
1995 SYMPOSIUM
ON INTERACTIVE
30 GRAPHICS

Symposium Chair
Michael Zyda

Program Co-Chairs
Pat Hanrahan
Jim Winget

Sponsored by the Association for
Computing Machinery's Special

Interest Group on Computer
Graphics

A publication of ACM SIGGRAPH

a��
PRESS /4 .•

'.-;,;:··

1 MS 1006

2

Proceedings

1995 Symposium on

Interactive 3D Graphics

Monterey, California

April 9 — 12, 1995

Symposium Chair

Michael Zyda, Naval Postgraduate School

Program Co-Chairs

Pat Hanrahan, Stanford University
Jim Winget, Silicon Graphics, Inc.

Program Committee

Frank Crow, Apple Computer

Andy van Dam, Brown University
Michael Deen'ng, Sun Microsystems
Steven Feiner, Columbia University

Henry Fuchs, UNC - Chapel Hill
Thomas Funkhouser, Bell Labs
Fred Kitson, Hewlett-Packard

Randy Pausch. University of Virginia
Paul Strauss, Silicon Graphics, Inc.

Andy Witkin, Carnegie-Mellon University
David Zeltzer, Massachusetts Institute of Technology

Financial support provided by the following organizations:

Office of Naval Research, Advanced Research Projects Agency
US Army Research Laboratory

Apple Computer
AT&T Bell Laboratories

Cyberware
Hewlett-Packard

Microsoft Corporation

Silicon Graphics, Inc.
Sun Microsystems

Production Editor

Stephen Spencer, The Ohio State University

3

The Association for Computing Machinery, Inc.
1515 Broadway, 17th Floor

New York, NY 10036

Copyright © 1995 by the Association for Computing Machinery, Inc. Copying withOut fee is permit-
ted provided that the copies are not made or distributed for direct commercial advantage and credit to
the source is given. Abstracting with credit is permitted. For other copying of articles that carry a code

at the bottom of the first page, copying is permitted provided that the per-copy fee is paid through the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For permission to republish
write to Director of Publications, Association for Computing Machinery. To copy otherwise, or re-
publish, requires a fee andfor specific permission.

Orders from ACM Members:

A limited number of copies are available at Credit card orders from the New York
the ACM member discount. Send order with metropolitan area and outside the
payment in US. dollars to: U.S.:

+1 212—626-0500
ACM Order Department

PO. Box 12114 Single‘copy orders placed by fax:
Church Street Station +1 212-944-1318
New York, NY 10257

Electronic mail inquiries may be directed to
OR, for information on accepted European acmhelpaacm.org.
currencies and exchange rates, contact;

Please include your ACM member
ACM European Service Center number and the ACM order number
Avenue Marcel Thiry 204 with your order:1200 Brussels

Belgium ’ ACM Order Number: 429953
Tel: +32 2 774 9602 ACM ISBN: 0-89791 513677
Fax: +32 2 774 9690

Email: acm_europe@acm . org

Credit card orders from U.S. and Canada:
1-800—342-6626

Credit card orders may also be placed bymail.

4

Table of Contents and Symposium Program

Preface4
Monday, April 10, 1995

8:00—8:15

8:15~ 10:15

11:00 — 12:05

12:05 — 1:30

1:30—3:10

4:00 — 5:00

8:00 — 9:30

Welcome

Session 1: Virtual Reality

Chair: Henry Fuchs — University ofNorth Carolina, Chapel Hill

Resolving Occlusion in Augmented Reality 5
Matthias M. Wloka and Brian G. Anderson

Surface Modification Tools in a Virtual Environment Interface to a Scanning Probe Microscope 13
M. Finch, M. Falvo, V L. Chi, S. Washbarn, R. M. Taylor, and R. Superfine
Color Plates ...203

19 Combatting Rendering Latency ..
Marc Olano, Jon Cohen, Mark Mine and Gary Bishop
ColorPlates ...204

Underwater Vehicle Control from a Virtual Environment Interface .. 25
Stephen D, Fleischer, Stephen M. Rock and Michael J. Lee ‘

Color Plates204

Session 2: Geometric Modeling
Chair: Paul Strauss — Silicon Graphics, Inc.

Interactive Design, Analysis, and Illustration ofAssemblie527
Elana Driskill and Elaine Cohen

Hierarchical and Variational Geometric Modeling with Wavelets 35
Steven J. Gortler and Michael F. Cohen

Color Plates205

Interactive Shape Metamorphosis43
David T. Chen, Andrei State and David Banks

Color Plates209
Lunch

Session 3: Rendering Systems
Chair: Michael Deering — Sun Microsystems

Shadow Volume BSP Trees for Computation of Shadows in Dynamic Scenes45
Yiorgos Chrysanthoa and Mel Slater

Interactive Display of Large-Scale NURBS Models 51
Sabodh Kamar, Dinesh Monocha and Anselmo Laslra

Color Plates ... 206

Real—Time Programmable Shading59
Anselmo Lastra, Steven Molnar, Marc Olano and Yalan Wang
Color Plates .. . 207

Interactive Full Spectral Rendering67
Mark S. Peercy, Benjamin M. Zhu and Daniel R. Baum

Color Plates207

Session 4: Benefits of Exchange Between Computer Scientists and Perceptual Scientists
Chair: Randy Pansch — University ofVirginia

Panel: Robert Eggleston — Wright-Patterson AFB, Steve Ellis ~ NASA Ames, Mary Kaiser k NASA
Antes, Jack Loomis — UCSB, Dennis Profi‘itt — University of Virginia

Session 5: Government Programs on Virtual Environments & Real-Time Interactive 3D
Chair: Michael Zyda, Naval Postgraduate School

Panel: Rick Satava ~ARPA, Craig Wier —ARPA, Ralph Wachter — ONR, Paul Stay —ARL

5

Tuesday, April 11, 1995

8:30 — 10:10 Session 6: Parallel and Distributed Algorithm
Chair: Frank Crow —Apple Computer

Interactive Volume Visualization on a Heterogeneous Message-Passing Multicomputer 69
A State, J. McAllister, U. Neumomt, H. Chen, T. J. Cullip D T. Chen andH. Fuchs
Color Plates. 208

The Sort-First Rendering Architecture for High-Performance Graphics 75
Carl Mueller
Color Plates209

RING: A Client-Server System for Multi—User Virtual Environments .. 85
Thomas A. Funkhouser

Color Plates209

NPSNET: A Multi-Player 3D Virtual Environment over the Internet.. 93

M R. Macedonia,D. P. Brurzman, M. J. Zyda, D. R. Pratt P. T, Barkam, J.Falbyand;LockeColor Plates. 210

11:00 — 12:10 Session 7: Virtual Environments
Chair: Thomas Funkhouser — AT& T Bell Laboratories

Visual Navigation of Large Environments Using Textured Clusters95
Paulo W. C. Maciel and Peter Shirley
Color Plates211

Guided Navigation of VirtualEnvironments103
Tinsley A. Galyean
Color Plates210

Portals and Mirrors: Simple, Fast Evaluation of Potentially Visible Sets 105
David Luebke and Chris Georges
Color Plates212

Interactive Playing with Large Synthetic Environments 107
Bruce F. Naylor
Color Plates212

12:10 — 1:30 Lunch

1:30 — 2:50 Session 8: Input and Output Techniques
Choir: Randy Pousch — University of Virginia

Of Mice and Monkeys: A Specialized Input Device for Virtual Body Animation 109

Chris Esposito, W.Bradford PaleyandJueyChong Ong-Color Plates. 213

A Virtual Space Teleconferencing System that Supports Intuitive Interactionfor Creative and Cooperative Work" 115
M Yoshida, Y. Tijer1‘,no S. Abe and F. Kishmo

Haptic Rendering: Programming Touch Interaction With Virtual Objects ... 123
K. Solisbm‘y, D. Brock, T. Massie, N. Swamp and C. Zilles

4:00 — 5:00 Session 9: Invited Speaker

6

Wednesday, April 12, 1995

8:30 — 10:10 Session 10: Interactive Manipulation
Chair: Davinr Zeltzer — MIT Research Laboratory ofElectronics

Object Associations: A Simple and Practical Approach to Virtual 3D Manipulation... 131
Richard W. Bakowski and Carla H. Sequin
Color Plates“

CamDroid: A System for Implementing Intelligent Camera Control .
Steven M. Dracker and David Zeltzer

3D Painting on Scanned Surfaces ... 145
Maneesh Agrawala, Andrew C. Beers and Marc Levoy
Color Plates215

Volume Sculpting. 151

Sidney W. Wang"and ArieE. Kanfinan
Color Plates" 214

11:00 — 12:10 Session 11: Applications
Chair: Steven Feiner — Columbia University

The Tecate Data Space Exploration Utility 157
Peter Kochevar and Len Wanger

...214

139

An Environment for Real-time UrbanSimulation165
William Jepson, Robin Liggett and Scott Friedman
Color Plates216

Mathenautics: Using Virtual Reality to Visit 3-DManifolds167
R. Hudson, C. Glenn, G. K. Francis. D. J. Sandin and T. A. DeFanti

Tracking A Turbulent Spot in an Immersive Environment 171
David C. Banks and Michael Kelley
Color Plates216

12:10 — 1:30 Lunch

1:30 ~ 2:45 Session 12: Physical and Behavioral Simulation
Chair: Fred Kitson ~ Hewlett-Packard Labs

Behavioral Control for Real-Time Simulated Human Agents“ .. 173
John P. Granieri Welton Becket, Barry D Reich, Jonathan Crabtree and NnrmnnIBadlng

Impulse-based Simulation of Rigid Bodies 181

-— Brian Mirn'ch and John CannyColor Plates. 217

I-COLLIDE: An Interactive and Exact Collision Detection System for Large—Scale Environments. ..189
J. D. Cohen, M. C. Lin, D. Manoeha andM. K. Ponamgi
Color Plates. 218

3:30 — 4:30 Keynote Address: Interactive 3D Graphics: Challenges and Opportunities
Henry Fuchs — University ofNorth Carolina, Chapel Hill
Chair: Andy van Dam d Brown. University

Closing Remarks

Conference Chairs: Pat Hanrahan, Jim Winger and Michael Zyda

Author Index 197
Cover Image Credits
Color PlateSection .. 203

7

Preface

This proceedings represents the technical papers and pro-
gram for the 1995 Symposium on Interactive 3D Graphics. This
symposium is the fourth in a series of what is hopefully a per-
manent conference whose focus is on the topic: Where is the

frontier today in real—time interactive 3D graphics? 3D graph-
ics is becoming ever more prevalent as our workstations and
personal computers speed up. We have in—horne users of 3D

today with 486 PCs and Doom. By the end of 1995, we will be
seeing $250 home 3D gaming machines running 100,000 tex-
tured polygons per second. Because of this impending wide-

spread usage of 3D graphics, we need a conference dedicated
to real-time, interactive 3D graphics and interactive techniques.

We received 96 paper submissions for this symposium.

This is a record for the symposium series and is particutarly
notable in that we did not even have a conference chair for the

symposium until the last day of SIGGRAPH ’94. We accepted
22 full length papers and 11 short papers. The reasoning be—
hind the short papers category was that ther were some inter-

esting submissions that would provide a great live demo but
for which there was not sufficient material for a full length
technical paper. We have such flexibility in this smaller eon-
ferenoe.

One of the major changes for the 1995 symposium is our

status with respect to ACM SIGGRAPH. ACM SIGGRAPH

has always provided “in cooperation” status in the past but none
of the past symposium chairs has wanted to fill out the “daunt-
ing” paperwork required for “sponsored by" status. Donna

Baglio of ACM convinced the symposium chair that it wasn‘t
so difficult and it wasn’t. “Sponsored by” means ACM

SIGGRAPH guaranteed that all bills are paid. Such guarantees
allow the symposium’s chair to sleep easier. The “sponsored
by” status was facilitated by supporters on the SIGGRAPH

Executive Committee. In particular, Steve Cunningham and
Mary Whitton helped out enormously, getting the TMRF signed

off and approved rapidly! Steve also pointed us in the right
direcion for getting ACM SIGGRAPI-I to include the proceed—

ings in the SIGGRAPH Member Plus program, which means
distribution of the proceedings to more than 4,000 individuals.

When we started circulating the call for participation for
the symposium, we had a major coup. Robert McDermott called

and volunteered to be Media Coordinator for the symposium.
He had helped us with the AV for the 1990 symposium at Snow-
bird. He volunteered to edit and produce a videotape of the

accepted symposium papers, another symposium first. He also
volunteered to plan the AV and computer setup for the confer—

ence. We have plans of a significant AV setup for the sympo-
sium, with live demos and Internet at the podium. It is very
nice to have someone who has done this before.

We had a smaller, more compact program committee than
in the past. Our program committee contains many of the

world’s outstanding leaders in the field of computer graphics:

Frank Crow, Apple Computer
Michael Deering, Sun Microsystems
Steven Feiner, Columbia University
Henry Fuchs, UNC - Chapel Hill
Thomas Funkhouser, AT&T Bell Laboratories
Fred Kitson, Hewlett-Packard Labs

Randy Pausch, University of Virginia
Paul Strauss, Silicon Graphics, Inc.
Andy van Dam, Brown University
Andy Witkin, Carnegie Mellon University

David Zeltzer, Massachusetts Institute of Technology

We take this opportunity to thank our supporters who
helped us with equipmentloans or with financial contributions

to assure that this symposium would indeed happen. We would
like to recognize for their generous support: Office of Naval

Research (Ralph Wachter), Advanced Research Projects Agency
(Rick Satava and Craig Wier), US. Army Research Labora-

tory (Paul Stay), Apple Computer (Frank Crow), AT&T Bell

Laboratories (S. Kicha Ganapathy), Cyberware (David
Addleman and George Dabrowski), Hewlett-Packard (Fred

Kitson and Phil Ebersole), Microsoft Corporation (Dan Ling),
Silicon Graphics, Inc. (Forrest Baskett), Patrick Barrett (Sun

Microsystems), Jim Rose for his assismnce with the sympo-
sium video review and the NSF Science and Technology Cen-
ter for Computer Graphics and Scientific Visualization. With-

out the snpport of these individuals and organizations, we could

not hold this conference. Many of these individuals have pro‘

vided financial support every year the symposium has been
offered. Thank you very much!

The Symposium is still four months away, and close to
fully sold out! We expect that we will have to disappoint many
dozens of people whom we simply cannot accommodate. This
enthusiastic response attests to the wide interest that the field

of 3D interactive graphics has garnered. We can only hope and
recommend that we will not have to wait again so long to en-
joy the next Symposium on 3D Interactive Graphics.

Pat l-lanrahan, Jim Winget & Michael Zyda
January 1995

8

Resolving Occlusion in Augmented Reality

Matthias M. Wloka“ and Brian G. Anderson“

Science and Technology Center for Computer Graphics and Scientific Visualization,
Brown University Site

Abstract

Current state-of-the-art augmented reality systems simply overlay
computer-generated visuals on the real-world imagery, for example
via video or optical see—through displays. However, overlays are not
effective when displaying data in three dimensions, since occlusion
between the real and computer-generated objects is not addressed.

We present a video see-through augmented reality system ca-
pable of resolving occlusion between real and computer—generated
objects. The heart of our system is a new algorithm that assigns
depth values to each pixel in a pair of stereo video images in near;
real-time. The algorithm belongs to the class of stereo matching
algorithms and thus works in fully dynamic environments. We de—
scribe our system in general and the stereo matching algorithm in
particular.

Keywords: real-time, stereo matching, occlusion, augmented re-
ality. interaction, approximation, dynamic environments

I Introduction

Augmented reality systems enhance theuser’s Vision with computer-
generated imagery. To make such systems and their applications
effective, the synthetic or virtual imagery needs to blend convinc-
ingly with the real images. Towards this goal, researchers study
such areas as minimizing object registration errors [2] and overall
system log [2} [l 7] so as to increase the “realncss” of virtual objects.

Since occlusion provides a significant visual cue to the human
perceptual system when displaying data in three dimensions, proper
occlusion resolution between real and virtual objects is highly desir-
able in augmented reality systems. However, solving the occlusion
problem for augmented reality is challenging: little is known about
the real world we wish to augment. For example, in an optical
see-through head—mounted display (HMD), no information at all is
available about the surrounding real world. In a video seevthrough
HMD, however, at least a pair of 2D intensity bitmaps is available
in digital memory.

*Box 1910, Department of Computer Science, Brown Uni-
versity, Providence, RI 02912. Phone: (401) 863 7600, email:
{mmw | bga}@cs .brown. edu.

Permission to copy without too all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title oi the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 089791-736-7/95/0004...$3.50

Typical augmented reality scenarios further complicate the prob-
lem. Because they do not restrict the real environment to be static,
precomputing depth maps to resolve occlusion is impossible. As
a result, occlusion between virtual and real objects needs to be
determined for every frame generated, i.e., at real-time rates.

We introduce here a video see-through system capable of resolv-
ing occlusion between real and virtual objects at close to real—time
rates. We achieve these near-real—time rates by computing depth
maps for the left and right views at half the original video image
resolution (depth maps are thus 320 by 240 pixels). Few addi-
tional assumptions are made on the real and virtual environments;
in particular, both can be fully dynamic.

The heart ofour video see-through system is anew stereo match—
ing algorithm that infers dense depth maps from a stereo pair of
intensity bitmaps. This new algorithm trades accuracy for speed
and thus outperforms known stereo matching algorithms except for
those that run on customebuilt hardware. Furthermore, our algo-
rithm is robust: it does not require a fully calibrated pair of stereocameras.

1.1 Overview

We briefly review related work in Section 2. In Section 3 we outline

the architecture of our video see-through augmented reality system.
The basic algorithm for stereo matching video images in close to
real-time is explained in Section 4. Several extensions, described in
Section 5, make the basic algorithm faster and more robust. Finally.
in Section 6 we discuss drawbacks of the algorithm and propose
possible future work.

2 Related Work

While several other augmented reality systems are described in the
literature [3] [7] [9], none of these systems addresses the occlusion
problem. We know of only one augmented reality system other
than our own that attempts to correct this deficiency [10]. The
envisioned application of the competing project [10], Le. virtual
teleconferencing, is more ambitious than our own, i.e. augmented
interior design, but the basis of both systems is to compute dense
depth maps for the surrounding real world Preliminary results
in [10] indicate process times of several minutes per depth map
on an high-end workstation [1]. In contrast, we claim sub-second

performance for depth maps of similar resolution, although our
depth maps are not as accurate.

The work by Koch [12] also applies computer vision techniques
to infer dense, accurate depth maps from image pairs, and uses
this information to construct 3D graphical representations of the
surveyed world. Unfortunately, his methods are far from real-time,
restricted to static environments. and thus not suitable for augmented
reality applications.

9

Like Koch, we use a computer vision technique known as stereo
matching to infer depth from stereo image pairs. Stereo matching
is a well-established research area in the computer vision literature
[8] [5]. Nonetheless, real-time algorithms for stereo matching are
only a recent development.

We believe that our near-real-tjme stereo matching algorithm is
new. It is faster than other published near-real-time algorithms [13]
[15], and is excelled only by algorithms running on custom-built
hardware [15] [14] [11] (see Table 1). However, since our algorithm
runs on general—purpose workstations, it is more affordable (no
expensive, single/use, custom-built hardware is required) and more
flexible (none of the parameters are hard-wired) than those.

Eventhough our algorithm is faster than some of those previously
published efforts, our resulting depth maps are also less accurate.

Resolution Time

320x240x30 620ms

 1-proc. SGI Onyx

2~proc. SGI Onyx 320x240x30 370ms
2—proc. SGI Onyx 160x120x15 lOOms

Matthias [12] 68020 WIS 64x 60x 6 lOOOms
image proc. cards

Ross [15] Sun Spare]] 256x240x16 2460ms
Ross [15] 64 Cell iWarp 256x240x16 150ms
Ross [15] 64 Cell iWarp 512x480x88 2180ms
Nishihara [13] custom-design 512x512x ? 33ms

25 6x240x30 33msKanade [10] custom-design

Table 1: Running times of our stereo matching algorithm com-
pared with previous real-time or near—real-time stereo matching
algorithms. Resolution is the resolution of the generated depth map
in m, y, and depth, ie, the range of possible disparity values for a
matched point.

3 System Description

Figure 1 outlines the architecture of our augmented reality sys-
tem. Two black and white video cameras are mounted on top of

a Fakespace Boom. The cameras need to be aligned so that their
epi-polar linesl roughly coincide with their horizontal scan-lines.
Unfortunately, simply aligning the cameras’ outer housings is in"
sufficient due to large manufacturing tolerances in internal image
sensor—array alignments (for example, our cameras had a pitch dif—
ference of several degrees). While we achieved alignment of i3
pixels manually by trial and error. less time—consuming options are
available; for example, the images could be aligned in software [4]
or by using calibrated off-the-shelf hardware [16].

The cameras continuously transmit gen-locked left/right video
image pairs, such as shown in Figures 2 and 4, to the red and
green inputs of a Sirius video card. The Shins video card digitizes
the analogue video signal and transfers the bitmaps into the main
memory of an SGI Onyx.

We then apply the stereo matching algorithm described in Sec-
tion 4 to the image pair. Figures 3 and 5 show the resulting depth
maps. We copy the z-values for the left image into the z-buffer and
transfer the left video image to the red frame—buffer. Since every
pixel of the video image now has an associated z—value, we simply
render all computer graphics objects for the left View — z-buffering
resolves all occlusion relations.

The procedure is repeated for the right view: we clear the z-
huffer, copy the generated z—values for the right view into it. transfer

lAn cpl-polar line is the intersection of the image plane with the
plane defined by the projection centers of the two cameras and an
arbitrary point in the 3D world space.

Stereo cameras
mounted on Boom

Fakespace Boom

 Head positio
and orientation

Video out
[Rzleft View
a:right View].

' _ - Frame buffer .
Sirius video . -

frame grabber Ella Zg

I-‘i COPY !"I
match

7-
SGI Onyx with two 150MHz R4400 Processors
and RealityEngine II '

Figure 1‘. Schematic of our video see—through augmented reality
system. The inputs and outputs R, G, and B correspond to the red.
green, and blue channels. respectively. Zr and Zg are the depth- or
z-values for the red and green channels, respectively. Since only
one zabuffer is available in double-buffering mode, We first render
the left view (red channel) completely and then the right View (green
channel).

Time

Stereo matching algorithm 320x240

z-value transfer per frame 320x240
RGB~value transfer per frame 640x 240
Video capture 640x240
Rendering per frame 1280a 1024
Total for stereo image pair 1280x 1024

Table 2: Results of timing tests for the various parts of our sys~
tern, running on a 150MHz two-processor SGI Onyx with a Real-
ityEngine ll. Capturing images from video does not use the CPU,
but does introduce an additional lag of at least lOOms. Rendering
is highly scene-dependent— our extremely simple test scenes take
less than 101113 to render.

the right video image into the green frame-buffer, and finally render
all computer graphics objects for the right View.

The Fakespace Boom then displays the redfgrecn augmented re»
aljty image pairs so generated as a stereo image pair. Figures 6
and 8 and Figures 7 and 9 show two examples. The Boom also
allows us to couple the virtual camera pair position and orientation

10

Figure 2: Left video camera image. Using this and the right video
image, we infer depth for every pixel in the video image in near-
real-time.

directly with those of the video camera pair. Therefore, the com-
puter graphics objects are rendered with the same perspective as the
video images.

While our system is video see—through, the same setup is used
for optical see-through systems. Instead of a Fakespace Boom, the
user wears a head~mounted optical see-through display and a pair
of head—mounted video cameras. The video signal is processed as
before, except that the video images are never transferred to the
frame-buffer. Therefore, only the computer graphics objects —
properly clipped by the generated z~values to occlude only more
distant objects — are displayed on the optical see—through display.

The various parts ofour system require varying amounts of com-
pute time. Table 2 shows the results of our tinting tests. While
the stereo-frame rate of roughly two updates per second is still an
order of magnitude too slow for practical augmented reality sys-
tems, our Work may guide hardware architects to address the needs
for faster and more affordable video processing hardware. Alterna~

Figure 4: Right video camera image.

lively. resolution of the depth maps or video images may be reduced
further.

4 Basic Algorithm

The new stereo matching algorithm we use to infer depth for the
video images is central to our occlusion-resolving augmented reality
system. Like all other stereo matching algorithms, it works by
matching points in the left image to points in the right image and
vice versa. Once the relative image positions of a pair of matched
points are established? triangulation is used to infer the distance of
the matched points to the cameras [8].

Our algorithm is area-based, ie, it attempts to match image areas
to one another. It works in five phases.

4.1 Phase One

In the first phase, we subsample the original video image. Currently,
we operate at half the resolution of the video images. Higher (lower)
resolution gives more (less) accurate results while slowing down

Figure 3: Our new stereo matching algorithm produces a half-
resolution, approximate depth map for the left and right camera-
view in near-real—time. The depth map for Figure 2 is shown here.

10

Figure 5: The computed depth map for Figure 4.

11

Figure 6: Real and virtual imagery are combined via the standard
z-buffer algorithm. Here, a virtual sphere occludes and is occluded
by real-world objects in the left camera view.

(speeding up) the algorithm.

4.2 Phase Two

The second phase analyzes me vertical pixel spans of the subsam—
pled video images for sudden changes in intensities; the vertical
pixel span is split at the points at which such a change occurs.
Figures 10 and 12 illustrate the result of this operation.

4.3 Phase Three

The third phase generates the individual areas or blocks. A block

is part of a vertical pixel span whose length is delimited by the
splits introduced in the second phase of the algorithm. Therefore,
all the pixels belonging to a particular block vary little in intensity
(otherwise the second phase would have generated a split). Ac-
cordingly, only a few parameters suffice to describe a block: its

Figure 7: To visualize depth We let a virtual screen-aligned disk
occlude and be occluded by real-world objects. Due to errors in the
computed depth map for the video image, occlusion is not always
resolved properly.

11

Figure 8: The right view of the scene in Figure 6.

:5 and y position, its length, the average intensity of all its pixels,
and the standard deviation of the intensities. To ensure that average
intensity and standard deviation properly characterize a block. we
impose a minimum length of 3 pixels.

4.4 Phase Four

The fourth phase of our algorithm matches blocks in the left image
to blocks in the right image and vice versa. We compare every
given block with all blocks in the other image that share the same
horizontal scan-lines to find the best match. (This is less work
than a full search because the range of possible disparity values
restricts the number of blocks we must examine; see Figure 11
and also Section 5.2.) TWO blocks match if the differences in their
y-position. their length, their average intensity, and their standard
deviation are below preset tolerances. The resulting depth estimates
for the left and right block are entered into the depth map for the
left and right image, respectively. The differences in the matching
blocks’ parameters are also recorded and used to weight the depth

Figure 9: The virtual, screen~aligned disk in die right view.

12

estimate.

At the end of the fourth phase we have two depth maps, one
for the left and one for the right image. Since not every block is
guaranteed to match and since some blocks might match several
times, each depth map has between zero and several depth entries
for each pixel.

4.5 Phase Five

In the fifth and final phase, we average multiple depth enhies for
each pixel in each depth map (using the earlier recorded weights).
Pixels with no depth entries are interpolated from the neighboring
entries in the same horizontal scan—line of the depth map.

4.6 Critical Features

Several features of our algorithm are critical. First, blocks are
part of vertical pixel scans. Compared to horizontal pixel scans,
vertical pixel scans are less distorted by perspective foreshortening
and occlusion differences in the left and right views. Therefore,
matching is less error—prone.

Second, blocks are only one pixel wide. The same advantages as
above apply.

Third, we search for matching blocks only along the same hor-
izontal scan-line. If we assume that the camera’s epi—polar lines
roughly align with the horizontal scan-lines, then these blocks are
the only possible matching candidates — even if we tilt the head
(i.e., both cameras).

Fourth and last, the exceptional speed of our algorithm results
from its ability to group pixels into blocks and then match those
blocks by comparing only a few characterizing values (i.e., 3,:—
position, length, average intensity, and standard deviation). On
the other hand, these few values do not always characterize a block
distinctively enough; hence matching is subject to error, and thus
our algorithm does not always estimate depth correctly.

5 Extensions

Several techniques exist to increase accuracy and speed of the above
basic algorithm. We describe these techniques here,

Limit: search to
range of possible
disparity values

Block to match

Limit: search
to blocks of
roughly equal
ymposition
and height

Blocks that
might match

Blocks that
are not: even
examined

Figure 11: A given block matches only blocks that have roughly the
same y-position, length, average intensity, and standard deviation.
The block that matches most closely is selected for computation of
the depth estimate.

5.1 Allowing for Inaccurate Alignment

Since our stereo camera pair is not fully calibrated —- in particular,
the epi—polarlines correspond only to a band of horizontal scan-lines
—— we adjust the matching algorithm to take inaccurate alignment
into account. To match a block we therefore first find the scan-line
that crosses its middle. We then consider all blocks that cross that

scan-line (not necessarily in the middle) as possible candidates. A
block matches the original blockonly if the difference in the'vertical
placement of theirstart- and end-points is within the alignmenterror,
e.g., in our case within :l:3 pixels.

5.2 Horizontal Depth Coherency

When matching a block in the left image to blocks in the right
image, it is unnecessary to examine all the blocks on the right that
share the same middle scan-line (as described in Section 5 .1). The
disparity range, i.e., the difference in $~position of the projection

Figure 10: Vertical pixel scans are split into blocks whenever the
intensity along the vertical scan changes rapidly. We visualize the
process by drawing a black pixel at every split.

12

Figure 12: The blocks for the right view.

13

Limit search to
range around
disparity guess

Block to match

Column of pixels
used to guess
disparity

Figure 13: We use the previously computed depths of the pixels
immediately to the left ufthe block We are currently trying to match
to guess its disparity value.

of the same object in the two video images, is limited. The objects
closest to the cameras have the largest disparity. (Similarly, objects
at infinity have no disparity.) Thus, for example, the video images
shown in Figures 2 and 4 have a disparity range oft) to 30 pixels, As
hinted in Section 4 and Figure ll, we examine blocks only within
that disparity range.

Furthermore, the depth of horizontally adjacent pixels in a video
image is likely to be coherent. This coherency lets us further limit
the number of blocks we examine to determine matches. Therefore,
instead of searching the whole disparity range for a match, we
inspect the previously computed depth of the pixels immediately to
the left of the block we are currently trying to match. The average
depth of these pixels determines the likely disparity of a match for
the current block. Thus, we only search a narrow band (e.g.. 6
pixels wide) around that disparity value for the match. Figure 13
illustrates this process.

To ensure stability we use the suggested disparity only ifat leastas
many pixels as the block is long contribute to the average depth, i.e.,
only if all those pixels to the left of the block have an associated depth
value. Otherwise, we inspect the column of pixels immediately to
the left of them. Again we compute the average depth and likely
disparity (taking into account the estimates generated earlier). We
then search for a match around that disparity value in a band twice
the original width (e.g., 12 pixels wide). We double the width of the
search band since thepixels that generate this new depth estimate are
further to the left and thus the depth coherency is weaker. Figure 14
shows this process.

We continue to inspect the depths of the pixels further to the left
and accordingly widen the search band to three times the original
Width, four times the original width, etc, in case too few pixels
contribute to the disparity estimate. The process terminates either
when enough pixels contribute to the depth estimate or when the
search band is as wide as the total disparity range of the images.

The algorithm described above exploits depth coherency in only
one direction — left to right—» since only pixels to the left influence
the depfli of pixels to the right. To avoid this bias we use left~right
coherency only when matching blocks in the right image to blocks
in the left image. When matching blocks in the left image to blocks
in the right image we employ right-left coherency. Differences in
the resulting depth estimates are averaged out in the final phase of
the basic algorithm (see Section 4).

Taking advantage of horizontal depth coherency as described
above makes the algorithm at least twice as fast, i.e., total running

10

13

time is halved.

5.3 Disregarding Image Borders

The camera parameters of the calibrated stereo camera pair are
ideally identical except for the x-coordinates with respect to the
camera’s image plane coordinate system: they differ by the inte—
rocular distance. Because of this shift in viewpoint, the left—most
vertical pixel scans of the left camera. record objects that the right
camera does not see. Thus, it is futile to match or even process
these pixels. Similarly, the rightmost vertical pixel scans of the
right camera cannotbe matched.

Depending on the inter-ocular distance and the range of camera-
object distances, it is thus possible to cull the number of pixels to
process by up to 5%. Accordingly, the algorithm becomes faster by
a factor of up to 0.95 and accuracy of matching improves since we
eliminate candidates for erroneous matches.

5.4 Parallelizing the Algorithm
Our stereo matching algorithm is parallelizable so that it takes near—
optimal advantage of me two processors in an 3G1 Onyx. Since the
data for the left and right image in the first, second, third, and fifth
phaseof the algorithm (see Section 4) do not interact, i.e., left-image
data never influence right-image data or vice versa. we assign one
processor each to process the left and right image.

The fourth phase, i.e., the matching phase, is different: each
match generates data that are written into the depth maps of both im—
ages. Therefore, care has to be taken to avoid having the processors
simultaneously write to the same memory location. Furthermore.
We must not impede processing speed, for example, by imposing
mutex locks or similar delay schemes.

Dividing the stereo image pair into disparate zones solves these
problems. We create these zones by modifying the secondphase of
the algorithm to generate additional splits in the vertical pixel spans.
These additional splits are easily identified in Figure 10 and 12; they
are the three horizontal lines crossing the width of the left and right
image.

While a single split (instead of three) seems to suffice to avoid
simultaneous memory access by the two processors, a. small amount
of overlap does occur at the borders. Therefore, we separate the
images into four zones each to ensure disparity. We assign the
first processor to match the top zones of the left and right image,

Block to match Widen search
range

Column of pixels
further to the left
used to guess
disparity

Figure 14: If not enough pixels immediately to the left of the
block have depth values. we examine pixels further to the left. Ac-
cordingly, we widen the search band around the resulting disparity
estimate to take into accountthe reduced coherency relation.

14

Figure 15: The first stage of matching blocks with two processors.
Each processor matches left blocks to blocks in the right image
and writes the resulting depth values into the left and right depth
map. The processors Work on disjunct Zones of the image to avoid
overwriting the same memory locations simultaneously.

while the second processor matches the lower-middle zones of the
left and right image, as illustrated in Figures 15 and 16. When
both processors finish, we reassign the first processor to process
the upper-middle zones, while the second processor computes the
bottom zones, as shown in Figures 17 and 18.

The same idea of dividing images into disparate horizontal zones
is also applicable to the other phases of the algorithm for the case
of more than two processors. However, the more processors we
use, the lower the height of each zone for the matching phase of
the algorithm, and thus the shorter the blocks, Since our algorithm
seems to work bestif the maximum block length is between 16 and
128, the current resolution of 320 by 240 thus limits us to at most
eight processors, unless resolution in the y»dimension is increased.

Using the above parallelization scheme we achieve an additional
speed-up factor of 0.6, We do not reach the optimum because
workloads for the processors may vary and thus the processors may
have to wait for one another at the end of each phase of the algorithm
before computations can proceed.

5.5 Sacrificing Software Structuring and

Readability
Our current implementation of the matching algorithm is optimized
for speed. In particular, we use pointers instead of arrays, we abstain
from using subroutines (to ensure maximum optimization by the
compiler), we do not loop unnecessarily over the video image or 2—
value data, and we try to move data as little as possible. Therefore.
the first three phases of the algorithm described in Section 4 are
actually implemented as a single pass.

The result of hand‘optimizing the code is a performance gain

Right
view

Figure 16: The second stage of matching blocks With two proces~
sors. Each processormatches right blocks to blocks in the left image
and writes the resulting depth values into the left and right depth
map.

11

14

Left
View

Figure 17: The third stage of matching blocks with two processors.
The processors work on the image zones not previously processed.
Each processor matches left blocks to blocks in the right image and
writes the resulting depth values into the left and right depth map.

of a factor of roughly 0.5. Currently, we believe that the data-
h‘ansferrates, i.e. bus bandwidth (and not CPU power), limit further
speed—ups.

6 Conclusion

6.1 Discussion

Our solution is imperfect. As Figures 3 and 5 show, the generated
depth maps sometimes include gross errors. Worse, these errors
may not persist over several frame-pairs, so that objects may blink
off and on as the algorithm classifies them as occluded and not
occluded. Such blinking turns out to be more distracting than a
consistentmisqualification.

In particular, our algorithm (as most other area-based stereo
matching algorithms) has difficulties in computing the depth for
rectangular image areas that are eVenly tit, non-textured, and hori-
zontal. Figures 3 and 5 exhibit this failure in the areas of the left
desk surface and the computer screen of Figures 2 and 4.

Furthermore, even though our algorithm is several orders ofmag-
nitude faster than other software algorithms, its current running time
of over 300ms per stereo image pair still prohibits its use in practical
augmented reality systems. To be useful, lag must be reduced by
another order of magnitude.

On the other hand, despite the inaccuracies and despite the inad—
equate speed, our system already demonstrates the positive impact
of occlusion resolution for augmented reality applications. In ad»
dition, our algorithm lets us experiment with various quality/speed
tradeoffs. For example, at the expense of depth map resolution,
we can improve computation speed. Particularly in highly dynamic

Right
View

Left
View

Figure 18: The fourth and final stage of matching blocks with two
processors. Each processor matches right blocks to blocks in the
left image and writes the resulting depth values into the left and
right depth map.

15

environments, it seems unnecessary to compute depth maps with
the same resolution that objects are rendered.

6.2 Implications
Our work is evidence for the continuing interaction between the
research areas of computer vision and computer graphics [6]. As
such it points towards the need of graphics workstations to better
attend to computer vision requirements, for example, to allow high-
speed data transfers between the CPU and main memory or between
main memory and the frame—buffer (see Table 2).

6.3 Future Work

Future work might improve the accuracy and speed of our stereo
matching algorithm. We list five possible areas of future research.

First, making the depth computation for rectangular, featureless
image areas a special case might improve accuracy considerably.

Second, taking advantage of interframe coherency is imperative.
This could considerably improve algorithm speed and accuracy,
while simultaneously resolving the object-blinking problem discussed in Section 6.1.

Third, since object blinking seems to result mainly from noisy
camera images, anti—aliasing or smoothing the original video images
before they are processed deserves investigation. In particular,
how does such a preprocessing step influence algorithm speed and
accuracy?

Fourth, our current algorithm is static; in particular, the edge-
detection algorithm used to implement phase tWo of the basic al—
gorithm (see Section 4) does not adapt to changing intensity value
distributions, for example, when increasing or decreasing total illu-
mination of the augmented world. Thus, we rely on the cameras to
automatically adjust their apertures to maintain apparent constant
illumination. Performing this function in software would obviate
this dependency.

Fifth and finally, ifonly a few computer graphics objects augment
the video images, a considerable performance gain is possible. In-
stead of stereo matching the whole video image pair, only the video
image areas that are covered by the bounding boxes of the computer
graphics objects require depth values. Thus, depending on number.
siZe, and distribution of the computer graphics objects, computation
requirements might decrease drastically. In addition, the disparity
of the left- and right-view renderings of each objectmight guide the
stereo-matching algorithm. thus further improving performance.

Acknowledgements

We thank the following people for their help: Kevin Arthur and Ted
Camus for providing us with sample stereo images and enduring
all our questions about video frame grabbers, cameras, and stereo
matching algorithms; Richard Szeliski and Takeo Kanude for guid-
ing us through the stereo matching literature; Martin Friedmann,
Ken B. Russel, and Thad Stamer for letting us use their hardware,
in particular the Sirius video card; and finally, our advisors Andy
van Dam and John Hughes for their support.

This work was sponsored in part by NSF/ARPA Science and
Technology Center for Computer Graphics and Scientific Visual-
ization, Sun Microsystems, Autodesk, Taco Inc., Microsoft, NASA,
NCR, and ONR Grant N00014—914L4052, ARPA Order 8225.

12

15

References

[11

[2]

[3]

[4]

l5]

[6]

[71

[81

[9]

[101

[111

112]

[13]

[14}

[151

[151

[17]

Arthur. Kevin. Private Communications (August 1994).

Azuma, Ronald and Gary Bishop. Improving Static and Dy—
namic Registration in an Optical See-Through HMD. Pro-
ceedings of SIGGRAPH ’94 (Orlando. Florida, July 24—29,
1994). In Computer Graphics Proceedings, Annual Confer-
ence Series, 1994, ACM SIGGRAPH. New York, 1994, pp.
197—204.

Bajura, Michael, Henry Fuchs, and Ryutarou Obbuchi. Merg—
ing Virtual Objects with the Real World: Seeing Ultrasound
Imagery within the Patient. Proceedings of SIGGRAPH ’92
(Chicago, Illinois, July 26—31, 1992.). In Computer Graphics
26, 2 (July 1992), 203—210.

Bajura, Mike and Ulrich Neumann. An Improved Model for
Augmented Reality Systems. Technical Report TR-94-022,
University of North Carolina at Chapel Hill, Department of
Computer Science, Chapel Hill, NC, 1994.

Bernard, Stephen T. and Martin A. Fischler. Computational
Stereo. ACM Computing Surveys, 14(4):553—572, December
1982.

Carlbom, Ingrid, William Freeman, Gudrun Klinlter, Wil~
iam E. Lorensen, Richard Szeliski, Demetri Terzopoulos,
and Keith Waters. Computer Vision for Computer Graph-
ics. Course Notes of Course 03 of SIGGRAPH ’94 (Orlando,
Florida, July 24—29, 1994).

Caudell, Thomas P. and David W. Mizell. Augmented Reality:
An Application of Heads-Up Display Technology to Manual
ManufaCturing Processes. HICSS, pages 659—669, 1992..

Dhond, Umesh R. andl. K. Aggarwal. Structure from Stereo
__ A Review. IEEE Transactions on Systems, Man, and Cy‘
berrwtfcs, 19(6):1489—1510, November 1989.

Feiner. Steven, Blair Maclntyre, and Doree Seligmann.
Knowledge-Based Augmented Reality. Communications of
the ACM, 36(7):52—63, July 1993.

Fuchs, Henry, Gary Bishop, Kevin Arthur, Leonard McMillan,
RuzenaBajcsy, Sang Lee, Harry Fluid, and Taker) Kanade. Vir-
tual Space Teleconferencing Using a Sea of Cameras. Techni-
cal ReportTR-94_033, University of North Carolina at Chapel
Hill, Deparhnent ofComputer Science, Chapel Hill, NC, June1994.

Kanade, Taken. Development of a VideorRale Stereo Ma-
chine. In Proceedings of ’94 ARPA [triage Understanding
Workshop, November 1994.

Koch, Reinhard. Automatic Reconstruction ofBuildings from
Stereoscopic Image Sequences. In R. }. Hubbold and R. Juan,
editors, Eumgraphics ’93, pages 339—350, Oxford, UK. 1993.
Eurographics, Blackwell Publishers.

Matthies. Larry. Stereo Vision for Planetary Rovers: Stochas-
tic Modeling to Near Real-Time Implementation. Interna-
tional Journal ofCompurer Vision, 8(1):71-91, 1992.

Nishiharn, H. K. Real»Tin1e Implementation of a Sign;
Correlation Algorithm for Image-Matchin g. Technical Report
90-2, Teleos Research, February 1990.

Ross, Bill. A Practical Stereo Vision System. In Proceedings
of Computer Vision and Pattern Recognition '93, 1993.

Stereographics. CrystalByes Video System. 1994.

Wloka. Matthias M. Lag in Multiprocessor Virtual Reality,
Presence.4(l). 1994. To appear.

16

Surface Modification Tools in a Virtual Environment Interface to a

Scanning Probe Microscope

Mark Finchl
Vernon L. Chi1

Russell M. Taylor [I]

Department of Computer Science
University of North Carolina, Chapel Hill

ABSTRACT

The NanoManipulator system has been expanded from a virtual-
reality interface for a specific scanning tunneling microscope
to include control of atomic force microscopes. The current
state of the system is reviewed, and new tools extending the
user‘s feel and control in manipulation and fabrication in the
mesoseopic regime are detailed. Manipulations that could not
be performed using the techniques available from commercial
SPM systems are demonstrated, and the direction of ongoing
research is outlined.

CR Categories: C.3 (Special-purpose rmd application-based
systems). 1.3.7 (Virtual reality), 1.2 (Computer Applications
Physical Sciences)

Keywords: haptic, force, scientific visualization. interactive
graphics, virtual worlds, scanning tunneling microscopy.
atomic force microscopy, telepresence, teleoperation.

1. INTRODUCTION

Scanning probe microscopy offers unique promise in
exploration and fabrication on the mesoscopic scale.
Researchers have arranged objects as small as single atoms[8].
and the use of scanning probe microscopes (SPMs) has found
wide application in the physics and chemistry communities.
But modification events using SPMs are complex and difficult
to characterize and predict. Conventional visualization and

1 CB #3175, UNC, Chapel Hill NC 27599-3175.
(919) 962—1934 finch@cs.unc.edu
(919) 962—1742 chi@cs.unc.edu
(919) 962—1701 taylorr@cs.unc.edu

2 CB #3255, UNC, Chapel Hill NC 27599—3255.
(919) 962-3526 falvo@physics.unc.edu
(919) 962-3014 wahsburn®physics.unc.edu
(919) 962-1185 rsuper@physics.unc.edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copying is by permission oi the Association of Qomputlng
Machinery. To copy otherwise, or to republish, reqUIres a fee
and/or specific permission.
1995 Symposium on Interactive SD Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

16

13

Mike Falvo2

Sean Washburn2

Richard Superfine2

Department of Physics and Astronomy
University of North Carolina, Chapel Hill

modification techniques often fail to provide the user with the
richness of pertinent detail in timely fashion for developing
the skills necessary for arranging materials into precisestructures.

The driving goal of the NanoManipulator (NM) project is the
fabrication of nanometer—scale structures in the study of
materials relating to quantum effect devices (QEDs). The
fabrication of nanometer—scale circuits and manipulation of
particles and materials into those circuits could provide
information vital to the pursuit of QEDs [URL

The NanoManipulator began as a virtual reality interface to a
scanning tunneling microscope (STM) built at UCLA. The
details of that interface are described elsewhere [4]. This paper
will focus on the expansion of the NM to provide an interface
to the broader class of SPMs, which includes STMsUO] and
atomic force microscopes (AFMs), possibly augmented by
multiple channels of surface infonnation[9]. The NM is a real»
time interface to SPMs, allowing the user intuitively natural
control over the microscope as data is presented in an easily
comprehensible form. While the NM system still encompasses
STMs, the emphasis here will be on the new tools and models
developed to fully exploit the AFM's ability to shape a sample
and manipulate materials on it.

The NM project is a collaboration between the chemistry
department of UCLA and the physics and computer science
departments of UNC—CH. The UCLA group provides materials
science expertise developing the platforms on which to build
structures. The physics group, as principle users of the system,
perform modifications and analyze results. Based on their
feedback, the computer science group develops new tools to
give the physicists more power and control, as well as a clearer
understanding of the manipulation process.

2. SPM'S

Generic In abstract, SPMs are capable of positioning a
tip precisely over a surface, and reading a height from that
location. They work by using piezoelectric crystals to
position either the tip or the sample while holding the location
of the other constant. The crystals expand and contract based
on the voltage applied to them, and can be used to specify
position to within 0.01 nm (around a tenth of the radius of an
atom)[9].

SPMs are generally used to sample the surface height at discrete
positions forming a grid, which is viewed in real time as a
greyscale image. or off-line as a 3-D surface. The microscope
is not inherently limited to any particular grid, however, but is

17

only limited by the range and resolution with which the tip
may be positioned.

The vertical resolution of SPMs can be quite good (on the order
of 0.1 nm or better), but the horizontal resolution is limited by
the radius of curvature of the probe tip. The image acquired is,
in fact, a convolution of the surface shape and tip shape. The
radius of curvature of tips used for our AFM work presented here
is typically around 30-50 rim.

Modifications are performed by increasing the interaction
forces between tip and sample. While the nature of forces
applied and the details of positioning and measuring height
varies between types of microscopes and modes of operation.
these basic microscope functions do not.

In non-modification mode, then, earlier work is easily
generalized to the entire class of SPMs. Device drivers specific
to a microscope convert the generic commands of moving to a
position and reading surface height to and from the analog
signals which drive the microscope. The user and even the bulk
of the software need not be concerned with the method with

which the data is acquired. The difference between the manner
in which the surface is modified (contact-force increase rather
than voltage pulses) has required the development of new tools
with which the user can fully utilize the power of the AFM.

NanoManipulator While the tip is scanning the sample.
the grid of data is imaged in real time by Pixel-Planesll'] as a 3-
D surface floating in space with the user. Both immersive
environments (using a head-mounted display) and virtual-
window environments (with or without 3-D glasses) are
supported. The user's hand gestures are tracked and haptic
display devices provide force feedback. The user may leave
imaging mode and take direct control of the tip, which will
then track the band‘s movement over the virtual surface in its

positioning over the real surface. Data returning from the
microscope giving surface height at the "hand‘s position" is
translated into forces pushing the user's hand out of the surface.
When the user pushes the surface, the surface pushes back. In
this way, the user can feel the surface geometry at high
resolution in real time.

The AFM operates in two modes: resonance mode and contact
mode. in resonance mode, the tip oscillates just above the
surface, This allows high-resolution measurement of surface
features without damaging the surface or disturbing material on
it. Interaction forces between tip and sample may be increased
by raising the drive amplitude of the tip oscillations. In
contact mode, the tip is dragged along the surface with some
constant contact force. The forces which can be applied with
contact mode are better understood and may be much greater
than those obtainable in resonance mode, but contact mode is
much more intrusive than resonance mode. Finer features may
be inadvertently damaged or loose materials moved even by the
lowest forces available in contact mode.

Within the NM interface, the user is presented with two abstract
modes. imaging (non-destructive} and modification. These
modes may differ only in the level of interaction force between
tip and sample, or may be separate AFM operating modes. For
instance, the user may wish to image and feel the surface using
the less intrusive resonance mode, switching to contact mode
for actually pushing materials around. Large biases occur in the
sample heights reported in the different AFM modes, however,
and transient effects, such as piezo crystal relaxation after
mode switches. make the use of the force feedback impractical
during modifications involving an AFM mode switch. While
efforts to correct these effects in software are promising, users

 14

17

have typically foregone the advantages of the dual modes in
favor of force feedback during modifications.

3. HAPTIC DISPLAY

The interactive nature of the tools which comprise the NM
require real-time feedback on the state of the sample, as well as
higher resolution surface geometry information than affordable
with current graphics capabilities. Moreover, because there is
only one probe tip on the microscope, it can only be scanning
for imaging or tracking the user's hand for feel and
modification at any given time. While the last available image
is still displayed during modification events, that data is
clearly stale, especially in the area which is usually of greatest
interest, that which is being modified. The user therefore
performs manipulations on the surface somewhat blind, relying
heavily on sense of feel.

In addition, piezo hysteresis and deformations of the tip unit
(which includes the cantilever arm on which the tip proper is
mounted) introduce errors in the lateral positioning as well as
in the apparent surface height. These errors are dependent on
the direction and speed of travel of the tip, and cannot be
predicted and corrected[9]. Because no restrictions exist on the
user's control of the tip's travel during modifications, the point
of contact between the tip and a surface feature may be offset
from the position indicated by the image.

Immediate and faithful haptic display addresses these issues,
and has proven critical in interactive controlled manipulations
of fine scale features. The heavy reliance of the modification
tools presented here on haptic display warrants further
discussion of its implementation.

3.1 FORCE FEEDBACK DEVICES

Haptic display is supported on several devices through the
ArmLib software library[5], developed at UNC—CH. Most work
to date has been performed on the Argonne Remote
Manipulator (ARM), but utilization of the Phantom, a
commercially available and relatively inexpensive haptic
display device capable of supplying high feedback forces at
update rates greater than 1000 Hz. has been rapidly increasing.
The haptic surface representations described here are available
and used on both the ARM and Phantom, but because of the
Phantom's greater performance and wider availability to the
community, its use is particularly promising for future work.

