

APPLE 1052
Apple v. Masimo

OPTICS

SECOND EDITION

EUGENE HECHT
Adelphi University

With Contributions by Alfred Zajac

ث

ADDISON-WESLEY PUBLISHING COMPANY
Reading. Massachuselts : Menlo Park, Colifornia - Don Mills. Ontario Wokingnam, England - Amsterdam - Sydney - Singapore
Iokyo = Madrid * Bogoló : Santiago * Son Juan

Ihtssatio ss: Oxford Illustrator
Art wissedtunt: Lorcta
Man consestitunt: Lorcta Bailcy
Maryecturing suptrissf: Ann DeLacty
Library of Congress Cataloging-in-Pablication Data
Hecht, Eugene
Optics.
Bibliagraphy: p.
Includes indexes

1. Optics. 1. Zajac, Alfred. II. Title.
$\begin{array}{lllll}\mathrm{QC} & 5.5 \mathrm{~F} . \mathrm{H} 42 & 1987 & 535 & 86-14057\end{array}$
Repriniest with sorrections May, 1990 ,
Copyright © 1987, 1974 by Addison-Wesley Publishing Campany, Inc
All rights reserved. No part of this publication may be reproduced
scored in a retrieval system, or transmitted, in any form or by any
creans, elecaronic, mechanical, phatococopying, recording,
otherwise, without the roiur witten permi sion of the
Printed in the United Siates of America. Pubishled simultanemuly
in Canada.
1112 - 1415 MA 9695949.3

The creation of this second edition was guided primarily by two distinct imperatives: to incorporate the pedagogical insights gained in the classroom over the past dozen years, and to bring the book in step with the fast-moving edge of optical technology. Accordingly, densed, others extended, and the exposition update and improved throughout. In the process I have added a number of graphs, drawings and photographs, as wel. as a good deal of new textual material-always with the motivation of enlivening and clarifying the treatment
As well as the very many small but significan efinements that are incorporated in this second edition, there are also some substantive improvements in methodology and emphasis. For example, atomic pro dered earlier and in more denil. The central role of cattering in optics es in reflection refraction an dispersion) can thereafter he understood more intul vely (Chapter 3). Huygen's principle, which is useful and yet so contrived, then takes on a physical ignificance that is far more satisfying Accordingly. several of the original classic derivations (those associated with the propagation of light and its interaction with material interfaces) have been recast, and addiwonal ones have been included as well (c.g., internal retlection as viewed from the perspective of atom cattering, P. 106, Fig. 4.35
With the realization that a picture is indeed worth thousand words, new illustrations have been added to the discussion of geometrical optics (Chapters 5 and 6),
primarily to facilitate a better understanding of ray tracing and image formation. Not surprisingly, the discussion of fiberoptics has been considerably extended to include the remarkable developments of the last decade. The introduction to Fourier methods (Chapter 7) has been strengthened, in part, so that these ideas can be applied more naturaly in the remaining expost tion. Often unduly troublesome, the notion of wave leading and lagging one another is given additional attention as it relates to polarization (Chapter 8). The ramifications of the limited coherence of a typical light source are now examined, if only briefly, during the study of interference (Chapter 9). Using a new set of wavefront diagrams (e.g., Figs. $10.6,10.10,10.19$) the plane-wave Fourier-component representation of inaction (Chapter 10) is unobrusively introduced early on. (Chapter 11) now contains a pictorial representarion that complement the formal matheruatical treatment there are 25 new diagrams in Chapter 11 alone) The intention is to make this marerial increasingly accessible to an ever wider readership. Much of the treatment of coherence theory (Chapter 12) has been reworked and reillustrated to produce a simpler, more accessible version. The discussions of lasers and holography (Chapter 14) have also been appropriately extended and brought up to date.
The natural tendency in a textbook is to isolate the principle ideas, focusing exclusively or each of them in turn: Thus there are the traditional chapters on interference, diffraction, polarization, and so forth. The first
edition more or less followed that approach, white at the same time underscoring conceptual interrelation ships and the unity of the entire subject-after all, optics, like all of physics, is the study of the interaction of matter and energy. This second edition subtly moves a bit further toward a holistic approach. The text now introduces many of the uning. of interference is used aualitatively to understand proparation phenomena (p .63) long before it's studied prmally in Chapter 9 Among other benefits, his tech nique of presenting advanced concepts in simplified form early in the exposition allows the student to develop an integrated perspective.
Responding to requests from users, I have considerably increased the amount of material devoted to the analysis and solution of problems. The book now contains an abundance of problems, roughly twice the number that appeared in the first edition. Moreover, a portion of these are spectically designed to develop needed analytical skills. Because a balance was maintained, with as many "easy" problems added as hard ones, the exer cises should better serve the needs of the student reader This is especially true because, as in the first edition, the complete solutions to many of the problems (those without asterisks) can be found at the back of the book.

Over the years matay prople have been kind enough to share their thoughts about the book with me and I take this opportunity to express my appreciation to them all. In particular I thank Professors R. G. Wilson of Mlinois Wesleyan University, B. Gottschalk of Harvard W. M Becker of Purdue University, R Wilcor of S.UN Y Stony Brook, R. Talaga of the University of Maryland, R. A. Llewellyn of the University of Central Florida, R. Schiller of Stevens Institute of Technology, S.P. Almeida of Virginia Polytechnic Institute and State University. G. Indebetouw of Virginia Polytechnic Institute and State University, and J. Higbie of the University of Queensland. Wherever possible I have incorporated photographs and suggestions by students and encourage their continued participation. Anyone wishing to exchange ideas should write to the author cfo Physics Department, Adelphi University, Garden City, N.Y. 11530
I am especially grateful to Lorraine Ferrier, who oversaw the production of this second edition. She worked long hours, good naturedly bringing to bear a rare combination of skill, patience, and knowledge that made this book physically as fine as it is. Finally, I nod appreciatively to my friend Carolyn Eisen Hecht for going through all this. one more time.

Freeport, New York

Contents

A A Brief History

$\begin{array}{ll}1.1 & \text { Prolegomenon } \\ 1.2 & \text { In the Beginning }\end{array}$
1.3 From the Seventeenth Century
1.4 The Nineteenth Century
1.5 Twentiech-Century Optics

2 The Mathematics of Wave Motion
2.1 One-Dimensional Wave
2.2 Harmonic Waves
2.3 Phase and Phase Velocity
2.4 The Complex Representation
2.5 The Three-Dimensional Differential was Equation
2. Equation
2.7
28
Cyhtindrical Waves
$\begin{array}{ll}\text { 2.8 } & \text { Gylindrical Waves } \\ \text { 2.9 } & \text { Scalar and Vecor Wize }\end{array}$
Problems
3 Electromagnetic Theory, Photons, and Light
3.1 Basic Laws of Electromagnetic Theory
3.2 Electromagnetic Waves
3.3 Energy and Momentum
3.4 Radiatio
3.5 Light and Matter
3.6 The Electromagnetic-Photon Spcctrum

Problems
4 The Propagation of Light
4.1 Introduction
4.2 The Laws of Refection and Refraction
4.9 The Electromagnetic Approach
4.4 The Electromagnetic Approach ... Familiar Aspects of the Interaction of Light and
4.5 The Stokes Treatment of Refection and Refraction
4.6 Photons and the Laws of Reflection and Refraction
Problems
5 Geometrical Optics-Paraxial Theory 12
5.2 Introductory Remarks
5.2 Lenses
5.3 Stops
5.4 Mirrors
$\begin{array}{lll}5.5 & \text { Prisms } \\ 5 & \\ 5.5 & \text { Fiberop }\end{array}$
5.6 Fiberoptics
5.7 Optical Systems

6 More on Geometrical Optics
1 Thick Lenses and Lens Systems
6. 2 Analytical Ray Tracing
6.3 Aberrations

Problems
7 The Superposition of Waves
The Addition of Waves of the Same Frequenc
7.1 The Algebraic Method
7.2 The Complex Method
7.3 Phasor Addition
7.4 Standing Waves

The Addition of Waves of Different Frequency
7.5 Bears
7.6 Group Velocity
7.7 Anharmonic Periodic Waves-Fourier Analysis
7.8 Nonperiodic Waves-Fourier Integrals
7.9 Nula
7.10 Optical Bandwidths

8 Polarization
8 Polarization
8.1 The Natur
8.2 Polatizers
8.3 Dichroism
8. 4 Birefringence
8.5 Scattering and Polarization
8.6 Polarization by Reflection
8.7 Retarders
8.8 Circular Polarizer
8.9 Polarization of Polychromatic Light
8.10 Optical Activity
8.11 Induced Optical Effects-Optical Modulators
8.12 A Mathematical Description of Polarization

Problem
9 Interference
9.1 General Considerations
9.2 Conditions for Interference
9.3 Wavefront-Spliting Interferometers
9.4 Amplitude-Spliting Interferometers
9.5 Types and Localization of Interference Fringes
9.7 Muplications f Single and

8 Appla
. of Interferometry

10 Diffraction
0.1 Preliminary Consideration
10.2 Fraunhofer Diffraction
10.3 Fresnel Diffraction
10.4 Kirchhoff's Scalar Diffraction Theory
0.5 Boundary Diffraction Waves

Problems
11 Fourier Optic11.1 Introduction472
472

$$
1.2 \text { Fouricr Transforms }
$$

Optical Applications 472
483
11.3 Optical Applications
Problems12 Basics of Coherence Theory
516
12.1 Introduction519
5192.2 Visibility12.3 The Mutual Coherence Theory and the529
Degree of Coherence 530
Problems

13 Some Aspects of the Quantum Nature ofLight1 Quantum Fields538
3.2 Blackbody Radiation-Planck's QuantumHypothesis .The Photoelectric Effect-Einstein's Photon
\qquad
4 Particles and Wave
19.5 Probability and Wave Optic
19.6 Fermat, Feynman, and Photon
hotons . .
Problems ... Emission, and Scattering

14 Sundry Topics from Contemporary Optics
Sundy
Imagery-The Spatial Distribution of Optical
Information
Lasers and Laserlight
14.3 Holography
14.4 Nonlinear Optics

Problems
roblems 610

Appendix 1
Appendix
$\begin{array}{ll}\text { Table } 1 & 624 \\ \text { Solutions to Selected Problems } & 629\end{array}$
623
6
Bibliography $\quad 629$
Bibliography
Index of Table
Index

OPTICS

Second Edition

1. PROLEGOMENON

In chapters to come we will evolve a formal treatment. of much of the science of optics with particular emphasis on aspects of contemporary interest. The subject embraces a vast body of knowledge accumuiated over roughly three thousand years of the human scene. Betore embarking on a study of the modern view of things optical, let's briefly trace the road that led us there, if for no other reason than to put it all in per${ }^{5}$ spective.
The complete story has myriad subplots and characters, heroes, quasi-heroes, and an occasional villain or two. Yet from our vantage in time, we can sift out of
 quantum theories of light.
1.2 INTHE BEGINNING

The origins of optical technology date back to remote antiquity. Exodus $38: 8$ (ca. 1200 b.C.) recounts how Bezalect, while preparing the ark and tabernacle, recast "the looking-glasses of the women" into a brass laver (a ceremonial basin). Early mirrors were made of polished copper, bronze, and later on of speculum, a copper alloy rich in tin. Specimens have survived from ancient Egypt-a mirror in perfect condition was, unearthed along with some tools from the workers'
quarters near the pyramid of Sesostris 1 I (ca. 1900 b.c.) in the Nile valley. The Greek philosophers Pythagoras, Democritus, Empedocles, Plato, A ristotle, and others evolved several theories of the nature of light (that of the last named being quite similar to the aether theory of the nineteenth century). The rectilinear propagation of light was known, as was the law of reffection enunciated by Euchid (300 b.C.) in his book Catoptrics. Hero of Alexandria attempted to explain both these phenomena by asserting that light traverses the shortest allowed path between two points. The burning glass (a positive lens) was alluded to by Aristophanes in his comic play The Clouds ($424 \mathrm{~B} . \mathrm{C}$). The apparent bending of objects partly immersed in water is mentioned in Plato's Republic. Refraction was studied by Cleomedes (50 A.D.) and tabulated fairly precise measurcments of the angtes of tabulated fairly precise measurements of the angles of from the accounts of the historian Pliny ($23-79$ A.D.) that the Romans also possessed burning glasses. Several glass and crystal spheres, which were probably used to glass and crystal spheres, which were probably used to
start fires, have been found among Roman ruins, and a planar convex lens was recovered in Pompeii. The Roman philosopher Seneca (3 в.c.- 65 A.D.) pointed out that a glass globe filled with water could be used for magnifying purposes. And it is certainly possible that some Roman artisans may have used magnifying glasses to facilitate very fine detailed work
After the fall of the Western Roman Empire (475 A.D.), which roughly marks the start of the Dark

Ages, little or no scientific progress was made in Europe for a great while. The dominance of the Greco-Roman Christian culture in the lands embracing the Mediterranean soon gave way by conquest to the rule of Allah. Alexandria fell to the Moslems in 642 A.D., and by the end of the seventh century, the lands of Islam extended from Persia across the southern coast of the Medizer ranean to Spain. The center of scholarship shifted to the Arab world, where the scientific and philosophical treasures of the past were iranslated and preserved did, optics was extended at the hands of Allazen (ca 1000 A.D.). He elaborated on the law of reflection, put ting the angles of incidence and reflection in the same plane normal to the interface; he studied spherical and parabolic mirrors and gave a detailed description of the human eye.
by the latter part of the thirseenth century, Europe was only beginning to rouse from its intellectual stupor Alhazen's work was translated into Latin, and it had a great effect on the writugs of Robert Grosseteste (11751253), Bishop of Lincoln, and on the Polish mathematician Vitello (or Witelo), both of whom were influential in rekindling the study of optics. Their work were known to the Franciscan Roger Bacon (12151294), who is considered by many to be the first scientist in the modern sense. He seems to have initiated the idea of using lenses for correcting vision and even telescope. Bacon also had combining lenses to form a way in which rays traverse a lens, Afrer his death of the again languished. Fyen so by the mid 1300 s, European paintings were depicting monks w-1300s, European And alchemists had come up wish a liquid amalgam of in and maercury that was rubbed onto the back of glass plates to make mirrors, Leonardo da Vinci (1452-1519) described the camera obscurr, later popularized by the work of Giovanni Battista Della Porta (1535-1615), who discussed multiple mirrors and combinations of positive and negative lenses in his Magia naluralis (1589). This, for the most part, modest array of events constitutes what might be called the first period of optics. It was undoubtedly a beginning - but on the whole a tull one. It was more a time for learning how to play the game than actually scoring points. The whirlwind
of accomplishment and excitement was to come later, in the seventeenth century.

1.3 FROM THE SEVENTEENTH CENTURY

It is not clear who actually invented the refracting telescope, but records in the archives at The Hague show that on Oetober 2, 1608, Hans Lippershey (1587 1619), a Dutch spectacle maker, applied for a patent on the device. Galileo Galilei (1564-1642), in Padua, beard about the invention and within several month hand. The compound microscope was invenced at just about the same time possibly by the Dutch Zacharias Janssen (1588-1639) The microscope's con Cave eyepiece was replaced with a convex lens by Francisco Fontana (1580-1656) of Naples, and a simila change in the telescope was introduced by Johannes Kepler (1571-1630). In 1611, Kepler published his Dioptrice. He had discovered total internal reflectio and arrived at the small angle approximation to the law of refraction, in which case the incident and trans

Figure 1.1 Johannes Kepler (1571-1630).
mission angles are proportional. He evolved a treatment of first-order optics for thin-lens systems and in his book describes the detailed operation of both the Keplerian (positive eyepiece) and Galilean (negative eyepiece) telescopes. Willebrord Snell (1591-1626), professor at Leyden, empirically discovered the long-hidden law of refraction in 1621-this was one of the great moments in optics. By learning precisely how rays of light are redirected on traversing a boundary between two media, Snell in one swoop swung open the doot to the first to publish the now familiar formulation of the law of refraction in terms of sines. Descartes deduced the law using a model in which light was viewed as a pressure transmitted by an elastic medium; as he put it in his La Dioptrigue (1697)
... recall the natnre that I have attributed to light, when 1 said that it is nothing other than a certain motion or an action conceived in a very subtle matter, which fills the pores of all other bodies.

The universe was a plenum. Pierre de Ferrnat (16011665), taking exception to Descartes's assumptions, ederived the law of reffection from his own principle ofleast time (1657). Departing from Hero's shortest-path statement, Fermat maintained that light propagates from one point to another along the route taking the least time, even if it has to vary from the shortest actual path to do it
The phenomenon of diffraction, i.e., the deviation rom rectilinear propagation that occurs when light Professor Francesco Maria Crimaldi (1618-1663) at by Jesuit College in Pologna. He had observed bands of light with in the shadow of a rod illuminated by a small source. Robert Hooke (1635-1703), curator of experiments for the Royal Society, London, later also observed diffraction effects. He was the first to study the colored interference patterns generated by thin films (Micro graphia, 1665) and correctly concluded that they were due to an interaction between the light reflected from the front and back surfaces. He proposed the idea that light was a rapid vibratory motion of the medium propagaing at a very great speed. Moreover every pulse or vibration of the luminous body will generate a

Figure 1.2 René Descartes (1596-1650)
sphere -chis was the beginning of the wave theory Within a year of Galleo's dean, Isaac Newo (IG is cler from his is clar hor his description of his work in opti ditect observation and Iuoid speculave hyputh on Thus he remained ambivalent for a long while abou the actual nature of lighs Was is corpuscular - stream of particles, as some maintained? Or was light a wave in an all-pervading medium, the aether? At the age of 23 , he began his now famous experiments on dispersion

I procured me a trjangular glass prism to try therewith the celebrated phenomena of colours.

Newton concluded that white light was composed of a mixture of a whole range of independent colors. He maintained that the corpuscles of light associated with the various colors excited the aether into characteristic

4
Chapter 1 A Brief History

Figure 1.3 Sir Isaac Newtun (If42-1727).
vibrations. Furthermore, the sensation of red corresponded to the longest vibration of the aether, and vioiet to the shortest, Even though his work shows curious propensity for simultaneously embracing both the wave and emission (corpuscular) theories, he did becorne more comminted to the latter as he grew older. Perthips his main reason for rejecting the wave theory as it stood then was the blatant prohlem of explaining rectilinear propagation in terms of waves that spread out in all directions.
After some all-too-limited experiments, Newton gave up trying to remove chromatic aberration from refractcould not be done, he turreded to the design of reflectors. Sir Isaacs first refiecting telescope, completed in 1668 was only 6 inches long and 1 inch in dianeter, magrified some 90 times.
At about the same time
that Sir Isaac was emphasizing a 160 , Cheory in Eagland, Christiaan Huygens (629-1695), on the continent, was greatly extending the wave theory. Unlike Descartes, Hooke, and Newton,

Huygens correctly concluded that light effectively lowed down on entering more dense media. He was even explained the double refration refraccion and his wave theory. And it was while working with alaite that he discovered the phenomenon of polaizo
As there are two different refractions, I conccived also that there are two different emanations of the waves of light,..
Thus light was either a stream of particles or a rapid undulation of aethereai matter. In any case, it was

Figure 1.4 Christiaän Huygens (1629-1 695).
generally agreed that its speed of propagation was exceedingly large. Indeed, many believed that light propagated instantancously, a notion that went back at least as far as Aristotle. The fact thar it was finte was 1710). Jupiter's nearest moon, bo, has an orthit about that planet that is nearly in the planc of Jupiter's own orbit around the Sun. Hömer made a caretul study of the eclipses of Io as it moved through the shadow hehind Jupiter. In 1676 he predicted that on November 9th 10 would emerge from the dark some 10 minutes !ater than would have been expected on the basis of its yearly a weraged motion. Precisely on schedule, Io performed as predicted, a phenomenon Römer correctly explained as arising from the finite speed of light. He was able to determine that light took about 22 minutes to traverse the diameter of the Earth's Orbit acound the Sundistance of about 186 million miles. Huygens and Newton, among others, were quite convinced of the validity of Römer's work. Independently estimating the Earth's orbital diameter, they assigned values to c equivalent to $2.3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $2.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$, respec-
tively. Still orhers, especially Hooke, remained skeptical tively. Still others, especially Hooke, remained skeptical, arguing that any speed so incredibly high actually had to be infinite.*
The great weight of Newton's opinion hung like a shroud over the wave theory during the eighteenth
century, all but stifling its advocates. There were coo many content with dogma and too few nonconformist enough to follow their own experimental philosophy, as surely Newton would have had them do. Despite this the prominent mathematician Leonhard Eulet (17071783) was a deyotee of the wave theory, even if an unheeded one. Euler proposed that the undesirable coior effects seen in a lens were absent in the cye (which is an erroneous assumption) because the difterent media present negated dispersion. He suggested that achromatic lenses might be constructed in a similar way Enthused by this work, Sarruel Klingenstjerna (16981765), a professor at Upsala, reperformed Newton's experiments on achromatism and determined them to be in error. Klingenstjerra was in communication with
*A. Wroblewski, Am, J. Ph, 53 (7), July 1985, p. 620
a London optician, John Dollond (1706-1761), who was observing similar results. Dollond finally, in 1758, com bined twn elements, one of crown and the oher of fint giass, to form a singe achromat practical impertance Incidentally, Dollond's invention was actually preceded by the unpublished work of the amateur scientist Chester Moor Hall (1703-1771) of Moor Hall in Essex

1.4 THE Nineteenth Century

The wave theory of light was reborn at the hands of Dr. Thomas young (1773-1829), one of the truly great minds of the century. On November 12. 1801, July 1 1802 , and Noyember 24, 1803, he read papers before the Royal Society extolling the wave theory and adding to it a new fundamental concept, the so-called principle of interference:
When two undulations, from diflerent origins, coincide
cither perfectly or very neally in direction, their foin effect is a combination of the motions belonging to each.
He was able to explain the colored fringes of thin films and determined wavelengths of various colors usin Newton's data. Even though Young, time and again, intained that his conceptions had their very oripin in the research of Newton, he was severely attacked. In series of aricles, probably written by Lord Brougham, in the Edinturgh Revieu, Young's papers were said to be "destitute of every species of merit"--and that's going pretty far. Under the pall of Newton's presumed infallibility, the pedants of England were not prepared for the wisdom of Young, who in turn became disheartened.
Augustin Jean Fresnel (1788-1827), born in Broglie, Normandy, began his briliant revival of the wave theory in France. unaware of the efforts of Young some is years earlier. Fresnel synthesized the concepts of Huygens's wave description and the interference prin ciple. The mode of propagation of a primary wave was viewed as a succession of stimulated sphericatsecondaty the advacion primary wave as it would appear an the advancing primary wave as it would appear an instant later. In Fresnel's words:

6 Chapter I A Brief History

The vibrations of a luminous wave in any one of it points may be considered as the sum of the elementary movements convcyed to it at the sam mons for ted wave considered in any pone of its anterior position

These waves were presumed to be longitudinal in analogy with sound waves in air. Dominique Francois Jean Arago (1786-1858) was an early convert to Fresnel's wave theory, and they became fast friends and sometime collaborators. Under criticism from such renowned men and proponents of the emission Jean-Baptiste on a mathematical emphasis He was able tory took the diffraction patterns aring from various absate and apertures and satisfactorily accounced obstacles tilinear propagation in homogeneous isotropic media thus dispelling Newton's main objection to the undula tory theory. When finally apprised of Yourg's priority

Figure 1.5 Augutin Jean Fresnel (1788-1827).
the interference principle, a somewhat disappointed resnel nonetheless wote to Young telling him that he was consoled by finding himself in such good com pany-the two great men became allies
Huygens was aware of the phenomenon of polarizhe later in his Orich stated, as Newton. Indeed,居
Every Ray of Light has therefoxe two opposite Sides. .
He further developed this concept of lateral asymmetry even though avoiding any interpretation in terms of the hypothetical nature of light. Yet it was not untio 1808 that Étienne Louis Malus (1775-1812) discovere that this two-sidedness of light became apparent upon eflection as well; it was not inherent to erysualine media. Fresnel and Arago then conducted a series of experiments to determine the effect of polarization o interference, but the results were utterly inexplicable within the framework of their longitudinal wave pic ture-this was a dark hour indeed. For several year Young, Arago, and Fresnel wrestled with the problen until finally Young suggested that the aethereal vibraon might be transuerse as is a wave on a string. The wo-sidedness of light was then simply a manifestation of the two orthogonal vibrations of the aether, transverse to the ray direction. Fresnel went on to evolve a to his now famous formulas for the amplitude of reflec ted and transmitted light. By 1825 the errission (o corpuscular) theory had only a few tenacious advocates The first terrestrial determination of the speed of light was performed by Armand Hippolyte Louis Fizean (1819-1896) in 1849. His apparatus, consisting of a rotating toothed wheel and a distant mirror (8633 m) was set up in the suburbs of Paris from Sureanes to Montunartre. A pulse of light leaving an opening in the wheel struck the mirror and returned. By adjusting the known rotational speed of the wheel, the returning pulse could be made either to pass through an openin and be seen or to be obstructed by a tooth. Fizea arrived at a value of the speed of light equal to $315,300 \mathrm{~km} / \mathrm{s}$. His colleague Jean Bernard Léon Foucault (1819-1868) was also involved in research on the speed of light. In 1834 Charles Wheatstone (1802-
1875) had designed a rotating 1875) had designed a rotating-rnirror arrangement in
order to measure the duration of an electric spark Using this scheme, Arago had proposed to mcasure the speed of light in dense media but was never able to carry out the experiment. Foucault took up the work, which was later to provide material for his doctoral thesis. On May 6,1850 , he repotted to the Academy of sat in air This result was, of course, in direct confict th Newton's formulation of the emission theory a hard blow to its few remaining devotees While all of this was happening in independently, the study of eleccricity and maznetism adependenty, he study of elecricty and mannetism talist Michael Faraday (1791-1867) established an interrelationship between electromagnetism and light when he found that the polarization direction of a beam could be altered by a strong magnetic field applied to the medium. James Clerk Maxwell (1831-1879) brilliantly summarized and extended all the empirical knowledge on the subject in a single set of mathematical equations. Beginning with this remarkably succinct and beautifully symmetrical synthesis, he was able to show, purely theoretically, that the electromagnetic field could propagate as a transverse wave in the luminiferous aether. Solving for the speed of the wave, he arrived at expression in terms of electric and Upon substituting known empirically determined values for these quantities, he obrained a numerical result equal to the measured speed of light! The conclusion was inescapable-light was "an electromagnelic disturbance in the form of waves" propargated through the aether. Maxwell died at the age of 48 , eight years too soon to see the experimental confirmation of his insights and far too soon for physics. Heinrich Rudolf Hertz (1857-1894) verified the existence of long electromagnetic waves by generating and detecting them in an extensive series of experiments published in 1888. The acceptance of the wave theory of light seemed o necessitate an equal acceptance of the existence of an all-pervading substratum, the luminiferous aether. If there were waves. it seemed obvious that there must be a supporting medium. Quite naturally, a great deal nature of the aer wern in detrining the physical
r. 4 The Nineteenth Century

Figure 1.6 James Clerk Maxwcll (1831-1879).
rather strange properties. It had to be so tenuous as to allow an apparently animpeded motion of celestial bodies. At the same time it could support the exceed ingly high-frequency ($\sim 10^{15} \mathrm{~Hz}$) oscillations of ligh traveling at 186,000 miles $/ \mathrm{s}$. That implied remarkably The speed at which a is dependent upon the characteristics of the disturbed substratum and not upon any motion of the source This is in contrast to the behavior of a stream of particle whose speed with respect to the source is the essential parameter
Certain aspocts of the nature of aether intrude when studying the optics of moving objects, and it was thi area of research, evolving quietly on its own, that ultimately led to the next great turning point. In 1725 James Bradley (1693-1762), then Savilian Professor of

Astronomy at Oxford, attempted to measure the dis tance to a star by observing its orientation at two changed as it orbited around the Sunand there barn vided a large base line for trimgulation on the star To his surprise, Bradley found that the "fixed" stars dis played an apparent systematic moverent related to th direction of motion of the Earth in orbit and not depen dent, as had been anticipated. on the Earth's position in space. This so-called stellar aberration is analogous to the well-known falling-raindrop situation. A raindrop although traveling vertically with respect to an observe at rest on the Earth, will appear to change its inciden angle when the observer is in motion. Thus a corpus cular model of light could explain stellar aberration rather handily. Alternatively, the wave theory also offer a satisfactory explanation provided that it is assumed that the aether remains totally undisturbed as the Earth plow through it. Incidentally. Bradley, convinced of the cor rectness of his analysis, used the observed aberration data to arrive at an improved value of c, thus confirmin Römer's theory of the finite speed of lighe
otion through the aether might result in an Earth difference between light from terrestrial abd extrater restrial sources, Arago set our to examine the problem experimentally. He found that there were no observable differences. Light behaved just as if the Earth were at rest with respect to the aether. To explain these results, Fresnel suggested in effect that light was partially dragged along as it traversed a transparent medium in motion. Experiments by Fizeau, in which light beams passed down moving columns of water, and by ${ }^{-}$Si George Biddell Airy (8 -189), who used a water filled telescope in 1871 to examine stellar aberration both seemed to confirm Fresnel's drag hypothesis Assuming an aether at absolute rest, Hendrik Antoon Lorentz (1853-1928) derived a theory that encompassed Fresnel's ideas.

In an U.S. Nautica Almanac Office, Maxwell suggested a scheme for with respect to the luminiferous sother system moved physicist Albert Abraham Michelson (1852-1991) the a naval instructor, took up the idea. Michelson, at the
tender age of 26, had already established a favorable teputation by performing an extremely precise determination of the speed of light. A few years later, he egn experiment measurethe effect of the Earth's ather is constant and the Eart, he speed of light in noves in relation to the aether (orbital speed of 67,000 miles $/ \mathrm{h}$), the speed of light measured with respect to the Earth should be affected hy the planet's motion Michelson's work was begur in Berlin, but because of Mraffic vibrations, it was moved to Potsdam, and in 1881 he published his findings. There was no detectable motion of the Earth with respect to the acther-the aether was stationary. But the decisiveness of this surprising result was blunted somewhat when Lorentz pointed out an oversight in the calculation. Several years ater Michelson, then professor of physics at Case School of Applied Science in Cleveland, Ohio, joined with Edward Williams Morely (1838-1923), a well-known professor of chemistry at Western Reserve, to redo the experiment with considerably greater precision. Amazingly enough, their results, published in 1887. once again were negative:
${ }^{11}$ appeass from all that precedes reasonably certain that if there be any relative motion between the earth and he luminiferous aether, it must be small; quite small enough entircly to refute Fresnel's explanation of aberration.
Thus, whereas an explanation of sellar aberration within the context of the wave theory required the existence of a relative motion between Earth and aether, he Michelson-Morley experiment refuted that possibility. Moreover, the findings of Fizeau and Airy necessiated the inclusion of a partial drag of light due to motion of the medium.

. 5 TWENTIETH-CENTURY OPTICS

Jules Henri Poincaré (1854-1912) was perhaps the first to grasp the significance of the experimental inability obser any ertion cotive to the aethe he said:

Our aether does it really exist? I do not believe that Our aether, does it really exist? Io not believe that more precisc obscrvations could
n 1905 Albert Einstein (1879-1955) introduced his pecial theory of relativily, in which he too, quite independently, rejected the aether hypothesis.

The introduction of a "luminiferous acther" will prove to be superfluous inasmuch as the view here to be developed will not require an "absolutely stationary space."
He further postulated:
light is always propagated in empty space with a de finite velocity c which is independent of the state of motion of the emiuing body.

Figure 1.7 Albert Einscein (1879-1955). (Photo by Fred Stein.)

The experiments of Fizeau, Airy, and MichelsonMorley were then explained quite naturally within the framework of Einstein's relatisic kinematics. Deprived of the aether. physicists simply had to ge gate throu ide free space- there was no alternative igh was now envisaged as a self sustaining wave with th conceptual emphasis passing from aether to field. The electromagnetic wave became an entity in itself.
On October 19 1900, Max Karl Ennst Ludwig Planck (1858-1947) read a paper before the German Physical Society in which he introduced the beginnings of what was to become yet another great revolution in scientific thought-quantum mechanics, a theory embracing submicroscopic phenomena. In 1905, building on thes ideas, Einstein proposed a new form of corpuscula theory in which he asserted hat hight consisted of glot or "particles" of energy. Each such quantum of radian energy or photon, \dagger as it came to be called, had an energy proportional to its frequency ν, i.e., $\mathscr{E}=h \nu$, where h is known as Planck's constant. By the end of the 1920 s, through the efforts of Bohr. Born, Heisenberg Schrödinger, De Broglie, Pauli. Dirac. and others, quantum mechanics had become a wel-veriked theory. It and wave, which in the macroscopic world seem so obviously mutually exclusive must be merged in the submicroscopic domain. The mental image of an atomi particle (e.g., electrons and neutrons) as a minute local ized lump of matter would no longer suffice. Indeed it was found that these "particles" could generate inter ference and diffraction patterns in precisely the same way as would light. Thus photons, protons, electrons, neutrons. and so forth-the whole lot-have both par ticle and wave manifestations. Still, the matter was by no means settled. "Every physicist thinks that he know what a photon is, wrote Einstein. I spent my life to find out what a photon is and I still don't know it. Relativity liberated light from the aether and showed the kinship between mass and energy (via $\mathscr{E}=m c^{2}$).

* See, for example, Speriat Relativity by French. Chapter 5 .
\dagger The word photon was coined by G. N. Lewis, Nature, Decermber 18 ,

1996.

What seerned to be two almost antithetical quantities now became interchangeable. Quantum mechanics went on to establish that a particle* of momentum p had an associated wavelength λ, such that $p, h / \lambda$ whether it had rest mass or not). The neutrmo, neutral particle presumably having zero rest mass, wa postulated for theoretical reasons in 1930 by Woltgang Pauli (1900-1958) and verified experimentally in the 1950)s. The easy images of submicroscopic specks of matter became untenable, and the wave-particle dichotomy dissolved into a duality
Quantum mechanics also treats the manner in which light is absorbed and emitted by atoms. Suppose we cause a gas to glow by heating it or passing an electrical discharge throughit. The lig itemict is chan the spectroscopy which the branch coptics dealing with spectrum analysis developed from the research of spectrum analysis. developed from William Hyde Wollaston ($1766-1828$) made the earliest observations of the dark lines in the solar spectrum (1802). Because of the slit-shaped aperture spectrum (1802). Because of the slit-shaped aperture
generally used in spactroscopes, the output consisted generally used in spectroscopes, the output consisted
of narrow colored bands of light, the so-called spectral lines. Working independently, Joseph Fraunhofer (1787-1826) greatly extended the subject. After accidentally discovering the double line of sodium, he went on to study sunlight and made the first wavelengt determinations using diffraction gratings, Gusta Robert Kirchhoff (1824-1887) and Robert Wilhelm Bunsen (1811-1899), working conjointly at Heidelberg. established that each kind of atom had its own signature in a characteristic array of spectral lines. And in 1913 Nicls Henrik David Bohr (1885-1962) set forth a prewas nonetheless able to predict the wavelengths of its was nonetheless abe ho prede he belom is now understood to arise from its outermost electrons, An tom that somehow absorbs energy (c a through collisions) changes from its usual configuration known as the ground state, to what's called an excited state. After some finite time, it relaxes back to the ground state. the electrons returning to their original configuration with respect to the nucleus, giving up the excess energy often

* Perhaps it might help if ne just called them all ear ricides.
in the form of light. The process is the domain of modern quantum theory, which describes the most minute details with incredible precision and beauty. The flourishing of applied optics in the second half of the twentieth century represents a renaissance in itself. In the 1950s several workers began to inculcate optics with the mathematical techniques and insights of communications theory. Just as the idea of momentum provides another dimension in which to visualize aspects of mechanics, the concept of spatial frequency offers a rich new way of appreciating a broad range of optical phenomeoa. Bound together by the mathematical formalism or Fourier analysis, the outgrowths of this concular interest are the theory of inage forman and evaluation, the transfer functions, and the idea of aptal filtering. filtering
The advent of the high-speed digital computer complex with it a vast improvement in the design of complex optical systems. Aspherical lens elements took limited system with a reality. The technique of ion bombardment polishing. in which one atom at a time is chipped away, was introduced to meet the need for extreme precision in the preparation of optical elements. The use of single and multilayer thin-film coatings (refecting, antireflecting, etc.) became commonplace. Fiberoptics evolved into a practical tool, and thin-film light guides were studied. A great deal of attention was paid to the infrared end of the spectrum (surveillance systems, missile guidance, etc.), and this in turn stimulated the development of infrared materials. Plastics began to be used in optics (lens elements, replica gratings, fibers. ceramics with exceedingly low thermal expansion was developed. A resurgence in the construction of astronomical observatorics (both terrestrial and extraterrestrial) operating across the whole spectrum was well under way by the end of the 1960s and vigorously sustained in the 1980s.
The first laser was built in 1960, and within a decade laser beams spanned the range from infrared to ultraviolet. The ayailability of high-power coherent sources led to the discovery of a number of new optical effects

(harmonic generation, frequency mixing, etc.) and thence to a panorama of marvelous new devices. The technology needed to produce a practicable optical commumications systern was evolving fast. The sophisticated use of crystals in devices such as second-harmonic generators, electro-optic and acousto-optic modulators, and he like spurred geat deal of contemporary research nique known. nificent three-dimensional inates, was found to have numerous additional applications (nondestruction test ing. data storage etc) The military orienta
mental work in the 1960s continued of the developthe 1980 s with added vigor. That technological interest in optics ranges across the spectrum from "smart bombs" and spy satellites to "death rays" and infrared gadgets that see in the dark. But economic coosiderations coupled with the need to improve the quality of life have brought products of the discipline into the consumer marketplace as never before. Today lasers
are in use everywhere: reading videodiscs in living rooms, cutting steel in factories, setting type in news papers, scanning labels in supermarkets, and performing surgery in hospitals. Millions of optical display systems on clocks and calculators and computers are blink ing all around the world. The almost exclusive use, for the last one hundred years, of electrical signals to handle and transmit data is now rapidly giving way to more
efficient optical techniques. A far-reaching revolution efficient optical techniques. A far-reaching revolution in the methods of processing and communucating infor change our lives immensely in the years ahead whl Profound insigh are sow in what
Profound insights are shw in coning. What tew we though the pace is ever quickening. It is marvelous indeed to watch the answer subtly change while the question immutably remains- what is lighe?
* For more reading on the history of optics, see \mathbf{F}. Cajoti, A Histor
 Book in Physics, and in M. H. Shamos, Great Experimenss in Physics.

2
 THE MATHEMATICS OF WAVE MOTION

Abstract

T here are a great many, seemingly unrelated, physical processes that can be described in terms of the mathematics of wave motion. In this respect there are undamental similarities among a pulse traveling along surethed string (Fig. 2.1), a surface tension ripple in point in the universe. This chapter will develop some of the mathematical techniques needed to treat wave phenomena in general. We will begin with some fairly simple ideas concerning the propagation of disturbances and from these arrive at the three-dimensional differential wave equation. Throughout the study of optics one utilizes plane, spherical, and cylindrical waves. Accordingly, we'll develop their mathermatical waves. Accordingly, we'll develop their mathernatical representations, showing them to be solutions of the differential wave equation. This chapter will be a comalthough we will not do so, that our results do indeed obey the requirements of special relativity.

2.1 ONE-DIMENSIONAL WAVES

The essential aspect of a propagating wave is that it is a self-sustaining disturbance of the medium through which it travels. Envision some such disturbance ψ moving in the positive x-direction with a constant speed v. The specific nature of the disturbance is at the moment unimportant. It might be the vertical displacement of the string in Fig. 2.1 or the magnitude of an electric or magnetic field associated with an electromagnetic wave
(or even the quantum-mechanical probability amplitude of a matter wave)

Since the disturbance is moving, it must be a function of both position and time and can therefore be written

Figure 2.1 A wave on a string

The shape of the disturbance at any instant, say $t=0$ can be foul
$\left.\psi(x, t)\right|_{i=0}-f(x, 0)-f(x)$
(2.2)
represents the shape or profile of the wave at that time For example, if $f(x)=e^{-a x^{2}}$, where a is a constant, the profile has the shape of a bell, i.e., it is a Gaussian unctiou. The process is analogous to taking a "photograph" of the pulse as it travels by. For the moment we will limit ourselves to a wave that does nor change its shape as it progresses through space. Figure 2.2 is a "double and ond a time inerval The puse has te x awis a distance th but in all other respects mains unaltered we now introduce a coordinate sy em S^{\prime}, which travels along with the pulse at the speed ψ. In this system ψ is no longer a function of time, and as we move along with S^{\prime} we see a stationary constant profile with the same functional form as Eq. (2-2). Here, the coordinate is x^{\prime} rather than x, so that

$$
\psi=f\left(x^{\prime}\right) .
$$

(2.3)

The disturbance looks the same at any value of f in S as it did at $t-0$ in S when S and S^{\prime} had a common origin. It follows from Fig. 2.2 that

$$
x^{\prime}=x-y t,
$$

so that ψ can be written in terms of the variables associ-

gure 2.2 Moving reference frame.
ated with the stationary S system as
$\psi(x, t)-f(x-v t)$.
(2.5)

This then represents the most general form of the one-dimensional wave function. To be more specific, we have only to choose a shape (2.2) and then stubstitute $(x$ ve) for x in $f(x)$. The resulting expression describes a noving wave having the desired profile. Thus, $\psi(x, t)=$ -a, x - is a bell-shaped wave traveling in the positive x-direction with a speed v. If we check the form of Eq . 2.5) by exarning ψ after an inctin corresponding increase of $v \Delta l$ in w_{s} we find

$$
f[(x+v \Delta t)-v(t+\Delta t)]=f(x-v t)
$$

and the profile is unaltered
Similarly, if the wave were traveling in the negative x-direction, i.e., to the left, Eq. (2.5) would become

$$
\psi=f(x-v t), \text { with } \quad v>0 .
$$

We may conclude therefore that, regardless of the shape of the disturbance, the variables x and t must appear in the function as a unit, i.e., as a single variable in the form ($x \neq v t$). Equation (2.5) is often expressed equivalently as some function of $(t-x / v)$, since

$$
f(x-v t)=F\left(-\frac{x-v t}{v}\right)=F\left(\begin{array}{ll}
t \quad x / v
\end{array}\right) . \quad(2.7)
$$

Incidentally, the pulse shown in Fig. 2.I and the disturbance described by Eq. (2.5) are spoken of as one-dimensional because the waves sweep over points ying on a line-it takes only one space variable to specify them. Don't be confused by the fact that in this pardimencion In contrat, a wo-dimensional wave propames out arose a surfac, like the ripplas a pond and can be described by two space variables
We wish to use the information derived
We wish to use the information derived so far to differential wave equation. To that end, take the partial derivative of $\psi(x, t)$ with respect to x holding t constant. Using $x^{\prime}=x \quad v l$, we have

$$
\frac{\partial \psi}{\partial x}=\frac{\partial f}{\partial x^{\prime}} \frac{\partial x^{\prime}}{\partial x}=\frac{\partial f}{\partial x^{\prime \prime}}, \text { since } \frac{\partial x^{\prime}}{\partial x}=1 .
$$

If we hold x constant, the partial derivative with respect
co time is

$$
\frac{\partial \psi}{\partial t}=\frac{\partial f}{\partial x^{\prime}} \frac{\partial x^{\prime}}{\partial l}=\mp v \frac{\partial f}{\partial x^{\prime}}
$$

Combining Eqs. (2.8) and (2.9) yields

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=\mp u \frac{\partial \psi}{\partial x} \tag{2,10}
\end{equation*}
$$

This says that the rate of change of ψ with t and with x are equal, to within a multiplicative constant, as shown rg. 2.3. Knowf berow he hat and order wave equation. The second partial derivatives of Eqs. (2.8) and (2.9) yield

$$
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{d^{2} f}{\partial x^{\prime 2}}
$$

and

$$
\frac{\bar{c}^{2} \psi}{\partial t^{2}}=\frac{\partial}{\partial t}\left(\mp v \frac{\partial f}{\partial x^{\prime}}\right)=\mp v \frac{\partial}{\partial x^{\prime}}\left(\frac{\partial f}{\partial t}\right) .
$$

Figure 2.3 Variation of ψ with x and .

Since
$\frac{\partial \psi}{\partial t}=\frac{\partial f}{\partial t^{\prime}}$
it follows, using Eq. (2.9), that

$$
\frac{\partial^{2} \psi}{\partial t^{2}}=v^{2} \frac{\partial^{2} j}{\partial x^{\prime 2}}
$$

Combining these equations, we obtain

$$
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} .
$$

which is the one-dimensional differential wave equation. It is apparent from the form of Eq. (?.11) separate solutions, then ($\psi_{1}+\psi_{0}$) is andso a solution.* separate solutions, then ($\psi_{1}+\psi_{2}$ is aso a sonerding satisfied by a wave function having the form

$$
\psi=C_{1} f(x-T t)+C_{2} g(x+v t),
$$

(2.12)
where C_{1} and C_{0} are constants and the functions are twice differentiable. This is clearly a surn of two waves traveling in opposite directions along the x-axis with the same velocity but not necessarily the same profile. The superposition principle is in herent in this equation, and we will conne back to it in Chapter ?
We began with a special case, an important ane to be sure, hut a special case nonetheless-most waves do not propagate wirh a constant profile. Still, that simple assumption has led us to the central formulation, the differential wave equation. If a function is a solution of that equation, it represents a waye. As we've seen, it will at the same tirre be a - -sp. respect to both x and t.

Adding these, we get
 so that ($\psi_{1}+\phi_{2}$) is a also a soiution of E_{4} (2.11)

Figute 2.4 An ultrashort pulse of green ilght foom a neodymium ped glass laser. The pulse passed through a water cel: whase wal puise moved about 9.2 man. (Phow courtesy Bell Laboratories.)

22 HARMONIC WAVES

Let's now examine the simplest wave form for which the profile is a sine or cosine curve. Thesc are variously the profle is a sine or cosine curve. Thesc are variously known as sinusoidal waves, simple harmonic waves, of
more succinctly as harmonic waves. We shall see in more succinctly as harmonic waves. We shail see in
Chapier 7 that any wave shape can be synthesized by a superposition of harmonic waves, and they therefore take on a special signifitance
Choose as the profile the simple function

$$
\begin{equation*}
\dot{\psi}(x, t))_{1=0}=\psi(x)=A \sin k x-f(x), \tag{2.13}
\end{equation*}
$$

where k is a positive constant known as the propagation number. It's necessary to introduce the constant simply because we cannot take the sine of a quantity that has physical units. Accordingly, $k x$ is property in radians. The sine varies from +1 to -1 so that the maximuma value of $\psi(x)$ is A. This maximum distur Totransform as the amplitude of the wave (Fig. 2.5) Totranstorm Eq. (2.18) into a progressive zunve traveling
replace x by $(x-v)$, in which case
$\psi(x, t)-A \sin k(x-v t)=f(x-v t) . \quad(2,1 t)$
This is clearly (see Problem 2.8) a solution of the This is clearly (see Problem 2.8) a solution of the differential wave equation (2.11). Holding either z or periodic in hoth space and time. The spatiml period is enown is be pace and is The sphal per shom in Fig. 2.5. The unit of λ is the nanometer, where $1 \mathrm{~nm}=10^{-9} \mathrm{~m}$; although the micron $\left(1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}\right)$

Figure 2.5 A progressive wave at three different times
s6 Chapter 2 The Mathematics of Wave Motion
is ofter used, and che older angstrom ($1 \AA-10^{-10} \mathrm{~m}$) an still be fourd in the literature. An increase or decrease in x by the amount λ should leave ψ unaltered, that is.

$$
\psi(x, t)=\psi(x=\lambda, t)
$$

(2.15)

In the case of a harmonic wave, this is equivalent to In the case of a ha $i x$ the sine is equivalent Therefore, $\sin k(x-v t)-\sin k[(x \pm \lambda)-v t]=\sin [k(x-v t) \pm 2 \pi]$ and so

$$
|k k|-2 \pi
$$

or, since both k and λ are positive numbers,

$$
k=2 \pi / \mathrm{A} . \quad \text {. } 2 / 69
$$

In a completely a nalogous fashion, we can examine the temporal period, T. This is the amount of time it takes for one complete wave to pass a stationary observer. In this case, it is the repetitive behavior of the wave in time hat is of interest, so that

$$
\psi(x, i)-\psi(x, i \pm \pi) \quad[2.1 t]
$$

and

$$
\sin k(x-v t)=\sin k[x-v(t+\tau)]
$$

$$
=\sin [k(x-v t) \pm 2 \pi] .
$$

Therefore.

$$
|k v y|=2 \pi .
$$

But these are all positive quantities: hence

$$
k v \tau \div 2 \pi \quad \text { (2.18) }
$$

or

$$
\frac{2 \pi}{\lambda} v^{\prime \prime}=2 \pi,
$$

from which it follows that

$$
+-\frac{\lambda}{v^{n}}
$$

The period is the number of units of time per wave (Fig. ${ }^{2} .6$), the inverse of which is the frequency p, or

Figure 2.6 A hacmonic wave.
the number of waves per unit of time. Thus,

$$
\nu=\frac{1}{\tau} \quad \text { (cycles/s or Hertz), }
$$

and Eq. (2.19) becomes
$v=1 / \lambda \quad(\mathrm{m} / \mathrm{s})$.
(2.20)

There are two other quantities that are often used in the literature of wave motion and thesc are the angular frequency

$$
\begin{equation*}
\omega=\frac{2 \pi}{\tau} \quad(\text { radians } / \mathrm{s}) \quad \quad(2.2 l) \tag{2:14}
\end{equation*}
$$

and the wave number

$$
x=\frac{1}{\lambda}\left(\mathrm{~m}^{-1}\right)
$$

(2.22)

The wavelength, period, frequency, angular frequency. wave number, and propagation number all describe aspects of the repetitive nature of a wave in space and ime. These concepts are equally well applied to waves that are not harmonic, as long as cach wave profile is made up of a regularly repeating pattern (Fig. 2.7). We have thus far defined a number of quantities that characerize various aspects of wave motion. There exist, accordingly, a number of equivalent formulations of

Figure 2.7 Anharmonic periodic waves
the progressive harmonic wave. Some of the most common of these are

$$
\begin{align*}
& \psi=A \sin k\{x \mp y t) \\
& \psi-A \sin 2 \pi\left(\frac{x}{A} \mp \frac{t}{\tau}\right) \tag{2.23}\\
& \psi-A \sin 2 \pi(x x=v t) \\
& \psi-A \sin (k x=\omega t) \\
& \psi=A \sin 2 \pi v\left(\frac{x}{v} \mp t\right)
\end{align*}
$$

Of these, Eqs. (2.14) and (2.25) will be encountered most Erequently. It should be noted that these waves are all of infinite extent, i.e., for any fixed valuc of t, frem is no mathematival limizainon on x, which varie requency and is therefore said to be minconstic.

2.3 PHASE AND PHASE VELOCITY

Examine any one of the harmonic wave functions, such Exa
as

$$
\psi(x, t)-A \sin (k x-\omega i) .
$$

The entire argument of the sine function is known as the phase φ of the wave, so that

$$
\varphi=(k x-\omega t)
$$

At $l^{-} x=0$,

$$
\left.\psi(x, t)\right|_{\substack{x=0 \\ i=0}}-\psi(0,0)=0 .
$$

which is certainly a special case. More generally, we can write

$$
\psi(x . t)-A \sin (k x-w l+\varepsilon), \quad
$$

where ε is the initial phase or epoch angle. To get a sense of the physical meaning of ε, imagine that we wish of praduce a progressive harmonic wave on a stretched string, as in Fig. 2.8. in order to generate harmonic waves, the hand holding the string would have to move such that its vertical displacement y was proportional to the negative of its acceleration, that is, in simple harmonic motion (see Problem 2.9). But al $t-0$ and $x-0$, the hand certainly need not be on the of course begin its motion on an urwed swing in wish case 87 , as indicated in Fig 20. In this later which case $\varepsilon \pi \pi$, as indicated in Fig. 2.9. In this latter

$$
\psi(x, t)-v(x, t)=A \sin \left(k x-\omega t^{t}+\pi\right)
$$

which is equivalent to

$$
\psi(x, t)=A \sin \{\omega t-k x\rangle
$$

or

$$
\psi(x, i)=A \cos \left(\omega t-k x-\frac{\pi}{2}\right) .
$$

The initial phaseangle is then just the constant contribution to the phase arising at the generator and is indepention to the phase arsing at the generator and is indepenhas traveled.

The phase of a disturbance such as $\psi(x, t)$ given by Eq. (2.28) is
$Q(x, i)=(k x-\omega t+e) \quad$ (2.29) and is obviously a function of x and h In fact, the partial derivative of φ with respect to h, holding x constant, is the rate of change of phase with cimes or
$\left|\left(\frac{\partial \varphi}{\partial t}\right)_{\alpha}\right|=\omega$
(2.30)

Similarly, the rate of change of phase with distance, holding constant. is

Figure 2.8 With
$A \sin (-\pi / 2)=-A$

$\left|\left(\frac{\partial \varphi}{\partial x}\right)\right|-1$

(2.3)

These two expressions should bring to mind an equation from the theory of partial derivatives, one used quite frequently in thermodynamics, namely,

$$
\begin{equation*}
\left(\frac{\partial x}{\partial t}\right)_{\varphi}=\frac{-\{\partial \varphi / \partial t)_{\pi}}{(\partial \varphi / \partial x)_{t}} . \tag{e.82}
\end{equation*}
$$

The term on the leftrepresents the velocity of propaga tion of the condition of constant phase. Return for a
moment to Fig. 2.9 and choose any point on the profile,

$a=\pi$
Wigure 2.9 with $\mathrm{e}-\pi$ noce that at $x-0$ and $t=\pi, 4$, y $A \sin (\pi / 2)=A$.
for example, the crest of the wave. As the wave move through space, the displapement y of the point remain constant. since the only variable in the harmonic wave function is the phase, it too must be constant. That is the phase is fixed at such a value as to yield the constan y corresponding to the chosen point. The point moves along with the profile at the speed v and so too doe the condition of constant phase.
Taking the appropriate partial derivatives of of given, for example by Eq. (2.29) and substituting them into Eq. (2.32), we get

$$
\left(\frac{\partial x}{\partial g_{0}}\right)_{0}- \pm \frac{\omega}{k}= \pm x .
$$

This is the speed at which the profile moves and is known commonily as the wave velocity or, more specifically, a the phase velocity. The phase velocity carries a positive sign when the wave moves in the direction of increasing x and a negative one in the direction of decreasing x This is consistent with our development of v as the magnizude of the wave velocity
Consider the idea of the propagation of constan phase and how it relates to any one of the harmonic wave equations, say

$$
\psi-A \sin k(x \mp v t)
$$

with

$$
o-k(x-2 t)=\text { constant }
$$

as t increases, x must increase. Even if $x<0$ so that $\varphi<0, x$ raust increase (i.c., become fess negative). Here then, the condition of constant phase moves in th increasing x-direction. For

$$
\Rightarrow k(x+v t)=\text { constant },
$$

as increases x can be positive and decreasing or negative and becoming more negarive. In either case, the constant-phase condition moves in the decreasing a

Figure 2.10 depicts a source produaing hypothetical two-dimensional waves on the surface of a liquid. The essentialiy sinusoidal nature of the disturbance, as the medium rises and falks, is eviont in the diagram. But there is another useful way to envision what's happening. The cirves onnecting all the points with a given phase

rigure 2.18 Idealized circular waves. (Photo by E.H.)
form a set of concentric circtes, Furthermore. given that A is everywhere constant at any one distance from the ource, if φ is constant over a circle, ψ too must be constant over that circle. In ocher words, all the corre ponding peaks and trougbs fall on circles and we speak of these as circular waves.

4 THE COMPLEX REPRESENIATION

As we develop the analysis of wave phenomena, it will become clear that the sine and cosinc functions that describe harmonic waves are somewhat awkward for our purposes. As the expressions being forraulated become more involved, the trigonometric rnamipulaions required to cope with them become even more aves athematirally simpler to use. In fact, the cornplex exponential form of the wave equation is used exten ively in both classical and quantum mechanica, as well in optics

The complex number z has the form

$$
z-x+i y
$$

(234)
where $i=\gamma-1$. The real and imaginary parts of $:$ are respectively x and y, where both x and y are themselves real numbers. This is illustrated graphically in the Argand diagram in Fig. 9.11 . In terms of polar coordin ates (r, θ), we have

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

and

$$
z-x-i y-r(\cos \theta+i \sin \theta)
$$

The Euler formula*
$e^{1 \theta}=\cos \theta-i \sin \theta$
allows us 10 write

$$
z=\pi e^{i n}=r \cos \theta+i r \sin \theta,
$$

where r is the magnitude of z, and \mathbb{E} is the phase angle of z, in radians. The magnitude is often denoted by $\mid z$ and reterred to as the moduths or absolute value of the complex number. The complex conjugate, indicated by an astecrisk, is found by replacing i wherever it appears. with $-i$, so that

$$
z^{*}=(x+i y)^{*}=(x-i y)
$$

and

$$
z^{*}=r e^{-r \theta} .
$$

The operations of addition and subtraction are quite straightforward:

$$
z_{1}=z_{\mathrm{s}}-\left(x_{1}+i y_{1}\right) \pm\left(x_{2}+i y_{2}\right)
$$

and therefore

$$
i_{1} \pm z_{2}=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right)
$$

Notice that this process is very much like the component addition of vectors.
*If ycu lave any doubss about this ideatity, take the differential of $t=\cos \theta+i \sin \theta$, wherer -1 . This yiends $\alpha=$ is $i d \theta$, and integranon gives $\mathrm{z}=\operatorname{cxp}(\mathrm{ie})$.

Figure 9.11 Argand diagran

Multiplication and division are most simply expressed in polar form

$$
z_{1} \hat{z}_{2}-r_{i} r_{s} e^{i\left(Q_{1}+\theta_{2}\right)}
$$

and

$$
\frac{z_{1}}{z_{2}}=\frac{\tau_{1}}{r_{2}} e^{\alpha_{1}\left(\theta_{1}-\theta_{2}\right)} .
$$

A number of facts that will be useful in future calcula tions are well worth mentioning at this point. If follows readily from the ordinary trigonometric addition for ruulas that

$$
e^{z_{1}+z_{z}}=e^{4} e^{2_{1}} .
$$

whence, if $z_{1}-x$ and $z_{2}-i$ in

$$
e^{2}=e^{x+1 y}=c^{"} e^{p y} .
$$

The modulus of a complex quantity is given by

$$
(x)^{2}=\left(z z^{+}\right)^{1 / 2 / 2},
$$

so that

$$
\left|e^{2}\right|=e^{*}
$$

I nasmurh as $\cos 2 \pi-1$ and $\sin 2 \pi=0$

$$
e^{i 2 \pi}-1 ;
$$

similarly,

$$
e^{i \pi}=e^{-\pi \pi}=-1 \quad \text { and } \quad e^{\mathrm{Tim/n}}= \pm i
$$

The function $e^{\text {: }}$ is periodic, that is, it repeats itself eyery

$$
e^{2+i+i=\pi}-e^{2} e^{32 \pi}-e^{2},
$$

Any complex number can be represented as the sum of a real part Re (z) and an imaginary part $\mathrm{Im}_{\mathrm{m}}(z)$

$$
z=\operatorname{Re}(z)+i \operatorname{Im}(z),
$$

such that

$$
\operatorname{Re}(z)-\frac{1}{2}\left(z+z^{*}!\text { and } \operatorname{Im}(z)-\frac{1}{2 i}\left(z-z^{*}\right)\right.
$$

From the polar form where
$\operatorname{Re}(z)^{-} r \cos \theta$ and $1 \mathrm{~m}(z)-r \sin \theta$,
it is clear that either part could be chosen to describe harmonic wave. It is customary, however, to choose he real part, in which case a harmonic wave is'written
as

$$
\psi(x, y)-\operatorname{Re}\left[A e^{1,6 i-A x+\varepsilon /}\right], \quad(2.95)
$$

which is, of course, equivalent to

$$
\phi(x, i)=A \cos (\alpha t-k x+\varepsilon) .
$$

Henceforth, wherever it's convenient, we shall write th Henceforth, whe

$$
\begin{equation*}
\psi(x, t)=A e^{2(t) x-k+c)}=A e^{i t} \tag{2.30}
\end{equation*}
$$

and utilize this complex form in the required computations. This is done to take advantage of the ease with which complex exponentials can be manipulated. Only after arriving at a final result, and then only it we want o represent the acual wave, muat we take the reat part. 1: has, accordingly, become quite common to write $\phi(x, 1)$, as in Eq. (2.36), where it is understood that the ctual wave is the reat part.

2.5 PLANE WAVES

The plane wave is perhaps the simplest example of a The plane wave is perhaps the simplest example of a
three-dimensional wave. It exists at a given time, when three-dimensional wave. It exists at a given time, when all the surfaces upon which a disturbance has constant to the propagation direction. There are quite practical
easons for studying this sort of disturbance, one of which is that by using optical devices, we can readily produce ligbt resembling plane waves
The mathematical expression for a plane that is perpendicular to a given vector \mathbf{k} and that passes through some point (x_{0}, y_{c}, z_{0}) is rather easy to derive (Fig. 2.12). The position vector, in terms of its components in Cartesian coordinates, is

$$
\mathbf{r}^{*}[x, y, z] .
$$

It begins at some arbitrary origin O and ends at the point $\{x, y, z\rangle$, which can, for the moment, be anywhere in space. By settirs

$$
\left(\mathbf{r}-\mathbf{r}_{\mathbf{i}}\right) \cdot \mathrm{k}=\mathrm{U}_{\text {, }}
$$(2.37)

we force the vector $\left(\mathbf{r}-\mathbf{r}_{0}\right)$ to sweep out a plane perpen-dicular to k, as its endpoint (x, y, z) takes on all allowedvalues. With

$$
\mathbf{k}=\left[k_{x}, k_{y}, k_{z}\right] \quad \text { i.38 }
$$

Eq. (2.37) can be expressed in the form

$$
k_{x}\left(x-x_{0}\right)+k_{y}\left(y-y_{0}\right)+k_{2}\left(z-z_{0}\right)-0
$$

or as

$$
k_{x} x+h_{y} y+k_{2} z=a . \quad(a x)
$$

Figure 2.12 A plane wave moving in the k-litection

22 Chapter 2 The Mathematics of Wave Motion
where

$$
a=k_{x} x_{0}+k_{2} y_{0}+k_{z} z_{u}-\text { constant. } \quad \text { (2.4! }
$$

The most concise form of the equation of a plane perpendicular to k is then just

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{r} \text { constant-a. } \tag{2.42}
\end{equation*}
$$

The plane is the locus of all points whose position vectors each have the same projection onto the \mathbf{k}-direction. We can now construct a set of planes over which $\psi(\mathbf{r})$ varies in space sinusoidaily, namely,

$$
\psi(r)=A \sin (\mathbf{k} \cdot \mathbf{r})
$$

$$
\psi(\mathbf{r})=A \cos (\mathbf{k} \cdot \mathbf{r})
$$

or

$$
\begin{equation*}
\psi(\mathrm{r})-A e^{i k \cdot k} . \tag{2.45}
\end{equation*}
$$

For each of these expressions $\psi(\mathbf{r})$ is constant over every plane defined by $k \cdot r^{-}$constant. Since we are dealing

Figure 2.19 Waveffents for a harmonic planc wave
with barmonic functions, they should repeat chemselves In space after a dimplacement of λ in the direction of 4. Figure 2.13 is a rather humble representacion of this kind of expression. We have drawn only a few of the infinite number of planea, each having a different $\psi(\mathbf{r})$. The planes should also have been drawn with an infinite patial extent, since no limits were put on r . The disturbance ciearly occupies all of space.
The spatially repetitive nature of these harmonic functions can be expressed by

$$
\psi(r)-\psi\left(r+\frac{\lambda k}{k}\right) .
$$

where k is the magnitude of \mathbf{k} and \mathbf{k} / k is a unit vector parallel to it (Fig. 2,14). In the exponential form, this is equivalent to

$$
A e^{i k-r}=A e^{i k(r+\lambda k / k)}=A e^{i k-T} e^{i k k} .
$$

For this to be true, we must have

$$
e^{i+k}=1=e^{i 2 \pi} ;
$$

therefore.

$$
\lambda k=2 \pi
$$

$$
k=\frac{2 \pi}{\lambda}
$$

The vector \mathbf{k}, whose magnitude is the propagation number k (already introduced), is called the propugation vector. k (already introduced), is called the propagetion vector. At any fixed point in space where I is constant, the
phase is constant and so too, is $\psi(r)$, in short the planes are motionless. To get things moving, $\psi(\mathrm{r})$ must be are molionles. No get moving, ψ () molish by introducing the time dependence in an analogous fashion to thar of the one-dimensional wave. Here then

$$
\psi(\mathbf{r}, l)=A e^{i \mid k \mp \mp \omega t} \quad \text { (2, \{y) }
$$

with A, ω, and k constant. As this disturbance travels along in the k -direction we can assign a phase corresponding to it at each point in space and time. At an γ given time, the surfaces joining ant poins of equal phase are known as wavefronts or wave surjaces. Note that the wave function will have a constant value over the wavefront only if the ampitude A has a fixed value at every point on the wavefront. In general, A is a function of r and may not be constant over all space or even over a

Figure 2.14 Plane waves.
wavefront. In the latter case, the wave is said to be inhomogeneous, but we will not be concerned with this sort of disturbance untillater, when we consider laserbeams and total internal teflection.
The phase velocity of a plane wave given by Eq. (2.47) s equivalent to the propagation velocity of the wavefront. In Fig. 2.14, the scalar component of \mathbf{r} in the direction of ${ }^{2}$ the front moves along k a dissance $d r_{k}$, we must hav
$\psi(\mathbf{r}, t)=\psi\left(r_{A}+d r_{k}, t=d t\right)-\psi\left(r_{k}, t\right) . \quad(2.48)$
In exponential form, this is
therefore.

$$
k d r_{t}= \pm \omega d t_{t}
$$

and the magnitude of the wave velocity, $d r_{h} / d t$, is

$$
\begin{equation*}
\frac{d r_{t}}{d t} \pm \frac{\omega}{t}-\frac{1}{-k} \tag{2.49}
\end{equation*}
$$

We could have anticipated this result by rotating the coordinate system in Fig. 2.14 so that k was parallel to the x-axis. For that orientation
$\psi(\mathbf{r}, \ell)=A e^{i(k \pi=\omega t)}$,
since $\mathbf{k} \cdot \mathbf{r} \quad k r_{k}=k$. The wave has thereby been effectively reduced to the one-dimensional disturbance already discussed in Section 2.3 .
The plane harmonic wave is often written in Cartesian coordinates as

$$
\psi(x, y, z, t)=A \varepsilon^{\left(k k_{i} x+k, y+k_{2} z \mp w t\right)}
$$

$$
\begin{equation*}
\psi(x, y, \Sigma, t)=A e^{\left.\mathrm{i} \mid k\left(c x+\beta y+y, y^{\prime}\right)^{2}, u t\right\}}, \tag{2.5}
\end{equation*}
$$

where α, β, and γ are the direction cosines of \mathbf{k} (see Problem 2.19). In terms of its components, the magnitude of the propagation vector is given by

$$
\text { a } 1-k-\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)^{1 / 2}
$$

and of course

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=1 .
$$

We have examined plane waves with a particular emphasis on tarmonic functions. The special sig nificance of these waves is twofold: first, physically, sinusoidal waves can be generated relatively simply by using some form of harmonic oscillator: second, any three-dimensional wave can be expressed as a combination of plane waves, each having a distinct amplitude and propagation direction.
We can certainly imagine a series of plane waves like those in Fig. 2.13 where the disturbance varies in some fashon other han harmonically. H wil be secn in the special case of a more general plane wa
2.6 THE THREE-DIMENSIONAL

DIFFERENTIAL WAVE EQUATION
Of all the three-dimensional waves, only the plane wave (harmonic or not) moves through space with an unchanging profile. Clearly, then, the idea of a wav being the propagation of a disturbance whose profile is unaltered is somewhat lacking. This difficulty can be overcome by detining a wave as any solution of the differential wave equation. Obviously, what we need now is a three-dimensional wave equation. This should be rather easy to obtain, since we can guess at its form

24 Chapter 2 The Mathematics of Wave Motion

by generalizing from the one-dimensional expression (2.11). In Cartesian coordinates, the position variables x, y and z must certainly appear symmetrically* in the three-dimensional equation, a faci to be kept in mind. The wave function $\psi(x, y, z, 1)$ given by Eq. ($(.51)$ is a particular solution of the differential equation we are
 (2.51)

$$
\begin{align*}
& \frac{\partial^{2} \psi}{\partial x^{2}}=-\alpha^{2} k^{2} \psi \\
& \frac{\partial^{2} \psi}{\partial y^{2}}=-\beta^{2} k^{2} \psi \\
& \frac{\partial^{2} \psi}{\partial z^{2}}=-\gamma^{2} k^{2} \psi \\
& \frac{\partial^{2} \psi}{\partial \ell^{2}}=-\omega^{2} \psi
\end{align*}
$$

and

Adding the three spatial derivatives and utilizing the fact that $\alpha^{2}+\beta^{2}+\gamma^{2}=1$, we obtain

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \dot{\psi}}{\partial z^{2}}=-k^{2} \psi . \tag{}
\end{equation*}
$$

Combining this with the time derivative Eq. (2.57) and remembering that $v=\omega / k$, we arrive at

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} . \tag{9.50}
\end{equation*}
$$

the three-dimensional differential uave equation. Note that x, y, and z do appear symmetrically, and the form is precisely what one might expect from the generalization of Eq. (2.11).
Equation (2.59) is usually written in a more soncise form by introducing the Lapiacian operator

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}, \quad \quad(2.60)
$$

*There is no distinguishing characereristic for any ont of the axes in Cartenisn crordinates. We should thcreforc be ablic to change the without alering the difterential wave equation.
whereupon it becomes simply

$$
\nabla^{2} \psi-\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

(2.61)

Now that we have this most important equation. let ${ }^{2}$ briefly return to the plane wave and see how it fits into the scheme of things. A function of the form
s equivalent to Eq. (2.51) and, as such, is a solution of Eq. (2.61). It can also be shown (Problem 2.22) that

$$
\psi(x, y, z, l)-f(\alpha x+\beta y+y z-v l)
$$

and

$$
\psi(x, y, z, t)-g(\alpha x+\beta y+\gamma z+\nu t)
$$

are both plane-iwave solutions of the differential wave are both plane-wave solutions of the differential wave equation. The functions f and g. which are twice need not be harmonic. A linear combination of these solutions is also a solution, and we can write this in a slightly diferent manner as lly diferent manner as
$\psi(\mathbf{r}, t)=C_{1} f(\mathbf{r} \cdot \mathbf{k} / k-v t)=C_{2} g(\mathbf{r} \cdot \mathbf{k} / k+v t), \quad(2.65)$ where C_{1} and C_{2} are constants.
Cartesian coordinates are particularly suitable for describing plane waves. However, as various physical situations anise, we can often take better advantage of existing symmetries by making use of some other coordinate representations.

2.7 SPHERICAL WAVE

Toss a stone into a tank of water. The surface ripples that emanate from the point of impact spread out in two-dimensional circular waves. Extending this imager to-dimensionalcircular wavcs. Excending his inager surrounded by a fluid As the source expands and ontracts, it generates pressure variations that prop gate outward as spherical waves. Consider now an idealized poin
Consider now an idealized point source of light. The diation emanating from it streams out radially, uniformly in all directions. The source is said to be isteropic, and the resulting waveironts are again concentric

Figure 2.15 The geometry of spherical cuordinates.
spheres that increase in diameter as they expand out into the surrounding space. The obvious symmetry of into the surrounding space. The obvious symmetry o venient to describe them mathematically, in terms of erienical Dolar coordinates (Fig. 2.15). In this rep5). In this rep cian operator is

$$
\begin{gathered}
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) \\
\quad+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{23}}
\end{gathered}
$$

(2.66)
where r, θ, ϕ are defined by
$x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi . \quad z=r \cos \theta$.
Remeraber that we are looking for a description of spherical waves, waves that are spherically symmetrical (i.e., ones that do not depend on θ and ϕ) so that

$$
\psi(\mathbf{r})^{-} \psi(r, \theta, \phi)^{-} \psi(r) .
$$

The Laplacian of $\psi(r)$ is then simply

$$
\nabla^{2} \psi(r)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right) .
$$

(2.68)

We can obtain this result without being familiar with Eq. (2.66). Start with the Cartesian form of the Laplacian
Q.60), operate on the spherically symmetrical wave function $\psi(r)$, and convert each term to polar coordinates. Examining only the x-dependence, we have

$$
\frac{\partial \psi}{\partial x}=\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial x}
$$

and

$$
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial^{2} \psi}{\partial r^{2}}\left(\frac{\partial \tau}{\partial x}\right)^{2}+\frac{\partial \psi}{\partial \tau} \frac{\partial^{2} r}{\partial x^{2}}
$$

since

$$
\phi(\mathbf{r})=\psi(r) .
$$

Using

$$
x^{2}+y^{2}+z^{2}-r^{2}
$$

we have
$\frac{\vec{z} r}{\partial x}=\frac{x}{r}, \quad \frac{\partial^{2} r}{\partial x^{2}}=\frac{1}{r} \frac{\partial}{\partial x}(x)+x \frac{\partial}{\partial x}\left(\frac{1}{r}\right)=\frac{1}{r}\left(1-\frac{x^{2}}{r^{2}}\right)$
and

$$
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{x^{2} \partial^{2} \psi}{r^{2}} \frac{1}{\partial r^{2}}+\frac{1}{r}\left(1-\frac{x^{2}}{r^{2}}\right) \frac{\partial \psi}{\partial r} .
$$

Now having $\partial^{2} \psi / d x^{2}$, we form $\partial^{2} \psi / \partial y^{2}$ and $a^{2} \psi d z z^{2}$, and on adding get

$$
\nabla^{2} \psi(r)=\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}
$$

which is equivalent to Eq. (2.68). This result can be expressed in a slightly different form:

$$
\nabla^{2} \psi=\frac{1}{r} \frac{\partial^{2}}{\partial \tau^{2}}(\tau \psi) .
$$

The differential wave equation (2.61) can then be written as

$$
\frac{1}{r} \frac{\hat{\partial}^{2}}{\partial r^{2}}(r \psi)-\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} . \quad(2.70)
$$

Multiplying both sides by r, we obtain

$$
\frac{\partial^{2}}{\partial r^{2}}(n \psi)^{-} \frac{1}{v^{2}} \frac{z^{2}}{\partial t^{2}}(n \psi) .
$$

26 Chapter 2 The Mathematics of Wave Motion
Notice that this expression is now just the onedimensional differential wave equation (2.11), where the space variable is r and the wave function is the product ($\tau \psi$). The solution of Eq. (9.71) is then simply

$$
\left.{ }_{r \phi(r, 1}\right)^{-} f(r-v t)
$$

or

$$
\psi(r, t)-\frac{f(r-v t)}{r} .
$$

This represents a spherical wave progressing radially outward from the origin, at a constant speed τ, and having an arbitrary functional form /. Another solution is given by

$$
\psi(r, n)-\frac{g(i+v)}{\gamma}
$$

and in this case the wave is converging toward the and in this case the wave is converging toward the is of little practical concern.
A special case of the general solution

$$
\psi(r, t)=C_{\lambda} \frac{j(t-u)}{r}+C_{2} \frac{\mathrm{~g}(\tau+v)}{r}
$$

is the harmonic spherical wave

$$
w(r, t) \quad\left(\frac{a r}{r}\right) \cos k(r \mp v) \quad \text { (2.74) }
$$

or

$$
\begin{equation*}
\psi(r, t)=\left(\frac{\mathfrak{Q}}{r}\right) e^{i k(r-\tau a t)}, \tag{2,75}
\end{equation*}
$$

wherein the constant.$a f$ is called the soutce strenglh. At any fixed value of time, this represents a cluster of concentric spheres filling all space. Each wavefront, or surface of constant phase, is given by

$$
k r=\text { constant. }
$$

[^0]* Other more complicated solutions exist whenerical See C. A. Coulson. Wates, Chapter 1 .

Figure 2.16 A "quadrupic cxposure" of a spherical pulse.

Noxice that the amplitude of any spherical wave is a Noice that r where the term T^{-1} serves as an attenua function of r, where the term T serves as an attenadecreases in amplitude, thereby changing its profile, as

Figure 2.17 Spherical wavefronts

Figure 2.18 The laztenirg of spherical
 Figure 2,18 The lla
waves with distance.
it expands and moves out from the origin.* Figure 2.16 illustrates this graphically by showing a "mutciple exposure" of a spherical pulse at four different times. The pulse has the same extent in space at any point along any radius r : that is, the width of the pulse along the r-axis is a constant. Figure 2.17 is an attempt to relate the diagrammatic representation of $\psi(r, l)$ in the previous figure to its actual form as a spherical wave. It depicts half the spherical pulse at two different times, as the wave expands outward. Remember that these results would obtain regardless of the direction of r. drawn a harmonic wave, rather than a pulse in Figs 2.16 and 2.17. In this case, the sinusoidal disturbance would have been bounded by the curves

$$
\psi=s / T \quad \text { and } \psi=-\mathscr{A} / \tau .
$$

The outgoing spherical wave emanating from a point source and the incoming wave converging to a point are idealizations. In actuality, light only approximates spherical waves, as it also only approximates plane waves.
As a spherical wavefront propagates out, its radius increases. Far enough away from the source, a small area of the wavefront will closely resemble a portion of a plane wave (Fig. 2.18).

2.8 CYLINDRICAL WAVES

We will now briefly examine another idealized waveform, the infinite circular cylinder. Unfortunately, waveform, the infinite circular cylinder. Unfortunately, do here. We shall, however, outline the procedure so

The atenuation factor is a direct consequence of eneigy conservation, Chapter 9 contains a discussion of how these ideas apply
spcififally of electromagnetic radiation,
that the resulting wave function will evoke no mysticism. The Laplacian of ψ in cylndrical coordinates (Fig. 2.19) is

$$
\begin{aligned}
& \nabla^{2} \psi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}} \\
& x-r \cos \theta_{1} \quad y=r \sin \theta_{1} \text { and } z-z .
\end{aligned}
$$

where

$$
\psi(\mathbf{r})=\psi(r, \boldsymbol{\theta}, z)=\psi(r)
$$

The θ-independence means that a plane perpendicular to the z-axis will intersect the wavefront in a circle, in r different values of 2 In additio, the z-independence further restricts the wavefrunt to a right circular cylinder centered on the z-axis and

Figure 2.19 The grometry of cylindrical coordinates.

28 Chapter 2 The Mathematics of Wave Motion
having infinite length. The differential wave equation is accordingly

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \psi}{\partial \tau}\right)-\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} . \tag{2,77}
\end{equation*}
$$

We are looking for an expression for $\psi(r)$, a solution of this equation. After a bit of manipulation, in which the time dependence is separated out, Eq. (2.77) becones something called Bessel's equation. The solutions of Bessel's equation for large values of ${ }^{3}$ gratually approath simpe trigonometic forms.
Finally, then. when r is sufficiently larse, we can write

$$
\begin{gather*}
\psi(r, t)=\frac{d}{\sqrt{r}} e^{*(\mu(r v i)} \\
\psi(r, s)-\frac{g d}{\sqrt{r}} \cos k(r \mp u l) . \tag{2.28}
\end{gather*}
$$

This represents a set of coaxial circular cylinders filling all space and traveling toward or away from an infinite line source. No solutions in terms of arbitrary functions can now be found as there were for both spherical (2.79) and plane (2.65) waves
A plane wave impinging on the back of a flat opaqu screen containing a long thin slit will result in the mission, from that slit, of a disturbance resembling a cylindrical wave (see Fig. 2.20). Extensive use has been made of this tecbnique to generate cylindrical ightwaves. Remember that the acxual wave, however encrated, only resembles the idealized mathematical presentatio

2.9 SCALAR AND VECTOR WAVES

There are two general classifications of waves: torgi tudinal and transwerse. The distinction between the two arises from a difference between the direction along which the disturbance occurs and the direction, \mathbf{k} / h, in

Figurc 2.21 (a) A longitudinal wave in a spring. (b) A transverse wave in a spring.
which the disturbance propagates. This is rather easy which he when dealing with an clastically deformable to visualize when dealing with an clastically deformable when the particles of the medium are displaced from their equilibrium positions, in a direction patallel to \mathbf{k} / k their equilesium positions, in a direction parallel to k / k. ase the displacement of the medium, is perpendicular to the propagation direction. Figure 2.22 (a) depicts a transverse wave (as on a stretched string) traveling in the z-direction. In this instance, the wave motion is confined to a spatially fixed plane called the plane of vibration, and the wave is accordingly said to be linearly or planf polarized. To determine the wave completely, we must now specify the orientation of the plane of vibration, as well as the direction of propagation. This is equivalent to rexolving the disturbance into components along two mutually perpendicular axes. both porme of vibraion is inclined is angle at which the pry time ψ and ψ difer from ψ by a multiplive anystant and are bote there for a multipleative differential wave equation. A significant fact has diferential wave equation, A signiificant fact has somewhat like a vector quantity. With the wave moving
axis, we can write along the z-axis, we can writc where, of course, $\hat{i}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are the unit base vectors in A cartesian coordinates.
Apression harmonic plane wave is given by the
\qquad
A linearly polarized harmonic plane wave is given by the wave trector

(280)
or in Cartesian coordinates by
$\psi(x, y, z, l)=\left(A_{x} \hat{i}+A_{,} \hat{\mathbf{j}}+A_{2} \hat{\mathbf{k}}\right) e^{\left(t t_{2}+4, k_{2},+k_{2}=\omega t\right)} \quad\left(2 B_{I}\right)$
For this latter case in which the plane of vibration is fixed in space, so too is the orientation of A. Remember hat ψ and \mathbf{A} differ only by a scalar and as such, are parallel to each other and perpendicular to \mathbf{k} / k.

Liveht behazes like a transwerse wave, and an a ppreciation of its vectoriai naturc is of greac importance. The phenomena of optical tolarization can readily be . The in terms of this sort of vector wave picture For untoler rzed light, in which the wave vector changes direction randomly and ranidly, scalar approximations become useful, as in the thenries of interference and diffeation.

Figure 2.22 Lineariy polarized waves.

PROBLEMS

2.1 How many "yellow" light waves ($\lambda-580 \mathrm{~nm}$) will fit into a distance in space equal to the thickness of a piece of paper (0.003 in) ? How far will the same number of microwaves $\left(\nu=10^{10} \mathrm{~Hz}\right.$, i.e., 10 GHz , and $y-3 \times$ $10^{8} \mathrm{~m} / \mathrm{s}$) extend?
2.2* The speed of light in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Find the wavelength of red light having a frequency of $5 \times$ $10^{14} \mathrm{~Hz}$. Compare this with the wavelength of a $60-\mathrm{Hz}$ electromagnetic wave
2.3* It is possible to generate ultrasonic waves in crystals with wavelengths similar to light $\left(5 \times 10^{-5} \mathrm{~cm}\right)$ but with lower frequencies $\left(6 \times 10^{8} \mathrm{~Hz}\right.$). Compute the corresponding speed of such a wave.
2.4* Make up a table with columns headed by values of θ running from $-\pi / 2$ to 2π in intervals of $\pi / 4$. In each column place the corresponding value of $\sin \theta$. beneath those the values of $\cos \theta$, beneath those the values of $\sin (\theta-\pi / 4)$. and so on, with the functions $\sin (\theta-\pi / 2), \sin (\theta-3 \pi / 4)$, and $\sin (\theta+\pi / 2)$, Plot each of these functions, noting the effect of the phase shift. Does $\sin \theta$ lead or lag $\sin (\theta-\pi / 2)$; in other words, does one of the functions reach a particular magnitude at a maller value of θ than the other and therefore lead the other (as $\cos \theta$ leads $\sin \theta)$?
2.5* Make up a table with columns headed by values of $k x$ running from $x=-\lambda / 2$ to $x-+\lambda$ in invervals of of $k x$ running from $x=-\lambda / 2$ to $x-+\lambda$ in intervals of
x of $\lambda / 4-$ of course, $k=2 \pi / \lambda$. In each column place x of $\lambda / 4-0$ course, k es $2 \pi / \lambda$. (n each column place
the cor respending values of $\cos (k x-\pi / 4)$ and beneath that the values of $\cos (k x+3 \pi / 4)$. Next plot the functions $15 \cos (k x-\pi / 4)$ and $25 \cos (k x+3 \pi / 4)$.
2.6* Make up a table with columns headed by value of ωt running from $t^{-}-\tau / 2$ to $t=+\tau$ in intervals of of $\tau / 4$ of course. $\omega-2 \pi / \tau$. In each column place the corresponding values of $\sin (\omega t+\pi / 4)$ and $\sin (\pi / 4$ $\omega t)$ and then plot these two functions.
2.7 Using the wave functions
$\psi_{1}=4 \sin 2 \pi(0.2 x-3 t)$

$$
\psi_{2}=\frac{\sin (7 x+3.5 t)}{2.5},
$$

determine in each case the values of (a) frequency, (b) wavelength, (c) period, (d) amplitude, (e) phase velocity and (f) direction of motion. Time is in seconds and x is in meters.
2.8* Show that

$$
\phi(x, t)=A \sin k(x-v t)
$$

is a solution of the differential wave equation
2.9 Show that if the displacement of the string in Fig. 2.8 is given by

$$
y(x, t)=A \sin [k x-\omega t+\varepsilon],
$$

then the hand generating the wave must be moving vertically in simple harmonic motion.
2.10 Write the expression for a harmonic wave of amplitude $10^{3} \mathrm{~V} / \mathrm{m}$, period $2.2 \times 10^{-1.5} \mathrm{~s}$, and speed $8 \times$ $10^{8} \mathrm{~m} / \mathrm{s}$. The wave is propagating in the negative x direction and has a value of $10^{3} \mathrm{~V} / \mathrm{m}$ at $t^{-} 0$ and $x=0$
2.11 Consider the pulse described in terms of its displacement at $t-0$ by

$$
\left.y(x, l)\right|_{i=0}=\frac{C}{2+x^{2}}
$$

where C is a constant. Draw the wave profle. Write an xpression for the wave, having a speed w in the negative expression for the wave, having a speed v in the negative the profile at t $\quad 2 \mathrm{~s}$.
2.12* What is the magnitude of the wave function $\psi(z, t)=A \cos [k(z+v t)+\pi]$ at the point $z=0$, when $t-\tau / 2$ and when $t=3 \pi / 4$?
2.13 Does the following function, in which A is a constant,
represent a wave? Explain your reasoning
2.14* Use Eq. (2.32) to calculate the speed of the wave Whore representation in SI units is
$\psi(y, t)=A \cos \pi\left(3 \times 10^{6} y+9 \times 10^{14} t\right)$.
2.15 Greate an expression for the profile of a harmonic wave traveling in the z-direction whose magnitude at $z=$
is 0 .
2.16* Show that the imaginary part of a complex number z is given by $\left(z-z^{*}\right) / 2 i$
2.17* Determine which of the following describe traveling waves:

$$
\begin{aligned}
& \psi(y, t)=e^{-\left(a^{2} y^{2}+b^{2} t^{2}-2 a b(y)\right.} \\
& \psi(z, t)=A \sin \left(a z^{2}-b t^{2}\right) \\
& \psi(x, t)=A \sin 2 \pi\left(\frac{x}{a}+\frac{t}{b}\right)^{2}
\end{aligned}
$$

$$
\psi(x, t)-A \cos ^{2} 2 \pi(t-x) .
$$

Where appropriate draw the profile and find the speed and direction of motion.
2.18 Given the traveling wave $\psi(x, t)=5.0 \exp \left(-a x^{2}-\right.$ $\left.t^{2}-2 \sqrt{a b} x t\right)$. determine its direction of propagation Calculate a few values of ψ and make a sketch of the wave at $t=0$, taking $a=25 \mathrm{~m}^{-2}$ and $b-9.0 \mathrm{~s}^{-2}$. What is the speed of the wave?
2.19 Beginning with Eq. (2.50), verify that $\psi(x, y, z, t)=\boldsymbol{A} \boldsymbol{e}^{i(k(x) x+b y+z)}$.
and that

$$
\alpha^{2}+\beta^{2}+\gamma^{2}-1
$$

Draw a sketch showing all the pertinent quantities.
2.20 Consider a lightwave having a phase velocity of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and a frequency of $6 \times 10^{14} \mathrm{~Hz}$. What is the Shortest distance along the wave between any two points that have a phase difference of 30° ? What phase shift ocurs at a given point in $10^{-6} \mathrm{~s}$, and how many waves have passed by in that time?
2.21 Write an expression for the wave shown in Fig 2.23. Find its wavelength, velocity, frequency, and period.

Figure 2.23 A harmonic wave.
2.22* Show that Eqs (2.63) and (2.64), which are plane waves of arbitrary form, satisfy the three-dimensional differential wave equation.
2.23 De Broglie's hypothesis states that every particle has associated with it a wavelength given by Planck's constant ($h=6.6 \times 10^{-94} \mathrm{Js}$) divided by the particle's momentum. Compare the wavelength of a $6.0-\mathrm{kg}$ stone moving at a speed of $1.0 \mathrm{~m} / \mathrm{s}$ with that of light.
2.24 Write an expression in Cartesian coordinates for a harmonic plane wave of amplitude A and frequency ω propagating in the direction of the vector \mathbf{k}, which in turn lies on a line drawn from the origin to the poin (4. 2, 1). Hint: first determine \mathbf{k} and then dot it with \mathbf{r}.
,
2.25* Witie an expression in Cartesian coordinates for a harmonic plane wave of amplitude A and
2.26 Show that $\psi(\mathbf{k} \cdot \mathbf{r}, t)$ may represent a plane wave where k is normal to the wavefront. Hint: let $r_{\text {, }}$ and r^{\prime} be position vectors drawn to any two points on the plane and show that $\psi\left(\mathbf{r}_{\mathrm{i}}, t\right)=\psi\left(\mathbf{r}_{2}, t\right)$.
2.27* Make up a table with columns headed by values of 9 running from $-\pi / 2$ to 2π in intervals of $\pi / 4$. In each column place the corresponding value of $\sin \theta$, and beneath those the values of $2 \sin \theta$. Next add these columa by column, to yield the corresponding values of the function $\sin \theta+2 \sin \theta$. Plot each of these three functions, noting their relative amplitudes and phases.
2.28* Make up a table with columns headed by values of θ running from $-\pi / 2$ to 2π in intervals of $\pi / 4$. In
ach column olace the corresponding value of $\sin \theta$, and eneath those the values of $\sin (\theta-\pi / 2)$. Next ad hese, column by column, to vield the correspondin values of the function $\sin \theta+\sin (\theta-\pi$ (2) Plot each of these three functions, nuting their relative amplitudes and phases.
2.29* With the last two problems in mind, draw a plot ff $\sin \theta, \sin (\theta-3 \pi / 4)$, and $\sin \theta+\sin (\theta-3 \pi / 4)$. Com pare the amplitude of the combined function in this case with that of the previous problem.
$.30^{-}$Make up a f $k x$ ruming from $x--\lambda / 2$ to $x=+\mathrm{\lambda}$ in intervals of x of $\lambda / 4$. In each column place the corresponding values of $\cos k x$ and beneath that the values of $\cos (k x+\pi)$ Next plot the functions $\cos k x, \cos (k x+\pi)$, and $\cos k x+$ $\cos (k x+\pi)$.

