
101

posters.

Examples of view dependent impostors are:

e A texture map that is pasted onto the appropriate face
of an object’s bounding box. This texture map is called
a textured cluster when it conceponds to an image of
a group of objects.

e Another view dependent texture map is also known as
billboard in [6] and is obtained in the same way as tex-
ture maps. A billboard is centered at an object’s center
and made to rotate in such a way that it always face
the observer. Since one billboard is computed for each
face of the object’s bounding box as the observer moves
around the object a difierent billboard is selected to dis-
play according to the viewpoint. This impoator is useful
to represent objects that are apprordmately rotationally
symmetric such as pine trees.

0 Another variant of the texture map described above is
a pseudo-texture mapl. A pseudo-texture map is a tri-
angular mesh (or a quadrilateral strip) onto which a.
texture map is pasted in such a way that each pixel in
the image is associated to a pair of triangles (or quadri-
lateral) in the mesh.

Examples of view independent impostors are:

a The conventional levels-of—detall, i.e., geometrically
coarse versions of a given object?

0 Boxes whose faces have the average areas and colors as
the corresponding sides of the object’s bounding box.

a Texture mapped boxes. This representation uses tex-
ture maps that are pasted onto each face of the object’s
bounding box and is useful to represent box like objects
such as the Standard Oil Building in Chicago.

4.2 Impostor Selection

There are certain cases where specific impostors are more
suitable than others and we can usually “suggest” to the
walkthrough program which representation to display at a.
given point in the simulation.

For example, if the imagespace size N of an object is
less then a few pixels then the representation that should
be used is the average box above. If N is greater then a
prefixed maximum size then the full detail object might be
required. If different LODs are present in the model, then
difierent image space size thresholds may be used to select
the appropriate LCD to be displayed.

Box-like and symmetric objects can be displayed using a
texture mapped box and a billboard, respectively. Texture
maps can be selected according to the obeserver’s viewpoint.
For example, if four texture maps are used for each face of
an object’s bounding box, then the appropriate texture map
for a given viewpoint can be selected as follows:

1. In a pic-processing phase, associate to each texture map
a. number corresponding to the region it belongs as in
Figure 3.

1It; can be used in machines that do not have texture mappinghardware.

250ml! toolldts such as Performer[6j provide routines to auto-
matically generate coarse versions of a given full-detail object.

98

101

’qu-l

Figure 3: Possible viewpoint regions in object coordinates.

2. During the walkthrough we determine the viewpoint
with respect to the object's coordinate system and
therefore the region it is in.

In some situations, both a view dependent and a view
independent representation are suitable. When this is the
case, we can decide upon these two representations by ab-
taining the accuracy of each representation for the particular
observer view angle using the table described in Section 3.2
and then select the representation with the highest accu-
racy/cost ratio. This heuristic is particularly useful in cases
where the observer’s line of sight is approadring a 45 degree
angle with the line perpendicular to the texture map. In
such a, case although the texture map may have a low ren-
dering cost, its accuracy will also have a low value which will
favor the selection of a possibly more costly view dependent
representation.

4.3 Formalization of the Problem

We begin by defining a meta-object abstraction to be an en-
tity with one or more hardware drawable representations as
in the framework described in Section 4.1. It is an abstrac-

tion for both conceptual objects and groups of objects.
As before, a hardware drawable representation is an entity

that can be rendered by the graphics hardware to represent
objects and has associated to it a. rendering cost and a mea-
sure of its “contribution" to the simulation.

The model is then defined as a. collection of conceptual
objects at specific positions and orientations in space that
forms the environment in which the user navigates.

The model hierarchy is defined to be a. tree structure
whose nodes are meta-objects that provide multiple repre-
sentations of the model, each representing it at a given ren-
dering time and providing the user with a given perception
of it. In this hierarchy each node contains drawable rep-
resentations of its children. The root contains the coarsest
representations for the entire model with the lowest possible
rendering cost while the leaves form the perceptually best
representation of the model with the highest rendering cost.

More formally, the model hierardiy M is a tree structure
that can recursively be defined by the following rules:

1. A meta-object that has no children is a model hierarchy
with just one node, the root node.

2. Let M1, M2...Mn be model hierarchies whose root nodes

are the meta-objects m1,m2...mn, respectively, that
represent sets of conceptual objects and have associ-

r' ated with each of them the sets r1,r2...rn of drawable
' representation. Let in be a. meta-object that repre-

sents the union of m,‘ and has associated to it a set 1'

of drawable representations such that Cost(Mar:(r)) <
L1 Cost(Miu(n)), where Maa:(r) is the representa-

tion that has the highest cost among those in r, Min(n)
is the representation that has the lowest cost among

102

those in r.- and Cost(z) is the rendering cost of repre-
sentation 2:. M is then defined to be a model hierarchy
il'm is theparent ofm; fori: 1...n.

Figure A shows how the model of a city would be orga-
nized to form a. hierarchy in which each node has a set of
impostors to represent the objects it subsumes.

Given these definitions, we state the walk-through prob-
lem as a tree traversal problem:

"Select a set of nodes in the model hierarchy that pro-
vides the user with a perceptually good representation of
the model”, according to the following constraints:

1. The sum of the rendering cost of all selected nodes is
less than the user specified frame time.

2. Only one node can be selected for each path from the
root node to a leaf node, since each node already con—
tains drawable representations that represent all its de-
scendant nodes

The problem as described here is an NP-complete tree
traversal problem and is a. variant of the “Knapsack prob-
lem", which is not surprising since we are generalizing the
system that Funkhouser and Sequin showed to be a knapsack
problem. The candidate sets from which only one element
will be selected to be put in the knapsack are the set of rep-
resentations associated to each meta-object. The knapsack
size is the frame time per frame that the selected represen-
tations must not exceed. The cost of each element is the

rendering cost associated to a representation. The profit of
an element is the accuracy of the representation plus the
benefit of the object with which it is associated.

To solve this problem we use the framework described in
Section 4.1 and develop a model hierarchy building algo-
rithm and a heuristic representation selection algorithm.

4.4 Design of the Model Hierarchy

We partition the entire model according to our formalization
of the problem, and form a tree structure in which each node
contains low-cost representations for the nodes it subsumes.

The structure that we use is a. variation of an octree that
is a bounding volume hierarchy, that can be used to cull
objects against the viewing irusturn and also serves as a
rendering aid, since we can draw its nodes.

This tree is constructed in a bottom-up fashion instead of
the traditional top-down recursive way, so that we can see
which objects are being “clustered”3 together as described
in Section 5.

The criteria used to group objects takes into account only
the proximity of objects and our model hierarchy building
program is designed to cluster together nearby objects first
in the way illustrated in the 2D example of Figure 4.

According to a user-supplied number of divisions in x, y,
and z axis of the bounding box of the entire model an initial
octree cell size and therefore tree depth is specified. We start
by creating a “child list” that contains all the conceptual
Objects in the model with their bounding boxes. This initial
list will correspond to the leaves of the tree. The child list
is used to generate the next level up of the tree. For each

3What is meant by clustering is basically the generation of
impostors for the group of objects.

99

102

213 Example:

Soils-e A
L“will.

Figure 4: Generating the model hierarchy octree. Represen-
tations are generated for cells with more than one object.

structural {subtree A)

clustorl

Conceptual
obj nctl

Figure 5: Subtree A as depicted on Figure 4.

level of the tree and for each cell in that level, we get the
set of objects that are completely inside the cell. if this
set is empty we move on to the next cell. Otherwise we
compute the bounding box of the objects in the cell and
discard it if the bounding box is already in the child list,- since
impostor representations for that set of objects had already
been created. If it is not in the list we create impostor
representations for the cluster inside the cell.

In our implementation clusters are generated by creating
texture snaps1 of the objects from given view angles and their
generation is described in Section 5. After the impostor rep-
resentations have been created, we make the cell point to its
children and remove them from the child list. We then add
the new cell to the end of the child list and repeat the process
until we obtain a. single cell with impostor representations
for the entire model.

It is important to note that at each time we cluster objects
we always take into account the actual objects that the cell
subtends instead of previously computed clusters.

Note that cluster representations are generated only if
there is more then one object totally inside each cell. Single
objects inside a. cell as well as objects on cell boundaries will
be grouped in the next levels up in the hierarchy. Figure 5
shows the structure of subtree A depicted in Figure 4.

4.5 Traversal of the Model Hierarchy

Due to the NP—complete nature of selecting representations
to render from the model hierarchy, we have devised a. heuris-
tic algorithm that quickly (in less than the frame time) tra-
verses the model hierarchy. This algorithm selects repre—
sentations to be rendered, accumulating rendering cost until
the user-specified frame time is reached. When this occurs,

4.llctually, representations only need to obey the cost require-
ment stated in Section 4.3.

103

the algorithm stops and sends a list of representations to the
graphics pipeline.

The tree traversal is top-down from the root node and
first traverses the branches that contain the most “benefi-
cial” nodes according to the benefit heuristic presented inSection 3.1.

The problem is that our per-object benefit heuristic asso-
ciates benefit not to cluster representations but to represen-
tations for conceptual objects that are at the very bottom of
the tree. High up in the hierarchy we do not know to which
branches of the tree the most beneficial objects belong. Be-
cause of thiI, we have decided to break the selection of nodes
to render in two phases as described below.

4.5.1 First Pass: Assign Initial Representation,
Benefit, Visibility, and Cost.

In this first phase of the selection process. we recursively
descend the model hierarchy in a depth-first manner and
associate a benefit and visibility value with each node in the
tree, and an initial drawable representation.

Since the leaves represent single objects, their benefits
are computed as a weighted average of the factors intrinsic
to objects as described in Section 3.1. The benefit wine
associated to a tree node is taken to be the maximum value
of all the benefits of its children.

The visibility of nodes are computed by checking if the
bounding box in eye-coordinates of the bounding box of the
object intersects the viewing frustum. A node is said to be
visible if at least one of its children is visible.

At a given point in the simulation a view dependent and a
view independent representation for an object is selected us-
ing the criteria specified in Section 4.2. The rendering cost
and accuracy of drawable representations that are stored
with each representation in the model are used to select

which of these two representations will be assigned to be
the initial representation of the node. The representation
that has the highest accuracy/cost ratio is selected to be the
initial representation. In the next phase (described below),
if there is still frame time left we try to improve on thisinitial choice.

After initial representations are selected to each of a
node’s children, the children’s cost is stored with the node
to be used in the next phase.

4.5.2 Second Pass: Best-First Tree Traversal.

In this phase, we use the information obtained in the pre-
vious phase for each node of the model hierarchy to imple—
ment an eHicient ’best-first’ tree traversal. The result of this
traversal is a rendering list of drawable representations that
is sent to the graphics hardware for rendering as shown in
Figure 6.

To implement this strategy, we make use of a list of meta~
objects organized in decreasing order of benefit (computed
in the previous phase). We keep accumulating frame time as
we select representations to render and whenever the time
required to render the children of a node plus the total ac-
cumulated time so far exceeds the frame time we insert the
representation for the node in the rendering list and moveon to the next node.

The algorithm first explores the branches of the tree con-

nected to the most beneficial nodes as follows: Start by in-
serting the root node in the list and setting the total render-
ing cost to be the cost of rendering the initial representation
associated to the root node. We then process this list until

103

100

Figure 6: Tree representing the model hierarchy and the set
of nodes to be rendered as a linked list.

it is empty. We remove the element in the front of the list
and discard it if it is not visible.

If the node is a leaf node (containing a conceptual object)
we check if there is still rendering time left to select a better
representation for the object. In the positive case we select
to render (insert in the rendering list) the next higher accu-
racy representation for the node and add its rendering time
to the total accumulated rendering time.

In the case where the node contains representations for a
cluster of objects, we check if instead of rendering the cluster
representation we still have time to render all of its children,
i.e., the total accumulated time plus the cost of rendering
the node’s children does not exceed the frame time. In the
positive case, we insert each of its visible children in the
list ordered by each ones benefit and add their cost to the
total accumulated rendering time. Otherwise we insert the
cluster's representation into the rendering list.

Note that at each point in this traversal, a complete rep-
resentation of the scene is stored in the list of meta-objects
and whenever there is frame time left to render the children
of a node, before adding the cost of the children to the total
accumulated cost we subtract the cost of the initial repre-
sentation for the node.

4.6 Temporal Coherence

While navigating through the model the viewpoint can ran-
domly get close or far away from “important” objects that
require most of the frame time. This sometimes causes a

seemingly random switch from a cluster representation to
the representations of the actual objects (or vice-versa). The
idea of using frame-to—frame temporal coherence as used by
Funkhonser and Sequin, is used here to mininirnize this ef-
fect by discouraging switching from representations for par-
ent nodeI to representations for children nodes. We keep a
counter of the number of times the walkthrough program de-
cided to switch from parent to children. The actual switch-
ing is only allowed if this counter exceeds a pre-fixed thresh-
old. The delayed switching from children representations to
cluster representations is not implemented since it would oc-
cur in a situation that most of the frame time has already
been allocated and this delay would greatly reduce the framerate.

104

"4/

5 Implementation

This research has resulted in the implementation of three
programs on a four processor SGI Onix workstation with
a RealityEngine board: the model hierarchy building and
representation generation program, the cost and accuracy of
representations measurement program, and the walkthrough
program-

Thme programs are implemented in C++, use GL[8] for
rendering, and have an X-Motif GUI to facilitate parameter
changes for system evaluation.

5.1 Model Hierarchy Building and Representa-
tion Generation

The program that builds the model hierarchy implements
the hierarchy building algorithm described in section 4.4 and
opens two windows, as shown in Figure B. The right window
displays the objects]clusters and compute texture maps for
each of the sides of their bounding beams while the left illus-
trates the process of building the hierarchy. In this image,
the dots represents objects that were not “clustered” yet.
The purple square with green dots is the bounding box of
the objects (in green) that completely fit inside it and the
“red" band is showing groups of objects already “clustered".

View dependent impostors such as texture maps are an-
tomatically obtained in the following way with the help of
the graphics hardware:

1. Set up a viewpoint, a viewing direction, and, an ortho-
graphic projection matrix.

2. Draw the object(s) in a completely black backgron
and adjust the texture resolution5 by scaling the ob-
ject(s) inside the orthographic viewing volume.

3. Grab the resulting image from the window (right win-
dow in Figure B) and set the alpha component of black
pixels to zero, so that if the objects have holes we can
see through when they are rendered.

Average color boxes are also obtained in a similar fashion.
The average color for each face is just the average of the rgb
colors of all non-black pixels and the average area is the
number of all non-black pixels in the face’s image that is
converted to an area in object coordinates.

The generation of a pseudo—texture map involves a pre-
processing of the original image because if there are too
many pixels on the image the rendering of the texture would
require too many meshed triangles. Therefore, we succes-
sively shrink the original image by convolving it with a Gaus-
sian filter that averages the RGB components of the pixels.

5.2 Cost and Accuracy of Representations
Measurement

The cost of each representation is measured by selecting a
specific representation and drawing it a number of times in
order to get an average rendering time as shown in Figure
0.

The accuracy of an impostor is measured using the proce-
dure described in Section 3.2 and a table that describes how
similar each of the representations is compared to the origi-

nal image of the object for five directions around the object

5What ultimately determines the resolution of the texture map
is the complexity (or granularity of details) that the object(s)
Exhibit(s) from a particular direction.

101

104

’L

4‘?
V

smut-run

Figure 7: Checking the visibility of a set of objects against
the viewing frustum.

is generated. One of the most immediate improvements we
need to make is the use of more directions in this table.

5 .3 Visual Navigation

The walkthrougb program implements the framework de-
scribed in Section 4.1 and the traversal algorithms described
in Section 4.5. The computation of the representation to be
rendered in the next frame is done in one processor while
another one holds the graphics pipeline to render the cur-
rent frame. Semaphores are used to synchronize the two
processes.

The traversal algorithm assumes that visibility of bound-
ing boxes can be determined quickly. This can be done by
first computing the bounding box in eye-coordinates of the
object’s bounding box. We then compute its intersection
with a box formed by extending the slice of the viewing
fi-ustum corresponding to the farthest z-value of this box to
its nearest z-value. This visibility test can return true even

though no object inside the cluster is also inside the viewing
frustum as shown in Figure 7.

This problem is solved by the first phase of the traversal
algorithm since it marks a. cluster as visible if and only if
at least one of the objects that it represents is inside the
viewing frustum. If computing the visibility of individual
objects are taking too much time we can use a faster test
and check if spheres enclosing groups of objects intersect
the viewing frustum.

5.4 Performance

Our test model has around 1.6 million polygons and dur—
ing our tests we have constrained the number and size of
texture maps generated by the hierarchy building program
to the available texture memory of one megatexel (one mil-
lion texture pixels) by selecting appropriate octree cell sizes
and adjusting the resolution of the texture representation
for objects and clusters.

For this model we were able to keep a frame rate of around
16 frames per second (fps) for a target frame rate of 30 fps
throughout the simulation without too much degradation
in image quality. Figure D shows the image seen by the
observer (left) and a top view of the the same scene showing
where clusters are being displayed (right).

Figure 8 shows the user mode (right) and real time (left)
throughout a. simulation path of the model. The user time
graph shows that our estimation of cost and rendering algo-‘
rithm is achieving the goal of keeping a uniform and high
frame rate. The real time graph show spikes due to random
interrupts and a gap with respect to the 1/30 line due to
smooth LOD switching using transparency blending.

105

I III III "I III 0 I“ "I I“ I"

Reel uni} User lint:

Figure 8: Plot frame versus frame time with (left) and with-
out (right) smooth LOD switching.

These interrupts can be minimized by mechanisms such as
processor isolation, interrupts redirection, processor locking
and so on as described in [9].

The same model, without the model hierarchy, takes
around 1 frame per second for certain viewpoints in our test
path.

6 Limitations

One limitation of this system is the number of texture maps
that can be used to represent objects and clusters. As the
system uses more texture maps to represent clusters and
individual objects, the chance of a texture-cache miss in-
creases. A cache miss results in an unpredictable interrupt
that will invariably defeat the purpose of a predictive system.
Future methods of intelligent prefetch of textures that are
likely to be needed could make texture cache misses much
less likely, and thus allow the use of many more textured
impostors.

We have not addressed the illumination of the environ~
ment. Although the illumination of a complex environment
can be computed using the radiosity method in a view in-
dependent fashion the shading attributes of objects (adding
specular highlights) and clusters would need to be incorpo—
rated to their representations. Instancing of objects would
not be practical since two identical objects in different loca—
tions in the model would have difierent shading attributes.
As the size of texture memory increases these problems will
become less serious, but they will not go away.

The most serious limitation in our current implementar
tion is that our tree traversal requires that a cluster know
something about the benefits of its children, so all primitives
are visited once per frame in the first pass of the algorithm,
and therefore it is 0(n), where n is the number of objects.
Our traversal algorithm is top—down, so there is no reason
it could not be O(log n) if a. more intelligent traversal algo-
rithm is used.

7 Conclusion

We have presented a way of using clusters of objects to im-
prove the performance of an LOD-based visual navigation
system. When there are too many visible LODB to render
in real-time, we render single texture-mapped cluster primi-
tives in place of groups of individual LODs. The techniques
used to generate clusters can also be used to generate a par-
ticular type of textured LODs for single primitives. We have

102

105

also discussed some limitations of the object-based benefit
heuristic, and extended it to account for the variability of
an LOD’s quality as the view angle changes.

The main lessons to be drawn from this work are that the

predictive framework of Funkhouser and Sequin extends well
to a hierarchical version of the LOD concept, and that pre-
computed visibility information is not essential for efficient
visual navigation programs.

8 Acknowledgments

Thanks to Ken Chin and Aaron Yonas for their suggestions
on the draft of this paper. Thanks to Ken Chin and Paul
Bourke for the model of a. tree and a. town house, respectiv-
elly, used in the color plates. Thanks to the Brazilian gov-
ernment agency CAPES, for providing the first author the
financial support to conduct this research. Thanks to the Re-
search and University Graduate Schools (RUGS) Research
Facility Fund (RFF) and the NSF CDA-92-23008 grants that
provided the graphics workstations that were used in this re-
search. The second author was also supported by NSF BIA
grant OCR-92439457.

References

[1] John M. Airey, John H. Rohlf, and Jr Frederick
P. Brooks. Towards image realism with interactive up-
date rates in complex virtual building environments.
Computer Graphics, pages 41—50, 1990.

[2] Kurt Akeley. Reality engine graphics. Proceedings
of SIGGRAPH'93 (Anaheim, California, August 1-6,
1993). In Computer Graphics Proceedings, Annual Con-
ference Series, 19.93, ACM SIGGRAPH, pages 109—116.

[3] Thomas A. Funkhouser and Carlo H. Sequin. Adaptive
diSplay algorithm for interactive frame rates during vi—
sualization of complex virtual environmnets. Computer
Graphics, pages 247—254.

[4] Thomas A. Funkhouser, Carlo H. Sequin, and Seth
Teller. Management of large amounts of data in interac—
tive building walkthroughs. Proceedings ofthe 1992 Sym-
posium on Interactive 3D Graphics (Cambridge, Mus-
sachusetts, March 29 - April 1, 1992), special issue of
Computer Graphics, ACM SIGGRAPH, pages 11—20,
1992.

[5] Paulo Maciel. Visual navigation of largely unoccluded
environments using textured clusters. Ph.D. Thesis, Jan-
uary 1995. Indiana University, Bloomington.

[6] John Rohlf and Jamel Holman. Iris performer: A
high performance multiprocessing toolkit for real-time
3D graphics. Proceedings of SIGGRAPH'91 (Orlando,
Florida, July 24-29, 1994). In Computer Graphics Pm—
ceedings, Annual Conference Series, 1994, ACM SIG-
GRAPH, pages 381—394.

[7] Harvey R. Schiflman. Sensation and Perception an Inte-
gmted Approach. John Wiley k: Sons, New York, 1990.

[8] Inc. Silicon Graphics. Graphics Libmr‘y Programming
r Guide, Volumes I and II, 1992.

[9} Inc. Silicon Graphics. React In Iris: A description
of real-time capabilities of In'r 1:53 on Onyx/Challenge
multiprocessor systems, 1994.

106

Guided Navigation of Virtual Environments

Tinsley A. Galyean

MIT Media Lab

Cambridge, MA. 02139
tag@media.mit.edu

ABSTRACT

This paper presents a new method for navigating virtual envi-
ronments called “The River Analogy.” This analogy provides a
new way of thinking about the user's relationship to the virtual
environment; guiding the user’s continuous and direct input within
both space and time allowing a more narrative presentation. The
paper then presents the details of how this analogy was applied to a
VR experience that is now part of the permanent collection at the
Chicago Museum of Science and Industry.
1. INTRODUCTION

Today's Virtual Reality (VR) technology provides us with an
opportunity to have experiences that would otherwise be impossi-
ble. We can smoothly and continuously interact while immersed in
environments that would be inaccessible or impossible to experi-
ence. In these environments, we are free to roam and explore.
architectural walk throughs for example, scientific visualization,
and even games like DOOM place us in alternative worlds while
giving us methods for navigating these virtual spaces. These meth-
ods allow smooth and continuous interaction that can immediately
influence the constantly changing presentation, but they rely on the
user's actions and thoughts to bring structure to the experience. If
any narrative structure (or story) emerges it is a product of our
interactions and goals as we navigate the experience. I call this
emergent narrative. In some applications this complete freedom to
explore is appropriate. However, there is an alternative. This is the
process of empowering the author to bring structure to the experi-
ence, which makes this medium more appropriate for applications
such as teaching, storytelling, advertising and information presen-
tation. To do this, we will need to balance the interaction (explora—
tion) with an ability to guide the user, while at the same time
maintaining a sense of pacing or flow through the experience. This
type of guidance is the proceSs of a providing narrative structure.
Like a narrative presentation any solution must guide the user both
temporally and spatially.
2. PREVIOUS WORK

Virtual environment navigation has mainly consisted of build-
ing new methods and technologies that allow the users to control
the position and orientation of the virtual camera, through which
they see the virtual world. Early work in camera control (even
before the advent of VR technology) focused on specifying camera
mOVements over a path. [1, 4] In an effort to address the needs of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy othenivise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7195/0004...$3.50

103

106

animation production and does not address the issue of interactive
camera control.

A number of different researchers have addressed the issues

behind camera control for manipulation and/or exploration appli—
cations. [2, 5] All of these methods focus on providing better ways
for the user to roam free, exploring within the virtual world. It is
this ability for the user to directly control his/her place in the vir»
tual world that is so often synonymous with the words “virtual
reality.” While these methods couple smooth, continuous interac—
tion with the smooth and continuous presentation available in real-
time computer graphics environments, they do nothing to guide the
user. There is no room for an author’s intentions to influence the
experience. Therefore there is no narrative structure.

Researchers in interactive narrative working with linear mate—
rial like digital video have worked to unfold it in order to provide a
non-linear environment for the user [3]. Shots are interactively
laced together into sequences and these sequences tell a story.
Because shots are the smallest building blocks available, the inter—
action intermittently guides how these shots are laced together.

The traditional analogy of how these types of interactive experi—
ences are structured is often referred to as the branching analogy.
Each branch represents a linear segment traversing part of the nar—
rative space. A linear segment is played until the next node is
reached. It is at these nodes where options are provided. The
advantage of branching is that the experience does have a narrative
structure, the interaction is guided. The disadvantage is that one
can interact only at the nodes thereby chopping up both the inter-
action and the presentation.

The goal set forth is to find a way to marry the advantages of
immersive VR experience with the advantages of narrative struc-
ture. How do we allow the smooth, continuous interaction and pre—
sentation, to coexist-exist with the structural and temporal qualities
of narrative (plot and pacing)? In other words, how do we balance
the notion of interaction with guidance (telling).
3. THE RIVER ANALOGY

Here I propose an alternative analogy for navigating virtual
spaces. Instead of linking a sequence of branches and nodes, or
giving the user free rein, I suggest that the navigation paths be
more like a river flowing through a landscape. The user is a boat
floating down this river with some latitude and control while also
being pushed and pulled by the pre-defined current of the water.
Like the branching structure this approach constrains the audi—
ence's movement through the space to interesting and compelling
paths-But there are some unique advantages to this approach: the
flow of the experience, the continuous input of the rudder, and
multiple levels of structure.

The river analogy assures an uninterrupted flow. When in a boat
you float down the river even when you are not steering. The pre-

107

sentation is continuous regardless of whether or not there is input.
The amount of control you have over the boat varies with the prop-
erties of the river. 1f the rapids increase, you move faster with less
room for swinging from side to side. Alternatively, the pace can
slow and the river can widen giving room to steer from one bank to
the other.

In the river analogy the boat’s rudder can be likened to audience
input. A rudder takes input continuously. The amount of influence
may vary depending on the water conditions but you can always
provide the input. It is also the case that the rudder may have both
an immediate and a long term impact on the navigation. How the
rudders are used can determine both your local position within the
river, but also a more global position, such as which fork in the
river your boat might take.

The river provides two levels of guiding structure. First is the
local structure of the river including the water flow, rocks in the
river, the width between the banks, etc. Second. is the global struc-
ture, including both the path the river flows and the forks that sep—
arate and/or rejoin. The audience input has influence on how both
levels of this representation are navigated. The rudder or input can
steer between the banks while the position of the boat when a fork
is reached will dictate which part of the fork the audience will
travel.

Like a river. a guiding navigation method should guide without
interruption of the presentation. This creates a sense of interaction
by constantly accepting user input and guiding it with a higher
level, longer term structure.
4. APPLlCATION OF THE RIVER ANALOGY

A highlight of the Chicago Museum of Science and Industry's
new exhibit, Imaging the Tools of Science, is the virtual reality
experience. The primary goal of this exhibit was to expose and
educate the visitor to what VR technology is and can do. Any
experience that was going to be successful, was going to be highly
constrained by the issues inherent in bringing an immersive expe-
rience to a public place like the museum. In a museum setting it is
necessary to limit the amount of time a person spends, provide an
interface that keeps people from getting lost and frustrated, while
at the same time making them aware that they have some direct
and immediate control over how they move through the environ—
ment. To meet these demands it was decided that the experience
would be between 2 and 3 minutes long with a clear beginning,
middle, and end. This allowed the user to feel they had a complete
experience while allowing the museum to predict how quickly
they could move people through the exhibit. These constraints
required the user‘s navigation to be guided through the virtual
world, and the river analogy helped us address these issues.

In this application, the analogy of the river was taken quite liter-
ally. We defined a path through the virtual space as the river. The
user was then guided through the space much like a water—skier
behind an invisible boat. The boat or anchor moves along the path
at a rate that varies as specified by the creator of the experience
(the author). The user is then tethered to the anchor by a spring that
constantly pulls them along. Meanwhile the user is free to look in
any direction he or she chooses. Figure 1 shows the model we
used. This model gives the user direct control over where they are
looking while at the same time giving them indirect control over
their local position. Looking in a given direction will impart some
force in that direction and allow the user to swing over in that
direction moving closer to the object they are watching. At the
same time the boat continues to pull them along the journey, main-
taining a sense of pacing and flow.

There are a series of parameters that can change the nature of
this interface: the current and desired speed of the anchor, the
amount of thrust the user is imparting, and the spring and damping
constants. In this implementation, all of these values are free to
change throughout the experience. The changes are encoded at

104

107

path/river

anchorlboat

spring/tether

\torce attaching to anchor

viewer's eye/camera

— at any point on the path the lollowing can be changed
- new desired anchor speed
- a rate to reach new speed
- view thrust amount

- spring constant
- damping constant

lication of the River Analogy. consisting of a
number of di erent parts: the anchor moving along the path, a
spring attaching the user osition to the anchor, a thrust
imparted by the user dictate by the direction the user is look-
ing, and a general viscous damping to prevent the user from
oscillating about the anchor position.

locations along the path, allowing the author to specify over which
areas of the journey the user is more or less free to roam. For
example. as the user approaches a larger open space the author
many choose to slow down the anchor, decrease the spring and
damping constants, and increase the viewer thrust allowing the
user more latitude and time to explore. Alternatively, the author
might focus the experience by increasing the spring constant,
speeding up the anchor. and reducing the thrust.
5. CONCLUSION

It is clear that there are VR application for which the current
methods of navigation are not sufficient. Some of these applica-
tions suggest the need for a method to guide the user as s/he navi-
gates the virtual landscape. The River Analogy provides a way of
thinking about how the author's intentions can steer the interaction
given by the user to create a guided navigation. This paper has pre~
senled this analogy and one particular application of this analogy
to an existing public VR exhibit. This work only begins to touch
on the potential of guided interaction for virtual environments.
ACKNOWLEDGEMENTS

The Art Technology Group including: Martin Friedmann,
Stephen Clark, Andy Schwarz, Keith Baccki, Andy Hong, David
Rose, Joe Chung, Jeet Singh. Martin in particular for outstanding
work on implementation. Glorianna Davenport (Media Lab) for
her help and support. Steven Drucker for the many inspiring con-versations.

REFERENCES

1. Banels, R., J. Beatty, and B, Barsky, An Introduction to
Splines for Use in Computer Graphics and Geometric Modeling.
Morgen Kaufmann, Los Angeles, 1987.
2. Brooks, F. P. Grasping Reality Through Illusion -- Interactive
Graphics Serving Science. CHI ’88 Proceedings, Special Issue of
SICHI Bulletin.l988, l-11.
3. Davenport, 6., T. AguierreASmith, and N. Pincever, Cine-
matic Primitives for Multimedia, Computer Graphics & Applica—
tions, (July 1991), 67-73.
4. Shoemake. K. Animating Rotation with Quatemion Curves.
Proceeding of SIGGRAPH '85. (San Francisco, California, July
22126, 1985). In Computer Graphics 19, 3 (July 1985), 245—254
S. Ware, C. and S. Osborne. “Exploration and Virtual Camera
Control in Virtual Three Dimensional Environments,” Proceedings
of the 1990 Symposium on Interactive 3D Graphics (Snowbird,
Utah, March 25-28, 1990),special issue of Computer Graphics,
ACM SlGGRAPH, New York, 1990, 175-184

Figure 1: An ap

108

Portals and Mirrors:

Simple, Fast Evaluation of Potentially Visible Sets

David Luebke and Chris Georges

Department of Computer Science

University of North Carolina at Chapel Hill

Abstract

We describe an approach for determining potentially visible
sets in dynamic architectural models. Our scheme divides the
models into cells and portals, computing a conservative estimate
of which cells are visible at render time. The technique is simple
to implement and can be easily integrated into existing systems,
providing increased interactive performance on large architec-
tural models.

Introduction

Architectural models typically exhibit high depth complex-
ity paired with heavy occlusion. The ratio of objects actually
visible to the viewer (not occluded by walls) to objects theoreti-
cally visible to the viewer (intersecting the view frustum) will
usually be small in a walkthrough situation. A visibility algorithm
aimed at reducing the. number of primitives rendered can exploit
this property. Following prior work {1,2,3}, we make use of a sub-
division that divides such models along the occluding primitives
into “cells" and “portals”. A cell is a polyhedral volume of space;
a portal is a transparent 2D region upon a cell boundary that con-
nects adjacent cells. Cells can only “see" other cells through the
portals. In an architectural model, the cell boundaries should fol-
low the walls and partitions, so that cells roughly correspond to
the rooms of the building. The portals likewise correspond to the
doors and windows through which neighboring rooms can view
each other.

Given such a spatial partitioning of the model, we can deter-
mine each frame what cells may be visible to the viewer. By
traversing only the cells in this potentially visible set (PVS), we
can avoid submitting occluded portions of the model to the graph-
ics pipeline. What cells comprise the PVS? Certainly the cell
containing the viewpoint is potentially visible. Those neighboring
cells which share a portal with the initial cell must also be
counted as potentially visible, since the viewer could see those
cells through the portal. To this we add those cells visible through
the portals of these neighbors, and so on. In this manner the prob-
lem of determining what cells are potentially visible to the viewer
reduces to the problem of determining what portals are visible
through the portals of the viewer‘s cell.

lucbke®cs.unc.edu (919) 962-1825
georges®cs.unc.edu (919) 962-1789
CB# 3175 Sirterson Hall; UNC. Chapel Hill, NC 27599-3175

Permission to copy without fee all or part of this material isgranted provided 1 at the copies are not made or distributed for
direct commercial advantage, the ACM copynght notice and the
title of the publication and its date appear,‘ and notice is given
that copying is by permission of the Assoctatlon of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. .
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0~89791-736—7/95/0004...$3.50

105

108

Our system makes this determination dynamically at render
time. Rather than finding the exact PVS for each cell as a prepro-
cess. we postpone the visibility computation as long as possible.
This type of dynamic evaluation of portal—portal visibility is not
new. Earlier efforts have centered on precisely determining sight-
lines through portals; our method offers a less exact but much
simpler alternative. The algorithm has been implemented on the
Pixel—Planes 5 graphics computer at the University of North Caro-
lina and provides a substantial speedup on a sample model of
50,000 polygons.
Previous Work

Jones [1] explored the subdivision of geometry into cells and
portals as a technique for hidden line removal. In his algorithm,
models are manually subdivided into convex polyhedral cells and
convex polygonal portals. The subdivision is complete in the
sense that every polygon in the dataset is embedded in the face of
one or more cells. Rendering begins by drawing the walls and por-
tals of the cell containing the viewer. As each portal is drawn, the
cell on the opposite side of the portal is recursively rendered. In
this way the cell adjacency graph defined by the partitioning is
traversed in depth-first fashion. The portal sequence through
which the current cell is being rendered comprises a convex
"mask“ to which the contents of the cell are clipped. If the inter-
section of a ponal with the current mask is empty, the portal is
invisible and the attached cell need not be traversed.

More recent work has abandoned the attempt to compute
exact visibility information, focusing instead on computing a con-
servative PVS of objects that may be visible from the viewer's
cell, The graphics pipeline then uses standard Z-buffer techniques
to resolve exact visibility. Airey [2] was the first to use a portal-
based approach effective in architectural environments. He
described multiple ways to approach the problem of determining
cell-to-cell visibility. including ray-casting and shadow volumes.
Teller [3] has taken the concept further and found a closed-form.
analytic solution to the portal-portal visibility problem. Using 2D
linear programming to test portal sequences against arbitrary visi-
bility beams, Teller computes a complete set of cell-to-cell and
cell—to—object visibilities in a preprocess. At render time this PVS
is further restricted according to which portals are actually visi-
ble. Teller’s approach is mathematically and computationally
complex, requiring hours of preprocess time for large models [3].
Motivation

Such a large preprocessing cost may be inappropriate for
interactive applications. For example, architectural walkthroughs
are often used for revision purposes. A visualization of a building
under design is more valuable to an architect if inquiries of the
type “What if 1 move this wall out ten feet?” can be answered
immediately. Adding portals, moving portals, and redistributing

109

cells boundaries will all be common operations in an interactive
architectural design application. To take full advantage of the
static visibility schemes mentioned above, each of these would
require a potentially lengthy PVS recalculation best done off-line.

Envisioning such an application as our final goal, we
decided to focus on improving the dynamic visibility determina-
tion. Jones’ algorithm finds the exact intersection of 2D convex
regions, requiring 00: lg n) time for portal sequences with n
edges. Teller’s linear programming approach computes only the
existence of an intersection, and runs in time linear in the number
of edges. We sought a dynamic solution that would also run in lin-
ear time and would integrate easily into existing systems.

Faster Dynamic PVS Evaluation

We use a variation of Jones’ approach that employs bound-
ing boxes instead of general convex regions. Our scheme first
projects the vertices of each portal into screen—space and takes the
axial 2D bounding box of the resulting points. This 2D box,
called the cull box, represents a conservative bound for the portal;
that is, objects whose screenspace projection falls entirely outside
the cull box are guaranteed not to be visible through the portal
and may be safely culled away. As each successive portal is tra-
versed, its box is intersected with the aggregate cull box using
only a few comparisons.

During traversal the contents of each cell are tested for visi-
bility through the current portal sequence by comparing the
screenspace projection of each object’s bounding box against the
intersected cull box of all portals in the sequence. If the projected
bounding box intersects the aggregate cull box, the object is
potentially visible through the portals and must be rendered.
Since a single object may be visible through multiple portal
sequences, we tag each object as we render it. This object-level
culling lets us avoid rendering objects more than once per frame.

Alternatively, we can render each object once for every por-
tal sequence which admits a view of the object. but clip the actual
primitives to the aggregate cull box of each sequence. Under this
primitive-[eve] clipping scheme objects may be visited more than
once, but since the portal boundaries do not overlap, no portion of
any primitive will be rendered twice. Typically object-level cull-
ing will prove more efficient, but for objects whose per-primitive
rendering cost far exceeds their clipping cost, primitive-level clip-
ping provides a viable option.

Implementation

We have implemented this approach on Pixel-Planes 5, the
custom graphics multicomputer developed at the University of
North Carolina. The traversal mechanism treats portals as primi-
tives to be rendered. Each portal consists of a polygonal boundary
and a pointer to the adjacent cell; when a portal is encountered
during traversal we test its axial screenspace bounding box
against the current aggregate cull box. If the intersection is non-
empty, we use it as the new aggregate cull box and recursively
traverse the connected cell.

We feel that modeler integration is crucial to this problem of
interactive model revision. If an architect wishes to move a wall

or broaden a doorway, the modeling system should be able to
make the change quickly and broadcast that change to the graph‘
ics system. In our system the spatial partitioning of the model
into cells and portals is directly embedded in the modeler’s repre-
sentation. Portals are treated as augmented polygons, each tagged
with the name of the attached cell. Cells are simply logical group—
ings in the modeler's hierarchy and need not necessarily be
convex. We have found this quite convenient when constructing
models; each room typically corresponds to a cell and it takes
only seconds to add and move a portal, or to reshape a cell. We
have already adapted two commercial modelers to our system,
which speaks to the simplicity of the integration process.

109

106

Results

We have tested our system on a subset of the UNC Walk-
through project’s model of Professor Fred Brooks’ house,
comprised of 367,000 radiositized triangles. The speedup
obtained by this visibility algorithm, like the speedup obtained by
similar schemes, is extremely view-and model-dependent. Over a
SOD-frame test path through the model, the frame rate using PVS
evaluation ranged from just over 1 to almost 10 times the frame
rate of the entire unculled model. For typical views the dynamic
PVS evaluation culled away 20% to 50% of the model. It should
be emphasized again that these numbers are specific to the model
and view path, but they certainly indicate the promise of the algo-
rithm as a simple. effective acceleration technique.

Ongoing and Future Work

Efficiency could be further increased by applying obscura-
tion culling to portals [4]. This scheme tests potentially visible
items against an “almost complete” Z—buffer before rendering.
This would allow the ‘detail' objects in each cell as well as the
occluding cell walls to block portals, potentially reducing the
PVS. The Pixel-Planes architecture makes obscuration culling of
portals feasible, and we are currently exploring this possibility.

Teller mentions that the concept of portals may be extended
to mirrors [3]. Under this scheme mirrors are treated as portals
which transform the attached cell about the plane of the mirror;
this has the advantage of automatically restricting the PVS seen
through the mirror. Though conceptually simple, mirrors intro-
duce many practical difficulties which require additional clipping
by the rendering engine to resolve. For example, geometry behind
the mirror must not appear in its reflected “world,” and reflected
geometry must not appear in front or to the side of the mirror.

A special case that avoids these problems can be constructed
by embedding the mirror in an Opaque cell boundary (for exam-
ple, a wall—mounted mirror in a bathroom), and we have
implemented such mirrors (Plate 1). The concept of an immov-
able rnirror fits poorly with our goal of interactive, dynamic
environments, however, so we have focused on the more general
case. Clipping is complicated further by mirrors that overlap in
screenspace, and further still by mirrors which recursively reflect
other mirrors. At present our system allows static mirrors, which
can reflect each other to arbitrary levels of recursion. or more gen-
eral “hand-held” mirrors, (an example of free-moving portals).
which permit one—bounce reflections. We are currently working
on the dynamic, fully recursive case.

Acknowledgments
The authors would like to extend their sincere thanks to

Mike Goslin, Hans Weber, Power P. Ponamgi, Peggy Wetzel,
and Stump Brady. This work was supported by ARPA Contract
DABT63-93-C—CO48.

References

[1] Jones, CB. A New Approach to the ‘Hidden Line' Problem.
The Computer Journal, vol. 14 no, 3 (August 1971), 232..

[2] Airey, John. Increasing Update Rates in the Building Walk-
through System with Automatic Model-Space Subdivision
and Potentially Visible Set Calculations. PhD. thesis, UNC-
CH CS Department TR #90-027 (July 1990).

[3] Teller, Seth. Visibility Computation in Densely Occluded
Polyhedral Environments. PhD. thesis, UC Berkeley CS
Department, TR #92f708 (1992).

[4] Greene, Ned, Kass, Michael, and Miller, Gavin, Hierarchiv
cal Z-Buffer Visibility. Proceedings of SIGGRAPH ‘93
(Anaheim. California 1993). In Computer Graphics Pro-
ceedings. Annual Conference Series, 1993, ACM SIG-
GRAPH, New York 1993, pp. 59-66.

110

Interactive

Large Synthetic

Playing with
Environments

Bruce F. Naylor
AT&T Bell Laboratories

Murray Hill, NJ 07974

introduction

Until recently, opportunities to experience large synthetic
environments have been limited primarily to expensive
training simulators. However, with the advent of "location
based entertainment" at theme parks and even CD-ROM
based games for PCs, these kinds of experiences are
beginning to be made available to the general public as
well. The constraints on the possibilities for appealing
”content” arises from the technological capabilities that are
possible for a given performance level on a given platform.
Currently, for 3D graphics, performance is closely tied to
the number of texture mapped polygons that can be
rendered for each frame as well as the rate at which
collisions of various kinds can be computed.

Large synthetic environments require at least tens of
thousands of polygons, and could easily entail millions.
However, for each image. only a small subset of these
polygons are typically required to synthesize the image.
Similarly, collisions between two objects, or between a
viewer and the environment, involve an even smaller
subset. The task then for efficient geometric computations
is to, if possible. quickly identify the relevant subset. The
principal methodology for finding the minimal subset of
polygons is to use spatial search structures, such as regular
grids, octrees, or binary space partitioning trees. in this
paper, we describe briefly the current status of our efforts
at using binary space partitioning trees for navigating
through and playing with large environments. including
rendering and collision detection, as well as permitting
interactive modifications of the environment using set
operations that should prove appealing for entertainment
applications.

Partitioning Trees (or BSP Trees) I'Fuchs, chcm, and
Nayior SO] differ from regular grids in that they are
hierarchical (maid-resolution). and from octrees in that the
method of space partitioning requires not only determining
when to partition, but where, as well. The absence of a
restriction on the planes used in partitioning trees obviates
the need for a distinction between the spatial search
structure and the representation of polyhedra by using the
planes containing faces to partition space. A single tree,
representing some rigid object for example, can be
transformed with affine and perspective transformations
by only transforming the plane equations; thereby not
changing the tree structure. The tree provides a visibility
order for rendering objects with any mix of transparent
and opaque surfaces, and the near~to-far ordering that can
be used for pruning away fully occluded subtrees. in
addition, it can be used for efficient solid clipping with a
view-volume, for computing shadows andlor global
illumination, for intersecting rays with an object, and for
determining the location of points (representing, for
example, sprites in computer games) in an environment.
Spatial relations between two ohjecrs can be computed
efficiently by merging their respective trees into a single
tree [Naylor, Amanatides and Thibault 90], This provides,

on the modeling side, set operations and
collision/interference detection. For rendering, tree
merging determines intenobject visibility, analogous to
merging sorted lists in Merge Sort, which provides the
proper ordering required for transparent objects whose
convex hulls interpenetrate. It can also be used to discover
that a moving object has become totally occluded by
another object and so need not be drawn. In addition, tree
merging can he used to cast shadows from one object ontoanother,

Visibility Culling of Large Environments

The most important computation for efficiently navigating
through large environments is conceptually a rather simple
and familiar one: clipping to the view-volume. However,
approaching this using solely the traditional graphics
pipeline for polygon clipping in an 0(n) process. While any
spatial search structure can be used to accelerate this
computation, our use of partitioning trees has several
consequences. The first is that partitioning trees provide a
representation of space as a hierarchy of convex bounding
volumes that is highly adaptive to the contents of the
space. Thus, unlike a regular grid. the subdivision can be
very fine in areas of high level of detail without
compromising the representation of large open areas by a
few large cells. Our method of building trees [Naylor 93],
based on minimizing the expected cost of search operations,
produces such trees, since large open regions are treated as
being highly probable and will have short paths. This is
completely analogous to Huffman codes, in which the
number of bits assigned a code, i.e. the path length in the
Huffman code binary tree. is inversely related to the
probability of that code being used. Here. largcness is
treated as being positively correlated to the probability of
intersecting a region.

Given a tree representation of the environment.
constructed off-line, together with a particular view, we
find the subset of the environment within the view-volume

by first constructing a Partitioning Tree representation of
the view-volume [Naylor 92a]. Since we are using a tree for
this, the view-volume can have any polyhedral geometry,
and so need not be limited to a truncated pyramid. We also
provide solid clipping; that is, the intersection of the view
volume with the solid environment will be displayed by
polygons having the attributes of the material with which
the view-volume is intersecting. We use the general tree
merging machinery for viewwolume clippingfculling.
However, we do not produce a new tree corresponding to
intersection of the environment with the view-volume.
Rather we combine the view-volume intersection with the
visibility priority traversal so that the polygons are
transmit:ed to the polygon drawing stage as the
intersection operation proceeds, thus obviating the need for
creating an intermediate clipped tree.

Another very effective but very simple method of
reducing the computational requirements is to combine
simulation of fog with placement of the far clipping plane.

107

110

111

By setting the fog parameters so that total fog color occurs
at (or slightly before) the far»plane, the presence of the
far-plane is effectively obscured. We use this as a simple
mechanism for maintaining a target frame rate of, for
example. 10 frames per second. Whenever the frame rate is
too slow we bring the far-plane closer to the viewer at a
rate determined by the frame rate deficiency. So if one
turns the corner from a simple to a complex view, the fog
rolls in over the next dozen or so frames until the frame
rate is restored. Similarly, we move the far-plane away
when the frame rate will allow this. Both of these
moVements are constrained by thin and max values,

Collision Detection in Large Environments

1n the design of entertainment applications, it is often
required to know whenever some moving object collides
with the environment or with some other object. Such
collisions can be detected by merging the partitioning tree
representing an object with a "model-tree", whose initial
value is (a copy of) the environment-tree. Since each tree
can be interpreted as a hierarchy of convex bounding
volumes, merging two trees is simply merging together two
hierarchies of bounding volumes in a top-down (largest-to-
smallest) and recursive manner. Whenever the region
containing a subtree of one tree is found to not intersect a
region containing a subtree from the other tree, no
comparisons between the contents of those two subtrees
need be made, Empirically, this seems to happen around
50—75% of the time. This is, of course, the mechanism that

reduces the computation to be generally less than 0(n2). In
fact, when the objects are sufficiently separated so that the
first bounded/finite regions in each tree do not intersect,
then the computation can be done in 0(1), and is analogous
to testing two bounding volumes for intersection.

Since the tree has cells labeled as being in~cells or out
cells, collisions occur whenever one of the operands in the
recursive process reaches an in-cell while the second
operand is either an in-cell or a subtree containing in-cells.
For each in-cell, we maintain an identifier field (an integer)
which can be used to identify the entity with which the
collision is occurring. We also maintain identifier fields at
each internal node which is set to the identifier at the in»
cells of its subtree whenever they are all the same;
otherwise it is null. This permits extracting the identifier
without descending the entire subtree, which it essential
for obtaining sub-linear performance. Each pair of
identifiers is added to a collision report list, which is
maintained in sorted order to avoid adding duplicates,

Visual Eitecls

A number of special effects appropriate for entertainment
applications can be achieve efficiently using tree merging
as the basic Operation. One class uses traditional set
operations. We have used subtraction to blast holes in walls
and buildings as a result of firing a gun, as well as to
simulate tunneling with a drill. One important aesthetic
consequence of this is not only the simulation of these
effects, but also the complex and unexpected geometry that
is created. Such user generated variety reduces the burden
on a game designer to always meet the desire for new
experiences; here the user gets to participate is creating
his/her own variety. In principal, the other set operations,
union, intersection and symmetric difference, could be
employed to modify the environment in interesting ways.

Another approach we have developed is to combine
transparency with tree merging to create two new effects
that only temporarily modify the environment (usually for
only one frame). One of these creates the effect of a force

111

field slicing though the environment. This uses a temporary
union between a very transparent object, such as an
elongated cylinder, and the environment in which the
object takes precedence over the environment. The part of
the environment inside the transparent object is
temporarily removed, while the faces corresponding to the
intersection between the object’s surface and the
environment takes on the attributes of the environment.
This gives the appearance of a force field moving through
walls, for example. The second technique provides an x-
ray effect. It differs from the force-field effect only in one
aspect: rather than remove the portion of the environment
that is inside the transparent object, these faces are also
made transparent. Thus, one can look though walls while
retaining the sense that the wall is still there (see color
plate).

A more traditional visual effect is the use of shadows.
Our current method constructs shadows for each object
independently. This is achieve by creating shadows
volumes for each face in priority order and adding these
volumes to the object-tree {Naylor 92b]. This transforms
what were formerly out—cells into partitioned regions that
are homogeneous with respect to visibility of lights,
visibility being an additional property of a region.
Currently, each light is assigned one bit to indicate visibility
of that light. When trees are merged. shadows are cast onto
other objects by classifying the faces of one with respect to
the other tree. This only requires extending the normal tree
merging process to maintain the visibility property. So for
example, whenever the recursive process reaches a cell, the
visibility of a cell is transmitted to the other operand by
performing an "and“ operation between the cell‘s visibility
field and those of the other operand,

References

[Fuchs, Kedem, and Naylor 80]
H. Fuchs. Z. Kedem, and B, Naylor, "On Visible Surface
Generation by a Priori Tree Structures," Computer
Graphics Vol. 14(3), pp. 124~l33, (June 1980).