3.2 HEIGHT OFFSET DISPLAY

The original haptic display of the NM evaluated the height of
the user's hand in virtual space relative to the height of the last
data point returned from the microscope, and set a vertical force
based on this difference and a spring constant. The model was
therefore that of the user's hand being tied to the surface by a
spring which would pull it up or down to the surface.

The update of this model was limited in two ways. First, the
forces were updated at a rate limited by the graphics, at about 20
Hz. While 20 Hz is more than adequate for visual display, it is
much too slow to provide convincing haptic display[6].
Moreover, the most recent data point at best corresponds to the
microscope position requested based on the user‘s hand
position on the last iteration, so the force provided was based
on the current position of the hand and the height of the surface
where the hand had recently been. This introduced perceptible
shifts in features as the hand passed over them, making features
feel as if they were displaced forward along the line of travel.
While this method of haptic display provided useful
information about the surface at resolution higher than the grid

18

scanned to create the visual image, it was less than ideal. In

particular, it allowed. indeed insured, that the user‘s hand
penetrate the virtual surface substantially and frequently in the
course of feeling its topography.

While surface penetration was tolerable with the low forces
supplied by the ARM, it was intolerable in devices such as the
Phantom or SARCOS Dextrous Teleoperation System, which
are capable of modeling hard surfaces. In such devices, deep
penetration of the surface would cause sudden reaction forces to
propel the hand out, and then a sudden reversal of force as the
hand overshot, leading to divergent oscillations of the hand
about the surface.

3.3 IMPROVED HAPTIC DISPLAY

The first step in improving the haptic display was to decouple
the updates of the forces calculated and the rest of the system.
As data returns from the microscope, the interface constructs a
new surface representation, which is passed to the server
controlling the haptic display device. The haptic server
updates forces based on the band's position and the current
surface model at the maximum rate of which it is capable until
the next surface representation arrives. In the current
configuration. the surface representation updates ~20 Hz, with
force updates in the hundreds of Hertz for the Phantom or ARM.

3.4 SURFACE REPRESENTATION

A balance must be found on selecting the appropriate surface
representation. On the one hand, it must remain a valid
approximation within the region that the hand might
reasonably be expected to travel in the 50 ms between updates
to the haptic server. On the other hand, it must be determinable
from the limited data returning from the microscope without

appreciably slowing the rest of the interface, and evaluable by
the haptic server quickly enough to allow the extremely high
force update rates necessary for convincing feel of surface
features.

A local planar approximation was chosen for several reasons.
First, the expected displacement of the hand within 50 ms is
generally much less than the higher order terms of surface
features being investigated, and so contributions from higher
order terms would be negligible if calculated. Also, while
higher order terms might give interpolation between data
points more accuracy. for the most part the data points are
being extrapolated: having gathered information in the wake of
the band's travel, we wish to approximate the surface farther
ahead where the hand is now. In this extrapolation, higher
order terms are likely only to increase error, Second,
constraints on the motion of the microscope tip, as described
below, would make the acquisition of higher order surface
geometry even more difficult than the simple normal required
for a plane. Lastly, the implicit representation is quickly
evaluable by the haptic server, not only for direction of force,
but depth of surface penetration.

3.5 DETERMINATION OF LOCAL PLANE

Static Surface For haptic display of a surface which is not
being updated (e.g. off-line analysis of a single frame of
captured microscope data). the surface height and normal may
be evaluated at the most recent known position of the hand.
Height and normal are bi-linearly interpolated from the image
grid, providing a "Phong haptic shading" analogous to the
Phong shading used in rendering the grid visually. While the
surface presented feels rich in detail and is quite convincing, no
new information is presented to the user that is not already

15

18

being graphically displayed. Additionally, since the haptic
display is most useful in the modification of a surface, it is of
interest but limited utility with static surface display.

Hybrid Surface New data points may be "splatted"
into the grid as they arrive. Incoming surface heights
multiplied by a Gaussian centered at the point of width
approximately equal to the width of the tip are added to the
surface multiplied by one minus the Gaussian. The height and
normal are then interpolated from the updated grid as before.
Because of the biases introduced by tip travel direction and
interaction force as discussed above, the surface resulting from
this splatting process will be a distortion of the actual surface.
The technique is primarily of value in supplying a visual
display and record characterizing those biases within the
current environment. It is therefore primarily a calibration
mode, in preparation for actual modifications.

Dynamic Surface in general, it is desired that the
undistorted surface as last imaged remain displayed as a
reference during surface feel and modification. While a careful
characterization of local surface geometry about the user's hand
would require some number of non-collinear samples taken
surrounding the hand's position, this is unfortunately not
permissible, but fortunately not required for haptic display. As
the tip is always interacting with the sample surface, the user
must maintain complete control of the tip. As the user is
etching out a thin line, for instance, moving the tip outside
that line for samples would widen the trench being etched. In
general, samples taken outside the path of the user's hand would
diminish the user's ability to perform modifications of high
resolution and fine detail, the very ability which the interface
tries to maximize. Transitions from high to low surface
interaction force are much too slow to switch the force to non-

darnaging levels for sampling around the hand and then back up
along the line at which the user wants high forces applied.
Still, appropriate normal forces of the virtual surface pushing
back on the user's hand are essential for convincing haptic

display.

As the hand moves over the virtual surface, and hence the tip
moves over the actual sample, the last two position-height
pairs determine a line along the surface, giving the local
surface pitch. Neglecting any roll of the surface along that line
uniquely determines a surface normal for that local area. While
this normal would be inappropriate for visual display, it is
quite acceptable for haptic display. Since the plane defined by
the direction of travel of the user's hand and the up axis also
contains the direction the user‘s hand is pushing (modeling a
frictionless surface). the components of the reactive normal
force from the surface onto the hand outside this plane will be
zero. Thus, although the direction of the local surface normal
cannot be correctly determined, the direction of the normal
force computed from this incorrect surface normal is itself
correct. When the path of the user's hand is not a straight line,
some error is introduced, as the available tangent to the path
will always lag behind the true tangent. Again, however, these
errors will be small given the range of motion of the hand
reasonably expected within 50 ms.

The model of the surface haptically displayed is then soft but
firm and frictionless. With usual hand movements, the local

planar approximation amounts to a tessellation of the surface
into polygons of breadth less than a millimeter in the user's
hand space using the Phantom, and a few millimeters with the
ARM. Between the slight sponginess of the virtual surface, the
positioning accuracy of the devices. and smooth shapes of
features encountered in the microscope, this tessellation is not

19

generally perceptible. Any "chattering“ induced by sharp
surface features may be dealt with by either increasing the
sponginess of the surface, or increasing the size of the virtual
surface in the user's hand space, thereby effectively increasing
the spatial sampling rate for the same hand movement
velocity.

The assumptions made about reasonable and expected hand
movements could easily be enforced by the addition of velocity
dependent forces to restrain motion to a reasonable speed.
Users have been surprisingly adept, however, at tuning their
hand gestures to give the maximum sensitivity to surface
features, and so a need for such restrictions has not yet beenseen.

mega-g,—

Figure l - Measuring a sample of TMV. Height in 3D space is
exaggerated by a factor of 5.

4. TOOLS

4.1 DISPLAY TOOLS

The NM has inherited the standard set of virtual-reality (VR)
tools from the UNC vlt'b, such as grabbing, scaling, and flying
[3]. In addition, tools are added as their desirability becomes
apparent during use 'of the system. When used immersively,
fixed lighting sources have proved sufficient, as the user‘s head
position relative to the surface and light determines specular
highlighting. By moving about in the scene, the optimal
angle for viewing features of interest can be found. While
working in groups, however, it frequently proves advantageous
to fix a single hypothetical user's position in space, and
display to a projection screen a single view which all user's
share. Transition from fixed view to head tracked may be
performed on the fly for investigation of specific features, the
subtleties of which are often more easily discerned in the
immersive mode despite the lower resolution display. While in
fixed View, it is helpful to adjust the lighting source to bring
out specific details. A virtual pointer is supplied to allow the
user to point to the directional light source. The lighting of
the scene is updated as the user moves the pointer until
illumination becomes optimal.

4.2 MEASURING TOOLS

Quantitative tools are essential for full understanding of the
data. Often, features are distinguishable only by their absolute
size. The user may create a measuring rectangle perpendicular
to the horizontal plane by selecting two points, such as at the
base and peak of a feature. The rectangle is displayed with
height and width in nanometers, as well as a profile of the
surface intersecting the rectangle. This display may be
independently positioned by the user, and persists until being

19

16

explicitly dismissed, giving a reference scale for the rest of the
image. Since the horizontal shape of features displayed is the
convolution of features on the surface with the probe tip, which
has a typical radius of curvature of 30 to 50 nm, features tend to
appear flattened. This appearance may be corrected by
vertically stretching the measurement rectangle until the
profile of a reference feature takes the correct shape (cg. a
colloidal ball has same height as width). The height of the rest
of the scene is then scaled accordingly.

4.3 VCR TOOLS

While the NM is primarily a real-time data visualization
system, it is also valuable for offline analysis. Snapshots of
the scene may be saved to disk at any time. Additionally, the
stream of data returning from the microscope is saved and may
be replayed interactively, with all tools available except those
involving modification, which naturally require an actual
surface and microscope. Standard VCR functions are supported.
such as control over replay rate. fast forward, rewind, and
absolute positioning in the stream. These afford quick review
of selected segments within a stream which may be quite large,
having been acquired over the span of up to an hour. The
viewpoint and vertical scale can be different in the replay than
in the original experiment, as they do not depend on the surface
data.

The NM is not limited to data collected within the interface.

Simple file format conversion routines have been written to
allow the importation of data collected elsewhere and by
microscopes other than the Digital Instruments Nanoscope III
currently used in the system. Data received from the UCLA
materials science group is investigated using the interface as a
3-D viewer, and video tapes returned to the group of ”walk-
throughs" of the surface under study. As a visualization tool
alone the interface has proven worthwhile in the understanding
of complex surface features.

4.4 MODIFICATION TOO LS

A set of physical knobs on the ARM control the sponginess of
the surface and the forces applied by the tip to the Sample. That
the perceived hardness of the surface determines sensitivity to
smaller details is straightforward. The implications of tip force
on haptic response is more subtle. If the force applied by the
microscope is too great, a feature will be displaced
immediately, and will never be felt. If the force is too small,
the feature will be felt, but no modification made. The force

necessary to modify the surface is determined by factors such as
the exact tip shape, the direction of the force, humidity, and
surface contaminants, and may vary widely across a given
sample and over periods of time as short as tens of minutes.
Without knowing a priori the force required, the user must have
immediate control over the forces applied. The interface allows
the user to control the position of the tip and feel the surface
with one hand, while the other hand adjusts physical knobs
controlling the force level. The microscope may be toggled
between non-damaging and modification modes with a thumb
switch, to allow exact positioning of the tip by feel before the
application of forces to features.

To supplement the modification mode's immediate haptic
display, after a modification event a small area around the event
is scanned and updated. This area is generally of greatest
interest and most likely to be out of date, and is refreshed in
about a hundredth of the time needed to rescan the entire

surface. After quickly updating that subset of the grid, imaging
of the full selected region resumes.

20

Area Sweep Since the forces applied by the tip are
always under immediate user control, the entire area being
scanned may be swept out simply by increasing the force until
all materials are removed as desired. This is the interactive
method most commonly supported by commercial AFMs.
While an efficient way to clear a region, it has several
disadvantages. This method is inappropriate for selective
removal of material within a rectangle. The force required to
move material in one area may be enough to damage the
substrate or other desired features nearby. Moreover, the
clearing may be incomplete, with ragged edges around the
border or debris left in the region which must then be cleaned
out.

Line Tool The etching of circuits from a conducting
film on non—conducting substrate frequently requires straight
lines connecting cleared regions or isolating conducting
regions. The user may select any two endpoints of a line
segment, and have the tip scratch between the two points at a
preset modification force.

Engrave Tool Many commercial microscopes support
lithography techniques, allowing the user to preset a path to be
traced by the tip at a specific force. These afford efficient
etching of an exact known outline into a surface, but leave the
same jagged edges and debris as the area sweep. Cleaning these
edges is easily performed using the engraving tool, in which
the tip tracks the hand exactly over the surface. The effect is
like the user having an ice pick with which to feel the surface,
scratch it, and push about materials on it. (Depending on the
tip radius relative to surface features, it may be a very blunt ice
pick.) This gives the finest degree of control available with
the microscope.

Figure 2 - A segment of TMV is separated using the sweep tool.
The two black lines extending upward toward the hand (not
shown) define the flat edge of the virtual broom. The two
parallel lines of white markers indicate the path having been
swept out. The image has not yet been updated to show the
removal of the segment.

Sweep Tool As can easily be imagined, pushing
materials about with an ice-pick might sometimes be less than
convenient. Often, a different instrument is more appropriate.
While there is only one physical tip, control of its motion can
simulate other, virtual tools. A virtual whisk broom is provided
for selective clearing of regions and manipulation of larger
objects, or even small objects which are to be swept in a
general direction, and then positioned precisely using the
engrave tool. In sweep mode, the tip oscillates between the
tracked position of the user's hand and a point determined by
the orientation of the hand (figure 2). The magnitude and
direction of the oscillation is therefore immediately and

20

17

intuitively determined by the user, giving the illusion of an
extended tip, the flat edge of which may be used to scrape out
selected areas or push objects. This complements the area
sweep mode in that, while it lacks the precise rectangular
boundary of area sweep, it is also not limited to any rectangle.
The "edge" may become wide or narrow, and change orientation
relative to the surface plane as required to navigate though
features which must be left undisturbed.

5. RESULTS

5.1 BALL PUSHING

The manipulation of colloidal gold particles has proved an
excellent test-bed for the interface, in addition to being a
worthwhile pursuit in its own right. Controlled movement of
the balls would enable the performance of experiments
determining physical properties and materials characteristics
which are currently only predicted by theory [1]. Balls are
typically deposited randomly about a surface. Isolation and
precise positioning of individual balls, either into patterns or
within other structures is difficult, if not impossible using
means available with commercial microscopes. The
interaction between balls and the microscope tip is
unpredictable. At the same time, the balls are rigid enough to
easily be felt with the NM‘s haptic display, and image clearly.

‘ *7 r ,$,W,_¥

Figure 3 - Colloidal gold balls arranged in a ring. The hand
icon is front right.

In one experiment, a thin gold wire (~50 nm wide) was etched
into a 15 nm thick gold film on mica substrate using standard
AFM lithography techniques. A gap approximately 100 nm
wide was then cut into the wire, and colloidal gold balls of 15
nm diameter distributed over the surface. The user was then able

to select a ball and maneuver it through the other particles in
the area and position it in the gap, without disturbing other
material in the region, or damaging the wire. By using a light
force in engrave mode, the user could feel the ball on the edge
of the tip, and so could follow the ball closely and detect when
the ball took an erratic jump, quickly compensating in the
direction of pushing, or waiting for the image to be updated to
relocate the ball. Fig. 4 shows the trace of the pushing events
and the final pushes of the ball into the gap. The entire

21

sequence was performed in a matter of minutes. It is not clear

how or even if the same result could be accomplished using
methods currently available with commercial AFMs. The

experiment provides a convincing proof of concept for the
manipulation of a colloid into a gap in a wire which is
connected to macroscopic leads for the electrical

characterization of the particle. Such a circuit is currently
being fabricated at UNC-CH. and characterization experiments
are expected in the coming weeks.

Colloidal gold balls have also been arranged into structures
such as a ring and a matrix. The ability to arrange the balls
into specific patterns is useful both in the fabrication of
circuits from the balls, and comparison with theoretic
refraction patterns in near field spectroscopy studies. Work is
also currently underway to position balls in arrangements for
which theoretic predictions of refraction patterns exist.

5.2 VIRUS MANIPULATIONS

The positioning of a virus in a circuit as described above would

offer a unique ability to characterize the electrical properties of
the virus. Manipulation of the virus is even more challenging
than the gold balls, however. Samples of Tobacco Mosaic

Virus (TMV) were distributed over a mica substrate. In pushing
it with the engrave tool, the TMV was found to be very easy to
bend and break. The tip could also be positioned on the TMV
and the force turned up slowly until the tip ruptured the virus, an
event which could be easily felt by the user. But while the
dissection of TMV particles was interesting in its own right,
moving a particle as a whole unit was also desirable.

User frustrations with trying to push an extended flexible
object with a sharp instrument led to the introduction of the
sweep tool. Intuitively. it would have been the tool of choice
in an analogous real-world task. Building the illusion of the
broad edge from the reality of the microscope’s single sharp tip
proved easier than coming up with the initial insight that a
blunter instrument would sometimes be preferable. In the
natural and intuitive environment in which user's had been

interacting with the TMV, however, that insight and the request
for its implementation were natural and forthcoming.

In positioning a virus particle, the sweep tool proved ideal.
The broad edge of the tip oscillations along the length of the
TMV applied a more uniform force, moving and rotating it as a
unit. Again as proof of concept, a letter T was formed of TMV
segments as shown in Fig. 5. As can be seen in the figure, the
TMV particles obtain a slightly rumpled appearance after they
have been moved. This indicates that. while we are moving the
particles as units, we are not doing so without damage. We are
investigating pOSsible virtual tools that might be even gentler
still, in the hopes of moving the particles while leaving themintact.

6. CONCLUSIONS

The NanoManipulator provides an intuitive interface hiding the
details of performing complex tasks using an SPM. Surface
features are more easily recognized with the combination of 3-

D topography and haptic feedback in real time. Feeding the
user‘s senses more fully allows faster development of
manipulation skills. The collaborative nature of the project
allows new tools to be developed as the needs of the users

become more sophisticated. Many tasks performed using the
NM are not well enough understood to be automated, so they
require real time feedback to and response from the user. It is
hoped that the NM will provide the insight into the
manipulation process necessary to automate the fabrication of
mesoscopic and nanometer-scale circuits. The NM is valuable
new in the building of one-of—a—kind structures which will
contribute significantly to the areas of materials science and
solid state physics.

ACKNOWLEGEMENTS

We are grateful to the National Institutes of Health (grant
#RR0217D), the Defense Advanced Research Projects Agency
(contract #DABT63-92-C—0048). the National Science
Foundation (grant #IRI-9202424), and the Office of Naval
Research for funding and support.
REFERENCES

1. Devoret, M. H., D. Esteve and C. Urbina, "Single-
electron Transfer in Metallic Nanostructures", Nature 360, 547
(1992).

2. Kastner, M. A., Reviews of Modern Physics. 64, 849
(1992).

3. Robinett, Warren, and Richard Holloway,
Implementation of Flying, Scaling, and Grabbing in Virtual
Worlds. Proceedings of the ACM Symposium on Interactive 3D
Graphics (Cambridge, MA, 1992), special issue of Computer
Graphics, ACM SIGGRAPH, New York, 1992.

4. Taylor, Russell, Warren Robinett, Vernon L. Chi,
Frederick P. Brooks, Jr., William V. Wright, R. Stanley
Williams, and Erik J. Snyder, The Nanomanipulator: A Virtualh
Reality Interface for a Scanning Tunneling Microscope.
Proceedings of SIGGRAPH '93 (Anaheim, California, August
1—6, 1993). In Computer GraphiCs Proceedings, Annual
Conference Series. 1993, ACM SlGGRAPH, New York, 1993,
pp. 127—134.

5. Mark, Wiliam R. and Scott C. Randolph. "UNC-CH
Force Feedback Library”, UNC-Cl-l Computer Science Dept.
Technical Report #TR94—056, 1994.

6 Ooh—young, Ming. Force Display in Molecular
Docking, Ph. D. Thesis, University of North Carolina at
Chapel Hill. 1990.

7 Fuchs, Henry, John Poulton, John Eyles, Trey Greer,
Jack Goldfeather. David Ellsworth, Steve Molnar, Greg Turk,
Brice Tebbs, and Laura Israel. Pixel-Planes 5; A Heterogeneous
Multiprocessor Graphics System Using Processor-Enhanced
Memories. Proceedings of SIGGRAPH '89. In Computer
Graphics, 19 3 (1989). 79-88.

8 Stroscio, Joseph A. and D. M. Eigler, Atomic and
Molecular Manipulation with the Scanning Tunneling
Microscope. Science, 254 (199]). 1319—1326.

9 Sarid, Dror, Scanning Force Microscopyflxford
Series in Optical and Imaging Sciences, Oxford UniversityPress, NY 1991.

10 Chen, C. Julian, Introduction to Scanning Tunneling
Microscopyflxford Series in Optical and Imaging Sciences,
Oxford University Press, NY 1993.

22

Combatting Rendering Latency

Marc Olano, Jon Cohen, Mark Mine, Gary Bishop
Department of Computer Science, UNC Chapel Hill

[olano,cohenj,mine,gbl @cs.unc.edu

ABSTRACT

Latency or lag in an interactive graphics system is the delay
between user input and displayed output. We have formd latency
and the apparent bobbing and swimming of objects that it
produces to be a serious problem for head-mounted display
(HMD) and augmented reality applications. At UNC, we have
been investigating a number of ways to reduce latency; we present
two of these. Slats is an experimental rendering system for our
Pixel-Planes 5 graphics machine guaranteeing a constant single
NTSC field of latency. This guaranteed response is especially
important for predictive tracking. Just—in—time pixels is an attempt
to compensate for rendering latency by rendering the pixels in a
scanned display based on their position in the scan,

1 INTRODUCTION

1.1 What is latency?

Performance of current graphics systems is commonly measured
in terms of the number of triangles rendered per second or in
terms of the number of complete frames rendered per second.
While these measures are useful, they don‘t tell the whole story.

Latency, which measures the start to finish time of an operation
such as drawing a single image, is an often neglected measure of
graphics performance. For some current modes of interaction.
like manipulating a 3D object with a joystick, this measure of
responsiveness may not be important. But for emerging modes of
“natural" interaction, latency is a critical measure.

1.2 Why is it there?

All graphics systems must have some latency simply because it
.takes some time to compute an image. In addition, a system that
can produce a new image every frame may (and often will) have
more than one frame of latency. This is caused by the pipelining
used to increase graphics performance. The classic problem with
pipelining is that it provides increased throughput at a cost in
latency. The computations required for a single frame are divided
into stages and their execution is overlapped. This can expand the
effective time available to work on that single frame since several
frames are being computed at once. However, the latency is as

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed lor
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive SD Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

19

22

long as the full time spent computing the frame in all of its stages.

1.3 Why is it bad?

Latency is a problem for head-mounted display (HMD)
applications. The higher the total latency, the more the world
seems to lag behind the user’s head motions. The effect of this lag
is a high viscosity world.

The effect of latency is even more noticeable with see-through
HMDs. Such displays superimpose computer generated objects
on the user‘s view of the physical world. The lag becomes
obvious in this situation because the real world moves without lag,
while the virtual objects shift in position during the lag time.
catching up to their proper positions when the user stops moving.
This “swimming" of the virtual objects not only detracts from the
desired illusion of the objects’ physical presence, but also hinders
any effort to use this technology for real applications.

Most see-through HMD applications require a world without these
“swimming” effects. If we hope to have applications present 3D
instructions to guide the performance of “complex 3D tasks” [9],
such as repairs to a photocopy machine or even a jet engine, the
instructions must stay fixed to the machine in question. Current
research into the use of see-through HMDs by obstetricians to
visualize 3D ultrasound data indicates the need for lower latency
visualization systems [3]. The use of see-through HMDs for
assisting surgical procedures is unthinkable until we make
significant advances in the area of low latency graphics systems.

2 COMBATTING LATENCV

2.1 Matching

A possible solution to this lag problem is to use video techniques
to cause the user’s view of the real world to lag in synchronization
with the virtual world. However, this only works while the
latency is relatively small.

2.2 Prediction

Another solution to the latency problem is to predict where the
user’s head will be when the image is finally displayed [10, l. 2].
This technique, called predictive tracking, involves using both
recent tracking data and accurate knowledge of the system’s total
latency to make a best guess at the position and orientation of the
user’s head when the image is displayed inside the HMD. Azuma
states that for prediction to work effectively, the lag must be small
and consistent. In fact he uses the single field~time latency
rendering system (Slats), which we will discuss shortly, to achieve
accurate prediction.

23

AID converter
output

 Photod lode

 Digital

Oscilloscope
LED/Photodiode

Figure 1: Apparatus for external measurement of
tracking and display latency.

2.3 Rendering latency: compensation and reduction

2.3.1

There are a wide spectrum of approaches that can be used to
reduce lag in image generation or compensate for it. One way to
compensate for image generation latency is to offset the display of
the computed image based upon the latest available tracking data.

Flange of solutions

This technique is used, for example, by the Visual Display
Research Tool (VDRT), a flight simulator developed at the Naval
Training Systems Center in Orlando, Florida [5, 6]. VDRT is a
helmet~mounted laser projection system which projects images
onto a retro-reflective dome (instead of using the conventional
mosaic of high resolution displays found in most flight
simulators). in the VDRT system, images are first computed
based upon the predicted position of the user's head at the time of
image display. Immediately prior to image readout, the most
recently available tracking data is used to compute the errors in
the predicted head position used to generate the image. These
errors are then used to offset the raster of the laser projector in
pitch and yaw so that the image is projected at the angle for which
it was computed. Rate signals are also calculated and are used to
develop a time dependent correction signal which helps keep the
projected image at the correct spatial orientation as the projector
moves during the display field period.

Similarly, Regan and Pose are building the prototype for a
hardware architecture called the address recalculation

pipeline[15], This system achieves a very small latency for head
rotations by rendering a scene on the six faces of a cube. As a
pixel is needed for display, appropriate memory locations from the
rendered cube faces are read. A head rotation simply alters which
memory is accessed, and thus contributes nothing to the latency.
Head translation is handled by object-space subdivision and image
composition. Objects are prioritized and re-rendered as necessary
to accommodate translations of the user’s head. The image may
not always be correct if the rendering hardware cannot keep up,
but the most important objects, which include the closest ones,
should be rendered in time to keep their positions accurate,

Since pipelining can be a huge source of lag, latency can be
reduced by reducing pipelining or basing it on smaller units of
time like polygons or pixels instead of frames. Most commercial
graphics systems are at least polygon pipelined. Whatever level
the pipelining, a system that computes images frame by frame is
by necessity saddled with at least a frame time of latency. Other
methods overcome this by divorcing the image generation from
the display update rate.

Frameless rendering[4] can be used to reduce latency in this way.
In this technique pixels are updated continuously in a random
pattern, This removes the dependence on frames and fields.

23

20

I r Graphics
I l [Processors

Ring
_ Network

Figure 2: Pixel—Planes 5 system architecture

Pixels may be transformed at whatever rate is most convenient.
This reduces latency at the cost of image clarity since only a
portion of the pixels are updated. The transform rate can remain
locked to the tracker update rate or separated on a pixel-by-pixel
basis as with the just~in—time pixels method, discussed next.

2.3.2 Just-in-time pixels (JITP)

We will present a technique called just-in-time pixels, which deals
with the placement of pixels on a scan-line display as a problem of
temporal aliasing [14]. Although the diSplay may take many
milliseconds to refresh, the image We see on the display typically
represents only a single instant in time. When we see an object in

_motion on the display, it appears distorted because we see the
higher scan lines before we see the lower ones, making it seem as
if the lower part of the object lags behind the upper part.
Avoidance of this distortion entails generating every pixel the way
it should appear at the exact time of its display. This can lead to a
reduction in latency since neither the head position data, nor the
output pixels are limited to increments of an entire frame time.
This idea is of limited usefulness on current LCD HMDs with

their sluggish response. However, it works quite well on the
miniature CRT HMDs currently available and is also applicable to
non-interactive video applications.

2.3.3 Slate

As a more conventional attack on latency. we have designed a
rendering pipeline called Slats as a testbed for exploring fixed and
low latency rendering [71. Unlike just-in-time pixels. Slats still
uses the single transform per frame paradigm. The rendering
latency of Slats is exactly one field time (16.7 ms). This is perfect
for predictive tracking which requires low and predictable
latency. We measure this rendering latency from the time Slats
begins transforming the data set into screen coordinates to the
time the display devices begin to scan the pixel colors from the
frame buffers onto the screens.

3 MEASURING LATENCY

We have made both external and internal measurements of the

latency of the Pixel-Planes 5 PPHIGS graphics library [13, 7].
These have shown the image generation latency to be between 54
and 57 ms for minimal data sets. The internal measurement

methods are quite specific to the PPHIGS library. However, the
external measurements can be taken for any graphics system.

The external latency measurement apparatus records three timing
signals on a digital oscilloscope (see figure I). A pendulum and
ledlphotodiode pair provide the reference time for a real-world
event — the low point of the pendulum’s are. A tracker on the
pendulum is fed into the graphics system. The graphics system

24

object

viewing viewing
frustum frustum

time t,‘ fie ty

scanline x camera scanline yrotation

llllllllllllllll
image image
scanout scanout

at time t" at time ty

percieved
object

Figure 3: Image generation in conventional
computer graphics animation. Scanline x is
displayed at time tx, scanline y is displayed at time

[3,.

starts a new frame when it detects the pendulum’s low point from
the tracking data. An D/A converter is used to tell the
oscilloscope when the new frame has started. Frames alternate
dark and light and a photodiode attached to the screen is used to
tell when the image changes. The tracking latency was the time
between the signal from the pendulum’s photodiode and the
rendering start Signal out of the D/A converter. The rendering
latency was the time between the signal out of the D/A converter
and the signal from the photodiode attached to the screen. These
time stamps were averaged over a number of frames.

The internal measurements found the same range of rendering
latencies. The test was set up to be as fair as possible given the
Pixel-Planes 5 architecture (figure 2, explained in more detail
later). The test involved one full screen triangle for each graphics
processor. This ensured that every graphics processor would have
work to do and would have rendering instructions to send to every
renderer. The first several frames were discarded to make sure the

pipeline was full. Finally, latency determined from time stamps
on the graphics processors was averaged over a number of frames.

4 JUST-lN-TIME PIXELS

4.1 The idea

When using a raster display device, the pixels that make up an
image are not displayed all at once but are spread out over time.
In a conventional graphics system generating NTSC video. for
example, the pixels at the bottom of the screen are displayed
almost 17 ms after those at the top. Matters are further aggravated
when using NTSC video by the fact that not all of the lines of an
NTSC image are displayed in one raster scan but are in fact
interlaced across two fields. In the first field only the odd lines in
an image are displayed, and in the second field only the even.

21

24

object

viewing viewing
frustum frustum

time t" time I),

/l/

Camera
scanline x . scanline y

rotation ________

image image
scanout scanout

at time tx at time ty

percieved
object

Figure 4: Image generation using just—in—time
pixels

Thus, unless animation is performed on fields (i.e. generating a
separate image for each field), the last pixel in an image is
displayed more than 33 ms after the first. The problem with this
sequential readout of image data. is that it is not reflected in the
manner in which the image is computed.

Typically, in conventional computer graphics animation, only a
single viewing transform is used in generating the image data for
an entire frame. Each frame represents a point sample in time
which is inconsistent with the way in which it is displayed. As a

result, as shown in figure 3 and plate 1, the image does not truly
reflect the position of objects (relative to the view point of the
camera) at the time of display of each pixel.

A quick "back of the envelope” calculation can demonstrate the
magnitude of the errors that result if this display system delay is
ignored. Assuming, for example. a camera rotation of 200
degrees/second (a reasonable value when compared with peak
velocities of 370 degrees/second during typical head motion - see
[12]) we find:

Assume:

1)
2)

200 degrees/sec camera rotation
camera generating a 60 degree Field of View (FOV)
image
NTSC video
60 fields/sec NTSC video

~600 pixels/FOV horizontal resolution

3)

We obtain:

degrees
fielddegrees xisec 60

Thus in a 60 degree FOV image when using NTSC video:

3.3 degrees x L FOV
0 degrees

SEC __ 3.3- camera rotation
fields

200

pixels

x 600

= 33 pixels error

25

Thus with camera rotation of approximately 200 degrees/second,
registration errors of more than 30 pixels (for NTSC video) can
occur in one field time. The term registration is being used here to
describe the correspondence between the displayed image and the
placement of objects in the computer generated world.

Note that even though the above discussion concentrates on
camera rotation, the argument is valid for any relative motion
bctWeen the camera and virtual objects. Thus, even if the
camera's view point is unchanging, objects moving relative to the
camera will exhibit the same registration errors as above. The

amount of error is dependent upon the velocity of the object
relative to the camera’s view direction. If object motion is
combined with rotation the resulting errors are correspondinglyworse.

The ideal way to generate an image, therefore, would be to
recalculate for each pixel the position and orientation of the
camera and the pesition and orientation of the scene’s objects,
based upon the time of display of that pixel. The resulting color
and intensity generated for the pixel will be consistent with the
pixel’s time of display. Though objects moving relative to the
camera would appear distorted when the frame is shown statically,
the distorted JITP objects will actually appear undistorted when
viewed on the raster display. As shown in figure 4 and plate 2,
each pixel in an ideal just-in-time pixels tenderer represents a
sample of the virtual world that is consistent with the time of the
pixel‘s display.

Computation of both the viewing matrix and object positions for
each pixel is quite expensive. Acceptable approximations to just-
in»time pixels can be obtained, however, with considerably less
computation. One option is to use a single transformation per
scan line. This relies on the changes being small during the short
(approximately 65 us) time for the line. Calculations show this to
be a reasonable assumption, allowing on the order of 0.13 pixelserror.

Another approximation is to use only two transformations per
field, one for the first pixel and one for the last pixel. Object
positions are linearly. interpolated between these two.

4.3 JITF applied to latency

A partial test implementation has been constructed that renders
images using the just‘in—time pixels paradigm. This system is
intended to be used in a see-through HMD to help reduce image
generation latency. In a real-time JITP system, instead of
computing pixel values based upon the predicted position and
velocity of the virtual camera, each pixel is computed based upon
the position and orientation of the user’s head at the time of

display of that pixel. Generation of a just-in-time pixel in real
time, therefore, requires knowledge of when a pixel is going to be
displayed and where the user is going to be looking at the time.
This implies the continuous and parallel execution of the
following two central functions:

1) Synchronization of image generation and image scanout
2) Determination of the position and orientation of the

user’s head at the time of display of each pixel

By synchronizing image generation and image scanout, the JITP
renderer can make use of the details of how the pixels in an image
are scanned out to determine when a particular pixel is to be
displayed. By knowing what scanline the pixel is on, for example,
and how fast the scanlines in an image are displayed, the HT?
renderer can easily calculate the time of display of that pixel.

25

22

Determination of where the user is looking can be accomplished
through use of a conventional head tracking system (magnetic or
optical for example). Determination of where the user is looking
at the time of display of a pixel requires the use of a predictive
tracking scheme. This is due to the presence of delays between
the sampling of the position and orientation of the user's head and
the corresponding display of a pixel. Included in the end-to-end
delays is the time to collect tracking data, image generation time
and the delays due to image scanout.

In the current implementation, the calculations for each scanline
are pushed as late as possible. Ideally data for each scanline is
transferred to the frame buffer just before it is read out by the
raster scan. This technique, known as beam racing, was first used
in early flight simulators. By pushing the graphics calculation as
late as possible, beam racing allows image generation delays to be
combined with display system delays. The result is lower overall
end-to-end delay which simplifies the task of predicting the future
position and orientation of the user’s head. Prediction also
benefits from the fact that the delayed computation makes it
possible to use the latest available tracking data in the generation
of the predicted user view point.

5 SLATS

5.1 Brief Pixel-Planes 5 description

To understand how Slats works requires some knowledge of
Pixel-Planes 5 [1]]. Using Pixel-Planes 5 gave us total control
over the graphics software, which was all developed in-house.
Because our goal was to achieve lower latency by modifying the
rendering pipeline, such low—level control was necessary.

Referring to figure 2, Pixel-Planes 5 uses parallelism at both the
transformation and rasterization stages of the rendering process.
Primitives are typically generated on a host workstation and sent
via a ring network to a set of graphics processors (GPs), where
they are stored in local display lists. The graphics processors
traverse these display lists, transforming the primitives from
object coordinates to screen coordinates and generating
appropriate rendering commands. The graphics processors then
send these commands over the ring to the renderers, which
perform rasterization and shading. Each of which handles a
128x128 region of the screen. Finally. the renderers send the
resulting pixel values to a frame buffer, which is synchronized
with a video display for output.

5.2 PPHIGS pipeline

PPHIGS is the standard rendering library for Pixel-Planes 5. It is
controlled by a software layer called Rendering Control [8]. The
rendering process is broken into three main stages. In the
transform stage, the GPs transform the primitives. In the render
stage, the renderers scan convert and shade the primitives. If there
are more regions on the screen than there are renderers, the first
renderer to finish starts on the next screen region. Finally. in the
cepy stage, the pixel data is copied into the frame buffer. This is
illustrated in figure 5.

In this timing diagram and the ones that follow, each line shows
use of an independent hardware resource. So the GPs, renderers,
and frame buffer can all be used simultaneously. However one
stage on the GPs must be finished before the next can begin.

. AITOWS show, for one frame of interest, the dependencies betwoen
the different resources. All other timings can (and probably will)
change depending on the contents of the scene.

26

GPs

Renderers El

Frame Buffer I}

I] = one frame

“—33.3 ms—N

Figure 5: Basic PPHIGS timing for a frame
passing through the pipeline. a, b, and c are the
transform. render, and copy stages respectively for
a single frame. The arrow between the middle of b
and the start of c indicates that c can begin as soon
as the first region is finished in b.

For stereo operation, PPHIGS handles first the left eye and then
the right eye, However, both are considered part of a single unit.
When the application software says to draw a frame, images for
both eyes are drawn. This is illustrated in figure 6.

GPs I-m—‘a‘_-.
Renderers

Frame Bufferszl '1'

E CI = right eye

Figure 6: PPHIGS timing for a stereo pair passing
through the pipeline. a, c, and e are the transform,
render, and copy stages of the left eye. b, d, and f
are the right eye.

= left eye

As was mentioned earlier, the timings, other than those explicitly
shown. can vary quite a bit. The lowest latency possible with
PPHIGS occurs when the transform and render stages are small
and the copy time is the limiting factor. In this case, the
synchronization between. the stages forces three fields of latency
between the time the transformation begins and the time both eyes
are complete and the images are displayed. This is illustrated in
figure 7.

GP

Renderer

Frame Buffer ’
5 = vertical retraceE] = right eye[I = left eye

Figure 7: PPHIGS timing for a stereo pair with
minimal latency. Render stage to copy stage
dependencies are not shown for clarity.

5.3 Slals pipeline

Slats achieves its guaranteed latency by insisting that all the work
for one field be finished during the field immediately before it.
Since it is built with latency sensitive HMD applications in mind,
it always generates stereo images. The pipelining in Slats is at a
polygon level, As soon as a set of polygons are transformed (in
clumps of 30 for ring network efficiency), they are sent to the
renderers. Each tenderer handles four screen regions so the entire
screen for both eyes can be covered by the available renderers.

23

26

El

Renderer 3].; El 5

Frame Buffer m [9'
D = both eyes

GP

 1-33 E33.3 ms .

i = vertical retrace

Figure 8: Slats timing for a stereo pair. a, b, and c
are the transform, render, and copy stages
respectively. Stage b starts after the first batch of
triangles are transformed in a. The first half of c
must finish before the vertical retrace.

Since a field is two regions high, the copy stage happens in two
parts. The copy of the second half of the screen, which only takes
3.9 ms, doesn‘t occur until after the field is already being
displayed. The copying of the first half of the screen must be
done before the vertical retrace since those pixels are immediately
displayed. This is illustrated in figure 8.

In many ways, Slats falls short of a general graphics library like
PPHIGS. For the sake of simplicity, it uses only a single GP
instead of the many (up to 50) available to PPHIGS. This
severely limits the number of triangles that Slats can handle. The
use of four regions per tenderer makes polygon level pipelining
easier, but also limits the shading model to simple Gouraud color
interpolation.

All of the triangles must be transformed and rendered before the
first copy begins, a period of about 12.8 ms. If there are too many
primitives to make this deadline, Slats fails to generate a correct
image. In the current implementation, this translates to about 100
triangles (or 12,000 triangles per second). Even if we optimized
the coder—and PPl—IIGS achieved about a factor of three

performance increase after the triangle code was optimized to fit
in the GP instruction cache—the communication bandwidth out of

one GP and the speed of the renderers limits the maximum
performance to about 250 triangles. We estimate that using
multiple GPs and more renderers we might be able to push this to
a few thousand, but currently don’t have plans to follow this path.

These limitations are not flaws, Slats excels at what it is built for:

experiments requiring low latency, fixed latency, or both.
Azuma’s work on predictive tracking [1] used Slats for just this
reason.

Because it considers both eyes simultaneously, it can share more
of the work than PPHIGS, which handles them sequentially but
grouped. In fact, both eyes can be copied at the same time.
Because it only renders the lines of the image visible in each field
— the even lines are rendered while the odd field is visible, and
the odd lines are rendered while the even lines are visible — it has

half the rendering and half the copying.

As a comparison of the performance of both, figure 9 shows the
pixel error for the setup used in our video. There is 33 ms of
latency for the optical ceiling tracker[2], making a total of 90 ms
for PPHlGS and 50 ms for Slats, Other trackers may have lower
latency, but this will only increase the importance of image
generation latency since the error is linear with respect to
latency[l]. The error was calculated off-1i me with captured tracker
data from a typical demo with a naive user under the optical
ceiling tracker. The pixel error shown is computed by taking a
point in the center of the field of view for each frame and

27

Errorinpixels

50-150 -100 -50 0

Error in pixels

Figure 9: Pixels of error between a pixel at the
center of the screen and the location where it

should have been displayed by the time the frame
was visible. For 90 ms, corresponding to PPHIGS
+ 33 ms tracker latency, and 50 1115, corresponding
to Slats + 33 ms tracker latency.

determining how far from the center it would be when the frame is
displayed.

6 CONCLUSION

We have presented two methods for reducing image generation
latency. Both, necessarily, at a cost in polygon performance. As
HMD applications become more prevalent people will require
minimal latency, much as they do high polygon rendering
performance today

7 ACKNOWLEDGMENTS

We would like to give special thanks to Ron Azuma. Ron is
responsible figure 9, and was a huge help1n the creation of the
Slats video. We would also like to thank Tony Apodaca and Pixar
for access to RenderMan, which was used to create the old well
JITP simulation.

This project was funded in part by the National Science
Foundation, NSF Grant Number MIP-9306208 and NSF
Cooperative Agreement Number ASC 8920219, and by the
Advanced Research Projects Agency, ARPA ISTO Order
Number A410 and ARPA Contract DABT6393- C— C048.

8 REFERENCES

1. Aauma, Ronald and Gary Bishop. Improving Static and
Dynamic Registration in an Optical See- through HMD.
Proceedings of SIGGRAPH ‘94 (Orlando, Florida July 24—29,
1994). In Computer Graphics Proceedings, Annual Conference
Series, 1994. ACM SIGGRAPH, New York, 1994 pp. 197-204.
2 Azuma, Ronald. Predictive Tracking for Augmented
Reality. UNC Chapel Hill Department of Computer Science PhD
Dissertation 1995.

27

21-1

3. Bajura Michael, Henry Fuchs and Ryutarou Ohbuchi.
Merging Virtual Objects with the Real World. Seeing Ultrasound
Imagery within the Patient. Proceedings of SIGGRAPH ‘92
(Chicago, Illinois, July 26—31, 1992). In Computer Graphics, 26,
2(July 1992), ACM SIGGRAPH, New York, 1992, pp. 203-210.

4 Bishop, Gary, Henry Fuchs, Leonard McMillan and
Ellen Scher Zagier. Frameiess Rendering: Double Buffering
Considered Harmful Proceedings of SIGGRAPH '94 (Orlando,
Florida, July 24—29, 1994). In Computer Graphics Proceedings.
Annual Conference Series, 1994. ACM SIGGRAPH, New York,
1994, pp. 175—176.

5, Breglia, Denis, Michael Spooner and Dan Lobb.
Helmet Mounted Laser Projector. Proceedings of the Image
Generation/Display Conference II (Scottsdale, Arizona June 10—
12,1981) Pp 241—253.

6 Burbidge. Dick Paul Murray Hardware Improvements
To The Helmet Mounted Projector On the Visual Display
Research Tool (VDRT‘) At The Naval Training Systems Center.
Proceedings of the SPIE conference on Head-Mounted Displays,
1989.

7. Cohen. Jon and Marc Olano. Low Latency Rendering
on Pixel—Planes 5. UNC Chapel Hill Department of Computer
Science technical report TR94—028,1994

8. David Ellsworth. Pixel-Planes 5 Rendering Control.
UNC Chapel [-1111 Department of Computer Science Software
Documentation, 1989.

9. Feiner, Steven, Blair Macintyre and Denis Seligmann.

Knowledge-based Augmented Reality. Communications of the
ACM 36, 7 ,July 1993, pp. 52-62.
10. Friedmann, Martin, Thad Starner and Alex Pentland.

Device Synchronization Using an Optimal Filter. Proceedings of
1992 Symposium on Interactive 3d Graphics (Cambridge,
Massachusetts, March 29—April 1, 1992). Special issue of
Computer Graphics, ACM SIGGRAPH, New York, 1992 pp. 57-
62.

11. Fuchs, Henry, John Poulton, John Eyles, et al. Pixel-
Planes 5: A Heterogeneous Multiprocessor Graphics System
Using Processor-Enhanced Memories. Proceedings of
SIGGRAPH ‘89 (Beston, MA, July 31—August 4, 1989). In
Computer Graphics, 23. 3 (July 1989), ACM SIGGRAPH, New
York, 1989, pp. 79—88.
12. List, Uwe Nonlinear Prediction of Head Movements for
Helmet-Mounted Displays. Technical Paper AFHRL-TP-83-45,
December 1983.

13, Mine, Mark. Characterization of End-to—End Delays in
Head—Mounted Display Systems. UNC Chapel 1-1111 Department
of Computer Science technical report TR93—001, 1993.
14. Mine, Mark and Gary Bishop. Just-In-Time Pixels.
UNC Chapel Hill Department of Computer Science technical
report TR93~005, 1993.

15. Regan, Matthew and Ronald Pose. Priority Rendering
with a Virtual Reality Address Recalculation Pipeline.
Proceedings of SIGGRAPH ‘94 (Orlando, Florida, July 24—29,
1994). In Computer Graphics Proceedings, Annual Conference
Series, 1994. ACM SIGGRAPH, New York, 1994, pp. 155—162.

16. Ward, Mark, Ronald Azuma, Robert Bennett, Stefan
Gottschalk and Henry Fuchs. A Demonstrated Optical Tracker
with Scalable Work Area for Head Mounted Display Systems.
Proceedings of 1992 Symposium on Interactive 3d Graphics
(Cambridge, Massachusetts, March 29—April 1, 1992). Special
issue of Computer Graphics, ACM SIGGRAPH, New York,
1992, pp. 43—52.

28

Underwater Vehicle Control from a Virtual

Environment Interface

Stephen D. Fleischer and Stephen M. Rock

Stanford Aerospace Robotics Laboratory

Abstract

This paper describes a collaborative research effort

initiated by Monterey Bay Aquarium Research Insti-

tute (MBARI), Stanford Aerospace Robotics Labora-
tory (ARL), and NASA Ames Research Center. The

goal of this joint effort was to develop an experimental
system which demonstrates real—time supervisory con-
trol of an underwater vehicle from an interactive, 3-D
graphical interface.

Introduction

OTTER (Oceanographic Technologies Testbed for Ex-
perimental Research) is a remotely-operated underwater
vehicle jointly constructed by MBARI and ARL. Re-
cently, our research focus has been the creation of a

3-D graphical interface to control OTTER. To accom-
plish this task, the NASA Ames Virtual Environment

Vehicle Interface (VEVI) was chosen as a baseline and
extensively modified for use with the underwater vehi-
cle.

This research was 'divided into two separate objec—
tives. The first objective was to extend the capability
of the current X Window-based graphical user interface

(GUI) for OTTER, by taking advantage of the current
virtual reality (VR) technologies available from NASA

Stephen D. Fleischer and Stephen M. Rock

Durand Bldg, Stanford University, Stanford, CA 94305
fleisch, rock@sun-valley.StanfordEDU

Michael J. Lee

MBARI, 160 Central Avenue, Pacific Grove, CA 93950
lemi©mbari.org

Permission to copy without fee all or art of this mate ' '
granted provided that the copies are nol) made or distributaddsfor
direct commercial advantage. the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a tee
gigg/sorsspeciflc permission.

ymposium on interactive ED Gra hics, Montere
© 1995 ACM 0-89791-736-7/95/0004.l).$3.50 y CA USA

25

28

Michael J. Lee

Monterey Bay Aquarium Research Institute

Ames. This new GUI is capable of providing the use:
with better visualization of the underwater environment
and improved control of the vehicle.

Our second goal was to demonstrate task-level posi-
tion control of OTTER from the new virtual environ-

ment interface. Specifically, the user should be able to

control the vehicle along a desired trajectory by specify—
ing a number of via. points along the path. This requires
successful integration of the graphical interface into the
vehicle control system hierarchy.

VEVI Structure

in the past, VEVI has been used to control other robotic

vehicles of all types with great success. Some exam-
ples include the NASA Ames TROV underwater vehi-

cle, which has explored the waters of the Antarctic; the

ARL space robots, which simulate the zero—gravity of
space in two dimensions; and most recently, the CMU

Dante II eight—legged walking vehicle, which explored

the Mt. Spurr volcanic crater in Alaska. [1]
Figure 1 shows the current structure of the VEVI

software, as implemented in the OTTER control ar-

chitecture. The core of VEVI is the Renderer, which
was written on top of the WorldToolKit (WTK) world
simulation library. The WorldToolKit library, devel-
oped by the SenseS Corporation, enables programmers
to graphically simulate an environment, including the
universe model and any movable objects within that

universe. The Renderer has the capability to interact
with novel virtual reality devices, such as stereo or head-

mounted displays, flying mice, 6-DOF spaceballs, and
head-trackers.

In order to communicate with the connected vehicle,
VEVI transfers data through shared memory to the Ve—
hicleNode, which then communicates to the vehicle over

a network. The NDDS network protocol, developed by
students in ARL at Stanford University, [2} provided the
communications interface between VEVT and OTTER.

The VeviNode provides VEVI with the ability to sup-
port multiple users across a network. The Renderer

talks to the VeviNode through shared memory, which
then broadcasts information to other copies of VEVI
running on the network.

29

Position Di splay
Device

Control

Renderer

(er; —i:2~_~.Input Devices

- VehicleNode

TCPIIPInLcrncl(NDDSProlocol)
) To Vehicle

Figure 1: VEVI Structure

The SensorNode is only used if there are specialized
sensors which cannot be accessed through the Vehicle-

Node. All sensors on OTTER, including the thrusters,
cameras, and acoustic positioning system, are accessed
directly through the VehicleNode.

Implementation on OTTER

In our attempt to achieve position control from the vir-

tual environment interface, we were able to take advan—

tage of the OTTER Task-Level Control architecture. [3]
As seen in Figure 2, this paradigm divides the vehicle
control system into three levels, which can each be im-

plemented on separate computers. The lowest (servo)
level includes the real-time control loops, which are im-
plemented in the computers on-board the underwater

vehicle. Task commands are sent from the organiza-
tional level, which are then decomposed into smaller
tasks by the middle (task) level and sent to the servo
level for execution.

 Graphical UserOrganizational InleflacsLevel

C
‘ ' .Q "' '
E a Floris-Stale Machines‘6 .2
a
E Task Level E Task Controller
4‘: sa so

[E é . . , , fl, ,,,,,,,,,,,,,,,,
z -®® Sensors

Filters/Control LawsServo Levei

- We

Q ActuatorsSample Loop

Figure 2: OTTER Task-Level Control Structure

This methodology isolates the graphical user inter-
face, which encompasses the entire organizational level,
from the lower levels of the control hierarchy. Concep-
tually, task-level control enables the user to perform

29

26

complex functions (eg. driving a vehicle along a de—

sired path) by combining lower-level tasks which can
be performed autonomously by the vehicle. After im—

plementing a simple point-to—point transect as a task
for the vehicle, we added a position control module to

VEVI. With this module, the user is able to graphically
specify a series of via points along a path by dragging

around a ghost image of OTTER in the virtual envi-
ronment. These via points are then translated into task
commands which are sent to the vehicle.