3 ELECTROMAGNETIC THEORY, PHOTONS, AND LIGHT

T
The work of J. C. Maxwell and subsequent developments since the late 1800s have made it evident that Clasical electrodynamics, as we shall see unalterably leads to the picture of a continuous transfer of emergy by way of electromagnetic waves. In contrast, the more of way of eiectromagnetic waves. In contrast, the more modern view of quantum electrodynamics describes
electromagnetic interactions and the transport of energy in terms of massless elementary "particles" 'known as photons, which are localized quanta of energy. The quantum nature of radiant energy is not always readily apparent, nor indeed is it always of practical concern in optics. There is a range of situations in which the detecing equipment is such that it is impossible, and desirably so, to distinguish individual quanta. More often than not, the stream of incident light carries a relatively large amount of energy, and the granularity is obscured in any event.
If the wavelength of light is small in comparison to the size of the apparatus, one may use, as a first approximore precise treatment, which is applicable A somewhat the dimensions of the apparatus are small is that of forysical opties. In physical optics the dominant property of light is its wave gature. It is even possible to develop nosst of the treatment without ever speciifying the kind of wave one is dealing with. Certainly, as far as che classical study of pbysical optios is concerned, it will office admirably to treat light as an electromagnetic Wave.
We can think of light as another manifestation of
matter. Indeed, one of the basic tenets of quantum mechanics is that both light and material objects each display similar wave-particle properues. As Erwin C Schrodinger (1887-1961), one of the founders of quan tum theory, put it

In the new setting of ideas the distinction [between particles and waves has vanished, because it was dis covered that all particies have also wave properties, and viccuersa. Neither of the two concepts must be discarded they must be amal garnated. Which aspect obt rudes itsel! depends not on the physical object, but on the experi mental device set up to examine it. ${ }^{\text {² }}$
The quantum-mechanical treatment associates a wave equation with a particle, be it a photon, electron, proton, or whatever. In the case of material partucles, the wav aspects are introduced by way of the field equation known as Schrödinger's equation. For photons we hav a representation of the wave nature in the form of the classical electromagnetic field equations of Maxwell. With these as a starting point one can construct a quantum-mechanical theory of photons and their inter
action with charges. The action with charges. The dual nature of light is evi-
denced by the fact that it propagates in a wavelike fashion and propagates through space behavior during emission yet can display particlelike Electromagnetic radian energy is an processes destroyed in quanta or photons and not contincously as a classical wave. Nonetheless its motion through *Erwin C. Schrödinger, Suzence Theery and Maa
lens, a hole, or a set of slits is governed by wave charac eristics. If we're unfamiliar with this kind of behavio in the macroscopic world, it's because the wavelength an objed varies inversely with its momenum (see Chapter 18), and even a grain of sand (which is barely noving) has a waveleng co
any conceivabe experimen
then distinguish it rom all other subatomic partides. These properties are sible for the face chat quite often the quantum aspect of light are thoroughly obscured. In particular, there are no restrictions on the number of photons that can exist in a region with the same linear and angular momentum. Restrictions of this sort (the Pauli exclusion principie) do exist for most other particles (with the exception for exarnple of the stilh hypothetical quantum of gravity, i.e., the graviton, He_{4} and π mesons). The photon has zero rest mass, and therefore exceedingly arge numbers of low-energy photons can be envisioned as present in a beam of light. Within that model dense streams of photons Imany of which may have essentially he same momentum) act or the average to produce well-defined classical fields. We can draw a rough analogy with the fow of commuters through a train aividualy as a same intent and follow fairly similar trajectorics. To a listant myopic observer there is a seemingly smoot ad continuous fow. The hehavior of the stream en wasse is predicrabie from day to day, so the precis motion of each commuter is unimportant, at least to he observer. The energy transported by a large number of photons is. on the averege, equivalent to the energy ransferred by a classical electromagnetic wave. It is for hese reasons that the field representation of ele tromagnetic phenomena has been, and will continte to be, so useful. It should be noted. however, that when e speak of overlapping eledromagnetic waves, it essentially a euphemism for the interference of proba bility amplitudes, but more about that will have to wait for Chapter 13 .
Quite pragmatically, then, we can consider light to be a classical electromagnetic wave, keeping in mind
that there are situations (on the periphery of ourpresen concern) for which this description is woefull inadequate.

3.1 BASIC LAWS OF

 ELECTROMAGNETIC THEORYOur intent in this section is to review and develop, is only brieft, some of the ideas needed to appreciate the only brieht, some of the ideas need
Conce pt of electromagnetic waves.
Wough serarased in experiments that charges, even action. Recall the familiar electrostatics demoneration in which a pith ball somehow senses the presence of a charged rod without actually couching it. As a possible: explanation we might speculate that each charge emits (and absorbs) a stream of undetected particles (virtual photems). The exchange of thesc particles among the charges may be regarded as the mode of interaction. Alternatively, we can alae the classical approach and imagine instead that every charge is surrounded by something called an electric field. We then need only suppose that each charge interacts directly with the elearic ficld in which it is immersed. Thus if a charge of the charge is defined by $\mathbf{F}_{\mathrm{E}}=4 \mathrm{E}$. ofserve that a de force $\mathbf{F}_{\mathbf{w}}$, which is proportioral to its velocity $\mathbf{0}$. We are thus led to define yet another field, namely the marnotic induction \mathbf{B}, such that $\mathbf{F}_{4}=q \mathbb{X}$ B. If forces $\mathbf{F}_{\mathbf{Z}}$ and Fu occur concurrently, the charge is said to be moving through a region pervaded by both electric and magnetic fields, whereupon $F=q \mathbf{E}+q v \times \mathbf{B}$.
There are several other observations that may be interpreted in terms of these fietds, and in so doing we an get a better idea of the physical properties that must be attributed to \mathbf{E} and \mathbf{B}. As we shall see, electic fislds are generated by both electric charges and by timevarying magnetic fields. Similarly, magnetic fields are generated by electric currents and by time-varning electrit fields This interdependence of \mathbf{E} and \mathbf{B} is a key point in the description of light, and its elaboration is the motivation for much of what follows.
3.1. Faraday's Induction Law

A schael Faraday made a number of major contributions ofelectromagnetic theory, One of the most aignifican Gas his discovery that a cime-varying magnetic flux Whas asing througb a closed conducting loop results in the Feneration of a current around that loop. The flux of登agneric induction (or magnetic flux density) B through fay open area A bounded by the conducting loop (Fig (fly) is given by

$$
\begin{equation*}
\Phi_{B}-\iint_{A} \mathbf{B} \cdot d \boldsymbol{S} . \tag{}
\end{equation*}
$$

The induced electromotive force, or ent. developed around the loop is then

$$
\begin{equation*}
\mathrm{emf}=-\frac{d \Phi_{\mathrm{B}}}{d t} . \tag{}
\end{equation*}
$$

We should not, however. get too involved with the image of wires and current and emf. Our present conford the emf exists only 25 a result of the prese

Figure 3.1 B-field through an open area 4
of an electric fieid given by

$$
\begin{equation*}
\operatorname{emf}-\oint_{G} \mathbf{E} \cdot d \mathbf{1}_{s} \tag{3.3}
\end{equation*}
$$

aken around the closed curve C, corresponding to the loop. Equating Eqs. (3.2) and (3.3), and making use of Eq. (3.1), we get

$$
\begin{equation*}
\oint_{\mathbf{C}} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t} \iint_{A} \mathbf{B} \cdot d \mathbf{S} \tag{3.t}
\end{equation*}
$$

e began this discussion by examining a conducting loop and have arrived at Eq. (3.4); this expression, except for the path C, contains no reference to the physical loop. in fact, the path can be chosen quite biraly and need not be within, or anywhere near, conductor. The electric field in Eq. (3.4) arises not from the presence of electric charges but rather from the time-varying magnetic field. With no charges to act as sources or sinks, the field lines close on themselves. forming loops (Fig. 3.2). For the case in which the path

gure 3.2 A time-varying t -field, Surroundirg cach poiat where Φ_{B} is changing, the E-field forms closed loops

36 Chapter 3 Electromagnetic Theory, Photons and Light
is fixed in space and unchanging in shape, the induction law (Eq. 3.4) can be rewritien as

$$
\begin{equation*}
\oint_{C} \mathbf{E} \cdot d \mathbf{1}=-\iint_{1} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{S} . \tag{3.5}
\end{equation*}
$$

This, in itself, is a rather fascinating expression, since it indicates that a tine-varying magnetic field will have an electric field associated with it.

3.1.2 Gauss's Law - Electric

Another fundamental law of electromagnetism named after the German mathematician Kar! Friedrich Gauss (1777-1855). It relates the flux of electric ficld intensity through a closed surface A

$$
\begin{equation*}
\Phi_{f}=\oiint_{A} \mathbf{E} \cdot d \mathbf{S} \tag{9.5}
\end{equation*}
$$

to the total enclosed charge. The circled double integral is meant to serve as a reminder that the surface is closed The vector $d S$ is in the direction of an outward normal, as shown in Fig. 3.3. If the volume enclosed by A is V, af dencity ρ hen Gauss s law is os of density ρ, then Gauss's law

$$
\begin{equation*}
\oiint_{A} \mathrm{E} \cdot \Delta s-\frac{1}{\epsilon} \iiint_{v} d V \tag{3.7}
\end{equation*}
$$

The integral on the left is the difference between the mount of flux flowing into and out of any closed surface . If there is a difference, it will be due to the presence f sources or sinks of the electric field within A Clearly then, the integral must be proportional to the total then, the integral must be proportional to the cotal $(+)$ and sinks (-) of the electric field.
The constant e is known as the electric permittivity of the medium. For the special case of a vacuum, he permillivity of free stace is given by ϵ_{0} $8.8542 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$. One function of the ε in Eq (3.7) is, of course, to balance out the units. but the concept is even more basic to the description of the parallel plate capacitor (sec Section 3.1.4). There it's the medium-dependent proportionality constan between the device's capacitance and its geometric characteristics. Indeed ϵ is often measured by a pro-

Figure 9.9 E-field ihrough a closed area A.
cedure in which the material under study is placed within a capacitor. Conceplually, the permittiviy mbodies the electrical behavior of the medium: in a permeated by the electic Geld in which it is immersed In the early days ot the development of the subject people in various areas worked in different systems of units, a state of affairs leading to some obvious difficulies. This necessitated the tabulation of numerical values for ϵ in each of the different systems, which was at best, waste of time. Recall that the same problem regarding densities was neatly avoided by using specific gravity (i.e., density ratios). Thus it was advantageous to tabuate values not of ϵ but of a new related quantily independent of the system of units being used. Accord ingly, we define h_{c} as ϵ / ϵ_{9}. This is the dielectric constent (or relative permittivity), and it is appropriately unitess: The permittivity of a material can then be expressed inl terms of ϵ_{0} as

$$
\boldsymbol{\epsilon}=K_{r} \epsilon_{\mathrm{j}} .
$$

Our interest in K, anticipates the fact that the permit
tivity is related to the speed of light in dielectric materials, such as giass, air, quartz, and so on.

313 Gauss's Law-Magnetic

There is no known masneetic counterpart to the electric clarge, that is, no isolated magnetic poles have ever diarge, that is, no isolated magnetic poles have ever been found, despite extensive searching, even in lunar oil samplion \mathbf{B} does nos diverge from or converge toward anduction B does not diverge from or converge toward onne kinagnetic induction fields can be described in sinks. Magnetic of current distributions. Indeed we might envision an elementary magnet as a small current loop in which the lines of \mathbf{B} are chemselves continuous and closed Any closed surface in a region of magnetic field would accordingly have an equal number of lines of B entering and emerging from it (Fig. 3.4). This stuation aries from the absence of any monopoles within the enclosed volume. The flux of magnetic induction Φ_{p} through such a surface is zero, and we have the magnetic

Firane 3.4 B-field chrough a dosed area A.
equivalent of Gauss's Law;

$$
\Phi_{B}=\oiint_{A} B \cdot d S=0
$$

3.1.4 Ampère's Circuital Law

Another equation that will be of great interest to us is due to Andre Marie Ampere ($1775-1886$). Known as the circuilal cow, it relates a line integral of \mathbf{B} tangent to a closed curve C, with the total current it passing within the confines of C :

$$
\oint_{C} \mathbf{B} \cdot d \mathbf{I}=\mu \iint_{A} \mathbf{J} \cdot d \mathbf{S}=\mu:
$$

The open surface A is bounded by C, and J is the urrent per unit area (Fg . 3.5). The quantity μ is called the permeahility of the particular medium. For a vacuurn $\mu=\mu_{0}$ (the permeabihty of free spact), which is
defined as $4 \pi \times 10^{-7} \mathrm{Ns}^{2} \mathrm{C}^{-2}$.

$3^{8} \quad$ Chapter 3 Electromagnetic Theory, Photons and Light

As in Eq. (3.8).
$\mu=K_{m} \mu_{0}$.
μ_{0}.
(3.1i)
with K_{m} being the dimensionless relative permeability. Equation (3.10), although often adequate, is not the whole truth. Moving charges axe not the only snurce of a magnetic field. While charging or discharging a capacitor, one can measure a \mathbf{B} field in the region between its plates (Fig. 3.6), which is indistinguishable From the field surrounding the leads, even though no current act if A the aren of plate, and Q the howere. it A is the area of each plate, and Q th charge on it

$$
E=\frac{Q}{E A} .
$$

As the charge varies, the electric field changes, and

$$
\varepsilon \frac{\partial E}{\partial t}=\frac{i}{A}
$$

is effectively a current density. James C. Maxwell hypothesized the existence of just such a mechanism which he called the displacement current density,* defined by

$$
\mathbf{J}_{D}=\epsilon \frac{\partial \mathbf{E}}{\partial t}
$$

Figure 3.6 B-field concomitant with a time-varying E-field in the Figure $3.6 \quad$-n-neld
gap of a capacier.

The restatement of Ampère's law as

$$
\begin{equation*}
\oint_{C} \mathbf{B} \cdot d \mathbf{I}=\mu \iint_{A}\left(\mathbf{J}+\epsilon \frac{\partial \mathbf{E}}{\partial t}\right) \cdot d \mathbf{S} \tag{9.13}
\end{equation*}
$$

was one of Maxwell's greatest contributions. It points out that even when $\mathrm{J}=0$, a time-varying E -ield will be accompanied by a B-field (Fig. 3.7).

3.1.5 Maxwell's Equations

The set of integral expressions given by Eqs. (3.5), (3.7), (3.9), and (3.13) have come to be known as Maxwell's equations. Remember that these are generalizations of experimental results. The simplest statement of Maxwell's equations governs the behavior of the electric and magnetic fields in free space, where $\boldsymbol{\epsilon}=\epsilon_{0}, \mu=\mu_{0}$, and
both ρ and \mathbf{J} are zero. In that instance,

$$
\begin{align*}
& \oint_{C} \mathbf{E} \cdot d \mathbf{l}=-\iint_{A} \frac{\partial \mathbf{B}}{\partial t} d \mathbf{S}, \\
& \oint_{C} \mathbf{B} \cdot d \mathbf{l}-\mu_{0} \epsilon_{0} \iint_{A} \frac{\partial \mathbf{E}}{\partial t} \cdot d \mathbf{S}, \\
& \oiint_{A} \mathbf{B} \cdot d \mathbf{S}=0, \\
& \oiint_{A} \mathbf{E} \cdot d \mathbf{S}=0 . \tag{3.17}
\end{align*}
$$

Observe that except for a multiplicative scalar, the electric and magnetic fields appear in the equations with a remarkable symmetry. However \mathbf{E} affects B, B will in turn affect \mathbf{E}. The mathematical symmetry implies a good deal of physical symmetry.
Maxwell's equations can be written in a differential form, which will be somewhat more useful for our purposes. The appropriate calculation is carried out in Appendix 1 , and the consequent equations for free space, in Cartesian coordinates, are as follows:

$$
\begin{aligned}
& \frac{\partial \mathbf{E}_{z}}{\partial y}-\frac{\partial \mathbf{E}_{y}}{\partial z}=-\frac{\partial \mathbf{B}_{z}}{\partial t}, \quad \text { (i) } \\
& \frac{\partial \mathbf{E}_{z}}{\partial z}-\frac{\partial \mathbf{E}_{z}}{\partial x}=-\frac{\partial \mathbf{B}_{7}}{\partial t}, \quad \text { (ii) }
\end{aligned}
$$

$$
\frac{\partial \mathbf{E}_{y}}{\partial \boldsymbol{x}}-\frac{\partial \mathbf{E}_{x}}{\partial y}=-\frac{\partial \mathbf{B}_{z}}{\partial \underline{\partial l}} \text {, (iii) }
$$

$$
\frac{\partial \mathbf{B}_{z}}{\partial y}-\frac{\partial \mathbf{B}_{y}}{\partial z}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}_{x}}{\partial t} \text {, (i) }
$$

$$
\frac{\partial \mathbf{B}_{x}}{\partial z}-\frac{\partial \mathbf{B}_{z}}{\partial x}-\mu_{n} \epsilon_{0} \frac{\partial \mathbf{E}_{y}}{\partial t}, \quad \text { (ii) }
$$

$$
\frac{\partial \mathbf{B}_{y}}{\partial x}-\frac{\partial \mathbf{B}_{x}}{\partial y}=\mu_{0} \epsilon_{y} \frac{\partial \mathbf{E}_{z}}{\partial t}, \quad \text { (iii) }
$$

$$
\frac{\partial \mathbf{B}_{x}}{\partial x}+\frac{\partial \mathbf{B}_{y}}{\partial y}+\frac{\partial \mathbf{B}_{2}}{\partial z}=0
$$

$$
{ }_{(3.90)}
$$

$$
\frac{\partial \mathbf{E}_{x}}{\partial x}+\frac{\partial \mathbf{E}_{y}}{\partial y}+\frac{\partial \mathbf{E}_{z}}{\partial z}=0 .
$$

$$
{ }_{(8,2 l)}
$$

The transition has thus been made from the formulation of Maxwell's equations in terms of integrals over finic regions to a restatement in terms of derivatives at point in space.
We now have all that is needed to comprehend the magnificent process whereby electric and magnetic fields, inseparably coupled and mutually sustaining propagate out into space as a single entity, free of charges and currents, sans matter, sans aether
3.2 ELECTROMAGNETIC WAVES

We have relegated to Appendix 1 a complete and matic wave the equally important task of developing a more intui tive appreciation of the physical processes involved Three observations, from which we might build a quali tative picture, are readily available to us: the general perpendicularity of the fields, the symmetry of Maxwell's equations, and the interdependence of \mathbf{E} and B in those equations.
In studying electricity and magnetism one soon becomes a ware that there are a number of relationship described by vector cross-products or, if you like, right hand rules. In other words, an occurrence of one sor produces a related, perpendicularly directed response Of immediate interest is the fact that a time-varying
-held gencrates a B-field hat is eserywhere perpendicular to the direction in which \mathbf{E} changes (Fig. 3.7) In the same way, a time-varying \mathbf{B}-field generates an E-field that is everywhere perpendicular to the direction in which B changes (Fig. 3.2). We might, accordingly, anticipate the general transverse nature of the E- and B-lields in an electromagnetic disturbance
Consider a charge that is somehon caused to necelrate from res. When the charge is monemesss, it has associated wilh it a radial E-fick extend.h. .ons berins to tons to imf \mathbf{E} - ield is allered in the vicinity of the charge, ad fuite speed. The time-varying clectric leekl indtuces a magnetis fick by means of Ef, (3.15) or (3.19). But the harge is accelerating, $\mathbf{D} / 2 t$ is itself nol constam, so the nduced \mathbf{B}-field is time-diperalent. The time-varying B-field generates art E-ficld, (3.14) or (S.18), and the process continues, widh \mathbf{E} and \mathbf{B} compled in the form ot a pulse. As one field changes, it gencrates a new hed hat exicnds at bil further, and tie pulse mowes oul. from one point to the next through apace.
We can draw an overly mechanistic but rather piccuresque analogy, if we imagine the electric field lines as a dense radial distribution of strings. When somehow plucked, each string is distorted. forming a kink that travels outward from the source. All these kinks combine at any instant to yield a three-dimensional expanding pulse.
The \mathbf{E} - and \mathbf{B}-fields can more appropriately be considered as two aspects of a single physical phenomenor, the electromagnetic field, whose source is a moving charge. The disturbance, once it hastemagnetic field, is an untethered wave that moves beyond its source and independently of it. Bound together as a single entity, the time-varying electric and magnetic fields resenerate each other in an endless cycle. The electronnagnetic waves reaching us from the relatively nearby center of our own galaxy have been on the wing for 30,000 years.

We have not yct considered the direction of wave propagation with respect to the constituent ficids Notice, however, that the high degree of symmetry in Maxwell's equations for free space suggests that the disturhance will propagate in a direction that is sym-
metrical to both \mathbf{E} and \mathbf{B}. That implies that an elec tromagnetic wave cannot be purely longitudinal (i.e., as long as \mathbf{E} and \mathbf{B} are not parallell. Let's now replace conjecture with a bit of calculation,

Appendix I shows that Maxwell's equations for free into the form of two aty concise vector expressions:

$$
\nabla^{2} \mathbf{E}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{a t^{2}}
$$

and

$$
\begin{equation*}
\nabla^{2} \mathbf{B}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{B} \mathbf{B}}{\partial i^{2}} \tag{,41,27}
\end{equation*}
$$

The Laplacian. ${ }^{*} \nabla^{2}$. operates on earh component of \mathbf{E} and \mathbf{B}, so that the two vector equations actually represent a total of six scalar equations. Two of these expressions, in Cartesian coordinates, are

$$
\frac{\partial^{2} E_{x}}{\partial x^{2}}+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\frac{\partial^{2} E_{x}}{\partial z^{2}}-\epsilon_{0} \mu_{0} \frac{\partial^{2} E_{x}}{\partial t^{2}}
$$

and

$$
\frac{\partial^{2} E_{y}}{\partial x^{2}}+\frac{\partial^{2} E_{y}}{\partial y^{2}}+\frac{\partial^{2} E_{y}}{\partial z^{2}}=\epsilon_{0} \mu_{0} \frac{\partial^{2} E_{y}}{\partial t^{2}}, \quad \text { (3.23) }
$$

with precisely the same form for E_{2}, B_{2}, B_{2}, and B_{2} Equations of this sort, which relate the space and time variations of some physical quantity, had been studied long before Maxwell's work and were known to describ wave phenomena. Each and every component of th electromagnetic field ($E_{x}, E_{y}, E_{x}, B_{x}, B_{y}, B_{z}$) therefor obeys the scalar differential wave equation

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}},
$$

provided that

$$
v=1 / \sqrt{\epsilon_{0} \mu_{0}} .
$$ To evaluate v Maxwell made use of the results of elec Till experimer (1801-1891) and Rudol Lehzig by

In Cartusian coordinate
$\nabla^{2} \mathrm{E}=\boldsymbol{i} \nabla^{2} E_{1}+\hat{j} \nabla^{2} E_{\gamma}+\hat{\mathbf{k}} \nabla^{2} E_{\Sigma}$

1800-18581. Equivalently, nowadays in is assigned Wive of $4 \pi \times 10^{-7} \mathrm{mkg} / \mathrm{C}^{8}$ in SI units, and one can Luan ofmine x_{0} directly from simple capacitor measure ments. In any event
$\boldsymbol{\varepsilon}_{0} \mu_{0} \approx\left(8.85 \times 10^{-12} \mathrm{~s}^{2} \mathrm{C}^{8} / \mathrm{m}^{9} \mathrm{~kg}\right)\left(4 \pi \times 10^{-7} \mathrm{mkg} / \mathrm{C}^{2}\right)$

$$
\epsilon_{0} \mu_{10}=11.12 \times 10^{-18} \mathrm{~s}^{2} / \mathrm{m}^{2} .
$$

And now the moment of truth-in free space, the pre dicted speed of all electromagnetic waves would the be

$$
v=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}} \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

This theoretical value was in remarkable agreement yith the previously measured speed of ligh $[315,300 \mathrm{~km} / \mathrm{s})$ determined by Fizeau. The results o

This velocity [i.c., his theoretical prediction) is so neary that of light, that it seems we have strong reason to conclude that light itself (including radiant heat, and other radiations if any) is an clectromagnetic disturbance in the form of waves propagated through the electromagnetic ficid according to electromagnetic laws.
This brilliant analysis was one of the great inteliectual triumphs of all time.
It has become customary to designate the speed of light in vacuum by the symbol ε, which comes from the Latin word celer, meaning fast. In 1983 the 17 th Confer ence Genérale des Poins et Mesures in Paris adopted a new definition of the meter and thereby fixed the speed of light in vacuum as exactly
$c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
The experimentally verified transverse character of Wight must now be explained within the context of the What must now be explained within the context of the simple case of a plane wave propagating in the the fairly explirection. The electric field incensity is a solution of $\sqrt[4]{\text { 4 }}$. (A1.26), where E is constant over each of an infinite sel of planes perpendicular to the x-axis. It is therefore
function only of x and t; that is, $\mathbf{E}=\mathbf{E}(x, t)$. We now efer back to Maxwell's equations, and in particular to (321) which is generally read as the divergence a fuals zero. Since \mathbf{E} is not a function of either y or z, the equation can be reduced to

$$
\frac{\partial E_{x}}{\partial x}=0
$$

E_{x} is not zero-that is, if there is some component $\frac{1}{5}$ the field in the direction of propagation-this epression tells us that it does not vary with x. At an given time E_{x} is constant for all values of x, but of course his possibility cannot therefore correspond to a travel ing wave advancing in the positive x-direction. Alternatively, it follows from Eq. (3.25) that for a wave, $E_{x}=0$; he electromagnetic wave has no electric field component in the direction of propagation. The E-field erse. Without any loss of generality we shall deal with hane or linearly plasized waves in, which the divection of the vibrating Evector is fixed Thus we can orien ur coordinate axes so that the electic field is paralle to the s-axis, whereupon

$$
\mathbf{E}=\hat{j} E_{y}(x, l) .
$$

Returning to Eq. (3.18), it follows that

$$
\begin{equation*}
\frac{\partial E_{y}}{\partial x}=-\frac{\Delta B_{0}}{\partial t} \tag{3.27}
\end{equation*}
$$

and that B_{x} and B_{y} are constant and therefore of n o interest at present. The time-dependent B-field can only have a component in the z-direction. Glearly then, in rre space, the plane electromagnetic wave is inderd transvers Fig. 3.8). Except in the case of normal ingidence, such aves propagating in real material media are generally not transverse-a complication arising from the fac that the medium may be dissipative and/or contain free charge.
We have not specified the form of the disturbance ther than to say that it is a plane wave. Our conclusions pulses or continuous waves We have already woill ut that harmonic functions are of particular pointere Scause any waveiorm can be expressed in terms of sinusidal waves by Fourier techniques. We therefor

4z Chapter 3 Electromagnetic Theory, Photons and Light

Eigure 9.8 The field configuration in a plane harrmonic eleciromag relic wave.
limit the discussion to harmonic waves and write $E_{,}(x, i)$ as
the speed of propagation being c. The associated mag netic fux density can be found 'oy directly integrating Eq. (3.27), that is,

$$
B_{z}=-\int \frac{\partial E_{2}}{\partial x} d t .
$$

Using Eq. (3.28), we obtain

$$
B_{z}=-\frac{E_{(v)} \omega}{c} \int \sin [\omega(t-x / c)+\varepsilon] d t
$$

n

$$
B_{2}(x, i)=\frac{1}{c} E_{[\mathrm{ly}} \cos [\omega(t-x / c)+\varepsilon] . \quad(3: 29)
$$

The constant of integration, which represents a timeindependent field, has been disregarded. Comparison of this result with Eq. (3.28) makes it evident that

$$
E_{y}={ }_{c} B_{z} .
$$

(330)

Since E_{y} and B_{z} differ only by a scalar, and so have the

sane sirne dependence, E and \mathbf{B} are in phase at all points in space. Moreover, $\mathbf{E}=\hat{\mathbf{j}} E,(x, l)$ and $\mathbf{B}=\hat{\mathbf{k}} B_{s}(x, t)$ are mulualty perpondicular, and their cross-product, $\mathbf{E} \times \mathbf{B}$, points in the propagation direction, \hat{i} (Fig. 3.9).
Plane waves, although of great importance, are not the only solutions to Maxwell's equations. As we saw in

Hie previous chapter, the differential wave equation Whews many solutions, among which are cylindrical and spherical waves (Fig. 3.10).

3.3 ENERGY AND MOMENTUM
 3.3.1 Irradiance

One of the most significant properties of the electremagnetic wave is that it transports energy. The ligh: Grem even the nearest star beyond the Sun travels 25 million million miles to reach the Earth, vet is still carries enowgh energy to do work on the electrons within your eye. Any electromagnetic field exists within some region of space, and it is therefore quite natural to consider the radiant energy per unit volume, or the energy density, 14 For an clectric field alone, one can compute (Problem 3:3) the energy density (e.g., between the plates of a capacitor) to be

$$
\begin{equation*}
u_{E}=\frac{e_{t}}{2} E^{2} \tag{3.31}
\end{equation*}
$$

Similarly, the energy density of the B-field alone (as it might be computed within a toroid) is

$$
\begin{equation*}
u_{B}=\frac{1}{2 \mu_{y}} B^{2} . \tag{39?}
\end{equation*}
$$

We derived the relationship $\boldsymbol{E}=c B$ specifically for a plane wave; nonetheless it is quie general in its applicability. Since $c=2 / \sqrt{\epsilon_{0} \mu_{0}}$, it follows that

$$
u_{\mathrm{E}}=u_{\mathrm{B}}
$$

The energy streaming chrough space in the form of an electromagnetic wave is shared between the constiuuent electric and magnetic fields, Since

gearly,	$u=u_{E}+u_{B}$,
prequivalently,	$u=\epsilon_{0} E^{2}$
	$u=\frac{1}{\mu_{0}} B^{2,}$.

(3.36)
3.3 Energy and Momentum

43
To represent the flow of electromagnetic energy, let S symbolize the transport of energy per unit time (the power) across a unit area. In the SI system it would then have units of W / m^{2}. Figure 3.11 depicts arl elec tromagnetic wave traveling with a speed c chrough an area A. During a very small interval of time Δt, only the energy contained in the cylindrical volume $u(c \Delta t A)$, will cross A. Thu

$$
S+\frac{u c \Delta t A}{\Delta t A}=u c
$$

or, using Eq. (3.35)

$$
\begin{equation*}
S=\frac{1}{\mu_{0}} E B . \tag{3.98}
\end{equation*}
$$

We now make the reasonable assumption (for isotropic media) that the energy flows in the direction of propaga tion of the wave. The corresponding vector S is then

$$
\mathbf{S}=\frac{1}{\mu_{\mathrm{h}}} \mathbf{E} \times \mathbf{B}
$$

(9.99)

$$
\mathbf{S}^{-} c^{2} \epsilon_{l} \mathbf{E} \times \mathbf{B} .
$$

$$
(9.40)
$$

The magnitude of \mathbf{S} is the power per unit area crossing surface whose normal is parallel to S . Named afte Jhn Henry Poynting (1852-1914), it has come to be

known as the Poynting vector. Let's now apply thes considerations to the case of a harmonic, linearly polar ized plane wave traveling through free space in the direction of \mathbf{k} :

$$
\begin{array}{ll}
\mathbf{E}=\mathbf{E}_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t) \\
\mathbf{B}=\mathbf{B}_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t) .
\end{array}
$$

Using Eq. (3.40) we find

$$
\mathbf{S}=r^{2} \epsilon_{l} \mathbf{E}_{[l} \times \mathbf{B}_{6}, \cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t) .
$$

It should be evident that $\mathbf{E} \times \mathbf{B}$ cycles from maxima to minina. At optical frequencies. S is an extremely rapidly varying function of time (indeed, twice as rapid as the fields, since cosine-squared has double the frequency of cosine), so its instantaneous value would be an impractical quantity to measure. This suggests that we employ an averaging procedure. That is to say, we absorb the radiant energy during some finite interval of time using, for example, a photocell, a bim plate, or the retina of a human eye. The time-averaged value of the magnitude of the Poynting vector, symbolized by $\langle S\rangle$, is a measure of the significant quantity known as the irradiance.* I. In this case. since $\left\langle\cos ^{2}(\mathbf{k} \cdot \mathrm{r}-\omega i\rangle=\right.$ $\frac{1}{2}$ (see Problem 3.4),

$$
\begin{equation*}
\langle S\rangle=\frac{c^{2} \varepsilon_{0}}{2}\left|\mathbf{E}_{0} \times \mathbf{B}_{0}\right| \tag{3.43}
\end{equation*}
$$

or

$$
\begin{equation*}
I=\langle S\rangle-\frac{C \epsilon_{0}}{2} E_{\square}^{2} \tag{}
\end{equation*}
$$

The irradiance is therefore proportional to the square of the amplitude of the elecrric field. Two alternative ways of saying the same thing are simply
and

$$
I=\frac{c}{\mu_{0}}\left\langle B^{2}\right\rangle
$$

$$
I=\epsilon_{0} c\left(E^{2}\right) .
$$

Within a linear, homogeneous, isotropic dielectric, the

* In the past physicists generally used the word infersity to mean the How of energy per unit area per unit time. By international, if not
univcrsal. agrermest. that term is slowly being replaced in optics by the word iradiance.
expression for the irradiance becomes

$I=\operatorname{\epsilon \nu }\left\langle E^{2}\right\rangle$.

 t ewering forces and dons considerably more cffective at exerting forces and doing work on charges than is , 16) shant use \mathbf{E}_{q} The time rate of fow
The time rate of flow of radiant energy is the power
 he radiant flux incident on or exiting from a surface W/ m^{2}) n the former case, we speak of the irradiance W/me. In the former case, we speak of the irradzance, density. The irradiance is a measure of the concentrotion of power. Whether recorded by a photograph or a meter, it is the primary practical quantity corresponding o the "amount" of light flowing.
There are detectors, like the photomultiplier, that serve as pholon counsers. Each quantum of the elecromagnetic field, having a frequency ν, represents an energy $h \nu$ (Planck's constant, $h=6.625 \times 10^{-3.4} \mathrm{~J}$ s). If we have a uniform monochromatic beam of frequency 4. the quantity $I / h v$ is the average number of photons crossing a unit area (normal to the beam) per unit time, namely, the photon fux density. Were such a beam to mpinge on a counter having an area A, then $A I / h \nu$ number of photons arriving per unit of time
We saw earlier that the spherial wave solut
iferential wave equation has an amplitude that of the differential wave equation has an amplitude that varies within the context of energy conservation. Consider an isotropic point source in free space, emicting energy equally in all directions (i.e., emitting spherical waves). Surround the source with two concentric imaginary spherical surfaces of radii r_{1} and r_{2}, as shown in Fig. 3.12. Let $E_{0}\left(r_{1}\right)$ and $E_{0}\left(r_{2}\right)$ represent the amplitudes of the waves over the first and second surfaces, respec ively. If energy is to be conserved, the total amount of energy flowing through each surface per second must ee equal, since there are no other sources or sinks present. Multiplying I by the surface area and taking the square root, we get
$r_{1} E_{0}\left(r_{1}\right)-T_{2} E_{0}\left(\tau_{2}\right)$.

Figure 3.12 The geometry of the inverse square law.
nasmuch as r_{1} and r_{2} are arbitrary, it follows that

$$
{ }_{\gamma} E_{0}(r)=\text { constant },
$$

and the amplitude must drop off inversely with r. The irradiance from a point source is proportional to $1 / r$. This is the well-k nown inverse-square laul, which is easily verified with a pont source and a photograph exposure meter. Notice that if we envision a beam of photons streaming radially our from the source, the same result clearly obtains.

3.3.2 Radiation Pressure and Momentum

As long ago as 1619 Johannes Kepler proposed that it was the pressure of sunlight that blew back a comet tail so that it always pointed away from the Sun. Tha argument particularly appealed to the later proponent Qf the corpuscular theory of light. After all, they envisioned a beam of light as a stream of particles, and such a stream would obviously exert a force as it bombarded matcer. For a while it seemed as though this effect over the wave theory, supcriority of the corpuscular to that end failed to detect the force of radiation, and the force of radiation, and
interest slowly waned

Ironically, it was Maxwell in 1873 who revived the subject by establishing theoretically that waves do indeed exert pressure. "In a medium in which waves are propigated," wrote Maxwell, "there is a presure in the enargy in a unit of volume": equal to the energy in a unit of volume.
When an electromagnetic wave impinges on some stitute bulk inatter. Regardless of whether the wave is partially absorbed or reflected. it exerts a force on those charges and hence on the surface itself. For example, in the case of a good conductor, the wave's electric field generates currents, and its magnetic field generates forces on those currents.
It's possible to compute the resulting force via classical electromagnetic theory, whereupon Newton's second law (which maintains that force equals the time rate of change of momentum) suggests that the weve isself carries momentum. Indeed, whenever we have a flow of energy, it's reasonable to expect that there will be an associated momentum-the two are the related time and space aspects of motion.
As Maxwell showed, the radiation pressure, \mathscr{P}, equals E4s. (3.31) and (3.32), for a vacuum we know that Eqs. (3.31) and (3 32) for a vacuum, we know that

$$
u_{t_{F}}=\frac{\epsilon_{Y}}{\underline{Q}} E^{\mu} \text { and } u_{\mathrm{E}_{\mathrm{B}}}=\frac{1}{2 \mu_{1,}} B^{2} .
$$

Since $\mathscr{P}=u=u_{s}+u_{R}$

$$
g p=\frac{\epsilon_{0}}{2} E^{2}+\frac{1}{2 \mu_{0}} B^{2} .
$$

Alternatively, using Eq. (3.97) we can express the pressure in terms of the magnitude of the Poynting vector, ramely,

$$
\begin{equation*}
\mathscr{P}-\frac{S}{=} \tag{3.t9}
\end{equation*}
$$

Notice that this equation has the units of power divided by area, divided by speed-or equivalently, force times speed divided by area and speed, or just force over
 rface by a normally incident beanh.
Inasmuch as the \mathbf{E} - and \mathbf{B}-fields are rapidly varying
S is rapidly varying, so it's eminently practical to deal with the average radiation pressure, namely,

$$
\langle\phi\rangle=\frac{\langle S\rangle}{c}=\frac{I}{c}, \quad\langle(30\rangle
$$

expressed in newtons per square meter. This same pressure is exerted on a source that itself is radiating Rgy
Referring back to Fig. 3.11, if p is momenturn, the force exerted by the beam on an absorbing surface is

$$
\begin{equation*}
A \mathscr{P}-\frac{\Delta \phi}{\Delta l} \tag{3.5n}
\end{equation*}
$$

If p_{V} is the momentum per unit volume of the radiation, hen an amount of momentum $\Delta y=p_{\mathrm{V}}(c \Delta t A)$ is transported to A during each time interval Δt, and

$$
A \mathscr{P}=\frac{p_{\mathrm{v}}\left(\frac{\Delta \Delta t A)}{\Delta t}=A \frac{S}{c} .\right.}{\theta_{t}}
$$

Hence the volume density of electromagnetic momen-
tum is

$$
\begin{equation*}
p_{V}=\frac{S}{i^{2}} \tag{3.59}
\end{equation*}
$$

When the surface under illumination is perfectly eflecting, the beam that entered with a velocity $+c$ will emerge with a velocity $-c$. This corresponds to twice the change in momentum that occurs on absorption,
and hence

$$
\langle\mathscr{P}\rangle \quad 2 \frac{\langle S\rangle}{c} .
$$

Notice, from Eqs. (3.49) and (3.51), that if some amount of energy \mathscr{F}_{6} is transported per square meter per second, then there will be a corresponding moen um $\ddot{6} / \mathrm{c}$ transported per square meter per second
In the photon picture, we envision particlelike qua
each having an energy $\mathscr{E}=h \nu$. We can then expect photon to carry a momentum $p=\mathscr{q} / c-h / \lambda$. Its vector momentum would be
relates the rest mass m_{0}, enetgy, and momentum of
particle by

$\mathscr{E}=\left[(c p)^{2}+\left(m_{p} r^{2}\right)^{2}\right]^{1 / 2}$

For a photon $\mathrm{m}_{\mathrm{k}}-0$ and $\mathscr{E}=c p$.
These quanturn-mechanical ideas have been con hirmed experimentally utilizing the Cornpton effect which detects the energy and momentum transferred to an electron upon interaction with an individual x-ray photon
from the Sun Aux density of electromagnetic energy outside the Earth' Assuming complete absorption, the resulting pressure would be $4.7 \times 10^{-4} \mathrm{~N} / \mathrm{m}^{2}$. or 1.8×10^{-9} ounce $/ \mathrm{cm}^{2}$, as compared with, say, atmospheric pressure of about $10^{5} \mathrm{~N} / \mathrm{m}^{*}$. The pressure of solar radiation at the Earth is tiny, but it is still responsible for a substantial planetwide force of roughty 10 tons. Even at the very surface of the Sun, radiation pressure is relatively small (see Problen 3.19). As one might expect, it becomes appreciable within the blazing body of a large bright star, where it plays a significant part in suppoting the star against it nonecheless can produce appreciable effects density. acting times. For example, had the pressure of surlight exerted on the Viking spacecratt durint its journey been neglected, it would have mised Mars by about $15,000 \mathrm{~km}$. Caiculations show that it is even feasible to use the pressure of sunlight to propel a space vehicie among the inner planets.* Ships with immense refecting sails driven by solar radiation pressure may some day ply the dark sea of local space. The pressure exerted by light was actually measured as iong ago as 1901 by the Russian experimenter Pyotr Nikolaievich Lebeder (1866-1912) and independently by the Americans Ernest Fox Nichols (I869-1924) and Gordon Ferrie Hull (1870-1956). Their accomplishments were formidable, considering the light sources available at the ime. Nowadays, with the advent of the laser, light can e focused down to a spot size approaching the theoretical limit of about one wavelength in radius. The result-
*The charged-particle flux called the "solar wind" is 1000 on 100.000
times less effective in providing a propulsive force than is sunlight.

Figure 3.13 The tiny starlike speck is a minute one-thousandth of an inch dia meter) ransparent glass spherc suspended in midair on an upward $\mathbf{\$ 5 0} \mathrm{mW}$ laserbeam. (Phete courtesy Bell Laboratorics.)
ing irradiance, and therefore the pressure is appreciable, even with a laser rated at just a few watts. It has thus hecome practical to consider radiation pressure for aill sorts of applications, such as separating isotopes. accelerating particles, and even optically levitating small bbjects (Fig. 3.13).
Light can also transport angular momentum, but this will certainly not happen with a linearly polarized wave. Acrordingly, we shail defer this rather important disCussion to Chapter 8, in which circular polarization is examined.

3.4 RADIATION

Atchough all forms of electromagnetic radiation propa-
Gate with the same speed in vacuum, they nontheless difer in frequency and wavelength. As we will see
difer presently, that difference accounts for the diversity of behavior observed when radiant energy interacts with
matter Even so. there is only one entity, one essence of electromagnetic wave. Maxwell's equations are of electromagnetic wave. Maxwells equations are mental differences in kind. Accordingly it is reasonabl to look for a common snurce-mechanism for all radiation. What we find is that the various types of radiant ation. What we find is that the various types of radian
energy seem to have a common origin in that they are energy seem to have a common onifigit in that they are all associated somiehow with nonumizormy moving charges.
We are, of course, dealing with waves in the electromag. netic field, and charge is that which gives rise to field, so this is not altogether surprising.
A stationary charge has a constant E-field. no B-field, and hence produces no radiation-where would the energy come from if it did? A uniformly moving charg has both an E- and a B-field, but it does not radiate. I you traveled along with the charge, the current would thereupon vanish, hence B would vanish, and we would be back at the previous case, uniform motion being relative. That's reasonable, since it would make no sense at all if the charge stopped radiating just because γ ou started walking along next to it, That leaves nonuniformh photon picuure this is underscored by the conviction that the fundamental interactions between matter and radiant energy are berween photons and charges.
radiant energy are between phoions and charges.
We know in general that iree charges (those not bound within an atom) emit elect romagnetic radiation
when accelerated. That much is true for chargeschang when accelerated. That much is true for chargeschang accelerator, sailing around in circles inside a cyclotron or simply oscillating back and forth in a radio antennaif a charge moves nonuniformly, it radiates. A firee charged particle can spontaneously absorb or emit a photon, and an increasing number of important devices, ranging from the free-electron laser (1977) to the syn chrorron radiation generator, utilize this mechanism on a practical level.

3.4.1 Linearly Accelerating Charges

At constant speed the charge essentially has attached to it an unchanging radial electric field and a surrounding circular magnetic field. Although at any stationary point in space the E-field changes from moment to

4 Chapter 3 Electromagnetic Theory, Photons and Light

Figure 3.14 (a) Electrict ficid of a stationary electron. (b) Electric field of a moving electron.
moment, at any instant its value can be deternined by supposing that the field lines move along, fixed to the upposing that the field lines move along, fixed to the charge. Thus the field does not disengage from the Tre ancic feld a a chare at
as in Pio 14 , by a uniform reat can be represended aigh Feld lines or a unitorm, radial distribation of straight hele amas, or lanes of force For a charge moving at a constant velocity v, the feld lines are still radial and straight, but they are no longer aniformiy disspeeds and is uswally negligible when $v \& \&$
In contrast, Fig. 9.15 shows the field lines associated with an electron accelerating uniformly to the rightr. The points O_{1}, O_{8}, O_{3}, and O_{4} are the positions of the electron after equal time intervals. The field lines are now curved, and this, as we shall see, is a significant difference. As a further contrast, Fig. $\mathbf{3 . 1 6}$ depicts the held of an electron at some arbilcary time h_{2}. Before $:=0$ the particle was always at rest at the point O. The charge was then uniformly accolerated until time f_{1}, reaching a speed ν, which was maintained constant tirereafres, We can anticipate that the surrounding field hies will somehow cary he fronman to to that this "information" will propagatc at the speed If for example, $4=10^{-6} 5$, no point heyond 8 m from O would be aware of the fact that che charge had even moved. All the lines in that region would be aniform, atraight, and cenrered on O, as if the charge were still

Figure 3.15 Electric field of a uniformly occelerating electron.

Figure 9.16 a kink in the Efield lines
there. At time t, the electron is at point O_{2}, and it is moving with a constant speed y. In the vicinity of O_{8} the field lines must then resemble thase in Fig. 3.14(b). Gausg's law requires thai the lines outside the sphere fof radius t_{2} connect to those within he sphere of tadi It ($t_{2}-t_{1}$), since there are no chargs ber when is $n 0^{W}$ apparent dan fielo lines became distorted and a ticle accelered. The exact shape of the lines within the kink appea he kink is of hitcle interest here What is region of is that there now exists a transverse component signitcant is inater \mathbf{E}_{r}, whick propagates outward as a pulse. At some point in space the transverse electric field will be a function of time, and it will therefore be accompanied by a magnetic field.
The radial component of the electric field drops off as $1 / r^{2}$, while the transverse component goes as $1 / \mathrm{r}$. At large distances from the charge the only significant fiel Will be the E_{T}-component of the pulse, which is known as the radiation feeld:* For a positive charge moving stowly ($\%$ \& c), the electric and magnetic radiation fields gan be shown tobe proportional to $\bar{r} \times(\mathbf{r} \times \mathbf{a})$ and $(\mathbf{a} \times \mathbf{r})$, gapectively, where a is the accele ration. For a negative Tharge the reverse occurs, as shown in Fig. 3.17. Observ (hat the irradiance is a funttion of θ and chat $I(0)$ The energy thas is tadiated out into the surtoundin theace is gupplied to the charge by some extermal agent. Thitat agent is responsible for the accelerating force Whitch in turn does wark on the charge.

3.4.2 Synchrotron Radiation

A free changed particle traveling on any sorn of curved path is acceleraing and so will radiate. This behavio grovidea a powerful mechanism for producing radiant ehergy, both naturally and in the laboratory. The symahrotron radiation generator, one of the most exciting

[^1]

Figure 3.17 The torodai radiation pattern of a lineanly accalerating ciarge (splis to show cross scciots)
esearch tools to be developed in the 1970 s, does just that. Clumps of charged particles, usually electrons or positrons, interacting with an applied magnetic field reck a precisely controlled speed The frequency of he orbit determines the frequency of the emission which also wouans higher harmonics), and that is continuously variable, more or less, as desired

A charged particle slowly revolving in a circular orbit radiates a doughnut-shaped pattern similar to the one is symmetrical around a which is now the rendiation acceleration acting inward alone the radius drawn from the center of the circular orbit to the charge. The higher the speed, the more an observer at rest in the laboratory will "sec" the backward lobe of the radiation pattern shink while the forward lobe elongates in the direction of motion. At speeds approaching c, the particle beam (usually with a diameter comparable to that of a straight pin) radiates essentially along a narrow cone pointing tangent to the orbit in the instantaneous direction of v (Fig. 3.18). For $v \approx<$ the radiation will be very strongly polarized in the plane of the motion.
This "searchlight," often less than a few millimeters in diameter, sweeps around as the particle clumps circle the machine, much like the hcadlight on a train rounding a turn. With each revolution the beam momentarily ($<\frac{1}{2}$ ns) flashes chrough one of many windows in the device. The result is a tremendously intense source of rapidly pulsating radiation, tunable over a very broad When frequencies, from infrared to light to x-rays. rons wigrle in and out of their circular orbits, busts of hiph-frequency x-rays of unparalleled incensicy an be created. Thesc beams, which are hundreds of thousands of times more powerful than a dental x-ray thousands of times more powerrul than a dental x-ray sized hole through a 3 -mm-thick lead plate.

Figure 3.18 Radiation pattern for an orbiting charge.

Figure 3.19 The first beam of light frum the National Synchroutron Light Source (1982) emanating from is ultraviolet electron scorape

Though this technique was first used to produce light in an electron synchrotron as long ago as 1947, it took several decades to rccognize that what was an energymajor research tool in itelf (Fis 3 19) perpat be major research tool in itself (Fig. 3.19)
the astronomical realm, we can expect that some regions exist that are pervaded by magnetic induction
fields. Charged particles trapped in these fields will move in circular or helical orbits, and if their speeds are high enough, they will emit synchrotron radiation. Figure 3.20 shows five photographs of the extragalactic Crab Nebula. * Radiation emanating from the nebula
*The Crab Nebula is believed to the exparding debris left over after the cataclysmic death of a star. Fromi ist rate "if expans sion, astronemmers alculated that the explosion took placer in 1050 A.D. This was sub-
sequently corroborated when a sucdy of old Chivics records the sequently corroborated when a study of old Chificss records (the
chranides of the Peiping Observatory) revealed the appearancce of an extemely bright slar, in the same region of the sky, in the year 1054 A.D
In the first year of the period Chinha, the hith moonn, the day Chi-chou [i.e., July 4, 1054], a great star appeared.... After more than a year, it gradually became invisible. there is little doubt that the Crat Nebula is the remnant of that supernoval.

要家ure 3.20 (a) Synchrotron radiation arising from the Crab Nelula. St, these photos only light whose E-field dirction is as indiéted was
extends over the range from radio frequencies to the extreme ultraviolet. If we assume the source to be ryapped circulating charges. we can anticipate strong polarization effects. These are evident in the first four Qholographs, which were taken through a polarizing cated in direction of the electric field vector is indi-

recorded. (Photos courtesy Mc. Wilson and Palomar Observatories.)
the emitted E-field is polarized in the orbital plane, we can conclude that each photograph corresponds to particular uniform magnetic field orientation norma to the orbits and to \mathbf{E}.
it is believed that a majority of the low-frequenc their oripin in synchrot

Figure s.20(b) The Crab Nebula in unpolarized light.
astronomers used these long-wavelength emissions to dentify the new class of objects known as quasars. In 955 bursts of polarized radiowayes were discovered emanating from Jupiter. Their origin is now attributed o spiraling electrons trapped in radiation belts surrounding the planet.

3.4.3 Electric Dipole Radiation

Perhaps the simplest electromagnetic wave-producing mechanism to visualize is the oscillating dipole-two harges, one phe the he gast important of all Both light and ultravio
Book the rearrangement of the putermost primarily from the rearrangemens of the outermost, or weakly
bound, electrons in atoms and molecules. It follows from the quantum-mechanical analysis that the electric from the quantum-mechanical analysis that the electric
dipole moment of the atom is the major source of this radiation. The rate of energy emission from a material system, although a quantum-mechanical process, can be envisioned in terms of the classical oscillating electric dipole. This mechanism is therefore of considerable
importance in understanding the manner in which atoms, molecales, and even nuclei emit and absorb electromagnetic waves. It will be of particular interest when we study the interaction of light with matuer.
We shall again simply use the results of a lengthy and rather complicated derivation. Figure 3.21 schematically depicts the electric field distribution in the region of an electric dipole. In this configuration, a negative charge oscillates linearly in simple harmonic motion about an equal stationary positive charge. If the angular frequency of the ascillation is ω, the time-dependent dipole moment $\beta(t)$ has the scalar form

$$
A=A_{0} \cos \omega t .
$$

Note that (0) could of ercillating charge distibution on the monen of the escllating chige uistibun antenna.

At $t=0,=f_{0}=q d$, where d is the initial maximum separation between the centers of the two charges (Fig. 3.21a). The dipole moment is actually a vector in the direction from $-q$ to $+q$. The figure shows a sequence the dipole moment decreases, then goes to zero, and finally reverses direction. When the charges effectively overlap, $\phi^{-}=0$ and the field lines must close on themselves.
Very near the atom, the E-field has the form of a scatic electric dipole. A bit farther out, in the region where the closed loops form, there is no specific wavelength. The detailed treatment shows that the electric field is composed of five diferent terms, and things are obviously complicated. Far from the dipole, in what is called the waye or radiation zone, the field configu wavelength has been established. E and B are transverse muwally perpendicular and in phase verse, mutua
Specifically,

$$
E-\frac{k_{0} k^{2} \sin \theta}{4 \pi \epsilon_{11}} \frac{\cos (k r-\omega t)}{r}
$$

and $B=E / c$. where the fields are oriented as in Fig 3.22. The Poynting vector $\mathbf{S}=\mathbf{E} \times \mathbf{B} / \mu_{0}$ always point radially outward in the wave zone. There, the B-field lines are circles concentric with, and in a plane perpen-

- Tor to, the dipole axis. This is understandable, since dualar to, the didered to arise from the time-varying yollator current. (ndiated radially outward from the The inradian follows from Eq. (9.44) and is given by

$$
\begin{equation*}
I(\theta)=\frac{\hat{\theta}_{0}^{2} \omega^{4}}{32 \pi^{2} \epsilon^{3} \varepsilon_{i j}}-\frac{\sin ^{2} \theta}{r^{2}}, \tag{3.5b}
\end{equation*}
$$

again an inverse square law dependence on distance.

Fligure 3.21 The E-fcld of an oscillaunt eiectric dipolc.

The angular flux density distribution is toroidal, 25 in Fig. 3.17. The axis along which the acceleration takes place is the symmetry axis of the radiation pattern. higher the frequency, the stronger the radiation; that feature will be important when we consider scattering. Ir's not difficult to attach an AC generator between two conducting rods and thereby send currents of free electrans ascillating up and down that "transmitting

Figure 9.42 Field orientations for an oscillating electric dipole.
antenna." Figure 3.28 shows the arrangement carried. to its logical conclusion-a fairly standard AM radio tower. An antenna of this sort will funcion most efficiently if its length corresponds to the wavelength being transmitted or, more conveniently, to $\frac{1}{2} \lambda$. The wave being radiated is then formed at the dipole in synchronization with the oscillating current producing it. AM radiowaves are unfortunately several hundred meters long. Consequently, the antenna shown in the
figure has half the $\frac{1}{2} \lambda$-dipole essentially buried in the figure has half the $\frac{1}{\text { a }}$ ג-dipole essentially buried in that at least sayes some height, allowing us to build the device only $\frac{1}{4} \lambda$ tall. Moreover, this use of the Earth also generates a so-called ground wave that hugs the planet's surface, where most people with radios are likely to be located. A commercial station usually has a range somewhere between 25 and 100 miles.

3.4.4 Atoms and Light

Surely the most significant mechanism responsible for the natural emission and absorption of radiant energyespecially of light-is the bound charge, electrons confined within atoms. These minute negative particles, which surround the massive positive nucleus of each atom, constitute a kind of distant, tenuous charger cloud. Much of the chemical and optical behavior of ordinary matter is determined by its outer or valence

Therons. The remainder of the cloud is ordinarily formed into "closed," essentially unresponsive, shell round and tichtly bound to the nucleus. These closed or filled shells are made up of specific numbers of electron pairs. Even though it is not completely clea what occurs interrally when an atom radiates, we do know with some certainty that light is emitted during readjustments in the puter charge distribution of the electron cloud. This mechanism is ultimately the pre dominant source of light in the world.
Usually, an atom exists with its clutch of electron arranged in some stable conizuration that corresponds to their lowest energy distribution or level. Every elec tron is in the lowest possible energy state available in it, and the atom as a whole is in its so called ground state configuration. There it will likely remain indefinitely, if left undisturbed. Any mechanism that pumps energy into the atom will aker the ground state For instance, a collision with another ratom, an electron or a photont canting to quartum-mechanical theory, an torn can exist with iss electron cloud in only certain specific configurations corresponding to orily certain values of energy. In addition to the ground state, there values of energy. In addition to the ground state, there associated with a specific cloud configuration and a specific well-defined energy. When one or more electrons occupies a level higher than its ground-state level,
he atom is said to be excited-a condition that is inher ently unstable and temporary.
Atlow temperatures, atoms tend to be in their ground state; at progressively higher temperatures, more and more of them will become excited through atomic col sions. This sort of mechanism is indicative of a cla of relarvely gentle excitations-glow discharge, ham park, and so forth-which energize only the outermo unpaired valence electrons. We will mitially concentrat on these outer electron transitions, which give rise to the emission of light, and the nearby infrared an ultraviolet.
When enough energy is impartedto an atom (typically o the valence electron), whatever the cause, the atom mergy level The electron will pstally mahe to ahigher ancition a quantum for configuration to one of the well-delineated acired tates, one of the quantized rungs on iss energy laddes As a rule, the amount of energy takee up in the proces equals the energy difference between the intial and fnal states, and since that is specific and well defined the amount of energy that can be absorbed by an atom is quantized (i.e., limited to specific amounts). This state of atornic excitation is a short-lived resonatice phenomenon. Ustally, after about 10^{-8} or $10^{-9} \mathrm{~s}$, the excired atom spontaneousky relaxes back to a lower state, most often the ground state, losing the excitation energ wong the way. This energy readjustment can occur by way of the emission of light or (especialiy in dense materials) by conversion to thermal energy through if the atomic
If the atomic transition is accompanied by the 13.7) the energy of the in rarcfied gas; see Section quantized energy 1 treese of the arom That corre sponds to a specific frequency bo way of $\Delta g^{=} h v^{2}$ frequency astociated with both the photon and th atomic transition between the two particular states. This is said to be a tesenarce frequmg one of several (eack with its owa likelihood of occurring) at which the atom very efficiently absorbs and emits energy. The atom radiates a quantum of energy that presumabiy is created spontaneousily, on the spot, by the shifting electron. Even though what occurs during that interval of 10^{-8}

55
is far from clear, it can be helpful to imagine the orbital orbital cien via a gradually damped oscilatory motion at the specific resonance frequency. The radiated light can then be envisioned in a semiclassical way as emitted in a shor osecillatory pulse, or waveurain, lasting less than roughly 10^{-8} s-a picture that is in agreement with experimental observation (see Section 7.10, Fig. 7.19). It is useful to think of this electromagnetic pulse as associated in some inextricable fashion with the photon. In a way, the pulse is a semiclassical representation of he manifest wave nature of the photon. But the two are not equivalent in all respects: the electromagnetic waverrain is a classical creation that can be used to describe the propagation and spatial distribution of light extremely well, yet its energy is not quanrized, not calied, and that is an essential characteristic of che phavetrains (han jus a clan magnetic Th
The emission spectra of single atoms or low-pressure gases, whose atoms do not interact appreciably, consist of sharp "lines," that is, fairly well-defined frequencies characteristic of the atoms. There is always some fequency broadening (see Section 7.10) of that radiion due tomic motion, collisions, and so forth, so rever precisely monochromatic (i.e,, a single color mequery). Gencral 1 , however, the atomictransion from one level to another is characterized by the emission of a well-defined narrow range of frequencies. On the ocher hand, the spectra of solids and llquids, in which the atoms are now interacting with one another, broadened into wide frequency bands. When two atoms are brought close together, the result is a slight on each orher The many interecting because they act reate a tremendous number of such thifed aspa effect apreading out each of their criginal levels, bluring them into essentially conninuous bands. Material f this nature emit and absorb over broad ranges of frequencies.
Light emitted from a large assemblage of randomly oriented independent atorns will consizt of wayetrains in all directions. Eachone of these will bear noparticular
consistent phase relation with any of the others, nor will they share a common polarization. This is in marked contrast to the continuous. polarized. extended wavetrains gencrated by sustained current oscillation in a transmitting antenna (Fig. 3.23). Even in that case in a transmitting antenna (Fig. 3.23). Even in that case, simple harmonic functions containing only one frequency are idealizations-at times reasonable ones, brequency are idealizations nonetheless. Before switehing on even a perfect generator, the radiation will obviously have been zero. Yet a harmonic function has no such limitations on its time dependence and clearly cannot, by irself, represent such a wave. If the generator has bee on for a long enough time, the wave it emits will be, at best, nearly monochromatic or quasimonochromatic. For many applications, laser light or light passed through a narrow hand filcer can be adequately represented by a single harmonic function. Even so, since it is not possible to produce monochromacic radat the term can be used only loosely, and chis point must be borne in mind.

3.5 LIGHT IN MATIER

The response of dielectric or nonconducling materials to electromagnetic fields is of special concern to us in optics. We will, of course, be dealing with transparent dielectrics in the form of lenses, prisms, plates, films. and so forth, not to mention the surrounding sea of air. The net effect of introducing a hornogencous, isotropic dielectric into a region of free space is to phase velocity in the medium now becomes

$$
v-1 / \sqrt{\epsilon \mu}
$$

(3.57)

The ratio of the speed of an electromagnetic wave in vacuum to that in mater in known
of refraction n and is given by

$$
\begin{equation*}
n=\frac{c}{v}-\sqrt{\frac{e \bar{x}}{\epsilon_{0}, \mu_{0}}} \tag{3.58}
\end{equation*}
$$

In terms of the relative permitivity and relative permeability of the medium, n becomes

The great majority of substances, with the exception of ferromagnetic materials, are only weakly magnetic: none is actually nonmagnetic. Even so, $\boldsymbol{K}_{\mathrm{m}}$ generally doesn't deviate from 1 by any more than a few parts in 10^{4} (e.g., for diamond $K_{m}=1-9.2 \times 10^{-5}$). Setting $K_{\mathrm{da}}=1$ in the formula for a results in an expression known as Maxzuell's retation, namery,

$$
n-\sqrt{K_{e}}
$$

wherein K, is presumed to be the static dielectric constant, As indicated in Table 3.1, this relationship seems to work well only for some simple gases. The difficulty arises because K_{c} and therefore n are actually frequency. detendent. The dependence of n on the wavclength (or color) of light is a well-known effect called dispersion. Indeed, Sir Isaac Newton used prisms to isperse white ght intons hem ago, and the phenome There then
There are two interrelated questions that come to mind at this point: (1) What is the physical hasistir ter mechanism wherety the phase velocity in the medium Table 3.1 Maxwell's relatarn.

Feffectively made different from c ? The answers. to both these questions can be found by examining the finteraction of an incident electromagnetic wave with hie artay of atoms constituting a dielectric material. An atom can react to incoming light in two different ways, Eflepending on the incident frequency or equivalently at the incoming photon energy ($\delta=h \nu$). Generally the atom will "scatter" the light, redirecting it without fitherwisc altering it. On the other hand, if the photon's energy matches that of one of the excited states, the atora will "absorb" the light. making a quantum jump Cot that higher cnergy level. In the dense atomic landScape of ordinary gases (at pressures of about $10^{2 \prime} \mathrm{~Pa}$ and up), solids, and liquids, it's very likely that this axcitation energy will rapidly be transferred, via colhefore a photor can be emitted. This commonplace before a photon can be a photon and its convcrsion process thermal energy) was at one time widely known as Whabsorption," but nowadays that word is morc often used to refer just to the "taking up" aspect, regardless used to refer just the then happens to the energy. Consequently, it's now better referred to as dissipative absorption.
In contrast to this excitation process, ground-state or nonresonant scattering occurs with incoming radiant energy of other frequencies-shat is, other than resonance frequencies (see Section 13-7). Inagine an atom in its lowest state and suppose that it interacts with a photon whose energy is too small to a cause a transition ti0 any of the higher, excited states. Despite that, the electromagnetic field of the light can be supposed to ditive the electron cloud into oscillation. There is no anting atomic transition; the atom remains in its盟筑d state while the cloud vibrates ever so slightly at didequency of the incident light. Once the electron deus, the system constitutes an oscillating dipole and dill presumatly immediately begin to radiate at that frequency. The resulting scattered light consists Whoton that sails off in some direction carrying the reamount of energy as did the incident photon-the ering is elastic. In effect, we are sopposing that the Mresembles a little dipole oscillator, a model dyed by Hendrik Antoon Lorentz (1878) with inaíkable success.

When an atom is in an active entifonment, the process of excitation and spontaneous emission is rapidy of excitation and spontaneous emission is rapidy
repeated. In fact, with an emission lifetime of $=10^{-8}$ s an atom could spontaneously emit upward of $10^{\text {h }}$ an atom could spontaneously emit upward of 10
photons per second in a situation in which there was enough energy to keep reexciting it. Atoms have a very strong tendency to interac with resonant bight (they have a large absorpsion cross-scation). This means that the saturation condition, in which the atoms of a lowpressure gas are constandy emituang and being reexcised, occurs at a modest value of irradiance $\left(=10^{2} \mathrm{~W} / \mathrm{m}^{2}\right)$, So it's not wery difficult to get atorus firing out photons at a rate of 100 million per second. Gencrally, we can imagine chat in a medium illuminated by an ordinary beam of light, each atom behaves as though it was a source of a tremendous number of photons (scatered either elastically or resonaatly) reserobles a classial spherical wave Thus we inget an atom (even thourh it is simplistic te do so) as a point source of sphericai electromagnetic wavetrainsprovided we keep in mind Einstein's admonition that "outgoing radiation in the form of sphericai waves does not exist."
When a material with no resonances in the visible is bathed in light, nonresonant scattering occurs and it gives each participating atom the appearance of being a tiny source of spherical wavelets. As a rule, the closer the frequency of the incident beam is to an atomic resonance, the more stongly will the interaction occur and, in dense materials, the more energy will be dissipatively absorbed. It is precisely this mechanism of selective absorption (see Section 4.4) that creates much of the visual appearance of chings. It is primarily responsille for the color of your hair, skin, and clothing, the color of leaves and apples and paint.

3.5.1 Dispersion

Maxwell's theory treats matter as continuous, representing its electric and magnetic responses to applied \mathbf{E} and B-fields in terms of constants, ϵ and μ. Confore unrealistically independent of frequency. To deal
theoretically with dispersion, the well-known frequency dependence of the refractive index, it is necessary to incorporate the atomic nature of matter and, obviously, to exploit some frequency-dependent aspect of that nature. Following H. A. Lorentz, we can then average the contributions of large numbers of atoms to represent the behavior of an isotropic dielectric medium.
When a dielectric is subjected to an applied electric field, the internal charge distribution is distorted under its influence. This corresponds to the generation of electric dipole moments, which in turn contribute to the total internal field. More simply stated, the external field separates positive and negative charges in the medium (each pair of which is a dipole), and these then contribute an additional ficld component. The resultant dipole moment per unit volume is called the electric polarization \mathbf{P}. For most materials \mathbf{P} and \mathbf{E} are proportional and can satisfactorily be related by

$$
\left(\epsilon-\epsilon_{0}\right) \mathbf{E}=\mathbf{P}
$$

(3.61)

The redistribution of charge and the consequent polarization can occur by the following mechanisms. There are molecules that have a permanent dipole moment as a result of unequal sharing of valence electrons. These are known as polar molecules; the nonlinear water toolecule is a fairly typical example (Fig. 3.24). Each hydrogen-oxygen bond is polar covalent, with the H-end positive with respect to the O-end. Thermal agitation keeps the molecular dipoles randomily oriented. With the introduction of an electric field. the dipoles align themselves, and the dielectric takes on an rientational polarization. In the case of nortpolar molecules and atoms, the applied field distorts the electron cloud, shifting it relative in the nucleus and thereby producing a dipole moment. In addition to this electronic poliarization, there is another process that is applicable specifically to molecules, for example. the ionic crystal nd. in the presence of anctrich, the positive ther Dipole moments are therefore induced, resulting in what is called ionic or aromic notcrizationIf the dielectric is subjected to an incident
lectromagnetic wave its internal charge structure will experience time-varying forces and/or torques. These will be proportional to the electric field component of

the wave.* For polar dielectrics the molecules actually undergo rapid rotations, aligning themselves with the $\mathrm{E}(t)$-field. But these molecules are relatively large and have appreciable moments of inertia. At high driving frequencies ω, polar molecules will be unable to follow

* Forces arising from the magnetic component of the field tave B_{2}^{9} form $\mathbf{F}_{s, 2}=q \vee \times \mathbf{B}$ in comparison to $\mathbf{F}_{2}=q \mathbf{E}$ for the cleccric are negligible.
field alternations. Their contributions to \mathbf{P} will gegiease, and K, will drop markedly. The relative perquity of water is fairly constant at approximately 80 , gabout $10^{\circ} \mathrm{Hz}$, after which it falls off quite rapidly. , contrast, electrons have litule inertia and can con-
 dependence of n on ω is governed by the interplay of ape various electric polarization mechanisms contribuTg at the particular frequency. With this in mind, it asssible to derive an analytical expression for $n(\omega)$ trms of what's happening within the medium on an mic level.
She electron cloud of the atom is bound to the positive leus by an attractive electric force that suscains it in sort of equilibrium configuration. Without knowmuch more about the details of all the internal stable mechanical systems which are not torally disrupred stablemech perturbations, a ner force, F, must exist that anres the system to equilibrium Moreover, we cat asonably expect that for very small displacements, x, equilibrium (where $F^{*=} 0$), the force will be linear in x. In other whrds, a plot of $F(x)$ versus x will cross the x-axis at the equilibrium point $(x=0)$ and will be hright line very close on either side. Thus for small Dispsplacements it can be supposed that the restoring force has the form $F=-f x$. Once somehow momenarily disturbed, an electron bound in this way will ascillate about its equilibrium position with a natural or resonant frequency given by $\omega_{y}=\sqrt{A / m_{c}}$, where m_{f} is its mass. This is the oscillatory frequency of the undriven system.
A mater rial medium is envisioned as an assemblage, Guum, of a very grear many polarizable atoms, each Fi) and close to its neighbors. When a lightwave花ges on such a medium, each atom can be thought as a classical forced oscillator being driven by the tivarying electric fiek $E(t)$ of the wave, which is momed here to be applied in the x-direction. Figure (b) is a mechanical representation of just such an Mlator in an satropic medium where the negatively yed shell is fastened to a stationary positive nucleus itemtical springs. Even under the illumination of
bright sunlight. the amplitude of the oscillations will be no greater than about $10^{-57} \mathrm{~m}$. The force $\left(F_{F}\right)$ exerted on an electron of charge q, by the $E(t)$ field of a harmonic wave of frequency ω is of the form

$$
F_{L}=q_{r} E(t)-q_{r} E_{0} \cos \omega t .
$$

(a)

Figure 3.25 (a) Distortion of the electron doud in response to an applien Enell (b) The mechanical oscilian the dos an isotropit equaly in aill directions.

Consequently, Newton's second law provides the equation of motion; that is, the sum of the forces equals the mass times the acceleration:

$$
\begin{equation*}
q_{k} E_{1} \cos \omega t-m_{i} \omega \omega_{0}^{2} x-m_{t} \frac{d^{2} x}{d t^{2}} \tag{3,6,3}
\end{equation*}
$$

The first term on the left is the driving force, the second is the opposing restoring force. To satisfy this expression, x will have to be a function whose second derivative isn't very much different from x itself. Furat the same frequency as $E(t)$, so we "guess" at the solution

$$
x(t)=x_{0} \cos \omega t
$$

and substitute it in the equation to evaluate the amplitude x_{0}. In this way we find that

$$
\begin{gather*}
\mathbf{x}(t)=\frac{q_{v} / m}{\left(\omega_{0}^{2}-\omega^{2}\right)} E_{0} \cos \omega t \tag{9.64}\\
x \cdot(t)=\frac{q_{\varepsilon} / m_{\varepsilon}}{\left(\omega_{\hat{1}}^{2}-\omega^{" 2}\right)} E(t) . \tag{9.65}
\end{gather*}
$$

or

This is the relative displacement between the negative cloud and the positive nucleus. It's traditional to leave qc positive and speak about the displacement of the the oscillator will vibrate at its resonance frequency w_{0}. In the presence of a field whose frequency is less than ω_{w}, the presence of a field whose frequency is less than ω_{0}, $E(t)$ and $x(t)$ have the same sign, which means that the
oscillator can follow the applied force (i.e., is in phase with it). However, when $\omega>\omega_{0}$, the displacement $x(l)$ with it). However. when $\omega>\omega_{0}$, the displacement $x(l)$
is in a direction opposite to that of the instantaneous force $q_{x} E(!)$ and therefore 180° out of phase with it. Remember that we are talking about oscillating dipoles where for $\omega_{0}>\omega$, the relative motion of the positive charge is a vibration in the direction of the field. Above resonance the positive charge is 180° out of phase with the field, and the dipole is said to lag by $\pi \mathrm{rad}$.
The dipole moment is equal to the charge q_{e} times its displacement. and if there are N contributing electrons per unit volume, the electric polarization, or
density of dipole moments, is density of dipole moments, is
$P=q_{c} \times N$.
(3.06)

Hence

$$
P=\frac{q_{e}^{\frac{7}{2}} N E / m_{e}}{\left(\omega_{\bar{\eta}}^{\frac{2}{j}}-\omega^{2}\right)}
$$

and from Eq . (3.61)

$$
\epsilon=\epsilon_{0}+\frac{P(l)}{E(l)}=\epsilon_{0}+\frac{q_{2}^{2} N / m_{e}}{\left(\omega_{11}^{2}-\omega^{2}\right)} .
$$

Using the fact that $n^{2}=K_{c}-\epsilon i \epsilon_{0}$, we can arrive at an expression for n as a function of ω, which is known as a dispersion equation:

$$
n^{2}(\omega)=1+\frac{N q_{c}^{2}}{\epsilon_{9} m_{c}}\left(\frac{1}{\omega_{\omega}^{2}-\omega^{2}}\right) .
$$

At frequencies increasingly above resonance, $\left(\omega_{0}^{2} \geqslant\right.$ $\left.\omega^{2}\right)<0$, and the oscillator undergoes displacements that are approximately 180° out of phase with the driving corce. The resulting electric polarization will therefore be similarly out of phase with the applied electric fieid. Hence the dielectric constant and therefore the index of refraction will hoth be less than 1. At frequencies increasingly helow resonance, $\left(\omega_{0}^{2}-\omega^{2}\right)>0$, the electrit polarization will be nearly in phase with the applied lectric field. The dielectric constant and the corresponding index of refraction wilt then both be creand only part of what happens, is nonetheless geteral ner parn il tsaterials.
As a rule, any given substance will actually underge illuminating frequency is made to increase. The implich tion is that instead of a single frequency ω_{0} at whicth the system resonates, there apparently are several such frequencies. It would seem reasonable to generaliza matters by supposing that there are N molecules per unit volume, each with f_{i} oscillators having naturill frequencies ω_{10}, where $j=1,2,3, \ldots$ in that case.

$$
n^{2}(\omega)=1+\frac{N_{q}^{2}}{\epsilon_{f} m_{*}} \sum_{j}\left(\frac{f_{j}}{\omega_{i}^{2},-\omega^{2}}\right) .
$$

This is essentially the same result as that arising from the quantum-mechanical treatment, with the exceptio that some of the terms must be reinterpresed. Accon ingly, the quantities $\omega_{0 j}$ would shen be the characteris

Thergy. The f_{g} terms, which satisfy the requirement that ${ }_{5} f_{j}=1$, are weighting factors known as ossaillow 4 fing ths. They reflect the emphasis that should be placed on each one of the modes. Since they measure The likelihood that a given atomic transicion wil occur The f_{i} terms are also k in A similar reinterpretation of the f_{j} terms is even gired classically, atal data demand to the definition of the f that led Til (3.70). One then supposes that a molecule has Fy oscillatory modes but that each of these has a itimine natural frequency and strength.
Notice that when ω equals any of the characteristic
Frifuencies, n is discontinuous, contrary to actual fragurencies, This is simply the result of having neglec ted the damping term, which should have appeared in rikedrenominator of the sum. Incidentally, the damping解.part, is attributable to energy lost when the forced ©scillators reradiate. In solids, liquids, and gases at high pressure (≈ 10 atriz), the interatortic dis(ances ar roughly 10 times less than those of a gas at standard «要perature and pressure. Atoms and molecules in this datively close proximity experience strong interactions mida resulting "frictional" force. The effect is a dampWing of the oscillators and a dissipation of their energy within the substance in the form of "heat" (random molecular motion).
to etheed (of the form $m_{e} \gamma(d x / d l$) in the equation of montion, the dispersion equation (3.70) would have been

$$
\begin{equation*}
n^{2}(\omega)-1+\frac{N q_{e}^{2}}{\epsilon_{0} m_{e}} \sum_{j} \frac{f_{i}}{\omega_{0 i j}^{2}-\omega^{2}+i \gamma_{j} \omega} \tag{9.71}
\end{equation*}
$$

4lthough this expression is fine for rarified media such as gases there is another complication that must be oyercome if the equation is to be applied to dense substances. Each atom interacts with the local electric Rigms considered above, chose in a dense material will 3iso gexperience the induced field set up by their breth Nen, Consequently an atom "sees" in addition to the RPlied field $E(t)$ another field,* namely, $P(t) / 3 \epsilon_{0}$
 which applics to isorropic media, is dcrived in almos
any kext
isctromagnetic theory.

Without going into the details here, it can be shown that

$$
\begin{equation*}
\frac{n^{2}-1}{n^{2}+2}-\frac{N q_{e}^{2}}{3 \epsilon_{0} m_{.}} \sum_{j} \frac{f_{j}}{\omega_{0}^{2}-\omega^{2}+i \gamma_{j} \omega} . \tag{3.72}
\end{equation*}
$$

Thus far we have been considering electron-oscillators almost exclusively, but the same results would have been applicable to ions bound to fixed atomic sites as well. in that instance m, would be replaced by the consider ably larger ion mass. Thus although electronic polariz ation is important over the entire optical spectrum, the contributions from ionic polarization significantly affect only in regions of resonance $\left(\omega_{0 \text { of }}=\omega\right)$.
The implications of a complex index of refraction will be considered later, in Section 4.3.5. At the moment we limit the discussion, for the most part. 0 situation n which absorption is negligible (i.e.. $\omega_{0 ;}^{2}-\omega^{2} \geqslant \gamma_{i}(\omega)$ and η is real, so that

$$
\frac{n^{2}-1}{n^{1}+2}=\frac{N q_{c}^{2}}{3 \varepsilon_{4} m_{c}} \sum_{j} \frac{f_{i}}{\cos _{0}^{2}-\omega_{0}^{2}}
$$

Colorless, transparent materials have their characteristic frequencies outside the visible region of the spectrum (which is why they are, in fact, colorless and transparent). In particular, glasses have effective natural trequencies above the visible in the ultraviolet, where
they become opaque. In cases for which $\omega_{0}^{2} \gg \omega^{2}$ by comparison, ω^{2} may be neglected in Eq. (373), yielding cssentially maystant index of Erequency repion. For example the ioportant characteristic frequencies for glasses occur at wavelengths of about 100 nm . The middle of the visible range is roughly five times that value, and there, ω_{0}^{2}, > ω^{2}. Notice that as ω increases toward $\omega_{0 n},\left(\omega_{0 j}^{2}-\omega^{2}\right)$ decreases and n gradually increases with frequency, as is clearly evident in Fig. 3.26. This is called normal dispersion. In the ultraiolet region, as ω approaches a natural frequency, the oscillators will begin to resonate. Their amplitudes will increase markedly, and this will be accompanied by damping and a strong absorption of energy from the incident wave. When $\omega_{0 i}=\omega$ in $\mathrm{Eq} .(3.72$), the damping erm obviously becomes dominant. The regions immediately surrounding the various $\omega_{0 ;}$ in Fig. 3.27 are called absarption bands. There $d n / d \omega$ is negative, and the process is spoken of as anomalous (i.e., ahnormal) dispersion. If white light passes through a glass prism,

Figure 3.26 The wavelength dependence of the index of refraction for varicus materials.

Figure 3.27 Refractive index versus frequeiry.
the blue constituent will have a higher index than the red and will therefore be deviated through a larger angle (see Section 5.5.1). In contrast, if we use a liquid cell prism containing a dye solution with an absorption band in the visible, the spectrum wiil be altered absorption bands somewhere within the electroniag retic frequency spectrum, so that the term enomalou dispersion, being a carryover from the late 1800s, is certainly a misnomer
As we have seen, atoms within a molecule can also vibrate about their equilibrium positions. But the nuclei are massive, and so the natural oscilatory frequencies
will be low, in the infrared. Molecules such as $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} will have resonances in both the infrared and ultraviolet. If water was trapped within a piece of and during its manufacture, these molecular oscillator would be available, and an infrared absorption ban would exist. The presence of oxides will also result it infrared absorption. Figure 3.28 shows the $n(\omega)$ curve for a number of important optical crystals ranging from he ultraviolet to the infrared. Note how they rise it the ultraviolet and fall in the infrared. At the even lowes requencies of radiowaves, glass will again be trans parent. In companison, a piece of stained glass evidencly has a resonance in the visible where it absorbs out s particular range of frequencies, transmitting the complementary color.
As a inal point, notice that if the driving frequene is greater than any of the $\omega_{0 j}$ terms, then $n^{2}<I$ an n < . Such a satuacion can ocarr, for example, if we, esuls, ince in leads to $u>5$ in reeris an uradia sperial relativit, We will consider this belavior bter on, when we diseruso the sroup welocity tion 7.6).

tigure 3.28 Index of refracion vcisus wavelengit and frequeney tgure 3.28 Index of refraction versus wavelength and frequeng
for several iniportant optical crystals. (Aciapeed from data publisheect by The Hiarshay Chemical Co.)

In partial summary then, over the visible region of In paruarm, electronic polarization is the operative Wispectrum, electroning $n(\omega)$. Classically one imagine nothanisra determinizg (ating at the frequency of the friten-oscilace. When the wave's Erequency is appreci fifferent from a characteristic or natural frequency oscillations are small, and there is linte dissipative tption. At resonance, however, the oscillator ampli are increased, and the field does an increase Qunt of work on the charges. Electromagnetic energy ved from the wave and converred into mechanica gy is dissipated thermally within the substance, and peaks of an absorption peak or band. The material, ough essentially transparent at other frequencies eguencies (Fig. 3.29).
3.5.2 The Propagation of Light Through a Dielectric Medium

IEc process whereby light propagates through a gricdiun at a speed other than i is a tairly complicated one. and this section is devoted to making it at least physically reasonable within the context of the simple poscillator model.
Ronsider an incident or primary electromagnetic wave (ingeacuum) inpinging on a diclectric. As we have seen it will polarize the medium and drive the electronescillators into forced vibration. They, in turn, vill peradiate or scatiter energy in the form of electromag-骨. Wavelets of the same frequency as that of the are arranged with some degree of regularity, these wavelets will tend to me degree of regularity, thes will overlap in cetain regions, wheraupon they will then reinforce or timinth each other to varyi Tegrees.
Tres.
arye and lets. The resulting dutter of scattered spherical Grm plane superimpose in the forward direction ghary wave. The way this actually occurs can better ppreciated in Fig. 3.31, which depicts a sequence mee showing two molecules A and B interacting with

Figure 3.29 A group of semiconductor lenses made from ZnSe . CdTc. GaAs, and Ge. Thesc nateruls are particularly usefill in the nefrarcd that they are quite opacuc in the visible region of the spectrum. (Photw courcesy Two-Six Incorperated.)
an incoming plane wave - a solid line represents a wave peak (a positive E-field), and a dashed line corresponds o a trough (a negative E-held). In Part (a) of the figure the incoming plane wavefront impinges on moiecule A, which begins to scatter a spherical wavelet. The phase of all such wavelets (as compared with the incident wave) will be examined presently; for the moment, let it be anything, say 180°. Accordingly. molecule A begins to part a) part (b) hows the scaured spherche out suep but marching together. And another wavelet is emereing from A. In (c) a trough of the primary wavefront is incident on B, and it, in turn, begins to reradiate a wavelet. which must also be out of phase by 180°. In (d) we see the whole point of the diagram-all the wavelets are moving forward with the primary wave. In the foruard disection the wavelds from A and B are in phase with each other but out of phase with the primary wave. That would be true for all such wavelets, regardless of how many molecules there were, how close wgether they were, or how they were distributed.
As a result of the asymmetry introduced by the beam

figure 3.30 A down ward plane waye incident on an ordercd array
itself, all the scattered wavelets add to each other in phase; they rise and fall together at points tangent to a plane and thus conslructively (see Section 7.1) combine of form a forward-moving secondary plane wave. This does not happen im the backward direction or, indeed, in any other direction. If the scatuerers are randomly located and far apar, the total radiation in any direction but forward will be an uncorrelated mixture of essentially independent wavelets sbowing no significant interference. This is approximately the situation existing about 100 miles up in the Earth's rarefied higb-altitude atmosphere (see Section 8.5). By contrash, in an ordinary
ongeing secondary plane wave eraveling downward.
gas (and even the atmosphere ar standard temperature and pressure has abour 8 mitlion molecules in a λ^{3} abe the wavelets $(A \approx 500 \mathrm{~nm}$) scattered by sources so close togethes (≈ 8 nm) cannot property be viewed as random. Nor are they random in a solid or hiquid, in which the atoms are 10 times closer and arrayed in a far more orderly fashion. Here again, the scattered wavelets interfere constructively in the forward direction-thal much is independent of the atrangement of the molecules-but destructive interference, in which the wavelets cancel one another (see Section 7.1), now preq,
dominates in all other directions. In dense media thers
iall no scallering in any direction bu forward; the asential no nowes through the medium in the forward beam F
For smitirial reasons alone we can anticipate that

(c)

Shwath

(d)

the secondary wave will combine with what is left of th primary wave to yield the only observed disturbance within the medium, pamely, the refracted wave. Both The primary and secondary electramagretice waves propagate meagh ino insurail poid wins an sper of refaction other than I The refracted wave may appear to have a phase velocity les than, aqual io, or even ereater the a The key to this apparent contradicion resides in the phase relationship between the secondary and primar phase relation waves.
The classical model predicts that the electron-oscilwith the be able to vihrate almost completely in phase only ar dreliving force (i.e., the primary disturbance) the electromagnetic field increases, the oscillators will fall behind, lagging in phase by a proportionately larger amount. A detailed analysis revears that at resonance the phase lag will reach 90°, increasing thereafter to almost 180°, or half a wavelength, at frequencies wel above the particular characteristic value. Problem 3.28 explores this phase lag for a damped driven oscillator, and Fig. 3.32 summarises the results.
In addition to these lags there is another effect that must be considered. When the scattered wavelets re combine, the resuicant secondary wave itself lags the ascillators by $90{ }^{\circ}$
he combined effect of both these mectranisms is thas at frequencies below resonance, the seoondary wave lags approximately 90° and 180°, and at frequencies above approximately 90° and $180^{\text {, and at frequencies ake the }}$ a phase lag of $\delta \geq 180^{\circ}$ is equivalent to a plase lead of $360^{\circ}-6\left[\right.$ e.g., $\left.\cos \left(\theta-270^{\circ}\right)=\cos \left(\theta+90^{\circ}\right)\right]$. This much can be seen on the right side of Fig, 9.92 (b).
Within the transparent medium the primary and secondary waves overiap and, depending on thei amplicudes and relative phase, generate the net refrac ted disturbance. Except for the fact that it is weakened by scattering, the primary wave travels into the material just as if it were traversing free space. By comparison *This poiat will be made more plavable whan we consider de preditaions of the Hurgenh-Fretrel theory in the diffracion ctapter. Mort texts on E \& M M rreat the prolem of radiation from a sheet of

We now wish to show that a phase shift is indeed tantamount to a difference in phase velocity. In fre space, the disturbance at some point P may be written as

$$
E_{\mu}(t)=E_{0} \cos \omega t . \quad(3.2 d)
$$ cumulative phase shift ε_{P}, which was built up as the wave moved through the medium to P. At ordinary levels of irradiance the medium will behave linearly and the frequency in the dielectric will be the same as that in vacuum. even though the wavelength and speed may differ. Once again, but this time in the medium the disturbance at P is

$$
E_{F}(0)-E_{n} \cos \left(\omega t-\varepsilon_{p}\right),
$$

where subtraction of ε_{p} corresponds to a phase lag. An obscrver at P will have to wait a longer time for a given crest to arrive when she is in the medium than she crest to arrive when she is in the medium than she
would lave had to wait in vacuum. That is, if you imagine two parallel waves of the same frequency, one in vacuum and one in the material, the yacuum wave will pass P a time ε_{p} / ω before the other wave. Clearly then, a phase lag of ε_{p} corresponds to a reduction in speed $v<c$ and $n>1$. Similarly, a phase lead vields an increas in spifed, $v>c$ and $n<1$. Again, the scattering proces is a continuous one, and the cumblative phase shif builds as the light penetrates the medium. That is to say, ε is a function of the length of dielectric traversed as it must be if v is to be constant (see Protlem 3.30) The overall form of $n(\omega)$, as depicted in Fig. 3.32(c), can now be understood, as well. A1 frequencies farbelow ω_{n} the amplitudes of the oscillators and therefore of are approximately 90°. Consequently, the refracte wave laus only slighty and a is only slightly freater than L . As ω increases, the secondary waves have greater amplitudes and lag by greater amounts. The result is a gradually decreasing wave speed and an increasing value of $n>1$. Although the amplitudes of the secondary waves continue to increase, their relative phases approach 180° as ω approaches $\omega_{i 1}$. Consequently, their ability to cause a further increase in the resultant phase lag diminishes. A turning point ($\omega=\omega^{*}$) is reached where the refracted wave begins to experience a decreasing phase lag and an increasing speed, ($d n / d \omega<$
）．That continues until ω＝$\omega_{2 \text { ，where }}$ when the refrac ted wave is appreciably reduced in amplituds but unal－ tered in phase and speed．At thât point，$n=1, u^{-}$ and we are more or less at the center of the absorption band．
At frequencies just beyond ω_{0} the relatively large amplicude secondary waves lead，the refracted wave advanced in phase，and its speed excseds $c(n<1)$ ．As a）increases the whole scenario is played out again in reverse（with some asymmetry due to frequency－depen－ At even higher frequencies the secondary waves，which now have very small amplitudes，lead by ncarly $0,0^{\circ}$ The resulting refracted wave is adyanced very slightly in phase，and n gradually approaches 1
in phase，and n gradually approaches 1
The precise shape of a particular n（ ω ）curve depends on the specific oscillator damping，as well as on the amount of absorption，which in turn depends on the mber of oscillators particjpating．
A rigorous solution to the propagation problem is known as the Ewald－Oseen extinction theorem．Although the mathematical formalism，invoiving integrodifferen tial equaions，is far too complicated to treat here，the results are certainly of interest．It is found that the electron－oscillators generate an electromagnetic wave having essentially two terms．One of these precisely cancele the primary wave within the medium．The other and only remaining disturbance，moves through the dielectric at a speed $y=c / n$ as the refracted wave．＊ Henceforth we shall simply assume that a lightwave propagating through any substantive medium travels a
a spced $u \neq c$ ．

3．6 THE ELECIROMAGNETIC－PHOTON SPECTRUM

In 1865，when Maxwell published the first extensive account of his electromagnetic theory，the frequency band was only known to extend from the infrared， across the visible，to the ultraviolet．Although this region ＊For a discussion of the Lwald－Osecn therem，see Principies wof optics Recal，＂Relliction Ironi Develectric Matcruls．＂Am．J. Physs 50， 1133 ${ }^{\text {Recalt，}}$（1982）．
is of major concern in optics，it is a small segment o the vast electromagnetic ipectrom（see Fig．3．35）．This section enumerates the main categories（there is actual ly divided．

3．6．1 Radiofrequency Waves

In 1887，eight years after Maxwell＇s death，Heimí Hertz，then professor of physics at the Technisol Hochschule in Karlsruhe，Germany，succeeded in gei erating and detecting electromagnetic waves．＊H ransmitter was essentially an oscillatory dischare For a receiving antenna，be used an open luic dipole with a brass knob on one end and a fie copper whi on the ofher．A small sparis visible berween the two en on the ocher．A small spark visible between the then marked the detection of an incident eiectromagnet wave．Hertz focused the radiation，determined in interfere，setting up standing waves，and then even！ measured its wavelength（on the order of a meter）As he putit：
I have succeeded in producing distinct rays of electric force，and in carrying out with them the eiementary experiments which are commonly performed with light and radiant heat．．．We may perhaps further designate them as rays of light of very great wavelength．The experiments described appear to me，at any rate， eminently adapted to romove any doubt as to the iden－ tity of light，racliant beat，and electromnagnetic wave motion．
The waves used by Hertz are now classified in th radiofrequancy range，which extends from a few hestr about $10^{9} \mathrm{~Hz}$（ λ ．from many xilometers to 0.3 m or 5）．These are generally emitted by an assortment electric circuits．For example，the $60 . \mathrm{Hz}$ alternating rrent circulating in power lines radiates with wavelength of $5 \times 10^{6} \mathrm{~m}$ ，or about 3×10^{3} miles．Thet

David Hushes may well have been the first person who acturly
David Hughes may woll have becen the first person who acturly
performed this feat，bur his experiments in 1870 went urrpublished and unariced for many yeass．

Eigure 3．35 Thic clearomagrecti－phown speatrum．
is no upper limit to the theoretical wavelength；one could leisurely swing the proverbial charged pith ball Fod，in so doing．produce a rather lons if not very歺解g wave．Indeed，waves more than 18 million mile W奇g have been detected streaming down toward Larth from outer space．The higher frequency end of the band is used for tclevision and radin broadcasting． Aly of $6.69 \times 10^{-24 y}$ I or $4 \times 10^{-9} \mathrm{eV}$ ，a very small furanity by any measure The granular nature of the radiation is generally obscured and only a smooth Tadiauion is generally obscured，and unly a smooth asnsfer of energy is apparent．

3．6．2 Microwaves

The microwave region extends from about $10^{\circ} \mathrm{Hz}$ up
 go from toughly 30 cm to 1.0 mm ．Radiation capable
of penetrating the Earth＇s atmosphere ranges from less han 1 cm to about 30 m ．Microwaves are therefore of interest in space－vehicle commanications，as well as radio astronomy．In particular，neutral hydrogen ams，distriblicd over vast regions of space，enin 1 －c． bou ha）mon been gleaned from this particular emission．
Molecules can absorb and emit encresy by altering th tate of motion of their constituent atoms－－they can b made to vibratcand／or rotate Again the energy associ－ ated with either motion is quantized，and molecule possess rotational and vibrational energy levels in addi－ ion to those due to their electrons．Only polar molecule will experience forces via the \mathbf{E}－field of an incident electromagnetic wave that will cause them to rotate into alignment，and only they can absorb a photon and make rotational transition to an excited state．Since massive molecules are not able to swing around easily，we ca

70 Chapter 3 Electromagnetic Theory, Phatons and Light

Firure 9.36 A photograph of 2.18 by 75 mile area northeast of
 abowe the इerth. The ovcriall appearance is somewhar strange becuuse this sis actually a madar or mico amave pricure The winikied griy region
nticipate that they will have low-frequency rotational resonances (far IR, 0.1 mm, to microwave, 1 cm). For stance water IR, 0.1 mm , to microwave, 1 cm). For f exposed to an electromarnelic wave they will swing round, trying to stay lined up with the alternatiog E-field. This will occur particularly wigorously at any ene of its rotational resonances. Consequently, water molecules efficiently dissipatively absorb microwave adiation at or near such a frequency. The microwave oven $(12.2 \mathrm{~cm}, 2.45 \mathrm{GHz})$ is an obvious application. On oven ($12.2 \mathrm{~cm}, 2.45 \mathrm{GHz}$) is an obvious application. On
the other hand, nonpolar molecules, such as carbon dioxide, hydrogen, nitrogen, oxygen, and mechane. cannot make rotational transitions by way of the absorp-
tion of photors.
Nowadays microwaves are used for everything from ransmitting telephone conversations and interstation elevison to cooking hamburgers, from guiding planes and catching speeders (by radar) to studying the origins of the Universe, opening garage doors, and viewing the surface of the planet (Fig. 3.36). They are also quite useful for studying physical optics with experimental arrangements that are scaled up to convenient dimensions.
Photons in the low-frequency end of the microwave spearum have little energy, and one might expect their this sort can, however arise from atomic transitions, if the energy levels involved are quite near each other.
emberded in a black band of shore-fast, frrs-reas sea ioe. Adjocril to that is open water, which appeass amooth end gray. The datit grat blocchy area at the far left in the main polar ine pack. There ate nit clouds because the radsr "seer" right through them.