[Naylor, Amanatides and Thibault 90]
Bruce F. Naylor, John Amanatides and William C.
Thibault, "Merging BSP Trees Yields Folyhedra! Set
Operations", Computer Graphics Vol. 24(4), pp.
115424, (August 1990).

[Naylor 923]
Bruce F. Naylor, "Interactive Solid Modeling Via
Partitioning Trees", Proceeding of Graphics interface,
pp. 11-18. (May 1992).

[Naylor 92b]
Bruce F. Nayl'or, “Partitioning Tree Image
Representation and Generation from 3D Geometric
Models“, Proceeding of Graphics Interface (May
1992).

[Naylor 93]
Bruce F. Naylor, "Constructing Good Partitioning
Trees", Graphics interface '93, Toronto CA, pp. 181-
191, (May 1993),

108

112

Of Mice and Monkeys:

A Specialized Input Device for Virtual Body Animation

Chris Esposito
Virtual Systems Group

Boeing Computer Services

W. Bradford Paley

JueyChong Ong

Digital Image Design, Inc.

Abstract

This paper discusses the motivation, design,
iniplementation, and some sample applications of a new
input device, called the Monkey”. that can be used for real—
time control of digital human models.

1. Introduction
Software models of realistic human figures are useful

in a wide variety of areas, from TV commercial animation to
human factors analyses of reachability and maintenance
procedures in aircraft design. A common requirement across
all of these areas is the quick and easy manipulation of the
figure into desired postures for keyframes or through motion
sequences for interaction with the surrounding environment.
This paper describes a new input device, called the Monkey.
that has been designed to make these manipulations faster and
easier than they have been, discusses several of the issues
surrounding it‘s rationale, design, and prototype
implementation, and briefly describes some of the
applications of this device that are in progress,

1.] Motivation

Realistic human figures are complex structures that
have many joints, with each joint having 1 or more
rotational degrees of freedom. Each of these degrees of
freedom has an associated constraint or limit that determines
how far the associated joint can flex around the specified axis.
To further complicate matters, some of these constraints
interact (in a nonlinear way) with other conshaints. For_—__....———————-————=

Chris Esposito (chrise@atc.boeing.com)
Boeing Computer Services
PO Box 24346, MS 7L-48
Seattle, WA 98124

W. Bradford Paley (brad@didi.com)
JueyChong Ong (ong@didi.com)
Digital Image Design, Inc.
170 Clarernont Ave, Suite 6

New York, NY 10027

Munltey is a trademark of Digital image Design, Inc.

Permission to copy without fee all or part of this material is
granled provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium an interactive SD Graphics, Monterey CA USA
© 1995 ACM 0-89791—736-7/95/0004...$3.50

112

109

example, a rotation at the hip that brings the knee up and
closer to the chest will change the allowable joint rotation
limits at the knee so that the knee is forced to flex as the
thigh is raised.

Several kinds of devices haVe been used to interactively
control the posture of a human model. One of these is the
ubiquitous mouse, which has been used in the Jack system
from the University of Pennsylvania [1], and the Safework
system from Genicom Consultants [2], to name two of several
available systems. In these systems, some portion of the
body is selected with the mouse and then interactively
dragged around the screen following the mouse, as far as the
relevant joint limits will allow. In the Safework system, for
example, there are seven "handles" that are the entry points
to the inverse kinematics system. Once one of these handles
is selected, all translation of the handle and the associated
joints and segments is done in the plane of the screen,
regardless of the orientation of the figure. Similar techniques
are used in computer animation software (e.g., Wavefront’s
Kinemation).

The benefits of being able to manipulate human models in
virtual environmean are sufficiently great that these systems
are a success, despite some of their difficulties. The core
problem is that the desired manipulations are inherently 3D
with many continuous—valued degrees of freedom, but the
manipulator used is a 2D device with 2 continuous—valued
degrees of freedom (x,y position) and 1 discretearalued degree
of freedom (button state). Jacob & Sibert [3] describe this as a
mismatch between the perceptual structures of the
manipulator and percepmal structure of the manipulation task.
They have demonstrated that for tasks that require
manipulating several integrally related quantities (e.g., a 3D
position) a device that naturally generates the same number of
integrally related values as the task requires (such as a
Polhemus) is provably better than a ZD positioning device
(such as a mouse).

The task of interactively manipulating a human figure is more
complicated than the positioning task described in [3] in two
ways. First, there is a much larger number of degrees of
freedom to choose from, and it is often desirable to
manipulate several of them simultaneously. Second, the
"posture space", or set of possible postures, is continuous
and Euclidean in most places, but has pockets of unreachable
areas that represent postures that a human cannot normallydo.

1.2 Related Work

, There are numerous examples of so-called "waldo"
dévices (the term comes from a Robert Heinlein story [4]),
which are used to control a device it mimics. The Exos
Dextrous Hand Master is an exoskeleton worn over the hand
and wrist, designed initially for the teleoperation of
robots.[5] Jim Henson's muppets are waldo-controlled, and
include a computer ~ generated character named Waldo C.

113

Graphicld] Dave Sturrnan has also created a ”fingerrwalkiug"
puppet controlled with a DataGlove.[7]

Another approach to whole-body control, more sophisticated
than the mouse, uses a real person instrumented with position
trackers and a motion capture system that records the person's
movements in real time. Because these systems usually have
sampling rates of more than 30Hz, real-time animation is
possible. The Polhernus Fastrak and the Ascension Flock of
Birds are two commercially available position tracking
systems that have been used for this purpose. This approach
neatly solves the problems mentioned above, and a well—done
implementation can capture very complex and subtle real—
time movements that would be difficult to capture any other
way.

However, current implementations of this approach also have
problems of their own. The first problem is cost, since a fully
instrumented body can easily use 10-12 sensors and such a
system can easily cost $30,000. The second problem, as
several animators have found, is that it makes a difference
where on the body the sensors are placed, and the optimal set
of positions is not obvious. The third problem is that each
sensor is attached to a central unit by a long cable, and that
dragging around as many as a dozen cables is sufficiently
encumbering that this system really requires two people to
operate, with one to run the motion capture system and one
dedicated to performing the motion. The fourth problem is
that the electromagnetic fields used by these systems are
distorted by the presence of metal in the surrounding
environment, which degrades the accuracy of the reportedmeasurements.

In other systems, the magnetic sensors are replaced with
reflectors, light sources and high speed cameras which capture
the reflections as points of light that can be tracked. An
overview of how these systems are used can be found in {6].

To animate facial features, Williams used a video camera to
track reflective material attached to an actor's face.[8] These
reflective spots are then mapped to points on a facial model.
Commercial systems using this technique are now available.
In another technique, the VActor uses sensors in contact with
the skin of an actor to achieve similar results (effectively a
facial waldo). [6]

The above systems were designed for the real—time recording
of animation. Their emphasis is on collecting a continuous
stream of data. The higher the update rate, the more realistic
the animation is likely to be.

For non-real-time input of an animation sequence, traditional
animators have applied a technique of using miniature models
or armatures that are positioned with varying degrees of
automation for capturing successive frames of an animation
sequence. This is known as stop-motion animation. For
example Tim Burton’s "The Nightmare Before Christmas"[9]
was animated allIlOSl. entirely with this technique, each of the
characters painstakingly positioned by hand for each frame of
the movie, For Jurassic Park[10], Industrial Light and Magic
collaborated with Phil Tippett to create miniature dinosaur
armatures fitted with encoders at key joints. This allowed the
model to be used by stop-motion animators, but with the
keyframe data input into the computer animation systemlll]
It is important to note that the earliest stages of the work
described here were done in early 1992, predating disclosure
of the completely independent work done for Jurassic Park.

2. A New Input Device - the Monkey
The prototype Monkey stands about 18" tall and is

about 6" wide. The figure can be either freestanding or
attached to another sensor at the end of a scaffold on a support
stand. This allows the figure to be rotated in space with
respect to the stand and then left in that position without

110

113

additional support. From head to toes, there are 32 total
degrees of freedom (1 per sensor) in the prototype Monkey.
In addition, there are three degrees of freedom for orientation
with respect to the base. The production Monkey has 35
sensors, plus 3 additional for the attachment to the stand. The
Monkey body itself is preportional to a 50th percentile
North American male body, with deviations only where
necessary to position the sensors. Additional sources of the
anthropometric data used in constructing the prototypes were
[12] and [13].

Since the number of degrees of freedom in the human body is
greater than the number given above, obviously not all of the
body joints are instrumented. For example, a single site
above the pelvis in the Monkey represents the entire spine
with only three degrees of freedom.. All of the major limb
joints are instrumented, although the number of sensors for a
joint varies depending on how that joint moves. Each sensor
has an associated rotation limiter, set beyond the normal
range of human motion, that prevents damage to its
associated sensor. The sensors are loose enough to allow
smooth motion without excessive effort, but with enough
friction so that the figure can be put into a posture and stay in
that posture without further support.
The rotation sensors themselves use low—noise conductive

plastic potentiometers which are low cost and provide a
rotational accuracy of 3 degrees and a resolution of 0.3
degrees, which is more than sufficient for almost all of the
expected uses. If more accuracy is desired, then more
expensive military-grade potentiometers can be incorporated
without too much effort. The use of potentiometers makes
this system immune to the magnetic, acoustic and infrared
interference that degrades the performance of most other
trackers. The maximum lag per sensor is 2 milliseconds. For a
given Monkey, there is a fixed relationship between the
physical position/orientation of a sensor and the value it
returns, which means that postures are precisely repeatable.

The Monkey also has eight binary inputs. These can be wired
to foot switches or other binary devices and may help to
increase productivity or user comfort in two ways: 1) a user
does not have to go back and forth between the Monkey and a
mouse or keyboard; 2) users uncomfortable with computers or
the software user interface do not even have to deal with this

issue. Several traditional stop motion animators we talked to
informally were adamant about not wanting to deal with a
computer.

2.] From Prototype to Production

Informal testing and evaluation of the prototypes at
Boeing, Digital Image Design (DID), and by thousands of
attendees and passers—by at SIGGRAPH led to a number of
changes from the prototype to the production models. Some
of the most important ones are described below. Figure l is a
picture of the production Monkey.

We found that even though there were plenty of places that a
user could comfortably and effectively grasp the Monkey to
move it (eg. the brass links in arms and legs, the
potentiometers, etc), these places were not obvious to the
first-time user. We enlarged the Monkey to be 113 human
scale, and this allowed longer links between joints. We
machined larger diameter link pieces for both arms and legs
(eight in all) and put hollowed out sections at the center of
each one. These sections read immediately as finger-holds,
and new users need no explanation to make use of them. As
anecdotal evidence of their effectiveness, no further

*complaints about it being untouchable have been heard.

We found that the Z-axis clavicle joint was important to allow
full vertical reach, as it works with the shoulder when
someone does something like pat one’s head, It was also
important to animators, because a shrug, a very expressive

114

114

115

gesture, is almost exclusively a Z-axis clavicle rotation. This
joint was added to the production Monkey.

We added a metatarsal X-axis joint to allow the Monkey to be
mounted by the feet to a stand or perforated metal platform.
(The metatarsal joint, and all of the joints in the leg have
been made strong enough to support the weight of the whole
Monkey, even standing on one toe.) This kind of mounting
enables several Monkeys to be used together in a scene
requiring the interaction of several figures. It also enables
animators to more fully express a walk cycle, as people shift
their weight from heel to toe. It also helps experienced stup—
motion animators to more accurately judge and express
weight and balance, things recognized as a result of a gestalt
effect of combining figure and floor.

Adding a stylized, but realistic and asymmetrical, profile to
the feet and hands helped in two ways. It allowed us to avoid
putting mechanical limits on the swivel joints because users
can immediately tell which direction to rotate a limb back
towards its rest position. In the prototype, the symmetrical
feet and hands left confusion. especially as to which side of
the arm was the front. This slight additional
anthropomorphic nuance also gives the Monkey a much more
human aspect, subtly enhancing the ability of the user to
look at the input device itself to sense whether the current
posture is balanced, comfortable, expressive, or realistic.

The two central pieces, the torso and pelvis links, were
awkward to move in the prototype. We added a breastplate
that acts a handle to grasp the torso. Even more important to
recreating postures involved in walking, lifting, and dancing
is fluid movement of the pelvis. A permanent handle here
would inhibit leg movement and interfere with the mounting
post. Instead we put two holes in the front of the pelvic link
as a docking site for a removable tool that provides enough
leverage to move the pelvis with case.

We did put mechanical limits on the hinge joints to prevent
over-rotation that could damage the potentiometers.
Mechanical stops were more important to implement on
hinges because in typical use there is much more leverage
available than there is for swivels.

While even the prototypes had fully variable tension on the
joints, production Monkeys are more carefully balanced with
regard to joint tension. The user may change the tension, but
it is a laborious and non—trivial task that has a large impact
on usability.

Detachable and individually replaceable wires with strain»
reliefs were added to lessen the frequency and impact of the
inevitable pulled cable. Now, a cable will generally just
unplug if too much tension is put on it; it can easily be
plugged back onto the potentiometer. Even if it breaks it can
be replaced immediately. with Monkey controller and
software running.

A move light was added to the Monkey controller box. This
light blinks on and off with a frequency directly proportional
to the speed at which a joint is moving. It gives immediate
feedback to the user that this specific rotation is being
interpreted by the controller. This is very useful to test the
Monkey and controller without having to connect it to a
computer. It is also a reassuring sign that all is functioning
well even if a screen update takes several seconds (as it may if
the Monkey is driving complex rendering or compute-
intensive constraint systems).

2.2 The Computer-Monkey Interface
The Monkey is connected to a controller containing

analog-to-digital converters and R3232 serial
communications hardware. The controller implements a
simple communications protocol for sending and receiving

112

115

requests and data between the computer and the controller.
The controller can be set to filter out data from joints that are
not of interest for a particular use. LED indicator lights on the
front panel of the controller indicate power on/off and data
sending/receiving.

Protocol Description

The protocol currently supports 12 commands, with
each command specified as a 2-byte, unterminated string.
One of the commands, ‘Set Active Channel Bitmask'. also
takes 5 bytes (40 bits) of unsigned data for specifying what
channels should report data back. The most significant bit of
the lst byte is channel 0. The complete protocol description
document is available on request from Digital Image Design.

The following commands are available:

I Reset the controller

I Stream mode: Switch to Stream mode and send

posture data continuously
0 Stream with Timestamp
I Demand mode: Switch to demand (polling) mode
- Demand: Request a single posture data record

I Demand with Timestamp
I Read the binary input channels

0 Set the data channels reporting bitmask — takes 40
bits of data, llchannel

0 Set the Band rate: selected speeds are 9600, 19200,
38400, 5760, and 115200

0 Obtain the data channels reporting bitmask
0 Halt stream mode (implying a switch to demand

mode)
- Obtain the hardware and firmware version

information

Controller Data Format

Posture data is returned in a variable length tagged
record. The first byte indicates the number of data channels
reported in the record. This is followed by three bytes for each
channel reported: the first of the three bytes contains the data
channel number (1-40), and the other two contain the value of
the channel. Channel values range from 0 through 1023,
although the resolution is reduced in at the extremes (approx.
0100 and 923—1023). Finally, the last four bytes contain the
timestamp if requested.

All data returned uses only seven hits per byte; the most
significant bit is used as a phasing bit, where the first byte of
any record has the phasing bit set, and all remaining bytes
have their phasing bits cleared.

This protocol, the data format, and the phasing bit
conventions are similar to thOse of other

position/orientation tracking devices. This makes it
possible to quickly convert or extend existing software for
one of these devices to control the Monkey.

Initially, we were concerned about the additional bandwidth
requirements imposed by the use of a tagged data format. We
later decided that we could obtain sufficient throughput with
the tagged format and enjoy two advantages:

‘ 1). data from each channel need not always be sent in a
particular sequence, allowing greater flexibility in
implementing the controller firmware,

116

2). it allows us to implement differential reporting
modes in the future to increase throughput; in the
differential stream or demand reporting modes only data
channels which have changed by a certain amount set by
the user will be reported. This is similar to the
incremental reporting mode found in certain tracking
systems. However in incremental mode, data is sent only
if the sensor has changed. In differential mode, "empty"
records are sent if there are no sensor updates and a

demand poll or stream request is received. Recognizing
the difference between a moving stream of data and

"jitter" oscillations of the analog-to—digital circuitry
will be an issue to be addressed.

To address the possibility of controlling several characters in
a shared space, we have designed features into the controller
that will enable the linking and addressing of multiple
Monkeys or Monkey-complementary devices in the same way
that many positionforientation sensing systems allow
multiple sensors to be used in a shared space. This will be
beneficial in applications which deal with multiple
interacting human characters.

Controller throughput
We informally measured the throughput of the

Monkey controller (firmware version 2.0) for both streaming
and polling mode using a simple program which reads.
decodes and stores a certain number of Monkey data records in
an array. The program uses UNIX (UNIX is a trademark of
AT&T Bell Laboratories) read() and write() system calls
through the UNIX termio interface. gettimeofday() was called
before and after execution of the readldecode/store cycle for
all of the records to determine the elapsed time required to read
the total number of data records into the array. The program
was written in ANSI C and run on a Silicon Graphics Indigo
Elan R4000 computer under a beta version of the IRIX 5.3
operating system. The serial port speed was 38,400 baud. The
controller is capable of handling speeds of up to 115,200band.

We obtained the following results for processing 400 records:

Polling Mode (38,400 baud)

lianfehaanemepaned Alamofrematsmtfim
trials.)

40 24.94

20 (assorted*) 47.90

3 (channels 0,1,2)
49.96

Stream Mode (38,400 baud

liaatchanaelsteaarmd Mamufmmmt’sfistfixe
trials.)

40 29.13

20 (assorted*) 53.43

3 (channels 0,1,2)
175.56

*for each trial, a different set of twenty channels was
specified.

113

116

3. Color Plate

The figures on the color plate show how the
Monkey might be used in computer animation using
Wavefront Technologies’ Kinemation software. Kinemation
has a motion capture interface which allows users to write a
motion capture server interfacing Kinemation with various
devices (like Ascension's Flock of Birds or Polhemus'
FasTrak, the Monkey and others).[l4, 15]

The photographs show Bob Nicoll of Wavefront
Technologies posing the Monkey in three postures for an
animation sequence. After the initial capturing of the three
key postures, spline interpolation and several constraints are
applied. Selected frames from the resulting one hundred-frameanimation are shown next.

4. Future Work

The Monkey and similar devices show promise in
increasing the productivity and ease of tasks requiring the
non—real-time specification of body postures. Such devices
play increasingly important roles as it becomes less and less
cost-effective or impossible to build a full-size mock—up or
subject live actors to threatening situations.

The first author is currently engaged in writing a driver and
integrating the Monkey into an existing human modeling
system used at Boeing for evaluating human factors analyses
of aircraft designs. Most of these analyses have to do with
instrument visibility, part reachability, and validation of
maintenance procedures on digital prototypes before the
plane is assembled for the first time. These analyses are
currently fairly timeeconsuming to do, but the Monkey's ease
of manipulation is expected to considerably reduce the time
required. A series of usability studies is planned to quantify
the benefits of using the Monkey instead of the existing
mouse-based system.

DID plans to produce complementary devices that will
augment the capabilities of the Monkey, For instance, a hand
is planned for the near future to increase the articulation
capabilities that would be possible when used in conjunction
with the Monkey.

DID is also continuing to investigate ways to increase the
update rate of the Monkey in real applications by finding
ways to reduce the rendering bottleneck in slower computers.
The current Monkey server in Kinemation, for example,
updates all thirty-nine joint rotations at each update
regardless of whether those joints have been moved. littering
in the analog-to—digital circuitry also causes a nervous
twitching appearance of the virtual body. Some filtering of
the incoming data should minimize this.

Current DID research includes developing a way to use the
Monkey to add more character and expressive movement to
the relatively flat-looking data that is obtained using motion
capture devices. This is an important research area for
animation, as motion capture alone may not satisfy audiences
looking for interpretation, not mimicry. Rotoscoping was
considered and discarded by Disney as early as the late 19305
for the production of Snow White. [16] Most of the
experienced animators we have spoken with have remarked on
the lifelessness of captured data. We intend to generate key
frames to fit captured data, maintaining the weight and beauty
of real physical movements, then tweak those key frames
with the Monkey, bringing the movement back into the
realm of fantasy.

Repositioning the Monkey to a previously input or
computer—generated posture is an important task for some
uses, especially in animation for adding character to
relatively flat motion-capture data. This can be done on the
screen by superimposing a figure in the target posture and one

117

following the Monkey. We are of the opinion, however, that
a display integral to the Monkey armature itself will greatly
ease this task. Such a display is under development.

5. Acknowledgements
Jeff Taylor contributed artistry in mechanics for the

Monkey armature. Genicom Consultants contributed to the
early discussions about software interfaces and provided
valuable anthropometric data. Rush Green and Paul Johnson
from Boeing provided an animator's eye view of the Monkey
specifications. Dan Ling and Tim Skelly in the Research
Group of Microsoft Corporation provided encouragement and
suggested more animation requirements. Bill Chernoff from
Shooting Star Technologies contributed to the protocol
specification. Eric Leighton gave us a careful, expert
analysis of the Monkey and description of how it compares

REFERENCES

1. Phillips, Cary. (1991) Jack 5 Users Guide, Computer
Graphics Research Laboratory, University of Pennsylvania,
Philadelphia.

2. Carrier, Robert, (1994) Safework 1.0 Users Guide, Genicom
Consultants, Montreal, Canada.

3. Jacob, Robert, and Sibert, Linda. (1992). The Perceptual
Structure of Multidimensional Input Device Selection. CM ‘92
Proceedings, Monterey, California (1992).

4. Heinlein, Robert. Waldo. In Waldo & Magic, Inc., New
York, Del Rey Books, 1986

5. Hand Master Controls "Smart" Machines. In NASA Tech
Briefs 13, 10 (Oct 1989)

6. Robertson, Barbara. Motion Capture Meets 3D Animation.
In On the Cutting Edge of Technology, Indianapolis, Indiana.
Sams Publishing, 1993, 1-14.

7. Feiner, Steven. Personal electronic mail communication on
December 14, 1994.

8. Williams, Lance. PerformanceDriven Facial Animation.
Proceedings of SIGGRAPH '90 (Dallas, Texas, August 15-August

114

117

with traditional stop-motion armatures. Tony Simmerman
pointed out that the Monkey allows posing to continue even
if a screen update takes several seconds.

Haj Ng, Emily Hartzell and Nanther Thangarajah labored late
nights to help wire the first four Monkey prototypes; Hai and
Emily are currently members of the production staff. The
Virtual Systems Group at Boeing Computer Services provided
some of initial funding for the Monkey. Bob Nicoll and
Wavefront Technologies provided much of the animation
material used in the preparation of this paper's associated
video. Steve Feiner gave us the references for waldos.

10, 1990). In Computer Graphics ’24, 4 (August 1990), 235—242.

9. Touchstone Pictures. The Nightmare Before Christmas. Tim
Burton, dir. Film, 1993. 1

10. Universal Pictures. Jurassic Park, Steven Spielberg, dir.
Film. 1993.

ll. Shay, Don and Duncan, Jody. The Making of Jurassic Park,
New York, Ballantine Books, 1993.

12. Diffrient, N., Tilley, A., and Bardagjy, J. (1974). Human
Scale 1112/3, MIT Press.

13. Kroemer, K., Kroemer. H., and Kroemer-Elbert, K. (1994)
Ergonomics :How to Design for Base and Efficiency, Prentice-
hall, New Jersey.

14. Wavefront Technologies. Real-Time Motion Capture with
Kinemation 2.1 Pre—Alpha, version 0.5. 1994.

15. Wavefront Technologies. Wavefront Motion Capture
Server Library Reference Manual, version 0.1. 1994.

16. Finch, Christopher. The Art of Walt Disney: from Mickey
Mouse to the Magic Kingdoms, 1983 ed., Harry N, Abrams.
New York, 1983, (original edition: Walt Disney Productions.
1973).

118

A Virtual Space Teleconferencing System that Supports Intuitive Interaction

for Creative and Cooperative Work

Mikio Yoshida Yuri A. Tijerino
Furnio KishinoShinji Abe

ATR Communication Systems Research Laboratories

Abstract

Since their advent, interaction with computers has been a
very fascinating field of research. Though, we have come a
long way from turning knobs and punching cards to using
keyboards and pointing devices, natural language interac-
tion has not seen widespread use as a general means of in-
teraction. The thesis of this paper is that some application
fields, specially those dealing with computer graphics, can
benefit from the interaction of natural language and hand
gestures. This bimodal means of interaction in computer-
graphics-based task, complements the deficiencies ofjust ap—
plying either one of the two modes. This paper, describes
current. research efforts taking place at ATR for combining
hand gestures and verbal descriptions for generating, modi-
fying and manipulating 3D computer graphics objects.

1 Introduction

ATR Communication Systems Research Laboratories
(ATR) has developed a Virtual Space Teleconferencing
System(VSTS)[5] that makes it possible for remotely located
people to meet in a computer-generated virtual workspace,
giving them the impression of being at the same location,
see Figure].

Though at first it might be tempting to say that the
main contribution of the system is the fact that it allows
people to “attend a meeting" without. having to be there
physically, We claim that the system does more than just
that. That is, it provides the meeting participants with a
synthetic environment that supports cooperative and cre—
ative Work that allows them to perform tasks not possible
or too time consuming in conventional meeting rooms or
video teleconferencing.

As an illustration of how this virtual workspace can sup-
port cooperative and creative work, let’s take the example
of a meeting between designers of an automobile or a piece

2—2, Hikaridai, Seikaecho, Soralmvgun, Kyoto 61902, Japan
ermail:m.ikio@atr—sw.atr.co.jp, phone: +81—7749—5—1211

Permission to copy without fee all or pan of this material is
granted provided that the copies are not made or distributed for
direct commercral advantage, the ACM copyright notice and the
title 01 the publication and its dais appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee

$12320;specriic permission.ymposrum on nieractive 3D Gra hics, Montere CA US
© 1995 ACM 0-89791-736-7/95/0004.i).$3.50 y A

 115

of furniture. With a VSTS such as the one we describe in

this paper, the participants would be able to represent their
design ideas in an intuitive manner as they evolve so that
other participants can “see” them.

Generally the mental images of our ideas are vague in
the beginning, but if we can transform this images into ac—
tual images(r'.e., in the form of virtual objects), our mental
images would become clearer, not only to other people but
to ourselves as well. We could then modify the actual images
to either accommodate suggestions from other participants
or to adjust to aesthetics or other kind of constraints such as
those imposed by manufacturing or organizational require-
ments. This process could be repeated as many times as
necessary to come up with a. marketable or manufacturable
product(e.g., a new car model or sofa], thus rendering the
meeting very productive. In order to support this kind of
interactions it is indispensable that the participants be able
to generate, manipulate, and modify virtual objects intu-
itively and with high degree of freedom, Obviously, simple
manipulation, the only feature supported by most virtual
environments, would not be enough because this would not
give participants the ability to represent simple, not to men-
tion complex, design ideas.

Figure 1: mustration of the ATE Virtual Space Teleconferencing
System, which supports up to three-site teleconferencing through
a wide—field of view angular display.

On the other hand it would be impractical to require
that participants perform operations on virtual objects in
the environment through detailed graphics commands or nu-

118

119

merical input. In this paper, we propose interaction with the
objects in an intuitive way through combination of natural
language and hand gestures, an area in which only little
research has been done [13, 19, 6], to avoid the use of com-
plex CAD tools currently being employed for this purpose.
We also discuse the techniques used to support. generation,
combination and deformation of 3D virtual objects.

2 Virtual Space Teleconferencing Char-
acteristics

The VSTS developed at ATR can support creative work
because its intuitive interaface helps it to make close contact
with people’s natural means of expressing themselves (ale,
talking, gesturing and paying attention). The VSTS also
makes realistic representations of virtual participants, which
is a characteristc that enhances the realism necessary to
support the feeling of being there. This feeling of presence,
along with the ability to perform operations on the virtual
cooperative space in an intuitive manner, are some of the
the most important features implied by the characteristics
of the VSTS described below.

CG synthesis of the human body: While talking
with a person to get some information we also pay close
attention to non—verbal expressions (e.g.,facial expressions
and other gestures). In order to take these expressions into
account in our VSTS, the human image of participants are
represented by means of computer graphics. Polygonal mod—
els and textures of the participants are obtained and stored
in memory in advance. Only their motions are sensed and
transmitted to the human 3—D CG model. The model is then

updated for every motion the person does. For instance,
face expressions are represented by sensing the positions of
13 control points on the face[8].

Real time collision detection: Generally it is hard
to understand the precise spatial relations among objects
in a virtual 3-D space. Certainly we can infer these rela-
tions from occlusions or crossing of the objects. However
this is not efficient, especially when dealing with many vir-
tual objects. This is due to the fact that we have to move
the objects around and make them occlude or cross with
each other at various angles and positions to grasp an idea
of their spatial relations. Though, there are many methods
to overcome this problem, we have adopted a real-time col-
lision detection approachfll]. Using this method, we can
detect the collisions between the triangular polygons of vir-
tual objects in real time. The system gives the users two
feedbacks, one is a collision sound and another is the color
change of the collided surfaces. With this aid it is possible,
to a certain degree, to infer the spatial relations of objects,
even if they are occluded.

Wide-field-of—view angular display: As described
above, eye and hand motion, as well as body gestures are imw
portant factors for human communication. Therefore, it is
important to display participants as close as possible to real
size, so that a higher degree of reality can be achieved. To
accomplish this, we have developed a large wide-field-of-view
display. The display combines tWo 70—inch back-projected
screens in a seamless manner. Objects and participants in
the display can be looked at from different directions and

distances by a participant who wears a pair of LCD glasses
fitted with a magnetic position sensor. The ability to look in

116

119

3D at objects and other participants from different perspec-
tives in this wide-field-of-view display, gives the participants
the impression of sharing a much larger environment, thus
increasing the feeling of presence.

Intuitive interaction with hand gestures and
speech recognition: Generally, it is difficult to op-
erate on and with virtual objects. Positioning them pre-
cisely and deforming them, can be as difficult as the game
called “pin the tail on the donkey”, though in the virtual
environment your eyes are opened and in the game they are
closed. 3-D modeling tools (12.9., AutoCadTMl, Aliasw'g,
etc.) make it possible to perform these operations precisely,
but at the expense of increasing the complexity. Operators
cannot operate intuitively such tools unless they translate
their ideas to expressions close to the machine representa-
tions (6.9., the menus supplied by the too] and/or the pro-
gramming language).

This kind of tools can be very distracting because they
require that the participants adopt a low—level computer rep-
resentation that might not fit very well with their own men-
tal representations. We have focused on supporting natural
language {through speech recognition) and hand gestures to
give the users an intuitive way to interact with and modify
objects in the virtual world.

Intuitive interaction with natural language and hand
gestures may free us from explicitly having to focus our at-
tention on what the computer is doing. Instead, we can
focus on what is it that we want to accomplish. On the
other hand, it might be difiicult for a computer program
to recognize and combine natural language with hand ges-
tures, because their relation might depend on the cultural
background. In the system we developed, only a few com-
binations between natural language and hand gestures were
explored. However, these few combinations add a great deal
of intuitivity to the system as we were able to discover.

3 Techniques to Realize Creative and

Cooperative Work

3.1 WYSIWYS(What You Say Is What You
See) Frame work

When we read or listen about the description of an object,
we tend to create an image of it in our minds. If such an
object is already-known, our previous memory about it is re-
called, if not we try to associate it. with and already-known
object. In a similar way, when describing our own men-
tal image of an object to someone, we make use of verbal
expressions as well as hand gestures. Furthermore, we as-
sume the listener shares the same common knowledge as we
do, and otherwise we try to adequate or descriptions to his
knowledge about. such an object or others related to it. It
is necessary that the listener has this common knowledge
(5.6., ontology) in order to get his own mental image of the
object being discussed. However, a simple missunderstand-
ing or a lack of some piece of knowledge on the part of the
listener will result in a completely different object from the
oneibeing described.

,’ This kind of communication skill would be very practical
if we could use it not only between people but also between
people and computers. This suggests the advantage of using

1AutoCacl is a trademark of Autocleslr Inc.
2Alias is a trademark of Alias Research Inc.

120

natural language in combination with hand gestures in the
virtual space, to express our intentions or mental images as
3-D virtual objects to computers, can be very advantageous
if an underlying intermediate representation of concepts is
available in the form of a 3—D ontology of objects and op-
erations performed on them. Since the virtual objects are
synthesized by means of CG to give us the visual feedback of
our interactions, so we can “see” what we want to commu-
nicate to others. Such a. concept has been named “WYSI—

W’YS’"(What You Say Is What You See)[] 8]. WYSIWYS
promises to be an invaluable paradigm for numerous appli—
cations in such fields as design, art and computer imagery;
and specially for virtual space teleconferencing and CSCVV
systems, by enhancing human-to—human communication.

3.2 Verbal Expressions and Hand Gestures

3.2.1 Variety of Verbal Expressions and an On-
tology for 3-D shapes

Many verbal expressions have similar meaning and tend to
be vague. Consider the case of 3-D shapes, a simple pyra-
mid, which is a 3—D primitive, could be referred as “Pyra-
mid“, “Squared Cone”, “Roof" and so on. The way it is ad—
dressed depends on the person who does it. 3—D primitives
such as cubes, cylinders, spheres, cones, prisms, pyramids,
etc., usually have several ways of being referred to. Based
on some 3-D geometrical considerations these expressions
can be classified to make them correspond to one of these
3—D primitives. It has been proven that complex objects are
described as combinations of these basic primitives[7]. Con—
sider Figure 2(b), even though we recognize it as a “car”,
many other expressions are also valid (e.g., “automobile",
“motor car”, etc), each of which depend on the spatial res
lations between the components(primitives).

la) :12)

00

Figure 2: Basic shapes can describe more complex
ones:(a)presents some basic shapes in random order without any
particular meaning,(b)organ.izes the shapes into the simple formof a car.

In this way, the general 3D—shape conception (idea) of an
object is not only related to its basic form or shape but also
to the way this complex object was constructed. Further-
more, the structure of such a complex object might be strat-
ified and/or recursive. Even though this structure concep-
tion of an object may differ from people to people, there are
some good reasons to believe that there is a common sense
knowledge about it that we all share [20, 16, 4, 9, 12]. There-
fore, in order to permit the vagueness of natural language
the system should take into account this common sense
knowledge about this general structure conception of 3D-
objects. Such a structure conception of (ED-objects is what
we call “Knowledge-level 3-D Visual Ontology“. And is
one part of the system configuration, indeed a database[18].
This “Knowledge‘level 3-D Visual Ontology” includes also
some information (concepts) about other deformations, 6.3.,
rigid transformations, scaling, bending, twisting, tapering,

1

117

20

rounding, swelling, sharpening, etc. Also, 3D-shapes related
concepts about state and characteristic are provided here.
These characteristics may be geometrical(e.g., round], vi-
sual (6.9., color), functional (e.g., sitting down), quantita-
tive (6.9,, size) or qualitative (e.g., large]. Similarly, states
may be quantitative as well as directional (e.g., 50cm. to
the left), or qualitative as well as positional (6.9., to the left
of A). For more details about this , the reader is referred to
[17].

3.2.2 Hand Gestures and Shape Modeling

There are two main problems when considering verbal ex-
pressions and hand gestures as means of a human-computer
interface. One is that of getting accurate data about the
hand gesture, and the other is that of transforming the vir-
tual(graphic) objects according to the intention of the ges-
ture. Recently, the former has reached a good level of reli—
ability, due to increasing research efforts to quantify hand
gestures by means of several devices. On the other hand1
the latter has remained more passive due to some difficul-
ties; description of graphical objects and performance issues
among others.

For instance, it. is somehow easy to make the computer
understand that an specific gesture means to change the
length of a graphical object. However, it is generally diffi-
cult to go one step further and actually change the length of
the given graphical object. In the case where the geometric
representation of an object is given by vertices and poly-
gons, the polygons associated with the transformation (£45.,
elongate) must be determined and actually moved to achieve
the required effect. This kind of determination and transfor-
mation of vertices and polygons required by polygon—based
graphic representations can be very expensive and there—
fore cause a decrease in system performance. Therefore, we
propose a better geometrical representation, that might be
more appropriate to associate 3-D object deformations.

Superquadrics, which were first discovered by llein[2],
provide a useful representation for a combination of hand
gestures and natural language to model 3-D objects.

Superquadrics are defined by the following vector:

:1 :3
H1C05 O‘COS w

a: cos61 (1' sin!2 to (1]to:“I l
as sin5 at!

where I, y, and z are the coordinates of points on the su—
perquadrics surface, (11, (:2, and as are scale parameters.

The parameters a E [—5, 3) and w E [rm 7?], represent the
degrees oflatitude and longitude, while 51 and 52 represent
the squareness on the y-: and 23-3; plane respectively.

With this representation, if a. verbal command as “elon-
gate that object up to here" is combined with your hand
placed perpendicularly to one of the axes of the su-
perquadrics surface, only the corresponding scale parameter
has to be Changed to achieve the desired result.

All these parameters, as well as other local parameters
for deformable superquadrics proposed by Terzopoulos[14],
can be combined with different sorts of concepts dealing with
hand gestures to intuitively model an objectjs shape.

Snperquadrics are only one kind of implicit functions
that can be used for representing objects generically. There
might be other representations useful for this purpose as
well. In our VSTS we have to yet implement snperquadrics
primitives as the general way of representing objects, but

rr 1r

121

preliminary prototypes show that this representation may
be very efficient.

4 Configuring a Japanese Portable
Shrine

4.1 3-D Visual Ontology about JapanesePortable Shrine

Following the guidelines presented above, we developed a
prototype of the system that can be used in the context of
designing a Japanese portable shrine, which is common in
Japanese festivals.

Intentions inherent in combinations of hand gestures
with verbal expressions are interpreted in the following man-ner:

lnput: result of speech recognition: this gives a rated
list of possible candidate strings of characters.

1. translate the string with the highest rating into a
concept in the prestored ontology

2. repeat. 1 until a concept that makes sense in the
current context is found

3. get information about gesture and position of the
user (if needed]

4. translate to graphic commands and process it
Output: visual feedback

String to concept translation: Translation from a
string to a concept is accomplished by referring to our
“Knowledge—level 3-D Visual Ontology”. This system has
2 types of Koowledge-level Ontologies; one about labels,
which is shown in Table 1, and another about operations,
also shown in Table 2. The later can also be classified
in three subcategories: Generation, Manipulation and
Deformation. in short, the knowledge—level ontology con-
sists of concepts about names of 3—D primitives and names of
operations (see Tablel,2). As the reader might notice, con-
cepts about operations and objects can be associated with
several labels, thus dealing this way with several words that
might have the same meaning according to the context.

Table l: The \‘Vords about The Parts of A Japanese Shrine

Regular Word—m

Hoo Ootori Chinese phoenix
Tachildai Hoo»Ba.se Base of Chinese phoenix
YaneeBase Knshiranuki Ease of Roof
Yane Okujoo Roof
Kago Heya Chamber or Room
Torii lgaki Fence and Gate
Kamisori Base Base of Shrine
Katsugidfiioo Boo Carrying Bar
Kornafuda Fuda Plate

Combining concepts with hand gestures and po~
sition of user: Some concepts, such as “Arelthafl”,
“Ano ...(thot ...)"and “Asokolthcrel” require information
from hand gestures. When the translation process infers
that one of these words was spoken, it tries to confirm that
an appropriate gesture (6.9., pointingJWas also performed.
in this case, the system requests information about the hand

Table 2: The “lords about The Operations

Tamika-sun]

H aichivSuru
Naraberu
Hairet su-Suru

 Kuttsuheru Tsunageru to joinKumiawaseru

Tsuri agent

"lam
"newKeen—Sum

position and orientation. If any objects are in the context
of the gesture an appropriate action will take place on them
(e.g., it will be selected if pointed at). Other, concepts such
as “Mottekuru (bring it here)” need only to obtain the po-
sition of the hand to translate the object to that particular
place. The reason that information about the position of
the user is also needed is that the system allows also View
dependent directional manipulations such as “Migi he (to
the right)” or “Mac he (to the front)”. In those cases, the
direction in which the objects are moved, rotated, etc, de-
pend on the position from which the person is viewing thescene at.

Translating to Commands in this final stage, the
system maps and implements commands that reflect the in»

terpretation of the verbal utterances along with hand ges-
tures. Generally commands are composed of two arguments;
object and operation. Some commands also require numer-
ical data that is inferred either from hand and/or viewpoint
information or given by delault (e.g., object coordinates,
angular or scaling factors, and so on).

4.2 System Architecture

The Components of this system are depicted in Figure 3.
This subsection will describe the function of each module.

Gesture Recognition Module: This module man—
ages the information about hand gestures. Specifically, this
module observes hand gestures and position, and transforms
this information to data. This module doesn‘t perform sym—
bolic interpretation or recognition.

Speech Recognition Module: This module processes
speech input and produces rated character string candidates
of the recognition of a phrase. This module was developed
by ATR interpreting Telephone Laboratoriesflfl], a sistercompany of our labs.

Multimodal Input Fusion Module: This module,
synchronize the results of the Speech recognition and the
gesture recognition modules, and integrates their inputs into
singllezinterprctations.

Shape Ontology: This is a database about basic 3-D
shapes. it contains both information about the shapes and
operations that one can perform on each individual shape.
in this module each shape can have sevoral different. labels
associated with it to allow some degree of ambiguity.

121

122

Conlmand Library: This Contains the commands
about operations for 3—D shapes such as generating, deform—
ing, moving and so on. All operations that the user intended
will be converted to these commands referring to the Shape
Ontology described above.

Generation and Execution or Graphics Com-
1nands: This module generates the commands to operate
3-D shapes referring the data obtained from the three mod-
ules described above. The output of this module is sent to
the Virtual World Managing Program.

Virtual World Managing Program: This program
receives the output from the module above and the data
about the position and the field of View of the virtual coop-
erative workers. Moreover, this module displays all changes
of the virtual environment to the users.

Human-computerInterface

Position
View Point
Other Sensors

mufflers,
3 Gesture

Recognition! .—---—v"_.._.: '
] Module 3 l Mulrimodai -
k..__. ' IInpulFusionModule" -

Mme |
Speech 1 »

Recognition ‘——)—'
"Module

Parser

Figure 3: System Architecture

Though there are the Collision Detection module and the
module for displaying human body, in this paper omit these
detailed explanatiOn, because of space limitation. Instead
the reader is referred to [11] and [8] respectively and to the
discussion.

4.3 An Example

Here we will describe a. prototype of the VSTS that allows
use of verbal expressions and hand gestures to configure a
Japanese portable shrine.

Generation: The following example places the chamber
of the shrine as shown in Figure 4, that has been previA
ously stored as a polygon—data file, in the virtual workspace
through verbal interaction only.

Speaker: Boo-Base wo haichisuru
(where HOG—Bose
haichisuru = to place]

base of Chinese phoenix and

119

122

The words “Hon—Base” is translated to the concept of

“Tachidai”(_: Base of Chinese phoenix] referring to the
“Knowledgedevel 3D Visual Ontology”.

Selection: The following example shows selection of the
roof of the shrine.

Speaker: Kago wo
(where Kago 2 Chamber)

The next example shows selection of the far most object.

Speaker: [pointing gesture] + Are we

Speaker: [pointing gesture] + Ano Kago wo

When the user performs a pointing gesture, a line is
drawn from the hand in the direction of the pointing finger.
Every object in the path of this “laser” is highlighted with
a white bounding box. This white box gives appropriate
visual feedback so that the user knows what objects he/she
is pointing at. Moreover, when an object is selected us—
ing verbal expressions or combination of verbal expressions
with hand gestures, the object is highlighted with a green
bounding box as visual feedback; See Figure 5. This allows
the operator to know whether the recognition was successful
or not. We have found this to be extremely helpful:

Position Translation: This example shows how an ob;
ject that has been previously selected is moved to the right.

Speaker: [pointing gesture] + Are wo
+ Migi ni + ldoosuru
(where Migz' M = to the right
[drmsum = to translate)

This example shows how an object is moved to a position
indicated by the hand.

Speaker: [pointing gesture] + Are wo
[Place a hand at a position] + Mottekuru
(where mottekuru : to bring)

Figure 6 shows that an object has moved to the position
indicated by the hand. This interaction allows us to get an
unseen object. Moreover, when an occluded object exists
and if the user knows its name, he can get it by selecting it
with its name.

Joining together: ”The next example shows how two
objects are selected and joined together(Fig11re 7, 8).

Speaker: [pointing gesture] + Are wo
[pointing gesture] + Kono Katsugiboo ni
Tsunageru
(where Ii'al‘sugilmo : carrying bar of
shrine and Tsunageru = to join together)

in this initial prototype, one of the attributes of the
objects is the information of where and what objects can be
joined

Scaling: The next example shows how an object is made
taller(Figure 9).

Speaker: Lpointing gesture] + Ano Yane wo
Takaku-Suru

(where Yam: : roof
and Takakusuru : to make higher)

123

5 Discussion

The VSTS incorporates a high degree of reality with an in-
tuitive interface to support creative and cooperative work
space. Using our system, the meeting participants can com-
municate non-verbal information among themselves (Le,
gaze, facial expressions, body posture, hand gestures and
so on]. At the same time they can combine hand gestures
with verbal deScription to perform operations on virtual ob-
jects. We implemented these functions in order to realize
high degree of realism.

In addition, the WYSIWYS environment that we im-
plemented in the VSTS, allows this operations to be veryintuitive.

5.1 Pursuit of Reality

In our system, computer graphics representations of con-
ference participants can change their facial expression, can
move their eyes and move their bodies that reflect the real
movements of the participants. For instance, for facial ex-

pressions we used a technique that is based on synthesizing
changes of facial expressions using smaller data by transmit-
ting information about positions of some points on face[8j.
Using such technique, we have realized an efficient way of
transmitting facial expressions, a kind of non-verbal infor—
mation.

Real-time collision detection is another subject. which we
considered important as feedback to participants to identify
spatial relations between virtual objects. We realized real-
time collision detection by implementing an octree—based
algorithm[l l] for such purpose. We believe that in the
future, this technique will become the basis to implement
Force-Feedback in our system.

On the other hand, there are some issues that remain

to be solved. Our system, forces participants to wear spe—
cial equipment that decrease the feeling of realism we want
to achieve, namely LCD shutter glasses and sensor-fitted
gloves, A system that does not require this type of equip-
ment. can be more believable and less obstructive to realism.

At ATR we are investigating on techniques that address
these issues. A stereoscopic viewing technique that does
not require the use of special glasses is an example. It relies
on lenticular screens that transmit the appropriate images to
the right and left eye through vertical optic components[]5].
Formerly, this method had the known problem that. a person
could see stereoscopically only in some restricted regions,
but was solved by combining head tracking with mechanical
movement of the scene. Moreover, a real-time hand gesture

recognition using 3-D prediction modelLIl], which doesn‘t
need any equipment (6.9., CyberGloveTM), is also the sub—
ject of on going research at ATR. Forcefeedback mentioned

above could be one of the most intuitive interfaces to help
interpret relations between virtual objects. However, force-
feedback research currently relies on mechanical devices to
simulate reaction forces on the hand or skin. At present, it
is too difficult to suggest that we can completely get rid of
all special equipment in the near future.

5.2 Intuitive Interface

The most natural way for people to communicate is through
the use of gestures and natural language, In the VVYSIWYS
framework that we have implemented in the VSTS, people

3 CyberGloveTMis a trademark of Virtual Technologies,

123

120

can not only use natural language and gestures among them-
selves, but they can also use the same means of communi-
cation to express their intentions to the computer. There-
fore, the VSTS provides an environment that departs from
conventional means of human-to—human communication and
human—machine interaction. The WYSIWYS framework al-
lows us to see our design intentions literally take shape as
virtual objects or transformations. Because, other people
can also see our design intentions as they evolve into vir-
tual objects, communication between people becomes more
efficient as well. Furthermore, other people are also able to
make modifications to computer interpretations of our de—
sign intentions, because they have access to the same objects
being shared in a. common virtual space. This is a very im—
portant characteristic of the VSTS, because it means that
besides supporting the creative process of shaping our de-
sign intentions, it can also support the collaborative process
of reshaping the resulting virtual objects to accommodate
other people’s intentions as well.

This all may sound very nice, but there are some prob—
lems that we need to overcome. The main problem is that
the computer needs to know much about common sense 3-D

shapes. It needs to be able to map all these shapes as well as
operations performed on them to ambiguous combinations of
natural language phrases and gestures that may change from
person to person. In other words, the VSTS needs a common
sense 3-D shape ontology of concepts related not only to 3-D
shapes, but also operations on the shapes. The question now
arises of how to construct such an ontology. Perhaps we can
not answer this question satisfactoryly at this time, but we
can speculate that some knowledge-acquisition methods or
some collaborative efforts to acquire common sense knowl-
edge can also be applied here. The authors, have already in»
vestigated the possibility of applying at least one knowledge
acquisition method, namely Personal Construct Psychology,
to acquire visual descriptive concepts about cars [17]. This
proved to be successful within some given constraints, but
still needs further exploration to be applied in a more broad
common sense domain. Because, the VSTS relies on highly
sophisticated computer programs to support a high degree
of intuitive interaction, speed becomes also major problem.

Finally, we can also mention the problem of recogniz-
ing gestures accurately and interpreting their meaning ac—
cording to context. At present, we have only implemented
pointing and grabbing gestures because our system is still
on a prototype stage. However, we have found that even

these two simple gestures can be interpreted in several ways
if we rely only on the information given by the shape of the
hand. For instance, a pointing gesture may be confused with
a gesture for pushing an object. Therefore, hand gestures
can not be treated as symbolic information and have to be
combined with context. information given by other means
such as natural language. Other gestures, also depend on
motion and there are current research efforts taking place
at ATR to incorporate them in the VSTS as well[]].

6 Conclusion

Careful study ofhow hand gestures combine with verbal ut-
terances when people communicate might lead to a new way
to communicate our intentions to systems such as the VSTS
developed at ATR. As computer technology improves, faster
computational speed and graphic display update rates will
also become available. Hence, in the future VSTSJike sys-
tems might become also very important tools for communi-

124

cation among people for creative, cooperative and construc-
tive processes. In the simplest case, an user might point
at some unfamiliar object in a virtual environment and ask
more information about it (e.g., a virtual museum). In a
more difiicult situation, the user could generate complex 3-
D models by simply shaping objects that simulate complex
behavior with the hands and giving qualitative features with
verbal instructions.

Integration of hand gestures with verbal instructions also
makes a break—through on how to avoid too much depen-
dence on natural language processing by taking advantage
of real-time computer graphics feedback. This way, people
can “see”1 that the computer is “interpreting” from natu-
ral language. This instantaneous feedback allows people
to guide the interpretation process interactively. For in-
stance, it is difficult to describe a situation about some real
physical event to a computer that depends exclusively on
current natural language processing technology. However,
if the computer provides a graphical environment that can
be manipulated with Verbal instructions and hand gestures,
a. person could describe a. physical situation by generating
graphic objects with one or both hands and detailing their
attributes verbally.

It is also important to simulate physical phenomena as-
sociated with some objects in the virtual environment so
that the creative process produces a better feeling of how
the object might behave in the real world. However, we also
leave this as a future research issue.

References

1. Altman, Edward J., Normal Form Analysis of Chua‘s
Circuit with Applications for Trajectory Recognition.
In IEEE Transactions on Circuit and Systems, vol—
ume 40, pp. 675—682. IEEE, October 1993.

2. Gardiner, M. The superellipse: a curve between the el—
lipse and the rectangle. In Scientific American, volume
213, pp. 2227234: 1965.

3. lshibuchi, Koichi., Takemura, Haruo., and Kishino, Fu-
mio. Real—time hand gesture recognition using a. 3-D
prediction model. In Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, pp. 3‘24—
328, 1993.

4. lohansson, G. Configurations in Event Perception.
Almqvist and Wiksell, Stockholm, 1950.