Conclusions

We have performed several demonstrations of task-level
position control from the virtual environment interface

in the Naval Postgraduate School (NPS) fresh-water test
tank. Currently, VEVI runs in single-user mode, with a
standard SGI color monitor for display and a standard
2-DOF mouse for user input.

By developing this operational platform for exper-
imental research, we plan to pursue fundamental re—
search in the development of interactive, 3-D virtual

environment interfaces to control complex, real-time
robotic systems. In terms of the OTTER project, we

believe that continued research will encourage teams of
marine research scientists to work with the underwater

vehicle remotely, while enabling them to visualize the
environment and relevant data in real-time.

In essence, we hope to enable the end-user to he—

come more efiective in performing a variety of tasks by
maintaining a simple, intuitive interface to an inherently
complex system.

References

[1] FONG, T. W. A Computational Architecture for
Semi-autonomous Robotic Vehicles. In Proceedings

of AIAA Computing in Aerospace .9 Conference (San
Diego, CA, October 1993), AIAA.

[2] PARDO-CASTELLOTE, G., AND SCHNEIDER, S. A.
The Network Data Delivery Service: Real-Time

Data Connectivity for Distributed Control Applica-
tions, In Proceedings of the International Conference

on Robotics and Automation (San Diego, CA, May

1994), IEEE, IEEE Computer Society.

[3] WANG, H. H., MARKS, R. L., ROCK, S. M., AND
LEE, M. J. Task-Based Control Architecture for an

Untethered, Unmanned Submersible. In Proceedings
of the 8th Annual Symposium of Unmanned Unteth-

cred Submersible Technology (September 1993), Ma—
rine Systems Engineering Laboratory, Northeastern
University, pp. 137—147.

30

n

HJPEFUJD—

ml-rr-hwrui—ul

Interactive Design, Analysis, and Illustration of Assemblies

Elena Driskilli Elaine Coheni

Department of Computer Science

University of Utah

Salt Lake City, Utah

Abstract

We present an interactive approach for helping designers
describe, revise, analyze, and illustrate assemblies of mechanical

parts within the context of a common data structure and set of
assembly features. This paper describes an implementation used to
test the validity of these ideas, which has been integrated into an
existing spline-based geometric modeling system.

Several interactive tools have been implemented. An assembly

planner allows the user to design the assembly structure before mod—
eling any geometry by using a combination of top-down and hot—
tom~up design. After the geometry of each part in the assembly,
together with its assembly features, has been modeled, the user can
interactively put the parts together and perform degree of freedom
analysis on them by using another tool. Such an interactive
approach can help a designer determine whether the design is sound
before the entire assembly is put together. Finally, once all part con-
nections have been established, an exploded view generation tool
can help the designer create an informative illustration of the prod-
uct for the purposes of documentation or further visual analysis.

1. Introduction

interactive computerhaided design systems were developed to
help designers create models of mechanical parts as part of the
mechanical engineering process. Instead of making numerous
detailed mechanical drawings on paper, a designer can now create a
three-dimensional model of a part, experiment with different shapes
and proportions, even analyze the part's structural stability, then cre-
ate rendered images of the part to show others.

A mechanical part is seldom designed to stand alone. More
often is created to be used as part of some machine, mechanism, or
another kind of assembly, yet few aids for designing assemblies are
available. As the engineer designs the part, he already knows what
the mechanism is supposed to do and how it will do it, has some
ideas of what the other components in the mechanism will look like,
and how all of these components will fit and work together. A sys-

The authors may be contacted via electronic mail at
“i elenad@fa.disney.com or elena®cs.utah.edu
i cohen @csutahedu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copynght notlce and the
title 01 the publication and its date appear,_ and notice Is glven
that copying is by permission of the Assocralron oi Qompulrng
Machinery. To copy otherwise, or to republrsh, requires a fee
and/or specific permission.
1995 Symposium on Interactive 30 Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004..,$3.50

30

27

tern can collect such information from the designer and use it to
advantage.

This work is a step towards having the design of mechanisms
be as straightforward to the user as the design of parts. The method-
ology described here takes the designer from the early planning
stage of the assembly (which takes place before the design of indi-
vidual assembly components) through assembly analysis and the
creation of exploded view illustrations. Each tool described here
augments the assembly description and also utilizes information
obtained in previous design steps.

2. A Brief Overview of Related Work

Surprisingly little work has been done on assembly planning.
Gui and Mantyla [3] have developed a system which supports top-
down functional design for creating assemblies based on functional
and behavioral, but not necessarily geometric, knowledge about a
product.

Once geometry has been designed, it is necessary to specify
part positions relative to one another in an assembly. There are sev-
eral approaches. Sometimes transformation matrices are used to
implement the specification of a rigid body transformation neces-
sary to move an object into the assembled position, given relative to
the world coordinate system [6] or relative to other components in
the assembly [2, ll]. Another style of transformation specification
uses mating conditions [4], where particular locations on assembly
components are specified to mate, and in our assessment is the most
advantageous since the specification of positions by using transfor-
mation matrices is error prone. Assembly features may be used for
specifying mating conditions. Various issues related to modeling
with features in various contexts are discussed in [8]. ln [7], mating
conditions are derived from the geometric and topological informa-
tion stored in the model itself. Researchers have also considered the

problem of determining translational and rotational degrees of free»
dom and finding disassembly directions of parts [7, 12].

However, most researchers tend to concentrate on a particular
area of assembly design, such as generating an assembly sequence
[7, l], performing kinematic simulation [11], and so on, and few
integrate a spectrum of different operations together into a coherenl
system for assembly design. For example, some researchers rely on
asking the user questions about which parts should be assembled
before others in order to determine a precedence graph from whiCh
they then find assembly sequences [1]. This is an instance of 501%
ing a very specialized problem, where geometric information is not
even utilized; only precedence data obtained by a rather error-PTO“e
process is used. Also, some systems attempt to second-guess the
designer and automatically break the assembly into subassen‘lblil‘aS
[5, 10]. Subassemblies created in this way do not always milkE

31

Figure I. An assembly design in progress.

sense, and a combinatorial explosion of possibilities for part combi-
nations prevents the systems from handling very large assemblies in
reasonable time.

As for the automatic generation of exploded views, the authors
have been able to find only one reference which even mentions such
a capability. Strip and Maciejewski’s system Archimedes [9] pro-
duces exploded views of assemblies for the purposes of visualiza-
tion within the robot planning system. However. the geometry of
the parts is limited to arbitrarily stepped cylinders and holes whose
axes are parallel to each other, a domain in which the generation of
exploded views is unidirectional. The production of exploded views
of assemblies was only mentioned in passing and does not appear to
be interactive or general purpose.

3. Assembly Planning

A straightforward way of visualizing an assembly is as a tree,
where the leaves are individual parts and the internal nodes are sub-
assemblies. Simpler subassemblies are connected into more 'com—
plex ones, and the root of the tree is the final completed assembly.

Different people have different ways of thinking about dieir
designs. Some start with the assembly and break it down into sim-
pler components. Some start with the parts and build the assembly
up from them. Typically a combination of these methods is useful.
The top-down approach works well for large complex assemblies.
The designer knows what the desired final product is and what the
major components will be, but at the outset, probably has not
thought about the smallest details. However, suppose the designer
wants to make afixture which will hold a part during machining and
has a catalog of standard fixturing elements. He may wish to design
the fixture from the bottom up, by starting with the fixture compo—
nents from the catalog and the stock from which the part will be
machined, and building the assembly up from there.

To accommodate these different approaches, the assembly
planner allows both methods of design. The user can either create
children of any node and design from the top down, or create uncon-
nected nodes and subtrees and then attach them as children of other

nodes, designing from the bottom up. In fact, the methods are like-
ly to be used in combination in a repetitive process. Figure 1 shows

a screen capture of an assembly in progress. The user has designed
three unconnected subtrecs, two of which are snbassemblies, and
the third of which will perhaps be expanded into a subassembly in
the near future. Later, the user will connect the components into a
single assembly tree.

Simply specifying an assembly structure is not enough during
assembly planning. The designer may wish to think about the
geometry of the assembly components, make annotations about the
components’ function, construction, and connections with other
components, and later, perhaps associate a three-dimensional geo—
metric model With each part. Our assembly planner includes a sim-
ple annotation mechanism, which enables the user to enter textual
and graphical documentation for any assembly component. Figure
2 shows a component's information window, which may be opened
by clicking on that component’s node in the tree with the mouse. It
includes an area for entering the component’s name (which is the
name that appears in the component‘s pushbutton), an area for tex—
tual documentation, and a sketchpad with several drawing tools,
which can be used to plan the design. There is also an area for asso-
ciating a three—dimensional geometry with a component when this
geometry becomes available. A three-dimensional description of
the part is designed using a geometric modeler, and to associate this
data with a component, the user supplies the name of a file contain-
ing this description. Each part’s geometry may be designed in its
own coordinate system.

Although in a finished assembly model it makes sense for
only the individual parts to have an associated geometry, a simpli—
fied geometry could also be associated with unfinished subassernv
blies while the design is in progress. These geometries could
approximate the sizes and shapes the final subassemblies are
expected have, and the designer could use these approximations to
determine whether or not the subassembly would fit into the rest of
the assembly properly before finishing up the detailed design of
the parts.

' 4. Features and Assembly

Geometry alone does not conveniently provide information
about how parts in an assembly might be connected. It is very dif-

31

32

[El—ll DialogJiupup -

Figure 2. The component information window.

ficult, if not impossible, to determine whether a particular indenta-
tion in a part geometry is there to make the part lighter by removing
nonessential material or whether it is intended to mate with a pro-
trusion on another assembly component.

Features have been successfully used in geometric modelers to
supply additional information for tasks such as automated machin—
ing. This work uses assembly features to carry information appro—
priate to aid the process of putting an assembly together. We define
a set of assembly features, including several new ones, for this pur—
pose; these features are listed and shown in Figure 3. It is certainly
not an exhaustive set of possible assembly features, but it gives a
good idea of what a feature—based approach can accomplish. These
features are associated with each part’s geometry when this geome-
try is designed in the geometric modeler. Each feature contains a
geometric description (eg. a radius, a length, a description of a sur-
face or of a cross-section curve, etc.) and a center point and orienta-
tion, defining the feature’s coordinate system with respect to its
component’s coordinate system.

Assembly-specific information carried or represented by a fea-
ture might include the types of other features it can mate with, and
the probable removal direction it indicates for the parts it helps con-
nect. For example, a cylindrical peg feature may mate with cylin-

(a)

s» Q? a

(C) I
(e) g. to

Figure 3. Currently defined assembly features: (a) round
peg/hoie, (to) surface. (c) location and orientation fea-
ture (no geometry), (d) dovetail and dovetail groove,
(e) threaded peglhole, (f) peg/hole of arbitrary cross—
section.

drical hole features which have the same cross‘section radius as the

peg. Parts which are mated with the help of the peg and hole may
be separated along the axis of the peg. Features may indicate other
useful information also. For example, if one component has two peg
features and the other has two hole features which are Specified to
mate, yet the peg features' axes are not parallel, the parts cannot
mate because it is physically impossible to insert both pegs into the
holes without interference.

Sometimes an assembly feature is distributed over several
assembly components and is not complete until all of these compo-
nents are connected in such a way that the sections of the feature
align. To describe this situation, we have defined the concept of par-
tial assembly features. An example of a partial feature is shown in
Figure 4 The specification of partial features is accomplished by
associating a particular assembly feature with more than one part in
the geometric modeler. The feature description also contains the
number of parts containing pieces of the same feature. Each time a
component containing a section of the feature is attached to a sub
assembly containing another section of the same feature, the count
of feature sections in the subassembly is decremented by the num-
ber of feature pieces contained within the newly added component.
When the count is 1, the feature is complete.

@K
+

/

Figure 4. The hole which will be formed when the three com-
ponents are aligned is an example of a partial feature.
Pockets, surfaces, and other features may be similarly
distributed over more than one assembly component.

33

Cflnnecl

Figure 5. The assembly too].

We have created an interactive assembly specification capabil—
ity. It uses data from the assembly planner to determine the order in
which to present subassemblies to the user for the interactive speci-
fication of connections. A screen capture of the tool is shown in
Figure 5. The small display areas on the right show all the compo-
nent parts or other subassemblies belonging to the current sub»
assembly (as defined in the planner), the larger area in the middle
displays the next component the user has selected for attaching to
the subassembly, and the display area on the left shows the partial-
ly completed subassembly. A subassembly may only be selected for
the specification of connections if the geometries of all of its com—
ponents are defined. In other words, all of its components must be
either single parts, whose geometries are known from the start, or
subassemblies whose connections, and therefore geometries, have
already been specified.

A set of toggle buttons determines which types of features are
currently selectable (and highlighted). Only completed features are
shown, partial features are not visible until they are completed. At
each step, the user selects a feature or a set of features to mate on
each of the two components, and the system attempts to attach the
part to the subassembly in such a way that all the mating conditions
are met. This is accomplished by finding all potentially matching
pairs of features (by comparing geometric attributes, such as radius,
and location relative to other features on the same component), then
finding a set of feature pairs where each feature on the first compo—
nent matches exactly one feature on the second component. From
the mated features, a transformation is computed which aligns the
parts in such a way that the selected feature pairs mate. if more than
one part mating satisfies the required conditions, all possibilities are
found and the user is allowed to toggle through them and select one.
However, such an ambiguous situation can potentially indicate to
the user that a flaw exists in the design.

As components are added to a subassembly, one of several
things can happen to those components’ features. First, a copy of
any feature not used in the mating is added to the feature list of the

subassembly, where it can be used later to help add other compo-
nents to the subassembly. A feature which participates in a mating
may be altered. This currently applies to matings of holes with other
holes. When two holes are aligned, it is logical that Ihey coalesce to
form a single, longer hole which may be used in a future mating.
Such a longer hole is computed and added to the feature list of the
subassembly. Finally, a feature may be eliminated in the mating.
For example, surface features mate over their entire surface.
Because of this, they are no longer useful for future matings, and
they are not inherited.

History pointers are stored with each feature. The previous
history pointer points at the previous incarnation of the feature, the
one on the component the feature was copied from. The next histo-
ry pointer points in the other direction of increasing complexity. For
partial features and coalesced holes, a list of the components where
the pieces of the feature originated is stored instead. Because of
this, it is possible to implement a multiple undo capability for
assembly operations without using special additional storage.

5. Assembly Analysis

Being able to analyze parts for proper fit and removability is an
important capability for interactive assembly modeling. The design-
er receives immediate feedback and can redesign part geometry as
necessary without having to put the whole assembly together before
finding out that something is wrong.

The assembly tool provides several options for feedback on
component interference as parts are added to the current subassem»
bly, with varying degrees of reliability and computational speed.
The user can also select acomponent in the current subassembly and
examine its translational and rotational degrees of freedom to deter-
mine if the component is constrained or free to move as expected.

Three interference detection methods of progressive accuracy

34

are available for checking interference between components as the
user interactively assembles the object. (Alternatively, interference
detection can be disabled.) The first method is the fastest and least
accurate, as it uses only protruding (peg, dovetail. etc.) features and
ray casting to determine whether the feature intersects the other
component where there is no hole. It is easy to see that surface-sur-
face intersections will be missed unless one of the surfaces is a peg
feature. The second method is slightly slower but somewhat more
accurate. It looks at the comers of all the surfaces making up the
components being connected. For each comer, a ray is cast to deter-
mine whether the comer is inside or outside the other component. If
any comer is inside the other component, interference is detected.
This method may miss some intersections between curved elements.
The third method performs a true boolean intersection between
every surface in the first component and every surface in the sec0nd
component. However, this operation is slow and becomes slower as
the number of surfaces in the components increases (which is guar-
anteed to happen as the assembly grows more and more complex),
even when bounding box checking is used to eliminate pairs of sur-
faces which definitely do not interfere.

Determining a part's translational degrees of freedom is
closely related to being able to determine whether or not the part
is removable from the assembly by a single translation. It is also
sometimes important to check that a given part is constricted in
such a way that it cannot be removed. For example, if a user is
designing a fixture for machining, he may wish to make sure that
all the degrees of freedom of the stock being held in the fixture are
constrained and the stock cannot accidentally slide out of the fix~
ture while being machined.

The user can choose a component or set of components cur
rently in the assembly for examination (if more than one compo-
nent is selected, they are examined as a group), and initiate the
computation of translational degrees of freedom from the mated
features by selecting a menu option. If a component’s motion is
not constrained, the direction vectors representing the directions in
which the component is free to move form a sphere. If the com—
ponent mates with a single flat surface on some side, that mating
reduces the degrees of freedom to half a sphere, because all the
direction vectors with a factor in the direction of the constraining
surface’s normal are eliminated. Similarly, if the component mates
with a surface that is not-flat, all the direction vectors with a com-

ponent in the direction of any normal on the constraining surface
are eliminated. This situation is illustrated in Figure 6, which
shows a two-dimensional analogue to the preceding explanation,

Determining how a two-dimensional component‘s
translational freedom is constrained by two flat»edge
matings. (a, b) Each mating constrains the movement
of the shaded component to any direction in the shad-
ed semicircle. (c) The final set of directions is deter-
mined by intersecting all the semicircles.

Figure 6.

31

34

V?
A component, axis of rotation, and the outer and inner
contours for determining rotational freedom. Our sys-
tem computes a polyline approximation to such a con-
tour.

Figure 7.

All the feature matings of the component(s) being analyzed are
examined. Flat surfaces add a single half-sphere constraint.
Hole/hole matings add a single half sphere constraint since a sur»
face is assumed to be present whenever a hole is, even if that sur-
face is not specifically given as a mating feature. Sculptured sur-
faces' normals are sampled, and each normal adds a half-sphere
constraint. A hole/peg mating constrains the two components to
move only along the axis line of the peg and hole. All of these con-
straints are intersected to determine a section of a sphere, a single
direction, or two opposing directions which satisfy all the con»
straints. The set of valid directions of motion is displayed as a col»
lection of vectors.

Similarly, the user may wish to determine if a component (or
group of components) can rotate in place. In order to be able to
rotate a component, the component must participate in a mating
involving a round peg and hole. This condition is necessary to be
able to determine an axis of rotation for the component. The axis
of rotation is taken to be that of the mated peg and hole. There is
no graphical display for the results of rotational freedom analysis,
but the user is shown a message summarizing the result.

If the component participates in more than one peg/hole mat—
ing, rotation is obviously not possible. Otherwise, a polyline
approximation to the outlines which would be swept out by rotat-
ing the components about the axis of rotation is found. Each con-
trol point of each surface is examined, and its distances from the
axis of rotation and from the lowest point on the component are
determined. An outer and inner contour are then computed from
these points for the rotating component (see Figure 7). Likewise,
an outer and inner contour are computed for the stationary compo—
nent. If the outer contour of the rotating component is everywhere
closer to the axis of rotation than the inner contour of the station:

ary component, we may conclude that free rotation is possible.
The same conclusion can be made if the inner contour of the rotat-

ing component is outside the outer contour of the stationary com-
ponent. A more accurate algorithm should be developed for this
step, since the existing one involves too much approximation.
However, it serves to illustrate the usefulness of rotational analy-
SIS.

6. Exploded View Illustration

Exploded view illustrations are common in technical docu—
mentation because they are easy to understand even by people with-
out area expertise. Yet, while they are easy to understand, they are
deceptively difficult and time consuming to create manually. We
use information about part geometries, mated features, and disas-
sembly directions indicated by the mating of features to automate
much of the process of creating such illustrations.

As part of the assembly design system. a tool has been devel-
oped to create an exploded view of a completed assembly when that

35

Figure 8. The exploded view tool.

assembly had been created and put together using the other-parts of
the system. Even though the creation of exploded views is largely
automated, a good deal of user control is allowed, because even the
most clever algorithm can sometimes generate results which are aes-
thetically unpleasing or otherwise not exactly what the user wants.
The difficult or repetitive operations, such as keeping track of part
connections, computing a perspective view of the geometry, and
finding the approximate locations for the pans in the final illustra-
tion are done by the algorithm. The user decides whether the illus-

tration should be an exploded view of the whole assembly or of a
subassembly, and can also alterthe distance of explosion of any part
or subassembly. hide or show any component in the current illustra—
tion, cause any subassembly to be shown exploded or unexploded,
request enlarged views of small subassemblies, and specify which
parts should have text labels. (A screen capture of the utility is
shown in Figure 8.) The explosion of the assembly is generated in
three dimensions, but the view can be manipulated by the user until
it is satisfactory, then the geometry and view can he saved for out-
put to a rendering program.

Several preprocessing steps are involved in creating an explod-
ed view illustration. Although the geometries of the parts are ini-
tially stored in their own coordinate systems (the coordinate systems
in which they have been modeled), for the generation of exploded
views it is more convenient to store all geometries relative to the
coordinate system of the completed assembly. Since each compo-
nent stores the transformation which assembles it to its parent, this
is easily accomplished. The next step involves figuring out the
minimum distance each component must be exploded from its par-
ent subassembly to completely remove it from that subassembly.
This distance only needs to be computed once for each component,
since the basic relationships among the assembly components do
not change. Bounding boxes are computed for the component and
for its parent subassembly minus the component. Then the mini-
mum distance to separate the bounding boxes along the direction
of explosion is found. (The explosion direction is indicated by the
mating conditions present between the two components.)

35

32

The creation of an exploded view is a recursive operation.
Each child of the main assembly is translated out from the assem—
bly’s origin along its removal direction by its minimum explosion
distance plus some additional value. (This extra distance serves to
further separate the parts, giving the “exploded” look.) Each com-
ponent of each of these subassemblies is, in turn, translated along
its removal direction out from the origin of the exploded parent
subassembly. The proeess continues until individual parts are
reached. The transformations are accumulated through the levels
of recursion, so each component has applied to it all of its ances-
tor subassemblies’ translations, then finally, its own.

However, an exploded view illustration does not consist sim-
ply of a set of parts separated in space. Leader lines are drawn
between parts. indicating from where each component was explod-
ed. Parts may also exhibit identification labels. Leader lines are
computed after the exploded geometries of all the components
have been found, A single line per part is not enough to clearly
show how that part connects to the other assembly components, so
leader lines are drawn between every pair of mated features.
Labels help identify parts in the illustration. Each label consists of
a text string (the part's name, first assigned in the assembly plan-
ner) and a leader line connecting the label to the bounding box of
the part.

7. Data Structure

All of the tools described here use a common basic data struc-

ture for the assembly. We have already mentioned that this struc-
ture stores the assembly hierarchically, as a tree (the approach is
similar to that of Lee and Gossard [4]). This section summarizes
what data is stored.

Each node representing an assembly component is capable of
storing the information below; different pieces of information are
added throughout the design process:

36

. The name of the component, given by the designer.

- A pointer to the subassembly of which the component is a
part. The main assembly is the only one which has no parent.

. A direction in which the component can be removed from its

parent assembly, determined from mating conditions.
. Textual comments about the component, entered by and use

ful for the designer.
- A list of the assembly features of the component.
- Information to create the transformation used to move this

component from its geometry’s local coordinate system into
the coordinate system of its immediate parent subassembly.

- A list of component parts, if any. Individual parts have no
components.

- The name of the file. if any, where the geometry of the com-
ponent is stored. Usually. only individual parts have geome-
try. The geometries of subassemblies are derived from the
geometries of their component parts

- The geometry of the component.

Each assembly feature stores the following information:

- The geometric description of the feature. This includes the
feature location and orientation, depth, radius, cross-section
curve, number of threads per unit of length. and so on, as
apprOpriate to the type of feature. Hole features also indicate
Whether or not they go all the way through the material and
are open on both ends. The geometry is specified in the coor-
dinate system of the component to which the feature belongs.

- Transformation information used for mating the feature with
its matching feature.

- A back pointer to the component whose feature this is.
- The matching feature (if any) on some other component.
' The inheritance history of the feature. This includes the next

and previous history links, as mentioned previously, and links
to other features ('if any) which were coalesced to create this
one.

8. Future Work

A number of open issues still remain. First, a better mecha—
nism for making design revisions should be created. Currently, the
three clients we have described communicate through data files. It
would be useful to be able to make changes in the assembly plan-
ner and have these changes propagate to the other clients, auto-
matically updating the assembly components” geometries and con
nections. This is not an easy problem, however, especially if the
topology of the assembly or of any of the parts changes. Next,
more accurate and reliable assembly analysis algorithms should be
developed. Also, the system currently only tests whether a part is
removable along paths consisting of a single translation. Methods
for dealing with more complex removal paths should be examined.

We can also envision extensions which would increase the

usefulness of the system. For example, incorporating full-fledged
kinematic analysis would enable designers to examine mecha-
nisms to see if they perform as expected.

9. Conclusions

A system has been developed which integrates a number of
design aids which have not been previously available together in
order to help users design assemblies of mechanical parts. This
research has shown how, by integrating initial and more detailed
design into a single system, the designer’s knowledge can be
extracted in a natural way during the design process without over:

33

36

burdening the designer. Exploded view illustration has also been
explored.

Acknowledgements

We would like to thank the students and staff of the Alpha_l
project. within which this work was developed. Thanks also go to
Dr. Richard Riesenfeld, for his help in editing this paper. This
work was supported in part by ARPA, under grant N00014-92—J—
4113. All opinions. findings, conclusions, or reconnnendations
expressed in this document are those of the authors and do not nec-
essarily reflect the views of the sponsoring agencies.

References

De Fazio. Thomas L. and Daniel E. Whitney, Simplified
Generation of All Mechanical Assembly Sequences, IEEE
Transactions on Robotics and Automation, RA—3f6), 1987,
pp. 640—658.
Eastman, Charles M, The Design of Assemblies, SAE
Technical Paper No. 810197, Society of Automotive
Engineers, Inc., 1981.
Gui, Jin-Kang and Martti Mantyla, Functional
Understanding of Assembly Modelling, Computer-Aided
Design, June 1994, pp. 435-451.
Lee, Kunwoo and David C. Gossard, A Hierarchical Data
Structure for Representing Assemblies: Part 1, Computer
Aided Design, 17(1), 1985, pp. 15—19.
Lee. Sukhan and Yeong Gil Shin, Assembly Planning
Based on Subassembly Extraction, Proceedings of the
[990 IEEE International Conference on Robotics and
Automation, 1990, pp. 1606-1611.
Lieberman. L. l. and M. A. Wesley, AUTOPASS: An
Automatic Programming System for Computer Controlled
Mechanical Assembly, IBM Journal of Research and
Development, 21(4). 1977, pp. 321-333.
Mattikalli. Raju 8., Pradeep K. Khosla. and Yangsheng Xu,
Subasscmbly Identification and Motion Generation for
Assembly: A Geometric Approach, Engineering Design
Research Center, Carnegie Mellon University, preprint.
Shah, Jami 1., Conceptual Development of Form Features
and Feature Modelers. Research in Engineering Design,
(2} l991. pp. 93-108.
Strip, David and Anthony A. Maciejewski, Archimedes: an
Experiment in Automating Mechanical Assembly,
preprint, to be presented at the International Symposium
on Robotics and Automation, July 1990, Vancouver, BC.
Talukdar, Sarosh N. and Sergio W. Sedas, A Disassembly
Planner, Technical Report EDRC-OS-lO—8’7, Engineering
Design Research Center, Carnegie Mellon University,
1987.

Tilove, Robert B., Extending Solid Modeling Systems for
Mechanism Design and Kinematic Simulation, IEEE
Computer Graphics and Applications. Maleune 1983, pp.
9-19.

Woo, Tony C. and Debasish Dutta, Automatic
Disassembly and Total Ordering in Three Dimensions,
.preprint, to appear in ASME Transactions, Jonrnai of
Mechanical Design, (during or after 1989, exact year
unknown).

[11

[2]

[31

[4]

[51

[61

[71

[3]

[9]

“OJ

1111

[121

37

37

38

Hierarchical and Variational

Geometric Modeling with Wavelets

Steven J. Gortler1 and Michael F. Cohen2

Department of Computer Science

Princeton University

Abstract

This paper discusses how wavelet techniques may be
applied to a variety of geometric modeling tools. In
particular, wavelet decompositions are shown to be
useful for hierarchical control point or least squares
editing. In addition, direct curve and surface manip-
ulation memods using an underlying geometric varia»
tional principle can be solved more efficiently by using
a wavelet basis, Because the wavelet basis is hier-

archical, iterative solution methods converge rapidly.
Also, since the wavelet coefficients indicate the degree
of detail in the solution, the number of basis func-
tions needed to express the variational minimum can
he reduced, avoiding unnecessary computation. An
implementation of a curve and surface modeler based
on these ideas is discussed and experimental results are
reported.

1 Introduction

Wavelet analysis provides a set of tools for representing functions
hierarchically. These tools can be used to facilitate a number of

geometric modeling operations easily and efficiently. In particular.
this paper explores three paradigms for free—form curve and surface
construction: control point editing, direct manipulation using least
squares, and direct manipulation using variational minimization
techniques. For each of these paradigms, the hierarchical nature
of wavelet analysis can be used to either provide a more intuitive
modeling interface or to provide more efficient numerical solutions.

In control point editing, the user sculpts a free‘form curve or
surface by dragging a set of control points. A better interface
allows the user to directly manipulate the curve or surface itself,
which defines a set of constraints. In a least squares paradigm,
given a current curve or surface, the modeling tool returns the curve

‘Currently at Microsoft Corp. and the Department of (1.3., University of Washing»ton. sjg@cs.washington.edu
2 Currently at Microsoft Corp. mcchen @I microsoftcorn

: Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear. and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
auditor specific permission.
1995 Symposium on Interactive SD Graphics. Montere CA USA
© 1995 ACM 0-89791 y-736-7/95/GGD4...$3.50

35

38

or surface that meets the constraints by changing the current control
points by the least squares amount [1, 1]].

The behavior of the modeling tool is determined by the type
of control points and basis functions used to describe the curve
or surface, With the uniform cubic B‘spline basis, for example,
the user‘s actions result in local changes at a predetermined scale.
This is not fully desirable; at times the user may want to make fine
changes of detail, while at other times he may want to easily make
broad changes. Hierarchical B—splines offer a representation that
allows both control point and least squares editing to be done at
multiple resolutions [9]. Hierarchical Bvsplines, though, form an
overrepresentation for curves and surface (i.e., any curve has mul-
tiple representations using hierarchical B-splines). As a result, the
same curve may behave differently to a user depending on the partic—
ular underlying representation. In contrast, B-spline wavelets form
a hierarchical basis for the space of B-spline curves and surfaces
in which every object has a unique representation. Wavelet meth-
ods in conjunction with hierarchical B-splines provide amethod for
constructing a useful geometric modeling interface. This approach
is similar to the one described by Finkelstein and Salesin [8]. In this
paper we will discuss some of the various issues that are relevant to
building such a modeling tool.

Variational modeling is a third general paradigm for geometric
modelinng, 28, 21]. In this setting, a user alters a curve or surface
by directly manipulation, as above, defining a set of constraints. The
variational modeling paradigm seeks the “best” solution amongst all
answers that meet the constraints. The notion of best, which is for-
mally defined as the solution that minimizgs some energyfunction,
is often taken to mean the smoothest solution.

In theory. the desired solution is the curve or surface that has
the minimum energy of all possible curves or surfaces that meet the
constraints. Unfortunately there is little hope to find a closed form
solution 1. Therefore, in practice, the “Space” of parametric curves
or surfaces is restricted to those represented by a linear combination
ofa fixed set of basis functions such as cubic B-splines. Given a set
of in basis functions. the goal offinding the best curve or surface is
then reduced to that of finding the best set of n coefficients. This
reduction is referred to as the finite element method [27].

The general case requires solving a non—linear optimization
problem. In the best case‘ the energy function is quadratic and
the constraints are linear leading to a single linear system to solve.
But even this can be costly when n is large since direct methods for
matrix inversion require 00?) time. To accelerate this process it is
tempting to use gradient-type iterative methods to solve the linear
system; these methods only take 001) time per iteration, due to
the 0(a) matrix sparsity created by the finite element formulation.

‘Bm 512120].

39

1024

Figure 1: Minimum energy solutions subject to three constraints, found by the B—spline and wavelet methods after various numbers (071024)
of iterations. (65 variables, 3 constraints). This illustrates the ill conditioning of the B-spline optimization problem.

Unfortunately, the linear systems arising from a finite element for-
mulation are often expensive to solve using iterative methods. This
is because the systems are ill-conditioned, and thus require many
iterations to converge to a minimum [26, 25]. Intuitively speaking
this occurs because each basis function represents a very narrow
region of the answer; there is no basis function which can be moved

to change the answer in some broad manner. For example, chang-
ing one coefficient in a cubic B-spline curve during an iteration
alters the curvature in a local region only. In order to produce a
broad smooth curve, the coefficients of the neighboring B-splines
will move in next few iterations. Over the next many iterations, the
solution process will affect wider and wider regions, and the effect
wil] spread out slowly like a wave moving along a string. The result
is very slow convergence (see Figure (1)). One method used to
combat this problem is multigridding [26, 10], where a sequence of
problems at different resolution levels are posed and solved.

An alternative approach, is to use a wavelet basis instead of a
standard finite element basis [25, 23, 15, 22]. In a wavelet basis,
the answer is represented hierarchically. This allows the solution
method to alter the answer at any desired resolution by altering
the proper basis function, and thus the ill—conditioning is avoided.
In this paper we show how to use a wavelet construction, which
is based on cubic B—splines, to quickly solve variational modeling
problems in an elegant fashion.

Another problem with the finite element approach is choosing
the density of the basis functions. If too few basis functions (too
few B-spline segments or tensor product B-spline patches) are used
then the solution obtained will be far from the actual minimum. If

too many basis functions are used then unnecessary computation
will be performed during each iteration (n is too big). In order to
successfully choose a proper density, one must know how much
detail exists in the variational minimum answer. Since, a priori, this
is unknown, an efficient solver must be able to adaptively change
the basis'during the solution process [28], one needs an easy way
to detect that too many or too few basis functions are being used.
In addition. one needs a basis for which adding more detail, (i.e.,
refinement), is easy. Wavelets offer a basis where this task can be
accomplished quickly and elegantly.

The work presented in this paper combines the wavelet ap-
proaches of [25], [12], and [16]. Like [25], this paper uses hierare
chical basis functions as a pro—conditioner, so that feWer iterations
are needed for convergence. Similar to [12] and [16], wavelets are
also used as a method for limiting the solution method to the properlevel of detail.

2 Geometric Representation

This paper will restrict itself to parametric representations of curves
and surfaces. In this representation, a curve is defined as a 3

dimensional trajectory parameterized by t,

7ft) = (X(t)1Y(t)1-Z(tll (1)
and a surface is defined as

7(S,t)=(X(S,t),Y(S,t),Z(5,t)) (2)

which defines a three dimensional location for every parameter pair
(sit)-

The parametric representation of a curve or surface is made
up of three functions X , Y, Z, which are represented as a linear
combination of basis functions, lust focusing on the X function,
for curves this becomes

Xlt) : ijtbball) (3)
J'

and for surfaces _

ATS,” : zmngfilujdewitl (4)
jflc—

where the z are scalar coefficients. In geometric modeling the
univariate basis rpL‘J-(t) is typically some “piecewise” basis, such
as a cubic B—spline or the Bernstein (Bézier) basis, and the bivarir
ate basis used for surfaces is the associated tensor product basis
digs-(Sit) E ¢L.j(5l¢t.klt)-

3 Hierarchical Geometric Descriptions

In this section we will briefly review some ways that curves and
surfaces may be represented hierarchically.

Let us begin by discussing curves. For simplicity we will deal
with the uniform cubic B-spline basis over the interval [0 . . . 2L]
made up of translations of a single basis shape denoted (fit). The
cubic B~sp1ine function (gift) is supported over the interval [0 . . .4]
and is made up of4 cubic polynomial pieces joined with 02 con
tinuity. The complete uniform cubic B—spline basis is made up of
translated copies ¢LJ (t) of the basis shape (Mt) (see Figure 2).

(built) = (W _ j) (5)

The index j represents the translation of a specific basis from the
canonical B-spline leftjustified at zero, and L is the level or resolu-
tion of the basis. There are roughly 21‘ functions in this basis 2. In
wavelet terminology, the space (or family) of curves spanned by all

linear combinations of these basis functions is denoted VL (cg. VL
contains all functions that are piecewise cubic, with simple knots at
the integers).

2A few extra basis functions are needed at the boundary, This paper will not discuss
thetechnical details needed to handle all oftlie boundary constraints. This is discussed
in many places including [4, 16, 8, 13].

40

3.1 HierarchicalB-splines

Forsey and Bartels [9] introduced hierarchical B-splines as a way of
representing and modeling geometric objects hierarchically. Instead
of using only B—spline basis functions at a single resolution L, they
use a hierarchy of wider and wider B-spline functions

ado)=¢oL“i—i) o)

for 0 g i g L. For example, the basis functions ¢L_|,J- at reso-
lution level L — l (with a support size of 8), are twice as wide as
the basis functions air”) at level L (with a support size of 4). These
basis functions, ¢L -14, span the space of piecewise cubic functions
with knots at all even integers; in wavelet terminology, this space is
called VL_1 . On each coarser level, the space V,- has half as many
basis functions, and they are all twice as wide.

According to the well known B—spline knot insertion algo-
rithm [6, 9, 3] one can define double width B-spline basis functions
as linear combinations of single width B-spline basis functions.

¢i—l,j = Z Iii—23 915131;, (7)a

where the sequence h is

l 4 6 4 1
..4 = —————

(see Figure (2)). As a result of Equation (7) the set of functions in
V,»_; is a subset of the functions in Vi.

Vii] C V: (9)

The basic idea of Forsey and Bartels is to allow the user to control
the coefficient of each of these basis functions dim by exposing a
control mesh at each level 2'.

3.2 Wavelets

Hierarchical B—splines {@5131} do not form a basis for the function
space Vi; they form an averrepreremarion for all the curves in
ii. In other words, there are many linear combinations of the
basis functions defining the same curve or surface. Wavelets are a
representation related to hierarchical B-splines, that form a basis;
in a wavelet basis, all curves in VL have a unique representation.

Rather than add a new finer set of B-splines at each level of the
hierarchy, the idea is to look for a set of functions if)” that “fills
in“ the space between the adjacent B~spline spaces, 14 and V141.
These wavelet functions 1/1133 represent the detail of the curve that
cannot be represented by the double width B-splines, (12,-, j. For each
i, the space of functions spanned by the dim- is called W12

There is actually quite a bit of freedom in choosing these tin-J-
functions, and hence the space Wi, as long as every function in
14+; can be written as a combination of some function in Vi and
some function in Wt. This is notated as

14+] = Vi-l-Wi (10)

Just like the Hierarchical B-splines are all scales and translates
of a single shape ¢(t), (see Equation (5)) in a wavelet basis, the
basis functions 11),!)- are all translates and scales ofa single function
we). ,

mnnzwohu—n on

Also similar to hierarchical Bvsplines, in a wavelet basis, the
basis functions on one level can be defined by linearly combining
B-spline functions on the next finer resolution,

tin—t; = Zghezg £15m-i-
(12)

37

40

And as a result Wi—l C Vr. There is some degree of freedom
in choosrng the sequence 9, as long as the property expressed by
Equation (10) holds. One such sequence given by Cohen et a1. [5]
is 3 [see Figure (3)).

g[0..10]={i,fl,L,‘_96,i° 3.83 10 if; 2 i}256 256 256 256 256 ’256‘ 255 ’ 256 256’256’255

Due to the relationships of Equations (7) and (12), if some
function X (t) in V,- has been expressed as a linear combination of
the B-spline basis function at level i — l and waveletbasis functions

at level i — 1, using coefficients notated by MEL]. and wwwm

Xftl = Xmas—L,- tin—lam +$ercw “Pr—left) (13)
2‘

then, zmyj, the coefficients of the same function, with respect to
the B-spline basis at level rmay be found with

5%,; = Z (Ir-2k- Era—m + ZQj—ik war—r,» (14)k k

and now X“) = 23. I‘m»)..- ¢i,_j(t)
lnversely, if some function has been expressed with respect to

B~spline functions at level i, then the representation of Equation
(13) may be found using the formula

2 ilk-13‘ $¢IJ¢E:

Z Etc—2r wqjifiIf.

using the proper inverse sequences ; and fi. Equation {15) projects
the high resolution curve from W into the lower resolution space
V4-1 ; this is, in some sense, a smoother approximation of the object
in Vi. Equation (16) captures the detail thatis lostin this projection,
and represents it using a basis for the space W,‘_1.

When using the h, and 9 sequences given by Cohen et a1 [5], the
proper inverse sequences h and g are

1% —1 use 70 280 70 —96 —1 4}’ 255'255‘256‘ 256 ’250‘ 256'256‘ 255 256’256'256

(15)winery

(15)xvii—Id

r‘r[—3..7

(17)

3.3 The Basis

Every function in V1,, expressed as a combination of the B-spline
basis functions {#5le- can be expressed uniquely in the wavelet
basis is made up by the functions

i¢0,r',¢1,r}l3£i£ L - 1

In the wavelet representation, the function is expressed hierarchi-
cally.

Transforming a function’s representation from B-spline to wavelet
coefficients may be done with the pyramid procedure coef-pyrm_up.
This procedure may be performed in linear time by successively ap»
plying the transformation of Equations (15) and (16). This linear
transformation may be denoted by the matrix W. Theinverse trans-
formation (denoted by the matrix W"), may be implemented with
the procedure coe f_pyrm_down, which succesively applies the
transformation of Equation (14).

If coef_pyrm_up is implemented using the h and 9 sequences
instead of the h and f) sequences, then the resulting procedure may

(18)

3A different sequence is given by Chui [3] and generates a semi-orthogonal wavelet.

41

Figure 2: Five B-splines my may be combined using the weights
h to construct the double width B-spline dip”)

Figure 3: Eleven B splines Q5 1”, may be combined using the weights
g to construct the wavelet function 1,!)an

be called basimpymup. and it is represented by the matrix

W'T. If coef.pyrrrudown is implemented using the h and
9 sequences instead of the h and 9 sequences, then the resulting
procedure may be called has 1 e_pyrm_down, and it is represented
by the matrix WT.

3.4 Surfaces

The ideas outlined above are easily extended to tensor product sur—
faces [3]. The uniform tensor product cubic B-spline basis is made
up of the functions ¢L‘j(5)¢[d'k(t) The hierarchical uniform tensor
product cubic B—spline representation is made up of the functions
¢.,j(s)¢i.-,r(t) for 0 S i g L. On each coarser resolution of the
hierarchy. there are 1/4 the amount of d) basis functions

The tensor product B-spline wavelet basis is made up of thefunctions 4

¢o.j(5)¢0.tltl ¢i.j(5)1/Ji,t(t) (19)
Wtjlsl¢atltl T/IidlslI/Dmli)

within] {0...Le 1}.
Just like for curves. there are four pyramid procedures andassociated W matrices.

4 Geometric Modeling with Wavelets

The styles ofinteractive control discussed in the introduction will
be revisited in the context of hierarchical representations. Multitas-
olntion modeling allowa; the user to interactively modify the curve
or surface at different resolution levels. This allows the user to

make broad changes while maintaining the details, and conversely
detailed changes while maintaining the overall shape. Two types
of hierarchical manipulation are considered, control point dragging
and a direct manipulation involving solving a least squares problem

In contrast, variational modeling allows the user to directly
manipulate the curve or surface with the curve or surface main—

taining some notion of overall smoothness subject to user imposed
constraints. This physically based paradigm provides an intuitive

aThis basis is known as the non-standard basis [3].

41

38

Figure 4: When B-spline coefficients are manipulated. the curve
responds in a “hump” like fashion. When wavelet coefficients are
manipulated, the curve responds in a “wave” like fashion.

means for shape control. Each of these paradigms will be explored
in the context of wavelet bases which will be shown to provide the
required hooks for such interaction and/or significant computational
savings

4.] Multiresolution Modeling

A multiresolution representation such as a hierarchical B-spline or
wavelet representation may be used to implement a multiresolution
modeling system. This section explores the choices that must be
made when designing a multiresolution tool. Two related methods

are described; direct control point manipulation and a least squaressolver.

In control point modeling, the user is alloWed to directly alter
the coefficient values, by clicking and dragging on control points.
In the least squares scheme [1, 11], the user can click and drag
directly on the curve or surface, defining interpolation and tangent
constraints. The system returns the curve or surface that satisfies
these linear constraints (Ax’ = b), by changing the coefficients
by the least squares amount. Least square solutions can he found
very inexpensively using the pseudoinverse [11]. The least squared
problem can also be posed as aminimization problem [28], whose
solution can be found by solving a sparse. well conditioned. linear
system.

In multiresolution versions of these two schemes, the user
chooses the resolution level 2', and then only the quantities of basis
functions on level i’ are altered. The locality of the effect on the
curve or surface is directly tied to the chosen level i. In control
point modeling, the control polygon at level i is manipulated by
the user. In a least squares scheme, the user is provided a direct
handle on the curve or surface itself. and the least squares solution
is found only using the basis functions on level i. The least-squares
approach offers a much more intuitive interface, and (for curves)
works at interactive speeds.

One decision to be made is whether to expose the user to hier—
archical B-splines or to wavelets. It is easy to see that manipulat-
ing wavelet basis functions does not produce an intuitive interface.
Moving such a control point. and thus changing the amount ofsome
wavelet basis function used, changes the solution in a “wave” like
fashion. In contrast, it is more intuitive to move a B-spline control
point which changes the solution in a “bump” like fashion (see Fig—
ure 4). Thus the user in this case should manipulate the hierarchical
B -spline functions.

4.2 Orientation

In the parametric representation, the curve or surface is represented
by three functions X, Y, Z. In the the multi-resolution paradigm,
‘when a user adds fine directional detail. say a fine hump in the
X direction, this detail will become locked in the originally chosen
direction. If the user later manipulates the broad sweep of the curve,
the detail Will maintain its original direction (see Figure 5). This is

42

re

13
31]

IS

xyz

HEB HHH HHE
Figure 5: When the (X,Y,Z) frame is used for wavelet multiresolu-

, tion editing, detail maintains its orientation as the sweep is changed.

When the normal, tangent, bi-norrnal, N, T, B) frame is used with
a wavelet representation, the detail does not maintain its structure
as the sweep is changed. When the (N, T, B) frame is used with
a B—spline representation, the detail follows the orientation of thecurve.

not always desirable, since the user may want the detail’s orientation
to follow the changing direction of broader curve or surface.

An “orientation” approach first proposed by Forsey and Bar-
tels [9] may be applied to the multiresolution editing scheme. In
a multiresolution modeling system all of the information describ-
ing the curve or surface lives at some resolution. In an orientation
approach, the information at each resolution i is not expressed as
three independent functions of (X, Y, Z). Instead the detail at each
resolution 2‘ is represented with resPect to the geometric shape of
the lower resolution Version of the curve or surface. This lower res-

olution version is defined by summing all of the information from
all the lower resolution levels.

Tangent and normal directions of the lower resolution curve or
surface are then computed at a series of sample points, The detail
coefficients at level i are then expressed with respect to these tangent
and normal directions instead of the (X, Y, Z) directions. If any
lower resolution component of the curve is later explicitly altered,
then the details orientation will change appropriately.

4.2.1 Defining Detail

In order to apply an orientation approach, one must have some
method for decomposing the object into components at different
resolutions. When one is using hierarchical B-splines, which over-
represent objects in 1/1., then there is some freedom in defining what
information resides at which level of detail.

If the geometric object is being designed with a multiresolution
editor, then the user is explicitly manipulating the object at resolu~
tions that he chooses. Therefore. one simple method is to maintain
all information at the resolution entered by the user [9]. Using this
method, the same geometric object may behave differently depend—
ing on the way the object was generated.

An alternative is to use wavelet analysis: begin with the com-
plete resolution object (in Vb), and then successively project it to
each lower resolution level using Equation (15). This generates a
unique smoothed version of the object at each resolution Vi. The
object can now be represented as a combination of components
from the difference spaces W,-.

In typical wavelet analysis. the components in W,- are repre-
sented using some special basis functions 151‘. j that span the differ-
ence space W}. Alternatively, instead of using wavelet functions
rpm to represent the difference, one may instead use the B~spline
functions on the next finer level (15141.23 This can be done because

42

39

of Equation (12). The choice of whether to use B-spline or wavelets
to represent the functions in W, is an important question that we
shall deal with soon.

4.2.2 Projections between Levels

There are many ways to obtain a lower resolution version of some
object from V1,. For example, givon an object in VL, one could
obtain a lower resolution version in V1,; by throwing away every
other control point. Subsampling is not a true projection; starting
with a smooth curve in V144, and then expressing that smooth
curve in the higher resolution B—spline basis basis VL, and finally
subsampling the control points will not return the original smooth
curve We began with.

Another way of obtaining a smoothed version of the object
is by orthogonally projecting the object from V1,. into V1,-.. The
orthogonal pro'ection is the object in V1,] that is closest to object in
V; using the L measure. One maypbtain the orthogonal projection
by using Equation (15), with the h sequence given for the Semi—
orthogonal wavelet construction by Chui [3]. This is the approach
used in [8]. Although this is a very elegant way of obtaining a
lower resolution version of an object, it has a few drawbacks. This
particular in sequence is infinite in length (although it does decay
rapidly from its centers) and so performing this task efficiently can
be troublesome. Also. because these sequences are not local, then
a single change to one B-spline coefficient at level L will alter all
ofthe coefficients of the projection at level L — 1.

One good compromise between these two extremes (subsam»
pling, and orthogonal projection), is to use Equation (15) but to use
the h filter given for the non-orthogonal wavelet construction by
Cohen et a1. [5]. This projection in non—orthogonal, but it is en-
tirely local. This is the choice we have used in our multiresolution
modeling tool.

4.2.3 Representing Detail

What set of basis functions should be used to represent the detail.

If a wavelet projection Equation (15) is used to define the lower
resolution versions of the object, then the detail can be represented
by using the corresponding wavelet functions. The other option is
to represent the detail using hierarchical B—spline functions. The
disadvantage ofusing hierarchical B-splines is that there are roughly
211 B—splines in the hierarchy, and only it wavelets.

The advantage of using hierarchical B-splines however is that
they maintain the orientation better. When the user changes the
broad sweep of the curve, changing the tangent, normal, and bi-
normal frame at t], the detail functions are remixed. If the do
tail functions are wavelet functions, then changing the normal and
tangent frame remixes “wave" shaped functions introducing non—
intuitive wiggles. Ifthe detail functions are B-spline basis functions,
then “hump” shaped functions get remixed, yieding more intuitive
changes. Also if the detail functions are B-splines, then because
there are twice as many B-splines than wavelets, the tangent and
normal directions are computed at twice as many sample points
allowing the detail to follow the orientation with more fidelity (see
Figure 5).

5 Variational Modeling

The variational modeling paradigm generalizes the least squares
notion to any objective function minimization, typically one repre—
senting minimizing curvature. The variational problem leads to a
non-linear optimization problem over a finite set of variables when
cast into a given basis.

43

There are a variety of objective functions used in geometric
modeling [21.24] In our implementation we have used the thin-plate
measure which is based on parametric second derivatives [27, 2, 28].
The thin plate minimum may be found by solving the following
linear system [28].

1‘ E (20)
HAT
AD

Where A is the constraint matrix. H is the Hessian matrix, and A
are Lagrange variables.

5.1 Hierarchical Conditioning

Wavelets can be used in the context of variational modeling so that
the solution may be obtained more efficiently.

