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SESTRACT

A prototype flight simulator for the Fiber-Optically Guided Missile (FOG-M)
is presented. This prototype demonstrates the practicability and feasibility of
using low-cost graphics hardware to produce acceptable simulation of flight over
terrain generated from Defense Mapping Agency (DMA) digital elevation data.
The flight simulator displays a dynamic, three-dimensional, out-the-window view
of the terrain in real-time while responding to operator control inputs. The total
system cost (software and hardware) of the simulator is an order of magnitude

less than most flight simulation systems in current use.
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I. INTRODUCTION

Flight simulation has been an important computer graphics application,
embracing a range of systems from a $32.00 program for a personal computer
[Ref. 1] to special purpose machines costing millions of dollars [Ref. 2]. The
capabilities of these systems are spread across a range nearly as wide as their
costs, with great variances in speed (frames displayed per second). realism,
flexibility, and area of flight. We present here a system that is relatively
inexpensive. vet still fast enough to present a real-time three-dimensional view of
digitized terrain. We built this system on a commercially available, high-
performance graphics workstation, the Silicon Graphics, Incorporated IRIS-2400
Turbo. The IRIS system was selected because of its local availability and its
performance capabilities. The flight simulator presented here does not use the
natural color and shape of individual terrain elements (in order to achieve real-
time performance), but it is sufficiently realistic to provide the feeling of flight

and allow identification of the displayed terrain and targets.

A. FOG-M
1. Background
The project presented here was built in response to the United States

Army Combat Developments Experimentation Center’s need to simulate the
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operation of the Fiber-Optically Guided Missile (FOG-M) [Ref. 3], but this missile
is also being considered for use by the United States Marine Corps [Ref. 4.
Simulation is necessary in order to test and evaluate the tactics, doctrine and
training requirements associated with the missile without the expense and danger
of actual firings during simulated combat field trials. The FOG-M is a generic
family of remotely-piloted, video-guided munitions, but for the purpose of this
prototype simulator, the weapons are all logically equivalent, and the entire
family is referred to as ‘“‘the missile.” In order to avoid security constraints, the
parameters and operational characteristics used in this work were not taken from
exact FOG-M specifications. The parameters and technical specifications are all
estimates, based on reasonableness and consistency with general, unclassified
descriptions of the FOG-M.
2. Description

The actual FOG-M missile is six inches in diameter, five and one-half feet
high, weighs eighty-three pounds, and costs about $20,000 [Ref. 4]. It has a video
camera mounted in its nose, which transmits a black-and-white picture back to
the operator’s console (which consists of a television screen, a computer, and a
joystick) over the fiber-optic link. (The simulator display offers the user the choice
of either color or black-and-white; color is the default for the simulator despite the
operator view of the missile being black-and-white. The color compensates for
some of the loss in realism and identifiability inherent in a polygonal

representation of natural objects). Before launch, in normal operation, the missile
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is given a general direction to a target and the altitude of the highest point within
its range. The simulator allows values in excess of FOG-M operational
capabilities for speed, range, and altitude above ground level (AGL), but the
default values of two hundred knots, ten kilometers, and one thousand meters are
characteristic of this type of missile. As soon as thé missile is in position, it begins
transmitting video images. When launched, the missile rises to approximately
two hundred feet above the highest terrain point, and then levels off in horizontal
flight in the targeted direction. The operator controls the pan and tilt angle of
the camera with the joystick, and can dial in changes to the heading and altitude
of the missile. The operator also has the capability to zoom the camera’s field of
view from eight degrees to fifty-five degrees, and to designate (‘‘lock-on” to) a

target for automatic homing by the missile.

B. ASPECTS OF FLIGHT SIMULATION

There are many aspects to flight simulation. Modern commercial simulators
provide sophisticated mock-ups of cockpits and controls and highly detailed out
the window views. By mounting the simulator on a moving platform, a true sense
of the physical feelings of acceleration and roll can be achieved. These systems
also cost miilions of dollars.

One of the first decisions that must be made when designing a flight simulator
is, ‘“‘For what purpose will the simulator be used?” The answer to this question

drives most of the design decisions that have to be made. Since the purpose of
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this project is to provide a simulation of the FOG-M missile as viewed from its
operator’s console, it is felt that the most important items to model are the
simulated video display of the terrain and the actual operator controls. The
terrain should appear realistic enough that its major features are recognizable to a
person familiar with the area. The controls should allow for the same
functionality as the actual console. The simulator must, of course, also provide a
feeling that the missile is in motion over the terrain. The effectiveness of the
feeling of motion provided by a flight simulator can be largely measured by two
criteria: the realism of the displayed scene and the update rate of the display.
1. Realism

Many factors contribute to the perceived realism of a displayed natural
scene. Early attempts to quantitatively measure realism consisted of counting the
number of ‘“‘edges’ or lines that a scene contained. This later gave way to
counting the number of “faces’ or polygons in a scene. Since each polygon was
colored in a single shade, it was felt that each polygon represented a single “bit”’
of information in the scene. Therefore, the more polygons the scene contained,
the more “realistic” it was felt to be [Ref. 5:pp. 27-28].

The latest advances in computer graphics have also made this measure of
effectiveness obsolete. With the introduction of systems that are able to fll
polygons with textured patterns, a single polygon can now contain thousands of
“bits” of information. As a result, a scene drawn with a few textured polygons

can appear more realistic than one with an order of magnitude more untextured
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ones. Early textures consisted of superimposing things such as mathematical
noise functions or stripes on the polygons. More recent advances have allowed the
texture to be derived from digital photographs of a similar scene. For example,
polygons representing a part of terrain covering by meadow could be filled with a
digital texture derived from an aerial photograph of a meadow [Ref. 5: p. 28].

Since most currently available graphics workstations do not support the
use of texture filled polygons, the use of texture was deemed to be outside the
scope of the current project. Rather, the project’s work concentrated on
determining how realistically a scene could be rendered in real-time incorporating
only the use of lighting and shading models along with terrain hidden-surface
algorithms. These topics are covered in more detail in Chapter V.

