, lighted tangles.

6 SCREEN SPACE RENDERING: LEQDRAW

VRAMlimits

Commercial VRAM chips represent a fundamental constraint on
the possible pixel rendering performance of Leo's class of graphics
accelerator. The goal of the Leo architecture was to ensure to the
greatest extent possible that this was the only performancelimit for
typical rendering operations.

The fundamental memory transaction for Z-buffered rendering
algorithms is a conditional read-modily-write cycle. Given an XY
address and a computed RGBZ value, the old Z value al the XY ad-
dress is first read, and then if the computed Z is in front of the old
Z, the computed RGBZ value is written into the memory. Such
transactions can be mapped to allowable VRAM control signals in
many different ways: reads and wriles may be batched, Z may be
read out through the video port,etc.

VRAMchips constrain system rendering performance in two ways.
First, they impose a minimum cycle time per RAM bank for the Z-
buffered read-modify-write cycle. Figure 5 is a plot of this cycle
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Figure $: VRAM cycle me andtheoretical maximumtrian-
gle rendering rate (for five-way interleaved frame buffers).

time (when in “page” mode) and its changes over a half-decade
period. WRAMsalso constrain the ways in which a frame buffer can
be partitioned into independently addressable banks. Throughout
the five year period in Figure 5, three generations of VRAM technol-
ogy have been organized as 256K by 4, 8, and 16-bit memories. For
contemporary display resolutions of 1280 x 1024, the chips com-
prising a minimum frame buffer can be organized into no more than
five separately-addressedinterleave banks. Combiningthis informa-
lion, a theoretical maximum rendering speed for a primitive can be
computed, The secondline in Figure 5 is the corresponding perfor-
mance for rendering 100-pixel Z-buffered triangles, including the
overhead for entering page mode, content refresh, and videoshift
register transfers (video refresh). Higher rendering rates are only
possible if additional redundant memory chips are added, allowing
for higher interleaving factors, at the price of increased system cost.
Even supporting five parallel interleaves has a cost; al least 305
memory interface pins (five banks of (24 RGB + 24 Z + 13 address/
control)) are required, more pinsthan it is currently possible to ded-
icalé to a memory interface on one chip. Some systems have used
external buffer chips, but on a minimum cost and board area sys-
tem, this costs almost as much as additional custom chips. Thus, on
the Leo system we opted for five separate VRAM control chips
(LeoDraws).

Triangle scan conversion

Traditional shaded triangle scan conversion has typically been via
a linear pipeline of edge-walking followed by scan interpolation
({12]. There have been several approaches to achieving higher
throughputin rasterizauion. [2] employed a single edge-walker, but
parallel scan interpolation. [4]{10] employed massively parallel
rasterizers. [6] and other recent machines use moderately parallel
rasterizers, with additional logic to merge the pixel rasterization
streams back together.

Inthe Leo design we choseto broadcast the identical triangle spec-
ification to five parallel! rendering chips, each tasked with rendering
only those pixels visible in the local interleave. Each chip performs
its own complete edge-walk and span interpolation ofthe triangle,
biased by the chip's local interleave. By paying careful attention to
proper mathematical sampling theory for rasterized pixels, the five
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chips can act in concert to produce the correct combined rasterized
image. Mathematically, each chip thinks it is rasterizing the triangle
into an image memory with valid pixel centers only every five orig-
inal pixels horizontally, with each chip starting off biased one more
pixel to the right.

To obtain the speed benefits of parallel chips, most high perfor-
mance graphics systems have split the edge-walk and span-interpo-
late functions into separate chips. But an examination ofthe relative
amounts of data low between rendering pipeline stages shows that
the overall peak data transfer bandwidth demand occurs between
the edge-walk and span-interpolate sections, induced by long thin
triangles, which commonly occur in tessellated geometry. To mini-
mize pin counts and PC board bus complexity, Leo decided to rep-
licate the edge-walking function into each ofthe five span-interpo-
lation chips.

One potential drawback of this approachis that the edge-walking
section of each LeoDraw chip will have to advance to the next scan
line up to five times more often than a single rasterization chip
would, Thus LeoDraw's edge-walking circuit was designed to oper-
ate in one single pixel cycle time (160 ns, read-modify-write VRAM
cycle), so it would never hold back scan conversion. Other usual
pipelining techniques were used, such as loading in and buffering
the next triangle to be drawn in parallel with rasterizing the current
triangle, Window clipping, blending, and otherpixel post processing
are handled in later pipelined stages,

Line scan conversion

As with triangles, the mathematics of the line rasterization algo-
rithms Were set up to allow distributed rendering of aliased and
antialiased lines and dots, with each LeoDraw chip handling the
1/5 of the frame buffer pixels that itowns. While the Leo system
uses the X11 semantics of Bresenham lines for window system
operations, these produce unacceptable motion artifacts in 3D
wireframe rendering. Therefore, when rendering 3D lines, Leo
employs a high-accuracy DDA algorithm, using 32 bits internally
for sufficient subpixel precision.

Atpresentthere is no agreementin the industry on the definition of a
high quality antialiased line. We choose to use the image quality of
vector strokers ofyears ago as our quality standard, and wetested dif-
ferent algorithms with end users, many of whom were stil) using cal-
ligraphic displays. We found users desired algorithmsthat displayed
no roping, angle sensitivities, short vector artifacts, or end-pointarti-
facts, We submitted the resulting antialiased linequality test patterns
as a GPC [11] test image. in achieving the desired image quality lev-
el, we determined several properties that a successful line antialias-
ing algorithm musthave. First, the lines must have at least three pix-
els of width across the minor axis, Two-pixel wide antialiased lines
exhibit serious roping artifacts. Four-pixel wide lines offer no visible
improvement exceptfor lines near 45 degrees. Second, proper end-
point ramps spread overat least two pixels are necessary both for
seamless line segment joins as well as for isolated line-ends. Third,
proper care must be taken when sampling lines of subpixel length to
maintain properfinal intensity. Fourth, intensityor filter adjustments
based on the slope are necessary to avoid artifacts when rotating
wireframe images. To implementall this, we found thal we needed at
least four bits of subpixel positional accuracy after cumulative inter-
polation erroris factored in. That is why we used 32 bits for XY co-
ordinate accuracy: 12 for pixel location, 4 for subpixel location, and
16 for DDAinterpolation error. (The actual error limit is imposed by
the original, user-supplied 32-bit [IEEE floating-pointdata.)

Because of the horizontal interleaving and preferred scan direction,
the X-major and Y-major aliased and antialiased line rasterization
algorithms are nol symmetric, so separate optimized algorithms
were employed for each.
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Antialiased dots

Empirical testing showed that only three bits of subpixel precision
are necessary for accurate rendering ofantialiased dots. For ASIC
implementation, this was most easily accomplished using a brute-
force table lookupof one of 64 precomputed 3 x 3 pixel dot images,
These imagesare stored in on-chip ROM,and were generated using
a circular symmetric Gaussian filter,

Triangle,line, and dot hardware

Implementation of the triangle and antialiased vector rasterization
algorithms require substantia! hardware resources. Triangles need
single pixel cycle edge-walking hardware in parallel with RGBZ
span interpolation hardware. To obtain the desired quality of anti-
aliased vectors, our algorithms require hardware to apply multiple
waveform shaping functions to every generated pixel, As a result,
the total VLSI area needed for antialiased vectors is nearly as large
as for triangles. To keep the chip die size reasonable, we reformu-
lated both the triangle and antialiased vector algorithms to combine
and reuse the sarne function units, The only difference is how the
separate sequencers set up the rasterization pipeline.

Per-pixel depth cue

Depth cueing has long been a heavily-used staple of wireframe ap-
plications, but in most modem rendering systemsif is an extra ime
expense feature, performed on endpoints back in the floating-point
section. Wefelt that we were architecting Leo not for benchmarks,
but for users, and many wireframe users want to have depth cueing
on all the time. Therefore, we built a parallel hardware depth cue
function unit into each LeoDraw, Each triangle, vector, or dot ren-
dered by Leo can be optionally depth cued at absolutely no cost in
performance. Another benefit ofper-pixel depth cueingis full com-
pliance with the PHIGS PLUS depth cueing specification, For Leo,
per-pixel depth cueing hardware also simplifies the LeoFloat mi-
crocode, by freeing the LeoFloats from ever having to deal with it.

Picking support

Interactive graphics requires notonly the rapid display of geometric
data, but also interaction with that data: the ability to pick a partic-
ular part or primitive within a part. Any pixels drawn within the
boundsofa 3D pick aperture result in a pick hit, causing the current
pick [Ds to be automatically DMAed back to host memory.

Window system support

Many otherwise sophisticated 3D display systems become some-
what befuddled when having to deal simultaneously with 3D ren-
dering applications and a 2D window system. Modern window sys-
tems on interactive workstations require frequentcontext switching
ofthe rendering pipeline state. Some 3D architectures have tried to
minimize the overhead associated with context switching by sup-
porting multiple 3D contexts in hardware. Leo goes one step fur-
ther, maintaining 'wo completely separate pipelines in hardware:
one for traditional 2D window operations; the other for full 3D ren-
dering. Because the majority of context switch requests are for 2D
window system operations,the need for more complex 3Dpipeline
context switchingis significantly reduced. The 2D context is much
lighter weight and correspondingly easier to context switch. The
two separate graphics pipelines operate completely in parallel, al-
lowing simultaneous access by two independent CPUs on a multi-
processor host.

2D functionality abstracts the frame buffer as a 1-bit, 8-bit, or 24-bit
pixel array. Operations include random pixel access, optimized char-
acter cell writes, block clear, block copy, and the usual menagerie of
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boolean operations, write masks, etc. Vertical block moves are spe-
cial cased, as they are typically used in vertical scrolling of text
windows, and can be processed faster than the general block move
because the pixel data does not have to move across LeoDraw chip
interleaves. Rendering into non-rectangular shaped windows is
supported by special clip hardware, resulting in no loss in perfor-
mance. A special block clear function allows designated windows
(and their Z-buffers) to be initialized to any given constant in under
200 microseconds, Withoutthis last feature, 30 Hz or faster anima-

tion of non-trivial objects would have been impossible.

7 VIDEO OUTPUT: LEOCROSS

Leo's standard video output format is 1280 x 1024 at 76 Hz refresh
rate, but it also supports other resolutions, including 1152 x 900,
interlaced 640 « 480 RS-170 (NTSC), interlaced 768 x 576 PAL
timing, and 960 x 680 113 Hz field sequential stereo. LeoCross
contains several color look-up tables, supporting multiple pseudo
color maps without color map flashing. The look-uptable also sup-
ports two different true color abstractions: 24-bit linear color
(needed by rendering applications), and REC-709 non-linear color
(required by many imaging applications).

Virtualreality support

Stereo outputis becoming increasingly important for use in Virtual
Reality applications. Leo’s design goals included support for the
Virtual Holographic Workstation system configuration described in
[5]. Leo’s stereo resolution was chosen to support square pixels, so
that lines and antialiased lines are displayed properly in stereo, and
standard window system applications can co-exist with stereo. Ste-
reo can be enabled on a per-windowbasis (when in stereo mode win-
dowsare effectively quad-buffered). Hooks were included in Leo-
Cross to support display technologies other than CRT's, that may be
needed for head-mounted virtual reality displays.

8 NURBS AND TEXTURE MAP SUPPORT

One of the advantages to using programmable elements within a
graphics accelerator is that additional complex functionality, such
as NURBSand texture mapping, can be accelerated. Texture map-
ping is supported through special LeoFloat microcode and features
of LeoCommand. LeoFloat microcode also includes algorithms to
accelerate. dynamic tessellation of immed NURBSsurfaces. The
dynamic tessellation technique involves reducing trimmed NURBS
surfaces into properly sized triangles according to a display/pixel
space approximation criteria [1]; i.e. the fineness of tessellation is
view dependent. In the past, dynamic tessellation tended to be
mainly useful as a compression technique, to ayoid storing all the
flattened triangles froma NURBSsurface in memory. Dynamictes-
sellation was nol viewed as a performance enhancer, for while it
might generate only a third as manytrianglesasa static tessellation,
the triangles were generated at least an order of magnitude or more
slower than brute force triangle rendering. In addition it had other
problems, such as not handling general rimming. For many cases,
Leo's dynamic tesselator can generate and render triangles only a
small integer multiple slower than prestored triangle rendering,
which for some views, can result in faster overall object rendering.

9 RESULTS

Leo is physically a-two board sandwich, measuring 5.7 x 6.7 x 0.6
inches,that fits in a standard 2S SBusslot, Figure 6 is a photo ofthe
two boards, separated, showing all the custom ASICs. Figure 7 is a
photo of the complete Leo workstation, next to hwo of our units of
scale and the board set.

Leo can render 210K 100-pixel isolated, lighted, Gouraud shaded,
Z-buffered, depth cued triangles per second, with one infinite dif-
fuse and one ambient light source enabled. At 100 pixels, Leo is
still VRAM rendering speed limited; smaller triangles renderfaster.
Isolated 10-pixel antialiased, constant color, Z-buffered, depth cued
lines (which are actually 12 pixels long due to endpoint ramps, and
three pixels wide) render al a 422K per second rate. Corresponding
aliased lines render at 730K. Aliased and antialiased constant color,

Z-buffered, depth cued dots are clocked at 1! 00K. 24-bit image ras-
fers can be loaded onto the screen at a [OM pixel per second rate.
Screen scrolls, block moves, and raster character drawsall also

have competitive performance. Figure 8 is a sample of shaded tri-
angle rendering.

10 SIMULATION

A system as complex as Leo cannot be debugged after the fact. All
ihe new rendering mathematics were extensively simulated before
being committed to hardware design. As each chip was defined,high,
medium, and low level simulators of its function were written and
continuously used to verify functionality and performance, Com-
plete imagesof simulated rendering were generated throughout the
course of the project, from within weeksofits start. As a result, the
window system and complex 3D rendering were up and running on
a complete board set within a week ofreceiving thefirst set ofchips.

11 CONCLUSIONS

By paying careful attention to the forces that drive both perfor-
mance and cost, a physically compact complete 3D shaded graphics
accelerator was created, The focus was nol on new rendering fea-
tures, but on cost reduction and performance enhancementofthe
most useful core of 3D graphics primitives. New parallel algo-
rithms were developed to allow accurate screen space rendering of
primitives. Judicious use of hardware to perform some key tradi-
tional software functions (such as format conversion and primitive
vertex reassembly) greatly simplified the microcode task. A spe-
cialized floating-point core optimized for the primary task of pro-
cessing lines and triangles also supports more general graphics pro-
cessing, such as rasters and NURBS, Thefinal system performance
is limited by the only chips not custom designed for Leo: the stan-
dard RAM chips.

ACKNOWLEDGEMENTS

The authors would like to thank the entire Leo team for their efforts

in producing the system, and Mike Lavelle for help with the paper.

REFERENCES

1. Abi-Ezzi, Salim, and L. Shirman. Tessellation of Curved
Surfaces under Highly Varying Transformations. Proc. Euro-
graphics '91 (Vienna, Austria, September 1991), 385-397.

Z. Akeley, Kurt and T, Jermoluk. High-Performance Polygon
Rendering, Proceedings of SIGGRAPH '88 (Atlanta, GA, Aug
1-5, 1988). In Computer Graphics 22, 4 (July 1988), 239-246.

3. Anido, M,, D. Allerton and E, Zaluska. MIGS - A Multipro-
cessor Image Generation System using RISC-like Micropro-
cessors. Proceedings of CGI '89 (Leeds, UK, June 1989),
Springer Verlag 1990.

4. Deering, Michael, S. Winner, B. Schediwy, C. Duffy and N.
Hunt. The Triangle Processor and Normal Vector Shader; A
VLSIsystem for High Performance Graphics. Proceedings of
SIGGRAPH '88 (Adanta, GA, Aug 1-5, 1988). In Computer
Graphics 22, 4 (July 1988), 21-30,

107



108

 
SIGGRAPH93,Anaheim,California, 1-6 August 1993

wn

10.

11.

12.

Deering, Michael. High Resolution Virtual Reality. Proceed-
ings of SIGGRAPH'92 (Chicago, IL, July 26-31, 1992), In
Computer Graphics 26,2 (July 1992), 195-202.
Dunnett, Graham, M. White, P. Lister and R. Grimsdale,
The Image Chip for High Performance 3D Rendering. /EEE
Computer Graphics and Applications 12, 6 (November 1992),41-52.

Foley, James, A. van Dam,S. Feiner and J Hughes. Com-
puter Graphics; Principles and Practice, 2nd ed., Addison-
Wesley, 1990.

Kelley, Michael, S. Winner, K. Gould. A Scalable Hardware
Render Accelerator using a Modified Scanline Algorithm.
Proceedings of SIGGRAPH '92 (Chicago, IL, July 26-31,
1992). In Computer Graphics 26, 2 (July 1992), 241-248.

Kirk, David, and D. Voorhies. The Rendering Architecture
of the DNI0000VS, Proceedings of SIGGRAPH '90 (Dallas,
TX, August 6-10, 1990). In Computer Graphics 24, 4 (A ugust
1990), 299-307.

Molnar,Steven, J. Eyles, J. Poulton. PixelFlow: High-Speed
Rendering Using Image Composition. Proceedings of SIG-
GRAPH '92 (Chicago, IL, July 26-31, 1992). In Computer
Graphics 26,2 (July 1992), 231-240,

Nelson, Scott. GPC Line Quality Benchmark Test. GPC Test
Suite, NCGA GPC committee 1991,

Torborg, John. A Parallel Processor Architecture for Graph-
ics Arithmetic Operations, Proceedings of SIGGRAPH '87
(Anaheim, CA, July 27-31, 1987). In Computer Graphics 21,
4 (July 1987), 197-204.

 
 

Am
Comnpaiter Ciraphies

Comparer Cray iid

Figure 7: The complete SPARCstation ZX workstation, next to two
of our units of scale and the Leo boardset.
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Figure 8: Traffic Jam to Point Reyes. A scene containing 2,322,000triangles, rendered by Leo Hardware. Sto-
chastically super-sampled 8 times. Models courtesy of Viewpoint Animation Engineering.
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RealityEngine Graphics

Kurt Akeley
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Abstract

The RealityEngine™ graphics system is the first of a new genera-
tion of systems designed primarily to render texture mapped, an-
tialiased polygons. This paper describes the architecture of the
RealityEngine graphics system,then justifies someofthe decisions
made during its design. The implementation is near-massively par-
allel, employing 353 independentprocessors in its fullest configura-
tion, resulting in a measured fill rate ofover 240 million antialiased,
texture mapped pixels per second. Rendering performance exceeds
i million antialiased, texture mapped triangles per second. In ad-
dition to supporting the functions required of a general purpose,
high-end graphics workstation, the system enables realtime, “out-
the-window” image generation and interactive image processing.

CR Categories and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture; 13.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - color, shading, shad-
owing, and texture

1 Introduction

This paper describes and to a large extentjustifies the architecture
chosen for the RealityEngine graphics system. The designers think
of this system as our first implementation of a third-generation
‘graphics system. To us a generation is characterized not by the
scope of capabilities of an architecture, but rather by the capabili-
ties for which the architecture was primarily designed — the target
capabilities with maximized performance. Because we designed
our first machinein (he early eighties, our notion offirst generation
correspondsto this period. Floating point hardware was just be-
coming available at reasonableprices, framebuffer memory wasstill
quite expensive, and application-specificinlegrated circuits (ASICs)
were not readily available. The resulting machines had workable
transformation capabilities, but very limited framebuffer process-
ing capabilities. In particular, smooth shading and depth buffering,
which require substantial framebuffer hardware and memory, were
not available. Thus the target capabilities of first-generation ma-
chines were the transformation and rendering offlat-shaded points,
lines, and polygons. Theseprimitives were notlighted, and hidden
surface elimination, if required, was accomplished by algorithms
implemented bythe application. Examples of such systems are the
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Silicon GraphicsIris 3000 (1985) and the Apollo DN570 (1985).
Toward the end ofthe first-generalion period advancesin technology
allowed lighting, smooth shading, and depth buffering to be imple-
mented, but only with an order of magnitude less performance than
wasavailable to render flat-shaded lines and polygons. Thus the
target capability of these machines remained first-generation. The
Silicon Graphics 4DG (1986) is an exampleofsuch an architecture.

Because first-generation machines couldnot efficiently eliminate
hidden surfaces, and could notefficiently shade surfaces even if the
application was able to eliminate them, they were more effective
at rendering wireframe images than al rendering solids. Begin-
ning in 1988 a second-generation of graphics systems, primarily
workstations rather than terminals, became available. These ma-

chines took advantage of reduced memory costs and the increased
availability ofASICs to implement deep framebuffers with multiple
rendering processors. These framebuffers had the numeric ability
to interpolate colors and depths with little or no performance loss,
and the memory capacity and bandwidth to support depth buffering
with minimal performance loss. They were therefore able to render
solids and full-frame scenesefficiently, as well as wireframe images.
TheSilicon Graphics GT (1988)[11] and the Apollo DN590 (1988)
are early examples of second-generation machines. Later second-
generation machines, such as the Silicon Graphics VGX[12) the
Hewlett Packard VRX,and the Apollo DN10000[4]includetexture
mapping and antialiasing of points and lines, but not of polygons.
Their performances are substantially reduced, however, when lex-
ture mapping is enabled, and the texture size (of the VGX) and
filtering capabilities (of the VRX and the DN10000)are limited,

The RealityEngine systemis our first third-generation design,Its
target capability is the rendering of lighted, smooth shaded, depth
buffered, texture mapped, antialiased triangles. Theinitial target
performance was 1/2 million such triangles per second, assuming
the triangles are in short strips, and 10 percentintersect the viewing
frustum boundaries. Textures were to be well filtered (8-sample lin-
ear interpolation within and between two mipmap[13] levels) and
large enough (1024 x 1024) to be usable as true images, rather
than simply as repeated textures. Antialiasing was to result in high-
quality images ofsolids, and was to work in conjunction with depth
buffering, meaning that no application sorting was to be required.
Pixels were to be filled at a rate sufficient to support 30Hz ren-
dering offull-screen images. Finally, the performance on second-
generation pnmitives(lighted, smooth shaded, depth buffered) was
to be no lowerthan that of the VGX, which renders roughly 800,000
such meshtriangles per second. All of these goals were achieved.

The remainderofthis paperis in four parts: a description ofthe
architecture, some specifics of features supported by the architec-
ture, alternatives considered during the design ofthe architecture,
and finally some appendixes that describe performance and imple-
mentationdetails,

Loy
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Figure 1, Board-level block diagram of an intermediate configu-
ration with 8 Geometry Engines on the geometry board, 2 raster
memory boards, and a display generator board.

 
2 Architecture

The RealityEngine system is a 3, 4, or 6 board graphics accelerator
that is installed in a MIPS RISC workstation. The graphics system
and one or more MIPS processors are connected by a single system
bus. Figure 1 is a board-level block diagram of the RealityEngine
graphics accelerator. The geometry boardcomprises an input FIFO,
the CommandProcessor, and 6, 8, or 12 Geometry Engines. Each
raster memory board comprises 5 Fragment Generators (each with
its own complete copy of the texture memory), 80 [mage Engines,
and enough framebuffer memory to allocate 256bits per pixel to a
1280 x 1024 framebuffer. The display generator board supportsall
video functions, including video timing, genlock, color mapping,
and digital-to-analog conversion. Systems can be configured with
1, 2, or 4 raster memory boards, resulting in 5, 10, or 20 Fragment
Generators and 80, 160, or 320 Image Engines.

To get an initial notion of how the system works, let's follow
a single triangle as it is rendered. The position, color, normal,
and texture coordinate commands that describe the vertexes of the

triangle in object coordinates are queued by the input FIFO, then
interpreted by the Command Processor. The Command Processor
directs all of this data to one of the Geometry Engines, where the
coordinates and normals are transformed to eye coordinates,lighted,
transformed to clip coordinates, clipped, and projected to window
coordinates. The associated texture coordinates are transformed

by a third matrix and associated with the window coordinates and
colors. Then window coordinate slope information regarding the
red, green, blue, alpha, depth, and texture coordinates is computed.

The projected triangle, ready for rasterization,is thenoutput from
the Geometry Engine and broadcast on the Triangle Busto the 5,
10, or 20 Fragment Generators. (We distinguish between pixels
generated by rasterization andpixelsin the framebuffer,referring to
the former as fragments.) Each Fragment Generatoris responsible
for the rasterization of 1/5, 1/10, or 1/20 of the pixels in the frame-
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buffer, with the pixel assignments finely interleaved to insure thal
even small triangles are partially rasterized by each of the Fragment
Generators. Each Fragment Generator computesthe intersection of
the set ofpixels that are fully or partially coveredby the triangle and
the set of pixels in the framebufferthat it is responsible for, gener-
ating a fragmentfor each ofthese pixels. Color, depth, and texture
coordinates are assigned to each fragment based ontheinitial and
slope values computed by the Geometry Engine. A subsample mask
is assigned to the fragment based on the portion of each pixel that
is covered by the triangle. The local copy ofthe texture memory is
indexed by the texture coordinates, and the 8 resulting samples are
reduced by linear interpolation to a single color value, which then
modulates the fragment's color.

The resulting fragments, each comprising a pixel coordinate, a
color, a depth, and a coverage mask, are then distributed to the
Image Engines. Like the Fragment Generators, the Image Engines
are each assigned a fixed subset of the pixels in the framebuffer.
These subsets are themselves subsets of the Fragment Generator
allocations, so that each Fragment Generator communicates only
with the 16 Image Engines assigned to it. Each Image Engine
manages its own dynamic RAM that implements its subset of the
framebuffer. When a fragment is received by an Image Engine,
its depth and color sample data are merged with the data already
stored at that pixel, and a new aggregate pixel color is immediately
computed. Thus the image is complete as soonas the last primitive
has been rendered;there is no need fora final framebuffer operation
to resolve the multiple color samples at each pixel location to a
single displayable color.

Before describingeach ofthe renderingoperations in more detail,
we make the following observations. First, after it is separated by
theCommand Processor, the streamof rendering commands merges
only at the Triangle Bus. Second, triangles of sufficient size (a
function of the numberof raster memory boards) are processed by
almostall the processors in the system, avoiding only 5, 7, or 11
Geometry Engines. Finally, small to moderate FIFO memories are
included at the input and output of each Geometry Engine,at the
input of each Fragment Generator, and at the input of each Image
Engine. These memories smooth the flow of rendering commands,
helping to insure that the processors are utilized efficiently.

2.1 Command Processor

‘That the Command Processor is required at all is primarily a func-
tion of the OpenGL™ [8]{7] graphics language. OpenGL is modal,
meaning that much ofthe state that controls rendering is included
in the command stream only when it changes, rather than with
each graphics primitive. The Command Processor distinguishes
between two classes of this modal state. OpenGL commandsthat
are expected infrequently, such as matrix manipulations and light-
ing model changes, are broadcast to all the Geometry Engines.
OpenGL commands that are expected frequently, such as vertex
colors, normals, and texture coordinates, are shadowed by the Com-
mand Processor, and the current values are bundled with each ren-
dering commandthat is passed to an individual Geometry Engine.
The Command Processoralso breaks long connected sequences of
line segments or triangles into smaller groups, each group passing
to a single Geometry Engine. The size of these groups is a trade-
off between the increased vertex processing efficiency of larger
groups (due to shared vertexes within a group) and the improved
load balancingthat results from smaller groups. Finally, because
the Command Processor must interpret each graphics command,it
is also able to detect invalid command sequences and protect the
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Figure 2. Individual Geometry Engine.

 
subsequentprocessors from their effects.

Non-broadcast rendering commands are distributed to the Ge-
ometry Engines in pure round-robin sequence, taking no account
of Geometry Engine loading. This approach was chosen for its
simplicity, and is efficient because the processing requirements of
primitives are usually very similar, and because the input and out-
put FIFOs of each Geometry Engine smooth the imbalances dueto
data-dependentprocessing suchas clipping.

2.2 Geometry Engines

The core of each Geometry Engineis an Intel i860XP processor.
Operating at 50MHz, the combined floating point multiplier and
ALUcan achieve a peak performance of 100 MFLOPS.EachIntel
processor is provided 2 Mbytes of combined code/data dynamic
memory, and is supported by a single ASIC that implements the in-
put and output FIFOs, a smal] register space from which the i860XP
accesses incoming commands, and specialized data conversion fa-
cilities that pack computed slope data into a format accepted by the
Fragment Generators. (Figure 2.)

All Geometry Engine codeis first developed in C, which is cross
compiled for the i860XP on MIPS RISC development systems.
Code that is executed frequently is then re-coded in i860XP assem-
bly code, showing the greatest improvement in performancewhere
scheduling of the vector floating point unit is hand optimized. The
assembly code is written to conform to the compiler's link conven-
tions, so that hand-codedand compiled modules are interchangeable
for development and documentation purposes.

Most floating point arithmetic is done in single precision, but
muchofthe texture arithmetic, and all depth arithmetic after projec-
tion transformation, must be done in doubleprecision to maintain
the required accuracy. After transformation, lighting, and clipping,
the rasterization setup code treats each parameter as a plane equa-
tion, computing its signed slope in the positive X and Y screen
directions. Because the parameters of polygons with more than 3
vertexes may be non-planar, the Geometry Engine decomposesall
polygonsto triangles.
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2.3 Triangle Bus

The Triangle Bus acts as a crossbar, connecting the outputof each
Geometry Engine to the inputs of all the Fragment Generators.
Because all Geometry Engine output converges at this bus, it is a
potential bottleneck. 'To avoid performance loss, the Triangle Bus
was designed with bandwidth to handle over one million shaded,
depth buffered, texture mapped, antialiased triangles per second,
more than twice the number of primitives per second thal were
anticipated from an 8 Geometry Engine system. This performance
cushion allows the later-conceived 12 Geometry Engine system to
render at full performance, in spite of the greater than expected
performance of the individual engines.

In addition to broadcasting the rasterization data for triangles to
the Fragment Generators, the Triangle Bus broadcasts point and
line segment descriptions, texture images, and rasterization mode
changessuch as blending functions.

2.4 Fragment Generators

Although each Fragment Generator may be thoughtof as a single
processor,the data path ofeach unit is actually a deeppipeline. This
pipeline sequentially performs the initial generation of fragments,
generation of the coverage mask,texture address generation,texture
lookup,texture samplefiltering, texture modulation ofthe fragment
color, andfog computation and blending. Thesetasks are distributed
amongthe four ASICs and eight dynamic RAMsthat comprise each
Fragment Generator, (Figure 3.)

Fragments are generated using Pineda arithmetic[9], with the
algorithm modified to traverse only pixels that are in the domain
of the Fragment Generator, A coverage mask is generated for 4, 8,
or 16 sample locations, chosen on a regular 8 x 8 subsample grid
within the square boundariesof the pixel. The hardware imposes no
constraints on which subsetofthe 64 subsample locationsis chosen,
exceptthat the same subsetis chosen for each pixel. The subset may
be changed by the application between frames.

Depth and texture coordinate sample valuesare always computed
at the center-most sample location, regardless of the fragment cov-
erage mask. The single depth sample is later used by the Image
Engines to derive accurate depth samples at each subpixellocation,
using the X and Y depth slopes. Taking the texture sample at a
consistentlocation insures that discontinuities are avoided at pixels
thal span multiple triangles. Color sample values are computed at
the center-most sample location only if it is within the perimeter
of the triangle. Otherwise the color sample is taken at a sample
location within the triangle perimeter that is near the centroid of
the covered region. Thus color samples are always taken within the
triangle perimeter, and therefore neverwrap to inappropriate values.

Based onalevel-of-detail (LOD) calculation and the texture co-

ordinate values at the fragment center, the addresses of the eight
texels nearest the sample location in the mipmapof texture images
are produced. Eight separate banks of texture memory are then
accessed in parallel at these locations. The 8 16-bit values that
result are merged with a trilinear blend, based on the subtexel co-
ordinates and the LOD fraction, resulting in a single texture color
that varies smoothly from frame to frame in an animation. The
entire bandwidth of the 8-bank texture memory is consumed by a
single Fragment Engine,so each Fragment Engine includes its own
complete copy ofall texture imagesin its texture memory,allowing
all Fragment Generators to operate in parallel. Separate FIFO mem-
ories on the address and data ports of each texture memory bank

lil
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Figure 3. Individual Fragment Generator.

insure that random page boundary crossings do not significantly
degrade the bandwidth available from the dynamic RAMs.

Thelast ASIC in the Fragment Generator appliesthe texture color
to the fragment’s smooth shadedcolor, typically by modulation. It
then indexes its internal fog tablewith the fragment’s depth value and
uses the resulting fog blend factor (computed by linear interpolation
between the two nearest table entries) to blend the fragmentcolor
with the application-defined fog color,

2.5 Image Engines

Fragments output by a single Fragment Generator are distributed
equally among the 16 Image Engines connected to that generator.
Whenthe triangle wasfirst accepted by the Fragment Generatorfor
processing,its depth slopes in the X and Y screen directions were
broadcast to each Image Engine, which stored them for later use.
When an Image Engine accepts a fragment,it first uses these two
slope values and the fragment’s depth sample value to reconstruct
the depth values at each subpixel sample location. The arithmetic
required for this operation is simplified because the subpixel sam-
ple locationsare fixed to a regular 8 x 8 grid. The calculations are
linear because depth values have been projected to window coor-
dinates just like the X and Y pixel coordinates. At each sample
location corresponding to a ‘1’ in the fragment’s coverage mask,
the computed depth value is compared to the depth value stored in
the framebuffer. If the comparison succeeds, the framebuffer color
at that subsample location is replaced by the fragment color, and
the framebuffer depth is replaced by the derived fragment depth.
If any change is made to the pixel’s contents, the aggregate pixel
color is recomputed by averaging the subpixel sample colors, and is
immediately written to the displayable color buffer that will contain
the final image.

Each Image Engine controls a single 256K x 16 dynamic RAM
that comprises its portion of the framebuffer. (Figure 4.) When
the framebuffer is initialized, this memory is partitioned equally
among 4K, 8K, or 16K pixels, resulting in pixels with 1024, 512,
or 256 bits. All subsample depth and color samples, as well as
the one, two, or four displayable color buffers and other auxiliary
buffers, are stored in this memory. By default, colors are stored
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with 12 bits per red, green, blue, and alpha componentin both the
displayable buffers and the subpixel samples. Depth values are 32
bits each, and are normally required only for each subpixel sample,
not for the displayable color buffer or buffers. Color and depth
sample resolutions can be reduced to 8,8,8 and 24 bits to allow
more samples to be stored per pixel. The 4K partition stores 8 high-
resolution samples per pixel, or 16 low-resolution samples perpixel,
in addition to two displayable color buffers of the same resolution.
The 8K partition stores 4 high-resolution samples perpixel, or 8
low-resolution samples per pixel, again with two displayable color
buffers of the same resolution. The 16K partition cannotbe used to
support multisample antialiasing.

Because the number of raster memory boards (1, 2, or 4) and
the number ofpixels per Image Engine (4K, 8K, or 16K) are in-
dependent, the RealityEngine system supports a wide variety of
framebuffer dimensions, color and depth resolutions, and subpixel
samples. For example, 4 single raster board system supports 16-
sample antialiasing at 640 x 512 resolution or aliased rendering at
1280 x 1024 resolution, and a 4-board system supports 8-sample
antialiasing al tue HDTV (1920 x 1035) resolution or 16-sample
antialiasing at 1280 x 1024 resolution,

2.6 Display Hardware

Each of the 80 Image Engines on the raster memory board drives
a single-bit, 50 MHz path to the display board, delivering video
data at 500 MBytes per second. All 160 single-bit paths of a two
raster memory board configuration are active, doubling the peak
video data rate, The paths are time multiplexed by pairs of raster
memory boards in the four board configuration. Ten crossbarASICs
on the display board assemble the 80 or 160 single-bit streams into
individual color components or color indexes. Color components
are then dithered from 12 bits to 10 bits and gamma corected using
1024 x 8 lookup tables. The resulting 8-bit color components drive
digital-to-analog converters and are output to the monitor. Color
indexes are dereferenced in a 32K-location lookup table, supporting
separate color lookuptables for each of up to 40 windows on the
screen, Per-pixel display modes, such as the color index offset,
are supported by a combination of Image Engine anddisplay board
hardware, driven by window ID bits stored in the framebuffer[1].
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3. Features

This section provides additional information regardingthe architec-
nure's antialiasing, texture mapping,stereo, and clipping capabili-
ties.

3.1 Antialiasing

The architecture supports two fundamentally different antialiasing
techniques: alpha and multisample. Alpha antialiasing of points
and lines is common to second generation architectures. Alpha
antialiasing is implemented using subpixel and line-slope indexed
tables to generate appropriate coverage values for points and lines,
compensating for the subpixe!position of line endpoints. Polygon
coverage values are computed by counting the ‘1's in the full pre-
cision § x 8 coverage mask, The fragment alphavalue is scaled by
the fractional coverage value, which varies from 0.0, indicating no
coverage, to 1.0, indicating complete coverage.If pixel blending is
enabled, fragments are blended directly into the color buffer — no
subpixel sample locations are accessedor required. Alpha antialias-
ing results in higher quality points and lines than does multisample
antialiasing, because the resolution ofthefilter tables is greater than
the 4 bit equivalentof the 16-sample mask. While alpha antialiased
primitives should be rendered back-to-frontor front-to-back (de-
pending on the blend function being used) to generate a correct
image,it is often possible to get an acceptable point orline image
without such sorting. Alpha antialiased polygons, however, must
be sorted near to farto get an acceptable image. Thusthis technique
is efficiently applied to polygons only in 2D scenes, such as instru-
ment panels, where primitive orderingis fixed andaslight increase
in quality is desired.

Multisample antialiasing has already been described. Its princi-
pal advantage overalphaantialiasingis its order invariance - points,
lines, and polygonscan be drawn into a multisample buffer in any or-
der to produce the same final image. Twodifferent mask generation
techniques are supported in multisample mode, each with its own
advantages and disadvantages. The default mask generation mode
is called point sampled;the alternate modeis area sampled. A point
sampled mask is geometrically accurate, meaning that each mask
bit is set if and onlyif its subpixel location is within the perimeter of
the point, line, or polygon outline. (Samples on the primitive’s edge
are included in exactly one ofthe two adjacentprimitives.) Such
masks insure the correctnessofthefinal image,at the expense ofils
filtered quality. The final image is correct because all the samples
that comprise it are geometrically valid - none having been taken
outside their correspondingprimitives. It is poorly sampled because
the numberofbits set in the mask maynotclosely correspondto the
actual area of the pixelthatis covered by the primitive, and the final
filtering quality depends on this correspondence. Area sampling
attempts to insure that the number of ‘1's in the sample mask is
correct plus or minus 1/2 a sample, based on the actual coverage of
pixel area by the primitive. (Figure 5.) In order to accomplishthis,
area sampled masks necessarily include samples that are outside
the primitive outline, resulting in image artifacts such as polygon
Protrusionsat silhouettes and T-junctions. Area sampled masks are
implemented with a techniquethat is related to the one described
by Andreas Schilling[10]. Point and area sampling can be selected
by the application program on a per-primitive basis.

The desirable multisample property of order invariance is lost
if alpha transparency and pixel blending are used. Alpha does
Sometimes carry significant information, usually as a result of the
alpha channel in the texture application. For example, trees are
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 Tha single sample selected by the
point ample method Is darkened. ores aample method are darkened.

Figure 5. A narrow triangle intersected with a single, 16-sample
pixel, The three samples selected by the area sample method
accurately representthe fact that almost 20 percentof the pixel is
covered by the triangle.

often drawn as single polygons, using an alpha matte to expresstheir
shape. In order to handle alpha transparency without requiring pixel
blending, the Image Engines have theability to convert fragment
alpha values to pseudo-random masks, which are then logically
ANDed with the fragment’s coverage mask. This method, while
not geometrically accurate, provides usable antialiasing of texture
Mattes, and is order invariant.

3.2. Texture Mapping

In addition to the 2-dimension texture maps described in the archi-
tecture section, 1- and 3-dimension mapsare also supported, The
eight million texel memory associated with each FragmentGenera-
tor stores 2D mipmapped images up to 1024 x 1024, and 3D non-
mipmapped images up to 256 x 256 « 64. Thus 3Dtextures can be
used to render volumetric images of substantial resolution,at rates
up to 30 frames per second. The 5, T, and R texture coordinates
of each fragment are computed by interpolating S/W, T/W, R/W,
and 1/W, then doing the correct divisions at each pixel, resulting
in perspective-corected mapping. Level-of-detail is also computed
for each pixel, based on the worst-case of the four pixel-to-texel X
and Y ratios.

Linear filtering of the nearest texels and mipmaplevels is sup-
ported for 1D, 2D, and 3D textures, blending a total of 16 texel
colors in the 3D mode. In the 2D case such linearfiltering is com-
monly known as trilinear. Bicubic interpolation is supported for 2D,
nonmipmapped textures, again blending 16 texels. There is no sup-
port for cubic filtering of 1D or 3D textures, or of any mipmapped
textures. The default 16-bit texel size supports RGBAtexels at 4-
bits per component, RGB texels at 5-bits per component(6 bits for
green), intensity-alpha texels at 8-bits percomponent, andintensity
texels at 12-bits per component. 32-bit and 48-bit texels can be
specified by the application with proportional loss of performance.
The maximum RBGAtexel resolution is 12-bits per component,
equal to the maximum framebuffer colorresolution,

Texture magnification can be done by extrapolation of mipmap
levels, resulting in a sharpening of the highest resolution mipmap
image, or the highest resolution image can be blended with a repli-
cated 256 x 256 detail image, greatly increasing the apparentres-
olution of the texture without requiring excessive texture storage.
Filter functions for RGB and for alpha can be specified separately
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to improve the quality of texture mattes. Finally, texture memory
can be loaded from the application processor's memory attherate
of 80 million 16-bit texels per second, allowing the application to
treal (exture memory as 4 managed cache of images.

3.3 Stereo in a Window

ImageEngine memory can be configured with separate lefl and night
color buffers for both the visible and nonvisible displayable color
buffers, resulting in a total of four48-bit color buffers per pixel. The
display hardware alternately displays the left and right buffer con-
tents of the visible buffers ofall windows so configured, and drives
a sync signal that can be used to control screen or head-mounted
shutters, This stereo-in-a-window capability is both formally and
practically compatible with the X protocol: formally because neither
framebuffer dimensions nor pixel aspect ratio are changed whenit
is enabled ordisabled, and practically becauseit allows monoscopic
windows such as menus to be rendered and displayed correctly. To
reduce eye fatigue, it is advisable to select a reduced-dimension
framebuffer when the window system is initialized, allowing the
frame display rate to be increased to 90+ Hz within the 140 MHz
pixel limit of the display board,

3.4 Fast Clipping

RealityEngine polygon clipping is faster than thal of our earlier
designs for two fundamental reasons: it is implemented more effi-
ciently, andit is required less often. Higher efficiency results from
the MIMD Geometry Engine architecture. Because each ofthe en-
fines executes an independentcode sequence, and becauseeach has
significant input and output FIFOs, random clipping delays affect
only a single engine and are averaged statistically across all the en-
gines. Also, becauseeachGeometry Engine comprisesonlyasingle
processor,all of that engine’s processing power can be devoted to
the clipping process. SIMD architectures are less efficient because
all processors are slowed when a single processor mustclip a paly-
gon. Pipelines of processors, and even MIMD arrangements of
short pipelines,are Jess efficient becauseonlyafraction ofavailable
processing power is available to the clipping process.

The requirementfor clipping is reduced through a technique we
call scissoring. Near and far plane clipping are done as usual, but
the left, right, bottom, and top frustum edges are moved well away
from the specified frustim, and all triangles that fall within the
expanded frustum are projected to extended window coordinates. If
culling is done by the application, almost no triangles will actually
intersect the sides of the expanded frustum. Projected triangles that
are not fully within the viewport are then scissored to match the
edges of the viewport, eliminating the portions that are not within
the viewport. The Pineda rasterization algorithm thatis employed
easily and efficiently handles the additional rectilinear edges that
result, and no fragment generation performanceis lost on scissored
Tegions:

4 Design Alternatives

We think that the mostinteresting part of designis the alternatives
considered, and the reasonsfor choices,rather than the details of the

result. This section highlights some ofthese alternatives, in roughly
decreasing orderofsignificance.
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4.1 Single-pass Antialiasing

Multi-pass accumulation buffer antialiasing using an accumulation
buffer [3] is order invariant, and produces high-quality images in
10 to 20 passes. Further, a system that was fast enough to render
10 to 20 full scene images per frame would be a fantastic generator
of aliased images. So why design a complex, multisample frame-
buffer to accomplish the same thing in one pass? The answeris
thal significanlly more hardware would be required to implement a
multi-pass machine with equivalent performance, This is tue not
only because the multi-pass machine must traverse and transform
the object coordinates each pass, but in particular because texture
mapping would also be performed for each pass. The component
costs for traversal, transformation, parameter interpolation, and tex-
ture mapping constitute well over half of the multisample machine
cost, and they are not replicated in the multisample architecture. A
competing multi-pass architecture would have to replicate this hard-
ware in some manner to achieve the required performance. Even
the PixelFlow architecture[6], which avoids repeated traversal and
transformation by buffering intermediate results, muststill rasterize
and texture map repeatedly.