5. Kisbino, Fumio., Ohya, Jun., Takemura, Bruno, and
Terashima. Nobuyoshi. Virtual space teleconferencing
systemiReal-time detection and reproduction of 3—D
human images. In Proceedings of HCI International
'93. pp. 669—674, 1991.

6. Mochizuki, Kenji., Takemura, Haruo.. and Kishino, Fu—
mio. Object manipulation and layout in a 3—D vir-
tual space using a. combination of natural language and
hand pointing. In Proceedings of 4th Sapporo Interna-
tional Computer Graphics Symposium, HW—l, pp. 387
42, 1992.

1. Nishihara, H. Intensity, visible-surface and volumetric
representations. In Artificial Intelligence, volume 28,
pp. 293—331. 1981.

8. Ohya, 11111., Kitamura, Yasuichi., Takemura, Haruo.,
Kishino. Fumio., and Terashima, Nobuyoshi. Real—
time reproduction OISD human images in Virtual Space

124

121

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

Teleconferencing. In Proceedings of IEEE Virtual Re-
ality Annual International Symposium, pp. 4084114,
September 1993.

Rosch, E. On the internal structure of perceptual and
semantic categories. In Moore, T.E., editor, Congol-
Live Development and the Acquizition of Language. Aca-
demic Press, New York, 1973.

Sagayama, 5., Takami, l., Nagai, A, Singer, H., Yam-
aguchi, K., Ohkura, K., Kita, K., and Kurematsu, A.
ATREUS: a. Speech Recognition Front-end for a Speech
Translation System. In Proceedings of EURO SP 1993,
pp. 1237—1290, 1993.

Smith, Andrew., Kitamura, Yoshifumi., Takernura,
Haruo., and Kishino, Fumio. A Simple and Efficient.
Method for Accurate Collision Among Deformable
Polyhedral Objects in Arbitrary Motion. In Virtual
Reality Annual International Symposium, North Cur-
olina, USA. IEEE, March 1995.

Stevens, S. Patterns in Nature. Brown Books, Boston,
MA., 1974.

Takahashi, Tomoichi., Hakata, A., Kobayashi, Yukio.,
and Yamashita, K. User interface using language
and visual information. In Proceedings of Computer
World’88, Kobe, Japan, pp. 1927199, 1988.

Terzopoulos, Demetri. and Metaxas, Dimitri. Dynamic
3D Models with local and global deformations: de-
formable snperquadrics. In IEEE Transaction on Pat—
tern Analysis and Machine Intelligence, volume 13, pp.
703*714.1991.

Tetsutani, Nobuji., Nagashima, Yoshio., Tomono,
Akira., and Kishino, Fumio. Stereoscopic display
method employing eye-position tracking. In Proceed-
ings oflnternati'onal Symposium on Three Dimensional
Image Technology and Arts(Tokyo, Japan, February 5-
7, 1992), pp. 101—107, 1992.

Thompson, D. A. On Growth and Form. U.K., 1942.
2nd ed.

, Tijerino, Yuri A., Mochizuki, Kenji., and Kishillo,
Fumio. Interactive 3-D Computer Graphics Driven
through Verbal Instructions: Previous and Current Ac-
tivities at ATR. In Comput. 8 Graphics., volume 18,
pp. 621—631. Elsevier Science, Great Britain, 1994.

Tijerino, Yuri A. “WYSIWYS”—Interactive generation,
manipulation and modification of 3-D shapes based on
verbal descriptions. In A] Review Journal, volume 3.
Kluwer Academic. unpublished.

Weimer, David. and Ganapathy, SK. A Synthetic vi-
sual environment with Hand gesturing and Voice input.
In Proceedings of C'HI'SQ, pp. 235~240, 1989.

Wertheimer, M. Laws of organization in perceptual
forms. In W. D., Ellis. editor, Gestalt Psychology. Har-
court Brace. New York, 1923.

125

Figure 4: Example of Generation: generating a Tachidaj. Figure 7; Exal'nple of Joining together(1)

Figure 5: Example of Selecimnz selecting a chamber. Figure 8: Example of Joining togetherfl]

Figure 6: Example of Translation: bring a base of Chinesephoenix to hami.

Figure 9: Example of Scaling: roofis made taller.

122

125

126

HAPTIC RENDERING: PROGRAMMING TOUCH INTERACTION
WITH VIRTUAL OBJECTS

K. Salisbury: D. Brock:r T. Massiei, N. Swarupi C. Zilles1E
Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139

1 Abstract

Haptic rendering is the process of computing and gener~
ating forces in response to user interactions with virtual
objects. Recent efforts by our team at MIT’s AI labora»
tory have resulted in the development of haptic interface
devices and algorithms for generating the forces of inter-
action with virtual objects. This paper focuses on the

software techniques needed to generate sensations of con-
tact interaction and material properties. In particular,

the techniques we describe are appropriate for use with
the Phantom haptic interface, a force generating display

device developed in our laboratory. We also briefly de-
scribe a technique for representing and rendering the feel
of arbitrary polyhedral shapes and address issues related

to rendering the feel of non-homogeneous materials A
number of demonstrations of simple haptic tasks which

combine our rendering techniques are also described,

2 Introduction

The process of mechanically interacting with with remote
and virtual objects has been of interest to researchers

for a long time. Handling of distantly located objects
through remotely controlled manipulators has been fea-
sible since at least the early days of handling hazardous

nuclear materials [12]. In these systems a master control
device is used to control the actions of the remote manip—

ulator. “Force reflection” is sometimes used to present to

the user, through the master, forces encountered by the

*Principal Research Scientist, Dept. of Mechanical Engineering
lEesearch Scientist, Artificial Intelligence Laboratory
3'Graduate Student, Dept, of Mechanical Engineering

Permission to copy without has all or part of this material is

remote manipulator. This permits perception and ma-

nipulation of these remotely located objects. In the early
705 researchers began to simulate this type of interac~

tion through the use of simple mechanical models of ob—
jects in the environment. By computing the forces which
would be encountered in interactions with real objects

and displaying them through a force reflecting interface,
the sensation of touching objects could be created [10].

These “haptic” interactions with simulated objects rep-
resent one of the first instances of mechanical interaction

with virtual objects.

Haptic interactions have been used to aid investigations
of molecular docking [I] This task requires the user
to follow a force gradient until the molecules are inter-
locked. The force field the molecules move through is
derived from models of inter-molecular forces. Although

a realistic calculation of these forces is computationally

intensive, they can be applied to the user as simple at—
tractions or repulsions and used to find suitable docking

configurations. This approach has been found to be useful
for this complex, molecular level, task.

The molecular docking task does not, however, require

generation of the same type of contact forces that we en-
counter in everyday manipulation of the objects. Forces

resulting from contact, palpation, and stroking actions
require generation of macroscopic forces which giVe rise
to sensations of shape, surface hardness, texture and frice

tion. Kilpatrick [5] found it suitable to model hard sur-
face interactions using Hooke’s law augmented with clicks
when virtual contact is made. He recommended, in ad—

dition, a mechanical brake making surfaces “feel” harder,
to “radically increase friction when a virtual hard surface
is encountered.”

Recent interest in creating and interacting with virtual

environments (VEs) has begun to push these ideas to new
granted provided that the copies are not made or distributed for
direct commercial advantage. the ACM copyright notice and the
title ot the publication and its date appear, and notice rs given
that copying is by permission of the Assocratlon of Computing
Machinery. To copy otherwise. or to republish, requrres a lee
and/or specific permission. .
1995 Symposium on Interactive 3D Graphics. Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

levels of sophistication. Taking advantage of advances in

graphic display, computational capability and modeling
of visual representation has permitted the visual com-

ponent of complex virtual environments to be rendered

123

126

127

with good fidelity. The ability to perform mechanical or

“haptic” interaction with these scenes has lagged signifi-
cantly behind. The majority of VE systems in use today
rely on passive devices, such as instrumented gloves and
joysticks, to track user motions and permit limited inter—
action with virtual objects. To provide force feedback to

users in these systems, a few researchers have adapted
teleoperator masters and in some instances have devel-
oped dedicated haptic feedback devices. Advances in

haptic interaction have been limited due to lack of high
performance interface devices, and the lack of a coher—

ent approach to object modeling and sensory display of
mechanical attributes.

Our work at at MIT has begun to address this problem
with integrated investigations into the science of haptics.
The term haptics has come to be used by the VE and
telerobotics communities to refer to the sensorimotor in~

teractions which occur during perception and manipu-
lation of mechanical objects. We have concentrated on

methods for tracking the motion of the human finger and
applying precisely controlled forces to the user’s finger-
tip through a ground-based haptic interface, the Phan-
tom {6}. A wide range of demonstrations have shown

that our device has sufficiently clean dynamics (stiff, low-
friction, backdrivable) to display a wide dynamic range
of impedances with high fidelity [2]. As a result of
the high sampling rate, sensor resolution, and structural
stiflness of our haptic interface, the dynamic modes of

the haptic interface are highly decoupled from the pro—
grammed dynamics of the virtual environment. Thus,
transparency to the dynamics of the interface hardware
is achieved and representation of the virtual environment

dynamics is greatly facilitated. As a simplifying assump—
tion, we have focused on point interactions. Point con—

tacts with objects permit only pure forces (no torques) to
be exerted through the contact and require only three ac—

tive (powered) motions in the haptic interface to faithfully
reproduce the force geometry. The minimal complexity of
the system has helped achieve good bandwidth by reduc-
ing parasitic structural and actuator mass. This reflects

our view that good temporal display quality is at least as

important as good spatial characteristics in a haptic dis-
play. The point paradigm is not a particularly restrictive
assumption in that multiple points can be combined to
exert torques on objects and control their orientations as

with human fingertips.

While researchers have begun to look at algorithms for
generating forces resulting from contact with virtual ob-

jects [3,11], we feel that there is a great need for a more

coherent approach to generating (or rendering) these sen-
sations and modeling interactions with complex objects.
Our interest is in developing a framework in which we may
represent shape, surface properties, bulk properties and
multiple object interactions. Such a framework should

127

permit the representation of a wide variety of objects

and object interactions, while simultaneously addressing
the problems of real-time generation of appropriate sen-
sations. We can view haptic interactions as really oc-
curing at two levels. When a contact occurs there is a

net force (vector) experienced (or generated) by the user.
In addition the distribution of the forces (or tractions)
which occur at each contact site are perceived through
the user’s mechanoreceptors, giving rise to our tactile
sense. Because of the difficulty in building tactile dis-
plays which present the spatial distribution of forces at

each contact, We have focused on displays which present
only the net force information. We have found that if this

force information is presented with sufficient bandwidth
and resolution, many effects that we consider to be tac-

tile sensations can be created. Surface shape, compliance,

texture and friction can all successfully be evoked through
proper modulation of the net force exerted on the human.

A general framework for haptic rendering must then be
able to represent and permit display of these and other

basic haptic elements. These elements, in turn, must be
contained in a larger framework which represents the ob-

ject shape and bulk properties appropriate for rendering
the larger scope of interactions that occurs during object
motion and inter—object interactions.

Though our efforts to build a general haptic rendering sys-
tem are still in the early stages, we have made progress
in the rendering of basic contact interaction elements,

macroscopic object shape properties, and bulk object prop~
erties. We describe below our progress in these areas.

3 Rendering Haptic Elements

A region in space populated with objects can be divided
into volumes which represent free space and volumes which

represent objects. The surfaces of these objects com-
prise the boundaries between the two. Perception of the

shape and details of these objects is accomplished by
haptic exploration in which these surfaces are palpated
and stroked. We discuss below the various haptic ele-

ments which must be available to enable active explo—
ration and perception of objects, many of which we have

implemented. Taken together, these elements permit higher
level tasks such as grasping and manipulation, some of
which we have demonstrated.

3.1 Freespace Movement

A haptic rendering system must first be able to give the
sensation of free space. To do this requires a haptic
interface with intrinsic characteristics that allow it to

124

128

———_._.___—___

be effortlessly moved about, with little distraction from
mechanism friction, inertia and vibration. In using the
Phantom interface this is enabled by the device’s intrin-

sically low backdrive friction and inertia. In addition,
the mechanism’s smooth transmission characteristics and

well damped high natural frequency reduce unintended
vibrations to nearly below perceptible levels.

3.2 Contact Transients

At the instant of contact with a surface rapid onset of
force occurs with sufficient impulse to remove momentum

from the user’s finger or tool. This requires good band-
width and stiffness in the interface to provide quick stable,

onset of force. We and others typically accomplished this

by programming a one—sided spring function to generate
repelling forces that increase with surface penetration. As
discussed below, careful control of this contact impedance
can be used to vary and enhance perceived material prop-
erties.

3.3 Contact Persistence

The sensation of sustained contact with a surface requires

that the user be able to push into it and experience com-

pressive contact forces of sufficient magnitude to make it
feel solid without actuator saturation or instability. We

have found that it is not necessary to generate huge forces
to create the illusion of solid immovable walls. In fact,

when performing manipulation involving motion at only
the elbow, wrist, and fingers, users rarely exert more than
10 Newtons of force. The illusion of solid surfaces, is re—

inforced by the contrast between these contact forces and
the low free-space forces imposed by the Phantom (typi-

cally less than 0.1 Newtons).

3.4 Contact Impedance

While not completely separable, We can divide the imped—
ance of an object into two components, the local or con—

tact impedance and the net or gross impedance of the
object. The contact impedance gives rise to sensations
of material properties. As other researchers have recog-

nized [3], we have found that adding viscous damping to
the characteristic equation for a constraint surface greatly
enhances the user’s perception of a hard surface. Percep—

tualiy, a wall simulated in our system by f = Kan + B1)
can be made to feel like hard plastic, whereas a wall sim—

ulated by f = Km, using the same value for K, would feel

spongier than a typical mouse-pad. EffectiVely, adding
a damping term will change the coefficient of restitution
between a user and the virtual surface [11].

3.5 Frictionless Surfaces

When a user only experiences forces normal to the sur~

face being touched the sensation of a slippery or friction—
less surface is evoked. Computing contact forces in this

case requires only the determination surface normals and
penetration depth. This is, in fact, is the easiest haptic
effect to generate with our system. The same good intrin-
sic properties of the Phantom system which permit the
sensation of free space motion contribute to the faithful

rendering of frictionless motion in the 2 dimensional sub-
space of sliding across a surface. While using the Phan-
tom to touch friction-free surfaces, users have described
the sensation as that of “an ice cube sliding on glass.”

3.6 Surface Friction

Imposing tangential forces on users while they stroke a
surface adds an important sense of realness to percep—

tion of objects. In real life, we rarely experience fric—
tionless surfaces and, in fact, heavily rely on friction in

tasks involving manipulation. We have developed several
techniques which approximate both stiction and Coulomb
friction (static and dynamic friction). As with [11], we
recognize the importance of incorporating static friction
into the friction model. In our implementation the model
has two states: sticking and sliding. When contact is first
made. we store the location of contact and begin the stic-
tion state. If the user tries to slide along the surface, tan-

gential forces (using Hooke’s law or impedance control)
are applied to restore the user back to his initial point of
contact, the “stiction point”. If the force required exceeds
the normal force times the the coefficient of friction, then

we change to the sliding state.

Unlike [l l] we model the sliding state with Coulomb fric—
tion rather than simple viscosity. Coulomb friction in-

volves applying a retarding force which is only a function
of the coefficient of friction and normal force, in the direc-

tion opposite to the direction of motion. Due to the dif-
ficulty in accurately measuring small velocities in a sam—

pled data system, we designed a robust method which

requires only position measurements. When transition to
the sliding state occurs, we know the displacement from
the stiction point and can assume the user is moving in
the direction of this displacement. To create a tangen-

tial force with the correct magnitude and direction we

simply need to move the stiction point to a new place
on the line which connects the user and the old stiction

point. The stiction point’s offset from the haptic interface
point can be calculated by dividing the friction force (the
normal force times the coefficient of dynamic friction) by
the stiffness. Once the new stiction point is assigned we
return to the stiction state.

125

128

129

By setting the coefficient of dynamic friction below the
coefficient of static friction we have demonstrated a con-

vincing stick-slip sensation. The vibration generated dur»

ing object motion against friction modeled in this way
evokes a sensation of slippage. In the BLOCKS demonstra—

tion program (program images shown at end of paper) a
user is able to pick up a virtual cube with two Phantoms;
if the objects slips, the user can detect this occurrence

by attending to these vibration and net force direction

cues. Without such a friction model, force closure grasps
of virtual objects would not be possible. By using friction
to enable grasps the BLOCKS program permits the blocks

to be stacked, thrown, dribbled, and juggled [15].

3.7 Surface Curvature

Surface discontinuities at edges and corners are primar—
ily perceived in humans by mechanoreceptors sensitive to
curvature. However we have demonstrated that these ba-

sic curvature sensations can be convincingly be displayed
by control ofthe normalforce vector. Users will perceive a
discontinuity of the normal direction as an edge or corner;
one key to making smooth objects is to vary the direc-

tion of the force vector continuously. By utilizing surface

normals at the vertices (defined say, by averaging ajacent
facet normals), a satisfying normal force direction can be
found at any point via interpolation between these vertex

normals (much like Phong shading in graphics).

We have found the actual shape of an object to be rather
insignificant in making objects feel smooth. Because of

the inaccurate position sense that humans have, a coarsely
meshed polyhedron will be perceived as smooth if a suit
able surface normal interpolation scheme is used. This

has been demonstrated in a pair of example programs we

have written. One program, models a surface by assigns

ing heights on a 2-D mesh. Complex surfaces including a
telephone and a baboon’s face have been “rendered” by
interpolating height and surface normal between points

in this matrix of heights, In the case of the phone ren-
dering actual heights were measured and entered into the

mesh. In the case of the baboon face, a pseudo-height
map was derived from image point brightness. Though
this does not really represent the true shape, it provides

sensations of underlying geometry. The second program,

(SMOOTH) presents the user with a. smoothed rendering of
a polyhedrially modeled asteroid shape. It is rendered
using the constraint-based god object method described

below, with the addition smooth interpolation of surface

normals across edges. The result is that the previously
sharp edges feel rounded.

126

3.8 Surface Texture

The sensation of texture results from both the effects of

small shape details and friction on surfaces. In direct
manipulation humans can utilize both their tactile sense

(fingertip mechanoreceptors) and net force sense to per-
ceive texture. Conveniently (since we currently lack good
tactile array force displays), variations in net force ap-
plied to a user can generate texture sensations. Minsky
[8] presented users with variations in tangential forces
dependent on local shape variations to evoke a wide vari—

ety of texture sensations. We have also used shapedriven
variations in normal force to evoke sensations of texture

on a frictionless surface [6]. To be complete, variations

in normal and tangential forces should be used together
to simulate texture with force-based displays. The stick-

slip sensation demonstrated by [15] does address part of
this need in providing a purely friction dependent sense
of texture. It remains to combine both shape and fric—
tion dependent force variations to display more complex
texture.

We have begun to explore techniques similar to graph~
its texture mapping that can be used to overlay the sur-
faces of objects with standard textures. For example, one

could define a texture map which induces slight reorienta—
tions in the rendered contact normal of a surface facet to

which it is applied. Making this perturbation a function

of location on the facet reflects the spatial dependence
of texture, however care must be taken to not alter the

spatial frequency when the texture is mapped to facets of
different scale.

We have also created convincing shape dependent tex»

tures by using a height~map function applied to planar
surfaces. At every point on the planar surface, the soft—
ware calculates a height offset and a normal vector off—

set, as defined by the height—map. The texture patch is
defined by a grid of heights, and is constructed to per-
mit tiling on a bigger surface without texture discon—

tinuity between adjacent patches. For example a suit—

able continuous texture patch can be defined by assign-

ing .2 : cos(z)cos(y) with a: and y in the range (0,2:rr).
It is interesting to note that depending on the period and
amplitude of such a texture, users may perceive it as a
shape, as a texture, or in the limit, as friction.

3.9 Net Object Motion

In theppreceding sections, we have primarily addressed
localrefi'ects in which little or no net object motion oc-

curs. In fact, some of our efforts have investigated in-
teraction with objects that are free to move in one or

more dimensions. By tracking contact forces according

129

130

to the above techniques and applying these forces to a

model of the object’s mass, stiffness and viscosity with

respect to ground, it is relatively easy (in few—degree
of-freedom systems) to integrate the resulting accelera-
tions and compute net object displacements. Demonstra—

tions of spring centered switches (SLIDERS) and switches

With detents (BUTTONS) have been made and suggest a
rich range of virtual controls which may be constructed.
A demonstration which permits pushing of masses on a

frictionless surface (MULTYB) shows the ability to interact

with dynamic objects and control two—degree—of-freedom
motions. Two phantoms have been used together in a

program (BLOCKS) which permits grasping and placing
cubes which are free to move in rectilinear (three—degree—

of-freedom) motion. Extending these capabilities to full
six-degree—of-freedom motion including manipulation and
assembly tasks is clearly a formidable undertaking but
one which requires a firm understanding of the local ef-
fects we have addressed to date. Significant extensions

are required to address the kinematics of articulated ob—

jects such as mechanisms and objects with transient kine—
matics, such as are encountered during assembly and tool
interaction.

4 Shape Representation

It is desirable to not only display local surface properties,

but also overall shape of objects. We have implemented
a number of techniques to describe shape. An evolution

of techniques is in progress, starting with vector field im-

plementations, progressing to god object representations,
and looking ahead to potential energy function represen-
tations.

Our vector field methods subdivide the volume of an ob-

ject and associate a sub—volume with each surface. When
the haptic interface is in a sub—volume, a force whose mag—
nitude is a function of the distance penetrated is applied

in the direction of the normal to the associated surface[6],
These vector field methods conceptually create a map of

the 3-D object volume and assign a force vector to each
location, so that during each servo loop the contact force
can be looked up.

This method works rather well for simple geometric shapes
because it is reasonably easy to construct these subspaces

by hand. For planes aligned with the coordinate axes the
force vector can be computed from a simple F, : Km

relation. For spheres, the direction is that of the vector

pointing from the sphere’s center to the haptic interfaces
endpoint, and the magnitude is the distance the endpoint

has penetrated the sphere’s surface scaled by a constant.
The simplicity of this method has allowed us to explore

many aspects of haptic rendering, but it has its draw-

backs. When designing more complex objects it is less
obvious how to sub-divide the volume, and thin objects

are susceptible to being pushed through.

The central difficulty is that the maximum stiffness of any

virtual object is limited, due to the inherent mechanical

compliance of haptic interface devices. This means that
the user’s contact point often penetrates simulated object

volumes to a greater distance than would be possible in
real life, leading to an ambiguity in determining which
surface was entered. A better method was needed to keep

track of the surface being stroked if believable forces were
to be displayed robustly.

The constraint-based god object method employs a strat—

egy to stop the haptic interface’s virtual contact point
from penetrating objects[14]. By concentrating on sur»
faces rather than volumes, we attempt to more realisti—

cally compute forces, and incidentally give ourselves ac-
cess to an enormous body of objects already in existence

in standard surface representations. This method keeps

track of a virtual contact point (the god object) which
remains on the surface when a virtual object is probed,

With the location of the god object on the surface, there

is no ambiguity in which force vector should be applied
to the user.

Given the previous location of the god object and the
current location of the haptic interface, the algorithm

will identify a number of surfaces on the rendered ob—

ject which are currently involved in the interaction and
denote them as active. A surface is active if the god ob-

ject is on one side of the rendered surface, and the haptic
interface is on the other, and the action takes place within
the boundaries of the surface. One surface can be active

for each powered degree of freedom in the device.

Once this set of surfaces, or constraints, has been identi—

fied the new location of the god object can be computed.

By finding the closest point on the active constraint sur—
face to the current haptic interface point we can deter—
mine the new location of the god object (strictly, this

applies to the frictionless case, but can be extended to
include surfaces with friction. Since we chose planar con-

straints, the solution can be found by solving a set of
linear equations requiring only 65 multiply or divide op-
erations to calculate the coordinates.

This method will create a faceted object which can ex-

hibit sharp corners; smoothed objects can also be ren«

dered by adding a smoothing algorithm. We are cur-
rently in the process of combining the basic effects de—

scribed above witht the god object renderer. We expect
this to result in a fairly rich system in which arbitrarily

shaped polyhedral objects may be rendered with control-

lable degrees of smoothing, friction, surface impedance.
In the next section we address another approach to ren—

130

131

dering complex shapes which lends itself to rendering ob—
jects with bulk material properties which are significantly
non—homogeneous.

5 Rendering Non-homogeneous
Materials

Although the methods described above permit a large
class of objects to be rendered, they do not directly ad-
dress objects composed of non—homogeneous materials.

Incorporation and presentation of non-homogeneity greatly
extends the class of objects that can be presented, partic-
ularly tissue surrounding the internal organs and skeletal
structure of vertebrates. For instance, haptic presenta-

tion of biological objects will be an integral component in
multiple modality surgical environment simulations. We
describe below preliminary work which concentrates on

local surface impedance properties [13].

We are concurrently developing approaches to the haptic
scanning of surface property data based on force sensing,
analogous to the visual scanning of pictures to produce

image data. We envision mechanically probing an object
at discrete surface points, capturing local surface proper-
ties through force and position measurements, and finally
storing the data in a format readable by the haptic ren-

derer. Due to the inherent sampling nature of scanning,
the haptic rendering of the sampled surface data must be

able to sufficiently reconstruct the original surface prop-
erties without perceptual loss of information. Hence, the
techniques we use to haptically represent surface infor-
mation are intrinsically coupled to the issues involved in

haptically scanning surface properties.

In contrast to computer graphics which involves global
environment rendering, haptics primarily involves local
interactions. For a large class of objects, local interac-
tions are decoupled from global object dynamics. Con—

sequently, efficient computational haptic rendering algo—
rithms should take advantage of this local nature. As the

user moves their interaction point on the surface, the hap—
tic renderer will only render the local “window” of surface

representation data about that point. We have success-

fully demonstrated haptic rendering of non-homogeneous
objects by employing this haptic window technique.

5 . 1 Rendering Methods

The geometric modeling technique of B—spline surfaces
is utilized to interpolate discrete, spatially distributed,
values of surface impedance data. B-splines are partic-
ularly appropriate to haptic rendering because they are

comprised of a set of blending functions that has only
local influence and are dependent on a finite number of

neighboring control pointle]. Furthermore, the order of
the interpolating polynomial is not affected by the norm
ber of control points. Both of these facets complement
the attributes of the haptic window which only renders
local properties. To ensure smooth haptic transitions

across non—homogeneous sample points, 02 continuity is
imposed on the B—spline which results in cubic interpo—
lating surfaces. As a result, a 4 x 4 patch of data points
is necessary to construct the interpolation polynomial.

Although geometric interpolation of surface impedances
provides an efficient and simple means for rendering sur-

face properties, there are limitations. Primarily, geomet-
ric interpolation does not guarantee that a closed circuit

interaction path with the virtual object will be conserva—
tive, hence potentially providing the sensation of an unre-
alistic “active” surface. It is possible to interact with the

surface in a compliant area expending little work, move
tangentially to an area of higher impedance, and then

leave the surface with nonzero net energy transfer. In or—
der to ensure passivity of the surface, requirements must
be placed on the internal force field and boundary con-
ditions imposed by the surface. Specifically, if the force

field F within the surface can be described as the negative
gradient of a scalar potential field (I),

r = —vs (1)

and the potential at the surface is constrained to be con-

stant everywhere, then any closed path interaction with
the object will be conservative.

We are investigating potential field methods which re-

spect the passivity requirements directly. Conceptually,
we can use static electro—magnetic fields to model object
properties. Representing surfaces as perfect conductors

permits us to enforce equal potential at entry and exit
from touching an object. Solutions of Laplace and Pois—
son equations, can then be used to solve for the value

of forces at points internal to the object. If we then
wish to set the local impedance at points within the ob—

ject, we may impose further internal boundary conditions
on the potential field. Thus, we may conveniently map
impedances measured for real objects into the geometric
model of the object’s force generating function using the
above relationship.

6 Haptic Demonstrations

A number of demonstrations (illustrated in screen im—
ages shown below) have been developed which use the
basic haptic elements, described in the previous section,
as building blocks for more complex applications. lni-

tially simple geometric shapes, such as spheres, cubes,

128

131

132

and polyhedra, were constructed and implemented using
the vector force field approach described earlier. Dy-
namic objects, illustrated in Figure 1, were later devel’
oped. These simulations allowed users to push and slide
Objects, permitting the discrimination of virtual mass and
inertia. Surface effects between objects, including stiction
and Coulomb friction were also added.

Over-Mad vial of ice cubes!
kfl 9.884838 . kfz B.99$Bfl_

Figure l: MULTYs, a dynamic simulation which allow users
to push and slide virtual objects, and permit the discrim-
ination of mass, inertia, friction, and impact.

An application which became immediately apparent, was
the virtual control panel. Knobs, buttons, sliders, and
switches, featuring clicks, detents, toggles, and stiffnesses,
allowed users to “feel” and operate virtual instruments, as

shown in Figure 2. Another application, which may have
significant importance, is the simulation and rehearsal of
medical procedures. Figure 3, shows the screen image
of the needle biopsy simulator we developed. A mag-
netic resonance image (MRI), acquired from the Brigham
and Women’s Hospital, was segmented along a user spec—
ified line. Mechanical properties including stiffness, tear

strength, and viscous friction were assigned to each layer,
so that the surgeon could feel the pressure of needle against
the tissue and “pop” as each layer was pierced.

Using a distributed interactive simulation approach, we
created a tissue palpation demonstration. The haptic de-
vice, controlled by a 486PC, transmitted probe and tissue
information via the network to a SGI Indigo2 Extreme.
Thus the user could feel the compliant surface while view-

ing a high—quality graphics image, as shown in Figure 4.

Using standard graphics file formats, we were able to hap-
tically render arbitrary convex and concave objects. Fig-
ure 5 shows an “asteroid” imported from a .plg file and

presented to the user to both push and probe. This exam-
ple is prepatory to the development of standard object in-
terchange format which will allow visual, haptic, acoustic,
and functional representation. Finally, combining the ob—

Figure 2: Virtual instrument panels include knobs, but-
tons, sliders, and switches, with clicks, detents, toggles,
and stiffness. Illustrated is BUTTOKS program.

Figure 3: A needle biopsy simulator demonstration,
HELallowed surgeons to experience the sensation of pres—
sure of the needle against tissue, and the “pop” as each
layer is piered.

Figure 4: BEFORE, a tissue palpation demonstration using
the Phantom haptic device running on a PC and a Silicon
Graphics workstation to provide graphics support.

132

133

jects, elements, and algorithms developed above, we build

a simple “virtual world” composed of building blocks and
virtual fingertips to manipulate them. The user employed
two haptic devices to pick up and toss the cubes around

the room, while feeling the friction, mass, inertia, and
impact of these objects.

Figure 5: Standard graphics file formats were imported

and rendered with the ASTEROID program. The program
permits palpation and exploration of interior or exterior
surfaces.

Figure 6: BLOCKS, a program which renders two blocks

that can be grasped and manipulated using two fingertips.

7 Acknowledgments

This work is supported in part by NAWCTSD contracts,
N61339-93‘C-0108, N61339-93—C—0083, N61339—94-C—0087,
ONR Grant N00014—93-L1399, fellowships from the Na—

tional Science Foundation Graduate Fellowship program
and the National Defense Science and Engineering Fel-
lowship program.

8 References

1. Brooks, Jr., Fred R, M. Ouh-Young, J. J. Batter, and
P. .1. Kilpatrick. “Project GROPE v Haptic Displays for
Scientific Visualization.” Proceedings of SIGGRAPH ’90.
Dallas, Texas. August 6-10, 1993.

2. Colgate, J. Edward, and J. Michael Brown “Factors

Affecting the Z—Width of a Haptic Interface.” Proceed—
ings of the IEEE International Conference on Robotics
and Automation, 3205-3210. 1994.

3. Colgate, J. Edward, RE. Grafing, M.C. Stanley, and
G. Schenkel. “Implementation of Stiff Virtual Walls in

Force-Reflecting Interfaces.” Proc. IEEE—VRAIS, pp.
202—208, 1993.

4. Durlach, Nathaniel I., et al. "Virtual Reality: Sci—
entific and Technological Challenges.” Report produced
for the National Research Council, National Academy of
Sciences. Washington D.C. December 1994.

5. Kilpatrick, P. J. “The Use of Kinestetic Supplement

in an Interactive System." Ph.D. dissertation, Computer
Science Department, University ofNorth Carolina at Chapel
Hill. 1976.

6. Massie, Thomas H. “Design of a Three Degree of Free—
dom Force—Reflecting Haptic Interface.” SB thesis, MIT
EECS Department. May, 1993.

7. Massie, Thomas H. and Kenneth Salisbury. “The

PHANTOM Haptic Interface: A Device for Probing Vir-
tual Objects.” Proceedings of the ASME Winter An-
nual Meeting, Symposium on Haptic Interfaces for Vir-

tual Environment and Teleoperator Systems. Chicago,
IL, November 1994.

8. Minsky, Margaret M., et a]. “Feeling and Seeing: Is-
sues in Force Display.” Computer Graphics, vol. 24, no.
2, pp. 235-243, 1990.

9. Mortenson, Michael E. Geometric Modelling. New
York; John Wiley 85 Sons, Inc. 1985.

10. Noll, A. Michael. “Man-Machine Tactile Communica-

tion.” Society for Information Display Journal. July/August
1972. Reprinted in Creative Computing, July/August
1978 p.52—57.

11. Salcudean, S. E. and T. D. Vlaar. “On the Emulation

of Stiff Walls and Static Friction with a Magnetically Lev-
itated Input/Output Device.” Proceedings of the ASME

Dynamic Systems and Control Division. Chicago, IL.
Nov. 6-11, 1994.

12. Sheridan, Thomas B. Telerobotics, Automation, and
Supervisory Control. Cambridge, MA: MIT Press, 1992.

13. Swarup, Nitish. SM thesis in progress. Department
of Mechanical Engineering, MIT. Expected May 95.

14. Zilles, Craig and Kenneth Salisbury. “A Constraint-

Based God Object Method for Haptic Display.” Submit-

ted to IEEE/RSJ International Conference on Intelligent
Robots and Systems, Human Robot Interaction, and Co~
operative Robots. 1995.

15. Zilles, Craig. SM thesis in progress. Department of
Mechanical Engineering, MIT. Expected May 95.

130

133

134

Object Associations

A Simple and Practical Approach to Virtual 3D Manipulation

Richard W. Bukowski Carlo H. Séquin

University of California at Berkeley 1

Abstract

This paper describes a software framework to aid in design-
ing and implementing convenient. manipulation behaviors for
objects in a 3D virtual environment. A combination of al-
most realistic-looking pseudo-physical behavior and ideal-
ized goal—oriented properties, called object associations, is
used to disambiguate the mapping of the 2D cursor motion
on the display screen into an appropriate object motion in
the 3D virtual world and to determine a valid and desirable
final location for the objects to be placed. Objects selected
for relocation actively look for nearby objects to associate
and align themselves with; an automated implicit grouping
mechanism also falls out from this process, Concept, struc—
ture, and our implementation of such an object association
framework in the context of the Berkeley Soda Hall WALK-
THRU environment are presented.

1 Introduction

Creating a fully equipped model of a large, furnished build‘
ing for virtual walkthroughs is an arduous task. Even as-
suming the availability of a good interactive 3D geometry
editor with a friendly and efficient user interface, such tasks
are inherently much more difficult than drafting and edit-
ing in only two dimensions, The problem with a 3D world
is that it is impossible to exactly control all six degrees of
freedom (DOF) at once with only 2-dimensional input and
display devices. Typically, software solutions are used to
map 2D cursor motion to limited 3D object space motion
[12]. These can be cumbersome to use in complex environ-
ments, and do not address the fact that objects often require
positioning with respect to objects around them. High-tech
solutions such as the “SpaceBall” [2], “DataGlove,” 3D mice

[15], or virtual 3D displays do not solve the problem either;
precise placement of objects in three dimensions is hard —
even in the real world — unless we get help from the phys—
ical interactions of the objects we want to place. Consider

positioning a picture frame one millimeter in front of a wall

*Computer Science Division, Soda Hall, Berkeley, CA 94720-1776;
bukowski®csberke1eyedu and sequin©cs.berkeley,edu.

Permission to copy without 199 all or part of this material is

without touching the wall with the frame or with your hands;
visual feedback alone cannot do a satisfactory job.

As part of the Berkeley WALKTHRU Project we have
built a prototype version of an object manipulation system,
called “WALKEDIT,” tailored to populating large building
models with furniture, personal items, books, coffee cups,
and various trimmings and details that make such a build-
ing model look real and interesting (see Figure 01). Our
approach is based on a system of “object associations," a
software framework that supports simple and practical ma—
nipulation of 3D objects with 2D I/O devices via two spe-
cial types of programmer-supplied procedures and an im-
plicit grouping behavior. It gives the programmer the abil-
ity to specify object—dependent methods of disambiguating
2D gestures in a 3D world and allows association of suitable
local behavior with database objects to make precise default

placement easy. These associations usually fall somewhere
between physical simulations and mathematical constraints,
but can be less formal and more flexible than either.

2 Interactive Building Environments

In the process of developing an editor for our Soda Hall
WALKTHRU program, we examined different methods for
helping the user to move objects in 3D with 2D devices.
We wanted the process of moving furniture in a 3D virtual
environment to be as quick and easy as moving cut—out card-
board pieces on a floorplan. However, it should also be pos—
sible to force objects to align themselves nicely to walls and
to one another, if the operator chooses such an option.

There is no single correct answer to the question of what
“ideally” should happen in response to a. user dragging an
object across the 2D display screen. There is at least one
uncontrolled degree of freedom (DOF) due to the third co-
ordinate of the virtual world. Choosing the “right” value to
be assigned to this coordinate becomes a contention between
realistic (physically correct) and teleological (goal-oriented)
models for the virtual world, and is strongly dependent on
the specific application domain. Traditional tools tend to
take an extreme stand on one or the other end of the spec-
trum.

Most 2D drafting tools provide an idealized goal-oriented
behavior. Selected shapes freely follow the cursor “across”
other objects and snap nicely into alignment with other fea-

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice IS given
that copying is by permission of the Assocretlon of Qomputmg
Machinery. To copy otherwise, or to republish, requrrss a lee
and/or 5 ecific ermlssicn. 1
1995 Sylii'iposiulin on Interactive 3D Graphics. Montersy CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

turés if grids or gravity have been turned on. Setting up these
extra controls requires some overhead for activating align-
ment manifolds, setting up tugboats and orientation frames,
changing editing modes, or grouping and tin-grouping ob—
jects. In 3D virtual worlds, the situation is even worse; ob-

131

134

135

jects now have twice the number of DOFS to be controlled.
Howaver, the real world being modeled can often provide
disambiguating clues or implicitly desirable alignments. By
exploiting these application‘specific expectations, some of
the teleological control overhead can be automated. In a
simulation of a physical environment, it seems natural to
exploit gravity and solidity to disambiguate the projection
of the 21) input parameters into the 3D virtual world. By
providing automated alignment with the surfaces on which
objects come to rest, extraneous DOFs are removed, and
the cognitive burden of specifying them is removed from the
user. A complete, accurate, physical simulation, on the other
hand, may be counter-productive to efficient 3D editing; we
all know how hard it is to move real furniture through a
small apartment.

Since we are working in a virtual world, we can adopt se-
lectively some of the desirable characteristics, while ignoring
others, and add some useful non-physical behavior on top.
Such "magic” behavior can be more convenient than the
behavior of real-world objects [13]. It is easier to move fur~
niture without concern for temporary physical obstruction
or inter—penetration; the notorious task of moving a piano
through a staircase is no problem in our WALKEDIT envi-
ronment, and pictures can hang on walls without physical
hooks, On the other hand, extra physical or non-physical
constraints can be imposed Where they simplify manipula-
tion tasks: e.g., pictures can be forced to hang perfectly level
at all times, or chairs in a classroom can be made to snap
into nicely aligned rows. Object associations provide the
structure and the encouragement for the interface program—
mer to set up this balance betWeen realism and virtual-world
magic.

Some of the key paradigms of 3D manipulation and some
of the behavioral aspects of objects in a building that we
found desirable when populating our Soda Hall model with
furniture are summarized below, together with a reference
to the object associations that provide the correspondingbehavior:

c. User—selected objects should follow the mouse pointer,
so that “point 'and place” becomes an integral, intu-
itive operation. The relocation procedure (to be dis-
cussed below) provides the main mechanism for this
behavior.

0 Objects typically should not float in mid-air but rest
on some supporting surface. If the cursor points to the
surface of a desk or to a bookshelf, it can be implied
that the user wants to move the selected object to that
particular surface; an association prooedure, “pseudo-
gravity,” supports that goal.

a Alternatively, many things, such as picture frames
or light fixtures are attached to walls or other verti—
cal surfaces; another associution procedure, “onvwall,”
generates the desired behavior.

I Such implicit associations of objects with reference ob-
jects should be maintained even when the reference
object moves or is changed in other ways; however,
they must also be breakable so that objects can be
lifted off a surface easily and moved somewhere else.
An automatic dynamic grouping mechanism built into
the object association framework provides that ser-Vice.

We have also found visibility information to be an im-
portant tool. In our WALKEDIT environment, it is natural

135

for the user to move in such a way that the destination point
of the motion is visible and the object’s final poeition can
be defined precisely by direct pointing. Therefore, we find
it acceptable to restrict object manipulations to locations
that one can see, avoiding the complexity of user interfaces
with which one can reach behind other objects (e.g. systems
based on DataGloves or other 3D devices). This simplifies
considerably the task of mapping 2D pointing to 3D motion.

3 Object Association Framework

3.1 Background

Our approach borrows heavily from several paradigms de-
veloped in the realm of interactive computer graphics over
the last decades. It first has notions of snap—dragging [3],
but without the need of explicitly dealing with visible align“
ment manifolds; most alignments are provided automatically
by the association procedures rather than explicitly by the
user. Second, while it can emulate some of the behavior
of a physical simulation of the objects in the environment
[1, 7], it can be less constraining than our every-day world;
objects can pass through one another and remain in physi-
cally impossible non—equilibrium positions under the control
of suitable associations, which may be application-specific or
may depend on the editing mode. Third, while sOme associ—
ations could readily be described as constraints, our system
does not require the rigid formality and associated solution
machinery that one would find in a mechanism editor based

on an underlying constraint system [11, 4, 10, 8, 6].
A novel feature that emerges naturally from our ap-

proach is an automated implicit grouping mechanism; it uses
the relationships established between objects as they repo-
sition themselves with respect to their environment.

3.2 Two-Phase Approach

The generic editing move in an interactive environment is
to "grab” an object and then to “place” it (and any objects
grouped with it) somewhere else. In our “WALKEDIT” pro-
gram, a user choking on an object selects both the object
itself and a selection point on the object which makes a nat—
ural handle for further manipulation. Once the object and
its selection point have been established, the user can apply
either a local motion by dragging the mouse pointer, or a
remote operation such as “picking up” the object and “plac-
ing” it at a different location. Control of these motions and
final placement is handled by the procedures of the objectassociation.

When dragging the object to some desirable final posi-
tion, the intermediate path of the object should be as direct
as possible to follow the goal—oriented directive of the user,
yet the final position should be “realistic" within the defined
simulation constraints of the virtual environment. This ex-

tracts the best of the two competing approaches discussed in
Section 2; the user can move the object anywhere in a true
teleological way, but then the object realigns itself to sat-
isfy some of the physical realities of the environment. This

leads to a two-phase approach to moving an object. During
a first relocation phase, the object follows a trajectory free
of physical or behavioral restrictions and which is a suitable
disambiguation of the 2D path specification in screen space
into a 3D motion in world space. During a. second associa-
tion phase the object uses its association rules to determine
a good nearby position which best satisfies the stated be-
havioral conditions of the object in a rest state.

132

136

Object associations are thus based on two types of small
procedures that are invoked when an object is selected. Each
object is assigned one relocation procedure but may have a
number of prioritized association procedures. The relocation
procedure is used during local, interactive motion to disam-
biguate gestures made with the mouse pointer; it defines
a mapping of incremental 2D mouse motion to incremental
3D object motion. Association procedures are used for both
local and remote placement; they apply additional motion
components to an object, based on the other objects in the
area, with the goal to preserve the desired object behav-
ior. In addition, objects will dynamically link themselves to
the reference objects with respect to which they have aligned
themselves; they will typically follow any movements of these
reference objects.

3.3 Associations used in WALKEDIT

In WALKEDIT we are primarily concerned with keeping
objects supported against gravity, having them attached —
and thus properly aligned 7 to the ceiling, to walls, or to
vertical surfaces of other objects, or having objects aligned
with respect to each other. All this can be achieved with a
remarkably small set of primitives. Different objects carry
by design one or more (ordered) association attributes. The
user can add or remove extra association attributes from
the existing set to selected objects during the interactive
walkthrough mode. When such an object is selected, its
attributes will determine which relocation procedure applies
to the object and which association procedures are used to
determine the final placement of the object.

So far we have implemented two relocation procedures:
the ou—horfzontalprocedure is designed for objects that move
primarily horizontally, while the art-vertical procedure is for
moving along vertical surfaces. In both routines, the object
moves along a piecewise continuous, polyhedral 2D manifold
in space. The left mouse button translates the object along
the manifold without changing its orientation relative to the
manifold. The middle button rotates the object about a
line through the center of its bounding box normal to the
manifold section on which the object rests.

In addition, there are three association procedures: the
pseudo-gravity procedure, the anti—gravity procedure, and
the art-wall procedure. Pseudmgravity simulates objects
that normally rest on a supporting surface. Anti-gravity
is used for attaching light fixtures, smoke detectors, sprin—
klers, and other such objects to a ceiling. On-wall is used for
pictures, white boards, wall clocks, and other objects that
hang on vertical surfaces. All of our WA LK EDIT association
searches use the same type of ray-based probing mechanism

to find alignment objects. These ray—probes determine which
nearby objects affect the alignment of the selected object.

We cannot expect that these few simple procedures will
take care of all editing needs in our building environment.
The goal is to make 90% of the typically encountered op-
erations easy and natural. For special needs we still can
access traditional editor functions via pull-down menus. If
one needs an exact rotation by 45 degrees, one opens the
rotation operator menu; if one wants to create a perfect row
of 20 chairs, the familiar replicate menu is perfectly apprd
priate. If, on the other hand, one finds that one often has
to do a special task that is not well supported by classi—
cal editor menu commands, such as pushing furniture into
corners, then it pays to write a new association procedure
“in-corner.” This procedure probes in all 4 directions, finds
the two closest objects, and then does on-wall alignments in
two directions, trying to satisfy them both at the same time.

133

136

If this is not good enough, because one frequently wants
to crowd furniture together in less regular formations, then
it is time to develop a more or less accurate pseudo—physical
collision detection mechanism and add it to the collection
of association procedures. Depending on the types of ob-
jects that need to be manipulated, this may simply be based
on bounding boxes (good enough for file cabinets) or may
use a more sophisticated algorithm that can handle concave
objects (needed for grand pianos). We are currently experi—
menting with a prototype implementation of such a collision
detection routine based on the Canny—Lin algorithm that

quickly finds closest features in pairs of convex shapes [9, 1].
We have integrated these procedures with the user in-

terface layer that controls all the major editing functions:
selection, dynamic grouping, dragging, and detailed place
ment. In the following sections we review these tasks in de-
tail and discuss our implementation of the procedures that
constitute the object association framework.

4 Selection and Dynamic Gathering

In WALKEDIT, selection is performed by shift-clicking the
object. There may be other objects that have been previ-
ously assodated with the selected object; these other objects
Were positioned with respect to the selected object when they
Were last moved. For example, the reference object identified
by the pseudo—gravity association is the surface on which the
selected object came to rest. Since the position of the ref—
erence object influenced the position of the selected object,
it makes sense to implicitly group the latter with the former
and maintain that relative positioning when the reference
object is moved. This means that all of these associated
objects must be found and grouped with every new object
selected; this grouping is maintained for the duration of the
motion. An object can have multiple associations; it will
then move when any of its reference objects moves.

Associations are not permanently maintained con-
straints; they are applied to the object that is currently be-
ing moved. Moving an object can cause other associations
to disappear. Doing the group search dynamically ensures
that each time an object is picked, the group that gets as-
signed to it is the right one at that point in time. Because
associations are determined from a selected object towards

potential reference objects, but are used in the opposite dis
rection, valid associations between two objects may change
by the motion of a third, unrelated object. For example,
an alignment association between two concave objects may
leave space between the two into which a third object can be
inserted, thereby breaking the previous association. To allow
for such changes and to ensure robust behavior of the object
association framework, every time an object is selected we
perform a local search for associated objects dynamically in
real time and store them in a separate data structure. For
efficiency, likely candidates (that is, those objects that were
known to be associated with the selected object previously)
are checked first. Then, a general search is started in the
vicinity of the selected object, relying on our cell-based spa—
tial subdivision structure used for visibility precomputation
and observer tracking [14]. The association procedures (see
below) are called for all objects incident to the subdivision

cellgnccupied by the selected source object to see if they are
associated with it; each object returns a set of association
links, and all of these links together form a graph on the ob-
jects in that region. The search efficiently calculates a local
closure on this graph to obtain the group of objects linked,
directly or indirectly, to the selected object.

137

To keep the virtual environment interactive and the re—
sponse to any mouse—directed motions instantaneous, we do
not delay the interactive manipulation of the original 56*
lected object; We carry out the association search in the
background. As soon as an associated object is found, it
is subjected to the cumulative set of manipulation transfor—
mations applied so far to the source object. This approach
has the somewhat startling effect, that when the user grabs
and moves a fully loaded desk, some of the objects on the
desk may at first remain behind, suspended in mid-air, and
will then catch up with the new desk position within a few
seconds as they are found to be associated with the desk. We
found that most users quickly accept this behavior. To min~
imize this effect, the association closure graphs, once con-
structed, are cached in memory, so that any further moves
of such a group of objects can be truly instantaneous. The
closure process may be safely interrupted before closure is
complete if the user decides not to move the chosen object
but instead selects a different one. The cache holds what—

ever portion of the graph was completed, and this potentially
useful work is saved; the next time an object in the area is
selected, the system will simply pick up the search where it
was left off.

This implicit grouping mechanism replaces both the ex—
plicit grouping mechanism found in many 2D editors and the
inherent grouping resulting from setting constraints between
objects. Our mechanism keeps the user focused on the actual
positioning of the desired object, while automatically mak—
ing many of the grouping connections the user would have
to make by hand with either of the classical methods. Fur—
thermore, breaking a connection between objects that have
been implicitly associated is as simple as grasping the depen—
dent (associated) object and moving it to a new location, at
which point the association with the old reference object is
broken and a new one is established. Of course, we also

give the user the power to override the automatic grouping
mechanism by turning it off, or to perform grouping manu-
ally by alt—clicking objects to explicitly add or subtract them
from the current group. The two grouping mechanisms can
be active simultaneously; adding an object to a group by
alt-clicking will then also add any associated objects to that
group.

5 Dragging with Relocation Procedures

The local motion paradigm e dragging the object with the
mouse 7 is the basic editing move for fine—tuning the posi-
tion of an object, or for moving objects over short distances;
the user selects the object, then moves the mouse pointer in
the desired direction. To generate each frame of the motion
animation, the relocation procedure is first called to convert
the cursor position into a constrained position on a suitable
auxiliary manifold that depends on the type of association
carried by the selected object. The relocation procedure
moves the object along the manifold in such a way that the
selection point maintains coincidence with the cursor. After
the relocation procedure determines the base motion, any
relevant association procedures are run to determine addi~
tioual motions that the object must perform to maintain its
desired behavior. The association procedures will normally
move the object in degrees of freedom not controlled by the
mouse; hoWever, if a more constraining motion is desired,
it may further restrict the motion on the surface of the 2D
manifold. For instance, the association procedure may force
an object to move along a 1D path as if dragged by an invisl
ible rubber hand between the mouse and the selection point.