The apparent ground state of the cesium atom is a goo example. It is actually a pair of cosely spaced eneme. levels, and transitions between them involve an emerg of only $4.14 \times 10^{-8} \mathrm{eV}$. The resulting microwavi is the basis for the dard of frequency

3.6.3 Infrared

The infrated region, which exiends roughly from $3 x$ $10^{13} \mathrm{~Hz}$ to about $4 \times 10^{14} \mathrm{~Hz}$, was first detected by the renowned astronomer Sir William Herschel (1738 1822) in 1800. The infrared, or IR, is often subdivided into four regions: the near $I R$ i.e., near the visibles $(780-3000 \mathrm{~nm})$, the intermediate IR $(3000-6000 \mathrm{~nm})$) the far $I R(6000-15.000 \mathrm{~nm})$, and the extreme $I \mathrm{I}$ $(15,000 \mathrm{~nm}-1.0 \mathrm{~mm})$. This is again a rather loosed division, and there is no universality in the nomenclature. Radiant energy at the long-wavelength extrem can be generated by either micruwave oscillators incandescent sources (i.e., molecular oscillators, thermal agitation of its constituent molecules.
The molecules of any objen at recules.
The mee $\left(-973^{\circ} \mathrm{C}\right.$ will weakly (see Section 13.2). On the other hand, infrared
nly emizsed in a coesinuous spectrum froen hot i: op ponsly such as electric husiers, glowing coals, and fode. such as electric hrsiers, glowing coals, and of daazy house rad one Sun is IR, and a commor lighe notr ramally radiates far more IR than light. Like all buth anualy creatares, we too are infrased emitters. narat bioudect creakares we th quite weakIy, starting at The hum 5000 nm , peaking in the vicinity of $10,000 \mathrm{~nm}$, a wand and tipiky, bevernl. This emission is exploited by see-in. nthedrk sniperisopes, as well as by some rather nasty "yrac"senitive spakes (Crotalidae, pit vipers, and yridee, constrictors) that tend to be active at night.
csiles rotating, a molecule can vibrate in several dififerent ways, with its atoms moving in various direcBions with respect to one another. The moiecule need Fiot be polar, and even a linear system such as CO_{2} has, Ghree basic vibrational modes and a number of energy levels, each of which can be excited by photons. The associated vibrational emission and absorption spectra melecules have both vibrational and rotational resonances in the IR and are good absorbers, which is one reason IR is often misieadingly called "heat waves"first put your face in the sunshine and feel the resulting jost put your face in the sunshine and feel the resulting firred radiant energy
ahice that responds to the heat generasured with , of IR by a blackened surface. There are, for axample, thermocouple, pneumatic (e.g., Golay cells), groelectric, and bolometer detectors. These in turn apend on temperature-dependent variations in aced vollage, gas volume. permanent electric rivation, and resistance, respectively. The detector be coupled by way of a scanring system to a cathode tube to produce an instantaneous television-like IR害e (Fig. 3.37) known as a thermograph (which is (ransformers to faulty people) photo from者 sensitive to near IR $(<1900 \mathrm{~nm})$ are also available TE are IR spy eqtellizes that look out for rockes Ghings, IR resource satellites that look out for crop eases, and IR astronomical satellites thar look out space-one of which discovered a ring of matter and the star Vega (1983); there are "heat-seeking"
missiles guided by IR, and IR lasers and telescopes peering into the heavens.
peering into the heavens.
Small differences in the temperatures of objects and their sumpundinss result in characteristic IR emission, which can be used in many ways, from detecting brain which can be used in many ways, from detecting brain
tumors and breast cancers to spotting a lurking burglar The CO_{2} laser, because it is a convenjent source of continuous power at appreciable levels of 100 W and more, is widely used in industry, especially in precision cutting and heat treating. Its extreme-IR emissions $(18.9 \mu \mathrm{~m}-23.0 \mu \mathrm{~m})$ are readily absorned by human tissue, making the laserbeam an effective bloodless scal pel that cauterizes as it cuts.

3.6.4 Ligh

Light corresponds to the electromagnetic radiation the narrow band of frequencies from about $3.84 \times$ $10^{14} \mathrm{H}_{z}$ ta roughly $769 \times 10^{14} \mathrm{~Hz}$ (see Table 39) It is generally praduced by a rearrangement of the outer electrons in atoms and molecules. (Don't forget syn-

Figure 9.97 Thesmograph of the author: Notc the cool beard.

Color	$\lambda_{0}(\underline{m} m$)	"(THz)*
Red	780-629	384-482
Orange	622-597	482-503
yellow	597-577	503-520
Greer	577-492	520-610
Blue	$492-455$	610-659
Violet	455-990	659-769

chrotron radiation, which is a different mechanism.)* In an incandescent material, a hot glowing metal filament, or the solar fireball. electrons are randomly accelerated and undergo frequent collisions. The resulting broad emission spectrum is called thermal radiation, and it is a major source of light. In contrast, if we fill tube with some gas and pass an electric discharge hrough it, the atoms therein will become excited and radiate. The emitted light is characteristic of the particular energy levels of those atoms, and it is made up of a series of well-defined frequency bands or lines. Such a device is known as a gas discharge tube. When he gas is the krypton
 hyperfine structure). The orange-red line of Kras width (at half height) of only 0.00047 nm , or about 400 MH . Accordingly, until 1983 it was the interhational standard of length ($1,650,768.73$ wavelengths equaled a meter).
Newton was the first to recognize that white light is actually a mixture of all the colors of the visible specrum, that the prism does not create color by altering white light to different degrees, as had been thought for centuries, but simply fans out the light, separating it into its constituent colors. Not surprisingly, the very oncept of whiteness seems dependent on our perception of the Earth's daylight spectrum-a broad frequency
"There is no need here to define light in terms of human physiology. Ot bo a very, thered ide. For exis Response of the Human Eye to X Radiation." Am. J. Phys. 35,779 Respo
(1967)
distribution that falls off more rapidly in the violet tell in the red (Fig. 3.38). The human eye-brain detecto perceives as white a wide mix of frequencies, usual That is what we shall mean of energy in each portion light" - hat we shall mean when we speak about "white region predominat tributions will appear Nore ar less white. We recogg a piece of paper to be white whether it's seen indo' under incandescent light or outside under skyligf even though those whites are quite different. In faf there are many pairs of colored light beams (e.g., 65^{3} nm red and 492 -nm cyan) that will produce the seng tion of whiteness, and the eye cannot always distinguid one it han light wo is (see Secio 7 7) analyze sound (see Section 7.7)
Colors are the subjective human physiological and psychological responses, primarily, to the variouis trequency regions extending from about 384 THz forf
red, through orange, yellow, green, and blue. to viole at about 769 THz (Table 3.2). Color is not a properte of the light itself but a manifestation of bid electrochemical sensing system-eye, nerves, brain. T be more precise, we should not say "yellow light" b? rather "light that is seen as yellow?:" Remarkably,". variety of different frequency mixtures can evoke 自in same color response from the eye-brain sensor. A beang of red light (peaking at, say, 690 THz) overlapping

Figure 9.38
tungsten lamp.
am of green light (peaking at, say, 540 THz) will sult, believe it or not, in the perception of yellow light. en though there are no frequencies present in the si-called yellow band. Apparently, the eye-brain a erages the input and "sees" yellow (Section 4.4) 1 ily three phosphors: red, green, and blue.
In a flood of bright sunlight where the photon flux. In a flooigh be $10^{2!}$ photons $/ \mathrm{m}^{2} \mathrm{~s}$, we can generall insity
pect the quantum nature of the energy transport to pect thougbly obscured. However, in very weak beams, thorougon in the visible range (hz $=1.6 \mathrm{eV}$ to 3.2 eV) Hee pharectic enough to produce effects on a distinctly individua basis, the granularity will become evident. desearch on human vision indicates that as few as 10 ight photons. and possibly even 1, may be detectable ty the eye.

3.6.5 Uliraviolet

Auracort 10 light in whe sperita=a the eltravidet wegion Anarasimately $8 \times 10^{14} \mathrm{~Hz}$ to about $9.4 \times 19^{19} \mathrm{~Hz}$, dis rigred by Johatn Wilhelm Ritcer (1776-1810). Photon ggies therein range from roughly 3.2 eV to 100 eV aviel, or UV, rays from the sun will thus have 3ethan enough energy to tonize atoms in the upper These These photon energies are also of the order of the mägnitude of many chemical reactions, and ultraviolet Wecome important in triggering those reactions. anately, ozone $\left(\mathrm{O}_{3}\right)$ in the atmosphere absorbs what da otherwise be a lethal stream of solar UV. At it kill microan around 290 nm , U V is germicidal of radiant mergy become incresingly eviden aspect新mans rises.
sorms it, particularly at very well, because the cornea Wherbs it, particularly at the shorter wavelengths, while Whon who has had a lens removed because of cararacts see UV ($\lambda>300 \mathrm{~nm})$. In addition to insects, such as Roneybees, a fair number of other creatures can Vied Ny respoed to UV. Pigeons, for example, are capable of recognizing patterns illuminated by UV and
probably employ that ability to navigate by the Sun even on overcast days.
An atom emits a UV photon when an electron makes a long jump down from a highly excited state. For example, the outermost electron of a sodium atom can be raised to higher and higher energy levels until it is limately torn loose altogether at 5.1 eV , and the atom tonized. If the ion subsequently recombines with a free electron, the latter will rapidly descend to the ground state, most likely in a series of jumps, each esulting in the emission of a photon. It is possible, however, for the electron to make one long plunge to the ground state, radiating a single $5.1-\mathrm{cV}$ UV photon. Even more energetic UV can be generated when the aner, tightly bound electrons of an atom are excited The unpaired valence electrons of isolated atoms can

Figure 3.39 An ultraviolet photograph of Venus taken by Mari
be an important source of colored light．But when these same atoms combine to form molecules or solids，the of creating the chernical bands paired in the process creating the chernical bonds that hold the thing gighty bound and their moleculars are states are higher up in the UV Molecules is the atmosphere such as $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}_{2}$ ，and $\mathrm{H}_{3} \mathrm{O}$ ，have juscthis sort of electronic resonance in the UV（see Section 8．5）．
Nowadays there are ultraviolet photographic films Nowacays there are ultraviolet photographic films
and microscopes，UV orbiting celestial telescopes，syn－ chrotron sources，and ultraviolet lasers（Fig．3．39）．

3．6．6 X－rays

X－rays were rather fortuitously discovered in 1895 by Wilhelrn Conrad Röntgen（1845－1923）．Extending in frequency from roughly $2.4 \times 10^{16} \mathrm{~Hz}$ to $5 \times 10^{19} \mathrm{~Hz}$ ， they have extremely short wavelengths；most are smaller than an atom．Their photon energies（ 100 eV to 0.2 MeV ）are large enough so that x－ray quanta can interact with matter one at a time in a clearly granular fashion，almost like bullets of energy．One of the most practical mechanisms for producing x－rays is the rapid
deceleration of high－speed charged partides．The deceleration of high－speed charged particles．The ＂braking radiation＂）arises when a beam of energetic electrons is fired at a material target，such as a copper plate．Collisions with the Cu nuclei produce deflections of the beam electrons，which in turn radiate x－ray photons
In addition，the atoms of the target may become onized during the bombardment．Should that occur hrough removal of an inner electron strongly bound to the nucleus，the atom will emit \mathbf{x}－rays as the electron coud returns to the ground state．The resulting quan－ ized emissions are specific to the target atorn．revealing is energy level structure，and accordingly are called characteristic radiation
Traditional medical film－radiography generally pro－ duces little more than simple shadow castings，rather than photographic images in the usual sense；it has not een possible to fabricate useful x－ray lenses．But 5．4）have begun an era of x－ray imagery，creating

Figure 3．40 X－ray photograph of the Sun taken March，1970．Tr Jumb of the Moon is
Vaiana and NASA．）
detailed pictures of all sorts of things，from implotions： fusion pellets to celestial sources，such as the 8un（Fig． 3.40 ），distant quasars，and black holes－objects at tem $m_{\text {zis }}$ peratures of millions of degrees that emit per： scopes have given us an exciting new eye on the v／iv． verse．There are x－ray microscopes，picosecond wriv． streak cameras．x－ray diffraction gratings，and intel ferometers，and work continues on x－ray bolngraphy In 1984 a group at the Lawrence Livermore Nationt Laboratory succeeded in producing laser radiationte a wavelength of 20.6 nm ．Though this is moreaduraicy in the extreme ultraviolet（XUV），it＇s close enough ins the x－ray region to qualify as the first soft x－ray land．

3．6．7 Gamma Rays

These are the highest－energy（ $10^{4} \mathrm{eV}$ to about $10^{\prime \prime} \mathrm{eV}$ ） elength electromagnetic radiations．Ther ${ }^{2 / 5}$ emitted by particles undergoing transitions within the
nlues．A single gamma－ray photon carries so
 to to the wome time its tavelength has become so mall iox in is now exisemely ，yonertish
＝have gone full cycle from the radiofrequency waztike response to gamma－ray particlelike behavior． acewhere，not far from the（logarithmic）center of位 than，its energy sill depend on how we＂look．＂

PROBLEMS

睢 Consider the plane electromagnetic wave（in SI hits）given by the expressions $E_{x}-0, E_{y}-$药 $\cos \left[2 \pi \times 10^{14}(t \quad x / c)+\pi / 2\right]$ ，and $E_{2}=0$ ．
a）What are the frequency，wavelength，direction of motion amplitude，initial phase angle，and polariz－ ation of the wave？
b）Write an expression for the magnetic flux density．
3．2 Write an expression for the E－and \mathbf{B}－fields that 8jetitute a plane harmonic wave traveling in the $+z$－ direction．The wave is linearly polarized with its plane ब．vibration at 45° to the y－plane．
3．3＊Calculate the energy iriput necessary to charge a parallel plate capacitor by carrying charge from one plate to the other．Assume the energy is stored in the field between the plates and compute the energy per unit volume，t_{ε} ，of that region，i．e．，Eq．（3．31）．Hint： shimet he electric field increases throughout the process， jintegrate or use its average value $E / 2$
3．4 The time average of some function $f(t)$ taxen over
筑interval T is given by

$$
\langle f(t)\rangle=\frac{1}{T} \int_{t}^{1+T} f\left(t^{\prime}\right) d t^{\prime}
$$

where t^{\prime} is just a dummy variable．If $\tau-2 \pi / \omega$ is the period of a harmonic function，show that

$$
\left\langle\sin ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t)\right\rangle=\frac{1}{2},
$$

$$
\left\langle\cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t)\right\rangle=\frac{1}{2},
$$

$(\sin (\mathbf{k} \cdot \mathbf{r}-\omega t) \cos (\mathbf{k} \cdot \mathbf{r}-\omega t)\rangle-0$,
when $T \quad \tau$ and when $T \geqslant r$
3．5＊Consider a linearly polarized plane electromag－ netic wave traveling in the $+x$－direction in free space and having as its plane of vibration the $x y$－plane．Given that its frequency is 10 MHz and its amplitude is $E_{0}=$ $0.08 \mathrm{~V} / \mathrm{m}$ ，
a）find the period and wavelength of the wave，
b）write an expression for $E(t)$ and $B(t)$ ，
c）find the flux density，$\langle\zeta\rangle$ ，of the wave．
3．6 A lincarly polarized harmonic plane wave with a scalar amplitude of $10 \mathrm{~V} / \mathrm{m}$ is propagating along a line in the $x y$－plane at 45 to the x－axis with the $x y$－plane as its plane of vibration．Please write a vector expression describing the wave assuming both k_{i} and k ，are positive． Calculate the flux density taking the wave to be in vacuum．
3．7 Fulses of UV lasting 2.00 ns each are emitted from a laser which has a beam of diameter 2.5 mm ．Given that each burst carries an energy of 6.0 I ，（a）determine he length in space of each wavetrain，and（b）find the average energy per unit volume for such a pulse．

3．8 A $1.0-\mathrm{mW}$ laser has a beam diameter of 2 mm ． Assuming the divergence of the beam to be negligible， compute its energy density in the vicinity of the laser．

3．9＊A cloud of locusts having a density of 100 insects per cubic meter is flying north at a rate of $6 \mathrm{~m} / \mathrm{min}$ ． What is the flux density of lecusts，i．e．，how many cross an area of $1 \mathrm{~m}^{2}$ perpendicular to their flight path per second？

3．10 Imagine that you are standing in the path of an antenna which is radiating plane waves of frequency 100 MHz and flux density $19.88 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{2}$ ．Compute the photon flux density，i．e，the number of photons per average．will be found in a cubic meter of this region？
3.11 How many photons per second are emitted from 100 W yellow light buib it we assume negligible the nal losses and a quasimonochromatic wavelength of 550 nm ? In actuality only about 2.5% of the totai dissi pated power ernerges as visible radiation in an ordinary
100 W lamp.
3.12 A 3., (I-V Ilashlight buib) draxs (0.25 A, comerring hout 1.0 of the dissipated power juto light $A=50$ min). If the beam has a cross-sec tional area of $10 \mathrm{~cm}^{2}$ and is approximately cylindrical.
a) how many phetons are emitted per secund?
b) how many photons occupy each meter of the beam:
what is the fux density of the beam as it leaves che flashlight?
3.13* An isotropic quasimonochromatic point source adiates at a rate of 100 W . What is the fux density a distance of 1 m ? What are the amplitudes of the E and B-felds at that point?
3.14 Using energy arguments, show that the amplitude of a cylindrical wave must vary inversely with \sqrt{T} Draw a diagram indicating what's happening.
3.15* What is the momentum of a $10^{19}-\mathrm{Hz}$ x-ray photon?
3.16 Consider an electronagnetic wave impinging on an electron. It is easy to show kinematically that the average value of the time rate of change of the electron's momentum \mathbf{p} is proportional to the average value of the time rate of change of the work, W, done on it by the wave. In particular

$$
\left\langle\frac{d \mathbf{p}}{d t}\right\rangle=\frac{1}{c}\left\langle\frac{d W}{d t}\right\rangle \hat{\mathbf{i}} .
$$

Accordingly, if this momentum change is imparted to some completely absorbing material, show that the pressure is given by Eq. (3.50),
3.17* Derive an expression for the radiation pressure when the normally incident beam of light is totally edected. Generalize this result to the case of oblique incidence at an angle θ with the normal
3.18 A completely absorbing screen receives 500%. light for 100 s . Compute the total linear momention transterred to the screen.
3.19 The average magnitude of the Poyming vect for sunlight arriving at the top of Earth's atmosphe $1.5 \times 10^{11} \mathrm{~m}$ from the Sun) is about $1.4 \mathrm{~kW} / \mathrm{m}^{2}$.
a) Compute the average radiation pressure exened a metal reflector facing the Sun.
b) Approximate the average radiation pressure at the surface of the Sun whose diameter is $1.4 \times 10^{4} \mathrm{~m}$, ,
3.20 What force on the average will be exerted on the ($40 \mathrm{~m} \times 50 \mathrm{~m}$) flat, highiy reffecting side of a spact station wall if it's facing the Sun while orbiting Earthī
3.21 A parabolic radar antenna with a ${ }^{2}-\mathrm{m}$ diamete ransmits $200-\mathrm{kW}$ pulses of energy If it is 500 pulses per second, each lasting 9 is, determi the average reaction force on the antenna.
3.22 Consider the plight of an astronaut floating ree space with only a 10 -W lantern (inexhaustibly sur lied with power). How long wil it take to reacb a spe of $10 \mathrm{~m} / \mathrm{s}$ using the radiation as propulsion? Th astronaut's total mass is 100 kg .
3.23 Consider the uniformly moving charge depicted in Fig. 3.14(b). Draw a sphere sarcounding it and sho wia the Poynting vector that the charge does not radiate
3.24 A plane, harmonic, linearly polarized light wave has an electric freld intersity given by

$$
E_{\mathrm{z}}=E_{0} \cos \pi 10^{15}\left(i-\frac{x}{0.65 c}\right)
$$

whilc traveling in a piece of glass. Find
a) the frequency of the lighe
b) its wavelength
) its wavelength

The kow-frequency relative permittivity of wate aries from 88.00 at $0^{\circ} \mathrm{C}$ to 55.39 at $100^{\circ} \mathrm{C}$. Explain thi behavior. Over the saine range in temperature, the index of refraction ($A=589.3 \mathrm{~nm}$) goes from roughly
in the corresponding change in K_{r} ?
6 Show that for substances of low density, such a 16 Show hat a single resonant frequency ω_{c}, the index of refraction is given by

$$
n=1+\frac{N_{q}^{2}}{2 \epsilon_{\mathrm{u}} m_{e}\left(\omega_{c}^{2}-\omega^{2}\right)} .
$$

gav' In the next chaprer, Eq. (4.47), we'll sec that fic reflects radiant energy apprecrabls when it differs most from the mediull in which it is

The rielecric constant of ice measured at microwave fequencies is roughly 1 , whereas that for water is bout 80 times greater-why?
b) How is it that a radar beam easily passes through ice but is considerably reflected when encountering dense rain?
3.28 The equation for a drven damped oscillator is

$$
m_{e} \bar{x}+m_{e} \gamma \dot{x}+m_{e} \omega_{0}^{\hat{Z}} x=q_{e} E(t) .
$$

a) Explain the significance of each rerm.
b) Let $E-E_{0} e^{i \omega t}$ and $x=x_{0} e^{i f(t o t-\infty)}$, where E_{0}, and $x_{i c}$ are real quantitics. Substitute into the above expression and show that

$$
x_{u}-\frac{q_{c} E_{0}}{m_{c}} \frac{\mathbb{1}}{\left[\left(\omega_{v}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right]^{1 / 2}} .
$$

g) Berive
an expression for the phase lag, α, and discus varies as ω goes from $\omega \ll \omega_{1}$ to $\omega=\omega_{0}$ to

M Fu
Fuchsin is a strong (aniline) dye, which in solution Aloohol has a deep red color. It appears red becaus Ahorbs the green component of the spectrum. (As 1 Himight expect, the surfaces of crystals of fuchsin act green light rather strongly.) Imagine that you a thin-walled hollow prism filled with this solution will the spectrum look like for incident white By the way, anomalous dispersion was first Wrved in about 1840 by Fox Talbot, and the effect ${ }^{5}$ s christened in 1862 by Le Roux. His work was
promptly forgotten, only to be rediscovered eight years ater by C. Christiansen.

30 Imagine that we have a nonabsurbing glass plate f index n and thickness Δy, which stands between a ource S and an observer P.
a) If the unobstructed wave (without the plate present) is $E_{u}=E_{0} \exp$ in(! $-y / c$), show that with the plate in place the observer sees a wave

$$
E_{p}=E_{\underline{t}} \exp i \omega[t-(n-1) \Delta y / c-y / c] .
$$

b) Show that if either $n-1$ or Δy is very sṃall, then

$$
E_{p}=E_{n}+\frac{\omega(n-1) \Delta y}{c} E_{u} e^{-i \pi m^{12}}
$$

The second term on the right may be envisioned as the field arising from the oscillators in the plate

31* Takc Eq, (3.70) and check out the units to make sure that they agree on both sides.
3.32 The resonant frequency of lead glass is in the UV fairly near the visible, whereas that for fused silica is far into the UV. Use the dispersion equation 10 make a rough sketch of n versus ω for the visible region of he spectrum.
3.33 Augustin Louis Cauchy (1789-1857) determined n empirical equation for $n(\lambda)$ for substances that are nansparent in the visible. His expression corresponded the power series relation

$$
n=C_{1}+C_{2} / \lambda^{2}+C_{3} / \lambda^{4}+\cdots,
$$

where the C 's are all constants. In light of Fig. 3.27 what is the physical significance of C ?
3.34 Referring to the previous problem, realize that here is a region between each pair of absorption bands for which the Cauchy equation (with a new set of con(ants) works fairly well. Examine Fig. 3.26: what can ou say about the various values of C_{1} as ω decreases across the whole spectrum? Dropping all but the first wo terms, use fig. 3.27 to detcrmine approximate values for C_{1} and C_{2} for borosilicate crown glass in the visible
7^{8} Chapter 3 Electromagnetic Theory，Photons and Light

3．35＊Crystal quartz has refractive indices of 1.357 and 1.547 at wavelengths of 410.0 nm and 550.0 nm ， equations sing only the first wo terms in Cau inde equation，calculate C_{1} and C_{8} and
of refraction of quartz at 610.0 nm ．

3．36＊In 1871 Sellmeier derived the equation

$$
n^{2}=1+\sum_{j} \frac{A_{j} \lambda^{2}}{\lambda^{2}-\lambda_{0 j}^{2}},
$$

where the A ，terms ate constants and each $\lambda_{i j}$ is the where the A ，terms are constants and each $\lambda_{0 j}$ is the
vacuurn wavelength associated with a natural frequence
$p_{0 j}$, such that $\lambda_{0, j} y_{0}=c$ ．This formulation is a conside ble practical improvernent over the Cauchy equatios Show that where $\lambda \gg \lambda_{c i}$ ，Cauchy＇s equation is a expression with only the first term in the sum；expan it by the binomial theorem；take the square root of and expand again．

3．97＊If an uitraviolet photon is to dissociate the oris gen and carbon atoms in the carbon monoxid molecule，it must provide 11 eV of energy．What is ch^{2} minimum frequency of the appropriate radiation？

4 THE PROPAGATION OF LIGHT

41 INTRODUCTION

We now consider a number of phenomena related to Tipagation of light and its interaction with material营 In in particular，we shall study the characteristics of fightwaves as they progress through various sub of stances，crossing interfaces，in the process．For the most part，we shall tenpision light as a classical electromagnetic wave whose
 3nl＇s electric and magnetic properties．It is an guisg fact that many of the basic principles of oprics predicated on the wave aspects of light but are gecely independent of the exact nature of the wave． We shall see，this accounts for the longevity of ygans＇s principipe，which has served in turn to describe dianical aether waves，electromagnetic waves，and W，after threc hundred years，applies to quantum Kines．
Cinterface sepe moment，that a wave impinges on
 pece of glass in air）．As we know from our everycay Way diverted back in the form of a refected wave，while －Ggemainder will be transmitred across the boundary as a refracted wave．On a submicroscopic scale we can烈保an assemblag on a submicroscopic scale we can tenergy．The manner in which these emitted yelets superimpose and combine with each other oxd on the spatial distribution of the scattering
atoms．As we know from the previous chapter，the scatuering process is responsible for the index of refrac This aromistic description is quite satisfying concep tually，even though it is not a simple matter to treat analytically．It should，however，be kept in mind even when applying macroscopic tectroiques，as indeed we when applyin
shall later on．
We now seek to determine the general principles governing or at least describing the propagation，reflec－ tion，and refraction of light．In principle it should be possible to trace the progress of radiant energy through any system by applying Maxwell＇s equations and the associated boundary conditions．In practice，howeve this is often an impractical if not an imposible task（see Section 10．1）．So we shall take a somewhat differen route，stopping，when appropriate，to verify that ou results are in accord with electromagnetic theory．

4．2 THE LAWS OF REFLECTION AND REFRACTION
4．2．1 Huygens＇s Principle
Recall that a wavefront is a suriace over which an optical disturbance has a constant phase．As an illustration，Fig． 4.1 shows a small portion of a spherical wavefront Σ emanating from a monochromatic point source S in a homogeneous medium．Clearty，if the radius of the wavefront as shown is r ，at some later time t it will gimply be $(r+v t)$ ，where v is the phase velocity of the wave．

But suppose instead that the light passes through nenuniform sheet of glass. as in Fig. 4.2, so that the wavefront itself is distorted. How can we determine its at sume later time if it is allowed so contine unob structed
A preliminary step toward the solution of this probAn appeared in print is 1690 in the work entitle Trailé de la Lumîrre, which had been written 12 year earlier by the Dutch physicist Christiaan Huygens. It earlier by the Dutch physicist. Christiaan Huygens. I
was there that he enunciated what has since becom known as Huygens's principle, that every foint on a primary wavefront serves as the source of spherical secondar wavietet,s, suth that the primary wavefront at some later time is the envelope of these whuplets. Moreover, the wavelen dronce winh a speed and frequmcy equal to those of the primary wave at each poim in space. It the medium is omogeneous, the wavelets may be constructed with inite radii, whercas if it is inhomogenerus, the wavclet nust have infinitesimal radii. Figure 4.5 should make this fairly clear: it shows a view of a wavefront Σ. as well as a number of spherical secondary wavelets, which atter a time , have propagated our to a radius of d
 0 visualize the process in terms of mechanical vibrations of elastic medium. Indecd this is the way that Huygens envisioned it within the context of an all urvading ather as is evident from this comment by prvading aether, as is evident from this comment by him:

We have still to consider, in studying the spreading ou of these waves, that each particle of matter in which ave procecds not only commumicates its motion to the fre tuminous poine but thar it na coll do a mol the thers opposc itsmetion. The result is shat arund each particl there arises a wave of which this particle is a coner.

We can make use of these ideas in two different way On one level, a mathematical representation of the wavclets will serve as the basis for a valuable analytical he progress of primary wave past all sorts of aperture and obstacles by summing up the wavelet contribution
 shall sec (Chapter 10), Fresncl successfully modified Huygens's principle somewhat in the 1800s. A shte later on, kirchhoff showed that the Huygeas-Frespo? principie was a direct consequence of the different waye equation (2.59), thereby putting it on a firm mat matical base. That there was a need for a reformulation

igure 4.2 Dis ith pis
principle is evident from Fig. 4.3, where we tively only drew hemispherical wavelets." Had we them as spheres, there would have been a backnoving toward the source-something that is not . Since this difficulty was taken care of theoretiFresnel and Kirch hoff, we need not be disturbed In tact, wc shall overlook it completely when Huygens's construction, which, in the end, is ought of as a highly useful fiction.
Huygens's principle fits in rather nicely with our discussion of the atomic scattering of radiant Each atorn of a material substance that interacts incident primary wavefront can be regarded as prem source of scattered secondary wavelets. Things are not quite as clear when we apply the principle to epagation of light through a vacuum, It is helpful, or, to keep in mind that at any poimt in empty on the primary waveftont there exists both a $-$
now fields that move out from the point. In this sense each point on the wavefront is analogous to a physical scattering center

4.2.2 Snell's Law and the Law of Reflection

The fundamental laws of reflection and refraction can be derived in several different ways; the first approach to be used here is based on Huygens's principle. It should be said. however. that our intention at the moment is as much to elaborate on the use of the method as to arrive at the end results. Huygens's ptrinciple will provide a highly useful and fairly simple means of analyzing and visualizing some complex propagation problems, for example, those involving anisotropic media (p. 287) or diffraction (p. 392). Conscquently, it is to our advantage to gain some practice in using the technique, cven if it is not the most elegant procedure for deriving the desired laws.
Figure 4.4 shows a monochromatic plane wave inpinging normally down onto the smosth interface separating two homogeneous transparent media. When it cane tave comes inlo contact withe observe one it can be imagirled as split into two: we observe one ward. If we consider an incident waycftont $\mathbf{\Sigma}$ coin cident with the incerface splicting into $\Sigma_{\text {, }}$ and $\Sigma_{\text {, }}$, both alsis congruent with the interface, we can uilize Huygens's construction (neglecting the back-waves). Every point on Σ, serves as a source of secondary wavelets, which travel more or less upward into the incident medium at a speed v_{1}. At a time : later. the front will advance a distance v, l and appear as \sum_{i}^{\prime}. Similarly, cvery point on the downward-moving front Σ_{c} will serve as a sourct for wavelecs essentially heading down with a speed v_{1}. After a time t the transmitted front will appear a distance $v_{l} t$ below as Σ_{i}.
The process is ongoing, repeating itsclf with the frequency of the incident wave.* The media are
This assumacs the use of light whose llux density is not so extraor dinarily high that the feelds are kigs.ntic. With ths assumption the moclium will behave linearly, as is moro ofiten the casc. In contrast.
olserval)e harrmunics can be generated it the fields are made large enoush Section 14.4.

 hornogentous, is.
assumed to respond linearly, so the reflected and transmitced waves have that same frequency (and period). as do all the secondary wavelets. Taking $n_{t}>n_{r}$, it follows that $c / v_{1}>c / v_{i}$, thus $v_{1}<v_{i}$, and the wavelengths (the distances between wavefronts drawn in consecutive intervals of τ) will be such that $\lambda_{i}>\lambda$ and $\lambda_{2}=\lambda_{r}$, as shown in Fig. 4,4(b). The incoming plane wave is perpendicular to the interface. and symmetry produces both reflected and transmitted plane waves that also travel out from the interface perpendicularly.

Now suppose the incident wave comes in at some other angle, as indicated in Fig. 4.5. Clearly, it sweep across the interface again, essentially splitting into tw waves: one reflected and one refracted. Let's follow th progress of a typical front in Fig. 4.6, envisioning thit diagram as if it were a series of smapshots taken fir successive hitervan coneak wint one and transmitted wavefronts begin, both the ref lies on both fronts, can be taken as a souso, both an upwardly emitted wayelet traveling ar a spe? τ_{i} and a downwardly emitted wavelet traveling at τ_{t} and a downwardy emitted wavelet traveling at
speed v_{t}. Now focus on another point, say, b on Σ, speed ν_{i}. Now focus on another poink, say, b on Σ_{i}.
After a time h the plane Σ_{i} will have moved a distan in the incident medium of τ_{1}, l_{1}, so that b then corst sponds ta b^{\prime}. Presumably, two wavelets will then prop gate out from b^{\prime} inco the incident and transmittin? media, contributing to the reflected, Σ_{r}^{\prime}, and tranimit. ted, \sum_{ℓ}^{\prime}, wavefronts. These wavelets are shown here afte a time t_{2}, where $\tau-t_{1}+t_{2}$. The rest of the diagram

Figure 4.6 Rellection and transmission at an intcf face wa Huysens's principle.
thin be self-explanatory. Figure 4.7 is a somewhat Simplifict version in which $\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{r}$, and θ_{t}, as before, are the angles of inciderce, refection, and transmission (or (eyfraction), respectively. Notice that

$$
\begin{equation*}
\frac{\sin \theta_{1}}{\overline{B D}}=\frac{\sin \theta_{r}}{\overline{A C}}-\frac{\sin \theta_{1}}{\overline{A D}}=\frac{1}{\overline{A D}} \tag{4.1}
\end{equation*}
$$

with Fig. 4.6, it should be evident that

$$
\overline{B D}-v_{2} t_{1} \quad \overline{A C}=v_{1} t_{1} \quad \overline{A E}=v_{2} t_{1},
$$

Whiming into Eq. (4.1) and canceling t, we have

$$
\begin{equation*}
\frac{\sin \theta_{1}}{v_{1}}-\frac{\sin \theta_{r}}{y_{i}}=\frac{\sin \theta_{1}}{v_{1}} \tag{4.9}
\end{equation*}
$$

It phlinas from the first two tern3s that the angle of incidinte equals the angle of reflection, that is,

$$
\theta_{1}-\theta_{r} .
$$

(4.3)

5as the law of rellection, it first appeared in the been fritted Catophrics, which was purported to have been Fritten by Euclid.

The first and last terms of Eq. (4.2) yicld $\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{i}^{2}} \quad \quad$ (4.4)
or since $v_{i} / v_{t}=n_{t} / n_{1}$
$n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}$.
(4.5)

This is the very important law of refraction, the physical consequences of which have been sturdied, at least on record, for over eighteen hundred years. On the basis of some fine observations, Claudius Piolemy of Alexandria attempted unsuccessfully to divine the expression. Kepler nearly succeeded in deriving the law of refraction in his book Supplements to Vuefto in 1604. Unfortunately he was misled by some erroneors data compiled carlier by V itello (ca. 1270). The correct relationship seems to have been arrived at frrst by Snell ${ }^{*}$ at the University of Leyderl and then by the French mathematician Descartes.t In English-speaking countries Eq. (4.5) is generally referred to as Snell's law. Notice that it can be rewritten in the form

$$
\frac{\sin \theta_{i}}{\sin \theta_{t}}=n_{i j}
$$

i* 0 :
where $n_{i}=n_{i} / n_{\text {, }}$ is the ratio of the absolute indices of refraction. In other words, it is the relative index of refraclion of the two media. It is evident in Fig. 4.6. where the opposite would be true if $n_{i}<1$.
One feature of the above treatment merits some fur ther discussion. It was reasonably assumed that ear point on the incerface, such as c in Fig. 4.6, coincides with a particular point on cach of the incident, reflected, and transmisted waves. In other words, there is a fixed phase relationship between each of the waves at points a, b, c, and so forth. As the incident front sweeps across the interface. every point on it in contact with the interface is also a point on both a corresponding reflected front and a corresponding transmitted front. This situation is known as wavefroni condinuily, and it will be
*This is the common spelliug, athough Snel is probably morce arcurate.
For a more detailed history, see Max Herzberger, "Optics from Euclid in Huygens.". Appl. Oph S. 1383 (1900).
medium cont ribute to the reflected wave, the dominant effect is due to a surface layer only about $\frac{1}{\frac{1}{2} \lambda} \lambda$ thick, which is nonetheless typically several thousand atoms deep Furthermore, the condition that only one beam is reflec ted is true provided that $\lambda>d$; it would not be the case beams actually result. nor is it the case with diftertiod grating where the senaration betwen sateres. cumprable tu 1 , and several eflecred and uatis beams are produced. A similar argument can be made for the scattering process giving rise to the cransmitted wave and Snell's law, as Problem 4.11 cstablishes.

4.2.3 Light Rays

The concept of a light ray is one that will be of interes to us throughout our study of optics. A ray is a lin draun in space correxponding to the direction of flow of radiant energy. As such, it is a mathematical de vice rather than a physical entity. In practice one can produce very narrow beams or pencils of light (e.g., a laserbeam), and we might imagine a ray to be the unatrainable limit on the narrowness of such a beam. Bear in mind that in an isotropic medium (i.e., one whose propetties are the siame in all directions) rays are orthogonal irajectiories of
the wavefronts. That is to say diey are lines normal to the wavefronts at every point of intersection Evidently in such a medium a ray is parallel to the proparation tiector k. As you might suspect, this is not true in anisotropic substances, which we will consider later (see Section 8.4.1) Within homoreneous isotropic materials, ruws will be straight lines, since by symmetry they cannot bend in any preferred direction, there being none. Moreover, because the speed of propagation is identical in all directions within a given medium, the spatial separation between two wavefronts, measured along rays, must be the same everywhere. Points where a single ray intersects a set of warefronts are called corresponding points, for example. A. A, and $A^{\prime \prime}$ in Fig. 4.9 Evidenlly the sefaration in time betwetn ony two corresponding points on any two

When the material is inkemogeneous or wien there is more than ane medium involvech is will be the oplical puth leazgh see Section.
sequential wavefronts is identical In other words, if wavefront \sum is transformed into $\Sigma^{\prime \prime}$ after a time r^{6}. the distance bet traversed in that same time $t^{\prime \prime}$ This will be trus cven if the wave fronts pass from one homogencous isotropic it the wavefronts pass from ont homogencous isotropic
medjurn into another. This just means that each point on Σ can be imagined as following the path of a ray to arrive at $\Sigma^{\prime \prime}$ in the time $t^{\prime \prime}$.
If a group of rays is such that we can find a surface that is orthogonal to each and every one of them, they rays emanating from a point source are perpendicular to a sphere centered at the source and consequenty torm a normal congruence.
We can now briefly consider an alternative to Huygens's principle that will also allow us to follow the progress of light through various isorropic media. The basis for this approach is the theorem of Malus and Dupin (introduced in 1808 by E. Malus and modificd in 1816 by C. Dupin), according to which a group of rays will prestrie it nommal congruence afler any number of refechion. point of the wave theory this is equivalent to the stage ment that rays remain orthogonal to wavefronts throughout all propagation processes in isotropis media. As shown in Problem 4.12, the theorem can be used to derive the law of reflection as well as Snell's law. It is often most convenient to carry out a ray trace through an optical system using the laws of reflection and refraction and then reconstruct the wavefronts. The latter can be accomplished in accord with the above considerations of equal transit times between corresponding points and the orthogonality of the rays and wavefronts.
Figure 4.10 depicts the parallel ray formation concomitanc with a plane wave, where θ_{i}, θ_{r}, and θ_{i}, which bave the exact same meanings as before, are now measured from the normal to the interface. The incident ray and the normal determine a planc known as the plane of incidence. Because of the symmetry of
the situation, we must anticipate that both the reflected and transmitted rays will be undeflected from that and transmitted rays will be undeflected from that vectors $\hat{\mathbf{k}}_{i}, \hat{\mathbf{k}}_{r}$ and $\hat{\mathbf{k}}_{\text {r }}$ are coplanar.

- In summary, then, the three basic laws of reflection
and refraction are:

1. The incident, reflected, and refracted rays all lie is
the plane of incidence.
2. $\theta_{r}-\theta_{r}$.
3. $n_{1} \sin \theta_{i}-n_{t} \sin \theta_{i}$.

These ate illustxated rather nicely with a narrow ligh beam in the photographs of Fig. 4. 11 . Here, the incidenh medium is air ($n, \approx 1.0$), and the transmitting medium is glass ($n_{t} \approx 1.5$). Consequently, $n_{i}<n_{n}$, and it follow

Guct 11 Refraction et various angles of inciidence
in's law that $\sin \theta_{1}>\sin \theta_{t}$. Since both angles, 4, vary between 0° and 90°, a region over which $\rightarrow \theta$. Roys entering a higher-index mediture from a shat $\theta_{i}>\theta_{\text {. }}$. Roys entering a higher-index mediter: from oh is evident in the figure. Notice that the botwom is cut circular so that the transmitted bean piftin the glass always lics along a radius and is there formormal to the lower surface in every case. If a ray normil to an interface, $\theta,-0-\theta_{1}$, and it sails right
The with no bending. Hacrow and sharp, and the reflected beam is equally II defined. Accordingly, the process is known as pecular reflection (from the word for a common mir(1loy in ancient times, speculump). In this case, as in (1) (1) (a), the reflecting surface is smooth, or more tigely, any irregularities in it are small compared Whate wavelength. ${ }^{*}$ In contrast, the diffuse reflection
3asherfurf ace ridges and valleys are small compared with λ, the
तon fition
in Fig, 4.12(b) occurs when the surface is relatively rough. For example, "nonrefecting" glass used to cove pictures is actually glass whose surface is roughened so that it reflects diffusely. The law of reflection holas exactly over any region hat is small enough to be considered smooth. These two forms of reflection are extremes; a whole range of intermediate behavior is possible. Thus, although the paper of this page was manufactured deliberately to be a fairly diffuse scatterer. the cover of the book reflects in a manner that is somewhere between diffuse and specular.
Ler \tilde{u}_{n} be a unit vector normal to the interface point medium (Fir 418) as will hawe the opportunity to prowe in Problem 413 , the fress and thind basic laws an be combina it torn of a recur refration equation:

$$
\begin{equation*}
n_{i}\left(\hat{\mathbf{k}}_{1} \times \hat{\mathbf{u}}_{n}\right)-n_{i}\left(\hat{\mathbf{k}}_{t} \times \hat{\mathbf{n}}_{n}\right) \tag{4.7}
\end{equation*}
$$

or, alternatively,

$$
n_{\mathrm{i}} \hat{\mathbf{k}}_{\mathrm{t}}-n_{\mathrm{t}}, \hat{\mathbf{k}}_{i}-\left(n_{\mathrm{t}} \cos \theta_{\mathrm{t}}-n_{i} \cos \theta_{\mathrm{i}}\right) \hat{\mathbf{u}}_{n} .
$$

4.2.4 Fermal's Principle

The laws of reflection and refraction, and indeed the manner in which light propagates in general, can o vicwed from an entircly different and intriguing per spective afforded us by Fermat's principle. The idea hat wil untrid presenty have had a tremendou influence on the development of physical thought
 Fermat's principle provides us with an insightful and ishly useful way of appreciating and anticipating the behavior of lisht. ehavior of light
Hero of Alexandria, who lived some time between 150 A.C. and 950 A.D., was the first to set forth what has formulatione known as a varialional principte. In his path actuan of the law of reflection, he asserted that the oint P anly taken by light in going from some powit This can be seen rath sutface was the shomt poss depict a point source S emitting a number of rays that are

98 Chopter 4 The Propagation of Light

hen reflected toward P. Of course, only one of the. patbs will have any physical reality. If we simply drav he rays as if they emanated from S (the innage of S none of the distances to P will have been altered (i.c $S A P=S A P$, SBP $S B P$, etc.). But obviously , the shortest possible . The we kind of reasoning Problem 4.15 makes it evident that points S, B and must lie in what has previously been delined as the lane of incidence. For over fifteen hundred vears Hero's curivus observation stood alone, until in 1557
Frrmat propounded his celebrated principle of least time
Fermat propounded his celebrated principle of east ine Obviously, a beam of light traversing an interface does
not take a straight line or minimum spata! path betwo and 2 a point in the incident medium and one in the transmine tirg medium. Fermat consequently reformulated Hero's statement to read. the actual path ortarn the leas lime as we shall ses, ewen form of $1 \frac{1}{6}$. thternes is ameshat in mond a bit that For the mont passionately. Assionately
the case of refraction, refer to Fig the principle mininvize $!$, the transit time from S to P, with respecss to the variable x. In other words, changing x shifts poin? O, thereby changing the ray from S in P. The smalless

Dilituc
net time will then presumatly coincide with the path. Hence

$$
-\frac{\overline{S O}}{v_{i}}+\frac{\overline{\partial r}}{v_{i}}
$$

Co 1 -imine $\mathrm{f}(x)$ with respect to variations in x, we se 2in -10 , that is:

$$
\frac{d t}{d x}-\frac{x}{v_{6}\left(h^{2}+x^{2}\right)^{1 / 2}}+\frac{-(a-x)}{u_{t}\left[a^{2}+(a-x)^{2}\right]^{1 / 2}}=0 .
$$

ans the diagram, we can rewrice the expression as

$$
\frac{\sin \theta_{3}}{u_{1}}=\frac{\sin \theta_{1}}{u_{1}},
$$

 W a beam of light is to advance from S to P in tipossible tume, it must comply with the empirical穿efraction.
Suppose that we have a stracified material composed
piblayers, each
1.2 The Laws of Reflection and Refraction
as in Fig. 4.16. The transit time from S to P will then be

$$
t=\frac{s_{1}}{v_{1}}+\frac{s_{2}}{v_{2}}+\cdots+\frac{L_{n}}{v_{n}}
$$

$$
t=\sum_{i=1}^{m} s_{i} / v_{1}
$$

where s_{1} and v_{2} are the path length and speed, respectively, associated with the ith contribution. Thus

$$
t=\frac{1}{c} \sum_{i=1}^{m} n_{1} s_{s_{s}}
$$

in which the summation is known as the optical path length (OPL) travcrsed by the ray, in contrast to he spatial path length $\sum_{n-1}^{m} s_{1}$. Clearly, for an inhomogencous medium wherc n is a bunction of pos

$$
(\mathrm{OPL})-\int_{S}^{P} n(x) d s .
$$

(1.10)

Fizyure
al ρ.

Figure 4．15 Fermat＇s principle applicit to refraction．

Inasmuch as $t=(\mathrm{OPL}) / \mathrm{c}$ ，we can restate Fermat＇s prin－ ciple：light，in going from points S to P ，traverses the route having the smallest optica！path length．Accordingly，whe light rays frorn the Sun pass through the in－

Figure 4.16 A ray propagating through a layered material．
homogeneous atmosphere of the Earth，as sho Fig．4．17（a），hey bend so as to traverse the lower，de regions as abruptly as possible，thus minimizing he passed below the horizoe In the same way，a rour viewed at a glancing angle，as in Fig．4．17（b），will appe to reflect the environs as if it were covered with a sth of water．The air near the roadway will be warmer less dense than that farther above it．Rays will bet upward，taking the shortest optical path，and in so dow they will appear to be reflected from a mirrored surf highway The only requirment is on long noderyo highways．The only road at near glancing incidence，because the rays bend very gradually．
The original statement of Fermar＇s principle of heast need of alteration．To that end，recall that if we have a function，say $f(x)$ ，we can determine the specific value of the variable x that causes $f(x)$ to have a stationary value by setting $d f / d x=0$ and solving for x ．By a station． ary value we mean one for which the slope of $f(x)$ versus x is zero or equivalently where the function has a maximum \triangle ，minimum \forall ，or a point of inflection with a horizontal tangent ，
Fermat＇s principle in its modern form reads：a light ay in going from point S to point P must traverse an oplical path length that is stationay wish respect to variations of thall path．In other words，the OPL for the true trajectorn will equal，to a first approximation，the OPL of pati． immediately adjacent to it＊Thus there will be many early the same time for actual one，which would cals point makes it nossible to begin to understand how ligh manages to be so clever in its meanderings．Supit： hat we have a beam of ligh advancing throuph a homogeneous isotropic medium so that a ray pas homogeneous isotropic medium so that a ray pask by the incident disturbance，and they reradiate in aill directions．Generally，wavelets originating in immediate vicinity of a stationary path will arrive at ？ by routes that differ only slightly and will thereforith
＊The first derivative of the OPL vanistes in is Taylor seritify expansion．since the path is slationary．

黎

Fhate 4．17 The bending of rays through inhomogencous media
athen nearly in phase and reinforce earh other（se Seation 7．1）．Wavelets taking other paths will arrive a Pfonit of phase and will therefore tend to cancel each ofre：That being the case，energy will effectively propa－ gete along that ray from S to P that satisfies Fermat＇s fraciple．
To show that the OPL for a ray need not always be rampaum，exarnine Fig．4．18．which depicis a segment校这 hollow three－dimensional ellipsoidal mirror．If the Gurce S and the observer P are at the foci of the Thoid，then by definition the length $S Q P$ will be whant，regardless of where on the perimeter Q hap－管 $\mathrm{b}_{\mathrm{i}}=\theta_{\text {．}}$ It is also a geometrical properiy of the ellipse P wia a reflecion are therefore preal paths from Tone is a minimum．and the OPL is clearly stationary With resped to variations－Rays leaving S and striking the fyirror will arrive at the focus P ．From ancther ＊wpoint we can say that radiant energy emitued by Wi．he scattered by electrons in the mirrored surface such that the wavelets will substantially reinforce each then only at P_{2} where they have traveled the same Wha have the same phase．In any case，if a planc was tangent to the ellipse at Q ，the exact same

igure 4．18 Reficction off an ellipsoidal surface．Observe the reflec re usually circular it is well worh pla ain water．Even though these Coulege Phyics，D．C．Heath \＆Con，1968．）
path $S Q P$ craversed by a way would then be a relative mininum, At the other extreme if the mirrored surface mininum. At the other extreme, if the mirrozed surface conformed to a curve lying within the elipse, like the
dashed one shown, that kame ray along $S Q P$ would now negotiate a relative maximum OPL. This is true even though other unised paths (where $\theta_{i} \neq \theta_{r}$) would actually be shorter (Le., apart from inadmissibie curved paths). Thus in all cases the rays travel a statronary OPL in accord with the reformulated Fermat's principle Note that since the principie speaks only about the path and not the direction along it, a ray going from P to S will trace the same route as one from S to P. This is the very useful principle of reversitilits.
Ferrnat's achievement stimulated a grear deal of effort to supersede Newton's laws of mechanics with a simila variational formulation. The work of many men, notEuler, finally led to the mechanics of Joseph Loris Lerange (1786 -1818) and hence to the princibte of leas artion formulated by William Rowan Hamilton (1805 1865). The triking similarity between the priciples o Fermst and Hamiloan played an important part in Schrödinger's development of quantum mechanics. In 1942 Richard Phillips Feynman (b. 1918) showed that quantum mechanics can be fashioned in an afternative way using a variational approach. The continuing evolution of variational principles brings us back to optic via the modern formalism of quantum optics (see Chapter 18).
Fermat's principle is not so much a computational device as it is a concise way of thinking about the propagation of light. It is a statement about the grand scheme of things without any concern for the contributing mechanispos, and as such it will yield insights under a myriad of circumstances

4.3 THE ELEGTROMA GNETIC APPROACH

Thus far we have been able to deduce the laws of reflection and refraction using three different approaches: Huygers' sprinciple, the theorem of Malus and Duphn, and Fermat's principlel. Each yields a distinctive powerful approach is provided by the electromagnetic
heory of light. Unlike the previous techniques, whio say nothing about the incident, reflected, and trach mitted radiant fux densities (i.e., I_{i}, I_{n}, I_{n}, respectivel the electromagnetic theory treats these within framework of a far more complete description.
The body of information that iorms the subject optics has accrued over many centuries. As our know edge of the physical universe becomes more extensiz the concomitant theorelical descriptions must becont ever more encompassing. This, quite generally, bring with it an increased complexity. And so, rather that using the formidable mathematical machinery of the quantum theory of light, we will otten avail ourselve of the simpler insights of simpler times 'e.g., Huygen? nd Fermat's principles). Thus even though we are ne poing to develop another and more extensive descaim on of reflection and refraction, we will not put asid we shall use the simplest technipue that an sufficiently accurate results for our particular purgo

4.3.1 Waves at an Interface

Suppose that the incident monochromatic lightwave planar, so that it has the form

$$
\mathbf{E}_{1}=\mathbf{E}_{d i} \exp \left[i\left(\mathbf{k}_{1} \cdot \mathbf{r}-\omega_{i} b\right)\right]
$$

or, more simply,

$$
\mathbf{E}_{\imath}=\mathbf{E}_{0 i} \cos \left(\mathbf{l}_{\mathrm{i}} \cdot \mathbf{r}^{-}-\omega, t\right) .
$$

Assume that $\mathbf{E}_{0_{2}}$ is constant in time, that is, the wave is tinearly or plane polarized. We'll find in Chapter 8 tha any form of light can be represented by two orthogonal linearly polarized waves, so that this doesn't actival represent a restriction. Note that just as the origin $\mathrm{me}_{2} 6=0$, is arbitraty, so too is the origin O ja spal where $\mathrm{r}=0$. Thus, making no assumptions about the directions, frequencles, wavelengths, phases, or amp udes, we can write the reffected and transmitted wape as

$$
\mathbf{E}_{r}=\mathbf{E}_{\mathrm{f},} \cos \left(\mathbf{k}_{r} \cdot \mathbf{r}-\omega_{r} l+\boldsymbol{\varepsilon}_{r}\right)
$$

and

1. $\boldsymbol{\varepsilon}_{r}$ and $\boldsymbol{\varepsilon}_{t}$ are phase constants relative to \mathbf{E}_{i} and are mroduced because epicts the waves in the vicinity of uniuc. diepatic media of indices $n_{\text {, }}$ and n_{t}.
Tiese was of cleatromatgnetic tbeort (Section 3.1) lead Thertain requirementsthat must be met by the fields, 2-2 eqtain requirefierred to as the boundary conditions. Sp 保保cally, one of these is that the component of the ele tod field intensity \mathbf{E} that is tangent to the interface must be continuous across it (the same is true for \mathbf{H}). In other words, the tctal tangential component of \mathbf{E} on ond fide of the surface must equal that on the other (Profilem 4.22). Thus since \dot{w}_{n} is the unit vect.or normal to weinterk e waveiront, the cross-product of it with $\hat{\mathbf{u}}_{\text {will }}$ be perpendicular to $\hat{\mathbf{u}}_{n i}$ and therefore tangent ugnde interface. Hence

$$
\begin{equation*}
\hat{\mathbf{u}}_{n} \times \mathbf{E}+\hat{\mathbf{u}}_{\pi} \times \mathbf{E}_{\mathrm{r}}=\hat{\mathbf{u}}_{n} \times \mathbf{E}_{t} \tag{4,15}
\end{equation*}
$$

$$
\begin{aligned}
\hat{\mathbf{u}}_{n} & \times \mathbf{E}_{0 t} \cos \left(\mathbf{k}_{i} \cdot \mathbf{r}-\psi_{r} t\right) \\
& +\hat{\mathbf{u}}_{n} \times \mathbf{E}_{\partial_{r}} \cos \left(\mathbf{k}_{r} \cdot \mathbf{r}-\omega_{r}, t+\varepsilon_{r}\right\}
\end{aligned}
$$

$-\hat{\mathbf{u}}_{n} \times \mathbf{E}_{0 t} \cos \left(\mathbf{k}_{4} \cdot \mathbf{r}-\omega_{t} t+\hat{\epsilon}_{t}\right) \quad$ (4.16)
vilierelationship must obtain at any instant in time and Pholy point on the interface ($y=b$). Consequently, $\mathbf{E}_{\text {, }}$, Headence on the variables t and γ, which means that

$$
\begin{equation*}
=\left(\mathbf{k}_{t} \cdot \mathbf{r}-\omega_{i} t+\tilde{\varepsilon}_{t}\right)_{y=b} . \tag{4.17}
\end{equation*}
$$

Whth this as the case, the cosines in Eq. (4.16) ancel
 Wh be. Inasmuch as this has to be true for all values © 0 fime, the coefficients of t must be equal, to wit

$$
\begin{equation*}
\omega_{2}-\omega_{r}-\omega_{1} . \tag{4.18}
\end{equation*}
$$

Recall that the electrons within the media are under King (linear) forced vibrations at the frequency of the fiat sant wave. Clearly, whatever wight is srattered has Hat same frequency. Furthermore,

$$
\left.\left(\mathbf{k}_{\mathbf{i}} \cdot \mathbf{r}\right)\right|_{y=b}=\left.\left(\mathbf{k}_{r} \cdot \mathbf{r}+\varepsilon_{i}\right)\right|_{y=b}
$$

$$
-\left.\left(\mathbf{k}_{1} \cdot \mathbf{r}+s_{r}\right)\right|_{y=b},
$$

Pinure ti9 Plare waves incideat or the houndary beimen ter homogeneous, isorropic, lossless dielectric media
wherein \mathbf{r} terminates on the interface. The values of and ε_{1} correspond to a given position of O, and thu they allow the relation to be valid regardless of tha location. (For example, the origin might be chosen such that \mathbf{r} was perpendicular to $\mathbf{k}_{;}$but not to \mathbf{k}, or $\boldsymbol{\Sigma}_{e}$) From the first two terms we obtain

$$
\left[\left(\mathbf{k}_{i}-\mathbf{k}_{y}\right) \cdot \mathbf{r}\right]_{y=b}=\epsilon_{r} .
$$

Recalling Eq. (2.42), this expression simply says that the endpoint of it aweeps out a plane (which is of course phrse it slighty differently, \hat{L}_{4}) is parallel to \hat{n} phrase it slightly differenty, ($h_{\frac{1}{}}$ ky) is parallef reflected waves are in the same medium, $h_{t}=h_{r}$. From the fact that $\left(k_{t}-k_{r}\right\}$ has no component in the plane of the torerlape, that is, is $\times\left(k_{i}-k_{-}\right)=0$, we tonclude that

$$
k_{1} \sin \theta_{i}=k_{r} \sin \theta_{r} ;
$$

hence we have the law of reflection, that is,

$$
g_{i}=\theta_{r} .
$$

Furthermore, since ($k_{i}-k_{i}$) is parallel to \hat{u}_{4} all three rectors, $\mathbf{k}_{i}, \mathbf{k}_{\mathrm{p}}$, and \boldsymbol{w}_{k}, are in the same plane, the plan of incidence. Again, from Eq. (4.19) we obrain

$$
\left[\left(\mathbf{k}_{z}-\mathbf{k}_{t}\right) \cdot \mathbf{r}\right]_{y-b}=\varepsilon_{t},
$$

$$
\{1.2 i)
$$

and therefore $\left(\mathbf{k}_{1}-\mathbf{k}_{l}\right)$ is alse normal to the interface

Thus $\mathbf{k}_{\mathbf{i}}, \mathbf{k}_{r}, \mathbf{k}_{\text {t }}$, and $\hat{\mathbf{u}}_{n}$ are all coplanar. As before, the Thus $\mathbf{k}_{i}, \mathbf{k}_{r}, \boldsymbol{k}_{1}$, and \hat{u}_{11} are all coplanar. As before, the consequently

$$
\begin{equation*}
k_{2} \sin \theta_{1}-k_{1} \sin \theta_{r} . \tag{14.22}
\end{equation*}
$$

Sut becausc $\omega_{i} \approx \omega_{i}$, we can multiply both sides by d / ω
to get

$$
n_{i} \sin \theta_{\mathrm{c}}-n_{\mathrm{t}} \sin \theta_{\mathrm{t}}
$$

which is Snell's law. Finally, if we had chosen the origin 0 to be in the interface, it is evident from Eqs. (4.20) and (4.21) that ε_{+}and $\varepsilon_{\text {, }}$ would both have been zero. That arrangement, athough not as instructive, is ce ainly simpler, and we'll use it from here on

4.3.2 Derivation of the Fresnel Equations

We have just found the relationship that exists among the phases of $\mathbf{E}_{\mathbf{N}}(\mathbf{r}, t), \mathbf{E}_{\mathrm{r}}\left(\mathbf{r}, 0\right.$, and $\mathbf{E}_{(}(\mathbf{r}, t)$ at the boun-
 amplitudes $\mathbf{E}_{w}, \mathbf{E}_{n}$, and $\mathbf{E}_{\text {a }}$ which can now be evalu ated. To that end, suppose that a plane monochromacic wave is incident on the planar sutface separating two wave is incident on the planar sutface separating two we shall resolve its E and B-fields into components paralle! and perpendicular to the plane of incidence and treat these constituents separately.

Case I: E perpendicular to the plane of incidence. We now assume that \mathbf{E} is perpendicular to thic plane of incidence and that \mathbf{B} is parallel to ir (Fig. 4.20). Recall that $E=t B$, so that
$\hat{\mathbf{k}} \times \mathbf{E}=w \mathbf{B}$
(4.23)
and, of course,

$$
\hat{\mathbf{k}} \cdot \mathbf{E}=0
$$

(i,.,., E, B. and the unit propagation vector $\hat{\mathbf{k}}$ form a ight-handed system). Again making use of the connuity of the tangential components of the E-field. wo bave at the boundary at any time and any paint

$$
\mathbf{E}_{\mathrm{ct}}+\mathbf{E}_{0,}=\mathbf{E}_{\mathrm{i} t},
$$

(4.95)
where the cosines cancel. Realize that the field vectors
s shown really ought to be envisioned at $y=0$
the surface), from which they have been displaced the sake of clarity. Note too that although B_{r} and must be normal on the plane of incidence by symme we are gutesing that chey point oulvard at the inter when \mathbf{E}_{i} does. The directions of the B-fields then for from Eq. (4.23).
We will need to invoke another of the boun conditions in order to get one more equation, presence of material substances that become electri polarized by the wave has a definite effect on the ff configuration. Thus, although the cangential ed ponent of E is continuous across the boundary, its x mal component is not. Instead the normal compone of the product $\epsilon \mathrm{E}$ is the same on either side of thay

Figure 4.20 rigure 4.20
inciderse.
face. Similarly, the normal component of B is conint dace. Similarly, the normal component of B is coninvean, as is the tangential component of μ B. Here effect of the two media appears via their per Abilities μ_{i} and μ_{2}. This boundary condition will be th . Whlest to use, particularly as appled the reflection fromethangential component of $\mathbf{B} / \dot{4}$ requires that

$$
-\frac{\mathbf{B}_{2}}{\mu_{i}} \cos \theta_{2}+\frac{\mathbf{B}_{r}}{\mu_{i}} \cos \theta_{r}--\frac{\mathbf{B}_{i}}{\mu_{i}} \cos \theta_{i}
$$

Te the left and right sides are the total magnitudes wine warallel to the interface in the incident and of p/ μ parale media, respectively. The positive direction is thit of increasing x, so that the components of $\mathbf{B}_{\mathbf{i}}$ and ${ }_{10}$ appear with minus signs. From Eq. (4.23) we have

$$
B_{1}-E_{t}^{l} z_{i},
$$

$B_{2}=E_{r} / v_{r}$
$B_{1}-E_{i} / u_{t}$
(4.29)

Thais since $y_{t}=t_{r}$ and $\theta_{1}=\theta_{r}$ Eq. (4.26) can be written

$$
\begin{equation*}
\frac{1}{\mu_{1} u_{2}}\left(E_{i}-E_{1}\right) \cos \theta_{1}-\frac{1}{\mu_{1} v_{2}} E \cos \theta_{t} \tag{4.30}
\end{equation*}
$$

Maxine use of Eqs. (4.12), (4.13) and (4.14) and remem-
werngth

$$
\frac{\mu_{i}}{\mu_{\mathrm{i}}}\left(E_{0_{1}}-E_{0_{r}}\right) \cos \theta_{1}=\frac{\mu_{t}}{\mu_{t}} E_{i l} \cos \theta_{t},
$$

Grabined with Eq. (4.25), this yields

$$
\begin{equation*}
\left(\frac{E_{0 r}}{E_{0_{i}}}\right)_{L}=\frac{\frac{n_{i}}{\mu_{i}} \cos \theta_{i}-\frac{n_{2}}{\mu_{2}} \cos \theta_{i}}{\frac{n_{i}}{\mu_{i}} \cos \theta_{i}+\frac{n_{i}}{\mu_{t}} \cos \theta_{i}} \tag{4.32}
\end{equation*}
$$

Phy with our intent to use inly the E. and \mathbf{B}-fields, al lead Ity part of this exposition, we have woidec the usual state
Mideras of H , where

The subscript serves as a reminder that we are dealing with the case in which \mathbf{E} is perpendicular to the plane of incidence. These two expressions, which are completel general statements applying to any linear, isoltopic, general statementis applyng to any indar, isaltopic
homogereous media, are two of the Fresnel equations Quite often one deals with dielectrics for which $\mu_{i}=$ $\mu_{i} \approx \mu_{y} ;$ consequently the most common form of these equations is simply

$$
\left.r_{1}=\left(\frac{E_{i+r}}{E_{0_{i}}}\right)_{+}-\frac{m_{4} \cos \theta_{i}-n_{4} \cos \theta_{4}}{n_{4} \cos \theta_{3}+n_{4} \cos \theta_{t}} \quad \text { (} 1.3+4\right)
$$

and

$$
r_{1}=\left(\frac{E_{11}}{E_{0 i}}\right)-\frac{\sum n_{1} \cos \theta_{i}}{n_{1} \cos \theta_{\xi}+m_{1} \cos \theta_{i}} .
$$

Hert r_{\perp} denotes the amplitude reflection coefficien and t_{1} is the amplitude transmission coefficient

Case 2 : Eparaliel to the plane of incidence. A simila pait of equations can be derived when the incoming -field lies in the plane of incidence, as shown in Fig 21. Continuity of the targential components of \mathbf{E} ither side of the boundary leads to

$$
E_{f i r} \cos \theta_{i}-E_{f l}, \cos \theta,-\mathcal{E}_{0,1} \cos \theta_{1} . \quad\{i, 36\}
$$

In much the same way as before, continuity of the tangential components of \mathbf{B} / μ yields

$$
\begin{equation*}
\frac{1 \cdot}{\mu, v_{i}} E_{v i}+\frac{1}{\mu, v i} E_{i r}=\frac{1}{\mu_{i} v_{t}} E_{v t} . \tag{-9.97}
\end{equation*}
$$

Uing the fact rhat $\mu_{i}-\mu_{r}$ and $\theta_{i}-\theta_{r}$, we can combine hese formulas to obtair two more of the Fresuel equations:

$$
r_{11}=\left(\frac{E_{u r}}{E_{i_{i}}}\right)_{\|}=\frac{\frac{m_{1}}{\mu_{k}} \cos \theta_{1}-\frac{m_{m}}{\mu_{i}} \cos \theta_{z}}{\frac{m_{1}}{\mu_{1}} \cos \theta_{i}+\frac{m_{1}}{\mu_{1}} \cos \theta_{i}}
$$

$$
4=\left(\frac{E_{0 t}}{E_{\text {rii }}}\right)_{\|}=\frac{2^{\frac{n_{t}}{\mu_{1}}} \cos \theta_{2}}{\frac{n_{i}}{\mu_{i}} \cos \theta_{i}+\frac{n_{i}}{\mu_{i}} \cos \theta_{t}} .
$$

When both media forming the incerface are dielectrics, the amplitude coefficients become

$$
r_{t}=\frac{n_{4} \cos \theta_{i}-n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{t}+n_{i} \cos \theta_{v}}
$$

(4.4)

Figure 1.21
ncidence
and

$$
r_{1}=\frac{2 n_{t} \cos \theta_{i}}{n_{t} \cos \theta_{t}+n_{t} \cos \theta_{2}} .
$$

One further notational simplification can be madr availing ourselves of Sricl's law, whereupon the Fre equations for dielectric media become (Problem

$$
\begin{aligned}
& r_{L}=-\frac{\sin \left(\theta_{i}-\theta_{i}\right)}{\sin \left(\theta_{i}+\theta_{i}\right)} \\
& r_{1}=+\frac{\tan \left(\theta_{i}-\theta_{i}\right)}{\tan \left(\theta_{1}+\theta_{i}\right)} \\
& t_{1}=+\frac{2 \sin \theta_{i} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{i}\right)} \\
& r_{1}-+\frac{2 \sin \theta_{i} \cos \theta_{i}}{\sin \left(\theta_{1}+\theta_{i}\right) \cos \left(\theta_{i}-\theta_{i}\right)^{\prime}}
\end{aligned}
$$

A note of caution must be introduced before we tric on to examine the considerabie significance of the p ceding calculation. Bear in mind that the directions more precisely, the phases) of the fields in Figs. 4. and 4.21 were selected rather artitrariy. For exampl nog. ${ }^{2}$ as well. Had we done that, the sign of T_{1} would hat turned out to be positive, leaving the other amplitu coefficients unchanged. The signs appearing in E 4.42) chrough (4.45), in this case positive, except (4.42) first, correspond to the particular sct of field dire tions selected. The minus sign, as we will see, just mearil that we didn't guess correctly concerning \mathbf{E}_{r} in Fig. 4.20. Nonetheless, be aware that the literature is not standardized, and all possible sign variations have been labeled Fremel equations--to avoid confusion they must be related so the specific field dirrections from watich they wers derivity
4.3.3 Interpretation of the Fresnel Equations

This section is devoted to an examination of the phyel mplications of the Fresnel equations. In particuiar and fux densities that are reflected and refracted. in:
we shall be concerned with any possible phas adelis: we might be incurred in the process.
n.mberan Conticierta

- Arfiefly examine the form of the amplitude fiely 就 the entire range of θ_{t} values. At sindence $\left(\theta_{i}=0\right)$ the tangents in Eq . (4.43) ar ess wivaily equal to sines, in which case

$$
r_{1} l_{e_{1}-0}=\left[-r_{1}\right]_{\left.e_{1}-1\right)}=\left[\frac{\sin \left(\theta_{i}-\theta_{2}\right)}{\sin \left(\theta_{\mathrm{i}}+\theta_{2}\right)}\right]_{\theta_{1}-0}
$$

will come back to the physiral sigrificance of the wovic n presently. After we have expanded the sine Dasd Snell's law, this expression becomes

$$
=\left[-r_{1}\right]_{c_{1}=0}-\left[\frac{n_{t} \cos \theta_{1}-n_{1} \cos \theta_{1}}{n_{1} \cos \theta_{1}+n_{i} \cos \theta_{1}}\right]_{A=n},
$$

whll fobussas well from Eqs. (4.34) and (4.40). In the as θ_{i} goes to $0, \cos \theta_{i}$ and $\cos \theta_{i}$ both approach if consequently

$$
\left[r_{1} \mathrm{l}_{1} \cdot v=\left[-r_{2}\right]_{a_{t}, t}-\frac{n_{t}-n_{t}}{n_{t}-n_{t}} .\right.
$$

$$
\text { Thais, for example, at an air }\left(n_{1}=1\right) \text { glass (} n_{t}=1.5 \text {) }
$$

$$
\begin{aligned}
& \text { This, for example, at an air }\left(n_{1}=1\right) \text { glass }\left(n_{t}=1.5\right. \\
& \text { nfefface at nearly normal incidence, the reflection }
\end{aligned}
$$

$$
\begin{aligned}
& \text { nquaface at nearly no } \\
& \text { coefficients equal } \pm 0.2 \text {. }
\end{aligned}
$$

When $\pi_{i}>\eta_{i}$ it follows from Snell's law that $\theta_{i}>\theta_{i}$, and n_{1} is negative for all values of θ_{1} (Fig. 4.22). In courrast, γ_{n} slarts out positive at $\theta_{1}=0$ and decreases sradtaly unti it equals zero whers $\left(\theta_{i}+\partial\right)=90^{\circ}$, since an: ${ }^{m} / 2$ is infinite. The particular value of the incident or which this occurs is denoted by θ_{p}, and is to as the polarization angle (see Section 8.6.1). ulcteases beyond θ_{p}, r_{11} becomes progressively single sheet of reaching -1.0 at 60°. If you place a aingle sheet of glass, a micruscope slide. on this page Fnd look straight down into it $\left(\theta_{1}-0\right)$, the region rest didne paper, because the slide will grayer than the Brissogffaces, and the light the slide will reffect at both the paper will be dimininished appreciably. Now hotd the slide regr your eye and again view the page through it as you diltt, increasing θ_{i}. The amount of light reflected will ingease, and it will become more difficuil to see

Eigure 4.22. The ampitude conflitients nf refection and tranta misionasa tenction ofinatentangle. These crrespondionexerna reflection $n_{1}>n_{;}$at an air-giass interface ($n_{n}=1.5$).
che page through the glass. When $\theta_{i}=90^{\circ}$ che slide will ook like a perfect mirror as the reflection coefficien iig. 4.22) go wher 1.0 Even rim poor surface, such cideree. Hold the bok bo the he middle of your eye and face a brioht light; you wil ee the source reflected rather nicely in the cover. This suggests that ever x-rays couid be mirror-reflected at lancing incidence ($\mathbf{p} .210$), and modern x -ray telecopes are based on that very fact
At normal incidence wqs. (4.35) and (4.41) lead rather traightforwardly to

$$
\left[t_{1}\right]_{u_{1}=c}=\left[r_{4}\right)_{n_{1}=1}=\frac{2 n_{t}}{n_{t}+n_{1}} . \quad(t+48)
$$

h. will be shown in Probiem 4.24 that the expression
$r_{\perp}+\left(-r_{\perp}\right)=1$
(4.49)
holds for all θ_{i}, whereas

$$
r_{1}+r_{1}=1
$$

(4.50)
is true only at normal incidence
The foregoing discussion, for the most part, was restricted to the case of external reflection (i.e., $n_{1}>n_{4}$). The opposite situation of internal reffection, in which The opposite situation of internal reflection, in which the incident medium is the more dense $\left(n_{i}>n_{2}\right)$, is of
interest as well. In that instance $\theta_{t}>\theta_{i}$, and r_{1}, as described by Eq. (4.42), will always be positive. Figure 4.23 shows that r_{\perp} increases from its initial value (4.47) at $\theta_{i}=0$, reaching +1 at what is called the critical angle, θ_{c}. Specifically, θ_{c} is the special value of the incident angle for which $\theta_{1}=\pi / 2$. Likewise, π_{y} starts off negaively (4.47) at $\theta_{i}=0$ and thereatter increases, reaching $+i$ at $\theta_{i}=\theta_{c}$; as is evident from the Fresnel equation (4.40). Again, r_{1} passes througb zero at the polarization angle θ_{p}^{\prime}. It is left for Problem 4.94 to show that the polarization angles θ_{p}^{\prime} and θ_{p} for internal and external reflection at the interfacc between the same media are simply the complements of each other. We will return o internal reflection in Section 4.3.4, where it will be shown that r_{\perp} and \cap are complex quantities for $\theta_{i}>\theta_{c}$,

ii) Phase Shifts

It should be evident from Eq. (4.42) that r_{1} is negative regardless of θ_{1} when $n_{2}>n_{i}$. Yet we saw earlier that had we chosen $\left[E_{r}\right]_{\perp}$ in Fig 4.20 to be in the opposite direcion, the first Fresnel equation (4.42) would have changed signs, causing τ_{\perp} to become a positive quantity. Thus the sign of r_{\perp} is associated with the relative directions of $\left[\mathbf{E}_{6 i}\right]_{1}$ and $\left[\mathbf{E}_{0 r}\right]_{+}$. Bear in mind chat a reversal of $\left[E_{0 r}\right]_{+}$is tantamount to incroducing a phase shift., $\Delta \varphi_{1}$, of π radians into [ErL. Hence at the boundary $\left[\mathbf{E}_{i}\right]_{\perp}$ and $\left[\mathbf{E}_{T}\right]_{\perp}$ will be antiparallel and therefore π out of phase with each other, as indicated by the negative value of r_{\perp}. When we consider components normal to the plane of incidence, there is no confusion as to whether two fields are in phase or π radians out of phase: if parallel, they're in phase; if antiparallel, hef're π out of phase. In summary, then, the component these stift of π redians unom rofectios when the inglens medium has a lower index than the transmitting medium.

Figure 4.23 The amplitude coefficiertis of reflection as a furcetion of incider ant Tus co 10 to an air-Elass interface $\left\{n_{i}=1 / 1.5\right)$.

Similarly, t_{\perp} and $t_{\|}$are always positive and $\Delta \varphi-0$
Furthermore, when $n_{3}>n_{t}$ no phase shift in. the normd component results on reffection, that is, $\Delta \varphi_{1}=0$ so bons सi $\theta_{\mathrm{i}}<\theta_{\mathrm{F}}$.
higsare a bit less obvious when we deal winh $\left[\mathbf{E}_{r}\right]_{\|}$, and $\left[\mathbf{E}_{]_{\|}}\right.$. It now becomes necessary to depie more explicily what is meant by in phase, since the vectors are coplanar but generally not colinear. The field directions were chosen in Figs. 4.20 and 4.218 that if you tooked down any one of the propaga vechors toward the direction from which the light coming. E, B, and \mathbf{k} would appear to have the sa relative orientation whether the ray was incident, refec ted, or transmitted. We can use this as the requal cd but more simply, phase if their y-components are parallel and are out of phact.
if ${ }^{2}$ components are antiparallel. Notice that when two if dede are out of phase so too are their associated B -dilds and vice versa. normal to the plane of incidence on fllook the be \mathbf{E} or \mathbf{B}, to determine the relative phase whatiar the benying fields in the incident plane. Thu af 7 re $424(a) \mathbf{E}_{i}$ and \mathbf{E}_{f} are in phase, as are $\mathbf{B}_{;}$and $\mathrm{B}_{\text {; }}$ metispeas \mathbf{E}_{i} and \mathbf{E}_{r} are out of phase, along with B_{4} and ${ }_{B}$. *ipoilarly, in Fig. $4.24(\mathrm{~b}) \mathbf{E}_{3}, \mathbf{E}_{r}$, and \mathbf{E}_{t} are in phas ${ }^{5}$ as
Now the amplituce refection coefficient for the parfilel component is given by

$$
r_{\|}=\frac{n_{i} \cos \theta_{i}-n_{i} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{i} \cos \theta_{t}^{\prime}}
$$

vindit is positive $\left(\Delta \varphi_{\| \mid}=0\right)$ as long as

$$
n_{i} \cos \theta_{i}-n_{i} \cos \theta_{i}>0,
$$

that is, if
$\sin \theta_{i} \cos \theta_{i}-\cos \theta_{i} \sin \theta_{1}>0$
er equitalently
$\sin \left(\theta_{i}-\theta_{i}\right) \cos \left(\theta_{i}+\theta_{i}\right)>0$.
This will be the case for $n_{1}<n_{1}$ if
$\left(\theta_{i}+\theta_{t}\right)<\pi / 2$

Fsure 626 Field orienations and phase shifts.

Thus when $n_{i}<n_{t},\left[\mathbf{E}_{0 r}\right]_{1}$ and $\left[\mathbf{E}_{0 i}\right]_{r}$ will be in phase $\left(\Delta \varphi_{\|}=0\right)$ until $\theta_{i}=\theta_{y}$ arld out of phase by π radians thereafter. The transition is not actually discontinuous, since [$\left.\mathbf{E}_{07}\right]_{\|}$goes to zero at $\boldsymbol{\theta}_{y}$. In contrast, for internal reflection T_{11} is negative until θ_{p}^{\prime}, which means that $\Delta \varphi_{\|}=$ π. From $\theta_{p}^{\prime \prime}$ to θ_{i}, r_{1} is positive and $\Delta \varphi_{\|}=0$. Beyond θ_{r}, r_{A} becomes complex, and $\Delta \varphi_{I}$ gradually iacreases to π at $\theta_{2}=90^{\circ}$.
Figure 4,25 , which summarizes these conclusions, will be of continued use to us. The actual functional form of $\Delta \varphi_{\|}$and $\Delta \varphi_{\text {L }}$ for internal reflection in the region curyes depicted here will sulfice for our purposes. Figure $4.95(\mathrm{e})$ is a plot of the relative phase shift betweer Figure $4.25(\mathrm{e}$) is a plot of the relative phase shift between the parallel and perpendicular components, that is,
$\Delta \varphi_{1}-\Delta \varphi_{1}$. It is included here because it will be useful later on (e.g., when we consider polarization effects). Finally, many of the essential features of this discussion are illustrated in Figs. 4.26 and 4.27. The amplitudes of the reflected vectors are in accord with those of Figs. 4.22 and 4.23 (for an air-glass interface), and the phase shifts agree with those of Fig. 4.25
Many of these conclusions can be veritied wath the simplest experimental equipment, namely, two linear polarizers, a piece of glass, and a small source, such as a flashlight or high-intensity lamp. By placing one polarizes in front of the source (at 45° to the plane of incidence), you can easily duplicate the conditions of
Fig. 4.26. For example, when $\theta_{i}=\theta_{p}[$ Fig. $4.26(\mathrm{~b})]$ no Fig. 4.26. For example, when $\theta_{i}=\theta_{p}[$ Fig, $4.26(\mathrm{~b})]$ no light will pass through the second polarizer if ist transmission axis is parallo to phe ple the bern will wish when the aves of the two polarizers are almost normal to each other
iii) Reflectance and iransmittance

Consider a circular beam of light incident on a surface as shown in Fig, 4.28, such that there is an illuminated spot of area A. Recall that the power per unit area

Figure 4.25 Phase shifts for the parallel and perpeevdicular com-
Figure 4.25 Phase shifts for the paratie. and perpeevdicular com-
ponents of the E-field corresponding to internal and external
roflection.
crossing a surface in vacuum whose normal is paralind to S , the Poynting vector, is given by

$$
\mathbf{S}=c^{2} \varepsilon_{1} \mathbf{E} / \mathbf{B}
$$

Furthermore, the radiant fux density ($\mathrm{W} / \mathrm{m}^{2}$) or irrats ance is

$$
I-\langle S\rangle=\frac{c \epsilon_{\mathrm{l}}}{2} E_{1 .}^{2}
$$

This is the average energy per unit time crossing a anit area normal to \mathbf{S} (in isotropic media \mathbf{S} is parallel tolint area normal to S in isotropic media S is parallel to (k), incident, reflected, and transmitted flux densiz espectively. The cross-sectional areas of the ineide t, reflected, and transmitted beams are, respectirde reflected, and transmitted beams are, respectidy $\begin{gathered}\text { y } \\ \text {, }\end{gathered}$ $A \cos A_{i}, A \cos \theta_{r}$, and $A \cos \theta_{1}$. Accordingly, the
incident power is $I_{i} A \cos \theta_{2}$: this is the energy per unii incident power is $I_{i} A \cos \theta_{2}$: this is the energy per uni4
time lowing in the incident beam and it's therefote ${ }^{\text {be }}$ power arriving on the surface over A. Similaty, $I_{r} A \cos \theta_{r}$ is the power in the reflected beam, alid $I_{i} A \cos \theta_{1}$ is the power being transmitted through A. Wer define the reflectance R to be the ratio of the reflected power (or flux) to the incident power:

$$
R=\frac{I_{\mathrm{r}} \cos \theta_{\mathrm{r}}}{I_{\mathrm{i}} \cos \theta_{\mathrm{i}}}=\frac{I_{\mathrm{r}}}{I_{\mathrm{i}}} .
$$

In the same way, the transmittance T is defined as the atio of the transmitted to the incident flux and aries? by

$$
T=\frac{I_{i} \cos \theta_{i}}{I_{i} \cos \theta_{i}}
$$

The quotient I_{r} / I_{i} equals $\left(\tau_{r}, \epsilon_{t} E_{v_{r}}^{2} / 2\right) /\left(v_{1} \epsilon_{1} E_{i, 1}^{2}, 2\right)$, $=$ nd ince the incident and reflected waves are in the sere medium, $u_{r}=\tau_{i}, \epsilon_{r}=\epsilon_{i}$, and

$$
R=\left(\frac{E_{0 r}}{E_{10}}\right)^{2 \prime}=r^{2} .
$$

In like fashion (assuming $\mu_{i}{ }^{-} \mu_{i}{ }^{-} \mu_{0}$),

$$
T=\frac{n_{t} \cos \theta_{4}}{n_{4} \cos \theta_{4}}\left(\frac{E_{05}}{E_{0_{t}}}\right)^{2}-\left(\frac{n_{1} \cos \theta_{i}}{n_{1} \cos \theta_{i}}\right) t
$$

where use was made of the fact that $\mu_{0} \epsilon_{1}=1 / v_{t}^{2} /$ nd $\mu_{0} v_{1} \varepsilon_{1}=h_{4} / c$ Notice that at normal incidence, which is situation of great practical interest, $\theta_{t}=\theta_{1}=0,202$
4.3 The Electromagnetic Approach

[^2]

[^3]

Figure 4.28 Reflection and transmission of an incident beam.
the transmittance [Eq. (4.55)], like the reflectance [Eq. (4.54)], is then simply the ratio of the appropriate irradi-
ances. Since $R=r^{2}$, we need not worry about the sign ances. Sunce $R=r^{2}$, we need not worry about the sign
of r in any particular formulation, and that makes reflectance a convenient rotion. Observe that in Eq. (4.57) T is not simply equal to f^{2}, for two reasons. First, the ratio of the indices of refraction must be there, since the speeds at which energy is transported into and out of the interface are different, in other words, $I \propto v$, from Eq. (3.47). Second, the cross-sectional areas of the incident and reflected beams are diferent, and so the energy flow per unit area is affected accordingly, and that manifests itself in the presence of the ratio of the cosine terms.
Let's now write an expression representing the conservation of energy for the configuration depicted in Fig. 4.26. In other words, the total energy flowing into rea A per unit cime must equal the energy flowing outward from it per unit time

$$
I_{i} A \cos \theta_{1}-I_{r} A \cos \theta_{1}+I_{t} A \cos \theta_{t} .
$$

When both sides are multiplied by c this expression

becomes

$n_{i} E_{0_{i}}^{2} \cos \theta_{i}=n_{i} E_{a_{r}}^{2} \cos \theta_{i}+n_{i} E_{0_{i}}^{2} \dot{\cos } \theta_{t}$
or
$1-\left(\frac{E_{0 r}}{E_{0 i}}\right)^{2}+\left(\frac{\pi_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}}\right)\left(\frac{E_{0 i}}{E_{0 i}}\right)^{2}$.
But this is simply

$$
R+T=1,
$$

where there was no absorption
the component forms, that is,

$$
\begin{aligned}
& R_{1}-r_{\perp}^{2} \\
& R_{\|}=r_{1}^{2}
\end{aligned}
$$

$$
T_{\perp}=\left(\frac{n_{1} \cos \theta_{t}}{n_{\mathrm{t}} \cos \theta_{\mathrm{i}}}\right) t_{\perp}^{2}
$$

and

$$
T_{1}-\left(\frac{n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}}\right) t_{\|}^{2},
$$

which are illustrated in Fig. 4.29. Furthermore, it cas be shown (Problem 4.39) that

$$
R_{\|}+T_{1}=[
$$

and

$$
R_{\perp}+T_{\perp}=1 .
$$ an ${ }^{2}$. and any distinction between the parallel and perpeit Eqs. (4.61) through (4.64), along with (4.47) and (4.48) lead to

$$
R-R_{\|}-R_{\perp}=\left(\frac{n_{t}-n_{1}}{n_{1}+n_{1}}\right)^{2}
$$

and

$$
T=\gamma_{1}=T_{L}=\frac{4 n_{t} n_{i}}{\left(n_{t}+n_{t}\right)^{2}}
$$

Thus 4% of the light incident normally on an air-ghax interface will be reflected back, whether internally, n_{1}, n_{t}. or externally, $n_{i}<n_{\text {t }}$ (Problem 4.40). This wil)

,

Figure 4.29 Reflectance and itansmittance yersus incident angle.
be of great concern to anyone who is working al complicated lens systern, which might have 10 or 20 such air-glass boundaries. Indeed, if you look peypendicularly into a stack of about 50 microscope
Wedes cover-glass slides are much thinner and easier to Widle in large quantities), most of the light will be Whected. The stack will look very much like a mirror

$n_{5 x+130}$ by E.H
(Fig. 4.30). Figure 4.31 is a plot of the reflectance at a single inter face, assuming normal incidence for various transmitting media in air. Figure 4.32 depicts the corre sponding dependence of the transmittance at normal incidence on the number of interfaces and the index of the medium. Of course, this is why you can't see through a roll of "clear" smooth-surfaced plastic tape,

Figure 4.31 Reffectance at normal incidence in air $(n,-1.0)$ at a Figure 4.81 R
single intatace.
10_{4} Chapter 4 The Propagation of Light

trure 4.39 Transmitance through a number of surfares in air
$\left(n_{i}=1.0\right)$ at normal incidence.
ad it's also why the many elements in a periscope must be coated with antireflection films (Section 9.9.9).