4.2 Multisample Antialiasing

Multisample antialiasing is a rather brute-force technique for
achieving order invariant single-pass antialiasing. We investi-
gated alternative sorting buffer techniquesderived from the A-buffer
algorithm[2}, hoping for higherfilterquality and correct, single-pass
transparency. These techniques were rejected for several reasons.
First, sort buffers are inherently more complex than the multisam-
ple buffer and, with finite storage allocations per pixel, they may
fail in undesirable ways. Second, any solution that is less exact
than multisampling with point sampled mask generation will ad-
mit rendering errors such as polygon protrusions at silhouettes and
‘T-junctions. Finally, the multisample algorithm matches the single-
samplealgorithm closely, allowing OpenGL pixel techniques such
as stencil, alpha test, and depth test to work identically in single or
multisample mode.

4.3 Immediate Resolution of Multisample Color

Our initial expectation was that rendering would update only the
multisample color and depth values, requiring a subsequent res-
olution pass to reduce these values to the single color values for
display. The computational expenseof Visiling all the pixels in the
framebuffer is high, however, and the resolution pass damaged the
software model, because OpenGL has no explicit scene demarca-
tions. Immediate resolution became much more desirable when we

realized that the single most commonresolution case, where the
fragment completely replaces the pixel’s contents (i.e. the fragment
mask is all ones and all depth comparisons pass) could be imple-
mented by simply writing the fragment color to the color buffer,
making no change to the 4, 8, or 16 subsample colors, and spe-
cially tagging the pixel. Only if the pixel is subsequently partially
covered by a fragmentis the colorin the color buffer copied to the
appropriate subsample colorlocations. This technique increases the
performance in the typical rendering case and eliminates the need
for a resolution pass.
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4.4 Triangle Bus

All graphics architectures that implementparallel primitive pro-
cessing and parallel fragment/pixel processing mustalso implement
a crossbar somewhere between the geometry processors and the
framebuffer[5]. While many ofthe issues concerning the placement
of this crossbar are beyond the scopeof this paper, we will men-
tion some of the considerations that resulted in our Triangle Bus
architecture. The RealityEngine Triangle Bus is a crossbar between
ihe Geometry Engines and the Fragment Generators. Described
in RealityEngine terms, architectures such as the Evans & Suther-
land Freedom Series™ implement Geometry Engines and Fragment
Generators in pairs, then switch the resulting fragments to the ap-

propriate Image Engines using a fragment crossbar network. Such
architectures have an advantage in fragment generation efficiency,
due both to the improved locality of the fragments and to only one
Fragment Generator being initialized per primitive. They suffer
in comparison, however, for several reasons. First, transformation
and fragment generation rates are linked, eliminating the possibil-
ity of tuning a machine for unbalanced rendering requirements by
adding transformation orrasterization processors. Second, ultimate
fill rate is limited by the fragment bandwidth,rather than the prim-
jive bandwidth. For all but the smallest triangles the quantity of
data generated by rasterization is much greater than that required
for geometric specification, so this is a significant bottleneck. (See
Appendix 2.) Finally, if primitives must be rendered in the order
that they are specified, load balancing is almost impossible, because
the number of fragments generated by a primitive varies by many
orders of magnitude, and cannot be predicted prior to processor
assignment. Both OpenGL and the core X renderer require such
ordered rendering.

The PixelFlow[6] architecture also pairs Geometry Engines and
Fragment Generators, but the equivalentofImage Engines and mem-
ory for a 128 x 128 pixeltile are also bundled with each Geome-
try/Fragment pair. The crossbarin this architecture is the composit-
ing tree thal funnels the contents of rasterizedtiles to a final display
buffer. Because the framebuffer associated with each processoris
smaller than the final display buffer, the final image is assembled as
a sequence of 128 x 128 logicaltiles. Efficient operationis achieved
only when eachlogical tile is rasterized oncein its entirety, rather
(han being revisited when additional primitives are transformed. To
insure that all primitives that correspondto a logical tile are known,
all primitives must be transformed and sorted before rasterization
can begin, This substantially increases the system's latency, and
‘quires that the rendering software support the notion offrame de-
mareation. Neither the core X renderer nor OpenGL support this
notion.

4,5 12-bit Color

Color component resolution was increased from the usual8 bits to
!2 bits for two reasons, First, the RealityEngine framebuffer stores
color components in linear, rather than gamma-corrected, format.
When8-bit linearintensities are gammacorrected,single bit changes
at low intensities are discernible, resulting in visible banding. The
combination of 12-to-10 bit dithering and 10-bit gammalookupta-
bles used at display time eliminates visible banding. Second,it is
tnlended that images be computed, rather than just stored, in the
KealityEngine framebuffer. Volume rendering using 3D textures,
for example, requires back-to-front composition of multipleslices
throughthe dataset. If the framebufferresolutionis just sufficient to
display an acceptable image, repeated compositions will degrade the
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Figure 6. A scene from a driving simulation runningfull-screen at
30 Hz.

Figure 7. A 12x magnified subregion ofthe scenein figure 6. The
sky texture is properly sampled andthe silhouettes of the ground
and buildings against the sky are antialiased.

 
resolution visibly. The 12-bit components allow substantial frame-
buffer composition to take place before artifacts become visible.

Conclusion

The RealityEngine system was designed as a high-end workstation
graphics accelerator with special abilities in image generation and
image processing. This paper has described its architecture and
capabilities in the realm of image generation: 20 to 60 Hz anima-
tions of full-screen, fully-textured, antialiased scenes. (Figures 6
and 7.) The image processing capabilities of the architecture have
not been described at all; they include convolution, color space
conversion, table lookup, histogramming, and a variety of warping
and mapping operations using the texture mapping hardware. Fu-
ture developments will investigate additional advanced rendering
features, while continually reducing the cost of high-performance,
high-quality graphics.
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Appendix 1: Measured Performance

The two mostsignificantperformance categories are transformrate:
the numberofprimitives persecond that can be processedby theGe-
ometry Engines,andfill rate: the number of fragments per second
that can be generated and merged into the framebuffer. Running in
third-generation mode (lighting, smooth shading, depth buffering,
texturing and multisample antialiasing) a 12 Geometry Engine sys-
tem can process 1.5 million points, 0.7 million connected lines, and
1.0 million connected triangles per second. In second-generation
mode(lighting, smooth shading, and depth buffering) the same sys-
tem can process 2.0 million points, 1.3 million connected lines,
and 1.2 million connected triangles per second. Measured third-
generationfill rates for 2 and 4 raster board systems are 120 and
240 million fragments per second. Measured second-generation
fill rates for 1, 2, and 4 raster board systems are 85, 180, and 360
million fragments per second. The third-generation fill rate num-
bers are somewhat dependenton rendering order, and are therefore
chosen as averages over a range ofactual performances.

Appendix 2: Bandwidth and otherStatistics

Triangle Bus, fragmenttransfer path, and Image Engineto frame-
buffer memory bandwidths are in roughly the ratios of 1:10:20.
Specific numbers for the typical two raster board configuration are
240 Mbyte/sec on the Triangle Bus, 3,200 Mbyte/sec aggregate on
the 160 Fragment Generator to Image Engine busses, and 6,400
Mbyte/sec aggregate on the 160 Image Engineto framebuffer con-
nections.

Because the 6,400 Mbyte/sec framebuffer bandwidth is so much
larger than the bandwidth requiredto refresh a monitor(roughly 800
Mbyte/sec at 1280 x 1024 x 76Hz) we implement the framebuffer
memory with dynamic RAM rather than video RAM,accepting the
12 percent fill rate degradation in favor of the lower cost of com-
modity memory, Geometry Engine memory and texture memory
are also implemented with commodity, 16-bit data path dynamic
RAM.Total dynamic memory in the maximally configured system
is just over 1/2 Gigabyte.
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ABSTRACT

VIEWis an exploratory visualization system for studying the struc-
tures of molecules. The system supports a high degree ofcomplex
user interaction with the image. Visualizations are constructed by
selecting drawing tools from a library. Each tool uses parameters
obtained from interactive selection of on-screen geometry by the
user, and from a molecular database.

The system is based on a tight coupling of on-screen geometry with
the underlying database. Using these links, tools can create true-
scale drawing elements that are constrainedto database values.

VIEWis highly extensible by the user or a paraprogrammer associ-
ated with the user, Drawing tools are written in a C-like program-
ming language with constructs for managing databases, constructs
for creating and altering geometry, as well as standard statements
such as If-Else and For loops.

An event-definition mechanism allows the user to describe actions to

be performed when keys are depressed ordials turned. In addition, the
user is able to specify conditional events — actions that are to be taken
whenever a user-defined condition becomes true. These conditions

are automatically evaluated by the system as part ofevent processing.
Such conditional events allow simple simulations to be readily pro-
grammed. Applications of conditional events have included anima-
tions ofprotein binding activity, and an interactive “flashlight” which
highlights structures as a cursoris steered through a molecule,

The system includes a development environment complete with a
WYSIWYGeditor, an interactive debugger, and a set of innovative
graphical debugging features,
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VIEW has been installed for over ayear in a protein crystallography
laboratory at Duke University. Graduate students and faculty have
used the system both for exploring molecular structures and for
producing presentation graphics, These users have developed their
own set oftools andmadeextensive use ofthe tool library. In January
1993, a beta-version of the software was released to a small set of
laboratories in the US and Europe. It is now generally available.

CR Categories and Subject Descriptors: D.2.2 [Software Engi-
neering]: Tools and Techniques — Programmer workbench, Soft-
ware libraries, User interfaces, D.2.6 (Software Engineering]:
Programming Environments —/nteractive, D.3,2 [Software Engi-
neering]; Language Classifications — Design languages, Extensible
languages, Specialized application languages; 1.3.6 [Computer
Graphics]: Methodology and Techniques —Jnteraction techniques;
1.3.8 [Computer Graphics]: Applications; J.3 [Computer Appli-
cations]: Life and Medical Sciences - Biology.

Additional keywords: scientific visualization, graphical debug-
ging, molecular graphics, data-constrained sketching.

MOTIVATION

Visualization is powerful. Over the past few years, scientific
visualization has received a great deal of attention and is widely
acknowledged as an important tool for the exploration of scientific
data, Through visualization, a scientist assimilates large quantities
of data, and may acquire new insights [1].

The visualization design space is large. Different representations
of a dataset highlight and reveal different properties (see [2] for an
excellent example). The number ofpossible exploratory visualiza-
tions of any dataset is limitless. Some of them will reveal or
emphasize certain properties of the data; others will reveal or
emphasize other properties; most will be uninformative. For this
reason, a great deal ofguidance bythe scientist is usually required in
constructing useful visualizations.

Creating new geometric representations is important but difficult.
Graphical representations consist of a display of geometry with
associated surface attributes such as color and texture. The shapes
used to represent data entities and their relative position, size, and
orientation tell us a great deal — they often contain most of the
information in an image.

Designing new geometry is difficult. The user must specify the
algorithm used to convert database information into geometric
parameters. Using existing visualization systems, the user writes
new code,usually in C, foreach new geometric representation. Little

7
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support is provided for this code development. The user usually
works outside the boundary of the visualization system, employing
a cumbersome code-compile-link-test-recodecycle.

The problem, The problem addressed in this workis: “How can we
facilitate the design of new visual representationsof scientific data,
particularly new forms of geometry?”

The design process, A system for visualization should be based on
the process by which a scientist or programmer designs a new
visualization:

— Design usually starts with some sketching, done outside the
confinesofany visualization system — whatwecall the “paper
napkin stage.”

— Designis an iterative process — the user repeatedly tries new
approaches and gradually refines her notion of whatis needed
to understand or emphasize the data. Most ofthe tries are
unsuccessful.

— Whenasatisfactory sketch is achieved, ascale drawingreflect-
ing the actual data is made.

— Visual feedback is crocial in guiding the design process. The
user usually determines what she wants based on what she
sees; she rarely knows exactly what she wants when she
begins.

— New designs usually start with an existing design. Simple and
aggregate elements from one design are often reused in a series
of designs.

Examination of the design process tells us that the user needs a
sketching facility, and an easy way to get from sketch to scale
drawing. Theability to interact with a partially complete image,to
try and discard a number ofaltenatives,is critical. Users must alsa
be able to customize the tools or craft their own.

Lack of design-process-based systems. Existing visualization
systems fall into two categories, neither of which have heretofore
tried tosupport the designprocess as described. Application-specific
sofiware systems (such as commercial molecular modeling pack-
ages, geographic information systems, or flow visualization sys-
tems) often provideforinteractive design, butthe toolkit is fixed and
often small. General-purpose visualization systems (such as AVS or
Explorer) provide for user-specificationofa visualization in a highly
interactive fashion, but do not allow the user to directly interact with
the visualizationitself.

THE VIEW SOLUTION

A design-process-based exploratory system. VIEW isa molecular
visualization system designed to provide an exploratory environ-
ment, The goals of VIEW are to bring the “napkin” on-line, to
Support an iterative design process, to provide immediate visual
feedback,to allow user-extensionofthe design tools, and to promote
reuse of the design components.

The data-drawing model. Sketching for visualization is distin-
guished from that for most other forms of design in one important
Tespect — the visualization represents an underlying database, We
Want geometric parameters ofthe visualization, primarily positions,
to be specified using information from the database, Unlike a free-
hand sketch, which can only portray the topology of a form, a
database-driven sketch may be constrained to data values, providing
a true-scale representation of the geometry.
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The VIEW system supplies a method for interactive visualization
design that we call dafta-drawing. With data-drawing, the user
specifies database parameters by selecting geometric objects on-
screen. These geometric objects serve as stand-ins for records in the
database.

Design tools that incorporate the data-drawing method operate as
follows:

1) The user picks a graphical element.

2) The tool retrieves data associated with that element and addi-
tional related data,

3) The tool creates new geometry based on the database informa-
tion and associates that information with the geometry. This
new geometry is intum availableasa visual template for future
data-drawing.

With the language that specifies drawing tools, the user associates
database records with on-screengeometry andretrievesthis informa-
tion from picks, This uniform philosophy of tool design and use
incorporates (wo desirable features:

— As the user constructs geometries, the new formsare available
for data-drawing.

— The tool-user may select any form ofgeometry that represents
the desired database element. She is not restricted to a small

set of special representations.

Use of VIEW. A user of the VIEW system starts a session with a
simple representation ofamolecule. An initial tool creates geometry
from molecular data such as Brookhaven Protein Databank atomic

coordinates. Often vectors are chosen to represent atomic bonds.
Using a variety of drawing tools from a library provided, the user
sketches in additional geometry, For example, a user may sketch:
individual aminoacids with thebonds represented as small cylinders,
larger cylinders that representthe axes of helices within a protein, a
spline-like representation of a portion of the backbone, or any of a
numberofother representations.

Interaction with the image is crucial. We recognize that each user
has preferred interaction styles. For this reason, the user may
customize interaction sequences. The drawing tool language pro-
vides a facility known as interactive events-monitors for defining
actions that are to be performed based on mouse movement,dial
movement, and key presses.

Interactive sequences that have been codedto date include: moving
asmall molecule with the mouse, changing sphere and cylinder radii
using a dial, moving atoms using dials while maintaining bond
connections,and triggering achons on key depressions,

Geometry and data closely linked. Central to the data-drawing
modelis a tight coupling of on-screen geometry with the underlying
data. This allows on-screen picks to return database records directly
to the drawing routines.

Design of new drawing tools, The VIEW user can code new
drawing tools which become members ofthe library. This ability to
design new tools is an important feature in an impromptu visualiza-
tion system.

Tool development environment. VIEW supports the user in
extending the toolkit by providing a development environmentthat
includes a Macintosh-like text editor and a visual debugger that
interacts with the on-screen image.
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AN EXAMPLE

Most of the visualizations produced using VIEW have displayed
protein molecules. Proteins consist ofa linear chain of amino acid
residues which fold into a few well-defined 3-D structures such as

beta sheets and alpha helices, These in turn form larger motifs such
as beta barrels. A protein has a mainchain consisting of carbon,
oxygen, and nitrogen atoms. Extending from the mainchain are
sidechains, Each aminoacid type, of which there are approximately
twenty, has a distinctive sidechain. Hydrogen bond connections
between non-sequential amino acids define the topology of the
protein.

Jane Richardson produced the visualization of the protein Con-
canavalin A shown in Figure 1 using VIEW drawing tools. A
variation of this image appeared in Biophysical Journal [3]. The
image showsthe orientation of a phenylalanine amino acid and two
possible but less favorable orientations.

 
The steps in constructing the visualization were: Figure 1; A VIEWvisualization

1) Richardson selected a tool that creates initial geometry starting
with atomic coordinates. The tool produces vectors connect- 3) Usinga line drawingtool, she sketched in hydrogen bonds that
ing just the alpha carbons of adjacent aminoacids (Figure 2a).
This representation gives a clear global view of the structure.

Using a mainchain drawingtool, she sketched in atomic-level
detail for three strands of the chain. She specified starting and
ending points by picking atom positions in the original repre-
sentation. On each pick, the tool drew a small red sphere to
mark the selection. After both ends were selected, the tool

couple the strands together. The particular tool employed
knowsnothing about hydrogen bonds; Richardsonselected the
termini of each bond. We could have written a new tool to

automatically draw in all hydrogen bonds for the molecule.
Since we wanted only a small, selected set, manual specifica-
tion of each bond seemed reasonable.

The line drawing tool bases each drawing operation on two
drew the connecting main chain at the atomic level automati-
cally, using atom coordinates fetched from the moleculardata.
After drawing the main chain, the tool removed the marker
spheres. Figure 2b showsthe drawing after specification ofthe
secondstrand,just before the system removedthe red markers.
Only one tool selection and four datapoint selections were
required to produce this detailed scale drawing.

atom selections. This time, the selections were madeusing the
geometry producedin step 2; display of the original represen-
tation was toggled off. VIEW users often tum offindividual
groupsof geometry by pressing virtual buttonsin the interface.
Users frequently switch between sparse global yiews and
detailed local views.

 
2e

Figure 2. Construction of a visualization using VIEW drawing tools
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With the line drawing tool, the user may lengthen or shorten
lines that connect the centers of selected atoms. By pressing
the “I key, Richardson triggered an interactive event for
defining the length scaling. The event popped up a query
window requesting a scaling factor. She specified .65 before
proceeding with the drawing shown in Figure 2c.

4) Next, she sketched a single sidechain using a tool which draws
an entire sidechain based on one atom selection and informna-
tion from the molecular database. Once the bonds of the

sidechain were drawn, Richardson used a marker-sphere tool
to mark the sidechain atoms. Figure 2d showsthe result of a
single selection with the sidechain tool and eight selections
with the marker-sphere tool.

tun — In order to produce the two rotated positions of the sidechain,
Richardson created a duplicate of the marker spheres using a
group duplication tool. VIEW places the geometry created by
each drawing tool in a separate geometry group labeled with
the nameof the tool that produced it. These groups may be
individually manipulated by other tools, The duplication tool
requested that she select any element of geometry from the
group to be duplicated, and then queried her fora namefor the
new group. This specification of group by identifying a
member is a common theme in VIEW drawing tools.

6 = Oncethe group had been duplicated, she used a rotation tool to
rotate the duplicate into position. The rotation tool requests
selection ofa rotation axis, followed by requests for selection
of one or more geometry groups to be rotated. Rotation may
then be performed with a dial or by key presses. In this case,
Richardson wantedto rotatethe group by a precise amount. An
event triggered by pressing the “d” key allowed her to type in
the desired angle (120 degrees). She applied the rotation by
pressing the "r" key, Figure 2e showsthe rotated markers, The
rotation axis is highlighted in white.

7) Steps 4 and 5 were repeated to produce a second duplicate
rotated to 240 degrees,

—

8) In order to generate the open framework of lines connecting
markersat the rotated positions, Bergman coded a new draw-
ing too] that connects a sequence of selected positions with
wireframe cylinders. The tool was created by merging and
modifying two prior tools. The first of these tools connected
a sequenceofpositions with solid cylinders using the system
cylinder primitive. The other produced a tessellated cylinder
not using the system cylinder primitive. The new tool was
developed in under a half-hour, including testing. Figure 2f
shows the open cylinders being drawn; the last two selected
positions are highlighted white.

—

9) Richardson used a group recoloringtool to finalize colors in
the image, shown in Figure |. The sequence of operations
described (excluding the tool developmentin step 8) can be
carried out in about fifteen minutes, In actuality, Richardson
spent a couple of hours producing the visualization. A large
amountof trial-and-error is required to design a useful image.
Shetried a score ofpossibilities before settling on the above
result, including: changingcolors, radii, lengths, and number
of facets for the wireframe cylinders.

SYSTEM DESCRIPTION

The VIEW system (Figure3) is written in C++ and runs on SGI 4D,
Indigo, and Crimson workstations, Three-dimensional manipulation of
geometry is performed using a mouse-based virtual trackball or a dialbox.

Drawing tools. The toolkit supplied with the VIEW system contains
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Figure 3: The VIEW system

about fifty interactive drawing tools. Several tools are provided to
generate initial representations ofadatabase; the majority ofthe tools
are used for click-and-draw geometry generation or modification.
Drawing operations are reversible using a multi-level undo feature.

Tool language. Drawing tools are specified in a C-like language
with mostofthe standard C datatypes and control structures. Addi-
tionally, the language includes geometric and database datatypes,
constructs for database access and modification, and constructs for
selecting and manipulating individual geometric elements and groups
ofgeometry. A key featureis the ability to associate database records
with individual geometric primitives. Picking ageometric primitive
will retrieve its associated data properties.

The drawing tool language was designed for ease of use. Ability to
prototype quickly was given higherpriority than runtime speed. For
this reason the languageis dynamically typed with no type declaration
statements. Objects are sized dynamically — nosize declarations are
given for arrays, sets, geometry groups or databases. Scope mules are
very simple. All variables are global within a routine, and they are also
globalto all event-monitors defined within the routine. Variables are
only available outside a routine if passed as subroutine parameters.

The languageis interpreted, allowing changesto a tool to be quickly
retried, The tools in the library are all coded in the tool language, not
in C++. The prompts, highlighting, and final geometry created are
specified by tool language statements, The user can readily change
the interaction sequence and any of the intermediate or final repre-
sentations produced by these tools.

Several considerations led to development of a new, interpreted
language:

1) We wanted a procedurallanguage similar to C or FORTRAN.
Scientists are understandably reluctant to invest in learning
new programmingstyles. This consideration ruled out popular
interpreted languages such as LISP and Smalltalk.

2) We wanted to supply special syntax to simplify expression of
certain commonly used constructs, particularly database and
geometry access. This could have been accomplished by
supplying a subroutine library for a language such as C.
However, code developed with such a library will be less
concise and less readable than if special constructs are available.

3) To simplify coding, we wanted to ayoid type statements and
size declarations. We also wanted to avoid certain constructs

such as pointers that provide flexibility at the expense of code
comprehensibility.

=
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4) We wanted to support interactive event definition,

5) We wanted interpretation of the language to be closely inte-
grated with debugging functions, particularly graphical de-
buggingfacilities.

Close connection between geometry and databases. One of the
characteristics that most distinguishes VIEW from existing peneral-
purpose visualization systems, is the intimate connection between
on-screen geometry and an underlying database that the geometry
represents. Thisconnection is fundamentaltoon-screen sketchingin
a Tepresentation of the database —the basic notion of the data-
drawing model.

VIEW drawing tools typically associate atom or bond records with
each element of geometry created. This association allows other
tools to use theseelements as visual stand-ins fordatabase entries; the
user may select atoms or bonds by clicking on geometry that
represents them, Although thisis a tried-and-tme technique, VIEW
is unique in allowing the user to specify the connections; she is not
tied down toa system-defined schema. Thefollowing code fragment
presents an example ofestablishing links between a geometric object
and database records:

cy! = CYLINDER(pnt1, pnt2, radius); (1)
cyLDB_PTR = atom_rec; (2)
cyl.DB_PTR = bond_rec; (3)

Statement (1) creates a cylinder with the variable name cyl. State-
ment (2) establishes a connection betweenthe cylinder and the atom
record stored in afom_rec. Statement (3) assigns an additional
database pointer to the cylinder, this time to a bond record.

Anothertool can accessthe database informationassociated with this

on-screen geometry as follows:

SELECT (item, "Select an object”);
selected_atom_rec = item.atom;

(W)
(2)

Statement (1) is a pick. The useris told to select a geometric object
on-screen using the mouse, The selected object will be returned in
the variable jrem. Statement (2) specifies that the atom record
pointed 1o by that object is to be assigned to the variable
selected_atom_rec. Uf the geometric object selected happens to be
the cylinder created in the previous example, the value of
selected_atom_rec will be the record contained in atoem_rec,

Databases. VIEW databasesare stored in. anon-application specific
format. In fact, the only portion of the VIEW system thatis specific
to molecular visualizationis certain drawing tools in the library. We
convert molecular data from Brookhaven Protein Databank format

to themore generic VIEW formatusinga filterrun outsideof VIEW.

Databasesare stored in ASCII files, each consisting of one or more
named subsets. Ourmolecular databases have two subsets—an atom
subset, and a bond subset. A subset consists of a header which
describes the record format, followed by a sequence of records. All
records in a subset have the same number and ordering offields.
Record fields may be integers, floating point numbers, or strings.
Each record containsa single integer- or string-valued key field used
for key-access.

Record access from a database requires naming the subset to be
accessed and the retreval key. For example:

rec = dbase.atom(num);

will retrieve the record that has atom number mum from the atom
subset of the database dbase. Fields can be retrieved from a record

by namingthe field, For example:
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type = rec.atom_type;

will retrieve the atom_type field from the record rec. These forms
may be combined. For example:

type = dbase.atom(num).atom_type;

A special iterator, FOREACH,allows iteration through a subset’s
records in the order in which they are stored in the file (FOREACH
is also used foriterating on arrays, sets, and geometry groups). ‘The
NEXT_RECORD statement retrieves the record following a given
record, allowing manual control of record access. Similarly a
PREV_RECORD statement allows backward movement through a
subset.

The VIEW drawing tool language allows the user a great deal of
flexibility in modifying databases including: 1) changing fields, 2)
adding or deleting fields or records, and 3) writing and reading
databases to and from files. Additionally, the user may define her
own database formats.

Geometry groups. The drawing tool language provides construc-
tors for geometric objects including spheres,triangles, lines, cylin-
ders, and text. Geometric objects, created by drawing tools, or read
from filesare stored in geometrygroups. Groups allow named access
to related sets of geometric objects. The system provides a mecha-
nism for controlling which groups are displayed on-screen. Other
management functions are available including: 1) removing groups
from the system, 2) writing groupsto file, and 3) renaming groups.

Each geometric object Is contained in one and only one geometry
group. There is no nesting ofgroups. These properties were dictated
by two simple design rules.

1) We wanted all geometric objects to be contained in a named
geometry group. This ensuresthat display of any object may
be turned on andoff using a “group display” function in the
interface.

2) We wanted to be able to access a group through a geometric
object. This allows the user to specify a geometry group by
selecting a memberof that group. The “geometry group by
example” model focuses the user’s allention on on-screen
geometry, not on interface buttons or menus. For this reason,
we wanted a tool language construct that would query an
object: “what group are you in?” To make this construct
simple, both syntactically and semantically, we restricted
objects to membership in a single group.

The contents of each geometry groupis thus distinct. This property
is highly desirable. The semantics of group display and group
removal are thereby simple and intuitive. If groups are permitted to
overlap, these semantics become more involved and may be
counterintuitive.

By default, each drawing tool adds geometry to a group that has the
nameof the tool. [f no such groupexists, the system automatically
creates it the first time the tool generates display geometry. In
addition, the tool writer maydefine groupswith other namesin which
peometry isto be placed. Tools forduplicating geometry groups and
merging the contents of geometry groups are provided in the tool
library.

Interfaceoperations. Anotherdesign criterion for the language was
that tools be able to specify any operationthat can be performed from
the user interface. Statements are available to provide tool control
over userinterface functions such as toggling thedisplay ofgeometry
groups, removing groups, reading and writing databases from and to
files, etc.
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Event-monitor definition, The tool language provides a mecha-
nism which allows the tool creator to specify blocks ofcode that are
to be executed when specified keyboard keys are pressed or when
dials are rotated. These definitions, known as interactive event-
monitors, consist of two portions — a monitor, which watches the
specified device; and an event bedy, whichis the code to be executed
when the monitor is triggered. A tool may define a suite of event-
monitors on different devices which communicate through a com-
monsymbol table; the tool buildercan readily design a sophisticated
interactive interface to her tools.

The following example specifies a dynamic radius-changing tool.

SELECT (obj, "Select a geometric object to be
changed”);

EVENT(“change_radius”; ON DIAL 7)
{

(1)

(2)

obj.RADIUS = obj.RADIUS *
(1+ DIALRATE/S50); (3)

IF (obj.RADIUS < 0.01) obj.RADIUS =0.01; (4)
REDRAW(); (5)

}

Line (1) is a pick specification. Line (2) defines an event named
“change_radius” which will be executed whenever dial 7 is rotated.
Line (3) modifies the selected object's radius, using a system-defined
variable, DIALRATE, which contains the angular change in dial
position, positive for clockwise movement, negative for counter-
clockwise. Line (4) ensures that the radius remains positive, and line
(5) redraws the screen, With this tool, the user selects an object and
then rotates dial 7 to increase or decrease its radius. The radius will

alter smoothly as the dial is rotated, because the system continually
reexecutes the event body as long as the dial state is changing.

Although only one drawing tool may execute al a time, the event-
monitors thatit defines persist. Thus, a whole set of event-monitors
defined by different tools can be active simultaneously, each moni-
toring a different device. For example, the rotation tool described
above might be used in conjunction with a translation tool that
translates geometry along a selected axis using a different dial, The
two dials maybe used to rotateand translate “concurrently.” Apanel
in the interface gives a summary of all currently active event-
monitors.

Conditional event-monitors. In addition to event-monitors that are

bound to dials and keys, the system supports conditional event-
monitors. The monitor is a conditional expression; the eventis
triggered when the monitor expression is True. The system event
manager stores a parse tree for each of these expressions, and the
interpreter evaluates them on each iteration of the inner event Joop.
When any of the conditionals is True, the event body is executed.
Thus, the tool builder defines actions to be taken based on certain

conditions withoutcoding apolling loop. The conditionalevaluation
slows the system,butit still responds at interactive rates even when
several event-monitors are defined. A simple conditional event-
monitor is shown in the following example. This code segmentwill
tum a predefined object red when a probe is within a specified
distance.

EVENT(“highlightdist”; DIST(probe.CENTER,
obj.CENTER)< 5.0) (1)

{
obj.COLOR = COLOR(255,0,0); (2)
REDRAW();
STOP_EVENT(“highlight_dist”); (3)

}

Statement(1) is a conditional event-monitor definition. This statement

im
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creates an event, “highlight_dist, which will be triggered whenever
the distance between the center ofthe object stored inprobe and the
object stored in obj is less than 5 unils (probe and obj would be
defined elsewhere in the tool, and additional event-monitors pro-
vided for moving probe through the scene), Line (2) sets the color
of obj to red, and line (3) deactivates the monitor so that the color
change is only applied once.

Spatial search. Frequently we wish atoolto simultaneously monitor
a group of 3-D points. When any pointis near a specified location,
an eventis to be triggered. This function occurs so often that it calls
for its own underlying mechanism. Simultaneous monitoring is
implemented by meansof a spatial search function. The function
takes as input an array of points to be checked, a probe location and
a radius. Any points from the check list that fall within the search
radius are placed in an output array. If the output array contains any
points, the function retums True, This mechanism allowsthe tool to
trigger events at any of a large numberof positions.

Programmable undo. The language allows the developer to define
the scope of the system undo function. The keyword UNDOABLE
may be supplied as an argumentto either the pick function or in an
evyent-monitorheader. This keyword indicates that acheckpointis to
be created prior to execution ofthe statement. Whenever undois
clicked, the system restores the state of the latest checkpoint. The
undo stack stores up to twenty-five checkpoints, allowing the user to
backup through a number of drawing operations.

Tool development environment. TheVIEW developmentenviron-
mentis modeled on that ofSmalltalk-80. Code may be modified and
executed from editors or pop-up debuggers, allowing a rapid code-
test-recode cycle. The debugger supports many features of tradi-
tional interactivedebuggers including settingbreakpoints, step,next,
and print.

Graphical debugging. Several graphical debugging features are
provided that go beyond those provided in Smalltalk or interactive
debuggers such as dbx. Using a constructionfacility, the developer
automatically views graphical representations ofintermediate con-
struction points and lines as they are created by the code. This
graphical auto-print makes it easy to follow the progress of algo-
rithms that construct geometry. The display function within the
debuggerhighlights the representation correspondingtoany selected
geometric variable.

Graphical breakpoints are also available. These are similar to the
conditional breakpoints provided in interactive debuggers such as
dbx. Rather than providing an expression that must be True for
execution to pause, however, the user selects a graphical entity,
whose display is the condition on which execution is to pause. With
this facility, the user selects an object at which the algorithm is to
stop. The system will pause on reexecution, allowing her to display
variable values (graphically or textually) or manually control the
execution.

SAMPLE APPLICATIONS

Interactive superposition. We have developed several interactive
exploratory applications using VIEW. Kim Gemert, a biochemist at
Duke University, has been studying the geometry ofclose atomic
contacts within protein molecules. She wished to superimpose
similar structures from a number of proteins, and then measure
geometric parameters from each.

Bergman and Gemert prototyped the superpositioning procedure
using a sequence of tools. We began by sketching an axis in each of
two structures fo be superimposed. We then selected a tool that
computes a transformation to superimpose two selected axes. The
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tool applies the transformation to the geometry ofthe structure to be
superimposed, Once the twostructures were oriented on a common
axis, the rotation tool described previously was usedto rotate one of
the structures around that axis. A dial controlled the rotation. Using
a translation tool, we moved the structure along the common axis
under control of a different dial. The rotation and translation tools
allowed us to manually superimposethe structures, Figure 4 shows
the completed superposition.

 
Figure 4: Superposition of alpha helix turns using

interactive tools

interactive structure highlighting. Using the conditional event
mechanism with spatial search, we have constructed a “flashlight”
tool for exploring proteins. Using the mouse, westeered a probe
sphere througha skeletal representation ofa protein. As the probe
comes near portionsof the molecule, more detailed representations
are generated, The flashlight has several “lenses” selected by key
toggles. With one lens, amino acid sidechains near the probe are
dynamically drawn in. With another lens, the mainchain is high-
lighted, Yet anotherlens displays pinwheelicons representing close
contacts betweenneighboring atoms. Figure 5 showsa protein with
sections ofthe molecule traced by the flashlight.

 
Figure 5: Flashlight tool for highlighting proteinstructure
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Algorithm construction and visualization, VIEW has provento be
quite useful for visualizing geometric algorithms. We usedasetof 3-
D“ruler-and-compass” construction tools to develop a parameteriza-
tion ofthe helix contact geometry discussed above, Using fourtools:
“projecta point onto a line”, “constructa plane normaltoa line through
a given point”, “‘project a point onto a plane”, and “connect two
points”, we were able to construct the geometry in Figure 6. The figure
displays in a plane theangles that we decided to use for the study,

 
Figure 6: Ruler-and-compass construction ofan algorithm

VIEW hasalso allowed us to visualize the workings of existing
algorithms. Figure 7a shows the technique used for constructing axes
of alphahelices in proteins (shown in Figure 7b). The red spheres
mark user-selected atoms. The yellow spheres mark positions
obtained from the database. The blue spheres mark positions
computed by the tool. Display statements to generate the construc-
tion spheres and cylindersthatillustrate the algorithm were added to
the already working tool in about 15 minutes.

Interactive topology tracing. Several educational applications
have been constructed using VIEW.Figure 8 showsatoolthatis used
to interactively outline the topology of protein backbone, With a
sequenceof events on keyboard keys, the user guides a cursor along
the backbone, indicating where segments of interest begin and end
(Figure 8a). As each segmentis identified, a simplified representa-
tion replaces the backbone. Once all segments are identified, an
eventis available to specify ordering and orientation ofthe segments
(Figure 8b). Finally, the tool flattens the connected segments into a
map of the chain topology (Figure 8c).

Interactive simulation of binding activity. Another educational
application is simulation ofthe binding activity of enzymes. Several
interactive applications have been constructedthat allow a student to
steer a small molecule into a protein’s active site, triggering an
animated conformational change.

Binding ofadipeptide in the activesite ofthe protein carboxypepsidase
(Figure 9) requires that the dipeptide be close to the ideal position,
and oriented properly. The simulation is implemented using a
conditional event-monitor that checks the distance between the

dipeptide and the bindingsite and also evaluates orientation by
checking twodot products. When the distance and both dot products
are within specified limits, the event is triggered. The dipeptideis
rotated and translated into the exact binding alignment, while the
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Tb

Figure 7: Display ofhelix axis tool algorithm

conformational changeis animated by displayingaseries ofprecom-
puted frames. The dipeptide maybe driven in and outof the binding
sites with alternate conformational changes.

RELATED WORK

The vision driving development of the VIEW system was first
described by Brooks[4].

General purpose visualization systems (such as AVS [5], ApE[6],
Explorer[7], Data explorer [8]) allow the user to configure their own
applications using a data-flow programming model. These systems
tend towards a batch visualization pipeline — the user's ability to
interact with the image (beyond viewing manipulations)is limited.
VIEW extendsthe capability of these systems by adding a high
degree ofinteraction with the image; allowing the user todirect the
visualization process on-the-fly. VIEW also goes beyond these
systemsbysupporting new module developmentwithin the confines
of the system (although IRIS Explorer has recently introduced
several embedded languages [7]). The use of an interpreted lan-
guage, with built-in graphical debugging, greatly facilitates tool
development.

Several visualization programming languages and systems have
been developedin recent years, Palmer's pdbq language[9] provides
support for visualization of molecular structures. Hultquist’s LISP-
based system for flow-visualization [10] allows rapid prototyping of
new algorithms. The VIEW language extends these systems by
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adding interaction with the image. With Hibbert’s system for
developing algorithmsto process meteorological data [11], the user
steps through an algorithm,choosing a variety of display represen-
tations for intermediate values. The selection of locations to be
examined is performed on-screen. VIEW providesa similarfacility,
with the addition of user-specified geometries and interaction se-
quences. Gramps[12] is a general purpose graphics language which
has been extended for molecular modeling [13]. VIEW goes beyond
Grampsbyproviding a general-purpose programming language and
scriptable interaction sequences,

The MAGE system, developed by D.C. and J.S, Richardson, pio-
neers a new conceptin scientific visualization [14]. Authors in the
journal Protein Science publish not onlytheir visual images,but also
the associated 3-D display lists on a diskette. The diskette also
contains the MAGEsoftware for the Macintosh and the PC. Ani-
mated visualizations are pre-scripted using a scripting language
available to any reader. In addition to viewing the animation, the
reader mayusea fixed set of database query and visualizationtools
to explore the images.

WHAT’S NEW

In summary, the VIEW system goes beyond previous work by
providing:

* data-drawing

 
8c

Figure 8. Steps in tracing chain topology. Thefinal figure showsa classic Greek-key barrel motif.
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Figure 9. Interactive simulation ofdipeptide binding

= image-based interaction in whichthe user changes the visual-
ization by touching parts ofit.

* user-customizable interaction sequences,

* conditional event-monitorsthat allow parts ofthe visualization
to respond automatically to user actions on otherparts.

* multiple event-monitors based on spatial search that allow
simultaneous evaluation ofpotential actionsat a large number
of 3-D locations.

+ graphical debugging in whichthe imageis treated as a trace of
a routine’s executionstate.

APPLICATION AND SYSTEM EXTENSIONS

The VIEW system as is could be readily applied to otherdatasets that
are naturally represented by discrete geometric structures. Air-
frames or finite-element models are good examples. Users com-
monly superimpose analyticalartifacts such as grids, region bound-
aries, and isovalue surfaces into scientific databases. Theseartifacts

provide structured geometry lo which the VIEW approach could be
applied.

Volumedata presents difficulties for current visualization systems;
the sheer volume ofinformation precludes real-time specification of
parameters. An interactive exploratory system might provide a
solution, We can imaginestarting with a skeletal representation of
a volumedataset, perhaps a sparse cloud of points. A flashlight tool
could be used to produce a higher quality rendering for user-selected
portions of the data set.

Selection of regions of interest is a common task in studying a
dataset. A scripting capability would allow users to build tools to
display anomalies in the data, search for and highlight extrema, and
construct a variety of other interactive filters to limit the amount of
visual information displayed. A languagetailored to volume data,
containing commonly used datatypesand operations, should provide
powerful exploratory capabilities.

The ability to scriptinteraction demonstrated in VIEW might prove
extremely useful in dealing with fluid-flow data and other time-
varying datasets. Interactive placementoftrace particles and other
types of probes is already common in systems for studying flow
fields. The conformational animations produced using VIEW show
simple cases of scripting interaction with time-varying datasets.
Additional language support for handling time-varying data would
greatly enhance this capability. Scientists would be able to readily
tailor the visualization process to accommodatea varietyof datasets
andinteractionstyles.

A useful extension of VIEW would be an ability to sketch geometry
Into an animation, After a series of animation frames have been
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created, the user might wish to sketch new geometry into a single
frame using any of the VIEW drawing tools. The tools would
automatically add the same geometric forms to all frames, with
geometric parameters properly updated to account for between-
frame positional changes.

The conditional event-monitor mechanism has proved to be a pow-
ertul tool for specifying interaction sequences. The shortcoming of
the technique, however,is that evaluation of the conditionals slows
the overall response ofthe system. A natural solution would be to
implement a multi-processor architecture for the system. Each
processor would be assigned evaluation of one or more monitors,
with access to the required symbol tables and parse trees through
shared memory, Any processorthat detects a monitortrigger would
set a globalflag, with an associated record indicating the eventto be
executed. The main control process would simply check the flag as
part of its polling loop and when appropriate, would initiate event
processing.

Conditional event-monitorsare also limited by the restriction of the
header to a single relational expression. We wouldlike to specify an
arbitrary code block to be evaluated continually, with some portion
of that block serving as the conditional expression. We have not
taken that approach in the current implementation because read-only
relational expressionsare easier to deal with than general blocks of
code, In the latter case, we would need to implement acritical section
mechanism, ensuring that only a single event-monitor or tool at-
tempts to update the symboltable al a time. Doing so would make
the conditional event-monitor mechanism much more powerful.

SYSTEM AVAILABILITY

VIEWis available for public use via anonymousftp. Theftp site is
ftp.cs.unc.edu (152.2.128.159). Executables, data files, and docu-
mentation are located in the pub/VIEW directory. More extensive
documentationis available from the UNC Department of ComputerScience.

ACKNOWLEDGMENTS

This work is supported by the Biotechnology Research Program,
National Center for Research Resources, NIH, grant number
RRO2170. Our thanks to the many graduate research assistants who
worked on previous versions of the VIEW system, and to Daniel
Aliaga for assistance in implementing the current version. Tom
Palmer and Dave Bock offered many useful suggestions on the
applicability of VIEW concepts to other datatypes. Thanks to
Amitabh Varshney, and Mike Bajura for assistance in preparing the
manuscript, andto Laura Bollinger forcareful editing. We especially
thank collaborating biochemist Kim Gernert of Duke University, for
numerous contributions to this research.



126

  

SIGGRAPH93, Anaheim, California, 1-6 August 1993
 

REFERENCES

[1] B.H.McConmick, T.A. DeFanti, and M.D. Brown,eds., “Visu-
alization in Scientific Computing,” Computer Graphics, Vol.
21, No. 6, Nov, 1987.

M.Pique, J.S. Richardson, and F,P. Brooks, Jr, “What Does
a Protein Look Like?” Invited videotape presented at 1982
SIGGRAPH Conference, July 1982.

J.S8. Richardsoneral, “Looking at Proteins: Representations,
Folding, Packing, and Design,” Biophys. J., Vol. 63, Nov. 1992,
pp. 1186-1209.

Bergman,etal, “VIEW — Visualization Impromptu Evaluation
Workbench,”abstract in J. Mol. Graphics, Vol. 6, Dec. 1988,
pp. 223.

C. Upson et al, “The Application Visualization System: A
Computational EnvironmentforScientific Visualization,” /EEE
Computer Graphics & Applications, Val. 9, No. 4, July 1989,
pp. 30-42.

D.S. Dyer, “A Dataflow Toolkit for Visualization,” [EEE
Computer Graphics & Applications, Vol. 10, No. 4, July 1990,
pp. 60-69.

IRIS Explorer (TM) User's Guide, Document Number 007-
1371-010, Silicon Graphics, Inc., Mountain View, CA, Jan. 1992.

[2]

(3)

[4]

[5]

[6]

(7)

126

126

[8] B. Lueas ef al, “An Architecture for a Scientific Visualization
System,” Proc. Visualization ‘92 (Oct. 1992), pp. 107-114.

[9] T.C. Palmer, “A Language forMolecularVisualization,” /EEE
Computer Graphics & Applications, Vol. 12, No. 3, May 1992,
pp. 23-32.

[10] J.P. Hultquist and E.L. Raible, “SuperGlue: A Programming
Environmentfor Scientific Visualization,”Proc, Visualization
“92 (Oct. 1992), pp. 243-251.

[11] W. Hibbert, C.R. Dyer, and B. Paul, “Display ofScientific Data
Structures for Algorithm Visualization,” Proc. Visualization
‘92 (Oct. 1992), pp. 139-146.