134

137

When the user initiates an interactive motion by hold-

ing down some shift/control key and choking a mouse but-
ton, the relocation procedure is called with arguments cor-
responding to the current screen coordinates of the mouse,
the user’s view frustum, the particular drag mode being used
(translate or rotate), the selection point on the object, and
the original mouse screen coordinates where the object was
selected. It first makes an aprion‘ selection of one or two pre-
ferred DOFs that can be controlled directly and unambigu-

ously with a mouse or with another 2-parameter input de-
vice, and which most naturally reflect the basic motion of the
selected object. A simple, invisible, auxiliary 2-dimensional
manifold, such as a plane, cylinder, or sphere, is established
through the current selection point; the only requirement
for the auxiliary manifold is that its projection into the view
window maps points on the screen 1:1 onto points on the
manifold. The object is then moved under mouse control in
such a way that its selection point stays on the manifold.
The mapping between the cursor motion on the screen and
the relocation of the selection point in the 3D virtual world
is obtained by intersecting the cursor ray from the eye point
with the auxiliary manifold. This gives an intuitive behavior
for direct control; the object, grabbed by the user-selected
handle, will follow the projection of the mouse movement on
a reasonable restricted manifold. In general, these manifolds
should be piecewise continuous so that the object will move
in a predictable local way for small movements of the mouse.

The manifold used in our on-horizontalprocedure is sim-
ply a horizontal plane through the selection point. In the
translation mode, the eye—cursor ray is intersected with the
plane equation 2: = 5,, where sis the original coordinate of
the selection point. The ray—plane intersection returns some
point i; the procedure returns translation vector i— s. In
the rotation mode, the eye—cursor ray is ignored; the z offset
of the mouse pointer on the screen is used as an angle. A
rotation by that angle about the plane normal is returned.

Orr-vertical uses a more complex manifold, composed of
piece-wise planar offset surface segments situated in front of
the faces of the visible walls in the scene. In the translation

mode, the procedure uses the geometric database to intersect
the eye-mouse ray with the first surface it hits. If this sur-
face is a. vertical one, the intersection point i of the ray with
the surface is determined, and the translation vector i — s
is returned (where s is, again, the initial coordinate of the
selection point}. However, the algorithm also computes the
rotation angle between the manifold’s surface normal at the
selection point and at the new point, and returns that rota-
tion to maintain the orientation of the object’s “back” with
respect to the manifold. This makes wall hangings follow the
changes in wall orientation; if a wall hanging is moved around
a corner, the rotation causes it to turn its back toward the
new wall as it moves. The on-vertical rotation mode simply
rotates the object about the normal of the manifold.

After sliding the object along the alignment manifold,
the relocation procedure returns a 3D ofl‘set vector in space,
representing the difference between the original pose of the
object when it was selected and the new pose indicated by
the mouse motion; this represents the fundamental motion
intended by the user. This offset position is what is passed
on to-the association procedures for the object.

6 Placement with Association Procedures

At the offset position, the association procedure needs to
find the closest valid rest pose for the moving object, given
that the latter is supposed to obey some particular behavior.

138

The first step is to find the possible candidates for alignment.
All of our association procedures currently rely on ray pro-

jections. Pseudo-gravity and anti—gravity cast rays vertically
downward and upward from the selection point, respectively;
the objects that these rays hit are the objects with respect
to which the selected object’s position is adjusted, falling
down or up respectively. The on-wall association casts rays
in the major horizontal axis directions of the original defini-
tion of the object; the closest object in those four directions
is the one used for alignment, as the object “falls” sideways

against the closest vertical surface.
In these simple procedures, the object does not change

its orientation. It is assumed that the object was suitably
defined in its local coordinate system, i.e., in a horizontal,

aligned position, so that by simply translating it, say, down-
wards onto (typically horizontal) floors, it will come to rest
in the intended position.

Here is the pseudo-gravity procedure in pseudo code:

1. While the object O has changed height in the last
iteration, do:

(a) Project a ray from the selection point S on object
O downward to hit some face F of some object
A;

Determine if S is within the bounding box of
some object B (the smallest bounding box if
there is more than one);

if (B is NULL) or (BzL—A) or (S is visible), drop
the bottom of 0’s bounding box to 'the height of
F; else, lift the bottom of 0’s bounding box to
the height of the top of B’s bounding box;

(1))

(C)

2. Return the total motion of O and associate O with A;

In general, this procedure will place the selected object
on top of another one that the user points at by using a
combination of visibility cues and interference tests (see sec-
tion 8.] for discussion of visibility issues). The anti—gravity

procedure, used for objects that stick to ceiling surfaces, is
identical to pseudo-gravity with the vertical directions re-
versed (“upward” instead of “downward” and “bottom” for
“top”). The on—wall procedure makes some additional as~
sumptions. For an object to attach itself to a wall, it needs
to have some notion of a “back-side” which is moved to be
coincident with the closest vertical support surface. Since
the Soda Hall object descriptions do not carry such a no-
tion explicitly, we assume that the object is defined with
its back’s surface-normal in one of the major horizontal axis
directions. These four directions are then checked for the
closest vertical surface, and the pseudo—gravity algorithm is
then run along the corresponding axis. Thus when the user
first brings such an object into the Soda Hall environment,
it needs to be placed close to some wall with its one side
that is supposed to act as its back~side.

For every move generated from an offset vector along
the relocation manifold, the association procedures decide
what local fix—up motions must be made at the new posi-
tion to implement the desired local behavior for the object
(e.g., falling to a supporting surface, in the case of gravity).
Each association procedure computes local components of
the overall motion, commensurate with the desired object
behavior. The motion generated by the association proce—
dures may also cause the object to change from one support—
ing manifold to another, such as when the motion generated
by the relocation procedure would move the object beyond
the edge of the current support or into another solid object.

135

138

Once the association has determined what local objects
and forces affect the motion of the selected object, the off-
set vector from the relocation procedure is modified to re-
flect the local motion, and the new vector is returned from
the association procedure. The procedure may also option-
ally return a set of one or more new local associations of
the selected object with other objects in its new environ—
ment. When the user finalizes the motion by “releasing” the

selected object, these new associations replace the original
associations that were in effect when the object was selected.

Objects can be placed into the scene directly out of a
knapsack. This is a standard inventory mechanism based on
a temporary buffer with which users can pick up, put down,
cut, copy, or paste the currently selected object or group. In
case of such a direct placement from a knapsack, the user
designates a destination point, but there exists no original
object handle location in 3-space from which an offset vector
can be calculated; thus, the relocation procedure is bypassed.
In these cases, the eye—to—cursor ray is intersected with the
first object that it hits, and a previously determined selection
point of the object in the knapsack (or the center of the
bounding box, as a default) is brought into coincidence with
that 3D location. Normally the object to be placed will now
be in an inconsistent physical state with respect to objects
at the target position; the association procedure(s) for the
selected object are called to correct the positioning in an
appropriate way, such as lifting it to the surface of the target
object under the influence of "pseudo—gravity” or pasting it
to the target face if the primary association of the object to
be placed is “on—wall.” The object can now be re—selected
and further fine—adjusted with local dragging motions.

7 Multiple Associations

Multiple association procedures may come into play for sin-
gle objects. For example, objects like book cases are sup—
posed to obey pseudo gravity and simultaneously fit snugly
against walls. This may reduce the DOFs of an object to just
one or even zero. In the latter case, the object may jump
from one desirable location to the next one as the user moves

the mouse pointer and the association procedure selects the
closest location that fits the desired behavior.

Multiple associations attached to an object type are ex-
plicitly ordered. The corresponding procedures are called in
a chain, each one receiving the cumulative associations and
offsets generated by the one before. A systems programmer
assigning combinations of associations to certain types of ob—
jects must consider their possible interactions. The interac-
tions can potentially be very complicated since associations
are described functionally rather than mathematically; an
association procedure can conceivably do anything. Because
of this, it is difficult, if not impossible, for the object associ-
ation framework to generically resolve conflicts between all
combinations of procedures. The associations implemented
in WALKEDIT are simple and orthogonal and are particu-
larly tailored to the rectilinear, axial environment of Soda
Hall; thus, their interactions are easy to predict and not
very problematic. The individual adjustments of all associ-
ations. are gathered into a single cumulative transformation
which is then uniformly applied to the selected object and
allits dependent associated objects in the dynamically found
group.

Figure 1 shows the flow of control, from the inputs to
the object association mechanism to its output for an object
with a relocation procedure and two association procedures.
On the input side, the user selects the object (upper box) and

139

then moves it with the mouse pointer (lower box). Selecting
the object launches the implicit grouping search, which pro-
ceeds simultaneously with the other operations. The original
position of the object and the motion of the mouse are sent
into the relocation procedure, which uses the initial position
and the mouse motion to determine an offset which is sent

through the chain of association procedures. Each associa-
tion procedure modifies the offset and sends it to the next
procedure, while outputting associations. The last proce-
dure also outputs the final motion of the object in 3D space,
which is applied to the list of objects output by the implicit
grouping search.

Grouping Search

Relocation Procedure

Selected Object &
Initial Position

' Set of
Associated Objects

Map Pointer to
Intersection with
2D Mini fold in 3D

Mouse Motion
on Screen

Current 3]) Position

3D Offset
Object Space

1 3% SpaceI 0%

i E 5 3n Offset
I 3,,” Object SpaceI

' On-Wall: Association of Object
' Move Object's Back with object whose' to Nearest Vertical vertical surface was
I g Surface closest' éI U

. E 31) Offsel
' 8 Object Space

:1:3 . Association of Ob'ecl
I : Pseudo-Gravtly: ' , . J .
I 4 Move Dow“ from wnh the object below III
I
I
I
t
I
l
I

Object Motionin Database

Figure 1: A flowchart showing the various procedures at
work for an object that obeys on—wall and pseudo—gravity
(for example, a bookcase).

An interesting algorithmic question is raised by cyclic
constraints arising from the mutual associations of several
objects. Imagine placing two “on—vertical” objects back-to-
back in the middle of a room. Each object will associate with
the other, thus forming a cycle. If object A is selected, object
B will dynamically group with it, and will want to rigidly
follow the motion of object A; however, object A will want
to move along the surface of object 13, because its association
sees B as the closest vertical surface. Thus the two objects
can never again be moved away from their joint back-to—
back alignment plane. A similar situation could arise if an
“on-ceiling” light fixture is attached to the underside of a
table obeying pseudo-gravity. Our current solution involves
breaking loops - once they have been detected - at the point
where a large object would associate itself with a smaller
object. This seems to provide the right. feel in a building
environment, but may not be a general enough answer.

136

139

8 User Interface Issues

While we can start from a few desirable paradigms (see Sec-
tion 2) to define the user interface for object manipulation
in a 3D virtual world, there will always be situations that
will put some of these principles in conflict with one another
and where there seems to be no obvious “right” answer. A
few such tricky problems are raised in this section and our
current solutions are discussed.

8.1 Use of Visibility Information

One of the main cues used to disambiguate the depth co-
ordinate during object manipulation is the intersection of
the cursor ray with a visible support surface. Thus when
moving an object obeying pseudo-gravity, one would typi-
cally grab it near its “foot” while looking downwards onto
the supporting surface. This establishes a. relocation mani-
fold with a reasonable intersection angle with the cursor ray
and gives the user good interactive control over the motion.
It raises the issue what should happen when the object is
dragged beyond the visible range of the support surface or
outside the extent of the support altogether. It also raises
the issue how one can ever lift an object off such a support
surface, e.g., to place a book onto a higher shelf.

Figure 2 illustrates a first typical situation. It should
be possible to slide a coffee cup underneath a table; thus,
we can not simply lift it to the top of the table when the
bounding boxes of the cup and of the table start to intersect.
Here we use visibility information and our pointing paradigm
to resolve the issue. As long as the cursor ray clears the
table top, the cup stays on the floor. Since no part of the
table is between the cup and the floor, and the cup is not
actually intersecting the table, the association procedure has
no difficulties settling the cup in a valid position on the floor.
However, when the ray intersects any part of the table, and
the bounding boxes of the cup and the table intersect, the
cup gets lifted to the top of the table.

Another critical situation is shown in Figure 3. When
the cup is dragged beyond the edge of the table top, a non—
physical situation occurs. This could be resolved in two
ways. The system could try to place the cup where the
cursor ray hits a valid support surface. Since the ray may
still hit the table top, or perhaps end in a vertical surface,
this will not always lead to a useful answer. Thus we have

KEY: 0 Mouse positions on the screen
—-*> Motion made by user
- -> Relocation procedure _ _
- - -> Association procedure _ .- - " '

,.I

Figure 2: A selected cup (1) is dragged under a table. Vis—
ibility information is used to determine when it rises to the
tabletop (2); the association procedure modifies both the
object position and mouse cursor position (3).

140

KEY: 0 Mouse positions on the screen
——> Motion made by user
- -> Relocation procedure
- - '3' Association procedure , . - -‘

Relocation'Manifold

Figure 3: A selected cup (1) is dragged off a table’s support-
ing surface. The cup falls (2) onto the lower surface (3).

found that it makes more sense to give priority to the phys-
ical view of the world and drop the cup straight down from
the spot where it left the table top to the floor, which then
acts as its new support surface.

In all these situations we have an interesting interplay
between the teleological and the physical view of our virtual
world; visibility information and the intersection of cursor
ray with a particular objects are used as additional cues to
infer the intent of the user.

8.2 Mouse-Cursor Correspondence

Another key paradigm of the desired use: interface is that
the object should follow the cursor as directly as possible.
This principle needs to be violated necessarily in situations
such as the ones above, where establishing a physically valid
position may result in a dramatic (vertical) adjustment. As
long as the association procedure doesn’t add any motion
to the object, the relocation procedure usually maintains
correspondence. However, the association procedure has no
responsibility to maintain the connection between the mouse
pointer and the selection point. This then raises the issue
whether in such situations the cursor should stay where the
user last moved it, or should be “warped” along with the ex-
tra motion given to the object by the association procedure.
While it is generally preferable to keep the Cursor point at-
tached to the handle established at the selection point on

the object, this has the consequence that the cursor — and
the object itself - may disappear from the screen altogether.
Consider the situation in Figure 4 where the cup is moved
beyond the back end of the table, and where the cursor ray
hits no suitable support. The gravity procedure will drop the
cup behind the table and possibly out of sight, and the cur—
sor may vanish with it if the floor lies below the lower edge
of the viewport. If the fall happens too quickly, the user
might not know where the cup has gone and what should be
done to bring it back. We have introduced several remedies
for this unacceptable situation. First, the cup is made to
fall slowly, to imitate reality to some degree and to give the
user time to see what is happening. Second, the cursor never
disappears entirely from the screen; in the above situation it
would be clamped at the lower edge of the viewport. Third,
We maintain three axial lines through the selection point on
the object to give the user better insight into its position in
3-space. In the above case, the user would thus still see a
vertical line emanating from behind the table, giving a clear
one of where the cup currently lies.

137

140

To bring the object back into view, the user can move
the cursor so that the (invisible) cup moves into the bound-
ing box of the table, whereupon it jumps back to the table
top. Alternatively, the user may go to a new location fiom
where the cup is visible, and then continue moving it from
its current location on the floor behind the table. Finally,

if the object seems totally lost, it can readily be brought
into the knapsack while it is still selected, and from there it
can be placed directly at the current cursor position. A key-
board shortcut permits to “warp” the object directly from
any (possibly hidden) position to the cursor position with a.
single ctrl-click. This operation is also a very efficient way
to quickly populate a room with furniture. It takes three
mouse operations to place an object in a desired spot: one
click to select it, a ctrl—click to warp it into the neighborhood
of the desired spot, and one shift-click—and-drag operation to
fine-tune the final position.

9 Software Engineering Concerns

Providing desired object behaviors in 3D virtual worlds is in
principle not an easy task. Many nitty-gritty problems con-
cerning data structures and eficient representations must be
addressed in order to keep the environment truly interactive.
Creating a. cohesive framework of object associations is our
attempt at keeping this overhead concentrated in one place,
so that it can be amortized more easily by the systems pro-

grammer with each new object behavior introduced, and so
that the user can be given the flexibility of easily choosing
the types of behaviors for each object that are most appro-
priate for the manipulation tasks at hand.

The descriptions of the association and relocation proce
dures used in the Soda Hall walkthrough look very simple in
pseudo-code. It is important to note that the pseudo-code
is very close to the level of the actual C code used for the
implemented procedures. This is because the WALKTHRU
program system provides a rich set of libraries including a
complete geometric computation package that operates on
vectors, rays, points, planes, and other objects. It also pro—
vides the mechanisms to easily search the local area of an
object for other objects, to find the objects whose bound—
ing boxes contain a given point, and to quickly find the first
object intersected by some space ray. Thus, most lines of
pseudo code convert to a few lines of actual C code, making
implementation rather straightforward. In such an environ-
ment, object associations are most naturally implemented

KEY: 0 Mouse positions on the screen
—> Motion made by user
'- -> Relocation procedure
- ' -> Association procedure

Figure 4: A selected cup (1) is moved off the back of a table
(2), falling completely out of the view window (3). The
cursor is clamped to the lower edge of the window.

141

with additional C routines; the C language is more flexi-
ble and powerful than any higher level geometric scripting
language We could design ourselves.

10 Results

We have constructed a placement editor for real-time inter—
active walkthrough of large building databases. One of our
primary goals was to work with off-the—shelf input and dis—
play hardware, a goal which required the use of a software
framework to allow the user to perform unambiguous 3D
manipulation with 2D devices.

Our solution is based on object associations, a frame-
work that provides the flexibility to combine pseudo-physical
properties with convenient teleological behavior in a mix-
ture tailor-made for a particular application domain or a
special set of tasks. We have found that such a mixture of
the “magical” capabilities of geometric editing systems with
some partial simulations of real, physical behavior makes a
very attractive and easy—to-use editing system for 3D virtual
environments. The combination of goal-oriented alignments,
such as snap-dragging, with application specific physical be-
havior, such as gravity and solidity, reduce the degrees of
freedom the user has to deal with explicitly while maintain—
ing most of the convenience of a good geometrical drafting
program.

We found it to be practical to separate into two types
of procedures the mapping of 2D pointing to 3D motion
and the enforcement of the desired object placement be-
havior. These procedures are clearly defined and easy to
implement as small add-on functions in C. Geometric and
database toolkits allow high-level coding and ease of modi-
fication. Our object associations normally cause little com-
putational overhead to the WALKTHRU system. This is an
important concern, since keeping the response time of the
system fast and interactive is a crucial aspect of its usability
and user-friendliness [5]

The result is a technique that makes object placement
quick and accurate, works with “drag-and-drop” as well as
“cut and paste” interaction techniques, can provide desir-
able local object behavior and an automated grouping facil-
ity, and greatly reduces the need for multiple editing modes
in the user interface. The resulting environment is devoid
of fancy widgets, sophisticated measuring bars, or multiple
view windows. To the novice user it seem that not much is

happening — objects simply follow the mouse to reasonable,
realistic locations. And that is how ideally it should be: any
additional gimmick is an indication that the paradigm has
not yet been pushed to its full potential. Some issues remain
to be fully resolved, such as dealing with association loops,
but our prototype demonstrates that this approach provides
a simple, flexible, and practical approach to constructing
easy-to-use 3D manipulation interfaces.

A prototype implementation in the context of a model
of a building with more than 100 rooms has proven to be
attractive and has reduced by a large factor the tedium
of placing furniture and wall decorations. One of the au-
thors has constructed scenes of rather cluttered offices with

many pieces of furniture, fully loaded with books, pencils,
coffee cups, etc. in five to ten minutes (see Figure 02).
The implementation in our specific WALKEDIT applica-
tion domain required only 5 programmer-defined procedures
to fully characterize most of the desired object behavior.

138

141

References

[1] Barafl", D. Fast Contact Force Computation for Non—
penetrating Rigid Bodies. Proc. of SIGGRAPH ’94 (Or-
lando, FL, Jul. 1994), pp. 23-34.

[2] Barlow, M. Of Mice and 3D Input Devices. Computer-
Aided Engineering 12, 4 (Apr. 1993), pp. 54~56.

[3] Bier, EA. Snap-Dragging in Three Dimensions. Proc. of
”361990 Symposium an Interactive 30 Graphics (Snow-
bird, UT, Mar. 1990), pp. 193-204.

[4] Burning, A. The Programming Aspects of Thinglab,
a Constraint-Oriented Simulation Laboratory. ACM
Trans. on Programming Languages and Systems 3, 4,
pp. 353-387.

(5] Funkhouser, T.A. and Séquin, C.H. Adaptive Display
Algorithm for Interactive Frame Rates during Visual—
ization of Complex Virtual Environments. Proc. of SIG-
GRAPH ’93 (Anaheim, CA, Aug. 1993), pp. 247-254.

[6] Gleicher, M. Briar: A Constraint-Based Drawing Pro—
gram. Proc. of the ACM Conference on Human Factors
in Computing Systems — CHI ’92 (Monterey, CA, May
1992), pp. 661-662.

[7] Hahn, l.K. Realistic Animation of Rigid Bodies. Com-
puter Graphics 22, 4 (Aug. 1988), pp. 299-208.

[8] Helm, R., Huynh, T., Lassen, C., and Marriott, K. Lin-
ear Constraint Technology for Interactive Graphic Sys—
tems. Proc. of Graphics Interface ’92 (Vancouver, BC,
Canada, May 1992).

[9] Lin, M.C. and Canny, J.F. A fast algorithm for incre~
mental distance calculation. International Conference
on Robotics and Automation, IEEE (May 1991), pp.1008-1014.

[10] Myers, B.A. Creating User Interfaces using Program-
ming by Example, Visual Programming, and Con-
straints. ACM Trans. on Programming Languages and
Systems, 12, 2 (Apr. 1990), pp. 143-177.

[1]] Nelson, C. Juno, a Constraint-Based Graphics System.
Pmc. of SIGGRAPH ’85 (San Fransisco, CA, Jul. 22-
26, 1985). In Computer Graphics 19, 3 (Jul. 1985), pp.235—243.

[12] Nielson, G. and Olsen, D. Direct Manipulation Tech-
niques for 3D Objects Using 2D Locator Devices. Proc.
of the 1986 Workshop an Interactive 3-D Graphics
(Chapel Hill, NC, Oct. 1986), pp. 175-182.

[13] Smith, R.B. Experiences with the Alternate Reality
Kit: An Example of the Tension between Literalism
and Magic. IEEE Computer Graphics and Applications
7, 9 (Sep. 1957), pp. 42-50.

[14] Teller, S..l., and sequin, C.H. Visibility Preprocessing
for Interactive Walkthroughs. Pros. of SIGGRAPH ’91

' (Las Vegas, Nevada, Jul. 28-Aug. 2, 1991). In Computer
,-" Graphics, 25, 4 (Jul. 1991), pp. 61-69.

[15] Venolia, D. Facile 31) Direct Manipulation. Proc. of the
ACM Conference on Human Factors in Computing Sys-
tems _ CHI 93 (Amsterdam, Netherlands, Apr. 1993),
pp. 31—36.

142

CamDroid: A System for Implementing

Intelligent Camera Control

Steven M. Drucker

MIT Media Lab

David Zeltzer

MIT Research Laboratory for Electronics

Massachusetts Institute of Technology

Cambridge, MA. 02139, USA
smd@media.mit.edu

dz@vctrec.mit.edu

Abstract

In this paper, a method of encapsulating camera tasks into well
defined units called "camera modules” is described. Through this
encapsulation, camera modules can be programmed and
sequenced, and thus can be used as the underlying framework for
controlling the virtual camera in widely disparate types of graphi-
cal environments. Tivo examples of the camera framework are
shown: an agent which can film a conversation between two virtual
actors and a visual programming language for filming a virtual
football game.
Keywords: Virtual Environments, Camera Control, Task Level
Interfaces.

1. Introduction

Manipulating the viewpoint, or a synthetic camera, is fundamental
to any interface which must deal with a three dimensional graphi-
cal environment, ancl a number of articles have discussed various

aspects of the camera control problem in detail [3, 4, 5, 19]. Much
of this work, however, has focused on techniques for directly
manipulating the camera.

In our view, this is the source of much of the difficulty. Direct con-
trol of the six degrees of freedom (DOFs) of the camera (or more,
if field of view is included) is often problematic and forces the
human VE participant to attend to the interface and its "control
knobs" in addition to — or instead of — the goals and constraints
of the task at hand. In order to achieve task level interaction with a

computer-mediated graphical environment, these low—level, direct
controls, must be abstracted into higher level camera primitives,
and in turn, combined into even higher level interfaces. By clearly

specifying what specific tasks need to be accomplished at a partic-
ular unit of time, a wide variety of interfaces can be easily con—
structed. This technique has already been successfully applied to
interactions within a Virtual Museum [8].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise. or to republish, requires a fee
and/or specific permission. '
1995 Symposium on interactive SD Graphics, Monterey CA USA© 1995 ACM 0-89791-736-7/95/0004...$3.50

139

142

2. Related Work

Ware and Osborne [19] described several different metaphors for

exploring 3D environments including “scene in hand,” “eyeball in
hand,” and “flying vehicle control” metaphors. All of these use a 6
DOF input device to control the camera position in the virtual envi—
ronment. They discovered that flying vehicle control was more use—
ful when dealing with enclosed spaces, and the “scene in hand"
metaphor was useful in looking at a single object. Any of these
metaphors can be easily implemented in our system.

Mackinlay et at [16] describe techniques for scaling camera motion
when moving through virtual spaces, so that, for example, users
can always maintain precise control of the camera when approach-
ing objects of interest. Again, it is possible to implement these
techniques using our camera modules.

Brooks [3,4] discusses several methods for using instrumented
mechanical devices such as stationary bicycles and treadmills to
enable human VE participants to move through virtual worlds
using natural body motions and gestures. Work at Chapel Hill, has,
of course, focused for some time on the architectural “walk-

through," and one can argue that such direct manipulation devices
make good sense for this application. While the same may be said
for the virtual museum, it is easy to think of circumstances — such
as reviewing a list of paintings —- in which it is not appropriate to
require the human participant to physically walk or ride a bicycle.
At times, one may wish to interact with topological or temporal
abstractions. rather than the spatial. Nevertheless, our camera mod-
ules will accept data from arbitrary input devices as appropriate.

Blinn [2] suggested several modes of camera specification based
on a description of what should be placed in the frame rather than

just describing where the camera should be and where it should be
aimed.

Phillips et al suggest some methods for automatic viewing control
[18]. They primarily use the “camera in hand” metaphor for view-
ing human figures in the Jackm system, and provide automatic fea-
tures for maintaining smooth visual transitions and avoiding
viewing obstructions. They do not deal with the problems of navi—
gation, exploration or presentation.

143

Karp and Feiner describe a system for generating automatic pre-
sentations, but they do not consider interactive control of the cam-
era [12].

Gleicher and Witkin [10] describe a system for controlling the
movement of a camera based on the screen-space projection of an
object, but their system works primarily for manipulation tasks.

Our own prior work attempted to establish a procedural framewurk
for controlling cameras {7]. Problems in constructing generalizable
procedures led to the current, constraint-based framework
described here. Although this paper does not concentrate on meth-
ods for satisfying multiple constraints on the camera position, this
is an important part of the overall camera framework we outline
here. For a more complete reference, see [9]. An earlier form of the
current system was applied to the domain of a Virtual Museum [8].

3. CamDroid System Design

This framework is a formal specification for many different types
of camera control. The central notion of this framework is that

camera placement and movement is usually done for particular rea-
sons, and that those reasons can be expressed formally as a number
of primitives or constraints on the camera parameters. We can iden-
tity these constraints based on analyses of the tasks required in the
specific job at hand. By analyzing a wide enough variety of tasks, a
large base of primitives can be easily drawn upon to be incorpo-
rated into a particular task—specific interface.

3.1 Camera Modules

A camera module represents an encapsulation of the constraints
and a transformation of specific user controls over the duration that
a specific module is active. A complete network of camera modules
with branching conditions between modules incorporates user con—
trol, constraints, and response to changing conditions in the envi-
ronment over time. -

Our concept of a camera module is similar to the concept of ashat
in cinematography. A shot represents the portion of time between
the starting and stopping of filming a particular scene. Therefore a
shot represents continuity of all the camera parameters over that
period of time. The unit of a single camera module requires an
additional level of continuity, that of continuity of control of the
camera. This requirement is added because of the ability in com-
puter graphics to identically match the camera parameters on either
side of a cut, blurring the distinction of what makes up two sepa—
rate shots. Imagine that the camera is initially pointing at character
A and following him as he moves around the environment. The
camera then pans to character B and follows her for a period of
time. Finally the camera pans back to character A. In cinematic
terms, this would be a single 5th since there was continuity in the
camera parameters over the entire period. In our terms, this would
be broken down into four separate modules. The first module’s task
is to follow character A. The second module‘s task would be to pan
from A to B in a specified amount of time. The third module’s task
would be to follow B. And finally the last module’s task would be
to pan back from B to A. The notion of breaking this cinematic shot
into 4 modules does not Specify implementation, but rather a for-

140

143

ma] description of the goals or constraints on the camera for each
period of time.

As shown in figure 1, the generic module contains the following
components:

Figure 1: Generic camera module containing a controller,
an initializer, a constraint list, and local state

- the local state vector. This must always contain the camera
position, camera view normal, camera “up" vector, and field
of view. State can also contain values for the camera parame-
ter derivatives, a value for time, or other local information

specific to the operation of that module. While the module is
active, the state's camera parameters are output to the ren—
derer.

- initializer. This is a routine that is run upon activation of a
module. Typical initial conditions are to set up the camera
state based on a previous module's state.

- controller. This component translates user inputs either
directly into the camera state or into constraints. There can be
at most one controller per module.

- constraints to be satisfied during the time period that the mod-
ule is active, Some examples of constraints are as follows:

' maintain the camera's up vector to align with world up.
' maintain height relative to the ground
- maintain the camera's gaze (i.e. view normal) toward a

specified object
- make sure a certain object appears on the screen.
- make sure that several objects appear on the screen
- zoom in as much as possible

In this system, the constraint list can be viewed simply as a black
box that produces values for some DOFs of the camera. The con-
straint solver combines these constraints using a constrained opti-
mizing solver to come up with the final camera parameters for a
particular module. The camera optimizer is discussed extensively
in [9]. Some constraints directly produce values for a degree of
freedom, for example, specifying the up vector for the camera or
the height of the camera. Some involve calculations that might pro-
duce multiple DOFs, such as adjusting the view normal of the cam-
era to-look at a particular object. Some, like a path planning
constraint discussed in [8] are quite complicated, and generate a
series of DOFs over time through the environment based on an ini-
tial and final position.

144

App] ieluou
SpecificProcesses!

Object Interfacets)

Applies tron
SpecificCamera

Interfacem

Figure 2: Overall CamDroid System

3.2 The CamDroid System

The overall system for the examples given in this paper is shown in
figure 2.

The CamDroid System is an extension to the 3D virtual environ-
ment software testbed developed at MIT [6]. The system is struc-

tured this way‘ to emphasize the division between the virtual
environment database, the camera framework, and the interface

that provides access to both. The CamDroid system contains the
following elements.

0 A general interpreter that can run pro-specified scripts or man-
age user input. The interpreter is an important part in develop—
ing the entire runtime system. Currently the interpreter used is
TCL with the interface widgets created with TK [17]. Many
commands have been embedded in the system including the

ability to do dynamic simulation, visibility calculations, finite
element simulation, matrix computations, and various data-
base inquiries. By using an embedded interpreter we can do
rapid prototyping of a virtual environment without sacrificing
too much performance since a great deal of the system can
still be written in a low level language like C. The addition of

TK provides convenient creation of interface widgets and
interprocess communication. This is especially important
because some processes might need to perform computation
intensive parts of the algorithms; they can be offloaded onto
separate machines.

- A built-in tenderer. This subsystem can use either the hard-
ware of a graphics workstation (currently 8615 and HPs are
supported), or software to create a high quality antialiased
image.

- An object database for a particular environment.
- Camera modules. Described in the previous section. Essen-

tially, they encapsulate the behavior of the camera for differ-
ent styles of interaction. They are prespecified by the user and
associated with various interface widgets. Several widgets can
be connected to several camera modules. The currently active
camera module handles all user inputs and attempts to satisfy
all the constraints contained within the module, in order to

compute camera parameters which will be passed to the ren-
derer when creating the final image. Currently, only one cam-
era module is active at any one time, though if there were

multiple viewports, each of them could be assigned a unique

141

144

camera.

4. Example: Filming a conversation

The interface for the conversation filming example is based on the
construction of a software agent which perceives changes in lim-
ited aspects of the environments and uses a number of primitives to
implement agent behaviors. The sensors detect movements of
objects within the environment and can perceive which character is
designated to be talking at any moment.

in general, the position of the camera should be based on conven—
tional techniques that have been established in filming a conversa-
tion. Several books have dissected conversations and come up with

simplified rules for an effective presentation [1, 14]. The conversa-
tion filmer encapsulates these rules into camera modules which the
software agent calls upon to construct (or assist a director in the
construction ot) a film sequence.

4.1 Implementation

The placement of the camera is based on the position of the two
people having the conversation (see figure 3). However, more
important than placing the camera in the approximate geometric
relationship shown in figure 3 is the positioning of the camera
based on what is being framed within the image.

at

J

Figure 3: Filming a conversation {KatzSS}.

'1

h.
‘4

Constraints for an over—the—shoulder shot:

- The height of the character facing the view should be approx-
imately 1/2 the size of the frame.

- The person facing the View should be at about the 2/3 line on
the screen.

- The person facing away should be at about the 1/3 line on thescreen.

' The camera should be aligned with the world up.
- The field of view should be between 20 and 60 degrees.
. The camera view should be as close to facing directly on to

the character facing the viewer as possible.

145

 CAMERA MODULE 1: Over Shoulder of Character #2 :1 Character #1
OVER SHOULDER

CHARA I." R #2 [D #1

orbit controller

Character 2

Over Shoulder of Character #1 at Character #2 CAMERA MODULE 2:

OVER SHOULDER
orbit controller CHAR t . l to #2

speakingno
medium closeup NJ character

#1 screen framingCD
I look into gaze #1behind character #2 24G characler

#2 screen framing

an
align to world up

Character 1
CID

99 1].! character
medium closeup *1 screen framingno

* look into gaze #2 m‘hfimm
behind character #1 #1 screen framing

no
align to world up

Figure 4: TWO interconnected camera modules for filming a conversation

Constraints for a corresponding over-the-shoulder shot:

- The same constraints as described above but the people
should not switch sides of the screen; therefore the person fac-
ing towards the screen should be placed at the 113 line and the
person facing away should be placed at the 2/3 line.

Figure 3 can be used to find the initial positions of the cameras if
necessary, but the constraint solver contained within each camera
module makes sure that the composition of the screen is as desired.

Figure 4 shows how two camera modules can be connected to auto—
matically film a conversation.

A more complicated combination of camea modules can be incor-

porated as the behaviors of a simple software agent. The agent con-
tains a rudimentary reactive planner which pairs camera behaviors
(combination of camera primitives) in reSponse to sensed data. The
agent has two primary sets of camera behaviors: one for when

character 1 is speaking; and one for when character 2 is speaking.
The agent needs to have sensors which can “detect” who is speak-
ing and direct a camera module from the desired set of behaviors to

become active. Since the modules necessarily keep track of the
positions of the characters in the environment. the simulated actors
can move about while the proper screen composition is maintained.

Bub-vim {or Charon.“ l talking But-avian for Character 1 DIM um» flflhu-(Infl HRHQI—(flpflflnm :2

Dust—k

ants "mum at am gnomes-um:

Figure 5: Conversation filming agent and its behaviors.

Figure 6 shows an over—the-shoulder shot automatically generated
by the conversation filming agent.

142

145

5. Example: the Virtual Football Game

The virtual football game was chosen as an example because there
already exists a methodology for filming football games that can be
called upon as a reference for comparing the controls and resultant
output of the virtual football game. Also, the temporal flow of the

football game is convenient since it contm'ns starting and stopping
points, specific kinds of choreographed movements. and easily
identifiable participants. A visual programming language for com-
bining camera primitives into camera behaviors was explored.
Finally, an interface. on top of the visual programming language,
based directly on the way that a conventional football game is
filmed, was developed.

It is important to note that there are significant differences between

the virtual football game and filming a real football game.
Although attempts were made to make the virtual football game
realistic— three-dimensional video images of players Were incor-
porated and football plays were based on real plays [15] —this vir-
tual football game is intended to be a testbed for intelligent camera
control rather than a portrayal of a real football game.

5:1-Implementation
Figure 7 shows the visual programming environment for the cam-
era modules. Similar in spirit to Haeberli’s ConMan [11] or Kass‘s
G0 [13], the system allows the user to connect camera modules,

146

and drag and drop initial conditions and constraints, in order to
control the output of the CamDroid system. The currently active
camera module's camera state is used to render the view of the

graphical environment. Modules can be connected together by
drawing a line from one module to the next. A boolean expression
can then be added to the connector to indicate when control should
be shifted from one module to the connected module. It is possible

to set up multiple branches from a single module. At each frame.
the branching conditions are evaluated and control is passed to the
first module whose branching condition evaluates to TRUE.

Constraints can be instanced from existing constraints, or new ones
can be created and the constraint functions can be entered via a text
editor. Information for individual constraints can be entered via the

keyboard or mouse clicks on the screen. When constraints are
dragged into a module, all the constraints in the module are
included during optimization. Constraints may also be grouped so
that slightly higher level behaviors composed of a group of low
level primitives may be dragged directly into a camera module.

initial conditions can be dragged into the modules to force the min-
imization to start from those conditions. Initial conditions can be

retrieved at any time from the current state of the camera. Camera
modules can also be indicated to use the current state to begin opti-
mization when control is passed to them from other modules.

Controllers can also be instanced from a palette of existing control—
lers, or new ones created and their functions entered via a text edi-
tor. If a controller is dragged into the module. it will translate the
actions of the user subject to the constraints within the module. For

example, a controller that will orbit about an object may be added
to a module which constrains the camera's up vector to align with
the world up vector.

Camera Module 1

fié definefi 'pm frying vehicle

1! R
wide anal! * “ain’t-fixcame amen fluid 922:1 cam

GE) 69 ='*
GE) track bafia crack :Ocolvn'

align qua tuck qt:GE)
95 lock {w

lcfik roll 99

over Lhi ihouldIr

Figure 7: Visual Programming Environment for camera
modules

The end—user does not necessarily wish to be concerned with the

visual programming language for camera control. An interface that
can be connected to the representation used for the visual program—

ming language is shown in Figure 7. The interface provides a
mechanism for setting the positions and movements of the players
within the environment. as well as a way to control the virtual cam-

eras. Players can be selected and new paths drawn for them at any
time. The players will move along their paths in response to click-

143

146

ing on the appropriate buttons of the football play controller.
Passes can be indicated by selecting the appropriate players at the
appropriate time step and pressing the pass button on the play con-
troller.

Figure 8: The virtual football game interface

The user can also select or move any of the camera icons and the
viewpoint is immediately shifted to that of the camera. Essentially,
pressing one of the camera icons activates a camera module that
has already been set up with initial conditions and constraints for
that camera. Cameras can be made to track individual characters or

the ball by selecting the players with the middle mouse button.
This automatically adds a tracking constraint to the currently active
module. If multiple players are selected, then the camera attempts
to keep both players within the frame at the same time by adding
multiple tracking constraints. The image can currently be fine—
tunecl by adjusting the constraints within the visual programming
environment. A more complete interface would provide more

bridges between the actions of the user on the end—user interface
and the visual programming language.

Figure 9: View from "game camera” of virtual football
game.

147

6. Results

We have implemented a variety of applications from a disparate set
of visual domains, including the virtual museum {8], a mission
planner [21], and the conversation and football game described in
this paper. While formal evaluations are notoriously difficult, we
did enlist the help of domain experts who could each observe and
comment on the applications we have implemented. For the con-
versation agent, our domain expert was MIT Professor Glorianna
Davenport, in her capacity as an accomplished documentary film-
maker. For the virtual football game, we consulted with Eric Eisen-
dratt, a sports director for WBZ-TV, Boston. In addition, MIT
Professor Torn Sheridan was an invaluable source of expertise on
teleoperation and supervisory control. A thorough discussion of the
applications, including comments of the domain experts, can be
found in [9].

7. Summary

A method of encapsulating camera tasks into well defined units
called “camera modules” has been described. Through this encap-
sulation, camera modules can be designed which can aid a user in a
wide range of interaction with 3D graphical environments. The
CamDroid system uses this encapsulation, along with constrained
optimization techniques and visual programming to greatly ease
the development of 3D interfaces. T‘wo interfaces to distinctly dif-
ferent environments have been demonstrated in this paper.

8. Acknowledgements

This work was supported in part by ARPAfRome Laborato-
ries, NHK (Japan Broadcasting Co.), the Office of Naval

Research, and equipment gifts from Apple Computer,
Hewlett-Packard, and Silicon Graphics.

9. References

1. Arijon, D., Grammar of the Film Language. 1976, Los Angeles:
Silman—James Press.

2. Blinn, J., Where am I? What am 1 looking at? IEEE Computer
Graphics and Applications, July 1988.

3. Brooks, F.P., Jr. Grasping Reality Through Illusion -- Interactive
Graphics Serving Science. Proc. CHI '88. May 15-19, 1988.

4. Brooks, F.P., Ir. Walkthrough -- A Dynamic Graphics System for
Simulating Virtual Buildings. Proc. 1986 ACM Workshop on Inter-
active 3D Graphics. October 23-24, 1986.

5. Chapman, D. and C. Ware. Manipulating the Future: Predictor
Based Feedback for Velocity Control in Virtual Environment Navi-
gation . Proc. 1992 Symposium on Interactive 3D Graphics. 1992.
Cambridge MA: ACM Press.

6. Chen, D. T, and D. Zeltzer. The 3d Virtual Environment and

Dynamic Simulation System. Cambridge MA, Technical Memo.
MIT Media Lab. August, 1992.

144

147

7 Drucker, S., T. Galyean, and D. Zeltzer. CINEMA: A System for
Procedural Camera Movements. Proc. I992 Symposium on Inter-
active 3D Graphics. 1992. Cambridge MA: ACM Press.

8. Drucker, S. M. and D. Zeitzer. Intelligent Camera Control for
Virtual Environments. Graphics Interface '94. 1994.

9. Drucker, S.M Intelligent Camera Control for Graphical Envi—
ronments. PhD. Thesis. MIT Media Lab. 1994.

10. Gleicher, M..A.W. Through-the-Lens Camera Control. Com-
puter Graphics. 26(2): pp. 331-340. 1992

11. Haeberli, PE, ConMan: A Visual Programming Language for
Interactive Graphics. Computer Graphics. 22(4): pp. 103-111.
1988

12. Karp, P. and SK. Feiner. Issues in the automated generation of
animated presentations. Graphics Interface ’90. 1990.

13. Kass, M. GO: A Graphical Optimizer. in ACM SIGGRAPH 91
Course Notes, Introduction to Physically Based Modeling. July 28-
August 2, 1991. Las Vegas NM.

14. Katz. S,D., Film Directing Shot by Shot: Wsuolising from Con-
cept to Screen. 1991, Studio City, CA: Michael Weise Productions.

15. Korch, R. The Ofi‘icial Pro Football Hall of Fame. New York,
Simon & Schuster, Inc. 1990.

16. Mackinlay, J. S., S. Card, et a1. Rapid Controlled Movement
Through a Virtual 3d Workspace. Computer Graphics 24(4): 171—
176. 1990.

17. Ousterhout, J. K. Tcl: An Embeddable Command Language.
Proc. 1990 Winter USENIX Conference. 1990.

18. Philips, C.B.N.I.B., John Granien'. Automatic Viewing Control
for 3D Direct Manipulation. Proc. 1992 Symposium on Interactive
3D Graphics. 1992. Cambridge, MA.: ACM Press.

19. Ware, C. and S. Osborn. Exploration and Virtual Camera Con-
trol in Virtual Three Dimensional Environments. Proc. 1990 Symv
posium on Interactive 3D Graphics, Snowbird, Utah, 1990. ACM
Press.

20. Zeltzer, D. Autonomy. Interaction and Presence. Presence:
Teleopemtors and Virtual Environments 1(1): 127—132. March,
1992.

21. Zeltzer, D. and S. Drucker . A Virtual Environment System for
Mission Planning. Proc. 1992 IMAGE VI Conference, Phoenix
AZ.Ju1y, 1992.

148

3D Painting on Scanned Surfaces

Maneesh Agrawala

Andrew C. Beers

Marc Levoy

Computer Science Department

Stanford University

Abstract

We present an intuitive interface for painting on unparameterized
three-dimensional polygon meshes using a 6D Polhemus space
tracker as an input device. Given a physical object we first acquire
its surface geometry using a Cyberware scanner. We then treat the
sensor of the space tracker as a paintbrush. As we move the sensor
over the surface of the physical object we color the corresponding
locations on the scanned mesh. The physica] object provides a
natural force—feedback guide for painting on the mesh, making it
intuitive and easy to accurately place color on the mesh.

CR categories: 1.3.6 [Computer Graphics]: Methodology - Inter-
action Techniques. I.3.7 [Computer Graphics]: 3D Graphics and
Realism ~ Color and texture; Visible surface algorithms.

Additional keywords: 3D painting, painting systems, direct ma-
nipulation, user—interface.

1 Introduction

Painting systems are a very common tool for computer graphics
and have been well studied for painting on 2D surfaces. While
many two dimensional techniques can be applied to painting on
3D surfaces, there are issues that are unique to 3D object painting.
The most important aspect in developing a SD painting system is
maintaining an intuitive, precise and responsive interface. It is
crucial that the user be able to place color on the surface mesh
easily and accurately,

Many computer graphics studios (including Pixar and InduS»
trial Light and Magic) have developed their own 3D paint pro-
grams which use a mouse as the input device. These painting
systems are often used to paint textures onto the 3D computer
graphics models which they will then animate. The user paints on
some two-dimensional image representing the three dimensional
surface and the program applies an appropriate transformation to
convert the 2D screen space mouse movements into movements
of a virtual paintbrush over the 3D mesh. Hanrahan and I-laeberli
describe such a system for painting on three-dimensional param-
eterized meshes using a two-dimensional input device in [5]. The
main feature of this system, and one which we retain in ours. is

Permission to copy without fee all or part 01 this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a tee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics. Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

145

148

that painting is done directly on the mesh in a WYSiWYG (What
You See Is What You Get) fashion. The drawback of this system
is that the transformation from the 2D screen space to the 3D
mesh may not always be immediately clear

This type of system could be extended to use a 3D input
device. Movements of a sensor through space would map directly
to movements of the virtual paintbrush. Such a system might be
difficult to use, however, because there would be no way to “feel"
when the paintbrush is touching the mesh surface. This problem
could be solved by providing the user with force-feedback, the
importance of which is well recognized (see [2], [10], [4]).

In our system, 3D computer models are built from physical ob-
jects, so these objects are available to serve as a guide for painting.
As 3D computer graphics applications have become widespread,
the demand for SD models has lead to the development of 3D
scanners which can scan the surface geometry of a physical ob-
ject, Turk and Levoy have recently developed a technique for
taking several scans of an object and "zippering" them together
to create a complete surface mesh for the object [11]. If a sur-
face mesh has been derived from a physical object in this way,

the quickest, most intuitive method for specifying where to paint
the mesh would be to point to the corresponding location on the
surface of the physical object.

Our approach is based on this idea. Given a physical object
we scan its surface geometry. We then use a 6D Polhemus space
tracker as an input device to the painting system. As we move the
sensor of the tracker over die surface of the physical object, we

paint the corresponding locations on the surface of the scanned
mesh. The sensor of the space tracker can be thought of as a
paintbrush, providing a familiar metaphor for understanding how
to use our system.

The remainder of this paper is organized as follows. Section
2 describes the organization of our painting system. Section 3
details how our system represents meshes internally. Section 4
discusses the algorithms and methods we use for painting, reg-
istration, and combating registration errors. Our results are pre-
sented in section 5. Section 6 discusses possible future directions
of this work, and section 7 summarizes our conclusions about our
system.

2 System Configuration

,' The block diagram in figure 1 depicts our overall system con-
figuration. Before we can paint, we must create a mesh represent‘
ing a physical object. We use a Cyberware laser range scanner
to take multiple scans of an object and combine them into a sin
gle mesh using the zipper software. The Polhemus Fastrak space

149

SGI Workstation

Object |I

\ Polhemus -'I
Fastrak ‘ ‘ ’

Figure 1: 3D Painting System Configuration

tracking system tracks the location of a stylus as it is moved over
the physical object. The painter application maps these stylus
positions to positions on the zippered mesh.

The Cyberware Scanner uses optical triangulation to determine
the distance of points on the object from the scanning system. A
sheet of laser light is emitted by the scanner. As the object is
passed through this sheet of light, a camera, located at a known
position and orientation within the scanner, watches the object.
The scanner triangulates the depths of points along the intersection
of the object and the laser sheet based on the image captured by
the camera. As the object passes through the laser sheet, a mesh
of points representing the object as seen from this point of view
is formed.

The Polhemus Fastrak tracking system reports the 3D position
and orientation of a stylus used to select the area on the mesh
to paint. A field generator located near the object emits an AC
magnetic field which is detected by sensors in the stylus to deter—
mine the stylus’s position and orientation with respect to the field
generator. The painter application continously polls the tracker
for the stylus' poisiton and orientation at about 30 Hertz.

3 Data Representation

Previous work in 3D painting has only allowed painting on param-
eterized meshes, or on meshes that have texture coordinates previ-
ously assigned at each mesh point. Paint or surface properties ap-
plied to these meshes can be stored in a texture map, in the former
case using the parameter values at points on the mesh as texture
coordinates. While Maillot, Yahia, and Verroust have developed
a method for parametenzing smooth surface representations[9],
there are no general techniques for parameterizing arbitrary sur-
face meshes.

Although a single Cyberware scan results in a parameterized
triangle mesh, suitable for use by other 3D painting systems, such
a mesh is generally not a complete description of the object. This
incompleteness is due to self-occlusions on the object, making
some points on the object invisible to a rotational scan. By com—
bining data from multiple scans, Turk and Levoy's zippering algo—
rithm [l 1] produces a more complete mesh for the object. How—
ever. the resulting mesh is irregular and unparameterized, so we
lose the ability to store surface characteristics in texture maps.

To paint on unparameterized meshes, we store surface charac-
teristics (e.g. color and lighting model coefficients) at each mesh
vertex. When painting on the object, these surface characteris-
tics are changed only at the mesh vertices. We render the mesh

146

149

using the SGI hardware Gouraud shading to interpolate the color
between the vertices of triangles composing the mesh. Because
we do not require regular or parameterized meshes, our algo—
rithm works with meshes acquired from many different kinds of
scanning technologies, including hand digitizers, CT scanners and
MRI scanners. CT and MRI scanners produce volume data rather
than a surface mesh and so an algorithm like marching cubes [8]
would be required to convert the volume data set into a suitable
mesh representation.

Since we only have color information at the vertices of the
mesh polygons, the polygons should be small enough to avoid
sampling artifacts when displaying the mesh. As Cook, Carpenter
and Catmull point out in their description of the REYES rendering
architecture [3], this is possible when polygons are on the order
of a half pixel in size. Due to memory constraints we typically
paint on meshes in which triangles are about the size of a pixel
when the mesh is displayed at a “reasonable” size (e. g. a quarter
of the size of the monitor). We have implemented controls for
sealing the display of the mesh so that it is always possible to
reduce its display size to achieve subpixel color accuracy.

Since we would like to use a mesh with small triangles, the
number of triangles in a typical mesh may be quite large. We
therefore need to augment the triangle mesh with a spatial data
representation that will allow us to find mesh vertices quickly.
To facilitate this, we uniformly voxelize space. Associated with
each voxel is a list of vertices on the mesh that are contained in

that voxel. Storing these voxels in a hash table gives us nearly
constant-time access to any vertex on the mesh, given a point
close to it. Altematively we could have used a hierarchical repre-
sentation such as an octree for storing the spatial representation.

We do not use a simple 3D array indexed by voxel location
because most meshes will contain large empty regions in voxel
space. By using a hash table, we do not explicitly store the empty
regions of voxel space, which results in a tremendous reduction
in memory usage.