4.3.4 Total Internal Reflection

In the previous section it was evident that something rather interesting was happering in the case of internal reflection $\left(n_{i}>n_{t}\right)$ when θ, was equal to or greater than θ_{c}, the so-called critical angle. Let's now return to that situation for a somewhat doser look. Suppose that we have a source imbedded in an optically dense medium, and we allow θ_{i} to increase gradually, as indicated in Fig. 4.33. We know from the preceding zection (Fig. 23) that $r_{1 l}$ and r_{+}licrease wich increaing θ_{i}, and therefore $t_{\|}$and t_{+}both decrease. Moreover $\theta_{1}>\theta_{i}$, since

$$
\sin \theta_{i}-\frac{n_{i}}{n_{i}} \sin \theta_{t}
$$

and $\pi_{4}>n_{t}$, in which case $m_{i i}<1$. Thus as θ_{i} becomes larger, the transmitted ray gradually approaches larger, the transmitted ray gradually approaches tangency with the boundary, and as it does so more and
more of the available energy appears in the rellected beam. Finally, when $\theta_{t}=90^{\circ}, \sin \theta_{t}=1$ and
$\sin \theta_{t}-n_{u}$.
(4.64)

4.3 The Electromagnetic Approach

Fiqure 4.94 Tonal internal refection.
will have $\theta_{1}>42^{\circ}$ and therefore be internally reflected. This is a convenient way to reflect nearly 100\% of the ncident light without having to worry about the deserioration that can occur with metallic surfaces.
Another useful way to view the situacion is shown in Fig. 4.35, which can be thought of as either a Huygens construction or a simplified representation of scattering acoule bellams. We know that he ier edoa ter the speed of the light from o to y and in respec ively (p. 63). This is equivalent mathematicall (via Huygens's principle) to syying that the resultant waye s the superposition of these wavelets propacating at the appropriate speeds. In Fig 4.85(a) an incident wave results in the emission of wavelets successively from scatering centers A and B. These overiap to form the transmitted wave. The reffected wave, which comes back down into the incident medium as usual ($\theta_{i}=\theta_{r}$, is not hown. In a time ithe incident front travels a distance ${ }_{4} i=C B$, while the transmitted front moves a distance $0, t=A D>C A$. since one wave moves from A to E in the same time that the other moves from C to B, and since they have the same frequency and period, they must change phase by the same amount in the process. Thus the disturbance at point \boldsymbol{E} must be in phase with that at point B; both of these points must be on the
Ir can be seen thas the great
It can be seen thst the greater v_{i} is in comparison to rrper θ, will be). That much is depicted in Fig 4. 85 (b) where n_{1} has been taken to be smaller by sosuming n_{i}

ro6 Chapter 4 The Propagation of Light

Figure 4.35 An cxamination of the transmicted wave in the proces of total internal relection frum a scatteritlg perspective. Here wc
keep θ_{i} and n_{i} conslantand in successive parts of the diagram π_{i}, thereby increasing v_{v}. The reflected wave $\left(\theta_{r}=\theta_{i j}\right)$ is not drawr.
to be smaller. The result is a higher speed v_{2}, increats: AD and causing a greater transmission ingle. In 4.35 (c) a special case is reached: $\overline{A D}=\overline{A B}=v_{i}$, the wavelets will overlap in phase only aiong the fitm the interface, $\theta_{l}=90^{\circ}$. From triangle $A B C$, sir θ_{5} $w_{i} t / v_{i} t=n_{i}: n_{i}$, which is Eq. (4.69). For the two git media (i.e., for the particular value of $\eta_{t d}$), the directit: in which the scattered wavelets will add constructer. in the transmitting medium is abong the interface, esulting disturbance ($A_{1}=90^{\circ}$) is known as a sup wave.
If we assume that there is no transmitted way becomes impossible to satisfy the boundary condit using only the incident and reflected waves-things not at all as simple as they might seem. Furtherno
we can reformulate Egs. (4.34) and (4.40) (Prob 4.43) such that

$$
r_{\perp}=\frac{\cos \theta_{i}-\left(n_{i i}^{2}-\sin ^{2} \theta_{i}\right)^{1 / 2}}{\cos \theta_{i}+\left(n_{i i}^{2}-\sin ^{2} \theta_{i}\right)^{1 / 2}}
$$

and

$$
\eta=\frac{n_{i}^{2} \cos \theta_{i}-\left(n_{i x}^{2}-\sin ^{2} \theta_{i}\right)^{1 / 2}}{n_{i}^{2} \cos \theta_{i}+\left(n_{i i}^{2}-\sin ^{2} \theta_{i}\right)^{1 / 2}}
$$

Clearly then, since $\sin \theta_{c}=n_{t i}$ when $\left.\theta_{i}>\theta_{c}, \sin \theta_{i}>\right\}$ and boin τ_{1} and τ_{1} become complex quantities. Defios: his (Problem 4.44), $r_{\perp} r_{\perp}^{*}=r_{1} r_{U}^{4}=1$ and $R=1$, a ransmitted wave it cannot, on the average nergy across the boundary. We sha!l not perforim complete and rather lengthy computation rieeded derive expressions for all the reflected and transmitite fields, but we can get an appreciation of what's hat heids, but we can get anappreciation of what shay the transmitted =lectric field is

$$
\mathbf{E}_{t}=\mathbf{E}_{0 t} \exp i\left(\mathbf{k}_{\mathrm{t}} \cdot \mathbf{r}-\omega t\right) .
$$

where
$\mathbf{k}_{\cdot} \cdot \mathbf{r}-k_{L_{1}} x+k_{1} y_{0}$,
there being no z-component of \mathbf{k}. But

$$
k_{t x}-k_{t} \sin \theta_{t}
$$

and

Fig. 4.36. Once again using Snell's law, we
as see find:

$$
k_{i} \cos \theta_{4}= \pm k_{1}\left(1-\frac{\sin ^{2} \theta_{i}}{n_{i}^{2}}\right)^{1 / 2}
$$

at. singe ve are concerned with the case where $\sin \theta_{i}>$

$$
k_{k_{y}}= \pm i k_{k}\left(\frac{\sin ^{2} \theta_{2}}{n_{i}^{2}}-1\right)^{1 / 2}= \pm i \beta
$$

and

$$
k_{1 x}=\frac{k_{t}}{n_{f i}} \sin \theta_{i} .
$$

Hence

Negingitg the positive exponential, which is physically negte fis we have a wave whose amplitude drops of Watlly as it penetrates the less dense medium.

Fixanesceat wave. Notice that the wavefronts or sur-
Fios of constant phase (parallel to the yz-plane) are
pepplicular to the surfaces of constant amplat intarformencs (see Section 2.51. Its amplitude decays rapode in the y-direction, becoming negligible at a disrandonto the second medium of only a few wayelength digen are still concerned about the conservation of finergy, a more extensive treatment would have shown Rorgy actually circulates back and forth across the frace, resulting on the average in a zero net flow arough the boundary into the second medium. Ye sing point remains, inasmuch as there is still fyy to be accoumed tor, namely, that associate cranescent wave that moves along the boundary uplane of incidence. Since this energy could noi tenetrated into the less dense medium under the Circumstances (so long as $\theta_{i} \geq \theta_{i}$), we must look tions the indident beam would have a finite cross
secion and therefore would nobviously differ from the wave. This deviation gives nise (via diffrac \% slight transmission of energy across the inter gick is manifested in the evanescent wave.

[^4]Incidentally, it is clear from (c) and (d) in Fig. 4.25 that the incident and reflected waves (except at $\theta_{i}=90^{\circ}$) do not differ in phase by π and cannot therefore cancel each other. It follows from the continuicy of the tangenial component of \mathbf{E} that there must be an oscillatory fied in the less dense medium with a component parailel the interface having a frequency \& (i.e., the evanesent wave).
The exponential decay of the surface wave, or boutr dary tuave, as it is also sometimes called, has been unf
hnagine tha glass is internally reflected at a boundary. Fresumably, if you pressed another piece of glass against the and the beam would then propagate onward undigturbed. Futhermore, you might expeet this transition from total to no reflection to occur gradually as the air film thinned out. In much the same way, if you hold a drinking glass or a prism, you can see the ridges of your ingerprints in a region that, because of olal inernal reffection, is otherwise mirrorlike. In more general terms, if the evanescent wave extends with appreciable amplitude across the rare medium into a nearby region occupied by a higher-iudex material, energy may flow through the gap in what is known as frustrated total
*Take a book at the fascinating artiche by K. H. Drexhage.
"Monomolecular layers and Light." Sei. $A m_{\mathrm{M}}$ 222, 108 (1970).
waves are particularly casy to work with, inasmuch the evanescent wave will extend roughly 10^{5} timp duplicate the above optical experiments with duplicate the above optical experiments with prisms made of paraffin or hollow ones of acrylic ply
filled with kerosene or motor oil. Any one of would have an index of about 1.5 for $3-\mathrm{cm}$ waves then becomes an easy matter to measure the de dence of the field amplitude on y.

4.3.5 Optical Properties of Metals

The characteristic feature of conducting media is il presence of a number of free electric charges (free the sense of being unbound. i.e., able to circulate wig the material). For metals these charges are of courrés electrons, and their motion constitutes a current. Til current per unit area resulting from the application a field \mathbf{E} is related by means of Eq. (A1.15) ton: no free or conduction electrons and σ 0, vheros actual metals σ is nonzero and finite. In contrast idealized "perfect" conductor would have an infing conductivity. This is equivalent to saying that the opa conductivity. This is equivalent to saying that the simply follow the field's alternations. There woild be no restoring force, no natural frequencies, and 14 absorption, only reemission. In real metals the condix. tion electrons undergo collisions with the thermali. agitated lattice or with imperfections and in so istor irreversibly convert electroroagnetic energy into youk heat. Evidently the absorption of radiant energy bo ? material is a function of its conductivity.

1) Waves in a Metal

If we visualize the medium as continuous, Maxwell ? equations lead to

$$
\frac{\partial^{2} \mathbf{E}}{\partial \mathbf{x}^{2}}+\frac{\partial^{2} \mathbf{E}}{\partial y^{y^{2}}}+\frac{\partial^{2} \mathbf{E}}{\partial z^{2}}=\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}+\mu \sigma \frac{\partial \mathbf{E}}{\partial t^{2}},
$$

which is Eq. (Al.21) in Cartesian coordinates. The Jes term, $\mu \sigma \partial \mathbf{E} / \partial t$, is a first-order time derivative. .ust the daroping force in the oscillator model discussed n net.

internal reflection (FTIR). In other words, if the evanescent wave, having traversed the gap, is still strong nough to drive electrons in the "frustrating" medium, hey in turn will generate a wave that signifing en How. Figure 4.37 is and thereby persentation of FTIR. The width of the lines depicting the wavefronts decreases across the gap as a reminder that the amplitude of the field behaves in the same way. The process as a whole is remarkably similar to the quantummechanical phenomenon of barricr petetration or tunneling. which has numerous applications in contemporary physics.
One can demonstrate FTIR with the prism arrangement of Fig. 4.38 in a manner that is fairly self-evident. Moreover, if the hypotenuse faces of both prisms are made planar and parallel, they can be positioned so as to transmit and reflect any desired fraction of the incident flux density. Devices that perform this function are known as beam-spliters. A berm-splituer cube can be ransparent film as a precision spacer. Low loss reflectors whose transmitrance an be controlled by frusiraring internal reflection are of considerable practical interest. FTIR can also be observed in other regions of the electromagnetic spectrum. Three-centimeter micro-

(b)

Figure 4.38 (a) 4 beam.spluer iting FTIR. (b) A cypical moder
application of FTIR a a conventional beam-spliter arrangement uscd to take phoographs chrough a microscopse. (c) Beam-splititer cubes (Photo courtcsy Melles Griot.)
tion 3.5.1. The time rate of change of \mathbf{E} generates voltage, currents circulate, and since the material is Thise. ight is converted to heal-ergo absorpion his expression can be reduced oo the unateenated amplex quantity This in wurn leads to a complex inde \& refraction, which as we saw earlier (Section 3.5 I). tantamount to absorption. We then need only sib stitute the complex index

$$
n_{c}=n_{R}-i u_{i}
$$

here the real and imaginary indices n_{R} and η_{S} are both real numbers) into the corresponding solution for nonconducting medium. Alternatively, we can utilize e wave equation and appropriate boundary condition yield a specific solution. In either event, we can find simple sinusoidal plane-wave solution applicable within the conductor. Such a wave propagating in the y-direction is ordinarily written as

$$
\mathbf{E}=\mathbf{E}_{0} \cos (\omega t-k y)
$$

or as a function of n,

$$
\mathbf{E}-\mathbf{E}_{0} \cos \omega(t-n y / c),
$$

but here the refrative index must be taken as complex Accordingly, writing the wave as an exponential and using Eq. (4.75), we obtain

$$
\mathbf{E}=\mathbf{E}_{0} e^{\left(-\omega n_{n}, y(c)\right.} e^{i \omega\left(t-\pi_{R}\right\rangle(c)}
$$

disturbance advances in the y-direction with peed c / n_{R}, precisely as if n_{R} were the more usual index of refraction. As the wave progresses into the conductor amplitude, $\mathrm{E}_{0} \exp \left(-\omega n_{2} y c\right)$, is exponentially attem ed. Inasmuch as irradiance is proportional to the square of the amplitude, we have

$$
\begin{equation*}
I(y)=I_{0} e^{-\alpha y}, \tag{4.78}
\end{equation*}
$$

where $I_{0}-I(0)$, that is, I_{0} is the irradiance at $y=0$ (the interface), and $\alpha=2 \omega n_{/} / c$ is called the absorption couficint or (even beuter) the atenuation coefficient after the wave has propagated a distance $y=1 / \alpha$, known
as the skin or penetration depth. For a material to transparent the penetration depth must be large comparison to its thickness. The penetration depth netals, however, is exceedingly small. For examp miniscule penctration depth, about 0.6 Gm , has till only about 6 nm in the infrared $\Lambda_{0} \approx 10,000$. This accounts for the generally observed opacis metals, which nonetheless can become partly th parent when formed into extremely thin films (e pat parent when formed into extremely thin mims (e.g2, tamiliar metallic sheen of conductors corresponds high reflectance, which arises from the fact that incident wave cannot effectively penetrate the matet. Relatively few electrons in the metal "see" the transmi ed wave, and therefore, although each absor strongly, little total energy is dissipated by the Instead, most of the incoming energy reappears ast reflected wave. The majority of metals, including ess common ones (e.g., sodium, potassium, cesii, vanadium; niobium, gadolinium, holmium, yturib. scandium, and osmium) have a silvery gray appeaver like that of aluminum, tin, or steel. They reflect 2 和 Il the incident light regardicss of wavelengtins an Erefore essentially colorless
Eq FTIR. In both cases there is and of the amplitude. Moreover, a complete analysis wo show that the transmitted waves are not stricty tres direction of propagation in both instances.
The representation of inetal as a continuous medi works fairly well in the low-frequency, long-waveledif domain of the infrared. Yet we certainly might exp hat as the wavelength of the incident beam decren the actual granular nature of matter would have wo ${ }^{5}$ reckoned with. Indeed, the continuum model showis large discrepancies from experimental results at onder frequencies. And so we again turn to the clas, atomistic picture initially formulated by Hene Lorentz, Paul Katl Ludwig Drude (1863-1906), others. This simple approach will provide qualitat reatment nonetheless requires quantum theory.

perstonEquation

 Envished oscillators. Some correspond to free electrons and wil therefore have zero restoring force, whereas otherstare bound Section 3.5. The conduction elec dielectioc media trons zth how ortie of metals Recall that the displacethe of a vibrating electron was given by

$$
\Sigma(t)=\frac{q_{v} / m_{e}}{\left(\omega_{0}^{2}-\omega^{3}\right)} E(t) .
$$

restoririg force, $\omega_{0}=0$, the displacement is n ingr to the driving force q c $E(l)$ and therefore of phase with it. This is crlike che situation sparent dielectrics, where the resonance ncies are above the visible and the electrons oscilphase with the driving force (Fig. 4.99). Fre osculating outos phase with the incident light adiate wavelets that tend to cancel the incon lugdigurbance. The effect, as we have already seen, is ngegily decaying refracted wave.
Muming that the average field experienced by an eleghon moving about within a conductor is just the upted field $\mathbf{E}(t)$, we can extend the dispersion equation of a medium (9.71) to read

$$
n^{2}(\omega j)=1+\frac{N q_{k}^{2}}{\varepsilon_{0} m_{e}}\left[\frac{f_{k}}{-\omega^{2}+i \gamma_{e} \omega}+\sum_{j} \frac{\oint_{j}^{2}}{\omega_{0_{j}}^{2}-\omega^{2}+i \gamma_{j} \omega}\right] .
$$

Ti: Qhiost bracketed term is the contribution from the unit anms, wherein N is the number of atoms $p e$ which have no natural frequencies. The second term It should be color, it indicates that the chat if a metal has a particula tive absorption by way of the bound partaking of selec 150.890 the general absorption characteristic of the free electrons. Recall that a medium that is very strongly absorbing at a given fequency doesn't actually absort Redrof the incident light at that frequency but rather whelle refiects it. Gold and copper are reddish yellow

Figure 4.99 Oscillations of bound and free electrons
because n_{I} increases with wavelength, and the larger values of λ are reflected more strongly. Thus, for example, gold should be fairly opaque to the longer visible wavelengths. Consequently, under white light, a gold foil less than roughly 10^{-6} mo thick will indeed ransmit predominantly greenish blue light.
We can get a rough idea of the response of metais to light by making a few simplifying assumptions. Accordingly, we neglect the bound electron contribution and assume that γ_{n}, is also negligible for very large ω,
whereupon

$$
n^{2}(\omega)=1-\frac{N q_{\varepsilon}^{2}}{\epsilon_{0} m_{\varepsilon}\left(\omega^{2}\right.} .
$$

The latter assumption is based on the fact that at high frequencies the electrons will undergo a great many oscillations between each collision. Free electrons and positive ions within a metal may be thought of as a plasma whose density oscillates at a natural frequency equal $\left(N q_{e}^{2} / \epsilon_{0} m_{e}\right)^{1 / 2}$, and so

$$
n^{2}(\omega)=1-\left(\omega_{p} / \omega\right)^{2} .
$$

The plasma frequency serves as a critical value below which the index is complex and the penecrating wave drops off exponentially (4.77) from the boundary; a frequencies above ω_{p}, n is real, absorption is small, and the conductor is transparent. In the latter circumstance ${ }^{n}$ is less than 1 , as it was for dielectrics at very high be Eairly transparent cox-rays. Table 19 list ge parn frequencies for some of the alkali metals that are trans frequencies for some of the alkali metals that are transparent even to ultraviolet
complex, and the impinging way metal will usually be complex, and the impinging wave will suffer absorption the outer visors on the Apollo space suits were overlaid with a very thin firm of gold (Fig. 4.40). The coating reflected about 70% of the incident light and was used under bright conditions. such as low and forward sun angles. It was designed to decrease the thermal load on the cooling system by strongly reflecting radiant energy in the infrared while still transmitting adequately in the visible. Inexpensive metal-coated sunglasses which are quite similar in principle are also available commercially and they're well worth having just to experiment with The ionized upper atmosphere of the Earth contain a distribution of free electrons that behave very much tion of such a medium will be real and less than for frequencits above ω_{1} In July of 1965 the Mariner IV spacecraft made use of this effect to examine the iono sphere the planet Mars 216 million kilometers froEarth.* ${ }^{*}$
If we wish to communicate between two distant terres trial points, we might bounce low-frequency waves off

[^5]

Koon, however, we should use high-frequency si o which the ionosphere would be transparent.

ii) Reilection From a Metal

Imagine that a plane wave initially in air impinges conducting surface. The transmitted wave advan But if the conductivity of the inhomogene

Gure 4.91-Typical reflectance ior alinearly polarized beam of white light inciderat on an absorlving medium
the spectrum, silver, which is highly reflective across he visible, becomes cransparent in the ultraviotet about 316 nm
Phase shifts arising from reflection off a metal occur in both components of the field (ie., parallel and perpendicular to the plane of incidence). These are generally meither 0 nor m, with a notable exception a ${ }^{\circ}=90^{\circ}$, where, just as with a dielectric, both com ponents shift phase by 180° on reflection.

Figure 4.42 Reffectance versus wavelengh for silver, gald, copper

4.4 FAMILIAR ASPECTS OF TH

 INTERACTION OF LIGHT AND MATTERLet's now examine some of the phenomena that paint the everyday world in a marvel of myriad colors.

As we saw earlier ($p .72$), light that contains a roughly As we saw earlier (p. 72), light that contains a roughly
equal amount of every frequency in the visible regior of the spectrum is perceived as white. Thus a broad source of white light (whecher natural or artificial) is one for which every point on its surface can be imagined as sending out, more or less in all directions. a stream of light of every visible frequency. Similarly, a reflecting surface that accomplishes essentially the same thing wil also appear white: a highly reffecting, frequency independent, diffusely scattering object will be perceived as white under white light.
Although water is essentially transparent, water vapor appears white, as does ground glass. The reason is simple enough - if the grain size is small but much larger than the wavelengths involved, light will enter each times and emerge. There will be no distinction amon any of the frequency components, so the reflected light reaching the observer will be white. This is the mechan ism accountable for the whiteness of things like sugar salt. pa per, clouds, talcum powder, snow, and paint, salt, paper, clouds, talcum powder, snow, and paint, wadded-up piece of crumpled clear plastic wrap will appear whitish, as will an ordinarily transparent material filled with small air bubbles (e.g., beaten egg white). Even though we usually think of paper, talcum powder, and sugar as each consisting of some sort of opaque white substance, it's an easy matter to dispe that misconception. Cover a printed page with a few of these materials (a sheet of white paper, some grains of sugar, or talcum) and illuminate it from behind. You'll have little difficulty in secing through them. In the case of white paint, one simply suspends colorless trans parent particles, such as the oxides of cinc, titanium. or lead, in an equally transparent vehicle, for example,
linseed oil or the newer acrylics, Obviously, if the particles and vehicle have the same index of refraction, there will not be any reflecrions at the grain boundaries. The particles will simply disappear into the conglomeration,
which itself remains clear. In contrast, if the indice markedly different, there will be a good deal of will appeat white and opaque [take anothet look 1 (4.67)] To color paint one need only dye the pas o that they absorb all frequencies except the des ange.
Carrying the logic in the reverse direction, reduce the relative index, $n_{i t}$, at the grain or fib boundaries, the particles of material will reflect t thereby decreasing the overall whiteness of the obity Consequently, a wet white tissue will have a grayic more transparent look. Wet talcum powder losen parkling whiteness, becoming a dull gray, as does white cloth. In the same way, a piece of dyed fab oaked in a clear liquid (e.g., water. gin, or benzen) will lose its whitish haze and become much darker, colors then being deep and rich like those of a still water-color painting.
A diffusely reflecting surface that absorbs somew uniformly right across the spectrum-will rellect ess it reflects, the darker he gray until irabsorbs all the light and appears black. A surface that rof ene light and appears black. A surnee that ry ill appear the familiar shiny gray of a typical Metals possess tremendous numbers of free elet p. 111) that scatter light very effectively, independ of frequency: they are not bound to the atoms and no associated resonances. Moreover, the amplitn\$ the vibrations are an order of magnitude langer hey were for the bound electrons. The incident cannot penetrate into the metal any more than a fre of a wavelength or so before it's canceled completery There is little or no refracted light; most of the en is reflected out, and only the small remainder sorbed. Note that the primary difference between a surface and a mirrored surface is one of diffuse Wh specular reflection. An artist paints a picture of a P shed "white" metal, such as silver or aluminum, "reflecting" images of things in the room on top a ray surface.
When the distribution of energy in a beam of , ppears colored. Figure 4.43 depicts typical freque?

 =

Refiection curves for blue, green, and red pigments少, but there is a greal deal of possible variation a mong
distributions for what would be perceived as red, green, and blue light. These curves show the predominan frequency regions, but there can be a great deal of the responses of red green, and blue. In the early 1800 s Thomas Young showed that a broad range of colors could be generated by mixing three beams of light, provided their frequencies were widely separated. When three such beams combine to produce white light they are called primary colors. There is no single they are called primary colors. There is no single
unique set of these primaries, nor do they have to be unique set of these primaries, nor do they have to be quasimonochromatic. Since a wide range of colors can
be created by mixing red (R), green (G), and blue (B). these tend to be used most frequently. They are the three components (emitted by three phosphors) that generate the whole gamut of hues seen on a color television set.
Figure 4.44 summarizes the results when beams of these three primaries are overlapped in a number of different combinations: Red plus blue is seen as magenta (M), a reddish purple; blue plus greern is seen as cyan (C), a bluish green or turquoise; and perhaps most urprising, red plus green is seen of ali three primaries is white:

$$
\mathrm{R}^{=} \mathrm{B}+\mathrm{G}=\mathrm{W}
$$

$M+G=W$, since $R+B=M$,
$C+R-W$, since $B+G-C$.
$Y+B=W$, since $R+G=Y$.
Any two colors that together produce white are said to be complementary, and the last three symbolic state-
igure 4.44 Three overlap.
ping beams of colored light. A olor television set uses these ame three primary light sour
ce:-rd, grecn, and blur. ces-red, green, and blue.

mentsexemplify that situation. Now suppose we overlap a beam of magenca and a beam of yellow:
$M+Y=(R+B)+(R+G)-W+R ;$
the result is a combination of red and white, or pink. That raises another point: we say a color is saturated, that it is deep and intense, when it does not contain any white light. As Fig. 4.45 shows, pink is unsaturated red-red superimposed on a background of white. The rnechanism responsible for the yellowish red hue of gold and copper is, in some respects, similar to the process that causes the sky to appear blue. Putting it rather succinctly (see Section 8.5 for a further discussion of scattering in the atmosphere), the molecoules of air have resonances in the ultraviolet and will therefore be driven into larger-amplitude oscillations as the frequency of the incident light increases toward the ultraviolet. Consequently, they will effectively take energy from and reemit (i.e., scatter) the blue component of sunlight in all directions, transmitting the complementary red end of the spectrum with little or scattering of yellow-red light that takes place at the surface of a gold film and the concomitant transmission of biue-green light. In contradistinction, the characteristic colors of most substances have their origin in teristic colors of most substances have their origin in the phenomenon of selective or proferential absorption.
For example, water has a very light green blue tint For example, water has a very light green blue tint
because of its absorption of red light. That is, the $\mathrm{H}_{2} \mathrm{O}$ molecules have a broad resonance in the infrared, which extends somewhat into the visible. The absorption isn't very strong, so there is no accentuated reflection of red light at the surface. Instead it is transmitted and gradually absorbed out until at a depth of abous 80 m of sea water, red is almost completely removed from sunlight. This same process of selective absorption is responsible for che colors of hrown eyes and butterflies, of birds and bees and cabbages and kings. Indeed the great majority of objects in nature appear to have Characteristic colors as the result of preferential absorpand py piscules, which have resonances ir the wost atomiolet and infrared, the pigment moiccules must obviously have resonances io the visibie. Yet visible photons have energies of roughly 1.6 eV to 3.2 eV , which, as you

Figure 4.45 Spectral reflection of a pink pigment.
might expect, are on the low side for ordinary eletro excitation and on the high side for excitation molecular vibration. Despite this, there are atoms the bound electrons form incomplete shells (gold, shells provide a mode for lowrenergy excitation addition, there is the large group of oration molecules, which evidently also have resonances ${ }^{\text {t. }}$ visible. All such substances, whether matural or thetic, consist of long chain molccules made up of ${ }^{\circ}$. larly alternating single and double bonds in whal called a conjugated system. This structure is typlif by the carotene molecule $\mathrm{C}_{40} \mathrm{H}_{65}$ (Fig 4.46). ग carotenoids range in color from yeilow to red and found in carrots, tomatoes, daftodils, dandeliof, autumn leaves, and people. The chlorophylls, another group of familiar natural pigments, but ${ }^{4}$ portion of the long chain is turned around on o form a ring. In any event, conjugated systems of sort contain a number of particularly mobile eleade known as pi electrons. They are not bound to speef atomic sites but instead can range over the relaci large dimensions of the molecular chain or ring. In ti phese are long-wavelength, low-frequency and thet fore low-energy, electron states. The energy requis? to raise a pi electron to an excited state is according comparatively low, corresponding to that of vid comparatively low, corresponding to that of

Figure 4.47 Yellow stained giass.
of the process as subtractive colcration, as opposed to additive coloration, which results from overlapping beams of light.
In the same way, fibers of a sample of white clath or paper are essentially transparent, but when dyed each fiher behaves as if it were a chip of colored glass. The incident light penetrater the paper, emerging for the numerous refiections and refractions within the dyed Gibers. The exiting light will be colored to the extent fibers. The exitugg light will be colozed to the extent dye This is precisely why a Jeaf appears green or banana yellow.
A botle of ordinary blue ink lroks blue in either refecced or transmitted light. But if the ink is painned on a glass slide and the solvent evaporates, something rather interesting happens. The concentrated pigment absorbs so effectively that it preferentially reflects at the resonant frequency, and we are back to the idea that a strong absorber (large $n_{\text {}}$) is a strong refector. Thus,

Figure 4.48 Transmission curves for culored filters.
concentrated blue-green ink reflects red, whereas lue ink reflects green. Try it with a felt marking but you must use reffected light, being careful thol Wipe the ink to ple with unwanted light from belo slide on a piece of black paper.)
The whole range of colors (ind
lue) can be produced by passing light thed, green, at combinations of magenta, cyan, and yellow fitery 4.48). These are the primary colors of subtractive ng, the primaries of the paint box, although they often mistakenly spoken of as red, blue, and yello. They are the basic colors of the dyes used to mel photographs and the inks used to print them. Ideall if you mix all the subtractive primaries together (eilit by combining paints or by stacking filters), you gett color, no light-black. Each removes a region spectrum, and together they absorb it all.
If the range of frequencies being absorbed spread across the visible, the object will appear black. Thats not to say that there is no reflection at all-you obviog! can see a reflected image in a piece of black paxa leather, and a rough black surface reflects also, ofins. hem, add some green, and youll bel blat In addition to the abe proces beck
o refiection, refraction, and absorption, there are other color-generating mechanisms, which we explore later on. For example, the scarabaeid beetlien mantle themselves in the brilliant colors produced tive diffraction gratings ou their wing cases, and wavelengtio dependent interference effects contribute to the colo patterns seen on oil slicks. mother-of-pearl, soap bubbles. peacocks, and hummingbirds.

4.5 THE STOKES TREATMENT OF
 REFLECTION AND REFRACIION

A rather elegant and novel way of looking at refledion and transmission at a boundary was developed by British physicist Sir George Gabriel Stokes (1819-19ew Since we will often make use of his results in futus hat we have an incident wave of amplitude $E_{0 i}$ imping.

Fowotion Reflection and refraction via the Stokes trcatment.

Sig on the planar interface separating two dielectric media, as in Fig. 4.49(a). As we saw eatlier in this Ghapter, since r and t are the fractional amplitudes Fiflected and transmitted, respectively (where $n_{1}-n_{1}$ $\left.{ }^{20}=n_{2}\right)$, then $E_{0,}=r E_{0 i}$ and $E_{0 t}=t E_{V_{i}}$. Again we are r.anded of the fact that Fermat's principle led to the futhdiple of reversibility, which implies that the odepicted in Fig. 4.49(b), where all the ray With hand are reversed, must also be physically possible. (no a*orpticn), a wave's meanderings must be reversible. Eguivalently, in the idiom of modern physics one speal inf time-teversal invarionce that is, if a process wive the reverse process can also occur. Thus if we ella hypothetical motion picture of the wave incident 5 Febeting from, and transmitting through the interPree, the behavior depicted when the film is run backHird must also be physically realizable. Accordingly, a. uase Fig. 4.49(c), where there are now two incident waves of amplitudes $E_{0} \tau$ and $E_{0, t}$. A portion of the Wave whose amplitude is $E_{0 i} t$ is both reflected and transmitted at the interface. Without making any assumpitions, let r^{\prime} and t^{\prime} be the amplitude reflection Frismission coefficients, respectively, for a wave sequente the below (i.e., $n_{i}=n_{2}, n_{t}=n_{1}$). Conmitted portion is E_{0} portion is $E_{\text {pi }}$ tr r^{\prime}, and the transSamplitude is E_{0}. Splits into the incoming wave itr and E_{0} rt. If the configuration in Fig ampi-
is to be identical with that in Fig. 4.49(b), then obviously

$$
E_{0 i} u^{\prime}+E_{0 i} r=E_{u i}
$$

$$
E_{0, r} r t+E_{0} t r^{\prime}=0 .
$$

Hence
$t^{\prime}=1-r^{2}$
and

$$
r^{\prime}=-r,
$$

the latter two equatio relations Acually relations. Actually this discussion calls for a bit more out that the amplitude coefficients are functions of the incident angles, and therefore the Stokes relations might better be written as
$t\left(\theta_{1}\right) t^{\prime}\left(\theta_{2}\right)=1-r^{2}\left(\theta_{1}\right)$
(4.88)
and

$$
r^{\prime}\left(\theta_{2}\right)-\gamma\left(\theta_{1}\right) .
$$

(1.89)
where $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$. The second equation indicates, by virtue of the minus sign, that chere is a 180° phase difference between the waves intermally and externally reflected. It is most important to keep in mind that here θ_{1} and θ_{2} are pairs of angles that are related by way of Snells law. Note as well that we never did say whethe
apply in either case. Let's return for a moment to one of the Fresnel equation

$$
\begin{equation*}
r_{+}--\frac{\sin \left(\theta_{2}-\theta_{2}\right)}{\sin \left(\theta_{i}+\theta_{i}\right)} \tag{-.42}
\end{equation*}
$$ If a ray enters from above, as in Fig. $4.49(a)$, and we assume $n_{2}>n_{1}, r_{\perp}$ is computed by setting $\theta_{2}=-\theta_{1}$ and

$\theta_{1}=\theta_{2}$ (external reflection), the latter being derived from Snell's law. If, on the other hand, the wave is from Snell's law. If, on the other hand, the wave is
incident at that same angle from below (in this instance incident at that same angle from below (in this instance
internal reflection), $\theta_{2}=\theta_{1}$ and we again substitute in Eq. (4.42), but here $\boldsymbol{\theta}_{1}$ is not θ_{2}, as before. The values of r_{\perp} for internal and external reflection at the same incident angle are obviously different. Now suppose, in this case of internal reflection, that $\theta_{i}=\theta_{2}$. Then θ_{t} θ_{1}, the ray directions are the reverse of those in the first situation, and Eq. (4.42) yields

$$
\left.r_{1}^{\prime}\left(\theta_{2}\right)--\frac{\sin \left(\theta_{2}-\theta_{2}\right)}{\sin \left(\theta_{2}+\theta_{1}\right)}\right)
$$

Although it may be unnecessary we once again point ut that chis is just the negative of what was determined for $\theta_{i}=\theta_{1}$ and external reflection, that is,

$$
r_{\perp}^{\prime}\left(\theta_{2}\right)-r_{i}\left(\theta_{1}\right) .
$$

(4.90)

The use of primed and unprimed symbols to denote the amplitude coefficients should serve as a reminder hat we are once more dealing with angles related by Snell's law. In the same way, interchanging θ_{i} and θ_{i} in
Eq. (4.43) leads to

$$
\begin{equation*}
r_{1}^{\prime}\left(\theta_{2}\right)--\tau_{\|}\left(\theta_{1}\right) \tag{2.97}
\end{equation*}
$$

The 180° phase difference between each pair of components is cvident in Fig. 4.25, but do keep in mind that when $\theta_{1}-\theta_{t}, \theta_{i}=\theta_{p}^{\prime}$ and vice versa (Problem 4.46). Beyond $\theta_{i}-\theta_{c}$ there is no transmitted wave, Eq. (4.89) is not applicable, and as we have seen, the phase difference is no longer 180°.
It is common to conclude that both the parallel and erpendicular components of the externally reflected beam change phase by π radians while the internally reflected beam undergoes no phase shift at all. By now, within the particular convention we've established, this should be recognized as incorrect, or at least almost
obviously [compare Figs. 4.26(a) and 4.27(a)]. obviously [compare Figs. 4.26(a) and 4.27(a)].
 Suppose that light consists of a stream of photons?
that one such photon strikes the interface betweegric dielectric media at an angle θ_{i} and is subsequeg: dransmitted across it at an angle θ_{i}. We knowseque transmitted across it at an angle θ_{t}. We know that if
were just one of billions of such quanta in a nat were just one of billions of such quanta in a narrk To appreciate this behavior let's examine the dynit associated with the odyssey of our single photon that

$$
\mathbf{p}^{-\hbar k}
$$

and consequently the incident and transmitted in menta are $\mathbf{p}_{i}=\hbar \mathbf{k}$, and $\mathbf{p}_{i}=\boldsymbol{\hbar} \mathbf{k}_{i}$, respectively ${ }^{8}$. assume (without much justification) that alchough material in the vicinity of the interface affects thi component of momentum, it leaves the x-compen unchanged. Indeed we know experimentally thatio momentum can be transferred to a medium 政 light beam (see Section 3.3.2). The statement of (servation of the component of momentum paralle ${ }^{\text {l }}$. the interface takes the form

$$
p_{\mathrm{ix}}=p_{\mathrm{ix}}
$$

or

$$
p_{2} \sin \theta_{1}-p_{2} \sin \theta_{1} .
$$

If we use Eq. (3.53), this becomes

$$
k_{i} \sin \theta_{i}=k_{1} \sin \theta_{i}
$$

and hence

$$
\frac{1}{\lambda_{i}} \sin \theta_{t}=\frac{1}{\lambda_{i}} \sin \theta_{t} .
$$

Multiplying both sides by c / ν, we have

$$
n_{i} \sin \theta_{i} \quad n_{i} \sin \theta_{t},
$$

which of course is Snell's law. In exactly the sare sab if the photon reflects off the interface iustead of theing transmitted, Eq. (4.92) leads to
$k_{i} \sin \theta_{i}=k_{i} \sin \theta_{i}$,

and \sin
nd since $\lambda_{1}=\lambda_{r}, \theta_{i}=\theta_{r}$. It is interesting to note that

$$
\begin{equation*}
u_{t i}=\frac{p_{i}}{p_{i}} \tag{4.99}
\end{equation*}
$$

on if $n_{i}>1, p_{i}>p_{i}$. Experiments dating back as
 far 1 e
$n_{\mathrm{i}}>$ the speed of propagation is actually reduced in $n_{\mathrm{i}}>{ }^{\text {bingmiting media, even though the momentum }}$据
Eedearep in mind that we have been dealing with a very dimple representation that leaves much to be very
desired. For example, it says nothing about the atomic structite of the media or about the probabill thaverse a given path. Even though this photor1 will traverious simplistic, it is appealing treatment is obviously simplistic, it is appealing pedagogically (see Chapter 19).

PROBLEMS

4.1 Calculate the transmission angle for a ray inciden in air at 30° on a block of crown glass ($n_{5}=1.52$).
4.2* A ray of yellow light from a sodium discharge lamp falls on the surface of a diamond in air at 45°. I at that frequency $n_{d}-2.42$, compute the angular devi ation suffered upon transmission.
4.3 Use Huygens's construction to create a wavefront diagramı showing the form a spherical wave will have after reflection from a planar surface, as in the ripple tank photos of Fig. 4.50. Draw the ray diagram as well.
4.4* Given an interface between water ($n_{u t}-1.33$) and glass ($r_{\mathrm{g}}=1.50$), compute the transmission angle for a glass ($n_{g}=1.50$, compute the 45°. If the transmitted beam is reversed so that it impinges on the interface show that $\theta_{1}=45^{\circ}$
4.5 A beam of $12-\mathrm{cm}$ planar microwaves strikes the surface of a dielectric at 45°. If $n_{\mathrm{if}}=\frac{4}{3}$, compute (a) the wavelength in the transmitting medium, and (b) the angle θ_{1}.

122 Chapter \ddagger The Propagation of Light

4.6* Light of wavelengch 600 nm in vacuum enters a
block of glass where $n_{g}=1.5$. Cempute its wavelength
in the glass. What color would it appear to someone imbedded in the glass (see Table 3.2)?
4.7 Figure 4.51 shows a bundle of rays entering and emerging from a glass disk (a lens). From the configuation of the rays, determine the shape of the wayefronts at various points. Draw a diagram in profile.

4.8 Make a plot of θ_{i} versus θ_{t} for an air-glass boundaxy where $n_{B^{\alpha}}=1.5$.
4.9 In Fig. 4.52 the wavefronts in the incident medium match the fronts in the transmitting medium every-

where on the interface-a concept known as waveft continuity. Write expressions for the number of wat. per unir length along the interface in terms of θ_{4} ap $\lambda_{\text {; }}$ in one case and θ_{1} and $\lambda_{\text {, }}$ in the other. Use theie: derive Sneli's law. Do you think Snell's law applos to sound waves? Explain.
4.10* With the previous problem irl mind, reoten in Eq. (4.19) and take the origin of the coordinate spat 4.20). Show that that equation is then equivate? equating the x-components of the various propeng is equating the x-components of the various propad
vectors. Show that it is also equivalent to the no waveftont continuity.
4.11* Figure 4.53 depicts a wavefront at $\overline{A B}$ ehers sequently sweeps across the interface, driving ato along it, which in turn radiate transmitted wavele. since the refracted wave travels at a speed ν_{i}, asi:m the transmitted wavelets also propagate at v_{1}. wavelets then overlap and interiere (which is essen. the Huygens-Fresncl principle) to form the reftr wave. Show that the transmitted wavelets will ar phase along $\overline{D C}$, provided Snell's law obtains.
4.12 Making use of the ideas of equal transit sitmes berween corresponding points and the orthogonayizl

gure 4.53
rays ano warrhents, derive the law of reflection and Snell's
helpful.

Higure 4.54
013 Sauting with Snell's law, prove that the vector

$$
n_{i} \hat{\mathbf{k}}_{\mathrm{i}}-n_{i} \hat{\mathbf{k}}_{\mathrm{k}}=\left(n_{t} \cos \theta_{t}-n_{i} \cos \theta_{i}\right) \hat{\mathbf{u}}_{n} . \quad[\pm .8
$$

Derive a vector expression equivalent to the law Sflection. As before, let the rormal go from the Cont to the transmitting medium, ever though it viausly doesn't really matter.
4. 1 . In the case of reflection from a planar surface Termat's principle to prove that the incident arid euted rays share a common plane with the normal in mamely, the plane of incidence.
4.16" Derive the law of reflection, $\theta_{i} \quad \theta_{r}$, by using䦽 calculus to minimize the transit time. as required

Ar7 Recording to the mathematician Herman Schwar there is one triangle that can be inscribed perimer acute triangle such that it has a minima Fermater, Using two planar mirrors, a laserbeam, and inscribed triangle, explain how you can show that this the alturtes of the acute triangle intersect its whre spondints sides.
4.18 Show analytically that a beam entering a plana ransparent plate, as in Fig. 4.55, emerges parallel to
 oung reuld be paralleleven for a tack plates of different material

Figure 4.55 (Source unknown.)
4.19* Show that the two rays that enter the systern in Fig. 4.56 parallel to each other emerge from it being parallel.

[^6] n_{21} affect things? To see the lateral displacement, look
at a broad source through a thick piece of glass ($\sim \frac{1}{1}$ inch) or a stack (four will do) of microscope slides hild at an angle. There will be an obvious shift between the region of the source seen directly and the region viewed through the glass.
4.21 Suppose a lightwave that is linearly polarized in the plane of incidence impinges at 90° on a crownlass ($\pi_{,}=1.52$) plate in air. Compute the appropriate mplitude refep ${ }^{\prime}$ in interface Compare your results with Fig 492
4.22 Show that even in the nonstatic case the tangential omponent of the electric feld intensity \mathbf{E} is continuous across an inter face. [Hint: using Fig. 4.57 and Eq. (3.5), shrink sides $F B$ and $C D$, thereby letting the area bounded go to zero.]

Figure 4.57
4.23 Derive Eqs. (4.42) through (4.45) for $r_{\perp}, r_{1}, i_{\perp}$, and t_{1}.
4.24 Prove that

$$
\begin{equation*}
t_{\perp}+\left(-r_{\perp}\right)=1 \tag{4.49}
\end{equation*}
$$

for all θ_{r}, first from the boundary conditions and then from the Fresnel equations.
4.25* Verify that
$t_{\perp}+\left(-r_{\perp}\right)=1$
for $\theta_{i}-30^{\circ}$ at a crown glass and air interface 1.52).
4.26* Calculate the critical angle beyond which th. is total internal reflection at an air-glass $n_{R}=1.5$ 位e face. Compare this result with that of Problem 4.8_{μ}
4.27 Derive an expression for the speed of the erf cent wave in the case of internal reflection. Write terms of $\epsilon_{1} \eta_{i}$, and θ_{1}.
4.28 Light having a vacuurn wavelength of 600 nef traveling in a glass $\left(n_{F}=1.50\right)$ block, is incident at a traveling in a glass ($n_{F}=1.50$) block, is incident at reflected. Determine the distance into the interag: the amplitude of the evanescent wave has droppes a value of $1 / 8$ of its maximum value at the interiac: a
4.29 Figure 4.58 shows a laserbearn incident on a piece of filter paper atop a sheet of glass whose ins. piece of iiter paper atop a sheet of glass whose ing
of refraction is to be measured-the photograph siti the resulting light pattern. Explain what is happeth: and derive an expression for n, in terms of R and t
4.30 Consider the common mirage associated with ar inhomogeneous distribution of air situated abovel a warm roadway. Envision the bending of the rays it were instead a problem in total internal reflection. an observer, at whose head $n_{c} 1.0002$, sees an apparent wet spot at $\theta_{1}=88.7^{\circ}$ down the road, find index of the air immediatety above the road.
4.31* Use the Fresnel equations to prove that light incident at $\theta_{p}=\frac{1}{3} \pi-\theta_{i}$ results in a reflected beam thay is indeed polarized.
4.32 Show that $\tan \theta_{p}-n_{1} / n_{i}$ and calculate the potis ation angle for external incidence on a plate of . glass ($n_{g}-1.52$) in air.
4.33* Beginning with Eq. (4.38), show that til

two (liclectric media, in general $\tan \theta_{p}$ $\left.\left.|A| \xi_{i j} i_{i}-\epsilon_{i j} \mu_{i}\right) / \epsilon_{i}\left(\epsilon_{i} \mu_{i}-\epsilon_{i} \mu_{i}\right)\right]^{1 / 2}$.
4.44 Show that the polarization angles for internal and external reflection at a given interface are comTenemary, that is, $\theta_{p}+\theta_{p}^{\prime} 90^{\circ}$ (see Problem 4.32).

435 is often useful to work with the azimuthal angle ? arinctivis defined as the angle between the plane of vibratiou and the plane of incidence. Thus for linearly polarited Ishr.
$\tan y_{2}=\left[E_{0,1} I_{1}\left[E_{0 i v}\right]_{\|}\right.$
$\tan \gamma_{1}=\left[E_{0,}\right]_{1}\left[E_{0}\right]_{\|}$
(4.94)

$$
\tan \gamma_{1}=\left[E_{0 t}\right]_{1} /\left[E_{s i r}\right]_{\|}
$$

4.95)
and

$$
\tan \gamma_{T}-\left[E_{i_{i}}\right]_{+} /\left[E_{0 r}\right]_{t} . \quad(4.96)
$$

Sigure 4.59 is a plot of y_{r} versus θ_{1} for internal and Where; zeflection at an air-glass interface ($n_{f a}=1.51$). and in culution show that of the points on the curves

$$
\tan \gamma_{r^{\prime}}=-\frac{\cos \left(\theta_{\mathrm{i}}-\theta_{i}\right)}{\cos \left(\theta_{1}+\theta_{i}\right)} \tan \gamma_{i}
$$

(4.97)

 of Science. Israel.)
4.36* Making use of the definitions of the azimuthal angles in Problem 4.35, show that

$$
\begin{aligned}
& R=R_{\|} \cos ^{2} \gamma_{i}+R_{\perp} \sin ^{2} \gamma_{i} \\
& T-T_{1} \cos ^{2} \gamma_{i}+T_{\perp} \sin ^{2} \gamma_{i} .
\end{aligned}
$$

and
4.37 Make a sketch of R_{\perp} and $R_{\|}$for $n_{4}-1.5$ and $n_{1}=1$ (i.e., internal reflection).

Figure 4.59

$$
T_{i l}=\frac{\sin 2 \theta_{i} \sin 2 \theta_{i}}{\sin ^{2}\left(\theta_{i}+\theta_{i}\right) \cos ^{2}\left(\theta_{i}-\theta_{i}\right)}
$$

and

$$
\begin{equation*}
T_{\perp}=\frac{\sin 2 \theta_{i} \sin 2 \theta_{i}}{\sin ^{2}\left(\theta_{i}+\theta_{i}\right)} . \tag{t,iol}
\end{equation*}
$$

4.39* Using the results of Problem 4.38, that is, Eqs. (4.100) and (4.101), show thas

$$
\begin{equation*}
R_{\|}+\Lambda_{i}=1 \tag{4.65}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\perp}+T=1 . \tag{4.66}
\end{equation*}
$$

4.40 Suppose that we look at a source perpendicularly through a stack of N microscope slides. The source seen through even a dozen slides will be noticeably darker. Assuming negligibic absorption, show that the total transmittance of the stack is given by

$$
T_{t}-(1-R)^{2 N}
$$

and evaluate T, for three slides in air
4.41 Making use of the expression

$$
I(y)=I_{0} r^{-\alpha y}
$$

(4.78)
for an absorbing medium, we define a quandity called the unit transmittance T_{1}. At normal incidence (4.55) $T=I_{i} / I_{i}$, and thus when $y=1, T_{3}-I(1) / I_{6}$. If the total thickey now heve a if they now hansminance per unit length T show that

$$
T_{t}-(1-R)^{2 \mathrm{~N}}\left(\mathrm{~T}_{1}\right)^{d} .
$$

4.42 Sbow that at normal incidence on the boundary between two dielectrics, as $n_{i s}-1, R \rightarrow 0$, and $T \rightarrow 1$ Moreover, prove that as $n_{i} \rightarrow 1, R_{\|} \rightarrow 0, R_{\perp} \rightarrow 0, T_{\|} \rightarrow 1$ and $T_{1} \rightarrow 1$ for all θ_{1}. Thus as the two media take on
more similar indices of refraction, less and less energy more similar indices of refraction, less and less energy that when $n_{1} 1$ there will be no incerface and no reflection.
4.43* Derive the expressions for r_{\perp} and r_{1} given by Eqs. (4.70) and (4.71).
4.44 Show that when $\theta_{2}>\theta_{\Gamma}$ at a dielectric interfac r_{7} and r_{1} are complex and $\left.r_{\perp} r_{1}^{*}-n r\right\}=1$.
4.45 Figure $\mathbf{4 . 6 0}$ depicts a ray being multiply rollea by a transparent dielectric plate (the amplitudes, resulting fragments are indicated). As in Section 5) we use the primed coefficient notation, berawis angles are related by Snell's law,
a) Finish labeling the amplitudes of the last fort rays.
b) Show, using the Fresnel equations, that
and

$$
\begin{array}{r}
t_{1} r_{j}-T_{\|} \\
t_{1} t_{1}^{\prime}-T_{1} \\
r_{1}-r_{\|}^{\prime 2}-R_{\|}
\end{array}
$$

4.46* A wave, linearly polarized in the plane o incidence. impinges on the interface bether effected wave that is, $r_{1}^{\prime}\left(\theta^{\prime}\right)=0$. Using 5rokes? io
nique start from scratch 10 show that $\left.t_{\|}\left(\theta_{p}\right)\right)_{1}\left(\theta_{p}^{\prime}\right)=1$, nique start from $\theta_{s}=\theta_{p}$ (Problem 4.34). How does this
$r_{1}\left(\theta_{2}\right)=0$, and $r_{1}\left({ }_{2}\right)$, with Eq. (4.102)?
come
44^{4} Making use of the Fresnel equations, show that (0_{0}) $4\left(\theta_{p}^{\prime}\right)=1$, as in the previous problem
4.48 Eigure 4.61 depicts a glass cube surrounded by II prisms in very close proximity to its sides. Skeech tin the paths that will be taken by the two ray shown and discuss a possible application for the device.

49 Figure 4.62 is a plot of n_{r} and n_{R} versus λ for a common metal. Identify the metal by comparing its Reristics with those considered in the chapter and Hetuss its optical properties.
4) Figure 4.68 shows a prisri-coupler arrangement Fipped at the Bell Telephone Laboratories. Its function is to feed a laserbeam into a thin $(0.00001$-inch $)$ waveguvide. film, which then serves as a sort of waregute. One application is that of thin-film laseream dexitry-a kind of integrated optics. How do稢it works?

Problents

Figure 4.62

Figure 4.63

5 GEOMETRICAL OPTICS－PARAXIAL THEORY

light，or blur spot，about P ；it would scill be an image of S but no longer a perfect one．
It follows from the principle of reversibility（ser Ser． tion 4．2．4）that a point source placed at P wuid to
equally well imaged at S ，and accordingly the whe am equally well imaged at S ，and accordingly the woun spoken of as conjugate points．In an ideal optical systes， every point of a three－dimensional region will be ped former being the object space，the latter the imare， Most commonly，the function of an optical devie Most commonly，the function of an optical devic to collect and reshape a portion of the incident wavy
front，often with the ultimate purpose of forming image of an object．Notice that inherent in realizal） image of an object．Notice that inherent in realizag
systems is the limitation of being unable to collect the emited light；the system accepts only a segment ： the wavefront．As a result，there will always bes．

Figure 5．1 Converging and diverging waves

Thure
in
in
at
－4 wiment deviation from rectilinear propagation even in homozeneous media－the waves will be diffracted． The intainable degree of perfection in the imaging aribiny of a real optical system will therefore be ensention－limited there will always be a blur spoti．As lingedvelength of the radiant energy decreases in com－ parispo to the physical dimensions of the optical system， the effects of diffraction become less significant．In the Pherepual limit as $A_{2} \rightarrow 0$ ，rectilinear propagation Gitains in homogeneous media，and we have the ideal－ Ized domath of geometrical optics，＊Behavior that is整能tributable to the wave nature of light（e．g．察 and diffraction）would no longer be observ－ Minplicity arising from the approximation of geo－ aptics more than compensates for its inac－ In short，the subject treats the comtroiled maniputa－ fromes（or rays）by means of the inlerpasitioning and／or refracting bodies．neglecting any diffrac－

97．Thitisplics deals with situations in which the nonzero waviength Dind orust be rectoned with Analogously，when the de Broglic met．ist of a material object is negitigble，we have thassrat （sec－ufy wer 13）．

5.2 LENSES

No doubt the most widely used optical device is the lens，and that notwithstanding che fact that we see the world through a pair of them．Lenses date back to the burning glasses of antiquity，and indeed who can say when people first peered through the liquid lens formed by a droplet of water？
As an initial step toward an understanding of what lenses do and how they manage to do it．let＇s examine what happens when light impinges on the curved sur－ face of a transparent diclectric medium．

5．2．1 Refraction at Aspherical Surfaces

Imagine that we have a point source s whose spherical waves arrive at a boundary between two transparent waves arrive at a boundary between two transparent
media，as shown in Fig．5．2．We would like to determine the shape that the interface must have for the wave traveling within the second medium to converge at a point P ，there forming a perfect image of S ．Practical reasons for wanting to focus a diverging wave to a point will become evident as we proceed．
The time it takes for each and ewery portion of a wavefront leaving S to converge at P must be identical， if a perfect image is to be formed that much was implied by Huygens in 1678．Or as we saw in Section

4,2.3, the distance between corresponding points on any and all rays will be traversed in that same time. Another way to say essentially the same thing from the perspecive of Ferrrat's principle is that if a preat many different rays are to go from S to P (i.e., if point A in Fig. ŏ. 3 can be anywhere on the interface), each ray must traverse the same optical path length. Thus, for example. if S is in a medium of index r_{1} and P is in an optically more dense medium of index n_{2},

$$
\ell_{0} n_{1}+\ell_{i} n_{2}=s_{0} n_{1}+s, n_{2},
$$

where s_{e} and s_{t} are the object and image distances measured from the vertex or pole C, respectively. Once we choose s_{0} and s_{i}, the right-hand side of this equation becomes fixed, and so

$$
\begin{equation*}
\ell_{4} n_{1}+\ell_{1} n_{2}-\text { constant. } \tag{5.2}
\end{equation*}
$$

This is the equation of a Cartesian oval whose significance in optics was studied cxtensively by Rene the boundary between two media has he shape of Cartesian oval of revolution about the $\stackrel{\rightharpoonup}{S P}$, or optical
axis, S and P will be conjugate points, that is, a poin source at either location will be perfectly imaged afic other. What's actually occurring physicaly is and to comprehend. Since $n_{2}>n_{1}$, those resias of 8 waverront traveling in the optically more dense m move slower than those regions traversing th material. Consequenty, boug the verex Regions of the same wavefront remote from the are still in the first medium traveling with a greot speed, c/n n_{3}, Thus the wavefronts bend, and if the bo dary is properly configured (in the form of a Carte ovoid। the wavefronts will be inverted from divergil. o converging spherical segments.
In addition to tocusing a spherical wave, we monb ke to be able to perform a few other reskap perations using refracting interfaces: some of th rie Py and The whereas those in (c) and (d) are hyperholoidat

finalrabik the ravs either diverge framor converge furd the foci The arrowheads have been omiued to
gay can go either way. In other words, tue methat the rays wave will converge to the farthest an incident piane wave ans as a spherical wave emitted focus of an clipsoid emst as a so plane wave. Furtherfrom that focus wiht expect, if we let the point S in Fig. more, as out to infinity, the ovcid would gradually f.2 tamorphose into an ellipsoid.

1. Thet than deriving expressions for these surfaces, Wh finfustify the above remarks. To that end, examine Which relates back to Fig. 5.4(a). The optical wheth from any point D on the planar wavefront beflocus F_{1} must all be equal to the same constant

$$
\left(\overline{\left.F_{1} A\right)}\right) n_{2}+(\overline{A D}) n_{1}-C
$$

or

$$
\begin{equation*}
\left(\overline{\left.F_{1} A\right)}+(\overline{A D}) n_{12}-C / n_{2}\right. \tag{5.3}
\end{equation*}
$$

Pourthe this relationship is indeed satisfied by an dilipsoid of revolution, recall that if Σ corresponds to Eytixy of the ellipse, $\left(\overline{F_{2}, A}\right)-\varepsilon(\overline{A D})$, where e is africity. Thus if $e=n_{1}$, the left-hand side of , whant fer an ellipses. Here the $\left(\overline{F_{2} A}\right)$, which is certainly con(1) $\left(\pi_{n}\right)$ and $i t$ is left for Problem 5.2 to show that andeng greater than 1 (i.e., $n_{1}>n_{2}$), the curve would (b) with (a) hyperbola instead [compare (a) with (c) and (b) with (9) in Fig. 5.4]. If all this brings back memories ubject weometry, you might keep in mind that tha Kepler who Aepler who first (1611) suggested using conic sections 1 hrsowled ge we
constroct lenses we have at band now may be used Ints can be in the same that both the object and image whe firstetuch device to be considered , 5 is usually air. howr miva hystrivale lens, which utilizes the response Laracterized in Fig. 5.4(c). A diverging spherical wave comes planar after traversing the first hyperbolic trace and then spherically converging on leaving the is. Aternatively, if the second surface is made planar tiat whe have a hyterbolic planar conver lens, as in Fig. Surfoce foerwaves within the lens will strike the surfore Peerpenditularly and emerge unaltered.

Another arrangement that will convert diverging spherical waves into plane waves is illustrated in Fib $5.6(c)$. This is a sphero-altiptic convex lens, where F_{1} is simultaneously at the center of the spherical surface and at the focas of the ellipsoid, Rays from F_{1} strike the first surface perpendicularly and are therefore undeviated by it. As in Fig. 5.4(a), the exiting wavefronts are planar. All the elements thus far examined have been thicker at their midpoints than at their edges and comverus meaning arched) In contrast them the Latin bolic concavs lens (from the Latim concans, planing hollow, and easily remembered because it contains the word cave) is thinner at the middle than at the edges as is evident in Fig. 5.6(d). A number of other arrange ments are possible, and a few will be considered ing the problemis (5.3). Note that each of these lenses will work just as well in reverse: the waves shown emerging can instead be thought of as entering from the right.
If a point source is positioned on the optical axis at the point $F_{\text {, }}$ of the lens in Fig. 5.6(a), rays will comvorge to the conjugate point F_{z}. A luminous image of the ource would appear on a sereen placed at F_{2}, an image that is therefore said to be real. On the other hand, in Fig. 5.6 (d) che point source is at infinity, and the rays emerging from the system this time are diverging. They appear to come from a point F_{2}, but no actual luminous mage would appear on a screen at that location. The mage here is spoken of as virtual, as is the familiar Optical elemenss a plane mirror
have talked about, with one or both so the sort we planar nor spherical, are referred to as astherics Althoush their operation is easy to undersend and they perform certain tasks exceedingly well, they are still

132 Chapter 5 Geometrical Optics-Paraxial Theory

[^7]
$\underset{\substack{\text { n } \\ \text { and }}}{ }$

igurex lens. (c) A splacro hypertol, ens. (b) A planperitix ki= (c) Phexto courlesy Melles Griot.

5.2.2 Refraction at Spherical Surfoces

magine that we have two pieces of material, ene in a concave and the other a convex spherical surface having the same radius. It is a unique property sphere that such pieces will fit together in contact regardless of their mutual orientation. we take two roughly spherical objects of buizale on

Figure 5.7
of Americs.).

- inith rece ginding tool and che wher a disk of glass, 5 "易hem with some abrasive, and then randomly o with respect ro each other, we can andicipat As high spots on either object will wear away. As ni. Mrai (Fig. 5.7). Such surfaces are now commonly senerated in batches by automatic grinding and polisinng mackines. In contrast, high-quality aspherical Shapes require considerably more effort to produce. It should therefore come as no surprise that the vast majority pof quality lenses in use
ans lat mataces whereby a great many object points sumitactorily imaged simultaneously in light comofationd frequency ranse. I mage errors, known Ths will occur, but it is possible with the Eansology to construct high-quality spherical lens systems whose aberrations are so well controlled that image fidelity is limited only by diffraction.
. What we know why and where we are going, let's move on Figure 5.8 depicts a wave from the point source S mpinging on a spherical interface of radius R centerest at C. The ray ($S A$) will be refracted at the interface toward the local normal ($n_{2}>n_{1}$) and there--Fexpard the optical axis. Assume that at some point कrass the axis, as will ail other rays incident at
 hat is it . ie fivative lith retpect will be stationary, -ill be zero. For the ray in acto the position variable

$$
(\mathrm{OPL})-n_{1} i_{0} n_{2} n_{2} \epsilon_{i}
$$

(5.4)
thring tir law of cosines in triangles $S A C$ and $A C P$ Ting it the fact that $\cos \varphi=-\cos (180-4)$, we get and $\left.z^{2}=\left[R^{2}+1_{2}+R\right)^{2}-2 R\left(s_{0}+R\right) \cos \varphi\right]^{1 / 2}$

The OPL $\left.\ell_{i}=\frac{n}{2}+\left(s_{i}-R\right)^{2}+2 R\left(s_{1}-R\right) \cos \varphi\right]^{1 / 2}$
The OPL an be rewritten as
(OPL) $\left.=\pi / R^{2}+\left(s_{0}+R\right)^{2}-2 R\left(s_{0}-R\right) \cos 4\right]^{1 / 2}$
All the $\quad 4\left(\kappa^{2}+\left(s_{1}-R\right)^{2}+2 R\left(s_{1}-R\right) \cos \varphi\right]^{1 / 2}$.
positive nimberes in the diagram (s, s_{s}, R, ete) are convention which is and these form the basis of a sign

Figure 5.8 Reifraction at a sphcrical interface
we shall return time and again (see Table 5.i). Inasmuch as the pont A moves at the end of a fixed radius (i.e. R constann, φ is the position variable, and thus setting $d(\mathrm{OPL}) / d \varphi=0$, via Fermat's principle we have

$$
\frac{\pi_{1} \vec{R}\left(s_{s}+R\right) \sin \varphi}{2 \ell_{n}}-\frac{n_{2} R\left(s_{i}-R\right) \sin \varphi}{2 \ell_{i}}=0,
$$

from which it follows that

$$
\frac{n_{1}}{\ell_{0}}+\frac{n_{2}}{\ell_{1}}=\frac{1}{R}\left(\frac{n_{n} s_{1}}{\ell_{t}}-\frac{n_{1} s_{s}}{\ell_{c}}\right) .
$$

This is the relationship that must hold among the parameters for a ray going from S to P by way of refraction at the spherical interface. Although this expression is 4 is moved to a new loration by changing the new ray will to intercept the optical axis at P this is not

Figure 5.9 Ra

134 Chapter 5 Geometrical Optics-Paraxial Theory

able 5.1 Sign convention fur spherica! refrading surfaces and thin
lenses* (light enteri.g from the left).

Cartesian oval. The approximations that are used to epresent $\ell_{\text {a }}$ and ℓ, and thereby simplify Eq. (5.5), are crucial in all that is to follow. Recall that

$$
\begin{align*}
& \cos \varphi=1-\frac{\varphi^{2}}{2!}+\frac{\phi^{4}}{1!}-\frac{\varphi^{5}}{6!}+\cdots \tag{5.6}\\
& \sin \varphi=\varphi-\frac{\varphi^{3}}{3!}+\frac{\varphi^{5}}{5!}-\frac{\varphi^{7}}{7!}+\cdots \tag{5.7}
\end{align*}
$$

If we assume small values of φ (i.e., A close to V , $\cos \varphi=1$. Consequently, the expressions for ℓ_{0} and θ_{i} yield $\ell_{s} \approx s_{c}, f_{\mathrm{i}} \approx s_{1}$, and to that approximation

$$
\begin{equation*}
\frac{N_{1}}{s_{4}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R} . \tag{5,8}
\end{equation*}
$$

We could have begun this derivation with Snell's law rather than Fermat's principle (Problem 5.4), in which case small yalues of φ would have led to $\sin \varphi=\tau$ and Eq. (5.8) once again. This approximation delineates the domain of what is called first-prder theory-we"ll exammine thitd-order theory ($\sin \varphi \approx \varphi-\varphi^{3} / 3$!) in the next hapter. Rays that arrive at shallow angles with respect mall) are thown as paratil ays. The metging wave frontsement corresterding to thest torcrial rays is ewatially sherical and will form " "perfect" image at it center P localed af s_{1}. Notice that $\mathbf{E c}_{4}$. (5.8) is independent of the iocation of A over a small area about the symmetry axis. namely, the faroxial region. Gauss, in 1841, was the first to give a systematic exposition of the formation of images under the above approximation, and the result
is variously known as first-order, paraxial, or Gaussian optics. It soon became the basic theoretical tool by which lenses would be designed for several decades to come. If the optical system is well corrected, an incident spherical wave will emerge in a ferm very closely resembling a spherical wave. Consequently, as the perfection of the system increases, it more closely approaches first order theory. Deviations from that of paraxial analysis will provide a convenient measure of the quality of an actual optical device
If the point F_{r} in Fig. 5.10 is imaged at infinity $\left(s_{i}-\infty\right)$, we have

$$
\frac{n_{1}}{s_{1}}+\frac{n_{2}}{\infty}=\frac{n_{2}-n_{1}}{R} .
$$

That special object distance is defined as the frst focal length or the object focal length, $s_{0}=f_{0}$, so that

$$
f_{n}=\frac{v_{1}}{n_{2}-n_{1}} R
$$

The point F_{0} is known as the first or object focts, Similarly the second or image focus is the axial point $F_{\text {i }}$, where the image is formed when $s_{o}=\infty$, that is,

$$
\frac{n_{1}}{x_{i}}+\frac{\mathrm{R}_{2}}{s_{i}}=\frac{n_{y}-n_{i}}{K}
$$

Rigure 5.10 Pl
the object incus

Figure 5.11 The restaping of plane into spherical waves at a spherical interfact-the image foom

Defining the second or image focal lengh f_{j} as equal to s in this special case (Fig. 5.11), we have

$$
f_{i}-\frac{n_{2}}{n_{2}-n_{1}} R .
$$

Recall that an image is virtual when the rays diverge from it (Fig. 5.12). Analogously, an object is anreval when the rays converge toward it (Fig. 5.13). Observe that the virual object is now on the right-hand side of the vertex, and therefore s_{a} will be a negative quantity. Moreover the surface is concave, and its radius will also be nega tive, as required by Eq. (5.9), since f_{0} would be negative. In the same way the virtual inage distance appearing to the left of V is negative.

gure 5.12 A vircual image point.

Figure 5.13 A viruwal object point

5.2.3 Thin Lenses

Lenses are made in a wide range of forms; for example, there are acoustic and microwave lenses; some of the latter are made of glass or wax in easily recognizable hapes, whereas others are far more subtle irl appear nce (Fig. 5.14). In the traditional sense, a lens is an obtical system corsisting of two or more refraciing interfaces, t least one of which is carved. Generally the nonplanar urfaces are centered on a common axis. These surfaces re most frequently spherical segments and are ofter coated with thin dielectich hims to control their tran mission properties (see Section 9.9). A letrs that consists of one element (i.e., it has only two refracting surfaces) is a simplielens. The presence of more than one element makes it a compound lens. A lens is also classified as wo whet her it is thin or thick, that is. wherher its thirkness is e fectively negligible or not. We will limit ourselves, faces mest part, to centerea syitems (for which all surof spherical surfaces Undic abese colion fimple lens can take the diverse forms shown in Tig 5.15. Lenses that are varionsly known as convex convergng. or positive are thicker at the center and so tend to decrease the radius of curvature of the wavefronts: In other words, the wave converges more as it traverse the lens, assuming, of course, that the index of the lens is greater than that of the media in which it is immersed Concave, diverging, or negative lenses, on the other hand

136 Chapter 5 Geometrical Optics-Paraxial Theory

Figure 5.14 A lens for shot-wavelength radiowaves. The disks setve to rerract these waves much as raws
courtesy Opical Society of America.)
are thinner at the center and tend to advance that portion of the wavefront, causing it to diverge more then it did upon entry.
In the broadest sense, a lens is a refracting device that is used to reshape wavefronts in a controlled mannex. Although this is usually done by passing the wave through at least one specially shaped interface separating two different homogeneous media, it is not the only approach available. For example, it is also possible to reconfigure a wavefront by passing-index, or GRIN, inns is one where the desired effect is accomplished by lens is one where the desired effect using a medium fashion. Different portions of the wave propagate at different speeds, and the front changes shape as it progresses. In the commercial GRIN material (available only since 1976) the index varies radially, decreasing parabolically out from the central axis.

(b)

Today GRIN lenses are still fabricated in quantity only in the form of small-diameter, parallel. flat-faced rods. Usually grouped together in large arrays, they have been used extensively in such equipment as tacsimile machines and compact copiers. There are other unconventional lenses, including the holographic lens and even the gravitational lens (where, for example, the gravity of a galaxy bends light passung in its vicinity, thereby forming multiple images of distant celestial objects, such as quasars). We shall focus our atention in the remainder of this chapter on more tradional types of lenses, even CRIN lens (179) these words through a GRIN lens (p 179).

D Thin-Lens Equations
Return for a moment to the discussion of refraction at Rerugle spherical interface, where the location of the a songugate points S and P is given by

$$
\frac{n_{1}}{s_{n}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R} .
$$

(5.8j

When s_{0} is large for a fixed $\left(n_{2} \quad n_{1}\right) / R, s_{i}$ is relatively small. As s_{s} decreases, s_{i} moves away from the vertex that is, both θ_{2} and θ_{t} increase until finally $s_{o}=f_{0}$ and $s_{1}=\infty$. At that point, $n_{1} / s_{0}=\left(n_{2}-n_{1}\right) / R$, so that if s gets any smaller, s_{i} will have to be ncgative, if Eq. (5.8) is to hold. In other words, the image becomes virtual (Fig. 5.16). Let's now locate the conjugate points for the lens of index n_{t} surrounded by a medium of index n_{m}, as in Fig. 5.17, where another end has simply been ground on the piece in Fig 5.16 (c). This certainly isn't the most general set of circumstances, but it is the most common, and even more cogently, it is the simplest. We know from Eq. (5.8) that the paraxial rays issuing from S at $s_{n 1}$ will meer at P^{\prime}, a distance, which we now call $s_{i 1}$, from V_{1}, given by

$$
\begin{equation*}
\frac{a_{2}}{s_{01}}+\frac{t_{1}}{s_{11}}+\frac{d_{1}-n_{n}}{R_{1}} \tag{5.11}
\end{equation*}
$$

Thus as far as the second surface is concerned, it "sees"
rays coming toward it from p^{\prime}, which serves as its object
*Sce Jenkins and Whice, Furdamentuts wf Optus, p. 57, for a derivation tontaining three different indices.

Figure 5.16 Refraction at a spherical interface.
point a distance s_{02} away. Furchermore, the rays arnving
at that second surface are in the medium of index n Thus, the object space for the second interface that contains P^{\prime} has an index n_{1}. Note that the rays from P^{\prime} o that surface are indeed straight lines. Considering the fact that

$$
\left|s_{o s}\right|-\left|n_{n}\right|+d
$$

since $s_{s i}$ is on the left and therefore positive, $s_{n \geq 2}=\left|s_{s_{n}}\right|$, and $s_{i 1}$ is also on the left and therefore negative, $-s_{i 1}$ $\left|s_{i 1}\right|$, we have

$$
s_{n 2}-s_{i 1}-d
$$

Thus at the second surface Eq. (5.8) yields

$$
\frac{n_{i}}{\left(-s_{i 1}+d\right)}+\frac{n_{m}}{s_{i z}}=\frac{2-v}{R_{2}}
$$

(5.13)

(a)
figure 5.17 A sphencal lens. (a) Refraction at the interfatex. The Higure 5.1 A sphencal lens. (a) Recraction at the interfaces. The
radius drawn from C_{i} is normal to the first surface, and as thic rav enters the lens it bends down tourrd that nurmal. The radius from

Here $n_{t}>n_{m}$ and $R_{\Sigma}<0$, so that the right-hand side is positive. Adding Eqs. (5.11) and (5.13), we have

$$
\frac{n_{s}}{s_{01}}+\frac{n_{s}}{s_{12}}-\left(n_{t}-n_{m}\right)\left(-\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)+\frac{n d}{\left(s_{11}-d\right) s_{1}}
$$

If the lens is thin enough ($d \rightarrow 0$), the last term on the right is effectively zero. As a further simplification right is effectively zero. As a further simplification, Accordingly, we have the very useful thin-leas equation, often referred to as the leasmaker's formula:

$$
\frac{1}{s_{n}}+\frac{1}{s_{1}}-\left(n_{l}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right), \quad \text { (5.15) }
$$

where we let $s_{01}=s_{0}$ and $s_{12}-s_{2}$. The points V_{1} and V_{2} end to coalcsce as $d \rightarrow 0$, so that s_{0} and s_{i} can be measured from cilher the vertices or the lens center. Just as in the case of the single spherical surface, if s_{0} is moved out to infinity, the image distance becomes the focal length f i. or symbolically,

$$
\lim _{i=+\infty} s_{i}-f_{i}
$$

Similarly
$\lim _{s_{s} \rightarrow \infty} s_{\infty}=f_{0}$.

(b)
$C_{\text {, }}$ is normat to the second surfare and as the ray emerrese sine $n_{l}>n_{a}$, the ray ben ds down awny from that normal (b) The geometry.

It is evident from Eq. (5.15) that for a thin lens $f_{i}-f_{0}$, and consequently we drop the subscripts altogether Thus

$$
\frac{\mathrm{t}}{f_{i}}=\left(n_{i}-1\right)\left(\frac{1}{R_{1}}-\frac{\mathrm{I}}{R_{2}}\right)
$$

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f},
$$

(5.in)
which is the famous Gaussian lens formula. As an example of how these expressions might be used, let's compute the focal length in air of a thin planar-convex lens having a radius of curvature of 50 mm and an index of 1.5 . With light entering on the planar surface ($R_{1}=$ $\infty, R_{2}=-50$),

$$
\frac{1}{7}-(1.5-1)\left(\frac{1}{\infty}-\frac{1}{-50}\right),
$$

whereas if instead it arrives at the curved surface ($R_{1}-$ $+50, R_{2}{ }^{\infty}$),
$\frac{1}{f}=(1.5-1)\left(\frac{1}{+50}-\frac{1}{\infty}\right)$,
and in either case $f=100 \mathrm{~mm}$. If an object is alternately
placed at distances $600 \mathrm{~mm}, 200 \mathrm{~mm}, 150 \mathrm{~mm}, 100 \mathrm{~mm}$, and 50 mm from the lens on either side,
the image points from Eq. (5.17). Hence

$$
\frac{1}{600}+\frac{1}{s_{i}}=\frac{1}{100}
$$

and $s_{2}=120 \mathrm{~mm}$. Similarly, the other image distances are $200 \mathrm{~mm}, 300 \mathrm{~mm}, \infty$, and -100 mm , respectively Inerestingly enough, when $s_{u}-\infty, s_{1}=f$; as decreases, s_{t} increases positively until $s_{u}=f$ and s_{i} is negative thereafter. You can qualitatively check ihis out with a simple convex lens and a smail electric light-the high-intensity variety that uses auto lamps is probably the most convenient. Standing as far as you can from the source, project a clear image of it onto a white sheet of paper. You should be able to see the lamp quite clearly and not just as a blur. That image distance approximates f. Now move the lens in toward S, adjusting s, to produce a clear image. It will surely increase As $s_{\alpha} \rightarrow f$, a clear image of the filament can be projected,
but only on an increasingly distant sercen. For $s_{c}<b$ ere will just be a blur where the fatthest wall intersects the diverging cone of rays-the jmage is virtual.
ii) Focol Points and Planes

Figure 5.18 summarizes picconally some of the situations described analytically by Eq. 5.16. Observe that if a lens of index n_{l} is in a medium of index $n_{n 2}$.

$$
\frac{1}{1}-\left(n_{t m}-1\right)\left(\frac{1}{R_{:}}-\frac{1}{R_{2}}\right) . \quad \quad \quad(5.18)
$$

The focal lengths in (a) and (b) of Fig. 5.18 are cqual, ecause the same medium exists on either side of the lens. Since $n_{l}>n_{m}$, it follows that $n_{t m}>1$. In both cases $R_{1}>0$ and $R_{0}<U$, so that each focal length is positive. We have a rcal object in (a) and a real image in (b). In (e) $n_{1}>n_{2 n}$. and $R_{1}<0$ wher $R_{8}>0$ so f is a cose and inage

Figure 5.18 Focal lenyths for converging and
diverging lenses. diverging lenses.
he other are virtual. The last situation shows $n_{t_{n}}<1$ ielding an $f>0$
Notice that in each instance it is particularly convenient to draw a ray through the center of the lens, hich, bcause ic is perpendicular bof surfaces, y fores from to tols incter dir ion as in Fig. 5.19. We maintain that all such rays will pass through the point defined as the oftical conter of he lens O. To see this, draw two parallel planes, one he lens O. To see this, draw two parallel planes, one and B. This can easily be done by selecting A and B such that the radii $\overline{A C}_{1}$ and $\overline{B C}_{2}$ are themselves paralle It is to be shown that the paraxial ray traversing $\overline{A B}$ enters, and leaves the lens in the same direction. It evident from the diagram that triangles $A O C_{1}$ and

Ficure 5.19 The uptical center of a lens. (Photo by E.H.)

Figure 5.20 Focusing of several ray bundles
$B O C_{2}$ are similar, in the geometric sense, and therefore heir sides are proportional. Hence, $|R|\left(\overline{O C}_{2}\right)=$ $\left|R_{2}\right|\left(\overline{O C_{1}}\right)$, and since the radii are constant, the location of O is constant, independent of A and B. As we saw earliee (Problem 4.19 and Fig. 4.55), a ray traversing a medium bounded by parallel planes will be displaced laterally but will suffer no angular deviation. This disphacement is proportional to the thickness, which for a ngly be dih as dealing with thin lenses simply to place O midway etween the wertic tween the vertice
Recall that a bund
Recall that a bundle of parallel paraxial rays incident point on the optical axis (Fig. 5.14). As shown in Fig. 5.20. this implies that several such bundles entering in a narrow cone will be focused on a spherical segment σ, also centered on C. The undeviated rays normal to the surface, and therefore passing through C, locate he foci on σ. Since the ray cone must indeed be narrow, can satisfactorily be represented as a plane normal the symmetry axis and passing through the image focus. It is known as a focal plane. In the same way, imiting ourselves to paraxial cheory, a lens will focus all incident parallel bundles of rays* onto a surface called the second or back focal plane, as in Fig. 5.21. Here 0 . Similarly, σ is located by he undevated.ay hrough . Sject focur F. frit or frome focal plane contains the object focus F_{n}.

Perhaps the carliest literary reference to the focal properices of a icens appears in Aristophanes' play. The Clouds, which dates back to 423 s.c. In it Sirepsiades plots to use a burning glass io focus the sumbling deb.

igure 5.21 The focal plane of a len.
will generate a final image. Suppose then that σ_{i} in Fig $5.22(\mathrm{a})$ is the object for the second surface, which assumed to have a negative radius. We already 5.22 (b) with the ray directions reversed The find ima formed by a lens of a small planar object nampel to the orvical axis unill itself he a small plane normal to that axis
The location, size, and orientation of an imane duced by a lens can be determined, particularly simply, with ray diagrams. To find the image of the object in Fig. 5.23, we must locate the image point corresponding to each object point. Since all rays issuing from a source point in a paraxial cone will arrive at the image point any two such rays will suffice to fix that point. Since we know the positions of the focal points, there are thre rays that are especially easy to apply. Two of these mak use of the fact that a ray passing through the focal poin will emerge from the lens parallel to the optical axis and vice versa: the third is the undeviated ray through

i) Finite Imagery

Thus far' we've dealt with the mathematical abstraction of a single-point source, but now tet's suppose thet great many such points combine to form a continuous finite object. For the moment, imagine the object to be segment of a sphere, σ_{0}, centered on C, as in Fig 3.22. If σ_{0} is close to the spherical interface, point S will have a virtual image $P\left(s_{i}<0\right.$ and therefore on the eft of V). With S farther away, its image will be real $s_{i}>0$ and therefore on the right-hand side). In either case, each point on σ_{o} has a conjugate point on σ_{1} lying on a straight line through C. Within the restrictions of paraxial theory, these surfaces can be considered planar Thus a small planar object norma! to the optical axis will be imaged into a small planar region also normal that axis. It should be noted that if J_{0} is moved out infinity, the cone of rays from each source point wil will lie on the focat plane (Fis 591) By cutting and polishe (rg., 21), depicted in Fir 5 22, we can construct a the piec was done in s.2, we can construct a thin lens. jus Fig. 5.29) formed hy the first surface of the lens will serve as the object for the seconid surface, which in turn

Figure 5.22 Finite ifragery.
O. Figure 5.24 shows how any iwo of these three rays

Figure 5.23 Tracing a few key rays through a positive and negative lens.
locate the image of a point on the object. Incidentally. this technique dates to the work of Robert Smith as long ago as 1438 .
This graphical procedure can be made even simpler by replacing the thin lens with a plane passing through its center (Fig. 5.25). Presumably, if we were to extend every incoming ray forward a little and every outgoing ray backward a bi, each pair woul me envisaged as Thus the tola deviat on that plane. This is equivalent to the actual process consisting of two separate angular shifts, one at each interface. (As we will see later, this is tantamount to saying that the two principal planes of a thin lens coincide.

In accord with convention, transverse distances above the optical axis are taken as positive quantities, and those below the axis are given negative numerical values. Therefore in Fig. $5.25 y_{i}>0$ and $y_{i}<0$. Here the image is said to be inverted, whereas if $y_{i}>0$ when $y_{\phi}>0$, it is erect. Observe that triangles $A O F_{1}$ and $P_{2} P_{1} F_{i}$ are similar. Ergo

$$
\frac{y_{0}}{\left|y_{i}\right|}=\frac{f}{\left(s_{i}-f\right)} .
$$

(5.19)

Likewise, triangles $S_{2} S_{1} O$ and $P_{2} P_{1} O$ are similar and

$$
\frac{y_{0}}{\left|y_{i}\right|}-\frac{s_{o}}{s_{i}},
$$

where all quatities

$$
\left|\frac{0}{\left|y_{i}\right|}\right|
$$

where all quantities other than y are positive. Hence

$$
\frac{s_{0}}{s_{i}}=\frac{f}{\left\langle s_{i}-j\right\rangle}
$$

and

$$
\frac{1}{f}=\frac{1}{s_{0}}+\frac{1}{s_{i}}
$$

which is, of course, the Gaussian lens equation (5.17). Furthermore, triangles $S_{2} S_{1} F_{o}$ and $B O F_{a}$ are similar and

$$
\frac{f}{\left(s_{s}-f\right)}=\frac{\left|y_{i}\right|}{y_{0}} .
$$

(a)

(c)

Figure 5.24 (a) A real object and a positive lens. (b) A teal object and a negaive lens. (c) A real image projected on the viewing sereen combining this information with Eq. (5.19), we have $x_{0} x_{i} \quad f^{2}$.

This is the Newtonian form of the lens equation, the first statement of which appeared in Newton's Optick in 1704. The signs of x_{0} and x_{i} are reckoned with respect to their concomitant foci. By convention x_{0} is taken to be positive left of F_{0}, whereas x_{i} is positive on che right of \mathcal{F}_{i}. To he sure, it is evident from Eq. (5.23) that m_{6} and x_{i} have like signs, which means that the object and
cal poinds.
This is a good thing for the neophyte to remember

(d)
 rightsidc-up, virtual urrage fornied by a negative lens.

144 Chapter 5 Geometrical Optics-Paraxial Theory
when making those hasty freehand ray diagrams for which he is already infamous.
The ratio of the transverse dimensions of the fimal
 ins transverse magnification, M_{5}, that is,

$$
M_{T}=\frac{y_{i}}{y_{c}} .
$$

(5.24)

Or from Eq. (5.20)

$$
M_{r}=-\frac{s_{i}}{s_{0}}{ }^{+}
$$

(5.25)

Thus a positive M_{T} connotes an erect image, while a siegative value means the image is inverted (see Table 5.9). Bear in mind that s_{2} and s_{o} are both positive for real objects and images. Cleanty, then, aul such images formea by a single the masifition follows from Fqs (5.19) and (599) he mag. 5.24 whence and Fig. 5.24, whence

$$
\begin{equation*}
M_{T}=-\frac{x_{i}}{f}=-\frac{f}{x_{0}} . \tag{5.26}
\end{equation*}
$$

The term magnification is a misnomer, since the magnitude of M_{T} can certainly be less than 1 , in which case che image is smaller than the object. We have $M_{r}=-1$ when the object and image distances are positive and equal, and that happens (5.17) only when $s_{4}=s_{i}=2 f$. This turns out to be the conffuration in which the object and image are as close together as they can possibly get (i.e., a distance 4 f apart; see Problem 5.6) Table 5.3 summarizes a number of image configurations resulting from the juxtaposition of a thin lens and a real object. Figure 5.26 illustrates the behavior pic-

Table 5.2 Meanings associated with the signs of various thin len an.d spherical interface parameteters.

Quankity	sign	
	+	-
s	Real object	Virtual object
s	Real image	Virtual image
f	Converging lens	Diverging lens
\%	Erect object	Inverted object
y_{i}	Ercet image	Inverted image

Table 5.3 Images of real ubjects furned by thin lenses.

Convex				
Object	1 mage			
Loxatiost	type	Location	Ofienation	Relurive size
	Real	$f<r_{1}<2 f$	Inverred	Minified
$s_{0}=2 f$	Real	$\varepsilon=2 f$	Inverted	Same size
${ }_{1}<3_{0}<2 j$	Real		Inverled	Magnified
	Vitual	$\left\|s_{1}\right\|>s_{\text {s, }}$	Erect	Maguified

이jict	Image			
Lomation	$T_{\text {ype }}$	Loation	Orientation	Rellative size
Anywhers	Virtual	$\begin{aligned} & \left\|x_{s}\right\|<\|f\| f_{0} \\ & i s_{s}>\mid s_{1} \end{aligned}$	Erea	Minified

torially. Observe that as the object approaches the lens the real image moves away from it.
Presumably, the image of a threc-dimensional object will itself occupy a three-dimensional region of space. The optical system can apparently affect both the transverse and longitudinal dimensions of the image. The long iond direction, is defined as

$$
M_{L}=\frac{d x_{i}}{d x_{0}} . \quad \text { (5.27) }
$$

This is the ratio of an infinitesimal axial length in the region of the image to the corresponding lengh in the region of the object. Differentiating Eq. (5.23) leads to

$$
\begin{equation*}
M_{L_{-}}=-\frac{f^{2}}{x_{n}^{2}}=-M_{T}^{9} \tag{5.28}
\end{equation*}
$$

for a thin lens in a single medium (Fig. 5.27). Evidently, $M_{L}<0$, which implies that a positive $d x$, corresponds to a negative $d x$ and vice versa In other words, a finger pointing toward the lens is inaged pointing, away from it (Fig. 5.28).
Form the image of a window on a sheet of paper, using a simple convex lens. Assuming a lovely arboreal scene, image the distant trees on the screen. Now move the paper away from the fens, so that it incersects a different region of the image space. The trees will fade while the nearby window itself comes into view.

Figure 5.27 The transverse magnification is different from the
longiudinal magnification. longitudinal magnification.

iv) Thin-Lens Combinations

Our purpose here is not to become proficient in the subtle intricacies of mudern lens design, but rather to begin to appreciate, utilize, and adapt those systems arread γ available.
In constructing a new optical system, one generally begins by sketching out a rough arrangement using the quickest approximate calculations. Refinements ar then added as the designer goes on to the prodigious and more exact ray-tracing techniques. Nowadays these computations are most often carried out by electronic digital computers. Even so, the simple thin-iens concep provides a highly useful basis for preliminary calcula tions in a broad range of situations.
No lens is actually a thin lens in the strict sense of imple lenes for all practia puposes, function in ashion equivalent to that of a thin lens. Almost all

Figure 5.28 Image crientation for a thin lens.