[12] T.J. O’Donnell and A.J. Olson, “Gramps — A Graphics Lan-
guageInterpreter forReal-TimeInteractiveThree-Dimensional
Picture Editing and Animation,” Computer Graphics(Proceed-
ings ofSIGGRAPH 1981), Vol. 15, No. 3, Aug. 1981, pp. 133-
142.

[13] M.C. Connolly and A.J. Olson, “Granny, a Companion to
Gramps for the Real-Time Manipulation of Macromolecular
Models.” Computersand Chemistry, Vol. 9, No, 1, 1985, pp. 1-6.

[14] D.C.Richardson and J.S. Richardson, “The Kinemage: A Tool for
Scientific Communication,” Protein Science, Vol. 1, 1992, pp. 3-9.



127

COMPUTERGRAPHICS Proceedings, AnnualConference Series, 1993
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Abstract

We present an atomic-scale teleoperation system that uses a
head-mounted display and force-feedback manipulator arm for a
user interface and a Scanning Tunneling Microscope (STM) as a
sensor and effector. The system approximates presence at the
atomic scale, placing the scientist on the surface, in control,
while the experiment is happening. A scientist using the
Nanomanipulator can view incoming STM data, feel the
surface, and modify the surface (using voltage pulses) in real
time. The Nanomanipulator has been used to study the effects of
bias pulse duration on the creation of gold mounds, We intend
to use the system to make controlled modifications to silicon
surfaces,

CR Categories: C.3 (Special-purpose and application-based
systems), 13.7 (Virtual reality), J.2 (Computer Applications
Physical Sciences)

Keywords: haptic, force, scientific visualization, interactive
graphics, virtual worlds, scanning tunneling microscopy,
telepresence, teleoperation.

1. Introduction

Weare just beginning to have fast enough graphics engines
and acceptable trackers to allow us to provide scientists with a
real-time immersive virtual-world interface to their

instruments, We have brought this power to bear on the
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visualization of data from and control of a Scanning Tunneling
Microscope with the UNC/UCLA Nanomanipulator system. The
virtual-world interface demonstrably contributes to the power
of the instrument.

The Scanning Tunneling Microscope (STM) was conceived in
1978 by G. Binnig and H. Rohrer at the IBM Zurich Research
Laboratory and first demonstrated in 1981. It was originally
designed to aid in understanding the growth, structures, and
electrical properties of very thin oxide layers. [4] [5]

An 5TM consists of a piezoelectric positioning element, a
conducting (usually metal) tip and a conducting sample (the
surface under study). In our instrument, built by E.A. Eklundat
UCLA,the piezoelectric crystal elements are arranged as three
orthogonal bars, each of which controls one axis (see figure 1).
As voltages are applied across the crystals. they change their
lengths. Since the tip is rigidly attached to the crystals, they
can be used to position the tp relative to the sample, Our STM
can scan areas up to 200 nanometers (nm) on a side.

 Buyauun)
Feedback
Control

Figure 1: A Scanning Tunneling Microscope. The
feedback control maintains the lip at a constant
distance above the surface.

A bias voltage is applied to the sample with respect to the tip.
At very close range (on the order of a few tenths of a nm), a
tunneling current flows between the tip and the surface, This
current decreases exponentially with increasing distance
between the tip and the sample. In our configuration, the X and
Y piezoelectric crystals are used to raster the tip back and forth
across the surface in a boustrophedonic® pattern and the Z,
crystal is controlled by a feedback circuit that attempts to
 

“Literally,“as the ox plows.”
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maintain a fixed tunneling current and thus a constant distance
between the tip and sample. A scan of the surface proceeds by
repeatedly moving the lip in X and Y and then reading the
voltage on the Z axis to determine surface height.

The STM is capable of resolving individual atoms in a sample.
The radii of atoms range from 0.03 to 0,27 nm, or
approximately 1 billionth the size of common objects, such as
a golf ball or a basketball. Typical chemical bonds range from
0.15 to 0.25 nm. For comparison, a typical feature on a current
integrated circuit might be | micron (1,000 nm) across, Optical
microscopes are limited in resolying power to approximately
the wavelength of the radiation used in imaging, which is 400-
700 nm.

The STM uses a very sharp physical probe to gather
information about the sample surface, rather than analyzing
reflected photons or electrons, The key to the resolution of the
STM is that the length of the piezoelectric positioners can be
accurately controlled to 0,01 nm, and that the tunneling current
is extremely sensitive to tip-to-sample separation (moving the
tip 0.1 nm closer to the surface increases the tunneling current
by a factor of 10).

Unlike other microscopes, the STM providesits information as
an eleyation map rather than a projected image. The scientist
wants to understand the geometry of the three-dimensional
surface, so these values must be interpreted. The most natural
method ofinterpretation is to reconstruct the surface from the
sampled height information, a common process in compuler
graphics.

In addition to its ability to map the surface, the tip of the STM
can be used as a local probe to modify the surface. [2] This
makes the STM useful for nanofabrication, There are at least

two ways this can be accomplished. The first is to physically
contact the surface with the tp, which causes large and
unpredictable modifications to both the tip and the surface. The
second. more controlled method is to apply a voltage pulse
between the tip and the surface. Since the distance between the
two is so small, even moderate voltages produce a strong
electric field. Both Lyo and Avouris and Kobayashi et al. have
shown that it is possible to alter the surface of a silicon crystal
with such fields. The former authors have successfully removed
clusters and even individual Si atoms from a surface by
applying voltage pulses of +3V to the sample under study (with
the tip grounded), The amount of material transferred in each
pulse depended on the distance from the bottom of the up to the
sample surface (the smaller the distance, the larger the field and
thus the more material transferred), They were also able to
transfer atoms from the tip back onto the surface by applying
voltage pulses of -3V to the sample. Kobayashi et al. have
been able to form trenches only a few nanometers wide. They
scanned the tip over the surface at a speed of 50 nm/s while
holding the sample at a constant voltage of either polarity in
the range from 4-10 volts. They used tip-sample separations
significantly larger than those used by Lyo and Avouris. These
studies have demonstrated the feasibility of altering the
structure of a surface literally one atom at a time, What they
lacked was the ability to interactively view the surface while it
was being modified. [14] [11]

We havebuilt a virtual-worlds interface that converts the STM

from a remote batch data collector to a real-time user-guided
data collector, and from a remote batch surface modifier to a
real-time user-guided surface modifier. The material surface
under the STM is sampled and then graphically reconstructed,
lighted, and presented to the user at human scale, magnified

approximately a billion times. In January 1992, an STM built
at UCLA was brought to North Carolina and interfaced to the
existing hardware and software of UNC's Head-Mounted Display
project and the GROPEforce display project. [18] We named
the system the "Nanomanipulator” because it allows the user to
see, feel, and manipulate matter at the nanometer scale.

The STM functions as both the imager and effector in this
atomic-scale teleoperator system. The system operates m three
modes, In raster-scan mode, the STM tip moves back and forth,
continually streaming in new surface height data on a user-
specified grid. This data updates the reconstructed surface model
in real time. Independently and asynchronously, the viewer
may fly about the surface, or hold it at arm's length andtilt it so
that the directional illumination reveals and highlights surface
detail. The surface mode! serves as the buffer converting
between the back and forth slow scanning of the STM and the
TV-like fast scanning of the display system.

In feel mode, the scientist uses the manipulator arm to move
the STM tip directly (as the crow flies) over the surface, feeling
the contours, and perceiving particular point heights, as the
STM visual cursor traverses the surface image.

In pulse mode, the user also moves the tip directly over the
surface, and, with a hand trigger, may select locations to fire
bias pulses, modifying the surface.

The user interface through which the human. user perceives the
microscopic world consists of a stereoscopic head-mounted
display and a force-feedback handgrip. The viewpoint changes
of the user's head and control gestures of the user's hand are
scaled down by the Nanomanipulator to contro] the viewpoint
from which the microscopic world is seen by the user and to
control surface modifications enacted by the STM,

Figure 2 shows the user interface for the Nanomanipulator,

 
Figure 2: User interface for the Nanomanipulator
system. The user can control the action of the STM
tip with the force-feedback ARM, feel surface
contours, and specify bias pulses by pressing the
finger trigger. The user sees the sample surface
through the head-mounted display.

The graphics system thal generates the stereoscopic images for
the HMD provides highly detailed shaded 3D color images in
real time. The HMD and head-tracker allow the graphics to be
generated in coordination with the user's voluntary head
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motions, so that users perceive themselves to be surrounded by
the microscopic environment.

9, Previous STM Visualization

The standard method of STM data visualization during data
collection is to construct gray scale images where dot
brightness corresponds to surface height at each point in the
image. For later offline viewing or publication, most
visualization is done using various graphing routines on
personal computers. These packages draw a connected line for
each scanline the tip has made, possibly doing hidden line
removal on areas that would be occluded. Color is used
effectively to show either surface height or other surface
properties. For presentation, shaded surface images are
sometimes computed. [7] [15] [20] [21]

Dr. Joe Lyding at the Beckman Institute of the University of
Illinois has produced an Application Visualization System
(AYS) interface module that gives data from the STM scansto
other AVS modules for high-quality interactive rendering of
surfaces using Gouraud shading. This results in shaded images
from a given point of view at rates on the order of one image
per minute. Dr. Lyding has found that his interactive viewing
system guides experiments by showing interesting areas of
study while the data is still being collected. [personal
communication] We have found the same effect in our system.

Dr, Besenbacher et al, at the University of Aarhus, Denmark,
have taken another approach. They still draw the images on a
personal computer, but they make images from successive
scans and put them onto videotape for later viewing. This
allows them to view surface dynamics that happened during the
experiment. The dynamics cannot be viewed while the
experiment is in progress, but nonetheless they have found the
motion display to be very useful. Referring to his videotaped
images of the scanned surface, Dr. Besenbacher writes “...one
can record STM movies and thereby visualize in real time and
space dynamical processes on metal and semiconductor
surfaces. Such information, which cannot be obtained by any
other means, is very decisive for a full understanding of both
the growth mode of reconstructed phases and the resulting
static structure.” [3] We have also found this property of our
system to be valuable.

3. The Nanomanipulator

The goal of this system is to approach an ideal interface for the
scientist — presence on the surface itself, with the ability to
interact with the surface in real time. The Nanomanipulator
system mediates between the human-scale actions of the user
and the atomic-scale actions of the STM. A Head-Mounted
Display (HMD) and Force-Feedback Argonne-II] Remote
Manipulator (ARM)provide an immersive virtual environment
in which the user is given the ability to act at the atomic scale.
The purpose of this system is to scale the STM environment
(nanometer scale) up to human size (meter scale) and to provide
a means for making changes in this environment - it seeks to
create teleoperation at the atomic scale, which requires a
scaling factor of 109,
3.1 System Structure

The Nanomanipulator system comprises several parts,
including the STM itself, the Pixel-Planes 5 graphics engine, a
real-time control computer (currently an IRIS 240) to control
the STM,and a user interface subsystem (running on a Sun 4),
See figure 3 for a system diagram.
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Due to the varying requirements of its different parts, the
system has been segmented into a distributed set of
heterogeneous processors. These subsystems act as
communicating sequential processes. The ARM, STM,and user
interface sections communicate over an ethernet. The user
interface and Pixel-Planes 5 communicate over a VME bus. The

various graphics processors within Pixel-Planes 5
communicate over a 640 MByte/s ring network,

Our ethernet LAN provides about a 1 megabit/second sustained
path between hosts on the network. This bandwidth is adequate
to handle the data coming from the STM, which is limited in
scan rate by the electronics and piezoelectric crystal
resonances to less than 50 kilobits/second.

 
 

Scanning

Tunnelling

MicroscopeNanometer Scale Operation
|Geometry

Position

HumanScale
  

Figure 3: Nanomanipulator system diagram. User
Interface code running on the Sun 4 mediates between
the atomic-scale operations in the STM and the
human-scale operations of the user. Pixel-Planes 5
provides real time shaded stereo images.

STM Controller Process The STM ts controlled by
one of the processors on an IRIS 240. The X and Y position are
controlled by D/A cards and the Z value is read back in through
an A/D card. The bias pulses are provided by an HP8131A pulse
generator that is interfaced to the computer through an
IEEE488.2 (HPIB) bus. The pulse generator is capable of
producing controlled pulses as narrow as 500 ps. We have
carefully controlled the impedance out to the end of the sample;
however the tip side impedance is unknown. As a result, we
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expect the pulses to be repeatable but of unknown shape as
they cross the sample-tip boundary.

The control process accepts commands from the user interface
and produces geometry information, When the process is
scanning, it streams data to the user interface continually,
sending up to 30 packets per second with whatever results have
accumulated from scanning during that time. The process is
also capable of moving the tip to a given location and
returning the height there immediately or applying a pulse
there.

User Interface Process The user interface
process routes information among the various parts of the
system and translates user commands into system commands.It
is built on top of several existing software systems that were
developed at UNC. The tracking, display, virtual-world editing,
menus, and force feedback ARM control were all provided by
existing libraries. [10] [17]

The HMD that we currently use is made by Virtual Research.
This is a stereo color display helmet that is tracked by a
Polhemus tracker. The HMD group has written a software
library to handle the interface between the Polhemus and user
code, Several projects at UNC have designed virtual worlds for
building walkthrough, radiation treatment planning, molecular
visualization, and particle systems. [10] The Ultrasound
project has interfaced incoming data to Pixel-Planes 5 and
overlaid the data on the real world. [1]

The ARM is an Argonne [I] Remote Manipulator that is
interfaced to an IBM PC through A/D and D/A cards. A control
library has been written by the GROPE project to access the
ARM.Several systems have been designed that use the ARM,
leading to the force feedback molecular docking program. [6}

Pixel-Planes 5 The images that are generated for
the HMD areproduced by Pixel-Planes 5 (Pxpl5). This is a
massively parallel graphics engine that was developed at UNC-
CH under the direction of Henry Fuchs and John Poulton [9].
Along with the hardware itself, the Pixel-Planes team has
created the PPHIGS library as a programmer's interface to the
machine. This is a graphics library modeled after the PHIGS
standard, Pxpl5 has dozens of J860 processors used as graphics
processors (GPs). These processors run the display code and
can also be programmed via C code callbacks within the
display list.

Pixel-Planes 5 is optimized for drawing static display lists of
triangles in real time; performing many updates to the display
list ordinarily slows the update rate down unacceptably. New
height data arrives from the STM ata rate of up to 500 samples
per second, which is 25 data points per frame. Each data point
affects the normals at the four surrounding points, and each
normal affects up to six surrounding triangles. The system must
therefore be able to perform about 600 triangle updates per
frame while still maintaining the 20 Hz update rate.

Fortunately, it is possible to program the GPs on Pxpl5
directly, and the display list is split among the GPs. Each GP
makes a list for each point of whereit is stored in the display
list (usually in 6 different triangles) and this list is used to
propagate changes into the display list. We send the new point
information to the GPs and each one modifies its portion ofthe
display lisi in parallel, This provides sufficient speed to handle
the changes.

130

3.2 Towards the Ideal user interface

The data from the STMis presented to the user as a three-
dimensional surface drawn in the head-mounted display. The
surface appears to be made of shiny plastic and is colored
according to height, with lower areas bluer and higher areas
redder. The user sees a line sweeping across the surface as new
position updates are received from the STM. The surface is
sampled on a regular prid whose spacing is specified at run
time. We typically use 80 samples per line and 80 lines on the
surface, but the user can interactively trade speed for resolution
by re-running the program.

The user’s hand is tracked with the ARM, An icon is drawn at

the hand location to graphically indicate the current mode of
operation, much as the cursor on a Macintosh computer
changes shape to indicate current mode, The user selects
between modes using a pull-down menu system that is brought
up by a thumb trigger on the ARM handgrip. The menu also
allows saving the STM data to disk for later analysis.

The finger trigger on the handgrip has different behaviors
depending on the mode the user is in, The modes dealing with
viewing the virtual world are fly, grab, scale up, and scale
down, [19] The modes dealing with controlling the STM are
feel, pulse, select part, and select all,

Fly In fly mode, the user holds down the finger
trigger to translate through the microscopic landscape in the
direction pointed by the handgrip.

Grab In grab mode, the user can change the
orientation of the virtual world by, in effect, grabbing the
“fabric of space" and rotating it. The user moves the handgrip
to the desired center of rotation and then holds the trigger down
while rotating the handgrip.

Scale One wants to dynamically change the scale
factor between the user's scale and the virtual world that

represents the microscopic landscape, Such a change is
perceived by the user as the virtual world expanding or
shrinking. At a magnification of 109, a 10 cm gesture by the
user would move the 5TM tip a distance of 0.1 nm on the
sample surface, whereas at a magnification of 107 the same
gesture would move the tip 10 nm. In scale yp mode, when the
user holds downthe trigger, the virtual world expands at a fixed
rate, using the handgrip location as the center of expansion,
Scale down modets similar.

Feel In feel mode, the user moves the handgrip
around on the surface and feels a force that pulls it up or down to
the surface. As the handgrip moves about in X and Y, the STM
tip follows the motion. As the user moves, the height of the
surface at the cursor location is sampled and a linear restoring
force is applied to the handgrip in the Z direction towards the
surface, The X and Y position do not have to correspond to grid
locations in this mode, so it can be used to supersample the
surface. At no time does the usef actually control the Z motion
of the tip; that is controlled by an electronic feedback circuit.
This was a design choice that prevents the user from crashing
the tip into the surface. The forces felt are simulated spring
forces based on the handgrip height versus the surface height at
the given (X,Y) location.

Pulse In pulse mode, the user can cause the STM to
produce bias pulses. The user moves the handgrip cursor over
the place on the surface where the pulse is to go and presses the
finger trigger. The STM movesthe tip to the indicated spot,
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pulses the bias, and then resumes scanning the image. This is
the mode that allows surface modification; for example,
placing blobs of gold from the tip onto the surface.
Select The select commands are used to examine
part of the surface rapidly. The STM takes about 33 secondsto
scan the whole surface, since the tip velocity is constrained.
Faster updates for smaller surface areas are useful when making
changes to the surface. The user can select a section of the grid
to be scanned by pressing the finger trigger, dragging, and
releasing to indicate a rectangle of interest. The faster updates
allow the user to react to mistakes in the modifications as they
occur and immediately see when modifications have been
completed and with what result.

Since all of the above interaction is possible while the surface
is still under the microscope and being scanned, the user can
direct the study of the surface based on data just obtained. If part
of the surface looks more interesting and merits further study,
the user can select that region of interest and get faster
scanning, since only part of the surface is scanned. If there is
some question whether an area contains a certain feature orif it
contains only noise, it can either be rapidly scanned multiple
times or felt (and thereby resampled) by moving the tip over it
to see if the apparent feature persists.

3.3 System Performance

Performance tests were run for the system on a Pixel-Planes
machine with 41 GPs and 20 renderers. The region examined
was a 200x200 nm area of gold scanned with a cut gold tip. We
took a 100x100 grid of samples and tessellated each grid square
with two triangles. For stereoscopic vision, this is 40,000
triangles each frame. The display rate was 20 frames/second
when viewing the entire data set (SOOK triangles per second).
For an 80x80 grid, the rate was 24 hz. These rates are sufficient
to make the user feel present on the remote (in scale) surface.

The tip was acquiring new data at a rate of three grid lines per
second. Since there were 100 lines in the grid, this means that
the entire grid was scanned every 33 seconds. The world is
updated as the samples come in, so the user sees a line of
updates sweeping back and forth across the scene. Our scan rate
1s presently limited by the piezo resonance frequencies and the
frequency response of our feedback circuit.

We were initially unable to maintain the desired update rate in
the feel surface mode. In this mode, the position of the hand
must be sensed, the tip moved to the correct location, and the
force applied to the user. Doing all of this each frame halved
the update rate until we pipelined the operation with the display
operation, The user therefore feels the force for the previous
video frame. When the user moves slowly over a surface, the
effect of this lag is negligible.
4. Results

A prototype viewing system, called the Microscape, was set up
at UNC before the actual STM was installed. This system
allowed the user to fly around and feel a surface that was
generated from STM data stored on disk. One of the data sets
was an ion-bombarded graphite sample that contained several
sheets of graphite that had been pushed upward out of the
sample, much like the earth is pushed upwards along an
earthquake fault. Previously, these features had been thought to
be noise, but the real time shading of the Microscape system
showed clearly that they were not aligned with the scan
direction and that they were regularly spaced. This discovery
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convinced us of the power of the visualization and encouraged
us to put the current system in place.

Once the UCLA STM had been set up at UNC and the system
could modify surfaces, we duplicated the experiments discussed
in [16], depositing gold from the tip onto a gold surface. We
used a cut gold tip, rather than an etched tip. We used a bias
voltage of 235 mV and a tunneling current of 1 nA. For 5V
pulse heights, we found that 20 ns pulses repeatably moved
material but that 10 and 15 ns pulses rarely did. We also found
that the gold mounds we made would anneal as they were
repeatedly scanned, often disappearing entirely within a few
scans, even though they persisted for long periods if not
scanned. More robust structures could be formed by repeatedly
pulsing the same location after each scan. One such feature
remained in place for the duration of several experiments- tens
of scans. Figure 4 shows a gold surface before and after voltage
pulses were applied.

 
Figure 4a: Gold surface before bias pulses were
applied. Surface is colored according to height, with
higher areas being redder. Scan area is 100 by 100
nanometers. There are 80 samples each in x and y,

 
Figure 4b: Gold surface after bias pulses were
applied. Several gold mounds have been deposited on
the surface. The large moundin the centeris about 20
nanometers wide. The smaller bumps were
unintentional.
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5. Significance

The significance of the virtual-reality interface to the STM is
that it gives the scientist simulated presence on the sample
surface. The benefits of this are: improved perception of 3D
structures, more effective exploration of the sample, the ability
to observe dynamic processes in near real time, and the ability
to interactively modify the surface. To putit in plain language,
when you are present somewhere, you can look around, you can
look at things from different angles, you can feel interesting
things at arm's length, you can watch the behavior of things
that move or change, you can pick up things and rearrange
them, and you can tweak things to see how they respond.
People use all of these behaviors when they investigate places
and things in the macroscopic world. Scientists, through the
mediation of the Nanomanipulator, can engage in all these
exploratory behaviors at the atomic scale, with their actions
scaled down from meters to nanometers.

The scientist's ability to recognize specific molecular
structures within the noisy, sampled data is improved by using
stereoscopic, shaded 3D color graphics with specular
highlights. This improved perception of 3D structures, in
comparison with 2D gray-scale images with brightness coding
height, was evident from the first month of the collaboration;
The Williams team at UCLA recognized the up-tilted graphite
planes on thefirst viewing of their STM data renderedasa fly-
through with shaded 3D color graphics. They had puzzled over
the data for months previously.

Providing stereoscopic, rather than monoscopic, viewing is
useful to the scientist because the stereo provides a direct
perception of depth for nearby virtual objects. Allowing
accurate perception of the 3D spatial structure of STM data
makes it possible for scientists to use their own specialized
knowledge to recognize structures and features ofinterest in the
data.

Displaying the STM data through a head-mounted display as an
intuitively accessed surrounding virtual world allows the 3D
graphical world seen by the scientist to be spatially
superimposed with the force field felt through the force-
feedback handgrip. This allows the user to see and feel a virtual
object at a single location in space, just as occurs with real
objects. This is harder to do without an HMD,since a large
monitor screen tends to get in the way of the feeling gestures of
the hand. Also, we believe that displaying the 3D data as a
surrounding virtual world helps to better orient the scientist
within the data.

The Nanomanipulator allows the scientist to interactively
explore the sample in the STM in new ways. First, since the
data produced by the STM is a grid of elevations, it can be
graphically rendered from any viewpoint. This means that
scientists, by means of gestural commands, can translate
themselves over the sample surface, scale the surface up and
down, and rotate the surface to any orientation. This allows the
scientist to fly down into canyons on the surface, and even to
fly beneath the surface and see it from below. This ability to
see the sample from an arbitrary viewpoint is not possible with
imaging-type microscopes, such as optical and scanning-
electron microscopes.

The Nanomanipulator allows a second new type of interactive
exploration of the sample: the user can interactively modify
the scanning parameters of the STM. Current practice at most
STMsites is to collect data with the STM first, and then to view
and analyze it later, off-line. In such an arrangement, if a
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feature ofinterest lies halfway off the sample grid, or if the grid
is to0 coarse to get a good look at the feature, there is not much
to be done. But with the ability to scan different areas and at
different scales as the exploration progresses, the scientist is
empowered to explore more effectively. For example, if a
feature of possible interest is seen in a wide-area coarse scan,
the user can then interactively focus the scan on the feature of
interest to get a high-resolution view of the feature. Having an
expert human observer in the control loop makes this sort of
interactive exploration very powerful.

 
Figure 5a: Gray-scale image of ion-bombarded
graphite sample. This is the standard representation
given in real time by STM userinterfaces.

 
Figure 5b: Shaded image of the same sample. This
image shows clearly the tip scratches on the lower
left part of the sample and the ripples in the upper
right corner caused by sheets of graphite pushing
upward out of the surface.
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Since the data from the STM comes in as the sampling occurs in
real-time, the scientist can observe dynamic processes with
time scales of seconds as they evolve on the surface.

The Nanomanipulator gives the scientist the ability to make
controlled modifications to the sample surface. This capability
takes the Nanomanipulator beyond being a mere passive
observing instrument, and makes it rather a tool for conducting
experiments on the atomic scale, for fabricating nanometer-
seale Structures, and perhaps ultimately for building molecular
structures atom by atom. We foresee that this wil! allow the
construction of new structures and materials, such as
nanometer-scale electronic circuits, which are not now
possible to fabricate in any way whatsoever. The advantage of
using the Nanomanipulator in this process is that the operator
can detect any mistakes or aberrations in the structure being
built and correct them in real time. A skilled user can respond to
surprise much more creatively than a computer algorithm, and
when sculpting at atomic scale, there are bound to be many
surprises.

6. Future Directions

The first applications of the Nanomanipulator will be for
nanomachining of structures on surfaces. This will involve
processes similar to those in present electronic device
technology (which has about 1/2 micron feature size), where a
thin film, in this case only a few monolayers thick, is
deposited onto a substrate. The Nanomanipulator will then be
used as a mill to directly remove material and pattem a structure
on the deposited film, without going through the stages of
resist deposition, exposure, and removal. Initially, these
structures wil] be test devices, such as single-electron
transistors or platforms for recognizing and immobilizing
particular molecular species, The Nanomanipulator will also be
used as a probe to study the properties of these devices.

In order for nanomachined devices to become useful tools rather

than laboratory curiosities or atomic scale artworks, they will
have to be manufactured in massively parallel processes, This
will only be possible after we have learned how to manipulate
atoms as reproducibly as quantum uncertainty and the second
law of thermodynamics will allow. The experience gained in
working with the Nanomanipulator may provide the basis for
that understanding.
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Abstract

This paper describes the CAVE (CAVE Automatic Virtual
Environment) virtual reallty/sclentific visualization system in
detail and demonstrates that projection technology applied to
virtual-reality goals achieves a system that matches the quality
of workstation screens in terms of resolution, color, and Micker-
free stereo. In addition, this format helps reduce the effect of
common tracking and system latency errors. The off-axis
perspective projection techniques we use are shown to be
simple and straightforward, Our techniques for doing multi-
screen stereo vision are enumerated, and design barriers, past
and current, are described. Advantages and disadvantages of
the projection paradigm are discussed, with an analysis of the
effect of tracking noise and delay on the user. Successive
refinement, a necessary too! for scientific visualization, Is
developed in the virtual reality context. The use of the CAVE as
a one-to-many presentation device at SIGGRAPH '92 and
Supercomputing '92 for computational science data is also
mentioned.

Keywords: Virtual Reality, Stereoscopic Display, Head-
Tracking, Projection Paradigms, Real-Time Manipulation

CR Categories and Subject Descriptors: 13.7 [Three-
Dimensional Graphics and Realism]: Virtual Reality; 13.1
(Hardware Architecture]: ThreeDimensional Displays.

1. Introduction

1.1. Virtual Reality Overview
Howard Rheingold [11] defines virtual reality (VR) as an
experience in which a person is “surrounded by a three-
dimensional computer-generated representation, and is able to
move around in the virtual world and see it from different
angles, to reach into it, grab it, and reshape it" The authors of
this paper prefer a definition more confined to the visual
domain: a VR system is one which provides real-time viewer-
centered head-tracking perspective with a large angle of view,
interactive control, and binocular display. A competing term,
Virtual environments (VE), chosen for “truth in advertising”[1],
has a somewhat grander definition which also correctly
encompasses touch, smell, and sound. Although VE is part of
the CAVE acronym, we will use the initials VR herein to conform
to mainstream usage.
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Several common systems satisfy some butnot all of the VR
definition above. Flight simulators provide vehicle tracking, not
head tracking, and do not generally operate in binocular stereo.
Omnimax theaters give a large angle of view [8], occasionally in
stereo, bul are not interactive, Head-tracked monitors [4][6]
provide all but a large angle of view. Head-mounted displays
(HMD) [7][13] and BOOMs[9] use motion of the actual display
screens to achieve VR by our definition. Correct projection of
the imagery on large screens can also create a VR experience,
this being the subject of this paper.

Previous work In the VR area dates back to Sutherland [12],
who in 1965 wrote about the “Ultimate Display.” Later in the
decade at the University of Utah, Jim Clark developed a system
that allowed wireframe graphics VR to be seen through a head-
mounted, BOOM-type display for his dissertation. The common
VR devices today are the HMD and the BOOM. Lipscomb [4]
showed a monitor-based system in the IBM booth at SIGGRAPH
"91 and Deering (6) demonstrated the Virtual Portal, a closet-
Sized three-wall projection-based system, in the Sun
Microsystems’ booth at SIGGRAPH ‘92. The CAVE, our
projection-based VR display [3], also premiered at SIGGRAPH
‘92, The Virtual Portal and CAVE have similar intent, but
different implementation schemes.

To distinguish VR from previous developments in computer
graphics, welist the depth cues one gets in the real world.

1 Occlusion (hidden surface)
2 Perspective projection
3 Binocular disparity (stereo glasses)
4 Motion Parallax (head motion)
5 Convergence (amounteyes rotate toward center of

interest, basically your optica] range finder)
6 Accommodation (eve focus, like a single-lens reflex

as range finder)
7 Atmospheric (fog)
8 Lighting and Shadows

Conventional workstation graphics gives us 1, 2, 7, and 8. VR
adds 3, 4, and 5. No graphics system implements
accommodation clues; this is a source of confusion until a user
learns to ignore the fact that everything Is in focus, even things
very close to the eyelash cutoff plane that should be blurry.

The name of our virtual reality theater, “CAVE," is both a
recursive acronym (CAVE Automatic Virtual Environment) and
a reference to “The Simile of the Cave" found in Plato's

Republic (10), in which the philosopher discusses inferring
reality (ideal forms) from projections (shadows) on the cave
wall. The current CAVE was designed in early 1991, and it was
implemented and demonstrated to visitors in late 1991. This
paper discusses details of the CAVE design and implementation.
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1.2. CAVE Motivation

Rather than having evolved from video games or flight
simulation, the CAVE has its motivation rooted in scientific
visualization and the SIGGRAPH '92 Showcase effort. The CAVE
was designed to be.a useful tool for scientific visualization.
Showcase was an experiment, the Showcase chair, James E.
George, and the Showcase committee advocated an
environment for computational scientists to interactively
present their research at a major professional conferencein a
one-to-many format on high-end workstations attached to large
projection screens. The CAVE was developed as a “Virtual
Reality Theater” with scientific content and projection that met
the criteria of Showcase, The Showcase jury selected
participants based on the scientific content of their research
and the suitability of the content to projected presentations.

Attracting leading-edge computational scientists to use VR was
not simple. The VR had to help them achieve scientific
discoveries faster, without compromising the color, resolution,
and flicker-free qualities they have come to expect using
workstations. Scientists have been doing single-screen stereo
graphics for more than 25 years; any VR system had to
successfully compete, Most Important, the VR display had to
couple to remote data sources, supercomputers, and scientific
instruments In a functional way. In total, the VR system had to
offer a significant advantage to offset its packaging. The CAVE,
which basically met all these criteria, therefore had success
attracting serious collaborators in the high-performance
computing and communications (HPCC) community.

To retain computational scientists as users, we have tried to
match the VR display to the researchers’ needs. Minimizing
attachments and encumbrances have been goals, as has
diminishing the effect of errors in the tracking and updating of
data. Our overall motivation is to create a VR display that is
good enoughto get scientists to get up from their chairs, out of
their offices, over to another building, perhaps even to travel to
another institution,

1.3. CAVE Design

The CAVE we exhibit at conferences is a theater 10'x10'x10"
made up of three rear-projection screens for walls and a down-
Projection screen for the floor, as shown in Figure 1. (Qur
development system at EVL is actually 7'x7'x7' due to ceiling
height limitations.) Projectors throw full-color workstation
fields (1280xS12 stereo) at 120Hz onto the screens, giving
between 2,000 and 4,000 linear pixel resolution to the
surrounding composite image. Computer-controlled audio
Provides a sonification capability to multiple speakers. A user's
head and hand are tracked with Polhemus or Ascension
tethered electromagnetic sensors. Stereographics' LCD stereo
shutter glasses are used to separate the alternate fields going to
the eyes. FourSilicon Graphics high-end workstations create the
imagery (one for each screen); they are tied to a fifth for serial
communications to Input devices and synchronization via fiber-
optic reflective memory by Systran Corporation. The CAVE's
theater area sits in a 30'x20'x13' room, provided that the
projectors’ optics are folded by mirrors. Conference use thus far
has necessitated the building of a light-tight structure of this
size on site to house the screens and projectors.

Goals that inspired the CAVE engineering effort include:

1 The desire for higher-resolution color images and
good surround vision without geometric distortion.

2 Less sensitivity to head-rotation induced errors
3 The ability to mix VR imagery with real devices

(like one's hand, for instance)
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4 The need to guide and teach others in a reasonable
way in artificial worlds

5 The desire to couple to networked supercomputers
and data sources for successive refinement

 
CAVE diagram. Graphics by Milana Huang,

University of linois at Chicago
Figure 1:

Significant barriers, now hurdled, include eliminating the lag
inherent in common green Video projector tubes, corner
detailing, and frame accurate synchronization of the
workstations; our solutions to these problems are described in
detail in section 3. The electromagnetic trackers required
building the CAVE screen support structure out of non-
magnetic stainless steel (which is also relatively non-
conductive), but non-linearities are still a problem, partially
because conductive metal exists on the mirrors and in the floor
under the concrete, Wheelchairs, especially electric ones,
increase tracker noise and non-linearities as well.

Unsolved problems to date include removing the tracking tether
so the user is less encumbered, moving the shutters from the
eyes to the projectors so cheap cardboard polarizing glasses can
be used, incorporating accurate directional sound with
speakers, and bringing down the cost. These, and other
problems we've encountered, are described in section 6.

The implementation details fall mainly into two categories;
projection and stereo, These will be presented next.

2. Projection Details

2.1. Cube Sides As Projection Planes

One rarely noted fact in computer graphics is that the
projection plane can be anywhere; it does not have to be
perpendicular to the viewer (as typical on workstations, the
HMD, and the BOOM). An example of an unusual projection
plane is the hemisphere (like in Omnimax theaters or some
flight simulators). However, projection on a sphere is outside
the real-time capability of the ordinary high-end workstation.
And, real-time capability is a necessity in VR.

The CAVE uses a cube as an approximation of a sphere. This
simplification greatly aids people trying to stand in the space,
and fits the capabilities of off-the-shelf graphics and high-
resolution projection equipment, both of which are made to
create and project imagery focused on flat rectangles. The
defects one encounters in attempting to build a perfect cube are
fortunately within the range of adjustment by standard video
projectors; in particular, keystoning and pincushion corrections
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can be utilized. Thus, the ability to match projected images at
the seams and cornersis effectively perfect, with tuning effort.

2.2. Window Projection Paradigm

The most common computer graphics projection paradigm is
the camera view. This type of projection simulates the way an
image is captured on film, and includes the direction the
camera is pointed and the focal length, position, and twist angle
of the lens. In the camera paradigm, stereo is typically achieved
by using two cameras; this is the technique used by the HMD
and BOOM. The CAVE instead uses a window projection
paradigm in which the projection plane and projection point
relative to the plane are specified, thus creating an off-axis
perspective projection.

Fortunately, the Silicon Graphics’ Graphics Library (GL) [14]
provides a window projection function. Since this function can
also be performed by two shears and a standard perspective
projection, or, alternatively, by a translation, a standard
perspective projection and a translation back, the window
projection function can easily be constructed from more
primitive functions, if not available in another graphics library.

In the CAVE, the projection plane locations correspond to the
locations of the actual walls. Therefore, as the viewer moves
around in the environment, the off-axis stereo projection ts
calculated according to his/her position with respect to the
walls (see Figure 2).

Front wall

Left
wall

Right
wall

Viewer

Figure 2: Off-axis projection

For the simplicity of the calculations, we assume thatall the
walls share the same reference coordinate system as shown in
Figure 3. The origin of the coordinate system is placed in the
center of the CAVE and it is a right-handed system with respect
to the front wall. All the measurements from the trackers
(position and orientation) are transformed to match this
convention.

Wa

Front wall

Right
wall

/ Floor wall
Figure 3: CAVE reference system,
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Figure 4 shows a top diagram of the CAVE. The point Q' is the
projection of the polnt Q, PP is the distance from the center of
the CAVEto the front wall (5° for the 10'x10'x10" CAVE).

Right wall 
 

  
 

 

Eye (ex,ey,ez)  
(Qx,Qy,Qz) 

 
 CAVE's origin

(0, 0, 0)

 
Left wall

Figure 4: CAVE projection diagram

Using straightforward algebra and following the conventions In
Figure 4, the projection Q! of a point O(Qx, Qy, Qz) on the front
wall is given by:

es = Ox + (PPQz)ex—Qs)= Q:)(ex = Q:)Q &z -Q:

ty —Oy»PP-QiNey-Oy)
Oy=Qy+ e—Os

Thus, the general projection matrix is:

   

 

1 0 0 0

0 ] 0 0

= ex 5 ey fe 1ez—PP ez— PP ez—PP
exPP éyPP a

ez-PP ez—PP é:- PP

One important issue to mention is that, in the CAVE, the eyes
are not assumed to be horizontal and in a plane that ‘s
perpendicular to the projection plane. A clear example ofthisis
a situation in which the viewer is looking at one of the corners
of the CAVE with his/her head tilted. Our tracker is mounted on
top of the stereo glasses; it is raised 5.5" from the glasses to
minimize interference and centered between the eyes. From the
values obtined from the tracker, and assuming an interpupilar
distance of 2.75", we can determine the position of each eye
and its orientation with respect to each one of the walls before
applying the projection matrix.

The reader can easily derive the matrices for the other walls of
the CAVE. Notice that, since the walls of the CAVE are at exactly
90° from each other, the viewer's position with respect to theother walls are:

Left wall: (e,, ey. e,)
Floor wall: (e,. e,, ey)

Right wall: (-e,, eye ey)

(37
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3. Stereo Vision Details

3.1. Convergence

To achleve stereo vision in the CAVE, we, In principle, do two
off-axis stereo projections per screen, one for each eye. We need
to obtain information from the tracker to accurately place each
eye. We assume that the center of rotation of the eye is close
enough to the nodal point (projection point) of the eye to not
introduce significant error. Thus, as with other VR systems,
where the eyes are looking does not enter into the calculations.

3.2. Frame Sequential Stereo

To get a different image to each eye, we use frame sequential
stereo with synchronized shutter glasses. Infrared transmitters
cause the lens for each eye to stay transparent for the proper
512 lines of the 1280x1024 image per screen, switching during
vertical retrace time. We produce 120 fields per second, thus
updating the whole image at 60Hz, producing a flicker-free
image.

Nole, however, that the green phosphor used in commercially
available projection tubes has a persistence thatis too long, soa
user always sees both Images anyway, destroying the stereo
effect. Until Stereographics provided us with P43 coated green
tubes by special order, we did our experiments (in 1991) in
blue and red and shades of magenta. With luck, tube
manufacturers will be motivated to add such tubes to their
catalogs soon.

3.3. Distortion Correction

The HMD, BOOM, and monitor VR systems have significant
geometric distortion inberent in their optics. Modern data
Projectors have extensive electronic adjustments to accurately
correct geometric distortions.

3.4. Minimizing User Shadows

The three wall screens are rear projected so that the
participants in the CAVE do not cast shadows. The floor is
down projected so shadows are cast. We off-axis project the
image from the front top instead of directly overhead, so the
shadow of the user falls mainly behind him/her.

3.5. Frame Accurate Synchronization

Another problem we had to solve was the perfect
synchronization of the screen updates. If the images are even
one frame out of sync, the images in the corners crease and
start to look sucked in like sofa cushions. We were unable to get
adequate response from the UNIX system to synchronize within
the &ms needed, so (at the suggestion of Silicon Graphics staff)
we went to reflective memory, a sort of shared cache
arrangement among all the workstations, Reflective memory
allows C-pointers to directly access chunks of memory, neatly
bypassing the operating system. We intend to use the reflective
memory for more sophisticated data sharing, including
broadcasting of meshes, textures, and polygonlists. For now,
however, reflective memory solves a nasty problem.

3.6. Edge Matching

Particular attention is paid to the edges and comers of the
screen to avoid occlusion of stereo objects inside the room. We
minimize the seams by stretching a 10'x30" plastic screen over
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1/8" stainless steel cable under tension. This gives a seam of
about a pixel or so in width, which can be seen but can also be
easily ignored. Hence, the illusion of stereo in the CAVEis
extremely powerful to the viewer, The floor butts up against the
screen fairly perfectly (1/16") and presents no problem.

In the case of 3D movies and workstation screens, stereo objects
in front of the screen (often the most interesting ones) have to
stay pretty much centered. When a stereo object in front of a
screen hits the edge (called “frame violation” in the jargon), it
collapses the depth illusion since occlusion is a stronger depth
cue than binocular disparity. The CAVE's screen edges are
basically out of view (one can see the tops of the screens, but
they are high up) so the stereo objects can be anywhere.

We were amazed at how much the floor adds to the experience;
a user can walk around convincing objects that are being
projected into the room. Since the tracker provides six degrees
of information, the user's head can tilt as well, a natural way to
look at objects. The HMD provides this capability, but BOOMhardware does not.

3.7 Minimizing Occlusion by
Participants

A user's hand can cause stereo violation if an object is between
the eyes and the hand, a rare enough situation. People are very
eager to resolve stereo Violation whenever it's easy so, in these
instances, the user simply moves his/her hand outof the way.

A much more serious situation occurs with multiple people in
the CAVE. If someone gets in the way of another viewer and an
object is supposed to be projected between the two of them, the
stereo collapses. We avoid this by having a “teacher” or “guide”
control the navigation, but let the “student” or “tourist” be
tracked and stand in front, thereby getting the best stereo
experience without first having to learn to be an expert
navigator of the data space, whateverIt is. At conferences, we
often jam a dozen people at a time in the CAVE and wy fo keep
the images in front of the crowd. Since people more or less have
to stay still or move together, the VR experience for all,
however limited, is nevertheless pleasing.

3.8. Motion Sickness

Seeing one's own body or those of other people may in fact bea
good idea, Of 9,000 or so people who have been in the CAVE,
two have experienced enough nausea to complain aboutit, a
very low ratio (apparently) for VR [1]. We don't yet know why
the CAVE doesn't make people nauseous; perhapsit is content
related. Our images primarily have to do with scientific data
that changes over time, not roller coaster type motions with fast
ulting horizons typical of many VR applications. Another
explanation may be our better coping with fast head rotation
(se@ next section).

4. Quantitative Analysis of the Effect of
Tracking Noise and Latency

4.1. Introduction

Different VR modes have different responses to errors in
tracking viewer position, One reason for the differences
depends on whether the projection plane moves with the viewer
(as with BOOMs and HMDs)or not (in the case of the monitor
and CAVE). A second reason is the difference in the distance of
the projection plane to the eye, which distinguishes the monitor
implementation from the CAVE's,
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4.2. Rotation errors

Tracking errors can be resolved into displacement errors and
yotation errors. Actual problems are often a combinationof the
two. In the monitor and CAVE paradigms,since the projection
plane does not move with the viewer's position and angle, a
rotation about the projection point in the eye creates zero
error. In the HMD/BOOMparadigm,a given rotational tracking
error produces the same magnitude of rotational error in the
image, but of opposite sign. This is a serious problem if the
user's head rotates quickly because the whole visual scene first
rotates with the head and then steps back into the properplace.

4.3. Analysis of displacement errors in
the CAVE and monitor paradigms

The effect of displacement error for both the CAVE and the
monitor paradigms is illustrated in Figure 8. The displacement
error in eye tracking is AP (in a plane parallel to the projection
plane), the distance from the eye to the projection plane is PD,
and the distance to the objectis Z. DISP is the distance error on
the projection plane. a is the angularerror.

Tracked Projection

<r

 
 

Figure 8: Effect of displacement error for both the CAVE and
the monitor paradigms
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therefore,
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PD

For large Z,2PPhet
therefore,
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AP2) a= —
(2) a PD

For small Z,a
therefore,

AP3) a@=—-—
(3) Z

For Z = PD (when the objectis on the projection plane),

(Z—PD) _
a=0

therefore,

(4) a=0

Equation (1) represents the approximate angular error a for a
displacement tracking error AP in the monitor and CAVE
paradigms.