4 Methods

4.1 Object—mesh registration
When painting an object with our system, the user places the

object on a table in front of the workstation. Before we can paint
the mesh, we need to determine a transformation between po-
sitions reported by the tracking system in the coordinate space
of the physical object and points in the coordinate space of the
mesh. We would also like this transformation to ensure that rela-

tive orientations of the physical stylus and the virtual paintbrush
are the same. We can accomplish this by finding an affine, shear~
free transformation between the two coordinate spaces. We use a
method deveIOped by Horn [6] for obtaining such a transforma-
tion.

Horn’s method determines a translation, rotation, and scaling
that will align points in one coordinate system to corresponding
points in another coordinate system, while minimizing the total
distance between the sets of points. The two sets of points may
be collected as follows. First. the mouse is used to select a point
on the mesh. Then, the stylus is used to point to the corresponding
point on the object, thus specifying a correspondence pair. Horn’s
method requires three or more of these correspondence pairs to
determine the registration transformation.

There are several sources of error in collecting the two sets
ofipoints including inaccuracies in the tracking system, and in
accuracies in matching the points on the mesh to points on the
Object. However, as the number of correspondence pairs is in-
creased, small alignment errors in individual pairs are averaged
out and the total alignment error decreases. Unfortunately, speci—
tying correspondence pairs is tedious and time consuming.

150

Sensor Sample Points

Figure 2: A large set of sensor sample points is collected by
running the sensor of the space tracker randomly over the surface
of the object. These sensor points are roughly hand—aligned with
the mesh, and then Best’s algorithm is used to obtain a more
precise alignment.

An algorithm developed by Besl[1] overcomes this problem
Although two sets of points are still required, it is not necessary
to specify the point-to-point correspondences between them. We
collect a large set of points in tracker space by sampling the po-
sition of the stylus while randomly moving it across the surface
of the physical object. We use a subset of the mesh vertices
as the other set of points. Besl’s algorithm determines the best
transformation between the two sets of points by iterating on the
following steps. First an approximate correspondence between
the two sets of points is computed, based on their proximity in
space. Then, Horn’s method is applied to these pairs of points
to align them more closely. On each successive iteration of the
algorithm, the proximity-based correspondence improves, which
in turn improves the transformation generated by Horn's method.

Besl’s algorithm is guaranteed only to find a locally optimal
alignment, not a globally optimal one. Therefore, we need to
ensure that the sensor samples and the mesh are initially aligned
such that the globally optimal solution can be found. The ini-
tial alignment is done by hand as (see figure 2), and is often a
difficult and time consuming process. To speed this process, we
have added the ability to easily generate a rough alignment of the
sensor samples to the mesh. Once we have collected the large
set of sensor samples, we ask the user to specify three or more
correspondence pairs as described at the beginning of this section.
From these pairs we calculate the scale factor between the sensor
samples and the mesh. We also translate the centroid of the sensor
correspondence points so that it is aligned with the centroid of the
mesh. This produces a rough alignment of the sensor samples to
the mesh which can then be hand—refined to produce the initial
alignment required for Besl’s algorithm.

Our registration scheme is summarized as follows:

1. The user collects many samples of the physical object's
surface by running the stylus over the object.

2. The user selects three or more points on the mesh, and points
to their corresponding locations on the physical object with
the stylus. These correspondence pairs are used to compute
a rough alignment of the sensor samples collected during
step 1 to the mesh.

3. if necessary, the user makes further hand adjustments to the
rough alignment of the sensor samples to the mesh using
the mouse to bring them into initial alignment.

4. Besl‘s algorithm is run to refine the alignment of the sensor
samples to the mesh.

147

150

Figure 3: Paint is applied to all mesh vertices falling within the
brush volume. Here the vertices in the dark gray region are
painted.

4.2 Painting

To paint a three-dimensional surface we must determine where
new paint is to be applied. The tip of our paintbrush has a 3D
shape associated with it which defines the volume within which
paint is applied (see figure 3). In general this brush volume can
be any 3D shape. The most straightforward painting algorithm
would be to paint every vertex that falls within the brush volume.
We can think of this approach as filling the entire brush volume
with paint using a 3D scan—line algorithm to step through all the
voxels within the volume. The drawback of this approach is that
the mesh is likely to be relatively flat within this volume, therefore
not filling much of it. This volume—fill algorithm would search
through many empty voxels.

Our approach is to first find a vertex on the mesh that is within
the brush volume. We then perform a breadth»first flood fill of the
mesh from this seed point. The vertex on the mesh closest to the
ray extended along the brush direction from the sensor position is
used as the seed, as depicted in figure 4.

Although we poll the tracker for the position of its sensor at
about 30 Hertz, the sampling rate is not fast enough to produce a
smooth stroke as the brush is swept along the object. For the paint
to be applied smoothly, without gaps. we need to fill the surface
with paint along a stroke. The flood fill idea can be modified to
account for this, coloring vertices within the volume defined by
sweeping the 3D brush shape along a stroke connecting successive
sensor positions. In our system, we connect successive positions
using a linear stroke. Thus, for a sphere brush we would sweep
out a cylindrical volume with spherical end caps along the stroke.

One problem for the flood fill algorithm is that it can not cor-
rectly handle all surface geometries. Consider a surface with a
small indentation. If we place the brush directly above the inden—
tation we should be able to paint the surfaces on either side of it.
However, the flood fill brush will only paint one side of it, because
it floods out along the mesh surface from the seed point as shown
in figure 5(A). This problem could be prevented by performing a
volume-fill within the brush geometry, as in figure 4, rather than

flood filling out from the seed point along the mesh Surface. In
practice, we have never encountered a surface geometry for which
theisurface flood fill causes noticeable anomalies.

Another problem with this algorithm is that mesh triangles
which are occluded to the paintbrush may be painted. The correct
solution to the problem would be to do a complete visibility test
before painting a vertex to ensure that the vertex was visible to
the brush. Because this test is very expensive and would hinder
interactive performance. we only check that the dot product of the

151

Flood fill along

mesh.

Figure 4: Two methods for determining where to apply paint
within a spherical brush volume. The scanwline algorithm walks
through every voxel within the brush volume The flood-fill al-
gorithm extends a ray from the brush tip to the surface and then
floods paint out along the surface.

vertex normal and the brush orientation is negative. This ensures
that we only paint vertices that are facing the brush, but there
are still some cases where we might paint occluded triangles. as
shown in figure 5(B). In this case the flood fill seed point falls on
the left side of Peak B. As color floods out from the seed point
along the left side of Peak B, points that are occluded by Peak
A will be painted. The volume-fill approach would be no better
than the fiood-fil] approach at handling this mesh geometry. Both
methods fail because they do not check for occlusions between
the tip of the brush and the mesh surface.

With hundreds of thousands of polygons in a typical mesh it
would be impossible to redraw the entire mesh after each paint
stroke and maintain interactive performance. Instead, we only
redraw the triangles in which at least one vertex was painted. By
using the surface flood fill algorithm in combination with this lazy
update scheme we can interactively paint large meshes.

4.3 Brush effects

We have implemented several different brush volumes including
a sphere, cylinder and cone, and several different brush effects.
The sphere brush paints all vertices within a sphere centered at
the brush tip. The cylinder paints all vertices within a cylinder
centered at the brush tip and oriented in the direction of the brush.
The cylinder brush is typically used to fill large areas by stroking
it lengthwise along the surface. The cone brush paints all vertices
within a cone, with its apex at the brush tip and oriented in the
direction of the brush. By tilting this brush as we paint we can
achieve the effect of painting with an airbrush.

Another effect we implemented was to modulate the appli-
cation of color using 3D solid textures and 2D image textures.
To apply solid textures, we use the vertex location as an index
into a texture map and apply the corresponding texture color. For
2D textures we define a plane on which the texture resides and
perform an orthogonal projection of the unparameten‘zed 3D mesh
points into the texture plane. This gives a mapping from the mesh
points into the texture. The user can control the position, orien-
tation and scale of the 2D texture plane through a mouse-driven
interface.

We have also implemented several compositing filters that are
applied to the paint as it is laid down on the surface. The simplest
filter is the “over" filter. Using this filter, the paint from the

148

151

brush replaces the paint at each affected vertex. The “blend”
filter has a slider-selectable parameter a and performs standard
alpha blending between the old mesh color and the new paint
color. The “distance” filter is a special case of the blend filter for
which alpha is proportional to the distance of each affected vertex
from the tip of the brush.

Each of the brushes we have described so far only affects the
surface characteristics of the mesh. We can also change the ge-
ometry of the mesh using a displacement brush. Our displacement
brush pulls mesh vertices within the brush geometry in the direc-
tion of the brush. Although this is an effective way to change the
surface geometry, it undermines the use of the physical object as
a painting guide. In practice, however, we have found that if we
apply small displacements, the physical object can still be used as
a guide. A problem with the current implementation is that it is
possible to produce objectionably long, thin triangles as we pull
the surface. We could alleviate this problem by re-polygonalizing
the triangles as we elongate them during the displacement.

4.4 Combating registration errors
The accuracy of the registration between the sensor and the mesh
depends on several factors. The Polhemus Fastrak is only accu-
rate to within 0.03 inches, and the magnetic field generated by the
Polhemus is distorted by metallic objects as well as other electro-
magnetic fields in the work area. Furthermore, Besl’s registration
algorithm is dependent on an initial hand-alignment of the sen-
sor samples to mesh vertices. If this initial alignment is poor,
the registration transformation produced by Besl’s algorithm may
not be globally optimal. Registration errors can cause the virtual
brush tip to lie some distance away from the mesh even when the
Polhcmus stylus is physically touching the object surface. In this
case it would be difficult to paint the surface with small brush
volumes.

One approach to overcome this would be to use a long, thin
cylindrical brush. The problem with this approach is that painting

Brush

" ~ Seed Point

Paint is not applied here.

Paint is applied here.

Mesh

(B)

Figure 5: Mesh geometries which cause problems for the painting
algorithm.

152

a fine line with such a long, thin brush would force us to ensure
that the brush is perpendicular to the mesh throughout the stroke.
Slight changes in brush orientation would change the size of the
area painted on the mesh.

An alternative approach is to give the user the option of "glu-
ing” the brush to the mesh. When painting, the location of the
brush is constrained to be the closest point on the mesh to the
sensor, rather than the sensor’s location itself. We can think of
this as extending the tip of the bmsh so that it always touches the
mesh surface. Since the brush’s position is now forced to lie on
the surface, we can paint with very small brush shapes, even in
the presence of registration errors.

5 Results

We have been able to paint detailed textures on several different
meshes including the bunny and the wolf-head, shown in color
plates 2-8. The bunny mesh was created by zippering 10 Cyber-
ware scans of the ceramic bunny shown in plate 1; the final mesh
contains 69,451 triangles. Plate 2 shows sensor sample points
in the process of being initially aligned with the bunny mesh in
preparation for running Besl’s registration algorithm. The purple
crosses represent sensor sample points.

A 3D checkerboard texture and 2D image texture of an orchid
were applied to the bunny shown in plate 3. While the triangles in
the original bunny mesh were about the size of a pixel, we found
that a finer mesh was necessary to capture fine detail in the image
texture. We refined the original bunny mesh by simply splitting
each triangle into four smaller triangles.

Plates 4‘8 show several complete paintings we created with
our system. Most of the paintings took several hours to complete.
The wolf-head mesh in plate 8 contains 53,104 triangles while the
higher-resolution wolf—head mesh used in plates 6 and 7 contains
232,416 triangles. The bunny head mesh in plate 5 is a piece of
the high-resolution bunny mesh, while the low-resolution bunny
mesh was used in plate 4.

In creating the bumpy wolf shown in plate 7 we used almost
every painting tool we implemented. The bumps were created by
applying the displacement brush with a spherical brush volume
to the mesh. The distance filter was used in coloring the bumps

as they were extruded from the mesh. As in plates 3 and 6. the
orchid is a 2D image that was texture mapped onto the mesh.

6 Future Directions

One of the drawbacks of our system is that there is a non-trivial
amount of set-up time required to register the physical object to
the mesh. Registration can take several minutes and must be
done every time the user wants to paint an object. Furthermore,
if the object is moved after it has been registered, it must be re—
registered. The most time-consuming aspect is doing the final
hand alignment of the registration points to the surface mesh,

One solution to this problem would be to register the physical
object as it is being scanned by the 3D scanner. Assuming the
scanner always creates a mesh in the same coordinate system for
each scan. we can preregister the tracker coordinate system to this
mesh coordinate system using Besl's algorithm. Then, scanning
any new object will automatically register it to the tracking system.
However, this approach fails when we combine multiple scans
using the zipper software, because the physical object must be
moved between scans and so we lose the correspondence between
the mesh and the object.

Ensuring that the object does not move once it has been regis-
tered is can make painting awkward and unnatural. Allowing the
object to be moved would let the user to paint more comfortably.
One way to permit such object movement would be to attach an:

149

152

other sensor of the space tracker to the object and then track the
movement of the object in addition to the movement of the bmsh.

A disadvantage of our approach is that we can only paint
meshes for which we have a corresponding physical object. Thus,
we can not directly paint a mesh created with a modeling or CAD
program for example. However, several new rapid prototyping
technologies have recently been developed for synthesizing 3D
objects directly from computer models [7] [12]. Although it would
be a considerable expense, with such a prototyping system we
could create a physical object representing almost any mesh and
then use it as a guide for painting on the mesh.

Another problem is that the user is moving the sensor along
the physical object white paint is only being applied to the mesh
on the monitor. Thus, the user must look at two places at once to
see where the paint is being applied. This problem is reduced by
placing the physical object in front of the monitor while painting.

One of the problems with polygon meshes is that they are
hard to animate. Marry animators are used to manipulating the
control points of curved surface patches, not the vertices of an
irregular mesh. Furthermore, they want to manipulate only a few
control points, not the 100,000‘5 of vertices in our typical mesh.
One solution we are investigating is to fit NURBS patches to our
meshes. The boundaries of these patches would be specified by
tracing them using our system, In this case we would replace our
space—filling brushes with an algorithm that chains together mesh
vertices lying along the path traced out by the stylus.

7 Conclusions

We have developed an intuitive 3D interface for painting on 3D
computer models, using the sensor of a Polhemus 6D tracker as
a paintbrush. The fundamental feature of our system is that a
physical object provides a force feedback guide for painting. Our
system is fast enough to paint a mesh in real time as the sensor
is moved over the physical surface, giving the user a sense of
directly painting on the mesh. With this system there is no need
to perform a transformation from 2D input space to the 3D mesh
surface. as is required by other 3D painting systems that use a 2D
input device. Also unlike other 3D painting systems, the meshes
we paint do not need to be parameterized in any way. With our
system an artist who is experienced with painting on 3D physical
objects can almost directly apply that experience to painting on
surface meshes.

8 Acknowledgments

We would like to acknowledge the many individuals who helped
us with this project. In particular we would like to thank Greg
Turk for his insightful discussions and for providing meshes for us
to paint. George Dabrowski and Michael Zyda especially encour-
aged us to develop this project. Bill Chapin, Nat Bletter and Dan
Goldman wrote the original interface for the Polhemus tracker.
Alan Baronkey and Bill Chapin provided access to crucial hard-
ware required for this project. Finally we would like to thank
Lincoln Hu for giving us permission to use the physical model of
the wolf head created by Industrial Light and Magic.

153

REFERENCES

[1] Paul J. Besl. A Method for Registration of 3D Shapes.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
l4(2):239—255. February 1992.

[2] Frederick P. Brooks, Jr., Ming Duh-Young, James J. Batter,
and P. Jerome Kilpatrick. Project GROPE -— Haptic Dis-
plays for Scientific visualization. In Forest Baskett, editor,
Proceedings of SIGGRAPH '90, volume 24, pages 177—185,
August 1990.

[3] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The
Reyes Image Rendering Architecture. In Maureen C. Stone,
editor, Proceedings of SIGGRAPH '87, pages 95—102, July
1987.

[4] Tinsley A. Galyean and John P. Hughes. Sculpting: An
Interactive Volumetric Modeling Technique. In Proceedings
of SIGGRAPH '91, volume 25, pages 267—274, July 1991.

[5] Pat Hanrahan and Paul Haeberli. Direct WYSIWYG Painting
and Texturing on 3D Shapes. In Proceedings of SIGGRAPH
'90, volume 24, pages 215-223, August 1990.

[6] Berthold K.P. Horn. Closed—form Solution of Absolute Ori-
entation Using Unit Quatemions. J. of the Optical Society
of America, 4(4):629—642, April I987.

[7] N.F. Kinzie. Three-Dimensional Printing: a Tool for Solid
Modeling. In Conference Proceedings of NCGA ’9], pages
812—821, April 1991.

[8] William E. Lorensen and Harvey E. Cline. Marching Cubes:
A High Resolution 3D Surface Construction Algorithm. In
Maureen C. Stone, editor, Proceedings of SIGGRAPH ’87,
volume 21, pages 163—169, July 1987.

[9] Jerome Maillot, Hussein Yahia, and Anne Verroust. Interac—

tive Texture Mapping. In James T. Kajiya, editor, Proceed-
ings of SIGGRAPH ‘93, volume 27, pages 2764, August
1993.

[10] Margaret Minsky, Ming Duh-young, Oliver Steele, Freder-
ick P. Brooks, Jr., and Max Behensky, Feeling and Seeing:
Issues in Force Display. In Rich Riesenfeld and Carlo Se-
quin, editors, Computer Graphics (1990 Symposium on In-
teractive SD Graphics), volume 24, pages 235—243. March
1990.

[1]] Greg Turk and Marc Levoy. Zippered Polygon Meshes from
Range Images. In Proceedings of SIGGRAPH '94, pages
3113123, July 1994.

[12] T.T. Wohlers. Developments in 3D Printing and Rapid Pro-
totyping. In Conference Proceedings of NCGA '91, pages
249—259, April 1991.

150

153

154

Volume Sculpting

Sidney W. Wang and Arie E. Kaufman

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400

Abstract

We present a modeling technique based on the metaphor of
interactively sculpting complex 3D objects from a solid
material, such as a block of wood or marble. The 3D model

is represented in a 3D raster of voxels where each voxel
stores local mterial property information such as color and

texture, Sculpting is done by moving 3D voxel-based tools
within the models The afiected regions are indicated

directly on the ZD projected image of the 3D model. By

reducing the complex operations between the 3D tool
volume and the 3D model down to primitive voxel—by—voxel

operations. coupled with the utilization of a localized ray
casting for image updating, our sculpting tool achieves
real—time interaction. Furthermore, volume-sampling

techniques and volume manipulations are employed to
ensure that the process of Sculpting does not introduce

aliasing into the models.

1. Introduction

In this paper we present a free’form interactive modeling

technique based on the-concept of sculpting a voxel-based
solid material, such as a block of marble or wood, using 3D
voxel—based tools. There are two motivations for this work.

First, although traditional CAGD and CAD have made great
strides as design tools in many engineering disciplines,

modeling topologically complex and highly-detailed objects
are still difficult to design in most traditional CAD systems.

Second. sculpting tools have shown to be useful in scientific
and medical applications. For example, scientists and

physicians often need to explore the inner structure of their
simulated and sampled datasets by gradually removing
material to reveal a section of interest.

Authors’ email: swang@cs.sunysb.edu ari@cs.sunysh.edu
This work has been supported by the National Science Foundation under
grant CCR 3205047.

Permission to copy without lee all or part of this malarial is
granted provided that the copies are not made or distributed ior
direct commercial advantage, the ACM copyright notice and the
title oi the publication and its date appear,_ and notice Is given
that copying is by permission of the Assocraiton of computing
Machinery. To copy othennise. or to republish. requrres a fee
and/or 5 ecific permission. .
1995 SyEnposium on Interactive SD Graphics. Monterey CA USA
© 1995 ACM 0-39791-736‘7l95/0004...$3.50

154

The use of the sculpting metaphor for surface-based

geometric modeling has been studied extensively [2, 8, 9,
11]. However, the concept of sculpting a volumetric object

is relatively recent. Galyean and Hughes [4] generalized the
2D painting metaphor to volume sculpting by extending the
2D canvas to 3D volumetric clay. They employed marching

cube polygons as an intermediate model representation and

presented a novel localized marching cube rendering
algorithm for achieving real-time interaction. The merit of
their localized rendering algorithm is discussed further in
Section 6. Although their algorithm is quite nice for

generating clay or wax like sculptures, it cannot generate
realistic looking objects such as those appeared in our daily
environment. The use of numerically controlled (NC)

milling machine as a volume sculpting tool has also been

investigated [10, 14]. NC milling produces extrusion cut
volume based on some geometric attributes of the rendered

image or NC paths. Thus. the resulting model can only be
viewed from the direction from which the rendered image

was generated.

We developed a volume sculpting tool that is easy to use. A
user does not need to possess the mathematical knowledge
of surface modeling using CAGD techniques or solid
modeling. Furthermore. models generated with our

technique are free-formed and can be topologically

complex. Although our models lack the precision that is
required for acourate product manufacturing, such as a
crankshaft, they are adequate as first—pass model designs or

for applications where model precision is not greatly

important, such as fumitures. Our interactive volume
sculpting tool employs a ray casting algorithm for
rendering. It achieves real-time interaction by employing a
localized ray casting for image updating. Hence. a shape

designer might be compelled to convey his/her design idea
by sculpting a 3D model rather than drawing it on a 2D
sketch board. In this way, during modeling the designer is
able to transform (e.g., rotate) the object in space and see

the design from different angles. In addition our volume
sculplng tool is suitable for manipulating sampled and
sinnllated datasets. Furthermore, volume-sampling and

volume-manipulations are used to ensme that the process of
sculpting does not introduce aliasing into the models.

151

155

2. Object Representation

Unlike a traditional CAD model which commonly consists
of a collection of surface patches, we employ the volume

graphics approach [6] by modeling every object as voxel
data, represented as a 3D volume raster. The volume raster

grid is uniformly spaced along each of the three orthogonal
axes, but the grid might be anisotropic, that is, the spacing

constant might be different for the different axes. By
simply changing the spacing constant of the model raster

grid, one can alter the physical size of the 3D model. Since

sample poinm in the volume raster are defined only at
discrete locations in space, a reconstruction process is
needed to reproduce the original continuous model.

Commonly, the reconstruction is performed in a piecewise
fashion by defining a trilinear interpolation function

f(x, y, 2) over the eight neighboring grid points,

(txltrllzl). txltyltzt). txltyuzl), (txltrllzl).
(lfl‘LrlLZl). (lJClriyllZ'D, (TxtfyllZl), (fxiii/1&1)-
Of course, one can achieve better reconstruction by
employing a larger interpolation neighborhood and use a
higher-order interpolation function.

Multiple volumes are supported in our volume sculpting
system. Thus, a sculptor can walk in a gallery of multiple
unfinished sculptures and work on different pieces in one

session. In addition to having a world coordinate system for
the entire scene, a local coordinate system is associated with
each volume in the scene. Transformation between the

world coordinate system and each volume coordinate

system is facilitated by conversion matrices stored within
each volume. Translations and rotations of each volume are

performed by simply cpncatenating the new transformation

matrix to the one stored in the volume, thereby defining a
new current local coordinate system and new conversion
matrices .

This modeling approach is an alternative to conventional

surface—based graphics and has advantages over the latter by
being able to store a view independent model and its
attributes such as texture and antialiasing information, and

is suitable for the representation of 3D sampled data such as
those acquired from medical scanning devices. More

importantly, for volume sculpting applications, it supports
the visualization of internal structures, and lends itself to the

realization of block operations and constructive solid
modeling.

3. User Interaction

The following is a typical interaction sequence of our
system:

1) User loads in the initial volume data.

2) User positions and orients the object to the desired view.

155

3) System projects the 3D object onto a 2D image from the
selected view.

Repeat 4) and 5):

4) User moves a 3D tool to the desired region.
5) System performs the actual action locally.

Like a sculptor, the user first selects the approximate size

and shape of the material. Our database contains a variety
of geometric primitives and also a set of sampled and
simulated datasets. The geometric datasets were

synthesized from geometric descriptions into their volume

graphics representation using the volume-sampling
technique [15}. The process of volume—sampling bandlimits
the continuous object by convolving it with a radially
symmetric 3D filter. As a result, the surface of the filtered

object has a smoothly varying density function from object
to empty space. Hence, the corresponding discrete

representation is free of object space aliasing.

Once the loaded volume data is rotated and oriented, it is

projected using a volume rendering algorithm of ray
casting. The rendering process is explained in detail in

Section 6. On the projected image, the user either moves a
3D tool to the desired region for carving the object, or
draws out the desired region for sawing. Carving is the
process of taking a pre—existing tool to chip or chisel the

object bits by hits, while sawing is the process of removing

a whole chunk of material at a time, much like a carpenter
sawing off a portion of a piece of wood. For sawing, the

user first needs to draw out the desired sawing region
directly on the projected image. Then, this 2D region is
extruded in the direction perpendicular to the view plane to
form a volume. A slider bar is provided to the user to
specify the depth of extrusion.

From our experience, using a 2D input device such as a
mouse is easier for the user to grasp than a 31) input device,
such as an lsotrack. Furthermore, unless a collision

detection is implemented, the position of the tool specified
by the 3D input device can penetrate the surface of the solid

model. Although the penetration of object surface is fine
for a heat-gun metaphor, such as the one used in [4], it is

inappropriate for our click-and—invoke carving and sawing
metaphor.

4. Carving

In our system, a set of carving tools are available to the user.

Each of these carving tools is pre—generated using a volume-
sampling technique [15] and stored in a volume raster of

20x MXZO resolution. Figure 1 illustrates three
commonly used [001 volumes. The user can adjust the
physical size of these tools by changing the constant
spacing of their raster grid. Rotation and translation of the

152

156

Figure 1: Commonly used carving tools

tool volume requires a simple matrix multiplication to

update the object coordinate system with respect to the
world coordinate system. Since both the object and the

carving tool are represented as volume rasters, the process
of carving involves positioning the tool volume with respect

to the object in 3D space and performing a boolean
subtraction between these two volumes.

As we have mentioned, the user specifies the position of the

tool on the 2D projected image. This 2D position is then

mapped onto a 3D position in the world space by using the
projection depth, depth, of the pixel. This projection depth
is essentially the z—buffer information. Hence, the 3D world

position (x, y, 2) corresponding to the 2D view position
(it, v) is calculated as: .

(“a V: depth)view _> (x!)3 z)worid- (1)

Next, the carving tool volume, which is volume-sampled, is
subtracted from the object volume. Our algorithm does not

require these two volumes to be aligned with respect to each
other or having the same grid resolution. The algorithm

starts by first determining the cubiodal sub-volume of the

object that is overlapped by the tool volume. Then, for each
grid point within that cubiodal sub-volume, a new data
value is computed and assigned to reflect the affected

region. Specifically, for each grid point (t', j,k) within the
cubiodal sub-volume, the new sample value f(i, j,k) is

computed from:

fobjectas fa k) = fobjectaa ja k) diff frontal: l", ZI) (2)
where

(i, j! k)object _> (36'! yl, 2310011 (3)

i,j,ke Integer, x',y',z’E Real.

Since our volume-sampled model is a density function

d(x, y, 2) over R3, where d is 1 inside the filtered object, 0

156

Outside the filtered object, and 0 < d < 1 within the soft

region of the filtered surface, the boolean diff operator is
based on algebraic sum and algebraic product [3, 15], which

is employed to preserve continuity on the sculpted model:

AdtffB=A—AB. (4)

Note that instead of the diff operator, an U operator defines
as:

AUB=A+B—AB (5)

can be used to add the tool volume to the object. This is a

nice feature when one needs to patch up a hole or add some

details to the model. Other set operations between the too]
volume and the object are also possible, thereby

implementing full voxbit (3D bitblt) capabilities [5]. Since
point (x’, y’, 2’) does not usually fall on a grid point of the
tool volume, a reconstruction method similar to the ones
discussed in Section 2 is needed to interpolate

ftoolcrl! ll: LI")-

5. Sawing

Unlike carving, sawing requires the additional process of

generating the tool volume on the fly. In our system, the
user is able to draw any size circle, polygon, and Bezier

curve to indicate the region to be sawed. Then, this 2D

region is extruded to form the tool volume. However, to
prevent object space aliasing, proper sampling and filtering
must be used in generating this tool volume. Although we

have previously developed a volume sampling technique
[15] to accomplish this, it requires a time consuming 3D

convolution process. To achieve interactive speed, we have

developed a new volume sampling technique. Instead of
gathering contribution from the portions of the tool that fall
under the filter kernel when the kernel is centered over a

sample point, the density of each point of the tool is splatted
in 3D space to the affected neighboring sample points. If R
is the radius of the splat kernel, then each splat affects a

region of (2R — 1) x (2R — 1) x (2R — 1) neighborhood in
3D. An analogous 2D splatting is shown in Figure 2. The

splatting of a density point (a, fl, 9/) to its neighboring
sample grid points is formulated as:

foralla-R<i<a+R, (6)

forollfi—R<j<fi'+R,

andfor all y~R <k<y+R,

ftoal(iijak)=h(| li_a’j_lflvk_yfl)

where h is a hypercone filter centered at (i, j,k). The

hypercone filter has a spherical filter support and is
weighted such that its maximum contribution is at the center

153

157

Figure 2: 2D splattiug of a density point to its eight
neighborhood. 0 represents the density point (a,)3, y),
and + represents the neighboring sample points.

of the filter support and it attenuates linearly to zero at a
distance equal to the radius of the filter support, R.
Furthermore, the total contribution from the filter should be

equal to one. Formally, the hypercone filter is defined as:

(R'rjxwmax 0 S r S R: R
Mr) 0 otherwise (7)

where

(R — r) X Wmax _L L L —R— dr d6 do _ 1. (8)
In our implementation, the sawing tool volume is generated

by splatting the binary voxelized discrete tool volume using
Equation 6.

To speed up the splatting process, the contribution to the

sample points in the neighborhood is precomputed and
stored in a lookup table. The splat lookup table consists of

(QR — 1)3 entries, corresponding to the
(2R — 1) x (2R -» 1) x (2R e 1) splat neighborhood samples.
Since the splat lookup table is neither object- nor feature-
dependent, various shapes and sizes of tools can be

generated on the fly using this technique.

6. Rendering

In our system a ray casting and compositing approach (.e.g.,
[7]) is used to render the volume-sampled objects which are
represented in a 3D volume raster of voxels. That is for

154

157

each pixel on the image plane, a continuous parametric ray
is cast toward the raster to determine the pixel color.

Commonly, samples are taken uniformly along the my to
test for ray-object intersection. For accuracy, our ray-object
intersection point is calculated analytically by using the
tn’linear function and the equation of the line. In this

section we describe an extended ray casting technique that
takes advantages of our volume-sampled models to

eliminate image space aliasing. In addition, localized ray
casting method is presented for interactive image updating
during sculpting.

Thomas et a1 [13] developed a technique for antialiased ray
tracing of surface-based geometric primitives. In their
algorithm a pair of proximity covers are built to enclosed
each object in the scene. These covers are used to detect

when a ray is near the proximity of an actual surface. Once

the proximity of a silhouette edge is detected, the distance

between the ray and the silhouette edge is used for edge
filtering. Our antialiased ray casting algoritlun utilizes the

filtered surfaces that surrounded our volume-sampled
objects. These filtered surfaces have the property of
diminishing density as one travels from the interior of the

object to the empty space. This smooth transition of density
from object to empty space enables one to easily
approximate the distance, rayndist, of the ray from an
actual surface. More precisely, as one steps through each
sample point a, along the parametric ray, the sample-object
distance is approximated by the formula:

> R if f(a) = O

distta) = 0 if f(a) 2 lsovalue (9)

R (1 _ fl“)) ifO < flat) < i'sovalueisovalue

where R is the radius of the filter support and f(a)
represents the density at the current sample point a. Then,

the closest ray-object distance can be approximated by

my_dist = min(dist(cl)), for all aeray. (10)

Once it is known that a ray is near the silhouette of an

object. that is its my_dt‘st is greater than 0 and less than R,

the filtered color of the pixel is approximated by

raygdist ray_a‘ist
R) Cabjec; + (

Therefore, a 2D antialiased image of the projection is
produced without the need for image space supersampling.

Cpixe! = (1 ”) Cbackgrd.(11)

Furthermore, by taking advantage of the fact that a typical
sculpting action only modifies a small region of the object
volume, we only need to cast new rays at those pixels which
are affected by the modified region. Consequently,
interactive rendering speed is achieved. However, if the

object volume is rotated or translated, then the entire image

158

needs to be regenerated, preferably using a progressive
refinement or low-resolution ray casting approach. In the

progressive refinement approach, the image is generated in
a multi-pass fashion by pixel sub-sampling. Thus, a low

quality image is immediately available and the user can stop
the rendering process if necessary. Alternatively, the low-

resolution ray casting method is a one-pass algorithm which

performs image space interpolation, in addition to pixel sub-
sampling. Our localized ray caster has advantages over the
localized Marching Cube algorithm in that ray casting

employs an image-order technique to determine view point
visibility. Thus, image updating of the modified regions is
trivially done. On the other hand, the object-order approach
of Marching Cube rendering complicates the local image

updating process, since it is difficult to determine which
hidden polygons will become visible after a sculpting
operation.

'7. ReSults and Implementation

The VolVis system [1} provides an ideal framework for our

volume sculpting system. VolVis, developed at SUNY
Stony Brook, is a comprehensive. diversified, and high
performance volume visualization system, which is use
extensively around the world. It supports manipulations of
multiple volumes and a variety of rendering algorithms,
ranging from highly accurate volumetric ray tracing to fast
rough approximation. The metaphor of sculpting a
volumetric solid has been found to be intuitive, and its ease

of use has aHOWed even a novice user to learn the system in

minutes. Our sculpting tool has been successfully used to

create many realistic’ objects. Figure 3 illustrates the

process of sculpting a chair from a block of wood. The
original block of wood is of 75 x 125 x75 resolution. The
3D volume wood texture has been applied to the object to

Figure 3: Sculpting of a chair from a block of wood.

give it the realistic appearance. Note that, uniike traditional
surface graphics, applying texture in our volume graphics
representation does not introduce additional processing cost
since texture color is pro-stored within each voxel as a view

independent attribute. In Figure 4 a chair and a table,
generated with our system, are placed in a room and
rendered with volumetric ray tracing [12]. The lamp and

the goblet are each generated by revolving a volume-
sampled curve around a circular base. There is not a single
polygon in this figure. Additional sculpted objects include
the cello and chair in Figure 5, and a gazebo and bench in

Figure 6. The sculpted windmill shown in Figure 7 is
placed on a synthesized volumetric fractal terrain. The
smoke from the chimney is a simulated data of a ventilated
air flow.

8. Acknowledgements

Special thanks to Rick Avila and Lisa Sobierajski for their
3D textures and volumetric ray tracer.

9. References

l. Avila, R., He,‘T., Hong, L., Kaufman, A., Pfister, H.,

Silva, C., Sobierajski, L. and Wang, S., “VolVrs: A
Diversified Volume Visualization System”,

Visualization '94 Proceedings, Washington, DC,
October 1994, 31-3 8.

2. Coquillatt, 5., “Extended Free-Form Deformation: A
Sculpting Tool for 3D Geometric Modeling",
Computer Graphics (Pros. SIGGRAPH), 24, 4
(August 1990), 187-196.

FigiIre 4: A volumetric ray traced scene of a room which
includes a sculpted chair and table.

158

159

Figure 5: Sculpted cello and chair.

! .

Figure 6: Sculpted gazebo and bench.

Figure 7: Sculpted windmill on a fractal volumetric terrain.

10.

11.

12.

13.

14.

15.

156

159

Dubois, D. and Prado, H., Fuzzy Sets and Systems:
Theory and Applications, Academic Press, 1980.

Galyean, T. A. and Hughes, J. F., “Sculpting: An
Interactive Volumetric Modeling Technique”,
Computer Graphics (Proc. SIGGRAPH), 25, 4 (July
1991), 267—274.

Kaufman, A., “The voxblt Engine: A Voxel Frame

Buffer Processor”, in Advances in Graphics
Hardware 11!, A. A. M. Kuijk, (ed.), Springer—Verlag,
Berlin, 1992, 85-102.

Kaufman, A., Cohen, D. and Yagel, R., “Volume
Graphics”, IEEE Computer, 26, 7 (July 1993), 51-64.

Levoy, M, “Display of Surfaces from Volume Data”,
Computer Graphics and Applications, 8, 5 (May
1988), 29-37.

Naylor, B., “SCULPT: An Interactive Solid Modeling
Tool”, Graphics Interface '90, May 1990, 138-148.

Pentland, A., Essa, 1., Friedmaun, M., Horowitz, B.

and Sclaroff, S., “The ThingWorld Modeling System:
Virtual Sculpting By Modal Forces”, Computer
Graphics, 24, 2 (March 1990), 143-146.

Saito, T. and Takahashi, T., “NC Machining with G-
Buffer Method”, Computer Graphics (Proc.
SIGGRAPH), 25, 4 (July 1991), 207-216.

Sederberg, T. W. and Parry, S. R., “Free-form

Defamation of Solid Geometric Models”, Computer
Graphics (Proc. SIGGRAPH), 20, 4 (August 1986),
151-160.

Sobicrajski, L. and Kaufman, A., “Volumetric Ray

Tracing”, Volume Visualization Symposium
Proceedings, Washington, DC, October 1994.

Thomas, D., Netravali, A. N. and Fox, D. 5., “Anti-

aliased Ray Tracing with Covers”, Computer
Graphics Forum, 8. (1989), 325-336.

Van Hook, T., “Real-Time Shaded NC Milling
Display”, Computer Graphics (Free. SIGGRAPH),
20, 4 (August 1986), 15—20 .

Wang, S. W. and Kaufman, A. E., “Volume-Sampled
3D Modeling”, IEEE Computer Graphics &
Applications, 14, 5 (September 1994), 26-32.

160

The Tecate Data Space Exploration Utility

Peter Kochevar*

Digital Equipment Corporation

Abstract

A newprototype, interactive visualization system is described
which is designed to allow anyone to browseforand then visu-
alize data within general data spaces. The prototype, called
Tecate, capitalizes on the architectural strengths of current
scientific visualization systems, network browsers like Mo-
saic, database management systemfront-ends, and on virtual

reality systems. Tecate is able to browsefor data contained in
databases managed by database management systems, and

it can browse for infonnation contained in the World Wide
Web. In addition, Tecate dynamically crafis user-interfaces

and interactive visualizations of selected data-sets with the

aid of an intelligent system. This system automatically maps
most kinds of data into a virtual world that can be explored
directly by end-users.

1 Introduction

With the proliferation of computer networks, the number,
size, and accessibility of data spaces has increased dramat-

ically. A data space is any data source or repository whose
access is controlled via a well—defined software interface.

Some examples of data spaces are a database managed by
a database management system, the World Wide Web, and

any data object, in the object—oriented sense, that resides in a
computer’s main memory whose components are accessible
via the object’s methods.

In order to learn, conduct commerce, and entertain in a

world that is increasingly being abstracted away as a col~

lection of data spaces, a general, interactive tool is needed
to foster data space exploration. This tool should allow any
end—user to both browse the contents of data spaces as well as

allow them to inspect, measure, compare, contrast, and iden-

tify patterns in selected data-sets. Combining both tasks into
one tool is both elegant and utile in that end—users need only
learn one system to seamlessly pass back and forth between

" Contactaddress: Peter Kochevar, DEC/San Diego Supercomputer Cen-
ter, P. O. Box 85608, San Diego, CA 92186-9784, kochcvar©sdsoedu

Len Wanger

San Diego Supercomputer Center

browsing for data and then assimilating it.
To best perform its function, a tool for exploring data

spaces should be able to

0 interface to general data spaces

0 saliently visualize most any kind of data whether it be
scientific data or the listings in a telephone book

0 dynamically craft user—interfaces and interactive visual-
izations based on what data is in hand, who is doing the

visualizing, and for what reason

o be highly interactive.

There are systems available today that have some of these

capabilities but no one system possesses all of them. Data
visualization systems, such as AVS {1], Khoros [11], or Data

Explorer [8], are very capable of visualizing scientific data
but they are very poor at interfacing to general data spaces,
provide only limited interactivity within visualizations them-
selves, and require visualizations to be crafted by hand by
knowledgeable end-users. Network browsers like Mosaic
are good at fetching data from certain types of data spaces
but they are very limited in the variety of data they can directly
visualize, and they offer a very restricted type of interactivity.

Finally, front-ends to database management systems provide
very elaborate querying mechanisms for selecting data from
a database but they do not have sophisticated means for vi—
sualizing and further exploring query results.

To address the need for a comprehensive tool that will ef—

fectively explore the informational content of data spaces, a

prototype system called Tecate has been created. The archi
tecture of Tecate borrows from that of visualization systems,

network browsers, and database management systems as well

as from virtual reality systems like Alice [18] and MRIOML

[6]. A major contribution of Tecate is the incorporation of
the architectural strengths of these systems into one coherent
whole.

From the outset, Tecate was conceived as an object-

oriented system where objects are imbued with behaviors that
can aid in data exploration and knowledge creation. In partic»
ular,’ Iecate enables the browsing for data in a database man—
agement system or the World Wide Web via user-interaction
with graphical renditions of objects that represent data fea—
tures. To Tecate, the results of any database query or Web

fetch issued while browsing is data that requires appropriate

visualization. To help in this regard, Tecate has within it

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed ior
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and noilce Is given
that copying is by permission of the Association of Qomputmg
Machinery. To copy othenNise, or to republish, requires a fee
and/or 5 eciiic ermission. .
1995 Sy'i’nposidin on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0—89791-736-7/95l0004...$3.50

157

160

161

an intelligent system that automatically maps most kinds of

data into a virtual world that can be explored directly by anend-user.

2 The Abstract Visualization Machine

The heart of Tecate is an object management system called
theAbstract Visualization Machine (AVM). All major compo—
nents of Tecate as well as entities appearing in virtual worlds
created by Tecate are objects that communicate with one

another via message passing. The AVM is responsible for
creating, destroying, altering, rendering, and mediating com-
munication between these objects. The two major compo-
nents of the AVM are the Object Manager and the Rendering
Engine (see Figure l).

2.1 Tecate’s Object Model and the Abstract

Visualization Language (AVL)

Tecate uses the delegation model of inheritance £25] in which
no distinction is made between classes and instances as in

languages like C++. In Tecate, there is a single object creation
operation, clone. Any object in the system can serve as a

prototype from which an exact copy can be made through
the clone operation. A clone inherits properties from its
prototype by copying the prototype’s properties, but any such
property can be altered or removed so that a clone can take
on an identity of its own.

Tecate objects possess four classes of properties:

0 Attributes that affect an object’s visual appearance such
as geometric and topological structure, color, texture,
material properties, etc.

o Behaviors determined by the set of messages objects
send and to which they respond.

o A collection of variables whose values represent an ob—
ject’s state.

0 A list of sub-objects that are parts-ofa given object just
as a wheel is a part-of a car.

Although most users of the system uniformly see com-
municating objects, a distinction is actually made between

two kinds of objects based on how they are implemented.
Resource objects are implemented primarily as external pro-
cesses using some compilable general purpose programming
language such as C or Fortran. Objects that have compute-
intensive behaviors or whose behavior executions are time—

critical are generally implemented as resource objects. For
instance, most Tecate objects that provide system services,
such as rendering, are implemented as resource objects.

Objects populating virtual worlds that represent data fea—
tures are implemented differently than resources using an
interpreted programming language called the Abstract Visu—

alization Language. Such objects are termed dynamic objects

158

161

clone Hyperlink Visual

add Hyperlink If
appearance {

shape {sphere}
difiuseColor {0‘0 0.0 1.0}
rep'I‘ype {surface}

l
behavior {

it Initialize hyperlink
init {url desc} {

addstate url $url
addstate description Sdesc
add scenel "subobject: [getself]"
send windowl addEvent

"[getself] {Button—1 {openUrl {}}}"
}

it Open the URL

openUrl {} {send www fetch " Igetstate url] "}

}

clone scenel Visual
clone windowl Camerawindow

send windowl init {scenel}

clone blink]. Hyperlink
send hlinkl init {”http:l/gopher.sdsc.edu/Home.htm1"

“SDSC home page"}

it Use the SDSC model geometry

add hlinkl {appearance {shape {Aliasobj "sdsc.tri"}}}

Figure 2: An implementation of a WWW icon in AVL.

because they may be created, destroyed, and altered on-the-

fly as a Tecate session unfolds. Nonetheless, the ability to
dynamically add, remove, and alter object properties is not
solely endemic to dynamic objects. Resource properties may
also be changed on-the-fly because resources are actually im-
plemented with a dynamic object that “fronts” for the portion
of the resource that is implemented as an external process,

The Abstract Visualization Language (AVL) that is used

to specify dynamic objects is the “native” language of the
AVM. It is built upon the Tel embeddable command language
[15], but AVL extends Tcl by adding object-orientedness, 3-D
graphics, and a more sophisticated interaction handler. AVL

is a typeless language that is capable of performing arbitrary
computations. Through the language, object properties are
specified and manipulated, and object behaviors are invoked

by sending messages from one object to another. To give
a flavor of programming in AVL, Figure 2 depicts a code
fragment that when interpreted implements a 3-D icon rep-
resenting a World Wide Web (WWW) site. In general, AVL
may be viewed as an example of a virtual reality markup
language (VRML) [17, 19], an analog of the hypertext—based
HTML that underlies network browsers like Mosaic.

162

Intetitgent

Weaaflz‘ilttan

System

Visualization

Manager

 Abstract

Machine

Figure 1: An architectural diagram of the Tecate data exploration utility.

2.2 The Object Manager

The Object Manager is the primary workhorse within the
AVM. It is responsible for interpreting AVL programs, man~

aging a database of objects, mediating communication be-
tween objects, and interfacing with input devices. The Object
Manager is itselfa resource object that is distinguished by the
fact that all other resource objects are spawned from this one

object. In addition, the Object Manager is responsible for
creating a distinguished dynamic object, called Root, from

which all other dynamic objects can trace their heritage via
prototype-clone relationships.

The Object Manager is implemented upon a simple,
custom—built thread package. Each object within Tecate

can be thought of as a process that has its own thread of
control. Threads can either be implemented as “lightweight

processes” that share the same machine context as the Oh-
ject Manager’s operating system process, or they can be im—
plemented as their own operating system process separate
from that of the Object Manager. Within Tecate, dynamic

objects are implemented as lightweight processes while re—
source objects are implemented as “heavyweight” operating

system processes which may or may not have an attached
lightweight process as an adjunct. A low-level function li-

brary is provided to handle the creation and destruction of
threads, and to handle inter-thread communication between
two threads regardless of how they are implemented.

2.3 The Rendering Engine

The Rendering Engine is a special resource object wholly
contained within the AVM. It is responsible for creating a

159

162

graphical rendition of a virtual world that is specified by
AVL programs interpreted by the Object Manager. When

interpreting an AVL program, the Object Manager strips off
appearance attributes of objects and sends appropriate mes-
sages to the Rendering Engine so that it can maintain a sep—

arate display list representing a virtual world. These display
lists are represented as directed, acyclic graphs whose con-
nectivity is determined by object—subobject relationships that
are specified within AVL programs.

The present Rendering Engine implementation makes use
of the Doré graphics package [13] runningon an Alpha work-
station augmented with a Kubota Denali graphics processor.
The display lists that are created by invoking behaviors within
the Rendering Engine are actually built up and maintained

through Dore‘. The set of messages that the Rendering Engine
responds to represents an interface to a platform’s graphics
hardware which is independent of both the device and graph-

ics package.

Interactions and3 Object-Object

Input/Output

The primary focus within Tecate is on object-object interac—
tions. These interactions occur primarily by sending mes-

sages from one object to another, and objects can send mes-

sagessto themselves which has the effect of making a local
function call. Unlike systems such as Openlnventor [24],
rendering is not a central activity within Tecate but is rather
just a side-effect of object-object interactions. In this sense,
Tecate is more like VR programming systems like Alice and
MR/OML although Tecate is far more flexible.

163

ln Tecate, objects can create and destroy other objects, and
alter the properties of existing objects on—tbe~fly. Presently,
all of an object‘s properties are visible to any other object
and hence those properties can be manipulated externally. In

the future, some form of selective property hiding may prove
useful so that designated properties of an object would not
be alterable by other objects.

A powerful feature of Tecate is its ability to dynamically
establish object-subobject relationships among objects. This
feature provides a mechanism with which to build assem-

blies of parts much like what is done in classical hierarchical

graphics systems like Dore or Openlnventor. But, this feature

also provides the capability to create sets or aggregates of ob-
jects that share some trait such as being highlighted Tecate,
through AVL, allows all objects within a set to be treated

en masse by providing a means to selectively broadcast mes-
sages to groups of objects. A message that is sent to an object
can be forwarded to all of the object’s subobjects. Thus one

object can serve as a “container" for all other objects that are

highlighted, the highlighted objects merely being subobjects
of the container. If one wants to unhighlight all highlighted
objects, only one unhighlight message needs to be sent to

the container object which then forwards the message to all
its subobjects. In general, an object can be the subobject of
any number of other objects and thus simultaneously be a
member of many different sets.

The handling of user—input within Tecate is intended to

appear no different than ordinary object—object interactions.

All physical input devices known to Tecate have an “agent”
object associated with them that acts like a device handler.

All objects wishing to be informed of a particular input event
register themselves with the appropriate agent. When an

input event occurs viaa user-interaction, all registered objects
are sent a message notifying them of the event. Complex
events, such as the occurrence of event A and event B within

a specified time period, can easily be defined by creating new
handler objects. These handlers register to be informed of
separate events, but then turn arorrnd and inform other objects
of the conjunction of the events.

To aid in simulating physical processes or to help in per—
forming animations, Tecate provides a predefined clack ob-

ject that pulses every millisecond. If objects wish to be

informed of a clock pulse, those objects register themselves
with the clock object just like objects register themselves

with input device agent objects. The default clock object can
be cloned and each clone can be instantiated with a different

clock period. Any number of clock can be ticking simulta-
neously during a Tecate session. Since new clocks can be

created dynamically, and objects can register and unregister
to be informed of clock pulses on-the—fly, clocks can be used

both as timers and triggers as well as pacesetters.

Besides a clock, Tecate also provides predefined objects
that represent windows, lights, and cameras. These objects

are considered “abstract" objects in the sense that they are
not intended to be used directly but rather they are to serve

160

163

as prototypes from which clones can be created. It is these

clones that are used to illuminate and render given virtual
worlds.

4 Application Resources

Tecate comes predefined with a number of resource objects

that aid in interactively visualizing data. These objects in-
clude the Intelligent Visualization System, the Database In-
terface, the World ‘Mde Web Interface, and a visualization

programming system called BigRiver (see Figure 1). Addi-

tional system resources can be added easily by an application
programmer using tools provided with the base Tecate sys-
tem. A new resource can be built around either a user-written

program or a commercial off-the-shelf application.

4.1 The Intelligent Visualization System

The IntelligentVisualization System (IVS) is provided to dy—
namically build interactive visualizations and user-interfaces,

and to aid non-expert end-users in exploring data spaces. This
knowledge-based system is similar in concept to other expert
visualization systems [5, 9, 14, 21], and it has been described

in detail elsewhere [2, 12]. The IVS automatically crafts vir-
tual worlds based on a task specification and on a description
of the data that is to be visualized. A task specification rep-
resents a high-level data analysis goal of what a user hopes
to understand from the data. For instance, a user may wish

to determine if there is any correlation between temperature
and the density of liquid water in a climatology data-set.

From the data description and task specification, a Plan-

ner within the IVS produces a data-flow program which when
executed builds an appropriate virtual world that represents
a selected data-set. The Planner makes use of a collection

of rules, definitions, and relationships that are stored in a
Knowledge Base when building a visualization that addresses

a given task specification. Contents of the Knowledge Base
include knowledge about data models, user tasks, and visual-

ization techniques. The Planner functions by constructing a

“sentence” within a data~fiow language defined by a context-
sensitive graph grammar. Presently, the Knowledge Base

is implemented using the Classic knowledge representation
system [20] while the Planner is implemented in CLOS [22].