In the B-spline basis, the optimization procedure resulted in
the linear system given by Equation (20). In the wavelet basis, a
different linear system results which is given by

(21)
as?"
A0

i—
ATb ° 1

where the bars signify that the variables are wavelet coefficients,
5: I VVX, and the Hessian and constraint matrix are expressed with
respect to the wavelet basis. To see the relationship with the B
spline system, the new system can also be written down as

:bg
Although Equation [20) and Equation (210.2) imply each other,
they are two distinct linear systems of equations Because the
wavelet system (21122) is hierarchical it will not suffer from the
poor conditioning of the B-spline system of Equation (20), For a
rigorous discussion of the relevant theory see [7].

The scaling of the basis functions is very significant for the
behavror of the optimizing procedures. Traditionally the wavelet
functions are defined with the following scaling [19, 22]:

W'THW‘l W“TAT 22
AW‘1 0 (l

i
)t

$13le = 2‘“””¢(2""”t—i)

Walt) = 2“‘“’2w(2“‘“t~j) (23)

This means that at each level moving up, the basis functions

become twice as wide. and are scaled 7'5 times as tall. While in
many contexts this normalizing may be desirable, for optimization
purposes it is counter productive. For the optimization procedure
to be well conditioned I 15, 7] it is essential to emphasize the coarser
levels. The correct theoretical scaling depends on both the energy
function used, and the dimension of problem. For a fuller discus—
sion. see the Appendix in [13]. In the experiments described in this
paper the following scaling was used

«in-(t) = 2““) ¢(2“‘“ter)

wit-(t) = 2“‘*““w(2“"“t—n (24)

This means that as one goes from level i to level i — l the basis

Functions become twice as wide, and 1/2 as tall. In the pyramid
code, this is achieved by multiplying all of the h and 9 entries by 2,
and all of the h. and g- by 1/2 .

5The proper scaling is essential to obtain the quick convergence of the wavelet
method when steepest descent. or conjugate gadient iteration is used. Scaling is
not important with Gauss-Seidel iteration, which will perform the same sequence ofiterations regardless of scale.

5.1.1 Explicit vs. Implicit

There is now a choice to make. In an iterative conjugate gradient
solver, the common operation is multiplication of a vector times the
wavelet matrix given in Equations (21122). There are two ways to
implement this.

One approach, the explicit approach, is to compute and store
the wavelet Hessian matrix H and the wavelet constraint matrix

11 (Equation (21)). These can be computed directly from a closed
form (piecewise polynomial) representation of the wavelet functions
1,5,3j. Unfortunately, these matrices are not as sparse as the B-splineHessian and constraint matrices.

Alternatively, there is the implicit approach [29, 25] which only
computes and stores the entries of the B-spliue matrices H and A
(Equation (22)). Multiplication by the W matrices is accomplished
using the pyrm procedures. The advantage of this approach is that
the whole multiply remains 0(11) in both time and space, since
the pyrm procedures run in linear time, and the matrices H and

A are 0(71) sparse. Even though one of the methods explicitly
uses wavelet terms while the other uses B—spline terms, these two
methods are mathematically equivalent, and so both will have the
same condition properties.

5.2 Adaptive Oracle

By limiting the possible surfaces to only those that can be ex-
pressed as a linear combination of a fixed set of basis functions.
one obtains an approximation of the true optimal surface. As more
basis functions are added. the space of possible solutions becomes
richer and a closer approximation to the true optimal surface can
be made. Unfortunately, as the space becomes richer, the number
of unknown coefficients increases, and thus the amount of compu-
tation required per iteration grows. A priori, it is unknown how
many basis functions are needed. Thus, it is desirable to haVe
a solution method that adaptively chooses the appropriate basis
functions. This approach was applied using hierarchical B~splines
in [28]. When refinement was necessary, “thinner” B-splines basis
functions were added, and the redundant original “wider” B-splines
were removed. With wavelets, all that must be done is to add in

new “thinner" wavelets wherever refinement is deemed necessary.
Since the wavelets coefficients correspond directly to local detail,
all previously computed coefficients are still valid.

The decision process of what particular wavelets to add and
remove is governed by an oracle procedure which is called after
every fixed number of iterations. The oracle must decide what level
of detail is required in each region of the curve or surface.

When some region of the solution does not need fine detail, the
corresponding wavelet coefficients are near zero, and so the first
thing the oracle does is to deactivate the wavelet basis functions
whose corresponding coefficients are below some small threshold.
The oracle then activates new wavelet basis functions where it
feels more detail may be needed. There are two criteria used. If
a constraint is not being met, then the oracle adds in finer wavelet

functions in the region that is closest in parameter space to the
unmet constraint. Even if all the constraints are being met, it is
possible that more basis functions would allow the freedom to find a

solution with lower energy. This is accomplished by activating finer
basis functions near those with coefficients above some maximum
threshold.

To avoid cycles, a basis function is marked as being dormant
when it is removed from consideration. Of course, it is possible
that later on the solution may really need this basis function, and so

‘ periodically there is a revival phase, where the dormant marksare removed.

44

Om

remap-=0

IVUKLLIuthy-r-wq

0.: ‘ o a l
_ ..-. Selim‘ — Inn-was

an ‘ rv‘r‘nucle “veins 9“\ ..
-.... 'fifiiinu«were:
- - - cruel:- mum.

liner
munch“,‘‘‘‘‘‘ a v.4

0.2
Tint: (sounds)

nri
-L—u-pnne.iuvuru
- - -- amt: wmlm

r\\
'.

D.o iiIr\

Tlma {gonads}

Figure 6: Error per time. Curve with 65 control points, 3, 7, and 13
constraints.

5.3 User Interface

A user ofthe systemis first presented with a default curve or surface.
Constraints can then be introduced by clicking on the curve or
surface with the mouse. The location of the mouse click defines a

parametric position i (and s) on the curve (or surface). The user
can then drag this point to a new location to define an interpolation
constraint. Tangent constraints at a point can also be defined by
orienting “arrow" icons at the point. Once the constraint is set,
the solver is called to compute the minimum energy solution that
satisfies the constraints placed so far. Resulting curves and surfaces
are displayed using 861 GL nurbscurve and nurbneurface
calls 6, '

When the solution is completed, the result provides information
for not only the cone or surface satisfying the specific value of the
new constraint, but for all curves or surfaces with respect to any
value of this constraint. Once the linear system (Equation (21/22))
with the newest constraint has been solved, the solver stores the
delta vector

A)?

Abm

where m is the index of the newest constraint, and bm is the con-
straint value (Le, the position or tangent specified by the user).
This vector stores the change of the coefficient vector due to a unit
change in the new constraint Abm, essentially a column of the
inverse matrix, The user is now free to interactively move the tar
get location of the constraint without having to resolve the system
Since, as long as the parameters 3, and t of the constraints do not
Change, the matrix of the system. and thus its inverse, do not change.
However, as soon as a new constraint is added (or a change to the
parameters 3 and t is made) there is fresh linear system that must
be solved, and all of the delta vectors are invalidated. The ability
to interactively change the value of a constraint is indicated to the
user by coloring the constraint icon. See Color Plate.

(25)

5.4 Variational Modeling Results
5 , . i .
Clue (1]. call to nu rbseurl‘ince cm: be more expens Ive than a complete iteration

41

44

at

0.0

_--__.Pfi,,,
z —WIVII=|I g“4 -“"u|=kw|nhu

D 1c 4r in an in) I n :0 ill 50 ID Io)11m (mt)
LU

or:0.5

a.»

—-—'WIIIIS E

a.» wmuu___.uscn—-vuw
In»:

0.4 n,4

Lu

0 :0 4!: so an I00

Figure 7: Errorper time. Surface with 1089 control points, 11,23,64-
evenly space constraints, and 62 constraints along the boundary.

A series ofexperiments wereconducted to examine the performance
of the wavelet based system compared to a B~spline basis. In the
curve experiments. the number of levels of the hierarchy, L, was
fixed to 6, and in the surface experiments, L was fixed as 5. The op-
timization process was then run on problems with different numbers
of constraints. The results of these tests are shown in Figures 6 and
7. These graphs show the convergence behavior of three different
methods, solving with the complete B—spline basis, solving with
the complete wavelet basis, and solving with an adaptive wavelet
basis that uses an oracle. (The wavelet results shown here are using
the implicit implementation). If xim) is the computed solution
expressed as B-spline coefficients at time m, and x“ is the correct
solution of the complete linear system 7 (i.e., the complete system
with 21’ + 1 variables, and no adaptive oracle being used} then theerror at time m is defined as

zj ix; fiwgm)‘,. 0
Zjimj"mi)i

To obtain the starting condition xio), two constraints were ini-
tialized at the ends of the curve, and the minimal thin plate solution
(which in this case is a straight line) was computed. (For surfaces,
the four corners were constrained.) All times were taken from runs
on an 861 R4000 reality engine. 5

When the are a large gaps between the constraints, the B—spline
method is very poorly conditioned, and converges quite slowly
while the wavelet method converges dramatically faster. In these
problems, the oracle decides that it needs only a very small active
set of wavelets and so the adaptive method converges even faster.
As the number of constraints is increased, the solution becomes
more tightly constrained, and the condition of the B~spline system
improves. (Just by satisfying the constraints, the B—spline solution
is very close to minimal energy). Meanwhile the oracle requires a

(25)

Tcomputed numerically to high accuracy
8In the curve experiments, each B-spline iteration took 0.0035 seconds, while

each iteration of the implicit Wavelet method took 0.011 seconds. For the surface
experiments, each B-spline iteration took 0.68 seconds while each iteration of the
implicit wavelet method took 0.85 seconds. [The wavelet iterations rising the explicit
representation took about 10 times as long).

45

larger active set of wavelets, Eventually, when enough constraints
are present, the wavelet methods on longer offer an advantage over
B—spliues.

Experiments were also run where all the constraints were along
the boundary of the surface. In these experiments there are many
constraints, but the since the constraints are along the boundary,
much of the surface is “distant” from any constraint. In these
problems, the wavelets also performed much better than the B-
spline method.

6 Conclusion

This paper has explored the use of wavelet analysis in a variety
of modeling settings. 1t has shown how wavelets can be used to
obtain ruultiresolution control point and least squares control. It
has shown how wavelets can be used to solve variational problems
more efficiently.

Future work will be required to explore the use of higher order
functionals like those given in [21, 24]. Because the optimiza-
tion problems resulting from those functionals are non-linear, they
are much more computationally expensive, and it is even more
important to find efficient methods. 1t is also important to study ope
tinrization modeling methods where constraint changes only havelocal effects.

Many of these concepts can be extended beyond the realm of
tensor product uniform B-splines. Just as one can create a ladder of
nested function spaces V,- satisfying the property of Equation (10)
using uniform cubic B-splines of various resolutions, one can also
create a nested ladder using non—uniform B—splines [18].

Subdivision surfaces are a powerful technique for describing
surfaces with arbitrary topology [14]. A subdivision surface is
defined by iteratively refining an input control mesh. As explained
by Lnunshery et a1. [17], one can develop a wavelet decomposition
of such surfaces. Thus, many of the ideas developed in this paper
may be applicable to that representation as well.

Acknowledgements

We are grateful to James H. Shaw for developing the graphical
interface to the optimization program.

REFERENCES

[l] BARTELS. R., AND 13me J, A Technique forthe Direct Manipulation
of Spline Curves. In Graphics Interface 1989 (1989), pp. 33—39.

ill CELNIKER, (1. AND GOSSARD, D. Deformable Curve and Surface
Finite-Elements for FreevFrom Shape Design. Computer Graphics
25. 4 (July 1991), 257—266.

[31 CHU‘l. C. K. An Introduction to Wavelets, vol. 1 of Wavelet Analysis
and its Applications. Academic Press Inc., 1992.

[4] CHI-J7. C- K. AND QUAK, E. Wavelets on a Bounded Interval. Numerical
Methods (JApprmimarion Theory 9 (1992). 53—75.

[5] COHEN, Ar, DAUBECHIES, 1.. AND FEAUVEAU, J. C. Biorthogounl
Bases of Compaclly Supported Wavelets. Communication on Pure
and Applied Mathematics 4'5 (1992), 4857560.

16] COHEN, B., LYCl-lE, T., AND RIESENF'ELD. R. Discrete B~Splines and
Subdivision Techniques in Computer-Aided Geometric Design and
Computer Graphics. Computer Graphics and lrmge Processing 14, 2
[October 1980), 37—111.

[7] DAHMEN, W., AND Kunoru, A. Multilevel Preconditioning. Nu,
men'sclm Matlremarik 63 (1992), 315—344.

[8} FINKELSTEIN, A., AND SALESIN. D. Multiresolution Curves. In Com-
puter Graphics, Annual Conference Series, 1994 (1994), Siggraph.
pp. 261463.

[9] FORSEY, D.. AND BARTELS, R. Hierarchical B—Spline Refinement.
Computer Graphics 22, 4 (August 1988), 205—212.

[10] FDRSEY, D.. AND WENG, L. Mum-resolution Surface Approximation
for Animation. In Graphics lnterfizce (1993).

[11] FOWLER, B. Geometric Manipulation of Tensor Product Surfaces. In
Proceedings, Symposium an Interactive 3D Graphics (1992), pp. 101—103.

[12] 6011111312, 8., Solutions, P., COHEN, M., AND HANRAHAN,R Wavelet
Radiosity. In Computer Graphics, Annual Conference Series, 1993
(1993), Siggraph. pp. 221-230.

[13] GOR‘ILER, S. J. Wavelet Merhodrfor Computer Graphics. PhD thesis,
Princeton University, January 1995.

[14] HALSTEAD, M, KASS, M, AND DEROSE, T. Efficient, Fair Interpo-
lation using Catrnull—Clark Surfaces. In Computer Graphics, Annual
Conference Series, 1993 (1993), Siggraph, pp. 35—43.

[15] JAFFARD, 3., AND LAURENQOT, P. Orthouorrnal Wavelets, Analysis of
Operators, and Applications to Numerical Analysis. In Wavelets: A
Tutorial in Theory and Applications, C. K. Chui, Ed. Academic Press,
1992, pp. 543—602.

[16] L1U,Z.. GOR‘I’LER, S. J., AND COHEN, M. F. Hierarchical Spacetime
Control. In Computer Graphics, Annual Cory‘erencc Series, 1994
(August 1994), pp. 35—42.

[17] LOUNSBERY, M., DERosn, T., AND WARREN, 1. Multiresolution Anal—
ysis for Surfaces of Arbitrary Topological Type. Tech. Rep. TR 93—
10-05b, Department of Computer Science and Engineering, Princeton
University, October 1993.

[18] LYCHE, T., AND MORKEN, K. Spline Wavelets of Minimal Support
In Numerical Methods in Approximation Theory, D.Braess and L. L.
Schumaker, Eds, vol. 9. Birldruuser Verlag, Basel, 1992, pp. 177—194.

[19} MALLAT, S. G. A Theory for Multiresolution Signal Decomposition:
The Wavelet Representation. [BEE PAM! ll (July 1989). 674—693.

[20] MElNGUET, J. Multivariate Interpolation at Arbitrary Points Made
Simple. Journal of Applied Mathematics and Physics (MP) 30
(1979). 292—304.

[21] MOREI‘ON, 11., AND SEQUIN. C‘. Functional Optimimtion for Fair
Surface Design. Computer Graphics 26, 4 (July 1992). 167—176,

[22] PENTLAND, A. Fast Solutions to Physical Equilibrium and Interpolau
tion Problems. The Visual Computer 8, 5 (1992), 303-314.

[23] QIAN. 5.. AND WEISS, J. Wavelets and the Numerical Solution of
Partial Difierential Equations. Journal of Computational Physics 106,
1 (May 1993), 155475.

[24] RANDO, T., AND ROULlER, J. Designing Paired Parametric Surfaces
Computer Aided Derign 23, 7 (September 199]), 492-497.

[25] SZELISKI, R. Fast Surface Interpolation Using Hierarchical Basis Func»
tions. lEEE PAM] 12, 6 (June 1990), 5134139.

[26] TERZOPOULOS. D. Image Analysis Using Multigrid Relaxation Meth—
ods. [EEEPAM18.2 (March1986), 129—139.

[27] TERZOPOULUS, D. Regularizatiou of Inverse Visual Problems Involv-
ing Discontiuuities. IEEE PAMl 8, 4 (July 1986). 413424.

[28] WELCH, W., AND WWI-(IN, A. Variational Surface Modeling. Computer
Graphic: 26,2(1uly 1992). 157—166.

[29] YSERENTANT, H. On the Multi—level Splitting of Pi nite Element Spaces.
Numenschc Matlreman'k 49 (1986), 379—412.

46

.4

I»

ir

7‘5,

Interactive Shape Metamorphosis

David T. Chen*, Andrei State* and David Banksi

a"Department of Computer Science
University of North Carolina at Chapel Hill

iInstitute for Computer Applications in Science and Engineering

1 INTRODUCTION

image metamorphosis (morphing) is a powerful and easy-tovuse
tool for generating new 2D images from existing 2D images.
In recent years morphing has become popular as an artistic tool
and is used extensively in the entertainment industry. In this
paper we describe a new technique for controlled, feature-based
metamorphosis of certain types of surfaces in 3—space; it
applies well-understood 2D methods to produce shape
metamorphosis between 3D models in a 2D parametric space.
We also describe an interactive implementation on a parallel
graphics multicomputer, which allows the user to define,
modify and examine the SD morphing process in real time.

2 PREVIOUS WORK

Wolberg [4] described a point correspondence technique for
morphing 2D images. Consider a pair of 2D source images, A
and B. If a feature in image A is meant to match a feature in
image B, the user chooses a point within the feature of each
image. When the point morphs from A to B, so does a
neighborhood surrounding it. By defining such pairs of points
for all interesting features, the user can create a metamorphosis
sequence between the two static images A and B.

Beier and Neely [1] described a segment correspondence
technique for morphing 2D images. When a feature in image A
is required to transform to a feature in image B, a line segment
is drawn over the feature in each image. As the segment
morphs from A to B, so does a neighborhood surrounding it.
By judiciously creating line segments, the user can preserve all
the important features throughout the morph. This technique is
easier to use than the point correspondence method: usually
fewer than half as many line segment pairs than point pairs are
required to define a morph sequence between two static images.

2D methods provide simple user control for image-based
morphing. However, since little or no information about
actual 3D geometry is available, it is difficult to create
“natural“-looking transformations; morphing animations

*Department of Computer Science, University of North Carolinaat Chapel Hill, Chapel Hill, North Carolina, 27599-3375.tchenlstatelecs .unc.edu.

tinstiture for Computer Applications in Science and Engineering, MailStop 132C, NASA Langley Research Center. Hampton, Virginia. 23681.banksti icase . edu.

Permission to copy without too all or part oi this material ls
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a tee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

43

46

created with 2D methods often exhibit a subtle “flattening"
effect.

Kent, Carlson and Parent [3] described a method for morphing
3D polyhedral objects by merging the topologies of two 3D
source polyhedra A and B. New vertices, edges, and faces are
added to both A and B so that every polygon of A corresponds
to a polygon of B. To morph between them one interpolates
between corresponding vertices. The user can exercise some
control over how the correspondences are established, but only
very indirectly, by selecting a specific method of mapping the
two source objects onto a common intermediate mapping
surface used for topology merging (for example, a sphere).
Kent concludes:

techniques that provide a finer level of control over the
transformation are needed. One possibility is to add a warping
step before the topologies are merged.

We implemented Beier’s technique as that warping step for the
special case of cylindrical mapping surfaces, warping the
model’s 2D parameter Space instead of a (projected) 2D image.

3 CONTROLLED 20-30 MORPHING

Our method consists of morphing the common intermediate
mapping surface or 213 parameter space of a pair of surface
models. We use Beier’s techniques to establish
correspondences and accomplish the warping. The 2D nature of
the process makes interaction easy. While defining
correspondences, the user can simultaneously inspect the two
parametric images as well as the resulting surface in 3-space .

We begin with a pair of surface models A and B (Figure l) which
have been meshed over some parameter space. Models in other
formats (like polygon-lists, NURBS, or implicit surfaces) must
be resampled and meshed so that they have similar parameter
spaces. This may seem like a relatively harsh restriction,

ED parametric space

30 geometry

Figure 1. Object A is morphed into Object B. The objects
are parametric surfaces. To interpolate between the
geometries, interpolate between the 213 parameter spaces.

47

making the technique applicable only to convex or star-shaped
objects. However, there are physically-based and model-
specific projection techniques [3] that can be applied to more
complex geometries,

All the surface attributes of the source models must be available

in the 2D parameter space so that they may be interpolated.
There are map-parameters attached to each sample as well. For
example, in the case of a spherically-projected apple, the map-
parameter is the radius at each sample point. Knowing the
radius, one can reconstruct the surface of the original apple and
attach the sample's surface attributes to it.

The surface attributes are interpolated as well as the samples’
map-parameters. The interpolated map-parameters serve to
construct the morphed target model from a morphed image in
the 2D parametric space. The 3D target model is derived from
this image by applying the mappings; in doing so, we use the
“morphed" values of the map~parameters at each sample point
to construct the surface of the target.

4 INTERACTIVE IMPLEMENTATION

We have implemented a prototype system on the Pixel-Planes
5 graphics multicomputer, a heterogeneous system consisting
of over 30 Intel i860-based MIMD nodes and a massively
parallel array of SIMD pixel processors [2]. We chose Beier’s
technique for its easy and intuitive_control methods. We
demonstrate our method on 3D models of human heads

generated by a SD scanner (CyberwareTM). These models are
represented in cylindrical coordinates (with the mantle of the
cylinder serving as the 2D parameter space for the morphing
process). Our samples contain the surface attribute color and
the map-parameter radius. Traditional morphing between 20
images operates on color as a function of 2D pixel coordinates;
here we operate on color and radius as functions of the 2D
parametric coordinates angle and height.

The software design of the system is straightforward: the entire
2D parameter space of each of the two source models with
surface attributes andrnap-parameters is replicated on all MIMD
nodes. Each node generates a subset of the morphed parametric
image. The nodes then apply the morphed colors and map-
parameters to generate colored polygons from the morphed
parametric image (Plate 1).

Plate 2a shows a pair of 2D parametric images on which a user
has marked features. The background images show the color
intensity of the models in the parameter space of cylindrical
coordinates. Plate 2b shows the radii (essentially height
functions) in cylindrical coordinates, mapped to gray intensity
values. Note the pairs of line segments: they establish
correspondences between various features of the two source
models in the Beier-Neely technique. These features may be
chosen simply by their similar color (like matching the red
regions of lips in a 2D image), but they may also be chosen by
their similar 3D geometry (like matching the pointed tip of
each nose). This latter ability is crucial for matching features
in regions of constant color. These regions are prominent in
profile, but not in the general projected views. It would be
inefficient to search for corresponding features by continually
rotating the objects until their features are identifiable by their
colors alone.

Plate 3 shows a sequence of shape metamorphosis images
generated by our system. Mapped onto the surfaces of the 3D
models, the line segments become surface-following curves.
The face rotates as it is morphed to demonstrate how the

All

geometric features are preserved during the interpolation.
Notice, for example, how the lips spread open as the morphing
progresses. Notice also that one of the eyes is obscured in the
left image. Pure image-based morphing cannot interpolate
between features when one of them is obscured under a

particular viewing projection.

The entire process of matching features and warping between
the surfaces in Plate 3 takes only a few minutes for a trained
user. The 274-by-222 surface mesh with 33 pairs of line
segments for correspondence definition is morphed and
rendered on Pixel-Planes 5 at 20 frames per second (4-by-4
decimation) or at 1 frame per second (full resolution).

5 FUTURE WORK

We are currently working on a true 3D interface for our system.
This will allow the user to specify correspondence areas
directly on the 3D source objects, while continuing to use 2D
parametric space morphing techniques. In the future we plan to
add support for other types of parametric spaces besides
cylindrical projections. Then our system could allow
controlled shape metamorphosis for many of the classes of 3D
objects described in [3].

6 CONCLUSIONS

We have described how to apply image-based metamorphosis
to parametrically defined 3D surfaces or arbitrary surfaces that
can be expressed parametrically using projection techniques
described in [3]. For such surfaces our method is superior to
ordinary image-based warping: the warp is defined only once
(rather than frame-by-frarne) for an entire animation and can be
accomplished in a short interactive session. Since our method
provides local correspondence definition, it is superior to
previous techniques that automatically map between surfaces in
a global manner. The technique is easily parallelizable; on our
prototype system the interpolating surfaces can be constructed
and displayed at interactive frame rates.

Finally, the animation sequences produced with our method do
not exhibit the “flattening” effect typical for image-based
morphing. Our sequence has an intuitively three-dimensional
“look.” noticeable not only in high-resolution animations, but
also at lower resolutions. during interactive operation.

We would like to acknowledge the contributions of Andrew
Brandt, Anselmo Lastra, Greg Turk and David Addleman.

REFERENCES

l. Beier, Thaddeus, and Shawn Neely. “Feature-Based
Image Metamorphosis." Proceedings of SIGGRAPH ‘92
(Chicago, Illinois. July 26-31. 1992), In Computer Graphics
26, 2 (July 1992), pp 35—42.

2. Fuchs, Henry et. al. “Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor Enhanced
Memories.” Proceedings of SIGGRAPH '91 (Las Vegas,
Nevada. July 29-August 2, 1991). In Computer Graphics 25, 4
(July 1991), pp 79-88.

3. Kent. James R., Wayne E. Carlson, and Richard E.
Parent. “Shape Transformation for Polyhedral Objects."
Proceedings of SIGGRAPH '92 (Chicago. Illinois, July 26-31,
1992). In Computer Graphics 26, 2 (July 1992). pp 47-54.

4. Wolberg. G. Digital Image Warping. IEEE Computer
Society Press, 1990.

47

48

ranon:mantra?
U<mDUw

i-ro—ILI-Uunauurnmuwhm
nut...
to

Shadow Volume BSP Trees for Computation of Shadows in Dynamic
Scenes

Yiorgos Chrysanthou“ and Mel Slater“

Queen Mary and Westfield College,
University of London.

ABSTRACT

This paper presents an algorithm for shadow calculation

in dynamic polyhedral scenes illuminated by point light
sources. It is based on a modification of Shadow Volume

Binary Space Partition trees, to allow these be construc-

ted from the original scene polygons in arbitrary order and
to support for fast reconstruction after a change in scene
geometry. Timings using sample scenes are presented that
indicate substantial savings both in terms of computation
time and shadows produced.

KEY WORDS: shadows, BSP Trees, SVBSP Trees,
dynamic modification.

1 INTRODUCTION

An algorithm is presented for rapid updating of shadows
in dynamic environments, where objects are transformed in
near real time with induced Changes to shadows computed
and displayed. The algorithm employs shadow volumes
(SV). This was a term used by Crow [5] to denote the semi-
infinite volume enclosed by the shadow planes (SP) formed
by the triangle of the edge vertices and the light source po—
sition, for each edge of a polygon and culled by the polygon
plane. Reviews of shadow algorithms for static scenes may
be found in [1, 19, 15]. An algorithm for shadows in dy—
namic scenes is described in [5]. This uses a Shadow Tiling
and a Binary Space Partition (BSP) tree. BSP trees were de-
veloped by Fuchs, Kedem and Naylor [8] as a visible surface
determination, based on Schumacker’s results [14]. A BSP
tree is a hierarchical subdivision of space into homogeneous
regions, using the planes defined by the scene polygons as
partitions. It is mainly suitable for static scenes but un-

der the right circumstances it can deal with moving objects

’Department of Computer Science, QMW University of London,
Mile End Road, London E1 4N5, UK. e—mail: yiorgos©dcs.qmw.ac.uk,
mel©dcs.qmw.ac,uk

Permission to copy without fee all or part of this material is

[7, 17, 5]. Thibault, Naylor, and Amanatides [11, 15] em-
ployed the BSP tree to represent arbitrary polyhedral solids
and for set operations on polyhedra in representation and
rendering for CSG. They also showed that a BSP tree can
be constructed incrementally.

Based on these results Chin and Feiner [3] introduced the
Shadow Volume Binary Space Partition (SVBSP) tree al-
gorithm for point light sources that can be used to compute
shadows efficiently for polyhedral scenes. The algorithm
used a BSP tree to order the input polygons in increasing or—
der of depth from the light source, and to incrementally build
a BSP tree representation of a single merged shadow volume
for the whole Scene. In the process of building the tree, the
scene polygons are split and labeled as lit or shadowed. The
algorithm operates in object space so that the shadows need
not. be regenerated if the viewing parameters are changed.
The method is therefore suitable for walk—through applica
tions. However, it is not suitable for interactive modification

of objects in the scene, since any change in an object’s pos-
ition could destroy the ordering and may require the recon—
struction of the shadow tree. Similar structures were used

in [10] for image representation and in [4, 2] for determining
illumination discontinuities from area light sources.

The algorithm presented here employs a generalization
of the SVBSP tree that does not require the construction of
a BSP tree of the original scene polygons, and that does sup
port near real-time incremental changes to the SVBSP tree
and therefore to shadows in response to object transformer
tions. This method also results in computation of a smaller
number of shadows compared to the original method. An
application of the algorithm on a VB system is described in
[18].

2 BUILDING THE UNORDERED SVBSP
TREE

The standard SVBSP tree is built from an ordered set of

polygons so there is no question as to which polygon is
closer to the light source when the SVs of two polygons insgranted provided that the copies are not made or distributed for

Cllrect commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics. Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

tersect. Building the tree using only the shadow planes is
sufficient. For the unordered SVBSP tree the scene P01)"

guns themselves must be added to convey that information:
so the SV of each individual polygon is complemented with
the polygon plane. Since nodes containing shadow planes

45

48

49

Figure 1'. Full shadow volume

L12 '4“—

/ \ / SP—NODES
OUT

PP—NODE
L23

OUT IN

Figure 2: Shadow volume as a BSP tree

and nodes containing polygon planes are treated differently
by the algorithm they will be distinguished by calling the
former SP-Nodes (Shadow Plane Nodes) and the latter PP-
Nodes (Polygon Plane Nodes), Figure 2 .

The algorithm Uses a copy of the scene polygons in the
tree for calculating the shadows which are then stored as
detail ontop of the actual scene polygons.

The tree is built incrementally by inserting the light—
facing polygons into an initially empty tree, a single OUT
node (Figure 3). The first polygon just replaces that node
with its SV (Figure 4). Subsequent scene polygons are
filtered into the tree by comparing them at each level against
the plane at the root of the tree and recursively inserting
them into the appropriate subtree. If they straddle the root
plane then they are split and each piece is treated separ-
ately. When an OUT node is reached it is replaced by the
SV. If the polygon was split its SV is built using the shadow
planes of the original polygon (polygon 4 in Figure 6). This
is necessary for dynamic modification and it also means that

the SV needs to be calculated only once even if a. polygon is
split into many pieces.

A face onto which a shadow is cast is referred to as a

target face. When a PP-Node is encountered, if the inserted
polygon is classified as behind its plane then it is marked
as shadowed and Stored there (face 3 in Figure 6). If it is
Classified as in front then it. takes note of the face at the root
as a potential target and it is inserted into the front subtree.

49

46

If it reaches an OUT node then a shadow is cast on the face

stored as potential target (face 2 in Figure 6). If it comes in
front of more than one potential target, only the last one is
remembered and used (polygon 5 in Figure 7 comes in front
of 2 and then in front of 4, a shadow is casted only on 4).

To cast a shadow onto a target, the original scene polygon
of the target is clipped against the relevant SV.

3 USING THE TREE FOR DYNAMIC
SHADOW COMPUTATION

In an interactive application where the scene geometry
changes, the tree can be used to maintain the correct shad-
ows.

During the building of the tree, each inserted polygon
constructs a list of pointers to the locations it occupies on
the tree. When an object is transformed, its polygons and
their shadow planes on the tree are found using the loca—
tion lists and are marked. After all relevant polygons have
been marked, a recursive function is called that will iter-

ate through the SVBSP tree once and remove all marked
nodes. The result of this will be a valid SVBSP tree for the

scene, but now without the transformed object. The object
can then be reinserted into the tree using the algorithm de-
scribed in section 2, to get the shadows at its new position.

3.1 REMOVING THE MARKED NODES

The function used for removing the marked nodes works on
the whole SV of polygons rather than on single nodes. There
are 3 possible positions for each polygon and its shadow
volume to consider:

(a) In the IN region, behind a PP—node (no shadow planes
were attached here, just the polygon). This is the simplest
case, the polygon is just removed (polygon 3 in Figure 7).

(h) At the leaves, subdividing an empty subspace. Again
this is simple, the SV is replaced by an OUT node. Care
must be taken if the PP—Node had a non-null target. This
occurs when it is in front of some other PP-Node during
insertion and it is now casting a. shadow on this. In this case
the shadow must be removed. For example when deleting
polygon 5 in Figure 7 , the front (left) subtree of node labeled
4.2 should be replaced by OUT and the shadow on polygon 4
should be deleted (the arrows there Show the target relation).

(c) Splitting a non-empty subspace, the SV forms the root
of a larger subtree. This is the only relatively complex case.
Removing it would result in unconnected subtrees and these
must be put together to form a new tree to replace the old
one. If the deleted polygon was casting a shadow then that
must be replaced by shadows from polygons that had the
deleted one as target. These can only be in the front subtree

,of the deleted PP—node. For example if polygon 4 in Figure 7'
' is deleted then the shadow from 4 to to 2 should be replaced

by a shadow from 5. Any polygons that were in shadow,
in the IN region behind the deleted polygon, must also be
inserted into the new unified subtree.

50

hmflm

CD

”(DD—F

(9

Eu:

ammomwmfl
El-

Fo-D‘Edt”

V our

2% 0.: ;.\OUT IN

Figure 3: Initial scene

\
lb

25 / \

/\ our /1\4 /2b\ our IN3
/ \ our \

our }b\ /2m,m
OUT 4\ ’4a\/' OUT 11

our IN j \OUT 4.:
/ \

our 1N

Figure 6: Insert poly 3 and 4

3.2 JOINING THE SUBTREES

Naylor in [11] described an algorithm for merging BSP trees
that could be used in case (c) above. Given two BSP trees
for merging, treel is inserted into tree2. To achieve this
tree2 is split into tree2.front and tree2.back by filtering the
root of treel into it. These two new trees are then recurs—

ively merged into the corresponding subtrees of treel until
they reach the leaves. Experimental results have shown this
method to be very slow for our purposes. The main reason
is that it operates on a closed subspace and it would require
the shadow planes involved in the merging to be clipped and
bounded. Also it is very general, it doesn’t utilise the fact
that all the shadow planes emanate from the same point (the
light source),

A more specialised algorithm is used here. The largest of
the trees to be merged is found, say treel, and any possible
marked nodes on this are removed. The inserted tree, tree2,
is then treated as a set of shadow volumes. The polygon
node (PP-Node) of the shadow volume forming the root of
tree?! is found and filtered clown treel along with its front
and back subtrees. The filtering is done in a similar manner
to a polygon. The fact that all shadow planes go through
the light source position, ensures that anything enclosed by
a polygon’s shadow volume can be split by another shadOW
plane, only if the polygon itself is split. This means that the
front and back subtrees need to be checked for intersection

with a plane only if the polygon is split by that plane. If the

Figure 4: Insert poly 1

IN

47

50

Figure 7: Insert poly 5

PP—Node meets another fragment of its own original polygon
they can join up under its shadow volume (this is possible
since the shadow planes used by the fragments are those
of the original). When it reaches an OUT node its SV is
attached. After the ‘root’ SV and the subtrees of its PP-

Node have been inserted, the algorithm is called recursively
to insert the front subtrees of its SP-Nodes.

Note that the subtrees involved here existed in non—

intersecting subspaces separated by the deleted planes so
there is no shadow relation between them. Also, if polygons
split or come together during the merging, the shadows on
them or the shadows they cast do not change.

4 FURTHER DISCUSSION

When a target object is being continuously transformed, for
example as a result of being dragged during an interaiCtive
application, the functions described in sections 3.1 and 3.2
are only relevant for the very first transformation. After the
first deletion and re—insertion, the faces will end up at the
leavesand in subsequent frames can be deleted in constant
times

I In the standard SVBSP tree the smaller objects tend to
be higher up the tree because they tend to be closer the light
source. This is the order that is obtained from the scene BSP

tree traversed from the light position. Also their polygons
may be widely distributed in the tree (Figure 10). Moreover

51

" scene scene polygons S~SVBSP U—SVBSP after BSP U—SVBSP no BSP
initial after BSP time (sec) shadow pol time (sec) shadow pol time (sec) shadow pol

1 133 178 .46 332 .45 237 .28 172
2 211 285 .72 526 .74 384 .51 292
3 313 579 1.25 892 1.16 577 .63 389
4 745 1830 4.65 3820 3.70 2458 1.51 1063

Table 1: Timings for initial building

scene object object polygons absolute time lsec compared to U-SVBSF info compared to S-SVBSP gelmoved number % of scene first move next move first move next move first move next move
1 computer 34 19 0.08 0.055 17 122D 15 0.03 0.025 12 9 7 5

2 computer 34 19 0.12 0.060 16 S
20 15 0.07 0.030 14 6 10 4

2 bookcase 84 30 0.25 0.135 34 19
54 26 0.19 0.095 37 18 26 13

3 computer 51 9 0.21 0.070 17 5
20 6 0.05 0.030 S 5 4 2

4 computer 34 2 0.25 0.100 5 2
2D 3 0.12 0.060 8 3 3 1

‘1 comp. 8c desk 19’? 11 0.42 0.210 9 4
50 8 0.16 0.080 1] 5 3 2

Table 2: Transformation timings

these smaller objects are the ones most likely to be selected
and transformed during an interaction.

In the method described here, the polygons may be
grouped together according to the object to which they be—
long and given to the SVBSP tree in that order. There-

fore there is greater probability that the polygons belong-
ing together will be grouped together in the SVBSP tree
(Figure 11) Also the smaller objects can be inserted last.
For Figure 11 the objects were inserted in depth—first order
in the scene hierarchy (Figure 9).

A small proportion of shadow planes in the tree are re-
sponsible for most of the splitting. Removing these, when
their polygons have moved, could be an expensive opera—
tion. This can be avoided by leaving these nodes in the
tree as marked and not removing them, if their subtrees are
found to be too large. They are removed eventually when
later transformations make their subtrees sufficiently small.

More than one light source can be modeled by creating
a separate SVBSP tree for each. The input for subsequent
sources are the initial scene polygons and their shadows.

5 RESULTS

The algorithm was implemented in C on a SUN SparcStation
2 with 16MB memory. The scenes used consisted of a room,
which contained bookcases with two books, and desks with
computers on top, the number of initial polygons ranging
from 133 to 745.

Table 1 shows the numbers of polygons in four test

scenes, including the number of polygons after the creation
of a scene BSP tree. It also shows the time for creating the
SVBSP trees (excluding the time to create the scene BSP
tree). The unordered SVBSP tree is created in two altern-
ative ways, using the initial set of polygons (column marked
U—SVBSP no ESP) and using the polygons after they have
been split by the scene BSP tree (column marked U—SVBSP
after BSP). In both cases however the order of insertion is
determined by the scene hierarchy. The different ordering is
partly responsible for the difference in timing between the
two methods. Timings include the calculation of the shadow
geometry. The results suggest that even when (unnecessar-
ily) using the polygons from the scene BSP tree, the un‘
ordered tree takes no more time to build, and results in less
shadow polygons than the method describe in [3].

Table 2 gives timings for transformations of various ob—
jects. The different versions of computer are for different
computers in the scene. In each case the number of poly-
gons along with the proportion of the total scene accounted
for by the object being transformed is shown. The timings
for transformations differentiate between the first move and

subsequent moves. The subsequent transformations always
take less time, for the reasons given in Section 4. The column

marked compared to S-SVBSP gives the proportion of time
taken for the transformation in comparison with recreating

. the complete standard SVBSP tree and the column marked
compared to U—S VBSP the proportion of time against recreA
ating the complete unordered SVBSP tree.

Two sets of experiments were performed for each scene.

52

In the first set (first row for each scene), a BSP tree was
built for representing the scene and the resulting polygons
were used as input for building both SVBSP trees. This
was done for getting a measure of the performance when
the input polygons for the SVBSP trees are the same. In
the second set of experiments (second row), the unordered
SVBSP tree was built from the scene polygons, which is why

the same object has less polygons and it takes less time to
move. The standard SVBSP tree used for comparison is the
same throughout.

6 CONCLUSION

This paper has presented a method for shadow generation
for dynamic scenes. It is based on the generalised SVBSP
tree algorithm that uses full shadow volumes and adds the
polygons in any order. The resulting tree preserves all the
benefits of the ordered SVBSP and yet it can be rapidly
modified in response to changes in the scene polygons due to
object transformations. As a result it is possible to interact-
ively manipulate objects in near real time, while maintaining
correct shadows, even on a standard workstation without a
3D graphics accelerator, such as the SparcStation 2 running
X Windows. The algorithm only produces shadow umbras,
which although better than no shadows at all, still leaves a
lot to be desired in terms of realism. Future work involves

extending the algorithm to soft shadows, produced by area
light sources. This was considered, for static scenes, by Chin
and Feiner in [4].

ACKNOWLEDGMENTS

Y. Chrysanthou’s work is supported by the Keddy Fletcher—
VVarr Studentship (University of London) and the Overseas
Research Students5 Fee Support Scheme.

REFERENCES

1. Bergeron, P. A general version of crow’s shadow
volumes. IEEE Computer Graphics and Applications 6,
9 (1986), irwzs.

2. Campbell, A, T. Modelling Global Difiusc Illumination
for Image Synthesis. PhD thesis, Department of Com-
puter Science, University of Texas at Austin, Dec. 1991.

3. Chin, N., and Feiner, S. Near real-time shadow genera
tion using BSP trees. Computer Graphics 23, 3 (1989),
99—106.

4. Chin, N., and Feiner, S. Fast object-precision shadow
generation for area light sources using BSP trees. In
ACM Symposium an Interactive 3D Graphics (1992),
pp. 21—30.

5. Chrysanthou, Y., and Slater, M. Dynamic changes to
scenes represented as BSP trees. Eurogrnphics .92, Com-
puter graphics Forum 11, 3 (1992), 321—332.

6. Crow, F. Shadow algorithms for computer graphics.
Computer Graphics 11, 2 (1977), 242—247.

52

49

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Fuchs, H., Abram, G. D., and Grant, E. D. Near real—
time shaded display of rigid objects. Computer Graphics
17, 3 (1983), 55—72.

Fuchs, H., Kedem, Z. M., and Naylor, B. F. On visible
surface generation by a priori tree structures. Computer
Graphics 14, 3 (1980), 124—133.

Gordon, D., and Chen, S. Front—to—back display of BSP
trees. IEEE Computer Graphics and Applications 11, 5
(1991), 79785.

Naylor, B. F. Partitioning tree image representation and
generation from 3d geometric models, In Proceedings of
th Graphics Interface (1992), pp. 201—212.

Naylor, B. F., Amandatides, .l., and Thibault, W. Mer—
ging BSP trees yields polyhedral set operations. Com-
puter Graphics 24, 4 (1990), 115424.

Paterson, M. S., and Yao, F‘. F. Binary partitions with
applications to hidden surface removal and solid model-
ing. In Proceedings of the 5th Annual ACM Symposium
on Computational Geometry (1989), pp. 23-32.

Paterson, M. S., and Yao, F. F. Optimal binary space
partitions for orthogonal objects. Discrete Computa—
tional Geometry 5 (1990), 485—503.

Schumacker, R., Brand, 13., Gilliland, M., and Sharp,
W. Study for applying computer—generated images to
visual simulation. Tech. Rep. AFHRL—TR-GQ—M, NTIS
AD700375, US. Air Force Human Resources Lab., Air
Force Systems Command, Brooks AFB, TX,, September
1969.

Slater, M. A comparison of three shadow volume a!-
gorithms. The Visual Computer .9, 1 (October 1992),
25—38.

Thibault, W. C., and Naylor, B. F. Set operations on
polyhedra using binary space partition trees. Computer
Graphics 21, 4 (1987), 153—162.

Torres, E. Optimization of the binary space partition
algorithm (BSP) for visualization of dynamic scenes.
Eurographics .90, Computer graphics Forum 9, 3 (1990),
507—518. CE. Vandoni and DA. Duce (eds), Elsevier
Science Publishers B.V. North-Holland.

Usoh, M., Slater, M., and Chrysanthou, Y. The influ—
ence of shadows on presence in immersive virtual envir—
onments. Submitted Jfor publication (1994).

Woo, A., Poulin, P., and Fourier, A. A survey of shadow
algorithms. IEEE Computer Graphics and Aplications
10, s (1990), 13—31.

53

Figure 8: Scene 2

Room

\\
Wind/owBOOkCflSCl De\skl Desk2\Deskf! Bookcase2 Book]/Book2 C0m\puterl Computer-2

Figure 9: Model hierarchy

Figure 10: Position of computers in standard SVBSP

Figure 11: Position of computers in unordered SVBSP

The faces of computerl in the tree are marked by a El and those of computerZ by *

53

50

54

Interactive Display of Large-Scale NURBS Models

Subodh Kumar Dinesh Manocha Anselmo Lastra

Department of Computer Science

University of North Carolina

Chapel Hill NC 27599

{kumar,manocha,lastra}@cs.unc.edu

Abstract:

We present serial and parallel algorithms for interactive
rendering of large scale and complex NURBS models on cur-
rent graphics systems. The algorithms tessellate the NURBS
surfaces into triangles and render them using triangle render-
ing engines. The main characteristics of the algorithms are
improved polygonization algorithms, exploitation of spatial
and temporal coherence and back-patch culling. Polygoniza—
tion anomalies like cracks and angular-ities are avoided. We
analyze a number of issues in parallelization of these tech-
niques, as well. The algorithms work well in practice and are
able to display models consisting of thousands of surfaces at
interactive frame rates. on the highly parallel graphics sys—
tem, Pixel—Planes 5.

1 Introduction

Current graphics systems have reached the capability of ren-
dering millions of transformed, shaded and z—buffered poly—
gons per second [3, 14]. HDWever in many applications in-
volving CAD/CAM, virtual reality, animation and visualizas
tion the object models are described in terms of non—uniform
rational B—spline (NURBS) surfaces. This class includes
Bézier surfaces and other rational parametric surfaces like
tensor product and triangular patches. Large scale models
consisting of thousands of such surfaces are commonly used
to represent shapes of automobiles, submarines, airplanes,
building architectures, sculptured models, mechanical parts
and in applications involving surface fitting over scattered
data or surface reconstruction. Current renderers of sculp-
tured models on commercial graphics systems, while faster
than ever before, are not able to render them in real time
for applications involving virtual worlds, walkthroughs and
other immersive technologies.

Main Result: We present serial and parallel algorithms
for interactive display of large-scale NURBS models on cur-
rent graphics systems. Given NURBS surface representa-
tions, the algorithm decomposes them into a series of Bézier
surfaces and computes tight bounds for on-line tessellation.
We perform back-patch culling to determine visible surfaces
on solid models and make use of coherence between adjacent

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
dlrect commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive so Graphics, Monterey CA USA
© 1995 ACM 0-89791-736—7/95/0004...$3.50

54

51

frames using incremental computations. The resulting algo—
rithm is portable and its actual performance is a function
of the hardware resources available on a system (memory,
CPUs, and special purpose chips). We have been able to dis-
play many complex models in real time using our algorithm.
In particular, our current implementation on the SGl—Onyx
with a Reality Engine 2 can display about four hundred sur-
faces and on Pixel—planes 5, [14] more than ten thousand
surfaces at interactive frame rates (about 12 — 15 frames 3
second). On parallel graphics systems, the algorithm mini-
mizes communication between processors, and load balances
the work.

Previous Work: Curved surface rendering has been an
active topic of research for more than two decades. The main
techniques are based on pixel level surface subdivision, ray
tracing, scan—line display and polygonization [6, 7, 15, 18].
Techniques based on ray tracing, scan-line display and pixel
level display do not make efficient use of the hardware ca-
pabilities available on current systems. As a. result, only
algorithms based on polygonization are capable of real time
display, Different methods have been proposed for polygo-
nization [2, 10, 26, 27, 13, 24, 23, 1, 12]. These are based on
adaptive or uniform subdivision of NURBS surfaces. A real
time algorithm for trimmed surfaces was proposed in [24].
However the bounds used for tessellating the Bézier surfaces
are loose for rational surfaces and in some cases even under-

sample the surface. Some techniques to improve the tessella—
tion and their computations are presented in [12, 1, 2]. The
algorithm presented in this paper has considerable improve-
ments over these algorithms.

Organization: The rest of the paper is organized in
the following manner. In Section 2 we analyze the problem
of computing polygonal approximations to surface models
and give an overview of our approach. In Section 3, we con-
sider visibility processing and introduce back-patch culling.
The algorithms for dynamic tessellation of Bézier surfaces
based on tight bounds are presented in Section 4. Section
5 briefly describes rendering of trimmed models. We dis-
cuss the serial and parallel implementations in Section 6 and
compare their performance with that of earlier algorithms.
We address a number of issues related to parallelization of
these algorithms. In this paper we have demonstrated these

. techniques on tensor-product surface models only. HOWEVER
they are directly applicable to models composed of triangular
patches as well.

55

Back—Patch

Culling

Bezier
Patch HTessellation fa

Back—Face Polygon
Transformatio Culling

Figure 1: Overall Pipeline for Rendering NURBS Models

2 Polygons! Approximation of Surfaces

Any surface rendering algorithm based on polygomzation in-
volves two phases of computation for each frame:

0 Polygon Generation Phase: Approximate the surface
by polygons. The number of polygons generated should
result in a smooth image after Gouraud or Phong shad—
ing.

I Polygon Rendering Phase: Render the polygons
through the graphics pipeline using transformation,
smooth shading and z-buffering.

Each of these contributes to the running time of the over-
all algorithm. The performance of polygon rendering algo—
rithms is system dependent and typically is a function of the
number of polygons and the size and distribution of these
polygons on the screen. Our emphasis is to develop efficient
algorithms for polygon generation (we are really interested
in triangle generation, since triangles can be rendered signif-
icantly faster than general polygons on most systems) and
in the process we want to optimize:

1. The number of polygons generated.

2. The time spent in generating the polygons.

These two goals are conflicting. On one hand we can com—
pute a very fine polygonization a priori and can render all
the polygons at each frame. in this case, almost no time is
spent in polygon generation and all the time is spent in ren-
dering. However the number of polygons needed for close—up
(zoomed) vieWs ofsome surfaces can be extremely high (a few
thousand) and for models consisting of thousands of surfaces,
this requires hundreds -of megabytes of storage, and the capa‘
bility to render hundreds of millions of polygons per second.
We can reduce the demand on polygon rendering capabil-
ity by computing different multiresolotion approximations of
each surface and at each phase choosing one of the approx—
imations as a function of the viewing parameters. But the
memory requirements only get worse. On the other hand,
We can on-line compute the minimum number of polygons
required for a smooth image as a function of the viewing pa-
rameters (for each frame). The resulting algorithm is based
on adaptive subdivision and takes considerable time in the
polygon generation for each frame. As a result, it is too slow
for interactive performance on large-scale models.

Overview: Any good algorithm has to balance the con-
flicting goals highlighted above. Our approach to interactive
display of large-scale models has the following facets.

1. Visibility Processing : Perform simple on-line compu-
tations to isolate patches not visible from the current
viewpoint. This includes use of viewing frustum as well
as a new technique, bock~palch calling.

2. Dynamic Tessellation : Given the viewing parameters,
we dynamically compute the tessellation appropriate
for smooth shading. As a. result, we need only a few
megabytes of memory to store the polygonization for
large—scale models. We use tight bounds to optimize
the number of polygons generated.

52

55

3. Coherence : We make use of coherence between suc-

cessive frames to minimize the overall computations for
polygon generation. In particular, we perform incre-
mental computations.

4. Parollelization : We make use of hardware on parallel
graphics systems and distribute the computations over
multiple processors.

2.]