2. Frame Update Speed

Another important aspect of a flight simulator’s performance is the speed
at which it is capable of displaying successive frames in a scene. The faster the
update rate, the more continuous the motion appears. As a reference, standard
motion picture film is projected at a rate of twenty-four frames per second.
Although the IRIS workstation is capable of displaying up to sixty frames per
second, the amount of computation that must be done between successive frames
in the simulation has limited the update rate to an average of three frames per
second. While this presents a less than smooth motion, it is felt to be adequate

for the purposes of the prototype.
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C. ORGANIZATION

The above sections of this chapter have provided background on flight
simulation in general, and the missile whose flight is specifically being simulated.
Chapter II provides an overview of the hardware used in running the simulation.
The structure Aand content of the Defense Mapping Agency (DMA) Digital
Terrain Elevation Data (DTED) are discussed in Chapter III. Chapter IV
discusses the motivation behind and creation of the two-dimensional contour map
displays. Chapter V covers the storage and use of the DMA DTED to produce a
lighted and shaded three-dimensional polygonal terrain display. The mathematics
and process involved in simulating flight over the terrain are detailed in Chapter
VI. Chapter VII discusses the creation, insertion, animation, and designation of
targets. Chapter VIII covers the creation and drawing of cultural features.
Chapter IX contains a user’s guide for operation of the FOG-M simulator.
Chapter X concludes with a discussion of limitations, future extensions and
research topics, and summarizes the research conducted. Narrative descriptions of
the modules and listings of the program source code for each of the modules are

included as Appendices A and B respectively.
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II. COMPUTER SYSTEM

As discussed in Chapter I, flight simulators are nothing new. The significance
of this work lies in the speed with which it was developed, the display rate
achieved, and the realism and fidelity of the display in comparison to the cost of
the system that supports it. This project was technically feasible only because of
the capabilities and high performance of the IRIS (Integrated Raster Imaging
System) Turbo 2400 Graphics Workstation, manufactured by Silicon Graphics,
Incorporated. Others have also used the IRIS as a base on which to build flight
simulators [Ref. 6]. This low-cost ($50,000 to $100,00) three-dimensional display

system is summarized in Figure 2.1 and is discussed more fully below.

A. HARDWARE AND SYSTEM OVERVIEW

The IRIS has a conventional Von Neumann type computer architecture but
adds custom-built special purpose VLSI circuits and a pipelined design to provide
the graphics functions that are implemented in software on other comparably-
priced workstations. Conceptually, there three pipelined components in the IRIS
hardware: the applications/graphics processor. the (Geometry Pipeline. and the
raster subsystem [Ref. 7:p. 1-1]. The applications/graphics processor is a
conventional Motorola MC68020 processor running at 16.7 MHz. This processor
runs the applications program(s) within a UNIX System V operating system.
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ETHERNET to Vax and other IRIS

32 bit 168.7 MHz Motorola MC88020 CPU

8 Megabytes of CPU Memory

32 1024x768 bitplanes of Display Memory

Hardware matrix multiplier & floating point accelerator
Hardware Gouraud shading, depth cueing & backface polygon removal
12 pipelined custom VLSI Geometry EnginesTM

18-bit Z-buffer for Hidden Surface Elimination

2 72 Megabyte Winchester Disk Drives

80 Hz non-interlaced 19" RGB high resolution monitor

83 key up-down encoded keyboard

3 button mouse

32-button and 8-dial valuator boxes

Unix System V

Ethernet zo VAX’s

IRIS Graphiecs Library

Features of the IRIS Turbo 2400 Graphics Workstation
Figure 2.1
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Applications either issue graphics commands in immediate mode, in which case
they are sent through the Geometry Pipeline immediately as individual graphics
primitives, or compile graphics commands into graphical objects, in which case
they are sent through the Geometry Pipeline as a single geometric entity when
explicitly called at some later point in time.

The Geometry Pipeline takes commands in terms of the user’s world
coordinates, performs specified matrix transformations on them using the matrix
multiplier and floating point accelerator built into the hardware, and then clips
and scales the transformed coordinates into screen coordinates. The raster
subsystem takes the screen coordinates output by the Geometry Pipeline and
updates the bitplanes (display memory) to contain the lines, polygons, or
characters specified by the input coordinates. The raster subsystem also performs
polygon fill, shading, depth-cueing, and hidden surface removal. A conventional
video controller uses the values in the bitplanes and the color table to produce an

image on the monitor.

B. SOFTWARE

The C programming language is native to UNIX and is the language used for
all of the IRIS system software. The [RIS Graphics Library. which provides both
high- and low-level graphics and utility commands, can be called in C,
FORTRAN, Pascal, or LISP. However, due to the built-in bias of UNIX and the

IRIS, plus the local pool of knowledge, the C programming language was the
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pro forma choice for programming all parts of the FOG-M simulator. The IRIS
User’s Guide [Ref. 7] breaks the Graphics Library commands into the following

twelve categories:

- Global State commands initialize the hardware and control global variables,
and are used mostly in FOG-M’s init_iris routine.

- Drawing Primitives are used throughout FOG-M. They create points, lines,
polygons, circles, arcs, and text strings.

- Coordinate Transformations specify mappings within and between user-
defined world coordinates and screen coordinates. These are used to move
targets and to simulate flight.

- Drawing Attribute commands specify textures and fonts. Although texture
would greatly improve the appearance of the terrain, the IRIS provided
textures are applied in the screen coordinate system, so they do not scale or
tilt to conform to the terrain, and produce a very artificial result.

- Display Mode and Color commands determine how the bitplanes are used
and what colors appear on the screen. These include the commands that set
double-buffering, establish writemasks, and define the color table.

- Input/Output commands initialize and read the dials and mouse.

- Object Creation and Editing commands allow manipulation of complex
displays as a single entity. They are used in all FOG-M displays.

- Picking and Selecting commands are not used in FOG-M.
- Geometry Pipeline Feedback commands are not used in FOG-M.

- Curve and Surface commands draw complex curves and smooth surfaces.
Experiments with these produced more realistic terrain images, but not even
close to real-time, making flight animation impossible.

- Shading and Depth—cueing commands provide Gouraud shading of polygons
and intensities that vary with distance from the viewer.

- Teztport commands definc an area of the screen for text. They are not used
in FOG-M.

