
1 MS 1005

RING: A Client—Server System

for Multi-User Virtual Environments

Thomas A. F‘unkhouser

AT&T Bell Laboratories 1

Abstract

This paper describes the client-server design, implementation
and experimental results for a system that supports real-time
visual interaction between a large number of users in a shared
3D virtual environment. The key feature of the system is that
server-based visibility algorithms compute potential visual in-
teractions between entities representing users in order to re-
duce the number of messages required to maintain consistent
state among many workstations distributed across a wide—area
network. When an entity changes state, update messages are
sent only to workstations with entities that can potentially
perceive the change , i.e., ones to which the update is visi—
ble. Initial experiments show a 40x decrease in the number of
messages processed by client workstations during tests with
1024 entities interacting in a large densely occluded virtual
environment

CR Categories and Subject Descriptors:
[Computer Graphics]: 1.3.7 Three—Dimensional Graphics
and Realism — Virtual Reality.

Additional Key Words and Phrases: Visual simulation,
multi—user systems, virtual reality, 3D virtual environments,
real-time graphics, client-server design, distributed systems.

1 Introduction

In a niulti-user visual simulation system, users run an interac—
tive interface program on (usually distinct) workstations con-
nected to each other via a network. The interface program
simulates the experience of immersion in a virtual environ—
ment by rendering images of the environment as perceived
from the user’s simulated viewpoint. Each user is represented
in the shared virtual environment by an entity rendered on
every other user’s workstation, and multi—user interaction is
supported by matching user actions to entity updates in the

3600 Mountain Avenue, 2A-202, Murray Hill, NJ 07974,
funk©rescarch.att.eoni

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copying Is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791—736-7/95/0004...$3.50

85

shared virtual environment. Applications for these systems
include distributed training simulations, collaborative design,
virtual meetings, and multiplayer games.

A difficult challenge in multi-user visual simulation is main-
taining consistent state among a large number of worksta—
tions distributed over a wide-area network. Since three di-

mensional rendering at interactive rates requires fast access
to the geometric database, shared portions of the virtual en—
vironment (including dynamic entity states) are replicated on
every participating workstation. As a result, whenever any
entity changes state (e.g., moves) or modifies the shared en-
vironment, an appropriate update must be applied to every
copy of the database in order to maintain consistent state
(see Figure 1).

::.: 555953335313":
..Vi|'tua|- EhVifdhmeni

Figure 1: Multi—user systems must maintain consistency be
tween entities (A, B, C, and D) replicated on multiple work-
stations.

Implementing visual simulation systems for large numbers
of users is especially challenging because updates can occur at
extremely high rates. If N entities move through a shared vir—
tual environment simultaneously, each modifying its position
and/or orientation .M times per second, then M * N updates
are generated to a shared database per second. Moreover,
updates must be propagated to participating workstations in
near real-time since large variances or delays in updates can
result in visually perceptible jerky 0r latent motion, and thus
may be disturbing to users. As a result, general—purpose dis
tributed database systems are not adequate for use in multi-
user visual simulation applications, and specialvpurpose mes—
saging protocols are typically used to maintain consistent state
in multi-user visual simulation systems [9, 13].

MS 1005
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2

2 Previous work

Numerous experimental virtual reality systems and multi—
player games have been developed for real time interaction
in shared virtual environments. Unfortunately, most existing
systems do not scale well to large numbers of simultaneous
users.

Reality Built For Two [2], VEOS [4], and MR Toolkit [14]
are multi-user virtual reality systems that maintain consis-
tent state among N workstations by sending a point-to-point
message to each of N-l workstations whenever any entity in
the distributed simulation changes state. This approach yields
0(N2) update messages during every simulation step (see Fig-
ure 2), and thus does not scale to many simultaneous users
before the network gets saturated.

Point—to—Point
Connections

Figure 2: Systems using point-to-point connections pass
0(N2) update messages (labeled arrows) during each simu-
lation step.

SIMNET [5], NPSNET [17], and VERN [3] use broadcast
messages to send updates to all other workstations participat—
ing in a virtual environment at once. Although, this approach
cuts down on the total number of messages transmitted to
0(N), every workstation still must process a message when—
ever any entity in the distributed simulation changes state
(see Figure 3). Since every workstation must store data and
process update messages and/or simulate behavior for all N
entities during every simulation step, these systems do not
scale beyond the capabilities of the least powerful participat-
ing workstation. Experiences with SIMNET and NPSNET
show that a significant percentage of every workstation’s pro—
cessing capability is used just to read update messages from
other workstations during large simulations; and, therefore,
broadcast protocols are not practical for more than a few hun-
dred users on inexpensive workstations [17].