Given a NURBS model, we use knot insertion to decompose
them into a series of Bézier patches [11}. In the process, we
insert the minimum number of knots as a function of the

knot sequence of the original surface and its order. Closely
spaced knots, with tolerance less than 2 x 10—5 are coerced
to the same value before knot insertion. Trimmed NURBS
surfaces are decomposed into a series of trimmed Bézier sur-
faces. This involves knot insertion algorithm as well as the
breaking up of the trimming curves at the patch boundaries.
Trimming curves are typically represented as piecewise lin—
ear curves or NURBS. Piecewise linear curves are split at the
patch boundaries and new points inserted at the boundary.
NURBS curves are converted into Bézier curves and split
across the surface boundaries as well by computing their in-
tersections with the patch boundaries.

The 3D coordinate system in which the NURBS model is

defined is referred to as the object space. Viewing transfor—
mations, like rotation, translation and perspective, map it
onto a viewing plane known as the image space. Associated
with this transformation are the viewpoint, viewing cone and
clipping planes. Finally, screen space refers to the 2D coordi-
nate system defined by projecting the image space onto the
plane of the screen.

Background

2.2 Overall Pipeline

An overall pipeline of the polygonization algorithm is high—
lighted in Fig. 1. It consists of four phases. In particu-
lar, we perform a visibility based rejection check, back-patch
culling. lt compares a volume corresponding to a superset of
normals of the Bézier patch with the viewing direction and
rejects the patch if the entire volume is not visible. Oth-
erwise the patch is tessellated into polygons as a function
of the viewing parameters. The algorithm makes use of co—
herence between successive frames and computes the poly-
gonization incrementally. The resulting set of polygons are
transformed as a function of the viewing transformations fol-
lowed by back—face culling. The actual implementation and
performance of each phase varies with the graphics system.
in particular, we highlight the performance on SGI Reality
Engine and Pixel Planes 5 graphics systems.

3 , Visibility Computations

Given a large model consisting of Bézier patches, not all
patches are typically visible from a viewpoint. A good part
of the model may be clipped by the viewing volume. The
rest of the model is tessellated and the polygons are sent

3 Rasterizer

56

'izer

Normals on a Surface

Figure 2: Patch Visibility

down the rendering pipeline. On the other hand if we a pri-
ori determine that a Bézier patch is not visible from a given
viewpoint, we don't need to even generate the polygons for
that patch. In general, the exact computation of the vis-
ible portions of a NURBS model is a non-trivial problem
requiring silhouette computation [16]. We show that it is
relatively simple to perform a visibility check to find most of
the patches that are completely non-visible.

A Bézier surface, defined in homogeneous coordinates as
F(u, v) = (X(u, v), Y(U,U), Z(u,v),W(u, v)), is specified by
a mesh of control points. Fru‘thermore, the entire surface is
contained in the convex polytope of the control points [11].
Let us denote this convex polytope as Pp. We also compute
an axis—aligned bounding box, BF, defined by eight vertices
as the smallest volume bounding box enclosing Pp.

3.1 Back-patch Culling

We initially perform viewufrustum culling based on the rect—
angular bounding box for each patch. In case, the patch is in
the viewing cone, we check whether it is occluded from the
View. Culling out ba-Ck facing polygons is commonly used to
improve rendering performance. Similarly for a Bézier patch,
if all the surface normals point away from the eye point we
refer it as a back patch (Fig. 2). The normal vectors on the
surface are defined as N(u,u) = Fu X F”. (We assume that
all normals point “outwards” from the model.)

The exact- computation of back—patches involves computa-
tion of the Gauss maps of the surface. They correspond to a
mapping of the normals onto the unit—sphere. However, the
exact computation is relatively expensive and our algorithm
represents the pseudo-normal surface, N(u,v), as a Bézier
surface. This is obtained by taking the cross product of the
derivative vectors (Fig. 3) and performing degree elevation
to compute the control points of the pseudo—normal surface.
The convex hull of the control points of N(u,v), say PN,
is used to obtain a bounding polytope. Furthermore, we
compute a minimum volume eight vertex axisvaligned box
BN bounding it. Each point on N(u,v) corresponds to a
direction on F(u,v) and PN and EN define multiple sided
polytopes in which all these directions lie. Corresponding to
the viewing direction vector, say V, we define a half-plane
H perpendicular to V such that it partitions the unit sphere
into two hemispheres (51 and 52, see Fig. 3). If the Gauss
map of the surface lies entirely in .31, it is not visible to the
eye. Given V, we compute H and check whether all the
vertices of PN lie in the halfspace containing 31.

if F(u,u) has a polynomial representation, the pseudo-
normal surface consists of 2m x 211 control points. For ra-
tional patches, the degree bound obtained after taking the

56

53

Half-Space (H)

B
Viewing Direction (V)

Figure 3: Visibility Computation

cross—products is (4111 - 1) in u and (4n — 1) in 9. However
it can be improved in the following way. Let

f(u, v) = (X(u,u), Y(u, U),Z(u, U).

fW—fWu quafW

FHZu—Vv‘r, Fu-T—W—EE.
Therefore, the pseudo-normal surface can be written as: N =
(fu W—fWu) x (qu—fWu). After expanding this expression,
simplifying, and dividing by W we get

N=fuvaW—fuxva—fWuxfu.

Thus, the pseudo normal surface can be represented by (3111+
1) x (3n + 1) control mesh. Testing for visibility reduces to
checking whether each of these control points, or just the
bounding box BN, is in the appropriate half—space.

As the objects are transformed using translation, rota—
tion or zoom, we do not transform each control point of
Bézier surface and recompute N(u, 1;). Rather, we transform
the viewing volume and the corresponding viewing vector V
and half-plane H. As a result, at each frame we are only
testing whether the control points or the bounding box of
the pseudo-normal surface lie in the transformed half—space.
These control points and their convex hulls, bounding boxes
are computed as part of lore-computation.

For most solid models, back-patch culling eliminates about
30 - 40% of the model. However, the overall frame rate im-
proves by 15 -35% depending on the model and the graphics
system. The actual performance is highlighted in Section 6.

4- Polygonization

We dynamically compute the polygonization of the surfaces
as a function of the viewing parameters. Polygonization can
be computed using uniform or adaptive subdivision for each
frame. Uniform tessellation involves choosing constant step
sizes along each parameter. Adaptive tessellation uses a re-
cursive approach to subdivision based on “flatness criteria”
and surface areas. For large scale models, we found that Uni—
form subdivision methods are much faster in practice for the
following reasons:

,1."Simplicity of the algorithm - uniform tessellation in-
.‘ volves a precomputation of bounds and evaluation on]!

2. Simple algorithms based on uniform forward differenc-
ing and modified Horner’s rule of average compleXity
C(71) as opposed to 0(112) based on de Casteljflu s 3150'
rithm (for a curve of degree n).

57

3, No good and simple algorithms are known for quick de—
termination of the flatness of parts of a patch.

4. Ability to easily combine uniform tessellation with spa-
tial and temporal coherence.

5. Simplicity of handling trimmed curves intersections,
coving and tiling and visibility determination.

In practice, we have found that most of the large scale mod-
els consist of relatively flat surfaces. This is indeed the case
after converting Bvspline models into Bézier surfaces. Adap—
tive subdivision does well on surfaces with highly varying
curvatures and large areas. On such models the uniform
tessellation may supersample the surface. The performance
of uniform tessellation algorithms is a direct function of the
step sizes.

4.1 Uniform Subdivision

There is considerable literature on computation of bounds
on polynomials [19, 12, 23, 1]. There are two main criteria
for computing bomlds for step sizes: size criterion and tie
viata‘on criterion. The size criterion determines a bound on

the size of the resulting triangles in screen space and the de-
viation criterion computes a bound on the deviation of these
triangles from the curved surface, Further, the size and de-
viation criteria are functions of the first and second order

derivatives, respectively, of the surface vector. The size cri-
terion works well only if the size parameter is small and the
surface does not have small area and high curvature. In the
latter case, these bounds undersample the surface (as shown
in Fig. 4(a)). The deviation criterion generates good approx-
imation but is computationally expensive. In particular for
rational surfaces, the degree of the second order derivative
vector goes up by a factor of four and therefore, any kind of
computation for the deviation critelion takes a large fraction
of the overall time. These bounds can be applied in two ways
for step size computation:

1, Compute the bounds on the surface in the object space
as a preprocessing step. The step size is computed as
a function of these bounds and viewing parameters [19,
12, 1].

2. Transform the surface into screen space based on the
transformation matrix. Use the transformed I'EPI‘ESEIP
tation to compute the bounds, and the step size as a
function of these bounds [23, 24].

We start with the size criterion for bound computations.
To avoid undersampling highly curved surfaces with low an
eas, we use an additional estimate based on the geometry of
the control points.

A rational Bézier surface is given as

FUJI» v) : (AX-(“r ”)1 qu, U): ZOE-11’“): qurvi) =

(23:0Ey=owejriJBfi(u)B;(v), E;OE?=0‘LU¢JB?(H)B?L(U)),
(1

where r5; are the control points in the object space, wry)
are the weights and 3:", B,” are the Bernstein polynomials.
After applying all the viewing transformations (rotations,
translation, perspective), let the new control points in the
screen space be: Rig = (Xi), YUPZU) and WU- be the cor-
responding new weights. Let TOL be the user specified tol-
erance in screen space. The step sizes along the u and v
directions are given as [23]:

nu = m mamfl] Wg,R.‘J— i+1dRi+1v3 HJ/(TOLxmiMi/VQJ)

54

57

"v = n mflrfll WEJRU ‘Wio'HRw'H Ill/(T0L*miN(WiJlJ

forflsigm,1sjgn).
in practice these bounds are good for polynomial surfaces

only, when ng : 1. However after perspective transforma-
tion, all the polynomial parametrizations are transformed
into rational formulations. Furthermore, since the weights
tend to vary considerably (typically by an order of three to
four), these bounds typically oversample the curved surface
for a given TOL. As a result, the polygon rendering becomes
a bottleneck for the overall algorithm.

4.2 Bound Computation

We compute improved bounds for the rational surfaces in
the object space as part of a preprocessing phase. They are
used to compute the step sizes as a function of the viewing
parameters as shown in [12, 2]. An algorithm for compu-
tation of bounds based on the size criterion has been high-
lighted in [1]. However, the derivation of bounds in [l] is
inaccurate and for a given TOL, our bounds are tighter. We
illustrate the derivation on a Bézier curve (it is applied in
a similar manner to the surfaces). Given a rational curve

C(t) = (r(t),y(t),z(t),w(t). Let X(t) = §§%,...,Z(t) =
32%. Given a step size 6 in the domain, we want to come up
with tight bounds on the length of the vector C(t+6)——C(t).
it follows from the Mean Value Theorem:

(C(t + a) — 0(8) = .5 (260.), meg), 2(a)),

where :1, t2, t3 6 [t, t+6]. However, t1, t2 and :3 need not be
equal. As a result

ll C(t + 6) — Cm u= .5 || X'(t1).1"(t2).Z'(t3) H

s a u retrofit) u.

where YULl/F (t)? (t) represent the maximum magni-

tude of X'U), Y’U), Zift), respectively, in the domain [0,1].
Given these maximum values of the derivatives and TOL,
we choose the step size 6 satisfying the relation

:-

.5 g roc/ 4| intro)? (t) ”-

Thus for the Bézier surface, F(u,v), the tessellation param-
eters are computed in the object space as:

X(u, v) Y(u, v) Z(u,o)

mu, W(u.v),’ Wu H /TOL,
”14 =l|

where %((:—’3% corresponds to the maximum magnitude of
the partial derivative of X(u,v)/W(u,o) with respect to u
in the domain [0,1] x [0,1]. m is computed analogously.

The maximum values of the partial derivates are computed
in the following way. Let

_ Xfum) _ (Xu(u,v)W(u,o) —X(u,v)Wu(u,v))
“3““) ' (mt — ———rvrfv—

fy(u,v) and fz(u,v) are defined in a similar manner. The
maximum of fz(u,v) in the input domain corresponds to
one of the roots of fed-u, v) = 0 and fru(u, u) = 0 or oc-
curs at the boundary of the domain. The maximum at the
boundary correspond to one of the roots of f2:(0,v) = O,

58

R

(a) Undersampling (b) Curvature Estimation
Figure 4: Effect of Curvature

fa:(1,v) = 0, fm(u,0) = 0 or fa:(u,1) = O or occurs at
fx(0,0), fx(0,1),fw(1,0) or fz(1,1). Thus the problem of
computing the maximum derivative vector reduces to com-
puting zeros of polynomial equations. in fact, it geometri-
cally corresponds to curve intersection [21, 25]. In the first
case, the two curves are algebraic plane curves, given as:

quW2 _ XWW-uu — ZWuXuW + QXWE = U,

X.,.W2 — XWWW — 214/..qu + 2XW3 = o.

The degrees of these curves are (3m —- 2,312) in (u, u) for the
first curve and (3m,3n — 2) in (11,1!) for the second curve.
This is rather high. However, we are able to compute ac-
curate solutions in double precision arithmetic using the al-

gorithm highlighted in [21]. In particular, it reduces the
problem to computing eigenvalues of a matrix. Good imple-
mentations of eigenvalues are available as part of numerical
libraries like ElSPACK and LAPACK. The resulting algo—
rithms are fast, accurate and need no initial guess to the
solutions. it takes about one second on the SGl-VGX for a
rational bicubic surface. All these computations are part of a

preprocessing stage. Similarly, the maximum of fr“), v) cor-
responds to computing the roots of fault), v) = O, which can
be computed using root—finders or subdivision properties of
Bézier curves [19]. Based on the solutions of these equations,
we compute the maximum values of fa:(u, v) in the domain
[0,1] x [0,1]. Let the maximum value be at [1633,1471]. Sim»
ilar computations are performed on fy(u,v) and fz(u,v).
in case the domain parameters ([um, um], [um vy], [uh 112]), for
the maximum of these three functions differ significantly,
we subdivide the surface patch and compute the maximum
in the subdivided domains using the roots of the equations
shown above. Each of the subdivided surfaces are handled

separately. The complexity of the bounds computation re
duces significantly for polynomial surfaces as W(u, u) = 1
and the resulting equations have much lower degrees.

Given these bounds in the object space, we compute the

step size in the screen space as a function of the viewing
transformations. These bounds are invariant to rigid body
transformations like rotations and translations. They vary

with the perspective transformation matrix as shown in [2]

4.3 Curvature Bounds

For small values of TOL the size criterion bounds, derived
above, work quite well. In case the surface area is small and
CurVature is high, they may undersample the surface. For
example see Fig. 4(a): the curve C is tessellated into two

55

58

| Our Algorithm Ill-ll]
_1.43 1.22 I

Table 1: Ratio of the # triangles generated for a tolerance

segments PQ and QR, each of magnitude less than TOL.
The optimal solution to that problem would be based on the
deviation criterion. However, in practice it typically over-
samples the surface and its computation is expensive. We use
a simple bound based on the geometry of the transformed
control points in the screen space. Let (V0, V}, . . . ,Vn) be
the control points of a planar Bézier curve. The curve is
defined in the screen space. The geometry of the curve is
determined by the geometry of the control polygon. Let
Q5; = n- Angle(V,‘_1,V,-,V.‘+1),lgig n — 1, be the angle
in radians (Fig. 4(b)). Moreover let the area of the control
polygon be A. We add a factor of n; c(i:11¢il/A to
the bound parameter computed in the last section, :2 is a
user—defined constant. lntuitively it works in the following
manner: For a given curve, the tangent vector at t = 0 is
in the direction of V] - VB and at t = 1 is in the direction
of V“ —- on-1. As a result, the term Ed, reflects this varia-
tion in the derivative vectors over the control polytope. For
curves with high curvature this value is relatively high. We
only need to add this parameter to the size criterion if the
relative size of the curve is small. As a result, division by
the area parameter serves that purpose. Given the represen—
tation of the surface in (1), we consider the Bézier curves
defined as (R;;,R.2, . . . ,R;n) for all 152‘: m and take theIl -. - -

max1mum of rim to add to n... nu is computed in a similarmanner.

4.4 Comparison of Methods

We empirically compared our bound with those of Rock—
wood [23] and Abi-Ezzi/Shirman [1]. These comparisons
were performed over a number of models and we computed
the averages of the number of polygons generated. The av-
erage has been taken over seven models and the number of
patches varied from 72 to 5354. The degrees of the models
were between two and three in u as well as v. For the same

tolerance, our bounds result in about 33% fewer triangles
than [23] and about 20% fewer than [1]

4.5 Frame to Frame Coherence

Typically, there is not much change in the position of the
model in the object space between successive frames. As
a result, the bounds for tessellation do not change much
between successive frames. In almost all cases the change in
nu and m is small if not zero. We exploit this coherence in
performing a minimal amount of computations to compute
the new polygonization of the Curved model.

At each instance we store the vertices of the polygons gen-

erated (and the surface normals) in memory. As the new
bounds are computed, we perform a few extra evaluations
on the surface (along with the normals). If we need fewer
triangles now as compared to the last frame, some polygons
may be removed from the list depending on how much mem—
ory the system has. In almost all the cases we need to store at
most '60, 000-70, 000 triangles, needing about 3—4 megabytes
of memory. Thus the memory requirements are not stringent
for today’s graphics systems.

Given the tessellation bounds and the polygonization for
the last frame (fimfiv) and the bounds for the current frame

59

(nu, nu), we want to update the polygonization and maintain
the tolerances. Let [it] —— nu] = A" and [fig — nul = A”. We
present an intuitive description of the algorithm for tessel-
lation along the u-axis and it is applied in a similar manner
along the v-axis. Let us consider the case when nu > E“.
As a result, we need to choose nu — E additional points
in the domain [0,1], such that the resulting polygonization
is smooth. One simple solution is to choose nu = 2m and
thereby making the step size as half and computing H addi—
tional evaluations. This works well for small fin but for large
fin this results in a dense tessellation and therefore, the poly-
gon rendering phase becomes a bottleneck. We introduce an
extra tessellation in those intervals where magnitude of the
derivative vector is high. This is done cyclically so that a
larger interval (in u—v domain) gets split before a smaller one.
(A prefix of this sequence can be pre-computed.) Notice that
by doing this we compromise the uniformity of tessellation.
However, we always decompose the domain into rectangles
whose edges are parallel to the u and v axis. Furthermore,
whenever We introduce an additional tessellation along as or
1: axis, all the points are computed based on a generalized
Homer’s rule or forward differencing which still takes linear
time. These techniques worked very well on our models. In
fact, even in dynamic environments only local changes are
made to a model most of the time. The coherence is equally
effective in such cases.

4.6 Crack Prevention

Since the bound for required tessellation for each patch is
evaluated independently, we may mandate different tessella;
tions on two adjacent patches. This can result in cracks in
the rendered image. To address this issue [12, 24] suggested
that the amount of tessellation at the boundary be based
solely on the boundary curve, and a strip of coving triangles
be generated at the boundary. But this method does not
work if the common boundary curves of the two adjacent
patches do not have exactly the same parametric represen-
tation in terms of the control points. In such cases there
is no way to prevent cracks without using any information
about the adjacent patches.

The algorithm computes the adjacency information be-
tween the patches in the preprocessing phase as follows:

Let us represent the two boundary curves as 01(t) and
02(8). They are Bézier curves defined using control points.
Let P1 = 01(0),,P2 : 02(0). The curves are common ifl'
either P] lies on 02(t) or P2 lies on 01(t) for 0 5 t S 1. This
query reduces to an inversion problem: given a point P and
a curve C, find the parameter value t such that C(t) = P.
We solve it using techniques from elimination theory [21].

For each patch boundary we now know the two sets of rep-
resentations of the same Curves: we store one of them (chosen
arbitrarily) with both the patches. To calculate the bounds
on the curves and tessellate them we use this stored repre-
sentation. Note that, trim curves are potentially boundary
curves, and must go through the same preprocessing.

5 Trimming curves

The trim curves of a patch are parametric curves defined in
the domain of the patch. A trim curve C(t) trims out the
region of the patch which lies on its right. when traced from
t = 0. If two trim curves intersect, we combine them to make

one curve. The trimmed surfaces are rendered by computing
the visible portions of the domain. This involves computing
the intersection of the curve with the domain subdivision,

59

56

E c
P P Cp Cl [9| G .. . [3 Graphics

' ' IProcessor

Host
Interface

Figure 5: Pixel-Planes 5 System

coving and tiling and triangulation [17]. The basic idea of
this algorithm is to treat the trimmed curve as patch bound—
aries. For untrimmed surfaces, we described an algorithm
to partition the domain into rectangles in the interior of the
patch and triangles at the bomdary. For trimmed surfaces,
we find the intersection of trim curves with these partitions,
or cells. If a cell c, is not intersected by a trim curve, either
it lies fully in the non—trimmed part of the patch and can
be rendered as before, or it lies fully in the trimmed part
of the patch and need not be rendered at all. In case or is
intersected by a trim curve, we triangulate the non-trimmed
region of 0,.

Since most trim curves are fairly smooth, in the general
case, the algorithm performs well in practice and coving and
tiling is no longer the bottleneck, as it is in [24]. Further—
more we do not need to break up the trimmed curves into
monotonic segments, as is the case in [24].

6 Implementation and performance

We have implemented our algorithm on a Silicon Graphics
(SGl) R3000 with a VGX graphics accelerator, a SG] Onyx
(single processor) with a RealityEngine 2, and on the Pixel-
Planes 5 system. The Pixel-Planes implementation is fully
parallel, using the maximum number of available processors.

The performance of the algorithm on the SGI Onyx is
shown in Table 2. The images were rendered with Gouraud
shading. The standard SGI-GL implementation is based on
the algorithm presented in [24, 22] and has a microcoded ge-
ometry engine implementation for surface evaluations. Al-
though it is difficult to compare two different algorithms and
implementations (for example, the design constraints may
be different), We performed the following experiments using
identical sets of viewing parameters. Also, a count of the
number of patches is not necessarily the correct measure of
model or rendering complexity. However, assuming that the
model was designed to solve a particular problem (such as
mechanical design) and not designed for rendering speed, a
count of patches gives, in general, a fair idea of performance.

Table 2 shows the relative speedups of our algorithm on the
SGI Onyx. The third column shows the performance of the
standard GL implementation as a baseline, while the fourth
shows the performance of our algorithm with no optimiza-
tions The fifth column shows back-patch culling only, while
the sixth shows the effect of coherence only. Note that the
visibility preprocessing optimizations improve performance
significantly. Since the optimizations (phases I and ll in Fig.

60

V

Num. Our basic Patch
Patches algorithm Culling

SGI—GL
primitive

 Ii 1 .1 fps

3 Table 2: Speedup due to the techniques (on SCI-Onyx)
J 1) are performed on the workstation’s CPU, any reduction

in the number of polygons generated during visibility and
tessellation result in better rasterization rate. Currently, we
are able to render model consisting of seven to eight hundred
Bézier patches at 12 — 16 frames a second.

6.1 Parallel Implementation

Pixel-Planes 5 [14] uses extensive parallelism to increase ren-
dering performance. This has become the practice in high-
performance graphics accelerators [3]. Figure 4 presents a
block diagram of the Pixel—Planes 5 system. Front—end ge-
ometry processing, such as transformation, clipping, and
setup for rasterization, is performed on theGraphics Proces~
sors (GPs) which contain Intel i860 RISC microprocessors
running at 40 MHz, 8 MB of main memory, and commu-
nications hardware. Polygon rasterization, and shading is

performed on renderer boards which contain arrays of 128
by 128 1—bit processors with local memory [14] and an in—
struction sequencer. The processing units are connected by
a 160 million word per second ring communications network.

Since we have access to the graphics processors of Pixel-
Planes 5, a parallel implementation of the tessellation al-
gorithm seemed natural. Even though Pixel-Planes 5 is a
retained—mode graphics accelerator, a feature of the software
architecture is the ability to call user-programmed routines
running on the graphics processors. These routines may gen;
erate arbitrary geometry in immediate mode for the render-
iug engine to display. This feature has been used successfully
for problems which require close coupling between computa—
tion and the generation of geometry [5]

The tessellation algorithm is implemented as a set of user
functions running on the graphics processors. Load balanc-
ing is achieved by distributing the individual patches to the
GPs in round-robbin order. We have found this technique

of distributing by primitive to be the best way to maintain
good load balancing [9] The algorithm does not require any
inter-processor communication during execution. This prop»
erty not only improves the parallel speedup, but also will
make it easier to port the code to another multi-processor
machine. Note that a disadvantage with running phases 1
and II of the tessellation on the same processors responsi—
ble for rendering is that any time spent executing tessella—
tion code is subtracted from the rendering time. This makes
some of the visibility optimizations less advantageous on the
Pixel-Planes 5 implementation than on the SGI implemen-
tation.

The 8 MB of memory on each graphics processor node
allows us to take advantage of frame-to-frame coherence by
caching the triangles generated by the tessellation for a pre-
vious frame. During display list traversal, We examine the
current tessellation for each patch. if the cached tessellation
is within the current bounds, it is rendered, otherwise, a new
teseellation is computed. This coherence technique provides
a considerable increase in performance.

it is not easy to evaluate the tessellation performance of a
particular implementation of this algorithm separately from

60

 Coherence

“I— 1 4 3 fps ——_I
Imi—l-l——II

57

| Model Figure 7 Number of Bézier patches |

| Forsey’s Dragon 5354
| Utah’s Brake Assembly 600 Trimmed
l Ford Car Model —m_

Table 3: Interactive frame rates on Pixel—Planes 5

the polygon rendering performance of the machine on which
it is executing. In Figure 6, we show the total system per-
formance - tesseilation and rendering as a function of the
number of GPs, for three models, a simple Utah teapot. mod-
eled with 32 Bezier patches, a. Car panel consisting of 1700
patches, and a dragon head modeled with 5354 patches.

The experiments were run on a medium—sized Pixel-Planes
5 configuration with a maximum of 31 GPs, and 11 render-
ers. We varied the number of GPs to obtain an idea of the

speedup obtained from parallelism. The size of the dragon
head model constrains us to a configuration with a minimum
of 20 GPs. The graphs show the average frame rate for two
different frame buffer resolutions, 640 by 480, and 1280 by
1024. The update rate of the Pixel-Planes 5 frame buffer in
highsresolution mode is limited to approximately 25 frames
a second. We have been able to achieve 15 —— 20 frames per
second on models consisting of five to ten thousand Bézier
patches. More models are listed in Table 3.

25

20

15

10FrameRate f

m,..O,-

No. of Processors

q.,_ 0Ln N m
m 5‘3

LO
N

Figure 6: Frame rate for three different curved-surface mod-
els running on Pixel Planes 5 as the number of processor
varies. Markers: Squares — Utah teapot (32 patches), 'I‘rian'
gles — Car panel (1700 patches), Circles A Forsey’s Dragon
(5354 patches).

6.2 Visibility Preprocessing and Bounds

The visibility preprocessing improves the frame rate by
15 ~— 25%. The actual performance is a function of the model
and the graphics system. In particular, all the four phases of
the pipeline shown in Fig. 1 are implemented on the GP’s on
Pixel~Planes 5. On the other hand, phase I and II are imple-
mented on the CPU’s on the SGI Onyx and the tessellated

polygons are transformed, checked for backhface culling and
scan-converted over the rendering pipeline. Therefore, all
the four phases in Fig. 1 constitute the polygon generation

61

phase on Pixel~Plane 5, Whereas it consists of phase I and ll
on the SGI Onyx, As far as back-patch culling is concerned,
we have used bounding box as well as convex hull of the
pseudo—normal patch to check for visibility. The overall per—
formance varies with the choice of bounding box or convex
hull (depending upon on the geometry of the model). The
relative frame rate improvement on the SGI Onyx is better
as compared to that on Pixel-Planes 5.

Although we have significantly improved on earlier algo-
rithms for bound computations, the algorithm at times pro—
duces dense tessellation for some models. Due to this the

polygon rendering phase often becomes the bottleneck. In
terms of the overall performance it may be worthwhile to
use more sophisticated algorithms for bounds computation
so that fewer polygons are generated, thus alleviating the
polygon rendering bottleneck. This is an especially attrac—
tive option for implementations, such as these on the SGI
machines, where the tessellation is being performed inde—
pendently of the graphics accelerator.

7 Conclusions

We have presented algorithms for interactive display of large
scale models on current graphics systems, The algorithms
are portable and make use of improved techniques based on
uniform subdivision, back-patch culling, frame—to—frame co-
herence and trimmed patch rendering. These algorithms can
be easily ported onto machines with multiple processors as
well, though for large scale models the polygon rendering
performance is the bottleneck.

8 Acknowledgements

We thank Henry Fuchs, Elaine Cohen, Russ Fish and David
Johnson for their helpful discussions. The models of teapot,
goblet, brake assembly and the pencil were provided by the
Alpha-L1 group at Utah. We are grateful to Ray Brynes and
Sam Schwartz for the Ford car model and David Forsey for
the Dragon model.

This work was supported in part by DARPA lSTO order
A410, NSF grant MlP—9306208, NSF grant CCR—9319957,
ARPA contract DABT63-93—C—0048, NSF/ARPA Science
and Technology Center for Computer Graphics and Scien-
tific Visualization, NSF Prime Contract 8920219 and ONR
contract N000 14- 94- 1-0738.

References

[1] SS. Abi—Ezzi and LA. Shirman. Tessellation of curved sur-
faces under highly varying transformations. Proceedings of
Eurographics’Qi‘, pages 385—97, 1991,

5.5. Abi~Ezzi and LA. Shirman. The scaling behavior of
viewing transformations. IEEE Computer Graphics and Ap-
plications, 13(3):48—54, 1993.

K. Akeley. Reality engine graphics. In Proceedings of ACM
Siggmph, pages 109—1115, 1993.

C.L. Bajaj and A. Royappa. Triangulation and display of
rational parametric surfaces. In Proceedings of Visualiza-
tion’94, pages 69—76, IEEE Computer Society, Los Alamitos.
CA, 1994.

D.C. Banks. Interactive manipulation and display of two-
dimensional surfaces in four-dimensional space. In Sympo-
sium an Interactive 3D Graphics, pages 197—207, 1992.

[2]

l5]

{6] E. Catmull. A subdivision algorithm for computer display of
curved surfaces. PhD thesis, University of Utah, 1974.

61

58

[7] J. H. Clark. A fast algorithm for rendering parametric sur-
faces. Praceea‘ings of ACM Siggrapli, pages 289-99, 1979.

MP. Deering and S.R. Nelson. Leo: A system for cost Effec-
tive 3d shaded graphics. In Proceedings of ACM Siggrapli,
pages 101—108,1993.

D. Ellsworth, H. Goods, and B. Tebbs. Distributing display
lists on a multicomputer. In Symposium an. Interactive 3D
Graphics, Snowbird, UT, 1990.

T. Derose et. al, Apex: two architectures for generating para-
metric curves and surfaces. The Visual Computer, 5:264—276,
1989.

G. Farin. Curves and Surfaces for Computer Aided Geometv
Tic Design: A Practical Guide. Academic Press Inc., 1990.

D. Filip, R. Mageclson, and R. Markot. Surface algorithms
using bounds on derivatives. CA GD, 312954311, 1986.

DR. Forsey and V. Klassen. An adaptive subdivision algo-
rithm for crack prevention in the display of parametric sur—
faces. Proceedings of Graphics Interface, pages 1—8, 1990.

H. Fuchs and J. Poulton et. a]. Pixel-planes 5: A het-
erogeneous multiprocessor graphics system using processor-
enhanced memories, In Proceedings of ACM Siggroph, pages
79—88, 1989.

.l. Kajiya. Ray tracing parametric patches. Computer Graph-
ics, 16(3):245—254,1982.
S. Krishnan and D. Manocha. Global visibility and hidden
surface algorithms for free form surfaces. Technical Report
TR94-063, Department of Computer Science, University of
North Carolina, 1994.

S. Kumar and D. Manoeha. Efficient rendering of trimmed
nurbs surfaces. Computer-Aided Design, 1994. to appear.

J.M. Lane, L.C. Carpenter, J. T. Wliitted, and J.F. Blinn.
Scan line methods for displaying parametrically defined sur—
faces. Communications ofACM, 23(1):23934,1980.
J.M. Lane and R.F. Riesenfeld. Bounds on polynomials. BIT,
2:112-117,1981.
W.L. Luken and Fuhua Cheng. Rendering trimmed nurb sur—
faces. Computer science research report 18669(81711), IBM
Research Division, 1993.

D. Manocha and .l. Demmel. Algorithms for intersecting
parametric and algebraic curves i: simple intersections. ACM
Transactions on Graphics, 13(1):73—100, 1994.
R, Nash, Silicon Graphics, Personal Communication, 1993.

{8]

[9]

[10]

[u]

[121

Ml

[14]

[151

[16]

W]

[1 8]

E19]

[20]

l21l

[22}

[23] A. Rockwood. A generalized scanning technique for display
of parametrically defined surface. IEEE Computer Graphics
and Applications. pages 15—26, August 1987.

A. Rockwood, K. Heaton, and T. Davis. Real-time rendering
of trimmed surfaces. In Proceedings of ACM Siggmph, pages
107-17, 1989.

T.W. Sederberg. Algorithms for algebraic curve intersection.
Computer—Aided Design, 21(9):547—555, 1989.
M. Shanta and S. Chang. Rendering trimmed nurbs with
adaptive forward differencing. In Proceedings of ACM Sig—
graph, pages 189—198, 1988.

M, Shanta. and S. Lien. Shading bicubic patches. In Proceed-
ings of ACM Siggmph, pages 189—196, 1987.

[24]

[25]

[93]

[27]

62

UV

Real-Time Programmable Shading

Anselmo Lastra, Steven Molnar, Marc Olano, Yulan Wang

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27599—3175

Abstract

One of the main techniques used by software renderers to produce
stunningly realistic images is programmable shading—executing
an arbitrarily complex program to compute the color at each pixel.
Thus far, programmable shading has only been available on
software rendering systems that run on general-purpose
computers. Rendering each image can take from minutes to hours.

Parallel rendering engines, on the other hand, have steadily
increased in generality and in performance. We believe that they
are nearing the point where they will be able to perform
moderately complex shading at real-time rates. Some of the
obstacles to this are imposed by hardware, such as limited
amounts of frame-buffer memory and the enormous computational
resources that are needed to shade in real time. Other obstacles are

imposed by software. For example, users generally are not granted
access to the hardware at the level required for programmable
shading.

This paper first explores the capabilities that are needed to
perform programmable shading in real time. We then describe the
design issues and algorithms for a prototype shading architecture
on PixelFlow, an experimental graphics engine under
construction. We demonstrate through examples and simulation
that PixelFlow will be able to perform hi git-quality programmable
shading at real-time (30 to 60 Hz) rates. We hope that our
experience will be useful to shading implementors on other
hardware graphics systems.

1 INTRODUCTION

The bulk of research in computer graphics has been directed
toward making computer—generated images appear as realistic as
possible. Since much of this effort was motivated by film making,
the term "photorealistic" has been used to describe a very well
rendered image. presumably one that couldn't be distinguished
from a photograph of a natural scene. The latter has rarely been
true, but certainly the quality of the images has improved
dramatically. Practitioners generating these high-quality images
have been content to wait moderately long periods of time for the
rendering computations that it took to achieve these excellent
results. Quality was the primary goal.

At the same time, other researchers have been striving to render

images at interactive rates, The computations necessary just to

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
tltle of the publication and its data appear, and notice is given
that cppyin IS by permission of the Association of Computing
Machinery. 0 copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive SD Graphics, Monterey CA USA
© 1995 ACM 0-89791-736~7/95/0004...$3.50

62

59

determine visibility are demanding enough that, at first, only
simple flat shading was possible. As technology has improved, the
standard shading model on high-end commercial machines has
progressed to Gouraud shading and, fairly recently, to image-
based texturlng. Still, rendering more geometry within tight time
constraints has been most important. Interactivity was the primary
goal.

We believe the time has come when one can achieve both high
quality shading and interactivity. Advances in technology have
made it possible to render, at interactive rates (15 Hz or greater),
images that just a few years ago were considered "photorealistic".
We don't claim that all of the techniques used for high—quality
shading can now be done interactively, but a very large class of
renderers, those dealing with local lighting effects, can be
computed in real time. A notable example of this class is the
Reyes renderer {1].

As evidenced by the quality of the work produced at Pixar, local
effects cam produce striking images. Cook, et. al. observed that
many global effects can be approximated using tables, such as
environment and shadtiw maps [1]. If a rendering system can be
designed to fit the traditional rendering pipeline, communication
patterns can be kept well structured. and global communications
can be limited, very complex geometry with complex shading
models can be rendered to produce very high quality images.

This paper consists of two main parts. The first examines the key
requirements of programmable shading and explores how current
hardware and software architectures can be adapted to meet these
needs. The second half of the paper describes a realvtime
hardware/software shading architecture we have designed for
PixelFlow, an experimental graphics machine currently under
construction. We describe the decisions and tradeoffs in the design

and give a detailed example of a complex shader that will run in
real time, together with performance simulations that justify this
claim.

2 TOWARD REAL-TIME SHADING

In order to achieve real-time programmable shading, we must

identify the crucial requirements of software renderers and
combine them with the real-time capabilities of hardware
renderers, as indicated in Figure 1.

251 Programmability

A number of computer graphics researchers [2, 3, 4] have argued
that a fixed shading model, even with adjustable parameters, is not
sufficiently powerful to shade realistic images. The wide variet)i
of surfaces makes it difficult, if not impossible, to create a single,
comprehensive, shading program. Programmability allows thfl
practitioner to create any desired effect. As a result, most software

63

Speed

Hardware Henderers

- Fixed shading model
- Limited memory
- Highly parallel

Quality

Software Renderers

- Fully programmable
- Unlimited memory
- Serial execution

Combine/

Real-time shading
- Programmable
- Bounded memory
0 Highly parallel

Figure 1: Merging the capabilities oi software and
hardware renderers.

systems designed for hi gh-quality rendering allow users to specify
the shading algorithm either in a traditional high-level language
[2], or in a language specifically designed for shading [3, 4, 5].

On the other hand, computers designed for interactive graphics
typically have powerful hardware for interpolating color and depth
values. and more recently for computing image—based textures, but
only support a fixed shading algorithm with a few adjustable
parameters—most commonly linear interpolation of colors or
intensities between vertices.

Some of these computers have hard-wired processors. Ironically,
many have programmable prooessors. Even though the processors
may be capable of performing adds, multiplies, and linear
interpolations—the basic operations necessary for shading—they
are not available for general shading because users are not givenaccess to this level of code.

The reason for this is twofold. First, programming at this level is
difficult, since pixel processors tend to be Specialized and arcane,
and the documentation and programming environment for them
often is poor. More importantly, code written at this level is not
portable. It is specific to a particular system implementation,
which may change between successive machine models and even
upgrades of a single model. Manufacturers also desire software to

be compatible over a range of machines spanning prices and
generations (and more recently, different vendors). Typically,
system firmware writers are the only ones who are granted direct
access to the pixel processors.

These considerations are useful and important, but they need not
preclude programmable shading. Just as access to geometry
rendering hardware is provided by portable graphics libraries,
such as PBX and OpenGL, programmable shading can be
provided by a portable language, such as the RenderMan shading
language [4]. The shading language can be compiled for the
particular hardware, or in low-end machines, software execution.
As with current machines, more powerful, expensive workstations
will shade at interactive rates, while cheaper models will produce
the same images much more slowly.

We believe that programmability at the pixel level is essential to
meet the goal of high—quality shading and that it can he provided
in machines sufficiently powerful to shade at interactive rates.

2.2 Memory

Programmability goes hand in hand with storage. The norm in
software renderers is to provide full access to the memory of the

60

63

workstation, which in many ways is virtually unlimited, especially
when coupled to secondary memory, such as a disk.

Systems designed for interactive graphics, on the other hand, have
very limited amounts of memory for shading. A minimal frame
buffer with space for z and color at each pixel is often the only
memory available. High-end systems provide more, but the
limitations are obvious when one considers that frame buffer sizes
are still typically measured in bits, not bytes. Recently, graphics
workstations have added memory for image-based textun'ng, but
normally it is accessible only in regimented ways.

For high-quality shading at interactive rates, we need more
memory than is available on current graphics engines, but it does
not need to be as voluminous as on a workstation, and we
certainly do not need advanced features such as virtual memory
and access protection.

One way to make implementation feasible is to observe that
memory requirements for most shaders fall into two categories:
storage for local variables used during the shading calculations,
and storage for tables containing texture maps. shadow maps,
environment maps, etc. The local memory can be simple since the
computational units only need access to their own memories, not
to those of other processing elements. It must, however, be very
fast because the processor can only execute as fast as it can access
the local memory. On the other hand, the global memory for table
lookup is not used very often, so access can be slower than that of

the local memory but it must be accessible from essentially all of
the processing elements.

We can take advantage of these distinct uses by dividing our
memory into those two classes, memory local to a pixel and global
memory that must be accessible from all of the pixels. These
divisions by function are common in special purpose hardware
because the technique of specializing memory can increase speedand decrease cost.

Local Memory. Let us examine the demand for local memory
first. In our experience, procedural texturing is the operation that
consumes the most local memory. For example. Figure 2
illustrates the amount of memory used by several of the shaders
that are shipped with the RenderMan software package [6].

Local variables I
Shader

i

Figure 2: Local memory requirements for RenderManshaders.

Our experience is that storage for 30 to 40 local variables is
adequate. though this does not count all of the necessary global
parameters such as normals, intrinsic color, etc. Space must also
be provided for a program stack used for function calling and for
the temporary variables of the called functions. On a workstation
this much storage, say a total of 100 floats or 200 bytes seems like
a very small amount of space.

However, a frame buffer with 1600 hits of storage per pixel is
very rare indeed. An observation on the nature of shading can help
us solve this storage dilemma. The large memory demand can be
thought of as the peak, temporary usage, necessary only when a
surface is being shaded. Once shading is complete, only a small
amount of memory is necessary, just enough to store color and

64

i—i-Vtrfim‘me
w

‘(uin

perhaps depth. It is not necessary to instantiate this amount of
memory for every pixel at once. We need this working memory
only for the pixels that are being shaded at any one time. One can
imagine doing shading calculations one pixel at a time and saving
only the final color. Realistically, however. given the amount of
computation that is necessary for rendering, calculating one pixel
at a time is impractical. More likely, a system will shade a number
of pixels in parallel, but not necessarily the complete screen.

Table Memory. The second type of memory that is necessary is
that used for table lookups, not only to apply image~based textures
but also to transfer global information to surfaces by means of
intermediate images. such as shadow, and environment maps. We
also wish to look up stored information to use during local
computation, for example, to modify lighting for local effects such
as bump mapping.

The characteristics of this memory are very different from that
used to hold local variables. It only needs to be accessed
occasionally, but the access patterns are very general. Table
memory is an exception to the modest memory requirements of a
shader. This global storage pool needs to be much larger than any
single local memory.

Since we want to apply several visual effects to each pixel and
filtering is often required, we need to accommodate multiple table
lookups per pixel. Three or four accesses per shader is probably
the minimum. If we can accommodate eight to ten, we open the
way for more interesting visual effects. Furthermore, since shadow
and environment maps may be recalculated as often as every
frame, we must be able to either render directly into table
memory, or load a map from the frame buffer very quickly.
Address calculations and table access patterns should be flexible
since. in our experience, it is difficult to predict what a
programmer may wish to do.

2.3 Computational Power

The key to real-time shading is to combine the programmability
and memory requirements above with the tremendous
computational power needed to shade images in real time.

To get a feel for the magnitude of the calculations involved,
consider simple Phong shading. To do this for a million pixels at
30 times per second, requires a billion or more operations per
second. More sophisticated algorithms, such as bump mapping,
shadow mapping, procedural textures, and antialiasing, can
multiply these requirements by an order of magnitude or more.

Large-scale parallelism. The only way to achieve computation
rates such as these is to employ large-scale parallelism. Current
graphics engines employ dozens to hundreds [7] (or even
thousands [8]) of processors to perform visibility and relatively
simple shading. Even more are needed for programmable shading.

Fortunately, many features of general-purpose processors are not
needed here, so processors can be specialized for rendering. For
example, pixel-level processors can have tightly bound local
memory, specialized datapaths and functional units, separate code
stores, and may even share control and address paths (i.e. operate
in SIMD). Such specialization can reduce the cost and size to a
small fraction of that of a standard processor.

Even with specialization, a parallel processor for shading will be
expensive because of the great computational demands. To make
real-time shading practical, we must also reduce the workload as
much as possible through optimization. We now consider several
optimization techniques that can provide significant speedups.

Deferred Shading. One optimization is to shade only pixels that
will be visible in the final image. Figure 33 illustrates the normal

64

61

rendering pipeline. Shading is done as primitives are rasten‘zed, [f
the pixel is visible at the current time, the pixel is shaded and a
final color value is stored in the frame buffer. However, many
pixels may be covered by later primitives, particularly in scenes
with high depth complexity. The shading performed on non-
visible pixels is wasted.

ll Rasterlzation/shading pass
for each primitive

for each pixel {
calculate depth;
if (pixel is visible) {

ll Rasterization pass
for each primitive

for each pixel {
calculate depth;
if (pixel is visible)

shade; store appear. params;
store color; }

l
} ll Deferred shading pass

for each pixel
shade;

a) immediate shading. b) Deferred shading.

Figure 3: Two variations of the rendering pipeline.

This wasted work can be avoided by delaying shading calculations
until after primitives have been rasterized, a technique known as
deferred shading [9, 10]. Figure 3b illustrates a pipeline modified
for deferred shading. The only work that is performed in the loop
over primitives is to determine visibility and to store the raw data
the shader will need to compute the pixel colors later. This data
typically consists of constants, such as intrinsic colors, or
interpolated parameters, such as surface normal vectors, texture
coordinates, etc. (Cook refers to these as appearance parameters
[3]. We will use this term in the remainder of the paper). A second
pass of the algorithm loops over the pixels. shading each one.

Deferred shading divides the cost of shading by the depth
complexity of the image. This can be substantial for complex
scenes. Deferred shading constrains the rendering algorithm in a
number of ways. however. It requires additional storage in the
frame buffer for appearance parameters. which require more space
than simply color and 2. Also, shading cannot affect the visibility
of objects, since visibility is completely determined before the
shading pass.

Uniform vs. varying parameters. In the design of the
RenderMan shading language, Hanrahan recognized that a
potentially powerful optimization is to calculate expressions that
are independent of position on a surface only once [4]. To take
advantage of this, the language allows the programmer to specify
whether a variable is uniform, its value is constant across a
surface, or varying, its value depends on position. Expressions or
subexpressions that consist of only uniform variables may be
calculated once and, in a uniprocessor, cached away.

This optimization extends to MIMD parallel shading, only the
potential savings are not as great. as for a uniprocessor. Since each
processor shades only a fraction of the pixels. the calculation of
uniform parameters cannot be amortized over as many pixels.

However, this optimization fits the SIMD paradigm quite well.
The uniform expressions can be calculated on the control
processor to generate a single, position—independent result that can
be broadcast to all of the processing elements. Of course varying
computations are local and must be performed in parallel across
the processor array.

Fixed-point vs. floating-point arithmetic. In order to save
Silicon area and cost, most of the pixel-level calculations in
graphics workstations are carried out using integer arithmetic. In

65

contrast, most calculations in high-quality software renderers use

floating point. Can we use fixed-point arithmetic for shading?

Most shading parameters. such as surface normals, light source
direction vectors, ambient, diffuse, and specular coefficients, are
numbers in the range from zero to one. We can analyze the
numerical errors that may occur in a particular computation, such
as that for Phong shading, in order to determine the necessary
precision. For example, if we would like to obtain 12 bits of
precision for color, the Phong lighting and shading computation
will require:

- 2 bytes for intrinsic color

- 3 bytes for normals

- 2 bytes for the illumination model coefficients
0 3 bytes for intermediate colors

We can use four—byte integers for convenience as well as overflow
protection during the calculations and still perform our
computations an order of magnitude faster (or cheaper) than we
could with floating-point arithmetic,

The problem with fixed-point integer arithmetic, of course, is that
we cannot determine the necessary number of significant digits if
we don't know a priori the magnitudes of the equation parameters.
This is the case with global effects, such as shadow maps. In order
to write generally usable and robust procedures, We may have to
use floating-point arithmetic in some critical parts of shaders, such
as matrix transformations. However, for speed on a hardware
supported shader, most shading calculations can be done in fixed-
point arithmetic

Optimizations such as these, combined with parallelism and fast
processors, make it possible to build a system that can render
high~quality images at interactive rates.

3 THE PIXELFLOW SHADING ARCHITECTURE

We are building a hardware and software system to demonstrate
the feasibility of real—time programmable shading. In this section
we describe the architecture of the system and show how it can
meet our performance goals. We begin by briefly describing the
architecture of PixelFlow, the hardware on which the system is
built. We then explain the techniques that we use to achieve
interactive programmable shading. Finally, we outline the
programming models of the system: the existing low—level model,
and a high—level language we are implementing that is similar to
the RenderMan shading language [4].

We believe that this system, when the hardware is complete, will
be able to render the types of images previously seen only onsoftware renderers, at interactive rates.

3.1 Hardware Overview

PixelFlow consists of a set of nodes, each of which is essentially a
complete graphics computer. All of the nodes are identical,
although some have additional video input or output capability on
daughter cards to allow them to act as frame grabbers or frame
buffers, The PixelFlow nodes are connected by a linear network
that provides fast dedicated pixel~level communication and built-
in z-buffer compositing. General purpose communication betWeen
the PixelFlow nodes is provided by a message passing network.
Figure 4 shows a block diagram of a PixelFlow system.

There are two types of computational resource on each PixelFlow

node. A SIMD array of 128x64 (8,192) pixel processors and a pair
of general-purpose RISC processors (GPs). The pixel processors
perform most rasterization and shading calculations, while the

62

65

_______ PixelFlow

/ nodes .W-:.-l I Hastenzer

intermediate
pixel values

Image-composition

Network _ ‘ ‘
. . Frame Buffer

Final pixel . Nodecolors ‘ .

Backplane “I,

Figure 4: PixelFlow system block diagram.

GPs generate instructions for the SIMD array. These instructions
are stored in GP main memory and are fetched by an instruction
sequencer that controls the array. Figure 5 shows a block diagramof a PixelFlow node.

Geometry Network

 128 x 64 SIMD
pixel processor ,-

a tray

 Corrposiiion network

Figure 5: PixeiFlow node block diagram

A SIMD architecture was chosen for the pixel processors to
maximize the amount of compute power that could be placed on a
node. The advantage of 81MB is that a single instruction
sequencer, an expensive resource, is shared by a large number of
processors. The individual pixel processing elements are simple
and there is no direct pixel to pixel communication. This makes it
possible to put 128x64 processors on one board.

Each pixel processor contains an 8-bit ALU which performs a
standard set of integer instructions, such as addition, subtraction,
multiplication, and shifts. Most of the instructions allow operand
sizes to vary from one to eight bytes in length. Single-precision
flOating-point operations, based on the IEEE standard, are
implemented as sequences of integer operations.

Fixed-point arithmetic. Earlier, we discussed the tradeoffs

between fixed-point (integer) and floating-point arithmetic. Figure
6 shows the instruction execution times, per pixel processor, of
integer vs. floating~point instructions. Even though up to 8K

66

processors execute these instructions at once, the lower execution
times of some of the integer operations make them very attractive.

o-eration short lon-. float ,
Addition 0.13 s

0.50 145 2.00p3 2.53 ps
1.60 s 6.40 s 7.04 s

3.33 s 6.98 s

Figure 6: Execution time of integer versus floating-point
instructions.

Multi ulication
Division

s.uare Hoot

Conversion from floating point to 4-byte integer format takes
1.35tts. and from 4-byte integer to floating point takes 1.57tts. This
makes it feasible to convert representations to use whichever is
more advantageous. Whenever possible, we use fixed-point or
integer representations.

Memory. Each processor has 256 bytes of local memory and 128
bytes of communication register that may also be used as local
memory. Each node can store 16MB of texture information in
table lockup memory. This memory may be read or written from
each of the pixel processors, thus serving as global storage.