Equation (2) shows that the larger projection distance PD
associated with the CAVE, as compared to the monitor, makes
angular error a due to displacement AP smaller for large
distances Z to the object viewed,

Equation (3) shows that for very small Z values, the monitor
and CAVE have similar responses.

Equation (4) shows that when objects are on the projection
planes of the monitor or CAVE, the angular error a due ta
displacementis zero.

4.4. Analysis of displacement errors in
the BOOM and HMD

A similar analysis for the BOOM and HMDis indicated in Figure
9.

Perceived

objec
Projection

 
 

Figure 9: Effect of displacement error for both the HMD and
the BOOM paradigms

A displacement error in tracking head position results in
identical errors in both the eye position and the projection
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plane position. This results in a negative displacementof the
object being viewed.

a= wcran(="}7 Z

For small angles,

—AP5 a
(5) @ Z

Equation (5) shows that the angular error a is independent of
the projection distance PD to the projection plane. Comparing
equation (5) with (2), we see that the BOOM and HMD haveless
angular error a for displacement errors AP for large object
distances Z than the CAVE/monitor models. Comparing
equation (5) with (3), we see that the BOOM and HMD have
similar angular errors a for small object distance Z.

Error (degrees)

 
Figure 10: Angular error fora 3cm tracker displacement

Figure 10 graphs the angular error ao due to a tracker
displacement error AP of 3cm for object distances Z. This case
represents a tracking error due to latency of a person moving
30cm/second combined with a display rate of 10
frames/ second, For large object viewing distances (Z=500cm),
the HMD/BOOMhavethe best performance, the CAVE has 2-1/2
times the error, and the monitor has 9 times the error. For
small object viewing distances (Z=20cm), the monitor has the
best performance, and the CAVE and HMD/BOOM have only
slighty worse error magnitudes,

4.5. Examples of combined rotation and
displacementtracking errors

Normal head motions like noddingand panning involve both
rotation and displacementof the eyes. The combined effect of
these errors may be approximated by summing the individual
angular errors c. The assumed projection distances PD for the
monitor and 10° CAVE are 50cm and 150cm, respectively.
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Figure 11 graphs the angular error « as a function of eye/object
distance Z due to a head rotation (pan) of 90 degrees/ second
and a display rate of 10 frames/second.It is assumed that the
eyes are Scm from the center of rotation. For large Z, the CAVE
is 43 times better than the HMD/BOOMand 4 times better than
the monitor. For smal] Z, the CAVE and monitor are 6 times
better than the HMD/BOOM,

a5 Error (degrees)
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Figure 11; Tracking errors introduced by head panning
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Figure 12: Tracking errors introduced by head nodding

Figure 12 graphs the angular error a as a function of eye/object
distance Z due to a head rotation (nod) of 90 degrees/second
and a display rate of 10 frames/second.It is assumed that the
eyes are 15cm from the center of rotation. For large 2, the CAVE
is 15 times better than the HMD/BOOM and4 times better than
the monitor. For smal] Z, the CAVE and monitor are 3 times
better than the HMD/BOOM.
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The examples above are all due to tracking errors caused by
jatency. Tracking errors from other sources, such as electrical
interference, tend to be about an order of magnitude smaller,
but the ratios are the same and we can draw the same
conclusions. For the head-panning example in section 4.5, the
problem was caused by normal head motion; if, however, we
divide the angular error a by 20, we could interpret the graph
as representing the case of a 0,5-degree tracking error
combined with a tracking receiver mounted 5cm from the eye.

5. Successive Refinement

One benefit of the wrap-around screens in the CAVE Is the
potential for successive refinement of images. It is fair to say
that we will never, in our lifetimes, have enough computing
power to create complex models and display them in real time.
Successive refinement trades off motion for time, freezing the
image and filling it in, a now common computer graphics
technique. Yet, one cannot freeze the image in a HMD without
major disorientation. In the BOOM, successive refinementis
possible but the user cannot look around. In the CAVE, one can
navigate to a place in real time and then send off to a
supercomputer for a highly detailed set of four images, still in
stereo. When the images come back, the user can still pan
around, although he/she cannot navigate while in this mode,
The best stereo is achieved when looking in the last
interactively tracked direction. Optimizing for this mode is the
subject ofactive ongoing research,

Making VR usable in Jess-than-real-time situations is important.
Supercomputers are essentially floating-point machines. One
popular vector machine we use cannot create 1280x1024 pixel
maaps in real time because the floating-to-fixed conversions are
done by non-vectorized subroutine calls (at three conversions,
one for each pixel color component, it gets time consuming).
There are no floating-point frame buffers for sale. In addition,
the desire to transmit a 1280x1024 24-bit image to a
workstation 60 times a second requires nearly 2 gigabits of
network throughput! Multiply that by 4 for the CAVE screens.
Since an update rate of only 10 times a second is closer to VR
industry standards, divide by 6, which results in a need for
1.25 gigabits/second, Clearly, we try to transmit polygonlists
and meshes in floating point and Jet the workstation's graphics
engine do its job whenever possible.

Naturally, it is important to consider more than image
complexity; the basic science being computed oftenis extremely
complex and will not respond in real time. Sometimes large
stores of precomputed data are meaningful to explore; perhaps
disk-based playback will be useful. The CAVE is a research
resource now being used by scientists at the University of
Ulinois at Chicago, the National Center for Supercomputing
Applications, Argonne National Laboratory, University of
Chicago, California Institute of Technology, and the University
of Minnesota. The overall goal is to match the capabilities of
supercomputing, high-speed networking, and the CAVE for
scientific visualization applications.

6. CAVE Shortcomings

6.1. Cost

The CAVEis big and expensive, although, given inflation, it is
no more expensive than the PDP-11/Evans & Sutherland single
user display system was 20 years ago. Also, considering that up
to 12 people can space-share the CAVE, the cost per person
comes down in some circumstances. Cheap wall-sized LCD

screens With low latency that one could stand on would be great
to have, if they only existed, The desire for the rendering
afforded by $100,000 state-of-the-art graphics engines will not

abate; however, current effects will be achievable at more
modest cost as time goes on.

6.2. Ability to Project on All Six Sides
of the CAVE

Six screens would make a better CAVE. We originally planned to
do both floor and ceiling “rear” projections, which would have
necessitated raising the CAVE structure 10'. A hole in the floor
and a large sheet of strong glass or plastic would be a better
solution, but not one easily achieved at conferences or
universities.

A rear screen for the fourth wall might be possible, although
the details for human entrance and exit would have to be
worked out, especially if the cable-stretched screen technique
were used. Four screens work very well, yielding large surround
views for both panning actions and looking down.
Consequently, objects inside the room can be walked around
and virtually beg to be touched.

6.3. Light Spillage

One problem is the light spillage from the “screen” on the floor
(the wall screens are fortunately not very reflective), Our floor
screen is simply a painted floor board; the floor paint was
quickly chosen by using the color-matching computer at the
local paint distributor to duplicate the wall screens’ color as a
first approximation. The only time there would be a problem
having one screen brighter than the others would be when the
center of interest is not an object on the brightest screen, an
unusual case. Very bright screens all around do tend to reduce
image contrast somewhat, but this, too, has not been an issue.
Naturally, good graphic design optimizes for the strengths and
weaknesses of any medium.

6.4. Utilizing the CAVE Medium to Its
Full Potential

The CAVE, like Omnimax, represents a different visual
paradigm: inside out instead of outside in, From working with
students and colleagues, we realize that getting people to design
visualizations and think in terms of inside-out is difficult,
especially since the CAVE simulator used in the early stages of
application development has an outside-in presentation on the
workstation screen. Nonetheless, it is a concept into which it is
fairly easy to incorporate data.

6.5. Fragility

The CAVE is not “museum hardy." The screens, tracker, and
glasses are not kid-proof, thereby limiting use in museums,
malls, arcades, and so on. More research is needed.

6.6. New Control Paradigms

As the computing community went from command-line
terminals to 2D raster systems, the pull-down menu and mouse
provided an alternative to the command line and keyboard.
The CAVE has not produced any significant new contro]
paradigms to date, although “step-on” menus have been
proposed, One graduate student (Randy Hudson) has achieved
a nice way to control rotation by having the user stroke a
barely perceptible tessellated wireframe sphere with his/her
hand. We look forward to the challenge of finding the next
control models and encourage anyone with ideas to come and
discuss collaboration.
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6.7. Directional Sound

Another issue to address is the effective implementation of
directional sound, In theory, with speakers in all corners, one
should be able to achieve good directionality with the proper
audio synthesis gear. In practice, however, sound localization is
compromised by reflections off the screens.

6.8. Ability to Document

The CAVE is very hard to photograph. Imaginations soar when
readers are presented with excellent suggestive 2D photos of
other VR devices in use. We have not been able to compete in
this domain. However, the CAVE and monitor are both
amenable to video documentation if the tracking device is
attached to the camera and the interoccular distance is adjusted
to zero.

7. Conclusions

The CAVE has proven to be an effective and convincing VR
paradigm that widens the applicability and increases the
quality of the virtual experience. The CAVE achieves the goals
of producing a large angle of view, creating high-resolution
(HDTV to twice HDTV) full-color images, allowing a multi-
person (teacher/student or salesperson/client) presentation
formal, and permitting some usage of successive refinement.
Furthermore, the flatness of the projection screens and the
quality of geometric corrections available in projectors allow
presentations of 3D stereo images with very low distortion as
compared to monitor-based, HMD, and BOOM YRsystems, The
user is relatively unencumbered given that the required stereo
glasses are lightweight and the wires to the head and hand
trackers for the tracked individual are very thin. Since the
projection plane does not rotate with the viewer, the CAVE has
dramatically minimized error sensitivity due to rotational
tracking noise and latency associated with head rotation, as
compared to the HMD and BOOM.

At SIGGRAPH '92 and Supercomputing '92, more than a dozen
scientists, in fields as diverse as neuroscience, astrophysics,
superconductivity, molecular dynamics, computational fluid
dynamics, fractals, and medical imaging, showed the potential
of the CAVE for teaching and communicating research results.
Collaborative projects are currently underway in non-Euclidean
geometries, cosmology, meteorology, and parallel processing.
The CAVE is proving itself a useful tool for scientific
visualization, in keeping with our Laboratory's goal of
providing scientists with visualization tools for scientific
insight, discovery, and communication.

8. Future Work

Further research efforts will tie the CAVE into high-speed
networks and supercomputers. We have interest in adding
motion-control platforms and other highly tactile devices.
Hardening and simplifying the CAVE's design for the nation's
science museums, schools, and shopping malls is a goal as well.
Design and implementation of quantitative experiments to
measure CAVE performance are also planned,
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ABSTRACT

We present a new approachto lighting design for image synthesis. It
is based on the inverse problem of determining light settings for an
environment from a description of the desired solution. The method
is useful for determininglight intensities to achieve a desired effect
in a computersimulation and can be used in conjunction with any
rendering algorithm, Given a set oflights with fixed positions, we
determine the light intensities and colors that most closely match
the target image painted by the designer using a constrained least
squares approach. We describe an interactive system that allows
flexible input and display of the solution.

CR Categories and Subject Descriptors: 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism; 1.3.3 [Computer Graphics]:
Picture/Image Generation; 1.3.6 [Computer Graphics]: Methodology and
Techniques - Interaction techniques.

Additional Key Words: simulauon, global illumination,radiosity, ray trac-
ing, lighting design, inverse problems.

1 INTRODUCTION

Although global illumination algorithms can produce strikingly re-
alistic images, these algorithms can be difficult to use for lighting
design. Currently the only tools available to designers are based
upon direct methods—those that determine an image from a com-
plete description of an environment and its lighting parameters.
This forces a designer to begin with a geometric model, position
the lights, assign their colors and intensity distributions, and f-
nally compute a solution. The process is repeated until the so-
lution matches the desired effect. This method is generally time-
consuming, tedious, and often counter-intuitive. Given that we usu-
ally begin with a notion of the final appearance, a more natural, al-
beit more difficult, approach is to solve the inverse problem—that
is, to allow the user to create a target image and have the algo-
rithm work backwardsto establish the lighting parameters. Inverse
problems infer parameters of a system from observed or desired
data [1J—in contrast with direct problems, which simulate the ef-
fects given all parameters. Although inverse problems are common
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in radiative transfer, thus far the field ofcomputer graphics has been
almost exclusively concerned with direct problems. Yet, inverse
problems match a central goal oflighting design—determining how
to achieve a desired effect.

In this paper, we present an approach that allows a designer to
“paint” a scene as it is desired to appear, Given static geometry
and a set of lights with fixed positions, a constrained least squares
approach is used to determine the light intensities and colors that
most closely match the target image painted by the designer. In the
domain oflighting design, geometry often constrains the placement
of the lights [2]; the designers frequently know about where to put
the lights but not how the lights will combine or how bright to make
them. Consequently, the task of selecting appropriate intensities for
static lights is a useful subproblem oflighting design, andthis is our
focus. We do not address the automatic placementoflights, nor the
mapping of simulated intensities to physical properties of the lights
[3, 9).

2 INVERSE PROBLEM

The problem can be phrased more formally as follows: given static
scene geometry and a desired appearance, determine the lights that
will most closely match the target. There are constraints on pos-
sible solutions: only certain objects can emit light and only posi-
tive energy can be emitted—keepingus in the realm of physically
meaningful solutions. The existence of constraints implies that not
every target is realizable. The most general problem ofdetermining
how many lights to use, where the lights should be placed, as well
as the distribution, color, and intensity of the lights is a non-linear
optimization problem. However,if all possible lights have been po-
sitioned, and their distributions have been fixed, the determination

of whichlights ta use and whattheir colors and intensities should
be is a linear optimization problem.

2.1 Constrained Least Squares

Suppose {®',...,®"} is the set of functions resulting from n
distinct light sources illuminating an environment independently.
These functions can be computed by any illumination algorithm,
including those that account for interreflection and shadows. For
example, they may be ray traced images {10) of a scene for each
light from the same viewpoint, or radiance functions over surfaces
in the environment computed via radiosity [4]. Let UY be the target
function we wish to approximate. To formulate the approximation
problem we require some minimalstructure on the space of func-
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tions. In particular, we require vector addition and scaling, which
we define pointwise, as well as an inner product defined on pairs of
functions (i.e. a symmetric positive definite bilinear form). From
the inner product we gain the useful notion of the “size” of a func-
tion via the norm

|Pl]=V(#, 2%), (1)

which provides a measureof error. The approximation problem can
then be stated in termsoffinding non-negative weights wi,..., Wp
such that the function

P= > wb! (2)
iz|

minimizes the objective function || — Wj). Stated in this way, the
problem is one of least squares. Its unique solution is easily ex-
pressed in termsof the inner products:

(o', e') ion (®', 6°) wi (o', wv)
ff=} 3 |) @

(@",B') =. (BT, B)|Le (®" , W)es
M Ww b

The» x 4 matrix M is the Gram matrix ofthe inner product, which
consists of the coefficients of the normal equations [7]. The Gram
matrix is non-singular if and only if the functions {',..., "} are
linearly independent, which will normally be the caseif all 7 lights
produce distinct effects on the environment. Naturally, this excludes
coincidentlight sources.

The remaining task is to define an appropriate inner product on
the space of functions. Here we make use of the exact nature of the
functions. If the functions assign intensities to a set of p discrete
points, such as images consisting ofp pixels, then the natural inner
productis the p-dimensional vector dot product.

Alternatively, if the functions define surface radiance, the most
natural inner productis the integral of the pointwise product of the
functions. We further assumethatthe functions are piecewise linear,
defined by interpolatinga finite set ofpatch vertices. This represen-
tation is easily integrated yielding

(o', o) = S> diate, (4)bel

where v is the number of patch vertices, a, is proportional to the sum
ofall patch areas adjacentto the k” vertex, and ©is the radiosity at
vertex k due to light i. Under these assumptions, the normal equa-
tions can be written

A'DAw = ATDY (5)

where A is the v x n matrix of the n vectors ®', and D is the v x v
diagonal matrix diag(a?,,.. , at) of the weights used for the inner
product. With this definition,||#|| is proportional to the total power
leaving all surfaces. Also, changes to the inner product are easily
expressed as changes to D.

2.2 Solving the Normal Equations

The problem now is to solve the system of equations from Equa-
ion 5. This system contains n equations in n unknowns where n,
the number oflights, is generally much smaller than the number of
vertices in the environmentor pixels in the image. Let M = A’DA
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and b = A'DW as in Equation 3. We choseto solve the system
Mw = busing a modified Gauss-Seideliteration.

There is no guarantee that the solution to the system has only
positive entnes. Simply clipping to zero after convergence is not a
viable approach because negative values counteract someofthe pos-
itive energy; ignoring them causes the environmentto be too bright.
To avoid this difficulty, we modify the Gauss-Seidel algorithm so
thal negative values are clipped to zero during each iteration. On
the + I iteration of the modified algorithm, the updated value of w;
is

eeee ee

wit)= max (PeeteRealco Mimsi Dine Mis ‘ o). (6)
Since a zero value does not influence other entries of w, we are ef-

fectively ignoring that light while the iteration is producing a nega-
tive value forit. In practice, this approach always convergesin the
sense thal the difference between two iterations goes to zero. An
altemative method may be foundin [6].

3 IMPLEMENTATION

Our implementation is based on surface radiance functions as op-
posed to images. The system is therefore view-independent, solving
for light intensities that are meaningful in a global sense, not simply
for a given view, Although the system does no automatic placement
of lights, the user may modify light source positions and distribu-
tions at any time. However, any such change requires that a new
solution ®; be computed. To keep these operations fast, we have
currently limited the solutions to direct illumination from each of
the lights, accounting for distance and visibility but not secondary
reflections, Similarly werestrict surfaces to be ideal diffuse reflec-
tors. Using more complex techniques to find the light source func-
tions makes moving a light more expensive, but does not affect the
algorithm. By solving for the intensity of each color channel sepa-
rately, the colors are determined as well as the intensities.

The user modifies the radiance function of the target by “paint-
ing” light onto surfaces. We also adjust the matrix D sothat painted
surfaces have more weight (or more area) in the solution, causing
the system to try harder to match painted surfaces than unpainted
ones. This is necessary in complex environments where the large
unpainted areas can overwhelm theeffect of small painted areas,

To achieve interactive speeds while painting we use the method
introduced by Hanrahan and Haeberli [5] to quickly find which
patch the brush is currently affecting. Object id’s and the patch uv
coordinates are rendered into auxiliary buffers. A lookupat the paint
brush position in these buffers quickly identifies the patch being
painted. Only painted patches are redrawn. Since very few patches
change at once, updates are easily made in real time.

The patch’s reflectance function modifies the light as it gets

painted on a surface. This prevents a surface from being painted
with physically unattainable colors. For example, a purely red sur-
face cannot be painted blue. The modified light then gets distributed
to the patch’s vertices accordingto their proximity to the paint brush,
Werestrict the radiosity at a vertex to between zero and oneand lin-
early mapthis to the full dynamic rangeofthe display.

The system recomputes the closestfitting combination of lights
after each brush stroke. All vertices painted between a button press
and release comprise a stroke. To maintain interactivity, we perform
all the updates incrementally. Instead of completely rebuilding V
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(the target radiosities) and re-solving, however, we only change the
elements correspondingto painted vertices and make incremental
changesto the inner products. If AW is a vector of the changes to
the radiosities with p non-zero terms, then

Paw = ATD(W + AV) = bay + ATDAW. (7)

Since AV is typically very sparse, we can update ) with O(mp) op-
erations by ignoring all zero entries of AV. Since most of the en-
vironment hasn’t changed, the old intensities provide a good ini-
tial guess for the modified Gauss-Seidel iteration and it converges
quickly, We can similarly update the weight (Le. effective area) of
vertices. Consider changing the importance of one vertex. Let AD
be the diagonal matrix with its sole non-zero entry being the change
in weight ofthe vertex. Then

Prow =A'(D + ADW = bia + ATADW. (8)

Because AD hasonly one non-zero entry, ADhas only one non-
zero entry and b,j~ can be updated with O(n) operations, Changing
the inner product, though, requires that MM be updated as well, This
can be done incrementally, observing that

Mnew = AD + ADYA = Mow + A" ADA. (9)

Since ADA has only one non-zero row, we need to look at only one
column of A‘ so we can do the multiplication in O(n") steps.

{n addition to painting, the user can also interactively move and
aim light sources. Changing a light requires recomputing the di-
rect illumination due to that light. Since A changes, M mustbe re-
computed as well: however the cost of recomputing a column of
A greatly overshadows the matrix multiply used to determine M.
Because this can take time for large environments, the user can de-
fer these computations until all the lights have been satisfactorily
placed.

The user may also move the camera interactively. Because
wepaint directly onto the geometry, painted surfaces are view-
independent. Also, since no directional effects are accounted for,
ihe functions ©’ for each light are independentofthe position and
orientation of the camera. Therefore we need not recompute A =
|b! ..-"| or re-solve for the light intensities as a result of moving
the camera.

4 RESULTS

We tested the system on a moderately complex environment con-
sisting of polygonal meshes with about 19,000 polygons, 27,000
vertices, and 12 lights. Figure | shows the user’s painted environ-
ment at the top and the system’s solution on the bottom. A user can
see both views at once while working to get immediate feedback on
how closely the design is being met. Figure 2 shows the same en-
vironment with the same light positions but with different painted
intensities and colors (left) and a distinct best approximation (mid-
dle). The lighting parameters determined by the interactive lighting
design were then used to compute a ray traced solution, which is
shownin Figure 2 (right). The large scale washes ofcolor and illu-
mination levels are captured well in the rendered image. The user
can quickly and easily modify a design to have a very different ap-
pearance.

Figure 3 shows the screen during a painting session. The window
in whichthe user paints is on the left and the best fit solution is on
the right. Some of the support tools for choosing light to paint and
positioning lights are also shown. In this design, 14 lights were
placed in another environment ofsimilar complexity.

145

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

 
 

Figure 1: Design (top) and associated best approximation (bottom).

5 CONCLUSIONS AND FUTURE WORK

We have created an interactive system to help with lighting design
in image synthesis by solving a restricted inverse lighting problem.
The user paints an approximation of the desired result and the sys-
tem computeslight intensities and colors to matchit. This approach
can be more intuitive and easier to use than the usual direct edit—

render cycle.
Given fixed geometry and a desired target, the problem of deter-

mining light intensities and colors can be solvedin the least squares
sense using a modified Gauss-Seidel algorithm. The method can be
made more interactive by using incremental updatesto the matrices
and vectors involvedin the solution process. Magnifying the effect
of each brush stroke by increasing the weightof the affected vertices
allows the user to make changes to the environmentwith relatively
little effort.

Although they have received little attention in computer graph-
ics, inverse lighting algorithms have great potential as design tools.
Clearly there is much to do beyond automatic selection of light
source intensities, Automatic light source placement would greatly
increase the utility of the technique, but will require more elabo-

145



146

 
SIGGRAPH 93, Anaheim, California, 1-6 August 1993 

 afee 
Figure 2: Design(left); best approximation (middle); ray tracing (right).

 
Figure 3: Interactive system.

rate optimization methods, as this requires solving non-linear con-
strained optimization problems.

Any rendering technique will work for determining the contribu-
tions from eachofthe lights. Ouruse ofdirect illumination only was
motivated by a desire to allow interactive light placement. A more
elaborate implementation might compute more accurate solutions
for those lights that were unlikely to change position ordistribution.

In order to make the system usable for lighting designers, some
way of mapping screen intensities to physical units in the system
must be found. Since the system is being driven by the user’s per-
ception of whatis being painted, the lighting conditions ofthe user’s
environment must be accountedfor, as well as the non-linearities of
the monitor, the reproduction ofcolor on the monitor, and most im-
portantly, the extremely limited dynamic range of the monitor.
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Abstract

This paper presents a method for designing the illumination
in an environment using optimization techniques applied to
a radiosity based image synthesis system. An optimization
of lighting parameters is performed based on user specified
constraints and objectives for the illumination of the envi-
ronment. The Radioptimizationsystem solves for the “best”
possible settings for: light source emissivities, element reflec-
tivities, and spotlight directionality parameters so that the
design goals, such as to minimize energy or to give the room
an impression of “privacy”, are met. The system absorbs
much of the burden for searching the design space allow-
ing the user to focus on the goals of the illumination design
rather than the intricate details of a complete lighting spec-
ification.

The system employs an object space perceptual model
based on work by Tumblin and Rushmeier to account for
psychophysical effects such as subjective brightness and the
visual adaptation level of a viewer. This provides a higher
fidelity when comparing the illumination in a computersim-
ulated environment against what would be viewed in the
“real” world. Optimization criteria are based on subjective
impressions of illumination with qualities such as “pleasant-
ness”, and “privateness”. The qualities were selected based
on Flynn’s work in illuminating engineering. These crite-
Tia were applied to the radiosity context through an experi-
ment conducted with subjects viewing rendered images, and
the respondents evaluated with a Multi-Dimensional Scaling
analysis.

1 Introduction

Historically, lighting design has been a black art. The light-
ing designer first received a design specification of the cus-
tomer’s expectations and of the room’s function. The de-
signer then made a lighting lay out and from experience
would sketch what the room would look like from rough
lighting calculations, With the advent of computer aided
rendering, this process has been simplified allowing the de-
signer to model lighting specifications with a CAD system
and have it simulate the lighting calculations giving the de-
signer a quick design check of what the room would look
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like. This also provides the customer who has no experience
with lighting units a realistic preview of the finished room
early in the design cycle [16]. Progress in rendering to date
has mainly focused on improving the realism of the physical
simulation and the development of algorithms with faster
performance. Although great advances have been madein
these areas, little work has been done on addressing the de
sign problemsin creating better quality lighting, except for a
few systems that determine lighting placement by indicating
desired areas of highlights and/or shadow [12].

Lighting designers base their art on the belief that spa-
tial lighting patterns are a visual communicative medium, in
which some patterns of light suggest or reinforce shared at-
titudes and impressions to people of the same cultural back-
ground [5]. In addition, the designer must be aware of the
need to conserve the electrical energy used in implementing
their designs. An over-reaction to the wasteful energy con-
sumption of the 1960s and 1970s often led to buildings which
were inadequately lit for their designed purposes, hampering
the productivity of the residents. A better balance of goals
between energy conservation and the quality of the lighting
is needed [10],

This paper proposes a goal based illumination design ap-
proach, that has been termed Radioptimization, to help a
lighting designer search the space of possible lighting spec-
ifications. Though computers will never replace artists, the
system may generate configurations not previous considered
or optimize on an already considered configuration. The ap-
proach allows the designer to concentrate on high level goals
such as “visual clarity” and specify constraints such as min-
imum lighting levels in specific locations. The system then
determines optimal settings for the lighting parameters of
the modeled environment by searching for the “best” pos-
sible settings for light source emissivities, surface reflectiv-
ities, and spotlight directionality. Unconstrained optimiza-
tion techniques are employed in conjunction with classical
radiosity (3, 2, 8] to simulate global illumination.

Creating an appropriate two-way link between the de-
signer and the rendering system requires two important en-
hancements to basic rendering methods. First, since the de-
signer is asked to iteratively evaluate the visual impression
from a rendered image, the images must provide (as much as
possible) a subjective match to a “real” environment. The
work of Tumblin and Rushmeier[18] on the psycho-physical
quantities of subjective brightness has been applied to map
luminance values to brightness values to provide higher fi-
delity for comparing the illumination of a computer gener-
ated scene,

Secondly, the optimization objectives presented to the de-
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signer are based on John Flynn’s work [5] whose experiments
allowed one to measure impressions of lighting patterns. To
develop the objective functions, experiments were conducted
with subjects viewing computer generated images to create
a mapping from Flynn’s criteria to quantifiable qualities in
the radiosity simulations.

There are three bodies of technology andrelated literature
that are central to the work reported here: numerical opti-
mization, radiosity based image synthesis, and knowledge
about human perception as it relates to subjective impres-
sions of lighting and to subjective impressions from images
presented on a CRT. We will briefly review each of these
areas concentrating on the pertinent subtopics in each that
relate directly to this work.

1.1 Optimization

The basic constrained optimization problem is to minimize
the scalar quantity of an objective function of n system pa-
rameters while satisfying a set of constraints. Although this
is a well researched area, to date there is no computational
algorithm for optimization which will always find the global
minimum of a general non-linear objective function.

Most methods for dealing with constraints transform the
constrained problem to an (approximately) equivalent un-
constrained optimization by either removing the constraints
by explicitly solving for one optimization variable, or by
adding a new function to the objective [14, 15]. In the sim-
plest case a constraint can be transformed into a penalty
function, which when added to the objective returns a high
value on a constraint violation,

Once the constraints are removed or transformed, the
problem reduces to finding a minimum of the objective.
Most optimization methods are performed iteratively from a
starting point, in the multidimensional search space. Local
information about the value, gradient, and Hessian (matrix
of second order partial derivatives) of the function is gath-
ered and a search direction is selected to move the solution
to a new guess. One such techniquefor selecting a search di-
rection is Newton’s Method which solves for a step direction
as the inverse of the Hessian times the negative gradient, i.e,
4X = -(9*f)* of.

Although Newton’s method can have great success, a
number of Quasi-Newton methods have been developed
to numerically approximate the Hessian from a series of
gradients for applications where it is either inefficient or
impossible to derive the Hessian directly. These include
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (13,
11], which due to non-linearities does a series of one dimen-
sional line searches until it converges on a local minimum.

1.2. Radiosity

Radiosity methods simulate the illumination of Lambertian
diffuse environments by deriving an energy balance equa-
tion. Discretizing the environment into a set of elements
with an assumed functional form, typically a constant value,
for the radiosity across the surface, the balance of energy be-
tween elements is defined as through a set of interdependent
linear constraints in the form:

Bi = By +p: 9 Fig By (1)
zi

where B;is the radiosity of element i, B; is the emission of
element i, p; is the reflectivity of element i, and Fig is the
form factor from element £ to element j.
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The form factoris the fraction oflight leaving one element
(i) that arrives at another (j) and is given by:

1 cos(¢i)cos(d;)Fi = i | / 4(pi, pj)———>dAidA;Ai PiGA; pj e # wri, :€Aj iy

where A; and A; are the area of the element surfaces, pj
and p; are points on elements i and j respectively, 6(pi, py)
returns 1] ifp; and p; are mutually visible and 0 otherwise, 4;
is the angle between the normal vector at p; and the vector
from p; to pj, @; is the angle between the normal vector at
pj and the vector from p; to pj, and rij is the distance from
pi to p;, For an environment of n patches, equaton 1 can be
expressed as a set of n simultaneous linear equations.

This system of equations can be solved numerically by
“gathering” or “shooting” methods (3, 2]. The solution to
this system yields the element radiosities, B,, which can be
projected from any view point onto the view planefor a final
image. At first glance a direct solution to the radiosity equa-
tion appears to require at least O(n) space and time, given
n elements, Hanrahan et al. have shown, however, that an
equivalent to the form factor matrix can be computed and
stored in O(n) space and time by exploiting the cohenerent
structure of the matrix [8].

Directional lighting effects such as spotlights can be added
to the radiosity equation by replacing the cos(¢;) term in the
form factor equation with a different distribution function:

1 J

Mw= a[ [ Bei, ws)s(i)Go)dAsdA;
* Spied/pyeAy 4

where s(¢;) is the directionality distribution weight for the
light source as a function of the angle between the direc-
tion vector of the light (element 1) and the vector between
the points p; and pj. Here we restrict ourselves to distribu-
tions of the form, s,n(¢) = w(n)cos"() for values n >= 1.
It is useful to be able to change the beam width without
affecting the total energy emitted by the light. This re-
quires a normalization factor, w(n), in the emission func-
tion sy. The normalization factor w(n) must be chosen so
that the total energy emitted over the hemisphere is con-
stant, independent of n, as the beam width is adjusted. The
value of the constant is chosen so that w(1) = 1. Thatis,
eyphere S,dw = m, where dw is the differential solid angle
on the sphere. Carrying out the integration in spherical co-
ordinates yields the normalization weight, w(n) = (n+ 1)/2.

1.3. Human Perception

1.3.1 Brightness

Brightness is a measure of the subjective sensation produced
by visible light. Brightness, measured in units of brils, re-
lates linearly to human visual response. For example,if two
light sources are compared and one appears to be twice as
bright as the other, the brightness of thefirst, in brils, will
be twice that of the second,

The human eye is sensitive to a luminance range of ap-
proximately ten orders of magnitude. However, at any one
time the eye can only detect a brightness range of 100
to 1 with good accuracy. The iris adjusts, limiting the
amount of light entering the eye, in order to seek a state
of equilibrium that is appropriate for the general bright-
ness conditions. Tumblin and Rushmeier [18] studied work
by Stevens [17] who theorized that the adaptation level of
a scene can be estimated by the expected value (mean)
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of the Iogio of the luminances visible on the retina, i.e.,
EXPperetina{logi0(L(p))) where L(p) is the luminance: at
a point p on the retina. Miller ef al. also theorized
that differing adaptations of the eye result in a family of
curves relating luminance and brightness values in the form,
logio(P) = aa + logio(L) + 6b where P is the brightness
value specified in brils, L is the luminance value specified
in nits, bb is — 0.4(logio(Lw))* + (—2.58log:0(Lw)) + 2.02,
aa is 0.Alogio(Lw) + 2,92, and Ly is the white adapt-
ing luminance which can be approximated by the equation
logio(Lu) = EXP{logio({L;)} + 0.84.

This perceptual model accepts luminance values in units
of nits which in photometric units are related to lux on a
diffuse surface by, 1 lux =1nit / 10,000. Thus solving for
brils in terms of an element radiosity of B lux yields:

P= jp2*tesro(8/10,000)+bb (2)

Since the adaptation of the eye is affected only by what is
visible to the retina, perceptual processing is usually done as
a view dependent process in screen space. This assumes that
the viewer adapts to a single view rather than to an entire
environment, In practice, we are constantly moving our head
and eyes to scan a room and hence adaptto the overall room
lighting rather than to a single view. In our work we propose
a view independent approach to lighting design, since the
designer's goal is to optimize on the overall impression of a
room rather than a particular view of the room. Therefore,
the conversion from luminance units into perceptual units
is performed in object space. Each element is considered
to contribute to the adaptation proportional to its physical
size, This neglects the view dependenteffects of perspective
foreshortening and occlusion but has the advantage that it
yields view independent results. We have found that the
object space, view independent, method gives results that
are nearly identical to view dependent screen space methods
for typical, single room, architectural models. In addition
to the view independence, calculating perception in object
space has the added advantage of faster performanceif the
number of elements is much smaller than the number of
screen pixels.

1.3.2 Subjective Impressions of Iilumination

In the 1970’s, John Flynn published a series of articles
[6, 4, 5], introducing a methodology with which to quan-
tily parameters that elicit a shared human behavioral re-
sponse and subjective impression. In particular, Flynn ex-
amined how non-uniform, peripheral, and bright lighting af-
fects impressions of visual clarity, spaciousness, relaxation,
and privacy. Flynn created six different light settings for
a conference room and subjectively associated each room
with a non-uniform, peripheral, and brightness value so that
each room corresponded to a point in a 3 dimensional space
of the different lighting characteristics. Flynn also associ-
ated a set of semantic differential (SD) rating scales such
as large-small and spacious-cramped with each category of
impression. Test subjects were then asked to make pair wise
comparisons of the differences between each room from the
set of SD rating scales where 0 meant no difference and 10
meant a large difference.

The data gathered resulted in a 6x6 symmetric dissimi-
larity matrix comparing the 6 roomsfor each subject tested
and each SD comparison made, e.g. large-small. The mul-
tidimensional scaling program INDSCAL[1, 7], was used to
determine how each subjected weighted the non-uniformity,

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

peripheral and brightness values in making each SD com-
parison. A weighting of each dimension for each subject
was determined that best fit the data. The results showed

a correlation between the room positions hypothesized by
Flynn and the positions computed by INDSCAL, support-
ing Flynn’s hypothesis that brightness, non-uniformity, and
peripheral lighting reinforce particular impressions. In ad-
dition, there also was a correlation for the weights for each
parameter among all the subjects, supporting the concept
that particular lighting patterns elicit a shared impression,
By this process, Flynn was not only able to demonstrate
that there is a definite correlation between the measurable

quantities (non-uniform, peripheral, and bright lighting) and
the subjective impressions (visual clarity, spaciousness, and
relaxation), but was able to quantify how much each of the
measurable dimensions affects each subjective impression.

As described shortly, we have adapted this work through
an additional level of experimentation in which subjects re-
ported impressions from computer generated images.

2 Problem Formulation

To pose the illumination design task as a constrained opti-
mization problem we must identify: the variables involved
in the optimization process, the constraints that must be
satisfied, and the objective function.

2.1 Optimization Variables

In a normal radiosity based renderer, the element radiosi-
ties B; are the unknowns to be computed in termsoffixed
material and light property parameters. In the optimiza-
tion setting the material and light properties are no longer
fixed and must also be considered as variables. Constraints

may be imposed on any of these variables and the objective
function may involve any or all of them,

In the illumination design problem the optimization vari-
ables are light source specification parameters (emissions,
spotlight directions, spotlight focus), element radiosities, 5;,
and elementreflectivities, pj. Two types oflight sources are
considered: diffusely emitting elements described by a sin-
gle emissivity parameter £;, and directional lights idealized
as spotlights described by a position, direction, and a cos”
directional distribution. Light source positions are assumed
to be fixed and only the direction and distribution pattern
is allowed to change during optimization.

Every light source emission £;, light direction vector Vy,
cosine distribution exponent n;, element radiosity B; and
reflectivity pj, has the potential to be a variable in the op-
timization problem. If all are treated explicitly as domain
variables in the optimization an intractably large system will
result. Fortunately, the 5;’s can be eliminated by direct sub-
stitution of the radiosity equation, and typically only asmall
number of the elements will have variable emission, reflectiv-
ity or directionality parameters. These remaining variables
are called the “free” variables of the optimization problem,

2.2 Constraints

Constraints fall into three categories.
Physical constraints specify the relationships between

light emission and element radiosities that are dictated by
the physics of light transport. The constraints are captured
in the rendering equation [9]. We assume perfect diffuse
surfaces and a discretized environment yielding the radios-
ity approximation given in equation 1.
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Design goals are constraints provided by the user. These
may be either equality or inequality constraints and may
apply to a single element, or a conglomeration of elements.
For example, the requirement that a particular element’s
radiosity is a given constant, Bj = K for some constant A
is an equality constraint on a single element that expresses a
fixed radiosity for the element. Inequality constraints such
as Kiow < By < Knigh can also be specified (in essence two
inequality constraints) requiring the radiosity of element 1
to stay within the bounds Kiow and Knign.

Barrier constraints are hard bounds on the allowable

ranges of the optimization variables that must be satisfied to
insure that the model is physically realizable. For example,
light emissions must remain positive and element reflectivi-
ties must remain in the range 0 <= pj <= 1. Barrier con-
straints are conceptually similar to inequality design goals.
The main difference is that.a barrier constraint must be sat-

isfied in order to produce a valid model, Design goals are
desires that need not be satisfied exactly.

2.3. Objective Function

In general, radioptimization problems are under-
constrained. There may be an infinite number of possible
solutions that satisfy the problem constraints. The objec-
tive function is used to select between the many possible
solutions. The simplest, directly measurable objective is the
minimization of energy, fenergy = )_, BiAi.

In theory, any user specified function of the optimization
variables could be used as an objective function. An al-
ternative is to provide a fixed library of objective functions
and allow the user to construct an objective function via
linear combinations of the library functions. Each individ-
ual objective function in the library has a well defined and
intuitive behavior, The user can then control the weights
of the individual objectives to determine the final objective
function. This allows user control without an undo amount
of complexity.

A variation of Flynn's work, described in the previous
section, was used to develop a way of quantifying subjective
impressions. Flynn’s experiment was duplicated except, in-
stead of having the subjects judge actual rooms with differ-
ent lighting characteristics, they were shown rendered im-
ages of an identical room with different light patterns (see
figure 4). Once the data set was collected, it was processed
by INDSCALwith the brightness, non-uniform, and periph-
eral values for each room computed by the following func-
tions:

_LiieyPiAi
duiex Ai

L

af [eee ,Lies Ai)

Sorightnesa(P, A)
i

Jroenaiiorncey A)

. Dien PAD Diep Pi
Speripherat(P, A) = "Se,As =>eefen?" eyo"

where x is the set of all elements in the environment, 7
is the set of elements that make up the walls, » is the set
of all horizontally oriented elements, P; is the brightness
of element i, Aj is the area of clement i, and Puyo, is the
average brightness of the elements around element i. The

humans subjectively quantify illumination by brightness not
by actual luminance.

The results from INDSCAL showed that there was a cor-

relation among those tested in the relationship between the
measurable quantities, brightness, non-uniform, and periph-
eral lighting, and the subjective impressions ofvisual clarity,
privacy, and pleasantness. A linear transformation was fit to
the INDSCALdataresulting in linear relationships between
the subjective impressions and the measured values:

Setear = 0.90. Strightness — 0.38. Saou sank liens =
0.58 t Speripnerat

Feleasant = 0.78: Sorightness — 0.53 + faon=uni}orm +
0.24 + foeripheral

forivare = 0.90- Sorightness + 0.32. Jnon—uniform =
0.09 - Fpevipheral

2.4 Conversion of the Constrained Problem to
an Unconstrained Problem

The design goal constraints can be included in the objec-
tive function throngh the penalty method [11] by penalizing
deviations from constraints through explicit terms in the ob-
jective function. The penalty imposed on the objective is de-
fined as the square of the constraint violation. For example,
if the j"* constraint, Cj, is an equality constraint specifying
a particular radiosity! to be a given constant, (Bi; = K5),
this will result in a penalty term fe, in the cost function
given by fo; = Ai,(Kj — Bj,;)?. Inequality constraints can
be handled through a penalty function that “turns on” when
the constraint is not satisfied, For example, the inequality
constraint Cj given by (8;,; < Aj) results in a penalty term
fe; = Ai;(Kj — Bi)? when By, is greater than K; and is
zero otherwise.

Barrier Constraints are handled in a similar fashion to
impose hard physical restrictions on certain values, for ex-
ample, the emission variables must always remain positive.
Similarly, reflectivities must remain between 0 and 1. A bar-
rier term is added to the objective function for each barrier
constraint to avoid violations of these constraints. The bar-

rier constraint G, given by (X,; > A’,) for somefree variable
Xj results in a barrier term fe, = (X;—Kj)~* for X; > Ki.
In addition, the optimization search explicitly enforces the
constraint (X; > Ky) by clamping the X, to Kj +6¢ when
X; drops below Ky, where ¢ is a small positive constant,
This will yield a large barrier term in the objective function
tending to lead the search away from the barrier in the next
iteration.

The remaining constraints are the “physical constraints”
specified by the radiosity equation (equation 1), These are
dealt with by direct substitution. The radiosity equation
implicitly defines each B; in terms of all the £,V,nand p's.
The 8;’s are calculated via a radiosity solution algorithm
[8]. The values for the P;’s can then be computed directly
from the B,’s by equation 2, The By; and P, values can
be directly substituted into the objective function. This
effectively eliminates all the Bj’s and P,’s from the set of
optimization domain variables.

Thus the modified optimization problem is given by:

Bi; indicates the radiosity of the i** element, where ¢ was
selected by the j“" constraint, Cj.| functions are defined in terms of perceptual values because|
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F(X) = Wenersy Jeneroy + (3)
brighiness Jerightricss +

Won=iniForns non-uniform +
Woeripheral Speripherat +

clear clear +

pleasant Spleasant +
Worivate Forisita 5a

+Daj fe;
Dyfe;

where X is a point in the multidimensional space spanned
by the remaining free variables, E;, Vi, ni, and p;.

Through the use of the penalty method, barrier func-
tions, and substitution of physics constraints, the optimiza-
tion problem can now be stated as a simple unconstrained,
multidimensional minimization problem. Let X be a multi-
dimensional vector in the “design space”, the space spanned
by the free variables in the design. We mustidentify a point
in the design space, X*, such that the objective function
f(X*)is (at least locally) minimized. There are many solu-
tion methods for such a minimization problem. We use the
well known BFGS method described above[13].

destgngoals

3 Implementation

The user provides an initial model that is rendered to pro-
vide a baseline rendering. The user can select elements in-
teractively from an image generated from the baseline so-
lution to specify the free variables in the optimization pro-
cess. The user can also specify the objective function weights
Wenergy, Worightnase; Vaon—uniform, etc. to direct the opti-
mization process, After all the design goals and objective
weights are specified, the optimization process is run until
convergence is achieved.

This process can be described in Psendo code by:

Compute baseline rendering.
Establish constraints and objectives.
REPEAT

Evaluate partial derivatives.
Compute search direction AX using BFGS.
Perform line search in the direction AX.
Display results, and allow user to modify

constraints and objectives
UNTIL convergence.

3.1 Baseline rendering

The initial model is rendered and displayed by the hierarchi-
cal radiosity solution algorithm of Hanrahan etal. [8]. Dur-
ing baseline rendering, the input model is subdivided into
a hierarchical structure and links are established between
nodes in the hierarchy to establish the block structured form
factor matrix as described in [8].