Also available on the system, and used by FOG-M, are the math library with
sine, cosine, arctangent, hypotenuse, and exponentiation functions, and routines

that access the system clock in order to determine elapsed time.
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III. DIGITAL ELEVATION TERRAIN DATA

A. INTRODUCTION

Unlike other flight simulation systems, which may rely on manual creation of
the terrain [Ref. 8], the source data for the terrain in the FOG-M simulation is a
Defense Mapping Agency (DMA) digital terrain elevation database (DTED) for
Fort Hunter-Liggett. California. The database is not Level 1 DTED, but rather a
DMA special product produced about 1980 at a higher resolution than normal
Level 1 DTED [Ref. 9]. Level 1 DMA data contains elevation points spaced at
three arc-second intervals, or approximately every one hundred meters. The Fort
Hunter-Liggett special data contains points at twelve and one-half meter spacing,

which is eight times the resolution of Level 1 data.

B. COVERAGE

The area covered by the database is thirty-six kilometers wide and thirty-five
kilometers high, with 6400 data points per square kilometer. This area includes
most of Fort Hunter-Liggett plus some surrounding land, and is bounded by
latitudes 26° 057 00”” (to the north) and 35° 307 00" (south) and longitudes
121° 04 30" (east) and 121° 20° 30" (west). In terms of Universal Transverse
Mercator (UTM) coordinates, the area has easting (X) of 10SFQ41000 to
10SFQ77000 and northing (Y) of 10SFQ60000 to 10SFQ95000. The database
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appears to be based on DMA forty foot interval contour map products, because
peaks tend to have flattened tops. This was confirmed both by a comparison of -
surveyed instrumentation sites on or near peaks with their digital terrain values

[Ref. 10: pp. 1-2], and by a Bezier surface patch image of the data created locally.

C. STRUCTURE
The data is stored in an unformatted sequential file that is organized as a
stream of integers. Each integer (sixteen bits) represents both the vegetation code

and bald terrain elevation in feet at one sampling point, as illustrated in Figure

3.1 below.

| Veg. Code | Bald Terrain Elevation |
bit: [15 14 13|12 11 10 9 8 7 6 5 4 3 2 1 0]

Figure 3.1 DTED Data Encoding

The thirteen low-order (rightmost) bits contain the elevation, allowing a range
from zero to 8191 feet. although the highest point in the database is 3744 feet.
The three high-order (leftmost) bits specify one of eight vegetation codes, which
are given in Table 3.1 below. Vegetation codes are only available for points

within the boundaries of Fort Hunter-Liggett proper. The file is written one
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TABLE 3.1 DTED VEGETATION CODES

Code | Description

0 Less than one meter

One to four meters

Four to eight meters

Eight to twelve meters
Twelve to twenty meters
Greater than twenty meters
No data available

Unused

N O e W N

square kilometer at a time, beginning with the lower left one kilometer grid square
(41,60), proceeding up the column to the upper left grid square (41,94), then
doing the next column from bottom to top (42,60 to 42,94) and so on; the upper
right one kilometer grid square (76,94) is the last one written. Within each one
kilometer grid square, the individual data points are written in the same pattern,
beginning with the lower left, doing each column from bottom to top, and doing
the columns from left to right. This file layout is summarized in Figure 3.2. The
position in the file of the elevation for a point expressed in five digit local UTM X

and Y coordinates is found as shown in Equation 3.1.

position = 35 * (integer(X/1000) — 41) + (integer(¥Y/1000) — 59) (3.1)

D. LOCATION
The compiete DTED ile occupies 16,128,000 bytes of storage. Due to a local
shortage of available disk space, this file must permanently reside on the UNIX

VAX 11/785 system rather than on the IRIS system. The FOG-M simulator
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presently operates on a ten kilometer square extract from this database. A
program on the VAX called make—database—e allows interactive specification
of the area and resolution desired, and produces an extract. This extract is sent
over the Ethernet to the IRIS to serve as the input for a FOG-M run. However, if
the data is sent directly, it is received with each pair of bytes swapped, so another
program, swapdma, is run on the VAX before transmittal. This program swaps
the low- and high-order bytes of each integer so that the swapping during

transmission is cancelled.
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IV. TWO-DIMENSIONAL TERRAIN MAP PORTRAYAL

The two-dimensional representation of the terrain was begun as the first
graphics portion of the system, in order to gain familiarity with the IRIS graphics
workstation and the Defense Mapping Agency (DMA) digital terrain elevation
data (DTED). Contour maps are the traditional approach to two-dimensional
terrain portrayal, and thus were the basis for the two-dimensional images of the
terrain generated here (Figure 4.1). Although these two-dimensional images are
not true contour maps, they are still referred to as such in tl'.liS study because of
their close relation and common origin. The algorithms for determining and
drawing the forty foot contour lines found on a normal contour map seemed non-
trivial, so a simpler alternative was chosen. Each elevation datum is represented

by a tile, with the implicit X and Z (easting and northing, respectively)

coordinates of the elevation datum being the center of the tile.

A. COLORS

The color of a tile is determined by its vegetation code, and its intensity (or
shading) by its elevation. The intent was to use green for tiles with vegetation
and brown for tiles without vegetation. However, the DTED vegetation codes
lump together both “no vegetation” and ‘‘vegetation less than one meter high.”
Brown tiles thus include both unvegetated areas (e.g. rock slabs, areas above the
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treeline) and grasslands or meadows. This is significant in the Fort Hunter-
Liggett area, because most of the valleys are covered in grass, and all of the high
ground is below the treeline. The result is a map with brown valleys and green
ridgelines. While this was readily accepted as natural by most viewers, pilots
with a background in low-level flight found it awkward, and contrary to their
expectations (from flight charts) of green valleys and brown mountains. While
this might be significant in other flight simulation applications (particularly those
designed for pilots), the initial representation was deemed most appropriate for
the target audience of the FOG-M simulator.