3.2 Achieving interactive shading

Each PixelFlow node possesses an enormous amount of
computational power—over 40 billion integer operations or 2
billion floating-point operations per second. In addition, the
processors are programmable in a very general way, and we
believe that the 256 (+128) bytes of local memory at each
processor is sufficient to implement many interesting shading
algorithms. However, even this amount of computational power is
not enough to achieve our goal of real—time shading. We must
harness multiple PixelFlow nodes in an efficient manner to
multiply the power available for shading.

Pixchlow rasterlzes images using a screen-subdivision approach,
sometimes called a virtual buffer [1 l]. The screen is divided into
128x64-pixel regions, and the regions are processed one at a time.
When the rasterizers have finished with a particular region, they
send appearance parameters and depth values for each pixel onto
the image-composition network, where they are merged and
loaded into a shader.

If there are 5 shaders, each shader receives one of every 5 regions.
While it shades the region. it has full use of the local memory at
each pixel processor. With this method of rendering, even a small
machine can support an arbitrary sized screen. Of course, the more
complex the problem, the more nodes that are needed to achieve
interactive performance.

Deferred shading. As stated in Section 2.3, deferred shading is a
powerful optimization for scenes of high depth complexity. lt has
an even bigger payoff for a SIMD architecture such as PixelFlow,
We implement deferred shading on a machine-wide basis by
giving each node a designated function: rasterization or shading.
The rasterization nodes implement the first loop in Figure 3b.
while the shading nodes implement the second.

As specified in Figure 3b, the rasterization nodes scan convert the
geometric primitives in order to generate the necessary appearance
parameters. Multiple rasterization nodes can work on a single
region of the screen as described by Molnar, et. al. [12]. The
composition network collects the rasterized pixels for a given
region (including all necessary appearance parameters), and

63

66

delivers it to the shading node that has been assigned to process
that region.

Deferred shading provides an additional computational advantage
on PixelFlow because of the SIMD nature of the pixel processors.
Consider how a SIMD machine might behave if shading is
performed during rasterization (immediate shading—Figure 3a).
For each primitive, the processors representing the pixels within
the primitive are enabled, while all of the others are disabled. The
subsequent shading computations are performed only for the
enabled pixels. The processors representing pixels outside of the
primitive are disabled, so no useful work is performed.

Since most primitives cover only a small area of the screen, we
would make very poor use of the processor array. The key to
making effective use of the SIMD array is to have every processor
do useful work as much of the time as possible.

With deferred shading, all of the pixels in a region that require the
same shader can be shaded at one time, even if they came from
different primitives. This is especially useful when tessellated
surfaces are used as modeling primitives. These can be rastcrized
as numerous small polygons but shaded as a single unit. In fact,
disjoint surfaces can be shaded at once if they use the same
shading function.

Factoring out common calculations. We can go even further
than executing shading functions only once per region. Shading
functions tend to be fairly similar, Even at a coarse level, most
shading functions at least execute the same code for the lights in
the scene even if their other computations differ. All of this
common code need only be done once for all of the pixels that
require it. As illustrated in Figure 7, if each shading function is
executed to the point where it is ready to do lighting computations,
the lighting computations for all of them can be performed at
once. The remainder of each shading function can then be
executed in turn.

If Shader-specific code
for each surface shader

pre-light shading;
II Common code

for each light source
accumulate illumination;

1'! Shader—specific code
for each surface shader

post-light shading;

Figure 7: Factoring out common operations for multiple
shading functions.

Currently, we code this manually, but this is yet another reason to
have a high-level compiler. A suitably intelligent compiler can
identify expensive operations (such as lighting and texture
lookups) among several shading functions and automatically
schedule them for co-execution.

Table lockup memory. Each shader node has its own table-
lookup memory for textures but. since it is not possible to know
which textures may be needed in the regions assigned to a particu~
lar node, the table memory of each must contain every texture. For
interactive use this not only limits the size of the textures to the
maximum that can be stored at one node, but it also presents a
problem for shadow map and environment map algorithms that
may generate new textures every frame. After a new map is
computed, it must be loaded into the table—lockup memories of
every shader node. This aspect of system performance does not
scale with the number of nodes: a maximum of 100 512x512

67

texture maps can be loaded into table-lockup memory per second
(2-3 in a 33 ms frame time).

Uniform and varying expressions. For efficiency, expressions
containing only uniform shadcr variables (those that are constant
over all of the pixels being shaded) are computed only once on the
RISC GP. Varying expressions (those that vary across the pixels),
or those containing a mix of uniform and varying variables, are
executed on the pixel-processor array.

Shader parameters. There are two ways to communicate
parameters to a shader node. One is to send the parameters over
the composition network. The other is to send the parameters over
the front-end geometry network. Obviously, a varying parameter
that must be interpolated over the pixels, such as color or surface
normal, is produced on a rasterization node, and should be sent
over the composition network.

A uniform parameter that is used at the GP and does not vary from
primitive to primitive should be sent over the geometry network
because composition network bandwidth is a valuable resource.
An example is something like the roughness of a surface which is
a fixed parameter for a particular material. If the parameter is
needed in the local memory of the pixel processors, it can be
broadcast locally at a shading node. We allow the programmer to
choose the best way to transmit each parameter.

3.3 Shader programming model

Low-level model. Since instructions for the pixel processors are
generated by the GP on a PixelFlow node. the code that a user
writes is actually C or C++ code that executes on the GP. The
low-level programming model for the pixel processors (called
IGCSrream) consists of inline functions in C++ that generate code
for the SIMD array. Some of these functions generate the basic
integer operations; others, however, generate sequences of
instructions to perform higher-level commands, such as floating-
point arithmetic.

We have written a library of auxiliary shading functions to use
with this programming model. it provides basic vector operations,
functions to support procedural texturing {5, 13], basic lighting
functions. image-based texture mapping [l4], bump mapping [15],
and higher-level procedures for generating and using reflection
maps [16] and shadow maps [17, 18]. It is perfectly feasible to
program at this level. in fact, we currently use this programming
model to write code for testing, and to produce images such as
those in the example video. We would prefer, however, to work at
a higher. more abstract level.

High-level model. We are implementing a version of the
RenderMan shading language that is modified to suit our needs.

Our goal in using a higher-level language is not solely to provide
architecture independence. That may be useful to us in the future,
of course, but since PixelFlow is an architectural prototype it is
not necessary. We are more interested in the shading language as a
way to demonstrate feasibility and to provide our users with a
higher-level interface that they've had [19] in order to encourage
wide use of the shading capabilities of our system. Also, as
mentioned earlier in this section, a high—level shading language
provides opportunities for compiler optimization, such as co—
executing portions of several shader functions.

The RenderMan specification has only float, point, and color
arithmetic data types. Since we need to be frugal in our use of
floating-point arithmetic, we have added integers and fixed-radix-
point numbers to the data types of our language. A compiler for
the shading language will accept shader code as input, and emit
C++ with SIMD processor commtmds as output. This code will be

64

67

linked with the auxiliary shading function library and finally with
the application program.

API support. We also need some way for graphics applications to
access our shading capability. Since one of our main goals for
PixelFlow is interactive visualization of computations as they are
executing on a supercomputer. we have chosen an immediate-

mode application programmer‘s interface (API) similar to OpenGL
[20]. An advantage of choosing OpenGL, and extending it to meet
our needs is that students and collaborators are likely to be
familiar with the its basic concepts Also, this will make it easier to
port software between PixelFlow and other machines.

The current specification of OpenGL only incorporates the limited
set of shading models commonly found on current graphics
workstations: flat and linearly interpolated shading with image-
based textures. We have extended the specification to allow users
to select arbitrary shaders. ‘

We do not plan to implement an official, complete OpenGL for
two reasons. One is that some of the specifications of OpenGL
conflict with our parallel model of generating graphics. The
second is that We lack the resources to implement features that we
do not use. Consequently, though our functions are similar to
OpenGL, we use a pxgl prefix instead of OpenGL’s gt prefix.
Within these constraints, we have attempted to stick as closely as
possible to the OpenGL philosophy. We intend to describe this
AP], and the problems involved in implementing it on PixelFlow.
in a future publication.

Limitations. Although the PixelFlow shading architecture
supports most of the techniques common in “photorealistic
rendering," (at least in RenderMan‘s use of the term), it has a few
limitations. Because PixelFlow uses deferred shading, shaders
normally do not affect visibility. Special shaders can be defined
that run at rastcrization time to compute opacity values. However,
these shaders poorly utilize the SIMD array and slow rasterization.

A second limitation is that shaders cannot affect geometry.
RenderMan, for example, defines a type of shader called a
displacement shader, which displaces the actual surface of a
primitive, rather than simply manipulating its surface-normal
vector, as is done in bump mapping. This is incompatible with the
rendering pipeline in PixelFlow, as well as that of virtually all
other hi gh-performance graphics systems.

4 EXAMPLE

In this section, we present a detailed example of real-time high-
quality shading on PixelFlow. The example—bowling pins being
scattered by a bowling hall—was inspired by the well-known
“Textbook Strike” cover image of the RenderMan Companion [6].
We cannot guarantee that the dynamics of motion are computable
in real—time, but we are confident that a modest-sized PixelFlow

system (less than one card cage) can render the images at 30
frames per second.

The accompanying video was rendered on the PixelFlow
functional simulator. The execution times are estimates based on

the times of rasterization and shading of regions, using worst—case
assumptions about overlap. We simulated a PixelFlow machine
containing three rasterizer nodes, twelve shading nodes. and a
frame-buffer node. There are 10,700 triangles in the model. The
images were rendered at a resolution of 640x512 pixels with five-
sample—per-pixel antialiasing.

68

4.1 Shading functions

Three shading functions are used to render these images. one for
the bowling pins, one for the alley, and one for the bowling ball.
Two light sources illuminate the scene. an ambient light and the
main point-light source which casts shadows in the environment.

Numberomtes

M 4

M mm
m

m

Figure 8: Appearance parameters used in bowling
example.

Figure 8 shows the data for each pixel that is sent from a
PixelFlow raster-i zer node to a shader node, a total of 34 bytes. We
actually plan to use 10 bits of color per channel on most PixelFlow
applications. but 8 bits were used for this simulation. In addition
to the appearance parameters used by the shaders, two other
parameters are necessary, the depth and a shader identification
number for each pixel, The shader ID is used by the shading
control program to select the shader code for each pixel.

The bowling ball has a shadow-mapped light source with a Phong
shader. The alley has a shadow—mapped light source, reflection
map, mip~mapped wood texture, and a Phong shader. The pins
have a shadow-mapped light source, procedural crown texture,
Imp-mapped label, bump—mapped scoffs, mip—mapped dirt, and
finally a simple Phong shader. We factor out common lighting
computations as described in Section 3.12. Each shader is divided
into three parts, the part before the lighting computation, the
common lighting computation, and the part after the lighting
computation. '

4.2 Multiple-passrendering

The shadow and reflection maps are obtained during separate
rendering passes. When each of these 512x512 images has been
computed and stored, rendering of the final image begins. In this
section we describe, in detail, the steps necessary to render and
store the shadow map and to render the final camera—view image.
Since computation of the reflection map is similar, we do not
describe it in detail.

Shadow map. A shadow map is a set of depth values rendered
from the point of view of the light source. We use three rasterizer
nodes to rasterize all the primitives and compute the depth at each
sample point. Since we do not need to calculate colors or other
parameters, this is a simple computation. The worst—case time for
this step is approximately 100 ps, although many map regions
have very few polygons and take less time to rasterize.

The depth values are then z—composited over the composition
network, and the resulting depth is sent to all of the shatters.
Composition time is only 5 LLS per region. Notice that data transfer
and computation can proceed simultaneously.

As mentioned in Section 3.2, storing tables for shadow or
reflection mapping is a point of serialization on our system. The
combined time to store both the shadow and reflection map takes
almost half the time for each frame. Since the hardware can store
four values into table memory at one time, we take advantage of

65

68

this intro-node parallelism by storing the depth map in units of
four regions each. Thus, the shadcr nodes accept four regions of
data before storing them.

The total time to complete the shadow map pass is the time
consumed by eight table writes, 6.08 ms, plus the time to rasten'ze
the first four regions, for a total time of less than 7 ms.

Reflection Map. Rasterization for the reflection map can begin as
soon as enough buffer space is available at the rasten‘zation nodes.
Shading for the reflection map can begin as soon as the last table
write for the shadow map has begun. The reflection map can be
generated and stored in less than 7 ms.

Final Image. The rendering time for the final image is a function
of both the rasterization time and the shading time. If the time to
rasterize a region is longer than the time to shade it. the shading
nodes will be idle waiting for appearance parameters from the
rasterizer nodes. The worst—case time will then be the total

rasterization time plus the time to shade the final region. If the
time to rasterize a region is less than the time to shade it, the
shading nodes will always have regions waiting to be shaded. We
will see that for this scene shading is the bottleneck, so the
rendering time will be the total shading time plus the time to
rasterize the first few regions (to get the shading nodes started).

First, consider the rasterization time. With all of the appearance
parameters, each of the front-facing triangles in the model takes
approximately 0.85 p5 to rasterize. One of the busiest frames, with
all of the pins visible, contains just under 6400 front-facing
triangles (this includes the additional triangles that have to be
rendered when triangles cross region boundaries). This total takes
5.4 ms to complete on one rasterizer node. If we also do five
sample antialiasing, this becomes 27 ms. To achieve our
performance goal we divide the polygons over 3 raster-izers to
decrease the time to a little over 9 ms. Details on the use of
multiple rasterizers in PixelHow can be found in [12].

Shadino function

Section of code Pin m-

l—_--
”—1-—

mi-u-ma dirt
mi-u—ma wood

Iiht shadowin-

posl-light Phon shader
reflection
Phon: shader

Figure 9: Shading times (1 node, 1 sample. 1 region)
excluding table lockup.

pro-light

Now, consider the shading time, In PixelFlow, the table lookup
time is proportional to the number of pixels that need data, so it is
not constant for a region but depends on how many total values
are actually needed. The worst case for table lookup will occur if
all of the pixels in a region use the bowling pin shading function
since it needs to look up four different viuues: two mip-mapped
image textures, one bump map, and one shadow map. To do one
table lookup for all 8K pixels on a node takes 190 us, so looking
up four values for a full region requires 760 us.

The worst-case time for the rest of the shader processing occurs
for regions that require all three shading functions. bowling pin,
alley, and hall. For regions without all of these elements, only

69

some of the shading functions need to be run. Figure 9 shows the
processing time for the shading functions excluding the table
lookup times. Note, however, that the time setting up for a
lookup and using the results is included. The slowest time for a
region is the sum of all the times in the figure or 150 as.

This time is for only one sample of one region. Since we are
doing five samples and a 640x512 video image has 40 regions,
there are really 200 regions to shade. The total time comes to
182 ms. By distributing the shading among twelve shading nodes,
we can cut the worst-case shading time to about 15.2 ms.

The 9 ms spent rasterizing is less than the shading time.
Therefore, the shading time dominates. The total time to compute
the final camera view is the shading time plus the time to rasterize
the first regions. or about 15.7 ms.

Total frame time. A complete image can be rendered in under
29.7 ms. This includes 7 ms to generate a shadow map, 7 ms to
generate a reflection map, and 15.7 ms for the final camera image.
These times were computed with pessimistic assumptions and
without considering the pipelining that occurs between the
rendering phases. This results in a frame rate faster than 30 Hz.
With more hardware it will be possible to run even faster.

Additional hardware will not significantly speed the shadow or
reflection map computations since they are dominated by the
serial time spent writing the lookup tables. But rendering time of
the camera image is inversely proportional to the number of
rasterization and shading nodes. For more complex geometry, we
add rasterization nodes. For more complex shading, we add
shading nodes. Note that the hardware for both of these tasks is
identical. The balance between them can be decided at run time.

5 CONCLUSION

In this paper, we described the resources required to achieve real-
time programmable shading—programmability, memory, and
computational power—requirements that many graphics hardware
systems are close to meeting. We explained how this shading
power can be realiied in our experimental graphics system,
PixelFlow. And we showed with an example, simulations, and
timing analysis that a modest size PixelFlow system will be able
to run programmable shaders at video rates. We have
demonstrated that it is now possible to perform, in real time,
complex programmable shading that was previously only possible
in software renderers. We hope that programmable shading will
become a common feature in future commercim systems.

ACKNOWLEDGMENTS

We would like to acknowledge the help of Lawrence Kestcloot
and Fredrik Fatemi for the bowling simulation dynamics, Krish
Ponamgi for the PixelFlow simulator, Ion Leech for his work on
the PixelFlow API design, Nick England for his comments on the
paper. and Tony Apodaca of Pixar for RenderMan help and
advice. Thanks to Hewlett—Packard for their generous donations of
equipment.

This research is supported in part by the Advanced Research
Projects Agency, ARPA ISTO Order No. A410 and the National
Science Foundation, Grant No. Ml'P-9306208.

69

66

REFEREN CES

[1]

[21

i3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[l3]

[14]

[15]

[16]

[17]

[13]

[19]

{’20}

Cook, R. L, L. Carpenter and E. Catmull, "The Reyes
Image Rendering Architecture", SIGGRAPH 87, pp. 95—102.

Whitted T., and D. M. Weimer, " A Software Testbed for
the Development of 3D Raster Graphics Systems", ACM
Transactions on Graphics, Vol. 1, No. 1, Jan. 1982, pp.43-58.

Cook, R. L, "Shade Trees", SIGGRAPH 84, pp. 223-231.

Hanrahan. P. and J. Lawson, "A Language for Shading and
Lighting Calculations", SIGGRAPH 90, pp. 289-298.

Perlin, K., ”An Image Synthesizer", SIGGRAPH 85, pp.237-296.

Upstil], 8., The RenderMan Companion, Addison-Wesley,1990.

Akeley, K., ”Reality Engine Graphics”, SIGGRAPH 93,
pp. 109-116.

Fuchs H., J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D.
Ellsworth, S. Molnar, G. Turk, B. Tebbs, and L. Israel,
"Pixel-Planes 5: A Heterogeneous Multiprocessor
Graphics System Using Processor-Enhanced Memories",
SIGGRAPH 89, pp. 79-88.

Deen‘ng, M., S. Winner, B. Schediwy, C. Duffy, and N.
Hunt, “The Triangle Processor and Normal Vector Shader:

A VLSI System for High Performance Graphics",
SIGGRAPH88, pp. 21—30.

Tebbs, B., U. Neumann, J. Eyles, G. Turk, and D.
Ellsworth, ”Parallel Architectures and Algorithms for
Real-Time Synthesis of High Quality Images using
Deferred Shading", UNC CS Technical Report T'R92-034.

Gharachorloo N., S. Gupta, R. F. Sproull and l. E,
Sutherland, ”A Characterization of Ten Rasterization
Techniques", SIGGRAPH 89, pp. 355-368.

Molnar 5., J. Eyles, and J. Poulton, ”PixelFlow: High-
Speed Rendering Using Image Composition", SIGGRAPH
92, pp. 231-240.

Gardner G. Y., "Visual Simulation of Clouds".
SIGGRAPH 85. pp. 297-303.

Williams I... "Pyramidal Parametrics", SIGGRAPH 83, pp.1-] l.

Blinn, J. F., "Simulation of Wrinkled Surfaces”,
SIGGRAPH 78, pp. 286-292.

Greene N., "Environment Mapping and Other Applications
of World Projections", IEEE CG&.A, Vol. 6, No. ll, Nov,
1986, pp. 21 - 29.

Williams L, "Casting Curved Shadows on Curved
Surfaces", SIGGRAPH 78, pp. 270-274.

Reeves W, T., D. H. Salesin, and R. L. Cook, "Rendering
Antialiased Shadows With Depth Maps", SIGGRAPH 87,
pp. 283-291.

Rhoades, 1., G. Turk, A. Bell, A. State, U. Neumann, and
A. Varshney, “Real-Time Procedural Texture", Proc. 1992
Symp. on 3D Interactive Graphics, pp. 95-100.

Akeley K., Smith K. P., Neider J., OpenGL Reference
Manual, Addison-Wesley, 1992.

70

eyes
95-

:l for
tCM
. PF-

31.

and

PP-

tley,

SSOF

Jl'lS

ov,

ed

Hg
37,

i92

‘CE

Interactive Full Spectral Rendering

Mark S. Peercy

Benjamin M. Zhu
Daniel R. Baum

Silicon Graphics Computer Systems

The scattering of light within a scene is a complicated process that
one seeks to simulate when performing photorealistic image syn-
thesis. Much research on this problem has been devoted to the

geometric interaction between light and surfaces, but considerably
less effort has been focused on methods for accurately representing

and computing the corresponding color information. Yet the ef»
fectiveness ofcomputer image synthesis for many applications also

depends on how accurately spectral information can be simulated.
Consider applications such as architectural and interior design, prod-
uct styling, and visual simulation where the role of the computer is
to show how objects would appear in the real world. If the color
information is rendered inaccurately, the computer simulation may
serve as a starting point; but in the long run, its usefulness will be
limited.

Correctly handling color during image synthesis requires preserving
the wavelength dependence of the light that ultimately reaches the
eye, a task we refer to as full spectral rendering, Full spectral
rendering has been primarily in the purview of global illumination
algorithms as they strive for the highest degree of photorealism.
In contrast, commercially available interactive computer graphics
systems exclusively use the RGB model, which describes the lights
and surfaces in a scene with their respective RGB values on a given
monitor. The light scattered from a surface is given by the products
ofthe red, green. and blue values of the light and surface, and these
values are directly displayed. Unfortunately, the RGB model does
a poor job of representing the wide spectral variation of spectral
power distributions and surface scattering properties that is present
in the real world [4]. and it is strongly dependent on the choice
of RGB monitor. As a result, the colors in an RGB image can be

severely shifted from the correct colors.

These drawbacks have frequently been overlooked in interactive
graphics applications because the demand for interactivity has tra-
ditionally overwhelmed the demand for photorealism. However.
graphics workstations with real-time texture mapping and antialias-
ing are overcoming this dichotomy [1]. Many applications that had

Address: Silicon Graphics, lnc., 20] l N. ShorelineElvd. Moumain View. CA 94040
peerey®sgi.com; zhu@sgi.com; drb@sgt.com

PermiSSion to copy without tee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright npttcp and the
title of the publication and rts date appear, and notice rs given
that copying is by permission of the Association of Computing
Machinery. To copy othemrlse, or to republish, requires a fee
and/or specific permission. _
1995 Symposium on interactive SD Graphics, Monterey CA USA
© 1995 ACM (It-89791-736-7/95/0004...$3.50

67

70

previously bypassed photorealism for interactivity now are capa-
ble of having some measure of both. The best current example is
the blending of visual simulation technology and mechanical com-
puter aided design for the visualization of complex objects such
as automobiles. And as workstation technology continues to ad-
vance, interactive rendering quality and speed will both increase.
Consequently, utilizing interactive full spectral rendering will have
significant benefits.

We present an approach to and implementation of hardware-assisted
full spectral rendering that yields interactive performance. We
demonstrateits use in an interactive walkthrough of an architectural
model while changing time of day and interior lighting. Other ex—
amples include the accurate simulation of Fresnel effects at smooth
interfaces, thin film colors. and fluorescence.

Generalized Linear Color Representations

The architecture uses generalized linear color representations based
upon those presented in [7] and [8]. The representations are obtained
by considering scattering events as consisting of three distinct el—
ements: a light source. a surface. and a viewer. Light from the
source reflects from the surface to the viewer, where it is detected.

We use the term viewer to apply to a set of n implicit or explicit
linear sensors that extract color information from the scattered light.
This information might be directly displayed, or it might be used
again as input to another scattering event.

To derive the representations we expand the light source spectral
power distribution in a weighted sum over a set of in basis func-
tions. The light is represented by a tight vector, E', that contains the
corresponding weights. The surface is then described by a set of
in sensor vectors. where the it" vector gives the viewer response
to the r” basis function scattered from the surface. If we collect

the sensor vectors in the columns of a surface matrix, S, the viewer
response to the total scattered light reduces to matrix multiplication:
3 = 5?, The effect of geometry on light scattering is incorporated
in the chosen illumination model.

The principal advantage of these representations comes when ev-
ery‘light source in the scene is described by the same set of basis
furictions. The light vectors and surface matrices can then be pre-
computed, and the rendering computation reduces. to inexpensive
and straightforwardly implemented matrix multiplication. Addi—
tionally, the freedom to selectappropriate basis functions and sensor
responsivities opens wide the applications of this approach.

71

Selection of Basis Functions: The basis functions are chosen to

capture the spectral power distributions of all light sources in the

scene. Fora small number ofindependent lights, one could simply
choose as basis functions the spectral curves ofthe lights. However,
if the number of spectral power distributions for the lights is large,
as, for example, when the sun rises and sets, the dimensionality can
be reduced through various techniques, including point sampling
and characteristic vector analysis [6] [7] [5].

Selection of Sensor Respensivitt'es.’ if the scattered light is to be
viewed directly, as is typically the case in interactive graphics, the
sensor responsivities should be the human color matching functions
based on the monitor RGB primaries. For an application such as
merging computer graphics and live action film, the sensors can
be chosen as the response curves of the camera used. The final

image would consist of color values of the synthetic objects as if
they were actually filmed on the set. so the image could be blended
more easily into the live action. Similarly, the sensor values might
be chosen to simulate the shift of non-visible radiation into visible

light in, for example, radio astronomy or night vision goggles. If,
alternatively, the scattering is only an intermediate step in a multiple
reflection path, as when computing environment maps, the sensor
responsivities can be chosen as the basis functions ofthe next event.

Hardware Implementation

Current Capabilities: Current workstations can employ the gener»
alized linear color representations in special circumstances. When
a scene contains a set of lights with identical spectral power dis—
tributions, only a single basis function is required. Light vectors
then have only one component that modulates single-column surface
matrices. If the viewer has three or fewer sensors, RGB hardware

can perform this modulation. For scenes illuminated by multiple
sources. a natural implementation is via the accumulation buffer
[3]. Pixels from the framebuffer can be added to the accumulation

buffer with an arbitrary weight, so the matrix multiplication can
be computed with multiple passes through the accumulation buffer.
one for each basis function, as if it were a single illuminant.

Required Modifications.- Needless to say, the accumulation buffer

involves substantial added computational effort as all of the geom—
etry is recomputed in each pass. A superior solution is obtained by
folding the linear color representations into the hardware, a goal we
have achieved in a prototype system by altering a Silicon Graphics
litealityEngineiM [1]. RGB products must be replaced by matrix
multiplication at every point in the rendering path that performs il-
lumination computations w polygon lighting, texture mapping. and
environment mapping. Vertex lighting calculations are implemented
through microcode modification. Currently, our system allows de-
cal textures orintensity modulated textures; full spectral textures, on
the other hand, require ASIC hardware modifications. We have de-

vised solutions to full spectral textun'ng and environment mapping
and the hardware required to implement them.

Full Spectral Examples: We implemented an interactive walk-

through of the Barcelona Pavilion, originally designed by architect
Ludwig Mies van der Rohe. The light sources in the scene include
ambient skylight, directional sunlight, and multiple interior fluores-
cent lights. The user can interactively change the time ofday while
traversing the database. As the time of day changes, the spectral
power distributions both from the disk ofthe sun and from the am-

71

68

bient skylight change — however. the change in spectral power can
be captured with a small number of basis functions [5], an excellent

demonstration of the flexibility of the generalized linear color repr
resentations. Images from a walkthrough are shown in Figure. l in
the color plates.

Environment mapping based upon sphere maps [2} can be used to
preserve both surface and illumination information. Therefore, we
can reproduce, for example, accurate Fresnel reflection and thin

film colors, both of which depend on full spectral data (Figure 2).
Additionally, the generalized linear color representations need not
be restricted to the visible wavelengths. For instance, fluorescent
objects convert ultraviolet energy to visible light. With no additional
rendering cost after precomputing the surface matrices, our system
can correctly display fluorescent objects (Figure 3). Similarly, these
representations may be applied to the simulation ofinfrared camera

response in. for instance, night vision goggles.

Ongoing Research

Improved color calculations during image synthesis will likely be-
come more important as hardware and software improvements con-
tinue to be made. One area that increased accuracy in color re-
production can have a significant impact is the seamless merging
of computer graphics and live action film or video. By simulating
the sensors of the camera that captured the original footage and
the lighting information from the set, it is possible to simulate the

appearance of computer graphics objects under the same lighting
conditions as the actual set. A complete solution to this problem
must pay particular attention to the calibration of the color values

from the camera, a non-trivial task. We are currently studying this
problem and are applying our rendering system to its solution.

References

[l] Akeley, Kurt. RealityEngine Graphics. Proceedings of SIG-
GRAPH ‘93 (Anaheim, California, August 1-6, 1993). In
Computer Graphics (August 1993), 109-116.

[2] Haeberli, Paul and Kurt Akeley. The Accumulation Buffer:

Hardware Support for High-Quality Rendering. Proceedings
of SIGGRAPH ’90 (Dallas, Texas, August 6-10, 1990). in
Computer Graphics 25, 4 (August 1990), 309-318.

[3] Haeberli, Paul and Mark Sega]. Texture Mapping as a Fun—
damental Drawing Primitive. Proceedings ofthe Fourth Eura-
graphics Workshop on Rendering (1993), 259466.

[4] Hall, Roy. Illumination and Color in Computer Generated
Imagery. Springer-Verlag, New York, 1989.

[5] Judd, D. B.. D. L. MacAdam, and G. W, Wyszecki. Spectral
Distribution of Typical Daylight as a Function of Correlated
Color Temperature. J. Opt. Soc. Am. 54, 8, (1964), 1031-1040.

[6] Meyer, Gary. Wavelength Selection for Synthetic Image Gen-
eration. Computer Vision, Graphics, and Image Processing/til
(1938), 57-79.

[7] Peercy, Mark S. Linear Color Representations for Full Spec-
‘ tral Rendering. Proceedings of SIGGRAPH ‘93 (Anaheim,

Califomia, August 1—6, 1993). in Computer Graphics (August
I993),191-198.

[8] Wandell, Brian. The Synthesis and Analysis of Color Images.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
PAMl-9J (1987), 2-13.

72

guru

mind—Hg.

interactive Volume Visualization

on a Heterogeneous Message-Passing Multicomputer

Andrei State}: Jonathan McAllister*, Ulrich Neumanni,
Hong Cheri", Tim J. Cullip*, David T. Chen" and Henry Fuchs*

*University of North Carolina at Chapel Hill
iUniversity of Southern California

ABSTRACT

This paper describes VOL2, an interactive general-purpose volume
renderer based on ray casting and implemented on Pixel-Planes 5,
a distributed—memory, message-passing multicomputer. VOL2 is
a pipelined renderer using image-space task parallelism and
object-space data partitioning. We describe the parallelization and
load balancing techniques used in order to achieve interactive
response and near-real-time frame rates, We also present a
number of applications for our system and derive some general
conclusions about operation of imageorder rendering algorithms
on message-passing multicomputers.

1 INTRODUCTION AND PREVIOUS WORK

Volume rendering is a widely used visualization method. Due to
the large number of graphics primitives (voxels) which must be
visited during the image generation process, real»time (or even
interactive) frame rates are difficult to achieve, even on highest-
performance graphics engines. Previous work that addressed this
computational expense problem includes [9], in which a number
of parallelization and load balancing techniques for the special
case of a shared-memory architecture were presented; the
rendering algorithm used was ray casting with parallel projection.

We describe an equivalent system. VOLZ, for a distributed-
memory architecture. It uses ray casting with perspective
projection, 21 general volume rendering method suitable for a
variety of visualization tasks. Ray casting is an image-order
algorithm in which volume data is traversed and sampled by rays
emanating from the viewpoint; the rays intersect the image plane;
they accumulate (integrate) information about the volume data
during traversal. The algorithms and principles used as the basis
for VOL2 are outlined in [2.4,5,8,10,13,]9]. An early

iDepartment of Computer Science, University of North Carolina at ChapelHill, Chapel Hill, NC 275993175.
(State Imcallisclchenhicullip | chem | Euchs l tics.unc .edu

1"Computer Science Department, University of Southern California, HenrySalvatori 338, Los Angeles, CA 90089-0781.uneumanngusc . adu

Permission to copy without lee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Assocratton oi Qomputtng
Machinery. To copy otherwise, orto republish, requtres a tee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

69

72

experimental precursor of VOLZ was mentioned in [12,19]. An
early version of this paper was published as [l l].

The. remainder of this work is organized as follows: brief
overview sections on the hardware platform used and the type of
display presented to the user are followed by a detailed description
of the internal pipelined-parallel system layout. We then describe
the types of visualization modes and graphics primitives supported
by VOLZ. The largest section is devoted to methods used to
obtain interactive and real-time performance levels; these include
a technique derived from “frameless rendering" [i]. We conclude
with an overview of applications for our system.

2 HARDWARE PLATFORM

VOL2 is implemented on Pixel-Planes 5, a high-performance
graphics engine with general-purpose computing nodes (called
Graphics Processors or GPs) based on the Intel i860
microprocessor, and special—purpose rendering nodes based on
massively parallel SIMD processor-enhanced memories [3]. Each
GP has 8 Megabytes of local memory. Each rendering node can
execute pixel operations in parallel on a 128x128 pixel raster,
which corresponds to 1/20 of the final 512x640 pixel image. All
nodes are interconnected via the system‘s internal 5 Gigabiu'sec
token ring network. Also connected to the token ring are frame
buffers and the Sun-4 host computer.

3 PRESENTED DISPLAY

VOL2 produces successively refined displays by rendering a
coarse image while the view parameters are changing, and by
gradually increasing the image quality during interaction pauses
(Plate 1). Kinetic depth effect is provided by appending to such a
successive refinement sequence a series of seven highest-
resolution frames; these cyclically displayed cineloop frames
present the visualized structures in animated oscillatory rotation
(rocking). The user will observe gradually increasing image
resolution, followed by increasingly smooth left-right rocking of
the displayed high—resolution structures (as each successive
cineloop frame is being computed, it is immediately included in
the rocking sequence). Additional depth cues are provided by
directional lighting with diffuse and specular reflections.

4 HENDEFIING PIPELINE

The rendering pipeline has six components (Fig. 1): the host, the
master GP, ray casters, compositors, splat processors (for screen
interpolation), and the frame buffer. The host provides UNIX
services and allows users real-time control through an X-window
interface and other input devices (joysticks, trackers). The master

73

commands, data
V

commands, data

// i t \\

ray casting GPs

Q,/j/;

20 composite-d image partitions

thim

Fig. 1. VOL2 visualization pipeline.

GP is responsible for system synchronization and for load
balancing the ray casters. Most of the i860 nodes are allocated as
ray casters which compute image samples. Eight 1860 nodes are
used as compositors which combine the image samples into a final
image. This image is sent to rendering nodes operating as splat
processors which interpolate the image over the full display
resolution and write the result to the frame buffer.

Local memory on each GP can hold only a limited number of
voxels (about 6M in 8-bit voxel mode and 1.5M in 32—bit voxel
mode). If the data set is too large to be replicated on all my
casting nodes, it is partitioned into slabs at system startup time;
the ray casting GPs are partitioned into groups [8]. Each group of
ray casting GPs is assigned to a slab of the data set (object—space
partitioning, Fig. 2). During rendering, ray casters sample their
assigned slabs on an image-space grid, compute partial screen
region images (i, e., arrays of partially composited ray segments)
and send these to the compositors. The latter combine the partial
image samples into final image samples. This is accomplished by
front-to—back compositing of the ray segments. Typically 8 nodes
are allocated to the compositing task, each responsible for a
640x64 pixel horizontal band of the final 640x512 pixel image.
The actual resolution of the computed image varies due to the use
of successive refinement; the array of composited image samples
sent to the splat processors to generate the fixed resolution
(640x512) final image is thus of variable size.

73

7O

static/dynamic volume data sets,
partitioned into slabs, each
assigned to a group of ray casters image plane

viewpolnt

composited image value
rendered as a 2D splat

Each ray traverses multiple slabs; each slab-segment of a
ray is calculated by a ray caster from a different group

Fig. 2. Static object space data partitioning into parallel slabs.

The SIMD rendering nodes are used as splat processors due to
their availability and efficiency at this task [10]. Composited
image samples are convolved with a 2D filter kernel to resample
the image at frame buffer resolution. Several user-selectable filter
kernels are implemented. among them box, bilinear, biquadratic,
piecewise quadratic and bicubic filters (Plate 2). The resampled
values are sent to the frame buffer for display.

5 RENDERING OPTIONS

The ray caster code implements a number of rendering modes.
such as isosurface rendering. direct rendering with and without
shading. and maximum intensity projection (MIP). Plate 3
illustrates the visualizations obtained by these modes from the
same data. Adding a new rendering mode to VOL2 amounts to
writing a new ray caster core function; ray caster core functions
are used in the innermost ray casting loop to sample the data set at
a specific position along a ray and interpret the sample in a
specific way (isosurface search, opacity accumulation, etc). This
modular design allows for easy prototyping and experimentation
with new rendering modes without overburdening the programmer
with the intricacies of Pixel-Planes 5 multiprogramming.

VOL2 supports wireframe line segments and flat—shaded triangles
as graphics primitives. The (antialiased) lines are Z-buffered
against isosurfaces and against each other. They are added by the
splat processors (Fig. 3) after the image is resampled to frame
buffer resolution (lines are only visible within fully transparent
areas of the data set). Triangles can be used to add reference
geometry to the scene and may penetrate into the volume data set.
They are rendered by the ray casting GPs since they must be
composited properly with the volume data. Since there are
typically few triangles in our applications, their rendering cost is
minimized by testing their individual bounding boxes against each
screen region to ascertain if rays cast on a particular ray casting
GP (i. e., through a specific screen region) will hit any triangles;
ray setup involves computing the intersection distance to the
polygons to eliminate intersection tests at every ray step.

' A cut-plane for the volume data set is also provided. It is textured
with the volumetric data (visible in Plate 5). The cut plane can be
moved by the user to examine any arbitrarily positioned or
oriented cross~section of the volumetric data set.

74

—--0

specify
new view

transform

viewpoint
into volume rrn

dataset s . ace lransfowireframe
‘ elements into

sp a nep
into nixels

cast rays from
viewpoint
determine

rasterize
wireframe

elements into

pixels with
depth

intersections,
colors...

sp at co or
into pixels

a raw wrre rames '
on basis of

pixel-by-pixel
de-th test

Fig. 3. Algorithm for combining wirefrarne line segment primitives
with volume rendered images.

6 OBTAINING INTERACTIVE PERFORMANCE

The generality of ray—casting (for example, in isosurface
rendering the surface thresholds can be changed on-the-fly, since
no intermediate geometric primitives have to be generated). has
its price. Ray casting is computationally expensive, even for
relatively small data sets (1M voxels). We therefore attempted to
identify and remove or alleviate VOLTs performance bottlenecks.

6.1 BY-PASS CODE

In order to obtain timing measurements, by-pasr code was
implemented in the master GP, ray casting and compositing
nodes. By-pass code is derived from the code normally executing
on the computing nodes by removing all compute-intensive
operations and retaining only the message-passing instructions,
thus preserving a computing node’s ability to operate in the
system (by essentially “fooling" the nodes it communicates with).

By selectively activating by—pass code for certain nodes. one can
determine how fast the rest of the system can be operated. For
example, by activating by-pass code for all nodes, we can
determine the maximum obtainable system performance for our
image generation pipeline layout (Fig. 4); by activating by—pass
code for all nodes except the master GP, we can determine at what
frame rates the master GP becomes overburdened during system
operation (Fig. 5); by activating by-pass code for the ray casters
and the master GP, we obtain the maximum speed at which the
compositing/splatting/d-isplay back-end can operate—compositing
performance is fairly independent of image content; it depends
mostly on image resolution and the number of object partitioning
slabs (Fig. 6).

6.2 LOAD BALANCE AND ADAPTIVE SAMPLING

Unlike the other system components, the ray casting nodes do not
exhibit a maximum speed behavior. Their performance depends
largely on data set size and image content. While master GP and
compositing back-end have to be able to keep up with the ray

71

LO

10

8m30

$20
9 10 3

512x640 256x320 128x160

image sampling resolution

64x80
Fig. 4. Rendering pipeline throughput, measured with lay-passed
image generation code in all pipeline stages; this shows the
maximum speed supported by the massage-passing framework at
different image sampling resolutions. These numbers are
independent of the number of computing nodes present in the
system.

framesrsec
GPs configured as ray casters

0 3 6 9121518212427303336

Fig. 5. Master GP maximum performance, measured with by-
passed code on all nodes except the master GP. If the system
contains few ray casters, the frame rate is low due to screen region
processing (however minimal due to by-passing) on a single ra
caster. For larger numbers of ray casters, we measure master G
maximum speed.

0
a)U)‘-
U.)
a:
E
S.._

512x640 256x320 128x160

image sampling resolution

64x80

Fig. 6. Performance of the compositing-splatting-display back-end,
measured with by-passed image generation code in the ray casting
nodes. These numbers are independent of the number of
computing nodes present in the system.

casters for the types of data sets and displays VOLZ is normally
used for, the ray casters themselves have to be load balanced with
respect to each other. To that end, ray casters are dynamically
assigned screen regions for image generation processing. Two
assignment methods are implemented and are user-selectable. In
the sample rows approach the master GP assigns sequential rows
of samples (Fig. 7, left) to the ray casting nodes on a first-come-
first-serve (FCFS) basis. The rows are distributed in order,
starting at the top of the image. This provides good load balance,
but precludes adaptive sampling since a 2D context is required for
it on each ray caster,

74

75

I sasmpl square '7I I

Fig. 7. Image space partitioning for load balancing by sample rows
(left) and sample squares (right).

Fig. 8. Conventional adaptive subdivison (left) causes 51 samples
to be taken while partial subdivision (right) requires only 29
samples. Samples taken at successive levels of subdivision are
represented by progressively finer circles. The curve boundary
triggers the subdivision criterion.

In the second load balancing approach (sample squares) the
master GP distributes a total of eighty 65x65-pixel square screen
regions (Fig 7, right) on a FCFS basis to the ray casting nodes.
The square region size (llSOth of the final image) includes two
edges of replicated rays to support adaptive sampling without
seams. Squares are distributed in order of descending cost, where
cost is the time taken to render the region in the previous frame
(0th order cost prediction). Typically, assignment of squares on
the basis of descending cost provides approximately 10-20%
increase in frame rate over distribution in screen order.

The sample squares approach is combined with adaptive
sampling, implemented as a modified form of recursive square
subdivision. It requires fewer rays and provides similar results to
that used in [6]. The conventional approach (Fig. 8, left) fully
subdivides a square area by computing five new samples when
any pair of four corner values exhibit variance above a user-
defined threshold Our partial subdivision approach (Fig. 8, right)
computes new samples only between varying sample pairs with
the center sample taken if any samples within a square vary. The
example shows that the new approach requires fewer samples than
the full subdivision method. A triangular subdivision method [15]
has similar economy, but is less well suited to square regions.

For the isosurfacc ray caster, an additional optimization technique
is used in combination with adaptive sampling: the ordered
sequence of isosurfaces encountered along each ray is encoded in
the ray sample. The encoded values are also compared during
adaptive sampling; differences between neighboring rays trigger
adaptive sampling along contours and isosurfacc intersection
curves even if the threshold criterion is not met, thus enforcing
accurate edge and intersection curve display.

Plate 4 shows a bar graph of the ray casting GP workloads
normalized to the highest load (these and other types of test
displays have proven very useful for observing the behavior of our
system). Both the sample rows and sample squares approaches

75

72

1""'-"“"r“1.-.---—.--..-.I.---.-___-...-I.-. I—_-..

r-----
....5.....v I l l I

::--—-—-;-
l IFrameRate{Hz}

sample sq..... ‘f.....

I1IIIlIIIIInIi
JI II I

aI YrIIIIIuIII'IIIIIII
IIII --....-.---.'

5 9.8 13 19.8 24 33.5 42.9 52.4 57.1

Viewpoint Distance [cm]

Fig. 9. Frame rate comparison between sample rows and sample
squares for varying volume data set size in image space. (Full
screen images are produced by 5 cm viewpoint distance, 60 cm
distance produces approximately 1116 screen coverage.) Line
partitions cast rays every 8x8 or 4x4 pixels. Square regions are
adaptively sampled inltlall at one ray per 16x15 pixels and refined
up to one ray per 4x4 pixe 5. These measurements were taken on a
system containing a total of 21 GPs, of which only 4 were allocated
as compositors. Fi ures for larger systems with B-compositor
allocation are slightly igher.

produce good load balance with the former giving better
performances for images with low screen coverage and the latter
approach giving better performance for full-screen images, as well
as more consistent frame rates over varied image sizes (Fig. 9).

6.3 PARTIAL UPDATING

In addition to the multiple successive refinement levels, the user
can select a partial updating mode to increase the frame rate.
Partial updating is loosely based on the frameless rendering
technique described in [1]. This causes a new frame to be
displayed as soon as a user-selected fraction of the image samples
have been updated. Update levels of 25%, 50%, and 100% are
currently implemented. For example, .if the partial updating
fraction is 25%. each sample is updated once every 4 frames.
When user interaction pauses. an image at the lowest successive
refinement level will have filled in after four frames.

Rather than updating a randomly distributed set of samples, we
update the samples on a regular grid. which has the benefit that
the bookkeeping required to ensure every sample eventually gets
replaced if samples are chosen randomly all but disappears; a
simple modulus of the sample coordinates with the frame number
tells whether to cast a ray for a given sample on a given frame.

Partial updating implies incremental image modification.
requiring the array of screen samples to be preserved from one
frame to the next. In our implementation, this array is stored on
the compositing nodes. Note that due to image partitioning for
dynamic load balancing of the ray casters, it would be difficult to
preserve the (fragmented) images on the ray casters; the existence
of a compositing step in our pipeline proved advantageous for the
implementation of partial updating.

76

6.4 OTHER OPTIMIZATIONS

A number of standard techniques are used to speed up ray casting.
The voxels are stored with 13-bit pro-computed normals. A
Shading table is computed at the start of every frame that encodes
the Lambertian coefficient for the given light direction(s) as a
function of the surface normal. Voxel shading is efficiently
performed by lockup into this table. Pre-computed threshold hits
at each voxel accelerate ray processing by flagging whether an 8-
voxel cell has “interesting” material within it. The highest value
in each cell is also pre—computed and used to speed up ray casting.
Rays are terminated when an opacity threshold is reached.

7 APPLICATIONS

VOL2 has been used as a rendering engine (both as a separate
stand—alone server and embedded in a more complex system) for a
number of research projects:

7.1 INTERACTIVE RADIATION THERAPY PLANNING

VOLZ is used as a visualization tool within VISTAnet, a
collaborative project whose principal application is interactive
radiation therapy planning (IRTP); the goal is to deliver lethal
radiation to cancerous tissue, while keeping the doses received by
healthy tissue at non-lethal levels. The treatment strategy is to
intersect multiple treatment beams onto a predetennined 3D target
region of a patient's anatomy. a complex task requiring
comprehension of shape and sensitivity of the anatomy.
VlSTAnet is an experimental tool enabling 3D IRTP through
rapid radiation dose computation (on a Cray Y-MPTM
supercomputer) combined with interactive radiation dose
visualization. Cray and Pixel-Planes S are linked by a near-
gigabit communication network.

During an interactive session, a physician user specifies anatomy
data sets and defines or modifies treatment beam parameters.
These are transmitted to the Cray. which computes the dose
distribution produced within the anatomy by the current treatment
beam configuration and sends the dose data over the high-speed
network to Pixel-Planes 5, where a combined image of anatomy,
treatment beams. and resulting dese is generated; the physician
examines the rendering and continues to adjust the parameters.
The current processing rate is several such adjustments per second
for anatomy data sets containing about 1M voxels. The display
(Plate 5) must hence be able to quickly convey the treatment
plan's characteristics to the user.

A special ray caster core function was added to VOL2 for
operation under VlSTAnet; it performs isosurface rendering of
anatomy and dose data sets. For the anatomy, user-defined
thresholds in the CT data and pre-defined organ or tumor
segmentation data are both used for on-the-fly isosurface search
during ray traversal; simultaneously, the radiation dose data set is
traversed in search of up to three radiation dose isosurfaces, also
with user-defined thresholds. Proper compositing of the dose,
anatomy and organ or tumor surfaces must be ensured, especially
when multiple surfaces lie between ray samples (Fig. 10); each
surfaces distance from the previous sample point along the ray is
computed and sorted to establish the correct order for
compositing. Wireframe outlines for the radiation treatment
beams are rendered using VOL2‘s line segment primitives.

The (dynamically changing) radiation dose data set is received
asynchronously from the Cray (via the Network Interface Unit or
NIU, also attached to the Pixel—Planes 5 token ring and providing
access to the external VlSTAnet Gigabit network). An incoming

73

76

in algorithmic order but must be sorted for compositing. Surfaces
detected in <1 ,2.3>-order must be composited in <2,1,3>—order.

radiation dose preempts ongoing rendering for the current frame
and switches context to a different task which distributes the new

radiation dose to all ray casters as it is received. The distribution
scheme follows the data set slab partitioning scheme described.

VISTAnet is described in more detail in [12,15].

7.2 INTERACTIVE ED ULTRASOUND VISUALIZATION

The dynamic data set updating capabilities developed for
VlSTAnet are also used in an experimental augmented-reality
ultrasound visualization system (Plate 6). For this system we have
allocated a number of computing nodes to a volume
reconstruction task: video images from an ultrasound machine are
resampled into a volume data set, which is then transmitted to the
ray casters for near-real-time image generation [17]. This system
also required the incorporation of virtual-reality—type head and
hand tracking support.

7.3 STEREUSCOPIC DISPLAY

Support for stereoscopic visualization using field-sequential stereo
display on a large rear-projection screen was added to VOL2 for
virtual reality experiments. as was the capability to generate such
displays for head tracked viewing; this includes off-center
perspective projection and the ability to position the viewpoint
inside the volumetric data set.

7.4 OFF-LINE IMAGE GENERATION

Finally, VOL2 has also been used as an off-line rendering tool for
simulated augmented-reality ultrasound visualization [l7] and as
an image precornputation tool for an experimental head-motion
parallax visualization system [16].

8 CONCLUSIONS

The methods used to obtain the current performance (pipelined
system layout, load balance between pipeline stages as well as
between parallel nodes of individual pipeline stages) were
successful-—VOL2 has even been used as a skeleton for other

Pixel-Planes-S-based parallel image-order renderers: polygon-
based interactive ray tracing and interactive image-based
morphing; both take advantage of the sophisticated, finely
tuneablc control over the performance/image quality tradeoff
provided by the VOL2 framework.

We consider the by-pass code method one of the most useful
lessons learned while building this system. This technique is
generally applicable to the design of parallel/pipelined image-
order renderets and has proven extremely useful as a tool to detect
and eliminate performance bottlenecks in a complex
multicomputer-based real-time rendering system.

77

9 FUTURE WORK

It has been extremely difficult to achieve VOL2's current frame
rates and interactive response characteristics. The
perfonnancelresolution tradeoff is particularly unsatisfactory since
it weakens kinetic depth cues. The system does indeed provide
both interactive frame rates and strong kinetic depth, but not
simultaneously (and hence not interactively), due to insufficient
computational pOWer. We expect significant performance
improvements from an implementation of a general—purpose
volume rendering algorithm on next-generation graphics
multicornputers [7].

10 ACKNOWLEDGMENTS

We acknowledge the significant algorithm and software
development efforts of John Rhoades, Qin Fang, Matt Lavoie, Jim
Symon and Suresh Balu. This work was supported by NSF and
ARPA under Cooperative Agreement NCR-8919038 with CN'RI
(“VISTAnetz A Very High Bandwidth Prototype Network for
Interactive 3D imaging"), by BellSouth, and by GTE. Additional
funding was provided by ARPA ISTO contract DAEA 18-90-C-
0044 (“Advanced Technology for Portable Personal
Visualization").