4.2 BigRiver

The data-flow program produced by the Intelligent Visual-
ization System is written in a scripting language that is in~
terpreted by BigRiver, a visualization programming system
simiiar to AVS [l] or Khoros [11]. BigRiver consists of a
collection of procedures called modules each of which has

a well-defined set of inputs and outputs. Functional specifi-
cations for these modules represent some of the knowledge
contained in the Intelligent Visualization System’s Knowl-

edge Base. Visualization scripts that are interpreted by Bi-

164

gRiver specify module parameter values and they dictate how
the outputs of chosen modules are to be channeled into the

inputs of others.
BigRiver modules come in one of three varieties: I/O,

data manipulators, and glyph generators. All modules make
use of self-describing data formats based on the mathemati-
cal notion offiber bundles [3, 4, 7]. One format is used for

manipulation within memory while the other is an “on-the—
wire” encoding that is meant for transporting data across a
network. An input module is responsible for converting data
stored in the on-the-wire encoding into the in-memory for—

mat. The data manipulator modules transform fiber bundles

of one iii—memory format into those of another. The glyph
generators take as input fiber bundles in the in-memory for-
mat and produce AVL programs which when executed build
virtual worlds containing objects that represent features of
selected data-sets. A single display module takes as input

AVL code and passes it to the Abstract Visualization Ma—
chine where the appearance attributes of objects are used to

create an image of a Virtual world containing the objects via
the Rendering Engine.

4.3 The Database Interface

The Database Interface (DBI) provides the means to interact

with a database management system (DBMS), which in the
current version of Tecate can either be Postgres [23] or Il-

lustra [10]. Database queries are sent to the DBI by Tecate

objects where they are handed off to a DBMS server for exe-
cution. Query results are returned from the server to the DBI
which then packages them up as an on-the-wire encoding of
a fiber bundle buffered on local disk. A description of the
fiber bundle and the location of the buffer are sent back to

the object that made the query request of the DBI. That ob—
ject might then request the Intelligent Visualization System
to structure a virtual world whose image would appear on

the display screen by way of BigRiver and the Rendering

Engine. Objects in the virtual world can be given behaviors
that are elicited by user interactions which might then result

in further database queries and so on. Chains of events such
as these provide a means for browsing databases via direct

manipulation of objects within a virtual world,

4.4 The World Wide Web Interface

The World Wide Web Interface functions similarly to the DBI

but rather than access data in a database, the Interface pro
vides access to data stored on the Web. Messages containing

Universal Resource Locators (URLs) are passed to the Web
Interface which then fetches the datafiles pointed to by the

URLs. In retrieving data from the Web, the Web Interface
uses Mosaic’s Web software library.

Once a datafile is fetched, the Web Interface attempts to

translate its contents into an AVL program which is then

passed to the Object Manager for interpretation. The AVL

161

164

either specifies the creation of a new virtual world represent-
ing the datafile’s contents, or it specifies new objects that are

to populate the current world being viewed. If the fetched
datafile contains a stream of AVL code, the Web Interface

merely forwards it to the Object Manager. If the datafile con-

tains general data in the form of an on-the-wire encoding of a
fiber bundle, the Web Interface appeals to the Intelligent Vi-

sualization System to structure an appropriate virtual world.
If the datafile contains a stream of HTML code, the Web

Interface invokes an internal HTML interpreter which pro-

duces an AVL program that is then interpreted by the Object
Manager. This interpreter actually understands an extended
version of HTML that supports the direct embedding ofAVL
within HTML documents.

5 Putting It All Together

When a Tecate session is initiated, arendition of a base virtual

world is presented through which Tecate’s various services
can be utilized. This virtual world, and possibly others, is

specified by an AVL program that is stored in a file which
is automatically read in at system start—up. This program

is completely arbitrary and configurable but it should serve
to initiate the browsing of data spaces and the subsequent
visualizations of individual data—sets. ln Tecate, the present

default virtual world is an abstract landscape populated with
icons that when selected, allow end-users to initiate either the

browsing of data within databases or the W.

5.1

When an end-user decides to browse for data in a database, a

new virtual world is overlaid upon the default one. This world
is built up from a toolkit of user-interface widgets where each

widget is a Tecate dynamic object. Because there is not yet a
comprehensive 3—D widget set within Tecate, some widgets
still rely on 2—D constructs provided by the Tk widget set
[16].

In the database world, the MapQuery Tool is provided so
that graphical queries can be made for Earth science data-

sets whose geographical extents and timestamps fall within

user-specified constraints. The tool is built around a world
map upon which regions of interest can be specified (see
Figure 3), Once a user marks a region of interest on the map
and selects a temporal range, a query message is sent to the
Database Interface. The result of the query is returned to

the Mapquery Tool which then forwards it to the Intelligent
Visualization System, accompanied by a select task directive,

so as restructure an appropriate visualization. The ensuing

scrigtproduced by the IVS is eventually executed by BigRiver
where a stream of AVL code is produced that is sent to the

Abstract Visualization Machine for interpretation.

This AVL program creates a new virtual world consisting
of a collection of 3-D icons each corresponding to one data-

set that was returned as the result of the initial query. Each

Visualizing Data in a Database

165

icon is a Tecate object whose physical appearance is a func-
tion of data—set type. The Intelligent Visualization System
also builds in two behaviors foreach icon. Depending on how
an icon is selected by a user, either the meta-data associated

with the data-set represented by the icon is displayed in a
separate window, or a query message is sent to the Database

Interface requesting the actual data. In the latter case, the

query result is again forwarded to the Intelligent Visualizer

tion System after prompting the user for a task specification.
Yet another virtual world containing objects representing data
features is created and displayed with the aid ofBigRiver and
the Abstract Visualization Machine, and so on (see Figures 4

and 5). In general, data exploration proceeds this way by
creating and discarding virtual worlds based on interactions
with objects populating prior worlds.

5.2 Browsing the World Wide Web

If an end-user chooses to browse the World Wide Web, the

default virtual world is supplanted by a new one that depicts
a map of the Earth arrayed in 3-D. Select Web sites are

positioned in the world as 3—D icons as can be seen in Figure 6.

Each icon is cloned from a single “Hyperlink” prototype
object that uses a state variable to store a URL. Each Web

site icon inherits a behavior that causes a datafile pointed
to by its URL state variable to be fetched when the icon is

picked,

Once selected, the home page for a Web site is visualized

on the base of an inverted pyramid whose apex is centered

on the chosen icon (see Figure 7). The text and imagery for
the home page appears similarly as it would when visualized

using a hypertext-based browser like Mosaic. Highlighted
text has a hyperlink associated with it that can be followed

by picking the text. Such highlighted text is a Tecate object
that also is cloned from the same Hyperlink prototype object
as the Web site icons. If upon following a hyperlink another

HTML document is retrieved, that document is viewed upon
the base of another inverted pyramid whose apex rests on the

selected text, and so on (see Figure 8). Rather than having
to page back and forth between hypertext documents as with

Mosaic, in Tecate an end-user need only “fly” about the
virtual world to gain an appropriate viewpoint from which to
view a desired document.

6 Conclusion

Tecate is an ambitious system which seeks to bring together
into one package useful features found in visualization sys—
terns, network browsers, database front-ends, and virtual re-

ality systems. As a first prototype, Tecate was created using a
“breadth-first” development strategy. That is, it was deemed
essential to first understand what components are needed to

build a general data space exploration utility, and then de—
termine how those components interact. This development

1

162

65

strategy traded offfunctionality of individual components for
the completeness of a fully running visualization system.

In the future, “depth" needs to be added to the Tecate

system components. For instance, the present Knowledge

Base within the Intelligent Visualization System now only
contains very limited knowledge of visualization techniques
that can be used to transform data into a virtual world. In

addition, the basic module set within the BigRiver resource

now only consists of about ten functions. Consequently,
Tecate can only construct very crude visualizations in its
present form.

There is a long list of new features and enhancements

that will hopefully be included in succeeding generations of
Tecate. The management of objects needs to be reworked

so that thousands of objects can be efficiently handled si-
multaneously. Although Tecate now builds virtual worlds,

virtual reality gadgetry has yet to be included within the sys—
tem. AVL needs new features, and it needs to be streamlined.

Tecate can also greatly benefit from a toolkit of 3-D widgets
that can be used to interact with objects within virtual worlds.
Finally, the Dore graphics system that is used within Tecate

needs to be replaced with a more mainstream system like
OpenGL.

In practice, Tecate has proven to be an exciting system
to use, and it is an excellent foundation from which to pur-
sue further research and development in the exploration of

general data spaces. Tecate advances the state-of-the—art by
demonstrating a way to both graphically browse for data and
then interactively visualize data-sets that are selected. Tecate

accomplishes these tasks by exploiting the flexibility of an
interpreted, object-oriented language that describes virtual
worlds.

Acknowledgements

This work was supported by the Digital Equipment Corpora—

tion, the University of California, and the San Diego Super-
computer Center as part of the Sequoia 2000 Project. Special
thanks to Mike Kelley, Jonathan Shade, and Colin Sharp for
their help in constructing the Tecate prototype.

References

[1] Advanced Visual Systems, Inc. AVS User’s Guide, May
1992.

[2] @ahid Ahmed et al. An intelligent visualization sys-

fitem for earth science data analysis. Journal of Vtsual
Languages and Computing, December 1994.

[3] D. M. Butler and M. H. Pendley. A visualization model

based on the mathematics of fiber bundles. Computers
in Physics, pages 45—51, Sop/Oct 1989.

166

[4] David M. Butler and Steve Bryson. Vector-bundle
classes form powerful tool for scientific visualization.
Computers in Physics, 6(6):576-584, Nov/“Dec 1992. -

Stephen M. Casner. A task-analytic approach to the nu
tomated design of graphic presentations. ACM Trans-
actions on Graphics, 10(2):]11—151, April 199].

[5]

Department of Computing Science, University of Al-
berta, Edmonton, Alberta, Canada. Object Modeling

Language (OML) Programmer 's Manual, 1992.

[6]

R. B. Haber, B. Lucas, and N. Collins. A data model

for scientific visualization with provisions for regular

and irregular grids. In Proceedings Visualization ‘91
Conference, 199].

[7']

IBM, Corp. IBM Visualization Data Explorer: User’s
Guide, 1992.

[3]

[9] Eve Ignatius and Hikmet Senay. Visualization assis-
tant. In Proceedings IEEE Visualization Workshop on

Intelligent Visualization Systems, October 1993.

[10] Illustra Information Technologies, Inc. Using Illustra,
June 1994.

[l 1] The Khoros Group, Dept. of Electrical and Computer

Engineering, University ofNew Mexico. Khoros User’s
Manual, 1992.

[12] Peter Kochevar et al. An intelligent assistant forcreating
data flow visualization networks. In Proceedings of the

AVS '94 Conference, 1994.

[13] Kubota Graphics Inc. Dore' Programmer’s Guide, 1994.

[14] J. D. Mackinlay. Automating the design of graphical

presentations of relational information. ACM Transac'
tions on Graphics, 5(2):] 10—14], 1986.

[15] John Ousterhout. Tc]: An embeddable command lan-

guage. In Proceedings of the I990 Winter USENIX
Conference, 1990.

[16] John Ousterhout. An X1] toolkit based on the Tcl

language. In Proceedings of the 199] Winter USENIX
Conference, 1991.

[17] Anthony Parisi and Mark Pesce. Virtual reality
markup language (VRML). Available via Mosaic,
http:l/www.wired.com/vnnl/, June 1994.

[18] Randy Pausch et a1. Alice: A rapid prototyping system
for virtual reality. In Course Notes #2: Developing
Advanced Wrtual Reality Applications. ACM Siggraph
’94 Conference, 1994.

[19] David Raggett. Extending W to support plat—
form independent virtual reality. Available via Mosaic,

http://www.wired.com/vrmll, June 1994.

163

166

[20] Lori Resnick et a]. CLASSIC Description and Reference

Manualfor the Common LISP Implementation. AT&T
Bell Laboratories, Murray Hill, New Jersey, 1993.

[21] Hikmet Senay and Eve Ignatius. VISTA: A knowledge

based system for scientific data visualization. Technical

Report GWU-IIST—92-10, George Washington Univer-
sity, March 1992.

[22] Guy L. Steele Jr. Common LISP: The Language, 2nd
Edition. Digital Press, 1990.

[23] M. Stonebraker and G. Kemnitz. The POSTGRES next

generation database management system. Communica-
tions of the ACM, pages 78—92, October 1991.

[24] Paul Strauss and Rikk Carey. An object-oriented
3D graphics toolkit. In Proceedings of Siggraph ’92

(Chicago, Illinois, July 2631, I 992), New York, 1992.
ACM Siggraph.

[25] David Ungar and Randall Smith. Self: The power of
simplicity. Sigplan Notices, 22(12):227—241, Decem-
ber 1987.

167

lr.‘ 950.515 MW
hung J'i9.7i')“'

Mu Imus un
Gum v «um

3: The Maquery Tool.Figure

data.

mm. 1
(“ital-116'-

a—n um

Figure 5: A visualization ofdata from hydrological measure
ment stations.

164

167

Figure 7: Viewing a Web site’s home page.

Figure 8: The result offollowing a hyperlink from a hypertext
document.

168

An Environment for Real-time Urban Simulation

William Jepsonl, Robin Liggettz, Scott FriedmanS
Department of Architecture, UCLA

ABSTRACT

Drawing from technologies developed for military flight simulation
and virtual reality, a system for efficiently modeling and simulating
urban environments has been implemented at UCLA. This system
combines relatively simple 3-dimensional models (from a traditional
CAD standpoint) with aerial photographs and street level video to
create a realistic (down to plants, street signs and the graffiti on the
walls) model of an urban neighborhood which can then be used for
interactive fly and walk-through demonstrations.

The Urban Simulator project is more than just the simulation
software. It is a methodology which integrates existing systems such
as CAD and GIS with visual simulation to facilitate the modeling,
display, and evaluation of alternative proposed environments. It can
be used to visualize neighborhoods as they currently exist and how
they might appear afier built intervention occurs. Or, the system can
be used to simulate entirely new development.

SIMULATION INTERFACE

Work at UCLA has focused on creating a user interface for viewing
and interacting with a 3—dimensional environment which has been
designed specifically to meet the needs of the planning and design
professions. This interface and simulation software runs on a
Silicon Graphics Onyx workstation with Reality Engine graphics
hardware allowing extensive use of real—time texture mapping. The
simulation software was developed using Silicon Graphic’s IRIS
Performer application development environment. Using a Motif/X-
Windows standard, the UCLA interface to the simulation includes
a well-defined set of functions that most users will find sufficient for

loading and viewing models without additional programming effort.
However, the interface has been designed in such a way that it is
easy to custom tailor the simulation to a particular application.

The simulation interface includes fly/drive controls so that the user
can travel anywhere and view any part of the model from a digitally
accurate perspective. Dynamic objects (such as moving vehicles or

1William Jepson. (310)825—5815, hill @uclaedu
1Robin Li ggett, (3:0) 825-6294. robin @gsaup.ucla.edu
3Scott Friedman, (310)825-6294. scott@gsaup,ucla.edu
Department of Architecture. School of Arts and Architecture
1317 Perloff Hall. UCLA. loos Angeles. CA 90024-1467

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
drrect commercial advanta e, the ACM copyright notice and the
lllle ot the publication and its data appear. and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy othenrvise. or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

165

168

pedestrians) can be included in the scene. The user has the option
of attaching to any of these objects as they are moving through the
model allowing specific paths to be followed and evaluated.

A separate mode of interaction allows three-dimensional selection
(”picking") of objects in the scene. Once selected, an object can be
removed from the scene (simulating, for example, the removal of a
building from a lot), or highlighted in the scene (as if a colored spot
light were focused on it). More importantly from a design
perspective, alternative models can be substituted for the object.
This latter function is useful for displaying design options for a
particular site, or showing a sequential set of options (for example,
models that show the development of a site over time or the growth
over time of newly planted foliage).

Another key option in "pick" mode allows an associated data base to
be queried for object attributes. This option provides the capability
for dynamic query and display of information from an existing data
base (for example, a Geographic Information System (018)) in a real
time 3-dimensionai format.

THE MODELING PROCESS

The simulation component of the system does not include
capabilities for building the basic model geometry, rather it is used
only for interactive viewing, manipulation and querying of the 3—
dimensional model and associated databases. Software System’s
MultiGcn is the primary 3—dimensional modeler used in the
modeling process. MultiGen, traditionally used for military
applications, has the ability to quickly model an urban scene by the
application of photographic images ("textures") to highly simplified
geometric models of objects such as buildings, trees, streets, etc.

The model creation process begins with plan view aerial
photographs which are a quick, easy and accurate way to obtain up
to-date information on street widths, building foot prints, foliage,
etc. These photos are scanned into the computer and appropriately
scaled and rotated to fit into the California State Plane grid
coordinate system that is used for all Los Angeles projects. Using
these photos as a base, streets and blocks are quickly identified,
outlined and inserted into the database using MultiGen. In many
cases detailed street, parcel and building plan data already exists in
DXF format (for many areas of the City of Los Angeles, for
example), which can significantly shorten this phase of the
modeling. If a DXF file is available, the aerial photograph can be
calibrated to the DXF plan.

Generally modeling the 3-dimensional geometry of the existing
buildings requires only simple rectilinear extrusions to the building

169

heights, although more detailed model construction is possible. The
photorealism of the model comes from the application of
photographic textures to the simple 3-D forms. Textures are
captured by video taping each building facade in the study area.
This video information is fed directly into the computer, perspective
and color corrected, and saved in a texture database.

The physical data base is organized spatially by panitioning the
region into tiles. We find it is most efficient to use street
intersections as the basic organizing units. Intersections give a
convenient way to reference the locations in the database (for
example, the intersection of Wilshire and Vermont). Thus one
spatial‘tile includes an intersection and about a quarter of each of the
four adjacent blocks. The blocks can be divided along parcel lines
so that some data integrity is maintained, however, there is no direct
link in the data structure between the separate block segments.
While this partitioning scheme facilitates the modeling process (it is
more convenient to split the b10cks into parts than to divide the
streets down the center lines), it causes additional complexity when
linking the physical model to a GIS database where normally a block
would be stored as a coherent entity.

APPLICATIONS

Currently there are several real-world projects underway that make
use of this simulation technology and help focus the development
effort. These projects, which range from architectural context
studies to medium and large scale urban design and planning,
emphasize different aspects of the system for design/decision
making.

One project is using this visual simulation technology to provide a
local, neighborhood level community—based planning and
communications tool to aid in redevelopment of the Pico Union area
of Los Angeles. This area was badly damaged by the 1992 riots and
the 1994 Northn'dge earthquake. For the initial project a base area
of about eighteen square blocks of the community has been
modeled. Using only simple interactive features of the user
interface, planners have been able to experiment with demolishing
a number of existing buildings and reclaiming street areas to bring
park and green space to the neighborhood. Planners in the
community are particularly interested in linking the virtual reality
model to a GIS data base for displaying information on parcel level
characteristics such as building ownership, type and the willingness
of the owner to work with the community in the redevelopment
process. Accessing such data in real—time as part of the visual
simulation will allow immediate identification of parcels which
would be most suitable for change.

In another project, which was carried out for the Los Angeles
Metropolitan Transportation Authority, an area around the Wilshire
& Vermont subway transit station was modeled. This model of the
existing neighborhood was then used to provide the context for
evaluating development alternatives for the site above the station.
One feature of the Urban Simulator interface which was particularly
useful for this project is the ability to display development of a site
over time. The proposed MTA development is intended to be built
in five stages. By simply moving a slider on the user interface, the
phases of development are added to the model. While the model has
proved valuable to the MTA staff for generating conceptual plans,
ultimately it is expected to be used to provide a context for interested
community groups to experience alternative proposals for
development around the station site.

While these projects look at redevelopment occurring in existing
areas, another project focuses on conceptual modeling of a new

166

169

Pico Union Neighborhood Model

mixed-use, master planned community located near the Pacific coast
approximately two miles north of the Los Angeles International
Airport. To date the proposed Master Plan site layout with the
surrounding natural bluff features and major existing buildings in the
area have been modeled. This site model currently consists of the
system of streets, lot boundaries and open spaces and will ultimately
include the proposed landscaping. Once the infrastructure model is
complete, articulated models of typical buildings will be placed on
the lots based on a detailed set of zoning criteria from the Master
Plan. Alternative forms which meet the criteria can be explored and
textured with images taken from existing developments which have
a similar feeling to those proposed. Rendered images of actual
designs can also be tested when the project moves into this phase.

CONCLUSION

An earlier "proof of concept" prototype model focusing on a riot-
torn portion of South Central Los Angeles recently won the top
award in the education and academia category of the 1994
Computchorld Smithsonian Award Program. Actual experience
using the system on real projects continues to validate this
development effort. The system has proven to be an extremely
useful tool for exploring potential design solutions. It is possible to
evaluate alternatives rapidly and in more detail than through more
traditional analysis. Results of the planning/design process are
illustrated visually, allowing the client or community to view a
proposed environment in a realistic fashion and become informed
participants in the decision process.

To facilitate community participation in the simulation process. the
UCLA Urban Simulation Team recently received a CalREN
(California Research and Education Network) grant for a 155
megabit/second ATM connection to a Wide area GTE and Pac Bell
ATM net. Additional commitments from Bay Networks for ATM
equipment and AT&T for their enhanced Multimedia Interface
(EMMI) will enable the real—time transmission of the keyboard and
mouse information in one direction and the video generated by the
simulation in the other. This will allow the display of the simulation
(in real;time) at any other CalREN or similarly connected site (high
school; library, community center, etc.). It is not difficult to
envision a time when the much prophesied 500 station interactive
cable networks will support community member‘s connection to
local city halls (at night when the machines are normally idle) where
they will use this technology to interactively evaluate and comment
on plans for the community.

170

Mathenautics: Using VR to Visit 3—D Manifolds

Randy Hudson1

University of Illinois
Charlie Gunn2

Technical University, Berlin

George K. Francis? Daniel J. Sandin‘,1 Thomas A. Deli‘anti4
University of Illinois

Abstract

In most virtual reality applications, 3-d space is a passive,
ambient continuum in which the objects of study are placed.
When the 3-d space itself is the object of study, as with
mathematical manifolds, VR is especially important as a
visualization medium. We describe the visualization of such

spaces in the CAVE virtual environment.

1 Introduction

Computer graphics has become instrumental in new discov—
eries in several domains of mathematics. For example, in
the study of minimal surfaces computer graphics was indis-
pensable in advancing several proofs and conjectures regard-
ing a new minimal surface [1] Depending on the emphasis,
these new techniques are called either visual or experimental
mathematics. Several centers have been founded to further
research in this direction, such as the Geometry Center at
the University of Minnesota and the SFB-ZBS lab at Tech-
nical University Berlin.

One area of visual mathematics where computer graph-
ics can be helpful is the classification of 3—dimensional man;
ifolds (fl—manifolds). According to a conjecture of William
Thurston (we omit some technical conditions), any 3—manifold
can be classified by modeling it on one of eight model geome-
tries (see [4] and related literature). In this paper, we will
be concerned with three of these model geometries (the clas—
sical cases which exist in every dimension): euclidean (E3),
spherical (33) and hyperbolic (H3) We will use the term
manifolds loosely, to include the related spaces known as

1Academic Information Technologies, Culver Hall, 1025 E. 57th,
University of Chicago, rhudson©eecsuiceclu

QSpeCial Research Project 288, ”Differential Geometry and Quan—
tum Physics”, Math 8-5, Strasse des 17 Juni 136, Technical Univer-
sity, 10623 Berlin, Germany, gunn©sfb288.math.tueherlinde

3National Center for Supercomputing Applications, University of
Illinois at Urbana—Champaign, gfrancis©math.uiuc.edu

4University of Illinois at Chicago

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice l5 glven
that copying is by permission ol the Assocratlon of Qornpunng
Machinery. To copy otherwise, or to republish. requnres a fee
and/or specific permission. . ‘
1995 Symposium on Interactive 3D Graphics. Monterey CA USA
© 1995 ACM 0-89791-736-7/95l0004...$3.50

167

170

orbifolds, which may contain singular points. For a fuller dis—
cussion of the mathematical background and its computer-
graphical implementation followed here, see {3]. The next
section contains a very abbreviated version of this article.

2 Previous Work on manifold visualization

The visualization of 3—manifolds is not as straightforward
as that of 2~manifolds. The 2-torus can be visualized di-
rectly as a familiar doughnut—shaped surface by embedding
it in a higher (third) dimension. This form of representation
can be called the outsider’s View. However, living Within
3-dimensional space, we have no fourth, directly-visible di-
mension in which to embed or immerse 3-manifolds.

An alternative method for visualizing manifolds which
solves this problem is the insider’s view. This is the View
we would see if we were to live inside the manifold. It is

constructed as a tessellation of the model geometry by none
overlapping copies of a single tile, or fundamental domain.
One copy of this tile represents the underlying manifold; the
other copies represent the different ways that light can travel
in the manifold to reach the observer’s eye. In the case of our
two-dimensional torus, the corresponding tessellation covers
the euclidean plane with copies of a parallelogram. (To get
the outsider’s view we take one copy of this parallelogram
and roll it up in 3 dimensions to make the torus.) The funda~
mental domain is replicated via the application of (a discrete
group of) isometries, in this case, translations in two inde-
pendent directions. Likewise, the 3—torus is visualized from
the inside by applying translations in three independent di-
rections of E3. (The discrete groups we study can contain
other kinds of isometries: glide-reflections, screw motions,
rotations and reflections.) Figure 1 Shows the insider’s view
of the 3-torus where the fundamental domain — a cube—like

polytope — has been shrunk to improve visibility.

3 Introduction to GeomCAVE

The immersive nature of the insider’s view is what makes
a virtual environment a better visualization medium for 3-

manifolds than the graphics workstation. The Geometry
Center has developed an interactive viewer geomuiew based
on the graphics library OOGL, capable of visualizing the
three model geometries considered here on a workstation.
The second author, while at the Geometry Center, devel-
oped a related tool, ma-m'uiew, for visualizing the insider’s

171

Figure l: Tessellation of euclidean 3-space by 3—torus.

view of 3-manifolds modeled on these geometriess. We
have adapted these tools to the CAVE virtual environment
developed at the Electronic Visualization Laboratory at the
University of Illinois of Chicago [2]. We call this hybrid tool
GeomCAVE; using it, the observer can for the first time
actually travel within these 3-manifolds and see them from
the inside. (After GeomCAVE was developed, more mod-
est alternatives for traveling through hyperbolic and spheri-
cal space using the standard CAVE libraries were developed
by Ulrike Axen, Glenn Chappell, Chris Hartman, Joanna
Mason, Paul McCreary and the fifth author for the Post;
Euclidean Walkabout at SIGGRAPH ’94, Stuart Levy and
Tamara Munzner, from the Geometry Center, have recently
expanded this code to read a subset of the OOGL formats
directly into the CAVE.)

Modules for the CAVE generally take the form of a. sin-
gle draw routine consisting of GL function calls, which is
called regularly from the main CAVE program. Since OOGL
maintains its own graphics context, including transform and
appearance stacks, which objects rely on when rendering
themselves, GeomCAVE had to be slightly more sophisti-
cated. We had to make some CAVE states available to the

OOGL context (e.g., which wall is currently being drawn);
and we also channeled the navigation data (walking and fly—
ing data) through OOGL routines to generate non-euclidean
isometries.

The user of GeomCAVE is provided with a menu of icons
representing different manifolds; choosing one brings him
into the tessellation for that space. The fundamental tile is
by default provided by a Dirichlet domain for the underlying
group; it is represented once at full scale in wire frame and
once at reduced scale as a. shaded solid, with corresponding
faces a unique color. The reduction in scale was necessary to
provide visibility of the whole tessellation, while the coloring
provides important information of the structure of the man-
ifold. The observer is represented in the scene by a small
dart-shaped object which is also tessellated (figure 2). It
points in the direction of the observer’s gaze, and its motion
and orientation with respect to the fixed geometry of the
tessellation provides further structural information. Some
of the example spaces contain singular axes; approach to
these is signaled by the convergence of multiple copies of
the dart to a single point.

The observer can navigate through the space either by
physically walking within the CAVE or by flying in the di~
rection of a hand-held wand. He can reset himself to the

5geornview and maniview are available via ftp from geomumnredu
in pub/software

Figure 2: Tesseilation of euclidean 3-space by group con-
taining rotation axes.

Figure 3: Dodecahedral tessellation of spherical 3-5pace.

origin if he gets lost, or can return to the icons to select
another space to visit.

3.1 The example manifolds

Two of the non-euclidean examples are tessellated by regular
dodecahedra, a construction impossible in E3. Because the
sum of a triangle’s angles in If3 is less than 180”, a regular
dodecahedron with right dihedral angles is possible. H3 can
be tiled with these right, regular dodecahedra in a variety
of ways. In GeomCAVE, the observer can verify this experi-
mentally by flying or walking to the common corner of eight
dodecahedra and examining these right angles directly. See
[3] for an illustration of an H3 tessellation.

In the same way, it is possible to have a regular dodec-

ahedron in S3 which has 120»degree dihedral angles (figure3 .
The euclidean 3-manifolds featured in GeomCAVE are

bothvdaased on the tessellation of euclidean space by a cube,
but the discrete groups which perform the tessellation are
different. See Figures 1 and 2. It is also possible to explic-
itly provide geometry to be tessellated instead of using the
Dirichlet domain (figure 4).

172

Figure 4: Alternate tessellation of 3-space by the group in
Figure 2.

4 GeomCAVE implementation challenges

We encountered several challenges in the implementation of
GeomCAVE:

I Conflicting viewing paradigms,

a Non—euclidean navigation in GeomCAVE,

I Manifold navigation in GeomCAVE,

0 Stereo, and

o Efficiency measures.

4.1

OOGL’s on-axis perspective projection is applicable in a
head—mounted display VR system, where the View planes
move with the viewer’s eyes. but not in the CAVE, where
off—axis projection must _be used because the View planes are
stationary. This problem applied equally to all geometries
The solution required us to replace the OOGL camera object
with an alternative means of transforming from World coor-
dinates to screen coordinates based upon oil-axis projection
from the observer’s position within the CAVE.

Conflicting viewing paradigms

4.2 Non—euclidean navigation in GeomCAVE

Euclidean 3—space can be trivially modeled in the euclidean
3-space of the CAVE interior. We discuss the more diii’icult
challenge of mapping hyperbolic geometry into the CAVE;
similar remarks apply to the spherical case.

The model of H3 we use in GeomCAVE the Beth-ami-

R’Iein (or projective) model [3]. In this model, hyperbolic
space is modeled as the interior of the unit ball in E3. Mea—
surements of distance and angle are computed using a dif-
ferent metric; the result is that the unit sphere lies an in-
finite (hyperbolic) distance from any point within the ball.
Hence the unit sphere is called the sphere at infinity in this
model. Figure 5 shows two views of a tessellation of the
two-dimensional hyperbolic plane in this model.

These facts have two consequences for navigation within
GeomCAVE. The first followa from the requirement that the
observer should not be allowed to leave hyperbolic space by

walking (see end of this section). If we want to prevent the
navigator from leaving H3 then it is clear that we must map
the CAVE‘s physical coordinates into the projective model
so that it lies entirely within the unit ball. We settled on a

169

172

Figure 5: Tessellation of hyperbolic plane by alternately-
colored, regular, right—angled pentagons, in the Klein model.
Right figure represents a hyperbolic translation of the left
by the vector T.

scaling value of 0.1, yielding typical corner coordinates of .5,
.5, .5, which keeps the CAVE well within the unit sphere. At
this value, the dihedral angles between the cave walls, mea—
sured hyperbolically, are around 70". Shrinking the cave
yields angles approaching the right angle of Euclidean mea-surement.

The second consequence affects how navigation is con-
ceptualized. The most natural way to think of flying or
walking is that the observer moves through the scene. How—
ever, if we follow this model when we implement hyperbolic
movement, the result is incorrect. The mistake occurs in
the standard construction of the oil—axis perspective trans—
formation, which typically contains an implicit euclidean
translation to move the observer to the origin. This eu-
clidean translation naturally results in an incorrect image.
The solution is to hyperbolically translate the scene past the
observer, rather than vice-versa.

In contrast to H3, which is modeled on the interior of
the unit ball, the projective model of 53 contains all the
available points. There is an implicit restriction on the size
of the CAVE in model coordinates, since the intrinsic metric
of 5'3 is finite. The CAVE can not be made larger than a
certain size; beyond that scale the size of the cave begins to
shrink, just as a circle on the 2-sphere attains a maximum
size at the equator and beyond that point gets smaller.

We made the decision to represent H 3 as an inhabitant
would experience it, which prohibited the navigator from
traveling outside the space. We would like to explore the
possibility of euclidean exploration of H3, so that mathv
ematicians can see how this model “sits” within ordinary
space (see Section 6).

4.3 Manifold navigation in GeomCAVE

Though not new with GeomCAVE ([3]), navigation in mani—
folds is worth mentioning here. One of the challenges unique
to manifold exploration involves “staying centered” in the
tessellation. Since E3 and H3 are infinite (as opposed to

SS, which is a finite space), a complete tessellation would
be of infinite extent. Since we can only create a finite tes-
sellation, the possibility exists that the navigator might fly
beyond the computed tessellation. The solution adopted
here is to “cage” the navigator within the central Dirichlet
domain of the group. That is, if in the motion of walking or
flying, a wall of the central Dirichlet domain passes by the
observer’ (fixed at the origin), then the observer is moved
to an Equivalent point lying within the central fundamen»
tal domain. That is, the cumulative navigation isometry is
multiplied by the group element associated with the crossed
face. The resulting isometry maintains the origin Within
the central Dirichlet domain. With respect to the manifold,
this new transform is equivalent to the original isometry,
since multiplication by group elements leave the manifold

173

invariant. However, this multiplication may be detectable
in our finite implementation: some copies on the edge of
the tessellation may appear or disappear. In the ideal imr
plernentation (requiring more computer power) these copies
are barely visible, either being too small or too foggy.

The alternative, to translate the tessellation to follow the
observer, quickly leads in the hyperbolic case to severe nu-
merical problems in the action in the group elements. The
result is that the fourth, “homogeneous” coordinate of the
transformed vertices grows exponentially large and the de-
homogenization operation loses precision. This is avoided
by the method outlined above.

4.4 Stereo

Modeling stereo vision presented challenges in the non-euclidean
case. We first describe the more familiar solution available
in the euclidean setting. The observer and the CAVE have a
fixed physical reality which should be mirrored in the mod-
els we apply to them. That is, the model coordinates for
the navigator are the same as the model coordinates of the
CAVE. In particular, the interocular separation of the ob-
server stays at a fixed ratio to the CAVE size. We found
empirically that an interocular distance of about 1/100 that
of the diagonal of the CAVE is small enough to assure fu—
sion. This translates to 'a distance of about 2 inches, roughly
corresponding to human anatomy; ln euclidean space, mak‘
ing the CAVE larger is equivalent to shrinking the scene
while keeping the CAVE a constant size, However, in non-
euclidean settings, this equivalence no longer holds! In these
spaces, there is no change of size without also changing
shape. Consequently, it is the CAVE and observer that
changes SiZe (and shape!) while the scene remains the same.
Of course there is no guarantee of fusion; it may become dif-
ficult if the observer in Ha becomes too large while standing
near the fixed geometry; but the danger is no different from
the physically observed difficulty of fusing stereo when you
move your hand closer to your eyes in everyday life.

The pair of images for the stereo effect is produced by
rendering each eye separately as described above by hyper-
bolically translating the scene to locate the given eye at the
origin.

4.5 Efficiency measures

To maintain the frame rate required in VB, we needed to
disable the software lighting and shading for non-euclidean
scenes (OOGL does lighting in software because of the dif—
ferent metrics of the non—euclidean geometries). We kept the
model of the tessellation simple — a wireframe, with simple,
solid tiles inside. The discrete group software in OOGL au-
tomatically culled the copies of the tessellation which lay
outside the viewing frustum of a given wall of the CAVE.
Also, we kept the number of layers of the tessellation great
enough to produce a. sense of depth, but small enough to
maintain an adequate frame rate.

5 Evaluation

We have combined the discrete group capabilities of OOGL
with VR, the only visualization paradigm for an immer-
sive, direct experience of mathematical spaces, to extend
the power ofinteractive 3-d visualization of such spaces. Ac—
cess to 3—manifolds via a virtual environment is a significant
addition to the tools available for mathematical research
and education. For example, as pointed out in section 3,
GeomCAVE allows direct observation of interesting prop—
erties of non-euclidean spaces, such as the right angles of
dodecahedra in hyperbolic space. GeomCAVE immediately

173

170

makes features of OOGL available in VR, such as a col;
lection of geometric models and discrete group operations.
Thus, a mathematician who has built a manifold for viewing
in maniview would be able to also explore it in GeomCAVE.

6 Further work

I implement mixed mode navigation in H3 (see conclu-
sion of Section 4.2).

a Add more features of maniview:

— Control over the size and shape of the Dirichlet
domain.

- Control over the depth of the tessellation.

— As hardware improves, reactivate the software
shading and fog effects.

a More sophisticated tools for mathematicians:

— Connections with existing manifold software (such
as snappea ([5]).

- Finer interactive control of the discrete group: se—

lecting subgroups, use of color, deformation of the
group.

7 Simulation of dynamical systems in non-euclidean
spaces.

e Extend the coverage to the other five Thurston
geometries.

0 Experiment with audio tessellation along with the ge»
ometric data. The resulting echo patterns could dis-
tinguish differently-shaped manifolds.

7 Acknowledgements

We would like to extend special thanks to Stuart Levy of the
Geometry Center for his help. Thanks are also due to Mark
Phillips and Tamara Munaner, also of the Geometry Center,
as well as Louis Kauffman, of the University of Illinois at
Chicago.

REFERENCES

[l] Callahan, M.J., Hoffman, D. and Hoffman, .l.T. Com-
puter Graphics Tools for the Study of Minimal Surfaces.
Communications of the Associatianfor Computing Ma—
chinery 31, 6 (1988), 648-661.

[2) Cruz»Neira, Carolina, Sandin, Daniel J., DeFanti,
Thomas A,, Kenyon, Robert V. and Hart, John C.
The CAVE: Audio Visual Experience Automatic Vir-
tual Environment. Communications of the Association
for Computing Machinery 35, 6 (June, 1992), 65‘72.

[3] Gunn, Charlie. Discrete Groups and Visualization of
Three Dimensional Manifolds. Computer Graphics 27’
(July, 1993), 255—262. Proceedings of SIGGRAPH 1993.

[4] Thurston, William. Three Dimensional Manifolds,
Kleinian Groups and Hyperbolic Geometry. BAMS 19

1.1952), 417—431.

[5}cWeeks, Jeff. snappea —
' tion for computing 3-manifolds”.

ftp@geom.umn.edu).

a Maclntosh applica-
(available from

174

Tracking a Turbulent Spot in an Immersive Environment

*David C. Banks, Institute for Computer Applications in Science and Engineering

qtMichael Kelley, Information Sciences Institute

ABSTRACT

We describe an interactive. immersive 3D system called Trackrur,
which allows a viewer to track the development of a turbulent
flow. Tracktur displays time-varying vortex structures extracted
from a numerical flow simulation. The user navigates the space

and probes the data within a windy 3D landscape. in order to sus-
tain a constant frame rate, we enforce a fixed polygon budget on
the geometry. In actual use by a fluid dynamicist, Tracktur has
yielded new insights into the transition to turbulence of a laminarflow.

1 Introduction

Simulating the evolution of a turbulent spot has consumed
thousands of CPU hours (on a Cray 2, Cray YMP, and YMP C-90
over the course of 25 calendar years) [1]. We wish to animate 230
time steps produced by the simulation, which are archived as hun~
dreds of gigabytes of data. How does one visualize this large
amount of time-varying data at interactive speeds?

A new technique for locating vortices in an unsteady flow [2]
compresses the volumetric flow-data by a factor of more than a
thousand. This amount of compression seemed to promise interac-
tive visualization of a massive time-varying dataset. We therefore
developed a visualization system, Tracktur, that uses the com-
pressed vortex representation to help track the development of a
turbulent flow [3]. Tracktnr uses a graphics workstation, 3D track-
ing, and a stereoscopic display to create a virtual 3D environment
populated by time-varying vortex tubes.

2 The Interactive Environment

Our target user is the theoretical flow physicist who produced
the time-varying dataset. From his perspective, the significant fea-
tures of the simulation include the flat plate, the fluid flowing over
it, the vortex structures, and the units of the computational domain
(both spatial and temporal). The combination of a plane with a
continual flow over it suggested to us a windy landscape.______,____———-————

*ICASE, Mail Stop 132C. NASA Langley Research Center, Hampton, Vir—
ginia 23681. 804/864-2194 {banks@icase.edu).

i'Infarrnm‘imi Sciences Institute, 4350M Fairfax Drive, Suite 400, Arling-
ton. VA 22203. 703/243-9422 (kelieym@arpa.mi1).

Permlssion to copy without fee all or part oi this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copyin is by permission of the Association of Computing
Machinery. 0 copy otherwise, or to republish. requires a fee
andlor specific permission.
1995 Symposium on Interactive SD Graphics, Monterey CA USA
© 1995 ACM 0-89791-736v7/95/0004...$3.50

174

One of our early design decisions was to make generous use
of texture maps to enrich the virtual world. A grid—texture was an
obvious choice for the ground plane, with stenciled textures added
to denote streamwise units of the domain. To indicate the free-
stream velocity, we animate a cloud-texture on two distant walls.
Textures denote the upstream and downstream directions. Sur-
rounded by a textured landscape, a viewer is given persistent
reminders of the spatial context he is operating within. The 3D
widgets in the environment are also textured to eliminate the car-
toon quality that constant—colored polygons convey.

In an actual wind-tunnel experiment, the vortex structures

would be only millimeters in size and the free—stream velocity
would be about 30 meters per second. The lifetime of the turbulent
spot would be less than a second. Trackmr displays the 3D anima-
tion at more human scales: the geometry is larger and the simula-
tion lasts longer, each by about three orders of magnitude.

We want to help the scientist comprehend the spatial evolu»
tion of a turbulent spot; since the spot convects downstream, we let
the viewer be convected along with it to keep it in the field of view.
Widgets are convected downstream with the viewer to remain
within reach. A time-slider advances to mirror the current time

step in the animation; alternatively, the viewer can set the current
time step by adjusting the slider. Shadows on the ground plane pro-
vide a depth cue at only a small penalty in performance [4]. The
viewer can select surface, wire—frame, or fat-line representations of

the geometry. The fat-line segments (through the core of the vorti-
ces) are given widths to match the thickness of the tube and are
illuminated as one—dimensional fibers [5] in order to convey shape
from shading.

We also want to permit routine measurements of flow quanti-
ties. The viewer is given a data probe — a ray emanating from the
pointing device in the virtual environment. Tracktnr locates the
nearest point on a vortex core to the probe ray, then displays
attributes (such as spatial position of the point) in a pop-up panel.

3 3D Toolkits

Tracktur is constructed from several component libraries.

including public-domain toolkits. The Minimal Reality toolkit [6]
provides the basis of a through-the-window interface that uses ste—
reoscopic display and 3D tracking for the head and hand. The
CAVE version of the application [7] uses code developed by the
Electronic Visualization Laboratory [8].

We developed a custom toolkit to implement 3D menus
(using Hershey fonts), buttons, and sliders. We also developed a
calibration tool for the SD trackers to determine the proper matrix
transforms. The user interactively aligns coordinate axes (dis-

played on the screen) to establish the correct rotation matrix. The
various transformations are written to a file and need not be recom—

puted unless the equipment is moved.

171

175

A backwardvtilted S-shapea’ vortex head that develops in the late
stages of transitionfrom a laminarflow to a turbulent spot.

4 The Fixed Polygon Budget

A difficult aspect of developing an interactive system is pre-
serving a fixed frame rate. Our scene-updates are typically domi-
nated by the time spent drawing the vortex tubes, so we budget a
fixed number of polygons with which to model them. The turbu-
lent spot increases in geometric complexity as the simulation
progresses: a single vortex tube at time 28 develops into about 150
tubes at time 221. An SGI Onyx with RealityEngine2 graphics sus-
tains about 15 frames per second with a fixed count of 9000 poly-
gons.

In the early stages of the simulation, the polygon budget
allows a finer resolution than we have computed. We therefore re-
sample the vortex skeleton at a higher spatial resolution in order to
exhaust the supply of polygons. But in the late stages of the simu-
lation it is imperative to dole out the polygons in a miserly fashion.
The vortex skeletons are down-sampled according to a set of heu-
ristics designed to preserve significant geometric features. The re-
sampling works as a filter on the original skeletal representation of
the vortex core. The first sample-point is always retained. After a
point is retained, subsequent points along the skeleton are rejected
unless any of the following hold:

I the arclength exceeds a threshold:
0 the integrated curvature exceeds a threshold;
0 the radius of the cross—section changes quickly.

Sometimes a vortex skeleton enters a small spiral from which
it never exits. To guard against wasted samples, we reject points on
the skeleton where the ratio of the skeleton‘s radius to its radius of
curvature exceeds a threshold (we use the constant 0.7). These
heuristics maintain a reasonable amount of geometric detail at the
late stages of the simulation

5 What Has Been Learned

The scientist who generated the dataset (Dr. Bart Singer)
agreed to use the system to study how a turbulent spot develops.
He has learned two new things about the evolution of the turbulent
spot. In order to place them in their context, we give a brief
descriptive summary of the spot’s development.

First, Singer discovered a backwards—tilted S-shaped vortex
head in the late stages of transition (see figure). The vortex is simi-
lar in shape to a structure seen in experimental data for a similar
flow. Singer had not observed this feature in his dataset until he
used our system. Evidently, the interactivity permitted him to
select the right combination of a particular viewpoint and a partic-

172

175

ular time step. This could, in principal, have been discovered with
the visualization system he was a accustomed to using, but its
more limited interactivity made the feature much harder to find.

Secondly, the visualization system gave Singer his first view
of the dynamic behavior of “necklace” vortices, which define the
outer extent of the turbulent spot. They eventually shred into
pieces, curling into horseshoe and hairpin vortices. Without Track-
tur, Singer had been unable to track the necklace vortices through
their entire history. These findings are initial evidence that the sys-
tem can assist in the research task.

6 Conclusions

Visualization tools can certainly communicate research
results, but it is not yet clear how well they help produce research
results. We have created an interactive 3D visualization system,
called Tracktur, and put it into the hands of the scientist. Tracktur
provides a textured environment for examining the onset of turbu-
lence. The viewer can navigate through the landscape and interact
with a turbulent spot through 3D menus, buttons, sliders, and a
data probe. 1n the hands of a fluid scientist, the system has yielded
new insights into the development of a turbulent spot.

Acknowledgments

This work was supported under NASA contract No. NASl-
19480. We thank Bill von Ofenheim and the Data Visualization
Lab at NASA Langley Research Center for use of their stereo
glasses. We thank Jonathan Shade at the San Diego Supercomputer
Center for help in creating transparent texture maps.

Bibliography

[1] Singer, Bart A. and Ron Joslin, "Metamorphosis of a hairpin
vortex into a young turbulent spot." Physics of Fluids A, Vol.
6, No. 11 (Nov. 94).

[2] Banks, David C. and Bart A. Singer, “Vortex Tubes in Turbu—
lent Flows: Identification, Representation, Reconstruction.”
Proceedings of Visualization ’94.

[3] “The Tracktur Home Page," World Wide Web URL
http:llwww.icase.edul~banksltrackturlvortexldoc/
trackturhtml.

[4] Blinn, Jim, “Me and My (Fake) Shadow.” IEEE Computer
Graphics & Applications (Jim Blinn’s Corner), January 1988,
pp. 82-86.

[5] Banks, David C., “illumination in Diverse Codimensions.”
Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24-
29, 1994). In Computer Graphics Proceedings, Annual Con-
ference Series, 1994, ACM SIGGRAPH, New York, pp. 327-
334.

[6] “MR Toolkit,” World Wide Web URL
http://web.cs.ualbcna.cal~graphics/MRToolkithtml.

[7] Banks, David C., “The Onset of Turbulence in a Shear Flow
Over a Flat Plate.” [Demonstration] SIGGRAPH ’94
VROOM Exhibit. In Visual Proceedings: The Art and Inter—
disciplinary Frogmms ofSIGGRAPH 94, Computer Graphics
Annual Conference Series. 1994, ACM SIGGRAPH, New

(York, p. 235. Also in “Fluid Mechanics," World Wide Web

,r’m http:l/www.ncsa.uiuc.edu/EVIJdocslVROOM/HTMLI
PROJECTS/ZSBankshtml.

[8] "CAVE User’s Guide," World Wide Web URL
http://www.ncsa.uiuc.edulEVUdocsfhtrnl/CAVEGuide.html.

176

Behavioral Control for Real-Time Simulated Human Agents

John P. Granieri, Welton Becket,

Barry D. Reich, Jonathan Crabtree, Norman 1. Badler

Center for Human Modeling and Simulation

University of Pennsylvania

Philadelphia, Pennsylvania 19104-6389
granieri/becket/reich/crabtree/badlerflg’raphics .cis .upenn . edu

Abstract

A system for controlling the behaviors of an interac—
tive human-like agent, and executing them in real-time,
is presented. It relies on an underlying model of contin-
uous behavior, as well as a discrete Scheduling mecha-
nism for changing behavior over time. A multiprocess-
ing framework executes the behaviors and renders the
motion of the agents in real-time, Finally we discuss
the current state of our implementation and some areas
of future work.

1 Introduction

As rich and complex interactive 3D virtual environ-
ments become practical for a variety of applications,
from engineering design evaluation to hazard simula-
tion, there is a need to represent their inhabitants as
purposeful, interactive, humanelike agents.

It is not a great leap of the imagination to think
of a product designer creating a virtual prototype of a
piece of equipment, placing that equipment in a virtual
workspace, then populating the workspace with virtual
human operators who will perform their assigned tasks
(operating or maintaining) on the equipment. The de—
signer will need to instruct and guide the agents in the
execution of their tasks, as well as evaluate their per—
formance within his design. He may then change the
design based on the agents’ interactions with it.

Although this scenario is possible today, using only
one or two simulated humans and scripted task anima-
tions [3], the techniques employed do not scale well to
tens or hundreds of humans. Scripts also limit any abil—
ity to have the human agents react to user input as well
as each other during the execution of a task simulation.
We wish to build a system capable of simulating many
agents, performing moderately complex tasks, and able
to react to external (either from user-generated or dis-
tributed simulation) stimuli and events, which will oper—
ate in near real-time. To that end, we have put together
a system which has the beginnings of these attributes,

Permission to copy wiihoui fee all or pan of this material is
granted provided that the copies are not made or distributed ior
direct commercial advanta a, the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copying is by permission of ihe Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on interactive SD Graphics, Monierey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

and are in the process of investigating the limits of our
approach. We describe below our architecture, which
employs a variety of known and previously published
techniques, combined together in a new way to achieve
near real-time behavior on current workstations.

We first describe the machinery employed for behav—
ioral control. This portion includes perceptual, control,
and motor components. We then describe the multipro—
cessing framework built to run the behavioral system in
near real-time. We conclude with some internal details

of the execution environment. For illustrative purposes,
our example scenario is a pedestrian agent, with the
ability to locomote, walk down a sidewalk, and cross
the street at an intersection while obeying stop lights
and pedestrian crossing lights.

2 Behavioral Control

The behavioral controller, previously developed in [4]
and [5], is designed to allow the operation of paral-
lel, continuous behaviors each attempting to accom-
plish some function relevant to the agent and each con-
necting sensors to effectors. Our behavioral controller
is based on both potential-field reactive control from

robotics [1, 10] and behavioral simulation from gra h-ics, such as Wi helms and Skinner’s implementation 20
of Braitenberg’s Vehicles [7]. Our system is structured
in order to allow the application of optimization learn-
ing [6], however, as one of the primary difficulties with
behavioral and reactive techniques is the complexity of
assigning weights or arbitration schemes to the various
behaviors in order to achieve a desired observed behav-

ior [5, 6].
Behaviors are embedded in a network of behavioral

nodes, with fixed connectivity by links across which only
floating-point messages can travel. On each simulation
step the network is updated synchronously and with—
out order dependence by using separate load and emit
phases using a simulation technique adapted from [14].
Because there is no order dependence, each node in the
network could be on a separate processor, so the net-
work could be easily parallelized.