In order to support very large numbers of users (> 1000) in—
teracting simultaneously in a distributed virtual environment
it is necessary to develop a system design and communication
protocol that does not require sending update messages to
all participating hosts for every entity state change. Kazman
has proposed a. system design, called W'AVES, in which mes-
sage managers mediate communication between hosts, possi-
bly culling irrelevant messages [10, 11]. His approach is very
similar to the one presented in this paper. One difference is
that this paper presents algorithms and experimental results
for visibility-based message culling during large simulations.

Broadcast
Network

Figure 3: Systems using broadcast messages pass only 0(N)
updates each simulation step. But, every workstation still
must process every update message.

3 Overview of Approach

This paper describes a system (called RING) that supports
interaction between large numbers of users in virtual envi—
ronments with dense occlusion (e.g., buildings, cities, etc.)
RING takes advantage of the fact that state changes must be
propagated only to hosts containing entities that can possibly
perceive the change e i.e., the ones that can see it. Object-
space visibility algorithms are used to compute the region of
influence for each state change, and then update messages are
sent only to the small subset of workstations to which the
update is relevant.

The key idea is illustrated in Figure 4. Although entities
A, B, C, and. D (filled circles) all inhabit the same virtual
environment, very little visual interaction (hatched polygons)
is possible due to the occlusion of walls (solid lines). In fact,
in this example, only one visual interaction is possible — entity
A can see entity B. Therefore, only one update message must
be sent for each update to entity B’s position in real—time (to
the workstation with entity A). All other entities need not
distribute any update messages in real—time since they are not
visible to any other entity. From this example, we see that it
is possible to greatly reduce the number of messages passed in
real-time to maintain consistent state among multiple entities
in a densely occluded environment using line—of—sight visibility
to determine the region of influence for each update.

Only B is

visible to A
User (3

Visibility

Figure 4: A system that culls messages based on entity-entity
visibility may be able to reduce the number of messages pro-
cessed by each workstation in densely occluded environments.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3

The following section describes the RING system design.
Results of experiments with the system are presented in Sec-
tion 5, while a discussion of alternate approaches and possible
future work appears in Section 6. Finally, Section 7 contains
a brief summary and conclusion.

4 RING System Design

RING represents a virtual environment as a set of indepen-
dent entities each of which has a geometric description and
a behavior. Some entities are static (e.g., terrain, buildings,
etc.), whereas others have dynamic behavior that can be either
autonomous (_e.g., robots) or controlled by a user via input
devices (e.g., vehicles). Distributed simulation occurs when
multiple entities interact in a shared virtual environment by
sending messages to one another to announce updates to their
own geometry or behavior, modifications to the shared envi-
ronment, or impact on other entities.

Every RING entity is managed by exactly one client work-
station. Clients execute the programs necessary to generate
behavior for their entities. They may map user input to con-
trol of particular entities and may include viewing capabilities
in which the virtual environment is displayed on the client
workstation screen from the point of view of one or more of its
entities. In addition to managing their own entities (local en-
tities), clients maintain surrogates for some entities managed
by other clients (remote entities). Surrogates contain (often
simplified) representations for the entity’s geometry and be-
havior. When a client receives an update message for an eli-
tity managed by another client, it updates the geometric and
behavioral models for the entity’s local surrogate. Between
updates, surrogate behavior is simulated by every client.

Communication between clients is managed by servers.
Clients do not send messages directly to other clients, but iri-
stead send them to servers which forward them to other client

and server workstations participating in the same distributed
simulation (see Figure 5). A key feature of this client-server
design is that servers can process messages before propagating
them to other workstations, culling, augmenting, or altering
them. For instance, a server may determine that a particular
update message is relevant only to a small subset of clients
and then propagate the message only to those clients or their
servers. In addition, a server may send clients auxiliary mes-
sages that contain status information helpful for future client
processing. Finally, a server may replace some set of ines-
sages intended for a client with another (possibly simpler) set
of messages better suited to the client’s performance capabil—
ities. The aim of this client-server design is to shift some of
the processing burden away from the client workstations and
into servers so that larger, more affordable, multi-user visual
simulation systems can be built using primarily 10\ ’-cost Client
workstations.

In the current implementation, RING servers forward up—
date messages in real-time only to other servers and clients
managing entities that can possibly “see” the effects of the
update. Server—based message culling is implemented using
precomputed line~of~sight visibility information. Prior to the
multi—user simulation, the shared virtual environment is par-
titioned into a spatial subdivision of cells whose boundaries
are comprised of the static, axis—aligned polygons of the vir-
tual environment [1, 15]. A visibility precomputation is per—

87

Figure 5: RING servers manage communication between
clients, possibly culling, augmenting, or altering messages.

formed in which the set of cells potentially visible to each cell
is determined by tracing beams of possible sight-lines through
transparent cell boundaries [15, 16] (see Figure 6). During
the multi—user simulation, servers keep track of which cells
contain which entities by exchanging “periodic" update ines-
sages when entities cross cell boundaries. Real-time update
messages are propagated only to servers and clients contain
ing entities inside some cell visible to the one containing the
updated entity. Since an entity’s visibility is conservatively
over-estimated by the precomputed visibility of its containing
cell, this algorithm allows servers to process update messages
quickly using cell visibility “look-ups" rather than more exact
real-time entity visibility computations which would be too
expensive on currently available workstations.