${ }^{146}$ Chapter 5 Geometrical Optics—Paraxial Theory

Figure 5.99 Two chinlenses sparared hy a atistance
rimaller than cither focal length.
spectacle lenses, which, by the way, have been used at least since the thirteenth century, are in this category When the radii of curvature are large and the lens diameter is small, the thickness will usually be small as well. A lens of this sort would generally have a large focal length, compared with which the thickness would be quite smail; many early telescope objectives fit that description perfectly.
We will now derive some expressions for parameters associated with thin-lens combinations. The approach traditional treatment for those tenacious enough to pursue the matter into the next chapter
Suppose we have two thin positive lenses L_{1} and L_{2}
Suppose we have two thin positive lenses L_{1} and L_{2}
eparated by a distance d_{1}, which is smaller than either focal length, as in Fig. 5.29. The resulcing image can be located graphically as follows. If we overlook L_{2} for a moment, the image formed exclusively by L_{1} is constructed with rays 1 and 3. As usual, these pass through the lens object and image foci, F_{01} and $F_{i 1}$, respectively The object is in a normal plane, so that two rays deter-
mine its top, and a perpendicular to the optical axis finds its bottom. Ray 2 is then constructed running backward from P_{1}^{\prime} through O_{2}. Insertion of L_{2} has no effect on ray 2, whereas ray 3 is refracted through the 3 irlage tocus Fr_{2} of L_{2}. The intertion rays and minified and inverted minilied, and inverted.
A sirnilar pait of lenses is illustrated in Fig. 5.30, in which the separation has been increased. Once again intermediate image generated by L_{1} alone. As before, ray 22 is drawn backward from O_{2} to P_{1}^{\prime} to S_{1}. The intersection of rays 2 and 3 , as the latter is refracted through $F_{i 2}$, locates the final image. This time it is real and erect. Notice that if the focal length of L_{2} is increased with all else constant, the size of the image increases as well.
Analytically, we have for L_{1}

$$
\frac{1}{s_{21}}=\frac{1}{f_{1}}-\frac{1}{s_{o t}}
$$

than the sum of their foca! lengths.
or

$$
s_{11}=\frac{s_{1} f_{i}}{s_{01}-f_{1}}
$$

(5.30)

This is positive, and the intermediate image is to the right of L_{1}, when $s_{01}>f_{1}$ and $f_{1}>0$. For L_{2}

$$
s_{02}=d-s_{t 1}
$$

(5.91)
and if $d>s_{i 1}$, the object for L_{2} is real (as in Fig. 5.30), whereas if $d<s_{1}$ it is virtual ($s_{2,}<0$. as in Fig 5.29), in the former instance the rays approaching L_{2} are diverging from P_{1}, whereas in the latter they are converging toward it. Furthermore,

$$
\begin{aligned}
& \frac{1}{s_{i 2}}=\frac{1}{f_{2}}-\frac{1}{s_{02}} \\
& s_{t_{2}}=\frac{s_{22} f_{2}}{s_{02}-f_{2}} .
\end{aligned}
$$

Using Eq. (5.31), we obtain

$$
s_{i 2}=\frac{\left(d-s_{i 1}\right) f_{2}}{\left(d-s_{11}-f_{2}\right)} .
$$

(5.92)

In this same way we could compute the response of any number of thin lenses. It will often be convenient to have a single expression, at least when dealing with only two lenses, so subssituting for s_{1}, from Eq. (5.29), we get

$$
s_{12}-\frac{f_{2} d-f_{2} s_{01} f_{1} /\left(s_{01}-f_{1}\right)}{d-f_{2}-s_{01} f_{1} /\left(s_{01}-f_{1}\right)} .
$$

Here $s_{t 11}$ and $s_{t y}$ are the object and image distances, respectively, of the compound lens. As an example, let's compute the image distance associated with an objec placed 50 cm from the first of two positive Ienses. These
in turn are separated by 20 cm and have focal length of 30 cm and 50 cm , respectively. By direct substitution (5.33)

$$
s_{i z}=\frac{50(20)-50(50)(30) /(50-30)}{20-50-50(30) /(50-50)}=26.2 \mathrm{~cm},
$$

and the image is real. Inasmuch as L_{2} "magnifies" the intermediate image formed hy L_{1}, the total transverse intermediate inage formed hy 1 , the total transverse the individual magnifications, that is,

$$
M_{T}=M_{r} M_{T 2}
$$

It is left as Problem (5.25) to show that

$$
M_{T}=\frac{Y_{1} t_{\text {此 }}}{d\left(s_{91}-I_{t}\right)-s_{4} f_{1} f_{1}}
$$

In the above example

$$
M_{F}=\frac{30(26.2)}{20(50-30)-50(30)}=-0.72 .
$$

and just as we should have guessed from Fig. 5.29, the image is minified and inverted.
The distance from the last surface of an optical system to the second focal point of that system as a whole is known as the hack focal length, or b.f.t. Likewise, the distance from the vertex of the first surface to the firs or object focus is the from local length, or E.f.L. Con sequently if we let $s_{i z} \rightarrow \infty, s_{02}$ approaches f_{2}, which combined with Eq. (5.31) tells us that $s_{i 1} \rightarrow d-f_{2}$. Hence from Ey. (5.29)

$$
\left.\frac{1}{s_{01}}\right|_{s_{12}=x}=x=\frac{1}{f_{1}}-\frac{1}{\left(d-f_{2}\right)}=\frac{d-\left(f_{1}+f_{2}\right)}{f_{1}\left(d-f_{2}\right)} .
$$

But this special value of s_{o} is the f.f.f.:

$$
\text { fef.1. }=\frac{f_{1}\left(d-f_{2}\right)}{d-\left(f_{1}+f_{2}\right)^{\prime}}
$$

In the same way, letting $s_{01}=\infty$ in Eq. (3.33), $\left(s_{a!}-f_{1}\right) \rightarrow$ s_{1}, and since $s_{i 2}$ is then the b.f.1, we have

$$
\text { b.f.l. }=\frac{f_{2}\left(d-f_{2}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

To see fow this works numerically, let's find both the b.f.l. and f.f.l. for the thin-lens system in Fig. 5.31 (a),
here $f_{1}--90 \mathrm{~cm}$ and $f_{2}-+20 \mathrm{~cm}$. Then

$$
\text { b.f.I. }=\frac{20[10-(-30)]}{10-(-80+20)}-40 \mathrm{~cm}
$$

ad similarly f.f. $=15 \mathrm{~cm}$. Incidentally, notice

 $=f+f_{2}$ plane waves entering the compor rom either side will emerge as plane waves 'Prob) 27), as in telescopic systems.Observe that if $d \rightarrow 0$, that is, if the lenses are be nto contact, as in the case of some achromatic do

$$
\text { b.f.l. }=\text { f.f.I. }=\frac{f_{2} f_{1}}{f_{2}+f_{1}}
$$

The reviluat thin lens has an effective focal length, f, The riut

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}} . \tag{i5.38}
\end{equation*}
$$

Taii mpler that if there are N such lenses in contact,

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{f_{2}}+\frac{1}{f_{2}}+\cdots+\frac{1}{f_{N}} . \tag{5.39}
\end{equation*}
$$

Many of these conclusions can be verified, at least qualionchy. with a few simple lenses. Figure 5.29 is quite cill to duplicate, and the procedure shoutd be Fes dearmine the focal lengith of the two lenses by
Sha distant source. Then hold one of the lenses
a foxed distance slighly greatar than its focal length
the plane of observation (i.e., a piece of white
(1per). Now comes the maneuver that requires sotric
grort if you don't have an optical berrch. Move the

$$
\text { fond lens }\left(L_{1}\right) \text {) oward the source, keeping it reason- }
$$

ably centered. Without any attempts to block out light

$$
\text { enter) } L_{2} \text { directy, you will probably sec a blurred }
$$

$$
\begin{aligned}
& \text { of your hand holding } L_{\text {, }} \text {. Position the lenses so } \\
& \text { Wercegion on the screen corresponding to } L \text {, is as }
\end{aligned}
$$

- Wherregion on the screen corresponding to) L_{1} is as dhe image) will become clear and crect, as

Figare 5.39 Aperture stey and fietristop
the first few elements of a compound camera lens is just such an aperture stop. Evidently it determines the light-gathering capability of the lens as a whole. As shown in Fig. 5.32, highly oblique rays can still enter a system of chis sort. Usually, however, they are deliberately restricted in order to control the quality of the image. The element limiting the size or angular breadth of the object chat can be imaged by the system is called the field atop or F.S.-it deternines the Gield of view of the instrument. In a camera, the edge of the film itself bounds the image plane and serves as the field stop. Thus, while (Fig. 5.92) the aperture stop controls the number of rays from an object point reaching the
conjugate image point, it is the field stop that will or will not obstruct those rays in toto. Neither the very top nor the bottom of the object in Fig. 5.32 passes the field stop. Opening the circular aperture stop would culse the system to accept a larger energy cone and in so doing increase the irradiance at each cone and in so cong increase the irradiance at each tmage point. In extremities of the object, which were previously blocked, to be irnaged

5.3.2 Entrance and Exit Pupils

Another concept, quite useful in determining whether not a given ray will traverse the entire optical system,
is the pupil. This is simply an image of the aperture stop. The entrance pupil of a system is the image of the aperture stop as seen from an axial point on the object through those elements preceding the stop. If there are no lenses between the object and the A.S., the latter itself serves as the entrance pupil. Toillustrate the point, examine Fig. 5.33 , which is a lens with a rear aperture stop. The image of the aperture stop in L is virtual (see Table 5.3) and magnified. It can be located by sending a few rays out from the edges of the image of the $A S$ way. In contrast, the exi pupis imate plane through the interposed lenses, if there are any. In Fig. 5.33 there arc no such lenses, so the aperture stop itself serves as the exit pupil. Notice that all of this just means that the cone of light actually entering the optical system is determined by the entrance pupil, whereas the cone leaving it is controlled by the exit pupil. No rays from the source point proceeding outside of either cone will make it to the image plane.
If you wanted to use a telescope or a monocular as a camera lens, you might attach an external from! aperture stop to control the amount of incoming light for exposure purposes. Figure 5.34 represents a similar arrangernent in which the entrance and exit pupil loca tions should be self-evident. The last two diagrams

Figure 5.33 Encrance pupil and exit pupil

Figure 5.34 A front aperture step.
included a ray labeled the chiof ray. It is defined to be any ray from an off-axis object point that passes through the cener of the aperture stop. The cive ray midpint of the ystem along E, ontrance prupra, $E_{n p}$, anhlea it rupic E. The chief ray, through we cembe of the an the object effectively behaves as the central ray of the bundle and is representative of i t. Chief rays are of particular importance when the aberrations of a lens design are being corrected.
Figure 5.35 depicts a somewhat more inyolved arangement. The two rays shown are those that are usually traced through an optical system, One is the chief ray from a point on the periphery of the object that is to be accommodated by the system. The other is called a marginal ray, since it goes from the axial object point to the rim or margin of the entrance pupil (or aperture stop).
In a situation where it is not clear which element is the actual aperture stop, each component of the system must be imaged by the remaining elements to its left The image that subtends the smallest ongle at the axial obje point is the entrance papil. for that object point Problem 5.30 deals with just this

gure 5.35 Pupils and stops for ithreelens system.
kind of calculation.
Notice how the cone of rays, in Fig. 5. 36 , that can reach the image plane becomes narrower as the objec point moves off-axis. The effective aperture stop, which point moves of-axis. ©f rays was the sim of L_{1}, has been
markedly reduced for the off-axis bundle. The result a gradual fading out of the image at points near its is agradual a process known as wignolling.
The locations and sizes of the pupils of an optical ystem are of considerable practical importance. In

visual instruments, the observer's eye is positioned at
the center of the exit pupil. The pupil of the eye itself will yary from 2 mm to about 8 mm , depending on the will yary from 2 mm to about 8 mm , depending on the
general illumination level. Thus a telescope or binocular generar illumination level. Thus a telescope or binocular
designed primarily for evening use might have an exit pupil of at least 8 mm /you may have heard the term nigh glasses-they were quite popular on roofs during the Second World War). In contrast, a daylight version will suffice with an exit pupil of 3 or 4 mm . The larger the exit pupil, the easier it will be to align your eye properly with the instrument. Obviously a telescopic sight for a high-powered rifle should have a large exit pupil located far enough behind the scope so as to avoid injury from recoil.

5.3.3 Relative Aperture and f-Number

Suppose we wish to collect the light from an extended source and form an image of it using a lens (or mirror). The amount of energy gathered by the lens (or mirtor) from some small region of a distant source will be directly proportional to the area of the lens or, more generally, to the area of the entrance pupil. A large Obviously, if the soucce were a laser with a very narrow berm, this would not necessarily be urue fif we negle losses due to refections, absorption, and so forth the incoming energy will be spread across a corresponding region of the image. Thus the energy per unit area per unit time (i.e., the flux density or irradiance) will be inversely proportional to the image area. The entrance pupil area, if circular. varies as the square of its radius and is thercfore proportional to the square of its diameter D. Furthermore, the imnage area will vary as the square of its lateral aimension, which in turn [Eqs (5.24) and (5.26)] is proportional to $)^{2}$. 〈Keep in mind that we are talking about an extended object rather than a point source. In the latter case, the image would be confined to a very small area independent of f Thus the fux density at the image plane varies as $(D / f)^{2}$. The ratio D / f is known as the relative aperture, and its inverse is said to be the f-number, or $f / \#$, that is,

$$
\begin{equation*}
f / \# \# \frac{f}{D^{\prime}} \tag{5.x}
\end{equation*}
$$

igure $\mathbf{5 . 3 7}$ Stopping down a lent to change the f-number
same way, determine its f-number. Accordingly, the 200 -inch diameter mirror of the Mount Palomar tele scope, with a prime focal length of 666 inches, has an f-number of 3.33 .
For precise work, in which refection and absorption losses in the lens itself must be taken into consideration. the T-number is highly useful. In effect, it is a modified (increased) f-number that a given real lens would actually have to have were it to transmit an amount of ligh corresponding to a particular value of f / D.
where (/i\#t should be understood as a single symbol. For example, a lens with a $25-\mathrm{rnm}$ aperture and a $50-\mathrm{mm}$ focal length has an ng a thin lens behind a variable iris diaphragm operat git either $f / 2$ or $f / 4$ A smallor f-number clearly permits more light to reach the image plane
Camera lenses are usually specified by their focal lengths and largest possible apertures; for example, you might see " 50 mm , f $/ 1.4$ " on the barrel of a lens. Since the phocographic exposure time is proportional to the square of the finmber the latter is sometimes spoken of as the spoed of the lens. Aid fi. 4 lens is taid to be wice as tast as an J/2 lens. Usually lens daphragms have f-nimuber markings of $7,1.4,2,2.8,4,5.6,8,11$, 16,22 , and so on. The largest relative aperture in this case corresponds to $f / 1$, and that's a fast lens $-f / 2$ is more typical. Each consecutive diaphragm setting increases the f-number by a multiplicative factor of $\sqrt{2}$ (numerically rounded off). This corresponds to a decrease in relative aperture by a multiplicative factor iff $\sqrt{2}$ and therefore a decrease in flux density by one herer the comera is for f11.4 ar 1500 th of a second f/2 at $1 / 250$ th of a second or f/2.8 at $1 / 125$ sh second, f/2 at 1 a second
The largest refracting telescope in the world, located the Yerkes Observatory of the University of Chicago, feet and therefore an f-number of 18.9 . The entrance pupil and focal length of a mirror will, in exactly the

5.4 MIRRORS

Mirror systerns are being used in increasingly extensive applications, particularly in the x-ray, ultraviolet, and applications, particularly in the x-ray, ultraviolet, and tively simple to construct a reflecting device that will tively simple to construct a reflecting device that will perform satisfactonly across a broad-frequency band
width, the same cannot be said of refracting systems. width, the same cannot be said of reiracting systems,
For example, a silicon or germanium lens designed for the infrared will be completely opaque in the visible (Fig. 3.29). As we will see later, when we consider their aberrations, mirrors have other attributes that contribute to their usefulness.
A mirror might simply be a piece of black glass or a finely polished metal surface. In the past mirrors were usually made by coating glass with silver. the latter beiog chosen because of its high efficiency in the UV and IR (see Fig. 4.42), and the former because of its rigidity In recent times, vacuum-evaporated coatings of aluminum on highiy polished subscrates have become the accepted standard for quality mirrors. Protective often lavered over the aluminum as well applications (e.r. in lasers), where even the small losse due to metal surfaces cancor be tolerated, mirrors due to metal surtaces cannor be tolerated, mirror are indispensable. A whole new generation of lightweight precision mir. rors is being developed for use in large-scale orbiting telescopes - the technology is by no means static.

5.4.1 Planar Mirrors

As with all mirror configurations, those that are planar can be either front- or back-surfaced. The latter is the kind most commonly found in everyday use because it allows the metallic reflecting layer to be completely protected behind glass. In contrast, the majority of mirrors designed for more critical technical usage are front-surfaced (Fig. 5.38).

From Sections 4.2 .2 and 4.2 .3 , it's a rather easy matuer to determine the image characteristics of a planar mir ror. Examining the point source and mirror arrange. ment of Fig. 5.38, we can quickly show that $\left|s_{a}\right|=\left|s_{s}\right|$. that is, the image P and object S are equidistant from the surface. To wit, $\theta_{0}=\theta_{\theta}$, from the law of reflection, $\theta_{1}+\theta_{r}$ is the exterior angle of triangle SPA and is therefore equal to the sum of the alternate interior $\Varangle V S A-\Varangle V P A$. This makes triangles VAS therefore congruent. in which case $\left|s_{0}\right|=|s|$. (Go back and take another look at Problem 43 and Fig. 450 for the wave picture of the reflection) We are now faced with
We are now faced with the problem of determining choose, and you should certainly realize that there is choice, we need only be faithful unto it for all to be well. One obvious dilemma with respect to the convention for lenses is that now the virtual image is to the right of the interface. The observer sees P to be positioned behind the mirror, because the eye (or camera) cannot perceive the actual reflection; it merely interpolates the rays backward along straight lines. The rays from P are diverging, and no light can be cast upon a screen located at P-the image is certainly virtual. Clearly, it is a matter of taste whether s_{i} should be
defined as positive or negative in this instance. Since

Figure 5.39 (a) The image of an extended object in a planar mirrors (b) Images ir a planar mirror.
e rather like the idea of virtual object and image istances being negative, we shall define s_{c} and s_{i} as egatue ahen hey he to the right of the vertex b. This will ave the added benefit of yielding a mirror formula identical to the Gaussian lens equation (5.17). Evidently he same definition of the transverse magnification

Figure 5.40 Mirror images-inversion.
(5.24) holds, where now, as before, $M_{T}=+1$ indicates a life-size, virtual, erect image.
Each point of the extended object in Fig. 5.39, a perpendicular distance s_{i} from the mirror, is imaged that same distance behind the mirtor. In this way, the ontire image is built up point by point. This is much different from the way a lens locates an image. The object in Fig. 5.28 wasa left hand, and the image formed by the lens was also a ler Mand to be sure, it might have been dusored ML Mone was 180° rotation hand. The only evident change was a 180° rotation Contrarily the mirror image of the left hand, deter mined by dropping perpendiculars from each point, is right hand (Fig 5.40) Such an image is sometimes aid to be perveried. In deference to the mote usual lay connotation of the word, its use in optics is happily waning. The process that converts a right-handed coordinate system in the object space into a left-handed one in the image space is known as inversion. Systems with

Figure 5.42 Rocation of
displacement of a beam.
mor tor por man one planar mirror can be used to produce either an odd or even number of inversions. In the latter case a right-handed (r-b) object will generate a right-handed image (Fig. 5.4), whereas $(\mathrm{in}$)
instance, the image will be left-handed (i-h).
Tbere are a number of practical devices that utilize theng alanar miner of practical devices that utilize beam deflectors, and image rotators Mirrors are frequently used to amplify and measure the slight rotations of certain laboratory apparatus isalvanometers
torsion pendulums, current balances, etc.). As $\overline{\text { Fi}}$, s shows, if the mirror rotates through an angle α_{1} of 2α.

5.4.2 Aspherical Mirrors

Curved mirrors that form images very much like? of lenses or curved refracting surfaces have been since the time of the ancient Greeks. Euclid, presumed to have authored the book entitled $\mathrm{C}_{\text {as }}$. discusses in it both concave and convex mirrors. *, nately, we developed the conceptual basis for design such mirrors when we spoke earlier about Fermi principle as applied to imagery in refracting syst Suppose then, that we would like to determine configuration a mirror must have in order that an incident plane wave be reformed upon rethralm uny wave is ultimately to converge on some point optical path lengths for all rays must be cqual, ocoule ingly, for arbitrary points A and A

OPL $=\overline{W_{1} A_{1}}+\overline{A_{1} F}=\overline{W_{L} A_{2}}+\overline{A_{2}} E$. Since the plane \leq is parallel to the incident navefrote: $\overline{W_{1} A_{1}}+\overline{A_{1} D_{1}}=\overline{W_{2} A_{2}}+\overline{A_{2} D_{2}}$
Equation (5.41) will therefore be satisfied for a surf. for which $\overline{A_{1} F}=\overline{A_{1} D_{1}}$ and $\overline{A_{2} F}=\overline{A_{2} D_{2}}$ or, more erally, one for which $\overline{A F}=\overline{A D}$ for any point A on mirror. This same condition was discussed in Sedr). 5.2 .1 , in which we found $\overline{A \bar{F}}=e(\overline{A D})$, where n, acentricity of a conic section. Here the second met is identical to the first. $n_{4}=n_{1}$, and $e=n_{b i}=1$; in othe words, the surface is a paraboloid witb F as its firell and Σ as its directrix. The rays could equally yal
 ould result in the emission of plane waves fromg ystem. The parabolidal confguraion and aute headlight reficctors to giant radiotelescope a

enotes the optics of reliecting surfacters.

hent:4s Aparaboloidal mirror.

ripure k 淮
4. Allon News arriboloidal radio anterna, (Photo courtesy of the \square Wews and Information Bureau.)

Fig. 5.44), from microwave horns and acoustical dishes o optical telescope mirrors and moon-based communications ankennas. The convex paraboloidal mirror is also possble but is less widely in use. Applying what we already know, it should be evident from Fig. 5.45 that n inge F when the mirror is cones al a mage at F when the when it is concave.
Terest and several other aspherical mirrors of some ($\varepsilon>1$). Both produce perfect imasery between a pair (>1). Both produce perfect imagery between a pair of conjugate axial points corresponding to their two
foci (Fig. 5,46). As we shall see imminently, the Cassegrainian and Gregorian telescope configurations utilize convex secondary mirrors that are hyperboloidal and ellipsoidal, respectively.

Figure 5.45 Real and virtual images for a parabuloidal mirror.

158 Chapter 5 Geometrical Optics-Paraxial Theory

Figure 5.46 Hyperbolic and elliptical mirrors.

It should be noted that all these devices are readily available commercially. In fact, one can purchase off-axis clements, in addition to the more common centered systems. Thus, in Fig. 5.47 the focused beam can be further processed without obstructing the mirror.

Figure 5.47 An off-axis parabolic mirrot element.

Incidentally, this geometry also obtains in large mis wave horn antennas, which have a significant modern communications.

5.4.3 Spherical Mirrors

We are again reminded of the fact that precise surfaces are considerably more difficult to fabrio are spherical ones. The high cost are commens with the increased time and meticulous effort rem Motivated by these practical considerations, we more turn to the spherical configuration to det the circumstances under which it might periof adequately.

1) The Paraxial Region

The well-known equation for the circular cross-secere. of a sphere [Fig, 5.48(a)] is

$$
y^{2}+(x-R)^{2}=R^{2},
$$

where the center C is shifted from the origin O he $2 \boldsymbol{t}$: radius R. After writing this as

$$
y^{2}-2 R x+x^{2}=0,
$$

we can solve for x :

$$
x=R \pm\left(R^{2}-y^{2}\right)^{1 / 2} .
$$

Let's just concern ourselves with values of x less th R_{1} that is, we will study a hernisphere, open on thist expansion in a binomial series, x takes the form

$$
x=\frac{y^{2}}{2 R}+\frac{1 y^{4}}{2^{2} 2!R^{3}}+\frac{1 \cdot 9 y^{6}}{2^{3} 3!R^{5}}+
$$

This expression becomes quite meaningtul as so we realize that the standard equation for a para, with its vertex at the origin and its focus a distancons. the right [Fig. 5.48(b)] is simply

$$
y^{2}=4 f x .
$$

Thus by comparing these two formulas, we s $4 f=2 R$ (i.e., if $f=R / 2$), the first contributio series can be thought of as parabolic, and the rà

Tigure 5.48 mamparison of spherical and paraboloidal mirror
terms reptesent the deviation. If that deviation is Δx,

$$
\Delta x=\frac{y^{4}}{8 R^{3}}+\frac{y^{6}}{15 R^{5}}+\cdots
$$

(5.47)

EThaty this difference will be appreciable only when 2unabively large [Fig. 5.48 (c)] in comparison to R. In (indaitul region, that is, in the immediate vicinity of the awriphtble. Thus if we talk about the essentially indisLDablical mirrors as a firgt apport the paraxial theory - etubrace the conclusions drawn from our study enewtigmatic imagery of paraboloids. In actual use, (andes,, will not be so limited, and aberrations will Mona Moreover, aspherical surfaces produce perfect Nate inly for pairs of axial points-cthey too will suffer Therefiror formula

[^8]5-4 Mirrors
359

Hgure 5.49 A concave spherical sirror
remaining two sides, that is,
$\frac{\overline{S C}}{S A}=\frac{\overline{C P}}{\overline{P A}}$.
 becomes
Furthermore,

$$
\overline{S C}=s_{0}-|R| \text { and } \overline{C P}-|R|-s_{2} \text {, }
$$

where s_{0} and s_{i} are on the left and therefore positive. If we use the same sign convention for R as we did hecause C is the left of V (ie , he surface is cone because C is to the le
Thus $|R|=-R$ and
$\overline{S C}-s_{\mathrm{a}}+R$ and $\overline{C P}-\left(s_{\mathrm{i}}+R\right)$.

$$
\frac{s_{y}+R}{s_{0}}=-\frac{s_{i}+R}{s_{i}}
$$

or

$$
\frac{1}{s_{p}}+\frac{1}{s_{1}}=-\frac{2}{R}
$$

which is often referred to as the mirror formisa 1 . . equally applicable to concave ($R<0$) and convex 0) mirrors. The primary or object focus is again th

Figure 5.50 Focusing of rays via a spherical miirror. (Photos by E.H.)

$$
\lim s_{0}-f_{o},
$$

image focus corresponds to
$\lim _{s_{2} \rightarrow \infty} s_{z}=f_{2}$.
Cousquently. from Eq. (5.49)

$$
\frac{1}{f_{0}}+\frac{1}{\infty}-\frac{1}{\infty}+\frac{1}{f_{i}}=-\frac{2}{R} .
$$

a $h^{\prime}=-R / 2$. as we know from Fig. 5.45(c). to wit, have

$$
\begin{equation*}
\frac{1}{s_{0}}+\frac{1}{s_{i}}=\frac{1}{f} \tag{5.50}
\end{equation*}
$$

Givene that f will be positive for concave mirrors R<0 ind angaive for convex mirrors $(R>0)$. In the l
l
later issance lie image is formed behind the mirror and h y irtual (Fig. 5.50).
ii) Finifedimagery

The rersaining mirror properties are so similar to those
of lenstriand spherical refracring surfaces that we need only mention them briefly, without repeating the entire
ond 17 fidilevelopment of each item. Within the restrictions 4if be fockused to a thy parallel off-axis bundle of rays Cil be forcused to a point on the focal plane passing - ${ }^{2}$. normal to the optical axis. Likewise, a finite abject perpendicular to the optical axis will be䍚ed (to a first approximation) in a plane similarly Essentially we are saying that each object point aitcorresponding image point in the plane. autainly true for a plane mirror, but it only difaates the case for other configurations. To be its operation, the reflected waves arising from each Finitted object point will closely approvimate - istical waves. Under such circumstances good finite Wes of extended objects can be formed (Fig. 5.51) $7^{3 x}$ as each image point produced by a thin lens lies 7 I a straigut line through the opical center O, each

Fgure 5.51 Finite imagery with spherical mirror.
image point for a spherical mirror will lie on a ray passing through both the center of curvature C and the object point. As with the thin lens (Fig. 5.24), the graphic location of the image is quite straightforward. Once more the top of the image is located at the intersec tion of two rays, one initially parallel to the axis and passing through F after reflection, and the other going straight through C (Fig. 5.52). The ray fromany off-axis object point to the vertex forms equal angles with the optical axis on reflection and is therefore particularly convenient to construct as well. So too is the ray that first passes through the focus and after reflection emerges parallel to the axis.
Notice that triangles $S_{1} S_{2} V$ and $P_{1} P_{2} V$ in Fig. 5.51 (a) are similar, and hence their sides are proportional below the axis, we find that y_{i} / y_{c} - -s/s, which

Figure 5.52 (a) Refection from a concave mirror, (b) Reficcion from a convex mirror.
course is equal to M_{r}, the transverse magnification, idencal to that of the lens (5.25).
The only equation that contains information about he structure of the optical element (n, R, etc.) is that or f, and so, rathe- understandably, it differs for the hin lens and spherical mirror. The other functional expressions that relate s_{0}, s_{i}, and f or y_{0}, y_{i}, and M_{T} are, however, precisely the same. The only alteration in the previous sign convention appears in Table 5.4, where ion the left of V is now taken as positive. The striking imilarity between the properties of a concave mirror d a conceve lens on the other are quite evident from comparison of Tables 58 and 55 , which are identic in all respects. The proper
The propercies summarized in Tabie 5.5 and depicted If you don't have is spherical mirror at hand, a fairly crude but functional one can be made by carefully

Quantity	Sign	
	+	-
s_{0}	Left of V V, teal objict	Kight of V, virtual object
${ }_{4}$	Left of V, rcal image Concayc mirror	Right of v, virtual image
R	C right of Y, convex	c lefi of V, concave
\%	Above axis, erect objea	Below axis, inverted objeat
y_{i}	Above axis, erect image	Below axis, inverted intage

shaping aluminum foil over a spherical form, shen he end of a light bulb lin that particular case \bar{R} therefore f will be small). A rather nice quy experiment involves examining the image of some object formed by a short focal-length concaved As you move it toward the mirror from beyond a tance of $2 f=R$, the image wiv gradually increase, $s_{\mathrm{c}}=2 f$ it will appear inverted and hife-size. Brin it closer will cause the image to increase even until it fills the entire mirror with an unrecognd bluf. As s_{0} becomes smaller. the now erect, mage mage will continue to derrease until the object f rests on the mirror, where the image is again litas

Whare 8.s3 The image-forning behavior of a concate spherical

5.5 PRISMS

Prisms have many different roles in optics; there are rism combinations that serve as beam-splituers isee Section 4.3.4) polarizing devices (see Section 8.4.3), and even interferometers. Despite this diversity, the vast majority of applications make use of only one of two main prism functions. First, a prism can serve as a dispersive device, as it does in a variety of spectrum nalyzers. That is to say, it is capable of separating, to ome extent, the constituent frequency components in a polychromatic light beam. You might recall that the term dispersion was introduced earlier (Section 3.5.1) in connection with the frequency dependence of the index of refraction, $n(\omega)$, for dielectric. In fact, the priswo provides a highly useful means of measuring $n(\omega)$ over a broad range of frequencies and for a wide variety of materials (including gases and liquids). Its second and orientation of an image or in the direction of proparation of a beam. Prisms are incorporated in many optical instruments, often simply to fold the systerm into a confined space. There are inversion prisms. reversion prisms, and prisms that deviate a beam without inverson or reversion-and all of this without dispersion.

5.5.1 Dispersing Prisms

Nowadays prisms come in a great variety of sizes and hapes and perform an equally great variety of functions Fig. 5.54). Let's first consider the group known as dispersing prisms. Typically, a ray entering a dispersing prism, as in Fig. 5.55, will emerge having been deflected from its original direction by an angle δ xnown the anguar denial At the first refraction the ray deviated through an angle $\left(\theta_{13}-\theta_{11}\right)$, and at the second refraction it is further deflected through ($\theta_{c 2}$ θ_{2}). The total deviation is then

$$
\delta-\left(\theta_{i 1}-\theta_{11}\right)+\left(\boldsymbol{\theta}_{i 2}-\theta_{i 2}\right)
$$

Since the polygon $A B C D$ contains two right angles, $\triangle B C D$ must be the supplement of the atex angle os. As the exierior angle to riangle $B C D, \alpha$ is also the sum
of the alternate interior angles，that is，

Thus | $\alpha=\theta_{11}+\theta_{22}$. | |
| ---: | :--- |
| δ | $=\theta_{11}+\theta_{12}-\alpha$. | （5．51）

What we would like to do now is write δ as a function of both the angle of incidence for the ray（i．e．，θ_{21} ）and the prism angle α ；these presumably would be known． If the prism index is n and it is immersed in air（ $n_{a} \approx 1$ ）， it follows from Snell＇s law that
$\theta_{i 2}=\sin ^{-1}\left(n \sin \theta_{\theta_{2}}\right)=\sin ^{-1}\left[n \sin \left(\alpha-\theta_{4}\right)\right]$.

Figure 5．54 Prisms．（Phow courtesy Melies Griot．）

Figure 5.55 Grometry of a dispersing prism．

Upon expanding this expression，replacing on $\left(1-\sin ^{2} \theta_{4}\right)^{1 / 2}$ ，and using Snell＇s law we have

$$
\theta_{12}-\sin ^{-1}\left[(\sin \alpha)\left(n^{2}-\sin ^{2} \theta_{11}\right)^{1 / 2}-\sin \theta_{i t} \cos \alpha\right]
$$ The deviation is then

$$
\delta-\theta_{11}+\sin ^{-1}\left[(\sin \alpha)\left(n^{2}-\sin ^{2} \theta_{i 1}\right)^{1 / 2}\right.
$$

$$
\left.-\sin \theta_{11} \cos \alpha\right]-\alpha .
$$

Apparently δ increases with n ，which is itself a f of frequency，so we might designate the devia $\delta(\nu)$ or $\delta(\lambda)$ ．For most transparem dielectrics of p concern，$n(\lambda)$ decreases as the wavelength across the visible［refer back to Fig， 3.27 for a plow of $n(\lambda)$ versus λ for various glasses］．Clearly，then，it will be less for red light than it is for blue．
Missionary reports from Asia in the early 1600 s 邁 cated that prisms were well known and highly valug number of scientists of the era，particularly Neces Grimaldi，and Boyle，had made some observations． prisms，but it remained for the great Sir Isaac Newto to perform the first definitive studies of dispersios to periorm the frst definitive studies of dispersio
February 6，1672，Newton presented a classic pa the Royal Society entitled＂A New Theory about Intr． and Colours．＂He had concluded that white latt cap－ sisted of a mixture of various colors and that the of refraction was color－dependent．
Returning to Eq．（5．53），it is evident that the suffered by a monochromatic beam on traversme
nimn（i．e．，n and α are fixed）is a function only Hrism（1．e．． of Eq．（5．59）as applied to a typical glass prism fof Eq．（5．5．56．The smallest value of δ is known minimum devistion，A_{m} ，and it is of particular 25 zeminimum del reasons．It can be determined符解 by differentiating Eq．（5．53）and then setting 0，but a more indirect route will certainly be Fifferentiating Eq．（5．52）and setting it equal

$$
\frac{d B}{d \theta_{i 1}}=1+\frac{d \theta_{i g}}{d \theta_{i j}}=0
$$

1．Taking the derivative of Snell＇s law
Sinterface，we get

$$
\cos \theta_{i l} d \theta_{i 1}=n \cos \theta_{i 1} d \theta_{i 1}
$$

and

$$
\cos \theta_{12} d \theta_{42}=n \cos \theta_{i 2} d \theta_{\mathrm{r} 2}
$$

We as well，on differentiating Eq．（5．51），that $d \theta_{11}=$
${ }_{6}^{2}$ ，since $d \alpha=0$ ．Dividing the last two equations and fotututing for the derivatives，we obtain

$$
\frac{\cos \theta_{i 1}}{\cos \theta_{12}}=\frac{\cos \theta_{t 1}}{\cos \theta_{22}} .
$$

Taking use of Snell＇s law once again，we can rewrite this as

$$
\frac{1-\sin ^{2} \theta_{i 1}}{1-\sin ^{2} \theta_{t 2}}-\frac{n^{2}-\sin ^{2} \theta_{i 1}}{n^{2}-\sin ^{2} \theta_{12}} .
$$

The value of θ_{i} ，for which this is true is the one for Which $d \delta / d \theta_{i 1}=0$ ．Inasmuch as $n \neq 1$ ，it follows that

$$
\theta_{t 1}-\theta_{t 2}
$$

ans therriore

$$
\theta_{11}-\theta_{22}
$$

This ，means that the ray for which the deviation is Unam traverses the prism symmetrically，that is， ailel to its base．Incidentally，there is a lovely argu－ Why $\theta_{i \mathrm{~s}}$ must equal $\theta_{i g}$ ，which is neither as

Sonpose a ray undergoes a minimum deviation Tig．Then if we reverse the ray，it will retrace

6，Idegrces）
Figure 5．56 Deviation versus incicent angle．
the same path，so δ must be unchanged（i．e．，$\delta-\delta_{\text {a }}$ ） But this implies that there are two different incident angles for which the deviation is a minimum，and this we know is not true－ergo $\theta_{t 1}=\theta_{t 2}$
In the case when $\delta=\delta_{n n}$ ，it follows from Eqs．（5．51） and（5．52）that $\theta_{t 1}-\left(\delta_{m}+\alpha\right) / 2$ and $\theta_{11}=\alpha / 2$ ， whereupon Snell＇s law at the first interface leads to

$$
\begin{equation*}
n=\frac{\sin \left[\left(\delta_{m}+\alpha\right) / 2\right]}{\sin \alpha / 2} . \tag{5.54}
\end{equation*}
$$

This equation forms the basis of one of the most accurate echniques for determining the refractive index of a transparent substance．Efectively，one fashions a prism out of the material in question，and then，measuring α and $\delta_{m}(\lambda), n(A)$ is computed employing Eq．（5．54）at re fabricated of prisms whose sides liquids or es under high persure the glled with iquids or gases under high pressure；the glass plates fill not result in any deviation of their own
vination dispersing prisms which are of constant primarily in spectroscopy，The Pellin－ Breca prism is probably the most common of the group．Albeit a single block of glass，it can be envisaged as consisting of two $30^{\circ}-60^{\circ}-90^{\circ}$ prisms and one $45^{\circ}-45^{\circ}-90^{\circ}$ prism．Sup－ pose that in the position shown a single monochromatic ay of wavelength λ traverses the component prism DAE symmetrically，thereafter to be reflected at 45°

Figure 5.57 The Pelin-Broca prism,
from face $A B$. The ray will then traverse prism $C D B$ symmetrically, having experienced a total deviation of 90°. The ray can be thought of as having passed through an ordinary 60° prism (DAE combined with CDB) at minimum deviation. All other wavelengths present in the beam will emerge at other angles. If the prism is now rotated slightly about an axis normal to the paper, the incoming beam will have a new incident angle. A different wavelength component, say λ_{2}, will now undergio a minimum deviation, which is again $90^{\circ}-$ hence the name, constant deviation. With a prism of this sort. one can conveniently set up the light source and simply rotate the prism to loor sar wavelength. The device can be calibrated so that the prism-rotating dial reads directly in wavelength.

5.5.2 Reflecting Prisms

We now examine reffecting prisms, in which dispersion is not desirable. In this case, the beam is introduced in such a way that ar least one internal reflection takes place, for the specific purpose of either changing the
 Let's first establish that it is actually possible tet,
such an internal reflection without concomitant sion. In other words, is 8 independent of A ? The in Fig. 5.59 is assumed to have as its profile an ito. triangle-this happens to be a rather common co: face is later reflected from face $F G$. As we fixf: (Section 4,3.4), this will occur when the we saw exs. angle is greater than the critical angle $\theta_{\text {a }}$ angle is greater than the critical angle θ_{c}, defing.

$$
\sin \theta_{c}=n_{4}
$$

For a glass-air interface, this requires that θ, be gres than roughly 42°. To avoid any difficulties at sma angles, let's further suppose that the base of hypothetical prism is silvered as well-certain do in fact require silvered faces. The angle of devinh between the incoming and outgoing rays is

$$
\delta=180^{\circ}-\Varangle B E D .
$$

From the polygon $A B E D$ we have

$$
\alpha+\Varangle A D E+\Varangle B E D+\Varangle A B E=360^{\circ} .
$$

Moreover, at the two refracting surfaces

$$
\Varangle . A B E=90^{\circ}+\theta_{i 1}
$$

Figure 5.5B The Abbe prism.
5.5 Prisms

(b)
and therefore $\theta_{21}=\theta_{i 2}$. From Snell's law we know that this is equivalent to $\theta_{21} \quad \theta_{12}$, whereupon the deviation
becomes

$$
\delta-2 \theta_{i 1}+\alpha,
$$

which is certainly independent of botb λ and n. The reflection will occur without any color preferences, and reflection will occur without any color preferences, and the prism is said to be achromatic. If we unfold the prism,
that is, if we draw its image in the reflecting surfac $F G$, as in Fig. 5.59(b), we see that it is equivalent in a

Figure 5.62 The Dove prism

Figure 5.63 The Amici prism.
sense to a parallelepiped or thick planar plate. The mage of the incident ray emerges parallel to itself, regardless of wavelength
A few oi the many widely used reflecting prisms are shown in the next several figures. These are often made from BSC-2 or $\mathrm{C}-1$ glass (see Table 6.2). For the most part. the illustrations are self-explanatory, so the descriptive commentary will be brief.
The righl-angle prism (Fig. 5.60) deviates rays normal oo the incident face by 90°. Notice that the top and bottom of the image have been interchanged, that is, the arrow has been flipped over but the right and left sides have not. It is thereforc an inversion systern with he top face acting like a plane mirror. (To see this, imagine that the arrow and loliypop are vectors and pop was initially in the propagation ditection but pop. was intiall in prop The Porro the prism. (Fig,
The Forro prism (Fig. 5.61) is physically the same as tion. After two reflections, the beam is deviated by 180°
Thus, if it enters right-handed, it leaves right-handed
The Dove (Fig. 5.62) is a truncated version (to reduce size and weight) of the right-angle prism, used almost

Figure 5.64 The penla prism and its mirror equivalent.
exclusively in collimated light. It has the integesting property (Problem 5.54) of rotating the image trice as fast as it is itself rotated about the longitudinal exis. The Amici (Fig. 5.63) is essentially a truncated right. angle prism with a roof section added on ol hypotenuse face. In its most common use it has trei

Figure 5.65 The thomboid prism and its mirror equivalen10

Figure 5.66 The Leman-Springer prismı.

Affect of solitting the image down the middle and inter dirngigthe right and left portions. These prisms ar opesine, becruse the 90° roof angle must be held to rought tor 4 seconds of arc, or a troublesome double image $n \cdot \|$ result. They are often used in simple tele xape nisteas to cortect for the reversion intraduced

112e prate prism (Fig. 5.64) will deviate the beam by 90° withopfaffecting the orientation of the image. Note that twe. of its surfaces must be silvered. These prisms The fromboid prism (Fig, 5.65) displaces the line of sight wilthout producing any angular deviation or changes ${ }^{h} \mathrm{~m}$ the orientation of the image.
The Liemar-Springer prism (Kig. 5.66) also has a 90° roof. Hete the line of sight is displaced without being

Kou can ige how it actually works by placing two plane mifrors
tight ange, and looking directy into the combination. If you wink Cherse, the image will wink its sight cye. Incidentally, if your
 With your noss pressmanhy between themn If ofe eye is moronger, -ine will be only one searn, down the middle of that eye. If you clowe

Figure 5.67 The double Porro prism
deviated, but the emerging image is right-handed and otated through 180°. The prism can therefore serve to erect images in telescope systems, such as gun sights and the like.
There are many more reflecting prisms that serve specific purposes. For example, if one simply cuts a cube dicular faces it is culed a cor mornally perpen property of being recrodirective: that is, it will reflect all incoming rays back along their original directions One hundred of these prisms are sitting in ane 18 -iach square array 240,000 miles from here, having been placed on the Moon during the Apollo 11 llight.*
The most common erecting system consists of two Porro pristris, as illustrated in Fig. 5.67. These are relatively easy to manufacture and are shown here with rounded con ners to reduce weight and size. Since there are four reflections, the exiting image will be righthanded. A smalls slot is ofter, cut in the hypotenuse face oobstruct rays that are internally reflected at glancing angles. Finding these slots after dismantling the tamily's binoculars is all too often an in explicable surprise.
"J. E. Follcr and E. J. Wampler, "The Lurar Laser Reflector." Sei.
Am., March 1970, p. 58.
x_{7} Chapter 5 Geometrical Optics-Pavaxial Theory

5.6 FIBEROPTICS

In recent times, techniques have been evolved for efficiently conducting light from one point in space to nother via transparent, dielectric fibers. As long as the diameter of these fibers is large compared with the wavelength of the radiant energy, the inherent wave ature of the propagation mechanism is of little impor ance, and the process obeys the familiar laws of is of the order of A, he rransmission closely resenter he manner in which microwaves advance along waveguides. Some of the propagation modes are evident in the photomicrographic end views of fibers shown in ig. 5,68. Here the wave nature of light must be rack oned with and this behavior therefore resides in the domain of physical optics. Although optical waveguides. particularly of the thin-film variety, are of increasing nterest, this discussion will be limited to the case of elatively large diameter fibers.
Consider the straight glass cylinder of Fig. 5.69 sur Counded by air. Light striking its walls from within will be totally internally refected, provided that the unciden ngle at each reflection is greater than $\theta_{c}-\sin ^{-1} n_{0} / n_{n}$ here n_{f} is the index of the cylinder or fiber. As w will show, a meridional ray (i.e., one that is coplanar with the optical axis) might undergo several thousand reflec tions per foot as it bounces back and forth along a fiber until it emerges at the far end (Fig. 5.70). If the fibe has a diameter D and a length L, the path length

$$
\ell-L / \cos \theta_{i},
$$

or from Sneli's law

$$
\ell=n_{f} L\left(n_{f}^{4}-\sin ^{2} \theta_{i}\right)^{-1 / 2} .
$$

(5.59)

The number of refiections N is then given by

$$
N-\frac{\ell}{D / \sin \theta_{i}}=1
$$

от

$$
N=\frac{L \sin \theta_{i}}{D\left(n \theta_{f}^{2}-\sin ^{2} \theta_{1}\right)^{1 / 2}} \pm 1,
$$

(5.60)

Figure 5.68 Optical waveguide mode patterns sten in
of small-dizmeter fibers. (Photo courtesy of Narinder S.

Firure 5.69 Rays reflected within a dielectric cylinderian
rounded off to the nearest whole number. The which depends on where the ray number. The which depends on where the ray strikes the cnd Thus if D is $50 \mu \mathrm{~m}$ (i.e., 50 microns where $1 \mu \mathrm{p}$ $10^{-5} \mathrm{~m}=39.37 \times 10^{-6} \mathrm{in}$), which is about 2×10^{-3} hair from the head of a human is roughly n ati.
eier, and if $n_{f}=1.6$ and $\theta_{3}=30^{\circ}, N$ turns out to diameter), and itely 2000 reflections per foot. Fibers are Weqdmaty iameters from about $2 \mu \mathrm{~m}$ to $\frac{1}{4}$ inch or so availate in diameters from about $2 \mu \mathrm{~m}$ to but are seldom use-diameter rods are generally called $10 \mu \mathrm{~m}$. The Extremely thin glass (or plastic) filaments as quite fiexible and can even be woven into fabric. quite sniooth surface of a single fiber must be kept dean (of moisture, dust, oll, etc.), if there is to be no n metor hghe (Nimilarly, if large numbers of fihers arrexsedection soximity, light may leak from one ed in close proximity, Light may leak from one Wher in what is known as cross-taik. For these ans, itis now customary to enshroud cach fiber in a cransph. Wht sheath of lower index called a cladding This laye. need only be thick enough to provide the decired isolation, but for other reasons it generally
oulpos about one tenth of the cross-sectional area. Alisuah Feferences in the literature to simple "light diper on tad 100 years, the modern era of fiberoptics W. 1 moll the introduction of clad fibers in 1953. Typiollf, a fiber core might have an index (n_{f}) of 62. ant the cladding an index (n_{c}) of 1.52 , although range nt alies is available. A clad fiber is shown in E. sian holist that there is a maximum value $\theta_{\text {maix }}$ of 9, for which ebe internal ray will impinge at the critical ingle, θ_{4}. Ray: incident on the face at angles greater

2hah emerging irom the ends of a loose bundle ciglass

Figure 5.71 Rays in a clad optical fiber.
than $\theta_{\text {max }}$ will strike the interior wall at angles less than θ_{c}. They will be only partially reflected at each such encounter with the core-cladding interface and will guickly leak out of the fiber. Accordingly, $\theta_{\text {max }}$. Which is known as the acceptance angle, defines the half-angle of the acceptance cone of the fiber. To determine it we write

$$
\sin \theta_{c}=n_{c} / n_{f}-\sin \left(90-\theta_{t}\right) .
$$

Thus

$$
\begin{equation*}
n_{i} / n_{t}-\cos \theta_{l} \tag{5.61}
\end{equation*}
$$

or

$$
\pi_{c} / n_{f}-\left(1-\sin ^{2} \theta_{t}\right)^{1 / 2}
$$

Making use of Snell's law and rearranging matters, we

$$
\sin \theta_{\max }-\frac{1}{n_{n}}\left(n_{f}^{2}-n_{f}^{2}\right)^{t n x} .
$$

The quantity $n_{o} \sin \theta_{\text {max }}$ is defined as the numerical aperture, or NA. Its square is a measure of the light gathering power of the system. The term originates in microscopy, where the equivalent expression characterizes the corresponding capabilities of the objective lens. It should clearly relate to the speed of the system, and in fact,

$$
f / \nRightarrow=\frac{1}{2(\mathrm{NA})} .
$$

(5.65)

Thus for a fiber
NA- $\left(n_{j}^{2}-n_{c}^{2}\right)^{1 / 2}$.
(5.6i)
in air ($0_{0}-1.00028-1$) that means that the largest value of NA is I. In this case, the half-angle $\theta_{\operatorname{rinax}}$ equals 90°, and the fiber totally internally reflects all light entering its face (Problem 5.55). Fibers with a wide variety of numerical apertures, from about 0.2 up to Bundlesof free firernher en obainable.
(cg with cpory) ground and polised form fether light puides. If no attempt is made to align the fibl in an ordered array they form an incoherent bunde This unfortunate use of the rerm incoherent (which should not be confused with coherence theory) just means, for example, that the first fiber in the top row at the entrance face may have its terminus anywhere in the bundle at the exit face. These fexible light carriers are, for that reason, relatively easy to make and inexpensive. Their primary function is simply to conduct light from one region to another. Conversely, when the fibers are carefully arranged so that their terminations occupy the same relative positions in both of the bound ends of the bundle, it is said to be coherent. Such an arrangement is capable of transmitting images and is consequently known as a Rexible image carrier. Incidentaily, coherent bundles are frequently fashioned by winding fibers on a drum to make ribbons, which are then carefuly layered. When one end of such a device is by-poins imare of whatever is beneath it will a poar at the other end (Fip 5.79) These bundles can ape tipped off with a small lens, so that they need not be in contact with the object under examination. Nowadays it is common to use fiberoptic instruments to poke into all sorts of unlikely places, from nuclear reactor cores and jet engines to stomachs and reproductive organs. When a device is used to examine internal body cavities, it's called an endescope. This category includes bronchoscopes, colnnoscopes, gastroscopes, and so forth, alt of which are generally less than about 200 cm in length. Simplar industrial instruments are usually two or three times as long and often contain 5000 to 50,000 fibers, depending on the required image resoiution and the overall diameter that can be accommodated. An additional incoherent bundle incorporated into the device sually suppties the illumination
Not all fiberoptic arrays are made flexible; for
example, fused. rigid, coherent fiber faceplate mosaics. are used to replace homogeneou resolution sheet glass on cathode-ray tubes, vi inage intensifiers, and other devices. Mosaics co of literally millions of fibers with their cladding together have mechanical properties almost iden homogeneous glass. Similarly, a sheet of fused fibers can either magnify or minify an image, deper of the fiber. The compound se of arger. the housefly is effectively a bundle an insect sixil as optical fiaments. The rods and conesthat human retina may also channel light throughe human retina may also channel light through totalinter-

Figure 5.72 A coherent bundte of $10 \mu \mathrm{~m}$ glass fibers tana an image even though knotted and sharply bent. (Photo corif) American Cystoscopc Makcrs. Inc.)
5.6 Fiberoptics

173

 band serves as a colkereat light guide: (Photo by E.H.)

300 simultaneous telephone conversations, and that. in turn, is roughly the equal of sending some 2500 ypewritten pages each second. Clearly, at present it's quite impractical en atcmpt per telephone lines. Yet it's already possible to transmit in excess of 12 fbors hannels. Each such fiber has a line rate of about 400 million bits of information per second ($400 \mathrm{Mb} / \mathrm{s}$) or 6000 voice circuits. This is only the beginning; rates of $2000 \mathrm{Mb} / \mathrm{s}$ will be widely available before long. The technology is in its infancy.
Capacities.achieved to date don't even begin to approach the theoretical limit. Still, the accomplishments of recent times are impressive. For example, the new transatlantic cable TAT-8 is a fiberoptic sy stem that designed, using some clever data-handing techniques, to carry 40,000 conversations at once over just wo pairs of glass hbers. TAT-1, a copper cable installed in 1956, could carry a mere 51 conversations, and the last of the bulky copper versions, TAT-7 (1983), can handle only about 8000 . Significantly, the TAT-8 is designed to have regenerators or repeaters (to boost the signal strength) every 50 km (30 mil) or more. That
should be compared with the copper TAT-7, which has
amplifiers every 10 km or so. This feature is tremen dously important in long-distance communications Ordinaty wire sytems require repeaters roaghy every kilometer; electrical coaxial networks extend that range the atmosphere need regeneration every 30 to 50 km It is anticipated that high-performance fiber systems will extend the repeater separation to upward of 150 km .

A major determining factor in the spacing of repeaters is the power loss due to attenuation of the signal as it propagates down the line. The decibel (dB) is the customary unit used to designate the ratio of two power levels, and as such it can provide a coovenient indication of the power-out (P_{o}) with respect to the power-in $\left\langle P_{i}\right)$. The number of $\mathrm{dB}=-10 \log \left(P_{o} / P_{i}\right)$, and hence a ratio of $1: 10$ is $10 \mathrm{~dB}, 1: 100$ is $20 \mathrm{~dB}, 1: 1000$ is 30 dB , and so on. The attenuation (α) is usually specified in lecibels per kilometer ($\mathrm{dB} / \mathrm{km}$) of fiber length (L). Thus $-\alpha L / 10-\log \left(P_{o} / P_{i}\right)$, and if we raise 10 to the power of both sides

$$
P_{\theta} / P_{\mathrm{z}}=10^{-a L / 10} .
$$

(5.65)

As a rute, reamplification of the signal is necessary when As a ruie, reamplificacion of the signal is necessary when the power has dropped by a factor of about 10^{-3}. Commercial optical glass, the kind of material availabie for
fibers in the mid-1960s, has an atteruation of about fibers in the mid-1960s, has an attenuation of about
$1000 \mathrm{~dB} / \mathrm{km}$. Light, after being transmitted 1 km through the stuff, would drop in power by a factor of 10^{-100}, and regenerators would be needed every 50 m (which is little better than communicating with a string and two tin cans). By 1970α was down to about $20 \mathrm{~dB} / \mathrm{km}$ for fused silica (quartz, SiO_{2}), and it was reduced to as little as $0.15 \mathrm{~dB} / \mathrm{km}$ in 1982. This tremendous decrease ir attenuation was achieved mostly by removing impurities (especially the ions of iron, nickel and copper) and reducing contamination by OH groups, largely accornplished by scrupulously eliminat ing any traces of water in the glass (p.62).
Figure 5.74 depicts the three major fiber configurations used in communications today. In (a) the core is are both constant throughout. This is the so-called stepped-index fiber, with a homoseneous core of 50 to $150 \mu \mathrm{~m}$ or more and cladding with an outer diameter

Figure 5.74 The three major fiberoptic configurations atitis index profies.
of roughly 100 to $250 \mu \mathrm{~m}$. The oldest of the thres types, he stepperi-index fiber was widely used in first ation systems (1975-1980). The comparatively centra! core makes it rugged and easily infuse light, as well as easily terminated and coupled. least expensive but also, as we will see preseriin cast effective of the lot, and for long-range appid has some serious drawbacks.
Depending on the launch angle into the fiben an he hundreds, even thousands, of diferent or modes by which energy can propagate down Fig. 5.75). This then is a multimode fiber, whex mode corresponds to a slightly different transit Higher-angle rays travel longer paths; reflecting side to side, they take longer to get to the end o sper than do rays moving along the axis. Thist just dispersion) w en thou it has (othing to do we frequency-dependent index of refraction. Informa be car mined is usually digitized in some coded to be tar when sent along the fibers as a flood of
fantion and the fachion ay pulses or bits per second. The different fribse times have the undesirable effect of changing Hed the pulses of light that represert the signal. What started as a sharp rectangular pulse can smear out, after traveling ale blur (Fig. 5.76).
into an unrecognizelay between the arrival of the axial The total slowest ray, the one traveling the lorges ray and the stot $=t_{\max }-t_{\text {mina }}$. Here, referring back to Fig. 571 , the minimum time of travel is just the axial length L divided by the speed of light in the fiber:

$$
\begin{equation*}
t_{\text {mun }}=\frac{L}{v_{f}}=\frac{L}{c / n_{f}}-\frac{L n_{i}}{c} . \tag{}
\end{equation*}
$$

route ($($), given by E.q. (5.58), is longes is incident at the critical angle, whereupo ds. Combining these two, we get ℓ
$\left[n_{j} / n_{c}\right.$, and io

$$
\begin{equation*}
t_{\max }=\frac{6}{u_{i}}-\frac{L n_{f} \cdot n_{c}}{c / n_{t}}=\frac{L n_{t}^{2}}{c n_{c}} . \tag{5.67}
\end{equation*}
$$

Thes it follows that, subtracting Eq. (5.66) from Eq Finti) ne ger

$$
\begin{equation*}
\Delta t=\frac{L n_{f}}{c}\left(\frac{n_{f}}{n_{c}}-1\right) \tag{5.68}
\end{equation*}
$$

MnNANMNA

igure 5.76 Rectangular pulses of light smeared out by increasing mounts of dispersion. Note how the clasely spaced pulses degrad nore quickiy

As an example, suppose $n_{f}=1.500$ and $n_{i}=1.489$. The delay, $\Delta t / \mathrm{L}$, then turns out to be $37 \mathrm{~ns} / \mathrm{km}$. In other words, a sharp pulse of fight entering the system will be spread out in time some 37 ns for each kilometer of fiber traversed. Moreover, traveling at a speed $y_{f}=c / n_{f}=2.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$, it will spread in space over a ength of $7.4 \mathrm{~m} / \mathrm{km}$. To make sure that the transmitted signal will still be easily readable, we might require that he spatial (cr temporal) separation be at least twice the be 1.0 km long. In chat case the output pulses are 7.4 m wide on emerging from the fiber and so must be sepaated by 14.8 m . This means t tat the input pulses must be at least 14.8 m apart; they must be separated in time by 74 ns and so cannot come any faster than one every 74 ns , which is a rate of 13.5 million pulses per second In this way the intermodal dispersion (which is typ caliy 15 to $80 \mathrm{~ns} / \mathrm{km}$) limits the frequency of the inpu signal, thereby dictating the rate at which in tirmation an be fed through the system.
mei as a hundredfold by gradiually varye reduced as ive index of the core, decreasing it radially out ward e dadging [Fig. 574(b)] Instead of following shat igzag paths, the ray's then smooithly spiral around the

Figure 5.77 The spreading of an input signal due to intermodal dispersion.
central axis. Because the index is higher along the center, rays taking shorter paths are slowed down by proportionately greater amounts, and rays spiralling around near the cladding move more swiftly over longer paths. The result is that all the rays tend to stay more or less together in these multimode graded-index fibers. Typically, a graded-index fiber has a core diameter of about $20 \mu \mathrm{~m}$ to $90 \mu \mathrm{~m}$ and an intermodal dispersion of only around $2 \mathrm{~ns} / \mathrm{km}$. They are intermediate in price and widely used in medium-distance intercity applicaions.
Multimode fibers with core diameters of $50 \mu \mathrm{~m}$ or more are often fed by light-emitting diodes, or LEDs. These are comparatively inexpensive and are commonly used over relatively short spans at low transmission rates. The problem with them is that they emit a fairly broad range of frequencies. As a result, ordinary is a tunction of frequency, becomes a limiting factor That difficulty is essentially avoided by using spectrally pure laserbeams. Alternatively, the fibers can be operated at wavelengths near $1.3 \mu \mathrm{~m}$, where silica ge operigs. 3.27 and 3.28 has little dispersion. The last and best has little dispersion.
modal dispersion is to make the core so narrow (less han $10 \mu \mathrm{~m}$) that it will provide only one mode wherein the rays travel parallel to the central axis [Fig. 5.74(c)]. Such single-mode fibers of ultrapure glass (both steppedindex and the newer graded-index) provide the best performance. Typically having core diameters of only $2 \mu \mathrm{~m}$ to $9 \mu \mathrm{~m}$. they essentially eliminate intermodal dispersion. Although they are relatively expensive and
require laser sources, these single-mode fibers in at $1.55 \mu \mathrm{~m}$ (where the attenuation is about 0 at $1.55 \mu \mathrm{~mm}$ (where the attenuation is about 0.2 not far from the ideal silica value of 0.1 dB
today's premiere long-haul lightguides. A todays premiere long-haul lightguides. A pai
fibers may someday connect your home network may someday connect your home to a
network of communications and computer facil making the era of the copper wire seem charm primitive.

5.7 OPTICAL SYSTEM

We have developed paraxial theory to a point B is now possible to appreciate the principles u the majority of practical optical systems. To beg suren the subtleties involved in controlling aberrationt extremely important and still beyond this discuy Even so, one could build, for example, a veraw (admittedly not a very good one. but a velentis nonetheless) using the conclusions already in first-order theory
ting point for a discussion instruments than the most common of all-the

5.7.1 Eyes

For our purposes, three main groupings of eyes readily be distinguished: those that gather rad energy and form images via a single centery. system, those that utilize a multitaceted arnit
-in lenses (feeding into channels resernbling optical of uiny lenses (feeding into channary, those that simply floma and ha small lensless hole ($p .199$). In addition ight eys, the ratlisnake hias infrured pinhule eyes ithis hystems of the first type have evolved ulently ard remarkably similarly in at least three mivent lently ard remarkably similarhin inds of organisms. Some of the more advanced distink sims. the octopus), certain spiders (e.g., the moluaral and the vertebrates, ourselves included, is eyes that each form a single continuous real新 on a light-sensitive screen or retina. By comin independently among arthropods, the With articulated bodies and limbs (e.g., insects (is). It produces a mosaic sensory mage company small-held-ot-view spot contributions, one tran ach tiny segment of the eye was if one were Whas a he world through a tightly packed bundle ofgly fine tubes). Like a television picture otdifferent-intensity dots, the compound eye divides and digitizes the scene being viewed. There is no real image formed on a retinal screen; the synthesis xard of 7000 such segments, and the preda fly, an especially fast flyer, gets a better view
with 30,000 , as compared with some ants that manage with only about 50 . The more facets, the more image dots, and the beter the resolution, the sharper the types: trilobites, the litle sea creatures of 500 million years ago had well-developed compound ayes, Remark ably, however different the optics, the chemistry of the image-sensing mechanisms in all Earth animals is quit similar.

i) Structure of the Human Eve

The human eye can be thought of as a positive double lens arrangement that casts a real image on a light sensitive surface. That notion, in a rudimentary form, was apparcntly proposed by Kepler (1604), who wrote "Vision, I say, occurs when the image of the . . . external world . . . is projected onto the . . . concave retina." This insight gained wide acceptance only after a lovely experiment was performed in 1625 by the German Jesuit Christopher Scheiner (and independently, about five years later, by Descartes). Scheiner removed the coating on the back of an animal's eyeball and, peering able to see a minified inverted image of the scene beyond the eye. Though it resembles a simple camera,

(a)

Figure 5.78 (a) The corrpound cy made up of many ommatidia. (b) A n
ommatidium, the litule individual eye ommatidium, the little individual ey ticular direction. The corneal lens and
crystalline cone channel the li het intothe crystalline cone channel the light into the sensing strucure, the clear, rod-shaped
rhabdom. Each of these is surrounded by retinal cell.s which lead via nerve fiber to the brain. (From Ackerman et al., Biophysical Science, © 1962, 1979 Engle
wood Cliff, N] Prentice-Hall, Inc. 31. After R. R. Bushman, Anithals Withoul Aackibnes.)
the seeing system (eye, optic nerve, and visual cortex) functions much more like a closed-circuit computerized television unit.
The eye (Fig. 5.79) is an almost spherical (24 mm long by about 22 mm across) jellylike mass contained within a tough flexible shell, the sclera. Except for the front portion, or comea, which is transparent, the sclera is whice and opaque. Bulging upward from the body of the sphere, the cornea scurved surface (which is slightly serves as the first and strongest convex element of the lens system. Indeed most of the bending imparted to a bundle of rays takes place at the air-cornea interface Incidentally, one of the reasons you can't see very well under water $\left(n_{i y} \approx 1.33\right)$ is that its index is too close to under water ($n_{1 y} \approx 1.33$) is that its index is too close to that of the cornea ($n_{C} \approx 1.376$) to allow for adequate
refraction. Light emerging from the cornea passes through a chamber filled with a clear watery fluid called the aqueous humor ($\boldsymbol{n}_{\mathrm{ah}} \approx 1.336$). A ray that is strongly refracted toward the optical axis at the air-cornea inter face will be only slightly redirected at the corneaaqueous humor interface because of the similarity of their indices. Immersed in the aqueous is a diaphragm known as the iris, which serves as the aperture stop controlling the amount of light entering the eye th rough the hole, or pupil. It is the iris (from the Greek word for rainbow) that gives the eye its characteristic blue, brown, gray, green, or hazel color. Made up of circular pupil over a range from about 9 mm in bright light to roughly 8 mm in darkness. In addition to this function, roughly 8 mm in darkness. In addition to this function, it is also linker to the focusing response and will contrac Immediately behind the inis is the crystalline lens. The Immediately behind the nirs is the cystalline tens. The
name, which is somewhat misleading, dates back to name, which 1000 A.D. and the work of Abû̀ 'Alîal Hasan ibn al Hasan ibn al Haitham, alias Alhazen of Cairo, who described the eye as partitioned into three regions tha were watery, crystalline, and glassy, respectively. The lens, which has both the size and shape of a small bean (9 mm in diameter and 4 mm thick), is a complex layered fibrous mass surrounded by an elastic membrane. In structure it is somewhat like a transparent onion formed of roughly 22,000 very fine layers. It has some remarkable characteristics that distinguish it from man-

Figure 5.79 The human eye.
made lenses in use today, im addition to the frat a continues to grow in size. Because of its laminar ure, rays trayersing it will follow paths made minute, discontinuous segments. The lens as a quite pliable, albeit less so with age. Moreover, if of refraction ranges from about 1.406 at the indy
proximately 1.386 at the less dense cortex and, as 10 approximiesents a GRIN system (p. 136). The crystai-
such it rep 1 such it reprevides the needed fine-focusing meclanism throught conges in its shape, that is, it has a variable hroug lh-a feature we ll come back to presently.
focal lengthracting components of the eye, the cornea rocal
The refracting components of the eye, the cornea and crystalline lens, dffertive doubla-ejem front of the anterior surface of the about 15.6 mm in fre focus of about 24.3 mm behind it cormea andina. To simplify things a little we can take the on the red lens to have an optical center 17.1 mm in combin of the retina, which falls just at the rear edge of tronc crystalline lens.
Behind the lens is another chamber filled with a transparent gelatinous substance known as the witreous humor ($n_{\text {it }} \approx 1.337$). As an aside, it should be noted that the vitreous humor contains microscopic particles of blar dethis orating freely about. You can easily see Iter thadocs, beslinuel with diffraction fringes, within Wir whe ete br squinting at a light source or looking - Ik acy trouz ha pinhole-strange little amoebalike Was marat votitantes) will foat across the feld of floaters may be indicative of retinal detachon of th "floaters may be indicative of retinal detachfluorescent light works well). Closing your Rempletely, you'll actuaily be able to see the (as aim- fempletely, you'll actually be able to see the rear cin thar periphey of your own pupils beyond
thich the glare of light will disappear into blackness. tht believe it, block and then unblock some of 7 the glare circle will visibly expand and conpectively, You are sceing the shadow cast by com the inside! Sceing internal objects like this a as entoptic perception.
Wihin the tough sclerotic wail is an inner shell, the
is a dark layer, well suppine is a dark layer, well supplied with blood gchly pigmented with melanin. The choroid of stray light, as is the coat of black paint, wrope mside of a camera. A thin layer (about 0.5 mm gick) of light receptor cells covers much of , mearing net). The focused beam of liom fia electrochemical reactions in this ping structure. The human eye contains
kinds of photoreceptor cells: rods and cones (Fig. 5.80). Roughly 125 million of them are intermingled nonuniformly 0 e the ler) in characteristics of a high-speed black and white film (such as Tri-X) It is exccedingly sensitive, performin in light too dim for the cones to respond to, yet it unable to distinguish color and the images it relays are not well defined. In contrast, the ensemble of 6 or 7 million cones (each about 0.006 mm in diameter) can be imagined as a separate, but overlapping, low-speed color film. It performs in bright light, giving detailed colored views. but is fairly insensiive at low light levels The normal wavelength range of human vision is sai to be roughly 990 nm to 780 nm (Table 9.2. p. 72) However, studies have extended these limits down to about 310 nm in the ultraviolet and up to roughly 1050 nm in the infrared-indeed people have reported "seeing" x-radiation. The limitation on ultraviole transmission in the eye is set by the crystalline lens, which absorbs in the UV. People who have had a len removed surgically have greatly improved UV sensi-
tivity tivity
 Figure 5.80 An electron micrograph of the retina of a salamandes
(Necturus Maculssus). Two visual cones appcar in the foreground and several rods behind them. Phowo from E. R. Lewis Y. Y. Zeevi and F. S. Werblin, Brain Reseerith 15, 559 (1969)

The area of exit of the optic nerve from the eye contains no receptors and is insensitive to light: accord ingly it is known as the blind spot (see Fig. 581) The optic лerve spreads out over the back of the interior of the eye in the form of the retina. Just about at the center of the retina is a small depression from 2.5 to 3 mm in diameter known as the yellow spot, or macula. There is a tiny rod-free region about 0.3 mm in diameter at its center, the fovea centralis. (In comparison. the image of the full Moon on the retina is about 0.2 mm in diameter-Problem 5.59 .) Here the cones are thinner (with diameters of 0.0030 mm to 0.0015 mm) and more densely packed than anywhere else in the retina. Since the fovea provides the sharpest and most detailed information, the eyeball is continuously moving, so that light coming from the area on the object of primary interest falls on this region. An image is constantly shifted across If such movements did not occur and eye inements. If such movements did not occur and the image was actually tend to fade out Another fact that indicates the complexity of the sensing system is that the rods are multiply connected to nerve fibers, and a single such fiber can be activated by any one of about a hundred rods. By contrast, cones in the fovea are individually connected to nerve fibers. The actual perception of a scene is constructed by the eye-brain system in a continuous analysis of the time-varying retinal image. Just think how little trouble the blind spot causes, even with me eye closed.
Between the nerve-fiber layer of the retina and the humor is a network of large retinal blood vessels, which
\times
2

Figure 5.81 To verify the exisence of the blind spot, close une eye and, at a distance of about 10 inches, look directly at the X-the 2 will disappear. Moxing closer will cause the 2 to rcappear while the
i vanishes.

Figure 5.82 \qquad
can be observed entoptically. One way is to eye and place a bright small source against the "see" a pattern of shadows (P_{u} rkinje figures))eass? blood vessels on the sensitive retinal layer

ii) Accommodation

The fine focusing, or accommodation, of the hum is a function performed by the crystalline lens. गोel is suspended in position behind the iris by igar that are connected to the ciliaty muscles. Ordins these muscles are relaxed, and in that state the back on the network of fine fibers holding fininthe lens. This draws the pliable lens into a farly configuration. increasing its radii, which in increases its focal length (5.16). With the muss pletely relaxed, the light from an object at inf be focused on the retina (Fig. 5.82). As the objot closer to the eye, the ciliary muscles contract, itime then bulges slighty under its own elastic for: doing the focal length decreases such that s.

26 the object comes still closer, the ciliary constant. $A^{4 \text { s }}$ the more tensely contracted, and the len muscles be tive moren smaller radii. The closest point unsces tate on even smaller radil. The closest point - tat the git can tocus is nown as the near point a, nornater for y young adult. roughly 28 to 40 cm in aged, and abousigned with this in mind, so azaments are designed wessarily, Clearly, the the eye need not strain unnecessarily. Clearly, the cannofocus on two different objects at once. This you try to focus on it and the scene beyond at syout try to
generally accommodate by varying the lens ragure, buit there are other means. Fish move only the 傽 itself toward or away from the retina, just a mera lens is moved to focus. Some mollusk tithe same thing by contracting or expandin eye, thus altering the relative distanc veren lem and retina. For birds of prey, which mus de ranfe of mistang object in constant focus over commodation mechanism is quite different. The ưdate by greatly changing the curvature of th zunnea.

5) 2 Eyeglasses

Were probably invented some time in the late
Gentury possibly in Italy. A Florentine manuDeriod (1999), which no longer exists, spoke変 recently invented for the convenience of shose sight has begun to fail." These wer enses, tittle more than variations on the hand Ere no or reading glasses, and polished gemSre were no doubt employed as lorgnettes long rre that Roger Bacon (ca. 1267) wrote about negadather early on, but it was almost anothe red years before Nicholas Cusa first discussed eycelasses and a hundred years more before ungy, it was considered improper to late 1500 s, Fis public even as late is the eper to wear specta -t seffer ulto in the paint eighteenth century.

In 1804 Wollaston. recognizing that traditional (fairly fat, biconvex, and concave) cyeglasscs provided good vision only while one looked through their centers, patented a new, deeply curved lens. This was the orerunner of modern-day meniscus (from the Greek him the the wis fom center to margin without significant distortionIt is customary and quite convenient in physiolo ptics to speak about the dioptric power, \mathscr{D}, of a lens, which is simply the reciprocal of the focal length. When f is in meters, the unit of power is the inverse meter, or diopter, symbolized by D: $1 \mathrm{~m}^{-1}-1 \mathrm{D}$. For example. if a converging lens has a focal length of +1 m , its power is +1 D ; with a focal length of -2 m (a diverging lens). $-\frac{1}{2} \mathrm{D}$; for $f=+10 \mathrm{~cm}, \mathscr{D}-10 \mathrm{D}$. Since a thin lens of index n_{l} in air has a focal length given by

$$
\begin{equation*}
\frac{1}{f}=\left(n_{2}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right), \tag{516}
\end{equation*}
$$

its power is

$$
\begin{equation*}
\mathscr{D}=\left(n_{t}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) . \tag{5.69}
\end{equation*}
$$

You can get a sense of the direction in which we are moving by considering, in rather loase terms, that each surface of a lens bends the incoming rays-the more bending, the stronger the surface. A convex lens that strongly bends the rays at boch surfaces has a short focal ength and a large dioptric power. We already know given by

$$
\begin{equation*}
\frac{\mathbf{1}}{f}=\frac{1}{f_{1}}+\frac{\mathbf{1}}{f_{2}} \tag{5.98}
\end{equation*}
$$

his means that the combined power is the sum of the individual powers, that is,

$$
\mathscr{D}=\mathscr{D}_{1}+\mathscr{D}_{2}
$$

Thus a convex lens with $\mathscr{A}_{1}=+10 \mathrm{D}$ in contact with a negative lens of $\mathscr{S}_{2} \sim-10 \mathrm{D}$ results in $\mathscr{D}=0$; the combi nation behaves like a parallel sheet of glass. Furche more, we can imagine a lens, for example, a double , in be bor the por
r82 Chapter 5 Geometrical Optics-Paraxial Theory
each of these follows from Eq. (5.69); thus for the first planar-convex lens ($R_{2}=\infty$),

$$
\begin{equation*}
9_{1}=\frac{\left(m_{5}-1\right)}{R_{1}} \tag{5.70}
\end{equation*}
$$

and for the second,

$$
\begin{equation*}
\mathscr{Q}_{2}=\frac{\left(n_{1}-1\right)}{-R_{n}} . \tag{5.71}
\end{equation*}
$$

These expressions may be equally well defined as giving the powers of the respective surfuces of the initial double convex lens. In other words, the pozer of kny thin lens i. equal to the sum of the powers of wis surfaces. Because R^{2} for a convex lens is a negative number, both \mathscr{D}_{1} and $\mathscr{2}$ will be positive in that case. The power of a surface defined in this way, is not generally the reciprocal of its focal length, although it is when immersed in air. Relating this terminology to the generally used model for the human eye, we note that the power of the crystaline lens surrounded by cornea provides roughly +43 or the the inace prad ere despite the
is not really as common as cone mightion of the word is not really as common as one might expect. By the eye that is capable of focusing parallel rays on the retina eye that is capable of focusing paralles rays on the retina
while in a relaxed condition, that is, one whose second focal point lies on the retina. For the unaccommodated eye, we define the point whose image lies on the retina to be the far point. Thus for the normal eye the most distant point that can be brought to a focus on the retina, the far point, is located at infinity (which for al practical purposes is anywhere beyond about 5 m). In contrast, when the second focal point does not lie on the retina, the eye is ametropic (e.g., it sufters hyperopia, myopia, or astigmatism). This can arise either because of abnormal changes in the refracting mechanism (cornea, lens, etc.) or because of alterations in the length of the eyeball that alter the distance between the lens and the retina. The latter is by far he more cive, note that a our 25% of young adults require +0.5 D ar tes of eyeglass correction, and perhaps as many as 65% need only $\pm 1.0 \mathrm{D}$ or less.

D Nearsightedness - Negative Lenses
Myopia is the condition in which parallel brought to focus in front of the retina; thel r_{o}, he lens system as configured is too large f_{0} distant pobects fall in front of the retina, the laag istant objects fall in front of the retima, the fat appear blurred. This is why myopia is aft peatsightedness-an eye with this defect ofteng ebjects clearly (Fig 5.83). To correct the cond least iss symptoms, we place an additional font of the eye such that the combined spect as system has its second focal point on the since the mryopic eye can clearly sce objects clos he far point, the spectacle lens must cast reate nearby images of distant objects. Hence we introd negative lens that will diverge the rays a bity 12 he templation to suppose that we are merely re he power of the system. In point of fact, the p he lens-cye combination is most often made th hat of the unaided eye. If you are wearing gle correct myopia, take them off; the world gets, but it doesn't change size. Try casting a real itio piece of paper using your glasses-it can't bos ell if the spectacle lens appeared to brins mo bjects in clover than 2 m If the virtual im object at infinity is formed by a concave lens at 24 ye will see the object clearly with an unaccorili ens. Thus using the thin-lens approximation are generally thin to reduce weight and bulke.

$$
\frac{1}{f}=\frac{1}{s_{e}}+\frac{1}{s_{i}}-\frac{1}{\infty}+\frac{1}{-2}
$$

nd $f=-2 \mathrm{~m}$ while $\mathscr{D}=-\frac{1}{2} \mathrm{D}$. Notice that the . $r=2$ whit $-\frac{1}{2} \mathrm{D}$. Norice that the istance, measured from the correction lens, ex focal length (Fig. 5.84). The eye views the righas. ens, and those images are located between its far near points. Incidentally, the near point also If away a little, which is why myopes often preder wo remove their spectacles when threading needll of reading small print; they can then bring the mel: closer to the eve, thereby increasing the magninge

Nean sid Carrection of the nearsighted eye.
The calculation we have just performed overlooks ie separ Gen between the correction lens and the ectacles. The the separation is usually made equal to to itance of the first focal point of the eye $(=16 \mathrm{~mm})$ cornea, so that no magnification of the image
hat of the unaided eye occurs. Many peoplc have
and eyes, yet both yield the same magnification. A
dives. Elacing tone and not the other would be a
focal .int avoids the correcting lens at the eye's first学斯 of that lens [take a look at Eq. (6.8)]. To gust draw a ray from the top of some object hat focal point. The ray will enter the eye It parallel to the optic axis, thus establishing of the innage. Yet. since this ray is unaffected

the focal point, the image's location may change on insertion of such a lens, but its height and therefore M_{T} will not (see Eq. 5.24),
The question now becomes: What is the equivalent power of a spectacle lens at some distance d from the eye (i.e., equivalent to that of a contact lens with a focal length f, that equals the far-point distance). It will do for our purposes to approximate the eye by a single lens and take d from that lens to the spectacle as roughly equal to the cornea-eyeglass distance, usually around 10 mm . Given that the local length of the correction combination has a focal length provided by Eq. (536), combination has a focal length provided by Eq. (5.36) that is,

$$
\text { b.f.L. }=\frac{f_{i}\left(d-f_{1}\right)}{d-\left(f_{i}+f_{i}\right)}
$$

This is the distance from the eye-lens to the retina Similarly, the equivalent contact lens combined with the eve-lens has a focal length given by Eq. (5.38):

$$
\frac{1}{f}=\frac{1}{f .}+\frac{1}{f},
$$

where $f=$ b.f.t. Inverting Eq. (5.72), setting it equal to Eq. (5.73), and simplifying, we obtain the result $1 / f_{c}=$ $1 /\left(f_{i}-d\right)$, independent of the eye itself. In terms of power.

$$
D_{c}=\frac{D_{2}}{1-\mathscr{D}_{r} d^{0}}
$$

A spectacle lens of power \mathscr{I}_{i} a distance d from the eye-lens has an effective power the same as that of contact lens of power \mathscr{D}_{6}. Notice that since d is measured in meters and thus is quite small, unless \mathscr{R}_{2} is large, as

Figure 5.84 The far-point ditance equals the focal length of the correction lens
it often is, $\mathscr{D}_{6} \approx \mathscr{T}_{4}$. Usually, the point on your nose where you choose to rest your eyeglasses has little effect but that's certainly not always the case-an improper value of d has resulted in many a headache.

ii) Farsighteaness - Positive Lenses

Hyperotia (or hypermetropia) is the defect that causes th second focal point of the unaccommodated eye to lie behind the retina (Fig. 5.85). Farsightedness, as you migh have guessed it would be called, is often due to a short ening of the anteroposterior axis of the eye-the lens is too close to the retina. To increase the bending of the rays, a positive spectacle lens is placed in front of the eye. The hyperopic eye can and must accommodate to see distant objects distinctly, but it will be at its limit to do so for a near point, which is much farther away than it would be normally (this we take as 25 cm). It will consequently be unable to see clearly. A converging corrective lens with positive power will effectively move a close object out beyond the near point where the eye as adequate acuity, that is, it wil corna Suppose that nage, bject at +25 cm to have its image at $\mathrm{s}_{\mathrm{i}}--125 \mathrm{~cm}$ so that it can be seen as if through a normal eye, the foc al length must be

$$
\frac{1}{f}-\frac{1}{(-1.25)}+\frac{1}{0.25}=\frac{1}{0.31}
$$

or $f=0.31 \mathrm{~m}$ and $\mathscr{2}+3.2 \mathrm{D}$. This is in accord with Table 5.3, where $s_{c}<f$. These spectacles will cast real mages-ury it if you're hyperopic.
As shown in Fig. 5.86, the correcting lens allows the Alaxed eye to view objects at infinity. In effect, it creat image on its focal plane. which then serves as virtual object for the eye. The focus (whose image lis on the retina) is once again the far poin, and its distance fi behind the lens. The hyperope can comfor bly "see" the tar point, and any lens located anywher in front of the eye that has an appropriate focal length will serve that purpose
Very gentle finger pressure on the lids above and below the cornea will temporarily distort it, changing your vision from blurred to clear and vice versa.

Figure 5.85 Carrection of the farsighted eye.
iii) Astigmalism - Anamorphic Lenses

Perhaps the most common eye defect is astigmatisul rises from an uneven curvature of the tarnez in ute words the cornea is asymmetric. Suppose tes paist? meridional planes (ones containing the ogit

Figre 5.86 Agen form foral length the ourrection lens.

(h)

Just as an aside, we note that anamorphic lenses ar Jed in other areas, as for example, in the making of wide-screen motion pictures, where an extra-larg horizontal held of view is compacted onto the regular film format. When shown through a special lens the distorted picture spreads out again. On occasion a elevision station will show short excerpts without th special lens-you may have seen the weirdly elongated esult

5.7.3 The Magnitying Glass

An observer can cause an object to appear larger, for the purpose of examining it in detail, by simply bringin closer to her eye. As the object is brought nearex and nearer, its retinal image increases, remaining in focus until the crystalline lens can no longer provide adequate accommodation. Should the object come closer than this near boin, the image will blur (Fig. 5.89). A single positive lens can be used, in effect to add refractive power to the eye, so that the object can be brought stil closer and yet be in focus. The lens so used is referred o variously as a magnijying glass, a simple magnifier, or simple microscope. In any event, its function is to provide an image of a nearoy object hat is latger Man the image sen by the unaided eye. Devices of this sort have been around or a long time. In fact, a quartz convex lens ($f=10 \mathrm{~cm}$), which may have served as a magnifier, was unearthed in 1885 among the ruins of the palace of King ennacherib ($705-681$ b.c.) of Assynia.
Evidently, it would be desirable for the lens to form the now ent p. 145) immediately suggests placing the object within the focal length (i.e., $s_{0}<0$. The result is shown in Fig. 5.90 . Because of the relatively tinysize of the eye's pupil, it will almost certainly always be the aperture stop, and as in Fig. 5.33 (p.150), it will also be the exit pupil. The magnifying power, MP, or equivalently, the angular magnification, M_{A}, of a visual instrument is defined as the ratio of the size of the retinal image as seen hrough the insinument over the sice of the retnat image as seen by the unaided cye at nonnal viewing distance. The latter is generally taken as the distance to the near point,

Figure 5.89 tmages in relation to the near poins
d_{n}. The ratio of angles α_{a} and α_{u} (which are mat chief rays from the top of the object in the instan he aided and unaided eye, respectively) is equire to MP, that is,

$$
\mathrm{MP}-\frac{a_{u}}{a_{u}}
$$

Keeping in mind that we are restricted to the parax region, $\tan \alpha_{\alpha}=y_{i} / L=\alpha_{a}$ and $\tan \alpha_{\mu}=y_{j} / d_{0}=\alpha_{\alpha} \delta$

$$
M P=\frac{y_{i} d_{0}}{y_{u} L},
$$

 make d_{n} and L positive quantities, MP will be po which is quite reasonable. When we use Eqs. (5.24) (5.25) for M_{T} along with the thin-lens equation ib ${ }^{\text {bib }}$ expression becomes

$$
\mathrm{MP}=-\frac{s_{i} d_{0}}{s_{0} L}-\left(1-\frac{s_{i}}{f}\right) \frac{d_{0}}{L} .
$$

Inasmuch as the image distance is negative the $-(L-\ell)$, and consequently,

$$
\mathrm{MP}=\frac{d_{o}}{L}[1+\mathscr{O}(L-\ell)] .
$$

\mathscr{D} of course being the power of the magnigetig There are three situations of particular interc.

the mannitying power equals d on , (2) When sy zero.

$$
[\mathrm{MP}]_{!-0}-d_{0}\left(\frac{1}{L}+\otimes\right) .
$$

in tue rase tie largest value of MP corresponds to the mailes pralue of L, which, if vision is to be clear, must 1214.2 Thus

(5.77)
mank $4,0.25$ m for the standard observer, we have
$[\mathrm{MP}]_{\substack{c=0 \\==d_{0}}}=0.25 \mathscr{D}+1$.

Figure 5.90 (a) An unaided view of an object. (b) The airled view through a magnitysing glass. (c) A positive lens used as a magni
glass. The object is less than one focal length from the lens.

As L increases, MP decreases, and similarly as ε increases, MP decreases. If the eye is very far from the lens, the retinal image will indeed be small. (3) This last is perhaps the most common situation. Here we position the object at the focal point (s, f), in which case the virtual image is at infinity ($L=\infty$). Thus from Eq. (5.76)

$$
[\mathrm{MP}]_{L=\infty}-d_{o} \mathscr{L}
$$

(5.79)
for all practical values of ℓ. Because the rays are parallel the eye views the scene in a relaxed, unaccommodated configuration, a highly desirable feature. Notice that marked contrast, M_{A} merely decreases by I under the marked condast, M_{A} merely decreases f under the A magnifier with.
A magnifier with a power of 10 D has a focal length (1/G) of 0.1 m and a MP equal to 2.5 when $L=\infty$. that the retiral image is 2.5 times larger with the object at the focal length of the lens than it would be were the object at the near point of the unaided eye (where the largest clear image is possible). The simplest single-lens magnifiers are limited by aberrations to roughly $2 \times$ or $3 \times$. A large field of vjew generally implies a large lens, for practical reasons usually dictates a fairly small curcurvature of the surfaces. The radii are large, as is f, and therefore MP is small. The reading glass, the kind Sherlock Holmes made famous, is a typical example. The watchmaker's eye loupe is frequently a single element lens, also of about $2 \times$ or $3 \times$. Figure 5.91 shows a few more complicated magnifiers designed to operate
in the range from roughly $10 \times$ to $20 \times$. The double lens is quite cornmon in a $10 \times$ to 20x. The double lens Although not particularly good they perform satisfactorily, for example, in high-powered loupes. The Coddington is essentially a sphere with a slot cut in it to allow an aperture smaller than the pupil of the eye. A clear marble (any small sphere of glass qualities) will also greatly magnify-but not without a good deal of distortion
The relative refractive index of atens and the medium in which it is immersed, $n_{l m}$, is wavelength dependent. But since the focal length of a simple lens varies with $n_{\text {m }}(\lambda)$, this means that f is a function of wavelength, and the constituent colors of white light will focus at different points in space. The resultant defect is known

as chromaric aberration. In order that the imaze he of this coloration, positive and negative lenses mader different glasses are combined to form achromates. Section 6.3.2). Achromatic, cemented, doublet, and triplet lenses are comparatively expensive and aro sually found in small, highly corrected, high magnifiers.

5.7.4 Eyepieces

The eycpicce, or ocular, is a visual optical instrump Fundamentally a magnifier, it views not an actual preceding lens system. In effect the eye look he ocular and the ocularlooks into the optical of be it a spotting scope, compound microscope, tel or binocular. A single lens could serve the pur poorly. If the retinal image is to be more satio the ocular cannot have extensive aberrations. piece of a special instrument, however. migi signed as part of the complete system, so that zat korlet can be utilized in the overall scheme to baland in aberrations. Even so, standard eyepieces are use changeably on most telescopes and compound scopes. Movecher, eyepleoes are quien dificull op

Figure 5.93 The Ramsien eyepiece.

Figure 5.94 The Kellner eyepiece.
plane, both will be in focus at the same time. Th roughly $12-\mathrm{mm}$ eye relief is an advantage over the previous ocular. The Ramsden is relatively popular and fairly inexpensive (see Problem 6.2). The Kellner egepiece represents a definite increase in image quality
although eye relief is between that of the previous two devices. The Kellner is essentially an achromatized Ramsden (Fig, 5.94). It is most commonly used in mod erately wide-field telescopic instruments The orthoscopic eyepiece (Fig. 5.95) has a wide field, high magnification, and long eye relief $(\approx 20 \mathrm{~mm})$. The symmetrical (Plössl) eyepiece (Fig. 5.96) has characteristics similar to those of the orthoscopic ocular but is generally somewhat superior to it. The Erfle (Fig. 5.97) is probably the most common wide-field (roughly $\pm 90^{\circ}$) eyepiece It is well corrected for all aberrations and comparatively expensive.*

* Deailed designs of these and other oculars can be found in the
Military Standurdization Handbook-Optical Design, MIL-HDEK-141.
5.7.5 The Compound Microscope

The compound microscope goes a step beyond simple magnifier by providing higher angulant nification (greater than about $30 \times$) of nearby objent invention, which may have occurred as early, as Zacharias Tansen of Middleburg Galieo rale second having announced his invention runs. microscope in 16 t 0 a simple version, af a microscope in 10. to these earliest devices than in is to a modern lahorp.
microscope, is depicted in Fig. 5.98. The lens s. microscope, is depicted in Fig.
here a singlet, dosest to the object is referred objective. It forms a real, inverted, and usual nified image of the object. This image resides in on the plane of the field stop of the eyepicce. diverging from each point of this image will em from the eye-iens (which in this simple case is the piece itself) parallel (o each orher, as noted in the vious section. The ocular magnines this interme image still further. Thus the magnifying priver of entire system is the product of the transverse line magnification of the objective, $M_{T_{0}}$, and the angul? magnification of the eyepiece. $M_{\text {A }}$, that is,

$$
\mathrm{MP}=M_{T_{0},} M_{A e}
$$

Recall that $M_{\mathrm{T}}=-x_{1} / f$, Eq. (5.26). With this in mivill Recall that $M_{\mathrm{T}}=-x_{1} /$, Eq. (0.26). With this
most, but not all, manufacturers design their nim scopes such that the distance (corresponding to x_{i}) the second focus of the objective to the first forky of the eyepiece is standardized at 160 mm . This distam known as the iube length, is denoted by L in the fipans (Some authors define tube length as the image disgern) of the objective.) Hence, with the final image at in 40 tion and the standard near point taken as 10 iaca (254 mm),

$$
M P=\left(-\frac{160}{f_{0}}\right)\left(\frac{254}{5}\right),
$$

and the image is inverted ($\mathrm{MP}<0$). According
and the image is 32 mm will be engraved with the marking $5 \times$ indicating a power of 5 . Combined with a $10 \times$ e ($f_{2}=1$ inch), the microscope MP would then be To maintain the distance relationships objective, field stop, and ocular, while a foo

Although there are many other eyepieces, including variable-power zoom devices and ones with aspherical surfaces, those discussed above are representative. They microscopes and on long lists in the commercial catalogs.

Figure 5.95 The orthoscopic eyepiece.

Figure 5.96 The symmetrical (Plösl) eyepiece.

Figure 5.97 The Erfic eyepiece.
mediate innage of the object is positionert in the first focal plane of the eyepiece, all three elements are moved as a single unit
The objective itself functions as the aperture stop and entrance pupil. Its image, formed by the eyeprece, the exit pupilinto whid the eye is positioned. The field stop, which limits the extent of the largest object tha can be viewed, is fabricated as part of the ocular. The image of the field stop formed by the optical elements following it is called the exit window, and the image formed hy the optical elements preceding it is the entrance window. The cone angle subtended ac the center of the exit pupil by the periphery of the exit window is said to be the angular feld of view in image space. classitied as one of three different kinds. It roughly designed ro work best with the object positioned below a cover glass, with no cover glass (metallurgical instruments), or with the object immersed in a liquid that is in contact with the objective. In some cases, the distinc tion is not critical, and the objective may be used with or without a cover glass. Four representative objectives are shown in Fig. 5.99 (see Section 6.3.1). In addition the ordinary low-power (about 5X) cemented double achromate is quite common. Relatively inexpensive medium-power ($10 x$ or $20 x$) achromatic objectives, because of their short focal lengths, can conveniently be used when expanding and spatially filtering laserbeams.