Each functional behavior is implemented as a sub—
network of behavioral nodes defining a path from the
geometry database of the system to calls for changes
in the database, Because behaviors are implemented
as networks of simpler processing units, the representa-
tion is more explicit than in behavioral controllers where
entire behaviors are implemented proeedurally. Where

173

176

177

ever possible, values that could be used to parameterize
the behavior nodes are made accessible, making the en—
tire controller accessible to machine learning techniques
which can tune components of a behavior that may be
too complex for a designer to manage. The entire net-
work comprising the various sub-behaviors acts as the
controller for the agent and is referred to here as the
behavior net,

There are three conceptual categories of behavioral
nodes employed by behavioral paths in a behavior net:

perceptual nodes that output more abstract results
of perception than what raw sensors would emit.
Note that in a simulation that has access to a com—

plete databaSe of the simulated world, the job of
the perceptual nodes will be to realistically limit
perception, which is perhaps opposite to the func-
tion of perception in real robots.

motor nodes that communicate with some form of mo-

tor control for the simulated agent. Some motor
nodes enact changes directly on the environment.
More complex motor behaviors, however, such as
the walk motor node described below, schedule a
motion (a step) that is managed by a separate,
asynchronous execution module.

control nodes which map perceptual nodes to motor
nodes usually using some form of negative feed—
back.

This partitioning is similar to Firby’s partitioning of
continuous behavior into active sensing and behavior
control routines [10], except that motor control is con—
sidered separate from negative feedback control.

2.1 Perceptual Nodes
The perceptual nodes rely on simulated sensors to

perform the perceptual part of a behavior. The sensors
access the environment database. evaluate and output
the distance and angle to the target or targets. A sam-
pling of different sensors currently used in our system is
described below. The sensors diifer only in the types of
things they are capable of detecting.

Object: An object sensor detects a single object. This
detection is global; there are no restrictions such
as visibility limitations. As a result, care must
be taken when using this sensor: for example, the
pedestrian may walk through walls or other objects
without the proper avoidances, and apparent real!
ism may be compromised by an attraction to an
object which is not visible. It should be noted that
an object sensor always senses the object’s current
location, even if the object moves. Therefore, fol-
lowing or pursuing behaviors are possible,

Location: A location sensor is almost identical to an

object sensor. The difference is that the location
is a unchangeable point in space which need not
correspond to any object.

Proximity: A proximity sensor detects objects of a
specific type. This detection is local: the sensor can
detect only objects which intersect a sector—shaped
region roughly corresponding to the field-of—view of
the pedestrian.

Line: A line sensor detects a specific line segment.

177

Terrain: A terrain sensor, described in [17], senses the
navigability of the local terrain. For example, the
pedestrian can distinguish undesirable terrain such
as street or puddles from terrain easier or more de»
sirable to negotiate such as sidewalk.

Field-of—View: A field-of—view sensor, described
'n [17], determines whether a human agent is visi—
ble to any of a set of agents. The sensor output is
proportional to the number of agents” fields-of—view
it is in, and inversely proportional to the distances
to these agents.

2 .2 Control Nodes

Control nodes typically implement some form of neg—
ative feedback, generating outputs that will reduce per-
ceived error in input relative to some desired value or
limit. This is the center of the reactivit of the be-

havioral controller, and as suggested in [9, the use of
negative feedback will effectively handle noise and un—
certainty.

Two control nodes have been implemented as de—
scribed in [4] and [5], attract and avoid. These loosely

model various forms of taxis found in real animals [7, 11%and are analogous to proportional servos from contro
theory. Their output is in the form of a recommended
new velocity in polar coordinates:

Attract An attract control node is linked to 6? and d

values, typically derived from perceptual nodes,
and has angular and distance thresholds, 19 and
tar. The attract behavior emits A6 and Ad values
scaled by linear weights that suggest an update
that would bring d and 6 closer to the threshold
values. Given weights kg and kg :

0 if —tg g 6 g 159
A6: k3(5—tg lf9>t9

kg(6 + t9 otherwise

_ 0 if d g ta!
Ad _ { [raid - id) otherwise.

Avoid The avoid node is not just the opposite of at-
tract. Typically in attract, both 6 and :1! should
be within the thresholds. With avoid, however,
the intended behavior is usually to have 0! outside
the threshold distance, using 9 only for steering
away. The resulting avoid formulation has no an—
gular threshold:

0 if d > id

as: legs—6) ifdgtdandtlzo
k3 —7r — 9) otherwise

ifd>td0

A9 = { kd(td — d) otherwise.

174

178

Figure 1: Sawtooth path due to potential field discon—
tinuities '

2.3 Motor Nodes

Motor nodes for controlling non-linked agents are im-
plemented by interpreting the Ad and A6 values emit-
ted from control behaviors as linear and angular ad-

justments, where the magnitude of the implied velocity
vector gives some notion of the urgency of traveling in
that direction. If this velocity vector is attached di-
rectly to a figure so that requested velocity is mapped
directly to a change in the object’s position, the result-
ing agent appears jet-powered and slides around with
infinite damping as in Wilhelms and Skinner’s environ-
ment [20].

2.3.1 Walking by. sampling potential fields

When controlling agents that walk, however, the mo-
tor node mapping the velocity vector implied by the
outputs of the control behaviors to actual motion in
the agent needs to be more sophisticated. In a walking
agent the motor node of the behavior net schedules a
step for an agent by indicating the position and orien—
tation of the next footstep, where this decision about
where to step next happens at the end of every step
rather than continuously along with motion of the agent.
The velocity vector resulting from the blended output
of all control nodes could be used to determine the next
footstep; however, doing so results in severe instability
around threshold boundaries. This occurs because we
allow thresholds in our sensor and control nodes and as
a result the potential field space is not continuous. Tak-
ing a discrete step based on instantaneous information
may step across a discontinuity in field space. Consider
the situation in Fig. 1 where the agent is attracted to a
goal on the opposite side of a wall and avoids the wall
up to some threshold distance. If the first step is sched—
uled at position m, the agent will choose to step directly
toward the goal and will end up at 192. The agent is then
well Within the threshold distance for walls and will step
away from the wall and end up at 133, which is outside
the threshold. This process then repeats until the wall

175

178

Max Step Length

Figure 2: The fan of potential foot locations and orien-
tations

Perceptual Conmfl l Molar
Nodes : Nodes 1 Nodes

‘

Attract
min-d. mr'n- 5

scaling weight: (4)

Goal Sensor

,g menial-pr:

 Walk

Ed:

Figure 3: An example behavior net for walking

Walker Sensor Avoid
m. arm: 5 m“:

M raging weigh/s {4) scaling weights {4)

 W" '1"? am mp

“MIX-flap
streamed

Avoidd 1Cylinder Sensor

fov. Jim-d
averaging weight! {4) scaling wound

is cleared, producing an extremely unrealistic sawtooth
path about the true gradient in the potential field.

To eliminate the sawtooth path effect, we sample the
value of the potential field implied by the sensor and
control nodes in the space in front of the agent and step
on the location yielding the minimum sampled ‘energy’
value. We sample points that would be the agent’s new
location if the agent were to step on points in a number
of arcs Within a fan in front of the agent’s forward foot.
This fan, shown in Fig. 2, represents the geometrically
valid foot locations for the next step position under our
walking model. This sampled step space could be ex-
tended to allow side—stepping or turning around which
the agent can do [3], though this is not currently ac—
cessed from the behavior system described in this pa-
per. For each sampled step location, the potential field
value is computed at the agent’s new location, defined
as the average location and orientation of the two feet.
2.4 An example behavior net

The example behavior net in Fig. 3 specifies an over-
all behavior for walking agents that head toward a par-
ticular goal object while avoiding obstacles (cylinders in
this case) and each other. The entire graph is the behav-
ior net, and each path from perception to motor output
is considered a behavior. In this example there are three
behaviors: one connecting a goal sensor to an attraction
controller and then to the walk node (a goal-attraction
behavior), another connecting a sensor detecting prox-
imity of other walking agents to an avoidance controller

179

and then to the walk node (a Walker—avoidance behav-
ior), and a final behavior connecting a cylinder prox—
imity sensor to an avoidance behavior and then to the

walk node (a cylinder-avoidance behavior).
Each node has a number of parameters that deter«

mine its behavior. For example, the walker sensor and
the cylinder sensor nodes have parameters that indi-
cate how they will average all perceived objects within
their field of view and sensing distance into a single ab-
stract object. The Attract and Avoid nodes have scaling
weights that determine how much output to generate as
a function of current input and the desired target values.

The walk motor behavior manages the sampling of
the potential field by running data through the percep-
tual and control nodes with the agent pretending to be
in each of the sampled step locations. The walk node
then schedules the next step by passing the step location
and orientation to the execution module.

Note that this example has no feedback, cross—talk,
or inhibition within the controller, though the behav-
ioral controller specification supports these features [5].
Although this example controller itself is a feed-forward
network, it operates as a closed-loop controller when at—
tached to the agent because the walk node’s scheduling
of steps affects the input to the perceptual nodes.

Our use of attract and avoid behaviors to control

groups of walking agents may appear on the surface
like Ridsdale’s use of hot and cold tendencies to control

agents in his Director’s Apprentice system l[18]. How-ever, his system was not reactive and on— ine as our
behavioral controller is, it did not limit perception of
agents, it had no structured facilities for tuning behav-
ior parameters, and it did not take advantage of devel~
opments in reactive control and behavioral simulation.
His system focused on the use of an expert system to
schedule human activity conforming to stage principles
and used hot and cold tendencies to manage complex
human behavior and interaction. We limit the use of

behaviors to reactive navigation and path-planning, us-
ing parallel transition. networks rather than one large
expert system to schedule events, and we look to sym—
bolic planning systems based on results in cognitive sci-
ence, such as [3, 8, 16 , to automate high—level human
behavior and complex uman interactions.

3 Parallel Automata

Parallel Transition Networks (PaT—Nets) are transi-
tion networks that run in parallel with the behavior
net, monitor it, and edit it over time [8] They are
a mechanism for scheduling arbitrary actions and in-
troducing decision—making into the agent architecture.
They monitor the behavior net (which may be thought
of as modeling low level instinctive or reflexive behavior)
and make decisions in special circumstances. For exam—
ple, the agent may get caught in a dead-end or other
local minimum. PaT—Nets recognize situations such as
these, override the “instinctive” behavior simulation by
reconfiguring connectivity and modifying weights in the
behavior net, and then return to a monitoring state.

In our pedestrian example we combine object. and
location sensors (in perceptual nodes) with attract con—
trol nodes, and proximity and line sensors (in percep~
tual nodes) with avoid control nodes. Pedestrians are
attracted to street corners and doors, and they avoid
each other, light poles, buildings, and the street exceptat crosswalks.

176

179

Init

Bind
Avoidance:

State 2
Cross to

NE Comer

State 1

Go North 10
SE Corner

Figure 4: North-net: A sample pedwnet shown graph—
ically

Figure 5: A pedestrian crossing the street

We use PaT-Nets in several different ways.
Li htwnets control traflic lights and pad—nets control
pe estrians. Light-nets cycle through the states of the
traffic light and the walk and don’t walk signs.

Fig. 4 is a simple pad—net, a north-net, which moves
a pedestrian north along the eastern sidewalk through
the intersection. Initially, avoidances are bound to the
pedestrian so that it will not walk into walls, the street,
poles, or other pedestrians. The avoidances are always
active even as other behaviors are bound and unbound.
In State 1 an attraction to the southeast corner of the

intersection is bound to the pedestrian. The pedestrian
immediately begins to walk toward the corner avoiding
obstacles along the way. When it arrives the attraction
is unbound, the action for State 1 is complete. Nothing
further happens until the appropriate walk light is lit.
Whenit is lit, the transition to State 2 is made and ac-
tion‘ Cross to NE Corner is executed. The agent crosses
the street. Finally, the agent heads north.

Fig. 5 shows a pedestrian controlled by a north-net.
The transition to State 2 was just made so the pedes-
trian is crossing the street at the crosswalk.

180

T

4 Real-Time Simulation Environment

The run-time simulation system is implemented as a
group of related processes, which communicate through
shared memory. The system is broken into a minimum
of 5 processes, as shown in Fig. 6. The system relies
on IRIS Performer [19] for the general multiprocessing
framework. Synchronization of all processes, via spin
locks and video clock routines, is performed in the CON—
TROL process. It is also the only process which performs
the edits and updates to the run—time visual database.
The CULL and DRAW processes form a software render-
ing pipeline, as described in [19]. The pipeline improves -
overall rendering throughput while increasing latency,
although the two frame latency between CONTROL and
DRAW is not significant for our application. Our CON~
TROL process is equivalent to the APP process in the
Performer framework. We have used this framework to

animate multiple real-time human figures [12].
4.1 CONTROL Process

The CONTROL process runs the main simulation loop
for each agent. This process runs the PaT-Nets, and un-
derlying behavior net for each agent. While each agent
has only one behavior net, they may have several PaT-
Nets running, which sequence the parameters and con—
nectivity of the nodes in the behavior net over time (as
shown in Fig. 6).

By far the costliest computation in the CONTROL pro-
cess, for the behaviors modeled in this example applica-
tion, is the evaluation of the Walk motor node in the be—
havior net, and specifically the selection of the next foot
position. Since this computation is done only once for
every footfall, it usually runs only every 15 frames or so
(the average step time being about 1/2 second, and av-
erage frame rate 30Hz). If the CONTROL process starts
running over its allotted frame time, the Walk nodes
will start reducing the number of points sampled for the
next foot position, thereby reducing computation time.
The only danger here is described in Section 2.3.1, the
potential for a sawtooth path. If many agents are walk-
ing at similar velocities, they can all end up computing
their next-step locations at the same frame-time, creat—
ing a large computation spike which causes the whole
simulation to hiccup. (It is visually manifested by the
feet landing in one frame, then the swing foot suddenly
appearing in mid-stride on the next frame.) We attempt
to even out the computational load for the Walk motor
node evaluation by staggering the start times for each
agent, and thereby distributing the computation over
about 1/2 second for all agents.

Another computational load in the CONTROL process
comes from the evaluation of the conditional expressions
in the Pat-Nets, which may occur on every frame of the
simulation. They are currently implemented via LISP
expressions, so evaluating a condition involves parse and
eval steps. In practice, this is fairly fast as we pre—
compile the LISP, but as the PaT-Nets increase in com—
plexity it will be necessary to replace LISP with a higher
performance language (ie. compiled C code). This may
remove some of the generality and expressive poWer en—
joyed with LISP.

Another technique employed to improve perfor—
manc , when evaluating a large number of Pat-Nets and
behavior nets, is to have the CONTROL process spawn
copies Of itself, with each copy running the behavior of
a subset of the agents. This works as long as updates
to the visual database are exclusive to each CONTROL

1

177

80

process. (In practice this is the case, since the current
behavior net for one agent will not edit any parameters

for another agent in the visual database.) Of course, the
assumption in spawning more processes is that there are
available CPUs to run them.

The CONTROL process also provides the outputs of
the motor nodes in the behavior net to the MOTION

process. These outputs, in the case of the walking be-
havior, are the position and orientation of the agent’s
next foot fall. It also evaluates the motion data (joint
angles) coming from the MOTION process, and performs
the necessary updates to the articulation matrices of the
human agent in the visual database.

4.2 SENSE Process

The SENSE process controls and evaluates the sim—
ulated sensors modeled in the perceptual nodes of the
behavior net. It provides the outputs of the percep-
tual nodes to the CONTROL process, which uses them
for the inputs to the control nodes of the behavior
net. The main computational mechanism the sensors
employ are intersections of simple geometric shapes (a
set of points, lines, frustums or cones) with the visual
database, as well as distance computations. This pro-
cess corresponds to an ISECT process in the Performer
framework.

The major performance parameters of this process
are the total number of sensors as well as the complex—
ity and organization of the visual database. Since it
needs read-only access to the visual database, several
SENSE processes may be spawned to balance the load
between the number of sensors being computed, and the
time needed to evaluate them. (These extra processes
are represented by the dotted SENSE process in Fig. 6.)
There is a one frame latency between the outputs of the.
perceptual nodes and the inputs to the control nodes
in the behavior net (which are run in the CONTROL
process), but this is not a significant problem for our
application.

4.3 MOTION Process

Once the agent has sensed its environment and de-
cided on on appropriate action to take, its motion is
rendered Via real—time motion generators, using a mo-
tion system that mixes pro—recorded playback and fast
motion generation techniques.

We use an offline motion authoring tool [2, 13] to
create and record motions for our human figures. The
off-line system organizes motion sequences into posture
graphs (directed, cyclic graphs). Real-time motion play-
back is simply a traversal of the graph in time. This
makes the run-time motion generation free from frame-
rate variations. The offsline system also records mo-
tions for several levelsvof~detail (LOD) models of the
human figure. (Both the bounding geometry of the fig-
ure, as well as the articulation hierarchy joints) are
represented at several levels of detail.) The t ree levels-
of—detail we are using for the human figure are:

1._ A 73 joint, 130 DOF, 2000 polygon model, which
* has articulated fingers and flexible torso, for use in

close—up rendering, and fine motor tasks (Jack®),

2. A 17 joint, 50 DOF, 500 polygon model, used for
the bulk of rendering, it has no fingers, and the
flexible torso has been replaced by two joints,

181

: SENSE ‘-
process ,'

PaT-Nets

output of
perceptual
nodes

behavior net

proce SS

output of
motor control
nodes

MOTION

1 MOTION ':‘ processa process .'

intersections

DRAW /
___________ ‘ process

motion frames

motion frames

1: perceptual nodes 2: control nodes 3: motor control nodesm = data flow

visual database

 motion database

/ ‘ ' ‘ A = control flow

Figure 6: The multiprocessing framework for the real—time behavior execution environment

3. An 11 joint, 21 DOF, 120 polygon model used when
the human agent is at a large distance from thecamera.

This process produces a frame of motion for each
agent, then sleeps until the next frame boundary (the
earliest any new motion could be needed). It provides
the correct motion frame for the currently active LOD
model in the visual database For certain types of sen-
sors modeled in the perceptual nodes, this process will
also be requested to provide a full (highest LOD) update
to the visual database, in the case where a bitter LCD
is currently being used, but a sensor needs to interact
with the highest LOD model.

The motion database consists of one copy of the pos-
ture graphs and associated motion betWeen nodes of the
posture graph. Each transition is stored at a rate of
60HZ, on each LOD model of the human agent. This
database is shared by all agents. Only a small amount of
private state information is maintained for each agent.

The MOTION process can effectively handle about 10-
12 agents at update rates of 301-12 (on a 100MHz MIPS
R4000 processor). Since the process only has read—only
access to the motion database, we can spawn more M0-
TION processes if needed for more agents.

4.4 Walking as an example
A MOTION process animates the behaviors specified

by an agent’s motor nodes by playing back what are
essentially pre-recorded chunks of motion. As a time—
space tradeofi', this technique provides faster and less
variable run-time execution at the cost of additional

storage requirements and reduced generality. The in—
teresting issues arise in how we choose a mapping from

178

181

motor node outputs to this discrete representation; it
plays a significant role in determining how realistic the
animated agents will be.

The primary motor behavior to be executed is walk—
ing. Our full walking algorithm combines kinematics
with dynamic balance control and is capable of gener-
ating arbitrary curved-path locomotion [15]. In order
to reduce computational costs, however, we have not
incorporated the algorithm directly into our run-time
system. Instead, as implied by the preceding discussion,
we record canonical “left” and “right” steps generated
by the algorithm (which is a component of our off—line
motion authoring system) and then play them back in
an alternating fashion to produce a continuous walking
motion.

The input to the appropriate MOTION process’s walk-
ing subsystem consists of the specification of the desired
next foot position and orientation (for the swing foot).
This input is itself already discretized, as the motor
node responsible (the Walk motor node) for evaluat-
ing how desirable it is for the agent to be at particular
positions only computes the desirability criteria at a set
number of points (in Fig. 2). However, even given that
there are only It possibilities for the placement of the
swing foot on the next step, this would still require us
to record order 112 possible steps, since the planted foot
could-be in any one of the it different positions at the
start of the step (determined by the last step taken)
and any one of the n. at the end.

Without recording all n2 distinct steps it is neces-
sary to choose the best match among those that we do
record. One of the most important criteria in obtaining
realistic results is to minimize foot slippage relative to

182

0 Swing foot

| Planted foot
(w.r.t. next step)

Figure 7: Posture graph for variable step length walking
(3 step sizes)

the ground; foot slippage occurs when the prerecorded
movement (in particular its amount and direction) does
not match that specified by the walk motor node at
run time. On the basis that translational foot slippage
is far more evident than rotational slippage (at least
from our informal observations), we currently adopt an
approach in which we record three types of step: short,
medium, and long. Turning is accomplished by rotating
the agent around his planted foot smoothly throughout
the step. Having three step sizes significantly increases
the chances of being able to find a close match to the
desired step size, and, in fact, the walk motor node
can be constrained to only consider the three arcs of
the next foot location fan (see Fig. 2) that correspond
exactly to our recorded step sizes. Doing so eliminates
translational slippage, but has the sawtooth hazard.

The posture graph for all possible step-to—step tran—
sitions is shown in Fig. 4.4. Notice that even with only
three kinds of straight-line walking there are many pos-
sible transitions, and hence numerous motion segments
to be recorded. However, allowing for variable step

length is very important. For instance, an attract con—
trol node can be set to drive the agent to move within
a certain distance of a goal location; were there only a
single step size, the agent might be unable to get suf-
ficiently close to the goal without overshooting it each
time, resulting in degenerate behavior (and possible vir—
tual injury).

One thing worthy of mention with respect to the
number of different walking steps required to reproduce
arbitrary curved—path locomotion is that while there are
theoretically order n2 of them, the similarities are sig-

182

nificant. It is thus possible that it will prove feasible to
store a single full set of steps along with a little more in-
formation to represent how those steps can be modified
slightly to realistically turn the agent left or right, and
make it sufficiently fast for our real-time applications.

5 Conclusions and Future Work

We have designed a multiprocessing system for the
real-time execution of behaviors and motions for sim—
ulated human-like agents. We have used only toy ex-
amples to date, and are eager to push the limits of the
system to model more complex environments and inter—
actions amongst the agents.

Although our agents currently have limited abilities

Socomotion and simple posture changes), we will beeveloping the skills for interactive agents to perform
maintenance tasks, handle a variety of tools, negotiate
terrain, and perform tasks in cramped spaces. Our goal
is a system which does not provide for all possible be-
haviors of a human agent, but allows for new behaviors
and control techniques to be added and blended with
the behaviors and skills the agent already possesses.

We have used a coarse grain parallelism to achieve
interactive frame rates. The behavior net lends itself
to finer grain parallelism, as one could achieve using a
threaded approach. Our system now is manually tuned
and balanced (between the number of agents, the num-
ber of sensors per agent, and the complexity of the vi-
sual database , A fruitful area of research is in the au-
tomatic load alancing of the MOTION and SENSE pro—
cesses, spawning and killing copies of these processes,
and doling out agents and sensors, as agents come and
go in the virtual environment. Results in real—time sys—
tem scheduling and approximation algorithms will be
applicable here.

6 Acknowledgments
This research is partially supported by ARO DAAL03-
89-00031 including US. Army Research Laboratory;
Naval Training Systems Center N61339-93—M-0843;
Sandia Labs AG~6076; ARPA AASERT DAAHO4~94—G-
0362; DMSO DAAHO4—94—G-0402; ARPA DAMD17—94-
J-4486; US. Air Force DEPTH through Hughes Missile
Systems F33615-91-C‘0001;DMSO through the Univer—
sity of Iowa; and NSF CISE CDA88—22719.

References

[1] Ronald C. Arkin. Integrating behavioral, percep-
tual, and world knowledge in reactive navigation.
In Pattie Maes, editor, Designing Autonomous
Agents, pages 105—122. MIT Press, 1990.

[2] Norman 1. Badler, Rama Bindiganavale, John
Granieri, Susanna Wei, and Xinmin Zhao. Posture
interpolation with collision avoidance. In Proceed-
ings of Computer Animation ’94, Geneva, Switzer~
land, May 1994. IEEE Computer Society Press.

[3] Norman 1. Badler, Gary B. Phillips, and Bonnie L.
Webber. Simulating Humans: Computer Graphics,

,_ Animation, and Control. Oxford University Press,
June 1993.

[4] Welton Becket. Simulating Humans: Computer
Graphics, Animation, and Control, chapter Con-
trolling forward simulation with societies of behav—iors.

179

183

[5] Welton Becket and Norman I. Badler. Integrated
behavioral agent architecture. In The Third Con-
ference on Computer Generated Forces and Behav-
ior Representation, Orlando, Florida, March 1993.

[6] Welton M. Becket. Optimization and Policy
Learning for Behavioral Control of Simulated Aa-
tonomous Agents. PhD thesis, University of Penn-
sylvania, 1995. In preparation.

[7] Valentino Braitenberg. Vehicles: Experiments in
Synthetic Psychology. The MIT Press, 1984.

[8] J. Cassell, C. Pelachaud, N. Badler, M. Steedman,
B. Achorn, W. Becket, B. Douville, S. Prevost, and
M. Stone. Animated conversation: rule-based gen-
eration of facial expression, gesture and spoken in-
tonation for multiple conversational agents. In Pro~
coatings of SIGGRAPH ’94. In Computer Graph-
ics, pages 413—420, 1994.

[9] Thomas L. Dean and Michael P. Wellman, Plan-
ning and Control. Morgan Kaufmann Publishers,
Inc., 1991.

[10] R. James Firby. Building symbolic. primitives with
continuous control routines. In Artificial Intelli-
gence Planning Systems, 1992.

[11] C. R. Gallistel. The Organization ofAction: A New
Synthesis. Lawrence Elerbaurn Associates, Publish-
ers, Hillsdale, New Jersey, 1980. Distributed by the
Halsted Press division of John Wiley & Sons.

[12] John P. Granieri and Norman I. Badler. In Ray
Earnshaw, John Vince, and How Jones, editors,
Applications of Virtual Reality, chapter Simulating
Humans in VR. Academic Press, 1995. To appear.

[13] John P. Granieri; Johnathan Crabtree, and Nor-
man I. Badler. Off-line production and real—time
playback of human figure motion for 3d virtual en-
vironments. In IEEE Virtual Reality Annual Inter-
national Symposium, Research Triangle Park, NC,
March 1995. To appear.

[14] David R. Haumann and Richard E. Parent. The
behavioral test-bed: obtaining complex behavior
from simple rules. The Visual Computer. 4332*
337, 1988.

[15] Hyeongseok Ko. Kinematic and Dynamic Tech~
niques for Analyzing, Predicting, and Animating
Human Locomotion. PhD thesis, University of
Pennsylvania, 1994.

[16] Micheal B. Moore, Christopher W. Geib, and
Barry D. Reich. Planning and terrain reasoning.
In Working Notes - 1.995 AAAI Spring Symposium
on. Integrated Planning Applications, 1995. to ap
pear.

[17] Barry D, Reich, Hyeongseok K0, Welton Becket,
and Norman I. Badler. Terrain reasoning for hu—
man locomotion. In Proceedings of Computer Ani-
mation ’94}, Geneva, Switzerland, May 1994. IEEE
Computer Society Press,

180

183

[18] Gary Ridsdale. The Director’s Apprentice: An—
imating Figures in a Constminea’ Environment.
PhD thesis, Simon Fraser University, School of
Computing Science, 1987.

[19] John Rohlf and James Helman. IRIS Performer:
A High Performance Multiprocessing Toolkit for
Real-Time 3D Graphics. Computer Graphics,
pages 381—394, 1994.

[20] Jane Wilhelms and Robert Skinner. A ’notion’
for interactive behavioral animation control. IEEE

Computer Graphics and Applications, 10(3):14—22,
May 1990.

184

Impulse—based Simulation of Rigid Bodies

Brian Mirtich *

John Canny l

University of California at Berkeley

Abstract

We introduce a promising new approach to rigid body
dynamic simulation called impulse-based simulation. The
method is well suited to modeling physical systems with large
numbers of collisions, or with contact modes that change
frequently. All types of contact (colliding, rolling, sliding,
and resting) are modeled through a series of collision im-
pulses between the objects in contact, hence the method is
simpler and faster than constraint-based simulation. We
have implemented an impulse-based simulator that can cur-
rently achieve interactive simulation times, and real time
simulation seems within reach. In addition, the simulator
has produced physically accurate results in several qualitative
and quantitative experiments. After giving an overview of
impulse-based dynamic simulation, we discuss collision de-
tection and collision response in this context, and present
results from several experiments.

1 Introduction

The foremost requirement of a dynamic simulator is phys-
ical accuracy. The simulation is to take the place of a phys-
ical model, and heucedts utility is directly related to how
well it mimics this mode]. A second important requirement
is computational efficiency. Marry applications (eg. elec-
tronic prototyping [9]) benefit most from interactive simula—
tion; others (eg. virtual reality) demand real time speeds.

This paper discusses a new approach to dynamic simu-
lation called impulse—based simulation, founded on the twin
goals of physical accuracy and computational efficiency. The
initial results from our impulse—based simulator look very

promising, both from speed and accuracy staudpoints. In
this paper we give an overview of the impulse—based ap—
proach, then discuss collision detection and resolution and
results from several experiments.

‘mirtieh@cs.berkeley.edu, Department of Computer Science, 387
Soda Hall, University of California, Berkeley, CA 94720, Supported
in part by NSF grant #FD93-19412.

1,ifotéjlcs.berlreleg.edu, Department of Computer Science, 529 Soda
Hall, University of California, Berkeley, CA 94720. Supported in part
by NSF grant. #FD93JQ412.

Permission to copy without fee all or part of this material isgranted provided t at the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a lee
and/or specific permission.
1995 Symposium on Interacl'rve 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791—736-7195/0004...$3.50

184

181

1.1 Related work

Moore and Wilhelms give one of the earliest treatments of
two fundamental problems in dynamic simulation: collision
detection and collision response [14]. Hahn also pioneered
dynamic simulation, modeling sliding and rolling contacts
using impact equations [8]. His work is the precursor of our
method, although we extend the applicability of impulse dy—
namics to testing contacts, and model multiple objects in
contact with impulse trains as well. These early approaches
all suffered from inefficient collision detection and unrealis-
tic assumptions concerning impact dynamics (cg. infinite
friction at the contact point).

Cremer and Stewart describe Newton [7, 17], probably
the most advanced general-purpose dynamic simulator in use
today. Newton’s forte is the formulation and simulation of
constraint-based dynamics for linked rigid bodies, although
the contact modeling is fairly simplistic. Barafi' has studied
multiple rigid bodies in contact [1, 2], and shown that com-
puting contact forces in the presence of friction is NP-hard
[3]. A summary of his work in this area appears in [4]

There are few full treatments of frictional collisions.

Routh [16] is still considered the authority on this subject,
and more recently, Keller gives an excellent treatment of
frictional collisions [10]. Our analysis is extremely similar to
that. of Bhatt and Koechhng, who independently derived the
same key equation for integration of relative contact veloc~
ities dun’ng impact. They give a classification of frictional
collisions, based on the flow patterns of tangential contact
velocity [6]

Wang and Mason have studied two-dimensional impact
dynamics for robotic applications, based on Routh’s ap-
proach [18]. Finally, a number of researchers have inves
tigated several problems and paradigms for dynamic simu-
lation and physical—based modeling [5, 19, 20].

2 The impulse-based method
One of the most difficult aspects of dynamic simulation

is dealing with the interactions between bodies in contact.
Most of the work which has been done in this area falls into

the category of constraint—based methods [4, 5, 7, 19]. An
example will illustrate the approach, Consider a ball rolling
along a table top. The normal force which the table ex-
erts on the ball is a constraint force that. does no work on

thez‘fh'all, but only enforces a non-penetration constraint. In
the Lagrangian constraint-based approach, this force is not
modeled explicitly, but is accounted for by a constraint on
the configuration of the ball (here, its z-coordinate is held
constant). Alternatively, one may model the forces explic—
itly, solving for their magnitudes using Lagrange multiph-

185

ere. However this still requires complete, exact knowledge of
the instantaneous state of contact between the objects, since
that determines where and when such forces can exist.

A problem with this method is that as a dynamic sys—
tem evolves, the constraints may change many times, e.g.
the ball may roll off the table, may hit an object on the
table, etc. Determining the correct equations of motion for
the ball means keeping track of these changing constraints,
which can become complicated. Moreover, it is not even al-
ways clear what type of constraint should be applied; there
exist at least two models for rolling contact which in some
cases predict different behaviors [11]. Finally, impacts are
not easily incorporated into the constraint model, as they
generally give rise to impulses, not constraint forces present
over some interval. These collision impulses must be handled
separately, as in [1].

In contrast to constraint—based methods, impulse-based
dynamics involves no explicit constraints on the configura-
tions of the moving objects; when the objects are not collid-
ing, they are in ballistic trajectories. Furthermore, all modes
of continuous contact are handled via trains of impulses ap-
plied to the objects, whether they be resting, sliding, or
rolling on one another. Under impulse—based simulation, a.
block resting on a table is actually experiencing many rapid,
tiny collisions with the table, each of which is resolved using
only local information at the collision point.

Now consider the case of a ball bouncing along the terrain
shown in figure 1. Under constraint-based simulation, the

Figure l: A nightmare for constraint-based simulation.

constraints change as the ball begins traveling up the ramp,
leaves the ramp, and settles into a roll along the ground. All
these occurrences must be detected and processed. Impulse-
based simulation avoids having to worry about such transi-
tions. In this sense, it is a more physically sound treatment
since it does not establish an artificial boundary between,
for example, bouncing and rolling, but instead handles the
entire continuum of contact between these phases.

We do not wish to discredit constraint-based methods of

dynamic simulation; indeed, there are many situations for
which they are the perfect tool. We believe the impulse-
based method is better suited to simulating many common
physical systems, eSpecially those which are collision inten-
sive, or that have many changes in contact mode. We ex-
amine the possibility of using both methods of simulation
together, combining the strengths of each, in section 6.

Twa obvious questions concerning impulse-based simula-
tion are: (1) Does it work, i.e. does it result in physically
accurate simulations?, and (2) Is it fast enough to be practi—
cal? We defer more thorough answers to these questions to
section 5, but for now state the following: impulse-based dy—
namic simulation does produce physically accurate results,
and the approach is extremely fast. Simulations can cer-
tainly be run interactively with our current implementation,
and we believe real time simulation is a reachable goal.

3 Collision detection

Impulse—based dynamic simulation is inherently collision
intensive, since collisions are used to affect all types of inter—
action between objects. Hahn found collision detection to be

182

185

the bottleneck in dynamic simulation [8], and efficient data
structures and algorithms are needed to make impulse-based
simulation feasible.

Currently in our simulator, all objects are geometrically
modeled as convex polyhedra or combinations of them. The
polyhedral restriction is not at all severe, because our colli-
sion detection system is very insensitive to the complexity of
the geometric models, permitting fine tessellations. Indeed,
some of the simulations described in section 5 use polyhedral
models with over 20,000 facets, with negligible slowdown.

3.1 Prioritizing collisions

Obviously, checking for possible collisions between all
pairs of objects after every integration step is too inefficient.
Instead, collisions are prioritized in a heap (see figure 2). For

dynamic stale

Figure 2: Prioritizing collisions in a heap.

each pair of objects in the simulation, there is an element
in the heap, which also contains a lower bound on the time
of impact (TOI) for the given pair of objects. The heap is
sorted on the T01 field, thus the T01 field of the top heap
element always gives a. “safe” value for the next collision free
integration step.

After an integration step, the distance between the ob-
jects on the top of the heap (call them A and 3) must be
recomputed. In our implementation, we use the Lin—Canny
closest features algorithm [12]. This is an extremely effi-
cient algorithm which maintains the closest features (ver-
tices, edges, or faces) between a pair of convex polyhedra.
It is fastest in applications like dynamic simulation, when
the objects move continuously through space and geometric
coherence can be exploited.

Collisions are declared when the distance between objects
falls below some threshold as. First suppose the distance
between A and B lies above cc. In this case, the dynamic
states of A and B along with the output of the Lin-Canny
algorithm are used to compute a new conservative bound
on the time of impact of A and B. The A—B heap pair
is updated with this new value, possibly affecting its heap
position, and the integrator is ready for another step.

If the distance between A and B is less than as, a collision
is declared. The collision resolution system computes and
applies collision impulses to the two objects, Changing their
dynamic state. At this point the T01 is recomputed for these
objects as before, however another step is necessary: the
T01 between all object pairs of the form A-3 and 3—3 must
also be recomputed. The reason is that the T01 estimator
uses a ballistic trajectory assumption to bound the time of
impact for a pair of objects. Applying collision impulses to
objects violates this assumption, and so every previous T01
involving such an object becomes invalid. Note that this is
an 0(a) update step.

3.2 Further reducing collision checks and T01 updates

The strategy described above reduces collision checks sig—
nificantly, especially between objects which are far apart or

186

moving slowly. However, the number of collision checks is
still 0(n2) because they are performed periodically between
every pair of objects. A more serious problem is the 0(a)
TOI update step that must be performed every time a colli-
sion impulse is applied to an object. What the heap scheme
misses is the fact that some objects never come near each
other, and collision checks as well as TOI updates for such
pairs of objects are unnecessary.

To alleviate this problem, we employ a spatial tiling tech-
nique based on Overmars’ efficient point-location algorithms
in fat subdivisions [15]. For each object i in the simulation,
one can easily find an enclosing, aids-aligned rectangular vol—
ume B.- which is guaranteed to contain the object during the
next integration step. This is possible because of the ballistic
trajectory assumption.

The idea is to keep track of which objects are near each
other, by keeping track of which bounding boxes overlap.
To this end, the physical space is partitioned into a cubical
tiling with resolution ,0. Under this tiling, Coordinates in
physical space are mapped to integers under the tiling map

T' as , [re/pl
y —-* lit/pl
z [le1

Let 3.: be the set of tiles which E. intersects. We store i in a
hash table multiple times, bashed on the coordinates of each
tile in 3,. Clearly objects 1' and 1' can only possibly collide
during the next integration step if i and j are both present in
some hash bucket. Only in this case do we keep object pair
i-j in the collision heap. Furthermore, if object 1' experiences
a collision impulse, TOIS need only be recomputed for object
pairs i-k, where object It shares a hash bucket with object i.

This scheme tremendously reduces the number of collision
checks and TOI computations that must be performed, since
most objects are generally in the vicinity of only a small
subset of the set of all objects. Collision detection is still

0(112) in the worst case, but almost always better. Consider
for example the case of simulating a vibratory bowl feeder
sorting hundreds of small parts. Since the number of parts
near another part can be bounded by a constant, the number
of collision checks are 0(a).

One added wrinkle is that one must actually employ a

hierarchy of spatial tilings and hash tables of varying resolu-
tions, in order to prevent having to hash a sofa according to
tiles the size of ice cubes. The hierarchy is needed to keep
the rate of bucket updates small. See Overmars for more
information on this multiple resolution hashing scheme [15].

(1)

3.3 Time of impact estimator

The time of impact (TOI) estimator takes the current
dynamic state (pose and velocity) of two objects as well as
the closest points between them, and returns a lower bound
on the time of impact for those two objects. We assume
the objects are convex; concavities are handled by convex
decomposition.

Let c.- and cj be the current closest points between two
objects 2' and j on a collision course. Let a be a unit vector
in the direction of c.‘ — (3,, and d be the distance between c;
and Cj. A convexity argument shows that no matter where
the ultimate contact points are located, these contact points
must cover the distance d in the direction of d before collision
can occur. From this one obtains a conservative bound on
the time of collision:

d

(Vi — v;) - d + now; + rj‘w,’

(2)th

183

186

where v denotes center of mass velocity, r denotes maximum
“radius,” to denotes maximum angular velocity magnitude,
and the subscripts refer to the body. This bound assumes
both objects are ballistic, so that gravitational effects cancel
out. If, for instance, object i is a fixed table top, then the
gravitational acceleration of j must be accounted for.

The conservation of momentum can be used to bound the

angular velocity magnitude of a body in a ballistic trajec—
tory:

Ill-lawn Jul-”y: szlellwmum S _—-T-————1
m1n(Jx, Jy, J2)

where J is the vector of diagonal elements of the diagonalized
mass matrix, and w is the current angular velocity.

(3)

4 Computing collision impulses
When two bodies collide, an impulse 9 must be applied to

one of the bodies to prevent interpenetration; an equal but
opposite impulse —p is applied to the other. Once p and
its point of application are known, it is a simple matter to
compute the new center of mass and angular velocities for
each body. After updating these velocities, dynamic state
evolution can continue, assuming ballistic trajectories for all
moving objects. The point of application is computed by the
collision detection system, and hence the central problem
in collision resolution is to determine the collision impulse
p. Accurate computation of this impulse is critical to the
physical accuracy of the simulator. We now discuss how p
may be computed; a more detailed discussion can be found
in [13].

4.1 Assumptions for collisions

For impulse-based simulation, it is not feasible to make
gross simplifying assumptions such as frictionless contacts
or perfectly elastic collisions. Our approach for analyzing
general frictional impacts is similar to that of Routh [16],
although we derive equations which are more amenable to
numerical integration. Keller also gives an excellent treat-
ment [10], and Bhatt and Koechling’s analysis is quite sim-
ilar to ours [6] There are three assumptions central to our
analysis:

1. lnfinitesimal collision time

2. Poisson’s hypothesis

3. Coulomb friction model

The infinitesimal collision time assumption is commonly
made in dynamic simulation [10]. It implies that the po-
sitions of the objects can be treated as constant over the
course of a collision. Furthermore, the effect of one object
on the other can be described by an impulse, which unlike
a normal force can instantaneously change velocities. This

assumption does not imply that the collision can be treated
as a discrete event. The velocities of the bodies are not

constant during the collision, and since collision (frictional)
forces depend on these velocities, it is necessary to examine
the dynamics during the collision. In short, a collision is a
singlew‘point on the time line of the simulation, but to deter-
minr'r‘the collision impulses which are generated, one must
use a magnifying glass to “blow up” this point, examining
what happens inside the collision.

Poisson’s hypothesis is an approximation to the complex
deformations and energy losses which occur when two real
bodies collide. Trying to explicitly model these stresses and
deformations is too slow for interactive simulation; Poisson’s

187

hypothesis is a simple empirical rule that captures the basic
behavior during a collision. A collision is divided into a com-
pression and a restitution phase, based on the direction of
the relative contact velocity along the surface normal. The
boundary between these phases is the point of maximum
compression, at which point the relative normal contact ve-
locity vanishes. Let Ptoml be the magnitude of the normal
component of the impulse imparted by one object onto the
other over the entire collision, and pmc be the magnitude of
the normal component of the impulse just over the compres-
sion phase, i.e. up to the point of maximum compression.
Poisson’s hypothesis states

Ptvml : (1 + filpmc (4)

where e is a constant between zero and one, called the coef—
ficient of restitution, that is dependent on the objects’ ma-
terials.

Our final assumption is the Coloumb friction law. At a
particular point during a collision between bodies A and B ,
let u be the contact velocity of A relative to B, let u: be
the tangential component of u, and let fit be a unit vector
in the direction of 11;. Let f” and f; be the normal and

tangential (frictional) components of force exerted by B on
A, respectively. Then

11: at 0 2 ft = —.ullfnl|fit (5)

u: = 0 => llftll S ulifnll (6)

where n is the coefficient of friction. While the bodies are
sliding relative to one another, the frictional force is exactly
opposed to the direction of sliding, lithe objects are sticking
(i.e. u; vanishes), all that is known is that the total force
lies in the friction cone.

4.2 Initial collision analysis

A possible collision is reported Whenever the distance be—
tween two bodies falls below the collision epsilon, 55. This
is only a possible collision, because the objects may be re-
ceding. If the normal component of the relative velocity of
the closest points has appropriate sign, no collision impulse
should be applied. Note we are assuming the existence a nor-
mal direction; polyhedral objects have discontinuous surface
normals, however reasonable surface normals can always be
found.

Establish a collision frame with the z—axis aligned with
the collision normal, directed towards body 1. Let u =
111 - u; be the relative contact velocity between bodies 1
and 2. When u: < 0, a collision impulse must be applied to
prevent interpenetration; it- is necessary to analyze the dy-
namics of the bodies during the collision to determine this
impulse. We use 7 to denote the collision parameter; that
is, 7 is a variable which starts at zero, and continuously in-
creases through the course of the collision until it reaches
some final value, ‘Yf. All velocities are functions of qr, and
13(7) denotes the impulse delivered to body 1 up to point
1 in the collision. The goal is to determine p(7;), the final
total impulse delivered.

Initially, one might choose 7 to be time since start of
impact, but in fact this is not a very good choice. If the
dynamics are studied with respect to time, the collision im-
pulses are computed by integrating force. Unfortunately,
the forces generated during a collision are not easily known;
one can assume a Hooke’s law behavior at the contact point,

begging the question of how to choose the spring constants.
Nonetheless, a variety of “penalty methods” do attempt to
choose such spring constants.

184

187

A way of avoiding this problem is to choose a different
parameter for the collision, namely 7 = p2, the normal com—
ponent of the impulse delivered to body 1. The scalar p, is
zero at the moment the collision begins, and increascs during
the entire course of the collision, so it is a valid parameter.
Let Auh) denote the total change in relative contact ve-
locity at point 7 in the collision, and pH) be the impulse
delivered to body 1 up to this point. Straightforward physics
leads to the equation

duh!) = MPH) (7)

(see [13] for a detailed analysis). Here, M is a 3 X 3 matrix
dependent only upon the masses and mass matrices of the
colliding bodies, and the locations of the contact points rel-
ative to their centers of mass. By our infinitesimal collision
time assumption, M is constant over the entire collision. It is
useful to differentiate equation 7 with respect to the collision
parameter 1, obtaining

u’H) = MP'(~r)- (8)

4.3 Sliding mode

While the tangential component of u is non-zero, the bod—
ies are sliding relative to each other, and p' is completely
constrained. Let 9(7) be the relative direction of sliding
during the collision, that is 0 = arg(nx + tug).

Lemma 1 If the collision parameter ‘r is chosen to be p,,
then while the bodies are sliding relative to one another,

—-,ucostl

—u:in9 , (9}

I
p:

. r _ g3; _ d2: a: _ _dr_ - -
Proof. p: — up — a: d“ — f: dpz’ where f is the instan-
taneous force cherted by body 2 on body 1. Under sliding
conditions, f,p = —(,u cos 6))”; = —(,u cos 6)%. Combining

results gives p; = -,u cos 6. The derivation for p; is similar.

Finally, p', = gig-:- E 1. D
It is now clear why 39; is a good choice for the collision

parameter. By applying the results of lemma 1 to equation 8,
with 9 expressed in terms of u, and up, we obtain:

, _#._._EL_
"'1: ‘fug-l-u:r u
‘U- = M _ ._.J_

y ”Hug-Hui
1,u’z

(10)

This nonlinear difierential equation for u is valid as long as
the bodies are sliding relative to each other. By integrating
the equation with respect to the collision parameter 7 (i.e.
1);), we can track 11 during the course of the collision. Pro-
jections of the trajectories into the ux-ny plane are shown
in figure 3 for a particular matrix M ; the crosses mark the
initial sliding velocities.

The basic impulse calculation algorithm proceeds as fol-
lows. After computing the initial u and verifying that u,
is negative, we numerically integrate 11 using equation 10.
During this integration, It: will increasel. When it reaches
zero, the point of maximum compression has been attained.

1Bamfi and others have noted that it is possible to construct
cases for which u= decreases as 13; increases [3]. However, this sit-
uation seems to be extremely rare; it has not occurred in any of our
simulations.

188

mum smug (Tamarind) “may our-g Imp-a

Figure 3'. Solution trajectories of equation 8 projected into
the ux-uy plane.

At this point, p; is the total normal impulse which has
been applied during compression. Multiplying this value by
(1 + 6) gives the terminating value for the collision param-
eter, 7;. The integration then continues to this point, to
obtain Aubry). Inverting equation 7 then gives the total
collision impulse phy).

4.4 Sticking mode

When the relative tangential velocity vanishes, the direc—
tion of the frictional force is not known a priori, and lemma 1

no longer applies. We assume like Routh that if the frictional
force is strong enough to maintain the sticking condition, it
will do so. To see if this is the case, We set it; = a; = 0 in
equation 8, and solve for p'. There is a unique solution for
which p; :1, say p’ = (a,fi,1)T. If

(11)cv2+l32 Sit?»

the friction is sufficient to maintain sticking, and so or

try = 0 and p’ = (or,,3,1)T for the remainder of the collision.
If or2 + ll2 > 112, the friction is not sufficient to maintain

sticking, and sliding will immediately resume. Equation 10
is not valid when on = my = 0, and so is of no help in
predicting the initial direction of sliding. In the case depicted
in figure 3, there is a unique sliding direction leaving the
origin; sliding must resume along this direction. It can be
proven that the trajectories of equation 10 projected into the
urns. plane never spiral around the origin, and we conjecture
that in cases when the friction is not sufficient to maintain

sliding there is always exactly one sliding direction away
from the origin. Once a, or try is nonzero, equation 10 again
applies.

Our previous algorithm for computing collision impulses
must be slightly modified to account for possible sticking.
If at any point during the integration of 11, It; and try both
vanish, the integration halts. It the criterion given by equa-
tion 11 is met, sticking is maintained for the duration of the
collision and both 11 and p vary along a straight line. Oth-
erwise, we solve a quartic equation to determine the inward
and outward sliding directions for the collision, and take the
next integration step along the (conjectured unique) outward
sliding direction. Once the sliding has resumed. the normal
integration can continue;

Figure 4 illustrates some of the possible trajectories of u
for different collisions. Path A represents a collision under
low friction, in which the tangential component of relative
Contact velocity never vanishes, and the two objects slide on
one another during the entire collision. Path C corresponds
to a collision in which the frictional forces bring the sliding

185

188

contact to a halt; as the object rebound oil each other there
is no relative sliding velocity. Finally, path B correlponds to
a case in which sticking occurs momentarily, but the friction
is insufficient to maintain this condition and sliding resumes.

My. Edcllnn

Figure 4: Trajectories through relative contact velocity space
for three dtfierent collisions.

4.5 Static contact and microcotlisious

The collision resolution method described thus far is suit-

able for resolving colliding contacts, but is not enough to
model continuous contact as objects come to rest upon one
another. In this case, the collisions must not produce an
energy loss in the colliding objects, since they are modeling
static forces which do no work.

Two important questions are: how can this static situa—
tion be detected using only local information at the contact
point, and how should the collision model be modified to
give the correct macroscopic behavior? Certainly the initial
relative normal velocity at the contact point must be small;
static contact only occurs as objects begin to settle onto
one another. We define “small” precisely with the threshold
'09., the velocity an initially resting object acquires as it falls
through the collision envelope:

v6 = 1129597

where g is the acceleration of gravity. H the relative normal
velocity is below this threshold, a check is made to see if the
impulse required to reverse the initial relative velocity lies
within the friction cone, and if so, it is applied to resolve the
collision. Such a collision is called a microcollision. One can
Show that microcollision impulses do no work on the object,

just like the physical static contact forces that they model.
Microcollisions also solve another problem. Consider a

block sitting on a shallow ramp with high friction, and mod-
eling the contact as an impulse train. Even though the fric-
tion is sufficient to bring the sliding velocity to zero at every
collision, the block will tend to creep down ramp because of
the time it spends in a ballistic phase. However, the clas-
tic nature of microcollisions will negate the effect of gravity

duringthe intervening ballistic phases, by giving the block
a small “kick” back up the ramp, once the tangential con-
tactrirelocities become small enough. Figure 6 shows that
microcollisions can bring the block to a complete stop.