A similar initial, intuitive choice was made for the elevation-keyed shading.
High intensity (light) colors were used for higher elevations, and low intensity
(dark) colors for lower elevations. This was accepted as natural by almost all
viewers. The optimum number of intensities (shadings) to use in the map was
experimentally determined to be sixteen. A small power of two was desirable due
to the nature of the writemasks used to improve display speed. A large number of
colors provides greater elevation definition and prevents large masses of the same
color in areas where elevations change gradually. However, having too many
colors destroys the contour-map effect, since adjacent colors are so close that no
boundary is distinguishable between them. Eight shades each of green and brown
were used initially. The shift to sixteen shades of each produces a better looking
map. Due to the RGB (red, green, blue) nature of color creation on the IRIS, the

greens were still barely differentiable at thirty-two shades, but the browns (a
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combination of mostly red, some green, and, in some shades, a trace of blue)
began to blend together.

To determine the elevations at which color shades should change (in order to
use the full range of shades), the maximum and minimum elevations of the
terrain section in use must be known. Rather than preprocess the data before each
run, these values are coded as constants in a header file. The equation for which
color index to use is straightforward (see Equation 4.1) but takes significant time

when repeated ten thousand times.

) . elevation— MIN
indez = base inder + *4# of shades (4.1)
- MAX—-MIN el

Therefore, the fifteen points at which the shade changes are precalculated and
stored in an array so that no calculations are needed at each point, just an array

lookup.

B. DRAWING

The map can then be produced by determining the color and shade for each
tile, and drawing it as a filled square. However, an increase in speed can be gained
by exploiting the structure of the data and the line drawing hardware of the IRIS.
The data is stiil processed a point at a time within each one kilometer column,
but no drawing is done until an elevation/shading breakpoint is reached. Then a
single line of one tile’s width is drawn to color all tiles since the previous elevation

breakpoint.
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C. WRITEMASKS

A more significant speed improvement (on the order of fifty per cent more
frames per second) was achieved with writemasks. Writemasks are a relatively
low-level hardware feature that can be used for many purposes. In the FOG-M
simulator, they are used to prevent the contour map from being overwritten.
This allows the map to be drawn only once into the bitplanes, and have it remain
on the screen without being re-drawn during each frame update. In order to
understand how writemasks work, one must understand the layout and use of the
IRIS’s color table and bitplanes.

1. Color Table

The color table associates a particular binary number with a color.

When the display system asks what color some number is, the color table replies
with the intensities for the red, green and blue color guns that will produce the
color defined for the input number. This input number is referred to as a
colorindez. Thus the color displayed on the screen depends on the colorindex
associated with a given pixel, and the color associated with that colorindex in the
color table. Table 4.1 gives the color table entries that are the defaults on the
IRIS workstation.

2. Bitplanes

The colorindex that is associated with each pixel is stored in the display

memory, which is composed of bitplanes. Each bitplane has one bit for each pixel

on the display screen, so a bitplane is 1024 bits wide, 768 bits high and one bit
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TABLE 4.1 IRIS DEFAULT COLORINDEX DEFINITIONS

Colorindex
Color - -
Decimal Binary .
' Black 0 ~0000000000000000 |
Red 1 0000000000000001
Green 2 0000000000000010
Yellow 3 0000000000000011
Blue 4 0000000000000100
Magenta S5 0000000000000101
Cyan 6 0000000000000110
White | 7 0000000000000111

deep. When used in double—buffer mode (as in FOG-M), the IRIS uses sixteen
bitplanes (numbered 0 to 15) for each buffer. The frontbuffer is the one whose
binary contents define the image being displayed. While the frontbuffer is being
displayed, the next image is created by issuing drawing commands which affect
only the backbuffer. Once a new image is completed in the backbuffer, the
buffers are swapped, so the backbuffer becomes the frontbuffer and is displayed.
The old frontbuffer becomes the backbuffer, and is then available for update.

3.  Writemask Example

Consider the pixel at location (0,0) — the lower left corner of the screen.
The colorindex of that pixel i1s determined by sixteen bits: one from the lower left
corner of each bitplane. The display svstemn reads those sixteen bits as a binary
number (the colorindex), and uses the color table to determine what color to
make that pixel. For example, using the default colors defined in Table 4.1 above,

that pixel will be colored black if all sixteen bitplanes have zeroes in their lower-
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left corners, since the value of the sixteen bit binary number 0000000000000000, is
zero. If the current color is set to magenta (color five, whose binary value has ones
in bits zero and two) and a drawing command is issued, bitplanes zero and two
are set to one, and all other bitplanes are set to zero, for every pixel covered by
the drawing command. These pixels will now be displayed as magenta, because
the colorindex constructed from the sixteen bitplanes will be 0000000000000101,
(510), and the color table tells the display system that color 5, is magenta.

The previous example showed that a drawing command works by
placing ones in certain bitplanes, and zeroes in all of the rest, with the current
color specifying which bitplanes get which. A writemask tells each bitplane to
either allow or ignore the changes a drawing command says to make. In normal
double-buffered usage, the writemask is 1111111111111111,, meaning all sixteen
bitplanes should allow updates. Now suppose there is an image on the screen
which uses just the default eight colors. Bitplanes three through fifteen are all
zeroes, because all of the colors have colorindices with three or less binary digits,
which will be in bitplanes zero, one, and two. If the writemask is changed to
1111111111111000, after drawing the image, those lower three bitplanes are
“frozen’ and will not be changed by any drawing command. Setting the color to
black and clearing the screen will not change anything. The upper bitplanes will
be set to all zeroes, which they already were. The lower three bitplanes will be

told to reset to zero, but will not do it because they are protected by the

writemask.
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Now suppose you want to draw a grey line on top of the image. The line
only needs one color, so it can be drawn in one bitplane. (Two bitplanes will allow
three more colors on top of the map, three bitplanes allow seven, etc.) The first
“free” bitplane is number three. Turning on a bit in this plane (and not turning
on any bits in higher planes) requires a colorindex in the range 1000, to 1111, (8
to 15,,). Defining color eight in the color table as grey, making color eight the
current color, and then drawing the line is sufficient to get the image into the
bitplanes, but the display will not show the desired effect. If the image
underneath the line is black (i.e. bitplanes zero through two are all zeroes form
some pixels), the line will appear grey, as intended, for those pixels. However, if
the image underneath the line is red (i.e. the lower bitplanes contain 001,), the
composite colorindex retrieved by the display system is 0000000000001001, or 910)
and since color nine is not defined in the color table, it appears as black. Thus
every colorindex that has bit three (because the line is in bitplane 3) set to one
(i.e. colorindices 1000, to 1111,, or 8,, to 15, ) must be defined as grey in order to

produce the desired image.