There is one other characteristic quantity of impos tance, which must be mentioned here even if only briefly. The brightness of the image is, in part, dependent on the amount orlight gathered in by the objective The f-immer is a paracter for describing this (see Section 53.3) However, for 10 inscrument workin at frite conjugales (s, and s both finite) the numerical at perture NA is more appropriate (eccetion 56). In aperture, NA, is more
the present instance

$$
\mathrm{NA}=n_{o} \sin \theta_{\operatorname{mox}},
$$

(5.82)
where n_{o} is the refractive index of the immersing medium (air, oil, water, etc.) adjacent to the objective lens, and $\theta_{\text {mux }}$ is the half-angle of the maximum conc of light picked up by that lens [Fig. 5.99(b)]. In other

, (a)

Figure 5.99 Mictuscope obicctives. (a) Lister objective, $10 \times$, NA $=$
$0.25, f=16$ mm (two temented achromatcs). (b)A Amiciobjective from $0.25 . f=16 \mathrm{~mm}(t$ wo cemented achromatcs) (b) A mici objective, from
$20 \AA, \mathrm{NA}=0.5, t=8 \mathrm{~mm}$ to $40 \times, \mathrm{NA}=0.8, f=4 \mathrm{~mm}$. (c) Oil-
words, $\theta_{\text {max }}$ i: the angle made by a marginal ray with the axis. The numerical aperture is usually the second number etched in the barrel of the objective. It ranges from about 0.07 for low-power objectives to 1.4 or so for high-power ($100 \times$) ones. Of course. if the object is in the air, the numerical aperture cannot be greater han 1.0. Incidentaly, Ernst Abbe (1840-1905), while duced the concept of the numerical werture It was he who recornized that the minimum transverse distance hetween two ohject points that can be resolvad in the image that is, the resolying power, varied direcily as λ and inversely as the NA

5.7.6 The Telescope

It is not at all clear who actually invented the telescope. In point of fact, it was probably invented and reinvented many times. Recall that by the seventeenth century pectacle lenses had been in use in Europe for about hree hundred years. During that long span of time, the fortuitous juxtapositioning of two appropriate lenses to form a telescope seems almost inevitable. In

$\rightarrow+1$
 (c)
 \rightarrow M早

 fuorite lenses).
any event. it is most likely that a Dutch optician, p even the ubiquitous Zacharias Jenssen of mig fame, first constructed a telescope and in addition inklings of the value of what he was peering inity earliest indisputable evidence of the discovery, dates to October 2, 1608, when Hans Lippers tioned the States-General of Holland for a pati
device for seeing at a distance (which is what means in Greek) Incidentally, as you might guessed, its military possibilities were immediatel ognized. His patent was therefore not granted; iil the government purchased the rights to the instit and he received a commission to continue ress Galileo heard of this work, and by 1609 he had ioned a celescope of his own, using two lenses a organ pipe as a tube. It was not long before h constructed a nurnber of greatly improved instrum and was astounding the world with the astronorl discoveries for which he is famous

i) Refracting Telescopes

A simple astronomical telescope is shown in Figit Unlike the compound microscope, which ik ane
focus the rays in a relayed configuration. If the eye is
nearsighted or farsighted, the ocular can be moved in
or out so that the rays diverge or converge a bit to
compensate. (If you are astigmatic, you'll have to keep
your glasses on when using ordinary visual instru-
ments.) We saw earlier (secuion 5.2.3) that both the back
and front focal lengths of a thin-lens combination go
to infinity when the two lenses are separated by a dis-
tance d equal to the sum of their focal lengths (Fig.
5.101). The astronomical telescope in this configuration
of infinite conjugates is said to be ajocal, that is, without
a focal length. As a side note, if you shine a collimated
(parallel rays, i.e., plane waves) narrow laserbeam into
still collimated but with an increased cross-section. It is
still con desirable to have a broad ased cross-section. It is
often desive beam, and specific dine quasimon of sort
now available commercially
The periphery of the
and it encompasses the entrance is the aperture stop.
$\begin{aligned} & \text { and } \\ & \text { being no lenses to the left of it. If the telescope is trained }\end{aligned}$
directly on some distant galaxy, the visual axis of the
urmbles, is primary function is to enlarge the retinal
sonat doget. In the illustration, the object
Ear distance from the objective, so that the
gate image is iormed just beyond its second
This image will be the object for the nex
$\begin{aligned} & \text { nemen, that is, the ocular. It follows from } 145 \text {) that if the eyepiece is to form a virtual }\end{aligned}$
145) that image (within the range of normal
todation), the object distance must be less than
to the focal length, f.e In practice, the position
bemmedialte inage is fixed, and only the eyepicce as
Gut as long as the scope is used for astronomi-
$\begin{aligned} & \text { but as long as the scope is used tor astronomi- } \\ & \text { itins, this is of little consequence, especially }\end{aligned}$
wisk is photographic.
Now arral shoed distances the incident rays are
araively prallet the intermediate image resides at
is second fin Δ of the objective. Usually the eyepiece
Whasd os that iss firv focu awerbaps the second foc
$\begin{aligned} & \text { I ite rojudise in which case rays diverging for } \\ & \text { in on tir fintermediate image will leave the ocular }\end{aligned}$
5 allel to twh other. A normal viewing eye can then

194 Chapter 5 Geometrical Optics—Paraxial Theory

Figure 5.101 Ast
infinite conjugates.
eye will presumably be collinear with the central axis of the scope. The entrance pupil of the eye should then Hincide in space with the exit pupil of the scope. However, the eye is not jumobile. It will move about scanning the entire field of view, which quite often contains many points of interest. In effect, the eye examines different regions of the field by rotating so cralis. The directiarticular area fall on the fovea cenhe center of then established by the chief ray through is the primary entrance pupil to the fovea centralis reference to the head, through which the primary line of sight always passes, regardless of the orientation of the eyeball, is called the sighting intersect. When it is desirable to have the eye surveying the field, the sighting intersect should be positioned at the center of the telesope's exit pupil. In that case, the primary line of sight will always correspond to a chief ray through the center
of the exit pupil, however the eye moves Suppose that the margin of the visible object essentially he sar the ortive (I. 5.102 subtended at the unaided eye As in wich subtended at the unaided eye.
the angular magnification is

$$
\mathrm{MP}-\frac{\alpha_{0}}{\alpha_{u}}
$$

Here α_{u} and α_{α} are measures of the field of v object and image space, respectively. The first is half-angle of the actual cone of rays collected, at second relates to the apparent cone of rays. arrives at the objective with a negative slope, it whil the eye with a positive slope and vice versa. To the sign of MP positive for erect images, and the consistent with previous usage (Fig. 5.90), eithi? α_{u} must be taken to be negative-we choose the:

To be useful when the orientation of the object is of mportance a scope must contain an additional erectin system-such an arrangement is known as a terrestrial telescope. A single erecting Jens or lens system is usually located between the ocular and objective, with the result that the image is right side up. Fgure 5.103 shows one with a cemented doublet objective and a kellner eye piece. It will obviously have to have a long draw tube the picturesque kind that comes to mind when you think of wooden ships and cannonballs.
For that reason, bimoculars (binocular telescopes) generally utilize erecting prisms, which accomplish the same thing in less space and also increase the separation of

the objectives, thereby enhancing the stereoscopic effect. Mest often chese are double Porro prisms, as in Fig. 5. 104 (notice the involved modified Erfle eyepiece the wide field stop, and the achromatic doublet objec tive, Binoculars customarily bear several numerical markings, for example, $6 \times 90,7 \times 50$, or 20×50. The initial number is the magnification, here $6 \times, 7 \times$, or 20X. The second number is the entrance-pupil diameter or, equivaleatly, the elear aperture of the objective, expressed in millimeters. It follows from Eq, $(5,84)$ that the exit-pupil diameter will be the second number divided by the first, or in this case $5,7.1$, and 2.5 , all in millimeters. You can hold the instrument away from your eye and see the bright circular exit pupil surrounded by blackness. To measure it, focus the device at

Weure 5.105 The Galiean relezoppe. Calitieo's frat scope had a planarmanveu objective (5.6 cm in ciamuecer, $f=1.7 \mathrm{~m}, R=99.5 \mathrm{~cm}$) and a planar-concave eycpiece, boxh of whict he qround himseit. If
was $3 x$ in contrast to his last beope, which was $99 \times$. Photo by E.H.)
infinity, point it at the sky, and observe thee merai sharp disk of light, using a piece of paper an 5 mg . By the way as long as $d=f+f$ dit. Gocal even if the evepiece is ne $+\ldots$ the scope teiescope built by Gaileo (Fig, 5.105) had je negative lens as an eyepiece and cherefore just erect image [$f,<0$ and $M P>0$ in Eare fom relescope, the system is now mainly of hist pedagosical interest, although one can still wo such scopes mourited side by side to form field glass. It is quite useful, however, as alas expander, because it has no interwal focai points high power beam would otherwise ionize th rounding air.

ii) Refilecting Telescopes

The difficulties inherent in making large tenges ang underscored wheri we note that the largest trind instrument is the 40 -inch Yerkes telescope in Will Bay, Wisconsin, whereas the reflector on Moul alomar in southestern Canfornia is 200 their Crimca Observatory, Theptoble-izereniza lens muss be transparent and free of internat Atc. A front-surfaced mirror obviously need nontr indeed it necd not even be transparent. A lens supported only by its rim and may sag undr-ite weight; a mirror can be supported by its rimand as well. Furthermore, since there is no refractiv! therefore no effect on the focal length due wavelength dependence of the index, mirrors chromatic aberration. For these and oher reaso heir frequency response), reflectors predomitit
 675), in 1661, the reffecting telescope was firsi sueg ully constructed by Neweon in 1668, and only bec nemportant research tool in the hands Herscheia century lar. Figure s.1.0ing concat boloidal primary rnirrors. The 200 -inch Hale tel so large that a little enclosure where an ubsert it is positioned at the prime focus in the ver

Casse crainian (d)
Fefecting velescopes.
version, a plane mirror or prism brings the beam out at right angles to the axis of the scope, where it can be phorography, viewed, specraly analyzed, or photowhich is not particularly popular a concaye ellipsoidal scoondary mirror reinverts the image renurning the hearo through a hole in the primary. The Cassegrainian hearm through a hote in the primaty. The Cassegrainian
system utilizes a convex hyperbcloidal secondary mirror to increase the effective focal length ircfer hack to Fig. 5.46 , p. 158). It functions as if the primary mirror had the same aperture but a larger facal length or tadius of curvature.

Cotadiontric Telescopes

A combination of reflecting (ectoptric) and refracting (dioppric) elements is called a cotadiopiric system. The best known of these, although not the first, is the classic Schmidt optical sysiem. We must reat it here, even if only briefly, because it represents the precursor of a new outlook in the design of large-aperture, extended-hield prallel imares, Iet's say of a field of stars, on a spherical image surface, the latter being a curved film plate in practice. The only problem with such a scheme is that although it is free of other aberrations (see Section 6.8.1), we it is free of other aberrations (see Section 6.3.1), we
know that rays reflected from the outer regions of the know that rays reflected fom che outer regions of the the paraxial region. In other words, the mirror is a sphcre, not a paraboloid, and it suffers spherical aberyation [Fig. 5.107 (b)]. If this could be corrected, the systern (in theory at least) would be capable of perfect innagery over a wide field of view. Since there is no one central axis, there are, in effect, no off-axis points. Recall that the paraboloid forms perfect images only at axial points, the image deteriorating rapidly off axis. One evening in 1929, while sationg on the Indiain ocean (returning from an eclipse expedition to the Philippines), Bernhard Voldernar Schmidt (1879-1935) showed a colleague a sketch of a system he had designed to cope
with the spherical aberration of a spherical mirror. He would use a thin thas correcter plate on whose surface wo beoud a very shallow tomolal curve [Fib $5.107(\mathrm{c})]$. Light rays traversing the outer regions would

Figure 5.107 The Schmidt optical system.
be deviated by just the amount needed to be at focused on the image sphere. The corrector muy come one defect without introducing appis in 1930, and in 1949 the famous 48 -inch sem in 1930, and in 1949 the famous 48 -inch Schmo
scope of the Palomar Observatory was comple scope of the Paiomar Observatory was complete, night sky. A single photograph could enco region the size of the bowl of the Big Ditine compared with roughly 400 photographs by the inch reflector to cover the same area. Majonces in the design instrumentation have occurred since the catadio of the original Schmidt system.* There are catadioptric satellite and missile tracking instrumb, meteor cameras, compact commercial telese telephoto objectives, and missile-homing guidanc tems. Innumerable variations on the theme exist; replace the correcting plate with concentric men lens arrangements (Bouwers-Maksutov), othexd use solid thick mirrors. One highly successful approze utilizes a triplet aspheric lens array (Baker)

5.7.7 The Camera

The prototype of the modern photographic camend was a device known as the camera obscura, the form of which was simply a dark room with a small: in one wall. Light entering the hole cast an inverten image of the sumlit outside scene on an insple scomb The principle was known to Aristote, and his obsee tions were preserved by Arab scholars througl ${ }^{\text {k }}$, Europe's long Dark Ages. Alhazen utilized it tolas. solar eclipses indirectly over eight hundred yentrs The notebooks of Leonardo da Vinci contain sever descriptions of the obscura, but the first detailed ment appears in Magia nalurafis (Natural Magy: Giovanni dell Pora. He recommended as a dra

* For further reailing see J. J. Villa. "Catadioptric Lenssegin "

Sppectra (March/A pril, 1968), p. 5\%.

Kepler, the renowned ascronomer, had a jobar Gepser, Kept version, which he used while surveying in pornas By the latter part of the 100 s. - \quad fomera obscura was contefish is literally an open The Nautilus, a lim comply fils with sea water on
 If pplacing the viewing screen with a photosensitive (firss such as a film plate, the obscura becomes a win in the modern sense of the word. The first 4.axient photograph was made in with gomall convex lens, a sensitized pewter plate, and wit|genall eight-hour exposure. It is a roof-top scene, routay for the workroom window of his estate near वTheresur-Saône in France. Although blurry and spoty (im its unrerouched form), the la rge slanting roof of a bam, a pigeon house, and a distant tree are still discernible.
Lialyensless pinhole camera (Fig. 5.108) is by far the Heast sever कndearing and, indeed, remarkable virtues. It on f. an well-de-fined, practically undistorted image to lorent depth of focus) and over a large range of to ligent deprh of focus) and over a large range of . Wis very large, no image results. As it is decreased Wis very large, no image results. As it is decreased
theter, the image forms and grows sharper. After geter, the image forms and grows shar per. Atter
further reduction in the hole size causes the image o blur again, and one quickly finds that the apertu gance from the image plane. (A hole with a diameter at 0.25 m from the film plate is con-
and
works well. There is no focusing of the anre and works well.) There is no focusing of the sible fo . fible fo : Whe drop-off in clarity. The problem is actually one of draction, as we shall see later on (Section In most practical situations, the pinhole ably slow (roughly f/500). This means that exposure 2bly slow (roughly $f / 500$). This means that exposure dye films. The far too long, even with the most जrmis such as a building (Fig. 5.109), for which the Nolinte rametis a excels. Figure $5 / 10$ depicts

- he pith

Mgure 5.108 The pinhtrie camera. Note the variation in image clanty
as the hole diameter decreases. (Photos courtesy Dr. N. Joel, as the hole diameter decreases. (Photos courtesy Dr. N. Joe.
UNESCO.)

200 Chapter 5 GeometricalOptics-Paraxial Theory

Figure 5.109 Photograph taken with a pinhole camera (Science distance. 24 cm, A.S.A. 3000 , shuter specd 0.25 s . Note depth of field (Photo by E.H)
fairly popular and representative modern camera-the single-lens reHex, or SLR. Light traversing the first few elements of the lens then passes through an iris dia equagm, used in part to control the exposure time or aperture stop On emerging from the lens, lisht strike a movable mirror tilted at 45°, then lens. light strike the focusing screen to the penta prism and out the finder eyepiece. When the shutter release is pressed, the diaphragm closes down to a preset value, the mirror swings up out of the way, and the focal-plane shutter opens, exposing the film. The shutter then closes, the diaphragm opens fully, and the mirror drops back in place. Nowadays móst SLR systerns have any one of a number of buit-in light-meter arrangements, which are automatically coupled to the diaphragm and shutter,

Figure 5.111 Angular field of view when foccused at intiniti.

...thnse evaponems are excluded from the diagram
 irila uM or guay iom the film plane. Since its focal lengrt of or puay s. Praries, so too must \&. The anguler forion 4. 5. Prefibe thought of as relating to the fraction of the scentifincluded in the photograph. It is further

more required that the entire photograph surface corre spond to a region of satisfactory image quality. More precisely, the angle subtended at the lens, by a circle encompassing the film area, is the angular field of view φ (Fig. 5.111). As a rough but reasonable approximation of a common arrangement, take the diagonal distance across the film to equal the focal length. Thus $\varphi / 2 \approx$

202 Chapter ${ }_{5}$ Geometrical Optics-Paraxial Theory
$\tan ^{-1} \frac{1}{2}$, that is. $\varphi \approx 53^{\circ}$. If the object comes in from infinity, i_{i} must increase. The lens is then backed awa from the film plate to keep the image in focus, and the field of view, as recorded on the film whose peripher is the field stop, decreases. A standard SLR lens has a focal length in the range of about 50 to 58 mm and a field of view of 40° to 54°. With the film size kep Accordingly, wide-angle SLR lenses range from $f=$ 40 mm givn 0 aut 6 mm and 50° to a remarkule 920° 《the later being a special purpose lens wherein distortion is unavoidable) The telephoto has along focal length, roughly 80 mm or more Consequently, its field of view drops of rapidly, until It is only a few degrees at $f \approx 1000 \mathrm{~mm}$
The standard photographic objective must have a large relative aperture, $1 /(/ / / \#)$, to keep exposure times shori. Moreover, the image is required to be flat and undistorted, and the lens should have a wide angular field of veew as well. All of this is no mean task, and is not surprising that a high-quality innovative phote graphic objective remains particularly difficult to design, even with our marvelous, mathematical. elec tronic ietiot saviants. The evolution of a modern lens still begins with a creative insight that leads to a promising new form. In the past, these were laboriously perfected relying on intuition, experience, and. of course trial and error wh a succession of developmental lenses function without the need of numerous prototepes Many contemporary photographic objectives are vari ations of well-known successful forms Figure 5.112 illistrates the general configuration of several impor tant lenses, roughly progressing from wide angle to telephoto. Particular specifications are not given, because variationsare numerous. The Aviogon and Zeis Orthomeier are wide-angle lenses, whereas the Tessar and Biotar are often standard lenses. The Cooke triplet, described in 1893 by H. Denmis Taylor of Cooke and Sons, is still being made (note the similarity with the Tessar). It contains the smallest number of elements by which all seven third-order aberrations can essentially be made to vanish. Even earlier (ca. 1840), Joscf Max Petzual designed what was then a rapid (portrait) lens for Voightländer and Son. Its modern offshoors are

Figure 5.113 A telephco lens.
myriad. In general, a telephoto objective las: po front grouping and a distant negative rear grom ront grouping and a distant negative rear grong enses are shifted a bit so that the system is These are usually rather large and heavy it not 8 focal lengths, although calcium fluoride eleme egun to help in both respects. As can be seent 5.119 , the telephoto has a large effective focal ios .f.L., that is, it bebaves as if it were a positive lerith it a long focal length located a large distance in frat he focal plane. Thus while the image size is largel back focal length is conveniently short, allowing the to be handily slipped into a standard camera botian

PROBLEMS

5.1 We wish to construct a Cartesian oval sudh her he conjugate points will be separated by $11 \mathrm{ct}=\mathrm{Al} / \mathrm{f}$ de object is 5 cm from the vertex. If $n_{1}=1$
5.2* Figure 5.114 depicts a point source at 5 ari 5.2* Figure 5.114 depicts a point source at ar $\left(n_{i}>n_{i}\right.$). Show that for rays to propagate in the mitting medium as a parallel bundle, the interk be byperbolic with an eccentricity of $\left(n_{i} / n_{i}\right)$?
.3 Diagrammatically construct an ellipto-s. regative lens, showing the form of both rays an ronts as they pass through the lens. Do the saf. an oval-spheric positive lens.
.4* Making use of Fig. 5.115 , Snyers lave, and din : hat in the paraxial region $\alpha=h / s, \varphi=A / N$. and h / s_{i}, derive Eq. (5.8).

Figure 5.11
5.6 Prove that the minimum separation between coniugate real object and image points for a thin positive lens is $4 f$.
5.7 A biconcave lens ($n_{t}=1.5$) has radii of 20 cm and 10 cm and an axial thickness of 5 cm . Describe the image of an object 1 -inch tall placed 8 cm from the first vertex.
5.8* Use the thin-lens equation on the previous prob lem to see how far off it is in determining the tinal-image location.
5.9 An object 2 cm high is positioned 5 cm to the right of a positive thin lens with a focal length of 10 cm . of a positive thin lens with a focal length of 10 cm . Gaussian and Newtonian equations.
5.10 Make a rough graph of the Gaussian lens equation, that is, plot s_{2} versus s_{0}, using unit interval of f along each axis. (Get both segments of the curve.)
5.11 What must the focal length of a thin negativ ant that is 100 cm a virtual image 50 cm away of a right of the lents, locate and describe its image.
5.12* Compute the focal length in air of a thin biconvex lens ($n_{t}=1.5$) having radii of 20 and 40 cm . Locate and describe the image of an object 40 cm from the lens.
5.13 Determine the focal length of a planar-concave lens ($n_{1}-1.5$) having a radius of curvature of 10 cm . What is its power in diopters?
5.14* Determine the focal length in air of a thin pherical planar-convex lens having a radius of cir vature of 50.0 mm and an index of 1.50 . What, if anyhing, would happen to the focal length if the lens were placed in a tank of water?

15* We wish to place an object 45 cm in front of Whave it pace an object 45 cm in front of he lens. What must be the focal length of the appropri ate positive lens?
5.16 The horse in Fig. 5.27 is 2.25 m tall, and it stand wh its face 15.0 m from the plane of the thin len whose focal length is 3.00 m .
a) Determine the location of the image of the equine nose
b) Describe the image in detail-type, orientation, and nagnification
all is
d) If the horse's tail is 17.5 m from the lens, how long, nose-to-tail, is the image of the beast?
5.17* A candie that is 6.00 cm tall is standing 10 cm rom a thin concave lens whose focal length is -30 cm Determine the location of the image and describe it in detail. Draw an apprepriate ray diagram.
5.18^{*} iwo positive lenses with focal lengths of 0.30 m and 0.50 m are separated by a distance of 0.20 m . mall frog rests on the central axis 0.50 m in front of the first lens. Locate the resulting image with respect o the second lens.
5.19 The image projected by an equiconvex lens ($n=$ 1.50) of a frog $5,0 \mathrm{~cm}$ tall and 0.60 m from a screen is to be 25 cm high. Please compute the necessary radii of the lens
5.20 A thin double convex glass lens (with an index of 1.56) while surrounded by air has a $10-\mathrm{cm}$ foc ength. If it is placed under water (having an index 1.33) 100 cm beyond a small fish, where will the guppy's image be formed?
5.21 A homemade television projection system uses a large positive lens to cast the image of the screen onto
a wall. The final picture is enlarged three tiates although rather dim, it's nice and clear. If the tens a focal length of 60 cm , what should be the the between the screen and the wall? Why usea husc How should we mount the set with respect in thelola
5.22 Write an expression for the focal length a thin lens immersed in water $\left(n_{w}=\frac{4}{4}\right)$ in term focal length when its in water
5.23* A convenient way to measure the focal of a positive lens makes use of the following fir pair of conjugate object and (real) image points (s) P) are separated by a distance $L>4 f$, there will b locations of the lens, a distance d apart, for whide same pair of conjugates obtain. Show that

$$
f=\frac{L^{2}-d^{2}}{4 L}
$$

Note that this avoids measurements made specise from the verter, which are generally not cant inots
5.24 An equiconvex thin lens L_{1} is cemented in mate contact with a thin negarive lens, L_{2}, such tby? combination has a focal length of 50 cm in air. Hituer adices are 1.50 and 1.55 , respectively, and if the ber length of L_{2} is -50 cm , determine all the radiif an ature.
5.25 Verify Eq. (5.34), which gives M_{T} faractertims tion of two thin lenses.
5.26 Compute the image location and magnifie 5.2 object 30 cm from the front doublet of $t h$ of an object 30 cm from the front doublet of comber finding the effect of each lens separately. Make of appropriate rays.

Figure 5.116
 sinpler.
690* Fedraw the telescope in Fig. 5.101, takin 239 kedraw the telescope in Fig, 5.101, takin ugranage of the fact that the intermediate image can rouchi
6.30 2.0nsider the case of two positive thin lenses, L_{1} and L_{2}, ,epparated by 5 cm . Their diamerers are 6 and Chectively, and their focal lengths are $f_{1}-9 \mathrm{~cm}$ decm. If a diaphragm with a hole 1 cm in illameter is located between them, 2 cm from L_{2}, find (a) Citure stop and (b) the locations and sizes of for an axial point, $S, 12 \mathrm{~cm}$ in frent of (to
5.31 隐登e a sketch roughly locating the aperture stop mifeirance and ex it pupils for the lens in Fig. 5.117.

5.33 Draw a ray diagram locating the images of a point ource as formed by a pair of mirrors at 90° (Fig. 5.119).

Figue 5.119

34* Make a sketch of a tay diagram locating the mages of the arrow shown in Fig. 5.120.

.35 Show that Eq. (5.49) for a spherical surface is equally applicable to a plane mirror
5. 86 Locate the image of a paperdip 100 cm away rom a convex spherical mirror having a radius of curvature of 80 cm .
5.37* Describe the image you would see standing 5 feet from, and looking directly toward, a hrass bail foot in diancter hanging in front of a pawn shop.
5.38 The image of a red rose is formed by a concave pherical mirtor on a screen 100 cm away, If the rose $5 . \mathrm{cm}$ from the mirror, determine its radius of air vature
5.39 From the image configuration determine the shape of the mirror hanging on the back wall in van Eyck's paint:ng of John Amoljini and His Wife (Fig 5.121)

Eigure 5.121 Detail of john Amolfani wand His Wife by Jan van

Figure 5.122 Venus and Cupad by Diego Rodriguez de Silva y Velásquez-National Callery, London.

igure 5.123 The Bar at the Folies Bergeires by Édouaryll Courtauld Institute Galleries, London.
5.47 Looking into the bowl of a soupspoon, a man anding 25 gime refected with解 vature of the spoon
5.48* A large upright convex spherical mirror in an musement park is facing a plane mirror 10.0 m away A girl 1.0 m tall standing midway between the two sces herself twice as tall in the plane mirrot as in the spherical one. In other words, the angle subten ded at the observer by the intage in the plane mirror is twice the angle subtended by the innage in the spherical mirror. What is the focal length of the latter?
5.49* The telescope depicted in Fig. 5.124 consists of two spherical mirrors. The radius of curvature is 2.0 m for the larger mirror (which has a hole through its center) and 60 cm for the smaller. How far from the smaller mirror should the film plane be located if the object is a star? What is the effective focal length of the system?

5.50* Suppose you have a concave spherical mirror with a focal length of 10 cm . At what distance must an object be placed if its image is to be erect and one and a half times as large? What is the radius of curvature of the mirror? Check with Table 5.5 .
5.51 Describe the image that would result for an object 3 inches tall placed 20 cm from a spherical concave shaving mirror having a radius of curvature of -60 cm .
5.52* Figures 5.125 and 5.126 are taken from an introductory physics book What's wrong with them?

Figure 5.125

Figure 5.12
5.53 Figure 5.127 shows a lens system, an object, and the appropriate pupils. Diagrammatically locate the image.
5.54 Referring to the dove prism in Fig. 5.60. rotate 5 through 90 about an axis along the ray direction. ketch the new configuration and determine the angle hrough which the image is rotated.
5.55 Determine the numerical aperture of a single clad optical fiber, given that the core has an index of 1.62, and the clad 1.52. When immersed in air, what is its maximurn acceptance angle? What would happen to a ray incident at, say, 45° ?
5.56 Given a modern fused silica fiber with an attenu5.5ion of $0.2 \mathrm{~dB} / \mathrm{km}$, how far can a signai travel along it
ation before the power level drops by half?
5.57 The number of modes in a stepped-inge fibar is provided by the expression

$$
N_{m}=\frac{1}{2}\left(\pi D \mathrm{NA} / \lambda_{0}\right)^{2} .
$$

Given a fiber with a core diameter of $50 \mu \mathrm{~m}$ and ${ }^{\text {a }} \mathrm{m}$ 1.482 and $n_{t}=1.500$, determine $N_{1,}$, when thetie illumirated by an L.ED emitting at a central war? of $0.85 \mu \mathrm{~m}$.
5.58* Determine the intermodial delay (in nill) fa stepped-index fiber with a cladding of index and a core of index 1.500 .
5.59 Using the information on the eye in Section compute the approximate size (in millinetety mage of the Moon as cast on the retiva. The a diameter of 2160 miles and is roughy
from here, although this, of course, varies
5.65 A ficidtens, as a zule, is a positive lens placed at 5.65 A fieldens, as a zule, is a positive iens placed at for neary the intermediate image plane in order to
colled the rays that would otherwise miss the next lens colled the rays that would otheiwise miss the next lers
in the system. In effect, it increases the field of yjew in the system. In effect, it increases the fied of siew
without changing the power of the sfstem. Redraw the without changing the power of the sfstem.
ray diagram of the previous problem to include a field lens. Show that as a consequerce the cye relief is reduced somewhat.
5.66* Describe completely the image that nesuls when a bug sits ar the vertex of a thin posicive lens. How doe this relace directly to the manner in which a held-len works (see previous problem)?
5.67* It is determined that a patient has a near point at 50 cm . If the eye is approximately 2.0 cm long.
a) How much power does the refracting systern have when iocused on an object at infinity? When focused at 50 cm ?
b) H ow much accommodation is required to see an object at a distance of 50 cm :
c) What power must the eye have to set clearly an objed at the standard near-point distance of 25 cm? d) How much power should be added to the patient's vision system by a correcting lens?
5.68* An optometrist finds that a farsighted person has a near point ar 125 cm . What power will be required for contact lenses if they are effectively in move that poil hook can be read comfortably? Use the fact that if the object is imaged at the near point, it can be seen theabect is bed at the near point, it can be seen dearly
5.69 A farsighted person can see very distant mouiains with relaxed eyes while wearing +3.2 -D contac lenses. Prescribe spectacle tenses that will serve just as

well when worn 17 mm in front of the cornea. Locate and compare the far point in both cases.
5.70* A jeweler is examining a diamond 5.0 mm in diameter with a loupe having a focal length of 25.4 mm
a) Determine the maximum angular magnification of the loupe.
How big does the stonc appear through the magniker?
c) What is the angle subtenced by the diamond at the unaided eye when held at the near point?
d) What angle does it subtend at the aided eye?
5.71 Suppose we wish to make a microscope (that can be used with a relased eye) out of two positive lenses, both with a focal length of 25 mm . Assuming the object is positioned 27 mm from the objective, (a) how far apart should the lenses be, and (b) what magnification
can we expect?
5.72* Figure 5.130 shows a glancing-incidence x-ray
focusig system designed in 1952 by Hans Wolter How focusing system designed in 1952 by Hans Wolter. How
does it work? Microscopes with this type of system have does it work? Microssopes with this type of system have
been used to photograph, in x-rays, the implosion of been used to photograph, in x-rays, the implosion of
fuel pellet targets in laser fusion research. Similar x-ray optical arrangements have been used in astronomical telescopes (Fig. 3.40).

(b)

Figure 5.130 (a) X -ray focusing system. (t) X -ray mirrors (cthod
courtesy Lawrence Livermose National Laboratory.)

MORE ON GEOMETRICAL OPTICS

$T_{\text {ic preendog dapler, for the most part, dealt with }}$ paraxial tincry stapplied totha spherical lens systems. paraxial The two piedgumant approximations were, rather chuinirly, los we had thin Jenses and that first-order itheny xas mitioen for their analysis. Neiner of thes stons can be maintained throughout the design Gigion optical system, but, taken together, they the basis for a first rough solution. This chapter yethings a bit further by examining thick lenses Grations: even at that, it is only a beginning 11- Remert of computerized iens design requires a cruainshift in emphasis--there is liutle need to do wha compuier can dial der. Move, the sheer weall a bit of judicious proming to avoid a plethora of pedantry.
6.I OKKLENSES AND LENS SYSTEMS
le 6.1 depicts a thick lens (i.e., one whose thicknes no means negigible). As we shall see. it coul well be envisioned more generally as an optical aillowing for the possicility that it consists of of simple lenses, not merely one. The first and and points, or if you like, the object and image and F_{i}, can conveniently be measured from the atermost) vertices. In that case we have the 4i. When extended, the incident and emerged

Figure 6.1 A thick lens.
rays will meet at points, the locus of which forms a curved surface that may or may not reside within the lens. The surface, approximating a plane in the paraxial region, is termed the principal plane (see Section 6.3.1) Points where the primary and secondary principal planes (as shown in Fig. 6.1) intersect the optical axis are known as the first and second principal points, H_{1} and H_{2}, respectively. They provide a set of very useful references from which to measure several of the system parameters. We saw earlier (Fig. 5.19 , p. 140) that a ray traversing the lens through its optical center emerge parallel to the incident direction. Extending both the incoming and outgoing rays until they cross the optical axis locates what are called the nodal points, N_{1} and N_{2} in Fig. 6.2. When the lens is surrounded on both sides points will be coincident. The six points, wo focal, two principal and two nodal, constiure che cardinal point of the system. As shown in Fig. 6.3, the principal planes can lie completely outside the lens system. Here although differently configured each iens in either group has the same power. Observe that in the symmetrical lens the principal planes are, quite reasonably symmetrically located. In the case of either the planarconcave or planar-convex lens, one principal plane is tangent to the curved surface-as should be expected from the definition (applied to the paraxial region). In contrast, the principal points can be external for meniscus lenses. One often speaks of this succession of shapes with the same power as exemplifying lens bending. A

Figure 6.2 Nodal points.

rule of thumb for ordinary glass lenses in air is that th separation $\overline{\bar{H}_{1} H_{2}}$ roughly equals one third the len thickness $\overline{V_{1} V_{2}}$.
The thick len
pherical refracting surfaces separated consisting of twe etween their vertices, as in Section 5.2 .3 , whe? hin-lens equation was derived. After a great algebraic manipulation,* wherein d is not neegl. ne arrives at a very interesting result for the thi immersed in air. The expression for the con points once again can be put in the Gaussian to

$$
\frac{1}{s_{0}}+\frac{1}{s_{1}}=\frac{1}{f},
$$

provided that both these object and image dista? measured from the first and second principa espectively. Moreover, the effective focal t simply the focal length, f, is also reckoned with, respec o the principal planes and is given by

$$
\frac{1}{f}=\left(n_{t}-1\right)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{\left(n_{t}-1\right) d}{n_{t} R_{1} R_{2}}\right]
$$

The principal planes are located at distances of h_{1} and $\overline{V_{2} \mathrm{H}_{2}}=h_{2}$, which are positive when the?
to the right of their respective verices. Figure 6.4 and Phssical Optics, p. 5 .

armeenrecof the various quantities. The values the arrany are given by

$$
h_{1}--\frac{f\left(n_{i}-1\right) d}{R_{2} m_{2}}
$$

$h_{1}=-\frac{f\left(n_{i}-1\right) d}{R_{2} m_{2}}$
(6.3)
and

$$
h_{\mathrm{z}}=-\frac{\int\left(n_{\mathrm{t}}-1\right) d}{\bar{R}_{\mathrm{t}} n_{t}} .
$$

the same way the Newtonian form of the lens In the same way the Nrident from the similat triangles復6.4. Thus

$$
x_{1} x_{0}-f^{2}
$$

a kog $255 f$ is given the present interpretation. And fuen die sant triangles

$$
\begin{equation*}
M_{T}=\frac{y_{i}}{y_{a}}--\frac{x_{i}}{f}=-\frac{f}{x_{0}} . \tag{6.5}
\end{equation*}
$$

Fif $d \rightarrow 0$, Eqs. (6.1), (6.2). and (6.5) are transthe thin-lens expressions (5.17), (5.16), and a numerical example, let's find the image for an object positioned 30 cm from the vertex onvex lens having radii of 20 cm and 40 cm , the walle I cm , and an index of 1.5 . From Eq. (6.2) $\left.\frac{1}{f}-12.5-1\right)\left[\frac{1}{20}-\frac{1}{-40}+\frac{(1.5-1) 1}{1.5(20)(-40)}\right]$
$\sqrt{f}=263 \mathrm{~cm}$. Furhermore,

$$
\mathrm{m}_{i}=-\frac{26.8(0.5) 1}{-40(1.5)}=+0.22 \mathrm{~cm}
$$

and

$$
h_{z}=-\frac{26.8(0.5) 1}{20(1.5)}=-0.44 \mathrm{~cm},
$$

which means that H_{1} is to the right of V_{1}, and H_{g} is to the left of V_{2}. Finally, $s_{c}-90+0.22$, whence

$$
\frac{1}{30.2}+\frac{1}{s_{i}}-\frac{1}{26.8},
$$

and $s_{1}-298 \mathrm{~cm}$, measured from H_{2}.

Figure 6.5 A compound thick lens.

The principal points are conjugate to each other. In other words, since $f=s_{u} s_{i} / s_{u}+s_{i}$, when $s_{s}=0, s_{1}$ must be zero, because f is finite and thus a point at H_{1} is imaged at H_{2}. Furthermore, an object in the first principal plane ($x_{o}=-f$) is imaged in the second principal plane ($x_{1}=-f$) with unit magnification ($M_{T}=1$). It is for this reason that they are sometimes spoken of as unil planes. Hence any ray directed toward a point on the first principal plane will emerge from the lens as if it originated at the corresponding point (the same distance above or below the axis) on the second principal plane.

Suppose we now have a compound lens consisting of two thick lenses, L_{1} and L_{2} (Fig. 6.5). Let s_{01}, s_{1}, and f_{1} and s_{02}, s_{2}, and f_{2} be the object and image distances and focal lengths for the two lenses, all measured with transverse magnification is the product of the the transverse magnifcation is the product of the mag
nifications of the individual lenses, that is,

$$
\begin{equation*}
M_{r}=\left(-\frac{s_{1}}{s_{01}}\right)\left(-\frac{s_{1} 2}{s_{02}}\right)=-\frac{s_{i}}{s_{0}}, \tag{6.7}
\end{equation*}
$$

where s_{o} and s_{i} are the object and image distances for the cornbination as a whole. When s, is equal to infinity the combination as a whole. When s_{s}, is equal to infi
$s_{q}-s_{01}, s_{i 1}=f_{1}, s_{s z}--\left(s_{1}-d\right)$. and $s_{s} \quad f$. Since

$$
\frac{1}{s_{c q}}+\frac{1}{s_{i 2}}-\frac{1}{f_{z}},
$$

it follows (Problem 6.1); upon substituting into Eq. (6.7) that
or

$$
-\frac{f_{1} s_{v 2}}{s_{s 2}}=f
$$

$$
f=-\frac{f_{1}}{s_{\mathrm{c}}}\left(\frac{s_{\mathrm{c} 2} f_{2}}{s_{\mathrm{c} 2}-f_{2}}\right)^{-} \quad-\frac{f_{1} f_{2}}{s_{i 1}-} d+f_{2} .
$$

Hence

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}} \tag{0.8}
\end{equation*}
$$

This is the effective focal length of the combination of two thick lenses where all distances are measured from principal planes. The principal planes for the system as

Figure 6.6 A compound Iens.
whole are located using the expressions

$$
\overline{H_{11} H_{1}} \quad \frac{j d}{f_{2}}
$$

and

$$
\overline{H_{22} H_{2}}=-\frac{f d}{f_{1}},
$$

which will not be derived here (see Section laill have in effect found an equivalent thick-lens re ion of the compound lens. Note that if the lion of the compound lens. Note that if the cis enses are thin, the pairs of points H_{11}, H_{12} 管期,
H_{22} coalesce, whereupon \& becomes the center lens separation, as in Section 5.2.3. Fur durnit returning to the thin lenses of Fig. 5.31 shiere ! $f_{2}=20$, and $d=10$. as in Fig. 6.6,

$$
\frac{1}{f}=\frac{1}{-30}+\frac{1}{20}-\frac{10}{(-30)(20)}
$$

$f=30 \mathrm{~cm}$. We tound earlier (p.148) that lifit 40 cm and f.f.1. $=15 \mathrm{~cm}$. Moreover, since thenc are 16 lenses, Eqs. (6.9) and (6.10) can be written as
and

$$
\overline{O_{1} H_{1}}-\frac{30(10)}{20}-+15 \mathrm{~cm}
$$

$$
\overline{O_{2}} \overline{H_{2}}-\frac{30(10)}{-30}-+10 \mathrm{~cm} .
$$

Both are positive, and therefore the planes il il ight of O_{1} and O_{2}, respectively. Both competed agree with the results depicted in the diagram.
at the first surface, locating where the transmitted ray then strikes the second surface, applying the equation nce again, and so on all the way because nonmeridional ere traced almost exclusive pen siderably morecomplicated to deal with mathematically, The distinction is of less imporcance to a hizh-speed electronic computer (Fig. 6.7) which simply takesa trifle longer to make the trace. Thus, whereas it would probably take 10 or 15 minutes for a skilled person with a desk calculator to evaluate the rrajectory of a single kew ray through a single surface, a computer migh requize less than a thomsand of a second for the same job, and equally important, it would be ready for the next calculation with undiminished enthusiasm
The simplest case that will serve to illustrate the raytracing process is that of a paraxial, meridional ray raversing a thick spherical lens. Applying Snell's law in Fig. 6.8 at point P_{1} yields

$$
n_{i 1} \theta_{t 1}-n_{t 5} \theta_{11}
$$

or
$n_{11}\left(\alpha_{11}+\alpha_{1}\right)=n_{t 1}\left(\alpha_{t 1}+\alpha_{1}\right)$.

(14)

Chapter 6 More on Geometrical Optics

Figure 6.8 Ray geometry,

ot very insightful, since we merely replaced 12) by the symbol y_{1} and then let $y_{11}=y_{11}$. of business is for purely cosmetic purposes, irlsee in a moment. In effect, it simply says that it of reference point P_{t} above the axis in the thedium $\left(Y_{i}\right)$ equals its height in the cransmitFiums (y_{n})-which be reast in matrix form as
$\left[\begin{array}{c}n_{11} \alpha_{n 1} \\ y_{11}\end{array}\right]-\left[\begin{array}{cc}1 & -\mathscr{V}_{1} \\ 0 & 1\end{array}\right]\left[\begin{array}{c}n_{i 1} \alpha_{i 1} \\ y_{i 1}\end{array}\right]$.
(6.16)

TElis @ould equally well be written as
$\left[\begin{array}{l}\alpha_{11} \\ y_{11}\end{array}\right]=\left[\begin{array}{cc}n_{i 1} / n_{41} & -Q_{1} / n_{41} \\ 0 & 1\end{array}\right]\left[\begin{array}{l}\alpha_{21} \\ y_{11}\end{array}\right] . \quad(6 . i z)$

$$
n_{21}\left(\alpha_{i 1}+y_{1} / R_{1}\right)=n_{n_{1} 1}\left(\alpha_{i 1}+y_{1} / R_{1}\right) .
$$

Rearranging terms, we get

$$
n_{t 1} \alpha_{11}=n_{i 1} \alpha_{i 1}-\left(\frac{n_{41}-n_{4 I}}{-\alpha_{1}}\right) y_{1},
$$

but as we saw in Section 5.7.2, the power of a single refracting surface is

$$
\mathscr{F}_{1}=\frac{\left(n_{t 1}-n_{i 1}\right)}{R_{1}} .
$$

Hence

$$
\begin{equation*}
n_{11} \alpha_{t 1}=n_{i 1} \alpha_{11}-\mathscr{g}_{1} y_{1} . \tag{6.12}
\end{equation*}
$$

This is often called the reftaction equation pertaining to the first interface. Having undergone refraction at point P_{1}, the ray advances through the homogeneous medium f the lens to point P_{2} on the second interface. The height of \boldsymbol{P}_{2} can be expressed as

$$
y_{2}=y_{1}+d_{21} \alpha_{41}
$$

(6.13)
on the basis that $\tan \alpha_{t 1} \sim \alpha_{t 1}$. This is known as the transfer equation. because it allows us to follow the ray from P_{1} to P_{2}. Recall that the angles are positive if the paraxial recion $d_{n} \approx \overline{V_{1}}$ and v_{2} is easily computed Equations (6.11) and (6.12) are then used successively o trace a ray through the entire system. Of course these ate meridional rays and because of the lenses
symmetry about the optical axis, such a ray retming the same meridional plane throughout its sojor: In process is two-dimensional; there are two equatio: two unknowns, α_{11} and y_{2}. In contrast, a skew ray. bave to be treated in three dimensions.

6.2.1 Matrix Methods

In the beginning of the 1980s, T. Smith formulat? rather interesting way of handling the $a t=1$ rather interesting way of handling the ray-trany equations. The sirnple linear form of the expressi and the reperitive manner in which they are
suggested the use of matrices. The processes of tion and transfer might then be performed matb cally by matrix operators. These initial insights not widely apprectated for almost thirty years. the early 19605 saw a rebirth of interest in this which is now hourishing." We shall only on of the salient features of the method, leaving am detailed study to the references.
Let's begin by writing the formulas
and

Gaussiar Optics.", Am. J. Phys 32, 90 (1964): W. Brouwer, Statistical Optics: or A. Nussbaum, Ceometric Optrs
 is curally a mater of preference. In any case, these can be envisioned as rays on eifection. Accordingly, bifore and the other after refraction. Accordingly, bere and for the two rays, we can write

$$
t_{t 1}=\left[\begin{array}{c}
n_{i 1} \alpha_{t 1} \\
y_{i 1}
\end{array}\right] \quad \text { and } \imath_{i 1}=\left[\begin{array}{c}
n_{11} \alpha_{i 1} \\
y_{i 1}
\end{array}\right] . \quad\langle 6.18\rangle
$$

The $\sum \times 2$ matrix is the refraction matrix, denoted as
$\xi_{1}=\left[\begin{array}{cc}1 & -M_{1} \\ 0 & 1\end{array}\right], \quad$ (6.19)
so Eq. (6.16) can be concisely stated as

$$
\begin{equation*}
i_{t 1}-A_{1^{*} i_{1}} \tag{6.20}
\end{equation*}
$$

which We ways that \mathscr{F}_{1} transforms the ray i_{1} into the
Shel ingig refraction at the first interface. From Fig.
and

$$
n_{i 2} \alpha_{i 2}=n_{i 1} \alpha_{11}+0
$$

(6.21)
and

$$
\begin{equation*}
y_{k 2}=d_{21} \alpha_{i 1}+y_{t 1}, \tag{r.}
\end{equation*}
$$

stereve $\chi_{42}=n_{t 1}, \alpha_{i 2}{ }^{\circ} \alpha_{i 1}$, and use was made of Eq.

$$
\left[\begin{array}{c}
n_{i 2} \alpha_{i 2} \\
y_{i 2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
d_{21} / n_{11} & 1
\end{array}\right]\left[\begin{array}{c}
n_{t 1} \alpha_{11} \\
y_{t 1}
\end{array}\right]
$$

The transfer matrix

$$
\mathscr{F}_{21}=\left[\begin{array}{cc}
1 & 0 \\
d_{21} / n_{41} & 1
\end{array}\right] \quad \text { (O.24) }
$$

takes the transmitted ray at P_{1} (i.e., \mathbf{t}_{11}) and transforms it into the incident ray at P_{2} :

$$
x_{i 2}=\left[\begin{array}{c}
n_{12} \alpha_{i z} \\
y_{i z}
\end{array}\right] .
$$

Hence Eqs. (6.21) and (6.22) become simply

$$
z_{i=2}=\mathscr{F}_{21} z_{t 1}
$$

If we make use of Eq. (6.20), this becomes

$$
r_{i 2}=\mathscr{F}_{21} \mathscr{F}_{1+1}^{z_{1}} .
$$

The 2×2 matrix formed by the product of the transte and refraction matrices $\mathscr{Z}_{21} \mathscr{F P}_{1}$ will carry the ray incident at P_{1} into the ray incident at P_{2}. Noicc that the deter minant of \mathscr{S}_{21}, denoted by $\left|\mathscr{F}_{21}\right|$, equals 1 , that is, (1)(1) (0) $\left(d_{21} / n_{1}\right\}=1$. Similarly $\left|\mathscr{R}_{1}\right|=1$, and since the deter minant of a matrix product equals the product of the individual determinants, $\left|\mathscr{F}_{2} \mathscr{R}_{1}\right|-1$. This provides a quick check on the computations. Carrying the procedure through the second interface (Fig 6.8) of th lens, which has a refraction matrix \mathscr{R}_{2}, it follows that
$t_{i 2}=\mathscr{R}_{2_{i 2}}$,
or from Eq. (6.26)

$$
z_{t 2}-\mathscr{G}_{2} \mathscr{F}_{21} \mathscr{B}_{1 z_{i 1}}
$$

The system matrix of is defined as

$$
A=\mathscr{R}_{2} \mathscr{F} \mathscr{B}_{1}
$$

and has the form

$$
\mathscr{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Since
$\mathscr{A}=\left[\begin{array}{cc}1 & -\mathscr{D}_{2} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ d_{21} / n_{11} & 1\end{array}\right]\left[\begin{array}{cc}1 & -\mathscr{S}_{1} \\ 0 & 1\end{array}\right]$
or

${ }_{21} 8$ Chapter 6 More on Geometrical Optics
we can write
$\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
$=\left[\begin{array}{ccc}1-\mathscr{D}_{2} d_{21} / n_{2 i} & -\mathscr{D}_{1}+\left(\mathscr{2}_{2} \mathscr{D}_{1} d_{21} / n_{11}\right) & \mathscr{O}_{2} \\ d_{21} / n_{t 1} & -\mathscr{D}_{1} d_{21} / n_{11}+1\end{array}\right]$,
and again $|\mathscr{A}|=1$ (Problem 6.15). The value of each lement in of is expressed in terms of the physicallens element in of is expressed in terms of the physical lens parameters, such as thickness, index, and radif (hia Ω). determined solely by its make-up, should be deducible from of. The system matrix in this case (6.31) transforms an incident ray at the first surface to an emerging ray at the second surface; as a reminder we will write it as w_{21}.
The concept of image formation enters rather directly (Fig. 6.9) after introduction of appropriate object and image planes. Consequendy, the hirst operator s_{10} transfers the reference point from the object (i.e., P_{0} to P_{1}). The next operator \mathscr{A}_{21} then carries the ray through the lens, and a final transfer $\mathscr{F}_{i 2}$ brings it to the image plane (i.e., P_{1}). Thus the ray at the image point (z_{j}) is given by
where 1_{O} is the ray at P_{O}. In component form this is
$\left[\begin{array}{c}n_{I} \alpha_{t} \\ y_{t}\end{array}\right]-\left[\begin{array}{cc}1 & 0 \\ d_{52} / n_{1} & 1\end{array}\right]\left[\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{24}\end{array}\right]$

$$
\times\left[\begin{array}{cc}
1 & 0 \\
d_{1} o / n_{O} & 1
\end{array}\right]\left[\begin{array}{c}
n_{O} \alpha_{O} \\
y_{O}
\end{array}\right] .
$$

(6.93)

Notice that $\mathscr{T}_{10} t_{0}=\xi_{11}$ and that $\mathscr{A}_{21_{11}}-q_{12}$, hence $\bar{T}_{I 2_{12}}=i_{I}$. The subscripts $O, 1,2, \ldots, I$ correspond to reference points P_{O}, P_{1}, P_{2}, and so on, and subscripts i and t denote the side of the reference point (i.e. whether incident or transmitted). Operation by a refrac tion matrix will change i to t but not the reference poin designation. On the other hand, operation by a transfer matrix obviously does change the latter.
Ordinarily the physical significances of the com
ponents of as are found by expanding out Eq - (6.33), but this is too involved to do here. Instead, let's return

Figure 6.9 Image geometry.
to Eq. (6.31) and examine several of the terma) example,

$$
-a_{12}-\mathscr{S}_{1}=\mathscr{D}_{2}-\mathscr{Q}_{2} \mathscr{O}_{1} d_{21} / n_{11} .
$$

If we suppose, for the sake of simplicity, tite listion is in air, then

$$
\mathscr{D}_{1}-\frac{n_{n_{1}}-1}{R_{1}} \text { and } \mathscr{Z}_{2}=\frac{n_{21}-1}{-R_{2}}
$$

as in Eqs. (5.70) and (5.71). Hence

$$
-a_{12}-\left(n_{11}-1\right)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{\left.\left(n_{42}-1\right)\right\}_{10}}{\left.R_{1} R_{2} n_{12}\right)_{1}}\right.
$$

But this is the expression for the focal lengt of a tuin lens (6.2); in other words

$$
a_{12}=-1 / f
$$

It the imbedding media were different on tadf. side σ the lens (Fig. 6.10), this would become

$$
a_{12}=-\frac{n_{i 1}}{f_{0}}=-\frac{n_{i 2}}{f_{i}} .
$$

Simijarly it is left as a problem to verify that

$$
\overline{V_{1} H_{1}}=\frac{\pi_{11}\left(1-a_{11}\right)}{-a_{12}}
$$

and

$$
\overline{V_{2} \cdot H_{2}}=\frac{n_{t 2}\left(a_{22}-1\right)}{-\Lambda_{12}},
$$

which locate the principal points.

Figure 6.10 Princtipal planes anded focal leng ths.

As an example of how the technique can be used, Wan alic of The system matrix has the form
where
$\left[\begin{array}{rr}1.257 \\ 1.616 & 1\end{array}\right], \quad \mathscr{T}_{32}=\left[\begin{array}{cc}1 & 0 \\ \frac{0.189}{1} & 1\end{array}\right]$,

$$
\Phi_{43}=\left[\begin{array}{cc}
1 & 0 \\
\frac{0,081}{1.6053} & 1
\end{array}\right]
$$

We in binh Furthermore,

$$
\begin{gathered}
\boldsymbol{a}_{1}=\left[\begin{array}{cc}
1 & \frac{1.6116-1}{1.628} \\
1
\end{array}\right], \quad \operatorname{se}_{2}\left[\begin{array}{cc}
1 & -\frac{1-1.6116}{-27.57} \\
0 & 1
\end{array}\right], \\
s_{3}=\left[\begin{array}{cc}
1 & -\frac{1.6053-1}{-3.457} \\
0 & 1
\end{array}\right],
\end{gathered}
$$

and so on 䧹ultiplying out the matrices, in what is

Stuen witur for this lens. 1 thould be almoss silly to evaluate nuter languag, on paynua is well worth furtcr study
obviously a horrendous although conceptually simple calculation, one presumably will get

$$
s_{71}\left[\begin{array}{rr}
0.848 & -0.198 \\
1.338 & 0.867
\end{array}\right]
$$

and
As a last point, it is often convenient to consider a system of than lenses using the matrix representation. To that end, return to Eq. (6.31). It describes the system matrix for a single lens, and if we let $d_{21} \rightarrow 0$, it corre unit matrix, thus

$$
\mathscr{U}=\mathscr{R}_{2} \mathfrak{S}_{1} \quad\left[\begin{array}{cc}
1 & -\left\langle\mathscr{D}_{1}+\mathscr{T}_{2}\right\rangle \\
0 & 1
\end{array}\right] . \quad(6.38\rangle
$$

But as we saw in Section 5.7.2, the power of a thin lens \mathscr{D} is the sum of the powers of its surfaces. Hence

$$
\mathscr{A}=\left[\begin{array}{cc}
1 & -\mathscr{T} \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
1 & -1 / \dot{f} \\
0 & 1
\end{array}\right] . \quad
$$

In addition, for two thin lenses separated by a distance d, in air, the system matrix is

$$
\alpha=\left[\begin{array}{cc}
1 & -1 / f_{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
d & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 / f_{1} \\
0 & 1
\end{array}\right]
$$

or

$$
s-\left[\begin{array}{cc}
1-d / f_{2} & -1 / f_{1}+d / f_{1} f_{2}-1 / f_{2} \\
d & -d / f_{1}+1
\end{array}\right] .
$$

Clearly then,

$$
-a_{12}-\frac{1}{f}-\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}},
$$

and from Eqs. (6.36) and (6.37)

$$
\overline{O_{1} H_{1}}-f d / f_{2}, \quad \overline{O_{2} H_{2}}=-f d / f_{1},
$$

all of which by now should be quite familiar. Note how easy it would be with this approach to find the focal length and principal poinss for a compound lens composed of three, four, or more thin lenses.

6.3 ABERRATIONS

To be sure, we already know that firsi-order theory is no more than a good approximation-an exact ray trace or even measurements performed on a prototype system would certainly reveal inconsistencies with the corresp idealized conditions of Caussian optics are known as aberrations. There are two main types: chromatic aberrations (whic arise from the fact that n is actually a function of frequency or color) and monochromatic aberrations. The latter occur even with light that is highly monochromatic, and they in turn fall into two subgroupings. There are monochromatic aberrations that deteriorate the image, making it unclear, such as spherical aberration, coma, and astigmatism. In addition, there are aberrations that deform the image. for example, Petzoal feld curvature and distortion.
We have known all along that spherical surfaces in general would yield perfect imagery only in the paraxial region. Now we must determine the kind and extent of deviations that resula simply from using those sur
faces with finite apertures. By the judicious m tion of a systern"s physical parameters (e.g., the shapes, thicknesses, glass types, and separatio lenses, as well as the locations of stops), these a can indeed be minimized. In effect, one cance most undesirable faults by a slight change in of a lens here or a shift in the position of a. (very much like trimming up a circuit with smatl capacitors, coils, and pots). When it's all fan nwanted deformations of the wavefront ine passes through one surface will it is hoped, by

$$
\begin{aligned}
& \text { it traverses some other surfaces further down } \\
& \text { As early as } 1950 \text { ray-tracing programs }
\end{aligned}
$$

As early as 1950 ray-tracing programs were b eveloped for the new digital computers, and oftware. In the early 1960)s computerized le was a tool of the trade used by manufacturers wide. Today there are elaborate computer tor automatically" designing and analyzing t mance of all sorts of complicated optical Broadly speaking, you give the computer a qui (or merit function) of some sort to aim for essentially tell it how much of each aberration y illing to tolerace). Then you give it a roughly ystem (e.g., some Tessar configuration), which frst approximation meets the particular requirment Along with chat, you feed in whatever parametergite e held constant, such as a given f-number, focal lesp lens diameter, the field of view, or magnif atem and evaluate ine inage errors Havineto a leave to vary, say the curvatures and axialm rations of the elements, it will calculate the oppiat ffect of such changes on the guality factor, maf and then revaluate After a number of iterat will have changed the initial configuration se 6 nects the specified limits on aberrations. The design will still be a Tessar, but not the orial The result is. if you will, an optimum configuraty probably not the optimum. We can be fairly certy all aberrations cannot be made exactly zero 4 , real system comprising spherical surfaces. here is no currently known way to determine zero we can actually come. A quality facto hat like a crater-pocked surface in a multidirae

Lomputer will carry the design from one space to the next until it finds one deep enoughito mee titations. There satisfactory configuration. But Highth a perfe to tell if that solution corresponds to 1 Mo way to tell in that sending the computer out pagst again to meander along totally different mention all of this so that the reader may the current state of the art. In a word, it is but still incomplete; it is "automatic" bu
6.3.1 ~inochromatic Aberrations
xial treatment was based on the assumption at $\sin \varphi$ 数 as in Fig. 5.8, could be represented satisfac rily by φ alone; that is, the system was restricted to serating in an extremely narrow region about the adis, Obviously, if rays from the periphery of a to be included in the formation of an image
the Fintement $\sin \varphi \approx \varphi$ is somewhat unsatisfactory
isal thm we also occasionally wrote Snell's law simply $=n_{1} \theta_{t}$, which again would be inappropriate. In ent, if the first two terms in the expansion

$$
\begin{equation*}
\sin \varphi=\varphi-\frac{\varphi^{3}}{9!}+\frac{\varphi^{5}}{5!}-\frac{\varphi^{7}}{7!}+\cdots \tag{5.7}
\end{equation*}
$$

Thatse Piphotici
are retaned as an improved approximation, we hav the so-called third-order theory. Departures from first order theory that then result are embodied in the five primary aberations (spherical aberration. coma, astig matism, field curvature, and distortion). These were first studied in detail by Ludwig von Seidel (1821-1896) in the 1850 s. Accordingly, they are frequently spoken of as the Seidet aberranions. In addition to the hrst tw terms, smaller to be sure but sill concains many our Thus, there are most certainly higher-order aberrations The difference berween the results of exact ray tracin and the computed primary aberrations can therefor thought of as the sum of all contributing higher-order berrations. We shall restrict this discussion to the primary aberrations exclusively.

i) Spherical Aberration

Let's return for a moment to Section 5.2 .2 (p.134) where we computed the conjugate points for a singl refracting spherical interface. We found that for the paraxial region,

$$
\begin{equation*}
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{2}}{R} . \tag{5,8}
\end{equation*}
$$

If the approximations for ℓ_{0} and ℓ_{0} are improved a bir (Problem 6.29), we get the third-order expression:
$\left.\frac{n_{1}}{s_{n}}+\frac{n_{2}}{s_{\mathrm{i}}}=\frac{n_{2}-n_{1}}{R}+h^{2}\left[\frac{n_{1}}{2 s_{c}}\left(\frac{1}{s_{s}}+\frac{1}{R}\right)^{2}+\frac{n_{2}}{2 s_{i}}\left(\frac{1}{R}-\frac{1}{s_{\mathrm{i}}}\right)^{2}\right)_{(G .40)}\right]$.
The a dditional term, which varies approximately as h^{2} is clearly a measure of the deviation from. first-order theory. As shown in Fig. 6.12 , rays striking the surface
at greater distances above the axis $(h$) are focused neare the wertex. In brief, spherical aberration, or SA, corresponds to a dependence of focal length on aperture for nonparaxial rays. Similarly, for a converging lens, as in Fig. 6.13, the marginal rays will, in effect, be bent too much, being focused in front of the paraxial rays. Keep in mind that spherical aberration pertains only to cbjec points that are on the optical aris. The distance between he axial interseccion of a ray and the paraxial focus F_{i}, is known as the longitudinal spherical aberration

Figure 6.13 Spherical abectration for a lens. The envelope of the efracted rays is called a caustir. The inerssection of the marginal rays and the caustic hootes $\sum_{L c}$
or $\mathbf{i} \cdot \mathbf{S A}$, of that ray. In this case, the SA is pasitive. In or L, of that ray. In dis case, the A is pasitive. In contrast the marginal rays for a diverging lens will and we say that its spherical aberration is therefore regutive.
If a screen is placed at F_{1} in Fig. 6.13, the image of a star will appear as a bright cenural spot on the axis surrounded by a symmetrical halo delineated by the
cone of margnal rays. For an extended image, Si reduce the contrast and degrade the details. Thed above the axis where a given ray strikes this 8
called the traniverse (or lateral) spherical called the traniverse (or lateral) spherical abetrat or T.SA for short. Evidently, 5A can be redimen
stopping down the aperture--but that redrat stopping down the aperture-but that redrage if the grreen is moved to the position labeled y? mage blur will have its snallest diamster. This as the circle of least comfusion, and $\mathbf{\Sigma}_{2 c}$ is generald best place to ohserve the image. If a lens evt appreciable SA, it will bave to be refocuser a stopped down, because the pesition of Σ approach F, as the aperture decreases. The amount of spherical doerrases. The and focal length are fixed atan, when the object distance and the lems shape. For a lens, the norparaxial rays are too strongly berition we imagine the lens as roughly resembling two joined at their bases, it is evident that the innowasion will underge a minimum deviation when it makes, two. less, the same angle as doss the emerging yay (Sections. A striking example is illustrated in Fig. 6.14, simply turning the lens around markedly reduEn di A. When tbe object is at infinity a simple con convex lens that has an almost, but not quite side will suffer a minimum amount of spheriáa ane In the same way, if the object and image' ex to minimize SA A conbins of a conven and a diverging lens (as in an achromatic doublet) also be utilized to diminish spherical sherrationem Recall that the aspherical lenses of Section* completely free of spherical aberration for a spe pair of conjugate points. Moreover, Haryens stitu
an firgt to disconer that two such aval points have been tor sperial wartaces as well. These are shown in exis for spal which depicts rays issuing from P and problem to shov that the appropriate locations of P

(b)

(c)

and P^{\prime} are those indicated in the figure. Just as with the aspherical lenses, spherical lenses can be formed that have this same zero S A for the pair of points P and P^{\prime}. One simply grinds ancther surface of radius $\overline{P A}$ centered on P to form either a positive- or negativerueniscus lens. The nil-immersion microscope objective uses this principle to great advantage. The obiect under tudy is positioned at P and surrounded by oil of index 2: as in न.g. 6.16. P and P are the proper conjugate points for zero $S A$ for the first element, and P^{\prime} and $P^{\prime \prime}$ are those for the meniscus lens.

1) Coma

Coma, or comatic aberration, is an image-degrading, monochromatic, primary aberration associated with an object point even a short distance from the axis. Its actually be treated as planes only incin the "planes" can They are, in fact, principal curved surfaces (Fig 61). In the absence ol SA a parallel bundle of rays will focus at the axial point F_{i}, a distrance b.f.l. from the rear vertex. Yet the effective foral lengths and therefore the transverse magnifications will differ for rays praversing off-axis regions of the lens. When the image point is on the optical axis, this situation is of litule consequence,

294 Chapter 6 More on Geometrical Optics
but when the ray bundle is oblique and the image point. is off-ax is, coma will be evident. The dependence of M_{r} r on h, the ray height at the lens, is shown in Fig. 6.17. Here meridional rays traversing the extremities of the the rays in the vicinity of the principal tay (i,e., the ray that passes through the principal points). In this inthat passes through the principal points). In this in-
stance, the leatt magnification is associated with the marginal rays that would form the smallest image-the coma is said to be negative. By comparison, the coma in Fig. 6.18 is positive, because the marginal rays focus farther from the axis. Several skew rays are drawn from an extra-axial object point S in Fig. 6.19 to illustrate he formation of the geometrical comatic image of a point, Ohserve that each circular cone of rays whose endpoints ($1-2-9-4-1-2-8-4$) form a ring on the lens is imaged in what H. Dennis Taylor cailed a comatic circle on Σ_{i}. This case corresponds to positive coma, so the larger the ring on the lens, the more distant its comatic circle from the axis. When the outer ting is the intersection of marginal rays, the distance from 0 to 1 in the image is the kingenual coma, and due lengu from 3 on the energy in the image appears in the roughly triangular region between 0 and 3 . The coma flare, which owes its niame to its cometlike tail, is often thought to be the worst of all aberrations, primarily because of its asymmetric configuration.
Like SA, coma is dependent on the shape of the lens. Thus, a strongly concave positive-meniscus lens) with the object at infinity wili have a large negative coma. Bending the lens so that it becomes planar-convex $)$

Figure 6.17 Negative coma.
 significant. The particular shape it then has $\left(s_{0}\right.$, z almost convex-planar and nearly the configurafl minimum SA.
It is important to realize chat a lens that is welld for the case in which one conjugale point is at in fritubl may not pertform salisfactorily when the odjact the-shd in a system operating at finite conjugates, to corl two infinite conjugate corrected lenses, as in te In other words, since it is unlikely that a lens xith iti the In other words, since it is unikely that a leal length, which is also corrected id particular set of finite conjugates, can be bl

Figure 6.20 A combination of tivo infinile conjurate enses yieluing a system opcrating at finite cunjugates.
any one of them, except SA and Petzval curvature, wil be affected by the position of a stop, but only if one of the preceding aberrations is also present in the system Thus while SA is independent of the lacation along the axis of a stop, coma will not be, as long as SA is presen. This can be apprecaled by examining the representa tion in Fig. 6.21. With the stop at Σ_{1}, ray 3 is the chie ray, there is SA but no comsa; that is, the ray pairs meet on 3. If the stop is moved to Σ_{2}, the symmetry is upset, ray 4 becomes the chief ray, and the rays on either sid of it, such as 3 and 5 , meet above not on it-there is positive coma. With the stop ai $\Sigma_{s,}$ rays 1 and 3 intersect this way, controlled 2 ants of the aberration can be this way, contoled amouns ine iorder to cance coma in the system as a whole.
The optical sine theorem is an important relationship that must be introduced here even if srace preciude

Figure 621 The ctect of stop location on come
is formal proof．It was discovered independently in 1873 by Abbe and Helmholtr，although a different torm of it was given 10 years earlier by R．Clausius（of ther modymamics fame）．In any event，it states that

$$
\begin{equation*}
n_{0} y_{0} \sin \alpha_{4}=n_{n} \gamma_{2} \sin \alpha_{i z} \tag{1}
\end{equation*}
$$

where n_{0}, y_{s}, x_{8} ，and n_{2}, y_{3}, a_{4} are the index，height，and slope angle of a ray in object and image space，respec－ tively，at any aperture size＂（Fig．6．9）．If coma is to be
zero，

$$
\begin{equation*}
M_{T}=\frac{y_{i}}{y_{i}} \tag{5.24}
\end{equation*}
$$

must be constant for all rays．Suppose then that we send a marginal and a paraxial ray through the system．The former will comply with Eq－（ 6.41 ），the latter with it paraxiai version（in which $\sin \alpha_{a}=\alpha_{o p,}$ ， $\sin \alpha_{t}=\alpha_{q}$ ） Since M_{T} is to be consiant over the entire lens，w equate the magnification for both marginal and paraxial rays to get

$$
\frac{\sin \alpha_{n}}{\sin \alpha_{i}}=\frac{\alpha_{n j^{\prime}}}{\alpha_{i t}}=\text { constant } \quad \text { iots }
$$

which is known as the stime condition．A necessary criterion for the absence of coma is that the system mee the sine condition．If there is no SA，compliancy with the sine condicion will be both necessary and sufficient for zero coma．
It＇s an easy matter to observe coma．In fact，anyone who has focused sunlisht with a simple positive lens has no doubt seen the effeets of this aberration．A slight il of the lens，so that the nearly collimated rays from the Sum make an angle with the optical axis，will cause the focused spot to llare out into the characteristic comet shape．

iii）Astigmatism

When an object point lies an appreciable distance from the optical axis the incident cone of rays will strike the lens as y mmetrically，giving rise to a third primary
＊To be precise，the sine theorens is valid tor ah values of x_{u} only in the sagital plane（from the Latin sugita，meanivig arrow），which is disusssed in the nexi section．
aberration known as astigmatism．The word derive from the Greek ar，meaning not，and stigma，meanirt spot or point．To facilitate irs description，envision this meridional plane（also called the tangential plane）conss taining both the chief ray（i．e．，the one passing throug the center of the aperture）and the optical axis．The sagillal plane is then defined as the plane containing the chief ray，which，in addition，is perpendicular to the meridional plane（Fig．6．22）．Unlike the latter，which unbroken from one end of a complicated lens syste to the other，the sagital plane generally changes sio as the chief ray is deviated at the various elements Hence to be accurate we should say that there are egion with the rystem．Newe accudar with eac from the object point lying in a sagittal plane are termee
sagitual rajs．

Figure 6．22 The sagital and mexridional planes．

Wijure 6．23 Astigmatism．

In the case of an axial object point，the cone of rays图置ymmetrical with respect to the spherical surfaces of －lens．There is no need to make a distinction between Weridional ardel sagittal planes．The ray configurations in all planes containing the onptical axis are identical．In Whe absence of spherical aberration，all the focal lengths gre the same，and consequently all rays ar rive at a single Erus．In contrast，the configuration of an oblique parallel ray bundle will be different in the meridional Mind sagittal plares．As a result，the foccal lengths in chese怎nes will be different as well．In effect，here the meridional rays are tilted more with respect to the lens than are the sagittal rays，and they have a shorter focal the focal length difference depends effectively power of the lens（as opposed to the shape or index） fower of the lens（as opposed to the shape or index） matic difference，as it is often called，increases rapidly as the rays become more oblique，that is，as the object point moves further off the axis，and is，of course，zero Boaxis．
Having two distinct focal lengths，the incident comical aftelie of rays takes on \＆considerably altered form atter refraction（Fig，6．29）．The cross－section of the beann as it leaves the lens is inixially circular，but it年
gital plane，until at the langentini or mendional focus F_{T} ，the ellipse degenerates into a line（at least in third order theory）．All rays from the object point traverse this lime，which is known as the primary image．Beyond hus point the beam＇s cross－section rapidly opens out uatil it is again circular．At chat location the image is ircular blur known as the cercle of Least confusion．Moving further from the lens the beams cross－scction agait deforms into a line，called the secondary image．This time it＇s in the meridional plane at the sagitial focus．F_{s} ． Renember that in all of this we are assuming the absence f SA and corta．
Since the circle of least confusion increases in the ubject moves furticer aft－axis），the inces（i，e．．as deteriorate losing defnition around the image wil hat the secondary line image will change in orientation with changes in the object plosition，but it will aluay point toward the optical axis，that is，it will be radial， Similarly the primary line image will vary in orient tion．but it will remain normal to the secondary image This arrangement causes the interesting effect shown in Fig． 6.94 when the object is made up of radial and angential elements．The primary and secondary image are，in effect，formed of transverse and radial dashe which increase in size with distance from the axis．I the latter case，the dashes point like arrows toward the conter of the image－ergo．the name sagitta．

Figure 6.24 Images in the tangent and sagitual focal planes.

The existence of the sagital and tangential foci can be verified directly with a fairly simple arrangement Place a positive lens with a short foral length (about 10 or 20 mm) in the beam of a He-Ne laser. Position another positive test lens with a somewhat longer focal length far enough away so that the now diverging beam fills that leris. A convenient object, to be located between the two lenses, is a piece of ordinary wire screening (or a transparency). Aign it so the wires are horizontal (x) and vertical (y). If the test tens is rotated roughly 45° about the vertical (with the $x-y$-, and z-axes fixed in the lens), astignatism should be observable. The meridional is the $x z$-plane (z being the lens axis, now: at about 45° to the laser axis), and the sagittal plane corresponds to the plane of y and the laser axis. As the Weached where the horizontal wires are in focus on a screen beyond the lens, whercas the vertical wircs a not. This is the locarion of the sagital focus. Each point on the object is imaged as a short line in the meridional (horizontal) plane, which accounts for the fact that only the horizontal wires are in focus. Moving the mesh slightly closer to the lens will bring the vertical lines into clarity while the horizontal ones are blurred. This is the tangential focus. Try rotatirg the mesh about the central laser axis while at either focus.
Note that unlike visual astigmatism, which arose from an actual asymmetry in the surfaces of the optical sys-
em, the third-order aberration by that same nam pplics to spherically symmetrical lenses.
Mirrors, with the singular exception of the plan mirror, suffer much the same monochromatic aberrat ions as do lenses. Thus although a paraboloidal mirros its off-axis in for an infinitely distant axial object par an coma. This strongly ratricts its use to narrow bell devices, such as searchlights and astronomical trif corpes. A concave sphencal mirtor shows BA, cort nd astigmatism. Indeed one could diraw a diăgram jusia ike Fig. 6.23 with the lens replaced by an obliquely luminated spherical mirror. Incidentally, such a miror displays appreciably less SA than would a simples convex lens of the same focal length.
iv) Field Curvature

Suppose we had an optical system that was free of all the aberrations thus far considered. There would then he aberrations thus far considered. There would the object and image surfaces (i.e., stigmatic innagery). We
one object and image surfaces (i.e., stigmatic inagery). We normal to the axis will be imaged approximately as a plane only in the paraxial region. Ai finite apertures the resulting curved stigmatic image surface is a manifestation of the primary zberration known as Petzval field curvature, after the Hungarian

Figare 6.25 Ficld curvaturc.
trathematician Josef Max Petzval (1807-1891). The Ginect can readily be appreciated by examining Pigs. p22 (p. 141) and 6.25. A spherical object segment σ_{n} is fnaged by the lens as a spherical segment σ_{i}, both

 Pitzval surface \sum_{p}. Whereas the Petzval surface for a onstive lens curves inwayd toward the object plane, for angative lens it curves outwant, that is, away from that Wane. Evidendy, a suitable combination of positive and Fiegative lenses will pegate field curvature. Indeed, the adisplacement Δx of an image point at height $\xi_{\text {s }}$ on the霍ctival surface from the paraxial image plane is given by

$$
\Delta x==\frac{y_{t}^{2}}{Q} \sum_{j=1}^{m} \cdot \frac{1}{n_{i} f_{i}},
$$

here m and f are the indices and Eocal leneths of the Whire, and j_{j} are the indices and focal lengths of the m thin lenses forming the system. This implies that the Petzval surface will be unaltered by changes in the the sop so long as the valnes of n_{i} and f, are fixed Notice that for the simple case of twothin lenses ($m=2$) having ary spacing. Ax can be made zero provided that

$$
\frac{1}{x_{1} f_{1}}+\frac{1}{N_{2} f_{2}}=0
$$

or, equivalently,

$$
\begin{equation*}
n_{1} f_{1}+n_{2} f_{2}=0 \tag{6,44}
\end{equation*}
$$

This is the so-cailed Patziol condition. As an example of its use suppose we combine two thin lenses, one positive the other negative, such that $f_{1}--f_{2}$ and $n_{1}-n_{2}$. Since

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{f_{3}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}, \\
f=\frac{E_{1}^{2}}{d} .
\end{gathered}
$$

the system can satisfy che Petrial condition, have a fat field, and stil! have a finite positive focal length. In visual instruments a certain amount of curvature can be iolerated, because the eye can acommodate for undesirable since it has the cffect of rapidly blurring
the of-axis image when the film plane is at F_{1}. An effecrive means of nuliifying the inward curvature of a positive lens is to place a negative fald fiatherer lens near the focal plane. This is often done in projection and photographic objectives when it is not otherwise praci poit to meet the Petzal condition (Mg. 6.26). othc position the hattener will have litfle effec
Astigmatism is incimer look at Fig. .f.ld curvature In the presence of the former aberration there will b two paraboloidal image surfaces, the tangential, Σ_{T}, and two paraboloidal inage surfaces, the tangential, Σ_{T}, and the sagittal, Σ_{s} (as in Fig. 6.27). These are the loci of all the primary and secondary images, respectively, as the object point roarns over the object plane. At a given heght $\Sigma_{\text {as }}$, a point on Σ, always kes plate dimes as far oth Σ_{P} on the same side of the perzal surface (Fis 6.27) When there in no astigmatigm Σ_{s} and Σ_{Σ} coalese on Σ_{p}. It is possible to alter the shapes of Σ_{s} and $\Sigma_{\text {s }}$ by bending or relocating the lenses or by moving the stop. The configuration of Fig, 6.27 (b) is known as an arlificially flutlemed field. A stop in front of an inexpensive meniscus box camera lens is usually arranged to produce fust this effect. The surface of teast confusion, $\Sigma_{\text {cic. }}$.

230 Chapter 6 More on Geometrical Optics

anastigmats, as is the relatively fast Zeiss Son residual astigmatism is illustrated graphicall .-. Note the relatively fiat field and small ar? astigmatism over most of the film plane. Fig. 5.107 (p. 198) since we a re niow in aberts sher to appreciate how it functions. With a stop at ${ }^{2}$ in of curvature of the spherical nnirror, all chief race by definition pass through C, are incident nown? the mirrar. Moreover, each pencil of rays iromber object point is symmetrical about its chief ray it each chief ray serves as an optical axis, so th off-axis points and, in principle, rio coma or a mostead of attempting to Hatten the image se the film plate to conform with it.
v) Distortion

The last of the five primary, monochromatic as is distortion. Its origin lies in che fact that the magnification, M_{T}, may $\mathbf{b} c$ a function of the sthat image distance, y_{1}. Thus, that distance may difie? the one predicted by paraxial theory in which constant. In other words, distortion arises twasy different areas of the lens have different focal laptin and different magnifications. In the sbrexce of amo the other aberrations. distortion is manifest in a mil shaping of the image as a whole, even thoughe is sharply focused. Consequently, when prod an optical system suffering positive or pincusho tion, a square array deforms. as in Fig. 5.29(b) instance, each image point is displaced radiains frome greatest amount (i.e M_{T} increases : Similarly, negative or barrel distortion correspoin situation in which M_{T} decreases with the axials and in effect, each point on the image moves ry inward toward the center [fig. 6.29 (c)]. Distortici easity be seen by just looking chrough an aberrar at a piece of lined or graph paper. Fairly chise foris. will show essentially no distortion, whereas 4 . positive or negative. thick, simple lenses will ger suffer positive or negative distortion, respectiver introduction of a stop into a system of thin lay

(b)

(山)

 Huen sex Diomrccompanied ty distortion, as indicated in One exception is the case in which the aper inc up $=$ actire lens, so that the chief ray is, in effect Way (i.e.. it passes through the principa! Es, as in Fig. 6.30(b), the object distance Wis, as in Fig. 6.30 (b), the object cistance Nong the chief ray will begreater than it was
iog at the lens $\left(S_{2} A>S_{2} O\right)$. Thus x, will be (14.26) M_{T} will be smailer-ergo, barre , In other words. M, for an off-axis point will be less with a front stop in position than it would be Tintie difference is a measure of the aberration, the way, exists regardless of the size of the patture. In the same way, a rear stop (ing. b.30(c) Wmeases x_{6} along the chief ray (i.e., $S_{2} O>S_{2} B$)

hereby increasing M_{T} and introducing pincushion diacortion. Inverchanging the objert and image thus has the ffecl of changing the sign of the divporion for a given lens and stop. The aforementioned stop posisions will produce the opposite effect when the lens is negative. All of this suggests the use of a stop midway between dentical lens elemente. The distorion from the first lens will precisely cancel the contribution from the second. This approach has been used to advantage in the design of a number of photographic lenses (Fig 5.112). To be sure, it the lens is perfectly symmetrical and operating as in Fig. 6.80(d), the object and image luances int be equal, hill T_{r}. (limalty $\boldsymbol{z e r o}$, well) This applies to (finits conjugate) copy lenses used for example, to record data, Nonetheless, even when M_{T} is not I, making the system approximately sym metrical about a stop is a very common practice, since it markedly reduces these several aberrations.
Distortion can arise in compound lens systems, as for example in the telephoto arrangemens shown in Fig. 6.31. For a distant object point, the nargix of the ositive achromat serves as the aperture stop. In effect the arrangement is like a negative lens with a front stop. it displays positive or pincushion distortion.
Suppose a chief ray enters and energes from an

332 Chapter 6 More on Grometrical Optics

Figure 6.31 Distortior in a conmpund tens.
oprical aystem in the same direction as, for example, in Fig. $6.30(\mathrm{~d})$. The point at which the ray crosses the axis is the optical oenter of the system, but since this is a chier ray, it is also athe center of the aperture stop. This up against the thin lens in both inetances the incoming up against hae sentents of the chief ray are paraileh and there is zero distortion, that is, the system is orthoscopic This also implics that the entrance and exit pupils will correspond to the primcipal planes (if the system is inmersed in a single medium-see Fig. 6.2). Bear in mind that the chief ray is now a principal ray. A thin-lens system wili have zero distortion f f its optical center is caincident unith the center of the aperiture stop. By the way, in a pinhole camera, the rays connecting conjugate object and image points are straight and pass through the center of the aperture stop. The entering and emergmes rays are obviously parallel (being one and the same), and there is no distortion.

6.3.2 Chromatic Aberrations

The five primary or Seidel aberrations have been considered in terms of monochromatic light. To be sure, if the source has a broad spectral bandwidth, these aberrations are influenced accordingly, but the effects are inconsequential, unless the system is quite well corrected. There are, however, chromatic aberrations that arise specifically in polychromatic light. which are far more significant. The ray-tracing equation (6.12) is a function of the indices of refraction. which in turn vary with wa velength. Different "colored" rays will traverse
a system along different parhs, and this is th Lial feature of chromatic aberration.

$$
\frac{1}{f}=\left(n_{1}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

is wavelength-dependent via $n_{f}(\lambda)$, the foca also vary with λ. In general (Fig. 3.26 , decreases with wavelength over the visible thus $f(\lambda)$ increases with λ. The result is i Fig. 6.32. Where the constituent colors in a colline beam of white light are focused at difterent pals the axis. The axial distance between two sug. poials spanning a given frequency range (e.g) red) is termed the axial (or longitudinal) chroma tion, A-CA for short.
its an casy mattex to observe chronatic ab or CA, with a tuick, simple converging len illumated by a polychromatic point source ca by a halo. If the plane of ohservalion is then ncarer the lens, the periphery of the blurred ${ }^{2}$ become tinged in orange-red Mouingit bact become inged in orange-red. Moring it back the tens, beyond the best image, whil cause of of least confusion (i.e., the plane $\Sigma_{\mathrm{i} . \mathrm{C}}$) cone pilibl the pesition where the best image will appl looking direttly through the lens al a sourceation will be far more striking.

The image of an off-axis point will be formed 8 consticuent frequency components, each arrivin different height ahove the axis (Fig. 6.33). In esserd the frequency dependence of f causes a foum

in the precise overlapping of F_{8} and $F_{n t}$ (Fig. 6.34). Such an arrangement is said to be achromalued for those wo specific wavelengths. Notice that what we would fike to do is effectively elimanate the total dispersion (i.c.. the lact that each color is deviated by a diterent amount) and not the tocal deviation icself. With the two lenses separated by a distance d,

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}} . \tag{b}
\end{equation*}
$$

Rather than retain the second term in the thin-lens equation (5.16), let's abbreviate the notation and write $1 / /_{1}=\left(n_{1}-1\right) p_{1}$ and $1 / \rho_{9}-\left(n_{2}-1\right) \rho_{2}$ for the two elements. Then
$\frac{1}{f}-\left(n_{1}-1\right) \rho_{1}+\left(n_{2}-1\right) \rho_{2}-d\left(n_{1}-1\right) \rho_{1}\left(n_{2}-1\right) \rho_{2}$.

This expression will yicld the fecal length of the doublet for red (f_{H}) and bue (f_{B}) light when the appropriate indices are incroduced, namely, $n_{\mid R,} n_{I_{R},}, n_{1 \beta}$, and $n_{2 B}$ But if f_{R} is to equal f_{B}, then
$1 / f_{k}=1 / /_{s}$
and

$$
\left(n_{1 K}-1\right) \rho_{1}+\left(n_{\because K}-1\right) \rho_{2}-d\left(n_{1 R}-1\right) \rho_{1}\left(n_{2 R}-1\right) \rho_{2}
$$

$$
-\left(n_{1 B}-1\right) p_{1}+\left(n_{20}-1\right) p_{2}
$$

$$
d\left(n_{1 B}-1\right) p_{1}\left(p_{2 H}-1\right) p_{2} .
$$

Onecase of paricularimportance correspondsto $d=0$ that is, the two lenses are in contact. Expanding out Eq.

 exaggeratcd,
(6.46) with $d \div 0$ then leads to

$$
\frac{\rho_{1}}{\rho_{2}}=-\frac{n_{2 B}-n_{2 R}}{n_{1 B}}-
$$

he focal length of the compound lens ($f r$) can con veniently be specified as that associated with yellow light. roughly midway between the blue and red extremes. For the component lenses in yellow light, $1 / f_{14}$ $\left(n_{1} y-1\right) \rho_{1}$ and $1 / f_{4} y-\left(n_{2 x}-1\right) \mu_{2}$. Hence

$$
\frac{\rho_{1}}{\rho_{2}}=\frac{\left(n_{2 Y}-1\right)}{\left(n_{1 Y}-1\right)} \frac{f_{2 Y}}{f_{1 Y}} .
$$

$$
\frac{f_{2 \underline{y}}}{f_{1} Y}=-\frac{\left(n_{2 B}-n_{2 K}\right) /\left(n_{23}-1\right)}{\left(n_{1 B}-n_{1 R}\right) /\left(n_{1 y}-1\right)} .
$$

The quantities

$$
\frac{n_{9 B}-n_{g A}}{n_{2 Y}-1} \text { and } \frac{n_{1 A}-n_{1 A}}{n_{1 Y}-1}
$$

thown as the dispersive powers of the wo materia formuing the lenses. Their recprocais, V_{8} and V_{1}, are ariously known as the dipporsios indicas, V-numbers or Abbe numbers. The lower the Abbe numbers, the greater the dispersive power. Thus

$$
\frac{f_{\underline{Y}}}{f_{1 Y}}-\frac{V_{1}}{V_{2}}
$$

$$
f_{1 Y} V_{1}+f_{2 Y} V_{2}-0 .
$$

(6.50)
since the dispersive powers are positive, so too are the V-numbers. This implies, as we anticipated, that one the two componert lenses mut be negate, and the oher posive, if eqAt
this point we could presumably design an ew additional points must be made first. The designa ion of wavelengths as red, yellow, and blue is far too imprecise for practical application. Instead it is cusomary to refer to specific spectral lines whose wavelengths are known with great precision. The Frounhofer lines, as they are called, serve as the needed reference markers across the spectrum. Several of these

Table 6.2 Optical glass.

$\begin{gathered} \text { Type } \\ \text { number } \end{gathered}$	Name	n_{0}	
911:635	Borosilicste crown--BSC-1	1.5110	
517:645	Borosilicate crowt- ${ }^{\text {PS }} \mathrm{C}-2$	1.5170	
513:605	Crown-C	1.5125	
518:596	Crown	1.5180	59.8
523:596	Crown-c-1	1.5330	
329:515	Crown fint-CF-1	1.5286	
541:599	Light tarium crown-l.bC. 1	1.5411	
573:574	Biarium crown-LBC-2	1.5725	57.4
574:577	Batium crown	1.5744	57%
611:588	Dense batiua crown-DBC.1	1.6110	$5{ }^{51}$
617:550	Dense barium crown-DBC-2	1.6170	
611.572	Dense barium crown-DBC-3	1.6109	5.
562:510	Light barium Лint-LBF-s	1.5616	
588: 594	Light barium fint-LBF-1	1.5880	
584:460	Batium fint-BF-1	1.5888	46.4
505:496	Barium tint-BF-2	${ }_{1}^{1.6053} 10$	488
559:45,	Extra light fint-E! F-1	${ }_{1}^{1.5585}$	42401
573:425 580:410	$\underset{\text { Light fint-LF-1 }}{\text { Light fint-1F-2 }}$	1.5725	${ }^{420}$
605:880	Dense fint-DF-1	1.6050	${ }^{389} 8$
617:566	Dense Rint-DF-2	1.6170	36
621:362	Dense Hint-DF-3	1.5210	
649:338	Extra dense fint-EDF-1	1. 64990	3. 5
666:924	Extra dense lint-EDF.5	$\begin{aligned} & 1.5660 \\ & 1.6725 \end{aligned}$	32\%
673: 322	Extra dense fint-EDF. 2		80.8
639:909 790	Extra dense flint--EDY Extra densc flint-EDF-3	1.6899	

Rspecinenss in the upper shaded area are the rare aran

F, Char ait the are listed in Table 6.1. The lines S. D_{3}) are most often used (for blue, red Thid one generally traces paraxial rays in The Abbenarers will usually list their wares

$$
V_{d}=\frac{n_{d}-1}{n_{y}-n_{c}} .
$$

(6.51)

Take a look at Table 6.2 as well.) Thus Eq. (6.50) might berter be written as

$$
f_{1 d} V_{1 d}+f_{2 d} V_{2 d}-0,
$$

where the numerical subscripts pertain to the two glasses used in the doublet, and the letter relases to the d-line. Incidentally, Newton erroneously condluded, on the basis of experiments with the very limited range of
materials available at the time, that the dispersive powe was constant for all glasses. This is tantamount to saying Eq. 6.59) that $f_{1 d}=-f_{2 d}$, in which case the double would have zero power. Newton, accordingly, shifted his efforts from the refracting to the reflecting telescope and this fortunately turned out to be a good move in he long run. The achromat was invented around 173. by Chester Moor Hall. Esq., but it lay in limbo until i was seemingly reinvented and patented in 1758 by the London optician John Dollond.
Several forms of the achromatic doublet are shown in Fig. 6.96. Their configurations depend on the glass cypes selected, as well as on the choice of the othe ing off-the-shelf doublets of unknown orisin be careful got a bens that hareen deliberately, designed to nclude certain aberrations in order to compensate for errors in the original system from which it came. Per haps the most commonly encountered doublet is the cemented Fraunhofer achromat. It's formed of a crown* double-convex lens in contact with a concaveplanar (or nearly planar) flint lens. The use of a crown front element is quite popular beccuse of its resistance to wear. Since the overall shape is roughly convex planar, by selecting the proper glasses, both spherical aberration and coma can be corrected as well. Suppose that we wish to design a Fraunhofer achromat of focal length 50 cm . We can get some idea of how to select glasses by solving Eq. (6.59) simultaneously with the ompound-lens equation

$$
\frac{1}{f_{1 d i}}+\frac{1}{f_{2 d}}=\frac{1}{f_{d}}
$$

to get

$$
\begin{aligned}
& \frac{1}{f_{1 d}}=\frac{V_{1 d}}{f_{d}\left(V_{1, d}-V_{2 d i}\right)} \\
& \text { and } \\
& \frac{1}{f_{2 d}}=\frac{V_{2 d}}{f_{d}\left(V_{2 d}-V_{1 d}\right)},
\end{aligned}
$$

and leter designations in Fig. 6.35 .

lement are $R_{14}=21.8 \mathrm{~cm}$ and $R_{19}=-21.8 \mathrm{~cm}$ while he flint has radii of $R_{2,}=-21.8 \mathrm{~cm}$ and $R_{22}=$ $-381.9 \mathrm{~cm}$
Note that for a thin-lens combination the principal planes coalesce, so that achromatizing the focal length corrects both A.CA and L.CA. In a thick doublet, however, even though the focal lengths for red and blue are made identical, the different wavelengths may have different principal planes. Consequently, although the magnification is the same for all wavelengths, the ocal points may not coincide; in orther words, correction is made for L . CA but not for A. CA
In the above analysis only the C - and F-rays were brought to a common focus, and the d-line was introduced to establish a focal length for the doublet as a whole. It is not possible for all wavelengths traversing a doublet achromat to meet at a cormon focus. The resulting residual chromatism is known as secondary spec-
trum. The elimination of secondary spectrum is particularly troubleso when the design is limited to the lasses currently available. Necretheless, Aluorite $\left(\mathrm{CaF}_{2}\right)$ element combined with an appropriate chass element can form a doublet achromatized at three wavelengths and having very litle secondary spectrum. More often triplets are used for color correction at three or even four wavelengths. The secondary spectrum of ar even four wavelengths. The secondary spectrum of white object. Its borders will be slightly haloed in magenta and green-try shifting the focus forward and backward.

ii) Separaled Achromatic Doublets

It is also possible to achromatize the foral length of a doublet composed of two widely separated elements of the same glass. Return to Eq. (6.46) and set $n_{1 R}=n_{Y_{R}}-$ n_{R} and $n_{1 B}=n_{2 B}-n_{B}$. After a bit of straightiorward algebraic manipulation, it becemes
$\left(n_{R}-n_{B}\right)\left[\left(\rho_{1}+\rho_{\mathrm{g}}\right)-\rho_{\mathrm{t}} \rho_{\mathrm{a}} d\left(n_{B}+n_{R}-2\right)\right]-0$
or

$$
d=\frac{1}{\left(n_{p}+n_{R}-2\right)}\left(\frac{\mathrm{L}}{p_{1}}+\frac{1}{\rho_{2}}\right) .
$$

Again introducing the yellow reference frequency, as we did before, namely, $1 / /_{Y}=\left(n_{1 Y}-1\right) \rho_{1}$ and $1 / h_{Y}=$

238 Chapter 6 More on Geometrical Optics

Coles)

Figure 6.37 Achromatized lenses.
($n_{2} r \quad 1$) ρ_{2}, we can replace ρ_{1} and ρ_{2}. Hence

$$
d=\frac{\left(f_{1 Y}+f_{Y}\right)\left(n_{Y}-1\right)}{n_{B}+n_{R}-2},
$$

where $\left.n_{1}\right\}=n_{2 \gamma}=n_{\gamma}$. Assuming $n_{Y} \quad\left(n_{H}+n_{R}\right) / 2$, we
have $d=\frac{1+1}{2}$
or in d-light

This is precisely the form taken by the Huygens ocula (Section 5.7.4). Since the red and blue focal lengths are the same, but the corresponding principal planes for meet at the same focal point Thus the gener's ly nol chromatic aherration is well corrected, but axial chto matic aberration is not
In order for a system to be free of both chromatic aberrations, the red and blue rays must emerge parallel to each other (no L.CA) and must intersect the axis at the same point (no A.CA), which means they must overlap. Since this is effectively the case with a thin achromat, it implies that multielement systems, as a rule, should consist of achromatic components in order to keep the red and blue rays from separating (Fig. 6.37) As with all such invocations there are exceptions. The Taylor triplet (Section 5.7.7) is one. The two colored rays for which it is achromatized separate within th lens but are recombined and emerge together,

(a)

(b)

Figure 6.38 a. b
6.3 Aberrations 239

(4) Naw Orieans and the Mississippi River phoio-
 -. (c) Ph fro scalc, 1:2500.