3.2 Establishing Constraints and Objectives

Once an image is displayed the user can select elements di-
rectly from the screen with the mouse and set constraints
via the user interface shownin figure 5. In this example, the
desk top has been selected as indicated by the green outline.
Current Dlumination information for the selected element is
displayed in the lower right corner of the interface. Throngh
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aset of buttons in the interface, the user can elect to impose
a constraint on the element radiosity, and/or specify that
the element reflectivity or emission should be a free variable
in the optimization process. Spot lights are handled with a
similar interface that allows the light direction vector and/or
distribution parameter n to be marked as free variables in
the optimization. The objective function weights can also
be adjusted with slider bars in this interface.

3.3 Partial Derivative Estimation

Evaluation of partial derivatives of the modified objective
with respect to each free variables is required by the op-
timization process. For example, to compute the partial
derivative of the objective function with respect to a light
emission, £,, we must, evaluate:

OF/OEy = Wenergy > OE; /OE_K Aj +
Worightness Oforightness/OEx co
Waen=wniform Ofaon—uniform /OEx +
Woeripheral Ofperipherat/OE. +

clear Ofetear /JEx +

pleasant ree atprivate rieated'(OE. +Waesign a) fe; /OEx +
ay fo; /OEx

(4)
The partial derivative of the constraint function fe, for8fc.

an equality constraint C; : (Bj; = Ky) is: aa = —2Aij;-
(K; - Bi)sp. For an inequality constraint, the par-
tial Ofc; /GE, is zero when the constraint is satisfied and
is given by the above equation otherwise, The partial of
a barrier function fg, can also be expressed directly as:8 .

See = ~4(By ~ Gi)* Sat.
The partials of the form 0£;/0E, are 1 if 7 = k and

zero otherwise. The partials in the form 28;/0E, repre-
sent the “influence” that the free variable E, has on each
element radiosity B;, These influence factors are equivalent
to entries in the inverse of the form factor matrix. Once
the influence factors are known, the scene can be rerendered
with new light source emissivities without resolving the ra-
diosity equations, Besides providing the partial derivatives
necessary for the optimization process, explicit storage of
the influence factors also allows interactive, near real time,
user adjustments to thelighting.

Rather than perform an explicit inversion of the block
structured system, the partial derivatives can be estimated

Ds

QS AE of ApBy
' ‘

a ‘ AB; _ABj+ or—

\ AAE Ap
j

Figure 1; Estimation of 0B;/8E, or 0B; /Ap, by shooting
a delta emission from source k.
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Figure 2: Estimation of 2B;/@V, by shooting a delta emis-
sion from source k.
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Figure 3: Estimation of 68,;/4n, by shooting a delta emis-
sion from source k.

by finite differences. A small “delta” emission, AF, is shot
from the variable emission light source as indicated in fig-
ure 1 and allowed to interreflect. The iterative shooting
operations are very rapid since the links representing the
form factors are precomputed during the baseline rendering.

The result of shooting a small amount of energy through
the network of links results in an effect on each element

radiosity, A#;, thus providing all the derivative estimates
AB,/AE. If the only free variables in the optimization are
light emissions, these influence factors need only be eval-
uated once, due to linearity. On the other hand, if any
spotlight directionality or element reflectance is allowed to
be variable, light emission influence factors must be updated
each iteration.

The partial derivative of the objective with respect to a
variable element reflectivity is handled in a similar fashion.
The element reflectivity px is adjusted by a small delta Ap.
Theeffect on all other elements can be evaluated by “shoot-
ing” the unshot radiosity due to the change in reflectivity:
B,&p. As with light sources, several shooting iterations may
be necessary to account for multiple bounce effects. Once
convergence has been achieved, the effect of Ap on element
radiosity AB; is available and the influence factor estimate
AB;/Ap can be recorded.

Influence factors for spotlight directionality variables, Vi
and ny, are also approximated through finite differences.
For example, a small change, AV, can be made to the di-
rection vector Vx and the effect on each element radiosity
can be determined by a series of shooting steps. The first
shooting step, illustrated in figure 2, shoots a delta emission
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from the modified spotlight to all other elements. The delta
emission is determined according to the change in the direc-
tionality parameter, in this case, Ey, P24 (cos™* (dv,4a) —
cos"*(dy,)) where dy, is the angle between the original di-
rection vector of the light and the direction of the element
and ¢y,+av is the angle between the new spotlight direc-
tion vector and the direction of the element. Subsequent
shooting steps proceed in the normal fashion in order to
handle multiple bounce effects. The same technique can be
used when the distribution pattern parameter n, is changed
as illustrated in figure 3. In this case the radiosity cast is
Ex(Gat2t) cos(gy, ) — Matt cos™*(dy,)).

The cost functions that measure patterns of light or sub-
jective impressions are defined in terms of perception. The
partial derivatives of the functions examining lighting pat-
terns with respect to light emission Ex are:

Ofirightnasa Xi aEAi
OE. 32, Ai

O fnon=uniferm amg [» (Pang.s = P,P? “| ieOF, ~ ae Ay

Ts (Poca — i) (2Sizms — Be)
: aP;

O fperipherat r= vi aE Ai 2 ae,Ai
OE; yy A; »; A;

il

The partials of the subjective impressions are just a lin-
ear combination of the partial derivatives of forightness,
non-uniform, and Speripheral:

Thepartials OP; /0E, are derived by differentiating equa-
tion 2 giving,

OP; _ j,4|aa OB;OB;dE. iF DEx * Byaa (6)
where a is the adaption level which can be approx-
imated by (57, logio(Bi/10,000)A,)/ yA y is an
logio(B;/10,000) + bb, and ¢ is O.4logy9(8,/10, 000) —
(n(10)(0.8a + 2.6).

If the the adaptation level is assumed constant with re-
spect to a change in emission Ex, 00/02, = 0, otherwise

ao ___Aj_2B,
dE, Byln(10) $°(Ai) By

3.4. Optimization

The optimization process uses the BFGS algorithm, which
evaluates the objective function and gradient at a current
step in the design space in order to compute a search di-
rection. Once a search direction is derived, a line search
is performed in this direction. Each step in the line search
involves a reevaluation of the objective function, hence a
reevaluation of the element radiosities which are displayed,
allowing the user to watch the progress of the optimization.
This process is repeated until the system has converged toa minimum.
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4 Experiences and Results

The first implementation of the Radioptimization system al-
lowed an objective function based only on photometric mea-
sures and did not take into account the psychophysical prop-
erties of lighting. The system could successfully optimize
lighting but required quite a bit of unintuitive “tweaking”
of the objective function weights in order to achieve light-
ing that had the right subjective appearance. These early
experiences led to the investigation of the psychophysical
objective functions.

Figure 6 shows the effects that the subjective impressions
have on an optimization. The top image constrains the table
to have a small amount of illumination while conserving en-
ergy and creating an overall impression ofvisual clarity. To
improveefficiency the optimization was run at a low resolu-
tion on a simplified model, without the chairs and television
set. The optimization process took 1 minute and 2] seconds
on an IBM Model 550 RISC System 6000. The bottom im-
age has the same design goals as the top image except that
it tries to elicit an impression of privateness. This optimiza-
tion took 2 minutes and 11 seconds.

It took two or three hours of performing design iterations
before developing an intuitive “feel” for the optimization
process and the effects of the weights on the objective func-
tion. One of the problems with the design cycle is that there
may be local minima of the specified objective that are vi-
sually unattractive. For example, im addition to the design
goals mentioned above for figure 6, we needed to add an
additional constraint limiting the illumination of the ceil-
ing because pointing the lights directly at the ceiling was an
optimal way of increasing the overall brightness of the room.

One drawback of the system at this point is that it is not
fast enough to allow a highly interactive feedback cycle for
complex models. However since the system allows a designer
to think in terms of their own design goals, it requires fewer
design iterations to achieve the desired result.

5 Conclusions

This paper has presented a new method of designing illumi-
nation in a computer simulated environment, based on goal
directed modeling. <A library of functions were developed
that approximate a room's success in meeting certain light-
ing design goals such as minimizing energy or evoking an im-
pression of privacy. The objective functions were developed
through an experiment in which subjects ordered a set of im-
ages according to a particular impression. Processing this
data with INDSCAL, showed a correlation between quanti-
tative lighting patterns and subjective measures of visually
clarity, pleasantness, and privacy. Once the lighting design
goals have been set, the software system searches the space
of lighting configurations for the illumination pattern that
“best” meets the design specifications. The system absorbs
much of the burden for searching the design space allow-
ing the user to focus on the goals of the illumination design
rather than the intricate details of a complete illumination
specification.

The radioptimization system explores only one possi-
ble path in the application of optimization techniques to
image synthesis design problems. Constrained optimiza-
tion techniques may be more suitable than the uncon-
strained penalty method technique used here when the de-
sign goals must be satisfied precisely, Discrete optimization
methods may be appropriate in some instances, for exam-
ple when emissivities are constrained to a finite set, e.g.
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{60 Watts ,100 Watts ,-.-}. Geometric properties of the
model, such as the position of the lights or the size and po-
sition of the windows, could be allowed as free variables.
More general image synthesis methods could be applied to
account for non-diffuse effects such as glare.
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Figure 4: Computer generated rooms used to test subjects
on which illumination patterns illicit particular subjective
impressions.
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Figure 5: Sample interface which allows the user to set the
weights of the objective and/or specify constraints.

 
Figure 6: The top image constrains the table to have a small
amount of illumination while preserving energy and creat-
ing an overall impression of visual clarity. The bottom image
also constrains the table to have a small amount of illumi-

nation while preserving energy. In addition, it trys to create
a feeling of privacy.
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A Hierarchical Illumination Algorithm for Surfaces
with Glossy Reflection

Larry Aupperle Pat Hanrahan

Department of Computer Science
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Abstract

We develop a radiance formulation for discrete three point transport,
and anew measure and description of reflectance: area reflectance.
This formulation and associated reflectance allow an estimateofer-
ror in the computation of radiance across triples of surface elements,
and lead directly to a hierarchical refinement algorithm for global
iJlumination.

We have implemented and analyzed this algorithm over surfaces
exhibiting glossy specular and diffuse reflection. Theoretical growth
in light transport computation is shown to be O(n+- k®) for sufficient
refinement, where n is the number of elements at the finest level

of subdivision over an environment consistingof kne polygonalpatches — this growth is exhibited in experimental trials. Naive
application ofthree point transport would require computation over
O(n*) element-triple interactions.
CR Categories and Subject Descriptors: 1.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism.
Key Words: adaptive meshing, global illumination, radiosity, ray
tracing,

1 Introduction

A major open problem in image synthesis is the efficient solution of
the rendering equation. Radiosity methods have been quite success~
ful over environments containing surfaces that exhibit only diffuse
reflection. Unfortunately, very few materials are purely Lamber-
tian reflectors, and efficient solution techniques have not yet been
developed for more general specular or glossy reflection functions.

The rendering equationis an integral equation, and the solutions
to complicated integral equations are generally obtained using either
Monte Carlo or finite element techniques. Monte Carlo algorithms
sometimes go under the nameofdistributed or stochastic ray tracing
and are the most commonly employed in computer graphics(e.g.
see [4, 5, 9, 12, 16]), Monte Carlo techniques have the advantage
that they are easy to implement and can be used for complicated
geometries and reflection functions. Unfortunately, their disadvan-
tage is that they are notoriously inefficient. The second approach,
the finite element method, has been very successfully applied to
the rendering equation under the radiosity assumption, but has only
begun to be employed in the general case, and with limited success.
For example, Immel et al. [8] discretized radiance into a lattice of
cubical environment maps, and solved the resulting system. More
recently, Sillion et al. [13] used a mesh of spherical harmonic fime-
lions to represent radiance, and solved the resulting system using a
shootingalgorithm.

Permission to copy withoutfee all or part of this material is granted
provided that the copies are not madeor distributed for direct
commercial advantage, the ACM copyright notice and the tithe of the
publication andits date appear, and notice is given that copyingis by
Penmission of the Association for Computing Machinery, To copy
otherwise, or to republish, requires a fee and/or specific permission.

1993 ACM-0-89791-601-8/93/008/0155 301.50

There are many ways to parameterize the rendering equation, and
eachleads to a different choice of basis functions. In the transport
theory community two techniques are common: directional sub-
division (the method of discrete ordinates or Sy), and spherical
harmonics (Pw). These two techniques roughly correspond to the
methods of Immelet al, and Sillion et al., although many interest-
ing variations are possible, Our approach is somewhatdifferent, and
based on Kajiya’s original formulation of the rendering equation [9],
Under this formulation, the rendering equation is expressed in terms
of three point transport. Thatis, the keme! of the integral expresses
the transport of light from a point on the source to a point on the
receiver, via a point on a reflector. Given this formulation,the three
point rendering equation can be discretized over pairs of elements
fo form a linear system of equations. Solving this system yields the
radiance transported between elements, Note that this approach is
very similar to the radiosity formulation.

The problem with finite element methods is that the matrix of
interactions is very large for interesting environments. For a given
environment of & input polygonal patches containing n elements
at the finest level of refinement, the three point discretization that
we are proposing generates an n° matrix ofinteractions. However,
in this paper we show that we can accurately approximate the n°
reflectance matrix with O(n + k°) blocks, in a way very similar
to our recent hierarchical radiosity algorithm [7]. In that paper we
showed how the n” form factor matrix could be approximated with
O(n + k*) blocks, resulting in a very efficient algorithm in both
space and time. Although the results presented in this paper are
preliminary, we believe a hierarchical finite element approach along
these lines will ultimately lead to a fast, efficient algorithm.

In the following section we describe our application of the fi-
nite element element method to the three point rendering equation,
yielding a radiance formulation for discrete transport. In Section 3
we present a simple adaptive refinement algorithm for computation
over this formulation,and theiterative solution technique employed
for the actual calculation of transport. In Section 4 we discuss our
implementation of the algorithm over glossy reflection, and in Sec-
tion 5 we present some experiments and results. An appendix to
this paper contains details of our error analysis for discrete transport
under the glossy model.

2 Discrete Three Point Transport

The algorithm presented in this paper operates through two fune-
tions: refinement of the environmentto form a hierarchy ofdiscrete
interactions, patches and elements, and the actua] computation of
illumination over this hierarchy.

In this section we develop the basis for both discretization and
transport. We derive a radiance formulation forthree point transport,
and a new measure and description of reflectance, area reflectance.
This radiance formulation and associated reflectance provide a natu-
ral criterion fordiscretization underillumination and reflection, and

allow both the computation of radjance acrosstriples of individual
surface clements, and the expression and computation ofall light
transport over all surfaces,
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Figure 1: Geometry of Reflection

A Radiance Formulation for Three Point

Transport
When computing and imaging illumination within an environment,
we are interested in the transport oflight from surface to surface —
itis this interaction ofsurfaces that characterizes illumination,in the
absence of participatory media. Reflection within an environment
may thus be naturally expressed overtriples of surfaces. Consider
surfaces A, A’, and A” (Figure 1) — wewill examine the transport
of light incident at A’ originating at A and reflected toward A".

Let w! and w}, be the solid angles subtended at point 2’ by A and
A", respectively. Consider differential solid angles at &{ and a}, —
by definition of the bidirectional refiectance-distribution function
(BRDF), f- [11], the radiance £(@}) along @due to illumination
through solid angle wis:

Liat) = | felai,a

2.1

)L(@;) cos Fd;

Integrating this expression over w’., and introducingcos 6}, we have:

/ L(@) cos Ol dwt =
LL

We may then reparameterize over A and A"to yield:

=f mst

(Gj, Wr )L(&!) cos 4; cos O.dwi.diu,

/ L(a' 2"\G(z', o\da" at
| f-(2,2',2")L(x,2')G(2,2')G(z', 2" )da"dxA Ar

where
cos 6, cos 6}

jz —z'|?

where u(z,2') is 1 if points z, x’, are mutually visible, and 0
otherwise. Note that G is very similar to a differential form factor.

Weintegrate over A’, thus introducing all three areas into the
formulation:

i L(2',2")G(c' 2"de“de’ =Al ue

G(z,2')= u(z, 2’)

(1)

// fe(a,2', 2")L(x,2')G(a,2')G(a’2")do"de'dzAV ANS Al

We may now rewrite the equation in discrete form. Let A; and Ag
be subareas of A’ and A" such that L(2’, 2’) is nearly constant over
their surfaces. The left side of equation (1) may then be rewritten,
bringing radiance out ofthe integral as L;x:

Le f / G(z', x"\da"de' = why Aj FieAj AR
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Figure 2; A Refiection Product

by definition ofthe diffuse form factor, F},.
We may similarly discretize A as A;, and rewrite the right side

of equation (1) as:

Di; | if fr(z,2',2")G(2,2')G(x',2")dae"da'de =pt Ay Ag

So hyAF Rage

where Rij, is defined such that

TAFRij =

/ y f-(2,2",2")G(,2'\G(2' 2"da"de!dxA; JA; SAL

Note that, by the symmetry of f, and G:

AiFisRizk = An Fag Rijs
We thus have:

whjpA;Fjp aD) Lis AnPes Rrji

wyLi Aj Fyn Reji

by the reciprocity of form factors, and thus:

Lig = 5 bij Raji

The three dimensional character of Rx;i over indices i, 7, k leads
naturally to a three dimensional matrix formulation for the above
system. Consider a product over ann x n x m Ay; “matrix” and
ann xn x 1 Lj; matrix producing ann x n x 1 matrix of reflected
radiances, as shownin Figure 2. Note that the Ry; matrixis of size
O(n*) — the hierarchical method discussed in subsequent sections
of this paper addresses moretractable representation of this matrix.

Taking into account emission, we have derived a radiance for-
mulation for three point transport:

Liz = Ejyn + a Li; Ray (2)

This formulation states that:

The radiance atArea j in the direction ofArea k ts equal
to the radiance emitted by j in the direction of k, plus,
for every Area i, the radiance at i in the direction of7
multiplied by the area reflectance Ry;:.

Note that equation (2) is very similar to the radiosity formulation:

B; = EB; + pj >BiB:
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2.2 Area Reflectance

‘The quantity Aj; has a natural and satisfying physical significance
— it is an expression of reflectance over areas Aj, Aj, and Ax.

Consider the fraction of the radiant flux transported from Aj
incident to A; that is reflected in the direction of area Aj:

Sa Sa, La, fe @2’2")02,26(2, 2')G(2', 2")de"de'de
f - id. ‘derSi, ta, L(2,2')G(z, 2’ de

If we assume that incident radiance is uniform and isotropic over
both w! (as induced by A;) and A;, we may divide through by
L(z, 2’), yielding:

p(Ai, Aj, Ak) =

p Re, Lay fe(z,z',2")G(2, 2')G(2' 2"de"de'deae SAE

te 45. G(x, 2')dz'dz

We define p(Ai, Aj, Ax) to be area reflectance, Note that area
reflectance is similar to biconical reflectance [11], save thatit is also
integrated over the reflecting surface.

By definition of Ry;,:

Rizk = p(Ai, Aj, Ax)

Conservation of energy over reflection, and the reciprocity rela-
tion derived for A;;, above, constitute fundamental properties of
area reflectance:

L So Rie < 1, for fixed i, j.k

2. Aili;Risk = AnFe; Raji.

where equality is achieved in property 1 over complete enclosures
and perfect reflectivity.

2.3 Evaluation of Raji
In this section we examine the evaluation ofH,;; over given patches
Aj, Aj, Ag.

Recall:

fiw Sa. fa fe(z"',o',2)G(2",2')G(2',z)dadz'de"
Say Tie G(x", 2')da'da"

We assumethat discrete areas A;, A;, Ay are of small enough
scale that f, and G are relatively constant over their surfaces. Then:

fy 3 SkjiGky GisAnAj Ai
GigAb Ay

= SryGyiAi

where S is the discretized value of f-, Sijk = Seji = Sryoj2;-
Note that the average value of G(x',x) over A; and A; is

awFj;/Aj — we thus estimate Gj,A; by 7F}:, and compute Resias:

Rgyi => TESeiji

In practice, it will not be possible to compute the exact values
of Fj; and 5,3; over A;, Aj, Ax. We assumethat we are able to
estimate these values, along with error bounds for each estimation.
Let AF;; and AS,;; be error estimates for computed Fj; and Sij:,
respectively. We then have an estimate for area reflectance in the
form:

Raji =

Rigi = (Bie + ABs)(Sgt + ASys)
= w(Fi Seyi + APjiSeji + ASK5i Fi + AFAS;3)
me m(FySpy¢ + AFG Shgi + ASks¢ Fs)

Assuming AF); < Fy, ASpy: < Skji, we have neglected the last
term and estimate the error in Ax3ji a8 T(AF5iSk5 + OSe55 Fy).

In general, and as is shown for glossy reflection in Section 4,
the accuracy of estimators for Fj; and 5,3; is dependent on the
size of the patches over which reflectance is computed,relative
to their distance apart. As relative size decreases, so does error in
computation, leading directly to the adaptive refinement strategy for
illumination presented in Section 3 below.

3 Algorithms for Three Point Transport

3.1 Introduction

Recall! equation (2):

Ly = Ejx + Ss; Li; Raji

This equation suggests both a solution strategy for radiance under
three point transport, and a natural representation for illumination
within the solution system.

We may interpret equation (2) as a gathering iteration similar to
that employed for radiosity under diffuse reflection; the radiance
£j% at patch A; in the direction of patch A, is found by gathering
radiances L,; in the direction of A; at patches A;. We may solve
for transport by gathering radiance for each Lj, and successively
iterating to capture all significant re-reflection.

We are left with the question of what structure we are gathering
over and iterating upon. Note that all illumination is expressed
as the radiance at a given patch in the direction of another — it
is these patch-patch interactions that form the primary structure
within the solution system. All operation is over interactions: both
the representation and transport of radiance, and the iteration and
solution for illumination,

Consider the following structure:

typedef struct _interaction [{
Patch *from:
Patch *to;
Color UL;
Color bg;
List "gather:
struct _interaction *nw, ‘sw, ‘se, “ne;

} Interaction;

A given interaction ij is defined by two patches ij ->Eromand
ij->to, and represents the radiance at from in the direction of
to. This radiance is stored within the interaction as attribute L.
Lg is radiance gathered during the current solution iteration from
interactions contained in the list gather. Subinteractions nw, sw,
se, ne are the children of £7, induced by subdivision over either
from or to. The structure assumes quadtree refinement, leaving
northwest, southwest, southeast, and northeast descendants.

In the following sections we will present an algorithm for the
refinement and computation of illumination over a hierarchy of
interactions. The algorithm will operate by refining pairs of inter-
actions ij, jk (such that ij->to == jk->£rom), to ensure that
computed reflectance across the interaction pairs, and associated
patch triples, satisfies user specified error bounds. If a given in-
teraction pair ij, j& is satisfactory, the interactions are linked to
record that radiance may be gathered from ij to 7k, otherwise one
or both interactions are subdivided and refinementapplied to their
descendants.

After refinement,a gathering iteration may be carried out, each
interaction gathering radiance from interactions to whichithas been
linked. The gathered radiances are then distributed within each re-
ceiving interaction hierarchy, and subsequent iterations computed
until satisfactory convergence has been achieved.

Note that, within this system,the eye may be regarded as simply
another object with which patches may interact. The radiance along
interactions to the eye provides the resulting view.

457
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3.2 Adaptive Refinement
Consider the following procedure:
RefinelInteraction *ij, Interaction *jk,

; float Feps, float Seps, float Aeps)Float feps, seps;

feps = GeometryErrorEstimate(ij);
Seps = ReflectionErrorEstimate(ij, jk);
if (feps < Feps &k seps < Seps)

Link(ij. jk):
else if (seps >= Seps) [(

switch (SubdivsS(ij, jk, Aeps)) f
case PATCH_1:

Refine(ij->nw, jk,
Refine(ij->sw, jk,
Refine(ij->se, jk,
Refine(ij->ne, jk,

Seps, Feps, Aeps);
Seps, Feps, Aeps);
Seps, Feps, Aeps);
Seps, Feps, Aeps);

break;
case PATCH_J:

/* refine over children of ij and jk */
tase PATCH_K:

/* refine over children of jk “fase NONE:
Link(ij, jk);

)

else {

switch (SubdivGiij, jk, Aeps)) [
/* refine over children, or link, as +;
/* directed by PATCH_I, J, K, or NONE. */
)

/* feps >= Feps */

)
}

This procedure computes over pairs of interactions, and associated
patch triples, subdividing and recursively refining if estimated error
exceeds user specified bounds, linking the interactions for gathering
if the bounds are satisfied, or if no further subdivision is possible.
Feps and Sepsare the bounds for geometric and reflection error,
respectively; Aeps specifies the minimum area a patch may possess
and still be subdivided. GeometryErrorEstimate and Re-
flectionErrorEstimate provideestimations for TAF);5:5;
and rAS4542.

Subdivs and Subdive control refinement for reflection and
geometry error, respectively. Both routines select a patch forrefine-
ment, subdividing the patch and associated interaction(s) if required.
An identifier for the selected patch is returned — if no patch may
be subdivided, then NONE is passed back. Note that a given in-
teraction/patch may be refined against many different interactions
within the system, and thus may have already been subdivided when
selected by a Subdiv routine — in this case, the routine simply
returns the proper identifier.

The Subdiv routines should select for refinement patches that
are oflarge size relative to their distance from their partner(s) in the
transport triple. Form factor estimation is a convenientcriterion for
the determination ofsuch patches —a large differential to area form
factor Fy,, indicates that patchqis of large relative size. Care must
be taken in subdivision, however, to ensure that each interaction is
always subdivided in the same way forall refinements involving
that interaction.

The Subdiv routines thus choose for refinement the patch of
size at least Aepsthat is ofgreatest form factor within 37 and/or7k
that will not induce multiple sets of children over either interaction.
If patch p; is of greatest form factor over both ij and 7k, and of
area greater than Aeps, thenit is chosen for refinement (Figure 3 at
middle). Otherwise,if p; is selected over one interaction, but p; or
px is selected over the other, then the “outside’’ patch is chosen for
refinement. Given two selected outside patches, Subdivsselects
the one of greater form factor relative to p;; SubdivG selects p;
Over p,, aS p_ has no direct effect on geometric accuracy, Note,
however, that even under Subdivs,if only p; and pz are allowed
subdivision, px will be selected, although with further subdivision
the triple will eventually balance sufficiently to allow refinement
over pj.
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Figure 3: Refinement and Subdivision

3.3. Gathering Radiance
Gathering radiance over interactions may be written as a simple
procedure;
Gather (Interaction *jk)

Interaction “ij;
SE (ky

jk->Lg = 0;

ForAllElements (ij, jk->gather)
jk->Lg += ij->L * Reflectancelij, ik);

Gather(jk-=nw);
Gather (jk->sw);
Gather (jk->se) ;

) Gather (jk->ne);j

We gather radiance into jk->Lg rather than directly into jk->L
to avoid the necessity of a push/pull with every invocation of the
procedure (see Section 3.4). The solution method is thus simple
Jacobi iteration, as opposed to Gauss-Seidel, as the hierarchical
structure imposes simultaneous rather than successive displacement.

3.4 Radiance within a Hierarchy
A gatheringiteration results in received radiance scattered through-
out each interaction hierarchy. This gathered radiance must be dis-
tributed and accounted for over all ancestors and descendants of
each receiving interaction, in order to maintain the consistency and

nea of the hierarchical representation of radiance betweenpatches.
We employ a distribution algorithm similar to that presented in

[7] for radiosity over patch/elementhierarchies: gathered radiance
is “pushed”to the leaf interactions within each hierarchy to ensure
propagation to all descendants, and then “pulled” and distributed
back up from the leaves through all higher level interactions to
their common ancestor at the root. As is shown in [2], radiance
may be pushed unchanged within the interaction hierarchy, and area
averaged as it is pulled from child to parent.

4 Application over Glossy Reflection

In this section we discuss our implementation of the above algo-
rithms over glossy reflection.

4.1 The Reflection Function

We employ a highly simplified Torrance-Sparrow [15] model for
our glossy reflection function:

a Ee k+2 cos" On
Sq(@:,G-) = =Gos0;cos0,9841 Br)

This function incorporates the facetdistribution function cos” Ayn
developed by Blinn (3), normalized for projected facet area under
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Figure 4: Estimating Cones
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Figure 5: C;, C,, and Cy,

[10]. Angle @,, is that made to the mean surface normal by w.,, the
microfacet mirrororientation normal lying halfway between wi; andes

Function sh(@,0-) expresses self-shadowing over microfacets

— for near specular surfaces, such anteater” or masking doesnot becomecritical until relatively high @; or @, [6]. The imple-
mented system thus simply clamps sh from 1 to 0 when @; or 6,
exceeds a preset 4 near the horizon. This scheme serves as a
crude approximationto the shadowing function; however, a better
strategy would be to employ a much fuller tabulation of the func-
tion, incorporated into the error analysis presented below. A more
complete discussion of shadowing and conservation ofenergy over
Jo is presented in [2],

4.2 Error Estimation

Recall the general expression for error derived in Section 2.3:

m(AFi Sejs + AS5i Fi)

In implementation we have estimated the form factor Fj; by Fuj:,
the form factor from a differential area at A; to a disk of area A;
centered at A;, as was employed in [7], As discussed in [7], the
relative error in this estimate is proportionalto the estimate itself.
In our implementation we have thus estimated absolute error AFj;
as at most proportional to F7,;.A brief discussion ofrelative and
absolute error over hierarchical methods is presented in [2].

We now consider the error estimate AS;,;;. As discussed in the
appendix to this paper, we may compute bounding cones C,, C,,
and C,, over all possible incident, reflected, and mirror orientation
directions induced at A; by Ai and A, (Figures 4 and 5 — these
figures are discussed more fully in the appendix). We may then
compute maximum and minimum cos* 8,,, cos 0;, cos @, over these
cones, and estimate error by interval width. The full expression for
estimated error over transport is given in the appendix.

4.3 Clamping and Visibility

Evaluationofglossy reflectance overthree surface areas, as required
by the gather iteration, may be difficult, particularly if surface sub-
division has been limited by Aepsrather than satisfaction of error
bounds, and if «, the facet distribution exponent, has high value, In
this case we must estimate the integral of a spikey function over a
relatively broad area.

Oursolution is to band limit the BRDF in a fashion similar to
that presented by Amanatides [1]. We employ the cone estimation
techniques of the previous section to determineif the BRDFvaries
significantly over the given patches — if this variance exceeds
a set bound, we “roughen” the reflecting surface, lowering « to
broaden the resulting reflection over the estimated cones. We then
renormalize the resulting blurred function, as described in [1], to

ms i] eS
Figure 6; Geometric Configurations

prevent amplification of its low frequency components. We note
that the resulting antialiasing is relatively aggressive, significantly
dimming or eliminating reflections requiring overmuch blurring.

In implementation, we have computed visibility via jittered ray
casting and inheritance similar to that of [7], storing visibility data
in interactions as itis computed.

5 Results

5.1 Growth in Transport
We have measured the growth in transport triples (linked interac-
tions) versus 7, the maximum numberof elementsatthe finest level
of subdivision, over parallel, perpendicular, and “oriented” patches
(Figure 7). The corresponding geometries are shown in Figure 6.
The graphs show linear or near linear behavior over each range —

the graph oftriples vs. n for the pependioale: case is slightly con-cave over the lower dala points, but subsides to linear with furtherrefinement.

In previous work [7] on hierarchical refinement for radiosity,it
was shown that for error estimate proportional to Fy;;, and sufficient
refinement, each subpatch may only interact with other patches
in a limited local neighborhood. As discussed in [7], each patch
may thus participate in at most ¢ interactions, for some constant
c independentof n and &. Adaptive refinement thus generates at
most O(n) transportinteractions, We will show a similar bound for
discrete three point transport underglossy reflection,

Recall that the estimate for error in computed transport is pro-
portional to AF}iSxji + ASgj:231. Our argument depends on two
assumptions:

1, We may bound both AS;;; and $,;; by some Smoz-
As discussed below, the lower this Smax, the smaller the magni-

tude of the leading coefficient underling the resulting bound.
Note that our argument thus does not apply to perfect specular

reflection, as the corresponding BRDFincorporates the Dirac delta
function [11]. Equivalently, the argument does not hold over f, for
® = oc (inducing mirror reflection), as we can not provide a finite
bound for 5 in this case.

Forfinite «, however, the desired bound over glossy reflection is
achieved by:

c+2 
max(cos” 0, ) max(sec ;) max(sec 4,)

The maxima over the secant terms are bounded by microfacetself-
shadowing.

2. AF;; and F; within our error estimate are at most proportional
to Faji-

Recall that we estimate Fj; as Fiji, and AFj; as FZ;, thus
satisfying this assumption.

Given these assumptions, estimated error is at most proportional
to SmaxFas.

We may now show O(n) growth,for sufficient refinement, Con-
sider refinement over interaction ij under an error estimate at worst
proportional t0 Smax/uj:. The error estimate is thus proportional to
Fyj;, and therefore,for sufficient refinement, there are at most O(n)
such interactions, as discussed in [7].

Consider now an errorsatisfied link from 77 to an interaction jk.
For sufficient refinement under our subdivision scheme, we may
assume that form factors Fi, Fj:, Pye, Fay over pi, pj, and p, are
roughly equal. Furthermore, these satisfying form factors depend

only on - error estimate, reflection function, and error bounds, notonn or k,
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Figure 7: Triples vs. NW over Geometry.
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Specular Configurations

Figure 8: Triples vs. NV over «. The graph is over parallel polygons
for which the error bounds and interpolygon distance have been
doubled.

At worst the above form factors are such that F..5max < Eps,
where Eps is the mostrestrictive error bound. Note that, as stated
above, F.. depends only on the error estimate, reflection function
(ie. Smax), and error bounds. Only some constant number of such
form factors may be fitted over the directional hemisphere above p,,
and thus ij may only be linked to some constant numberofinterac-
tions jk. The total numberof linked interactions, and corresponding
transport triples,is thus O(n).

Note that the above argument, although it establishes the desired
bound, may overstate the potential for links at a given interaction.
Fora given ij, much ofthe directional reflection into the hemisphere
over p; may not achieve Smmax, and may even be of maximum 0.
Thatis, the analysis ignores the modulation betweenthe paired error
and value terms within the error estimate.

As « increases in magnitude, the corresponding bound Smax must
increase as well. We may thus expect greater growth in transport
computation with higher specular exponent, as shown in Figure 8.
Within this graph, growth is superlinear for « = 500, though further
trials over a higher range of n = 500... 2000 have shown thatthe
rate subsides to linear as n increases, allowing sufficient refinement
for the local neighborhood property to obtain.

Finally, we note that under specular reflection each elementis
reflected across every other elementperfectly, and to a first approx-
imation is visible from a constant number of other elements in the
environment (at least in the case of a convex enclosed room; the
analysis is complicated by occlusion and certain worst case align-
ments). Thus, the number of interactions is at least O(n?) — we
conjecture that it is no worse than this bound.

5.2. [Dlumination and Refinement

Figure 9 showsillumination and meshing over surfaces of varying
glossiness (specular exponent). Within each image, the reflecting
surface is perpendicular to the diamond shaped light source, and
we see the resulting reflection in the direction of the eye. Note
the conformation of meshing to the highlight over each surface.
The “stretched” nature of the highlight along the axis to the eye
is characteristic of Torrance-Sparrow reflection over fairly oblique
angles, and accounts for the increased sensitivity of meshing along
this axis, The rightmost three imagesin the figure show the meshing
from above. The illumination shown in these images is somewhat
unusual - it shows the reflection to the eye as though it had been
painted on the reflecting surface, and then viewed from a different
location, directly above. The images in Figure |] show similar
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Table 1: Image Statistics

eye/offset viewsfor the reflection of a garish checkerboard,
The image in Figure 10 shows contrasting illumination and mesh-

ing induced by diffuse and glossy reflection. Note the distinct mesh-
ing for each highlight, Glossy reflection is al a less oblique angle,
and thus both the highlight and meshing exhibit less distortion in
the direction ofthe eye.

Note that these scenes are extremely simple — application to
more complex environments is still very expensive, despite the em-
ployment ofhierarchical methods. Motivated by the work of Smits
et al. [14] in hierarchical radiosity, we are currently experimenting
with importance and radiance weighting over three point transport
— preliminary results of this work are shown in Figure 12. The
given environment contains four reflectors: the broad face of each
of the three “slabs” and the top of the central cube. In addition to
the reflections seen in the slabs, note the play of light originating at
the lampatleft, reflected off the cube top, and over the upperpart
of the green wall at right. Total potential transport triples over this
environmentat the finest level of subdivision is just over 222 billion
— our system, under importance and radiance weighting, employs
70,995, a reduction to 3 hundred-thousandths of | percent.

Table | provides further statistics for the images. Timings are
given for a Silicon Graphics indigo workstation with a single 50
MHz R4000 processor, The image shownin Figure 12 was generated
after seven complete iterations (gathers to all interactions), and total
time just over three minutes,

time
®
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Figure 9: Illumination and Refinement

Figure 11: Eye and Offset Views Figure 12: Cube and Slabs
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6 Discussion

Recall the matrix formulation shown in Figure 2. For any n of
reasonable size, the resulting n° matrix will be unmanageable —
wehaveshown, however,thatfor sufficientrefinementthe n° entries
in the matrix may be approximated to within user specified bounds
by O(n) subblocks. The gather and push/pull procedures described
in preceding sections allow manipulation and solution over this
representation. As discussed in [2], the resulting system may be
shown to converge.

Growthin transport is more accurately described as O(n + k*),
where & is the number ofinput polygonal patches within the en-
vironment, as opposed to elements. The &* term is generated by
the initial examination ofall polygon triples for reflection, and is
subsumed by n as the numberofelements increases. As the number
of polygons in an environment grows, however, the k® term will
become prohibitively large. As discussed in [14] with respect to the
related problem under hierarchical radiosity, the capability to cluster
as well as refine polygons would reduce the difficulty of unneces-
sary initial interactions. Clustering is arguably the most important
open problem in the computation ofglobal illumination.

The hierarchical approach described in this paper was derived by
writing the rendering equation in a three pointtransport formulation.
Another option would be to parameterize radiance by position and
direction — we believe that a similar hierarchical approach could
be employed with the method of discrete ordinates or sphericalharmonics.

Finally, we note that, similarly to other algorithms for hierar-
chica] illumination [7, 14], the algorithm described in this paper
bounds estimated error over individual transport computations. As
discussed in [14], bounding estimated error over individual trans-
port does not easily or necessarily provide a rigorous bound for
overall error in the solution, An analysis and means of computing
such a bound over hierarchical illumination remains an interesting
open problem,
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Appendix: Error Analysis
Recall the error expression derived in Section 2.3:

WAPShy: + ASEFj)

In implementation, we have divided AS;;; into separate compo-
nents for each subfactor of f,. We thus have:

==icos 6; cos 0,

n cos” Om, )
Ctae 7 cas a;

In implementation, the refinement procedure of Section 3.2 takes
an additional argument, Ceps, against which the two estimates of
error in reciprocal cosine are tested.

We are left with the computation of Asec6;, Asec@,, and
A cos* 8,,. The variance (and associated error) in these cosine terms
over given patches A;, A;, Ay is determined by theset of possible
@;, 0, lying between the patches (we dispense with ' notation in
this section),

Consider patches A;, and A; (Figure 4): we enclose these patches
in spheres 5;, 5; with centers c,. cj, and radii ri, rj, respectively.
For the moment we will assumethat the interiors of S; and S; do
not intersect, and thus there exists a tangent cone lying between the
spheres.

Note that this cone is a right circular cone centered on the line
joining c; and c;, Consider the nappe containing S;: it may be
regarded as a cone of direction vectors centered about the vector
ec; — cj, We will call this vector cone C;. If p; and p; are any two
points on or in 5;, 5;, then the vector p; — p; lies within C’;. Cz
thus bounds the set of possible o;. We may characterize C, by the
angle a; defined by its axis, ce; — ej, and boundary — cone C, and
angle a, may be similarly defined over A; and Ax. If either pair of
spheres intersect, we set the corresponding a = 7, We may easily
compute maxima and minima for sec @; and sec 4, given C; and
C,, and may then computeerrorin estimation as (max — min)/2.

The cones C; and C’, centered about @, and w, induce a similar
coneof variation abouta,, (Figure 5). Application ofbasic spherical
trigonometry yields [2]:

 

+ Acos™ Om F};
 

sin(ay/2) + sin(a,/2)
Oi OmOm < arcsin min( , 1.0)

Given a, , determination of max(cos* 9,,), min(cos* 0,,), and
thus A cos” 6,, immediately follows.

Having computed these estimates and maxima, and incorporat-
ing the estimates for form factor computation, we may bound and
estimate error in transport as:

amax(cos™ Om) max (sec @;) max(sec #,)+
Acos* 0m Fy;; max(sec 0;) max(sec 0,.)+
Asee 0; F4;; max(cos™ 0;) max(sec 0-)+
A sec 6, Fy;; max(cos™ 6) max(sec @;) )

It is this error measure that we employ in our implementation.
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On the Form Factor between Two Polygons
Peter Schroder Pat Hanrahan

Department of Computer Science
Princeton University

Abstract

Form factors are used in radiosity to describe the fraction of dif-
fusely reflected light leaving one surface and arriving at another.
They are a fundamental geometric property used for computation,
Many special configurations admit closed form solutions. How-
ever, the important case of the form factor between two polygons
in three space has had no known closed form solution. We give
such a solution for the case of general (planar, convex or concave,
possibly containing holes) polygons.
CR Categories and Subject Descriptors: 1.3.7 [Compuler Graphics):
Three-Dimensional Graphics and Realism — Radiosity, 3.2 (Physical Sci-
ences and Engineering]: Engineering.
Additional Key Words and Phrases: Closed {orm solution, form factor;
polygons.

1 Introduction

When using the radiosity technique to create images the form
factor plays a central role. It describes the fraction of radia-
tion diffusely emitted from one surface reaching another surface.
The accurate computation of form factors is the central theme
in many recent papers. Goral et al. [4], who introduced radios-
ity to the computer graphics community, used numerical contour
integration to compute form factors between polygons. Cohen
and Greenberg [3] took visibility into account with their hemi-
cube algorithm. More recent hierarchical and adaptive algorithms
compute still more accurate form factors [[0; 5]. Nishita and
Nakamae [8] and Baum et al. [2] have used an exact solution
for the form factor between a differential surface element and a

polygon. Most radiosity algorithms are restricted to polygonal
environments, and so a closed form solution for the form factor
between polygonsis potentially of greatutility.

The history of computing form factors is very long. A closed
form expression for the form factor between a differential surface
element and a polygon was found by Lambert in 1760 [7]. Lam-
bert proceeded to derive the form factor for a number of special
configurations among them the form factor between two perpen-
dicular rectangles sharing a common edge. He writes about the
latter derivation:

Although this task appears very simple its solution
is considerably more knotted than one would expect.
For it would be very easy to write downthe differennal
expression of fourth order, which one would need to
integrate four fold; but the highly laborious computa-
tion would fill even the most patient with disgust and
drive them away from the task.

Other workers have derived closed form solutions for the form

factors between manydifferent geometric configurations and these
can be found in standard textbooks. However, we are nol aware

of a closed form solution for the form factor between two general
polygons. Thus, this problem has remained open for over 230
years,
Permissiontocopywithout fee all or part of this material is granted
provided that the copies are not made ordistributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication andits date appear, and notice is given that copying is by
pennission of the Association for Computing Machinery, To copy
otherwise, or to republish, requires a fee and/or specific permission.
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In this paper we present a formula for the form factor integral
between two general polygons. The derivation of this formula
is quite involved, and the interested reader is referred to [9] for
a detailed derivation. The purpose ofthis paper is to bring this
result to the attention of the graphics community.

2 Closed form solution

The form factor integral can be reduced to a double contour inte-
gral by two applications of Stokes’ theorem [6]

TA, Fi2 = fe A. weber: dA, dA
= aes Joa, IMF: 7) des dz)

where 6,, 6: are the angles between the normal vector of the
respective surface and a radius vector r, which connects two points
on the surfaces. The above equation holds for all surfaces such
that every point on either surface sees the same contour of the
other surface.

In the case of polygons P; and P: the contour integral reduces
to a sum of double line integrals over all pairwise combinations
of edges

dnAp, Fen = >_ cos LEB; | [ In+ F) ds; db;
£, By 1 Bj

Ignoring the factor cos 2,£; we are left with the task of giving
a solutionto integrals of the general form /* [°° In f(s, t) ds dt.
co and cz are the lengths of the edges over which a given double
contour integral is taken and f(s, t) = s*+cist+£° + c3s +cat +s
is the bi-quadratic form which arises from the expansion of the
dot product (see Table 2 for definitions of all variables). If the
two line segments lie in a common plane we can factor f(s, t)
into two bi-linear forms and a solution is readily obtained with
standard integration tables (see [9]). Lines in general position
lead to the following result:

s=c9

set

a tc)

[ [ In f(s, )dsdto Jo

= ([ + FIG, t))(s) + HCFC. OMs)|
tens

 
tel

—2epe + Clacys {fren + 1)M(t)
i (L(—ern(s))(t) + L(—ers(s) (t)

t= 4 / si"oyytez

n
em t=, foteu

where k(s) © {—1,0,1} according to the particular brancheut of
the complex logarithm choosen in L. The auxiliary functions G,
H, L, and M are given in Table 1.

 —L(cin(s)Xt) — Leewa(s)Xt) |

3 An example
We have implemented our closed form solution in Mathemat-
ica [11] (this code is available from ps@princeton. edu). The
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 LiMy) = JY PUB)md +tyde = 4 [=Haaeed — Hag 4 (Meadeyrtn He) nb +-y)
+r + Lis (45H) — Lin (754)

Miyy = fem = + [tue 1)? + 2y? — y+ In Sh]

Giqy) = J" Inq(t) at = 1) In g(y) — 2y + 4 tan~!