4. Writemasks in FOG-M

The map image used in FOG-M is stored in the first six bitplanes
(numbered 0 through 5) of both butfers, which means sixty-four colors are
available: eight are the IRIS defaults, sixteen are shades of brown, sixteen are
shades of green, and twenty-four are unused. The writemask defined as

SAVEMAP (CO,4 or 0000000011000000,) allows things to be drawn on top of the
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map in bitplanes six and seven. Colorindices 64 through 127 are all defined as
blue in the color table, so anything drawn in bitplane six appears on top of the
map in blue. Similarly, bitplane seven is used for red, with colorindices 128
through 255 all correspondingly defined to be red.

The speed improvement due to writemasks in FOG-M comes from not
having to re-draw the map each time the screen is updated. The cost is the use of
many more indices in the color table, which limits the number of colors available
for use on top of the map. For our simulation system, with only two colors
needed on top of the map, there is plenty of room in the color table. Therefore,

the gain in speed comes at no real cost.
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V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION

A. REPRESENTATION DECISIONS

1. Polygons versus Patches

Early experiments in the study involved attempting to display the
terrain using parametric bi-cubic surface patches. A surface patch is simply a
smooth curved surface fitted to a set of data points. A discussion of the theory
and use of surface patches can be found in the IRIS User’s Guide [Ref. 7:sec. 11-3]
and Hearn and Baker [Ref. 11:pp. 193-205]. It was quickly determined that it
would not be possible to use surface patches to represent the terrain and still
maintain a real-time update of the terrain during flight.

An alternate method of displaying a three-dimensional object is through
the use of a set of planar polygon surfaces that join at common edges to form the
terrain object. This method has the advantage of being much simpler, and
therefore faster, to generate and display. For this reason it was chosen for use in
the project.

Figure 5.1 shows the method of constructing the terrain surface as a set
of triangles. The term gridsquare is used in the remainder of the chapter to refer
to a set of two triangles with a common hypotenuse that form a square of the

terrain grid.
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View from above looking down on the terrain.

~-Terrain elevation points are connected
to form triangular polygons with common
edges.

Figure 5.1 Polygonal Terrain Construction
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2. Resolution
The special DMA data file used in this project contains elevation data
that is spaced at a twelve and one-half meter interval. One of the first questions
which had to be answered concerning the three-dimensional portrayal of this data
was, ‘“In how fine a resolution can the data be displayed, while still allowing for a
sufficient frame update speed?” Early test runs showed that using the full twelve
and one-half meter resolution would be much too slow, although it provided an
excellent representation of the terrain. An adequate frame update rate
(approximately three to four frames per second) was achieved with a seventy-five
meter resolution or every sixth data point. Since this was an early test. displaying
terrain without any targets or cultural features, a one hundred meter resolution
was decided upon for use in the remainder of the project. This allowed for an
adequate ‘“‘cushion’ of processing time to complete the additional computations
that would be needed in the final product, while still providing an adequate

degree of resolution.

3. Elevation Scaling

After viewing the early representations of the terrain, it appeared that
the hills did not give an appropriate appearance of height. Although this was a
subjective judgement, it was shared by most people who viewed the display and
compared it to aerial photographs of the area. Because of this, it was decided to
scale the elevations of the displayed points upward. Two approaches, linear

scaling and exponential scaling, were examined.
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In the linear scaling approach, each elevation point was simply

multiplied by a scale factor as shown in Equation 5.1.

Eley =0 * elev (5.1)

ew

Using this approach, it appeared that a scaling factor between 1.5 and 2.0 was
necessary to achieve the desired effect.
In the exponential approach, the elevation of each point was raised to a

fixed power as shown in Equation 5.2.
a -
Eley , = Elev (5.2)

This approach has the effect of exaggerating the higher elevations to a greater
degree than the lower ones. It was chosen as the approach for use in the project
based on subjective observations of the displays produced by the two methods.
The scaling factor, o, was chosen as 1.05. Using this factor produces the
equivalent of a linear scaling of 1.5 for the maximum elevation and 1.4 for the
minimum elevation contained in our area of interest.

Subsequent to the decision to use an exaggerated elevation scale,
research results were discovered which supported it. In a study conducted by the
U.S. Army Research Institute for the Behavioral and Social Sciences, observers
were asked to pick a computer generated line drawing that best matched actual
terrain. The line drawings had different exaggerations of the vertical (elevation)

scale. The overall ratios chosen by the four observers ranged from 1.25:1 to
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1.50:1. The drawings presented to the observers had exaggeration ratios ranging
from 1:1 to 1.75:1. [Ref. 12]

4. Shading and Texturing

As explained above, each one hundred meter square of the terrain, a

" is represented by two triangles in three-space that share a common

“gridsquare,’
diagonal edge. The process of applying colors to these polygons, shading, was the
next area of research in the project.
a. Elevation Based Shading
Three different shading algorithms were investigated. The first was
a simple algorithm where the shade of a polygon was a function of its elevation.
Higher elevations are shaded in lighter shades of green while lower elevations

receive darker shades. Equation 5.3 represents the assignment of a shade from the

color map.

elev — Min Elev
color_indez = base indez + = *# of shades (5.3)

Maz Elev— Min_Elev

The darkest green is stored in the base indez color map location and the lightest
green in the baseinder + # of shades location. Although this approach works
well for two-dimensional contour maps (see Chapter IV), and is currently used in
another “low cost” simulator [Ref. 6|, it did not appear to present a realistic view
of the terrain. An advantage of this approach, however, is that the calculation of

the color index is simple enough to be done with no preprocessing.
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b. Lambert’s Cosine Law Shading
The second method of determining the shade for a polygon involved
the use of a point light source and Lambert’s cosine law [Ref. 11:p. 278|. Let N
be a unit normal vector to the polygon, and L be a unit vector in the direction of
the light source. The angle between N and L, ®, is the angle of incidence.
Lambert’s Law states that the intensity of the light reflected from the polygon is

proportional to cos @ (Equation 5.4).
Iacos® (5.4)