6.3.3 Concluding Remarks

For the practical reason of manufacturing ease, the.vast majority of optical systems are limited to lenses having majority of optical systems are limited to lenses having
spherical surfaces. There are, to be sure, toric and spherical surfaces. There are, to be sute, toric and
cylindrical lenses as well as many other aspherics. cylindrical lenses as well as many other aspherics.
Indeed, very fine, and as a rule very expensive devices, such as high-altitude reconnaisance cameras and tracking systems, may have several aspherical elements. Even so, spherical lenses are here to stay and with them are their inherent aberrations which must satisfactorily be dealt with. As we have seen, the designer (and his faithful electronic companion) must manipulate the system variables (indices, shapes, spacings, stops, etc.) in order to balance out offensive aberrations. This is done o whatever degree and in whatever order is appropriate for the specific optical system. Thus one might tolerate far more distortion and curvature in an ordinary telescope than in a good photographic objective. Likewise, if you want to work exclusively with laser light of almost single frequency In any event, this chapter has only touched on the problems (more to a ppreciate than solve them). That they are most certainly amenable to solution is evidenced, for example, by the remarkable aerial photographs in Fig. 6.38, which speak rather eloquently for themselves.

PROBLEMS

6.1* Work out the details leading to Eq. (6.8)
6.2 According to the military handbook M1L-HDBK 141 (23.3.5.3), the Ramsden eyepiece (Fig. 5.93) is made up of two planar-convex lenses of equal focal length f focal length f of the thin combination and locate he principal planes and the posirion of the field stop.
6.3 Write an expression for the thickness d of a double-convex lens such that its focal length is infinite.
6.4 Suppose we have a positive meniscus lens of radii 6 and 10 and a thickness of 3 (any units, as long as
you're consistent), with an index of 1.5 . Detemin tocal length and the locations of its principal. (compare with Fig. 6.3).
6.5 Using Eq. (6.2), derive an expression forithe length of a hormogeneous transparent sphete of nol R. Locate its principal points.
6.6. A spherical glass bottle 20 cm in diamef. walls that are negligibly thin is filled with wateet bottle is sitting on the back seat of a car wn a =ice et day. What's its focal length?
6.7* With the previous two problems in minid pute the magnification that results when the im
a flower 4.0 m from the center of a sol a flower 4.0 m from the center of a solid, clear sphere with a $0.20-\mathrm{m}$ diameter (and a refractive of 1.4) is cast on a nearby wall. Describe the ingel detail.
6.8^{*} A thick glass lens of index 1.50 has radif of +23 cm and +20 cm , so that both verices 2 re in thy of the corresponding centers of curvature. Givent in Show that in eneral $R_{1}-R_{2}=d / 3$ for power lenses. Draw a diagram showing what to an axial incident paratlel bundle of rays as troom to an axial incident. parallel bundle of rays as impand
6.9- It is found that sunlight is focused to a sp
from the back face of a thick lens, which has
points at $H_{1}=+0.2 \mathrm{~cm}$ and $H_{2}=-0.4 \mathrm{~cm}$. the location of the image of a candle that is plaoxt 49.8 cm in front of the lens.
6.10* Please establish that the separation betwem principal planes for a thick glass lens is rought in a planar-convex lens tracing a tay from the obl What can you say about the relationship betro focal length and the thickness for this lens typey
6.11 A crown glass double-convex lens, 1.1 cm it and operating at a wavelength of 900 nm, has of refraction of $3 / 2$. Given that its radii are 15 cm , locate its principal points and computex
ision screen is placed 1.0 m from the where will the real image of the picture
\qquad - toagine two identical double-convex thick
ex thick sparated by a distance of 20 cm between their fertices. Given that alt the radin of curvature tens is 5.0 cm , calculate the combined focal
compound lens is composed of two thin lenses Hiby 10 cm . The first of these has a focal length h, and the second a focal length of -20 cm forme the focal lergth of the combination and berte the corresponding principal points. Draw a pllagram the system.
8.14. A eopurex-planar lens of index $3 / 2$ has a thick-
8.14. A Eapuex-planar lens of index $3 / 2$ has a thick
ness of 0.2 cm and a radius of curvature of 2.5 cm ness of 4.2 cm and a radius of curvature of 2.5 cm . ife ortid aurface:
6. Show that the determinant of the system matrix (6) ${ }^{6}$) $)$ is equal to 1 .
6.16 Show that Eqs. (6.36) and (6.37) are equivalent

6.17 Wh that the planar surface of a concave-planar Hatrix. planar less doesn't contribute to the system
6.18
6.18 Shampute the system matrix for a thick biconvex lens o Whdex 1.5 having radii of 0.5 and 0.25 and a $y=1$. of 0.3 (in any units you like). Check that
e19* git is siven by

$$
\left[\begin{array}{rr}
0.6 & -2.6 \\
0.2 & 0.8
\end{array}\right] .
$$

Knowing that the first radius is 0.5 cm , that the thicknes is 0.3 cm , and that the index of the lens is 1.5 , find the other radius.
6.20* A concave-planar glass ($n=1.50$) lens in air ha a radius of 10.0 cm and a thickness of 1.00 cm . Determine the system matrix and check that its determinan is 1 . At what positive angle (in radians measured abov the axis), should a ray strike the lens at a height of 2.0 cm , if it is to emerge from the lens at the same heigh but parallel to the optical axis?
6.21* Considering the lens in Problem 6.18, determine its focal length and the location of the focal points with respect to its vertices V_{1} and V_{2}
6.22 Referring back to Fig. 6.15, show that when $\overline{P \cdot P}=R n_{2} / n_{1}$ and $\overline{P C}-R n_{1} / n_{2}$ all rays originating at P appear to come from P^{\prime}.
6.23 Starting with the exact expression given by Eq. 5.5), show that Eq. (6.40) results, rather than Eq. (5.8) when the approximations for ℓ_{i} and ℓ_{i} are improved a bic.
6.24 Supposing that Fig. 6.39 is to be imaged by a lens system suffering spherical aberration only, make a ketch of the image

Figure 6.39

7 THE SUPERPOSITION OF WAVES

I

n succeeding chapters we shall study the phenomena of polarization, interference, and diffraction. These all share a common conceptual basis in that they deal, for the most part, with various aspects of the same process Stating this in the simplest terms, we are really concerned with what happens when two or more light wave averlap in some region of space. The precise circumsances governing this superposition, of course. deter mine the final optical disturbance. Among other things we are interested in learning how the specific propertic of each consticuent wave (amplitude, phase, frequency etc.) in luence the ultimate form of the composite dis urbance
Recall that each field component of an electromag neric wave ($E_{x}, E_{y}, E_{x}, B_{x}, B_{y}$, and B_{x}) satisfies the scalar netic wave $\left(E_{x}, E_{y}, E_{x}, x_{x}, b_{y}\right.$, and $\left.B_{x}\right)$ satisfics
three-dimensional differential wave equation,

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial i^{2}} .
$$

A significant feature of this expression is that it is linea, in other words, $\psi(\mathbf{r}, t)$ and its derivatives appear onil to the first power. Consequently, if $\psi_{1}(r, t)$ $\psi_{2}(\mathbf{r}, i), \ldots, \psi_{n}(\mathbf{r}, t)$ are individual solutions of Eq (2.59), any (inear combination of them will, in turn, be a solution. Thus

$$
\psi(\mathbf{r}, t)=\sum_{i=1}^{n} C_{i} \psi_{i}(\mathbf{r}, t)
$$

atisfies the wave equation, where the coefficients C, are imply arbitrary constants. Known as the principle of apperpositiun, this property suggests that the resultant
disturbance at any point in a medium is the alge sum of the separate constituent waves (Fig. 7.1). Aid

Figure 7,1 The superposition of twe disturbance:
sinterested only in linear systems where the iaterested oninciple is actually applicable. Do keep on prineiple is actually aple waves, whether fever, that large-amplitude waves, whether cor waves on a string, can genesh-intensity hesponse. The focused beam of a be as high as TiPw is ine the easily capable of eliciting nonlinear effects THY (H) is easily capabler 14). By comparison, the electric field beve with sunlight here on Earth has an amplitude en Rabout $10 \mathrm{~V} / \mathrm{cm}$.
Thetare many instances in which we need not be lommat vith the vector nature of light, and for the Wit we will restrict ourselves to such cases. For ie, if the lightwaves all propagate along the sarme Ahd share a common constant plane of vibration. Epropbld each be described in terms of one electrictoomponent. These wound could thus be treated as talars A good deal more will be said about this point a we progress; for now, let's represent the optical s we progress; for now. let's represent the optical fution of Eq. (2.59). This approach leads to a simple faiar theory that is highly useful as long as we are areful about applying it.

ADDITION OF WAVES OF THE SAME

BUENCY

1) LGeBRAIC METHOD

all that we can write a solution of the differential Ve equaint in the form

$$
\begin{aligned}
& E(x, l)=E_{0} \sin [\omega t-(k x+e)], \\
& E_{0} \text { is the amolitedn }
\end{aligned}
$$

what ξ_{1} is the amplitude of the harmonic disturWhr propagating along the positive x-axis. Alterna-
so that $\alpha(x, \varepsilon)=-(k x+\varepsilon)$
$E(x, t)=E_{0} \sin [\omega t+\alpha(x, \varepsilon)]$

Suppose then that we have two such waves

$$
E_{1}=E_{01} \sin \left(\omega t+\alpha_{1}\right)
$$

and

$$
E_{2}-E_{0,} \sin \left(\omega t+\alpha_{2}\right),
$$(7.56)

each with the same frequency and speed, overlapping in space. The resultant disturbance is the linear superposition of these waves. Thu

$$
E-E_{1}+E_{2}
$$

or, on expanding Eqs. (7.5a) and (7.5b)

$$
E^{-}-E_{(1)}\left(\sin \omega t \cos \alpha_{1}+\cos \omega t \sin \alpha_{1}\right)
$$

$$
+E_{\mathrm{t} 2}\left(\sin \omega / \cos \alpha_{2}+\cos \omega t \sin \alpha_{2}\right) .
$$

When we separate out the time-dependent terms this becomes
$E-\left(E_{01} \cos \alpha_{1}+E_{62} \cos \alpha_{2}\right) \sin \omega t$

$$
+\left(E_{01} \sin \alpha_{1}+E_{02} \sin \alpha_{2}\right) \cos \alpha
$$

$$
E_{0} \cos \alpha-E_{01} \cos \alpha_{1}+E_{02} \cos \alpha_{2}
$$ and

$E_{0} \sin \alpha=E_{01} \sin \alpha_{1}+E_{12} \sin \alpha_{2}$.
This is not an obvious substitution, but it will be legitimate as long as we can solve for E_{0} and α. To that end square and add Eqs. (7.7) and (7.8) to get
$E_{0}^{2}=E_{01}^{2}-E_{02}^{2}+2 E_{01} E_{02} \cos \left(\alpha_{2}-\alpha_{1}\right) \quad$ (7.9) and divide Eq. (7.8) by (7.7) to get
$\tan \alpha=\frac{E_{01} \sin \alpha_{1}+E_{09} \sin \alpha_{g}}{E_{01} \cos \alpha_{1}+E_{08} \cos \alpha_{9}}$
Provided chese last two and α the situation exp (77) and (78) is valid. The total disturbance then becomes

$$
E-E_{0} \cos \alpha \sin \omega t+E_{0} \sin \alpha \cos \Delta t
$$

or

$$
E-E_{0} \sin (\omega t+\alpha)
$$

244 Chapter 7 The Superposition of Waves

$E=z+c_{z}$

Figure 7.2 The superposition of two harmonic waves in and out of
of the sinusoidal waves E_{1} and E_{2}. The composite wave 7.11) is harmonic and of the same frequency as the constituents, although its ampititude and phase are different. The fux density of a light. wave is proportional to its amplicude squared, by way of $\mathrm{Eq} .(3.44)$. Hence it follows from Eq. (7.9) that the resultant flux density is not imply the sum of the component flux densitics-there an additional contribution $2 E_{01} E_{02} \cos \left(\alpha_{2}-\alpha_{1}\right)$, known as the interference term. The crucial factor is the difference in phase between the two interfering waves E_{1} and $E_{2}, \delta=\left(\alpha_{2}-\alpha_{1}\right)$. When $\delta=0, \pm 2 \pi$ $\pm 4 \pi, \ldots$ the resultant amplitude is a maximum, whereas
the former case, the waves are said to be in phas overlaps crest. In the latter instance the waves out of phase and trough overlaps crest, as show 7.2. Realize that therence in path length traversed may arise foral difference in path leng incersed by the two as well as a difference in the initial phase angle that

$$
\delta=\left(k x_{1}+\varepsilon_{1}\right)-\left(k x_{2}+\varepsilon_{2}\right)
$$

$$
\delta=\frac{2 \pi}{A}\left(x_{1}-x_{2}\right)+\left(\varepsilon_{1}-\varepsilon_{2}\right) .
$$

Here x_{1} and x_{8} are the distances from the starcti ic the two waves to the point of observation, and dibity wavelength in the pervading medium. If the wa initially in phase at their respective emitters, 偪: ε_{2}, and

$$
\delta=\frac{2 \pi}{\lambda}\left(x_{1}-x_{2}\right) .
$$

This would also apply to the case in which two dise This would also apply to the case in which two digis bances from the same source traveled diferentid routily
before arriving at the point of observation. Sino $n=1$ before arrivi
$c / p=\lambda_{0} / \lambda$.

$$
\delta-\frac{2 \pi}{\lambda_{9}} n\left(x_{1}-x_{2}\right)
$$

The quantity $n\left(x_{1}-x_{2}\right)$ is known as the optical The quantity $n\left(x_{1}-x_{2}\right)$ is known as the oprical difference and will be represented by the aborevel
OPD or by the symbol Λ. It's the difference in lhat optical path lengths [Eq. (4.9)]. Bear in mind thaty it the possible, in more complicated situations, for eadil wave possible, in more complicated situations, for eagmo.
o travel through a number of different thiannol different media (Problem 7.6). Notice too thas ilde $\left(x_{1}-x_{2}\right) / \lambda$ is the number of waves in the med sponding to the path difference: one route is wavelengths longer than the orien, wavelength is associated with a 2π radian phase 8 . $\delta=2 \pi\left(x_{1}-x_{2}\right) / \lambda$, or, more succinctly,

$$
\delta=k_{0} t,
$$

k_{0} being the propagation number in vacuuquis ${ }^{\text {th }}$ $2 \pi / \lambda$. One pote is essentially δ in vaculizulifer the other.
Waves for which $\varepsilon_{1}-\varepsilon_{2}$ is constant, respardles of t

L_{2} legd E_{i} by $k \Delta x$

Figure 7.8 Waves out of phase by $h \Delta x$.
id to be coherent, a situation we shall assume aroughout most of this discussion of the waves
$E_{1}=E_{01} \sin \left[\omega l^{-} k(x+\Delta x)\right]$

$$
E_{2}-E_{02} \sin (\omega t-k x),
$$

 (488. roblem 7.7 to show that in this case Eqs. (7.9), Fulifizil (7.11) lead to a resultant wave of

$$
E-2 \Sigma_{01} \cos \left(\frac{k \Delta x}{2}\right) \sin \left[\omega t-k\left(x+\frac{\Delta x}{2}\right)\right] .
$$

7 ${ }^{6}$ 攵 out rather clearly the dominant role played
(in-length difference, Δx, especially when the
gemitted in phase ($\varepsilon_{1}=\varepsilon_{2}$). There are many
ghatances in which one arranges jusc these
conditions, as will be seen later. If Δx « λ, the resultant has an amplitude that is nearl; $2 E_{\mathrm{oz}}$, whereas if $\Delta x-$ $\lambda / 2$, it is zero. The former situation is referred to as constructive interference, and the latter as destructive interference (see Fig. 7.3)
By repeated applications of the procedure used to arrive at Eq. (7.11), we can show that the superposition of any number of coherent harmonic waves having a given harmonic wave of thal sauze frequency (Fig 74) We happen to have chosen to represent the two waves above in terms of sine functions, but the same results would prevail if we used cosine functions. In general, then, prevail if we used cosine functions. In general, then,

$$
E=\sum_{i=1}^{N} E_{v i} \cos \left(\alpha_{i} \pm \omega t\right)
$$

is given by

$$
E=E_{0} \cos (\alpha \pm \omega t)
$$

Figure 7.4 The superposition of threc harnigure 7.4 The superposition of thre

$$
E_{\sigma}^{2}=\sum_{i=1}^{N} E_{\hat{0} i}^{N}+2 \sum_{j=i}^{N} \sum_{i=1}^{N} E_{i j} E_{0 j} \cos \left(\alpha_{i}-\alpha_{j}\right)
$$

and

$$
\tan \alpha=\frac{\sum_{i=1}^{N} E_{0 i} \sin a_{i}}{\sum_{i=1}^{N} E_{n i} \cos \alpha_{i}}
$$

Pause for a moment and satisfy yourself that these relations are indeed true.
Consider a number (N) of atomic emiters comprising an ordinary light source (an incandescent bulb, candle flatie, or discharge lamp). Each atom is effecively an s.4.4), and these, in turn, each wavetrains (Section 8.4.4), and these, in turn, each extend in time for
roughly 1 to 10 ns . In other words, the atoms peneraily roughly 1 to 10 ns. In other words, the atoms generally
emit waverrains that have a suscained phase for only emp to about 10 ns , anter which a new wavetrain may be enitted with a totally random phase, and it too will be sustained for less than approximately 10 ns , and so forth. On the whole each atom may be thought of as eritting a disturbance composed of a stream of photons that varies in its phase rapidly and randomly. In any event, the phase of the light from one atom, $\alpha_{i}(t)$, will remain constant with respect to the phase from another atom $\alpha_{j}(t)$, fo- only a time of at most 10 ns before it changes randomly: the atoms are coherent for up to ahout $10^{-8} s$. Since flux density is proportional to the ume average of E_{j}^{2} generalty taken over a comparatively long interval of time, it follows that the second summa$\left(\cos \left[\alpha_{i}(t)-\alpha_{j}(t)\right]\right)$, each of which will average our to zero because of the random rapid nature of the phase changes. Only the first summation remains in the time average, and its terms are constants. If the atoms are each emitting wavetrains of the same amplitude En then

$$
\begin{equation*}
E_{0}^{2}=N E_{0,2}^{3} \tag{7.2t}
\end{equation*}
$$

The resulant fiux density arising from N sourres having raviom, rapidly tarying phicses is given by N tines the flux densily of any one source. In other words, it is delernained
by the sum of the individual flux den sities: A thuhligh:
whose atoms are all emitting a randon
whose atoms are all emitting a random tumult phin
light, which, as the superposition of the "incolerent", as the superposition of these essus. varying in phase Thus wo or more sidy and rak light that is essentially incoherent (iech bulbs will Onger than abcut 10 ns). lizht whose., for mand rradiance will simply equal the sum of the comb ontributed by each individual but The frandle H ames, flashbulbs and all Thers from laser) sources. We cannot axpermal ence when the lightwaves from two readinng tary overlap.
At the other extrime, if the sources are coleston. in phase at the paint of observation (i.e., $\alpha_{i}=\alpha_{0} .14$) (7.19) will become

$$
E_{0}^{2}=\sum_{i=1}^{N} E_{2,}^{2}+\varrho \sum_{i=i}^{N} \sum_{i=1}^{N} E_{0}, E_{0},
$$

or, equivalently,

$$
E_{0}^{2}-\left(\sum_{i=1}^{N} E_{0 i}\right)^{2}
$$

Again supposing that each amplitude is E_{01}, पe oral

$$
E_{0}^{2}=\left(N E_{01}\right)^{2}=N^{2} E_{61}^{2} .
$$

In this case of in-phase coherent sources, wr faty anment in which the amplitudes are added frost and then sg ceternine the resulting flux densits. The superposin patial disribution of the the eftect of alterm: amount present. if theve are regions where the Rum density is greare than the sum of the individitio densities, there will be regions where it is bendel sum.

It is often mathematically convenient to ma he complex representation of trigonometric hen dealing with the superposition of harm urbances. The wave

$$
E_{1}=E_{01} \cos \left(k x \pm \omega t+f_{1}\right)
$$

(7.24)

$$
E_{1}=E_{01} e^{i t c_{1} x_{\omega+1}} .
$$

if we rementer that we are irterested only in the real nart (see Seroin 2.4). Suppose that there are N such apreag ma positive x-direction. The resultant wave

$$
E=E_{19} e^{\{a+, w\}},
$$

which is equindest to Eq. (7.18) or, upon summation of the conpobert waves,

ale quartik

$$
\begin{equation*}
E_{0} e^{i x}=\sum_{j=1}^{N} E_{0 j} i^{i a} \tag{7.26}
\end{equation*}
$$

knownsa her complex anplitude of the compusite wave nilsximply the sum of the complex amplitudes of the
ninstituems Since pinstituens. Since

$$
\begin{equation*}
E_{0}^{2}-\left(E_{n} e^{i k}\right)\left(E_{0} e^{i a}\right)^{*} . \tag{7.27}
\end{equation*}
$$

ve 存iways compute the resultant irradiance from 488) and (7.27). For example, if $N=2$,

$$
\left.E_{5}-\mid E_{01} 2^{-i 0}+E_{02} e^{i \alpha_{2}}\right)\left\{E_{01} e^{-i \alpha_{1}}+E_{02} e^{-i \alpha_{2}}\right\}
$$

$E_{0}^{2}=E_{01}^{2}+E_{02}^{2}+2 E_{01} E_{02} \cos \left(\alpha_{1}-\alpha_{2}\right)$, which is identical to Eq. (7.9).

7.3 PHASOR ADDITION

The summation de scribed in Eq. (7.26) can be represen ted graphically as an addition of vectors in the complex plane (recall the Argand diagram in Fig. 2.11). In the parlance of electrical engineering, the complex ampliman is and a phaser, ariten simply in the form $E \in$ The method of phasor addition to be developed now can be employed without any appreciation of it relationship to the complex-number formalism. For simplicity's sake, we will for the most part circumvent the use of that interpretation in what is to follow. magine, then, that we have a disturbance described by

$$
E_{1}=E_{01} \sin \left(\omega t+\alpha_{1}\right) .
$$

n. Fig. 7.5 (a) we represent he wave by a vector of length E_{01} rotating counterclockwise at a rate ω such that it. projection on the vertical axis is $E_{01} \sin \left(\omega i+a_{1}\right)$. If we ere concerned with cosine waves, we would take the projection on the horizontal axis. Incidentally, the rota ing vector is, of course, a phasor $E_{01}<\alpha_{1}$, and the R and

(b)

(ic)

I designations signify the real and imaginary axes.
Similarly, a second wave

$$
E_{2}-E_{02} \sin \left(\omega l+\alpha_{2}\right)
$$

is depicted along with E_{1} in Fig. 7.5(b). Their algebraic sum, $E=E_{1}+E_{2}$, is the projection on the I-axis of the resultant ρ hasor determined by the vector addition of he component phasors, as in Hig. $7.5(\mathrm{c})$. The law of sides E_{01}, E_{02}, and E_{0} yields
$E_{0}^{2}=E_{01}^{2}+E_{02}^{2}+\underline{2}_{01} E_{02} \cos \left(\alpha_{2}-\alpha_{2}\right)$,
where use was made of the fact that $\cos \left[\pi-\left(\alpha_{2}-\alpha_{1}\right)\right]=$ $\cos \left(\alpha_{2}-\alpha_{1}\right)$. This is identical to $\left.\left.\mathrm{Fq}_{\mathrm{g}}(79)_{2}-\alpha_{1}\right)\right]=$ be. Using the same diagram, observe that tan α is given by Eq. (7.10) as well. We are usually concerned with finding E_{0} rather than $E(t)$, and since E_{0} is unaffected by the constant revolving of all the phasors, it will often be convenient to set $t=0$ and thus eliminate that rotaion.
Some rather elegant schernes, such as the vibration atrue and the Comu spital (Chapter 10), will be predicated on the rechnique of phasor addition. Moreover.

igure 7.6 The sum of $E_{1}, E_{2}, E_{3}, E_{4}$ and E_{5}.
it is a pictorial approach, and that often hel insights. As a final example, let's briell wave resulting from the addition of

$$
E_{1}=5 \sin \omega 1
$$

$E_{2}-10 \sin \left(\omega t+45^{\circ}\right)$
$E_{3}=\sin \left(\omega t-15^{\circ}\right)$
$E_{1}=10 \sin \left(\omega t+120^{\circ}\right)$
and

$$
E_{5}=8 \sin \left(\omega t+180^{\circ}\right),
$$

where ω is in degrees per second. The appront phasors $5 \angle 0^{\circ}, 10 \angle 45^{\circ}, 1 \angle-15^{\circ}, 10 \angle 120^{\circ}$, and $8 \angle$ are plotted in Fig. 7.6. Notice that each phase now whether positive or negative, is referenceds to it horizontal. One need only read off $E_{0} \angle \alpha$ with a sall and protractor to get $E=E_{0} \sin (\omega t+\alpha)$. It is on that this technigue cffers a tremendous advantwi. in
speed and simplicity, if not in accuracy.

7.4 SIANDING WAVES

We saw in Chapter \& that the general solution क्र the differential wave equation consisted of the sum ol tro traveling waves,

$$
\psi(x, t)=C_{1} f(x-v t)+C_{2 g} g(x+u t)
$$

In particular let us choose to $+c_{i n}(x+$ in). In particular ce us choose to examine nno orantiosn of the same frequency propagating in opposite dirativs, A
situation of practical concern arises when the indider. situation of practical concern arises when the indidey rigid wall will do for sound waves or a conducting for electromagnetic waves. Imagine that an inco wave traveling to the left,

$$
E_{I}=E_{0 r} \sin \left(k x+\omega t+\varepsilon_{I}\right)
$$

strikes a mirror at $x=0$ and is reflected to the rigill the form

$$
E_{R}=E_{0 R} \sin \left(k x-\omega t+\varepsilon_{R}\right) .
$$

The composite wave in the region to the rig? mirror is $E=E_{I}+E_{\mathrm{K}}$. We could perform the in
and arrive at a general solution* much like Tection 7.1. There are, however, some valnable insighroach.
Wial phase ε_{i} may be set to zero by merely Sin clock at a time when E, $=\Sigma_{\mathrm{w}}$ sin α. Certain ons determined by the physical setup unust be mathernatical solution, and these are known bourndary conditions. For example, if we were Tha rope with one end tied to a wall at $x=0$, Must always have a zere displacement. The pping waves, one incident and the other nguld have $x=0$ Similarly at the boundary 5 conducting sheet the resuitantelectromayconducting sheethe resultantelectromagthe surface. Assuming $E_{0 S}=E_{O R}$, the bounditions require that at $x=0, E=0$, and since follows from Eqs. (7.28) and (7.29) that $\varepsilon_{R}=0$.

The omposite disturbance is then

$=$ Kou $[\sin (k x+\omega t)+\sin (k x-\omega)]$
Aphing 㸗e identity
$\sin \gamma+\sin \beta=2 \sin \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)$. ecibain

$$
\begin{equation*}
E(x, t)=2 E_{01} \sin k x \cos \omega t \tag{7.90}
\end{equation*}
$$

Tiilisthe equacon for a standing or stationary wave, ato a traveling wave. Its profile does not move pace; it is clearly not of the form $f(x \pm v t)$. At
It $x=x^{\prime}$, the amplitude is a constant equal to $2 E_{0,}$ in x^{\prime}, and $E\left(x^{\prime}, t\right)$ varies harmonically as cos ω. Hesthin Boints, namely, $x=0, \lambda / 2, \lambda, 3 \lambda / 2, \ldots$, the pance will be zero at all times. These are known sodes or nodal points (Fig. 7.7). Halfway between
 Camplitude has a maximum walue of $\pm 2 \mathrm{E}$,
 urtb $E(x, t)$ will be zero at all values of x whenever
coso $-0,0$, Thise 0. 1 If loe re -

Figure 7.7 A standing wave at various times.
often the case, the composite wave will contain a travel ing component along with the stationary wave. Under such conditions there will be a net transfer of energy whereas for the pure standing wave there is none of standing waves ming the distances betweer the node wavelength of the radiation in his historic experiments (see Section 3.6). A few years later, in 1890, Otto Wiener first demonstrated the existence of standing lightwaves. The arrangement he used is depicted in Fig. 7.8. I shows a normally incident parallel beam of quasimonochromatic light relecting off a front-sivered mirror, A transparent photographic film, less than $\lambda / 20$ thick, deposited on a glass plate, was inclined to the mirror at an angle of about 10^{-9} radians. In that way the film plate cut across the pattern of standing plane waves. After developing the emulsion it was found to

rigure 7.8 Wiener's experiment
be blackened along a series of equidistant parallel bands. These corresponded to the regions where the photographic layer bad intersected the antinodal planes. Sig nificantly, there was no blackening of the emuision at and antinodes of the mameric field component of electromagnetic standing wave aiternate with those of the electric field (Problem 7.10). We might suspect much from the fact that at $l^{-}(2 m+1) \tau 14 \quad E-0$ for all values of x so to conserve $(2 m+1) 7 / 4, E-0$ for $B \neq 0$. In agreement with theory. Hertz had previously (1888) determined the existence of a nodial point of the electric field at the surfiace of his rehector. Accordingly Wiener could conclude that the blackened regions were associated with antinodes of the \mathbf{E}-field. Thus it is the electric field that triggers the photochemical process. In a simplar way Drude and Nernst showed that the E-field is responsible for fuorescence. These observations are all quite understandable, since the force exerted on an electron by the B -field component of an electromagnetic wave is generally negligible in comparison to that of the E-field. It is for these reasons that the electric field is referred to as the optic disisurbance or light feld

THE ADDITION OF WAVES OF DIFFERENT FREQUENCY

Thus far the analysis has been restricted to the superposition of waves, all having the same frequency. Yet one never actually bas disturbances, of any kind, that are strictly monochromatic. It will be far more realistic, as we shall see, to speak of quanimonochromatic light,
which is composed of a narrow range of frequencies The study of such light will lead us to the important concepts of bandwidth and coherence time
The ability to modulate light effectively (Section 8.11.3) makes it possible to couple electronic and optical systems in a way that has had and will certainly continue to have far-reaching effects on the entire technology. Moreover, with the advent of electro-opticaitechniques, light already has a new and significant role as a carrier of information. This section is devotcd to developing some of the mathematical ideas needed to appreciate this new emphasis

7.5 BEATS

Consider the composite disturbance arising for bination of the waves
$E_{1}=\boldsymbol{E}_{(012} \cos \left(h_{1} x-\omega_{1} t\right)$
and

$$
E_{2}=E_{01} \cos \left(k_{2} x=\omega_{2} t\right),
$$

which have equal amplitudes and zero inital. angles. The net wave

$$
E-E_{01}\left[\cos \left(k_{1} x-\omega_{1} t\right)+\cos \left(k_{2} x-\omega_{1} t\right]\right.
$$

can be reformulated as

$$
E=2 E_{t, 1} \cos \frac{1}{2}\left[\left(k_{1}+k_{2}\right) x-\left(\omega_{1}-x_{3}\right) 1\right.
$$

$$
\times \cos \frac{1}{2}\left[\left(k_{1}-k_{2}\right) x-\left(\omega_{1}-\omega_{2}\right) t\right] .
$$

μ sing the identity
$\cos \alpha+\cos \beta=2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha$ We now define the quantities $\bar{\omega}$ and \bar{k}, which average angular frequency and average propagati espectively. similarly the quantites $\omega_{\text {in }}$ mobagation number maspavely let

$$
\begin{array}{ll}
\bar{\omega}=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) & \omega_{r n}=\frac{1}{2}\left(\omega_{1}-\omega_{2}\right. \\
\bar{f}=\frac{1}{2}\left(k_{1}+k_{2}\right) & k_{m}=\frac{1}{1}\left(k_{1}-k_{2}\right) ;
\end{array}
$$

and
thus

$$
E=2 E_{\mathrm{y} 1} \cos \left(k_{m} x-\omega_{m}\right) \cos (\bar{k} x-
$$

The total disturbance may be regarded as a travel wave of frequency $\bar{\omega}$ having a time-varying lated amplitude $E_{0}(x, t)$ such that

$$
E(x, t)=E_{0}(x, t) \cos (\overline{k x}-\bar{\omega}),
$$

where

$$
E_{0}(x, b)=2 E_{01} \cos \left(k_{m} x-\omega_{m} t\right) \text {. }
$$

In applications of interest here, ω_{1} and ω_{2} nill alw be rather large, In addition, if they are cocepand each other, $\omega_{1} \neq \omega_{s}$, then $\bar{\omega} \gg \boldsymbol{\omega}_{m}$ an
example, a modern version of the famous Michelson Morley experiment that beats two infrared laserbeams will be considered in Section 9.8.3. The ring laser (Section 9.8 .5), functioning as a gyroscope, utilizes beats to measure frequency differences induced as a result of the rotation of the system. The Doppier effect, which accounts for the frequency shift when light is reflected of a noving surace, provide another series of applea solid tiquid or even baseous and then beating the original and reflected waves, we get a precise measure of the target speed. In much the same way on an atomic scale, laser light will shift in phase upon interacting with scale, laser light will shit in phase upon interacting with
sound waves moving in a material (this phenomenon is sound waves moving in a material (this phenomenon is measure of the speed of sound in the medium.

7.6 GROUP VELOCITY

The disturbance examined in the previous section,

$$
E(x, t)=E_{0}(x, t) \cos (\bar{k} x-\bar{u} t), \quad \text { [7.34) }
$$

consists of a high-frequency ($\bar{\omega}$) carrier wave, amplitude moduluted by a cosine function. Suppose, for a moment the the wave in Fig 79(b) were not modulated th $E=$ constant Each small peak in the carrier would avel the rint with the usual phase velocity in other words,

$$
v^{-}--\frac{(\partial \varphi / \partial \theta)_{x}}{(\partial \varphi / \partial x)_{i}}
$$

From Eq. (7.34) the phase is given by $\varphi=(\overline{h x}-\bar{\omega} t)$ heace

$$
\nu=\bar{\omega} / \Gamma .
$$

(7.36)

Cearly, this is the phase velocity whether the carrier is modulated or not. In the former case the peaks simply change amplitude periodically as they stream aiong. Evidently, there is another motion to be concerned with, and that is the propagation of the raodulation envelope. Return to Fig. 7.9(a) and suppose that the constituent waves, $E_{1}(x, t)$ and $E_{2}(x, t)$, advance with the same speed, $v_{1}=v_{2}$. Imagine, if you will, the two har monic functions having different wavelengths and
requencies drawn on separate sheets of clear When these are overlayed in some way [as in Fi_{8} the resultant is a stationary beat pattern. If the are both moved to the right at the same speed resemble traveling waves. the beats will obvious h he sum v_{g}. In this instance the group velocity equals then v_{k} locity of the carrier the average speed \bar{E} words, $y_{r}=-1=y_{1}=v_{1}$. This applies specifolthe dispersive media in which the phase velocity is dent of wavelength so that the swo waves coult he same speed. For a more generally applicables examine the expression for the modulation en

$$
E_{0}(x, y)=2 E_{01} \cos \left(k_{m} x-\omega_{m} t\right)
$$

The speed with which that wave moves is againg giver by Eq. (2.32), but now we can forget the cay The modulation therefore advances at a rate on the phase of the envelope $\left(k_{\pi} x-\omega_{m} t\right)$ and

$$
t_{k}=\frac{\omega_{m}}{k_{m}}
$$

$$
\psi_{\mathrm{g}}=\frac{\omega_{1}-\omega_{2}}{k_{1}-k_{2}}=\frac{\Delta \omega}{\Delta \bar{k}}
$$

Realize, however, that ω may be dependent, on λ ar equivalently on k. The particular function ω^{-2} called a dispersion relation. When the frequen $\Delta \omega$, centered about $\bar{\omega}$, is small, $\Delta \omega / \Delta h$ is appro equal to the derivative of the dispersion relation
manmaman

Figure 7.10 Group and phase velacitirs.

$$
\pi_{k}=\frac{d \omega}{d k}
$$

The modulation or signal propagates at a speed $y_{8} 4$

$$
\text { Wh, and it ef useful to reformulate } v_{g} \text { as }
$$ be greater than, equal to, or less than v, the phase ve the carrier. Equation (7.97) is quite general and k ? true, as well. for any group of overlappin long as their (requency range is

Since $\omega=k v$. Eq. (7.37) yields

$$
\text { Since } \omega=k v \text {, Eq. (7.37) yields }
$$

$$
\begin{equation*}
v_{B}=v+k \frac{d v}{d k} . \tag{7.39}
\end{equation*}
$$

As a consequence, in nondispersive media in $v_{s}=\tau+k \frac{d v}{d k}$.

$$
\begin{equation*}
v_{\mathrm{g}}=\frac{c}{n}-\frac{k c}{n^{2}} \frac{d n}{d k^{\prime}} \tag{7.40}
\end{equation*}
$$

$$
v_{g}=v\left(1-\frac{k}{n} \frac{d n}{d k}\right) .
$$

$$
\begin{aligned}
& \text { Walepentem of } \lambda, d v / d k=0 \text { and } v_{g}=u \text {. Specifically }
\end{aligned}
$$

$$
\begin{aligned}
& \left(v_{1} \pi_{1} \pi_{2} \text {, as in Fig. 7.10) in which } n(k) \text { is known, } \omega=\right.
\end{aligned}
$$

refractive index increases with frequency ($d n / d k>0$), and as a result $v_{k}<t$. Clearly, one should also define group andex of refraction

$$
n_{k}+c / v_{k} .
$$

which must be carefully distinguished from n. In 1885 A. A. Michelson measuied n_{x} in carbon disulfide using pulses of white light and obtained 1.758 in comparison to $n=1.635$.
The special theory of relativity makes it quite clear that there are no circumstances under which a signal can propagate at a speed greater than c. Yet we have
already seen that under certain circumstances (Section 3.5.1) the phase velocity can exceed c. The contradiction is only an apparent one, arising from the "fact that lthough a monochromatic wave can indeed have a peed in excess of c, it cannot convey information. In will propagate at the group velocity, which is alwaysless than c in normally dispersive media.*

7.7 ANHARMONIC PERIODIC
 WAVES - FOURIER ANALYSIS

Figure 7.11 depicts a disturbance that arises from the superposition of two harmonic functions having superposition of two harmonic functions having something rather curious has taken place-the composite disturbance is anharmonic; in other words, it is posite disturbance is anharmonic, in other words. it is tainly say again, purely sinusoidal waves have no actual physical existence. This fact emphasizes the practical ignificance of anharmonic disturbances and is the morivation for our present concern with them. Figure 7.11 suggests that by using a number of sinusoidal functions whose amplitudes, wavelengths, and relative phases have been judiciously selected, it would be possible to synthesize some rather interesting wave profiles. An exceptionally beautiful mathematical technique for doing precisely this was devised by the French physicist Jean Baptiste Joseph. Baron de Fourier (1768-1830). Ts Fourier's 'heorem which states that a furction $f(x)$, hationg a spatiol pariod A, con be synthesized by a sum of harmonic functions whose wavelen ptis are indegral submultiples of λ (that is $\lambda, \lambda / 2, \lambda / 3$, etc). This Fourier-series representation has the mathematical form

$$
f(x)=C_{0}+C_{1} \cos \left(\frac{2 \pi}{\lambda} x+\varepsilon_{1}\right)
$$

$$
+C_{2} \cos \left(\frac{2 \pi}{\lambda / 2} x+\varepsilon_{2}\right)+\cdots, \quad \text { (7.4I) }
$$

In regions of anomalous dispersion (Section 3.5. 1) where dn $/ d k<1$), ${ }_{4}{ }_{8}$ may be greater than c. Here, however, the signal propagates at yet a difccrent speed, known as the sigual velocity, ν_{y}. Thus $\nu_{s}-v_{k}$ the velocity of encrgy transicr and never cxceeds e
 Figure 7.11
frequency.
where the C-values are constants, and of court the where the C-values are constants, and of cou profile $f(x)$ may correspond to a travelirg wave: that although C_{0} by itself is obviously a pont inimp for the original function, it will be approgrisie a lis few points where it crosses the $f(x)$ curve. Li the way, adding on the next term improves thing a bil since the function

$$
\left[C_{0}+C_{1} \cos \left(2 \pi x / \lambda-\varepsilon_{1}\right)\right]
$$

will be chosen so as to cross the $f(x)$ curve c frequently. If the synthesized function [the til side of Eq. (7.41)] comprises an infinite ng terms, selected to intersect the anharmonic ful an infinite number of points, the series will presy be identical to $f(x)$.
ftily more convenient to reformulate
making use of the trigonometric identil
$C_{m} \cos \left(m k x+\varepsilon_{m}\right)-A_{m} \cos m h x+A_{-} \Omega_{\pi}$ where $k-2 \pi / \lambda, \lambda$ being the wavelengt
$C_{m} \cos \varepsilon_{m}$, and $B_{m}=-C$ sin ε_{m} Thus

$$
f(x)=\frac{A_{0}}{2}+\sum_{m=1}^{\infty} A_{m} \cos m k x+\sum_{m-1}^{\infty} B_{m}
$$

The first term is written as $A_{0} / 2$ because a

> matieal simplification it will lead to later on. The process of determining the cefficients A_{0}, A_{m}, and B_{m} for a specificperiodic function $f(x)$ is referred to as Fourier analysis. We'll spend a moment now deriving a set of equations for chese coefficients that can be used henceforth. To that end, integrate both sides of Eq. (7.42) aver any spatial interval equal to λ, for example, from 010λ or trom $-1 / 2$ to $+\lambda / 2$ or, more generally, from x^{\prime} to $x^{\prime}+\lambda$. Since over any such interval $\int_{0}^{x} \sin m k x d x=\int_{n}^{\lambda} \cos m k x d x=0$, there is only one nonzero term to be evaluated, namely,

$$
\int_{0}^{\lambda} f(x) d x=\int_{0}^{\lambda} \frac{A_{0}}{2} d x-A_{0} \frac{\lambda}{2},
$$

and thus

$$
A_{0}=\frac{9}{\lambda} \int_{0}^{\lambda} f(x) d x .
$$

(7. 8)

To find A_{m} and B_{m} we will make use of the mithsgonality
 \int_{0}

$$
\begin{aligned}
& \int_{0}^{1} \sin a h x \cos b k x d x=0 \\
& \int_{0}^{\lambda} \cos a k x \cos b k x d x=\frac{\lambda}{2} \delta_{a b} \\
& \int_{0}^{\lambda} \sin a k x \sin b k x d x=\frac{\lambda}{2} \delta_{a b},
\end{aligned}
$$

tore a and b are nonzero positive integers and $\delta_{a b}$ 3o
as the Kronecher delta, is a shorthand notation piand aro when $a \neq b$ and equal to 1 when $a=b$. Cl/Va, f We now multiply both sides of Eq. (7.42) hy Trdatis period. Only one term is non integrate hat is teresingle only one term is nonvanishing, I CorreEmads in $\ell=m$, in which case
$\int_{\text {Thues }} f(x) \cos +1 b x d x=\int_{0}^{2} A_{m} \cos ^{2} m k x d x=\frac{\lambda}{2} A_{m}$. Thus

$$
\begin{equation*}
A_{m}=\frac{2}{\lambda} \int_{0}^{\lambda} f(x) \cos m k x d x . \tag{7.47}
\end{equation*}
$$

This expression can be used to evaluate A_{0} for all values t m, including $m=0$ as is evident from a comparison f Eqs. (7.43) and (7.47). Similarly, multiplying Eq. (7.42) by $\sin 8 k x$ and integrating, leads to

$$
B_{m}=\frac{2}{\lambda} \int_{0}^{\lambda} f(x) \sin m k x d x .
$$

In summary, a periodic function $f(x)$ can be represented as a Fourier series

$$
f(x)=\frac{A_{0}}{2}+\sum_{m=1}^{\infty} A_{m} \cos m k x+\sum_{m=1}^{\infty} B_{m} \sin m k x,
$$ using

$$
\begin{equation*}
A_{m}=\frac{2}{h} \int_{0}^{A} f(x) \cos m h x d x \tag{7.47}
\end{equation*}
$$

and

$$
B_{m}=\frac{2}{\lambda} \int_{0}^{\lambda} f(x) \sin m k x d x .
$$

Be aware that there are some mathematical subtleties elated to the convergence of the series and the number of singularities in $f(x)$, but we need not be concerned with these matters here.
There are certain symmetry conditions that are well worth recognizing, because they lead to some computaional short cuts. Thus if a function $f(x)$ is even, that is, if $f(-x)=f(x)$, or equivalently, if it is symmetric about $x-0$, its Fourier series will contain only cosine terms $B_{m}=0$ for all m) that are themselves cven functions. Likewise ofd functions that are antisymmetric about ontaining only sine function have series expansions either case one need not bother to calculate both sets of coefficients. This is particularly helpfut when the location of the prigin $(x-0)$ is arbitrary and we an choose it so as to make life as simple as possible. Noncheless, keep in mind that many common functions are neither odd not even (c.g., e^{x}).
As an example of the technique, let's compute the Fourier series that corresponds to a square wave. We select the location of the origin as shown in Fig. 7.12,

256 Chapter 7 The Superposition of Waves

Figure 7.12 A periocic square wave.
and so

$$
f(x)= \begin{cases}+1 & \text { when } 0<x<\lambda / 2 \\ -1 & \text { when } \lambda / 2<x<\lambda .\end{cases}
$$

Since $f(x)$ is odd, $A_{m+1}-0$, and
$B_{m}=\frac{2}{\lambda} \int_{0}^{\lambda / 2}(+1) \sin m k x d x+\frac{2}{\lambda} \int_{\lambda / 2}^{\lambda}(-1) \sin m k x d x$
thus

$$
\mathbf{B}_{n}=\frac{1}{m \pi}[-\cos m k x]_{i}^{\lambda / 2}+\frac{1}{m \pi}[\cos m k x]_{\hat{\lambda} / 2}^{\lambda} .
$$

Remembering that $k=9 \pi / \lambda$, we obtain

$$
B_{m}=\frac{2}{m \pi}(\mathrm{t}-\cos m \pi) .
$$

The Fourier coelficients are therefore

$$
\begin{aligned}
& B_{1}=\frac{4}{\pi}, \quad B_{2}=0, \quad B_{3}=\frac{4}{3 \pi}, \\
& B_{4}=0, \quad B_{5}=\frac{4}{5 \pi},+64 y
\end{aligned}
$$

and the required series is simply
$f(x)=\frac{4}{\pi}\left(\sin k x+\frac{1}{9} \sin 3 k x+\frac{1}{5} \sin 5 h x+\cdots\right)$ (7.49)
Figure 7.13 is a plot of a few partial sums of the series as the number of terms increases. We could pass over to the time domain to find $f(t)$ by just changing $k x$ to
wl. Suppose that we have three ordinary electronic oscil-

Figure 7. 13 Synthesis of a periodic square wave. (f)ich in till

$$
+\sum_{m=1}^{\infty} B_{m} \sin m k(x \pm v t) \quad(7.50)
$$

an xtose output voltages vary sinusoidally and are -tudebie in both frequency and amplitude. If these g_{0}, an. 5 答 and the total signal is examined on an illosco . We can synthesize any of these curves, as 3id) Similarly, we micht simultaneouly strike Ontan appropriately tuned piano with just orce on each ta create a chord, or composite
Thaving the curve in Fig. 7.13 (c) as its profile nhaving the curve in Fig. 7.1s(c) as its profile. at Eourier analysis of a simple composite wave ho could even name earh note in the chord. 4ity we postponed any detailed consideration of Trmonic periodic functions, such as those in Figr_{i} and restricted our antalysis to purely sinusoidal now have a cogent rationale for having done Tivirute on we can envision this kind of disturTent frempencisition of harmonic constituents of encies whose individual behavior can be sep : ately, Accordingly, we can write
$f(x+v t)=\frac{A_{0}}{2}+\sum_{m=1}^{\infty} A_{m} \cos m k(x=v t)$
or equivalently
$f(x=v i)=\sum_{m=0}^{m} C_{r n} \cos \left[m h(x \pm v t)+\varepsilon_{m}\right] \quad$ (7.
for any such anharmonic periodic waye.
As a last example let's now analyze the square wave As a last example let's now analyze the square wave with the origin chosen as shown, the function is even, and all the B_{m} terms are zero. The appropriate Fourier coefficients (Problem 7.25) are then

$$
\begin{equation*}
A_{0}-\frac{4}{a} \quad \text { and } \quad A_{\pi}-\frac{4}{a}\left(\frac{\sin m 2 \pi / a}{m 2 \pi / a}\right) \tag{7.52}
\end{equation*}
$$

Unlike the previous function, this one has a nonzero value of A_{n}. You might have already noticed that $A_{\mathrm{u}} / 2$ is actually the mean talue of $f(x)$, and since the curve lies come expression (sin u)/u arises so frequently in optics That is given the special name sinc u, and its values are listed in Table 1 (p.624) Since the limit of sinc u are u goes to zero is A can represent all the as u goes to zero is $1, A_{m}$ can represent all the
coefficients, if we let $m=0,2, \ldots$.
The form we are using is rather general, inasmuch as the width of the square peak, $2(\lambda / a)$, can be any fraction of the total wavclength, depending on a. The Fourier series is then

$$
f(x)=\frac{2}{a}+\sum_{m=1}^{\infty} \frac{4}{a} \operatorname{sinc} m 2 \pi / a \cos m k x . \quad \text { (7.53) }
$$

If we were synthesizing the corresponding function of time, $f(t)$, having a square peak of width $2(\tau / a)$, the same expression (7.53) would apply where $k x$ was simply replaced by wt. Here ω is the anguiar temporal frequency of the periodic function $f(t)$ and is known as the fundamental. It is the lowest frequency of the cosine term and arises when $m=1$. Frequencies of $2 \omega, 3 \omega, 4 \omega, \ldots$ are known as hamonits of the fundamental and are associated, of course, with $m=2,3,4, \ldots$ In much the same way, since A is the spatial period, $\kappa \geqslant 1 / \lambda$ is the spatial frequency, and $k=2 \pi \kappa$ might be called the angular spatial frequency. Once again one speaks of the harmonics, of frequency $2 k, 3 k, 4 k, \ldots$, where these are spatial alternations. Evidently, the dimensions of κ are cycles per unit length (e.g., cycles per man or possibly just cm , and those of k are radians per unit length pints so as to avoid a commor confusion concerning the use of the terms spatial frequency and spatial period (or wavelength). Figure 7.14 shows a one-dimensional periodic square-wave function spread out in space along periodic square-wave function spread out in space along
the x-axis. This might be a pattern seen on the face of an oscilloscope or the profile of a rather extraordinaty an oscilloscope or the profile of a rather extraordinary repeats itself in space over a distance known as the wavelength and one over that is the spatial frequency Now suppose instead that the patrern corresponds to an irradiance cistribution, a series of bright and dark stripes, for instance, the kind of thing you might see looking through a narrow horizontal sit against a picke fence or, even better, while scanning on a line across a group of alternately clear and opaque bands (Fig. 14.2) iluminated by monochromatic light. Again the pattern will have some spatial period and frequency determine by he rate at will it repeass ina spaf, bucy (k) and peicd (1) as well as tempoll frequency and period perite (λ), from the other. The patteri might have wavelength (λ) of 20 cm , and the light generating it wavelength (λ) of 500 nm . Hercin lies the area of poten ial confusion. Henceforth, we will reserve the symbol k and λ for the lightwave itself and use k and λ to describe spatial optical patterns
Now return to the square function of Fig. 7.14 and suppose that we set $\boldsymbol{a}-4$, or in other words, we cause
the square peak to have a width of $\boldsymbol{\lambda} / 2$. In therting

$$
f(x)=\frac{1}{9}+\frac{2}{\pi}\left(\cos k x-\frac{1}{9} \cos 3 k x+i \cos 5 k x .\right.
$$

As a matter of fact, if the graph of the function uch that a horizontal line could divide it into haped segments, above and below that line, thei eries will consist of only odd harmonics. Te plot the curve representing the partial sum of the hrough $m=9$, it would closely resemble wave. In contrast, if the width of the peak is he number of terms in the series needed to he same general resemblance to $f(x)$ will be incte This can be appreciated by examining the ratio

$$
\frac{A_{m}}{A_{1}}=\frac{\sin m 2 \pi / a}{m \sin 2 \pi / a} .
$$

Observe that for $a=4$, the ninth term s fairly small, $A_{9} \approx 10 \% A_{1}$. In comparison rower (hat is, $a=400$), imila, w, pp to $m-8$ to produce roughly the equivale when $a=8$. Making the peak narrower has the of introducing higher-order harmonics, which 䍚 twre have smaller wavelengths. We might guess, then, it is not the total number of terms in the series of prime importance but rather the relative d of the smallest features being reproduced an ponding wavelengths avaitable. If there details in the profle, the series must contain cort. dively shor-waveleng (or in the time do period) contributions.
The negative values of $A_{2,2}$ in Eq. (7.53) and (7.15) should simply be thought of as the ampu. those harmonic contributions that are to $180^{\circ} \%$ he synthesis with thir phases she equivalencol pared wive poltude and a rerad phase shifle from the farc that $A_{m} \cos (k x+\pi)=-A_{m} \cos$ 解
\qquad the blocks are a good deal sinalikr thar the cascle.

for a scale favtor. It is determined only by the shape of the original signal and will be quite different for other configurations. We can conclude that as λ increases and
the function takes on the appearance of a single square pulse, the space between each of the A(t) contribre puise, the space between each of the A(mik) contribulines, while decreasing in amplitude, will gradually merge, becoming individually unresolvable. In other words, in the limit as λ approaches ∞, the spectral lines will become infinitely close wo each other. As k becomes extremely small, m must consequently become exceedingly large, if $m k$ is to be at all appreciabie. Changing notation, we replace $m k$, the angular frequency of the harmonics, by k_{m}. Although it comprises discrete terms, in the limit k_{n} will be transformed into k (i.e., a coninuous frequency distribution). The function $A\left(k_{m}\right)$ in the liniiz: will become the envelope shown in Fig. 7.15. t is obviously no longer meaningful to talk about the fundamental frequency and its harmonics. The pulse eing synthesized, $f(x)$, has no apparent fundamental requency
Recall that an integral is actually the limit of a sum sthe number of elements goes to infinity and their size approaches zero. Thus it should not be surprising hat the fourier series must be replaced by the so-calied ourier integral as λ goes to infinity. That integral, which we state here without proof, is

$$
f(x)=\frac{1}{\pi}\left[\int_{0}^{\infty} A(k) \cos k x d k+\int_{0}^{\infty} B(k) \sin k x d k\right]
$$

provided that

$$
A(k)=\int_{-\infty}^{\infty} f(x) \cos k x d x
$$

and

$$
B(k)=\int_{-\infty}^{\infty} f(x) \sin k x d x .
$$

The similarity with the series representation should be bvious. The quantities $A(k)$ and $B(k)$ are interpreted s the amplitudes of the sine and cosine contributions the range of angular spatiol frequency between' and $k+d k$. They are generally spoken of as the Fourier cosine and sine transforms, respectively, In the foregoing example of a square pulse, it is the cosine ransform. $A(k)$, that will be found to correspond to the envelope in Fig, 7.15.
$A(k)=\int_{-\infty}^{\infty} f(x) \cos k x d x$

Figure 7.16 A 無mmetrial frequency spearum for in Figure $7,15(a)$. Note that the zeroth term is actually
is indced the mimplitude of the $m=0$ contribution to the
careful examination of Fig. 7.15 and Egalil reveals that except for the zero-frequency amplitudes of the contributions to the synth function. Remember envelope of the curve $\frac{1}{2} 4$ nor A, which suggests another way 10 reat the frequency spectrum Inasmuch as \cos (m i $\cos (-m k x)$, we can divide the Inasmuch as $\cos ($ $\cos (-m k x)$, we can divide the amplinude of exe
bution beyond $m=0$ in half and plot it twice. a positive value of k and again with a negative o a positive value of k and again with a negative a
7.16). This mathematical contrivance provide symmetrical curve, but it's introduced here 5 . is common practice to represent frequency si that fashion. As we will see in Chapter 11, powerful rourier cransform methods involve a representation that automatically gives rise to 1 il metrical distribution of positive and neganiy I frequency terms. Certain optical phenoment diffraction) aiso occur symmetrically in spacessid marvelous relationship can be constructed w spatial frequency spectrum, provided that if passes positive and negative frequencies. The redeeming suace Still all physical processe expressed exclusively in rerms of positive freq and we shall continue to do just that througl remainder of this chapter.
$A(k)=E_{0} L \operatorname{sinc}(k L / 2)$.
(7.59)

The Fourier transform of the square pulse is plotted in Fig. 7.17(b) and should be compared with the envelope in Fig. 7.t5. Realize that as \boldsymbol{L} increases, the spacing between successive zeroes of $A(k)$ decreases and vice versa. Moreover, when $x=0$, it follows irom Eq. (7.58) hat $A(0)=E_{v} L$
It is a simple matter to write out the integral representation of $f(x)$ using Eq. (7.56):

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} E_{0} L \sin c(k \mathbf{L} / 2) \cos k x d k
$$

(7.59)

An evaluation of this integral is left for Problern 7.26. Earlier, when we talked about monochromatic waves, we pointed out that they were in fact hiditious, at least physically. There will always have been some point in ime when the generator, hewever perfect, was turned on. Figure 7.18 depicts a somewhat idealized harmonic pulse corresponding to the function

$$
E(x)= \begin{cases}E_{n} \cos k_{p} x & \text { when }-L>x=L \\ 0 & \text { when }|x|>L .\end{cases}
$$

We chose to work in the space domain but could certainly have envisioned the disturbance as a function of ime. We are effectively examining the spatial pronile of the wave $£(x-v)$ at t orather than the remporal profile at $x=0$. The spatial frequency k_{b} is that of the harmonic region of the pulse itself. Proceeding with the analysis, we note that $E(x)$ is an even function, consequently $B(k)=0$ and

$$
A(k)-\int_{-L}^{+L} E_{0} \cos k_{p} x \cos k x d x .
$$

This is identical to
$A(k)=\int_{-L}^{+\ell} E_{D} \frac{1}{[}\left[\cos \left(k_{p}+k\right) x+\cos \left(k_{p},-k\right) x\right] d x$,
which integrates to

$$
A(k)-E_{0} L\left[\frac{\sin \left(k_{\phi}+k\right) L}{\left(k_{p}+k\right) L}+\frac{\sin \left(k_{k}-k\right) L}{\left(k_{p}-k\right) L}\right]
$$

Figure 7.18 A finite cossine waveltrain and
or, if you like,
$A(k)=E_{0} L\left[\operatorname{sinc}\left(k_{p}+k\right) L+\operatorname{sinc}\left(k_{p}-k\right) L\right] \quad$ (7.00) When there are many waves in the $\operatorname{train}\left(\lambda_{p} \ll L\right) . k_{\phi} L \geqslant$ 2π. Thus $\left(k_{p}+k\right) L>2 \pi$, and therefore $\operatorname{sinc}\left(k_{p}+k\right) L$ is down to tairly small values. In contrast, when $k_{k}=k$, the second sinc function in the brackets has a maximum value of 1 . In other words, the function given by Eq. 7.60) can be thought of as having a peak at $k=-k_{p}$. as shown in part (b) of the drawing. since only positive values of k are to be allowed, only the tail of that leit-side peak that crosses into the positive k region will contribute. As we have just seen, such contributions will be negligible far from $k=-k_{p}$, especially when $L \gg \lambda_{p}$ and he peaks are both narrow and widely spaced. The beyond $k=-k$ Col-sequently, inc in his paricula case and write h blors

$$
A(k)=E_{0} L \operatorname{sinc}\left(k_{g}-k\right) L
$$

(7.61)

Fig. 7.18(c)]. Even though the wavetrain is very long, ince it is not infinitely iong it must be synthesized from he thought of as the composite of an infnite ensemble of harmonic waves. In that context one speaks of such
 $k=k_{p}$. Had the analysis been carried out in the tifl domain, the same results would have obtained 4 to the transform was centered about the tempor frequency $\omega_{p \text {. }}$ Quite cleary, as the waverrain infinitely long (i.e., $L \rightarrow \infty$), its frequency specty shrinks, and the curve of Fig. 7.18(c) closes down single tall spike at k_{p} (or ω_{p}). This is of limiting case of the idealized monochromatig Since we can think of $A(k)$ as the amplitud contributions to $E(x)$ in the range k to $k+8$ (Problem 7.27). Well energy of the wave in 11 when we conider the pour spatrim moment merely observe [Fig 7 718(c)] that energy is carried in the spatial frequency ram $k_{b}-\pi / L$ to $k_{t} \pi / L$ extending between the $k_{p}-\pi / L$ to $k_{p}+\pi / L$, extending beiween the length of the wavetrain causes the energy of length of the wavetrain causes the energy of
to become concentrated in an ever narrowing 搵 k about k_{p}.

The wave packet in the time domain, tsar i),

$$
E(t)= \begin{cases}E_{0} \cos \omega_{p}, t & \text { when }-T \leqq t>T \\ 0 & \text { when }|t|>T\end{cases}
$$

$(\omega)=E_{0} T \operatorname{sinc}\left(\omega_{p}-\omega\right) T, \quad$ (7.52) where $\omega a n=k$ are related by the phase velocity. The where ω and except for the notational change $\mathrm{m} \kappa$ Rto α and L to T, is identical to that of Fig. $8(c)$. For the particular wave packet being studied 3 range of angular frequencies (ω or k) that the
remprises is certainly not finite. Yet if we isform comprises is certainly not finite. Yet if we "e co speak of the tudith of the rransform ($\Delta \omega$ or Δk), -. 7.18 (c) suggests that we use $\Delta k=2 \pi / L$ or $\Delta \omega=$
T. In contrast, the spatial or temperal extent of the tunambiguous at $\Delta x=2 L$ or $\Delta t=2 T$, respec he product of the width of the packet in what acalled k-spoce and its width in $x-5 p a c e$ is $\Delta k \Delta x=$ $4 \pi c$ gilogously $\Delta \omega \Delta l=4 \pi$. One speaks of the quanuite Wand Δw as the frequency bandwidths. Had we a differently shaped pulse, the product of the an aith and the pulse length might certainly have hewhat different. The ambiguity arises because for speci wir chosen one of the alternative possibilities
 using the inst minna of $A(k)$ (there are transforma

$$
\ldots
$$

of Section 11.2), we could have let Δk be the width of $A^{2}(k)$ at a point where the curve had dropped to $\frac{1}{2}$ or possibly $1 / e$ of its maximum value. In any event, it will suffice for the time being to observe that

$$
\Delta \nu \sim 1 / \Delta t
$$

that is, the frequency bandwidth is the same order of magnitude as the reciprocal of the temporal extent of the pulse (Problem 7.28). If the wave packet has a narrow bandwidth, it wilt extend over a large region of space and time. Accordingly, a radio tuned to receive a bandwidth of Δv will be capable of detecting pulses of duration no shorter than $\Delta l \sim 1 / \Delta \nu$.

These considerations are of profound importance in quantlum mechanics where wave packets describe particles, and Eq. (7.63) is akin to the Heisenberg uncertainty principle.

7.10 OPTICAL BANDWIDTHS

Suppose that we examine the light emitted by what is loosely termed a monochromatic source, for example a sodium discharge lamp. When the heam is passed through some sor of spectrum analyzer we will be able to observe all iss various frequency components. Typi cally we will find that there are a number of fairly narrow frequency ranges that contain most of the energy and that these are separated by much larger regions of darkness. Each such brightly colored band is known as a spectral line. There are devices in which the light enters by way of a sit, and each line is actually a colored irnage of that slit. Other analyzers represent the frequency distribution on the screen of an oscilloscope. In any event, the individual spectral lines are never infinitely sharp. They always consist of a band of frequencies, however small (Fig. 7.19).
The electron transitions responsible for the generation of light have a duration on the order of $10^{-8} \mathrm{~s}$ in
10^{-9} s. Because the emitted wavertains are finite there 10^{-5} s. Because the emitted wavetrains are finite, there
will be a spread in the frequencies present. known as the netarrat linewidth (see Section 113.4). Moreover, since the atoms are in random thermal motion, the frequency spectrum will be altered by the Doppler effect. In addition, the atoms suffer collisions that inter
rupt the wavetrains and again tend to broaden the frequency distribution. The total effect of all thes mechanisms is that each spectral line has a bandwidth $\Delta \nu$ racher than one single frequency. The time that satisfies Eq. (7.68) is referred to as the coherence time (henceforth to be written Δt_{c}), and the length Δx_{c} givet by

$$
\Delta z_{c}=c \Delta \Delta_{t}
$$

is the coherence length. As will become evident pres ently, the coherence length is the extent in space ove which the wave is nicely sinusoidal so that its phase can be predicted reliably. The corresponding temporal duravion is che coherence time. These concepts are waves, and we will come back to them later in the discussion of interference Thour or the conerence

Though the concept of the phown wavetrain is already familiar, we are now in a position, armed with a little Fourier analysis, to deduce something about its configuration. This can be done by essentially working frequency distribution of a spectral fine from quasimonochromatic (nonlaser) source can be represented by a bell-shaped Gaussian furction (Section 2.1), That is, the irradiance versus frequency is found to be Gaussian. But irradiance is proportional to the elecrri field amplitude squared, and since the square of a Gaussian function is a Gaussian function, it follows tha the net amplitude of the light field is also bell-sltaped. Now suppose a single photon wavetrain, one of N identical such packels making up the beam, resemoles Fig. 7.20(a) in that it is a harmonic funcion modulated by Gausin inape. the we look at ony A (a). the same harmonic frequency component that soes into making up each photon wavertrin, for example the one corresponding to wi Remember that this com ponent is an infinitely long, constant-amplitud ponent is an ininitely long, constant-ampitude
sinusoid. If every packet is indeed identical, the amplitude of the Fourier component associated with w' will be the same in each. At any point in a stream of photons these ω^{\prime}-component monochromatic waves, one from earh wavetrain, will have a random relative phase distri bution that rapidly changes in time with the anrival of

grane 7.20 a cosinubidsal wevelrain modulated
Flguene 9.20 A cosinuboidsal waverrain modulated
each photon. Thus all such contributiag th cogether (7.21) will correspond on average monic wave of frequency ω^{\prime} having an amplim portional to $N^{2 r 2}$, and this is the ω^{\prime} part of observed field. The same will be true for even. he frequency constituting the packets. This ine thay frequency in the net light field of the beam aldis me the tity of the scpurate consituent wan Moreover, we know alt about ulis energy-ficai ribution; it's Gaussian, so the translorm of th ribution;, its Gaussian, so the translormor Mavetrain must be Gaussials too. In other wh rum of the beaw, but it also corresponds to pectrum of an individual photon packel. If diance is Gaussian, the ploton waverraio Gails
As a result of the randomness of the waverra individual harmonic components of the resultay will not have the same relative phases as the, each packet. Thus the profile of the resultant w from that of the separate wave packets, eveni frome

ower ip

White light has a frequency range from $0.4 \times 10^{15} \mathrm{~Hz}$ oo about $0.7 \times 10^{25} \mathrm{~Hz}$, that is, a bandwidth of about $0.3 \times 10^{13} \mathrm{~Hz}$. The coherence time is then roughly $3 \times$ $10^{-15} \mathrm{~s}$, which corresponds (7.64) to wavetrains having a spatial extent only a few wavelengths long. Accordingly, white light may be envisaged as a random succassion of pery short pulses. Were we to synthesize white light, we would haye to superimpose a broad, continuous range of harmonic constituents in order to produce the very short wave packets. Inversely, we car1 pass white light hrough a Fourier analyzer, such as a dirr raction grating or a prism, an
omponents.
The available bandwidth in the visible spectrum ($\approx 300 \mathrm{THz}$) is so broad that it represents something of wanderland for the communications engineer. For of about 4 MHz in the electromagnetic spectrum ($\Delta \nu$ is determined by the duration of the pulses needed to control the scanning eiectron beain). Thus the visible region could carry roughly 75 million television channeils. Needless to say, this is an area of active research (see Section 8.11).
Ordinary discharge lamps have relatively large bandwidths leading to coherence tengths only on the order of several millimeters. In contrast, the spectral lines emitted hy low-pressure isotope lamps such as Hg^{188} ($\lambda_{\text {sir }}=546.078 \mathrm{~nm}$) or the international standard $\mathbf{K r}^{86}$ ($\lambda_{\text {ir }}=605.616 \mathrm{~nm}$) have bandwidths of roughly 1000 MHz . The corresponding coherence lengths are of the order of 1 m , and coherence times are about 1 ns . these sources are certainly quasimonochramatic.

 Figure 7,22lightwave.

The most spectacular of all present-day sources is the aser. Under optimum conditions, with temperature variations and vibrations meticulously suppressed, a laser was actually operated at quite close to its theoretical limit of frequency constancy. A short-term frequency stability of about 8 parts per 10^{14} was attained \dagger with a He-Ne continuous gas laser at $\lambda_{B}=1153 \mathrm{~nm}$. That corresponds to a rema:kably narrow bandwidth of about 20 Hz . More common and not very difficult to obtain are irequency stabilities of several parts per 10 . There (10^{-1} s) $\Delta v / \bar{p}$ ratio of 10^{-9} and poss-term $\left(-10^{3}\right.$) value of 10^{-8}. $\left(\sim 10^{3} \mathrm{~s}\right)$ value of 10^{-8}

PROBLEMS

7.I Determine the resultant of the superposition of the parallel waves $E_{1}-E_{91} \sin \left(\omega t+\varepsilon_{1}\right)$ and $E_{2}=$ $E_{02} \sin \left(\omega t+\varepsilon_{2}\right)$ when $\omega=120 \pi, E_{01}=6, E_{02}=8, \varepsilon_{1}=$ 0 , and $\varepsilon_{2}=\pi / 2$. Flot each function and the resultant.
7.2 ${ }^{*}$ Considering Section 7.1, suppose we began the analysis to find $E=E_{1}+E_{2}$ with two cosine functions $E_{1}=E_{01} \cos \left(\omega t+\alpha_{1}\right)$ and $E_{9}-E_{t_{2}} \cos \left(\omega t+\alpha_{8}\right)$. To make things a little less complicated, let $E_{01}=E_{09}$ and $\alpha_{1}=0$. Add the two waves algebraically and make use of the familiar trigonometric idencity $\cos \theta+\cos \phi=$ $2 \cos \frac{1}{(}(\theta+\Phi) \cos \frac{1}{2}(\theta+\Phi)$ in order to show that $E-$ Now show that these same results follow from Eqs. (7.9) and (7.10).
7.3* Show that when the two waves of Eq. (7.5) are in phase, the resulting amplitude squared is a maximum equal to $\left(E_{01}+E_{02}\right)^{2}$, and when they are out of phase it is a minimum equal to $\left(E_{01}-E_{02}\right)^{2}$.
7.4* Show that the optical path, defined as the sum of the products of the various indices times the thicknesses of media traversed by a beam, that is, $\Sigma_{i} n_{i} x_{i}$. is equivalent

[^9]to the length of the path in vacuum that knuld tita same time for that beam to negotiate
7.5 Answer the following
a) How many wavelengths of $\lambda_{0}=500 \mathrm{~nm}$ light will
span a $1-\mathrm{m}$ gap in vacuum?
b) How many waves span the gap when a

5 cm thick ($n=1.5$) is inserted in the pathe
c) Determine the OPD between the two situatio d) Verify that A / λ_{0} corresponds to the ditise between the solutions to (a) and (b) above,
7.6* Determine the optical path difference Socthy waves A and B, both having vacaum wavelen 500 nm , depicted in Fig. 7.22; the glass ($n=1.5$ is fhase and all the above numbers are exat relative phase difference at the finishing line

7.7* Using Eqs. (7.9), (7.10), and (7.11), abote ilutite resultant of the two wave

$$
E_{1}-E_{01} \sin [\omega t-k(x+\Delta x)]
$$

and
$E_{2}=E_{01} \sin (\omega t-k x)$
is

$$
E=2 E_{01} \cos \left(\frac{k \Delta x}{2}\right) \sin \left[\omega t-k\left(x+\frac{\Delta t}{2}\right)\right] \text {, ㄱ.ty }
$$

$$
\text { 7.8 Add the two waves of Problem } 7.7 \text { dirctati to ith }
$$ Eq. (7.17).

* The electric field of a standing electromagnetic 7.10) whe is given by

$$
E(x, t)=2 E_{0} \sin k x \cos \omega t . \quad[7.30]
$$

$$
\text { expression for } \boldsymbol{B}(x, t) \text {. (You might want to }
$$

Sher look at Section 3.2.) Make a sketch of the

Sridering Wiener's experiment (Fig. 7.8) in matic light of wavelength 550 nm , if the film ggled at 1.0° to the reflecting surface, determine the number
7.12* 随icrowaves of frequency $10^{19} \mathrm{~Hz}$ are beamed i.isth at a inetal reflector. Neglecting the refractive Trka io it resling tanding wave pattern.
7.18* hysading wave is given by

$$
E=100 \sin \frac{2}{3} \pi x \cos 5 \pi t .
$$

errte if.
2.14* 屈agine that we strike two tuning forks, one with a quency of 340 Hz , the other 342 Hz . What atir?
e7. 23 shows a carrier of frequency ω_{c} being lodulated by a sine wave of frequency ω_{k}, martiv,
$E=E_{0}\left(1+\alpha \cos \omega_{m} l\right) \cos \omega_{\varepsilon} t$.
is equivalent to the superposition of three rencies $\omega_{c}, \omega_{s}+\omega_{m}$, and $\omega_{c}-\omega_{m}$. When wrice $E_{\text {as }}$ a Fourier series frequencies are present, we . The terms $\omega_{c}+\omega_{m}$ constitute what is called the
upper sideband, and all the ω - ω_{m} terms form the lower sideband. What bandwidth would you need in order to transmit the complete audible range?
7.16 Given the dispersion relacion $\omega^{-} a k^{2}$, compute both the phase and group velocities.

The speed of propagation of a sorface wave in a liquid of depth much greater than λ is given by

$$
y=\sqrt{\frac{g \lambda}{2 \pi}+\frac{2 \pi Y}{\rho \lambda}}
$$

where

$$
\begin{aligned}
& g=\text { acceleration of gravity } \\
& \lambda=\text { wavelength } \\
& \rho=\text { density } \\
& Y=\text { surface tension. }
\end{aligned}
$$

Compute the group velocity of a pulse in the long wavelength limit (these are called gravity uaves).
7.18* Show that the group velocity can be written as

$$
v_{R}=v-\lambda \frac{d v}{d \lambda} .
$$

7.19 Show that the group velocity can be written as

$$
v_{\alpha}=\frac{\epsilon}{n+\varphi(d n / d a x)} .
$$

7.20* Determine the group velocity of waves when the phase velocity varies inversely with wavelength.

7.21* Show that the group velocity can be written as

$$
v_{E}=\frac{c}{n}+\frac{\lambda c}{n^{2}} \frac{d n}{d \lambda} .
$$

7.22 Using the dispersion equation,

$$
n^{2}(\omega)=1+\frac{N \varphi_{e}^{2}}{\epsilon_{n} m_{c}} \sum\left(\frac{h_{j}}{\overline{\omega_{0}^{2}}-\omega^{2}}\right) .
$$

show that the group velocity is given by

$$
v_{g}=\frac{c}{1+\bar{N}_{q}^{2}{ }_{e}^{2 / \varepsilon_{n}} m_{2} \omega^{2} 2}
$$

for high-frequency electromagnetic waves (e.g., x -rays). Keep in mind that since f_{1} are the weighting factors $\Sigma_{i} f_{j}=1$. What is the phase velocity? Show that $v v_{g}=c^{2}$.
7.23* Analytically determine the resultant when the two functions $E_{1}=2 E_{0} \cos \omega i$ and $E_{2} \frac{1}{2} E_{0} \sin 2 \omega l$ are superimposed. Draw E_{1}, E_{2}, and $E-E_{1}-E_{2}$. Is the resultant periodic; if so, what is its period in terms of ω ? 7.24 Show that

$$
\begin{align*}
& \int_{0}^{\lambda} \sin a k x \cos b k x d x=0 \\
& \int_{0}^{\lambda} \cos a k x \cos b k x d x=\frac{\lambda}{2} \delta_{a b} \tag{7.45}\\
& \int_{0}^{\lambda} \sin a k x \sin b k x d x=\frac{\lambda}{2} \delta_{a,},
\end{align*}
$$

where $a \neq 0, b \neq 0$, and a and b are positive integers.
7.25 Compute the Fourier series components for the periodic function shown in Fig. 7.14.
7.26 Change the upper limit of Eq. (7.59) from oo to c and evaluate the integral. Leave the answer in terms of the so-called sine integral:

$$
\mathrm{Si}(z)-\int_{0}^{2} \operatorname{sinc} \omega d w
$$

which is a function whose values are commonly tabu-
lated.
7.27 Write an expression for the tramoform A /(w) the harmonic pulse of Fig. 7.24. Check thoi Jith With that in mind, show that $\Delta \nu \Delta / \sim 1$, man π the bandwidth of the transform at half irs ere Δ he bandwidth of the transform at half its naxiqu implitude. Verify that $\Delta \nu \Delta t \sim 1$ at half the prasul irradiance as well. The purpose here is to get 3 sense of the kind of approximations used tit the
cussion. cussion

Figure 7.94

annetio-field tecturipue fir stabilizing a He-- A Ne yeser mial wowd he the oche

wir such a fiequency stability?

rmatine that we chop a continuous laser bearn impejint that we cromacic at $\lambda_{0}=632.8 \mathrm{~nm}$) into minel th be shounctise sort of shutter. Compute the -ns pulss.vailith ΔA, bandwidth, and coherence dtant rind the bandwidth and linewidth that would uit it wr could chop at $10^{15} \mathrm{~Hz}$
14 18^{*} Suppoe that we have a filter with a pass band A arkered at 600 nm , and we illuminate it with
Compute the coherence lengh of the emerg-
7.28 Derive an expression for the coherencesi (in vacuurn) of a swavetrain that has a frequeneg width Δv; express your answer in terms of the $\Delta \lambda_{0}$ and the mean wavelength $\bar{\lambda}_{n}$ of the train.
7.29 Consider a photon in the visible region spectrum emitted during an atomic transition, s. How long is the wave packer? Keeping? estimate the linewidth of the packer ($\bar{A}_{0}=50$. What can you say abet is poch cated by the frequency stability?
7.30 The first \dagger experiment directly measuriti andwidth of a laser (in this case a contimuon . Sn_{1} Te diade laser) has been successfult. . $0.88 \mathrm{n}_{0.12} \mathrm{Te}$ diode laser) has bcen succes.60 heterodyned with a CO_{z} laser, and bandwid ow as 54 kHz we re observed. Compute the cor ing frequency stability and coherence lenghth: lead-tin-telluride laser.

7.34* A filter pasces light with a mean wavelength of $x_{0}=500 \mathrm{~nm}$. If the emerging wavetrains are roughly $20 \lambda_{0}$ long, what is the frequenc bandwidth of the exiting light?
7.35* Suppose we spread whire light out into a fan of wavelengths by means of a diffraction grating and then select region of that spectrum out throug a slit. Because of the width of the slit, a band of wavelengths 1.2 nm wide centered on 500 amemerges Determine the frequency bandwidth and the coherence length of this light.

8
 POLARIZATION

8.1 THE NATURE OF POLARIZED LIGHT

It has al ready been established that light may be treated as a transverse electromagnetic wave. Thus far we have as a transverse electromagnetic wave. Thus far we have considered only linearly polarized or plane-polarized
light, that is, light for which the orientation of the electric field is constant, although its magnitude and sign vary in time (Fig. 3.9). The electric field or optical disturbance therefore resides in what is known as the plane of vibration. That fixed plane contains both \mathbf{E} and \mathbf{k}, the electric field vector and the propagation vector in the direction of motion. Imagine now that we have two harmonic, linearly polarized light waves of the same frequency, moving through the same region of space, in the same direction. If their elect tic field vectors are collinear, the superimposing disturbances will simply combine to form a resultant linearly polarized wave. Its amplitude and phase will be examined in ter, when we consider the phenomenon of interference. In contradistinction, if the two lightwaves are such that their respective electric field directions are mutually perpendicular, the resultant wave may or may not be perpendicular, the resultant wave may or may not be (ie., its state of polarization) and how we can observe it, produce it, change it, and make use of it will be the concern of this chapter.

8.1.1 Linear Polarization

We can represent the two orthogonal opticifill dispute bances that were considered above in the font

$$
\mathbf{E}_{x}(z, t)=\hat{i} E_{0 x} \cos \left(k z-\omega_{t}\right)
$$

 and

$$
\mathrm{E}_{y}(z, t)=\hat{\mathrm{j}} E_{0 y} \cos (k z-\omega t+\varepsilon),
$$

where \boldsymbol{E} is the relative phase difference berweith th

 waves, both of which are traveling in the k-desotis Keep in mind from the start that because the phase int the form $(k z-\omega l)$, the addition of a positive es that the cosine function in Eq. (8.2) will not attis same value as the cosine in Eq. (8.1) until a her dr ($\varepsilon / \omega)$. Accordingly, E, lags E_{x} by $\varepsilon>0$. Of cons is a negative quantity, $E_{\text {, }}$ leads E_{x} by tent optical disturbance is the vector sum of the the perpendicular waves:$\mathbf{E}(z, t)=\mathbf{E}_{x}(\bar{z}, t)+\mathbf{E}_{y}(z, t)$.
If ε is zero or an integral multiple of $\pm 2 \pi$, the are said to be in phase. In that particular case. becomes
$\mathbf{E}=\left(\hat{\mathbf{i}} E_{0 x}+\hat{\mathbf{j}} E_{0 \mathrm{y}}\right) \cos (k z-\omega t)$.
The resultant wave therefore has a fixed amply equal to ($\left.\hat{\mathbf{i}} E_{0 x}+\hat{\mathbf{j}} E_{0_{y}}\right)$; in other words, it too ip line
vibration has been rotated (and not necessarily by 90° from that of the previous condition, as indicated in Fig 8.2 .

8.1.2 Circular Polarization

Another case of particular interest arises when both constituent waves have equal amplitudes (oe., $E_{0 x}=$ $E_{0,}=E_{0}$), and in addition, their relative phase difference $\varepsilon=-\pi / 2+2 m \pi$, where $m=0, \pm 1, \pm 2$, In other words, $\varepsilon--\pi / 2$ or any value increased or decreased from $-\pi / 2$ by whole number multiples of 2π. Accordingly

$$
\mathbf{E}_{x}(z, t)=\hat{\mathbf{i}} E_{0} \cos (k z-\omega t)
$$

(c)

Figure 8.2 Linear light.
and

$$
\mathbf{E}_{,}(z, t)=\hat{\mathrm{j}} E_{0} \sin (\mathrm{kz}-\omega() . \quad(8.7)
$$

The consequent wave is given by
$\mathbf{E}=E_{0}[\hat{\mathbf{i}} \cos (k z-\omega t)+\hat{i} \sin (k z-\omega t)]$
(Fig. 8.3). Notice that now the scalar amplitude of \mathbf{E}, that is, $(\mathbf{E} \cdot \mathbf{E})^{1 / 2}=E_{0}$, is a constant. But the direction of E is time-varying, and it is not restritted, as before, to a single plane. Figure 8.4 depicts what is happening at some arbitrary point z_{0} on the axis. At $\ell=0, \mathbf{E}$ lies along the reference axis in Fig. 8.4(a), and so

$$
\mathbf{E}_{x}=\hat{i} E_{0} \cos k z_{0} \text { and } \quad \mathbf{E}_{y}=\hat{j} E_{0} \sin k z_{0} \text {. }
$$

At a later time, $t=k_{0} / \omega, \mathrm{E}_{\mathrm{w}}=\hat{\mathrm{f}} \mathrm{E}_{0}, \mathrm{E}_{5}=0$, and \mathbf{E} is along the x axis. The resultant electric field vector E is notating clockurise at an angular frequency of w, as seen by an observer toward whord the wave is moving (i.e.,

Figure 8.3 Right-circular fight
looking back at the source). Such a wave is said to th right-circularly polarized (Fig. 8.5), and one ge simply refers to x as righ-ircomar light. The throush one waveienth in comparison, if $\varepsilon=7$ 2 $5 \pi / 9,9 \pi / 2$, and so on (ie $E=\pi / 2+2 \mathrm{~m} \pi \mathrm{~m}$, hete $0, \pm 1, \pm 2, \pm 3, \ldots 1$, then

$$
\mathbf{E}=E_{\mathrm{a}}[\hat{\mathrm{f}} \cos (k z-\omega t)-\hat{\mathrm{j}} \sin (k z-\alpha t)]
$$

The amplitude is unaffected, but \mathbf{E} now roates os slockyise, and he wave is rerred to as left-cirom polarized. proarized.
two oppositely polarized circular waves of eq? tude. In particular, if we add the right-circul? Eq. (8.8) to the left-circular wave of Eq. (8.9)

$$
\mathbf{E}=2 E_{0} \hat{\mathrm{I}} \cos (k x-\omega t)
$$

dependence. Expand the expression for E into
$E_{y} / E_{6 y}=\cos (k z-\omega t) \cos \varepsilon-\sin (k z-\omega t) \sin \varepsilon$
and combine it with $E_{x} / E_{0 x}$ to yield

$$
\frac{E_{y}}{E_{0,}}-\frac{E_{x}}{E_{0 x}} \cos \varepsilon=-\sin (k z-\omega t) \sin \varepsilon .
$$

It follows from Eq. (8.11) that

$$
\sin (k z-\omega t)=\left[1-\left(E_{x} / E_{0_{x}}\right)^{2}\right]^{1 / 2},
$$

so Eq. (8.19) leads to

$$
\left(\frac{E_{x}}{E_{9 y}}-\frac{E_{x}}{E_{9 x}} \cos \varepsilon\right)^{2}=\left[1-\left(\frac{E_{x}}{E_{0 x}}\right)^{2}\right] \sin ^{2} \varepsilon .
$$

Finally, on reatrangiog terms, we have
$\left(\frac{E_{y}}{E_{0_{y}}}\right)^{2}+\left(\frac{E_{x}}{E_{v_{x}}}\right)^{2}-2\left(\frac{E_{z}}{E_{0_{x}}}\right)\left(\frac{E_{i}}{E_{B_{\gamma}}}\right) \cos \varepsilon=\sin ^{2} \varepsilon$.
This is the equation of an ellipse making an angle with the (E_{x}, E_{y})-coordinate system (Fig. 8.6) such that
$\tan 2 \alpha=\frac{2 E_{0 x} E_{0 z} \cos s}{E_{0 x}^{2}-E_{\delta y}^{2}}$
(g.15)

The fuation of the curve we are looking for should mot be a tinction of either position or time in should worls we thould be able to get rid of the ($k=-\omega /$)

on of the clearic vecoot in uation ratic is ω and $\lambda z=\pi / 4$

Figure B.6 Elliptical light.
Equation (8.14) might be a bit more recognizable if the principal axes of the ellipse were aligned with the coordinate axes, that is, $\alpha=0$ or equivalently $\varepsilon= \pm \pi / 2$, $\pm 9 \pi / 2, \pm 5 \pi / 2, \ldots$, in which case we have the familiar form

$$
\begin{equation*}
\frac{E_{y}^{2}}{E_{0,}^{2}}+\frac{E_{x}^{2}}{E_{0, x}^{2}}=1 . \tag{8.16}
\end{equation*}
$$

Furthermore, if $E_{0 y}=E_{0 x}-E_{0}$, this can be reduced to $E_{y}^{2}+E_{x}^{2}=E_{0}^{2}$,
(8.17)
which, in agreement with our previous results, is a circle. If ε is an even multiple of π, Eq. (8.14) results in

$$
E,-\frac{E_{0 y}}{E_{0 x}} E_{x}
$$

and similarly for odd multiples of π,

$$
\begin{equation*}
E_{y}=-\frac{E_{0_{y}}}{E_{0_{x}}} E_{x} \tag{8.19}
\end{equation*}
$$

These are both straight lines having slopes of $\pm E_{0 y} / E_{0 x}$; in other words, we have linear light.
Figure 8.7 diagrammatically summarizes most of these conclusions. This very important diagram is labeled across the bottom " E_{x} leads E_{y} by: $0, \pi / 4, \pi / 2$, $3 \pi / 4, \ldots$, , where these are the positive values of ε to be used in Eq. (8.2). The same set of curves will occur if " E_{y} leads E_{x} by: $2 \pi, 7 \pi / 4,3 \pi / 2,5 \pi / 4, \ldots$," and that happens when ε equals $-2 \pi,-7 \pi / 4,-3 \pi / 2,-5 \pi / 4$, and so forth. Figure 8.7(b) illustrates how E_{x} leading $E_{\text {, }}$, by $\pi / 2$ is equivalent to E_{y} leading E_{x} by $9 \pi / 2$ (where the sum of these two angles equals 2π). This will be of
continuing concern as we go on to shift the phases of the two orthogonal componenjf makith the lightwave.
We are now in a position to refer to a lightwave in terms of its specific state of a p We shall say that linearly polarized or pla in an 9 - or \mathscr{L}-ster respectively. Si left-a of elliptic polarization correspond marly, already seen that a \mathscr{Q}-state can be an superposition of \mathscr{R} - and \mathscr{L}-states, and for an \mathscr{g}-state. In this case, as shown in amplitudes of the two circular waves are analytical treatment is left for Problem 8.8)

8.1.4 Natural Light

An ordinary light source consists of a very of randomly oriented atomic emitters, atom radiates a polarized wavetrain for ro All emissions having the same frequency to form a single resultant polarized wave, whis for no longer than 10^{-8} s. New wavetrains aip emitted, and the overall polarization change pletely unpredictable fashion (see Section 8 g single resultant polarization state indiscermize is referred to as natural light. It is also known ired light but this is bit of a misnomer, since the light is composed of a mapidy varying ent the different polarization states.
We can mathematically represent natural intil terms of two arbitrary, incoherent, orthog polarized waves of equal amplitude (i.e., wa the relative phase difference varies rapid. domly).

Keep in mind that an idealized monochro wave must be depicted as an infinite wave disturbance is resolved into two orthogonal. perpendicular to the direction of propab, turn, must have the same frequency, b, extent, and therefore be mutually coheref constant). In other words, a peffery monow thaye is always polarized. In fact, Eqs. (8.1) wis:

8. I The Nature of Polarized Light

$3 \pi / 2$
linear momentum to that body (Section 3.3). Moreover, if the incident plane wave is circularly polarized, we can expect electrons within the material to be set into air cular motion in response to the force generated by the rotating E-field. Alternatively, we might picture the field as being composed of two orthogonal \mathscr{P}-states that are 90° out of phase. These simultaneously drive the elec tron in two perpendicular directions with a $\pi / 2$ phase difference. The resulting motion is again circular. In effect the torque exerted by the B -field averages to zero over an orbit, and the E-field drives the electron with an angular velocity ω equal to the frequency of the electromagnetic wave. Angular momenturi which the electrons are imbedded and to which they are bound We can treat the problem rather simply without actually going into the details of the dynamics. The powe delivered to the system is the energy transferred per

Pigure $\mathrm{B} . \mathrm{s}$ Elliptial light as the superposition of an \mathscr{F} - and $\mathscr{L}_{\text {-state }}$

Figure 8.9 Angular mbincnium of a photon.
unit time. defde. Furthermore, the power generated by a torque Γ acting on a rotating body is just $\omega \Gamma$ (which is analogous to $u F$ for linear motion), so

$$
\begin{equation*}
\frac{d \dot{\gamma}}{d t}-\omega \Gamma . \tag{8.20}
\end{equation*}
$$

Since the torque is equal to the time rate of change of the angular mornentum L, it follows that on the average

$$
\begin{equation*}
\frac{d \xi}{d t}=w \frac{d L}{d t} \tag{8.2y}
\end{equation*}
$$

A charge that absorbs a quantity of energy $\%$ from the incident circular wave will simultaneously absorb an amount of angular momentum L such that

$$
\begin{equation*}
L=\frac{\underline{g}}{\omega} . \tag{8.22}
\end{equation*}
$$

the incident wave is in an \mathscr{B}-slate, its E-vector rotates clockwise, looking toward the source. This is the direc tion in which a positive charge in the absorbing medium would roxate, and the angular momencum vector is therefore taken to point in the direction oppo
According to the quantum-mechanical description an electromagnetic wave transfers energy in quantize packets or photons such that $\%=h \mathrm{w}$. Thus $8=$ how (h $h / 2 \pi$), and the intrinsic or spin angular mormentum of
*Thisc choice of terminology is admittedly a bit awkward. Yee is use in optics is tairly well establishcd, even though it is complectly anti thetic to the more reasonable conveution adopucd in elenentar particie physics.
a photon is either - o or + t, where the signs right- or left-handedness, respectively. Notigns anglutar momentum of a photon is complesely indee its energy. Whenever a charged particie emits or electromagnetic radiation, along with change of $t f$ in its a gular momentum whill undergoz of \pm th and
The energy transferred io a target by an as being transported in the form wave can be as being transported in the form of a streamion
photons. Quite obviously, we can anticip photons. Quite obviously, we can anticipate a A purely left-circularly polarized plane wa angular monientum to the target as if wave photons in the beam had their spins alige direction of propagation, Changing the light circular reverses the spin orientation of the pho well as the torque everted by them on the tis 1935, using an extremely sensitive torsion pend Richard A. Beth (b. 1906) was actuarly able to p such measurements. t
Thus far we've had no difficulty in describit: right- and left-circular light in the photon What is lineanty or elliptically polarized light? ght in a \mathscr{P}-state can be synthesized by the superposition of equal amounts of light ing photon whose angular momenturn measured will be found to have its spin eithern parallel or antiparallel to k. A beam of linear lion interact with enatter as if it were compused, interact with matter as if it were composed, photons. There is a subtle point that has to bs here. We cannot say that the beam is artually meik - 4 .
*As a rather important yet simple example, consideit "As a rather important yev simple example, considee tirugyen of η /2. The atenn tas slightly more energy when the sper

 of ihe awmilit then \hbar, and chis is. imparted foan emiriedp Carries off the slight cxcess in energy as werl. This is pht 1 cm nicrowave emission, which is so signiificant in th

Equal amounts of well-defined right- and Equatons, the photons are all identical, didividuai photon exists in eifher spin state delihood. If we measurcd the angula the constituent photons, This is all we can observe. We are not y 1 is in it it it exiscs before the measurement). As beam will therefore impart no total angula rearn wirth 18 a target
tat, is each photon does not occupy both spin fife same probahility, one angular momen-
 Whan fromentum will therefore be imparted to the The result en matse is elliptically polarized light is, a niperpesition of unequal amounts of $\{\mathfrak{B}$ - and At is, a araring a particular phase relationalip.