Figure 6: Cell-tovcell visibility (stipple) is the set of cells
reached by some sight-line from anywhere in the source cell
(dark box) passing only through transparent portals (dash
lines) and no opaque walls (black lines). It is a useful, pre-
computed overestimate of the visibility of any entity resident
in the source cell.

As an example of RING server operation, consider the flow
of messages between clients A, B, C, and D for the entities
shown in Figure 4 connected to servers in the topology shown
in Figure 5. Figure 7 shows the surrogates (small squares
labeled by entity) and flow of update messages (arrows labeled
by entity) for each of the four entities in this example.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4

o If entity A is modified: client A sends an update message
to server X. Server X propagates that message to server
Y, but not to server Z because entities C and D are not
inside cells in the cell-to-cell visibility of the cell contain-
ing entity A. Server Y forwards the message to Client B
which updates its local surrogate for entity A.

o If entity B is modified: client B sends an update message
to server Y. Server Y then propagates that message to
servers X and Z, which forward it to clients A and C.
Server Z does not send the update message to client D
because the cell containing entity D is not in the cell-to-
cell visibility of the cell containing entity B.

o If entity 0 is modified: client C sends an update message
to server Z. Server Z propagates that message to server
Y. which then forwards the message to Client B. Server Z
does not send the message to either server X or client D
because neither is managing entities in the visibility set
for entity C.

u If entity D is modified: client D sends an update message
to server Z. Server Z does not forward the message to
any other server or client because no other entity can
potentially see entity D.

Client A

Figure 7: Flow of update messages (labeled arrows) for up-
dates to entities A, B, C, and D arranged in a. virtual environ-
ment as shown in Figure 4.

RING servers allow each client workstation to maintain sur-

rogates for only the subset of remote entities visible to at least
one entity .local to the client. All other remote entities are ir-
relevant to the client so there is no need to waste storage
space or behavioral simulation processing for them. To sup-
port this feature, servers send their clients an “Add" message
each time a remote entity enters a cell potentially visible to
one of the client’s local entities for the first time. A “Remove"

message is sent when the server determines that the entity has
left the client's visible region. As entities move through the
environment, servers augment update messages with “Add"
and “Remove" messages notifying clients that remote entities
have become relevant or irrelevant to the client’s local enti-

ties. Since the system uses an unreliable network protocol,
the “Add” and “Remove” messages are considered hints and

88

need not necessarily be processed by clients. However, they al—
low a client to store and simulate a small subset of the entities

with little additional processing or message traffic.

The primary advantage of the RING system design is that
the storage, processing, and network bandwidth requirements
of the client workstations are not dependent on the numl: er of
entities in the entire distributed simulation. Client worksta~

tions must store, simulate, and process update messages only
for the subset of entities visible to one of the client’s local en-

tities. In densely occluded virtual environments, visible sets
tend to be constant size (e.g., how many rooms you can see
looking into the hallway from your office usually does not de-
pend on the size of your building or whether your building is
surrounded by a large city), so the burden on individual client
workstations does not grow as the entire system (lees.

Another advantage is that high—level management of the
virtual environment may be performed by servers without the
involvement of every Client. For instance, adding or removing
an entity to or from the virtual environment requires rioti-
fication of only one server. That server handles notification
of other servers and clients. Also, the client-server design al—
lows use of efiicient networks and protocols available between
server workstations, but not universally available to all client
workstations. For instance, clients may connect to servers
via low-bandwidth networks, while servers communicate with

each other via high—bandwidth networks.

The storage and processing requirements of RING servers
are within practical limits. Unlike clients, servers do not have
to store display data (e.g., polygons, textures, etc.). But,
they must maintain spatial subdivision and visibility informa-
tion for the virtual environment (typically < 20MB for large
environments) and a surrogate representation for every entity
in the environment (currently 48 bytes per entity). As server
storage requirements grow linearly with the total number of
entities, the size of server workstation memory may theoreti-
cally limit the number of entities that are able to share a vir-
tual environment simultaneously. However, this is not likely
to be a problem in practice since a workstation with 6-1MIB of
memory can accommodate nearly one million entities.