Higy) = [¥ting(tyat “ (¥+e- 22.) tng(y) — Mag=® — Bf an! a  
 

co = ||B5|| aes e~a/ ej) —Fe10812
cy) = 2d; dj a 2eqg2,
es = Ell cua = Veiteo

c; = —2d, - (Di — py)

ea = 2d; (Pi — Hy)

es = |p. — pyl\?

Cis =4/C00

cie(S) = Cycy3 — cy — 28

ser5ty/ ci. —4lera(s)l?
cw = 4—cF en(s) = Healey
en = 4e4 — 2c) 03 =ey3— fet, alergta)|?

2 cis($) = TEC)ci = 4es — ¢}

  
Table 2; All expressions for two edges E;; with parameterization
Z(t) = pi +id; and £,(s) = p; + sd; (|\di,j|| = 1).

implementation requires some care because of the complexities of
the functions that are involved.

A simple example, which requires the full power of our for-
mula, concerns the form factor between two equal width rectangles
sharing an edge with an enclosing angle @ € [0,7], The config-
uration is illustrated in Figure | together with the form factor as
a function of @ for different aspect ratios | = = (common edge
length 6).

4 Conclusion

We have given a closed form solution for the form factor between
two general polygons. This solution is non-elementary since it

10 20°30 40 50 60 70 80 90. 100710 120 130 140 150 160 170) 180

 
Figure 1: Geometry for two rectangles sharing a common edge
with an enclosing angle of 6. The graphs show the form factor as
a function of 6 for edge ratios |= } of .2, .4, .6, .8, and 1.0.
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Table 1: Four auxiliary integrals needed in the solution. Notice that L(b)(y) uses the dilogarithm [1], Liz(z) =

—mU=2) In G and H the argumentq is an arbitrary quadratic polynomial q(t) = at? + bt +c and d = /4ac — &.

 

  
  

 
  

- zr, ALin(z) =

involves the dilogarithm function. The principal value of our
solution is in determining exact answers for general polygonal
configurations. This can be used in practice for reference solutions
to check more efficient approximations. Baum etal. [2] have also
shown that the error in the computed solution can be reduced
significantly when using a closed form solution near singularities
of the integrand,

There has been a long history of computing closed form ex-
pressions for form factors starting with Lambert in 1760. The
literature lists many special] cases for which closed form solu-
tions exist, but hitherto no solution had been given for general
polygonal configurations. The present paper closes this gap.
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Abstract

The reflection of light from most materials consists of two ma-
jor terms; the specular and the diffuse. Specular reflection may
be modeled from first principles by considering a rough surface
consisting of perfect reflectors, or micro-facets. Diffuse reflection
is generally considered to result from multiple scattering either
from a rough surface or from within a layer near the surface, Ac-
counting for diffuse reflection by Lambert's Cosine Law, as is
universally done in computer graphics, is not a physical theory
based on first principles.

This paper presents a model for subsurface scattering in layered
surfaces in terms of one-dimensional linear transport theory. We
derive explicit formulas for backscattering and transmissionthat
can be directly incorporated in most rendering systems, and a gen-
eral Monte Carlo method that is easily added to a ray tracer. This
model is particularly appropriate for common layered matenals
appearing in nature, such as biological tissues (e.g. skin, leaves,
etc.) or inorganic materials (e.g, snow, sand, paint, varnished or
dusty surfaces), As an application of the model, we simulate the
appearance of a face and a cluster of leaves from experimental
data describing their layer properties.

CR Categories and Subject Descriptors: 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism.

Additional Key Words and Phrases: Reflection models, integral
equations, Monte Carlo.

1 Motivation

An important goal of image synthesis research is to develop a
comprehensive shading model suitable for a wide range of ma-
terials. Recent research has concentrated on developing a model
of specular reflection from rough surfaces from first principles.
In particular, the micro-facet model first proposed by Bouguer
in 1759 [4], and developed further by Beckmann[!|, Torrance &
Sparrow[26], and others, has been applied to computer graphics
by Blinn [2] and Cook & Torrance[8}. A still more comprehen-
sive version of the model was recently proposed by He etal{12).
These models have also been extended to handle anisotropic mi-
crofacets distributions(24, 5] and multiple scattering from complex
microscale geometries[28].

Another important componentof surface reflection is, however,
diffuse reflection, Diffuse reflection in computer graphics has al-
most universally been modeled by Lambert's Cosine Law. This
law states that the exiting radiance is isotropic, and proportional
to the surface irradiance, which for a light ray impinging on the
surface from a given direction depends on the cosine of the angle
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commercial advantage, the ACM copyright notice and the title of the
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permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires’a fee and/or specific permission.
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of incidence. Diffuse reflection is qualitatively explained as due to
subsurface scattering [18|: Light enters the material, is absorbed
and scattered, and eventually exits the material. In the process of
this subsurface interaction, light at different wavelengthsis differ-
entially absorbed and scattered, and hence is filtered accounting
for the color of the material. Moreover, in the limit as the light ray
is scattered multiple times, it becomesisotropic, and hence the di-
rection in whichit leaves the material is essentially random. This
qualitative explanation accounts for both the directional and col-
ormetric properties of diffuse materials. This explanation is also
motivated by an early proof that there cannot exist a micro-facet
distribution that causes equal reflection in all outgoing directions
independent of the incoming direction [10].

The above model of diffuse reflection is qualitative and not
very satisfying because it does not refer to any physical param-
eter of the material. Furthermore, there is no freedom to adjust
coefficients to account for subtle variations in reflection from dif-

ferent materials. However, it does contain the essential insight:
an important component of reflection can arise from subsurface
scattering. In this paper, we present a model ofreflection of light
due to subsurface scattering in layered materials suitable for com-
puter graphics. The only other work in computer graphicsto take
this approach is due to Blinn, who in a very early paper presented
a model for the reflection and transmission of light through thin
clouds ofparticles in order to model the rings of Saturn{2). Our
model differs from Blinn’s in that it is based on one-dimensional

linear transport theory—a simplification of the general volume
rendering equation [19]— and hence is considerably more general
and powerful. OF course, Blinn was certainly aware ofthe: trans-
port theory approach, but chose to present his model in a simpler
way based on probabilistic arguments.

In our model the relative contributions of surface and subsur-

face reflection are very sensitive to the Fresnel effect (which Blinn
did not consider). This is particularly important in biologicaltis-
sues which, because cells contain large quantities of water, are
translucent. A further prediction of the theory is that the sub-
surface reflectance term is not necessarily isotropic, but varies in
different directions. This arises because the subsurface scattering
by particles is predominantly in the forward direction. In fact, it
has long been known experimentally that very few materials are
ideal diffuse reflectors (for a nice survey of experiments pertaining
to this question, see [18)]).

We formulate the model in the currently emerging standard
terminology for describing illumination in computer graphics [16,
11]. We also discuss efficient methods for implementation within
the context of standard rendering techniques. We also describe
how to construct materials with multiple thin layers. Finally, we
apply the model to two examples: skin and leaves. For these
examples, we build on experimental data collected in the last few
years, and provide pointers to the relevantliterature.

Another goal of this paper is to point out the large amount of
recent work in the applied physics community in the application
of linear transport theory to modeling appearance.
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forward-scattered radiance

    
  

  
  

  
  
  

  
  
  
 
 

(Ot, b2)
Liz. 8, &)

Li
Dy
Lu
Ly

L—|backward-scattered radiance
fr(Oi, di Or, dr) BRDF
Fe(Oi, bi30t,02)|BTDF

Fr,s(@i, i207, @y)|Surface or boundary BRDF
Fe,s(O2, O30; he)|Surface or boundary BTDF

Volume or subsurface BRDF
Volume or subsurface BTDF
Index of refraction

Scattering cross section [mm~']
Absorption cross section [mm~!]
Total cross section (7¢ = a +5) [mm~']
Albedo (W = 24)
Layer thickness [mm]
Scattering phase function ((@', @") to (8, @))

freul@i, bude, dy)
PewlOs, bi: Os, de)n

ay(z; A)
alziA)
ay (z; A)

Ww  

  
 

 
  

 
d

plz 8, 6, 0", b's A)

Table 1: Nomenclature

2 Reflection and Transmission due to Layered
Surfaces

As a starting point we will assume that the reflected radiance L,
from a surface has two components. One componentarises due to
surface reflectance, the other component due to subsurface volume
scattering. (The notation used in this paper is collected in Table |
and shown diagramatically in Figure |.)

Ly(6-, br) = Ly(Oe, br) + LewtlOe, br)
where:

Ly,« - reflected radiance due to surface scattering
Lys - reflected radiance due to volume or subsurface scattering
The models developed in this paper also predict the transmis-

sion through a layered surface. This is useful both for materials
made of multiple layers, as well as the transmission through thin
translucent surfaces when they are back illuminated, The transmit-
ted radiance has two components. The first componentis called
the reduced intensity; this is the amount of incident light wans-
mitted through the layer without scattering inside the layer, but
accounting for absorption, The second is due to scattering in the
volume.

Ly(Os, be) = LyilOe, Or) + DeulGe, be)
where:

Ley - reduced intensity
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Figure 2: Fresnel transmission and reflection coefficients for a
ray leaving air (n = 1.0) and entering water (n= 1.33).

Ly,» - Wansmitted radiance due to volume or subsurface scat-
tering

The bidirectional reflection-distribution function (BRDF) is de-
fined to the differential reflected radiance in the outgoing direction
per differential incident irradiance in the incoming direction [23].

ts = LlOps Or)
F701, 13 Or, #,)= Li, da) cos 6d;

Thebidirectional transmission-distribution function (BTDF) has a
similar definition:

FAs, bs; Ot, Ge) = Lee, Ge)
LA6i, &) cos Gidea;

Since we have separated the reflected and transmitted light into
two components, the BRDF and BTDFalso have two components.

f~~ = f,mat frt
fe fr + Sey

If we assume a planar surface, then the radiance reflected from
and transmitted across the plane is given by the classic Fresnel
coefficients.

Le (Br, be)

Ly (Be, be)

RP(ra, re: Or, be > Ors Oe IL (Ge, bi)
= T?(ni, 71503, bi — Or, de)Lis, 02)

where

RY (res, 145 Bi, Oe + Oe, be) Rini, me, C08 0;, cos Oy)2

T(ns. ne; 9:, 6: + Ode) = “T= ou ~ R)
where A and T’ are the Fresnel reflection formulae and are de-

scribed in the standard texts (e.g. Ishimura{l4]) and @ is the
angle of transmission. Besides returning the amountofreflection
and transmission across the boundary, the functions 2! and 7",
as a side effect, compute the reflected and refracted angles from the
Reflection Law (@, = 6,;) and Snell's Law (nz sin 6; = mz sin @).
Note also the factor of (nz/7:)°) in the transmitted coefficient of
the above formula; this arises due to the change in differential
solid angle under refraction and is discussed in Ishimura[pp. 154-
155]. Plots of the Fresnel functions for the boundary between air
and water are shown in Figure 2.

In our model ofreflection, the relative contributions of the sur-
face and subsurface terms are modulated by the Fresnel coeffi-
cients.

fe = Rhys +Tfou = Rfest+ (1 — Rifrw
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Thus, an immediate prediction of the model is that reflection due to
subsurface scattering is high when Fresnel reflection is low, since
more light enters the surface layer. Notice in Figure 2 that the
percentage of transmission is very high for a quite wide range of
angles of incidence. Thus, the reflectance properties of materials
impregnated with water or oil (dielectrics with low indices of
refraction) are dominated by subsurface reflectance components at
near perpendicular angles of incidence, and surface components
at glancing angles of incidence.

Actually, light returning from the subsurface layers must refract
across the boundary again. Thus, it will be attenuated by yet an-
other Fresnel transmission factor. Recall that if light returns from
a media with a higher indexof refraction, then total internal reflec-
tion may occur. All light with an inctdent angle greater than the
critical angle (4, = sin' n,/me) will not be transmitted across the
boundary. By assuming anisotropic distribution of returninglight,
we can compute the percentage that will be transmitted and hence
considered reflected. This sets an upper bound on the subsurface
reflectance of | —(nz/rz)" (remember, m > nj). For example,
for an air-water boundary, the maximum subsurface refiectance is
approximately 44,

3 Description of Materials

The aim of this work is to simulate the appearance of natural ma-
terials such as human skin, plant leaves, snow, sand, paint, etc.
The surface of these materials is comprised of one or more layers
of material composed of a mixture of randomly distributed parti-
cles or inhomogeneities embeddedin a translucent media. Particle
distributions can also exist, in which case the properties are the
material are given by the product of each particle’s properties
times the number of particles per unit volume.

The layers of such materials can be described by a set of macro-
scopic parameters as shown in the following table. Measurements
of these properties have been made for a large variety of natural
materials.

index of refraction

absorption cross section
scaltening cross section
depth or thickness
scattering phase function
mean cosine of phase function

  
  
  
  
  

® Index of Refraction
‘The materials considered are dielectrics where 7 is on the
order of the index of refraction of water (1.33).

® Absorption and scattering cross section
Theintensity of the backscattered and transmitted light de-
pends on the absorption and scattering properties of the mate-
rial. The cross section may be interpreted as the probability
per unit length of an interaction of a particular type. The
lotal scattering cross section o¢ = oq +o. The mean free
path is equal to the reciprocal of the total cross section. An
important quantity is the albedo, which equals W = o,/cr.-
If the albedo is close to I, the scattering cross section is
much greater than the absorption cross section, whereas if
the albedois close to.0, absorption is much morelikely than
scattering.

® Scattering phasefunction
The phase function, p(Z:4,0:6',") represents the direc-
tional scauering from (8',¢") to (@, @) of the light incident
onto a particle. This function depends on the nature of the
scattering medium. The form of p is affected by the size,

 

—<}——_=——>
Figure 3: Henyey-Greenstein phase function for g = —.3 and
g = 6.

form and orientation of the suspended particles, the dielectric
properties of the particles, and the wavelength of the incident
light, The scattering of light from particles small compared
to the wavelength of light is given by the Rayleigh scatter-
ing formula, and the scattering due to dielectric spheres of
different radii by the Mie formula.
However, most materials contain distributions of particles
of many different sizes, so simple single particle phase func-
tions are not applicable. For this reason, we describe the ma-
terial phase function with the empirical formula, the Henyey-
Greenstein formula[13).

l-g
4n (1 +g? — 2gcos jp?

where j is the angle between the incoming and the outgoing
direction (if the phase function depends only on this an-
gle the scattering is symmetric about the incident direction).
The Henyey-Greenstein formula depends on a single param-
eter g, the mean cosine of the scattered light. The Henyey-
Greenstein phase function for different values of g is shown
in Figure 3. Note that if g = 0 the scattering 1s isotropic,
whereas positive g indicates predominantly forward scatter-
ing and negative g indicates predominantly backward scat-
tering.

Pualcos J) =

In the model employed in this paper, material properties are
described macroscopically as averages over the underlying mi-
croscopic material property definitions. IF the material is made
of several components, the resulting properties of the composite
materials can be computed by simple summation.7h

J, = ) Wy Tana=!.

os. plcosj,g) = So wo. pleos), 9)om!

and so on. Here wi; is the volume fraction of the volume occupied
by material 1.

Another very important property of real materials is that the
properties randomly vary or fluctuate. Such fluctuations cause
variation in the appearance of natural surfaces. This type of fluc-
tuation is easy to model with a random noise function or a texture
map.

Optical propagation in random media has been studied in a va-
riety of applications, including blood oximetry, skin photometry,
plant physiology, remote sensing for canopies and snow, the paint
and paperindustry, and oceanic and almospheric propagation. For
many examples the macroscopic parameters have been measured
across many frequency bands. A major attempt of our work is the
simulation of the appearance of natural surfaces by using mea-
sured parameters to be inserted into the subsurface reflection and
transmission formulas. This approach ts similar to the attempt of
Cook & Torrance [8] to simulate the appearance of metallic sur-
faces by using appropriate values for the refractive index and the
roughness parameters.

4 Light Transport Equations

Linear transport theory is a heuristic description of the propagation
of light in materials. Transport theory is an approximationto elec-

La?
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tromagnetic scattering theory, and hence cannot predict diffrac-
tion, interference or quantum effects. In particular, the specular
reflection of light from rough surfaces whose heightvariation is
comparable in size to the wavelength of incident light requires
the full electromagnetic theory as is done in He et al[12]. A nice
discussion of the derivation of transport theory from electromag-
netism and the conditions under whichit is valid is contained in

an recent article by Pante{9]. The applicability of transport theory,
however, has been verified by its application to a large class of
practical problems involving turbid materials, including inorganic
materials such as ponds, atmospheres, snow, sand and organic
materials such as human skin and plant tissue[14].

Transport theory models the distribution of light in a volume
by a linear integro-differential equation.

OL(Z,8,b) _
os

—orL(é, 0,6) + os /ZO, d: 8", d)LCF, 0,6") dO! dd
This equation is easily derived by accounting for energy balance
within a differential volume element, It simply states that the
change in radiance along a particular infinitesimal direction ds
consists of two terms. The first term decreases the radiance due

to absorption and scattering. The second term accounts forlight
scattered in the direction of ds from all other directions. Thus,it
equals the integral over all incoming directions.

For layered media, the assumption is made thatall quantities
only depend on z and not on x and y. This assumptionis valid if
the incoming illumination is reasonably constant over the region
of interest. It is also roughly equivalent to saying the reflected
light emanates from the same point upon whichit hits the surface.
With this assumption, the above equation simplifies to

OLA, db) _
az

=oLAA, th) + ors [mses 8", ob’) L186", b) dé" de’
cosd

The above equation is an integro-differential equation. It can
be converted to an equivalent double integral equation, whose
solution is the same as the original integro-ditferential equation.

I(z, 0, 6) =

3 f deti e dg SF cow f ute! nts's0,280"6") L(z a! "dur" Be

This is the basis of most current approaches to volume rendering.
The |-dimensional linear transport equation must also satisfy

certain boundary conditions. This is most easily seen by consid-
ering the forward and the backward radiance separately.

L(@,¢) = L,(8,¢)+ L-(r — 8.)

Where Ly is energy propagating in the positive 2 direction, and
L— in the negative direction. Note that L_ is defined to be a
function of of 7 — @, the angle between the backward direction
of propagation and the negative z axis. It is important to re-
member this convention when using formulas involving backward
radiances.

At the top boundary the forward radianceis related to the inci-
dent radiance.

Lie = 0,0;)= [flOss 8! 8Las)ca
168

168

This simply states that the forward componentofradiance entering
the volume at the boundary is due to light transmitted across the
surface. If we assume a planar surface and parallel incident rays,
then f;,. equals the Fresnel transmission term times a 6-function
that picks up the appropriate angle of incidence.

Ly(z =0;0',6°) = Ty, 105 Oi, bs 4 8", OLAO,, :)

In the more general case of a rough surface, f,,; is given by a
Iransmission coefficient times the probability that light will refract
in the desired direction.

The boundary conditions at the top let us formally state the
contribution to reflection due to subsurface scattering in terms of
the solution of the integral equation at the boundary z = 0.

LewlBr, or) = / fis(O, OO, dr) La(z = 0:8, @) dhs
Assuming a planarsurface, this integral simplifies to

Lew(Ory Pr) =T"(ra, ne}8, + On, br D(z = 058, 6)

Similar reasoning allows the transmitted radiance to be deter-
mined from the boundary conditions at the bottom boundary,

Da ulOe, die) = / Ses(O, P22, be) Lole = d,8,) des
Once again, assuming a smooth surface,

Levi, be) =T(nr, 1; 8,0 + Oe, be Llz = di; 0, 6)

Thus, the determination of the reflection functions has been

reduced to the computation of L_(z = 0) and Li(z = d)—the
solution of the one-dimensional transport equation.

5 Solving the Integral Equation

There are very few cases in which integro-differential equations
can be directly solved, The most famous solution is for the case of
isolropic scattering and was derived by Chandrasekhar|7, p. 124],
Even for this simple phase function the solution is anisotropic.

The classic way to solve such an equation is to write it in
terms of the Neumann series. Physically, this can be interpreted
as expanding the solution in terms of the radiance due to an integer
numberof scattering events. That is,

L= souasi)

where L"is the direct radiance assuming no scaitering, L"’’ is the
radiance due to a single scattering event, and L'"! is the radiance
due to 7 scattering events. Similar equations apply to the forward
and backward radiances, L'" and L"’,

The radiance due to the 7 scattering events can be written using
the following recurrence.

Yo. 8b) =
st iu

ie St fonts! ate':0,0:00°) 10210" "das! BF

This is the basis for most iterative approaches for numerically
calculating transport quantities.
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Figure 4: Solutions for /t!), and f;'), for different values of g and
vy. From left to right the phase function shifts from predominately
backward scattering (g = —0.3) to isotropic scattering (g = 0.0)
to forward scattering (g = 0.6). From top to bottom the optical
depth of the layer increases from 0.5 to 1.0 to 2.0.

5.1 First-Order Approximation

Another classic result in radiative transport, also derived by Chan-
drasekhar|7], is the analytic solution to the integral equation as-
suming only a single scattering event. As mentioned previously,
this is equivalent to the method described by Blinn but derived
using a completely different technique [2].

The Oth-order solution assumes that light is attenuated by the
scattering and absorption, but not scattered. The attenuated inci-
dent light is called the reduced intensity and equals

EM(2) = Lule = Oye7"

r= |oede0

is called the optical depth. If o, is constant, then Ty = o¢d.
Using the boundary conditions for incident and reflected light,

and also rewriting the above equation in terms of the angles of
incidence and reflection, we arrive at the following formula for
the Oth-order transmitted intensity

Here,

LY(Oe, be) = TP?Te"4 Ly(02, be)

By substituting the Oth-order solution, or reduced intensity, into
the integral equation, the Ist-order solutions for forward and back-
ward scattering can be calculated. The details of this calculation
are described in Chandrasekhar and Ishimura and there is no need

lo repeal them here,
Using the boundary conditions for incident and reflected light,

and also rewriting in terms of the angles of incidence and re-
flection, we arrive at the following formula for the backscattered
radiance:

ty
Ler: or)=

WIT ple Bo brabel geesleTAN OBL BNDs ba)

This general formula shows that the backscattered light intensity
depends on the Fresnel transmission coefficients, the albedo, the
layer depth, and rhe backward partof the scattering phase function.
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Figure 5; Solutions for f, and f:. In the left column is the
surface specular reflection and in the middle is the subsurface
reflection and transmission, On the right is the sum of surface
and subsurface modulated by the Fresnel coefficients. From top
to bottom the angle of incidence increases from 10 to 40 to 65
degrees.

 

A special case of this equation is Seeliger’s Law, the first at-
tempt to model diffuse reflection from first principles(25]. Seel-
iger’s Law can be derived by assuming a semi-infinite layer
(Ta = 0c) and ignoring Fresnel effects.

cos 6,
beatiesdeys——eewulOry dr) cos @; + cos 6, L,(8:, be)

At the boundary z= d, the forward scattered radiance is given
by

Li!) (Oe, b+) =
WTpebeiwhibapeTals eT! Om MEtHa)

For cos @, = cos@,, the singular factors can be avoided by using
L*Hospital’s rule, yielding

LN)(Ot, de) = WT?T™be, er Ae, de)
Te

—Tq/' cox ft Liécos #, Orda)
 

Figure 4 shows f,.. and J: for various values of g and d.
Figure 5 shows the surface and subsurface components of the
reflection model for various angles of incidence. These reflection
and transmission distribution functions have several interesting
properties:

{. The reflection steadily increases as the layer becomesthicker;
in contrast, the transmission due 1o scattering increases to a
point, then begins to decrease because of further scatteringevents,

2. Subsurface reflection and transmission can be predominately
backward or forward depending on the phase function.

3. As the angle of incidence becomes more glancing,the surface
scattering tends to dominate, causing both the reflection and
the transmission due to subsurface scattering to decrease.

4, Due to the Fresneleffect, the reflection goes to zero at the
horizons. Also, the reflection function appears “flatlened”
relative to a hemicircle, Thus, reflection for near normal
angles of incidence varies less than Lambert's Law predicts.

5, The distributions vary as a function of reflection direction.
Lambert's Law predicts a constant reflectance in all direc-
tions (which would be drawn as a hemicircle in these dia-
grams).
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\

Figure 6: Determining first-order solutions for multiple layers.
Ontheleft, the contribution to the first order solution for a single
layer. One the right, the contnbution to the first order solution
due to reflectance off a single layer,

The above formulas can be used to generatefirst-order solutions
for multiple layers. (This is shown diagrammatically in Figure 6.)
The tolal first-order scattering will be the sum of the first-order
scattering from each layer, weighted by the percentage of light
makingit to the layer and returning from the layer. The percentage
of light making it to the layer is the product of the Oth-order
transmission functions (or reduced intensity) for a path through
the layers above the reflecting layer. Similarly, the percentage of
light leaving the entire layer after reflection is equal to the product
of the Oth-order transmission functions for the path taken on the
way out. Note that across each boundary the light may refract, and
thus change direction and be attenuated by the Fresnel coefficient,
but this is easy to handle. The process simplifies, of course, if
each layer has the same index of refraction, since no reflection
or change of direction occurs between layers, Given the above
formulas it is very easy to construct a procedure to perform this
calculation and we will make use ofit in the results section,

The above formula can also be generalized to include reflection
from a boundary between layers. In many situations reflection can
only occur from the bottom layer. In this case, we add a single
term accounting for the reduced intensity to reach the lower bound-
ary, and also weight the returning light fromm that boundary. Such
a model is commonly employed to model the reflection of light
from a pool of water[ 15], and has been employed by Nishita and
Nakamae[22]. Further generalizations of this type are described
in [shimura[14, p. 172}.

6 Multiple Scattering

The above process of substituting the ith-order solution and then
computing the integral to arrive at the (i+1)th-order solution can
be repeated, but is very laborious. Note that subsequentintegrals
now involve angular distributions, because, although the input ra-
diance is non-zero in only a single direction, the scattered radi-
ance essentially comes from the directional properties of the phase
function, Thus, this approach to solving the system analytically
quickly becomes intractable.

We have implemented a Monte-Carlo algorithm for computing
light transport in layered media. This algorithm is described in
Figure 7, A thorough discussion of the application of Monte Carlo
algorithms for layered media is discussed in the book [21], and
the techniques we are using are quite standard.

To investigate the effects of multiple scattering terms, we sim-
ulated a semi-infinite turbid media with different albedos. The re-

flectance was computed and whentheparticles returning from the
media are scored, we keep track of how many scattering events
they underwent. Figure 8 shows the results of this experiment.
The top curve is the total reflectance, and the lower curves rep-
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-
1 Initialize: A particle enters the layerat the origin. Initialize p to the

origin and the direction § to the direction at which the ray enters
the layer. Set the weight w = |.

2 Events: Repeat the following steps until the ray weight drops below
some threshold or the ray exits the layer.

2A Step: First, estimate the distance to the next interaction:

a= _logrTh

Where r in this and the following formulas is a uniformly
distributed random number between 0 and 1. Then, com:
pule the new position:

p=pt+ds

And, finally set the particle weight to
as w= Ww

5 +o

 
Note: If d causes the particle to leave the layer, break from
the repeat loop and adjust the weight using the distance lo
the boundary,

2B Scatter: First, estimate the cosine of the. scattering angle for
the Henyey-Greenstein phase function using the following
formula,

1 2

(29

and cos @ and sing with @ = 2rr_ Then, compute the new
direction:

(4g -( +)cos 7 = ——_
—g+2gr

FL i (S-rcos @cos A — S.ysingd)/ siné
(Zy cos dcos @ + Srsin d)/ sin

sin@

¥ = Fcos7+ésinj

Here, cos@ = Hz and sin@ = y/) —s.z2. Note: Care
must be taken if sin# = 0),

3 Score: Divide the sphere into regions of equal solid angle and add
the weight of the particle to the weight associated with the bin
in which it is contained. 

Figure 7: Basic Monte Carlo algorithm for layered media

resent scattering up to some order. Note that when the albedo
is high, implying that o, >> oa, the first order term is only a
small percentage of the total reflectance, However, as the albedo
decreases, corresponding [o greater absorption, a few low-order
terms accurately approximate the reflectance. This effect can be
explained by recalling that each term in the Neumannseries rep-
resenting the reflection is on the order of W', and since W is
always less than one, the magnitude of higher-order terms quickly
goes to zero.

We have also computed the BRDFas a function ofthe angle of
reflection using our Monte Carlo algorithm for the same configu-
ration as described in the last experiment. The results are shown
in Figure 9. Recall that the Ist-order reflection due to a semi-
infinite media is given by Seeliger’s Law: cos @;/(cos 0, +cos 0,).
The computed Ist-order BRDF matches the theoretical result quite
well. In this igure we also plot the total BRDF due to any num-
ber of scattering events, and the difference between the total and
the Ist-order BRDF. Note as in the previous experiment when the
albedo W’ is small, the BRDFis closely approximated by the Ist-
order term. However, note that the shape ofthe reflection function
is also largely determined by the shape ofthe Ist-order reflection,
which in turn is largely determined by the phase function. Fur-
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Reflectance 
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 09 1.0

Albedo (1-W)

Figure 8: A plot of reflectance versus albedo for a semi-infinite
media. The top curve is the total reflectance (the total radiant
energy per unit area reflected divided by the incident irradiance),
The bottom curve is the reflectance assuming only a single scat-
tering event. Moving upward is a sequence of curves consisting
of additional terms corresponding to a single additional scatter-
ing event. The first 10 terms in the solution are shown; In our
simulations, we recorded terms involving thousands of scattering
events,

ther, observe that the difference between the Ist-order solution
and the full solution is approximately independent of the angle of
reflection. Thus, the sum of the higher order terms roughly obeys
Lambert’s Law. For this reason it is often convenient to divide
the subsurface reflection into two terms:

LywlOe; by) = LO, be) + L™

where L™ is constant and represents the sum ofall the multiple
scatlering terms.

Finally, we have begun preliminary experiments where wein-
corporate a Monte Carlo subsurface ray tracer within a standard
ray tracer, When the global ray tracer calls the subsurface ray
Iracerit attempts to éstimate the BRDF and BTDFtoaparticular
light source. This is done by biasing the Monte Carlo procedure
to estimate the energy transported to the light. A simple method
to do this is to send a ray to the light at each scattering event, as
described in Carter and Cashwell(6]. This ray must be weighted
by the phase function and the attenuation caused by the traversal
through the media on the wayto the light. If the albedo is less than
1, then only a few scattering events are important, and thus the
subsurface tay tracer consumes very little time on average (the
cost is proportional the the mean number of scattering events).
Also, since the subsurface ray tracer does not consider the global
environment when tracing its rays, the cost of subsurface Monte
Carlo simulation at every shading calculation is relatively low.
The advantage of this approach is that the BRDP's do not have
to precomputed, and so if material parameters are varying across
the surface, the correct answeris still estimated correctly at each
point,

7 Results

The subsurface scattering models developed in this paper has been
tested on two common natural surfaces: human skin and plant
leaves. The goal of these experiments are twofold; First, to
compare our anisotropic diffuse reflection model with Lambertian
shading. Second, to attempt to simulate the optical appearance
from measured parameters. Our experiments are meant to be sug-
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cos Tr cos r

Figure 9: Graphs of the BRDF (f,) as a function of the angle
of reflection for a semi-infinite slab with different albedos (on the
left W = 0.4 and on the nght W = 0.8) and an angle of inci-
dence of 45°. The solid line is the theoretical BRDF as given
by Seeliger's Law (the superimposed dashed line is the computed
Ist-order BRDF showing a good match). The top dashed curve
is the total computed BRDF; The bottom dotted curve is the dif-
ference between the total BRDF due to multiple scattering events
and the Ist-order BRDF.

LPropetty)EasesDaresgeBed 
Table 2: Two Layer Skin Model Properties. Pigment coefficients
are mixed with epidermal coefficients to compute the properties
of the outer layer. Blood coefficients are mixed with dermal co-
efficients to compute the properties of the inner layer.

gestive of the power of this approach; we do not claim to have an
experimentally validated model,

7.1 Skin

Human skin can be modeled as two layers with almost homo-
geneous properties. Both layers are assumed to have the same
refractive index but a different density of randomly distributed
absorbers and scatterers. The outer epidermis essentially consists
of randomly sized tissue particles and imbedded pigment parti-
cles containing melanin. The pigment particles act as strongly
wavelength dependent absorbers causing a brown/black coloration
as their density increases. The inner dermis is considered to be
a composition of weakly absorbing and strongly scattering tissue
material and of blood which scatters light isotropically and has
strong absorption for the green and blue parts of the spectrum.
Experimental evidence also supports the hypothesis that light scat-
tering in the skin is anisotropic with significant forward scattering.
A comprehensive study of optical properties of human skin can
be found in van Gemeri et al.[27]. The values chosen for our test
pictures are given in Table 2. We also add a thin outer layer of
oil that reflects light using the Torrance-Sparrow model of rough
surfaces.

A head data set was acquired using a medical MRI scanner,
Unfortunately, the ears and the chin were clipped in the process.
but enough of the head is visible to test our shading models. A
volume ray tracer was adapted to output the position and normal
vector of the skin layer for each pixel into a file, and this inpul
was used to evaluate the shading models described in this paper.

The influence of the various factors appearing in the subsur-
face reflection formula are shown on Plate 1. These pictures are

17L
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Plate 1.

 

 
Plate 2.

not shaded in the conventional way. In particular, a Lambertian
shading model would yield a constant image. Thefirst picture
(upper left) shows the influence of the Fresnel factors. Observe
that the intensity is almost flat, but strongly attenuated for glancing
incident and viewing angles. The second picture (upper middle)
shows the action of Seeliger’s Law alone. Seeliger’s Law leads
to very little variation in shading, which makes the surface appear
even more chalky or dusty. The third picture (upper right) demon-
strates the action of the factor accounting for the finite layer depth
giving only weak enhancements for glancing angles. This is a mi-
nor effect. The fourth picture (lower left) shows the influence of
the Henyey-Greenstein scattering phase function for small back-
ward scattering (g = —.25) and the fifth picture (lower middle)
showsthe effect of large forward scattering (g = .75). The result
is strong enhancementofglancing reflection for low angles ofin-
cidence and viewing, assuming they are properly aligned. The last
picture (lower right) shows the superposition of these four factors
with g = .75 giving a complex behavior. An overall smoothing of
the reflection appears; the surface appears to be more “silk-like”
(see also Plate 3). Although these‘effects are all subtle, their com-
bination when controlled properly can create a wide variation in
appearance.

The appearance of the face with the new subsurface reflection
model is compared to the Lambertian diffuse reflection model for
different angles of incidence in Plate 2. The left column shows
the results for the Lambert scattering for angles 0 and 45 degrees,
and the middle column is rendered for the new model. Again,
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Plate 3: Dark complexion controlled by setting the concentration
of melanin. On theleft are images with just subsurface scattering.
Onthe right, an specular surface term is added to simulate an oily
coat. In these pictures g = .65.

Plate 4: Human face with variation in subsurface blood concen-

tration, an oily outer layer and Gaussian variation in parameters
to create the “freckles.”

notice a much smoother “silk-like” appearance. The right column
gives the relative difference of both models, red indicates more
reflection from the new model, and blue vice versa.

To illustrate the degrees of freedom of the model, we rendered
several faces with their parameters controlled by texture maps.
One texture map controls the relative concentration of blood in the
dermis; another texture map controls the concentration of melanin
in the epidermallayer. These faces are shownin Plates 3 and 4. To
create a dark complexion we modulate the percentage of pigment
in the otherwise transparent epidermis. This creates a dark brown
appearance dueto the strong absorption of melanin(in this case we
set the absorption to .6). For the lips the epidermisis set to be very
thin such that the appearance is dominated by the reflection from
the dermis which has for the lips a large blood content (strong
absorption for green and blue light component). The epidermis
pigment part also has been varied locally with about 20% with a
Gaussian process. This allows us to create a wide variety of skin
colors, from black to suntanned to Caucasian, and from flushed to
burnt to relaxed. The pictures in Plate 3 also show the effect of
an additional specular term due to a thin layer of oil on the skin.
Finally, Plate 4 shows another picture created by our program.
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Figure 10: Typical leaf cross-section (Redrawn from [20]).

 
Plate 5: Leaf Model, On the left is the albedo image and on the
right is a thickness image (white indicates thick)

This picture took approximately 20 seconds to render on a Silicon
Graphics PersonalIris.

7.2. Leaves

Figure 10 shows an idealized Jeaf in cross-section. The leaf 1s
composed of several layers of cells. On the top and bottom are
epidermal cells with a thin smooth, waxy cuticular outer layer. The
waxy cuticular layer is largely responsible for specularly reflected
light. Below the upper epidermal cells there are a series of long
palisaide cells Which are highly absorbing due to the numerous
chloroplasts contained within them. Below the palisaide cells are
a loosely packed layer of irregularly shaped spongy cells. The
spaces between the spongy cells are filled with air, which causes
them to scatter light. Both the palisaide and the spongycells are
quite large (approximately 20 jm) compared to the wavelength, so
their scattering phase function is forward directed. Furthermore,
the cells are high in water content, so the index ofrefraction of
the leaf is approximately equal to that of water—1.33. A typical
leaf is .S to 1 mm thick, with an optical depth of 5 to 10.

To test our model on a leaf, we constructed a leaf model us-
ing the technique described in Bloomenthal[3]. Although spectral
transmission and reflectance curves are available for leaves[29],

we have set the color of the leaf from an image acquired from a
digital scanner. An albedo image is texture mapped onto a series
of simply-shaped, bent polygonsto create the leaf. Where the tex-
ture map is transparent the polygon is considered transparent and
the leaf is not visible. We also modulate the thickness ofthe leaf

with a thickness map drawn on top ofthe original leaf image. The
(exture maps we used are shown in Plate 5. The waxy cuticle is
modeled using a rough specular surface with a specular exponent
of 10, Theinterior of the leaf is modeled as a single homogeneous
layer with an optical depth of 5 and a mean scattering cosine of
3[20).

Pictures were generated by modifying a conventionalray tracer
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Plate 6: A cluster of leaves. A series of leaf images under dif-
ferent simulated lighting conditions. On the left are two backlit
images, on the right, frontlit.

to account for subsurface reflection and transmission. When a ray
encounters a leaf, the BRDF and BTDFare evaluated for direct

illumination from light sources. Shadow rays are cast to the light
source, and if the ray stabs any other leaves the light intensity
is attenuated by the Oth-order transmission function through each
leaf. Plate 6 shows a picture of a cluster of leaves with the sun in
different positions. Note that the reflection from leaves is largely
determined by specular reflection due to the waxy cuticle; there
is very little diffuse reflection and hence when the light source is
on the same side ofthe leaf as the viewer, the leaf is quite dark.
The transmission term, however, can be quite large, and therefore
the leaves may actually be brighter when the are illuminated from
behind. Note also that the increased thickness of the veins cause

dark shadows to be cast on other leaves. The veins also appear
dark when theleaf is back lit because they absorb more light, and
bright when the leaf is front lit because their increased thickness
causes more light to be reflected.

8 Summary and Discussion

We have presented a reflectance model consisting of two terms:
the standard surface reflectance and a new subsurface reflectance

due to backscattering in a layered turbid media. This modelis
applicable to biological and inorganic materials with low indices
of refraction, because their translucent nature implies that a high
percentage of the incident light enters the material, and so the
subsurface reflection is quite large. This model incorporates di-
rectional scattering within the layer, so the resulting subsurface
reflection is not isotropic. This model can be interpreted as a the-
oretical model of diffuse reflectance. Thus, this model predicts
a directionally varying diffuse reflection, in contrast to Lambert's
Law. However, if multiple scattering contributes significantly to
the reflection, then the higher scattering terms contribute to a re-
flection function with roughly the same shape.

As in any model, our model makes many assumptions. The two
most important are that the physical optics may be approximated
with transport theory, and that the material can be abstracted into
layered, turbid media with macroscopic scattering and absorption
properties. An “exact” model ofbiological tissues would explicitly
model individual cells, organelles and so on, in considerably more
detail. The Monte-Carlo algorithm for simulating reflection by
Westin et al.[28] is an example of such an approach, Although
such an approach may seem moreaccurate, often the experimental
data needed to describe the arrangements of these structures is
simply not available, and so in the end the results may be difficult
to validate. An advantage of the transport theory approachis that
the parameters of the model often may be directly extracted from
experimental data.
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A legitimate criticism of our work is that we did not directly
compare the predictions of our model with experiment, The pre-
dictions of our model and the influence of measured material pa-
rameters should be checked carefully, However, we believe that
this model has many applications in computer graphics even if
it does not perfectly predict measured reflection functions. The
metaphor of layered surfaces is very easy for users to understand
because is a natural way to describe phenomenologically the ap-
pearance of many materials. It also fits easily into most rendering
systems and can be implemented efficiently.

Finally, transport theory is a heuristic theory based on abstract-
ing microscopic parameters into statistical averages. Transport
theory is also the basis of the rendering equation, which is widely
viewed as the correct theoretical framework for global illumina-
tion calculations. In this paper we propose to model surface re-
flection from layered surfaces with transport theory. Thus, when
our reflectance model for layered surfaces is incorporated into a
ray tracer, there is a hierarchy of transport calculations being per-
formed. Within this hierarchy, the lower level transport equation
computes the reflectance for the higher level transport equation.
Whenperforming this calculation, the lower level transport equa-
tion uses as its initial conditions the values from the higher level
transport solution, Thus the two levels are coupled in a very sim-
ple way. In fact, it is possible to reformulate transport theory
entirely in terms of reflection functions, the result is an integral
equation for the reflection functionitself; in this formulation the
radiance does not appear at all. Coupling transport equations at
different levels of detail in this manner is a promising approach
to tackling the problem of constructing representations with many
different levels of detail as proposed by Kajiya[ 17],

9 Acknowledgements

We would like to thank Craig Kolb for his help with RayShade
and the leaf pictures. We would also like to thank David Laur
for his help with the color plates. This research was partially
supported by Apple, Silicon Graphics Computer Systems, David
Sarnoff Research Center, and the National Science Foundation
(CCR 9207966),

References

[I] Beckmann, P., AND SprzzicHino, A. The scattering
of electromagnetic waves from rough surfaces. Pergamon,
Oxford, 1963.

[2] Bunn, J. F, Light Reflection Functions for Simulation of
Clouds and Dusty Surfaces. Computer Graphics 16, 3 (July
1982), 21-29,

[3] BLOOMENTHAL, J. Modeling the Mighty Maple. Computer
Graphies 19, 3 (July 1985), 305-311.

[4] Boucuer, P. The Gradation of Light.
Toronto Press, 1960.

(S] CABRAL, B., MAX, N., AND SPRINGMEYER, R. Bidi-
rectionalreflection functions from surface bump maps. Com-
puter Graphics 21, 4 (July 1990), 273-281.

[6] Carrer, L., AND CASHWBLL, E. Particle Transport Sim-
ulation with the Monte Carlo Method. Energy Research and
Development Administration, 1975.

University of

[7] CHANDRASEKHAR, 3, Radiative Transfer. Dover, New
York, 1960.

[8] Cook, R, L., AND TorRANcE, K. E. A Reflection
Model tor Computer Graphics. ACM Transactions on Graph-
ies J, 1 (1982), 7-24.

174

174

[9] FAntE, R. Relationship between Radiative Transport The-
ory and Maxwell's Equations in Dielectric Media. J. Opt.
Soc. Am. 71, 4 (Aptil 1981), 460-468.

GRAWBOSKI, L. Astrophysics J. 39 (1914), 299.

HANRAHAN, P. From Radiometry to the Rendering Equa-
tion. SIGGRAPH Course Notes: An Introduction to Radiosity
(1992),

HE, X. D., Torrance, K. E., Sinton, F. X., AND
GREENBERG, D. P. A Comprehensive Physical Model
for Light Reflection. Computer Graphics 25, 4 (July 1991),
175-186.

Henyey, L. G., AND GREENSTEIN, J. L. Diffuse radia-
tion in the galaxy. Astrophysics J. 93 (1941), 70-83.

ISHIMURA, A. Wave Propagation and Scattering in Randam
Media, Academic Press, New York, 1978.

[10]

(11)

(13)

[14]

[15] JERLOV, N. G. Optical Oceanography. Elsevier, Amster-
dam, 1968.

[16] Kagrva, J. Radiometry and Photometry for Computer
Graphics. SIGGRAPH Course Notes: State of the Art in lm-
age Synthesis (1990).

KaAwyva, J. Anisotropic Reflection Models.
Graphics 19, 3 (July 1985), 15-22.

[18] Korrum, G. Reflectance Spectroscopy. Springer-Verlag,
Berlin, 1969.

[19] KRUEGER, W. The Application of Transport Theory to the
Visualization of 3-D Scalar Fields. Computers in Physics 5
(April 1991), 397-406.

Ma, Q., IsHimura, A., Pou, P., AND KuGA, Y. Trans-
mission, Reflection and Depolarization of an Optical Wave
For a Single Leaf. JEEE Transactions on Geoscience and
Remote Sensing 28, S (September 1990), 865-872.

Marcuuk, G., MiKuatLov, G., NAZARALIEV, M.,
DARBINJAN, R., KAnGin, B., AND ELEPOV, B. The
Monte Carlo Methods in Atmospheric Optics. Springer Ver-
lag, Berlin, 1980.