REFERENCES

1. Bishop, Gary, Henry Fuchs, Leonard McMillan and Ellen J.
Scher Zagier. “Frameless Rendering: Double Buffering
Considered Harmful," Proceedings of SIGGRAPH '94 (Orlando,
FL, July 24—29, 1994). In Computer Graphics Proceedings,
Annual Conference Series, 1994, ACM SIGGRAPH, pp. 175—176.

2. Drebin, Robert A., Loren Carpenter, and Pat Hanrahan.
“Volume Rendering,” Proceedings of SIGGRAPH ’88 (Atlanta,
GA, August 1—5, 1988). In Computer Graphics, 22, 4, (August
1988), ACM SIGGRAPH, New York, pp. 65-74.

3. Fuchs, Henry, John Poulton, John Eyles, Trey Greer, Jack
Goldfeather, David Ellsworth, Steve Molnar, Greg Turk, Brice
Tebbs and Laura Israel. "Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-Enhanced
Memories,” Proceedings of SIGGRAPH ’89 (Boston, MA, July
31—August 4, 1989). In Computer Graphics, 23, 3 (August 1989),
ACM SIGGRAPH, New York, 1989, pp. 79—88.

4. Levoy, Marc. “Volume Rendering by Adaptive
Refinement." The Visual Computer, 1990, 6, pp 2-7.

5. Levoy, Marc. “Design for a Real-Time High-Quality
Volume Rendering Workstation,” Proceedings of the Chapel Hill
Volume Visualization Workshop (Chapel Hill, NC, May 1989), pp.85-92.

6. Levoy, Marc. “Display of Surfaces from Volume Data."
IEEE Computer Graphics and Applications, May 1988, pp. 29—37.

7. Molnar, Steven, John Eyles and John Poulton. “PixelFlow:
High-Speed Rendering Using Image Composition,“ Proceedings
of SIGGRAPH ’92 (Chicago, IL, July 26—61, 1992). In Computer
Graphics, 26, 2 (July 1992), ACM SIGGRAPH, New York, 1992,
pp. 231-240.

8. Montani, C., R. Perego and R. Sc0pigno. “Parallel Volume
Visualization on a Hypercube Architecture,” Proceedings of the
1992 Workshop on Volume Visualization (Boston, MA, October

77

74

19—20, 1992), special issue of Computer Graphics, ACM
SIGGRAPH, New York, 1992, pp. 9-16.

9. Nieh, Jason and Marc Levoy. “Volume Rendering on
Scalable Shared-Memory MIMD Architectures,” Proceedings of
the 1992 Workshop on Volume Visualization (Boston, MA,
October 19—20, 1992), special issue of Computer Graphics, ACM
SIGGRAPH, New York, 1992, pp. 17-24.

10. Neumann, Ulrich. “Interactive Volume Rendering on a
Multicomputer,” Proceedings of the 1992 Symposium on
Interactive 3D Graphics (Cambridge, MA, March 29—April 1,
1992), special issue of Computer Graphics, ACM SIGGRAPH,
1992, pp. 87—93.

11. Neumann, Ulrich, Andrei State, Hong Chen, Henry Fuchs,
Tim J. Cullip, Qin Fang, Matt Lavoie and John Rhoades.
"Interactive Multimodal Volume Visualization for a Distributed

Radiation-Treatment Planning Simulator," Technical Report
TR94—040, University of North Carolina at Chapel Hill, Computer
Science Department, June 1994.

12. Rosenman, Julian, Edward L. Chaney, Tim J. Cullip, James
R. Symon, Vernon L. Chi, Henry Fuchs and Daniel S. Stevenson.
“VISTAnet: Interactive Real-Time Calculation and Display of 3-
Dimensional Radiation Dose: An Application of Gigahit
Networking,” Int. J. Radiation Oncology Biol. Phys, 25,
Pergamon Press Ltd., 1992, pp. 123—129.

13. Sabella, Paolo. “A Rendering Algorithm for Visualizing 3D
Scalar Fields,” Proceedings of SIGGRAPH ’88 (Atlanta, GA,
August 1—5, 1988). In Computer Graphics, 22, 4, (August 1988),
ACM SIGGRAPH, New York, pp. 51—58.

14. Shu, chben and Alan Liu. “A Fast Ray Casting Algorithm
Using Adaptive Isotriangular Subdivision," Proceedings of
Visualization '91 (San Diego, CA. October 22—25, 1991), Gregory
M. Nielsen and Larry Rosenblum, Editors, IEEE Computer
Society Press, Los Alamitos, CA, October 1991, pp. 232—238 and426.

15. State, Andrei, Julian Rosenman, Henry Fuchs, Tim J. Cullip
and Jim Symon. “VISTAnet: Radiation therapy treatment
planning through rapid dose calculation and interactive 3D
volume visuallzation,"l/isualization in Biomedical Computing
1994 (Rochester, MN, October 4—7, 1994), Richard A. Robb,
Editor, Proc. SPIE 2359, 1994, pp. 484-492.

16. State, Andrei, Suresh Balu and Henry Fuchs. “Bunker
View: Limited-range head-motion-parallax visualization for
complex data sets," Visualization in Biomedical Computing 1994
(Rochester, MN, October 4-7, 1994), Richard A. Robb, Editor,
Proc. SPIE 2359, 1994, pp. 301—306.

17. State, Andrei, David T. Chen, Chris Tector, Andrew Brandt,
Hong Chen, Ryutarou Ohbuchi, Mike Bajura and Henry Fuchs.
“Case Study: Observing a Volume Rendered Fetus within a
Pregnant Patient,” Proceedings of Visualization ’94 (Washington,
DC, October 17—21, 1994), R. Daniel Bergeron and Arie
Kaufman, Editors, IEEE Computer Society Press, Los Alamitos,
CA, pp. 364-368 and CP—4I.

18. Westover, Lee. "Interactive Volume Rendering,”
Proceedings of the Chapel Hill Volume Visualization Workshop
(Chapel Hill, NC, May 1989). PP. 9—16.

19. Yoo, Terry 5.. Ulrich Neumann, Henry Fuchs, Stephen M.
Pizer, Tim Cullip, John Rhoades and Ross Whitaker. “Direct

Visualization of Volume Data,” IEEE Computer Graphics and
Applications, 12, 4, Los Alamitos, CA, July 1992, pp. 63—71.

78

The Sort-First Rendering Architecture for High-Performance Graphics

Carl Mueller

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract

Interactive graphics applications have long been challenging
graphics system designers by demanding machines that can
provide ever increasing polygon rendering performance.
Another trend in interactive graphics is the growing use of
display devices with pixel counts well beyond what is usually
considered “high resolution.” If we examine the architectural
space of high—performance rendering systems, we discover
only one architectural class that promises to deliver high
polygon performance with very-high-resolution displays and
do so in an efficient manner. It is known as “sort-first.”

We investigate the sort-first architecture, starting with a
comparison to its architectural class mates (sort-middle and
sort-last). We find that sort-first has an inherent ability to take
advantage of the frame-to-frame coherence found in interactive
applications. We examine this ability through simulation with
a set of test applications and show how it reduces sort-first’s
communication needs and therefore its parallel overhead. We
also explore the issue of load-balancing with sort~first and
introduce a new adaptive algorithm to solve this problem.
Additional simulations demonstrate the effectiveness of this

algorithm. Finally. we touch on a variety of issues that must
be resolved in order to fulfill sort-first’s ultimate promise:
millions of polygons for zillions of pixels.
1.

The demands for better interactivity and realism in applications
such as vehicle simulation, architectural walkthrough,
computer-aided design, and scientific visualization have
continually been driving forces for increasing the graphics
performance available from high-end graphics systems.

Introduction

Interactivity implies that the images are drawn in real-time in
rapid response to user input. This immediately brings out two
requirements from the graphics system: it must be able to draw
images at approximately 30 frames per second (real-time), and
it must have low latency (rapid response).

Realism implies that the images are rendered from detailed

UNC Sitterson Hall CB 3175; Chapel Hill, NC 27599-3175
phone: (919) 962-1878; email: mueller@cs.unc.edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed tor
direct commercial advantage, the ACM copyright notice and the
this of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permissmn.
1995 Symposium on interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

75

78

scene descriptions, meaning that the scenes consist of many
thousands of graphics primitives. Realism also requires a
display system that can show the scenes with a level of detail
matching what the eye can see. Providing such detail for a
reasonable field of view requires millions of pixels.

There are a variety of display devices on the path toward
offering better realism. The proposed HDTV standard aims at
nearly two million pixels. CAVE-type immersive displays [5]
cover 4 walls of a room with a total of 5 million pixels. a
number much smaller than what is desirable. Even head-

mounted displays (HMDs), which would seem to require many
fewer pixels, already are reaching one million pixels per eye
[12] and are expected to go much further. in fact, Kaiser Electro-
Optics is working on an ARPA-sponsored project to create an
immersive HMD system with 4.6 million pixels per eye [7].

The number of applications which will want to take advantage
of such high-resolution display devices will only increase as
such devices become more popular. Yet so far, the only way to
generate interactive images for these devices requires massive
duplication of graphics hardware. Without an efficient
solution, use of such devices will be limited to those parties
with large acquisition budgets.

2. Parallel Graphics Systems

The task of a graphics computer can be described fairly simply.
Given a mathematical model of all the objects in a particular
environment, it must compute the visual contribution of each
object for each pixel in a given viewing plane. This is a type
of sorting problem, a fact recognized by Sutherland. Sproull,
and Schumacher in 1974 [18]. For interactive graphics, the
task is performed in two major stages: transformation and
rasterization. The former converts the mode] coordinates of

each object primitive into screen coordinates, while the later
converts the resulting geometry information for each primitive
into a set of shaded pixels.

The graphics performance demanded by the aforementioned
applications requires parallel processing at both the
transformation and rasterization stages of the graphics
pipeline. The former is needed to cope with the large number of
primitives, while the latter is needed for the large number of
display pixels. The choices for how to partition and recombine
the parallelized work at the different pipeline stages lead to a
taxonomy of different architectures: sort-first, sort-middle, and
sort-last [13,15].

We now briefly examine each of sort-first, sort-middle, and
sort-last. in the following descriptions. we consider a
framework of an application host computer working with a

79

graphics computer subsystem. The latter consists of many
parallel processors working to produce the desired images in
real time. Initially, the display database is partitioned and
distributed among all the processors.
2.] Sort-first

In sort-first (figure 1), each processor is assigned a portion of
the screen to render. First, the processors examine their
primitives and classify them according to their positions on
the screen. This is an initial transformation step to decide to
which processors the primitives actually belong, typically
based upon which regions a primitive's bounding box
overlaps. During classification, the processors redistribute the
primitives such that they all receive all of the primitives that
fall in their respective portions of the screen. The results of
this redistribution form the initial distribution for the next
frame.

Following classification, each processor performs the
remaining transformation and rasterization steps for all of its
resulting primitives. Finished pixels are sent to one or more
frame buffers to be displayed.
2.2 Sort-middle

In sort-middle (figure 2), there is a set of transformation
processors and a set of rasterization processors. Physically,
the two sets may use the same hardware, but they remain
logically separate sets. Each rasterization processor is
assigned a portion of the screen. To produce an image, each
transformation processor completely transforms its portion of
the primitives. The resulting primitive information is again
classified by screen location and sent to the correct set of
rasterization processors. After rasterization, finished pixels
go to the frame buffer(s).

In contrast to sort—first, the original distribution of primitives
is maintained on the transformation processors. For each
frame, all of the transformed primitives must be routed to the
correct set of rasterization processors.
2.3 Sort-last

For sort-last (figure 3), each processor has a complete
rendering pipeline and produces an incomplete full-area image
by transforming and rasterizing its fraction of the primitives.
These partial images are composited together, typically by
depth sorting each pixel, in order to yield a complete image for
the frame buffer. The composition step requires that pixel
information (at least color and depth values) from each
processor be sent across a network and sorted along the way to
the frame buffer.

Graphics Database

Geometric
transformation

Rasterization

Display

Figure l. Sort-First Pipeline

79

Graphics Database

Figure 2. Sort-Middle Pipeline

Naturally. each architecture has a set of advantages and
disadvantages. We outline these briefly here; for a more
complete comparison, refer to [15].

2.4 Comparison

Sort—last is a very promising architecture and is discussed in
detail in [13] and [14]. It offers excellent scalability in terms of
the number of primitives it can handle. However, its pixel
budget is limited by the bandwidth available at the
composition stage. Using a specialized composition network
can help to overcome this problem.

Anti—aliasing is a major problem for sort-last: regardless of the
solution chosen, the composition task is non-trivial. Using
super-sampling multiplies the amount of pixel bandwidth
required, since each sample must be composited. A-buffer
approaches introduce new complications to the composition
process, since the number of fragments per pixel may vary and
become arbitrarily large.

Finally, since visibility is not decided until after the
composition stage. sort-last places limitations on the kinds of
rendering algorithms which may be used. The choice of
algorithms available for rendering transparent polygons
becomes limited, for example, and visibility-based culling
algorithms are less useful on son—last.

Because of the way it builds upon traditional graphics
pipelines, sort middle is a fairly natural architecture which has
resulted in many implementations. Some examples are [l], [3],
[6], [9], [11], and [21]. However, sort-middle's requirement
that any transformation processor be able to talk to any
rasterization processor means that its scalability is limited.
Increasing the number of processors geometrically increases
the demands on the communications network between them.

In addition, sort—middle faces loadwbalancing problems when
the on-screen distribution of primitives is uneven. This will
result in rasterization processors becoming unevenly loaded.
and this in turn may degrade system performance unless careful
attention is given to this problem. A variety of solutions have
been used to address this issue (refer to the references above).

Sort-first is a promising architecture that has until now
received little attention. it is the only architecture which
inherently takes advantage of frame-to-frame coherence. In an
interactive application. the viewpoint changes very little from
frame to frame, and thus the on-screen distribution of
primitives does not change appreciably. Since primitives in a
sort—first system are only transferred when they cross from one
processor's screen region to another’s, only a fraction of them
will have to be communicated each frame. Also, any

Graphics Database

Geometric Geometric
'" transformation transformation

Rasten'zation

Display

Figure 3. Sort-Last Pipeline

76

80

communication that does occur is typically fairly local; usually
only “neighboring” processors will need to talk with each
other. These facts suggest that it has good scalability in terms
of the number of primitives it can handle.

In sort—first, once a processor has the correct set of primitives
to render, only that processor is responsible for computing the
final image for its portion of the screen. This allows great
flexibility in terms of the rendering algorithms which may be
used. All the speed-ups which have been developed over time
for serial renderers may be applied here.

Since only finished pixels need to be sent to the frame-buffer,
sort—first can easily handle very-high-resolution displays.
This is the bottleneck for sort~1ast. Sort—middle also sends

only finished pixels to the frame-buffer, but increasing the
display resolution requires increasing either the size or number
of rasterization processors, either of which causes problems.
Thus sort-first is the only architecture of the three that is ready
to handle large databases and large displays.

However, sort-first is not without its share of problems. Load—
balancing is perhaps one of the biggest concerns: because the
on-screen distribution of primitives may be highly variable,
some thought must go into how the processors are assigned
screen regions. Also, managing a set of migrating primitives
is a complex task. These and other problems are the focus of
this research.

3. Coherence Study

Because sort-first utilizes the coherence of on-screen primitive
movement, We performed experiments to analyze this factor
and determine what kind of savings might be achieved with
actual applications. We wanted to know what fraction of
primitives would need to be sent from processor to processor in
a sort—first implementation. This testing was done using a
simulation with several simplifying assumptions.

The testing involved two phases. The first was to make
recordings from actual applications running on UN'C’s Pixel-
Planes 5 graphics system. The resulting recordings contain a
series of viewpoint information for each frame rendered while
the application was run: The second phase was to take this
information and the graphics database archive files and feed
them to the simulation program. This program is based upon a
framework written by David Ellsworth for his study of sort-
middle systems [9]. Code was added to implement a sort—first
partitioning and to calculate the resulting primitive traffic.

Various applications were used for the different test cases.
“PLB” spins its database on the screen’s vertical axis (named
after a graphics performance benchmark from [16]). “Vixen” is
a HMD-based visualization program that allows one to fly
through an arbitrary display database. Finally, “Xfront” is
similar except that it is joystick-controlled.

The setup for these tests is as follows:

- The database is simply a list of polygons (no structure).
- The aspect ratio of the screen is square.
- The screen is subdivided into equal-size square regions with

one region assigned to each processor.
- The primitives are initially randomly distributed (the first

frame’s data is ignored for this reason).

- Primitives are redistributed according to the regions their
bounding boxes cover.

- If a primitive falls into multiple regions, the processor at the
upper—left region is deemed to be “in charge” of it.

- Off-screen primitives remain at the processor where theywere last on—screen.

77

80

In these tests. the Screen resolution is irrelevant: only the
number of regions (and thus processors) matter. Several
configurations of regions were tested: 4x4, 8x8, and 16x16.
The simulation program outputs a series of values per frame
representing the percentage of primitives that had to be
communicated in that frame. From these figures, we calculate
the arithmetic mean, the high value. the standard deviation, and
the 95th percentile value.

For PLB, the database is a scanned model of a human head (see
plate 1). The model is placed in the center of the screen and
spun at 4.5 degrees per iteration around a vertical axis through
its center (as in [16]).

ELB head 59,592 polygons, 80 frames
regions: m 8418 mm
mean 4.06 % 8.80 % 18.07 %
high 5.19 10.30 20.80
std-dev 0.54 0.70 1.05
95-% 5.07 9.92 20.06

For Vixen, the test case is a HMD walk-through of a Sitterson
Hall’s lobby (plate 2). The path starts on the mezzanine, goes
down the stairs, and then turns around to look back at the
starting point.

 Lobby 16.267 polygons, 218 frames
regions: 4L4 M 16x16
mean 2.13 % 4.95 % 11.41 %

high 21.17 45.17 87.44
std-dev 3.38 7.28 15.05
95-% 8.67 20.67 44.60

For Xfront, the model is a terrain database of a section of the

Sierra Nevada mountains (plate 3). The model undergoes a
series of zooms, rotations, and translations. with an abrupt
reset between each sequence.

Sigma 162,690 polygons, 234 frames
regions: 435$ M lfiglg
mean 3.17 % 6.08 % 11.51 %

high 98.07 102.26 107.38
std-dev 7.68 9.53 11.76
95-% 5.04 10.36 20.53

Looking at the results, we can see that increasing the number of
regions increases the percentage of primitives that are
communicated. This is fairly obvious, since increasing the
number of region borders will increase the chance of a
primitive crossing them.

The high values are somewhat interesting. For Sierra. the large
values resulted from the abrupt transitions in this sequence.
These exceeded 100% for two of the cases since primitives
which fall into multiple regions may need to be sent more thanONCE.

The percentiles perhaps are of greatest interest. They show
that for moderately interactive applications (PLB, Xfront),
95% of the rendered frames require reshuffling of only about
20% of the primitives or less. For more highly interactive
applications (Vixen), this figure goes up to about 45% in the
worst case. As one may expect, this figure is directly related to
the type of motion present in the application and how it affects
the scene. A HMD user can create a lot of relative motion

simply by rapidly turning his head.

The figures suggest that temporal coherence can provide sort-
first with a dramatic savings in the amount of communication it
must perform. The amount of savings is related directly to the

81

nature of the application and the number of regions into which
the screen is divided. Even for highly dynamic applications,
the savings can be large. provided that the number of regions is
kept small. As the number of regions increases, the amount of
savings decreases in proportion, but remains quite substantial
even for fairly large numbers of regions.

Although not demonstrated here, one may note that the frame—
to-frame coherence is also proportional to the speed of the
rendering system. An interactive system running at a higher
rate will have smaller “deltas” between the frames. Thus the

faster one can make a sort—first system perform, the more
efficient it will be.

4. Off-Screen Primitives

We now examine some important issues of the sort-first
architecture, starting with off—screen primitives. Such
primitives are an interesting complication for sort-first, since
these will not map to any processor’s screen regionts). There
are several alternatives for deciding what to do with them, each
offering important tradeoffs.

One solution is to simply keep off-screen primitives on the
processors where they were before they went off screen. This
solution could ultimately lead to load-balancing problems or
even memory overflow problems if a majority of the primitives
go off-screen from the same processor. Since off-screen
primitives still require geometric processing, this processor
will be overloaded, assuming that the load~balancing algorithm
(see below) does not take this into account. It is apparent that
off-screen primitives have to be sent away eventually. The
questions that come up are where to send them, and when?

As for the former. one could send them to “neighboring”
processors, since this might offer a communications
advantage; however these processors might then become
overloaded themselves unless they also send the primitives
away. However, sending off-screen primitives more than once
seems counterproductive.

Another solution is to send them to a processor that is under-
loaded. This approach requires that processors distribute
information about their primitive loads. Also, additional logic
would be necessary to prevent many overloaded processors
from sending their unneeded primitives to the same underloaded0116.

An alternative place to send off-screen primitives is to a
random processor. This method may be reasonable assuming
that processors were fairly evenly loaded to begin with. If
processor—load information is distributed, this method could be
combined with the above approach by using this information
to make it more likely that underloaded processors will receive
primitives than overloaded ones.

The ideal solution for where to send off-screen primitives is a
system and application dependent issue requiring consideration
of many factors. The solution must be developed hand—in-hand
with solutions to the load~balancing and database management
problems (discussed below).

Aside from where. one must also consider the question of when
to send away off—screen primitives. Primitives that are at the
edge of the View screen might tend to pop in and out of view
frequently, especially when there is some noise in the inputs
that determine viewing direction. Thus it seems smart not to

immediately send away a primitive that has gone off-screen
(since it may be needed again shortly), but rather to keep it
around for a few frames before doing so. A least-recently-used
scheme would be applicable to decide which primitives to send
away.

81

78

It should also be mentioned that this same issue arises with on-

screen primitives as well. in a sense, any primitives that are
outside a particular processor’s region may be considered off-
screen with respect to that processor. Such primitives may
come back into a region soon after leaving it, and depending
upon the costs of extra bookkeeping versus extra
communication, it might be wise to keep a copy of departing
primitives on—hand for a short time.

5. Load Balancing

The choice of strategy for mapping screen regions to
processors has a critical impact on the performance of a sort-
first system. A simple strategy such as dividing the screen into
as many equal rectangles as there are processors and assigning
them one-to-one can result in severe load-balancing problems.
If the greatest concentration of primitives happens to fall into
a single region, the parallel advantage of the system will be
lost as the non-busy processors wait for the overloaded one to
do its job. There are several approaches one can take to solve
the load-balancing problem.

5.1 Static vs. Adaptive Region Assignment

One basic question is whether the assignment should be static
or adaptive. if it is static, one must be careful about the
assignment. If it is adaptive, then one needs a way to measure
the rendering load across the screen. and then a way to divide
the screen in a reasonable way. Each method has a set of
advantages and disadvantages.
5.2 Static Methods

As its name suggests, static assignment requires a passive load-
balancing approach. The general strategy is to divide the
screen into more regions than there are processors and assign
the regions to the processors in an interlaced fashion. The idea
is that if the screen is divided finely enough, each processor
will have portions of both the populated and the sparse areas,
and thus have nearly equal loads.

Figure 4. Static Region Assignment

One problem with this approach is that there is still the
possibility that a high concentration of primitives will fall
into one region, no matter how small the regions are.
However, in practice, this is fairly unlikely to happen; smart
culling and level-of—detail control reduce this possibility.

Another obvious drawback is that increasing the number of
regions per processor increases the amount of overhead. Still,
the simplicity of this approach makes it worthwhile to study.
With that in mind, several concerns come up: how should the
regions be shaped, how many of them should there be, and how
should they be assigned?

The-obvious choices for region shapes are horizontal strips,
vertical strips, or rectangles. For several reasons, rectangles
are the preferred choice. The key is to minimize the total
length of region boundaries in order to reduce the chances of
primitives crossing these boundaries.

The question of how many regions there should be is not
answered so easily, since this is dependent upon scene content

82

and the number of processors. This subject is studied in the
experiments described below. The question of region
assignment can perhaps be addressed more simply. Unless
there are special concerns involved, it is difficult to see why
anything more complicated than regular interlacing would be
beneficial.

5.3 Adaptive Methods

Adaptive region assignment offers the benefit of keeping the
number of regions to a minimum, but at the cost of increased
overhead and complexity. Adaptive methods come in a variety
of algorithms. We turn our attention toward several
previously-developed algorithms that happen to apply here.
and we consider their possibilities. From there, we develop an
algorithm which appears to combine many of the other
algorithms’ beneficial ideas.
5.3.1 Roble’s Method

Roble describes an algorithm that starts with a standard
rectangular decomposition [17]. According to the number of
primitives in each region, lightly loaded regions are combined
and highly loaded regions are split in half and assigned to the
processors freed by the combining. The main problem with
this algorithm is that there is no information on how to divide
the highly loaded regi ns, and thus the resulting splits may add
little benefit if most of the region’s primitives fall on one side
of the split.

Figure 5. Roble’s Method

Regions 1 and 3 are combined; processor 3 helps with original
region 2.

5.3.2 Whelan’s Method

Whelan proposes an algorithm known as median-cut [l9].
Median-cut splits the screen into subregions based upon the
distribution of the centroids of each primitive. The cuts
recursively divide the longer dimension of the screen until the
number of regions equals the number of processors. For large
numbers of primitives, the sorting required by this approach
makes it too time consuming, and since it only considers the
primitive centroids, it is not sensitive to primitive size.

Figure 6. Whelan’s Method

The screen is recursively subdivided according to primitive
centroids,

5.3.3 Whitman’s Method

Another strategy is Whitman’s top—down decomposition [20].
which starts by tallying up primitives based upon how their
bounding boxes overlap a fine mesh. A unit is added to each
mesh cell that the bounding box overlaps. After the tallying,

79

82

adjacent mesh cells are combined and summed hierarchically to
form a tree structure. The tree is then traversed top-down by
splitting the region with the most primitives in half each time.
To compensate for the fact that the resulting regions may still
have largely varying numbers of primitives. Whitman
subdivides until the number of regions is ten times the number
of processors. Dynamic task assignment is used to even out
the processor load balance. However, the resulting finer
granularity of the regions results in more overhead for this
method.

Figure 7. Whitman's Method

Mesh cells are combined hierarchically; the screen is split by
traversing the hierarchy.

5.3.4 Combining It All: MAHD

Combining some of the above ideas leads to the algorithm
presented here. This adaptive algorithm also uses a fine mesh
to tally the primitives. To avoid errors caused by counting
large primitives multiple times, the amount tallied to each cell
is inversely proportional to the number of cells a primitive
covers. Once all the primitives have been counted, the cells are
summed into a summed area table [4]. Finally, the screen is
divided along cell boundaries using a hierarchical approach
similar to that of median-cut. The summed-area table allows a

binary search operation to determine the location of each cut.
Also, the algorithm allows for using a number of processors
that is not a power of two by choosing appropriate split ratios
rather than always dividing regions equally. Hereafter, we refer
to this algorithm as the mesh‘based adaptive hierarchical
decomposition algorithm, or MAHD for short.

Figure 8. The MAHD Method

Mesh cells are used to accelerate Whelan-like subdivision.

Tallying the primitives inversely to their area is somewhat
questionable, since although transformation costs may be
equal, larger primitives do have greater rasterization costs.
However. empirical results show an improvement using this
modification.

5.4 Load-Balancing & Off-Screen Primitives

Off-screen primitives must still be classified in order to
determine when they become on—screen again. This processing
of off-screen primitives is an additional factor which must be

confidered in a load-balancing solution.
For static methods, the flexibility in dealing with off—screen
primitives can be used to compensate for the lack of flexibility
in dealing with on-screen primitives. Processors that have few
on-screen primitives may be assigned additional off-screen
primitives to deal with. This would require processors to

83

distribute their load-balance information. One must be cautious

with this approach, however, since the time saved by the extra
load—balancing achieved might be lost by the overhead of
sending primitives unnecessarily.

While adaptive methods can utilize the technique above, they
also can include off—screen primitive counts in their screen-
subdivision calculations. The number of off-screen primitives
per processor can be used to adjust the target number of on-
screen primitives for each processor to have as a result of the
subdivision.

5.5 MAHD Algorithm Details
5.5.1 Parallel Issues

Implementing the MAHD algorithm across a parallel machine
adds some issues which must be addressed. Making the sum
table requires collecting data from all of the processors about
how their primitives are distributed. Fortunately, the amount
of data from each processor is likely to be proportional to the
size of its region, and in this respect the algorithm scales
reasonably. Thus a single processor collects the tally tables
from all the others to build the complete sum table. It uses this
table to perform the subdivision and then broadcasts the results
to all processors.

Another implementation concern is the scheduling of the
algorithm steps. If one wanted only to achieve the best load
balance, the sequence of steps for a frame would be to first pre—
transform the primitives to find out their distribution and the
resulting screen subdivision. then sort and render all the
primitives. The problems with this approach are 1) that it
requires two full passes over all the primitives, and 2) that
processors must synchronize with each other between these

two passes. These problems mean decreased efficiency and
increased latency.

One solution approach for this problem is to reduce the cost of
the first pass by sampling the database rather than processing
every primitive. This adds questions about how to perform the
sampling. A similar approach may be possible if the database
has a structured, hierarchical representation [2]. The primitive
distribution could be estimated by examining where the
structures fall, rather than examining all the primitives withineach structure.

Another solution is to eliminate the extra pass by performing
both operations at the same time. While transforming the
primitives for frame it, the processors keep track of the
distribution information in order to compute the subdivisionfor frame n+1.

The disadvantage of this solution is that the current frame’s
subdivision is based upon “old" data. However, because of the

expected temporal coherence of frames. we expect the old data
to be good enough for this purpose. We investigate this
assumption in the experiment presented below.
5.5.2 Mesh Size

As mentioned. the MAHD algorithm uses a “fine mesh” in order
to calculate the primitive load across the screen and also as a

quantum basis for making screen subdivisions. The question
then arises of how fine this mesh should be: smaller cells allow

a more precise measurement, but increasing the number of cells
increases the algorithm overhead. The question of mesh size is
related to the question of how many regions per proceSsor are
necessary for the static algorithm. These questions are
investigated in the experiment below,

80

83

5.5.3 Overhead Costs

The MAHD algorithm adds two basic operations to the
processing cycle: the tallying of the primitives and the
computation of the screen subdivisions. Additional costs
include the communication of the tallies and of the results from

the subdivision calculation, plus the increased computational
costs of classifying primitives among oddly shaped regions
(versus equal-sized regions). Altogether, the increased
computational and communication overheads due to the MAHD
algorithm are fairly small. Still, these factors need to be taken
into account when comparing MAHD with other load—balancing
strategies.

6 Load-Balance Study
6.1 Goals

A number of simulations were done in order to evaluate both

static region assignment and adaptive region assignment using
the MAHD algorithm. The main issue for the static method is
how the number of regions per processor affects the load-
balance and the system overhead. For the adaptive method, we
are concerned with the mesh cell size and the use of the last

frame’s primitive distribution data versus the current frame’s.
Finally, we examine how the methods compare and how they
scale with respect to the number of processors.

With respect to load-balance, two questions arise. First, how
does one measure load-balance? Since a frame in a parallel
graphics system is normally not displayed until all processors
have finished their work, we will measure load-balance as the

ratio of the maximum processor‘s load over the average load.
Next, what is a good load-balance? Since load-balancing is
only one interwoven factor towards achieving good
performance, we cannot answer this question easily. Somewhat
arbitrarily, we will consider a load-balance reasonable if the
maximum/average load ratio is 1.5 or less.
6.2 Procedure

For these experiments. the simulator system used above to
evaluate coherence was suitably modified. The set of
assumptions that ware made remains the same as in the
coherence tests, with one exception. Off-screen primitives are
sent away randomly after remaining off-screen for 3 frames.
This makes a difference only for the Lobby case.

For these tests. the data that we are interested in is mainly the
distribution of primitives across processors. For each recorded
frame. we compute the minimum, maximum, and average
number of primitive fragments per processor. We also compute
the standard deviation of this figure. The frame—by-frame
results are then averaged, and the resulting values are shown in
the figures as MIN, MAX, AVG, and ST~DEV. Also, in order to
consider the overhead associated with a method, we show the
primitive traffic (the total number of primitives that need to be
communicated) and the total number of primitives (which
varies due to overlap) for each frame. These are labeled COM
and TOT, respectively.

The following tests were performed for each application:

Static algorithm:
Prooossors Region configuration

16 4x4 - 40x40 (1—100 regions/prod)
$164 8x8 - 64x64 (1—64 regions/proc.)

Adaptive algorithm:
Processors Mesh configoration

16 16x16, 32x32, 64x64
64 16x16, 32x32, 64x64

84

w__—_q
Each run of the adaptive algorithm was performed twice. once
using the previous frame’s distribution data to determine the
subdivisions, and once using the current frame’s data. The tests
are labeled PF and CF, respectively.

6.3 Results

Refer to graphs 13-921 and lb—9b found after the references.
6.4 Discussion

For the PLB and Sierra static cases, we can see that 9-25

regions/processor are required to achieve a maximum/average
load ratio of 1.5 or less. This value varies according to the
number of processors being used. The Lobby run is somewhat
Of a special case, since during much of the fly-through. the on—
screen scenery is very simple. Its good load-balance with only
4 regions/processor is mainly due to the random distribution of
off-screen polygons.

Because the number of regions per processor has a direct
bearing on the size of each region and thus on the overlap
factor, we naturally expect that increasing the number increases
the overhead. As the (b) graphs show, both the amount of
communication required as well as the number of primitive
fragments that must be processed increase in direct relation to
the number of regions into which the screen is divided. The
increase is actually directly proportional to the total length of
cuts made across the screen. Doubling the cut length (by
increasing the number of regions per processor, say, from 4 to
16) approximately doubles the amount of communication as
well as the number of additional primitive fragments in the
system.

For the adaptive cases, we can see that the mesh-cell-size
parameter has a significant effect on load-balance. Each
halving of the mesh-cell dimensions results in nearly a halving
of the primitive distribution standard deviation. The change in
mesh size does not significantly alter the primitive
communication overhead. Rather, increasing the number of
mesh cells increases the algorithm overhead and its associated
communication.

The graphs also reveal that using the previous frame‘s data
results in no significant performance degredation. A small
savings in the number of primitives to be communicated is
shown by using the current frame‘s distribution data. One must
remember that the applications tested here were fairly simple in
nature. Further testing with different types of applications is
desirable.

How do the methods compare? The static method requires 9 to
25 regions per processor to achieve the same load balance that
the adaptive method can achieve with one region per processor.
Thus the static method needs 3 to 5 times the communications

bandwidth to take care of the additional primitive-shuffling
overhead, plus additional processing capability to account for
the increased number of primitive fragments. The tradeoff for
this is that the static method has no overhead for any primitive
distribution measurements or screen subdivision procedures.
Additionally, the classification algorithm is simpler and the
rasterization stage does not have to deal with varying-size
regions. Finally, the processor-to-frame-buffer mapping is
fixed for the static algorithm. The simplicity of the static
approach may be worthwhile for a low-end system, where a
small number of processors (and therefore regions) would not
incur too much overhead. For a high-performance system, the
adaptive algorithm appears 'to be the most reasonable choice.

We now consider scalability. Both methods have increased
overhead as the number of processors increases, again due to
the problem of dividing the screen into more regions. With

84

81

regard to the static method, the graphs show that PLB does fine
with 16 processors, while 64 is too many; the average number
of primitive fragments doubles by the time a reasonable load-
balance is reached. On the other hand, Sierra, a database nearly
3 times larger, does fine with up to 64 processors. Sierra does
have smaller primitives (reducing its overlap-factor overhead),
but this is typical of larger databases.

As for the adaptive method, both cases are fine up to 64
processors. Since overhead is due largely to the overall number
of regions, we can look at the Sierra static test cases and
suggest that the adaptive method can handle much larger
numbers of processors, perhaps several hundred, before
overhead becomes too large of a problem.

There are many application issues that determine the limits of
how well the architecture scales. Any screen-subdivision
architecture will suffer from increased overhead as the number
of subdivisions increases. The amount of extra overhead is

determined partly by the overlap factor and, in the case of sort-
first, partly by the database dynamics.

To get around the scalability limitations caused by screen
subdivision, one may consider a hybrid architecture with an
extra level of parallelism. 0n the top level, the machine would
be sort-first. For each region we replace the single processor
with a parallel graphics system. Sort—last would be ideal for
this purpose, as it does not have the screen subdivision
problems that affect the other alternatives. Thus we introduce
another architecture space to explore.

7. Graphics Database Management

Another set of major issues for sort‘first is what form the
display database should take, and how will it be managed? The
assumption so far has been that the display database is a simple
list of primitives. only modified by a viewing transformation
matrix. While this may be adequate for some classes of
applications, perhaps the majority of applications require
support for object-based operations (i.e., manipulations of
groups of primitives). Since most graphics systems provide
this support through a hierarchical display database with
instancing [10]. we consider how to implement this solution
on a sort—first System.

Aside from the distribution of the data structures, we also need
to look at how the run-time operations on the data will be
implemented. These operations include editing the database,
traversing it for display, culling it to a particular view. and
paging it to and from disk (for very large databases).

Because sort-first requires dynamic distribution of the display
database, implementation of a hierarchical database requires
one to take a different kind of approach than those offered for
sort-middle or sort—last systems {8, 13]. If one attempts to
dynamically distribute the entire hierarchy with the primitives,
one rapidly runs into a bookkeeping nightmare, especially
when one starts thinking about instancing.

Various approaches have been examined, and the one that
seems to offer the most potential involves a separation of
hierarchy structure from the primitives themselves. The
hierarchy structure may be kept statically (i.e., non-migrating)
on one or more processors, while the primitives themselves are
free to migrate as usual. A system of tags is used to bind the
primitives to the appropriate points in the hierarchy. The
overhead of the primitive tags may be reduced by using tags for
groups of related primitives rather than for each individual
primitive.

This is only a start to the database management solution. There
are many issues left to resolve, and resolving some of these

85

requires further investigation into the nature of the
applications’ requirements of the graphics system. For
instance, designing efficient support for database editing
requires knowledge about the frequency of the various database
editing operations.
8.

Sort-first offers a powerful promise for interactive graphics
applications. It is the only architecture that can deliver
millions of rendered pixels for thousands of primitives in real-
time without requiring phenomenal communication bandwidths
or excessive duplication of hardware. In addition, it features
reasonable scaling characteristics.

Yet for sort-first to follow through on these promises, many
issues remain to be resolved. Issues that are simple on other
architectures introduce complex new twists for sort-first. This
research has begun the process of uncovering these issues and
finding solutions for them.

Acknowledgements

The author would like to thank Anselmo Lastra and David
Ellsworth for their helpful suggestions towards this research
and for reading drafts of this document. This work was
supported by the Link Foundation, ARPA (ISTO Order No.
A410), and NSF (Grant No. MIP-9306208).
References

]. Akeley, Kurt. RealityEngine Graphics. Proceedings of
SIGGRAPH ‘93 (Anaheim, California, August 1-6, 1993).
In Computer Graphics Proceedings, Annual Conference
Series, 1993, ACM SJGGRAPH, New York, 1993, pp.109-116.

Clark, James. “Hierarchical Geometric Models for Visible
Surface Algorithms," Commun. ACM 19, 10 (October
1976). PP. 547-554.
Crockett, Thomas and Tobias Orloff. “A Parallel
Rendering Algorithm for MIMD Architectures,”
Proceedings of the 1993 Parallel Rendering Symposium
(San Jose, California, October 25—26, 1993), special issue
of Computer Graphics, ACM SIGGRAPH, New York,
1993, pp. 35-42.
Crow, Frank. Summed-Area Tables for Texture Mapping.
Proceedings of SIGGRAPH ‘84 (Minneapolis, Minnesota.
July 23-27, 1984). In Computer Graphics 18, 3 (July
l984), pp. 207—212.
Cruz-Neira, Carolina, Daniel Sandin, and Thomas DeFanti.
Surround-Screen Projection-Based Virtual Reality: The
Design and Implementation of the CAVE. Proceedings of
SIGGRAPH ‘93 (Anaheim, California, August 1-6, 1993).
In Computer Graphics Proceedings. Annual Conference
Series, 1993, ACM SIGGRAPH, New York, 1993, pp.135-142.

Deering, Michael and Scott Nelson. Leo: A System for
Cost Effective 3D Shaded Graphics. Proceedings of
SIGGRAPH ‘93 (Anaheim, California, August 1-6, 1993).
In Computer Graphics Proceedings, Annual Conference
Series, 1993, ACM SIGGRAPH, New York, 1993, pp.101-108.

DeFoe, Douglas. Kaiser Electro-Optics, Inc., WWW URL
http://esto.sysplan.comiESTO/Displays/HMD-TDS/
Factsheets/Immersionhtml.

Ellsworth, David, Howard Good, and Brice Tebbs.

“Distributing Display Lists on a Multicomputer,”
Proceedings of the 1990 Symposium on Interactive 3D
Graphics (Snowbird, Utah, March 25-28, 1990), special

Conclusion

85

82

9.

10.

ll.

12.

l3.

I4.

15.

16.

17‘

18.

I9

20

2].

issue of Computer Graphics, ACM SIGGRAPH, New York,
1990. pp. 147-155.
Ellsworth, David. A New Algorithm for Interactive
Graphics on Multicomputers. [EEE Computer Graphics &
Applications 14, 4 (July 1994), pp. 33-40.
Foley, James, Andries van Dam, Steven Feiner, and John
Hughes. Computer Gratuities: Principles and Practice, 2nd
Ed., Addison-Wesley, Reading, Mass, 1990.
Fuchs, Henry, John Poulton, John Eyles, Trey Greer, Jack
Goldfeather, David Ellsworth, Steven Molnar, Greg Turk,
Brice Tebbs. Laura Israel. Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-
Enhanced Memories. Proceedings of SIGGRAPH ‘89
(Boston, Massachusetts, July 3l-August 4, 1989). In
Computer Graphics 23, 3 (1989), pp. 79-88.
LaCroix, Michel and James Melzer. Helmet-Mounted

Displays for Flight Simulators. Proceedings of the 1994
Image VII Conference, June 1994, pp. 34-40.
Molnar, Steven. Image-Composition Architectures for
Real-Time Image Generation. Ph.D. dissertation. TR-91-
046, University of North Carolina at Chapel Hill, 1991.
Molnar, Steven, John Eyles, and John Poulton.
PixelFlow: HighLSpeed Rendering Using Image
Composition. Proceedings of SIGGRAPH ‘92 (Chicago,
Illinois, July 26—3l, 1992) In Computer Graphics 26, 2
(1992), pp. 231-240.
Molnar, Steven, Michael Cox, David Ellsworth, and Henry
Fuchs. A Sorting Classification of Parallel Rendering.
IEEE Computer Graphics & Applications 14, 4 (July
1994), pp. 23-32.
National Computer Graphics Association Picture-Level
Benchmark, GPC Quarterly Report 2, 4 (1992).
Ruble. Douglas. A Load Balanced Parallel Scanline Z-
Buffer Algorithm for the iPSC Hypercube. Proceedings of
Pixim ‘88, Paris, France, October 1988, pp. 177-192.
Sutherland, Ivan. Robert Sproull, and Robert Schumacker.
“A Characterization of Ten Hidden Surface Algorithms,"
ACM Computing Surveys 6, 1 (March 1974), pp. l-55.

. Whelan, Daniel. Animus: A Multiprocessor Architecture
for Real-Time Computer Animation, Ph.D. dissertation,
California Institute of Technology, 1985.

. Whitman, Scott. Multiprocessor Methods for Computer
Graphics Rendering, AK Peters, Wellesley,
Massachusetts, 1992.

Whitman, Scott, Dynamic Load Balancing for Parallel
Polygon Rendering. IEEE Computer Graphics &
Applications 14, 4 (July 1994), pp. 41-48.

86

Database: PLB Head

30. Adaptive Load Balancing2a. Static Load-Balancing: 64 Processorsla. Static Load-Balancing: 16 Processors

12000 3 6000 5 6000 D 3
I 45 II10000 \ 2.5 5000 5000 EU 2.5

\ 1/ \ 4 DD/".1‘. x 3.5 4000 o o o o o 2

8000 ix__\ /,/fi,- ‘/ 2 4000 \\ ///‘_ 3 O <> 0 I I\/ ." _/ I ,—' 0 15

500° ' I .. * '/’ 1-5 30°“ ‘0‘rh—I ' ”'i25 3000 Z I I I I D IIn") >I‘. I I DD 1
4000 ,1. ' 1 2000 l D

“ /' , A A O o 0 03 0.5x” . AA
2000 _ __ 0.51000 , “41’ A A ‘ Q Q 0

o E‘Gfibifii‘éib‘ibv on N o o o- no N u: no u: o- N or: \D u: -- N .. -- u: .. N .. ,,

sazeeeegog aeeogag§ :gggggw—finefiafiseasons: eaoéems _e____eses$s

Database: Lobby

6a. Adaptive Load Balancing4a. Static Load-Balancing, 16 Processors 50. Smite Load—Balancing: 64 Processors

5000 l 24500 ,' y 1.8
/w ’ i I L! D 16

‘ 6 O 9 3 o 8 '
3500 . 000 0 ll... 1-4
3000 . I l I I I :22500 _ .

2000 . ‘1’ '
1500 _

500 . j , A A A‘0 N

ssgggggggi 0:003:03; g?g0§§=$o%3§——qumm$ Baggage ~2~E~E$$$$$S

Database: Sierra

7a. Static Load-Balancing: 16 Processors 8a Static Load-Balancing: 64 Processors 90. Adaptive Load-Balancing

35000 16000 _|_l

30000 14000
\ 12000

25000 \ :0000 :20000 3000

15000 6000 0

10000 4000
2000 A ’

5000 0 i
0 5-“. 0 ,. 0 .

E “'3' E
E 2 H _ .. _. " é '

————— 0 MIN —-——--‘ ST-DEV I MAXIAVG

Left side scale = number of primitives Right side scale = MAX/AVG ratio

Static LB. legend = number of regions (yielding l, 4, 9, i6, 25, 36, 49, 64, 81, or 100 regions per processor)

Adaptive L.B. legend = number of processors : mesh dimension : use Previous Frame’s or Current Frame’s distribution data2‘

Graphs 1a - 9a. The graphs above show various statistics averaged 0081' the frames for each of the test runs. The statistics are the
maximum (MAX), average (AVG). and minimum (MIN) numbers of primitive fragments per processor, the standard deviation (ST-
DEV) of these values, and the MAXIAVG ratio, a figure which provides an indication of the success of the load-balancing method.

83

86

87

Database: PLB Head

1b. Static Load-Balancing: 16 Processors 21:1. Static Load-Balancing: 64 Processors 3b. Adapu'vc Load-Balancing

100000] 50000 130000 74000 - l n I Emma
95°90 2500“ 120000 72000 1 ' I 12000
90000 0000 u_1 D D

115000 35000 110090 1 70000 * D 13 10000
110000 30000 100000 68000 8000

75000 25000 1 66000. I I I I I 6000
70000 20000 64000 7 r“ l] r" :1 4000
65000 15000 30000 Er -’ J D
50000 10000 62000 2000

55080 5000 70000 60000 7+F—F—F—4—4—4—4—1—9—f 0
5013100" w “a o 0 60000 a 0000500000000an 01 c N no '0' N w M: ‘0 .. N ‘5 .. N

seesweessfi ssegise§ 333$§$:¥e€i$§
99311533020 esneses —£—E—E$$$3$3

Database: Lobby

4b. Static Load Balancing, 16 Processors Sb. Static Load-Balancing: 64Processurs 61:. Adaptive Load Balancing

25000 10000 36000 20000 18500 v 2000
24000 79000 340001 18000 18300} C, 1:1 01 180018100 i 1600
23000 8000 32000 16000 J; H i I22000 7000 30000 14000 ”900 ‘ ' I £1400
21000 6000 28000 12000 £233 £8320000 J{5000 26000 10000 17300 T 800
19000 4000 24000 3000 17100 E E ! E i . 600
18000 3000 22000 6000 16900 _ 400
17000 2000 20000 4000 [5700 . 200
16000 1000 13000 2000 16500W0
15000 0 16000 0 Ebib‘055i‘é‘3k3k8no .- ..

e “’3 «News
2128:5033 £§QS°€$$ ~222223$333E

Database: Sierra

Tb. Static Load-Balancing: 16 Processors 8b. Static Load-Balancing; 64 Processors

200000 T . 50000 230000 1 30000 190000 30000
/

0 2
1950001 4500 220000 / 70009 185000 25000
190000 40000 21
185000 35000 0:00 180000 20000
100000 ‘ 30000 200000 175000 15000
175000 izsooo 190000 ‘
170000 20000 180000 170000 10000165000 - 15000

160000 10000 170000 165000 5000

155000 5000 150000 160000 0
150000 1 0 150000 k6EB§bEfik6éfib

seseeeeess s ffifiSéfiggg-E-‘fl
Effififififig —£—£—EEEES

-———El TOT -—--I COM

Left side scale = Total number of primitives Right side scale = Number of primitives communicated

Static LB. legend = number of regions (yielding], 4, 9, 16, 25, 36, 49. 64, 81, or lOO regions per processor)

Adaptive LB. legend = number of processors : mesh dimension : use Previous Frame’s or Current Frame’s distribution data

Graphs 1b - 9b. The graphs above show various statistics averaged over/the frames for each of the test runs. The statistics are the
total number of primitives (TOT) in the system (which increases as primitives overlap more regions) and the total number of
primitives that must be communicated (COM) each frame for proper sorting.

84

87

88

RING: A Client-Server System

for Multi—User Virtual Environments

Thomas A. Funkhouser
AT&:T Bell Laboratories i

Abstract

This paper describes the client—server design, implementation
and experimental results for a system that supports real-time
visual interaction between a large number of users in a shared
3D virtual environment. The key feature of the system is that
serverebased visibility algorithms compute potential visual in—
teractions between entities representing users in order to re-
duce the number of messages required to maintain consistent
state among many workstations distributed across a widerarea
network. When an entity changes state, update messages are
sent only to Workstations with entities that can potentially
perceive the change 7 i.e., ones to which the update is visi—
ble. Initial experiments show a 40:: decrease in the number of
messages processed by client workstations during tests with
1024 entities interacting in a large densely occluded virtual
environment.

CR Categories and Subject Descriptors:

[Computer Graphics): 1.3.7 Three-Dimensional Graphics
and Realism — Virtual Reality.

Additional Key Words and Phrases: Visual simulation,
multi—user systems, virtual reality, 3D virtual environments,
real-time graphics, client-server design, distributed systems.

1 Introduction

In a multiauser visual simulation system, users run an interac-
tive interface program on (usually distinct) workstations con-
nected to each other via a network. The interface program
simulates the experience of immersion in a virtual environ
ment by rendering images of the environment as perceived
from the user’s simulated viewpoint. Each user is represented
in the shared virtual environment by an entity rendered on

every other user’s workstation, and multi—user interaction is
supported by matching user actions to entity updates in the

i600 Mountain Avenue, 2A-202. Murray Hill, NJ 07974.
funk©research.att.corn

Permission to co y without fee all or part of this material is
granted providedi at the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission oi the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1 995 Symposium on Interactive SD Graphics, Monierey CA USA
© 1995 ACM 0—89791—736-7/95/0004...$3.50

85

88

shared virtual environment. Applications for these systems
include distributed training simulations, collaborative design,
virtual meetings, and multiplayer games.

A difficult challenge in multi-user visual simulation is main—
taining consistent state among a large number of worksta-
tions distributed over a wide—area network. Since three di—

mensional rendering at. interactive rates requires fast access
to the geometric database, shared portions of the virtual en-
vironment (including dynamic entity states) are replicated on
every participating workstation. As a result, whenever any
entity changes state (eg, moves) or modifies the shared en-
vironment, an appropriate update must be applied to every
copy of the database in order to maintain consistent state
(see Figure 1).

, ' Shared 3D
Virtual Environment

Figure 1: Multi-user systems must maintain consistency be,
tween entities (A, B, C, and D) replicated on multiple work;
stations.