Server workstation processing is also within reasonable
bounds. Servers must process messages in real—time only for
entities visible to some entity managed by one of their clients;
they are not required to simulate entity behavior between upe
dates; and, they do not render images of the virtual environ-
ment. As a result, the memory capacity and processing power
of standard UNIX workstations are adequate for RING servers
in densely occluded virtual environments with very large num-
bers of simultaneous users.

The disadvantage of the RING system design is that ex-
tra latency is introduced when messages are routed through
servers. Rather than sending messages directly between
clients, RING routes each one through at least one server,
and possibly two. Computations are performed in the servers
before messages are propagated further adding to latency. So
far, the extra latency due to server processing has not been
noticeable during experiments. Additional work will have to
be done to quantify the latency costs and to determine which
types of entity interactions are sensitive to latency issues.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5

5 Experimental Results

A prototype multi-user simulation system has been imple-
mented with the client-server design described in the previous
section. The system runs on Silicon Graphics workstations
and uses UDP/IP datagrams for message passing. This sec-
tion presents results of experiments with this system manag—
ing many entities interacting in large densely occluded virtual
environments. The virtual environments used in these ex

periments were mazes of “rooms” connected by “hallways.”
They were constructed by instancing a simple floor—plan 1, 2,
4, 8, 16, and 32 times in a square tiling pattern. Each tile
contained 25 rooms (counting hallways) and had 724 poly-
gons (see Figure 8). The largest environment used in these
tests had 23,168 polygons which formed 2,219 cells. The spa-
tial subdivision and visibility information for this environment
took 99 seconds to compute and required 11.2MB of storage.

 \ngRoom Room .w

\ :Em
\

Hoom'ELRoom

Figure 8: One tile of virtual environment used in tests.

Experiments were run with several environment sizes and
various numbers of entities, clients, and servers to charac-
terize the scalability of the system design. During these
experiments, entities navigated through the virtual environ-
ment “randomly” following piecewise linear paths in random-
ized directions for randomized distances. Clients sent update
messages only for changes in derivatives of entity position
and/or orientation (i.e., dead—reckoning) while other clients
simulated intermediate positions with linear “smooth-back.”
Update messages containing 40 bytes (message—type[4]. entityv
1D[4], target—positionflZ], target—orientationflZ], positional-
velocity[4], and rotationalsvelocity[4]) were generated for each
entity once every 2.3 seconds on average with this “random”
navigational behavior.

To investigate the message processing requirements of a sin-
gle client in RING, we performed tests measuring the rates of
messages received by clients managing one entity navigating
through virtual environments containing 64, 128, 256, 512,
and 1024 entities managed by other clients. Each test was
repeated in virtual environments containing 25, 50, 100, 200,
400, and 800 rooms. Plates I and 11 contain images captured
during tests with 512 entities in a 400 room environment. Ta-
ble 1 and Figure 9 show average rates of messages received by
individual clients in each test. In Figure 9, points represent-
ing the same number of total entities are connected by lines,
while points representing the same density of entities are at
the same horizontal position in the plot.

89

Entities # # ClientHServer

Per Room Entities Rooms 11 Output input
‘ 10.24 1024 100 H 0.44 61.37 ’

10.24 512 50 043 70.43
10.24 256 0. 47 53.68

5.12 1024 2200 0.55 55.93
5.12 512 100 0. 45 37.37
5.12 256 50 0.44 33.20
5.12 128 25 0.46 27.26

1024 400 0.50 24.56
. 512 200 0.47 19.88

2.56 256 100 0.46 23.19
2.56 128 50 0.41 17.42
2.56 64 25 0.46 13.65

1.28 1024 800 0.50 11.35 r
1.28 512 400 0.46 14.18
1.28 256 200 0.43 13.28
1.28 128 100 0.45 12.08
1.28 64 50 0.43 8.39

0.64 512 800 0.40 4.62—+
0.64 256 400 0.45 6.57
0.64 128 200 0.50 6.41

64 100 0.46 5.37
. 256 800 . .

0.32 128 400 0.38 3.20
0.32 64 200 0.33 3.35

|' 0.16128 800 0.38 1.910.16 64 400 0.40 1.68

f 0.08 64 800 0.32 0.52 i

Table 1: Average message. processing rates (messages per sec-
ond) measured in a single client (managing one entity) during
experiments with 64, 128, 256, 512, and 1024 entities in virtual
environments with 25, 50, 100, 200, 400, and 800 “rooms.”

1024 Entities
512 Entities
256 Entities
128 Entities
64 Entities

MessagesperSecond

Entities per Room

Figure 9: Average rate of messages sent to a single client
(managing one entity) during tests with 64, 128, 256, 512,
and 1024 entities interacting in virtual environments with 25,
50, 100, 200, 400, and 800 “rooms." Horizontal axis represents
the density of entities in the environment.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