NAKAMAR, E., KANEDA, K., OKAMOTO, T., AND
Nisuita, T. A Lighting Model Aiming at Drive Simu-
lators, Computer Graphics 24, 4 (August 1990), 395-404.

Nicopemus, F. E., RicHMonp, J, C,, ano Hsra, J. J.
Geometrical Considerations and Reflectance. National Bu-
reau of Standards, October 1977.

Pout, P., anp FournteER, A. A Model for Anisotropic
Reflection. Computer Graphics 24, 4 (August 1990), 273-
282.

SEELIGER, R.. Munch. Akad. I. KL Sitzungsber 18 (1888),
201,

TorRRANCE, K. E., AND SPARROW, E. M. Theory of Off-
Specular Reflection From Roughened Surfaces. Journal of
the Optical Society ofAmerica 57 (September 1967), 1104—
1114.

vAN GEMERT, M. F. C., Jacques, 5. L., STEREN-
BERG, H. J. C. M., AND STaR, W. M. Skin Optics.
IEEE Transactions on Biomedical Engineering 36, 12 (De-
cember, 1989), 1146-1154.

Westin, 5. H., Arvo, J. R., AyD Torrance, K. B.
Predicting Reflectance Functions from Complex Surfaces.
Computer Graphics 26, 2 (July 1992), 255-264.

WooL.ey, J. T. Reflectance and Transmittance of Light
by Leaves, Plant Physiology 47 (1971), 656-662.

17] Computer

[20]

[21]

{22]

[23]

(24)

[25]

[26]

[27]

[28]

[29]



175

 COMPUTER GRAPHICS Proceedings, AnnualConference Series, 1993
 

Display of The Barth Taking into Account Atmospheric Scattering

Tomoyuki Nishita Takao Sirai
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Higashimura-cho, Fukuyama, 729-02 Japan

Abstract
A method to display the earth as viewed from outer space
(or a spaceship) is proposed. The intention of the paper
is application to space flight simulators (e.g., reentry to
the atmosphere) and the simulation of surveys of the earth
(comparisons with observations from weathersatellites and
weather simulations); it is not for geometric modeling of ter-
rains and/or clouds viewed from the ground,butfor display-
ing the earth including the surface of the sea viewed from
outer space taking into account particles (air molecules and
aerosols) in the atmosphere and water molecules in the sea.

The major points of the algorithm proposed here are the
efficient calculation of optical Jength and sky light, with
lookup tables taking advantage of the facts that the earth
is spherical, and that sunlight is parallel.

CR Categories and Subject Descriptors:
1.3.3 [Computer Graphics]:Picture/Image Generation
1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism
Key Words: Earth, Atmospheric Scattering, Optical
Length, Sky light, Color of Water, Photo-realism,
Radiative Transfer

1 INTRODUCTION

Research on image synthesis of realistic 3-D models is one
of the most popular fields these days. Displays of natural
scenes such as mountains, trees, sea, clouds have been at-
tractively rendered, and an image synthesis of the earth has
also been developed. Images of the earth are widely used
in movies or TY commercials, e.g., the CG library of earth
images[6] was recently released for use in this field. These
images, however, are focused on how to create attractive
images without any requirement of physical based accuracy.
However, physically-based images are required for the study
of the simulation of surveys of the earth, such as observation
from weathersatellites in comparison to weather simulation,
and flight simulators in space. The color of the earth when
viewed from space varies according to the relationship be-
tween the view direction and the position of the sun. In the
famous words of the astronaut, "the earth was blue”. When
we observe the earth from relatively close to the atmosphere,
the atmosphere surrounding the earth appears as blue, and
the atmosphere near the boundary of the shadow due to the
sun appears red (i.e., sunset). The color of cloudsalso varies
according to the sun's position. These phenomena are opti-
cal effects caused by particles in the atmosphere, and cannot
be ignored, The color of the surface of the sea is not uni-
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form, such as navy blue; it has various colors which depend
on incident light to the sea and absorption/scattering effects
due to water molecules.

This paper proposes an algorithm of physically-based im-
age synthesis of the earth viewed from space. The method
proposed here has the following advantages:

(1) Calculation of the spectrum of the earth viewed
through the atmosphere; the earth is illuminated by
direct sunlight and sky light affected by atmospheric
scattering.

(2) Calculation of the spectrum of the atmosphere taking
account of absorption/scattering due to particles in the
atmosphere.

(3) Calculation of the spectrum on the surface of the
sea taking into account radiative transfer of water
molecules.

The major parts in 1) and 2) are concerned with the caleu-
lation of optical length and sky light. For these calculations,
numericalintegrations taking into account atmospheric scat-
tering are required, but they are effectively solved by using
several (various) lookup tables making good use of the facts
that the shape of the earth is a sphere and that sunlight is
a parallel light. For 3), we show that an analytical solution
is available instead of numerical integrations.

In the following sections, the basic idea of the lighting
model for rendering the color of the earth taking into ac-
count atmospheric scattering, rendering the color of clouds,
and spectrum calculation of the sea is described. Finally,
several examples are demonstrated in order to show theef-
fectiveness of the method proposed here,

2 BASIC IDEAS

In order to render the earth, the following elements should
be taken into account: a geometric model of the earth, the
atmosphere (air molecules, aerosols), sea, clouds, and the
spectrum of the sunlight.

This paper discusses rendering an algorithm of the earth,
the atmosphere, sea, and clouds viewed from outer space
or various positions within the atmosphere; the following
optical characteristics should be considered:

(1) The color of the atmosphere; the atmosphere contains
air molecules and aerosols, and scattered sunlight from
those particles reaches the viewpoint; the intensity of
the light reaching the viewpoint is obtained by inte-
grating scattered light from every particle on the ray,
and the light scattered from the atmosphere around the
earth also reaches this viewpoint.

(2) The color of the earth's surface: the earth is illumi-
nated by both direct sunlight and sky light. Sunlight
is absorbed whenlight passes through the atmosphere,
and sky light consists of light scattered by particles in
the air. On the way, passing through the atmosphere
the light is attenuated, and its spectrum changes.
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(3) The color of the sea: sunlight reaching the surface of
the sea is divided into reflected light at the surface and
light scattered from water molecules. Both of them pass
through the atmosphere and reach the viewpoint.

(4) The color of clouds: sunlight is scattered from particles
of clouds, the scattered light is attenuated and reaches
the viewpoint.

These phenomena should be simulated as precisely as pos-
sible in the calculation of the spectrum of the earth and the
atmosphere. As we intend to concentrate on close views of
the earth, the bumped terrain model of the earth is used in-
stead of a simple sphere; the continents are modeled by 3D
fractals, and the sea is expressed by a sphere consisting of
some curved surfaces. Geometric models such as a spaceship
are also dealt with.

For hidden surface removal, the scanline algorithm forfree
form surfaces developed by the authors is employed[11]; the
surfaces are expressed by Bézier surfaces.

3 MODELING OF THE EARTH

Even though we may use a modeling in which the earth
is treated as a sphere and the land is modeled by bump
mapping, we consider the earth as having two components,
land and sea: the sea consist of eight cubic Bézier patches,
and the land consists of a set of curved surfaces.

The land data is made by mapping small patches onto the
sphere, which are subdivided by using fractals after giving
the altitude data for each mesh point overlapped onto a
world map: the random midpoint displacement algorithm is
employed as a fractal.

A scanned image of the mapis used as the texture of the
land. Therefore the color is not the real color of the earth.

4 SPECTRUM OF THE ATMO-
SPHERE

Previous work taking account scattering/absorption due to
particles include; a) the display of Saturn’s rings (reflective
ice particles)(1], b) for light. scattering from particles in the
air, shafts of light caused by spot lights{12], and light beams
passing through gaps in the clouds or through trees[8], c)
scattered light due to nonuniform density particles such as
clouds and smoke[12)[4], d) sky color taking account atmo-
spheric scattering[5). In this paper we focus our discussion
on the atmosphere, On this topic, Klassen(5] approximated
the atmosphere as multiple layers of plane-paralle) atmo-
sphere with uniform density; however, this method results
in a large error near the horizon. We discuss here a spherical-
shell atmosphere with continuous variation of density in or-
der to improve accuracy. Though his method can only ren-
der the color of the sky viewed from a point on the earth,
the method discussed here can render the color of the atmo-
sphere viewed from space.

The color of the atmosphere is much influenced by the
spectrum of the sunlight, scattering/absorption effects due
to particles in the air, reflected light from the earth's sur-
face, and the relationship between the sun’s position and the
viewpoint (and direction). The sunlight entering the atmo-
sphere is scattered/absorbed by air molecules and aerosol,
and ozone layers, The characteristics of scattering depend
on the size of particles in the atmosphere. Scattering by
small particles such as air molecules is called Rayleigh scat-
tering, and scattering by aerosols such as dust is called Mie
scattering. Light is attenuated by both scattering and ab-
sorption.
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Figure 1: Intensity calculation for the ray intersecting only
with the atmosphere.

4.1 Assumptions for Spectrum Calculation

For the spectrum calculation, we use the following assump-
tions:

(1) The multiple scattering of light between air molecules
and aerosols in the atmosphere is ignored because of
its negligible values and large computational cost, so
only single scattering is considered. The interreflection
of light between the earth's surface and particles in the
air is also neglected because of the same reasons.

(2) For visible wavelengths, absorption in the ozone layer
is negligible compared to absorption by air molecules
and aerosols.

(3) The density distributions of air molecules and aerosols
are taken into account; their densities vary exponen-
tially with altitude[16].

(4) It is assumed that light travels in a straight line even
though the actual path is curved due to the variation
of index of refraction with altitudes.

4.2 Atmospheric Scattering

Let’s consider scattering due to air molecules and aerosols.
First, single scattering due to air molecules is described.

Thelight reflected due to Rayleigh scattering, J, is generally
given by the following equation;

(A, @) = fo(A)KpF,(6)/A4

3 2x*(n? —1)?» 3N, (1)

where Jo is the intensity of incident light, I is a constant
for the standard atmosphere (molecular density at sea level),
# the scattering angle (see Fig. 1), F, the scattering phase
function indicating the directional characteristic of scatter-
ing ( given by 3/4(1+cos?(@))), A the wavelength ofincident
light, m the index of refraction of the air, N. the molecular
number density of the standard atmosphere, and p the den-
sity ratio. g depends on the altitude A (p = 1 at sea level)
and is given by

(2)

where Hp is ascale height (H, = 7994m), which corresponds
to the thickness of the atmosphere if the density were uni-
form,

Eq. (1) indicates that the intensity of scattering is in-
versely proportional to the 4th power of the wavelength.
Short wavelength light is very strongly attenuated by
traversing the atmosphere, but long wavelength light is
scarcely affected. This is why the sky appears blue in the
daytime. Conversely, at sunset or sunrise, the distance tra-
versed by the light increases, and the color of sky changes

—h

o=exp(a),
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to red because of increased scattering of short wavelengths.
‘The attenuation coefficient @ (1.e., the extinction ratio per
unit length) is given by

=k 2 Zzp= = (3)’

As shown in Fig.1, the light reaching viewpoint P, can be
obtained as the remainder after scattering and absorption
due to air molecules along the path between P, and Py.
The light at P has been attenuated due to travel in the
atmosphere (PP), and the light scattering from P is also
attenuated before reaching Py.

To calculate the attenuation caused by particles for light
of wavelength A traversing distance s, we use the optical
depth, which is obtained by integrating 6 of Bq. (3) along
the path s. Let’s denote the integration variable s and the
distance $, then the optical depth is given by

ankK«(5,2) = [ees = aK [yids (A)
Next, single scattering due to aerosols is described. Scat-
tering optics and the density distribution for aerosols differ
from air molecules; Eq.(4) is different, too. Because the size
range of particles of aerosols is very great, Mie scattering is
applied for the phase function in Eq. (1) which exhibits a
strong forward directivity. The Henyey-Greenstein function
is well known as a phase function. Recently, Cornette[18]
improved it, which gives a more reasonable physical expres-sion:

3(1—g’) (1+ cos?6)
P(g) = 2(2 + 97) (1 +9? — 2geos0)5/?" (5)

where g is an asymmetry factor and given by

F. 13° ey

aesoa" MB lS
125 3 325 2 1280 ayaut 79" HG zag"+haz"):

where if g = 0 then this function is equivalent to Rayleigh
scattering. u is determined by the atmospheric condition
(e-g., haze) and wavelength; u varies from 0.7 to 0.85(see
{18]).His the density distribution of air molecules, the density
of aerosols decreases exponentially with altitude, but the
rate of decrease is different from that of air molecules. The

density can be obtained by setting the scale height, H,, of
Bq. (2) to 1.2km[i6).

4.3 Intensity Calculation due to Atmospheric
Scattering

Let’s discuss a ray from viewpoint P, to the earth, the light
reaching the viewpoint has the following three passes: a) the
ray passing through only the atmosphere, b) the ray inter-
secting with the earth, c) the ray passing through only space.
For c) intensity calculation is not required. The calculation
methods for a) and b) are described in the following.
4.3.1 Spectrum calculation for only the atmosphere

Let’s discuss light scattering due to air molecules on the
ray passing just through the atmosphere. The discussion
for aerosols is omitted because the optics is similar except
for 1/\‘ dependence. As shownin Fig.1, the light reaching
P, can be obtained as the remainder after scattering and
absorption due to air molecules along the intersection line

sunlight
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Figure 2; Intensity calculation for the ray intersecting with
the earth.

between the ray and the atmosphere, P,P. The intensity of
the light scattered at point P (at distance s from P,) in the
direction of Pe, Ip, is obtained by Eq.(1). Thelight scattered
at P is attenuated before arriving at Py. The intensity of
the light arriving at P, I,, can be obtained by setting the
integration interval to P,P in Bq, (4) of optical depth, thatis

I,(A) = LAKE(Opyprere(—t(PP.,A)), (6)
where J, is the solar radiation at the top of the atmosphere,
and t(PP.,) the optical depth from the top of the atmo-
sphere to point P (I is the integration variable) and given
by P,

UPP.,A)= B(N(hdl.

As the light scattering from P is also attenuated before
teaching P,, the intensity of the light reaching P,, J,,, can
be obtained by multiplying the attenuation by the intensity
at P, that is

Tpo(A) = Ip(A)exp(-t(PPa, A))- (7)

As the distance to the sun can be considered almost infinite,
the sunlight can be assumed to be a parallel beam. Thus
the scattering angle at every point along P,P, can be con-
sidered constant. That is, J, reaching P, can be obtaimed
by integrating scattered light due to air molecules on P,Py:

Pb

Tu(A) = | Ipe(A)dsPa

= 1,()SFOOr, exp(—t(PPe, 4) ~ t(PPs, 4))d48)
4.3.2 Spectrum calculation of the earth
Let’s consider the ray intersecting with the earth as shown

in Fig.2. The intensity scattered due to particles on the
path, P,P, can be obtained in the sarne manner as the
description in 4.3.1. When point P coincides with point Py
(i.e., on the earth surface), the light reaching the viewpoint
is obtained by adding reflected light from the earth to the
light scattered due to molecules on P, Psy. The intensity of
light reaching viewpoint P,, I), is expressed by

Ty(A) = Te(A) + Te(A)exp(—t( Pa Ps,A)), (9)

where J, is the scattered light of Eq. (8). Je is reflected light
at the earth;the direct component of sunlight and ambient
light. The ambient light is mainly sky light. By considering

vel
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Figure 3: Calculation of sky light and shadow detection due
to the earth,

attenuation of sunlight reaching the earth surface, J, is given
by

Te(A) = r(A)(cosa I4(A) exp(—t(PePs, A)) + fale)10

where r(A) is the diffuse reflection of the earth, a the an-
gle between the normal vector of the earth and light vector
(sunlight), and J,zy sky light. The direct componentis small
at the region whereais large (i-e., nearby the boundary of
shadow) and tends to be reddish becauseofits long optical
length.

Sky light is scattered light due to particles in the atmo-
sphere. The radiance distribution of sky light can be ob-
tained by setting the viewpoint on the earth in Eq.(8). As
we are discussing the earth as viewed from space, shadows
caused by obstacles on the surface are ignored, even though
we take into account shadows due to the earth itself. Thatis,
for shadow calculation, the earth is assumed to be a sphere
with a smooth surface. Sky light due to scattered light from
clouds is also ignored here. The illuminance at point Q on
the earth due to the whole sky is obtained by using the fol-
lowing method: let's consider an element on a hernisphere
whose center is Q (see Fig.3), calculate the intensity at each
element on the hemisphere, and project each element onto
thebase of the hemisphere, then the iJluminanceis obtained
by integrating the intensity of each clement by weightingits
projected area[13].

Tsty is calculated as follows: as shown in Fig.3 (a), the
base of the hemisphere is divided into a mesh. Let’s con-
sider point P;; on the hemisphere, which is mapped onto
the hemisphere of the mesh point piy inversely, and calcu-
late the intensity in the direction of QP;;. The illuminance
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due to the whole sky is obtained by adding intensities at
every mesh point within the base circle of the hemisphere.
As shown in Fig. 3(a), the z-axis is set so that the sun exists
on the # — z plane; the region in the half circle (e-g., y > 0)
is enough to get J,zy because of symmetry.

The radiance distribution of the sky is determined by an-
gle a@ between the normal of the surface of the earth and
the direction of the sunlight. Even though the direction of
the sunlight is different at each point on the earth, the il-
luminance due to sky light (integrated values) at any point
with the same angle w has the same value (e.g., Q and Q’
in Fig.3). This means that the illuminance due to sky light
at arbitrary angle @ can be obtained by linear interpolation
of a precalculated lookup table of Ijey. Note that Izy 1s
not zero at regions where there is no direct sunlight (@ > 90
degrees, e.g., P, in Fig.3), so that I, fora =0 toa = 110
degrees must be prepared in the lookup table.
4.3.3 Detection of shadow caused by the earth

As shown in Fig.3 (b), point P on the ray exists in the
shadow region caused by the earth (werefer to it as a shadow
volume), the scattered light in this region is zero because
there is no incident light, Therefore it is sufficient to consider
only attenuation in this region.

As the shadow volumeis expressed by a cylinder, which
is obtained by sweeping the circle (i.e., the contour of the
earth viewed from the sun), the shadow segment on the ray
can be calculated as the intersection segment between the
cylinder and the ray.
4.3.4 Calculation of optical depth

The optical length ofair molecules is calculated by numer-
ical integration of Eq. (4) ( in the case of aerosols, the den-
sity distribution and the extinction coefficient are different).
The optical length is calculated by trapezoidal integration of
sampled density. The optical length at sampling point P; on
the ray is obtained by adding the optical length of interval
P;1P; to the optical length at P;_;. Therefore the integra-
tion of the optical depth should start from the viewpoint.
The optical length between the light source and poimt P; on
the ray is also required (e.g., PP, in Fig.1). This calculation
is required at every sarnpling point on the ray; optimization
should be considered because of computational expense. We
use a lookup table to save on computation time.

The density distribution of particles in the atmosphere
varies exponentially with altitude. This means that the er-
rors in the numerical integration become large when it is
performed with a constant interval. Intervals which are in-
versely proportional to the density are desired; that is small
intervals for low altitude and long intervals for high altitude.
In orderto realize this condition, the atmosphere is assumed
as multiple spherical-shells. The radius of each sphere is
set so that the difference in density between every adjacent
sphere is within a given value. As a result, the difference be-
tween the radii of the shell is small for low altitude, and is
large for high altitude, as shown in Fig.4. As Rayleigh scat-
tering governs the calculation of optical length, the radius
of each sphere is determined by the density distribution of
air molecules. Let's consider N layers of spheres. The radius
is given by(see Fig. 4)

riz Aplog(pi)+ R, 0; =1.—i/N, (11)

where A is the radius of the earth. For i = N, ry is set
to the radius of the atmosphere. For aerosols, the scale
height is smaller than that for air molecules; aerosols mainly
exist at low altitude. Therefore aerosols exist in the dense
radii of shells; this fact assures the correctness of the above
mentioned algorithm.
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sunlight 
Figure 4: Calculation of optical depth.

The sampling points used in the integration are employed
as the intersection points between the ray (viewsightorlight
ray) and the multi-imaginary spheres and these intersection
are easily obtained. The density at every sampling point
is easily found from the lookup table indexed by the index
numbers of the sphere, which is easily get from the altitude
of the point.

The optical length between the sun and an arbitrary point
on the ray can easily be precalculated because the earth is
a sphere and sunlight is parallel light. As shown in Fig.4,
let’s consider a cylinder defined by sweeping thecircle which
passes through the center of the earth and is perpendicular
to the light direction. Every optical length at the intersec-
tion (i.e. circle) between the cylinder and each one of the
multi-imaginary spheres is equal (e.g., P and P' in figure).
The optical lengths at the intersection points between the
cylinders with radius C; and the spheres with radius r; is
calculated(e.g.,P.P in fig.) and are stored in the lookup ta-
ble. The optical depth at arbitrary point P on the ray is
easily calculated by linear interpolation, after the radius of
the cylinder including P and the radius of the sphere are cal-
culated. The lookup table here is 2D array: [rj,Cj]. After
getting indeces i-and j from point P, the optical depth can
be obtained by linear interpolation from [rj, C,],[ri41, C;),
(rita, Cy4a)[re, Ci].

As described above,the light intensity of one wavelength
reaching the viewpoint can be calculated by numerical in-
tegration with respect to pass length. Therefore the light
intensity in the range of visible wavelengths ( r, g, b in this
paper) can be calculated.

5 THE COLOR OF CLOUDS

Since the geometric modeling of clouds is not our main sub-
ject, we are displaying the earth as viewed from space, clouds
are simply modeled by applying 2D fractals. That is, the
density distribution of clouds is expressed by mapping the
fractal images of the necessary Mandelbrot set (0.39032+
0.237751 is used in this paper)[15]. To take into account
clouds with various altitudes, multiple imaginary spheres
are employed to map fractal images on them.

Theircolor is determined by the following two light paths,
Oneis on the light which passes through the atmosphere of
scattered light due to cloud particles, again passing through
the atmosphere, and reaches the viewpoint, Another oneis
on the light which passes through the atmosphere, reflected
light at the earth’s surface is attenuated by cloud particles,
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Figure 6; Calculation of color of water surface.

again passing through the atmosphere. Multiple scattering
in clouds is ignored here.

The size of particles in clouds is larger than that of air
molecules or of aerosols. Light scattered by such large par-
ticles is little influenced by wavelength. ( However, the spec-
trum of incident sunlight onto clouds depends fairly strongly
on the sun position.) Thelight reflected from clouds depends
on the phase function ( the angle between the view vector
and light vector); the phase function is expressed by Eq.(5)
(see reference[13] on the value u). In the case of clouds not
being illuminated by the sunlight because of the shadow due
to the earth; the shadow detection is executed by using the
shadow volume described before. The shadows on the earth

due to clouds are ignored in this paper. In the near future,
a more precise modelfor clouds is slated in order to get im-
ages of the earth viewed from relatively close to the earth's
surface.

6 COLOR OF THE SEA

Let's consider the light reaching a viewpointfrom the surface
of the sea, There are three paths (see Fig. 5): (1) reflected
light on the water surface, (2) scattered light due to particles
within the water leaving the water surface (3) attenuated
light passing through the sea after reaching the bottom ofwater.

Calculation methods of the color of water have been de-

veloped by Max[8], Fournier[2], Ts'o[17], and Mastin[7]
However their methods focused on (1) and shapes of waves,
and did not refer to (2)(scattered light due to particles in the
water). The method proposed here takes into account (1)
and (2). Furthermore the attenuation of the light passing
through the atmosphere is taken into account. For (3), the
light from the bottorn of the sea can be neglected because
of the depth of the sea.

Whenthelight is incident to the water surface, the light
path is divided into reflection and refraction. The relation
between the reflection and refraction on the water surface

abeys Fresnel’s law of reflection. Incident light is refracted
at the water surface; the relation between the incident angle
and reflection angle obeys Snell’s law. The refracted light
is scattered/absorbed by water molecules in the sea, and
reaches the viewpoint after refracting at the water surface
again. For this phenomena, Gordon and McCluney [3, 9]
proposed a quasi-single-scattering (QSS) model based on the
radiative transfer equation. However, in the model the sun's
position is limited to the zenith. We improved upon this.
Thelight intensity transmitted in water, Ipg, is given by

Ti(A)Ti(O it, Fin )T'o( 91, 070)B(5, ) 
Ipg(ii, 9ic, 2) = (cos Bin + cos ¥;:)4 Af — wn(FOI

«(1 — exp(—ze(A)[1 — wo(A)P(A)](sec 05; + sec Ain),
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(a2)
where A is wave length, z the depth of the sea, #;; the angle

between the surface normal at point P and the direction of
the viewing direction, @i. the angle between the direction
of the zenith and the direction of incident sunlight, @;. the
angle between the reverse direction of the zenith and the
sunlight after refraction, J,(A) the irradiance of sunlight just
above the water surface, n the refractive index of water, T;
and T, the transmittance of the incident light at point 5
and P, respectively, c(A) the attenuation coefficient of light
which expresses the ratio of lost energy of light when the
light travels a unit length, § a volume scattering function
wa the albedo of water , and F the fraction of the scattering
coefficient in a forward direction. Data of §,wo, and F used
in this paperis obtained from [10]. Eq. (12) shows that the
color of water depends on the depth, the incident angles and
viewing direction. The surface of the sea is not flat, and is
a spherical surface (i.e., the normal! vector of each point on
the surfaceis different); the color of the sea varies according
to the position because the incident and viewing angles to
the surface normal at each position are different.

As described above, both the incident light to the sea and
the color (intensity) of the sea are attenuated by the atmo-
sphere. By using the sarne method as described in 4.3.2, this
effect can be calculated by taking into account two optical
lengths; from the sun to the surface and from the surface to
the viewpoint.

7 EXAMPLES

Fig. 6 shows an example of the color of the atmosphere.
The color of the earth is assumed to be black in order to
demonstrate the atmospheric color only. The position of
the sun is behind and to the left of the observation point.
Even though the earth is assumed to be a black body, it
looks blue, and the boundary of the earth is white.

Fig. 7 shows the images of the earth with texture-mapped
continents viewed from space; the location of the observa-
tion is at altitude 36,000 km, which corresponds to the al-
titude of the Japanese weathersatellite called Himawars, at
135°E 0° N and the direction of the sun is 70° E 20° N. In

Fig. (a), the color of the sea, direct sunlight, and sky light
are taken into account, but the attenuation from the earth
to the viewpoint is ignored(i.e., it corresponds to the color
when the observer stands on the earth). In Fig. (b), atmo-
spheric scattering /absorptionis also taken into account(i.e.,
the color of the atmosphere is added). In Fig. (c), clouds
are added.

Figs. 8,9 show examples of the earth viewed from rela-
tively close-by; the viewpoint is at altitude 500km at 0° E
60° N. The direction of the sun in Fig. 8 is 0° E 20N, and
the directions of the sun in Fig. 9 are 200° B 20°N and 240°
E 15°N. Fig. 8 corresponds to noon(daytime), and Fig. 9
correspond to evening or dawn sky. In Fig. 9(b), one can
observe the shadow (the dark part in the red atmosphere)
due to the earth. The color of clouds changes to red due
to the changeof color of direct sunlight. These examples
depict beautiful variations in color of the earth and the at-
mosphere. The space shuttle in the figure consists of 178
Bézier patches.

Let’s show the photographs taken by the first Japanese
astronaut aboard space shuttle, Dr. M. Mouri(NASDA), in
Fig.10 (altitude 300km, September, 1992). Fig.11 displays
the results of our simulation. One may observe differences
between the photos and the simulation results. One of the
Teasons on Fig.ii(a) may be due to the poor modeling of
clouds and lands, In Fig.(b) some horizontal layers(e.g.,
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orange color) are observed, one of thern may be aerosols due
to explosion of Voleano in Philippine. These facts suggest
the necessity for further researching.

For hidden surface removal, the scanline algorithm for
curved surfaces [11] is employed, and for anti-aliasing the
multi-scanning algorithm[14] is employed. The calculation
was done on an IRIS Indigo Elan. The computation times
for Fig.7 (c) and Fig. 9 were 3.8 minutes and 12.0 minutes,
respectively(image size=500 x 490).

8 CONCLUSION

We have proposed an algorithm for physically-based image
synthesis of the earth viewed from space. As shown in the
examples, the proposed method gives us photo-realistic im-
ages taking into account the color of the earth, clouds, and
the sea. The advantages of the proposed method are as
follows:

(1) The spectrum of the surface of the earth is calculated
by taking into account direct sunlight and sky light as
affected by atmospheric scattering. i

(2) The spectrum of the atmosphere ts calculated by taking
into account absorption/scattering due to particles in
the atmosphere. ;

(3) The spectrum on the surface of the sea is caleu-
lated by taking into account radiative transfer of water
molecules.

(4) The optical depth and illuminance due to sky light
are efficiently calculated by using several lookup tables
taking advantages of the facts that the earth is spherical
and that sunlight is parallel.

Acknowledgment : The authors would like to acknowl-
edge A. Wakayama (currently Fujitsu Co.) for his help in
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(b)

Figure 6: The color of the atmosphere. 
*.

 
(c)

Figure 7: The earth viewed from space.
Figure 8: The earth viewed from relatively close-by.
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Figure 9: The earth viewed from relatively close-by.
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(a) Figure 10: Real photographs from spaceshuttle (courtesy (b)

 

of NASA).
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(a) Figure 11: Comparisons with simulation, ih)
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ABSTRACT

A method is described for switching smoothly between
rendering algorithms as required by the amount ofvisible sur-
face detail. The result will be more realism with less com-

putation for displaying objects whose surface detail can be
described by one or more bump maps. The three render-
ing algorithms considered are a BRDF, bump-mapping, and
displacement-mapping. The bump-mapping has been modi-
fied to make it consistent with the other two. For a given
viewpoint, one of these algorithms will show a better trade-
off between quality, computation time, and aliasing than the
other two. The decision as to which algorithm 1s appropriate
is a function of distance, viewing angle, and the frequency of
bumps in the bump map.

CR. Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation; 1.3.5 [Computer Graphics]: Three-Dimensional
Graphics and Realism.

Keywords: animation, BRDF, bump map, displacement
map, rendering, surface detail, volume texture.

1. INTRODUCTION

Objects in animation are sometimes distant specks; at
other times a tiny part of one will fill the whole screen. If
these objects have rough surfaces, the same rendering algo-
rithm should not be used in both cases. Almost all real ma-

terials have a hierarchy of surface detail. We assume that the
macro-structure of all objects is described by parameterized
patches or a polygonal mesh. The micro-structure is then de-
scribed by one or more bump tables for each level of detail
below the geometrical, each giving bump height as a function
of the 2-D surface parameters. An alternative way to describe
the surface detail is throngh the use of volume textures to
specify bump height as a function of 3-D coordinates([10, 12].

LLNL, P.O, Box 808/L-301, Livermore, CA 94550
1. (510)422-3724 becker@mozart.|Inl.gov
2. (510)422-4074 max2@lini.gov
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The Bidirectional Reflection Distribution Function or

BRDF{[13, 14, 6] captures the surface properties which are too
small to be visible. Most real surfaces are neither purely spec-
ular (rmirror-like) nor purely diffuse, but rather somewhere in
between. To represent this non-trivial distribution of light re-
flectance a BRDFis used. It can be represented by a table
indexed by a lighting direction and a viewing direction,to give
the reflectance as a function of these directions. The BRDF
used for this research is constructed from distributions of nor-
mals recorded from various views of a single displaced surface
patch.

Bump-mapping[2] is an inexpensive way to achieve a
good approximation to macroscopic surface roughness. The
parameterized surface is treated as smooth for the purpose of
visible surface determination, while the surface normals are
perturbed to a first order approximation of what the actual
bump normals would be.

The third algorithm, displacement-mapping[4,5], is used
when any shortcut in computation will be noticeable to the
eye. Displacement-mappingis different in that the surface is
actually offset by the appropriate bumpheight so that the full
3-D geometry can be rendered. For purposes of maintaining
consistent shading, the same approximated normal is used to
shade the displaced surface as was used in the bump map.
However, now it is applied to the displaced surface rather
than to the flat parametric one.

Bump-mappingis good for economically rendering bumps
which can be described as a height field. Unfortunately it does
not accountfor occlusion. It is necessary to modify flat bump-
mapping so that it yields images statistically similar to images
produced by the other two methods. This revised procedure
will be termed ‘redistribution bump-mapping’ becauseit re-
distributes the normals in a way that is statistically similar
to those seen on the displaced surface viewed from a specific
direction,

The three methods are blended together so that the parts
of the scene which are close to the viewer, or close to the ex-

treme edge(silhouette), would be displacement-mapped,since
this is where missing detail would be noticed most. Smooth
silhouette edges are an artifact of bump mapping which is easy
to detect. Parts farther away, or whose normals are parallel
to the viewing direction, will be bump-mapped, When sur-
faces have microscopic material-specific qualities or are very
far from the viewer, they are rendered using a BRDF. More
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specifically, for a given scene, those features with a spatial
frequency higher than one half cycle per pixel (the Nyquist
limit) are considered in the BRDF. At the other end of the
spectrum, features that are large enough to cause noticeable
occlusion need to be displacement-mapped. The parts in
between are rendered with varying degrees of redistributed
bump-mapping. Most importantly, there is a smooth transi-
tion among the three. The effect is that the whole scene looks
as if it were displacement-mapped, when in fact much of it
was rendered with cheaper algorithms. Extending this con-
cept we can have high frequency rough surfaces on top of low
frequency rough surfaces, each bumpy level of detail having
three rendered representations.

In Figure 1 we see a teapot rendered in the four different
ways. All renderings are based on the same height function.
A major consideration for a smooth transitions among these is
the consistency of the shading between methods, The amount
of light emitted by a surface rendered with one method does
not necessarily equal that amount emitted by the same surface
rendered with another. Nor is the distribution of that light
necessarily equivalent. A key aspect of this research is the
determination of how the varying algorithms need to be mod-
ified in order to have their overall area-averaged light intensity
contributions consistent.

There are five reasons why the average reflected inten-
sity from a bump-mapped image is inconsistent with the re-
flected intensity from either the BRDF rendered image or
the displacement-mapped image of the same object. Usually
the BRDFis constructed under the assumption that the mi-
crofeatures of the surface are composed entirely of specular,
mirrored facets. Bump- and displacement-mapping contain
both specular and diffuse components. The easy solution to
this inconsistency is to include a diffuse component for each
microfacet when constructing the BRDF for the highest fre-
quency bumps. Usually there is an inconsistency between
bump- and displacement-mapping because actual surface dis-
placement creates a geometrically computed facet normal for
the shader while the perturbed normals for bump maps are
only approximations. As previously mentioned this is over-
come by using the approximated bump-mapped normals on
the displaced surface. The approximated bump normals also
vary more smoothly than the facet normals, especially with
our quadratic interpolation, which is smoother than Blinn’s
approximation(2]. Note that if a procedural displacement
function is employed, it is possible to compute the surface
normal analytically. Since the BRDF is constructed from a
displacement-mapped patch, the same inconsistency may arise
for it. Again the solution is remedied by using the bump nor-
mal for tabulating the BRDF. The mostdifficult consistency
problem is caused by occlusion. Occlusion, which is the hiding
ofsome bumps by others, can change thedistributionofvisible
surface normals. A solution is presented which redistributes
bump normals so they match a distribution of normals simi-
lar to one derived from displacement-mapping. Lastly, there
is the problem of consistency of shadowing. We have not yet
found a general solution for shadowing, so we draw our images
and compute our BRDF withoutit.

The concept of blending between methods is not new.
The difficulty in overcoming the intensity distribution incon-
sistencies is perhaps the main reason why there are few coded
examples. Kajiya[S] mentioned a hierarchy of scale which is
appropriate for modelling the complexity of nature. He states
that each level of detail contains the three subscales discussed
above. Westin et al.[14] describes these levels as the geometri-
cal, milliscale, and microscale. Perlin[J1] proposed a method
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to shift between the BRDF and perturbed normals. Perlin’s
method does not include an explicit height table for determin-
ing the new normals, making displacement-mapping difficult.
Fournier[7] has presented a promising approach forfiltering
normal maps by recording a discrete number of Phong peaks.

The software for each of the three algorithms described
in this paper has been combined according to the previously
discussed considerations. The result is an animation which ex-
plores a surface from changing distances and directions, show-
ing that there are no significant side effects while transitioning
between renderers. For more detail concerning the implemen-
tation refer to Becker[1].

2. BASIC ALGORITHMS

2.1 Bidirectional Reflection Distribution Functions

The BRDFis used to capture the microscopicreflectance
properties of a surface. The BRDFitself can be a table of re-
flectivities or it can be represented by a spherical harmonic
series approximation(3, 14]. It is a function of either three or
four variables representing the polar and azimuthal angles of
the light rays. The polar angle is called @ and it measures
the angle away from the normal. Its domain is [0, x/2]. The
azimuthal angle is denoted by @ and has domain (0,27), with
0 and 2x both in the direction of the viewer. An isotropic
surface is one for which the emitted intensity does not vary as
the surface is rotated radially about its surface normal. Ifonly
isotropic textures are used, then the arguments to the BRDF
reduce to the two polar viewing directions and the difference
in the azimuthal angle between the viewing and lighting di-
rections. In the most general anisotropic case, the BRDFis a
function of viewing direction and lighting directions, requiring
all four angles.

There are several different ways to construct a BRDF.
Cabral[3] constructed the BRDF directly from a bump map
using horizon tables. Westin et al.[14] ray traced a general-
ized 3-D surface sample in order to calculate the intensities
for their BRDF. Our method uses normal distributions. They
are already required in order to create redistribution functions
for the new bump-mapping method. The same normal distri-
butions are used to create the BRDF. Fournier[7] has also
discussed normal distributions.

A normaldistribution is obtained by tabulating sampled
normals from a projected displacement-mapped flat patch.
The range of normals is a hemisphere. The hemisphere can
be discretized into a finite number of (@y,¢,)) bins. When
the displacement map is projected, each pixel of the projected
image represents a sample normal, and the count for the bin
containing that normal is incremented. If bump-mappingis
used to draw the flat patch, then the approximated normal
distribution is independent of @. However, when looking from
some direction with # > 0, self-occlusion may occur in the
displacement-mapped image. This occlusion is accounted for
by rendering the displacement-mapped geometry with a hard-
ware z-bufler, coding the normal directions into the pixelcol-
ors. For grazing angles many potentially occluding patches
may have to be rendered in order to get the occlusion cor-
rect on a single patch. The problem is solved by rendering a
single patch using parallel projection, and then using a block
read from the screen buffer to copy the patch to all the po-
sitions whereit is needed, in a back to front ordering. In a
postprocess the sample normals are scanned in and the distri-
butions are created. These distributions will be used to find
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the redistribution functions and to make the BRDF. The nor-
yal distributions are stored in a 3-D table. The first index
ig the viewing polar angle @y. The second and third indices
are the §y,¢n angles specifying the normal direction. For
simplicity a table access is described by distr[#@y,.N], where
N = (@n,¢n-v), and ¢y_y denotes dy — dy. The differ-
ence between viewing and lighting @’s is denoted by @¢y_,. To
improve the statistics of the distribution, the patch is viewed
in many @y directions for each @y. The result is normal dis-
tributions for each @y which account for proper occlusion. To
use these distributions in constructing the BRDF, the algo-
rithm in Figure 2 is used.

for each level n from highest to lowest frequency
for each @y

for each @,,
for each dy _ yp
{H =(V+L)/|V +1]
for each Oy

for each dy_y
if highest frequency BRDF

{ increment BRDF*%.,/{v8r, éy_z] by
(L- N)distr™[@y, N]

increment 5 AD FypeclOv ,9,,év—1) by
(H -N)Ph"9 distr” (Oy, N]

else

{ compute 41,,0) and ¢-_,
increment BRDFY,,;[8v, 6r,¢v_1]) by

BRDF57/1691, Oy_z)distr™ [Ay ,N)
increment BRDFY,..[@v,0£.¢v—c] by

BRDFEZNO, , 0, O_,]distr™{6y, N]spec

Figure 2. The algorithm to compute the BRDF using a table
of normal distributions.

Note that there are two components to the BRDF, one
ior the diffuse information and one for the specular, This way
the amountof diffusivily and specularity chosen can be used
as a parameter later. The #1, and 6), represent the angles
between the viewing or lighting direction and the bin normal
N, rather than with the flat surface patch normal. The angle
oye_ is the difference between L and V when projected to

oe plane perpendicular to the bump normal. It is computedie

¢), =arctan((L-(N x r)),(L-(y x N)))

dy = arctan((V «(N x z)),(V -(y x N)))

Oy_p = mod((dy — 9), +),27)— (1)

where x = (1,0,0) and y = (0,1,0) are the axis directions of
the bump table. This techniquewill give the same BRDFas if
the combined displacement maps were used, as long as there
is no correlation between the bumps at the different levels.

A smooth surface patch is rendered by interpolating the
BRODF trilinearly in the angles 6y,4,, and dy_,. The in-
dices for the table are computed from a local coordinate on
the patch surface, The smooth surface normal points in the

direction of 8 = 0. The origin of the azimuthal angle is the
projection of the viewing direction onto the surface.

For a given patch parameterization, P(u,v), the par-
tial derivatives, Py = or and Py = ge ; are rarely the
same length (causing stretching), and not always perpendic-
ular (causing warping). For these reasons special care must.
be taken when indexing the BRDF to determine an intensity.
The method for computing the difference in azimuthal angle
is as follows:

Va =[V- Py, V- Py, 0]

Ln =(L+ Py, L+ Py, 0]

Va—ba
$y_,= arceos(777 . Tal) (2)

The stretching will actually change the normal direc-
tions making the BRDF inaccurate. The BRDF would need
to be recalculated to yield a theoretically correct result, but
equation (2) does get the occlusion correct and gives nice
anisotropic highlight effects in places where they would be
expected.

2.2 Bump-Mapping

In Blinn’s bump-mapping[2], the surface is not actually
altered from its smooth parametric form, but it is shaded as
though it were.

Blinn used a bump height table B to calculate a linear
approximation to the bump normal at a point P on an object
surface. If B,, and P, are the partial derivatives as above, the
unnormalized surface normal is N = P, x P,. In the bump
map B, the partial derivatives B, and B, at the interpolated
point corresponding to P can also be computed using finite
differences.

u = (Blu+e,v] — Blu —,v))/(2 +e) (3)

and By is similar. Each evaluation of 8 uses bilinear interpo-
lation.

Truncating insignificant terms, Blinn[2] has showed that
the new normalized normal is very close to

,_ N+ Bu(N x B,) — Bu(N x Pu)
“TaB(NxB)—B(NxP =

We have chosen to compute the bump map derivatives
by a quadratic rather than linear scheme. Mach bands are
eliminated by replacing Blinn’s linear formula by a C! partial
derivative formula, defined by taking the derivative of the C*
cubic B spline curve approximation to the bump heights as a
function of u or of v, Let du = u—|[uJ, then

By = (—du*/24+du—.5)B[|uJ—1, v]+(3du?/2—2du) Bi[uJ v]

+(—3du?/2+ du + .5)B[|uJ, v] + (du*/2)B[[uJ + 2, v]
and B, is similar. Here each function evaluation requires only
a linear interpolation in v. This method uses the same eight
neighboring values in the height table as does (3), but with
quadratic rather than linear weights.
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The normals generated by this process do notlie in a dis-
tribution consistent with the other two algorithms. As pre-
viously discussed, N’ must be further modified so that on
average it will contribute to a normal distribution similar to
displacement-map normals. This new algorithm, redistribu-
tion bump-mapping,is described in detail in Section 3.

It should also be noted that Perlin’s volume textures[12],
with the improvement by Max and Becker(10], can be substi-
tuted for bump maps when computing height values. The
advantage of this is that there is no explicit parameterization
to be concerned with, and thus no stretching to cause sin-
gularities or anisotropy. If a square patch has an isotropic
texture mapped onto it, the texture becomes anisotropic as
soon as the patch is stretched unevenly. Many parameteri-
zations have singularities which lead to degenerate patches.
If anisotropy is undesirable, then volume textures should be
used. Perlin also used volume textures, and redistributed the
normals to make them gaussian (personal communication) in
his implementation of[11].

2.3 Displacement-Mapping

Displacement-mapping is the direct approach to render-
ing surface detail. For parameterized surfaces, each patch in
the object has a u and » parameterization. The u and v co-
ordinates are used as indices to look up height values in the
bump height table. The corresponding vertex is then dis-
placed along its normal vector by that height[4]. The normal
generated from the bump approximation is also used on the
displaced vertices. There is little loss of accuracy in doing
this, and continuity during the transition is assured. Occlu-
sion, the main problem with bump-mapping,is accounted for
automatically when the vertices are displaced.

Having multiple bump maps for many levels of detail
means the displaced bumps will be rendered with the BRDF
constructed from the next bump mapof higher frequency. To
keep combined displacements consistent with BRDFs repre-
senting several combined bump maps, surface perturbations
for the i** level must be perpendicular to the (i —1)" dis-
placed surface. This means that for each vertex, P,, and P,
vectors must be computed for each level of detail which has
been displaced. Since P, and P, are not necessarily perpen-
dicular it is recommended that the following formula be used
to compute them, given that the surface normalis N.

P, {level + 1] = P,[level] + By[level] N[level]

where By[t], By[i] are the i” bump map partial derivatives.
The equation for P, is similar.