The question arises as to whether microcollisions are not
just some ad-hoc modification necessary to make impulse-
based dynamics work. After all, one of the attractive fea-
tures of the impulse-based method is that one need not en-
force strict continuous contact constraints between obstacles.

(1‘3)

189

Are microcollisions just such a constraint in disguise? The
answer is no. As objects settle on one another, they expe-
rience a number of small collisions, none of which are ini—
tially microcollisions. Gradually, microcolljsions account for
a larger and larger fraction of total collisions, until eventu-
ally all collisions are microcollisions. In other words, there is
a smooth transition between colliding and continuous con—
tact. Moreover, the decision to apply a microcollision is
based solely on local information at the contact point, not
on some global information about the state of the system.

5 Results and Analysis

We have tested our simulator on a wide variety of prob-
lems. We now describe some qualitative and quantitative
results.

5.1 Pool break

This simulation involved breaking a rack of fifteen pool
balls with a high velocity cue ball. Constraint-based simu-
lators have trouble with this example because of the large
number of mutual contacts between the racked balls. Barafi
has shown that the problem of finding a set of contact forces
that instantaneously obey the Coulomb friction law at every
contact point is NP—hard [3]. Furthermore, the contact con—
straints are quite transient, making it difficult to integrate
along equations of motion derived from them.

The impulse—based method avoids these problems by
treating the contacts as a series of closely spaced collisions.
The racked balls (of standard size) were initially placed 0.1
millimeters apart. This distance is below 5a. and thus when
the cue ball strikes the rack, many collisions occur before the
balls even begin to roll. Figure 5 show the high number of
collisions that occurred during this simulation, especially at
the point of the initial break. However, the simplicity of the
collision model still permits fast simulation (see table 1). Al.
ter the break, the collision rate stabilizes at roughly 3 kHz;
these collisions are primarily between the balls and the table.

Pool Break Collision Rate

unusands o! oollisinns per secondJun
imam MEI-I

law

am

can

cone

m-

l fam an Inn L50 2.00 was it)

Figure 5: Collision rate during a pool break.

5.2 Block on ramp experiments

A good set of benchmarks for the physical accuracy of
the collision model are “block on ramp” tests, involving a
block sliding down a ramp with friction. We used a 20°
ramp; the critical coefficient of friction at which the frictional
force exactly resists the tangential component of gravity was
ac = tan 20° = 0.37.

186

189

For the first test, the coefficient of friction was set to
a = 0.5 > on, and the block was given an initial velocity
down the ramp of 125 cm/sec. The theoretical and simu-
lated velocities of the block down the ramp are shown in fig-
ure 6. The jaggedness of the simulated velocity curve is due

val (CW5)
Block Decelerating Down Romp W

lfi'et'ii'éll'ciil

12000

100.00-

80.00_.

llnu: (a)0.00 0.50 l .00 l .50

Figure 6: Block velocity, u = 0.5 > pic.

to the discrete impulse train modeling the contact, however
the average simulated velocity and the simulated position
(figure 7) closely agree with theory.

Ins (rm) Block Deceleratlng Down Ramp ema—
wmn Interacts!

50m

4am,

10.00,

noon

10.00,

13.00 c
urn: (E)

0.00 0.50 L00 1.50

Figure 7: Block position, [A = 0.5 > m.

In a second test, the coefficient of friction was lowered
to u = 0.25 < pa, with the block beginning at rest. The
theoretical and simulated velocities and positions are shown
in figures 8 and 9, respectively. There is close agreement
between simulation and theory; the slopes of the two velocity
curves are nearly identical, indicating that the impulse-based
model predicts the correct frictional force on the block.

5.3 Measuring the strike pocket

We used our simulator to study the eflect of a hooking
ball on the width of the “strike pocket” in standard tenpin
bowling. The best place for the ball to hit the pins is between
the head pin and a second row pin; good bowlers throw a
hooking-ball, which hits the pins moving toward the center
of the'iarrangement.

How does a hooking ball affect the chances of bowling a
strike? The chaotic nature of the system makes a mathemat-
ical analysis nearly impossible, and it is also difficult to per-
form real experiments with sufficient control over conditions.
In short, the problem is ideal for stochastic simulation. It is
also a perfect application for impulse-based dynamics—the

190

vcl (coils) Block Accelernting Down Ramp

100.00

80.00

69.00

40.00

10.00

Figure 8: Block velocity, ,u = 0.25 < no.

M (an) Block Accelerating Down Rump

50.00

40.00

3.0.00

10.00
0t!)

um: (i)0.00 0.50 LIX]

Figure 9: Block position, it = 0.25 < on.

evolution is collision intensive, with many transient contacts
between objects, and there is a gradual change in contact
mode between the ball and the alley (bouncing to sliding
to rolling). For our simulations, we used accurate physical
dimensions for the alley, ball and pin sizes and masses, pin
spacing, etc.; a slight approximation was made in the shape
of the pins.

In the first batch of simulations, a straight ball was
thrown down the alley by launching the ball with zero angu-
lar velocity, and a center of mass velocity in the +3; direction
(see figure 10). We performed 320 trials, keeping the initial
ball velocities constant, but varying the initial r-coordinate
of the hall’s center of mass over a 4i] centimeter window,

recording the number of felled pins for each trial. In a. sec—
ond batch of 320 trials, the initial ball velocity conditions
were altered to produce a. right-hander’s hooking ball: an-
gular velocity of -12 rad[s in the +3; direction and a linear
velocity at an angle of —2° from the y—axis,

Figure 11 shows the number of felled pins versus the ball
position as it crossed the pin line (ordinates are averaged
over 5 mm wide abscissa windows). The hooking ball is
slightly better than the straight ball at most positions along
the pin line, and is significantly better over a. range between
the head pin and rightmost second row pin (+6 to +12 cm
on the pin line). This agrees with the accepted wisdom that
a right-handed bowler’s best strategy is to throw a hooking
ball between these two pins. The plots also illustrate the dip
in felled pins due to splits, when the ball hits the head. pin
dead on.

We could improve our model by more carefully specifying

187

190

.30 .15 0 u an
puma-um)

i

Figure 10: Set up for the measurement of the strike pocket.

nuns plu- Sinlghl vs. Hooking Ball

.lsm dam on: m 5,011 Inna 15.00

plutlnponllholllu

Figure 11: Results from the strike pocket study.

the shape of the pins and location of the hall’s center of mass,
which is not in general at the geometric center. However, this
experiment demonstrates the feasibility and utility of using
impulse-based dynamice for modeling a complex system and
generating physically accurate results.
5.4 Other simulations

We briefly mention several other simulator problems we
have tried, and summarize the execution time results for our
simulator (see figure 12 for simulation snapshots).

Ball on spinning platter. This simulation involves a.
ball rolling on a disc that is spinning at high velocity. The ex-
ample is interesting because of the nonholonornic constraint
between the ball and disc, and in fact there are two clas-
sical models for this rolling contact which predict different
behaviors! Experimental results show that the ball rolls in
circles of gradually increasing radii, eventually rolling off the
platter [11]. Our impulse—based simulator produces this re—
sult, demonstrating correct macroscopic behavior from the
impulse-based contact model.

Block dropped on block. One block is dropped onto
another, the former coming to rest on the latter.

Dominos. A line of seven dominos is set in motion by
bumping the lead domino.

Chain of balls. Five balls the are placed next to each
other in a straight line, and a. rolling ball strikes the chain
on one end. The momentum is transferred to the other end
of the chain, launching the end ball.

191

Coins. Eight coins are tossed onto the same general area
of a flat plate, and come to rest with some partially on top of
others. This simulation is a good test case for all the contact
modes: colliding, sliding, rolling, and resting.

Balls in dish. Seven balls are dropped into a shallow
dish approximated by planar wedges. The balls come to rest
in the physically accurate minimum energy configuration:
one ball at the center of the dish, surrounded by the six
other balls.

Table 1 gives the simulation times for all of the experi-
ments. Virtual time is the length of time which passed in the
simulation, real time is the actual time needed to compute
the simulation2 , and slowdown is the ratio of the latter to the
former (a. 1.0 slowdown corresponds to real time simulation).

pool break
dec. down ramp
ace. down ramp
bowling a. strike
ball on platter
block drop
dominos
chain of balls
coins
balls in dish

virtual

time s)

Table 1: Simulation times for experiments.

6 Conclusions

We have described the impulse-based approach to dy-
namic simulation, and reported results from several simu-
lation problems. Interactive simulation speeds have already
been attained, and we believe real time simulation is ul-
timately possible. Also encouraging is the wide variety of
physical systems that We have successfully simulated; no
special tweaking was performed for any of the simulations
we have described. One important efficiency point is that
the impulse—based approach is highly parallelizable. Because
there are. no global constraints on the state of the system, the
dynamic integration of an as body system is neatly decoms
posed into in small pieces. Such a decomposition is not pos-
sible when there are explicit constraints between the states
of different bodies.

The issue of physical accuracy is also an important one to
consider. Modeling a rock sitting on a table through a series
of impulses seems at first questionable. However, we are not
making the claim that the rock is actually experiencing mi-
crocollisions, only that by modeling the contact in this way,
the correct macroscopic behavior is affected. Our simulator
has produced physically plausible results for many problems.
Furthermore, quantitative results withstand scrutiny when
compared to theoretical models. More study is needed here,
but the initial results are encouraging.

As stated previously, we do not intend impulse-based dy—
namics to be a complete replacement for constraint—based
dynamics. A perfect application for the latter is the mod-
eling of a hinge joint. In principle, one could model the
joint in an impulse-based way, enforcing the hinge constraint
through collisions between the hinge pin and sheath. How-
ever, the impulse-based approach is clearly the wrong tool

2Real times were computed by averaging over several trials. All
Simulations were performed on an SCI Indigo I.

188

191

for this natural constraint-based problem. We are currently
adding a multibody capability to our simulator, in order
to model linked rigid body structures. We are using a. hy-
brid approach: constraint-based methods are used to enforce
joint constraints, while impulse-based dynamics are used to
model contact between bodies not connected via joints. We
are optimistic that using the right tool for the right problem
can greatly extend the frontier of dynamic simulation.

References

[1] Earafl”. David. Analytical Methods for Dynamic Simulation of Non-
penetracing Rigid Bodies, Computer Graphics, 23(3):223-232, July1989.

[2) Barafi', David.
Rigid Body Simulation.1990.

Curved Suriaccs and Coherence for Non-penetrating
Computer Graphics, 24(i):19—28, August

[3] Barafi, David. Coping with Friction lor Non-penetrating Rigid Body
Simulation. Computer Graphics, 25(4):.31—40, August 1951.

Baraff, David. Issues in Computing Contact Forccs for Non-
penetrating Rigid Bodies. Algorithm-nice, 10:292-352, 1993.

[5] Hamel, Rotten and Barr, Alan H. A Modeling System Based on Dy—
namic Constraints. Computer Graphics, 22(4):179—188, August 1983.

Elli"; Vivek and Knechling. Jeff. Classifying Dynamic Behavior Dur-
ing Three Dimensional Frictional Rigid Body Impact, In International
Conference on Rebotics and Automation. IEEE, May 1994,

[6]

Crcmcr, James F. and Stewart, A. James. The Architecture of Newton,
a General-purpose Dynamics Simulator. In International Conference
on Robotics and Automation, pages 18064811. IEEE, May 1959.

I7]

Hahn, James K. Realistic Animation of Rigid Bodies. Computer
Graphics, 22(4):299—308. August 1988.

(8]

Hopcroit, John E. Electronic Prototyping. Computer, pages 55757,March 1989,[9]

Keller, J. 9, Impact with Friction, Journal 0! Applied Mechanics, 53,March 1986.[10]

[11] Lewis, A, and M’Closkey, R. and Murray, Richard. Modelling Con—
straints and the Dynamics ofa Rolling Ball on a Spinning Table. Tech-
nical report, California institute of Technology, 1993. Preprint

[12] Lin, Ming C, and Canny, John F. A Fast Algorithm for IncrementalDistance Calculation. In Intevnational Conicrence on Robotics and
Automation, pages 1003—1014, IBEE, May 1991,

[13) Mirlich, Brian and Canny, John. impulse-based Dynamic Simulation.
in K. Goidbcrg, D, Halperin, J.C. Latombe, and R. Wilson, editors,
The Algorithmic Foundations of Robotics. A. K. Peters, Boston, MA,
1995. Proceedings from the workshop held in February, 1994.

[14] Moore, Matthew and Wilhelms, Jane, Collision Detection and Re-
sponse for Computer Animation. Computer Graphics, 22(4):?89—298,August 1988i

[15] Oveimars, Mark. Point Location in Fat Subdivisions, Informalion
Processing Letters, 14:261—265, 1992.

[16] Routh, Edward 1 Elementary Rigid Dynamics. 1905.

[17] Stewart, A. James and Cremer, James F. Algorithmic Control of Wall:-
ing. In International Conlerence on Robotics and Automation, pages
1598c1503. IEEE, May 1989.

[18] Wang, Yu and Mason, Matthew T. Modeling impact Dynamics forRobotic Operations. In international Conference on Robotics and Au»
tor-nation, pages 678A685. IEEE, May 1987.

[19] Within, Andrew and Gleicher. Michael and Welch. William, interactive
Dynamics. Computer Graphics, 24(2):]1-22, March 1990.

[20] Within, Andrew and Welch, William, Fast. Animation and Control of
Nonrigid Structures. Computer Graphics, 24(4)::243—252, Angus! 1990

192

I-COLLIDE: An Interactive and Exact Collision Detection System
for Large-Scale Environments

Jonathan D. Cohen Ming C. Lin " Dinesh Manocha Madhav Ponamgi

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27599-3175

{cohenj,lin,manocha,ponamgi}@cs.unc.edu

ABSTRACT:

We present an exact and interactive collision detection
system, I-COLLIDE, for large-scale environments. Such
environments are characterized by the number of objects
undergoing rigid motion and the complexity of the mod-
els. The algorithm does not assume the objects’ motions
can be expressed as a closed form function of time. The
collision detection system is general and can be easily in-
terfaced with a variety of applications The algorithm
uses a two-level approach based on pruning multiple—
object pairs using bounding boxes and performing exact
collision detection between selected pairs of polyhedral
models. We demonstrate the performance of the system
in walkthrough and simulation environments consisting
of a large number of moving objects. In particular, the
system takes less than 1/20 of a second to determine all
the collisions and contacts in an environment consisting
of more than a 1000 moving polytopes, each consisting of
more than 50 faces on an HP-9000/750.

1 INTRODUCTION

Collision detection is a. fundamental problem in computer
animation, physically—based modeling, computer simu-
lated environments and robotics. In these applications,
an object’s motion is constrained by collisions with other
objects and by other dynamic constraints. The prob-
lem has been well studied in the literature. However, no
good general collision detection algorithms and systems
are known for interactive large-scale environments.

A large-scale virtual environment, like a walkthrough,
creates a computer-generated world, filled with real and
virtual objects. Such an environment should give the user
a feeling of presence, which includes making the images of
both the user and the surrounding objects feel solid. For
example, the objects should not pass through each other,
and things should move as expected when pushed, pulled______—

'Currently at NC A 35 T State University, Greensboro

Permission to copy without fee all or part oi this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its data appear, and notice is given
that copying is by permission of the Association oi Computing
Machinery. To copy othemriss, or to republish, requires a lee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95l0004...$3.50

192

189

or grasped. Such actions require accurate collision detec-
tion. However, there may be hundreds, even thousands
of objects in the virtual world, so a brute-force approach
that tests all possible pairs for collisions is not acceptable.
Efficiency is critical in a virtual environment, otherwise
its interactive nature is lost [24]. A fast and interactive
collision detection algorithm is a fundamental component
of a complex virtual environment.

The objective of collision detection is to report all geo-
metric contacts between objects. If we know the positions
and orientations of the objects in advance, we can solve
collision detection as a function of time. However, this
is not the case in virtual environments or other interac—
tive applications. in fact, in a walkthrough environment,
we usually do not have any information regarding the
maximum velocity or acceleration, because the user may
move with abrupt changes in direction and speed. Due to
these unconstrained variables, collision detection is cur-
rently considered to be one of the major bottlenecks in
building interactive simulated environments [20].

Main Contribution: We present a collision de-
tection algorithm and system for interactive and exact
collision detection in complex environments. In contrast
to the previous work, we show that accurate, interac-
tive performance can be attained in most environments if
we use coherence to speed up pairwise interference tests
and to reduce the actual number of these tests we per-
form. We are able to successfully trim the 0(n2) pos-
sible interactions of :1 simultaneously moving objects to
0(n + m) where m is the number of objects very close
to each other. in particular, two objects are very close,
if their axis-aligned bounding boxes overlap. Our ap-
proach is flexible enough to handle dense environments
without making assumptions about object velocity or ac-
celeration. The system has been successfully applied to
architectural walkthroughs and simulated environments
and works well in practiCe.

The rest of the paper is organized as follows. In Sec-
tion 2, we review some of the previous work in collision
detection. Section 3 defines the concept of coherence and
describes an exact pairwise collision detection algorithm
which applies it. We describe our algorithm for collision
detection between multiple objects in Section 4 and dis-
miss its implementation in Sections 5 and 6. Section 7
presents our experimental results on walkthrough envi—
ronments and simulations.

193

2 PREVIOUS WORK

The problem of collision detection has been extensively
studied in robotics, computational geometry, and com—
puter graphics. The goal in robotics has been the
planning of collision-free paths between obstacles [15].
This differs from virtual environments and physically-
based simulations, where the motion is subject to dy—
namic constraints or external forces and cannot typi-
cally be expressed as a closed form function of time
[1, 3, 11, 1s, 20, 21].

At the same time, the emphasis in the computational
geometry has been on theoretically efficient intersection
detection algorithms [22]. Most of them are restricted to
a static instance of the problem and are non-trivial to
implement. For convex 3-polytopes 1 linear time algo-
rithms based on linear programming and tracking closest
points [10] have been proposed. More recently, temporal
and geometric coherence have been used to devise algo-
rithms based on checking local features of pairs of convex
3~polytopes [3, 17]. Alonso et al.[1] use bounding boxes
and spatial partitioning to test all 0(112) pairs of arbi»
trary polyhedral objects.

Different methods have been proposed to overcome the
bottleneck of 0(n2) pairwise tests in an environment of
n bodies. The simplest of these are based on spatial sub—
division. The space is divided into cells of equal vol—
ume, and at each instance the objects are assigned to one
or more cells. Collisions are checked between all object
pairs belonging to a particular cell. This approach works
well for sparse environments in which the objects are uni-
formly distributed through the space. Another approach
operates directly on four—dimensional volumes swept out
by object motion over time [4, 14].

None of these algorithms adequately address the issue
of collision detection in a virtual environment which re-

quires performance at interactive rates for thousands of
pairwise tests. Hubbard has proposed a solution to ad-
dress this problem by trading accuracy for speed [14].
In an early extension of their work, Lin and Canny [16]
proposed a scheduling scheme to handle multiple moving
objects. Dworkin and Zeltzer extended this work for a
sparse model [7].

3 BACKGROUND

In this section, we highlight the importance of coherence
in dynamic environments. We briefly review the algo-
rithm for exact pairwise collision detection and present
our multi—body collision detection scheme, both of which
exploit coherence to achieve efficiency.

3.] Temporal and Geometric Coherence

Temporal coherence is the property that the application
state does not change significantly betwaen time steps,
or frames. The objects move only slightly from frame
to frame. This slight movement of the objects trans-
lates into geometric coherence, because their geometry,
defined by the vertex coordinates, changes minimally be-
tween frames. The underlying assumptionis that the time

1We shall refer to a bounded d—dimensional polyhedral set as
a convex d~polytope, or briefly polytope. In common parlance,
“polyhedron” is used to denote the union of the boundary and of
the interior in Ea.

190

193

steps are small enough that the objects to do not travel
large distances betWeen frames.

3.2 Pairwise Collision Detection for Convex Polytopes

We briefly review the Lin-Canny collision detection algo-
rithm which tracks closest points between pairs of convex
polytopes [16, 17]. This algorithm is used at the lowest
level of collision detection to determine the exact contact

status between convex polytopes. The method maintains
a pair of closest features for each convex polytope pair
and calculates the Euclidean distance between the fea-

tures to detect collisions. This approach can be used in
a static environment, but is especially well-suited for dy-
namic environments in which objects move in a sequence
of small, diacrete steps.

The method takes advantage of coherence: the closest
features change infrequently as the polytopes move along
finely discretized paths. The algorithm runs in expected
constant time if the polytopes are not moving swiftly.
Even when a closest feature pair is changing rapidly, the
algorithm takes only slightly longer (the running time
is proportional to the number of feature pairs traversed,
which is a function of the relatiVe motion the polytopes
undergo). The method for finding closest feature pairs is
based on Voronoi regions. The algorithm starts with a
candidate pair of features, one from each polytope, and
checks whether the closest points lie on these features.
Since the polytopes and their faces are convex, this is a
local test involving only the neighboring features of the
current candidate features. if either feature fails the test,
the algorithm steps to a neighboring feature of one or
both candidates, and tries again. With some simple pre-
processing, the algorithm can guarantee that every fea-
ture has a constant number of neighboring features.

3.3 Penetration Detection for Convex Polytopes

The core of the collision detection algorithm is built us-
ing the properties of Voronoi regions of convex polytopes.
The Voronoi regions form a partition of space outside the
polytope. When polytopes interpenetrate, some features
may not fall into any Voronoi regions. This can at times
lead to cycling of feature pairs. To circumvent this prob—
lem, we partition the interior space of the convex polym
topes. The partitioning does not have to form the exact
internal Voronoi regions, because we are not interested in
knowing the closest features between two interpenetrat-
ing polytopes, but only detecting such a case. So instead
We use pseudo-Voronoi regions, obtained by joining each
vertex of the polytope with the centroid of the polytope
[21].

Given a partition of the exterior and the interior of the
polytope, we walk from the external Voronoi regions into
the pseudo—internal Voronoi regions when necessary. If
either of the closest features falls into a pseudo-Voronoi
region at the end of the walk, we know the objects
are interpenetrating. Ensuring convergence as we walk
through pseudo-internal Voronoi regions requires special
case analysis and will be omitted here.

3.4 Extension to Non-Convex Objectsy.

We extend the collision detection algorithm for convex
polytopes to handle non-convex objects, such as articu—

194

lated bodies, by using a hierarchical representation. In
the hierarchical representation, the internal nodes can be
convex or non-convex sub-parts, but all the leaf nodes are
convex polytopes or features [21].

Beginning with the leaf nodes, we construct either a
convex hull or other bounding volume and work up the
tree, level by level, to the root. The bounding volume
associated with each node is the bounding volume of the
union of its children; the root’s bounding volume encloses
the whole hierarchy. For instance, a hand may have indi—
vidual joints in the leaves, fingers in the internal nodes,
and the entire hand in the root.

We test for collision between a pair of these hierarchical
trees recursively. The collision detection algorithm first
tests for collision between the two parent nodes. If there
is no collision between the two parents, the algorithm
returns the closest feature pair of their bounding volumes.
If there is a collision, the algorithm expands their children
and recursively proceeds down the tree to determine if a
collision actually occurs. More details are given in [21].

4 MULTIPLE-OBJECT COLLISION DETECTION

Large-scale environments consist of stationary as well as
moving objects. Let there be N moving objects and M
stationary objects. Each of the N moving objects can
collide with the other moving objects, as well as with the

1;)d-NM pairs
of objects at every time step can become time consum-
ing as N and M get large. To achieve interactive rates,
we must reduce this number before performing pairwise
collision tests. The overall architecture of the multiple
object collision detection algorithm is shown in Fig. 1.

Sorting is the key to our pruning approach. Each ob-
ject is surrounded by a 3—dimensional bounding volume.
We sort these boundng volumes in 3-space to determine
which pairs are overlapping. We only need to perform
exact pairwise collision tests on these remaining pairs.

However, it is not intuitively obvious how to sort ob—
jects in 3-space. We‘use a dimension reduction approach.
If two bodies collide in a 3-dimensional space, their or-
thogonal projections onto the my, yz, and viz-planes and
z, y, and z-axes must overlap. Based on this observation,
we choose axis-aligned bounding boxes as our bounding
volumes. We efficiently project these bounding boxes
onto a lower dimension, and perform our sort on these
Iowa-dimensional structures.

This approach is quite different from the typical space
partitioning approaches used to reduce the number of
pairs. A space partitioning approach puts considerable
effort into choosing good partition sizes. But there is no
partition size that primes out object pairs as ideally as
testing for bounding box overlaps. Partitioning schemes
may work well for environments where N is small com-
pared to M, but object sorting works well whether N is
small or large.

stationary ones. Keeping track of <

4.1 Bounding Volumes

Many collision detection algorithms have used bounding
boxes, spheres, ellipses, etc. to rule out collisions between
objects which are far apart. We use bounding box over-
laps to trigger the exact collision detection algorithm.

191

194

Architecture for Multi-body
Collision Detection

ohjeel tram formation! overlapping pain

Pairwise Easel

Collision Detection ‘
response collidlng

pawn: Ion pain
All-lysi If

-€:.=I Response -<=

Figure 1: Architecture for Multiple Body Collision De-
tection Algorithm

We have considered two types of axis-aligned bound-
ing boxes: fixed—size bounding cubes (fixed cubes) and
dynamically-resized rectangular bounding boxes (dy-
namic boxes).

0 Fixed-Size Bounding Cubes:
We compute the size of the fixed cube to be large enough
to contain the object at any orientation. We define this
axis-aligned cube by a center and a radius. Fixed cubes
are easy to recompute as objects move, making them well-
suited to dynamic environments. If an object is nearly
spherical the fixed cube fits it well.

As preprocessing steps we calculate the center and ra-
dius of the fixed cube. At each time step as the object
moves, we recompute the cube as follows:

1. Transform the center using one vector—matrix multi-
plication.

2. Compute the minimum and maximum .22, y, and z-
coordinates by subtracting and adding the radius
from the coordinates of the center.

Step 1 involves only one vector-matrix multiplication.
Step 2 needs six arithmetic operations (3 additions and 3
subtractions).

o Dynamically Rectangular Bounding Boxes:
We compute the size of the rectangular bounding box to
be the tightest axis-aligned box containing the object at
a particular orientation. It is defined by its minimum
and maximum 1', y, and z-coordinates (for a convex ob-
ject, these must correSpond to coordinates of up to 6 of
its vertices). As an object moves, we must recompute its
minim and maxima, taking into account the object’s ori-
entation. For oblong objects rectangular boxes fit better
than cubes, resulting in fewer overlaps. This is advanta—
geous as long as few of the objects are moving, as in a

195

‘IllI
Inri

Figure 2: Bounding Box Behavior

walkthrough environment. In such an environment, the
savings gained by the reduced number of pairwise colli-
sion detection tests outweigh the cost of computing the
dynamically—resized boxes.

As a precomputation, we compute each object’s ini-
tial minima and maxima along each axis. It is assumed
that the objects are convex. For non—convex polyhedral
models, the following algorithm is applied to their convex
hulls. As an object moves, we recompute its minima and
maxima at each time step as follow:

1. Check to see if the current minimum (or maximum)
vertex for the r, y, or z-coordinate still has the small—
est (or largest) value in comparison to its neighboring
vertices. If so we are finished.

Update the vertex for that extremum by replacing
it with the neighboring vertex with the smallest (or
largest) value of all neighboring vertices. Repeat the
entire process as necessary.

This algorithm recomputes the bounding boxes at an ex-
pected constant rate. -Ouce again, we are exploiting the
temporal and geometric coherence, in addition to the lo-
cality of convex polytopes.

We do not transform all the vertices as the objects un-
dergo motion. As we are updating the bounding boxes
new positions are computed for current vertices using
matrix-vector multiplications. We can optimize this ap-
proach by realizing that we are only interested in one
coordinate value of each extremal vertex, say the a: coor-
dinate while updating the minimum or maximum value
along the x—axis. Therefore, there is no need to transform
the other than coordinates in order to compare neigh—
boring vertices. This reduces the number of arithmetic
operations by two-thirds.

4.2 One-Dimensional Sweep and Prime

The one—dimensional sweep and prune algorithm begins
by projecting each three-dimensional bounding box onto
the r, y, and z axes. Because the bounding boxes are
axis-aligned, projecting them onto the coordinate axes re-
sults in intervals (see Fig. 2). We are interested in over-
laps among these intervals, because a. pair of bounding
boxes can overlap if and only if their intervals overlap in
all three dimensions.

192

195

We construct three lists, one for each dimension. Each
list contains the values of the endpoints of the intervals
corresponding to that dimension. By sorting these lists,
we can determine which intervals overlap. in the general
case, such a sort would take 0(nlog n) time, where n is
the number of objects. We can reduce this time bound by
keeping the sorted lists from the previous frame, changing
only the values of the interval endpoints. In environments
where the objects make relatively small movements be-
tween frames, the lists will be nearly sorted, so we can
sort in expected 00:) time, as shown in [19, 3]. Insertion
sort works well for previously sorted lists.

In addition to sorting, we need to keep track of changes
in overlap status of interval pairs (i.e. from overlapping
in the last time step to non~overlapping in the current
time step, and vice-versa). This can be done in O(n +
eI + ey + 62) time, Where chemand e; are the number
of exchanges along the r, y, and z—axes. This also runs in
expected linear time due to coherence, but in the worst
case e:,ey,arid 6, can each be 0(n2) with an extremely
small constant.

Our method is suitable for dynamic environments
where coherence is preserved. ln computational geom-
etry literature several algorithms exist that solve the
static version of determining 3-D bounding box overlaps
in 0(n log2 n + s) time, where s is the number of pairwise
overlaps [12, 13]. We have reduced this to 0(n + s) by
using coherence.

4.3 Two—Dimensional Intersection Tests

The two-dimensional intersection algorithm begins by
projecting each three—dimensional axis~aligned bounding
box onto any two of the :r-y, r-z, and y-z planes. Each
of these projections is a rectangle in 2—space. Typically
there are fewer overlaps of these 2-D rectangles than of
the 1-D intervals used by the sweep and prune technique.
This results in fewer swaps as the objects move. In sit-
uations where the projections onto one-dimension result
in densely clustered intervals, the two—dimensional tech—
nique is more efficient. The interval tree is a common
data structure for performing such two-dimensional range
queries [22].

Each query of an interval intersection takes 0(log n+k)
time where k is the number of reported intersections and
n is the number of intervals. Therefore, reporting inter-
sections among n rectangles can be done in O(n log n+K)
where K is the total number of intersecting rectangles [8].

4.4 Alternatives to Dimension Reduction

There are many different methods for reducing the num-
ber of pairwise tests, such as binary space partitioning
(BSP) trees [23], octrees, etc.

Several practical and efficient algorithms are based on
uniform space division. Divide space into unit cells (or
volumes) and place each object in some cell(s). To check
for collisions, examine the cell(s) occupied by each object
to verify if the cell(s) is(are) shared by other objects.
Choosing a near-optimal cell size is difficult, and faiiing
to do so results in large memory usage and computational
inefficiency.

196

5 IMPLEMENTATION

In this section we describe the implementation details of
I-COLLIDE based on the Sweep and Prune algorithm.
the exact collision detection algorithm, the multi-body
simulation, and their applications to walkthrough and
simulations.

5.1 Sweep and Prune

As described earlier, the Sweep and Prune algorithm re—
duces the number of pairwise collision tests by eliminating
polytope pairs that are far apart. It involves three steps:
calculating bounding boxes, sorting the minimum and
maximum coordinates of the bounding boxes as the al-

gorithm sweeps through each list, and determining which
bounding boxes overlap. As it turns out, we do the secv
0nd and third steps simultaneously.

Each bounding box consists of a minimum and a max-
imum coordinate value for each dimension: 3:, y, and 2.
These minima and maxima are maintained in three sep-
arate lists, one for each dimension. We sort each list of
coordinate values using insertion sort, while maintaining
an overlap status for each bounding box pair. The over-
lap status consists of a boolean flag for each dimension.
Whenever all three of these flags are set, the bounding
boxes of the polytope pair overlap. These flags are only
modified when insertion sort performs a swap. We de—
cide whether or not to toggle a flag based on whether
the coordinate values both refer to bounding box min—

ima, both refer to bounding box maxima, or one refers to
a bounding box minimum and the other a maximum.

When a flag is toggled, the overlap status indicates one
of three situations:

1. All three dimensions of this bounding box pair now
overlap. In this case, we add the corresponding poly-
tope pair to a list of active pairs,

This bounding box pair overlapped at the previous
time step. In this case, we remove the corresponding
polytope pair from the active list.

This bounding box pair did not overlap at the pre-
vious time step and does not overlap at the current
time step. In this case, we do nothing.

When sorting is completed for this time step, the active
pair list contains all the polytope pairs whose bounding
boxes currently overlap. We pass this active pair list to
the exact collision detection routine to find the closest
features of all these polytope pairs and determine which,
if any, of them are colliding.

5.2 Exact collision detection

The collision detection routine processes each polytope
pair in the active list. The first time a polytope pair is
considered, we select a random feature from each poly-
tope; otherwise, we use the previous closest feature pair
as a starting point. This previous closest feature pair
may not be a good guess when the polytope pair has just
become active. Dworkin and Zeltzer [7] suggest precom-

puting a lookup table for each polytope to help find better
starting guesses.

1

193

96

5.3 Multi-body Simulation

The multi-body simulation is an application we developed
to test the l—COLLIDE system. It represents a general,
non-restricted environment in which objects move in an
arbitrary fashion resulting in collisions with simple im-
pulse responses.

While we can load any convex polytopes into the sim-
ulation, we typically use those generated by the tessella‘
tion of random points on a sphere. Unless the number of
vertices is large, the resulting polytopes are not spherical
in appearance; they range from oblong to fat. The sim-
ulation parameters of the polytopes were their number,
their complexity measured as the number of faces, their
rotational velocity, their translational velocity, the den—
sity of their environment measured as the ratio of poly-
tope volume to environment volume, and the boimding
volume method used for the Sweep and Prune (fixed-size
or dynamically-resized boxes).

The simulation begins by placing the polytopes at ran-
dom positions and orientations. At each time step, the
positions and orientations are updated using the transla-
tional and rotational velocities (since the detection rou—
tines make no use of pre-defined path, the polytopes’
paths could just as easily be randomized at each time
step). The simulation then calls the l—COLLIDE sys-
tem and receives a list of colliding polytope pairs. It
exchanges the translational velocities of these pairs to
simulate an elastic reaction. Objects also rebound off the
walls of the constraining volume.

We use this simulation to test the functionality and

speed of the detection algorithm. In addition, we are able
to visually display some of the key features. For example,
the bounding boxes of the polytopes can be rendered at
each time step. When the bounding boxes of a polytope
pair overlap, we can render a line connecting the clos-
est features of this polytope. lt is also possible to show
all pairs of closest features at each time step. These vi-
sual aids have proven to be useful in indicating actual
collisions and additional geometric information for algo—
rithmic study and analysis. See Frame 1 at the end for
an example of the simulation.

5.4 Walkthrough

The walkthrough is a head—mounted display application
that involves a large number of polytopes depicting a re—
alistic scene. The integration of our library into such
an environment demonstrates that an interactive envi-
ronment can use our collision detection library without
affecting the application’s real-time performance.

The walkthrough creates a virtual environment (our
video shows a kitchen and a porch). The user travels
through this environment, interacting with the polytopes:
picking up virtual objects, changing their scale, and mov-
ing them around. Whenever the user’s hand collides with
the polytopes in the environment, the walkthrough pro-
vides feedback by making colliding bodies appear red.

We have incorporated the collision detection library
routines into the walkthrough application. The scene is
compmed of polytopes, most of which are stationary, The
user’s hand, composed of several convex polytopes, moves
through this complex environment, modifying other poly-
topes in the environment. Frames 2-4 show a sequence

197

of shots from a kitchen walkthrough environment. The
pictures show images as seen by the left eye. Frames 56
show the user in a porch walkthrough.

6 SYSTEM ISSUES

To use I-COLLIDE, the application first loads a library
of polytopes. The file format we use is fairly simple. It
is straightforward to convert polytope data from some
other format (perhaps the output of some 3D modelling
package) to this minimal format for I-COLLIDE. After
loading the polytopes, the application then chooses some
polytope pairs to activate for collision detection. This
set of active pairs is fully configurable between collision
passes. Inside the application loop, the application in-
forms l—COLLIDE of the world transformation for each
polytope as it moves around. At any point, the appli-
cation may call the collision test routine. I-COLLIDE
returns a list of all the colliding pairs, including a pair of
colliding features for each. The application then responds
to these collisions in some appropriate way.
6.]

For each pair of objects, l-COLLIDE maintains a struc—
ture that contains the bounding box overlap status and
the closest feature pair between the objects. These struc—
tures conceptually form an upper-triangular 0(n2) may
trix. We access an entry in 0(1) time by using the object
id numbers as (row, column) entries. If only a few pairs
of objects are interacting, then the 0(n2) can be reduced
at the expense of slightly larger access time. For example,
we can traverse a sparse matrix list to accese an entry.

Space Issues

6.2 Geometric Robustness

In practice there are several types of degeneracies or er—
rors that can occur in the convex polytope models: du-
plicate vertices, extraneous vertices, backfacing polygons,
tracking error, non-planar faces, non—convex faces, non-
convex polytopes, disconnected faces, etc. We have Writ—
ten a pre-processor to'scan for common degeneracies and
correct them when possible.

6.3 Numerical Issues

Numerical robustness is an important issue in the exact

collision detection code. There are many special case ge«
ometrical tests in this module, and it is difficult to ensure

that the algorithm will not get into a cycle due to degen-
erate overlap. We deal with this by performing all of our
feature tests to some tolerance. Without such a tolerance,
floating point errors might allow some of the feature tests
to cycle infinitely. We have not observed this in practice
so far, and have been careful to make the tests stable in
the presence of small errors.

The multi-body sweep and prune code is also designed
to resist small numerical errors. The bounding box of
each polytope is extended by a small epsilon 2 in each di-
rection. In addition to insulating the overlap tests from
errors, this precaution also helps give the exact collision
detection test a chance of being activated before the ob-
jects are actually penetrating.

2This quantity is a function of velocity between the objectpairs.

194

6.4 Generality

While the multi—body pruning code works well with the
exact collision detection routine, it functions indepen—
dently of the underlying collision detection routine. This
second level collision routine might or might not be exact,
and it certainly need not be limited to handling convex
polytopes.

7 PERFORMANCE ANALYSIS

We measured the performance of the collision detection
algorithm using the multi-body simulation as a bench-
mark. We profiled the entire application and tabulated
the CPU time of only the relevant detection routines. All

of these tests were run on an HP-9000/750. The main
routines involved in collision detection are those that up-
date the bounding boxes, sort the bounding boxes, and
perform exact collision detection on overlapping bound—
ing boxes. As described in the implementation section we
use two different types of bounding boxes. Using fixed
cubes as bounding boxes resulted in low collision time for
the parameter ranges we tested.

In each of the first four graphs, we plot two lines. The
bold line displays the performance of using dynamically-
resized bounding boxes whereas the other line shows the
performance of using fixed-size cubes. All five graphs re-
fer to ”seconds per frame”, where a frame is one step of
the simulation, involving one iteration of collision detec—
tion without rendering time. Each graph was produced
with the following parameters, by holding all but one con-stant.

a Number of polytopes. The default value is a 1000
polytopes.

Complexity ofpolytopes, which we define as the num-
ber of faces. The default value is 36 faces.

Rotational velocity, which we define as the number

of degrees the object rotates about an axis passing
through its centroid. The default value is 10 degrees.

Translational velocity, which we define in relation to
the object‘s size. We estimate a radius for the object,
and define the velocity as the percentage of its radius
the object travels each frame. The default value is
10%.

Density, which we define as the percentage of the en-
vironment volume the polytopes occupy. The defaultvalue is 1.0%.

In the graphs, the timing results do not include com-

puting each polytope’s transformation matrix, rendering
times, and of course any minor initialization cost. We
ignored these costs, because we wanted to measure the
cost of collision detection alone.

Graph 1 shOWS how the number of seconds per frame
scales with an increasing number of polytopes. We took
100 uniformly sampled data points from 20 to 2000 poly—
topes. ,The fixed and dynamic bounding box methods
scale nearly linearly with a small higher-order term. The
dynamic bounding box method results in a slightly larger
non-linear term because the resizing of bounding boxes

197

198

Grlph1 Graph 2
0.23
0.20
0.1 B
0.15
0.13
0.10
0.00
0.05
0.03

0.00 . —r 0.00 .
0 500 1000 1500 2000 0 100 200 300 400

Number of Pnlytopu Number cl Fee:-

Gruph 3 Graph 4

0.16 0.14

D o00Second:perFrame
0 oa

0.14 0.12

0.12 0 10
0.10 0.00

0.05
0.00

0.04

0.02 9-”
0.00 -——+———o————m 0.00

0.0 2.0 4.0 6.0 8.0 10.0 D 10 20 30 40 50 60 70 BD 90

5t Denslty ol' Slmullllnn Volume Rnlntlonal Velaclly ldegrnutfrsmo)
Graph 5

I Colman Tum

l] son nus

 I Update bones

SecondsparFrame 0o c00|9:
D 3 6 9 12 15 18 2‘ 24 27 30 33 36 39 42 45

Retell-anal Velocity for Dynlmlc Box

Graph 6

SecondsperFrame
0 3 S 9 12 15 IE 21 24 27 30 33 36 39 42

Rnuuunsl Velocity lur Flnu cube

45

causes more swaps during sorting. This is explained fur-
ther in our discussion of Graph 5. The seconds per frame
numbers in Graph 1 compare very favorably with the
work of Dworkin and Zeltzer [7] as well as those of Hub—
bard [14]. For a 1000 polytopes in our simulation, our
collision time results in 23 frames per second using
the fixed bounding cubes.

Graph 2 shows how the number faces affects the
collision time. We took 20 uniformly sampled data

points. For the dynamic bounding box method, increas-
ing the model complexity increases the time to update
the bounding boxes because finding the minimum and
maximum values requires walking a longer path around
the polytope. Surprisingly, the time to sort the bounding
boxes decreases with number of faces, because the poly—

topes become more spherical and fat. As the polytopes
become more spherical and fat, the bounding box dimen-
sions change less as the polytopes rotate, so fewer swaps
are need in the SWeeping step. For the fixed bounding
cube, the time to update the bounding boxes and to sort
them is almost constant.

Graph 3 shows the effect of changes in the density of
the simulation volume. For both bounding box methods,

increasing the density of polytope volume to simulation
volume results in a larger sort time and more collisions.
The number of collisions scales linearly with the density
of the simulation volume. As the graph shows, the overall
collision time scales well with the increases in density.

Graphs 4 through 6 show the eflect of rotational veloc»
ity on the overall collision time. The slope of the line for
the dynamic bounding box method is much larger than
that of the fixed cube method. There are two reasons for
this difference. The first reason is that the increase in
rotational velocity increases the time required to update
the dynamic bounding boxes. When we walk from the
old maxima and minima to find the new ones, we need to
traverse more features.

The second reason is the larger number of swapped
minima and maxima in the three sorted lists. Although
the three-dimensional volume of the simulation is fairly

sparse, each one—dimensional view of this volume is much
more dense, with many bounding box intervals overlap-
ping. As the boxes grow and shfink, they cause many
swaps in these one-dimensional lists. And as the ro-
tational velocity increases, the boxes change size more
rapidly.

Graph 6 clearly shows the advantages of the static box
method. Both the update bounding box time and sort
lists time are almost constant as the rotational velocity
increases.

All of our tests show exact collision detection in de-

mending environments can be achieved without incurring
expensive time penalties. The architectural walkthrough
models showed no perceptible performance degradation
when collision detection was added (as in Frame 2 to 5).

8 CONCLUSION

Collision detection has been considered a major bottle—
neck in computer-simulated environments. By making
use of geometric and temporal coherence, our algorithm
and system detects collisions more efliciently and effec—
tively than earlier algorithms. Under many circumstances
our system produces collision frame rates over 20 hertz

195

198

199

for environments with over a 1000 moving complex poly-
topes. Our walkthrough experiments showed no degra-
dation of frame rates when collision detection was added.
We are currently working on incorporating general poly-
hedral and spline models into our system and extending
these algorithms to deformable models.

9 ACKNOWLEDGEMENTS

We are grateful to John Canny and David Barafl for
productive discussions and to Brian Mirtich for his help
in implementation of the convex polytope pair algo—
rithm. The kitchen and porch models used in the walk—
through applications were designed by the UNC Walk—
through group, headed by Fred Brooks. This work was
supported in part by DARPA ISTO order A410, NSF
grant MlP-9306208, NSF grant CCR—9319957, ARPA
contract DABT63-93-C-0048, ONR contract N00014-94—

1-0738 and NSF/ARPA Science and Technology Center
for Computer Graphics and Scientific Visualization, NSF
Prime Contract 8920219.

References

[1] A.Garica-Alonso, N.Serrano, and J.Flaquer. Solv-
ing the collision detection problem. IEEE Computer
Graphics and Applications, 13(3):36-43, 1994.

[2] D. Barafl. Curved surfaces and Coherence for non-
penetrating rigid body simulation. ACM Computer
Graphics, 24(4):19—28, 1990.

[3] D. Barafl. Dynamic simulation of non-penetrating
rigid body simulation. PhD thesis, Cornell Univer-
sity, 1992.

[4] S. Cameron. Collision detection by four-dimensional
intersection testing. Proceedings of International
Conference on Robotics and Automation, pages pp.
291—302, 1990.

[5] S. Cameron. Approximation hierarchies and s—
bounds. In Proceedings. Symposium on Solid Model-
ing Foundations and CA D/CAM Applications, pages
129—137, Austin, TX, 1991.

[6] J. Cohen, M. Lin, D. Manocha, and K. Ponamgi.
Interactive and exact collision detection for large-
scaled environments. Technical Report TR94-005,
Department of Computer Science, University of
North Carolina, 1994.

[7] P. Dworkin and D. Zeltzer. A new model for effi-
cient dynamics simulation. Proceedings Eurographics
workshop an animation and simulation, pages 175-
184, 1993.

[8] H. Edelsbrunner. A new approach to rectangle inter-
sections, Part1. Internat. J. Comput. Moth, 13:209—
219, 1993.

[9] J. Snyder et. al. Interval methods for multi—point col-
lisions between time dependent curved surfaces. In
Proceedings of ACM Siggraph, pages 321—334, 1993.

196

199

[10] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A
fast procedure for computing the distance between
objects in three-dimensional space. IEEE J. Robotics
and Automation, vol RA-4:pp. 193—203, 1988.

[11] J. K. Hahn. Realistic animation of rigid bodies.
Computer Graphics, 22(4):pp. 299—308, 1988.

[12] J.E. Hopcroft, J.T. Schwartz, and M. Shan'r. Effi-
cient detection of intersections among spheres. The
International Journal of Robotics Research, 2(4):??—
50, 1933.

H.Six and D.Wood. Counting and reporting inter-
sections of D-ranges. IEEE Transactions on Com-
puters, pages 46—55, 1982.

P. M. Hubbard. Interactive collision detection. In
Proceedings of IEEE Symposium on Research Fron-
tiers in Virtual Reality, October 1993.

[13]

[14]

J.C. Latombe. Robot Motion Planning. Kluwer Aces
demic Publishers, 1991.

[16] M. Lin and J. Canny. Efficient collision detection for
animation. In Proceedings of the Third Eurograph-
ics Workshop on Animation and Simulation, Cam-
bridge, England, 1991.

MC. Lin. Efficient Collision Detection for Anima-
tion and Robotics. PhD thesis, Department of Elec-
trical Engineering and Computer Science, University
of California, Berkeley, December 1993.

[15]

M. Moore and J. Wilhelms. Collision detection and

response for computer animation. Computer Graph-
ics, 22(4):289—298, 1988.

M.Shamos and D.Hoey. Geometric intersection prob‘
lems. Proc. 17th An. IEEE Symp. Found. on Cam-
put. Science, pages 208—215, 1976.

A. Pentland. Computational complexity versus sim-
ulated environment. Computer Graphics, 22(2);IBSe
192, 1990.

[20]

[21] M. Ponamgi, D. Manocha, and M. Lin. Incremen-
tal algorithms for collision detection between solid
models. Technical Report TR94-061, Department
of Computer Science, University of .North Carolina,
Chapel Hill, 1994.

[22] FF. Preparata and M. l. Shamos. Computational
Geometry. Springer-Veriag, New York, 1985.

[23] W.Thibault and B.Naylor. Set operations on poly-
hedra using binary space partitioning trees. ACM
Computer Graphics, 4, 1987.

[24] D. Zeltzer. Autonomy, interaction and presence.
Presence, 1(1):127, 1992.

200

Abe, Shinji... 115
Agrawala, Maneesh" ,
Anderson, Brian G.. ..5

Badler, Norman 1 ”"173
Banks DavidC.43,171,205, 216
Barham, Paul T.. .93 210

Baum, Daniel R. 67,207
Becket, Walton 173
Beers, AndrewC. 145, 215

Bishop, Gary... .. 19,204
Brock, D. 123
Brutzman, DonaldP... 93, 210
Bukowski, RichardW: .. 131, 214
Canny, John 181,217
Chen, David T. 43, 69, 205, 208

Chen, Hong 69, 208
Chi, Vernon L. I3, 203

Chrysarnhou, Yiorgos 45
Cohen, Elaine 27

Cohen, Jonathan D. 19, 189, 204, 218

Cohen, Michael F...................... 35, 205

Crabrree, Jonathan 173

Cullip, TimJ.69,208
DeFanti, Thomas A. 167

Drucker, Steven M. 139

Esposito, Chris 109, 213
Falby, John 93, 210
Palm, Mike 13, 203

Finch, Mark 1 13, 203

Fleischer, StephenD. 25, 204

Francis, George K. 167
Friedman, Scott... 165, 216

Fuchs, Henry .69, 208
Funkhouser,'1'homasA............ 85, 209
Galyean, Tinsley A 103, 210

Georges, Chris 105, 212

Author Index

Page numbers in italics indicate color plates.

Gortler, Steven J. 35, 205
Granieri, John P. 173
Gunn, Charlie 167

Hudson, Randy 167

Jepson, William 165, 216
Kaufman,ArieE. 151, 214

Kelley, Michael 171, 216
Kishino, Fumio 115

Kochevar, Peter 157

Kumar, Subodh 51, 206

Lastra, Anselmo 51, 59, 207
Lee, Michael]. 25, 204

Levoy, Marc 145, 215
Liggett, Robin 165, 216
Lin, Ming C. 189, 218
Locke,John93, 210
Luebke, David 105,212
Macedonia, Michael R. 93, 210

Maciel, Paulo M. C. 95,211
Manocha, Dinesh 51, 189, 206, 218

Massie, T... 123
McAllister, Jonathan... 69, 208
Mine, Mark 19, 204
Mirtich, Brian 181, 217

Molnar, Steven 59, 207
Mueller, Carl 75, 209

Naylor, Bruce F. 107,212
Neumann, Ulrich 69, 208

Olano, Marc 19, 59, 204, 207

Ong, JueyChong 109, 213
Paley, W. Bradford 109, 213

Peercy, MarkS.67, 207
Ponamgi, Madhav K. 189, 218
Pratt, David R. 93, 210

Reich, BarryD.173
Rock, Stephen M. 25, 204

Salisbury, K. 123

197

200

Sandin, Daniel J. 167

Shirley, Peter 95, 211
Slater, Mel 45
State, Andrei 43, 69,205, 208

Superfine, Richard 13, 203
sequin, Carlo 131, 214

Swamp, N. 123
Taylor, Russell M. 13, 203

Tijerino, Yuri A. 115
Wang, Sidney W. 151, 214

Wang, Yulan 59, 207

Wanger, Len 157
Washburn, Sean 13, 203
Wloka, Matthias M. 5
Yoshida, Mikio 1 15
Zeltzer, David 139

Zhn, Benjamin M...................... 67, 207
Zilles, C. ... 123

Zyda, Michael J. 93,210