In order to use this law, the normal vector (IV), the light source vector (L), and
the angle between them (®) must be known. N can be determined by taking the
cross product of vl and v_ﬁ, where vl is a unit vector in the direction from vertex
B to vertex C of the polygon, and v2 is a unit vector in the direction from vertex

B to vertex A of the polygon (Equation 5.5 and Figure 5.2).
N = vl x v2 (5.5)

With N and L available, cos ® can be computed as their dot product (Equation

5.7).
cos®=V-1L (5.7)

Since the intensity is proportional to cos ¢, the appropriate color index to use can

be computed as

color_indezx = min_inder + (# shades*cos ®) (5.8)
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Y Light Source

Figure 5.2 Lambert’s Cosine Law
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where min indez is the color index of the lowest intensity green and
min_indez + # shades is the color index of the highest intensity green.
c. Gouraud Shading

The final shading model investigated involved the use of Gouraud
shading. The purpose of Gouraud shadi'ng is to provide a continuous transition of
shades across a polygon so that the shades at the edges of adjoining polygons
match. This in effect eliminates the visible boundary between polygons and
provides a smooth continuous surface. The Gouraud algorithm involves
interpolating to determine the intensity to be used at each pixel along a scan line,
and is illustrated in Figure 5.3 as reproduced from Hearn and Baker [Ref. 11:p.
290]. To use the algorithm, intensity values for each vertex of the polygon must
be known. In the project’s implementation, the intensity at each vertex was
computed as the average of the intensity values for all the polygons meeting at
that vertex, where the individual polygon’s intensity values were calculated using
Lambert’s cosine law.

The use of this model posed two problems. First, even though the
IRIS supports Gouraud shading in its graphics library, its use increased the time
between frames to an unacceptable rate (approximately one and one-half to three
seconds between frames). Second, the smoothing of the algorithm worked too
well, resulting in terrain displays that lacked the necessary position cues to detect
motion. This second problem could be alleviated by adding artificial texture to

the terrain but in light of the speed problem it was not pursued further.
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Scan Line

For interpolated shading, the intensity value

at point 4 is determined from intensity values
at points 1 and 2, intensity at point 6 is

determined from values at points 2 and 3, and

intensities at other points (such as 5) along

the scan line are interpolated between the

values at points 4 and 6.

Figure 5.3 The Gouraud Shading Algorithm
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d. Adding Texture

Lambert’s cosine law was chosen as the shading model for use in the
project, providing the most realistic display within the allowed computation time
constraints. However, a problem with its use is that the flat valleys, with little
variance in the surface normals of their polygons, produce large geographic areas
having a near constant shade. This results in a lack of motion cues in these areas
similar to that experienced with the Gouraud shading model. To remedy this
situation, a simple artificial texture, in the form of a checker board, was imposed
on the terrain. The checker board effect was implemented as follows. First, the
shades for the two triangles in each gridsquare were averaged, a;;d this average
shade was used for both of them. This of course causes the visible boundary
between the triangles to disappear leaving a square shaded in a single color.
Second, two slightly offset color ramps were used with adjacent grid squares using
different ramps to compute their shades. One ramp is composed of green
intensities ranging from 255 to 50, while the other uses intensities ranging from
245 to 40.* This causes the shades for two adjacent gridsquares with identical

surface normals to vary, providing the necessary texturing.

*A value of 255 is the highest intensity green obtainable, a value of zero indicates the absence
of the color green.
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B. INTERNAL DATA STRUCTURES

Two global arrays are maintained which store the information necessary to
display the terrain. The first is a five-dimensional array, savetriangle, that stores
the values of the coordinates for each triangle making up the terrain structure.
The second is a two-dimensional array savecolor that stores the color map indices
for each of the terrain’s grid squares. The purpose and range of each of
savetriangle’s  indices is shown in  Table 5.1. For example,
savetriangle[3][5][1][1][2] would contain the value of the Y coordinate (fifth
dimension = 2), of the second vertex (fourth dimension = 1), of the northern
triangle (third dimension = 1), of the grid square with X index five and Z index

three (second dimension = five and first dimension = three).

TABLE 5.1 LAYOUT OF THE SAVETRIANGLE ARRAY

. . Index Range

Dimension Start | Eod Purpose

' First 0 98 Grid square index in the Z direction. 0
is the southern most square, 98 is the
northern most.

Second 0 98 Grid square index in the X direction. 0
is the western most, 98 is the eastern
most.

Third e R | Triangle identifier within a grid square.
[ 0 is the southern triangle. 1 is the’
| northern. ?
'Fourth | 0 2 Vertex number of the triangle. 0 is the |

first vertex, 2 is the last.

Fifth 0 2 Coordinate identifier of the vertex. O is
the X coordinate, 1 the Y coordinate
and 2 the Z coordinate.
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Table 5.2 lists the purpose and ranges of each of savecolor’s indices. For
example, savecolor(30][10] contains the color map index to be used for the grid

square with a Z index of thirty and an X index of ten.

TABLE 5.2 LAYOUT OF THE SAVECOLOR ARRAY

— - , ~
Index Range
Dimension £ Purpose

Start | End

First 0 98 Grid square index in the Z direction. 0 |
is the southern most square, 98 is the
northern most. l

Second 0 98 Grid square index in the X direction. 0 !
| is the western most, 98 is the eastern
most.

These two arrays contain all the information necessary to construct an image
of the terrain. The following chapter provides the details of using their data to
create a real-time, updated image of the terrain as it is seen from the FOG-M’s

camera.
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VI. FLIGHT SIMULATION

A. OVERVIEW

The previous chapter discussed the methodology of constructing the three-
dimensional terrain from the provided elevation data. This chapter’s purpose is
to explain the details of displaying this terrain in real time as it is seen through
the missile’s camera.

The high level pseudocode for the main program’s terrain display loop is
shown in Figure 6.1. Chapter VII explains the details of step two. The details of
steps one and six are explained in Appendix B under the procedures readcontrols
(for step one) and edit navboz and edit indboz (for step two). The remainder of
this chapter discusses the details, considerations, and results of implementing

steps three through five.