3. REDISTRIBUTION BUMP-MAPPING

3.1 Normal Redistribution

The problem of eliminating inconsistencies between the
different rendering models lies at the heart of making smooth
transitions from one algorithm to another. Primarily we are
concerned with keeping the integral of intensities equal over a
small area on the surface while the rendering method changes.

Unfortunately, normals from bump-mapping do not yield
a distribution similar to that of displacement-mapping or the
BRDF.Since the polygon or patchitself is not displaced,it is
possible to see normals which ought to be hidden by occluding
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bumps. In order to overcome this problem a redistribution
function g is created, This is a function which accepts as
input a normal generated by Blinn’s[2] bump approximation,
and outputs a normal whichis statistically consistent with the
distribution used to form the BRDF.

Since the distribution of normals on a displacement-
mapped flat patch is different for each viewing angle, it is nec-
essary to have redistribution functions for each one. When the
viewing angle is vertical, the identity function is used. When
the viewing angle is just above the horizon, the redistribution
of bump normals is necessarily quite drastic. The effect is to
pull forward normals that might be facing away, and push up-
ward those that might be hidden. This new schemefor doing
bump-mapping might appropriately be termed redistribution
bump-mapping.

3.2 Redistribution Function Construction

Suppose a bumpy surface is viewed from a direction with
polar angle Oy. Let g denote the distribution of normals
distr(@, N) at this fixed #y, computed as above from thedis-
placement map. Let f denote the distribution of normals in a
(non-displaced) bump-mapped image. Note that fis the same
as distr(0,N). If q is the redistribution function described
above, then the requirement that g take the distribution f to
the distribution g is that for any region A in the hemisphere
FT of possible normals,

| {(0,¢)dw = f (8, 6)dw (5)a(R) R

It is easier to explain how to specify g in a 1-D case.
So suppose f(z) and g(z) are two distributions on [0,1], such
that 1 ;

I H(2)de = I glz)dz =1 (6)
The problem is to find g : [0,1] [0,1] such that

(+)

f(z)dz = [ g(x)dz (7)(a) a

where a and 6 € (0,1). It is enough to guarantee that

(b)

rf f(2)dz = [ a(z)de. (8)0 Oo

Let

G(b) = [ o(x)dz
and

rw) = [sore
Then

G(b) = F(a(4))
hence

a(b) = F~*(G(B)). (9)

The redistribution function g maps a point b so that the area
under the curve before 4 in g is equal to the area under the
curve before the point g(b) in f.
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The problem in 2-D can be handled similarly, One
method is to define 1-D redistribution functions separately
for 9 and ¢. This gives adequate results for most bump maps,
whose @ and ¢ distributions are fairly independent. This in-
dependence assumptionis confirmed by the animation, For a
more precise redistribution function, one can first redistribute
¢, and then for each fixed ¢, establish a separate redistribution
function for @. For details see Becker[]].

4. TRANSITIONS

4.1 Partial Bump Displacement

For control of appearance and for smooth transitions we
want the ability to change the height of the bumps in the
bump map. This will alter the normal distribution and oc-
clusion information. By close consideration we can see that
the change can be accounted for without having to recalcu-
late the redistribution functions every time the bump heights
are altered. If the heights are multiplied by a factor ¢, then
the tangent of the angle between the bump normal and the
smooth surface normal should also change by a factor 2; i.e.,
tan(@y,) = t+ tan(@y). The normal, N = (@y,¢w), needs
to be replaced by N; = (arctan(t- tan(8w)),¢). In order to
keep the visibility information the same, the viewing angle,
6y, must be replaced with Oy = arccot(cot(@y)/t). See dis-
cussion below concerning Figure 3.

The height of the bumps used to calculate the BRDF and
redistribution functions must be the same as that of the bumps
being rendered. This is because the BRDF is changed in a
non-trivial way as the bump heights change. If we were only
concerned with bump- and displacement-mapping, we could
change the indexing on theredistribution functionsto get the
occlusion correct for changing bump heights. Unfortunately
there is no easy way to re-index the BRDF to account for
scale changes. Between the BRDF and redistribution bump-
mapping, an intensity is computed for both methods. The
tesulting intensity is an interpolation of the two.

For the transition between bump- and displacement-
mapping, intensity interpolation is not used, since it would
cause the bump shading (particularly the highlights) to cross-
dissolve rather than correctly adjust in position, As the bumps
go from no displacementto full displacement the surface nor-
mals do not change, since they are always represented by
Blinn’s bump normal. The visible subset of bump normals
does change, however, due to changing occlusion. Let disp be
the transition parameter which gives the fraction of the full
bump height, With disp = 0 all normals are seen, even those
on the back of bumps. With disp = 1, only the visible subset
of these normals are seen. In Figure 3 the segments of the vis-
ible surface are shown in bold. The redistribution of normals
takes normals from standard bump-mapping into this visible
subset. For partially displaced bumpsthere is a different sub-
set of visible normals, but there is a relationship between the
bump height and this subset which can be exploited to give
the necessary redistribution.

Different redistribution functions for varying heights are
not stored, only different functions for different viewing @’s.
Fortunately the two are equivalent. For the fractional bump
height, disp, we can determine a new @y for which the same
distribution of full height bump normalswill be seen. Figure
3 shows that the distribution of normals for this partially dis-
placed surface, viewed from 6), is identical to the distribution
of visible normals for the fully displaced surface viewed from
Sy. The slope of the line V in Figure 3 is disp times the

slope of line W, so cot(@y) = disp -cot(Oy) and the formula
for finding @y is:

Oy = arecot(cot(@y )/disp).

v

gM)

FINI)

Figure 3 Top: the non-displaced surface. Middle: surface
displaced by bump height fraction disp, Bottom: Fully displacedsurface.

The inverse redistribution function for Oy is applied to
take the visible bump normal from the partially displaced
surface into a distribution similar to one from a flat bump-
mapped surface. Next the redistribution function for @y is
applied to that normal to takeit all the way forward to match
statistically a full displacement-mapped normal. Thus the
change from bump-mappingto displacement-mappingis done
through two table based function evaluations. Notice that as
the bumps decrease in height, the new viewing @y approaches
vertical. This means that the inverse function needs to alter

the normals less in order to get them back to the bump-map
distribution.

4.2 Algorithm Selection Criterion

Now that it is known how to modify the algorithms
so that they will not deviate from a fundamental reflection
model, it must be decided when to apply which algorithm.
Clearly displacement-mapping should be applied when the
view is close, and the BRDF when the view is far. The re-
lationship is 1/d, where d is distance, since that is how the
projected size of an object relates to distance. Another vari-
able to consider is viewing angle, Oy. If f is the wavelength
of a feature then fcos(@y)/d is the wavelength of the pro-
jected feature (in the direction of maximum foreshortening),
and should be no smaller than two pixels. When the object is
close, we would like to see a rough silhouette; when it is far,
aliasing becomes a problem on the edge so use of the BRDF
is desirable. This implies that as the object moves away from
the viewer, the transition from displaced bumps to BRDF
will be far more rapid on the object silhouette than on that
area where the patch normal points toward the viewer, The
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threshold at which the switch occurs is determined by a con-
stant D. Summarizing these properties, we define a transition
parameter

T(4,0y) =(1/d—D)/(cos(0v) +e). (10)

Here d is the distance from the viewpoint to the surface, @y is
the angle between the viewing ray and the surface normal, and
Dis dependenton individual bump maps. To avoid an instan-
taneous transition on the silhouette an ¢€ is added to the cosine

term in the denominator. The constant D should be large if
the highest frequency component of the bump mapislarge.
Note that D controls where the function changes from posi-
tive to negative, and thus lies midway between displacement-
mapping and the BRDF. The formula for determining D is

De=c- freq-S

where freg is the highest frequency in the bump map and
Sis the amount the vw and v values are scaled. If S is large,
then the bump mapwill be repeated more times over the same
area, and the partial derivatives, Ph, and P,, are made shorter
by a factor of S. The constant ¢ controls computational ef-
fort by globally shifting the scene toward more BRDForal-
ternatively more displacement. If shadows are included, the
shadow terminator should be treated just like the silhouette,
Areas far from the terminator are likely to be completely il-
luminated or shadowed, but on the terminator, displacement-
mapping will make the shadowing exact. The parameter given
by equation (10) determines the algorithm or algorithms used
for rendering. Let the threshold values for choice of renderer
be el < «2 <0 < e3 < e4. If T < el then use the BRDF,if
T > e4 then use displacement mapping, and if e2 < T < ¢3
use redistribution bump mapping. Values of T other than
these indicate regions where algorithms are blended. Values
of -1,-.3, .3, and 1 respectively, were found to give good re-sults.

4.3 Multiple Levels of Detail

With multiple levels of detail there are many more than
two possible transition points. Many other cases need to be
considered. The displacement-mapped image of the 1*" layer
is rendered using the BRDF for the (: — 1)** layer. As the
camera continues to zoom in, the BRDF will switch to bump-
mapping and then again to displacement-mapping.

Since each bump map has its own independent transi-
tion regions, some areas may have bump-mapping from two
or more different levels. Perlin [11] suggests that each set of
bumpsbe limited to a narrow rangeof frequencies. The result
of implementing two levels of detail is shown in Figure 4. The
bump map describing the surface detail is broken up into high
and low order band-limited frequencies. The low frequencies
compose the first level bump map and the high frequencies
compose the second level. The left half of Figure 4 is color
coded according to the algorithm used to render the most re-
fined level of detail visible. Hence one can see bumpy sections
colored yellow to indicate the BRDF from the next lower level
was used to render the displaced bumps.

5, RESULTS

5.1 Consistency Comparison

In Figure 5 we can see the four rendering methods com-
pared, The difference between the lighting and viewing ¢ is

188

zero. Note that since the lighting and viewing directions are
in alignment the patch becomes brighter for grazing angles,
The rows are rendered with bump-mapping, redistribution
bump-mapping, BRDF, and displacement mapping respec-
tively. Note that redistribution bump-mapping is far more
consistent with the BRDF and displacement-mapping than
is ordinary bump-mapping. Figure 6 is a table which shows
quantitative results for viewing angles corresponding to those
shown in Figure 5.

 
Figure 5 Intensity comparisons. The lighting direction is

consistently Oy = m/4. The rows from top to bottom represent
bump-mapping, redistribution bump mapping, BRDF, and displace-
ment mapping,

(46 \os

Bump

Disphtcenment
 
 

Figure 6 Area averaged intensities for the diffuse component.

In Figure 7, a single flat patch is drawn in perspective.
Regions in the foreground are clearly displacement-mapped.
The middle region is redistribution bump-mapped, and the
furthest edge is almost completely shaded with the BRDF.
It. should be apparent that there is no intensity inconsistency
between methods and that the transition is smooth.

5.2 Conclusions

Com bining displacement-mapping, bump-mapping and a
BRDF into one algorithm makes it possible to explore great

aRe,rer
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scale changes, without changing the geometrical data base.
Using a series of bump maps we can generate a variety of
rough surfaces simulating different material properties. Ob-
jects im the scene will have a complex underlying structure
put only the minimum amountofeffort necessary to give the
impression of complete geometrical representation will be ex-

nded. Current animations are restricted by the amount of

geometrically represented detail. If the view gets too close to a
feature, large drab polygonsfill the display. With hierarchy of
detail, the polygon level need never be reached, no matter how
close the viewer gets. Even at intermediate and far distances
the light interacts with flat polygonal surfaces as if they were
truly composed of millions of smaller micro-polygons. As a
yesult the otherwise drab polygons becomealive with texture
and interesting highlights. Those smaller micro-polygons may
actually get. rendered, but only if the viewer zooms in much
closer.

5.3 Future Research

Shadowing is the main enhancement yet to be consid-
ered. One way to do the shadowingof displaced bumpsis to
use the two-pass z-buffer method developed by Williams(15}.
Horizon mapping[9] has been shown to generate shadows for
bump-mapped images. It will also work for redistribution
bump-mapping since the horizon is determined by the u and
u parameterization, not the normal. However, this may cause
a problem since the rendering is according to a redistributed
normal, and the shadows are according to the parameteriza-
tion, The shadowing may look inappropriate for the rendered
bumps, The shadowing for BRDFs can be done using hori-
zon Mapping, as was demonstrated by Cabral[3]. Another
possibility is to use only the unshadowed normals from a dis-
placed, rendered, and shadowed flat patch to generate the
distributions for the BRDF and the redistribution function.

The result should be consistent in terms of average intensity,
but may not look qualitatively correct.
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Figure 1. Counter-clockwise from upperleft: bump-mapping, redistribu-
tion bump-mapping, displacement-mapping, BRDF. The difference
betweenredistribution bump-mapping and plain bump-mappingis
apparent near the bottom ofthe spout.

Figure 4. Two levels of bumpy detail. Colors in the bottom half
indicate BRDF( yellow), redistribution bump-mapping(blue). and
displacement-mapping(red) for the higher frequency bumps.

 
Figure 7. Transitions ona flat surface. BRDF(yellow) in the back, redistribution bump-mapping(blue) in the middle, and displacement-
mapping(red) in the foreground.
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Linear Color Representations for Full Spectral Rendering

Mark S$, Peercy
Department of Applied Physics

Stanford University

Abstract

Wepresent. a general linear transform method for handling
full spectral information in computer graphics rendering. In
this framework, any spectral power distribution in a scene
is described with respect. to a set of fixed orthonormal basis
functions. The lighting computations follow simply from this
decision, and they can be viewed as a generalization of point
sampling. Because any basis functions can be chosen, they
can be tailored to the scenes that are to be rendered. We dis-
cuss éflicient point sampling for scenes with smoothly vary-
ing spectra, and we present the use of characteristic vector
analysis to select sets of basis functions that deal efficiently
with irregular spectral power distributions. As an example
of this latter method, we render a scene illuminated with

fluorescentlight.

CR, Categories and Subject Descriptors: 1.3.3 (Com-
puter Graphics]: Picture/Imaze Generation—Display Al-
gorithms; 1.3.7 [Computer Graphics}: Three-Dimensional
Graphics and Realism.

Additional Keywords: linear color representations, full
spectral rendering, linear models, tristimulus values.

1 Introduction

Accurate color rendering in computer graphics must ac-
count for the full spectral character of the lights and sur-
faces within a scene. The rendering procedure must pre-
serve enough spectral information to compute final values
for output to some display device, such as an RGB monitor.
However, one wishes to minimize the computational cost of
the rendering to reduce the time required to create an im-
age. Therefore, one desires efficient methods of handling full
spectral information during image synthesis.

Author's address: Dept. of Applied Physics, Stanford University
Stanford, CA 94305-4090
peercy@kaos.stanford.edu (415)725-3301

Permission to copy withoutfee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1994 ACM-0-89791-601-8/93/008/0191 $01.50

Some suggested techniques in dealing with full spectral in-
formation include the use of the tristimulus values for the

lights and surfaces [1], the use of polynomial representations
of spectra [16], and the use of linear models of surfaces and
lights [20] [12]. The typical method employed is point sam-
pling of the surfaces and the lights at a given number of
wavelengths. These point samples are used in a numerical
integration method to compute approximate tristimulus val-
ues before being transformed to values appropriate for dis-
play. ‘To minimize the total number of samples, one seeks an
efficient integration approximation; one approximation that
has been studied in various forms is Gaussian quadrature
[14) [29}[2].

In this paper, we consider a more general method for han-
dling full spectral information in synthetic image generation;
our technique is closely related to the use of linear models
presented in (20|. The principal idea is that we describe
the spectral power distribution of the light at every step of
the rendering procedure with respect to a single collection
of orthonormal basis functions. ‘This formalism encompasses

point sampling, which uses delta functions as its basis func-
tions.

The constraint of describing all of the spectral power distri-
butions with respect to the basis functions is advantageous
for two reasons. First, it makes the rendering process com-
pletely linear. Therefore, this technique can be considered
a generalization of point sampling and can be readily incor-
porated into standard renderers. Second, one has the free-
dom to select any orthonormal set of basis functions. This
freedom can be exploited to increase the efficiency of the
rendering process.

The body of this paper is divided into two main sections. In
Section 2 we discuss the mathematical formalisro of linear

color representations of the lights and surfaces, and im Sec-
tion 3 we address the problem of selecting appropriate basis
functions. In this latter section, we discuss Riemann sum-

mation for efficient point. sampling in scenes with smoothly
varying spectra, and we present the use of characteristic vec-
tor analysis to provide efficient basis functions for scenes
with complex spectra.
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2 Linear Color Representations

During the rendering process, we demand that any spectral
power distribution in the scene be described by m orthonor-
mal basis functions £;(A);% = 1,...,m. By any distribution,
we mean not only the light coming directly from a light
source but also light that has been once, twice, or an arbi-
trary number of times reflected from surfaces in the scene.
In this section, we use this restriction to derive the color
representations of both the spectral power distributions and
the surfaces, and we discuss the transformation of this color
information to values appropriate for display.

2.1 Spectral Power Distributions

To obtain a representation for the spectral power distribu-
tions in a scene, we can project the spectral power distribu-
tion, 7(A), of any light source onto the subspace spanned by
the basis functions;

mt

T(A) = $eBA), (1)

where

€i = [ roveovar (2)A

follows from the orthonormality condition, Thus, any light
within the scene can be described with the melements &,.

These elements are simply the coefficients of the linear trans-
formation defined by the set of basis functions, so we refer
to this method as a general linear transform method.

2.2 Surface Reflectances

To obtain a representation for the surfaces, we project the
spectral power distribution of the light reflected from those
surfaces onto the set of basis functions (for clarity and with-
out loss of generality, we neglect transmission and attenu-
ation in this discussion). Lighting models typically divide
the reflected light into three terms: ambient, diffuse, and
specular ([6) discusses lighting models in detail); the spec-
tral power distribution of light reflected from a surface, J.,
is given by

T(9,A) = Ra(A)la(A) + Ga(Q)Ra(A)Le(A)
+ R,(Q, A)I,(A). (3)

Here, 2 denotes a general dependence on the geometry of
the reflection, and 4 denotes a general dependence on wave-
length. J,(A) is the distribution of the ambient light, I.(A)
is the distribution of directional incoming light, and Gy({)
is the diffuse geometry term. (A), Ra(A), and #,(Q, A) are
the ambient, diffuse, and specular reflectances of the surface,
respectively. In general, the specular reflectanceis a function
both of geometry and wavelength. However, empirical mod-
els often replace the specular reflectance with a separable
term, resulting in a pieceurse separable lighting model

To(Q,A) = Ral A)Ta(A) + Ga(Q)Ra(AlIs(A)
+ G.(2)Rs(A) L(A). (4)

As described in Section 2.1, the ambientlight and directional
light are represented by their transform coefficients,

1a(A) = So ef Ex(A) (5)=
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I,(A) = ye 2 E;(A)-y=1
(6)

By using Equations 5 and 6 in Equation 3, the spectral power
distribution reflected from a surface is

To(,A) = So ef Ra(A)EMA) + D> Gul)Ra(A) Bld)1 7=]

+ So PR(Q,NE()- (7)t=1

To obtain the surface representations, we project this result
back onto the the basis functions as in Equation 1;

7,(,A) = >48,0). (8)
Sod

From Equation 2 and Equation 7,

= [ T.(Q, A) Bj (Ald A (9)
= 5" Reyer + Ga(Q) S Rye+ y Ry, (Qe? (10)iat it ia

where

Ry = [ RemBcreeva (11)
RR = [ ecayeayeyaa (12)

Ri(Q) = [ R,(Q, A) BAB, (A)dd. (13)
RY, is the projection onto the j** basis function of the spec-
tral power distribution obtained from the reflection of the
i** basis function from the ambient reflectance of the sur-
face. Ri, and Rj,({) are analogous termsfor the diffuse and
specular reflections, respectively.

Writing Equation 10 in matrix form, we obtain
o

61 ry ey
Re, or

: = : . . +

e 5 . e,

Ry(4
GQ >, S| +

SSE hs

a

Ri(Q) ei( vee ; (14)
: : 7s

In vector notation, this equation can be written

C= RAG(RE + (QE. (15)

This final equation reveals the mathematical formalism be-
hind the linear transform method. ‘The spectral power dis-
tributions (/,(A),7,(A), and /,(,A)) are represented by



193

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993 

column vectors of length m containing the transform co-
efficients (€4,¢*, and «®, respectively). Each component of
the surface reflectance (AR. (A), Ra(A), and R,(Q, A)) is repre-
sented by a single mxrn matrix (R°, KR’, and R*(Q), respec-
tively). The interaction of light with a surface component
assumes the form of simple matrix multiplication, convert-
ing the coefficients of the incominglight into the coefficients
of the outgoing light. ‘This result is a generalization of the
point sampling case; with point samples, the surface matri-
ces are diagonal, and the matrix product multiplies respec-
tive sample values. Because this technique is linear, it can
be included without difficulty in standard renderers.

For the general lighting model case, the specular matrix is
a function of the geometry. Because the elements of the
surface matrices are obtained through integration over the
basis functions, this integration must be performed for each
geometry configuration. If, however, one uses a piecewise
separable lighting model, the geometry and wavelength de-
pendence separate in the specular term,

& = RE + G(R +6,(QR, (16)

and the three surface matrices, R", R*, and R’, can be pre-
computed,

The above discussion addresses only surface reflection, but
effects such as transmission and attenuation can be included

straightforwardly in this framework. As with the reflectance
components, these terms take the form of mm matrices
that act on the coefficients of the incominglight.

2.3 Conversion to RGB

The rendering algorithm determines the spectral contribu-
tions to a pixel by computing multiple reflection paths from
each of the light sources to the viewer. These contribu-
tions are transform coefficients, and by linearity they can
be combined to provide a final set of coefficients for that
pixel, e?;i = 1,...,.m. Equation 1 gives the approximation
to the spectral power distribution arriving at the pixel,™

In() =}BA(A). (17)f=1

To compute appropriate values for display, one first com-
putes the tristimulus values, XY2, for the pixel by integrat-
ing the final spectrum over the three color matching func-
tions [21]

X= / #(A)I,(A)dd /Sofa(A) Bi(A)dd1=1

= Sone (18)

v= f aoyt(ayar / So PGA) Es(A)dd=1

= Sree (19)1

Z= / 2()I,(A)dd / So ePa(A)E.(A)AA71

= ye. (20)

In matrix form, this set of equations can be written

€
x Tri Tea oe Ter e
Y =| Win Tye os “Ton ‘ . (21)
é Tr To . Tem ;

eon

With @= (X,Y, 2)", this equation yields

E=Te. (22)

The elements T,,,Ty;, and T.; of the matrix T are coeffi-
cients that result from integration of the i‘ basis function
over the three color matching functions. For point sampling,
these elements are modified based on the method of numeri-
cal integration. For example, common Riemanu summation
over evenly spaced samples includes the distance between
the sample points [17], and Gaussian quadrature has its own
unique weights [5].

Assuming that an RGA display monitoris properly gamma-
corrected [4], the color values, & = (R,G,B)", of a given
pixel are computed from the tristimulus values by applying
a 3x3 matrix, M, derived from the chromaticities of the
phosphors of the monitor[6]

¢ = Mz (23)
= MTe& (24)
= Ce, (25)

Therefore, the RGB values can be obtained directly through
a linear transformation of the final coefficient values by a
3xm matrix C’. Because this step is linear, it can be applied
at any time to the separate contributions to the final pixel
values.

3 Selection of Basis Functions

It is in the selection of the basis functions that the flexibility
of the general transform method is demonstrated. In this
section, we describe some factors that determine the effective
selection of basis functions, and we present two methods for
determining basis functions that are tailored to the spectral
power distributions in a scene.

As mentioned in Section 2, the lighting model is a signifi-
cant influence on the choice of basis functions. If the light-
ing model is not piecewise separable, the surface matrices
must be computed for each geometry configuration, so the
most efficient basis functions are most likely point samples.
If, however, the lighting model is piecewise separable, we
have another consideration, The components of the surface
reflectances are represented by mxm matrices. Therefore,
the reflection of light from a surface requires, in general,
m? multiplies. If the basis functions are point. samples,
though, the surface matrices are diagonal, and the reflec-
tion requires only m multiplies. Indeed, only m multiplies
are required for any set of non-overlapping basis functions.
Consequently, the computational intensiveness of the general
transformrises more rapidly than that of point sampling as
the number of basis functions increases.
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A third consideration when selecting basis functions is the
nature of the spectral power distributions in the scene to
be rendered. For smoothly varying distributions, point sam-
pling can be quite efficient, but for complicated spectra, a
set of general basis functions can be more appropriate. We
discuss each of these methodsin the following sections.

3.1 Point Sampling

Point sampling is typically linked to a numerical integra-
tion method used in approximating the tristimulus integrals,
Equations 18-20. Gaussian quadrature, which is optimal for
integrating polynomials over general weighting functions(5],
has been applied to this problem [14] [19] [2]. If the spec-
tral power distributions are well described by lower order
polynomials, Ganssian quadrature can provide sufficient ac-
curacy with a small] number of sample points; it was shown
in [14] that as few as four point samples are adequate for
many rendering applications.

Here, we discuss the use of simple Riemann summation for
approximating the tristimulus integrals. Rather than be-
ing efficient for polynomial functions, Riemann summation
is efficient when integrating functions that contain a small
number of Fourier coefficients.

Riemann Summation

Riemann summation is the sum over evenly spaced sample
values weighted by the distance between the sample wave-
lengths [17]. Given N +2 evenly spaced sample points
Ao; Ai, ---;AN41 separated by a distance A\ = (Awan —
Ao)/(N + 1) and a spectral power distribution 7(A), Rie-
mann summation gives

N+

x= / #(AM(A)dA & AAS F(AQT(A)4 i=
Lh

Y= [aortas ANS? GAT)A i=0
(26)

N+1

Z= / H(A)I(A)dA = ANS” 2(Ai)T(L)-A i=0

An appropriate choice of endpoints, Ag and Aw4i, is the
most closely spaced pair of wavelengths that can be cho-
sen such that the color matching functions at these wave-
lengths can be taken to be zero. We found that Ao = 400mm
and Aw+1 = 700nm are often reasonable choices; truncation
at these limits results in errors significantly smaller than
those incurred by undersampling the spectra [17] [18]. ‘Tak-
ing Z(Ao) = y(Ao) = Z(Ao) = O and £(Awai) = 9(Aw4i1) =
2(An41) = 0, only the N interior points, Aj, ..., An, need to
be preserved during the rendering process; the basis func-
tions for the spectral power distributions are given by delta
functions at these wavelengths.

With the endpointsof the integrands equal to zero, Riemann
summation with N points is exact for any linear combina-

tion of the first 2+2 Fourier functions 1, sin(2nAa 1,A= = ARs A=A,

igotar on sin(2nN7), cos(27Ns)
sin(2r(N + Shs). Therefore, if the products of the
spectral power distributions with each of the color matching
functions are well described by a small number of Fourier co-

cos(2a

194

194

SpectralPower €

 
600 6s) 700

Wavelength

Figure 1: Spectral power distribution of a fluorescent light

efficients, Riemann summation provides an efficient method
for integration. For the set of spectral power distributions
obtained from the Macbeth Color Checker [13] under CIE
Standard Illuminant C [21], Riemann summation with four
point samples at 460nm, 520nm, 580nm, and 640nm results
in an average errorof less than 5% in the tristimulus values.
Rendering with these four sampling points is often sufficient;
if it is not, selecting five, six, or more evenly spaced samples
is straightforward.

3.2 General Basis Functions

For scenes with complicated spectral power distributions or
surface properties, naive point sampling is insuflicient. One
notable example is the spectral power distribution of fluores-
cent light, which is ubiquitous in indoor scenes. Fluorescent
light, an example of which is shown in Figure 1 [21], is char-
acterized by narrow emission lines at several wavelengths, a
factor leading to aliasing with a small number of point sam-
ples. For these complicated cases, one would like to be able
to tailor the basis functions to the complex spectra. One
attempt in this direction is the use of abutting box func-
tions oyer the range of wavelengths whose widths are chosen
based on the spectra within the scene [7] [6]. Another tech-
nique for dealing with these scenes is hand-selecting the basis
functions using knowledge of the spectra in the scene. For
example, for fluorescent lights, one could ensure that point
samples were positioned at the emission lines.

Here, we present an alternative method for the selection of
basis functions, gaining insight from studies done on the con-
struction of linear models of surface reflectances and spectral
powerdistributions [3] [8] [9] [15] [12]. Most of these studies
have stressed the use of characteristic vector analysis or prin-
cipal component analysis to characterize lights and surfaces.
This technique can be applied to the rendering problem to
provide an automated method for selecting an efficient set
of basis functions.

Characteristic Vector Analysis

Given a set of spectral power distributions, characteristic
vector analysis computes an ordered set of functions such
that the first m functions are the “best” m functions for
approximating the distributions. Here, “best” is measured
in terms ofleast squared error between the actual and the
approximating spectra. Formally, for the approximation of
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the spectral power distribution

1(d) = Se:B,(Q), (27)1=1

the basis functions, &;(\), are computed such that the sum
of the approximation error over all of the lights in the set. is
minimized

Err = es /[7(A) — a ei E;(A)|*dd. (28)i=1

In practice, this set can be determined by placing the repre-
sentative spectra in the columns of a matrix and performing
a singular value decomposition [10] [11].

The task is then to find a representative set. of spectra on
which to perform the analysis. For the rendering problem,
the basis functions should describe any spectral power distri-
bution within the scene. The distributions contain contribu-

tions from thelight sources themselves, from once-reflected
light, and from multiply-reflected light. Therefore, an ap-
propriate set of spectra is that set derived from possible in-
terreflections within the scene. Given the spectral power
distributions of the lights and the components of the surface
reflectances in a scene, one can construct a tree of possi-
ble interreflection spectra (disregarding any geometry). The
lights themselves would be included, and any numberof re-
flections and interreflections could be included. The basis

functions computed from a characteristic vector analysis of
this set would then approximate these spectral power distri-
butions.

If the number of spectral power distributions to fit is too
large, this technique can becomeinefficient; the cost of com-
puting the basis functions may exceed the savings in ren-
dering time. Also, this method is inapplicable if one does
not know a priori the spectral character of the surfaces and
lights in the scene. However, for many scenes, this technique
can readily be applied.

3.3 Examples

To demonstrate the use of characteristic vector analysis in
selecting basis functions, we present two related examples.
Both examples use the fluorescent light in Figure 1 to show
the ability of this technique to handle complex spectra. In
the first example, we determine the efficiency in computing
the tristimulus values of a set of spectral power distributions,
and in the second, we render a simple scene.

Tristimulus Values of Test Spectra

We select as sample spectra the twenty-four squares of the
Macbeth Color Checker under the fluorescent light. A set of
basis functions can be computed by performing a character-
istic vector analysis on the set of twenty-five spectral power
distributions given by the light itself and the light reflected
from the twenty-four samples. Figure 2 showsthe first three
basis functions for this set; as can be seen, characteristic
vector analysis preserves the narrow peaks that are found in
the spectral power distribution of the light source.

From these basis functions, we compute the transform coef-
ficients of the fluorescent light with Equation 2. Assuming
only diffuse reflection and ignoring geometry, we use Equa-
tion 12 to compute a single matrix for each of the twenty-four
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Figure 2: First three basis functions computed with char-
acteristic vector analysis for fluorescent, light reflected from
the twenty-four squares of the Macbeth Color Checker.
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Figure 3: Average CIE Lab Error for set of spectra as a
function of the number of multiplies per reflection for evenly
spaced point samples and for the general linear transform
computed with characteristic vector analysis.

surfaces in the color checker. The product. of the vector of
coefficients with each of these matrices gives column vectors
containing the coefficients of the reflected light. From these
vectors, we compute thelinear model approximation to the
tristimulus values of each of the twenty-four patches with
Equations 18-20. The average CIE Laberror in units of AE
[21] can then be calculated as a function of the number of
basis functions. For reference, we also compute this error
as a function of the number of evenly spaced point samples
for Riemann summation. To compare the two methods in
terms of their computational intensiveness, we plot in Fig-
ure 3 the errors as a function of the number of multiplies per
reflection.

‘The general linear modelis significantly more efficient than
point sampling; the latter shows severe oscillations from the
sampling error in computing the narrow peaks in the flu-
orescent light. Clearly, the point sampling method should
(and would) be amended for the Auorescent light case. The
most natural method is to ensure point samples lie on the
narrow peaks and are weighted appropriately during the in-
tegration. This is tantamount to hand-selecting a general
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Figure 4: Four surface reflectances from the Macbeth Color
Checker used in the example image.
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Figure 5: First three basis functions of the general linear
model computed with characteristic vector analysis for the
example image.

linear model. Characteristic vector analysis is attractive be-
cause if, matches most anomalies in the spectra without the
user being required to address each one distinctly.

Image Generation

We now apply characteristic vector analysis to select basis
functions for ray tracing of a simple scene under fluorescent
light. The four distinct surface reflectances in the scene are
taken from the Macbeth Color Checker and are shown in

Figure 4. To compute the basis functions, we perform a
characteristic vector analysis on the set of spectra consisting
of the light source itself, all single reflections, and all second
interreflections from the four surface samples; the first three
basis functions are shown in Figure 5. These functions are
used to compute the column vector of the light source and
the ambient, diffuse, and specular reflectance matrices for
each of the surfaces in the scene.

Figure 6 shows the resultant images for four different num-
bers of basis functions, The top left image in the figure dis-
plays the full resolution rendering of the scene computed at
one nanometer intervals. The two columns display the gen-
eral linear model and evenly spaced point sampling for the
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same number of multiplies per reflection. The left column
shows the general model with 2, 3, 4, and 5 basis functions
from top to bottom, and the right column shows 4, 9, 16,
and 25 evenly spaced point samples from top to bottom,
The linear model based on characteristic vector analysis is
superior for all images; with just three basis functions, it is
virtually identical to the full resolution image.

5 Conclusions

We have presented a general description of the use of lin-
ear transform methods in synthetic image generation. This
formalism requires that all spectral power distributions be
described with respect to a set of orthonormal basis func-
tions. The spectral power distributions are represented by
column vectors, and the surfaces are described by matrices.
Reflection during the rendering procedure takes the form of
matrix multiplication. Because this process is linear, it al-
lows for easy implementation. In addition, this framework
guides the choice of basis functionsfor efficient rendering.

We have discussed two possibilities for the selection of the
basis functions, Riemann summation for efficient point sam-
pling and characteristic vector analysis of a representative
set of spectra in the scene, Point sampling based on Riemann
summation is effective when the spectral power distributions
in a scene are well described with low-order Fourier compo-
nents. The method based on characteristic vector analysis is
of comparable efficiency to point sampling techniques when
the scenes contain smoothly varying spectra, and it can be
significantly more efficient for scenes with complex spectra.
We demonstrated this by rendering a scene illuminated by
fluorescent light.

A promising direction of future work is the investigation of
basis functions that make the rendering procedure more ef-
ficient; the techniquesin [12] are potentially useful to this
end. In addition, we have focussed in this paper on minimiz-
ing the cost of full spectral rendering, but the flexibility of
the general method might be useful for other issues in com-
puter graphics, such as texturing, that deal with spectral
information during rendering.
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ABSTRACT

We introduce a new approach for the computation of view-
independentsolutions to the diffuse global illumination problem in
polyhedral environments. The approach combines ideas from hier-
archical radiosity and discontinuity meshingto yield solutions that
are accurate both numerically and visually, First, we describe a
modified hierarchical radiosity algorithm that uses a discontinuity-
driven subdivision strategy to achieve better numerical accuracy and
faster convergence. Second, we present a new algorithm based on
discontinuity meshing that uses the hierarchical solution to recon-
struct an object-space approximationto the radiance function that is
visually accurate. Our results show significant improvements over
both hierarchical radiosity and discontinuity meshingalgorithms.

CR Categories and Subject Descriptors: 1.3.3—{Computer
Graphics]: Picture/Image Generation; I.3.7—{Computer Graph-
ics}: Three-Dimensional Graphics and Realism.

Additional Key Words and Phrases; diffuse reflector, discon-
tnuity meshing, global illumination, hierarchical radiosity, Mach
bands, photorealism, quadratic interpolation, radiance function, ra-
diosity, reconstruction, shadows, view-independence.

1 INTRODUCTION

Computing solutions to the global illumination problem is an essen-
ual part of photorealistic image synthesis. In this paper, we are in-
terested in computing view-independent (or object-space) solutions
for global illumination, Such solutions provide an approximation to
the radiance function across each surface in the environment. Once

a solution is computed, images from any viewpoint can be rendered
with a relatively small additional effort. These methods are particu-
larly attractive for applications such as architectural design, interior
design, lighting design, illumination engineering, and virtual real-
ity, in which the need for multiple views or walk-throughs of static
environmentsarises.

Sofar, most view-independent methods have been derived from
the radiosity method that was originally developed to solve radia-
tive heat transfer problems [23]. Computer graphics researchers
adopted this method to compute the global illumination of diffuse
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commercial advantage, the ACM copyright notice and thetitle of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
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polyhedral environments [10, 7, 19]. Radiosity has been extended
and improved dramatically since, but there is sill much to be done
before the method can become a useful tool for its intended users.

The goal ofour research is to develop an efficient radiosity system
thatsatisfies the following requirements:

Objective (numerical) accuracy: Solutions produced bythe sys-
tem should converge rapidly to the exact solution. This requirement
may seem obvious, however, in the computer graphics community
results of simulations are too often judged solely by their visual ap-
pearance.

Subjective (visual) accuracy: While visual appearance should not
be used to judge the objective accuracy of the simulation,it is still
very important, since the image is the final product. Clearly, ac-
curate visual appearance can be achieved through numerically ac-
curate simulation (if the underlying modelis physically accurate.)
Unfortunately, experience has shown that the human visual system
is extremely sensitive to small perceptual errors that are difficult to
quantify, The simulated environments can be very complex and,
therefore, the computation of ultra-accurate solutions is generally
impractical. Thus, we must have means of producing visually ac-
ceptable images even from coarse solutions.

| Ease ofcontrol: (i) The system should be controllable by users who
are not necessarily familiar with its inner workings. Therefore, the
control parameters should be intuitive and small in number, (ii) In
many cases (such as early design slages) the user is interested in a
quick solution,even ifnot exceedingly accurate. At other times, one
might be willing to wait overnightforareliable solution. Therefore,
the system should provide the user with the option to trade speed for
accuracy.

Mostradiosity systems do notsatisfy any of these requirements.
There are no error bounds on the solutions, because approximations
are often used without justifications regarding their impact on the
accuracy ofthe results. The resulting images typically exhibit many
visual artifacts such as Mach bands,light and shadow leaks, jagged
shadow boundaries, and missing shadows. Radiosity systems are
seldom user-friendly and require massive user intervention: typi-
cally, a time consuming trial-and-error process is required to pro-
duce an image that looks right, Baum eral. [1] and Haines [12]
provide good discussions of the various pitfalls of radiosity.

In this paper we present a new radiosity method, which comes
closer to satisfying our goals. The new method combines two re-
cently developed approaches: hierarchical radiosity [14] and dis-
continuity meshing [15, 18]. First, we present an improved hierar-
chical radiosity algorithm that uses a discontinuity-driven subdivi-
sion strategy to achieve better numerical accuracy and faster conver-
gence. Second, we describe a new algorithm based on discontinuity
meshing that uses the hierarchical solution to reconstructa visually
accurate approximation to the radiance function. Thus, results of
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high visual quality can be obtained even from coarse global illumi-
nation simulations, Previous attempts to improve the visual quality
of radiosity solutions were described by Nishita and Nakamae [19],
Kok and Jansen [17], Chen er al. [4], and Reichert [20]. In all of
these cases, however, the improvementtakes place in image space,
after the view and the resolution have been specified, Our method,
instead, operates entirely in object space, and the improved solution
is view-independent.

2 HIERARCHICAL RADIOSITY

The traditional radiosity approach [10, 7] discretizes the environ-
ment into a elements and solves a linear system of n equations,
where the radiosities of the elements are the unknowns. The most

serious drawbackof this approachis the need to computethe O(n’)
coefficients of the linear system, corresponding to the interactions
(transfers of hght energy) between pairs of elements. In addition to
the overwhelming computational complexity, most of these compu-
tations are performed to unnecessarily high accuracy, while some
are notsufficiently accurate.

Hierarchical radiosity (HR) [14] overcomes these problems by
decomposing the matrix of interactions into O() blocks,for a given
accuracy. These blocks correspond to interactions of roughly equal
magnitude, and the same computational effort is required for com-
puting each block. HR operates by constructing a hierarchical sub-
division of each input surface. Each node in the hierarchy repre-
sents some area on the surface. Two nodes are linked together if
the interaction between their corresponding areas can be computed
within the required accuracy; otherwise, the algorithm atlempts to
link their children with each other. Each link corresponds to a block
in the interaction matrix.

HR has several important advantages: it is fast, the errors in its
approximations are bounded, anditis controlled by only two param-
eters: the error tolerance and the minimum node area. The smaller

the values of these parameters, the more accurate (and expensive)
the solution becomes. Thus, HR satisfies our goals of objective ac-
curacy and ease of control,

However, the HR algorithm still suffers from shadow leaks and
jagged shadow boundaries. This occurs because surfaces are sub-
divided regularly, not taking into account the geometry of the shad-
ows. HR uses point samplingto classify the inter-visibility between
two surfaces,so it is prone to missing small shadows altogether. Of
course, as the user-specified tolerance becomes smaller, the solution
becomes more accurate, and the visual artifacts decrease. Never-

theless, images of high visual quality can require solutions of pro-
hibitively high accuracy.

The numberoflinks created by HR is O(n +m”) where n is the
final number of nodes and ni is the number of input surfaces, As
the complexity of the environment increases, the m* term eventu-
ally becomes dominant, drastically reducing the efficiency of the
algorithm. As pointed out by Smits ef al. [22], this problem could
be solved by grouping the input surfaces into higher level clusters.
Thisis an interesting research topic byitself, and it will not be pur-
sued in this paper,

3 DISCONTINUITY MESHING

Radiosity methods typically attempt to approximate the radiance
function with constant elements and use linear interpolation to dis-
play the result, The actual radiance function, however, is neither
piecewise constant nor piecewise linear. It is usually smooth, ex-
cept along certain curves across which discontinuities in value or in
derivatives of various order may occur. Discontinuities in radiance
functions are discussed in detail elsewhere [16, 15, 18]; what fol-
lows is a brief summary of the various types of discontinuity and
their causes.
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‘The mostsignificant discontinuities are discontinuities in thera-
diance functionitself (denoted 2"), They occur along curvesof con-
tact or intersection between surfaces. Discontinuities in the first and
the second derivatives (D' and D*, respectively) occur along curves
of intersection between surfaces in the environmentandcritical sur-

faces corresponding to qualitative changes in visibility, or visual
events. Visual events in polyhedral environments can be classified
into two types [9]; EV events defined by the interaction of an edge
and a vertex, where the critical surface is a planar wedge; and EEE
events defined by the interaction of three edges, where the critical
surface is a part of a quadric. Discontinuities of higher than second
order are also possible [16),

Discontinuilies are very important both numerically and visually:
all the boundaries separating unoccluded, penumbra, and umbra re-
gions correspondto various discontinuities. When a discontinuity
curve crosses a mesh element, the approximation to the radiance
function over that element becomes less accurate. The resulting
errors usually correspond to the most visually distracting artifacts
in radiosity images. The traditional radiosity approach uses adap-
tive subdivision [8] to reduce these errors, howeverthere are several
problems with this approach. First, the user must specify an initial
meshthat is sufficiently dense, or features will be lost. Second, the
shape of the mesh is determined by the geometry of the surface be-
ing meshed, and the discontinuities are not resolved exactly. As a
result, many small elements are created as the method attempts to
converge to shadow boundaries. Furthermore, although the result-
ing solution may be of adequate visual quality for some views,arti-
facts may becomevisible as the view changes (e.g., when we zoom
in on a surface.)

Discontinuity meshing (DM)algorithms compute the location
of certain discontinuities and represent them explicitly, as bound-
aries, in the mesh. This leads to solutions which are both numeri-
cally and visually more accurate. Another advantagets that higher
order elements can be used much more effectively in conjunction
with discontinuity meshes [16]. Several algorithms have been de-
scribed that use the idea of discontinuity meshing to various extents
[1, 3, 6, 15).

Recently, a progressive radiosity DM algorithm was described
by the authors [18]. The meshing in this algorithm is automatic,
Using analytical visibility and form factor computations followed
by quadratic interpolation it has produced radiosity solutions of im-
pressive Visual accuracy. This algorithm was also shown to be nu-
merically accurate [24].

However, this method is too expensive for computing converged
solutions of complex environmentand only offers limited user con-
trol in trading off speed for accuracy. The main reason for this ts
that all energy (ransfers are computed very accurately, regardless of
their magnitude.

4 ACOMBINED APPROACH

Hierarchical radiosity and discontinuity meshing seem to comple-
ment each other in their strengths and weaknesses: HR is fast, but
the visual appearance of the results can be disappointing; DM, on
the other hand, has produced visually accurate results, but so far
it has been too expensive for simulation of complex environments,
This observation motivated us to look for ways of merging the two
methods. Our investigation resulted in the following two-pass ap-
proach:

The global pass uses a modified HR algorithm to compute a ra-
diosity solution within a prespecified tolerance. Instead of regular
quadtree subdivision, the modified algorithm subdivides surfaces
along discontinuity segments. This improves the numerical accu-
racy andresults in faster convergence.