Implementing visual simulation systems for large numbers
of users is especially challenging because updates can occur at
extremely high rates. If N entities move through a shared vir—
tual environment simultaneously, each modifying its position
and/or orientation M times per second, then M a: N updates
are generated to a shared database per second. Moreover,
updates must be propagated to participating workstations in
near real—time since large variances or delays in updates can
result in visually perceptible jerky or latent motion, and thus
may be disturbing to users. As a result, general-purpose dis-
tributed database systems are not adequate for use in multia
user visual simulation applications, and special—purpose mes-
saging protocols are typically used to maintain consistent state
in multi—user visual simulation systems [9, 13].

89

2 Previous work

Numerous experimental virtual reality systems and multi-
player games have been developed for real time interaction

in shared virtual environments. Unfortunately, most existing
systems do not scale well to large numbers of simultaneoususers.

Reality Built For Two [2], VEOS [4], and MR Toolkit [14]
are multi-user virtual reality systems that maintain consis—

tent state among N workstations by sending a point—to~point
message to each of N-1 workstations whenever any entity in
the distributed simulation changes state. This approach yields
0(N2) update messages during every simulation step (see Fig-
ure 2), and thus does not scale to many simultaneous users
before the network gets saturated.

Figure 2: Systems using pointvto-point connections pass
0(N2) update messages (labeled arrows) during each simu-
lation step.

SIMNET [5], NPSNET [17], and VERN [3] use broadcast
messages to send updates to all other workstations participat-
ing in a virtual environment at once. Although, this approach
cuts down on the total number of messages transmitted to
0(N), every workstation still must process a message when-
ever any entity in the distributed simulation changes state
(see Figure 3). Since every workstation must store data and
process update messages and/or simulate behavior for all N

entities during every simulation step, these systems do not
scale beyond the capabilities of the least powerful participat-
ing workstation. Experiences with SIMNET and NPSNET

show that a significant percentage of every workstation’s pro—
cessing capability is used just to read update messages from
other workstations during large simulations; and, therefore,
broadcast protocols are not practical for more than a few hunr

dred users on inexpensive workstations [17].

In order to support very large numbers of users (> 1000) in-
teracting simultaneously in a distributed virtual environment

it is necessary to develop a system design and communication

protocol that does not require sending update messages to
all participating hosts for every entity state change. Kazman
has proposed a system design, called WAVES, in which mes-
sage managers mediate communication between hosts, possi-
bly culling irrelevant messages [10, 11]. His approach is very
similar to the one presented in this paper. One diiTerence is
that this paper presents algorithms and experimental results
for visibility-based message culling during large simulations.

Figure 3: Systems using broadcast messages pass only 0(N)
updates each simulation step. But, every workstation still
must process every update message.

3 Overview of Approach

This paper describes a system (called RING) that supports
interaction between large numbers of users in virtual envi-

ronments with dense occlusion (e.g., buildings, cities, etc).
RING takes advantage of the fact that state changes must be
propagated only to hosts containing entities that can possibly
perceive the change L i.e., the ones that can see it. Object-
space visibility algorithms are used to compute the region of
influence for each state change, and then update messages are
sent only to the small subset of workstations to which the
update is relevant.

The key idea is illustrated in Figure 4. Although entities
A, B, C, and D (filled circles) all inhabit the same virtual

environment, very little visual interaction (hatched polygons)
is possible due to the occlusion of walls (solid lines). In fact,
in this example, only one visual interaction is possible — entity
A can see entity B. Therefore, only one update message must
be sent for each update to entity B’s position in real-time (to
the workstation with entity A), All other entities need not

distribute any update messages in realvtime since they are not
visible to any other entity. From this example, we see that it
is possible to greatly reduce the number of messages passed in
realtime to maintain consistent state among multiple entities
in a densely occluded environment using line—of—sight visibility
to determine the region of influence for each update.

Only Bisvisible to A

User C
Visibility

Figure 4: A system that culls messages based on entity—entity
visibility may be able to reduce the number of messages pro-
cessed by each workstation in densely occluded environments.

90

The following section describes the RING system design.
Results of experiments with the system are presented in Sec-
tion 5, while a discussion of alternate approaches and possible
future work appears in Section'6. Finally, Section 7 contains
a brief summary and conclusion.

4 RING System Design

RING represents a virtual environment as a set of indepen-
dent entiiies each of which has a geometric description and
a behavior. Some entities are static (e.g., terrain, buildings,
etc), whereas others have dynamic behavior that can be either
autonomous (e.g., robots) or controlled by a user via input
devices (eg, vehicles). Distributed simulation occurs when
multiple entities interact in a shared virtual environment by
sending messages to one another to announce updates to their
own geometry or behavior, modifications to the shared envi-
ronment, or impact on other entities.

Every RING entity is managed by exactly one client work,
station. Clients execute the programs necessary to generate
behavior for their entities. They may map user input to con»
trol of particular entities and may include viewing capabilities
in which the virtual environment is displayed on the client
workstation screen from the point of view of one or more of its
entities. In addition to managing their own entities (local en-
tities), clients maintain surrogates for some entities managed
by other clients (remote entities). Surrogates contain (often
simplified) representations for the entity’s geometry and be—
havior. When a client receives an update message for an en—

tity managed by another client, it updates the geometric and
behavioral models for the entity‘s local surrogate. Between

updates, surrogate behavior is simulated by every client.
Communication between clients is managed by servers.

Clients do not send messages directly to other clients, but me
stead send them to servers which forward them to other client

and server workstations participating in the same distributed
simulation (see Figure 5). A key feature of this client—server
design is that servers can process messages before propagating
them to other workstations, culling, augmenting, or altering
them. For instance, a server may determine that a particular
update message is relevant only to a small subset of clients
and then propagate the message only to those clients or their
servers. In addition, a. server may send clients auxiliary mes-
sages that contain status information helpful for future client
processing. Finally, a. server may replace some set of mes
sages intended for a client with another (possibly simpler) set
of messages better suited to the client’s performance capabilv
ities. The aim of this clientvserver design is to shift some of
the processing burden away from the client workstations and
into servers so that larger, more affordable, multi—user visual
simulation systems can be built using primarily lowecost client
workstations.

In the current implementation, RING servers forward up-
date messages in real—time only to other servers and clients
managing entities that can possibly “see" the effects of the
update. Server—based message culling is implemented using
precomputed line—of—sight visibility information. Prior to the
multisuser simulation, the shared virtual environment is par—
titioned into a spatial subdivision of cells whose boundaries
are comprised of the static, axis-aligned polygons of the vir-
tual environment [1, 15]. A visibility precomputation is per-

87

90

Figure 5: RING servers manage communication between
clients, possibly culling, augmenting, or altering messages.

formed in which the set of cells potentially visible to each cell
is determined by tracing beams of possible sightlines through
transparent cell boundaries [15, 16] (see Figure 6). During
the multi—user simulation, servers keep track of which cells
contain which entities by exchanging “periodic" update mes—

sages when entities cross cell boundaries. Real—time update
messages are propagated only to servers and clients contain—
ing entities inside some cell visible to the one containing the
updated entity. Since an entity’s visibility is conservatively
over—estimated by the precomputed visibility of its containing

cell. this algorithm allows servers to process update messages
quickly using cell visibility “lookups” rather than more exact
real-time entity visibility computations which would be too
expensive on currently available workstations.

Figure 6: Cell-to-cell visibility (stipple) is the set of cells
reached by some sight-line from anywhere in the source cell
(dark box) passing only through transparent portals (dash
lines) and no opaque walls (black lines). It is a useful, pre-
computed overestimate of the visibility of any entity resident
in the source cell.

As an example of RING server operation, consider the flow
of messages between clients A, B, C, and D for the entities
shown in Figure 4 connected to servers in the topology shown
in Figure 5. Figure 7 shows the surrogates (small squares
labeled by entity) and flow of update messages (arrows labeled
by entity) for each of the four entities in this example.

91

a If entity A is modified: client A sends an update message
to server X. Server X propagates that message to server
Y, but not to server Z because entities C and D are not
inside cells in the cell»to—cell visibility of the cell contain—
ing entity A. Server Y forwards the message to Client B
which updates its local surrogate for entity A.

u If entity B is modified: client B sends an update message
to server Y. Server Y then propagates that message to
servers X and Z, which forward it to clients A and C.

Server Z does not send the update message to client D
because the cell containing entity D is not in the cell-to—
cell visibility of the cell containing entity B.

o If entity 0 is modified: client C sends an update message
to server Z. Server Z propagates that message to server
Y, which then forwards the message to Client B. Server Z
does not send the message to either server X or client D

because neither is managing entities in the visibility set
for entity 0.

o If entity D is modified: client D sends an update message
to server Z. Server Z does not forward the message to
any other server or client because no other entity can
potentially see entity D.

_ Client 0

Figure 7: Flow of update messages (labeled arrows) for up
dates to entities A, B, C, and D arranged in a virtual environ-
ment as shown in Figure 4.

RING servers allow each client workstation to maintain sur—
rogates for only the subset of remote entities visible to at least
one entity local to the client. All other remote entities are ir-

relevant to the client so there is no need to waste storage
space or behavioral simulation processing for them. To sup-
port this feature, servers send their clients an “Add” message
each time a remote entity enters a cell potentially visible to
one of the client’s local entities for the first time. A “Remove”

message is sent when the server determines that the entity has
left the client's visible region. As entities move through the
environment, servers augment update messages with “Add”
and “Remove” messages notifying clients that remote entities
have become relevant or irrelevant to the client’s local enti-

ties. Since the system uses an unreliable network protocol,
the “Add“ and “Remove” messages are considered hints and

88

91

need not necessarily be processed by clients. However, they al-
low a client to store and simulate a small subset of the entities

with little additional processing or message traffic

The primary advantage of the RING system design is that
the storage, processing, and network bandwidth requirements
of the client workstations are not dependent on the number of
entities in the entire distributed simulation. Client worksta~

tions must store, simulate, and process update messages only
for the subset of entities visible to one of the client's local en-

tities. In densely occluded virtual environments, visible sets
tend to be constant size (eg, how many rooms you can see
looking into the hallway from your oi’fice usually does not de—
pend on the size of your building or whether your building is
surrounded by a large city), so the burden on individual client
workstations does not grow as the entire system does.

Another advantage is that high-level management of the
virtual environment may be performed by servers without the

involvement of every client. For instance, adding or removing
an entity to or from the virtual environment requires noti-
fication of only one server. That server handles notification

of other servers and clients. Also, the client-server design al—
lows use of efficient networks and protocols available between
server workstations, but not universally available to all client
workstations. For instance, clients may connect to servers
via low-bandwidth networks, while servers communicate with
each other via highebandwidth networks.

The storage and processing requirements of RING servers
are within practical limits. Unlike clients, servers do not have

to store display data (e.g.. polygons, textures, etc). But,
they must maintain spatial subdivision and visibility informa-
tion for the virtual environment (typically < 20MB for large
environments) and a surrogate representation for every entity
in the environment (currently 48 bytes per entity). As server
storage requirements grow linearly with the total number of
entities, the size of server workstation memory may theoreti-
cally limit the number of entities that are able to share a vir—

tual environment simultaneously. However, this is not likely
to be a problem in practice since a workstation with 64MB of
memory can accommodate nearly one million entities.

Server workstation processing is also within reasonable

bounds. Servers must process messages in real-time only for
entities visible to some entity managed by one of their clients;
they are not required to simulate entity behavior between up-
dates; and, they do not render images of the virtual environ-
ment. As a result, the memory capacity and processing power
of standard UNIX workstations are adequate for RING servers
in densely occluded virtual environments with very large num—
bers of simultaneous users.

The disadvantage of the RING system design is that ex-
tra latency is introduced when messages are routed through
servers. Rather than sending messages directly between
clients, RING routes each one through at least one server,
andv'possibly two. Computations are performed in the servers
beiore messages are propagated further adding to latency. So
far, the extra latency due to server processing has not been
noticeable during experiments. Additional work will have to
be done to quantify the latency costs and to determine which
types of entity interactions are sensitive to latency issues.

92

l 5 Experimental Results

A prototype multi—user simulation system has been imple
mented with the client—server design described in the previous
section. The system runs on Silicon Graphics workstations
and uses UDP/IP datagrams for message passing. This sec’
tion presents results of experiments with this system manag-
ing many entities interacting in large densely occluded virtual
environments. The virtual environments used in these ex-

periments were mazes of “rooms” connected by “hallways."
They were constructed by instancing a simple floor-plan 1, 2,
4, 8, 16, and 32 times in a square tiling pattern. Each tile
contained 25 rooms (counting hallways) and had 724 poly-
gons (see Figure 8). The largest environment used in these
tests had 23,168 polygons which formed 2,219 cells. The spa-
tial subdivision and visibility information for this environment
took 99 seconds to compute and required 11.2MB of storage.

9.5.1 thififiwfiblhfie‘ 1.5.21:

lflnom Room Roomé

Room Room Room Egg:
Room Floom Room Room

Hal IwaII
E

E Room Room \

Hoom Room @Hoom RoomH

Figure 8: One tile of virtual environment used in tests.

Experiments were run with several environment sizes and
various numbers of entities, clients, and servers to charac-
terize the scalability of the system design. During these

experiments, entities navigated through the virtual environ-
ment “randomly” following piecewise linear paths in random,
ized directions for randomized distances. Clients sent update

messages Only for changes in derivatives of entity position
and/or orientation (i.e., dead-reckoning) while other clients
simulated intermediate positions with linear “smootkback.”
Update messages containing 40 bytes (message-type[4], entity-
ID[4], target-position[l2], target—orientation[12}, positional—
velocity[4], and rotational-velocity[4]) were generated for each
entity once every 2.3 seconds on average with this ”random”
navigational behavior.

To investigate the message processing requirements of a sin:
gle client in RING, we performed tests measuring the rates of
messages received by clients managing one entity navigating
through virtual environments containing 64, 128, 256, 512,
and 1024 entities managed by other clients. Each test was

repeated in virtual environments containing 25, 50, 100, 200,
400, and 800 rooms. Plates I and 11 contain images captured
during tests with 512 entities in a 400 room environment. Ta—
ble 1 and Figure 9 show average rates of messages received by
individual clients in each test. In Figure 9, points represent-

ing the same number of total entities are connected by lines,
while points representing the same density of entities are at
the same horizontal position in the plot.

92

89

Entities # # ClientHServer

J_Fer Room Entities RoomsW
10.24 1024 100 ' 0.44 61.37 ‘
10.24 512 50 0.43 70.43
10.24 256 25 0.47 53.68
5.12 1024 200 0.55 55.03

0.45 37.37
50 0.44 33.20
25 0.46 27.26

400 0.50 24.56
200 0.47 19.88
100 0.46 23.19

2.56 123 50 0.41 17.42
2.55 64 25 0.45 13.65
1.23 1024 300 0.50 11.35
1.28 512 400 0.46 14.13
1.28 256 200 0.43 13.23
1.26 128 100 0.45 12.06

1.26 64 50 0.43 6.39 1

0.64 512 600 rim—'l 4.620.64 266 400 0.46 6.57
0.64 128 200 0.50 6.41
0.64 64 100 0.46 5.37
0.32 256 800 0.35 3.18
0.32 128 400 0.38 3.20
0.32 64 200 0.33 3.35 _l
0.16 128 800 l— 0.33 1.91
0.16 64 400 0.40 1.66
0.08 64 800 l—032 0.52 _J

Table 1: Average message processing rates (messages per sec-
ond) measured in a single client (managing one entity) during
experiments with 64, I28, 256. 512, and 1024 entities in virtual
environments with 25, 50, 100, 200, 400, and 800 “rooms.”

A 1024 Entities
:< 512 Entities
I: 256 Entities
+ 123 Eniitles
o 64 Entities

MessagesperSecond
O 2 4 6 8 10

Entities per Room

Figure 9: Average rate of messages sent to a single client
(managing one entity) during tests with 64, 128, 256, 512,
and 1024 entities interacting in virtual environments with 25,
50, 100, 200, 400, and 800 “rooms.” Horizontal axis represents
the density of entities in the environment.

93

From the grouping of points in the plot, we see that the
rate of messages received by a single client is dependent more
on the density of entities in the virtual environment. than the
total number of entities. This is because each client has a

relatively constant sized region of interest (its visible region)
which is independent of the total size of the environment or

the total number of entities inhabiting it. During the test
with 1024 entities simultaneously navigating through an 800
room environment each client processed only 11.35 messages
(4360 hits) per second on average (row 13 of Table 1). This
was approximately 2.5% of the 450 messages per second that
would have been processed by each client in a system without
visibility-based culling e a 40x decrease.

To characterize the message processing requirements of a
single server in RING. we performed tests with various nume
bers of servers managing cemmunication for 16 clients and
256 entities distributed evenly across the clients and servers
in a virtual environment with 800 rooms. Table 2 lists aver-

age server—reliant, SGI‘VBI‘HSEI‘VBI‘, and total message rates for
a single server during tests with 1, 2, 4, 8, and 16 servers. Fig-
ure 10 shows a plot of total message rates per server measured
during each of these tests.

ServerHClient ServerHServer Total#Input Output Input Output H Input Output
1 0.0 0.0 107.1 634.1 ii
2 46.9 48.5 98.6 345.1
4 69.3 70.6 95.6 231.7
8 76.5 78.8 89.7 157.5

16 78.9 81.5 85.6 1209—11

Table 2: Average message processing rates (messages per sec—
ond) measured in a single server during tests with 1, 2, 4, 8,
and 16 servers managing communication for 16 clients and 256
entities distributed evenly across the clients and servers in a

virtual environment with 800 rooms.

50 D

5 DO Output Messages
4 00

3 0 0

200

Input Message?“__________________________________

MessagesperSecond
100

o 2 4 6 810121416

Number of Servers

Figure 10: Average rates of messages sent to (input) and from
(output) a single server during tests with 1, 2, 4, 8, and 16
servers managing communication for 16 clients and 256 env
tities distributed evenly across the clients and servers in a
virtual environment with 800 rooms.

90

93

As the number of servers increases, the total number of
messages input and output by a single server decreases. This
phenomenon is aided by the fact that update messages are
prepagated only to servers attached to clients with entities

that can potentially see the updated entity. In the test with
16 servers, 74% of the real-time serverHserver messages are
culled due to visibility (i.e., the 16 entities managed by each
of the 16 servers cumulatively see 26% of the environment).
These results are encouraging since visibility-based message
culling becomes more efiective as the number of servers in‘
creases and less of the model becomes relevant to each server.

Firom these results, we conclude that it is possible to build
large multi—user visual simulation systems using a client-server
design. We have found that server-based message processing
algorithms which cull messages based on the three dimensional
geometry of the virtual environment can be effective at reduc-

ing the network traffic into client workstations. As a result,
for sufficiently occluded virtual environments, it is possible to
build large, afiordable multi-user virtual environments using
inexpensive client workstations with low‘bandwidth network
connections, while higher performance workstations are re-
quired only for the relatively few servers.

6 Discussion

Several alternate approaches and future extensions are possi-
ble for this system.

Multicast

In our first experiments with multi-user virtual environments,
we used I? multicast to send update messages directly be-
tween clients. The general idea is to map entity properties into
multirast groups, and send update messages only to relevant
groups [6]. For instance, Macedonia [12} partitions a virtual
world into a 2D grid of hexagonal shaped cells each of which
is represented by a separate multicast group. Entities localize
their visual interactions by sending updates only to the multi-
cast group representing the cell in which they reside, and they
listen only to niulticast groups representing cells within someradius.

The multicast approach is similar to the RING client-server

approach for wide-area networks. In both cases, intermediate
machines may cull messages rather than propagating them to
all participating workstations. However, using multicast, mes-
sage culling is done by routers at the network layer, whereas,
in RING, message culling is done by server machines at the
application layer (see Figure 11). The advantages of the mul-
ticast approach are that: 1) fewer messages must be passed
if clients are connected directly to a multicast-capable LAN
(e.g., ethernet), and 2) latency is reduced due to faster mes-
sage routing. The disadvantages are that: 1) delays associated
with joining and leaving multicast groups make it impractical
to use highly dynamic entity properties for multicast group
mappings, 2) the number of unique multicast groups accessi-
ble to any one application may not be sufiicient for complex
virtual environments, and 3) multicast is not generally avail-
able across wide-area networks to many types of networked
computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that
very dynamic and complex message processing may be perr

94

Sewer Layers.........___..n,,_-
,p ApplicatnnLayar’

RING Server ‘

Multicasi
Router

I IPAddr&Fnrt

Figure 11: RING servers process messages in the application
layer using 3D model and semantic information. Multicast
routers use only IP addressing in the network layer.

formed by servers. In contrast to multicast routers, which can
only cull messages based on a relatively small, static set of
multicast groups, RING servers can cull messages using high
level geometric algorithms and knowledge regarding a multi»
plicity of highly dynamic entity attributes (eg, location, ori~
entation, velocity, etc.) and interaction types (eg, visibility,
sound, collision, etc). Since RING servers can take advantage
of knowledge regarding message semantics and the 3D geome—
try of the virtual environment directly, they can execute more
effective and flexible culling algorithms than would be possi»

ble using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment,

and alter messages in addition to culling them. For instance,
RING servers already augment update messages with “Add”
and ”Remove" messages to inform clients that entities are en-

tering or leaving their potentially visible sets.

Server Topology

We have experimented with a variety of topologies for cons
necting RING clients and servers. For practical reasons, we
have focused mainly on arrangements in which clients com—
municate with a single server. However, depending on the ca’
pabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast. Clients
can choose server(s) to manage their messages statically (Lei,
all of a client’s messages are sent to the same server(s)) or
dynamically (e.g., based on the position of the updated 311'
tity). Servers have similar choices for distribution of messages
among themselves, but can also be arranged in a hierarchy in
which some servers manage communication between others.

Perhaps the most promising topologies are those in which
servers manage cemmunication between entities in separate
regions of the virtual environment. For instance, we have im-
plemented protocols with which entities migrate to a server
managing the region of the environment containing the cen—
troid of its enclosing cell. The advantage of this approach is
that serversserver communication is greatly reduced if there

91

94

is relatively little inter~visibility between regions, In such
cases, most real-time updates affect only entities managed by
the same server, and periodic updates must be passed only
to servers whose region is visible to the updated entity. In
early experiments, more than 95% of server—server messages
are eliminated with regional servers. Further work is required
.to fully investigate the trade—offs between regional and other
types of client-server topologies.

Multiresolution Simulation

An extension to RING currently being investigated is to use
multiresolution simulation to reduce network traffic and client
behavioral simulation processing. One idea is to allow RING
servers to process sequences of messages and slide updates
based on the perceptible importance to each client’s entities»
For example, consider the situation shown in Figure 12. AL
though A can see both E and E, B is closer to A. Thus, up-
dates to B may be more important to A than updates to E,
and could be sent to A at a finer resolution. In fact, E may

be far enough away that small updates are imperceptible to
A, so they can be elided completely. More generally, RING
servers can alter any sequence of up date messages for any en—

tity dynamically to meet the perceptible quality required by
each client. Finally, time critical computing algorithms can be
used to determine an “optimal” set of messages to send to each
client based on network connection bandwidths, workstation

processing capabilities, and many other real-time performance
factors (i.e., in a manner similar to that used in [8]).

Update B in A at
fine resolution -_ '-‘F _‘

Update E in A at
coarse resolution;

Figure 12: RING Servers may prOpagate sequences of update
messages to client A at finer resolutions for entity B, which is
nearby, than for entity E, which is far away.

Multiresolution simulation and time critical computing al—

gorithms can also be useful for behavioral simulation in RING
clients. Every client simulates behavior for every potentially
visible remote entity between updates. If surrogate behaviors
can be described at multiple resolutions, simpler behavioral
models can be used for entities that are perceptibly less ims

portant. For instance, in a flight simulator, very detailed be—
havioral models might be used to simulate an airplane just off
the wing of a local entity, whereas coarse resolution behavioral
models can be used to simulate an airplane that is far away
and just barely visible on the horizon. By allowing clients to
choose a behavioral model to simulate for each remote entity

dynamically based on its perceptible importance to local ens
tities, we can further reduce the processing requirements of
client workstations.

95

Interaction Types

Although RING servers currently support only visual interac»
tions, we expect that other types of interactions (sound, colli-
sion, etc.) can benefit from similar server—based message pro—
cessing techniques. We are working on extensions to RING to
support more general types of interactions and environments.

7 Conclusion

RING is a system for managing communication between mul-
tiple users interacting in a. shared three dimensional virtual en-

vironment. It uses a client-server design along with visibility~
based message culling algorithms to greatly reduce the mes—
sage traffic required to maintain consistent state during multi—
user visual simulations. Each client workstation must store in
memory, process update messages, and simulate behavior for

only a small subset of the entities participating in the entire
distributed simulation 7 i.e., the ones visible to its entities.

Inexpensive workstations with little storage capacity, slower
cpus, and low bandwidth network connections may be used for
clients, while high performance workstations and high band-
width networks are required only for the relatively few servers
and their interconnections. As a result, this client-server sys-
tern design scales afiordably to very large numbers of users
interacting in densely occluded virtual environments.

Acknowledgements

I am grateful to Seth Teller who provided spatial subdivision
and visibility algorithms. Initial experiments with multi—user
virtual environments were based upon work performed with

Seth and other members of the UC Berkeley Walkthrough
Group under the guidance of Carlo Séquin. Thanks to David
Kristo] who helped me with the networking aspects of this
system. Finally, I’d like to thank Martha whose support is
always appreciated. 4

References

[1] Airey, John M., John H. Rohlf, and Frederick P. Brooks,
Jr., Towards Image Realism with Interactive Update
Rates in Complex Virtual Building Environments. ACM
SIGGRAPH Special Issue on 1.990 Symposium on Inter—
active 3D Graphics, 24, 2 (1990), 41—50.

[2] Blanchard, C., S. Gurgess, Y. Harvill, J. Lanier, A. Lasko,
M. Oberman, and M, Teitel, Reality Built for Two: A
Virtual Reality Tool. ACM SIGGRAPH Special Issue on
1990 Symposium on Interactive 3D Graphics, (Snowbird,
Utah), 1990, 35-36.

[3] Blau, Brian, Charles E. Hughes, Michael J. Moshell,
and Curtis Lisle, Networked Virtual Environments. ACM
SIGGRAPH Special Issue on 19.92 Symposium on Inter-
active 3D Graphics, (Cambridge, MA), 1992, 157-164.

[4] Bricken, William, and Geoffrey Coco The VEOS Project.
Technical Report, Human Interface Technology Labora-
tory, University of Washington, 1993.

92

95

[5] Calvin, James, Alan Dickens, Bob Gaines, Paul Met-
zger, Dale Miller, and Dan Owen, The SIMNET Virtual
World Architecture. Proceedings of the IEEE Virtual Re-
ality Annual International Symposium, September, 1993,450-455.

[6] Carlsson, Christer, and Olof Hafsand, Dive: A MultilUser
Virtual Reality System. Proceedings of the IEEE Vir-
tual Reality Annual International Symposium, Septem—
ber, 1993, 394-401.

[7] Funkhouser, Thomas A., Carlo H. Séquin, and Seth J.
Teller, Management of Large Amounts of Data in Inter—
active Building Walkthroughs. ACM SIGGRAPH Special
Issue on 19.92 Symposium on Interactive 3D Graphica,
(Cambridge, MA), 1992, 11—20.

[8] Funkhouser, Thomas A., and Carlo H. Sequin. Adaptive
Display Algorithm for Interactive Mame Rates During
Visualization of Complex Virtual Environments. Com-
puter Graphics {SIGGRAPH ’93), 27, 247-254..

[9] Institute of Electrical and Electronics Engineers (IEEE),
EEEE P1278 ~ Standard for Information Technology —
Distributed Simulation Application — Process and Data
Entity Interchange Formats.

[10] Kazman, Rick, Making WAVES: On the Design of Archi-
tectures for Low-end Distributed Virtual Environments.

Proceedings of IEEE Virtual Reality Annual International
Symposium, September 1993, 443-449.

[11] Kazman, Rick, Load Balancing, Latency Management
and Separation of Concerns in a Distributed Virtual

Vllorld. Parallel Computations » Paradigms and Applica-
tions, A. Zomaya (ed), Chapman 8: Hall, 1995, to ap—pear.

[12] Macedonia, Michael, R. Michael J. Zyda, David R. Pratt,
and Paul T Barham, Exploiting Reality with Multicast
Groups: A Network Architecture for Large Scale Virtual
Environments. To appear in Proceedings of IEEE Virtual
Reality Annual International Symposium, 1995.

[13] Pope, Arthur R., The SIMNET Network and Protocols.
Technical Report 9120, LORAL Advanced Distributed
Simulation, Cambridge, MA, June, 1991.

[14] Shaw, Chris, and Mark Green, The MR Toolkit Peers
Package and Experiment. Preceedings of IEEE Vir-
tual Reality Annual International Symposium, September
1993, 463-469.

[15] Teller, Seth J., and Carlo H. Sequin, Visibility Prepro—
cessing for Interactive Walkthronghs. Computer Graphics
(SIGGRAPH ‘91). 25, 4, 61-69.

[16] Teller, Seth J., Visibility Computations in Densely Oc—
cluded Polyhedrol Environments. PhD. thesis, Computer
Science Division (EECS), University of California, Berke-
ley, 1992. Also available as UC Berkeley technical report

, UCB/CSD—92-TDS.

[1'7] Zyda, Michael J., David R. Pratt, John s. Falby, Chuck
Lombardo, and Kristen M. Keileher, The Software Re~
quired for the Computer Generation of Virtual Environ-

merits. Presence, 2, 2 (March 1993), 130-140.

96

NPSNET: A MULTI-PLAYER 3D VIRTUAL ENVIRONMENT OVER THE
INTERNET

Michael R. Macedonia, Donald P. Brutzman, Michael I. Zyda”, David R. Pratt, Paul T. Barham
John Falby, John Locke

Naval Postgraduate School

Department of Computer Science
Monterey, California 93943-5100

{zyda,pratt}@cs.nps.navy.mil

Networked Virtual Worlds

The development of multi-user networked virtual worlds has
become a major area of interest to the graphics community. The re»
alization of high bandwidth wide area communications. the success
of World Wide Web applications such as the National Center for
Supercomputing Application's Mosaic browser. and government
funding of Distributed Interactive Simulation (DIS) has fueled the
desire to expand networked virtual worlds beyond local area net-
works. However. the Internet has proved a challenging environ-
ment for real—time applications such as interactive virtual worlds
and multimedia.

Our group has been motivated to expand the capabilities ofsim-
ulations and virtual environments (VES) by exploiting multicast
networks to serve medium to large numbers (more than 1.000) of
simultaneous users. To understand and meet these challenges we

have developed the Naval Postgraduate School Networked Vehicle
Simulator IV (NPSNET-IV) —— a 3D virtual environment suitable
for multi-player participation over the Internet.

Key Technologies

NPSNET-IV is used for the following research areas:

- Dynamic IP Multicast for network group communication to
support large scale distributed Simulation over the Internet.

Wireless (mobile) and remote (Integrated Services Digital Net—
work, ISDN, and low-rate analog) communications technolo—
gy for VEs.

Human, instrumented figures in VEs for medical and emergen—
cy training applications.

Distributed Interactive Simulation protocol development for
application level communication among independently devel-
oped simulators (e.g. legacy aircraft simulators, constructive
models, and real field instrumented vehicles).

Networked real-time hypermedia within 3D VEs such as video
and audio.

Autonomous players or entities for populating virtual worlds.
Low-cost 3D sound.

.. Simulation-based design.

It

a

1995 Symposium on Interactive SD Graphics. Monterey CA USA1995 ACM 0~89791-736-7/95/0004.

93

96

“a, Player Z

" " Multicast Group 224.11.22.33
— Multicast Group 224.11.12.56

Figure 1. The MBONE allows different large—scale networked
virtual environments to exist simultaneously over the Internet.

NPSNET

NPSNET—IV runs on commercial. offwthe—shelf Silicon Graph-
ics workstations and employs the Performer graphics library[8].
Developed at the Naval Postgraduate School's (NPS) Department
of Computer Science in the Graphics and Video Laboratory, the
simulator uses Simulation Network (SIMNET) databases. NPS-

NET-IV participants communicate with other virtual environment
“players" located across the United States via 1? multicast network
protocols, the IEEE. 1278 Distributed Interactive Simulation appli-
cation protocol and the Internet Multicast Backbone
(MBONE)[4,6].

NPSNET—IV is the first DIS application to use the 1P Multicast
protocol. IP Multicast, developed by Steve Deering, is an Internet
standard (RFC 1112), and is supported by a variety of operating
systems including SGI’s Irix and Sun’s Solaris [3].

Multicast provides one-to-many and many-to-many delivery
services for applications such as teleconferencing and distributed
simulation in which there is a need to communicate with several
other hosts simultaneously. For example, a multicast teleconfer-
ence album a host to send voice and video Simultaneously to a set

of (but-not necessarily all) locations. With broadcast, data is sent to
all hosts while unicast or point‘to-point routes communication be-
twéen only two hosts.

Most distributed VEs have employed some form of broadcast
(hardware-based or I?) or point-to-point communications. Howev—
er. these schemes are bandwidth inefficient and broadcast. which is
used in Silt/[NET and most DIS implementations. is not suitable for

97

internetworks.

IP broadcast, which is commonly used in DIS environments,
cannot be used over the Internet unless it is encapsulated. It also
adds an additional burden because itrequires that all nodes examine

a packet even if the information is not intended for that receiving
host, incurring a major performance penalty for that host because it
must interrupt operations in order to perform this task at the Operat-
ing system level.

Point-to-point communication requires the establishment of a
connection or path from each node to every other node in the net-
work for a total of N*(N—1) virtual connections in a group. For ex-
ample, with a 1000 member group each individual host would have
to separately address and send 999 identical packets. If a client-
server model is used, such as that typically found in networked
games and multi-user domains (MUDS), the server manages all the
connections and rapidly becomes an input/output bottleneck.

Dead-reckoning

The networkng technique used in NPSNET-IV, evolved from
SIMNET, and embodied in DIS follows theplayers and ghosts par»
adigm presented in [1H7]. In this paradigm, each object is con-
trolled on its own host workstation by a software object called a
Player. On every other workstation in the network, a version of the
Player is dynamically modeled as an object called a Ghost.

The Ghost objects on each workstation update their own posi»
tion each time through the simulation loop, using a dead—reckoning
algorithm. The Player tracks both its actual position and the predict-
ed position calculated with dead-reckoning. An updated Entity
State Protocol Data Unit is sent out on the network when the two
postures differ by a predetermined error threshold, or when a fixed
amount or time has passed since the last update (nominally 5 sec—
onds). When the updated posture (location and orientation) and ve—
locity vectors are received by the Ghost object. the Ghost's is cor-
rected to the updated values, and resumes dead~reckoning from thisnew posture.

This dead-reckoning technique helps in overcoming a major
problem found in a number of networked simulations u excessive

network utilization. For example, each networked participant play-
ing the popular game DOOM generates a packet on every graphics
frame, On an SGI. this translates into 30 packets per second, even
when an entity is inactive. This not only wastes bandwidth, it also
overloads the ability of network devices to process packets. On the
other hand, a high performance aircraft in a DIS environment typi~
cally produces about 8 packets per second --a dramatic difference.

MB ONE

MBONE is a virtual network that originated from an effort to
multicast audio and video from the Internet Engineering Task Force
(IETF) meetings [2]. MBONE today is used by several hundred re-
searchers for developing protocols and applications for group com~munication.

We have used MBONE to demonstrate the feasibility of IP
Multicast for distributed simulations over a wide area network. In
the past, participation with other sites required prior coordination
for reserving bandwidth on the Defense Simulations Internet (D81).
D81, funded by .ARPA, is a private line network compOsed of T-l
(1.5 Mbps) links, BBN switches and gateways using the ST-ll net-
Work protocol. It had been necessary to use DSl because ARPA

sponsored DIS simulations use 1P broadcast - requiring a unique
wide-area bridged network.

With the inclusion of IP Multicast in NPSNET—IV, sites con-
nected via the MBONE can immediately participate in a simulation,
MBONE uses a tool developed by Van Jacobson and Steven Me—

94

97

Centre called the Session Directory (SD) to display the advertise-
ments by multicast groups. SD is also used for launching multicast
applications like N'PSNETJV and for automatically selecting an
unused address for a new group session. Furthermore, we can inte-
grate other multicast services such as video with NPSNET—IV. For
example, participants are able to view each other’s simulation with
a video tool, NV, developed by Ron Fredrickscn at Xerox Pare [5}.

Acknowledgments

We wish to express our thanks to the Air Force Institute of
Technology. George Mason University, the Naval Research Labs
and all those who participated in the demonstrations of NPSNET»
IV.

This work would not have been possible without the support of
our research sponsors: USA ARL, DMSO, USA STRICOM, USA
HQDA Al Center—Pentagon, USA TRAC, ARPA.

Resources

Many of the references noted below are available via the NPS-
NET Research Group‘s WWW home page:

filezlltauruscs .nps.navy. mil/pub/NPSNET_MOSAIC/
npsnet_mosaic.html

References

1.Blau, Brian, Hughes, Charles E, Moshell, J. Michael and Lisle,
Curtis “Networked Virtual Environments,” Computer Graphics,
1992 Symposium on Interactive 3D Graphics (March 1992),
pp.157.

2.Casner, Steve. “Frequently Asked Questions on the Multicast
Backbone". (6 May 1993). Available at venrera.isi.edu:/rnbone/
faq.txt.

3.Deering, Stephen. Host Extensions for IP Multicasting. RFC
1112. (August 1989).

4.lnstitute of Electrical and Electronics Engineers, International
Standard, ANSI/EBB Std 1278-1993, Standard for Information

Technology, Protocols for Distributed Interactive Simulation,
(March 1993).

5.Macedonia, Michael R. and Donald P. Brutzman. “MBone Prov

vides Audio and Video Across the Internet". In IEEE Computer.
(April 1994). pp. 30736.

6.Pope, Arthur, BBN Report No. 7102, “The SIMNET Network

and Protocols”, BBN Systems and Technologies, Cambridge. Mas-
sachusetts, (July 1989).

7.Pratt, David R. “A Software Architecture for the Construction
and Management of Real Time Virtual Environments”. Disserta-

tion, Naval Postgraduate School, Monterey, California (June 1993).

SZyda, Michael .l., Pratt, David R., John S. Falby, Chuck Lombar-

do, Kelleher, Kristen M. “The Software Required for the Computer
Generation of Virtual Environments". In Presence. 2, 2. (Spring
1993). pp. 130-140,

98

Visual Navigation of Large Environments Using Textured Clusters
Paulo W. C. Maciel"

Abstract

A visual navigation system is described which uses texture
mapped primitives to represent clusters of objects to main-
tain high and approximately constant frame rates. In cases
where there are more unoccluded primitive: inside the view-
ing fi-ustum than can be drawn in real-time on the workstar
tion, this system ensures that each visible object, or a cluster
that includes it, is drawn in each frame. The system sup-
ports the use of traditional “level-of-detail” representations
for individual objects, and supports the automatic genera-
tion of a certain type of level-of-detail for objects and clusters
of objects. The concept of choosing a representation from
among those associated with an object that accounts for the
direction from which the object is viewed is also supported.
The level-of-detail concept is extended to the whole model
and the entire scene is stored as a hierarchy of levels-of-detail
that is traversed top-down to find a good representation for
a given viewpoint. This system does not assume that vis-
ibility information can be extracted from. the model and is
thus especially suited for outdoor environments.

1 Introduction

This paper describes a new approach to the “walkthrough”
problem, where a viewer interactively moves through a static
scene database at high and approximately constant frame
rates.

Traditional approaches to this problem use a hardware
graphics pipeline and attempt to minimize the number of
polygons sent to the system. This minimization is achieved
both by culling the entire model or the part of it that is
potentially visible in the next few frames against the view-
ing frustum and using geometrically coarse representations
(levels of detail, or LODs) of individual objects.

The approach described in this paper attempts to extend
the domain of traditional approaches by assuming that sets

of potentially visible objects cannot easily be computed and
at any given frame the visible scene can contain more graph-
ics primitives than state-of—the—art hardware can tender in
real-time even if the lowest detail LODs are used for every
object.

The basic strategy underlying the system described in this
paper is the use of imposiars. An impostor is an entity that is
faster to draw than the true object, but retains the important

'Department of Computer Science, Lindley Hall, Indiana Uni-
versity, Bloomington, Indiana, pmaciel@m.indiana.edu

lProgram of Computer Graphics, Cornell University, Ithaca,
New York, shirley@graphics.cornell.edu

Permission to copy without lee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish. requires a tee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791~736-7/95/0004...$3.50

98

95

Peter Shirleyl

visual characteristics of the true object. "Traditional LODs
are a. particular application of impostors.

The key issue is how to decide which impostors to ren-
der to maximize the quality of the displayed image without
exceeding the available user-specified frame time. The best
approach so far to solve this problem attempts to predict
the complexity of the scene at the current frame and selects
impostors accordingly and is described by Funkhouser and
Sequin [3].

The system described in this paper can be viewed as an
extension of F‘unlchouser and Sequin’s system with the fol-
lowing new properties:

I The entire database is a single hierarchy which con-
tains drawable impostors (including LODs) for objects
as well as clusters of objects. This is a global general-
ization of the LCD concept to the entire model.

i The system uses the graphics hardware to automat-
ically create this hierarchy, generate impostors, com-
pute their rendering cost, and compute a static portion
of their benefit according to the direction from which
they are viewed.

In Section 2 we revisit the work done by Funkhouser and

Sequin, briefly presenting the main components of their sys—
tem and showing why it doesn’t scale well to arbitrary envi-
ronments. In Section 3 we discuss how to extend the benefit
concept to account for cluster primitives and view-dependent
LODs. In Section 4 we show how the representation selection

process can be formulated as an N'P-complete tree traversal
problem, and present a heuristic solution that generates a
complete, if non-optimal, representation of the model for
display. In Section 5 we discuss our implementation. Fi-
nally, we discuss the limitations of the system in Section 6
and the conclusions in Section 7.

2 Predictive Approach Revisited

The predictive approach described by Rmkhouser and Se-
quin assumes that the system runs on a machine in which
the rendering cost of each object in the model can be es-
timated. This rendering cost is estimated by empirically
obtaining performance parameters of the machine and using
these parameters in a simple formula.

Since efiective walkthrough systems need to achieve a bal-
ance between interactivity and visual quality, they use shen-
efit heuristic to decide the amount of contribution to the
overall scene caused by rendering an object with a particu-
lar accuracy. This heuristic takes into consideration factors
associated to a representation of the object such as image-
spaoe size of object, focus, speed relative to view point, se-
mantics, accuracy of a LCD, and hysteresis with respect to
switching between different LODs.

Objects are selected to render using an incremental opti-
mization algorithm that prioritizes the selection of objects
with high benefit /cost value to render until the user-specified

99

Figure 1: Three representations for a house. The left two
are view independent LODs while the right one is a view
dependent texture map.

frame time is reached. The result is that low-valued visible
objects may not be displayed. In environments where too
many visible primitives are present at a given point in the
simulation, this can result in large “blank” spots on the scene
which would cause a distracting effect.

To reduce the number of primitives rendered at each
frame, visibility information from s. pro-processing phase is
used to cull objects that are certainly blocked from view by
partitions. This approach works well for models that can be
subdivided into cells containing open spaces (such as doors
and windows) through which visibility can be determined.
In an outdoor environment such cells and portals are not
easily identifiable making the pro-processing of such an en-
vironment to extract visibility a hard problem.

Our system is also a predictive system and assumes that it
will run on a multiprocessor machine with texture mapping
capability. We allow for situations where more unoccluded
primitives can occur inside the viewing frustum than can be
rendered in real-time and do not assume that visibility infor-
mation can be extracted from the model. This last feature,
makes the system suitable for navigation of large outdoor
environments.

3 Benefit Calculation

Visual navigation systems use different representations
(LODs) of an object to improve the performance of the sim-
ulation. As explained in the previous section, each LOD
makes a contribution to the quality of the simulation that
can be estimated by a benefit heuristic.

In computing these benefits we face two interesting issues:
how to compute the benefit of individual representations of
objects taking into account their view angle dependent na-
ture (e.g. a roadside billboard has a low benefit when seen
from the side), and how a group of objects is percein (its
"semantics").

3.1 Benefit of Objects

In our approach, an object can have associated with it not
only the conventional LODs but also any other drawable rep-
resentation that resembles the object from given viewpoints.
Consider the possible representations we can use to render
a house as in Figure 1. In this picture, the first (leftmost)
of these representations is the house object at full detail,
the second is a low LOD representation and the third is just
a single polygon with a texture map representation of the
front of the house.

We classify the third representation as view dependent and
the first two as view independent meaning that the view de-
pendent would only be cousidered for a subset of all possible
viewing directions, while the view independent LODs would
be considered for all viewing angles.

96

99

We have divided the contribution to the simulation of ren-

dering a given representation associated with an object in
two parts. One that is intrinsic to the object, the object’s
benefit, and one that is intrinsic to a representation of the
object, the accuracy with which it represents the full detail
object.

Intrinsic to an object are factors such as its image-space
size (since large objects on the screen seem to contribute
more than smaller ones), its distance to the line of sight
(since assuming that the eye is looking to the center of the
screen, objects near the center of view are better resolved
by our visual system than objects in the periphery of view),
relative speed of the object to the viewpoint, and semantics
(role of the object in the simulation). Our per-object benefit
is computed as a. weighted average of all these factors and it
is used to guide the selection of representations to render in
Section 4. The weights are empirically determined and can
be changed for each run of the simulation.

Intrinsic to a. representation of an object is its accuracy
with respect to the full detail object, that is, how similar a
given representation is to the actual object for a particular
view angle.

Note that while the benefit of an object (except for its
semantic) can only be determined in real-time and therefore
is inherently dynamic, the accuracy of a representation is
inherently static and can be determined prior to the walk-
through of the model, as described in Section 3.2.

3.2 View Angle Dependent Benefit Calculation

Consider again the house reprmentations in Figure 1. The
left most of these representations should have the highest
benefit regardless of view angle but we might not want to
render it since it is also the most expansive to render. The
benefit that should be assigned to the other two will depend
upon the user‘s view angle (for the texture maps) and view
distance (for the low LOD).

A way of incorporating view dependency information into
the benefit heuristic is to measure the accuracy of each of the
object‘s representations according to each viewing direction
possible.

Since the space of possible viewpoints and viewing direc-
tions is infinite, we approximate it by discretiz'mg this space
into a finite set of viewing directions, and assuming that
the view distance is infinite (we use an orthographic pro-
jection). This seems reasonable because we do not expect
to use coarse LODs when the view distance is small. To

tabulate directional benefits, we sample the hemisphere of
directions (Figure 2) and calculate an image of the object
and impostor at each sample point.

The number and location of these samples will depend on
the number of representations that the object has and the
possible viewpoints during the wallcthrough. For instance, in
the case of the 2D house impostor in Figure 1, we will never
use it unless we are roughly in front of the house, so only
directions around the line perpendicular to the 2D image are
sampled.

We sample each of the viewing directions and measure
the accuracy of each representation and construct a table
that has one entry for each pair (representation, viewing di-
rection). Each of these entries contains a similarity value
(accuracy) of the representation measured with respect to
the full detail object for the particular viewing direction.
During the walkthrough, the accuracy of a given representa-
tion and viewing direction can be obtained by accessing this
table.

100

Figure 2: Discretizing the space of viewpoints around an
object. Replication accuracies are shown at three of the
view angles. The low LOD house looks the “best” from the
top.

Ideally the accuracy of an image with respect to the ideal
image should be obtained by a perceptual comparison of the
two images but since we are in search of automatic ways to
determine similarity we resort to computational techniques.
In our implementation we use simple image processing tech-
niques to get this similarity value.

We avoid a simple pixel-by—pixel comparison of the two
images, since slight diEerenoes on the impostor’s image
would cause two very similar images to have a. similarity
close to zero. Because the achromatic channel of vision is the
most important for shape recognition, we start by obtaining
a gray scale version of the two images by simply averaging
the rgb components at each pixel. Since edges are features
on an image that are readily identified by the human visual
system, an edge operator is applied to the images. The im-
ages are convolved with a 5x5 Laplacian operator and its
zero crossings are computed. A subsequent blurring step in-
creases the chances of matching of the two images, which we
then compare pixel-by—pixel.

This image comparison method is far too simple to mimic
human image processing, but does serve as a placeholder in
our system that can be replaced later with a module that
performs better by using segmentation and high level pro-
cessing.

3.3 Benefit of Clusters

This section is meant to highlight that much more research
needs to be done on how benefit heuristics can draw on per-
ceptual behavior. We argue that a per-object benefit heuris-
tic doel not address how humans perceive a collection of ob-
jects when seen as a whole. Briefly, if two objects a and ,6
are represented by an impostor 'y and have benefits 13,1 and
3;; what should the benefit B, of 1 be?. B, is not simply
the sum of Ba, and 3.6 since an and ,6 when viewed as a group
might give a different contribution (meaning) to the simula-
tion then the objects alone would, that is, the benefit of all
the objects in a scene does not translate into a perceptual
measure for the entire scene.

A practical example would be to consider a. walkthrough
of a. battle field containing many soldiers and guns. In this
situation the benefit of a gun and a. soldier do not add up
to form the benefit of a soldier holding a gun, particularly if
the soldier is pointing the gun toward the user of the system.

Therefore we conclude that to determine the benefit of an

object in some cases is undecidable without knowing what
surrounds it. As pointed out by Gestalt Psychologists [7],

100

97

the meaning conveyed by an object may be more than merely
the “addition” of the meanings conveyed by each one of the
objects alone, that is, the whole conveys more information
then the sum of its parts.

While realizing that it is extremely difficult to account
for how objects interact in a. scene we still use a. per—object
benefit heuristic knowing that it may not. be suitable for
some groupings of objects.

4 Navigation System Design

The ultimate goal of this work is to design a. visual navigation
system that is able to keep a user-specified uniform frame
rate when displaying a large environment.

We begin by presenting a. general framework for visual
navigation systems. We then formalize the navigation prob-
lem as an NP-complete tree traversal problem and explain
in detail the design of our system.

4.1 Framework for Visual Navigation Systems

In many cases, conventional LODs are either not readily
available, are expensive, or are time consuming to generate.
Since these LODs are simply representations of the "true”
objects they do not necessarily need to be versions of the
same object with fewer geometric primitives {or drawn with
a less accurate rendering algorithm such as flat shading in-
stead of Gouraud shading) but rather representations that
can be drawn on the computer screen in less time than the
true object and provide the simulation with a feel similar to
that obtained by using the full detail object.

With this in mind, our design allows an object to be as-
sociated to many difl’erent representations that resembles it,
possibly from difi’erent view angles.

4.1.1 Object-Oriented Design

The main abstraction for a single object, is the “conceptual
object” abstraction. It corresponds to any object in the
model that has a well defined meaning in the simulation,
such as, a car or a building. Associated with the conceptual
object is a. set of “drawable representations", which have
characteristics similar to the actual object it represents.

The “drawable representation" abstraction represents a
variety of hardware drawable representation or impostors for
a given conceptual object. The abstractions for drawables
encapsulate hardware defined primitives such as meshes of
triangles, splines, list of polygons, etc, as well as the impos-
tor representations presented in Section 4.1.2. This encap-
sulation of both hardware primitives and impostors allows
the design of very efficient rendering routines that extract
the most performance of the graphics subsystem. Other im-
postor abstractions may be added to this design as deemed
necessary to solve a particular problem or to add a particular
feature to the walk-through program.

The conceptual object’s interface is defined by virtual
functions to compute the object‘s benefit, visibility, and a
“draw” fimction that is redefined for each specific drawable
representation. The dram-able representation’s interface is
defined by functions to compute the drawable’s rendering
costfi accuracy, and by customized "draw" functions.1

4.1.2 Types of Impostorl

As mentioned in Section 3.1, we allow an object to be rep-
resented by both view dependent and view independent im-