B. UPDATING THE MISSILE’S POSITION

Determining the missile’s new position can be broken into two cases:

[1] the missile is under operator control and its new position is a function of the
old position, the commanded direction of flight. the commanded altitude.
and the commanded speed.

(2] the missile is locked onto a target and its new position is a function of its old
position, the position of the desired target, and the commanded speed.

In both cases, a very large simplifying assumption is made to ignore the

dynamics of the missile’s flight. This means that the missile is able to
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While missile is flying do
1) Read the values from the operator’s controls
2) Determine new positions for all the targets
3) Determine the new position for the missile
4) Determine the position of where the camera is looking
5) Display the terrain as seen by the camera
6) Update the operator’s control indicators
End while

Figure 6.1 Main Display Loop Pseudocode

instantaneously change heading, speed, and altitude. This assumption was made
only because of development time constraints. It is felt that the computations
necessary to more realistically model the dynamics of the flight can be done
without a serious degradation of the simulator’s performance.

1. Casel - Operator Control

Under this case the missile’s X,Y, and Z coordinates are computed as

shown below.

ADist = Speed*A Time (6.1)
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Where

- ADist is the distance traveled over the ground since the last position was
calculated.

- Speed is the missile's speed in feet per second and

- ATime is the elapsed time since the last position was calculated °
Having calculated the distance the missile must move during this frame the

missile’s new coordinates (MX,MY ,MZ) can be calculated as

MX, , = MX ,+[cos(Dir, ) *ADist] (6.2)

MZ = MZ, ~[sin(Dir,,)*ADist| (6.3)

My, = (4, )’ (6.4)
Where

- Dir_ . is the commanded heading in radians
- Alt . is the commanded altitude in feet

- o is the altitude scaling factor (see Chapter V, Section A.3).

2. Case 2 - Locked Onto a Target

In the case where the missile is locked onto a target, the missile’s new
position is computed as follows. A Dist is computed as in Equation 6.1. Next the
missile’s heading is computed so as to steer it directly toward the target’s

position:

Dir, . = arctan2(—{TZ—-MZ) b TX—.\/[X]) (6.3)
tgt L ]
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Where

- Dirtgt is the direction from the missile’s position to the target’s position
- TX is the X coordinate of the target’s position

- TZ is the Z coordinate of the target’s position

- MX is the X coordinate of the missile’s position

- MZ is the Z coordinate of the missile’s position

a
- arctan2(a,b) is a function which returns the arctan[ —] in the range
b
0 to 2II, based on the sign of a and b.

Once Dirtgt is known, the missile’s new X and Z coordinates can be calculated as

MX = MXD[d+[cos(Dz'rtgt) *A Dist] (6.6)

new

M3Z,,, = M2Z,,~[sin(Dir,,) *ADist] (6.7)

new
Next the missile’s altitude (MY) is adjusted a proportion of the total altitude
difference between it and the target, based on the ratio of ADist to the total

distance (along the horizontal plane) to the target.

Dist, ,=V/(TX-MX)"+(TZ-M2)’ (6.8)

. A Drst
MYneszYoId— —TY) . (6'9)

Dust, ,

g

Where
- Distlgt 1s the distance to the target measured along a horizontal plane.
- MY and TY are the Y (altitude) coordinates of the missile and target,
respectively.
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C. DETERMINING THE LINE OF SIGHT

Once the new position of the missile has been calculated, the next step in
displaying the terrain is to determine another point along the camera’s line of
sight: the look-at position. This calculation is also broken into two cases based
on whether the missile is or is not locked onto a target (see Figure 6.2).

The case where the missile is locked on is trivial, the look-at position is

simply set to the coordinates of the locked-on target.

LX=TX (6.10)
LY=TY (6.11)
LZ=TZ (6.12)

Where LX, LY, and LZ are the X, Y, and Z coordinates of the look-at position.
This centers the target in the displayed three-dimensional scene.

When the missile is not locked onto a target, the camera’s look-at position is
a function of the missile’s position, the missile’s heading, and the pan and tilt

angles of the camera. It is determined as follows

Dir, ., = Head  + Pan (6.13)
LX = MX +[cos(Dir,,)* Dist, | (6.14)
LZ = MZ~[sin(Dir, )~ Dist, .| (6.15)
LY = MY +[Dist,, , *tan(Tilt)] (6.16)
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LX X
LY = TY
LZ = TZ

.........

DIRlook = Heading + Pan ; }I DIStLook
~

\

(LX, LY, LZ)

Dist

-l o

Overhead View Side View

Case 2 - Missile Not Locked on Target

Figure 6.2 Determining the Camera’s Look-at Position
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Where

- Dir, . is the direction the camera is looking
- Pan is the pan angle of the camera
- Tilt is the tilt angle of the camera

- Dist), , is an arbitrary distance over the ground that the camera looks ahead.
Since the only purpose of LX, LY, and LZ is to determine a point along the
camera’s line of sight, any positive number will be acceptable. A value of five
kilometers is currently used.

D. DISPLAYING THE SCENE

Once a line of sight has been determined, the next steps are to apply the
appropriate viewing transformations, draw the filled polygons that make up the
terrain, and add other items to the scene such as targets and roads.

1. Viewing Transformations

It is possible to project a three-dimensional object onto a two
dimensional viewing surface in two basic ways. In one method, the parallel
projection all the points of the object are projected along parallel lines. This has
the advantage of preserving the relative dimensions and angles within an object
and is used when accurate views of various sides of an object are needed such as
in architectural drawings. In the other method, the perspective projection, all
the points of an object are projected along lines that converge at a single point
called the Cenier of Projection. In this method, relative dimensions are not
preserved. Lines closer to the projection plane appear larger than those that are

more distant. The perspective projection provides a view of three-dimensional
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objects that is more realistic, similar to that provided by the human eye or a
camera. Both these projections are illustrated in Figure 6.3. [Ref. 11:pp. 235-241]

Because of its more realistic presentation of the scene, a perspective
projection was used for the project’s three-dimensional scenes. The IRIS’s
graphics library provides a procedure called perspective which constructs the
necessary transformation matrix* to obtain a perspective projection. The matrix

is defined as [Ref. 7:p. C-2]

Perspective (fovy,aspect,near,far) =

fovy
cot (
2
0 0 0
aspect
fovy
0 cot ( 0 (6.17)
2
far+near
0 0 —— -1
far—near
2% far X near
0 0 S~ D

far—near

Where

fovy is the field of view angle

aspect i1s the aspect ratio, a ratio of the distance a viewer sees in the X
direction to the distance he sees in the Y direction. It is generally set to be
the same as the ratio of the width to the height of the viewport.

- near and far are the distances from the viewer to the near and far clipping
planes.

*A knowledge of using transformation matrices to perform graphical operations is assumed
here. Hearn and Baker [Ref. 11:chaps. 11-12] provides excellent coverage of the subject.
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Figure 6.3 Parallel and Perspective Projections
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The perspective projection forms a view frustum as shown in Figure 6.4.
Any object within the frustum between the near and far clipping planes will be
displayed in the scene. Objects outside this view volume are clipped and
discarded.

Next, the frustum formed by the perspective projection must be
positioned along the camera’s line of sight. This is accomplished by another
transformation matrix constructed via a graphics library procedure named lookat.

The lookat procedure takes the following inputs:

-V, Vy, and V: the X, Y, and Z coordinates of the center of projection.

z

BP, Py, and P,:the X, Y, and Z coordinates of the look-at position.

- Tunst, a right handed rotation of the scene about the line of sight.
The transformation matrix formed by lookat is actually the result of multiplying
four other transformation matrices [Ref. 7:p. C-2]

Lookat(V_, Vy, VZ,PZ,Py,PZ, Twist) =

g 6.18
Trans(—V,,— V= V,) xRoty(@) xRot (®)x Rot (— Twist) (6.18)

Where Trans(-V -V -V ) = . 0 Lo (6.19)

=7 Sy
z y
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Figure 6.4 The Perspective Command
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Rot, () = (6.20)

1 0 0 0
0 cos(®) sin(®) O .
Rot, (@) = 0 —sin(®) cos(®) O S

0 0 0 1

cos(—Twist) sin(—Twist) 0 O

—sin(— Twist) cos(—Twist) 0 O

Rotz(— Twist) = (6-22)
0 0 10
0 0 01
PZ_ VI
And ®© = sin_1 (6.23)
\/(PI- Vz) +(Pz— Vz)
vV -P
o =i y Ty
® = sin (6.24)

S AN

As can be seen, this transformation simply translates the center of projection to
the origin, then rotates the view frustum about X and Y axes to align with the

line of sight. Finally the twist angle is added with a rotation about the Z axis.
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3

In the flight simulation, the twist angle is analogous to the ‘“‘roll”” angle of an
aircraft or missile. A value of zero is currently used, but other values could be

used if the roll of the missile during flight was added to the model.

2. Determining Which Polygons to Draw

After the correct viewing transformations have been applied, the
polygons that comprise the scene must be drawn. Although the IRIS will “clip”
polygons which lie outside the perspective projection’s view volume, an increase in
frame update speed can be achieved by not attempting to draw those that
obviously lie outside. This is discussed further in the following section on
simulator performance.

The term view—bound is used to describe a north-south oriented
bounding box around those parts of the scene that are sent to the graphics
pipeline. The view-bound is described by the index of the northernmost,
southernmost, easternmost, and westernmost g¢ridsquare to be drawn. It is
calculated by extending (if necessary) the line-of-sight vector until it intersects the
horizontal plane Y = Min elev, where Min_elev is the minimum elevation value
of the terrain. The wview—bound is calculated as being 20 gridsquares to the
north, south, east, and west of this intersection point. If the missile’s X and Z
coordinates are not within the calculated view —bound, the bounds are extended to

include them. Figure 6.5 illustrates this construction.
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Figure 6.5 Construction of the View-bound
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3. Hidden Surface Removal

A final detail that must be taken care of is the removal of hidden
surfaces from the scene. A hidden surface is simply a part of the scene that is
obscured by some object in the foreground, such as a valley that it hidden behind
a large hill.

The IRIS supports a method in hardware called Z-Buffering. In this
method, a buffer is maintained for each pixel position on the monitor and
contains the ‘““depth’ (transformed Z coordinate) of the part of the scene that
generated that pixel. Before drawing is started, the buffer is initialized to the
maximum depth value (the value of the far clipping plane) for each pixel position.
Before each new pixel is drawn, its depth is compared to the depth stored in the
buffer. If its depth is greater than the stored depth it is not drawn. If it is less
than the stored depth, it is drawn and its depth value replaces the value in the
buffer. This method could not be used in the project for two reasons. First, with
comparisons having to be made on a pixel-by-pixel basis, it slows down the frame
update rate to an unacceptable level. Second, the IRIS does not allow the use of
Z-buffering and double-buffering at the same time. Double-buffering is necessary
to implement the animation of the scenes.

Another common method of hidden surface removal is the painter’s
algorithm. It derives its name from the way a painter would draw a scene on
canvas, drawing in all the background and then adding foreground objects by

painting over the background objects they obscure. Implementing this algorithm
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in computer graphics means drawing the scene in an ordered fashion, such that
the most distant objects from the viewer are drawn first and those closest to the
viewer are drawn last. Since the gridsquares comprising the terrain form well
defined rows and columns, an efficient implementation of this algorithm is
possible. That implementation is described below.

The implementation can be thought of on a conceptual level as follows.
A line, perpendicular to the line-of-sight, is constructed to serve as a pseudo-
scanline. Gridsquares within the view-bound are drawn as they are intersected by
this scanline. The scanline is first positioned along the line-of-sight vector so that
it intersects the far corner gridsquare of the view-bound. After all the gridsquares
along the scanline have been drawn, it is moved one gridsquare closer to the view
position, along the line-of-sight vector, and the process is repeated. This
continues until all the gridsquares within the view-bound have been drawn.
Figure 6.6 illustrates this process.

From Figure 6.6, notice that each scanline passes through three
gridsquares in a column, shifts over a column, then passes through three
gridsquares in the next column. The number of gridsquares drawn in a column
(or row) before advancing to the next column (or row) can be determined by
computing the tangent of the scanline’s direction. If the magnitude of the
tangent is greater than 1.0, scanlines will run and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>