22 WLARIZERS

Whe the ve ture some idea of what polarized light is, logical step is to develop an unsierstanding of manipulate it to fit our needs. An opticai device Hout is natural light and whose output is some follarized light is quite reasonably known as a wikrier. For example, recall that one possible rep
resentation of unpolarized light is the superposition of wo equal-amplitude, incoherent, orthogonal θ-states. An instrument that separates these two components, sisarding one and passing on the ower, is know as we could aiso have cincular or eiliptical polarizers All cese dar in foctiveness down to what called leaky or mertial polarizers.
Pi
Polarizers come in many different configurations, as we shal see, but they are all hased on one of four tive absorption; refiection; scalloring; and birefringence, or double refraction. There is, however, one underlying property that they all share, which is simply that there must be some form of asymmetry associated with the process This is certainly understandable, since the polatizer must somehow select a paricular polarization state and discard all others. In truth, the asyrumetry may be a subtie one reiated to the incident or viewing angle, but usually it is an obvious anisotropy in the materiai of the polarizer itself.

3.2.1 Malus's Law

One matter needs to be settled before we go on: how do we deternaine experimentally whecher or not a device actually a linear experimen
By definition if natural
near polarizer, as in Fig 8.10, only light in a \mathscr{P}-stal

Figure 8.11 A linear polarizer and analyer-Maius's law.

Will betransmited That state will have ansientat parallel to a specińc direction, which we will call the transmission axis of the polarizer. In other words, onl the component of the optical field parallel to the trans mission axis will pass through the device essenially the z-axis, the reading of the detector (eg a photocell) will be unchanged because of the complete symmetry of unpolarived light. Keep in mind that we are most of unpolanced light. Keep in mind chat we are most certainly dealing with waves, but because of the ver reasons, measure ooly the incident irtadiance. Since th irradiance is proportional to the square of the amplitude of the electric field [Eq. (3.44)], we need only concern ourselves wirh that amplitude.
Now suppose that we introduce a second identical ideal polarizer, or analyzer, whose transmission axis i vertical (Fig. 8.11). If the amplitude of the electric field transmitted by the polarizer is E_{0}, only its component $E_{9} \cos \theta$, parallel to the transmission axis of the analyzer will be passed on to the detector (assuming no absorption). According to Eq. (3.44), the irradiance reaching
the detector is then given by

$$
I(\theta)=\frac{c \epsilon_{\theta}}{2} E_{0}^{2} \cos ^{2} \theta .
$$

The maximum irradiance, $I(0)=c \epsilon_{0} E_{0}^{2} / 2$, moursite the angle θ between the transmission axest of the nalyzer and polarizer is zero. Equation (8.28] can accordingly be rewritten as

$$
I(\theta)=I(0) \cos ^{2} \theta .
$$

This is known as Malus's law, having first been fie lished in 1809 by Étienne Malus, military enginceral captain in the army of Napoleon
Obser ve that $1\left(90^{\circ}\right)=0$. This arises from he electric hield that has passed through serpendicular to the transmission axis of the two devices sc arranged are said to be b field is therefore parallel to what is called to axis of the analyzer and hence obviously har nuve ponent along the cransmission axis. We can use setup of Fig. 8.11 along with Malus's law
whether a particular device is a linear polaritu:

cion simply appears as a reflected wave. In contrast, the electrons are not free to move very far in the x-direction, and che corresponding field component of the wave is essentang unakerd of propagaes thr ber grid. It is a common error to ausume ravely that the y comport of the spaces between the wires
One can easily confirm our conclusions using microwaves and a grid made of ordinary electrical wire. It is not so easy a matter, however, to fabricate a grid that will polarize light, but it has been done! In 1.960 George R. Bird and Maxfield Parrish, Jr., constructed a grid having an incredible 2160 wires per mm." Their feat was accomplished by evaporating a stream of gold (or at other times aluminum) atoms at nearly grazing incidence onto a plastic diffraction grating replica (see Section 10.2.7). The metal accumulated along the edges of each step in the grating to form thin microscopic "wires" whose width and spacing were less than one wavelength across.
Although the wire grid is useful, particularly in the infrared, it is mentioned here more for perdagogical than practical reasons. The underlying principle on which it is based is shared by other, more common, dichroic polarizers.

8.3.2 Dichroic Crystals

There are certain materials that are inherently dichroic because of an anisotropy in their respective crystalline structures. Probabiy the best known of these is the naturally occurring mineral tournaline a semiprecions stone often used in jewelry. Actually there are several tourmalines, which are horon slicates of dinering chemical composition [c.g., $\mathrm{NaFe}_{3} \mathrm{~B}_{8}, \mathrm{~A}_{6} \mathrm{SH}_{6} \mathrm{O}_{27}\left(\mathrm{OH}_{4}\right)_{4}$. For this substance there is a specific direction within the crystal known as the principal or optic axis, which is determined by its atomic configuration. The electric field component of an incident lightwave that is perpendicular to the principal axis is strongly absorbed by the
sample. The thicker the crystal, the more complete the absorption (Fig. 8.13). A plate cut from a tourmaline crystal parallel to its principal axis and several millimeters thick will accordingiy serve as a linear polarizer. In this instance the crystai's principal axis becomes the polarizer's transmission axis. But the usefulness of courmaline is rather limited by the fact that its crystals are comparatively small. Moreover, even the transmitted light suffers a certain amount of absorption. To complicate matters, this undesirable absorption is
strongly wavelength dependent and the specimen will strongly wavelength dependent and the specimen win herefore be colored. A tournaline crystal held up to orher colors as well) when viewed normal to the pripcipalaxis and nearly black when viewed along that axis, where all the E-felds are perpendicular to it (ergo the term dichroic, meaning two colors)
There are several other substances that display similar haracteristics. A crystal of the mineral hypersthene, a ferromagnesian silicate, might look green under white light polarized in one direction and pink for a different polarization direction
We can get a qualitative picture of the mechanism that gives rise to crystal dichroistre by considering the microscopic structure of the sample. (You might want to take another look at Section 3.5.) Recall that the atoms within a crystal are strongly bound together by short-range forces to form a periodic lattice. The electrons. which are responsible for the optical properties, can be envisioned as elastically tied to their respective equilibrium positions. Electrons associated with a given nearby aroms, which themselves may not be symmetrically distributed. As a result, the elastic binding forces on the electrons will be different in different directions. Accordingly, their response to the harmonic elecric field of an incident electromagnetic wave will vary with the direction of E . If in addition to being anisotropic the material is absorbing, a detailed analysis would have to include an orientation-dependent conductivity. Currents will exist. and energy from the wave will be converted into joule heat. The attenuation. in addition to varying in direction, may be dependent on frequency as well.-This means that if the incoming white light is in a 9 -stare, the cr φ stal will appear colored, and the color will depend on the orientation of E. Substances

8.3 Dichroism
of magnetic or electric fields. Later Land found that they would be mechanically aligned when a viscous colloidal suspension of the herapathite needies was extruded through a long narrow slit. The resulting J-sheet was effectively a large flat dichroic crystal. The individual submicroscopic crystals still scat tered ight a bit, and as a result, J-sheet was somewhat hazy. In 1938
Land invented H-shett which is now probably the most widely used linear polarizer It does not contain dichroic crystals but is instead a molecular analogue of the wire crystals but is instead a molecular analogue of te wire grretched in a given direction, its long hydrocarbon stretched in a given direction, its long hydrocarbon molecules becoming aligned in the process. The sheer is ther dipped into an ink solution rich in iodine. The
todine impregnates the plastic and attaches to the straight long-chain polymeric molecules, effectively forming a chain of its own. The conduction electrons associated with the iodine can move along the chains as if they were long thin wires. The component of \mathbf{E} in an incident wave that is parallel to the molecules drives the electrons. does work on them, and is strongly absorbed. The transmission axis of the polarizer is therefore perpendicular to the direction in which the film was stretched.
Each separate miniscule dichroic entity is known as a dichromophore. In H-sheet the dichromophores are of molecular dimensions, so scattering represents no prob lem. H-sheet is a very effective polarizer across the

Frigure 8.14 A pair of crossed polaroids. Each polaroid appcars gray
entire visible spectrim but is somewhat less so at the blue end．When a bright white light is viewed through a pair of crossed \boldsymbol{H}－sheet polaroids，as in Fig．8．14，the extinction color will be a deep blue as a result of this cakage．HN－50 would be the designation of a hypothetical，ideal H －sheet having a neutral color（ N ） and transmitting 50% of the incident natural light while absorbing the other 50% ，which is the undesired polar－ ization component．In practice，however，about 4% of the incoming light will be reflected back at each surface antireflection coatings are not generally used），leaving might conterpplate an $H N-46$ labsorbed，and thus we quantities of $H N-38, H N-32$ and Actually，large differing by the amount of iodine present，are produced commercially and are readily available（Problem 87 ） Mañy other forms of polaroid have been developed＊ K－－theel，which is humidity－and heat－resistant，has as its dichromophore the straight－chain hydrocarbon poly－ vinylene．A combination of the ingredients of H－and K －sheets leads to $H R$－sheel，a near－infrared polarizer． Polaroid tectugraph is a commercial material designed 0 be incorporated in a process for making three－ dimensional photographs．The stuff never was success－ ful at its intended pur pose，but it cari be used to produce some rather thought－provoking，if not mystifying， demonstrations．Vectograph film is a water－clear plastic laminate of two sheets of polyvinyl alcohol arranged so that their stretch directions are at right angles to each ther．In this form there are no conduction electrons available，and the filrn is not a polarizer．Using an iodine solution，magine that we draw an X on one side of the illumination the light passing through the X will be in \mathscr{P}－state perpendicular to the \mathscr{P}－state light coming from the Y ．In other words，the painted regions form wo crossed polarizers．They will be seen superimposed on each other．Now，if the vectograph is viewed through a linear polarizer that can be rotated，either the X ，the Y ，or both will be seen．Obviously，more imaginative rawings can be made（one need only remember to make the one on the far side backward）．
－See Polanized Light：Preduction and Uiee by Shurclif．or ins more
readablic little brother，Potarized Light by Shurclif and Ballard．

B．4 BIREFRINGENCE

Many crystalline substances \｛i．e．，solids wh arranged in some sort of regular repetitiv oftically anisotropic．In other words，their op dies are not the same in all directions withixit are but one spccial subgrous of the previguse crystal＇s latice in wroup．We saw ther crysta＇s lattice atoms were not completely sy arrayed，the binding forces on the electrons isotropic oscillator using the simp we represe of a spherical charged shell bourd by identich to a fixed point．This was a fitting represen optically isotropic substances（amorphous sen glass and plastic，are usually，but not always Figure 8.15 shows another charged shell，this务 by springs of differing stiffness（i．e．，havin？ spring constants），An electron that is displa equilibrium along a direction parallel to ＂springs＂will evidently oscillate with a differen teristic frequency than it would were it difed some other direction．As we have pointed out （Section 3．5．9），light propagates through a substance by exciting the electrons within th The electrons are driven by the E－field and thef：

Figure 8.15 Mechanical model depicting a negatively bound to a positive nuclcus by pairs of springs houk

Condary wave iets recombine，and the resul－ dan wave moves on．The speed of the wave， Te the index of refraction，is determined by Ge between the frequency of the E－field and or characteristic frequency of the elcatrons． （by in the binding force will therefore be manifest ． Hight were to move through some hypothetical so that it encountered electrons that could be Ited by Fig．8．15，its speed would be governed ientation of E．It E were parallel to the stiff
isit is，in a direction of strong binding．here sit is，in a direction of strong binding，here eaxis，the electron＇s natural frequency would inportional to the square root of the spring莫，force is weaker，the natural frequency onuewhat lower．Keeping in mind our earlier ff dispersion and the $n(\omega)$ curve of Fig．3．26， Jiate indices of refraction might look like 88．16．A material of this sort，which displays tindices of refraction，is said to be birefrim－ Whe crystal is such that the frequency of the Ight appears in the vicinity of ω_{d} ，in Fig．8．16， In the absorption band of $n_{y}[(\omega)$ ．A crystal so trection（y）and transparent for the other（z） Batk 2 hicefringemt material that absorbs one of the Pal 9 －states，passing on the other is in fact Furthermore，suppose that the crystal sym－ metry is such that the binding forces in the y and actions are identical；in other words，each of these fass the same naturai frequency and they are 9．The x－axis now defines the direction of is．Inasmuch as a crystal can be represented these oriented anisoropic charged oscil－
Ge fing opth axis is acrealys a direction and not metely a
eline The model works rather nicely for dichroic
Wince if light were to propagate along the optic
the y－plane），it would be strongly absorbed， The y－plane），it would be strongly absorbed，
moved normal to that axis，it would emerge gearly 震法rized．

It refingence used to be used instead of our present－day
begin with the Latin vefracia．by way

Figure 8.17 Atrangement of anoms in rakite.
common naturally occurring substance. Both marble and limestone are made up of many small calcite crystals large single crystals, which, although they are becoming rare, can still be found, particularly in India, Mexica and South Africa. Calcite is the most common material for making linear polarizers for use with high-power lasers.
Figare 8.17 shows the distribution of carbon, calcium, and oxygen within the calcite structure; Fig. 8.18 is a view from above, looking down along what has, in anticipation, been labeled the optic axis in Fig. 8.17 Each CO_{3} group forms a triangular cluster whose plane is perpendicular to the optic axis. Notice that if we rotated Fig. 8.18 about a line normal to and passing through the center of any one of the carbonate groups, the same exact configuration of atoms would appear
three times during each revolurion. The direction we have designated as the opric axisis correspondstion we special crystallographic orientation, in that it is an axis of 3 -fold syminetrs. The large birefringence displayed by calcite arises from the fact that the carbonate groups
are all in planes normal to the optic axis. The but of their electrons, or tather the mutual int the induced oxygen dipoles, is markedly diff E is either in or norrnal to those planes \{Prof Calcite samples can readily be spar enougg Calcite samples can readily be split, formi tially made to come apart between crys atoms where the interatomic bonding is relatia

ars a optical axis.
as in calcite (Fig. 8.18) are normal to ge planes in-cal. As a crystal grows, atoms are gent directions. As a crysta grows, atoms are ler upon layer, solea wier max material may be available to the growth Bult on one side than on another, sesue. Even so, olnith andans are dependent on the atomic svage and if one cuts a sample so that each ate cleavage plane, its form will be related to a cleavage plane, its atoms. Such a specimen is arrangement of is and In the case of calcite it is cro as a ched, with each face a paralielogram whose $=78^{\circ} 5^{\prime}$ and $101^{\circ} 55^{\prime}$ (Fig. 8.19), Note that fily wo blum comers where the surface planes hthree obtuse angles. A line passing through of either of the blunt corners, oriented so equal angles wis ar 8 -fold symmetry 3.8°), is clearly an axis if we cut the rhomb be a bit more obly Evidently such a line ges of equal orticuiar calcite specimen, you need only Comer and you have the optic axis. tasmus Bartholinus ($1625-1692$), doctor of㯭 professor of mathematics at the Univet ©openhagen (and incidentally, Römer's father ue upon a new and remarkable optical a in calcice, which he called doublerefraction dien discovered not long before, near

 formu), (Phota by R. H:)

Eskiffordur in Iceland, and was then known as Icsland stare. In the words of Bartholinus:
Grearly prixed by all men is the diamond, and many are the jogs which similar treasures brints, such as pre-cious stones and peals,.. bu of unumal phenomena to hese delighe, he will, Thope, have no less joy in a new ort of hody, namely, a transparent caysalal, recently brought to us from Iceland, which perkaps is one of he greatest wonders that nature has produced.
As my investigation of this cryatal proceeded there howed itself a wonderful and extraorditiary phenomenon: objects which are looked at through the crystal do not show, as in the case of other transparent bodies, a xingle refraced image, but they appear donble.
The double image referred to hy Bartholinus is quite evident in the photograph in Fig. 8.20. If we send a videw beam of notural Sight into a calcite crystal normal o a cleavage plane, it will spitt and emerge as two parailel beams. To see the same effect quite simply, we need conly piace a black dot on a piece of paper and then cover it with a calcite rhomb. The image will now consist of two gray dots (black where they overlap). Rotating the crystal will cause one of the dots to remain stationary while the other appears to move in a circle
*W. P. Magie, A Suare Book in Rhstica
about it, following the motion of the crystal. The rays forming the fixed dot, which is the one invariably closer to the upper blunt corner, behave as if they had merely passed through a plate of glass. In accord with a suggesordinary by Bartholinus, they are known as the dot, which behave in such an unusual fashion, are kiown as the extraordinary rays, or e-rays If the crystal is examined through an analyzer, it will be found that the ordinary and extraordinary images are linearly polarized (Fig. 8.21). Moreover, the two emerging Pstates are orthogonal.
Any rumber of planes can be drawn through the rhomb so as to contain the optic axis, and these are all called principalplanes. More specifically. if the principal plane is also normal to a pair of opposite surfaces of the cleavage form, it slices the crysial across a principal section. There are evidencly three of these passing through any one point; each is a parallelogram having angles of 109° and 71°. Figure 8.22 is a diagrammatic, representation of an initialy unpolarized heam traverscircles and arrows drawn along the rays indicate that

Figure 8.21 A calcike crystal (blunt corner on the botiom). The (ranssmission axes of the two polarizers are paraliel to their short edges. Whecre the image is doubicd the lower, undeffected une is the Crdinary image. Take a long look, there's a lot in this one. (Phote by
E.

Figure 8.22 A lizgt beam with two
traversing a calcitr principal sccion.
the o-ray has its electric field vector normal, to the principal section, and the field of the e-ray is phat the principal section.
To simplify maters a bit, let E in the incident wave be linearly polarized perpendicular to the 0 pr of the crystal, thereupon trive wave strikes thr with of the crystal, thereupon driving electronsinb codtu
tion. and they in turn reradiate secondary wiedos The wavelets superimpose and recombine refracted wave, and the process is repeated oner and over again until the wave emerges from the erai? Thi represents a cogent physical argument for ap
deas of Huygens's principle, Huygens although without benefic of electromagne used his construction to explain successfunt nraw aspects of double refraction in calsite as 1690. It should be made clear from the outset that his treatment is incomplete.* in which a ppealingly, although deceptively, simple
*A. Sommerfeld, Oplice, p. 148.

Hex ats Ar inciderct plane wave prlarized perpendicular to the
Tammotias the E-field is perpendicular to the optic uis, ome assumes that every point on the wavefron Which imially corresponds to the surface) acts as a 3pherical wavelets, all of which are in phase. as long as the field of the wavelets is everywhere optic axis, they will expand into the crysial in ratitections with 2 speed u_{s}, as they would in an polropic medium. (Keep in mind that the speed is Thalous behavior, this assumption seems a reason orice. The envelope of the wavelets is essentially fon of is plane wave, which in turn serves as ribution of secondary point sources. The process atimes and the wave moves straight across the Lotul.

Field consider the inciderit wave in Fig. 8.24 Tinew is parallel to the principal section. Notice . component parallel to it. Since the medium ogent, light of a given frequency polarized WIf v_{1}. In particular for calcite and sodium IF y_{1}. In particular for calcite and sodium gat $(\lambda=589 \mathrm{~nm}), 1.486 v_{1}=1.658 v_{-}=c$. What thysens's wavelets can we expect now? At the

Figure 8.24
ipal section
wavelet, for the moment at least. as a small sphere (Fig. 8.25). But $v_{\|}>v_{1}$, so that the wavelet will eloggate in all directions normal to the optic axis. We therefore speculate, as Huygens did, that the secondary wavelets about the opric axis. The envelope of all the ellipsoidal wavelets optic adis. The arion of a plane wave parallel to the incident wave. This plane wave however, will evidently padergo a sidewise displacement in traversing

Figure 8.25 Wavelets within calcite.
the crystal. The beame moves in a direction parallel to the lines connecting the origin of each wavelet and the point of tangency with the planar envelope. It is known as the ray direction and corresponds to the direction in which energy bropagates. This is an instance kin which the
If the incident beam is nural lighs,
depicted in Figs 8.28 and 8.94 will exist simultanetions with the result that the beam will split in orthogonal linearly polarized beams (Fig. 8.22). You orthogonal linearly polarized beams (Fig. 8.22). You can actually see the two diverging beams within a crystal
by using a properly oriented narrow laserbeam (E by using a properly oriented narrow laserbeam (E
neither normal nor parallel to the principal plane, which is usually the case). Light will scatter off internal flaws, making its path fairly visible.
The electromagnetic description of what is happening is rather complicated but well worth examining at this point, even if only superhcially. Recall from Chapter 9 that the incident \mathbf{E}-field will polarize the dielectric; that is, it will shift the distribution of charges, thereby creat ing electric dipoles. The field within the dielectric is thus altered by the inclusion of an induced field, and

Figure 8.26 Orientations of the \mathbf{E}, \mathbf{D} - \mathbf{s}., and \mathbf{k}-vectors.
one is led to introduce a new quantity, the D (see Appendix 1). In isotropic media D E by a scalar quantity, and the two are theref parallel. In anisotropic crystals \mathbf{D} and $\mathbf{E}_{\text {ar }}$ Mensoll's equations a whe parallel. If we through such a medium, we find that of through such a medium, we hind that the fiel \mathbf{E} and \mathbf{B}. In other words, the $\mathbf{B r o p a}$ which is normal to the surfaces of constay which is normal to the surfaces of constanit
now perpendicular to \mathbf{D} rather than \mathbf{E}. In and E are all coplanar. Clearly then, the fact corresponds to the direction of the Poynting $\mathbf{S}=v^{2} \mathrm{E} \mathbf{E} \times \mathbf{B}$, which is generally differenn from k. Because of the manner in which the alicm distributed, E and \mathbf{D} will, however, be colline they are both either parallel or perpendiculser optic axis." This means that the 0 -wavelet will e an effectively isotropic medium and thus be s having \mathbf{S} and k collinear. In contrast the e-wa have \mathbf{S} and \mathbf{k}, or equivalently \mathbf{E} and \mathbf{D}, parallel directions along or normal to the optic axis. At points on the wavelet it is \mathbf{D} that is tangent to the
ellipsoid, and therefore it is always \mathbf{D} that ent the envelope or composite planar wave frontweit up in rysal (Fig. 8.26). crystal (Fig. 8.26)

8.4.2 Birefringent Crystals

Cubic crystals, such as sodium chloride (i.e., salt), have their atoms arranged in a relatively and highly symmetric form. (There are lour symmetry axes, each running from one cornep 10 at opposite corner. unlike calcite, which has one sugal Light emanating from a point source within suchia crystal will propagate uniformly in all direction spherical wave. As with amorphous solids, theres
*In the oscillator model the general case correspand stoth,
in which \mathbf{E} is noi parallel to any of the spring direalions in which E is not parallel to any of the spring direntions
will drive the charge, but its resulcant mution will nox io the will drive the charge, but its resulcant mution will nor $=$ io
direction of \mathbf{E} because of the anisorropy of the binding foum. The charge will bc displaced most, for a given force componeef direcuion of weakest rest
he same orientation as E .

289
Table 8.1 Refractive indices of some uniaxial biscfringent crystal Table 8.1 Refra
$\left(\Lambda_{0}=5.89 .3 \mathrm{~nm}\right)$.

Crystal	n_{0}	n.
Tourmaline	1.669	1.658
Calcite	1.6584	1.4864
Quartz	1.5443	1.5594
Sodium nirate	1.5854	1.3369
lce	1.309	1.319
Rutile (TiO_{2})	2.616	2.903

The difference $\Delta n=\left(n_{\varepsilon}-n_{o}\right)$ is a measure of the birefringence. In calcite $v_{\|}>v_{1},\left(n_{a}-n_{n}\right)$ is -0.172 , and it is said to be negative uniaxial In comparison, there are other crystals, such as quartz (crystallized silicon dioxide) and ice, for which $w_{1}>, v_{\|}$. Consequently, the ellipsoidal ε-wavelets are enclosed within the spherical o-wavelets, as shown in Fig. 8.29. (Quartz is optically active and therefore actually a bit more complicated.) In that case, $\left(n_{e}-n_{a}\right)$ is positive, and the crystal is said to be positive uniaxial.
The remaining crystallographic systems, namely orthorhombic, monoclinic, and tricinic, have two optic ax and are therefore said to be biaxial. Such substances,

Figure 8.28 Wavelets in a negative uniaxial crystal. .

Figure 8.29 Wavelets in a prsitive uniaxial crystal.
for example, mica $\left[\mathrm{KH}_{2} \mathrm{Al}_{3}\left(\mathrm{SO}_{4}\right)_{3}\right]$, have three different principal indices of refraction. Each set of springs in the oscillator model would then be different. The birefringence of biaxial crystals is measured as the rumerical difference between the largest and smallest of these indices.

8.4.3 Birefringent Polarizers

It will now be a rather easy matter, at least conceptually. o make some sort of linear birefringent polarizer. Any number of schemes for separating the 0 - and e-waves have been employed, all of them, of course, relying on fact that $n_{e} \neq n_{c}$.
The most renowned birefringent polarizer was introduced in 1828 by the Scottish physicist Willian Nicol (1768-1851). The Nicol prism, as it is called, is now mamly of historical interest, having long been superseded by other, more effective polarizers. Putting it and polishing the ends (from 71° to 68°. see Fig 8.23) of suitably long na rrow calcite thombohedron: then, after curring the rhomb diaronally, the two pieces are polished and cemenced back together with Canada bal-
 locates the optic axis. (Ptoto by E.H.)
80. The balsam cement is transparent and 7. 8.50 . 1.55 almost midway between n_{e} and n_{o}. thidex of 1.55 almost midway between n_{k} and n_{0}. dent bean enters the "prism," the o - and l-rays pered, they separate and strike the balsam layer. Terunalangle a (Problem 8.24). The o-ray (entering anarrow cone of roughly 28°) will be totally Ay reflected and thereafter absorbed by a layer Epaint on the sides of the rhomb. The e-ray paint on displaced but otherwise essentially he least in the optical region of the spectrum (tsam absorbs in the ultraviolet).
Foutazll polarizer (Fig. 8.31) is constructed sother than calcite, which is transparent from fy 5000 nm in the infrared to about 230 nm in yaviolet. It therefore can be used over a broad rai range. The be resolved into components that ily, and \mathbf{E} can be resolved into components that
8.4 Birefringence
optic axis. The two rays traverse the first calcite sectio without any deviation. (We'll come back to this point later on when we talk about retarders.) Notice that if the angle of incidence on the calcite-air interface is θ one need only arrange things so that $n_{t}<1 / \sin \theta<n^{2}$ in order for the 0 -ray, and not the ℓ-ray, to be totally internally reflected. I the twe prisms are now cemented together (glycerine or mineral oil are used in the ultra violet and the interface angle is changed appropriately the device is known as a Glan-Thompson polarizer. It field of view is roughiy 30°, in comparison to about 10 for the Glan-Fouczult, or Glan-Ait, as it is often called. The latter, however, has the advantage of being able to handle the considerably higher power levels often encountered with lasers. For example, whereas the about $1 \mathrm{~W} / \mathrm{cm}^{2}$ (continuous wave as opposed to pulsed) a typical Glan-Air might have an upor limit of $100 \mathrm{~W} / \mathrm{cm}^{2}$ (continuous wave). The difference is of

292 Chapter 8 Polarization

Figure 8. 32 The Wollaston prism.
course, due to deterioration of the interface cement (and the absorbing paint, if it's used).
The Wollaston prism is actually a polarizing beamsplitter, because it passes both orthogonally polarized components. It can be made of calcite or quartz in the form indicated in Fig. 8.32. Observe that the two component rays separate at the diagonal interface. There the e-ray becomes an o-ray, chariging its index accordingly. In calcite $n_{e}<n_{e}$, and the emerging o-ray is bent toward the normal Similarly, the o-ray, whose field is initially perpendicular to the optic axis, becomes an e-ray in the right-hand section. This time, in calcite the ℓ-ray is bent away from the normal to the interface (see
Problem 8.25). The deviation Problem1 8.25). The deviation angle between the two emerging beams is determined by the prism's wedge angle, o. Prisms providing deviations ranging from
about 15° to roughly 45° are available commercially. They can be purchased cemented (eg., with castor oil or glycerine) or not cemerited at all (i.e., optically contacted), depending on the frequency and power requirements.

8.5 SCATTERING AND POLARIZATION

 8.5.1 An Intraduction to ScatteringWe can begin to understand many apparen phenomena in terms of diffe ring aspects recurring atomic processes, and so we a the electron. When an electromagnetic wayosinon on an atom or molecule it interacts wifi lectron cloud, imparting energy to the ato can be pictured as if the lowest energy or of the atom were set into vibration. The o frequency of the electron cloud is equal to thesil frequency ν, that is, the frequency of the harma E-fieid of the lightwave. The amplitude of the of the resonant frequency of the ato ν is in the raca fance we can employ the simp the atom. In figh all as first being in its ground state; uption hoton (having the resnat fe, upon photon (having the resonating frequency), i, will most likely return to its In dense media ated its excess energy thermally In rarefied tom will generally make the down in rarefied gast? mitting a photon, an effect knowr as resoment At frequencies below or above resonance, the elow trons vibrating with respect to the nucleus mat ded as osciliating electric dipoles, and as suro

10 R38 Scanting

Teradiate electromagnetic energy at reinciding with that of the incident light sonant emission propagates out in the dipole nhatern of Fig. 3,21. The remo al of enetgy from Thinal weque and the slbsequent reemission of som minn fild kergy is knoun mechanisme operative in criying physical diffraction; the sattering efraction, andeed Sidamental indeed.
In dixisan to electron-oscillators, which generally bue ghances correspond to the vibration of the - woms within a molecule. Because of their atomic-oscillators ussally have resonance Fed. Morcover, they have relatively smal irpoliuder and are therefore of little con
minude of an osillor, ad whse arras by Hemoved from the incident wave, increases requency of the wave approaches a natura gy of the atom. For low-density gases, in whirh teractions are negligible, absorption will be Hicant, and the reradiated or scattered wave will oft increasingly more energy as the driving approaches a resonance. This results in some are in the uitraviolet and the incident wave fotble region. In that case, as the frequenc Toming light increases, more and more of stically scattered. As an example, imagine that dixuside on a bright clear moming. The sky is Fyriliant flue, and you are surrourded, even inun-由led, wiph blue light. Sunlight streaming into the from one direction is scattered in all direc ee air molecules. Without an atmosphere, the Wht 484). Ilequade in the Apoilo lunar photographs (Fis would then sec only light that shone directly : Digt part, undeviated, whereas the blue or haycy end is substantially scattered. This highShy dir? Qd blue Cowions, making the entire sky appear bright

8. 5 Scattering and Polarization

Figure 8,94 A half-Earth hanging in the black Moon sky. (Photo courtay NASA)

Figure 8.35 Scattering of sky yight

294 Chapter 8 Polarization
blues and violets are scattered sideways out of the beam much more strongly than are the yellows the beam which continue to propagate ang yline of sight from the Sun to from the Earth's familiar fiery sunsets. Lord Rayleigh was the first to work out the depen dence of the scattered flux density on frequency. In accord with Eq. (3.56), which describes the radiation pattern for an oscillating dipole, the scallered fux density is directly proportional to the fourth power of the driving frequency. The scattering of light by objects that are small in comparison to the wavelength is known as Rayleigh scattering. The molecules of dense transparent media, be they gaseous, liquid, or solid, will similarly scatter predominantly bluish light, if only feebly. The effect is quite weak, particularly in liquids and solids, because the oscillators are anrayed in a more orderly fashion, and the reemitted wavelets tend to reinforce each other only in the forward direction, The seris frome.
The smoke rising from the end of a lighted cigarette is made up of particles that are smaller than the against a dark background. In contrast, exhaled smoke against a dark background. In contrast, exhaled smoke white. Each droplet is larger than the constiruent wavelengths of light and thus contains so many oscillators it is able to sustain the ordinary processes of reflection and refraction. These effects are not preferential to any one frequency component in the incident white light. The light reflected and refracted several times by a droplet and then hinally returned to the observer is therefore also white. This accounts for the whiteness of small grains of salt and sugar. fog, clouds, paper, powders, ground glass, and, more ominously, he typical pallid, poliuted city sky.
Particles that are approximately the size of a wavelengh (remember that atoms are roughly a raction of a a a large distribst satter ligh in a very distinctive can give rise to a whole rase of 1883 the volcanic island Krakatoa tocated in the Sunda Strait west of Java, blew apart in a fantastic conflagra-
${ }^{*}$ Recall that you can see the two beams passing through a bircfringent
caleite crystal only if the sample contains enough haws in ac as scattering centers.

Figure 8.39 A piece of waxed paper between crussed polat izers.
latter condition can be illustrated by placing a piece of waxed paper between crossed polaroids (Fig. 8.39) Because the light undergoes a good deal of scattering and multiple reffections within the waxed paper, a given tilly unvelate for tianly unrelated felis. completely depolarized.
lass of water and illuminate it drops of milk in a axis) using a bright flashlight. The solution will appear axis) using a bright fashlight. The solution will appear
bluish white in scattered light and yellowish in direct light, indicating that the operative mechanism is Rayleigh scattering. Accordingly, the scattered light will also be partially polarized.
Using very much the same ideas Charles Glover Barkla (1877-1944) in 1906 established the transverse wave nature of x-ray radiation by showing that it could be polarized in certain directions as a result of scattering off matter.

8.6 POLARIZATION BY REFLECIION

One of the most cornmon sources of polarized light is the ubiquitous process of reflection from dielectric
media. The glare spread across a window pa
of paper, or a balding head, the sheen on of paper, or a balding head, the sheen on generally partially polarized
The effect was first studied
The Paris Academy had offered a prize Malus cal theory of double refraction, and Malus ac undertook a study of the probiem. He was sta the window of his house in the Rue d'Enfer one examining a calcite crystal. The Sun was se its image reflected toward him from the window Luxembourg Palace not far away. He held opoth and looked through it at the Sun's reffeciica astonishment, he saw one of the double image pear as he rotated the calcite. Atter the Sut continued to verify his observations into the lass* The significance of the surfaces of lature of polarized light were beconce and first time. At that time no satisfactory expla, plarization existed within the context of the heory. During the next 13 years the work men, principally Thomas Young and Augustin :ै nally led to the representation of light as so ransverse vibration. (Keep in mind that all thil he electromagnetic theory of light by roughl The electron-oscillator model provides at simple picture of what happens when light is on reflection. Unfortunately, it's not a complete. on, since it does not account for the behavi , noncondating materials. Noncheless an incoming plane wave linearly polarized, so that iu E-field is perpendicular to the plane of incider (f) 80). The wave is refracted at the interface,
 the parn reraditu artion of that reenaited energy appears in-
portion of that reenatted energy appears, ${ }^{\text {Try }}$ Try with a candle Hame and a piece of glass. Hater $\theta_{p}=56^{\circ}$ for the most pronounced effect. At near. glang.
buch of the images will be bright and neither will vanish boch of the images will be bright and nciither will vanish
window.
W. T. Doyle, "Scattering Approach to F
Brewster's Law,", $A m \mathrm{l}$. Phys $59,463(1985)$.
of a a the dipole radiation pattern that both the did refracted waves must also be in \mathscr{P}-states (-mal the incident plane.* In contradistinction, if
ethection is determined by the sattering array, as Cflection is determined by the scattering array, as Only one direction. yielding a rellected ray at an 3, Whof the incident ray.

Figure 8.40 (a) A wave reflening and refracing at an incerface.
(b) Elearon-oscillators and Bremster's law. (c) The polarization of light that accurs on refection from a dielecrix, such as glass, water or plastic

[^10]90°, the reflected wave would vanish entirely. Under those circumstances, for an incoming unpolarized vave made up of two incoherent orthogonal 9 -states, only the component polarized nornal to the incident plane and therefore parallet to the surface will be reffected. The particular angle of incidence for which this situation occurs is designated by θ_{p} and referred to as the polarization angle or Brewster's angle, whereupon $\theta_{p}+\theta_{i}=90^{\circ}$. Hence
from Snell's law
$$
n_{2} \sin \theta_{t}=n_{t} \sin \theta_{l}
$$
and the fact that $\theta_{4}=90^{\circ}-\theta_{p}$, it follows that
$$
n_{i} \sin \theta_{p}-n_{t} \cos \theta_{p}
$$
and
\[

$$
\begin{equation*}
\tan \theta_{\nu}=n_{l} / n_{l}- \tag{}
\end{equation*}
$$

\]

This is known as Brewster's law after the man who discovered it empirically, Sir David Brewster (1781-
1868), professor of physics at St. Andre and, of course, inventor of the kaleidosco When the incident bearn is in air $n_{i}=$. Whem the incident is olas, $n_{i}=$ transmittmg mediunn is glass, in which cas the polarization angle is $=56^{\circ}$. Similariy if and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ at an angle of 53°, the reflected $\left(n_{1}=\right.$ cornpletely polarized with its E-field perpend the plane of incidence or, if you like, parad water's surface (Fig. 8.41). This suggests a raid way to locate the transmission axis of an polarizer; one just needs a piece of glass or The problem immediately encountered in ponid his phenomenon to construct an effective pof in the fact that the reflected beam, although : polarized, is weak, and the transmitted beam strong, is only partially polarized. One scil. trated in Fig. 8.42, is often referred to 02π a
poliarizer. It was invented by Dominique b.

Figure 8.41 Light
of a puddte is parialy
ized. (a) When piawed dhe... ized. pua) When vacwed tiv...
a Polaroid filter whowe 0 ? a Polaroid filer thoer t.
mision axis is parallel of mission axis is parallel
ground. the glare is paxece ground. The glare is pasede
risible. When the Polat? transmission axis
dicular to the dicular to the mish most of the glare arth
(Photo
countesy $\stackrel{\text { (Photo }}{\text { Scymour.) }}$

1812. Devices of this kind can be fabricated its plates in the visible, silver chloride plates in mred. and quartz or vycor in the ultraviolet. It's Pis to construct a crude arrangement of this dozen or so microscope slides. (The beautiful andocrand in the next chapter.)

a6. 1 Application of the Fresnel Equations

In lizpler 4 we obtained a set of formula known as the fromol equatios, which describe the effects of an elketromagnelic plane wave falling on the Whg eyctromagnelic plane wave falling on the 12thes relate the reflected and transmitted field des to the incident amplitude by way of the Incidence θ_{i} and transmission θ_{t}. For linear ing its E-field parallel to the plane of incidence, Ned the amplitude reflection coefficient as $r_{\|}=$ nat is, the ratio of the reflected to incident the incides. Similarly when the electric field othe incident planc, we have $r_{\perp}=\left[E_{0} / E_{0}\right]_{1}$.
pusected beans have iradiance ratio (the incident and
Fatecled beams have the same cross-sectional area) is
Fir.ins the treflectance. and since irradiance is propor-
$V=$ the square of the amplitude of the field,
$K=r i-\mid E_{n}\left(E_{N+N}\right) t$ and $R_{+}=r_{\perp}^{2}=\left[E_{0 r} / E_{0 i}\right]_{1}^{2}$.
4- $\mathrm{n}_{2}+$ to approptiate Fresnel equations yields

$$
R_{1}=\frac{\tan ^{2}\left(\theta_{i}-\theta_{i}\right)}{\tan ^{2}\left(\theta_{i}+\theta_{i}\right)}
$$

and

$R_{\perp}=\frac{\sin ^{2}\left(\theta_{i}-\theta_{1}\right)}{\sin ^{2}\left(\theta_{i}+\theta_{1}\right)}$

Observe that whereas R_{+}can never be zero, $R_{\|}$is indee zero when the denominator is infinite, that is, whe $\theta_{i}+\theta_{1}=90^{\circ}$. The reflectance, for linear light with \mathbf{E}
 $E_{, 1}=0$ and the beam is complety of course the essence of Brewster's law.
a by two now familiar orthoronal, incoherent equal amplitude p-states. Incidentally the faci that they are equal in amplitude means that the amount of energy in one of these two polarization states is the same as that in the other (i.e., $I_{4}-I_{i \perp}-I_{i} / 2$), which is quite reasonable. Thus

$$
I_{t \|}{ }_{\| \|}{ }^{\text {II }} I_{r \|} I_{1} / 2 I_{i \|}=R_{\|} I_{2} / 2,
$$

and in the same way $I_{r \perp}=R_{\perp} I_{i} / 2$. The refectance in natural light, $R=I_{r} / I_{\mathrm{i}}$, is therefore given by

$$
\begin{equation*}
R=\frac{I_{4}+I_{\text {I }}}{I_{4}}=\frac{1}{\frac{1}{2}\left(R_{\|}+R_{+}\right)} \tag{8.28}
\end{equation*}
$$

Figure 8.43 is a plot of Eqs. (8.26), (8.27), and (8.28) for the particular case when $n_{i}-1$ and $n_{i}=1.5$. Th middle curve, which corresponds to incident natural Iight, shows that only about 7.5% of the incoming ligh is reflected when $\theta_{i}=\theta_{p}$. The cransmitted light is then evidently partially polarized. When $\theta_{i} \neq \theta_{p}$ both the It is often desirable to make use of the concept of the degree of polarization V defined generally as

$$
V=\frac{I_{p}}{I_{p}+I_{w}},
$$

in which I_{p} and I_{u} are the constituent flux densities of polarized and unpolarized light. For example, if I_{p}, $4 \mathrm{~W} / \mathrm{m}^{2}$ and $I_{u}=6 \mathrm{~W} / \mathrm{m}^{2}$, then $V=40 \%$ and the beam is partially polarized. With unpolarized light $I_{b}=0$ and obviously $V=0$, whereas at the opposite extreme, if $I_{u}=0, V=1$ and the light is completely polarized; thus $0 \leq V \leq 1$. One frequently deals with partially polar ized, linear, quasimonochromatic light. In that case if we rotate an analyzer in the beam, there will be an

Chapter 8 Polarization

Figure 8.43 Reflectarce versus incident angle.
orientation at which the transmitted irradiance is maximum ($I_{\text {max }}$), and perpendicular to this, a direction where it is minimum ($I_{\text {min }}$). Clearly $I_{p}-I_{\text {mix }}-I_{\text {rin }}$, and so

$$
V=\frac{I_{\text {max }}-I_{\min }}{I_{\max }+I_{\text {mun }}}
$$

(9.30)

Note that V is actually a property of the beam, which may obviously be partially or even completely polarized before encountering any sort of polatizer

8.7 RETARDERS

We shall now consider a class of optical elements known as retarders, which serve to change the polarization of an incident wave. In principle the operation of a retarder is quite simple. One of the two constituent coherent 9 -states is somehow caused to lag in phase behind the other by a predetermined amount. Upon emerging from the retarder, the relative phase of the two componenta
have developed the concept of the retarder able to convert any given polarization stat ther and in so doing create circular and at at an polarizers as well.

8.7.1 Wave Plates and Rhomb

Recall that a plane monochromatic wave inci uniaxial crystal, such as calcite, is generally dis two, emerging as an ordinary and an extray beam. In contrast, we can cut and polish a ca so that its optic axis will be normal to both and back suffaces (Fig. 8.44). A norrnally incid wave can only have its \mathbf{E}-field perpendicular ${ }^{\text {. }}$ axis. The secondary spherical and ellipsoidall
will be tangent to each other in the direatin will be tangent to each other in the diregt optic axis. The $o-$ and ε-waves, which are ers.
these wavelets, will be coincident, and a single. ted plane wave will pass through the crystal ted plelative phase shifts and no double ima no relative phase shitts and ne double imad
Now suppose that the direction of the Now suppose that the direction of the optic
arranged to be parallel to the front and back sup as shown in Fig. 8.45. If the E-field of an mic as shown in Fig. 8.45. Wh the E-feld of an mici and perpendicular to the optic axis, two serarater waves will propagate through the crystal. Si.
$n_{0}>n_{e}$, and the ε-wave will move across if $n_{o}>n_{e}$, and the e-wave will move acrass ihe more rapidly than the o-wave. Atter trave, of thickness d the resultant electromagnetic superposition of the e - and a-waves, which relative phase difference of $\Delta \varphi$. Keep in mind are harmonic waves of the same frequency
fields are orthogonal. The relative optical pata felds are orthogorial
dine in given
$\mathrm{A}=d\left(\left|n_{g}-n_{z}\right|\right)$,
and since $\Delta \varphi=k_{0} \Lambda$,

$$
\Delta \varphi=\frac{2 \pi}{\lambda_{n}} d\left(\left|n_{0}-n_{r}\right|\right) .
$$

* If you have a calcite rhomb, find the hunt comern and crystal until you are looking slong the direction of the compleetly overiap.

simem 8.44, cills plate cut perpendicular to the optic axis.
where h is ainay, is the wavelength in vacuum (the Form ther faining the absolute value of the index Hiciow ibtic most general statement). The state of an thitudes of the incoming orthogonal feld and of course on $\Delta \varphi$

ful-Wove Plate

If $A \varphi$ is equal to 2π, the relative retardation is one elength; the e - and o-waves are back in phase, and e is no observable effect on the polarization of the e is no abservable effect on the polarization of the ridation $\Delta \varphi$, which is also known as the retardance, is - the device is called a full-wave plate. (This does not - n that $d=\lambda$) In general the quantity $\left|n_{q}{ }^{-} n_{f}\right|$ in Whichanges litule over the optical range, so that Viffectively as $1 / \lambda_{0}$. Evidently a full-wave plate Wion only in the manner discussed for a pargevelength, and retarders of this sort are thus - To be chromatic. If such a device is placed at some Prementation between crossed linear pola cizers, (22e) Wext. Only the one wavelength that satisfies Eq. (382) Wiill pass through the retarder unaffected, Thet to be absorbed in the analyzer, All other Firtis will undergo some retardance and will ngly ciaige from the wave plate as various

Figure 8.45 A cakcite plate cut parallel to the optic axis.
forms of elliptical light. Some portion of this light wil procced through the analyzer, finally emerging as th complementary color to that which was extinguished It is a common error to assume that a full-wave plate behaves as if it were isotropic at all frequencies; it obviously doesn't.
Recall that in calcite, the wave whose E-field vibration are parallel to the optic axis travels fastest, that is ${ }^{2}>v_{1}$. The direction of the optic axis in a negative fast axis, and the direction perpendicular to it is the slow axis. For positive uniaxial crystals, such as quartz these principal axes are reversed, with the slow axis corresponding to the optic axis.

The Half-Wove Plate

A retardation plate that introduces a relative phas difference of π radians or 180° between the 0 - and c-waves is known as a half-wave plate. Suppose that the plane of vibration of an incoming beam of linear light makes some arbitrary angle θ with the fast axis, as shown in Fig. 8.46. In a negative material the ℓ-wave will have a higher speed (same p) and a longer wavelength than there will be a relative phase shift of $\lambda_{\mathrm{A}} / 2$ (that is, $9 \pi / 2$ radians) with the effect that \mathbf{E} will have rotated through 20. Going back to Fig. 8.7 , it should be evident that

half-wave plate will similarty flip elliptica! light. In addiion, it will invert the handedness of circular or elliptical light, changing right to left and vice versa.
As the e- and o-waves progress through any recardaion plate, their relauve phase difference $\Delta \varphi$ increases, and the state of polarization of the wave therefore gradually changes from one point in the plate to the next. Figure 8.7 can be envisioned as a sampling of a few of these states at one instant in time taken at different locations. Evidently if the thickness of the material is such that
$d\left(\left|n_{s}-n_{d}\right\rangle=(2 m+1) \lambda_{0} / 2\right.$,
where $m=0,1,2, \ldots$, it will fuaction as a half-wave
plate ($\Delta \varphi=\pi, 3 \pi, 5 \pi$, ctc.)
Alchough its behavior is simple to visulatize, calcite is actually not often used to make retardation plates. It is quite brittle and difficult to handle in thin slices, hut more than that, its birefringence, the difference

between n_{e} and n_{0}, is a bit too large for cometrimm
 fringence is frequendly used, but it has no natar cleavage planes and must be cut, ground, and riaking it rather expensive. The diaxial crystag in
used most often. There are several forms of mita used most often. There are several forms of mata
serve the purpose admirably, for example. serve the purpose admirably, for example,
phlogopite, biotite, or muscovite. The most comil occurring variety is the pale brown muscovite easily cleaved into strong, flexible, and exceger large-area sections. Moreover, its two principai almost exactiy parallel to the cleavage pland those axes the indices are about 1.599 and 1.59370 sodium light, and although these numbers vary from one sample to the next, their differencoil constant. The minimum thickness of a mica bal/man plate is about 60 microns. Crystalline quarte 3000 nm to about 6000 nm), and cadmiurn sulu the IR range from 6000 nm to about 12,000 ail the IR range from widely used for wave plates
Retarders are also made plates
aicohol that have been stretched so as to align tong-chain organic molecules. Because of the

8.7 Retarders

iisure 8.47 A kand holding a piece of Scouch tape suck to a
will still result in a random phase difference and thus have no noriceable effect. When linear light at 45° to either principal axis is incident on a quarter-wave plate, its 0 - and ϵ-components have equal amplitudes Under hese speciail circumstances a 90° phase shift converts he wave into circular light. Similarly, an incoming circular beam will emerge linearly polarized.
Quarter-wave plates are also usuálly made of quartz,
mica, or organic polymeric plastic. In any case, the thickness of the birefringent material must satisfy the expression $d\left(n_{0}-n_{f}\right)=(4 m+1) \lambda_{9} / 4$. You can make a crude quarter-wave plate using household plastic food wrap, the tuin stretchy sturf that comes on roils. Like cellophane, it has nidges running in the long direction, which coincides with a principal axis. Overlap about a half dozen layers, being careful to keep the ridges parailel. Position the plastic at 45° to the axes of a rotating analyzer. keep adding one layer at a ume until the irradiance ays roug. wher have circular tieht ars, hat late This is core said than in whe t's well warth trying Commercial wave p
Commercial wave plates are generally designated by 40 nm for a quarter-wave pight be, for example,
that the device has a 90° retardance only for green light of wavelength 560 nm (i.e., 4×140). The linear retardation is usually not given quite that precisely; $140 \pm$ tion is usually not given quite that precisely: $140 \pm$
20 nm is more realistic. The retardation of a wave plate 20 nm is more realistic. The retardation of a wave plate by tilting it somewhat. If the plate is rotated about its fast axis, the retardation will increase, whereas a rotation about the slow axis has the opposite effect. In this way a wave plate can be tuned to a specific frequency in a region about its nominal value.

The Fresnel Rhomb
We saw in Chapter 4 that the process of total internal reflection introduced a relative phase difference between the two orthogonal field components. In other words, the components parallel and perpendicular to the plane of incidence were shitted in phase with respec to eanies internal reflection at the particularincident and of $54.6^{\circ}[$ Fig. $4.25(\mathrm{e})]$. The Fresnel rhomb shown in Fig. 8 of 54.6° [Fig. 4,25 (e)]. The Fresnel rhomb shown in Fig. natly reflected twice, thereby imparzing a 90° relative phase shift to its components, If the incorning plane wave is linearly polarized at 45° to the plane of incidence, the field components $\left[E_{i}\right]_{\|}$and $\left[E_{i}\right]_{\perp}$ will

Fiture 8.48 The Fresnel rhomb.

Tigure 8.49 The Mooney rhomb.
initially be equal. After the first reflectionsthem ithin the glass will be elliptically polarize and refection it will be circular. Since th he rhomb is pessentially an achromatic 90° a largu tooney rhomb $(n=165)$ shown in Fig 840 in principle, although its operating characte different in some respects.

8.7.2 Compensators

cumpensator is an optical device that is capable of ing a controllable retardance on a wave. Unlike plate where $\Delta \varphi$ is fixed, the relative phase rising froma compensator can be varied con Of the many different kinds of compensators consider only rwo of those that are used most, wider The Babinet compensator, depicted in Fig. of two independent calcite, or more comint wedges whose optic axes are indicazed by the lincoray ots in the figure. A ray passing vertically hrough the device at some andray pord thickness of d_{1} e the upperwedge and $_{2}$ if ne. The relarive econd crystal is-2 ${ }^{2}$. An cecond crystal is $-2 \pi d_{2}\left(n_{n}-n_{e} \mid\right) / \lambda_{0}$. As in the has larger angles and is much thicker, the o-titis in the upper wedge become the e - and 0 -rap ively, in the bottom wedge. The compeasill (the wedge angle is typically about 2.5°), autis
of the rays is negligibe. The total phas scom $\Delta \varphi=\frac{2 \pi}{\lambda_{0}}\left(d_{1}-d_{2}\right)\left(\left|n_{a}-n_{\varepsilon}\right|\right) . \quad(\varepsilon .33)$ nasator is made of calcite, the e-wave leads the upper wedge, and therefore if $d_{1}>d$ ands to the total angle by which the ieads the o-component. The converse is true compensator; in other words, if $d_{1}>d_{8}$,
 anger, where $d_{1}=d_{2}$, the effect of one wedge it grater, wheled by the other, and $\Delta \varphi=0$ for all Whs. The retardation will vary from point to the surface, being constant in narrow regions ditit width of the compensator along wish lish thicknesses are themselves constank. If ligh then move either wedge horizontally with a *erew, we can get any desired $\Delta \varphi$ to emerge Babinet is positioned at 45° berween
polarizers a series of parallel, equally spaced,
anction fringes will appear across the width of a orpenator. These mark the positions where the thicuth as if the miges wil be colored, with the exception of the atack catial band ($\Delta \varphi-0$). The retardance of an

Figure 8.51 The Solecil Compensator.
unknown plate can be found by placing it on the compensator and examining the fringe shitt it produces. The Babinet can be modified to produce a uniform retardation over its surface by merely rotating the top wedge 180° about the vertikal, oo that its thin edge rests on the thin edge of the lower wedge. This configuration will, however, slightly deviate the beam. Another variation of the Babinet, which has the advantage of producing a uniform retardance over its surface and no beam deviation, is the Soleil compensator shown in Fig. 8.51. Generally made of quartz (although MgF_{2} and CAS are used in the infrared). it consists of two wedges and one indicated The quantity mopresponds to the totalthick tess or both edges, which is constant for any secting the posionis micrometer screw

8.8 CIRCULAR POLARIZERS

Earlier we conciuded that linear light whose E-field at 45° to the principal axes of a quarter-wave plate will emerge from that plate circularly polarized. Any serie combination of an appropriately oriented linear polarizer and a 90° recarder will therefore perform as a circular polarizer. The two elements function completely independently, and whereas one might be bire-
fringent, the other could be of the reflection type. The handedness of the emergent circular light depends on whether the transmission axis of the linear polarizer is $x^{x}+45^{\circ}$ or -45^{3} to the fast axis of the retarder. Either circular state, \mathscr{L} or \mathscr{R}, can be generated quite easily. In fact, if the linear polarizer is situated between two retarders, anc oriented at $+45^{\circ}$ and the other at -45°, the combination will be "ambidextrous." In short, it will yield an \mathscr{A}-state for light entering from one side and an \mathscr{L}-state when the input is on the other side.
CP-HN is the commercial designation for a popular one-piece circular polarizer. It is a laminate of an HN polaroid and a stretched polyvinyl alcohol 90° retarder. The input side of such an arrangement is evidently the face of the linear polarizer. If the beam is incident on the output side (i.e., on the retarder), it will thereafter pass through the H -sheet and can only emerge linearly polarized
A circular polarizer can be used as an analyzer to determine the handedness of a wave that is already imagine that we have the four elements labeled A, B, C, and D in Fig. 8.52. The firs two. A and B taken together form a circular polarizer, as do C and D. The precise handedness of these polarizers is unimportant now, as long as they are both the same, which is tantamount to saying that the fast axes of the retarders are parallel. Linear light coming from A receives a 90°
retardance from B, at which point it is circ passes through C another 90° retardance resulting once more in a linearly polartu merely flips the linear light from A-wave angle of 2θ, in this case 90°. Since the linotidy angle of 2θ, in this case 90°. Since the linear w through it and cut of the system. In this si D, we've actually proved something that is ratp If the circular polarizers $A+B$ and $C+D$ left-handed, we've shown that left-circular liv̂ a left-circular polarizer from the oulput side will b. ted. Furthermore, it should be apparent, atst some thought, that right-circular light will tiz: P 9 -state perpendicular to the transmission axis: ${ }_{50}$ will be absorbed. The converse is true is, of the ture circular forms, only light in an o pass through a
the output side.
8.9 POLARIZATION OF POLYCHROMATICLKS
B.9.1 Bandwidth and Coherence Time Polychromatic Wave

We are again reminded of the fact that by its peane

Guality, must be polarized. The two orthogona Gits of such a wave, have the same frequency Has a constant amplitude. it would b :USidal componen theradditional frequen the presence of orer specrum. Moreover, the
Q. Sourier-analyzed spedrum. Moreover, the Thonents have a is, hey are coherent. A monochromatic that is, they are coherent. A nonochromatic Wisis an infinite wavetrain whose propertics
vic and foter the wave is completely polarized.
light sources are polychromatic; that is to say, Thaiant energy having a range of frequencies. examine what happens on a submicroscopic tag particular attention to the polarization simitted wave. Envision an electron-oscillato . 1 Th excited into vibration (possibly by a colHereupon radiates. Depending on its precis : oscillator will emit some form of polarized In Section 7.2 .6 , we picture the radiant energy - $3=$ Asume for the moment that its polarization His enertioly constant for a duration of the orde fille coterence time $\Delta t_{\text {c }}$ (which, as you recall, corre Houls to the temporal extent of the waverrain, i.e. a $1 /$ A typical source generally consists of a large A typical source generally consists of a large
of such radiating atoms, which we can mivision as oscillating with different phases at some as oscillating with different phases at some coming from a very small region of the source, the ernitted rays arriving ar a point of observa gentially parallel. During a time that is shori son with the average coherence time, the and phases of the wavetrains from the oms will be essentially constant. This mean were to look toward the source in some We would, at least for an instant, "see" a Piperposition of the waves emitted in that
萳 other words we would "ser" a resultant fa given polarization staic "see" a resultan an interval less than the cohere state would aged, but even so it would correspond to oscillations at the frequency \bar{y}, Clearly, if
4_{Δ} तdwidn Δv is broad ${ }_{3}$ the coherence time (Δt Wab) wil be small, and any polarization state will be
shor-lived. Evidently the concepts of polarization and oherence are related in a fundamental way
Now consider a wave whose bandwidth is very small comparison with its mean frequency in other words, quasimonochromatic wave. It can be represented by two orthogonal harmonic \mathscr{P}-states, as in Eqs. (8. 1) and 8.2), but here the amplitudes and epoch angles are functions of time. Furthermore, the frequency and propagation number correspond to the mean values of the spectrum present in the wave, namely, $\bar{\omega}$ and \bar{k} Thus

$$
\mathbf{E}_{x}(t)=\hat{i} E_{w_{x}}(t) \cos \left[\overline{k_{z}}-\bar{\omega} t+\varepsilon_{x}(t)\right] \quad \text { is. } 3 t a t
$$ and

$$
\mathbf{E}_{y}(t)=\hat{\mathbf{j}} E_{0 y}(t) \cos \left[\overline{k z}-\bar{\omega} t+E_{y}(t)\right] . \quad(\beta .34 \overline{)}
$$

The polarization state, and accordingly $E_{0 ; x}(t), E_{p,}(t)$. $E_{x}(t)$, and $\varepsilon_{y}(t)$, will vary slowly, remaining essentialiy constant over a large number of oscillations. Keep in mind that the narrow bandwidth implies a relatively large coherence time. If we watch the wave during a will vary ser interval, the amplitudes and eporh angles orrelated fashion, If the varians are completely ancorrelated, the polarization state will remain constan nly for an interval, small compared to the coherence time In other words the ellipse describing the pole zation state may change shape, orientation, and handedness. Since speaking practically, no existing detector could discern any one particular state lasting for so short a time, we would conclude that the wave was unpolarized. Antithetically, if the ratio $E_{0 x}(t) / E_{0 y}(l)$ were constant even though both terms varied, and if $\varepsilon^{*}=\varepsilon_{y}(t)-\varepsilon_{x}(t)$ were constant as well, the wave would epolarized. Here the necessity for correlation among hese different functions is quite obvious. Yet we can actually impress these conditions on the wave by merely passing it through a polarizer, thereby retnoving any undesired constituents. The time interval over which he wave thereafter maintains its polarization state is no onger dependent on the bandwidth, because the wave's ight could be polychromatic (even white) yet completel grod It will behave very much like the idealized monochromatic waves treated in Section 8.1, Between these two extremes of completely polarized and
unpolarized light is the condirion of partial polarization. In fact, it can be shown that any quasimonochromatic tave be shown that any quasinororize an unpolarized wave, where the two are independent and either may be zero.

8.9.2 Interference Colors

Insert a crumpled sheet of cellophane between two polaroids illuminated by white light. Alternatively, take an ordinary plastic bag (polyethylene), which shows nothing special between crossed polaroids, and stretch it. That will align its molecules, making it birefringent. Now crumple it up and examine it again. The resulting pattern will be a profusion of multicolored regions, which vary in hue as eifher polaroid rotates. Thes interference colors, as they are generally called, arise from the wavelength dependence of the retardation The usual variegated nature of the patterns is due to local variations in thickness, birefringence, or both.
The appearance of interference colors is quite common and can easily be observed in any number of substances. For example, the effect can be seen wh piece of multiayered mica, a chip of ice, a stretche plastic bag, or finely crushed particles of an ordinary
white (quartz) pebble. To appreci phenomenon occurs, examine Fig. 8.53. A passing through some stall rematio plate Σ. Over that area the birefring of $\mathrm{a} b$ are both assumed to be constant. The trang are both assumed to be constant. The trangit
is generally elliptical. Equivalently, we is generally elliptical. Equivalently, we enyisi waves (i.e., the x-and y-components of the which have a relative phase difference 4 by Eq. (8.32). Only the components of thes bances, which are in the direction of the axis of the analyzer, will pass through it and on to the observer. Now these components, which alsolv. phase difference of $\Delta \varphi$, are coplanar and calan fere. When $\Delta \varphi=\pi, 3 \pi, 5 \pi, \ldots$, they are co out of phase and cancel each other. When $0,2 \pi, 4 \pi, \ldots$, the waves are in phase and rei other. Suppose then that the retardance aris point P_{1} on \sum for blue light $\left(\lambda_{0}=435 \mathrm{~nm}\right)$ is case blue will be strongly transmitted. It follow Eq. (8.32) that $\lambda_{0} \Delta \varphi=2 \pi d\left(\mid n_{a}-n_{d}\right)$ is essential stant determined by the thickness and the 1740π for all wavelengths If we now chang yellow light $\left(A_{0}=580 \mathrm{~nm}\right), \Delta \varphi \approx 3 \pi$ and

ly aneled. Under white-light illumina tivetlar point on Σ will seem as if it had Gricular pompletely, passing on all the other Ballow completely, passing on all the othe Harsi, but none as strongly as blue. Another way of his is that the bue light emerging from the nut P_{1} is lission axis. In contrast the yellow ligh transmisi) and along the extinction axis; the $\Delta \phi=3 \pi$) and and The region about P_{1} behaves Iss are elliptical. The region about P_{1} behaves Apave plate for yellow and full-wave plate for Wanalyzer were rotated 90 , the yellow would
Wed, and the blue extinguished: By definition Fad, and said to be complementary when their sields white light. Thus when the analyzer aumind through 90° it will alternately transmit or mplementary colors. In much the same way Zht be a point P_{2} somewhere else on Σ where for red ($\lambda_{0}=650 \mathrm{~nm}$). Then, $\lambda_{0} \Delta \varphi=2600 \pi$ sterrapon gross light ($\left.\lambda_{0}=520 \mathrm{~nm}\right)$ will have a retar dime of $b \pi$ and be extinguished. Clearly then, if the notrute varies from one region to the next over the Fea, so too will the color of the light transmitted

```
    analyzer
```

0.10 WICAL ACTIVITY

1H rymer in which light interacts with material suban yield a great deal of valuable information their molecular structures. The process to be新, although of specific interest in the study ad and is continuing to have far-reaching unclae sciences of chemistry and biology.
Trit 811 the French physicist Dominique F. J. Arago foplical activity. It was then that he discovered oplical activity. It was then that he discovered ane of vibration of a beam of linear light *continuous rotation as it propagated along ETean a quartz plate (Fig. 8.54). At about the Thean using hoste Biot (1774-1862) saw this same Titurgl suth the vaporous and liquid forms ritural substances like turpentine. Any such abe nom to causes the E-field of an incident linear Wiv. Moreoter, as as Biot rotate is said to be optically as Biot found, one must distinguish

Figure 8.54 Optical activity displayed by quarz.
between right- and left-handed rotation. If while looking in the direction of the source, the plane of vibration appears to have revolved clockwise, the substance is dextro, meaning right) Atory, or d-rotatory (from the Latin have , meaning right). Atternatively, if E appears to evorotar or lat is levo, meaning left).
In 1822 the English astronomer Sir John F. W. Herschel (1792-1871) recognized that d-rotatory and -rotatory behavior in quartz actually corresponded to two different crystallographic structures. Although the molecules are identical (SiO_{2}), crystal quarta can be either right- or Ieft-handed, depending on the arrangement of those molecules. As shown in Fig. 8.55, the
(a) Right

(b) Len

Figare 8.56

(b)
$z=0$

external appearances of these two forms are the same in all respects, except that one is the mirror image of the otber; they are said to be onaniwmorphy of each other. All transparent enandiomorphic substances are optically active. Furthermore, molten quartz and fused quartz, neither of which is crystalline, are not optically artive. Evidently, in quartz optical activity is associated with the structural distrihution of the molecules as a whole. There are many substances, both organic and inorganic fe.g., benzil and $\mathrm{NaBrO}_{\mathrm{s}}$, respectively), which, like quartz, exhibit optical activity only in crystal form. In contrast, many nazurally occurting organic compounds, such as sugar, tartaric aqud, and humid state, Here the retatory tower is is often referred to, is evidently an attribute of theindividual molecules. There
are also more complicated substances for activity is associaled with both the molecules and their arrangement within the various example is rubidium tartrate. A d-rotateo ${ }^{3}$ and sole that compound will change to l-rotatory whefl aym tallized.
In 1825 Fresnel, without addressinigy the acmol mechanism inyolved, proposed a simple pth logical description of optical activity. Since linear wave can be represented as a superpy circular light propare at different spe material shows cirular birefringence that two indices of refraction, fe for \mathscr{T}-setes? for \mathscr{L}-states (*) In craversing an optically men the two circular waves would get a

(b)

(a)
-ins mulkant linear wave would appear to have We can en (8) analytically by to Eqs. (8.9), which described opratic right- and left-circular light propagat-x-direction. It was seen in Eq. (8.10) that the foge rwo wavesions slightly in order to remove Northe for
$\left.\frac{\xi_{1}}{2} \dagger \cos \left[h_{n}=-\omega t\right)+\hat{\mathbf{j}} \sin \left(k_{92}-\omega t\right)\right] \quad(8.350$
$\left[i \cos \left(\xi_{\alpha} t-\omega t\right)-\hat{\mathbf{j}} \sin \left(k_{s y}-\omega t\right) \quad \quad(8.35 b)\right.$
Whe right- and left-handed constituent waves
 thance is given by $\mathbf{E}=\mathbf{E}_{\mathscr{R}}+\mathbf{E}_{\mathscr{L}}$, and after a कit a reametric manipulation, it becomes

$$
\begin{equation*}
+1\left(\sin \left(k_{g}-k_{g}\right) z / 2\right) . \tag{8.36}
\end{equation*}
$$

position where the wave enters the medium is linearly poarized alcng the x-axis, as shown S 6 , that is,

$$
\begin{equation*}
\mathbf{E}=E_{0} \hat{i} \cos \omega t . \tag{8.87}
\end{equation*}
$$

Woice tini at any point along the path, the two comlaze the same time dependence and are thereMxis a Pesultant is mentinearly polay anyere along the Myis 9 Pesultant is linearly polarized (Fig. 8.57) whrough its orientation is certainly a function of if $n_{n}>n_{y}$ or equivalently $k_{s 8}>k_{x}$, E will Gwise (Iooking toward the source). eangle β through which \mathbf{E} rotates is def when it is clorkwise Keeping this sign whim mind to stephel bo clear from omat z makes an angle of $\beta=-\left(k_{2}\right)$) o its original orientation. If the medium 8 \& the angle through which the plane of gtes is then

$$
\beta=\frac{\pi d}{\lambda_{0}}\left(n_{x}-n_{x}\right),
$$

(8.98)

Figure 8.58 The superposition of an \mathscr{R} - and an \mathscr{L}-state at $:=d$

where $n_{g}>n_{B R}$ is d-rotatory and $r_{\text {met }}>n_{\varphi S}$ is l-rotatory
(Fig. 8.58).
Fresnel was actually able to separate the constituent F- and \mathscr{L}-states of a linear beam using the composite prism of Fig. 8.59. It consists of a number of right-and as shown. The $\mathscr{P \text { -state propagates more rapidly in the }}$ first prism than in the second and is thus fefrect oward the normai to the oblique boundary, The pposite is true for the \mathscr{L}-stare, and the two circuiar

Figure 8.5s The Fresnel composite prism

Figure 8.60 Rigit-handed quartz.
waves increase in angular separation at each interface In sodium light the specific rotalory power, which is defined as β / d, is found to be $21.7^{\circ} / \mathrm{mm}$ for quartz. Thus it follows that $\left|n_{y}-n_{\text {jig }}\right|=7.1 \times 10^{-5}$ for light propagating along the optic axis. In that particula direction ordinary double refraction, of course, vanishes. However, with the incident light propagating normal to the optic axis (as is frequently the case in polarizing prisms, wave plates, and compensators), quartz behaves like any optically inactive, positive, uniaxial crystal. There are other birefringent, optically active crystals, both uniaxial and biaxial, such as cin nabar, HgS ($n_{o}=2.854, n_{s}=3.201$), which has a rota-
tory power of $32.5^{\circ} / \mathrm{mm}$. In contrast, the substance tory ${ }^{\text {power of }} \mathrm{NaClO}$ is is optically active $(~$
$\left.\mathrm{N} .1^{\circ} / \mathrm{mm}\right)$ but not birefrinNent. The rotatory power of Jiquids, in cot brison so relatively small that it is usually specified in terms of $10-\mathrm{cm}$ path lengths: for example in the cose of turpen tine $\left(\mathrm{C}_{10} \mathrm{H}_{5}\right)$ it is only $-97^{\circ} / 10 \mathrm{~cm}\left(10^{\circ} \mathrm{C}\right.$ with $\left.\lambda_{0}\right)$ $589.3 \mathrm{~nm})$. The rotatory power of solutions waries with the concentration. This fact is particularly helpful in determining, for example, the amount of sugar present in a urine sample or a commercial sugar syrup. in a urine sample or a commercial sugar syrup. colorless corn syrup, the kind available in any grocery store. You wor't need much of it. since β / d is roughly $+30^{\circ} /$ inch. Put about an inch of syrup in a glass con-
ainer between crossed polaroids and illuminat? flashight. The beautiful colors that a. yzer is rotated arise from the fact thaifisis of λ_{0}, an effect known as rotalory dispersiong Ulinga han o get roughly monochromatic light, you can red The first great sciary power of the syrus. The first great scientific contribution 몀:? by Lomd Pasteur (1822-1895) came in 1848 and nun with his doctoral research. He showed that 蘭 which is an optically inactive form of tartani adid, actually composed of a mixture containing tities of right- and left-handed constituents,
of this sort, which have the same moleculifl harm of this sort, which have the same moleculum ar differ somehown as able to crystalize racemic acid and then, separ iomorphs) that resulted When dissolved ator they formed d-rotatory and l-rocatory This implied the existence of molecules the chemirally the same, were themseives mirror each other; such molecules are now knoy? stereoisomers. These ideas were the basis for tid

A gelatin hiter works weil, but a piece of coltred, lso do nicely. Just remember hat the cellophane will you align it principal axes appropriately
on wherher it "saw" right- or left-handed helices. Thus we could expect different indices for the \mathscr{F} - and \mathscr{Q} components of the wave. The detalled treatment of the process that leads to but least the necessary asymst no means simple, but ae can a random array of metices, corresponding to a solution, produce optical activity? Tet us examine one such molecule in this simplified representation for example, one whose axis happens to be parallel to the harmonic E-field of the electromagnetic wave. That field will drive charges up and down along the length of the molecule, effectively producing a time-varying electric dipole moment $\boldsymbol{p}(1)$, parallel to the axis. In addition, we now have a current associated with the spiraling motion of the electrons.

Figure 8.51 The ratiation from helical moolcules.

This in turn generates an oscillating magnetic dipol moment $m(i)$, which is also along the helix axis (Fig 8.61). In contrast, if the molecule were parallel to the B-hie.d of the wave, there would be a time-varying fux and morrent circulating around electic and Thic dipain yield oscillating axial $t(t)$ and (t) will be parallel or anthalle to her cas dependivg on the sense of the paricular molecular hor Clearly, energy has been removed from the field, and both oscillating dipoles will scater (ie reradiate) alec tromagnetic waves. The electric field F emited in given direction by an electric dipole is perpendicula to the electric field $\mathbf{E}_{\text {m }}$ emitued by a magnetic dipole. Accordingly, the sum of these, which is the resultant field \mathbf{E}_{s} scattered by a helix, will not be parallel to the incident field \mathbf{E}_{i} along the direction of propagation (the same is of course true for the magnetic fields). The plane of vibration of the resultant transmitted ligh $\left(E_{s}+E_{i}\right)$ will thus be rotated in a direction determined by the sense of the helix. The amount of the rotation will vary with the orientation of each molecule, but it will always be in the same direction for helices of the same sense
Although this discussion of optically active molecules as helical conductors is admittedly superficial, the analogy is wel. worth keeping in mind. In fact, if wo direct a inear $3-\mathrm{cm}$ microwave beam onto a box filied with a large number of identical copper helices (e.g. 1 cm long by 0.5 cm in diameter and insulated from an in will undergo a rota tion of its plane of vibration.

8.10.2 Optically Active Biological Substances

Before moving on to other things, we should mention a few of what are probably the most fascinating observa tions associated with optical activity, namely, those in the field of biology. Whenever organic molecules are synftresized in the laboratory, an equal number of d and 7 -isomers are produced, with the effect that the

1. Finoco and M. P. Freerrian, The Optical Acivity of Oriented Copper Helices," J. Phys. Chem 61, 1196 (1957).
compound is optically inactive. One mig hat if they exist at all, equal amounts of d d stereoisomers will be found in natural stances. This is by no means the case. Natury 806 (sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}$), no matter whered it sugi whether extracted from sugar cane or suroecs always d-rotatory. Moreover, the simples or d-glucose ($\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$), which as its na d-rotatory, is the most important car human metabolism. Evidently, living thit anow distinguish between optical isomer All proteins are fabricated of compounds ydrogen, These in turn are combinations mino acids, and all of them (with terater implest one plycine which is nt the excepti enerally l rotatory. This men enantiom potein molecule, whether it comes from breald up eggplant, a beetle or a Beatle, the constite cids will be l-rotatory. One inpor the constit group of antibiotics, such as penicillin, whita some dextro amino acids. In fact, this may well for the toxic effect penicillin has on bacterid? It is intriguing to speculate about the posti of life on this and other planets. For exampl n Earth originally consist of both mirroxit ive amino acids were found in a meteorito Victoria, Australia, on September 28, 19 friasd anhin has revealed the existence of roughly equal he optically right- and left-handed forms. tarked contrast to the overwhelming pred he left-handed form found in terrestrial rockg ne implications are many and marvelous.*

11 INDUCED OPTICAL EFFECTS - ORTE.

 MODULATORSThere are a number of different physical effic ing polarized light that alt share the single feature ot somehow heing externally indricis. In instances one exerts an external influep:

See Physics Today, Feb. 1971, p. 17, for additional dic... refercnces for furher reading
atomobile windshield or a telescope lens, will develop internal stresses that can easily be detected. Information concerning the surface strain on opaque objects can be btained by bonding photoelastic coatings to the parts under study. More commonly, a transparent scale model of the part is made out of a material opticdlly ensitive to stress, such as epoxy, glyptol, or modified polyester resins. The model is then subjected to the orces that the actual component would experience in use. Since the birefringence varies from point to point rossed polariers, complicated variegated fringe par orn will eveal he interal inge pat ny piece of clear plastic or even a block of unflavored elatin between two polaroids; tiy stressing if further and watch the pattern change accordingly (Fis 8.69)
The retardance at any point on the sample is proporonal to the principal stress difference; that is, $\left(\sigma_{1}-\sigma_{2}\right)$, where the sigmas are the orthogonal principal stresses or example, if the sample were a plate under vertical ension, σ_{1} would be the maximum principal stress in he vertical direction and σ_{2} would be the minimum principal stress, in this case zero, horizontally. In more omplicated situations, the principal stresses, as well as

Figure 8.63 A stressed piece of clear plastic between polaroids. (Photo by E.H.)
their differences, will vary from one region to the next. their differences, will vary from one region to the next. Under white-light illumnnation, the loci of all points on the specimen for which $\left\{\sigma_{1}-\sigma_{2}\right.$ \} is constant are known
as isochromatic regions, and each such region corresponds as isochromatic regions, and each such region corresponds fringes will be a separate system of black bands. At any point where the E-field of the incident linear tight is parallel to either local principal stress axis, the wave will pass through the sample unaffected, regardless of wavelength. With crossed polarizers, that light will be absorbed by the analyzer, yielding a black region known as an isoclinic band (Problem 8.35). In addition to being beautiful to look at, the fringes also provide both a qualitative map of the stress pattern and a basis for quartitative calculations.

8.11.2 The Faraday Effect

Michael Faraday in 1845 discovered that the manner in which light propagated through a material medium could be infuenced by the application of an medium magnetic field. In particular he found that the plane of vibration of linear light incident on a piece of glass rotated when a strong magnetic field was applied in the propagation direction. The Faraday or magneto-optic effect was one of the earliest indications of the inter-
relationship between electromagnetista,
Although it is reminiscent of optical activ: Although it is reminiscent of oplacal activig
we shall see, an important distinction betwe effects.
The angle β (measured in minutes of are) which the plane of vibration rotates is givel by the empirically determined expression
$\beta=\operatorname{VBB}_{B}$,
where B is the static magnetic flux densi
gauss), d is the length of medium traverse \mathscr{V} is a factor of proportionality known constand. The Verdet constant for a partim varies with both frequency (dropping of decreases) and ternperature. It is roughly of $10^{-5} \mathrm{~min}$ of arc gauss ${ }^{-3} \mathrm{~cm}^{-1}$ for gases of arc gauss cm for solds and hou can get a better feeling for the meamill these numbers by imagining, for examp sample of $\mathrm{H}_{2} \mathrm{O}$ in the moderately large fî the Eorth's feld is about one half gaus ticular case, a rotation of $2^{\circ} \mathrm{I} 1^{\prime}$ would result sui: 0.0131 .

By convention, a positive Verdel wiumtinatarn
By convention, a positive Verdel wiwnity
(diamagnetic) material for which the Far l-rotatory when the light moves parallel to thrw and d-rotatary when it propagales antiparall
before, one speaks of two normal modes of propagation of electromagnetic waves through the medium, the \mathscr{B} and \mathscr{X}-states.
For ferromagnetic substances things are somewhat more complicated. In the case of a magnetized material β is proportional to the component of the magnetization in the direction of propagation rather than the component of the applied dc field.

There are a number of practical applications of the Faraday effect. It can be used to analyze mixtures of hydrocarbons, since each constituent has a characteristic magnetic rotation. Moreover, when uilized in spectroof energy states hove the ground level in recent times the Faratay eftect has been put to even more exiting and promising uses Since the advent of the laser in the early 1960 s , a tremendous effort has been made to utilize the enormous potential of laser light as a communications medium (see Section 7.2.6). An essential component of any such system is the modulator, whose function it is to impress information on the beam. Such a device must have the capability of somehow varying the lightwave at high speeds and in a controlled fashion. It might, for example, alter the wave's amplitude, polarization, propagation direction, phase, or frequency in a manner related to the signal that is to be transmitted. The Faraday effect provides one possible basis for such a modulator. Clearly, if a device of this sort is to function efficiently, each unit length of the medium must absorb as little light as possible while imparting as large a rotation to the beam as possible. To this end, a number of rather exotic ferromagnetic materials have been studied. An infrared modulator of this sorn was constructed by R. C. LeCraw. It utilizes the synthetic magnetic crystal yttrium-iron garnet YIG , to which has been acded a quantity of ganium. YG has a structure similar to that of natural gem 8.64. A linear infrared laser beam enters the crystal from the left A transerse do magnetic field saturates the magnetization of the YIC crystal in that direction. The total magnetization vector farising from the constant field and the field of the coil) can vary in direction, being tilted toward the axis of the crystal by an amount proportional to the modulating current in the coil. Since
he Faraday rotation depends on the axial component of the magnetization, the coil current controls β. The analyzer then converts this polarization modulation to amplitude modulation by way of Malus's Iaw [Eq. (8.24)]. In short, the signal to be transmitted is introduced across the coil as a modulating voltage, and the emerging laser beam carries that information in the form of amplitude variations.
There are actually several other magneto-optic ffects. We shall consider only two of these, and rather succinctly at that. The Voigt and Cotton-Mouton effectis transe when a cinstant magnicular to the direction f propagation of the incident light beam. The former orcurs in vapors, whereas the latter, which is considerbly stronger, occurs in liquids. In either case the medium displays birefringence similar to that of a aniaxial crystal whose optic axis is in the direction of he dc magnetic field, that is, normal to the light beam Eq. 8.32)]. The two indices of refraction now correspond to the situations in which the plane of vibration of the wave is either normal or parallel to the constant magnetic field. Their difference Δn (i.e., the birefringence) is proportional to the square of the applied magnetic field. It arises in liquids from an aligning of the optically and magnetically anisotropic molecules of the medium with that field. If the incoming light propa-
gates at some angle to the static field $\pi / 2$, the Faraday and Cotton-Mouton of currently, with the former generally b_{c} larger of the two. The Cotton-Mouton is analogue of the Kerr electro-optic effe sidered next.

8.11.3 The Kerr and Pockels Effects

The first electro-optic effect was discovet tish physicist John Kerr (1824-1907) in that an isotropic transparent substance frimgent when placed in an electric field \mathbf{k}. takes on the characteristics of a uniaxial optic axis corresponds to the direction of the field. The two indices, n_{1} and n_{1}, are associat the the two orientations of the plane of vibratiot iof wave, namely, parallel and perpendicular: electric field, respectively. Their differo birefringence, and it is found to be
$\Delta n=\lambda_{B} K E^{2}$,
where K is the Kerr constant. When K is powine most often is, Δn, which can be thinugh of an i is positive, and the substance behaves like uniaxial crystal. Values of the Kerr constantere

.

1 wade in electrostatic units, so that one must enter E in Eq. (8.40) in statyolts per cm 300 V). Observe that, as with the Cottondhe Kerr efect is prequadratic electro-optio evienenan in liquids is attributed to a Tot of anisotropic molecules by the E The situation is considerably more compli

要depicts an arrangement known as a Ker dical modulator. It consists of a glass cel Te electrodes, which is filled with a pola fit cell, as it is called, is positioned betwee
$45^{\circ} \mathrm{L}$.
$45^{5} \frac{8}{6}$ appied E-field. With zero voltage acress pplication of wa Geld, causing the cell to function valtage generare plate and thus opening the shutter proportion nety The great value of such a device lies in the fact Ond effectively to frequencies roughly ast Kerr cells, usually contaies roughly as bon disulfide, have been used for a number years a variety of applications. They serve as agh speed photography and as light-beam greplace rotating toothed wheels. As such reen utilized in measurements of the speed Cf cells are also extensively used as O Chiapter 14) in pulsed laser systems. functioning as the electrodes have an of $\ell \mathrm{cm}$ and are separated by a distance fa is given by
$\Delta_{\varphi}=2 \pi K \ell V^{2} / d^{2}$,
where V is the applied voltage. Thus a nitrobenzene where which d is one and ℓ is several cm will require rather large voltage, roughly $3 \times 10^{4} \mathrm{~V}$, in order to respond as a half-wave plate. This is a characteristic quantity known as the half-wave vollage, $V_{\lambda / 2}$. Another drawback is that nitrobenzene is both poisonous and explosive. Transparent solid substances, such as the mixed crystal potassium tantalate niobate $\left(\mathrm{KTa}_{0.65} \mathrm{Nb}_{0.55} \mathrm{O}_{3}\right)$, KTN for short, or barium titanate $\left(\mathrm{BaTiO}_{3}\right)$, which show a kerr effect, are therefore of interest as electro-optical modulators.
There is another very important electro-optical effect known as the Pockels effect, after the German physicist Friedrich Carl Alwin Pockels (1865-1913), who studied it extensively in 1893. It is a linear electro-optical effect, inasmuch as the induced birefringence is proportional to the first power of the applied E-field and therefore the applied voltage. The Pockels effect exists only in certain crystals that lack a center of symmetry; in other words, crystals having no centan point through which There are 32 crystal symmetry classes, 20 of which may how the Pockels effect. Incidentally, these same 20 lasses are also piezoelectric. Thus, many crystats and ll liquids are excluded from displaying a linear electro optic effect.
The frst practical Pockels cell, which could perform as a shutter or modulator, was not made until the 1940 s, when suitable crystals were finally developed. The

Figure 8.65 A Kerr cell.
operating principle for such a device is one we've already discussed. In brief, the birefringence is varied electronically by means of a controlled applied electric field. The retardance can be altered as desired, thereby changing the state of polarization of the incident linear wave. In this way, the system functions as a polarization modulator. Early devices were made of ammoniom dihydrogen phosphate $\left(\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}\right)$, or ADP , and potassium dihydrogen phosphate ($\mathrm{KH}_{2} \mathrm{PO}_{4}$), known as KDP; both are still widely in use. A great improvemen was provided by the introduction of single crystals of potassium dideuterium phosphate $\left(\mathrm{KD}_{2} \mathrm{PO}_{4}\right.$), or $\mathrm{KD}^{4}{ }_{F}$ which yields the same retardation wreh woitages less than half of those ueeded for KDP. This process of infusing crystais with deuterium is accompished by growing there in a solution of heavy water. Today cells made with $\mathrm{KD}^{*} \mathrm{P}$ or $\mathrm{CD}^{*} \mathrm{~A}$ (cesium dideuterium arsenate) are available commercially. Tremendious effort has gone into research on electro-optical crystals. The development of these materials is continually adding exotic names to the jargon of the new technology, such as lithium niobate, iobate to mention only a few Pactels cell is sing a few.
metric, oriented single rysal inpriate noncentrosym labie electric field. Such devices can usually be operated

Figure 8.66 a Fockell cell
fairly low volkages (roughly 5 to 10 dimes less that of an equivalent Kerr cell); they are linear, a course there is no problem with toxic liquids. response time of KDP is quite sbort, typically less 0 ns, and it can modulate a light beam at up to a 25 GHz (i.e., $25 \times 10^{9} \mathrm{~Hz}$). There are two common configurations, referred to as hamsuorse and tongitur depending on whether the applied E-field is per dicular or parallel to the direction of propagat respectively. The longitudinal type is illustrated, it most basic form, in Fig. 8.66. Since the beam travers he elecirodes, these are usuaily made of transpafos metal-oxide coatings (e,g., $\mathrm{SnO}, \mathrm{InO}$, or CdO), faid elal frims, gridz, or rings. The crystai itself is genera liaxial in the absence of an appled field, hadial propagation direction. For such an arrangemenc the retardance is given b

$$
\Delta \varphi=2 \pi n_{0}^{3} r_{63} V / \lambda_{0}
$$

where ${ }_{6}{ }_{63}$ is the electro-optic constant in $\mathrm{m} / \mathrm{V}, n_{o}$ is t ordinary index of refraction, V is the potem, difference in volts, and λ_{i} is the vacuum wavelength in meters. since he thystare anisotropic, their prope es vary in diflerent directions, and they muss as the second-rank electro-uptic rensor r we need orly soncern ourselves here with one of cormponents, namely, values of which are give Table 8.4. The half-wave voltage corresponds to a value of $\Delta \varphi=\pi$, in which case

$$
\Delta \varphi=\pi-\frac{V}{V_{\lambda, 2}}
$$

and from Eq. 18.42)

$$
V_{\lambda / 2}=\frac{\lambda_{0}}{2 n_{Q}^{3}+\frac{1}{3}}
$$

As an example. for $\mathrm{KDP}, \gamma_{103}=10.5 \times 10^{-12} \mathrm{~m} / \mathrm{Y}$, , 1.51 , and we obtain $V_{\lambda / 2}=7.6 \times 10^{3} \mathrm{Vat} \lambda_{0}-546.1 \mathrm{~nm}$

This expression, along with the appropriate one for the craisise

- ackels cells have been used as utra-fast shutters forkitches for lasers, and dc to $30-\mathrm{GHz}$ light moduThey are also being apptied in a wide range of aro-optical syotems. for exampic, data processing fid display techniques. ${ }^{\text {i }}$
Q. 12 A MATHEMATICAL DESCRIPTION OF POLARIZATION

Thus far we have considered polarized light in terms Whas far we have considered polarized light in terms eneral reprean gre. Tin win continuously sweeping along the path of an ellips avecial cases. The period over which the ellizise was freversed equaled that of the lightwave (ie. roughly $\left(00^{-15}\right.$ s) and was thus far too short to be detected. In Fontrast, measurements made in practice are generaly Verage over comparatively lons tirne intervals. tearly, it would be advantageous to formulate an therative description of polarization in terus of conSenient observables, namely irradiances. Our motives巹 far more than the ever-present combination of ae petics and pedagogy. The formalism to be considere has far-reaching significance in ocher areas of study, ir teample, particle physics (the photon is, after all an

Nealcen in iterested in light nroduhation is gencral should consul
 (Sh8). For sone of the pracical details ser R. S. Pikes, "A

"M Negrine (Fcb. 1958), both of which crostans useiul bit
elemencary particle) and puantum mechanics. It serves in some respects to link the classiral and quantummechanical pictures. But even more demanding of our present attention are the considerable practical advantages to be gleaned from this alternative description. We shall cvolve an elegant procedure for predicting the effects of complex systerns of polarizing elements on the ultimate state of an empergent wave. The mathematics, writuen in the compressed form of matrices, will require only the simplest manipulation of those mazrices. The complicared logic assuciated with phase retardations, relative orientations, and so forth, for a tandem series of wave plates and polarizers is almost all built in. One noed only select appropriate matrices from a chart and drop them into the machematical mill.

8.12.1 The Stokes Parameters

The modern representation of polarized light actually had its origins in 1852 in the work of G. G. Stokes. He introduced four quantities that are funcions only of observables of the electromagnetic wave and are now of beam of tight feither natural or toially or partially polarized) can be described in terms of these quantities. We will first define the parameters operationally and then relare therc to electromagnetic theory. Imagine that we have a set of four filters, each of which, under thaturul illumination, will transmit half the iocident light, the other half being discarded. The choice is nor a unique one, and a number of equivalent possibilities exist. Suppose then that the first fifter is simply isotropic passing all states equally, whereas the second and third are linear polarizers whose transmission axes ane horizoncal and at $+45^{\circ}$ (diagonal along the first and third quadrantas, respectively. The last hiter is a circula polarizer opaque to $S \mathrm{~S}$-states, Each of these four filters is positioned alone in the path of the beam under
"Much of the matrial in this section is treated more extensively in

 Phps 22, 170 (1954), and W. Bicket and W. Baikey, "Stokes Vectors Mueller Matikes, and Potarized Scatcered I.ight," Amp. J. Phys 53 , 458
nvestigation, and the transmitted irradiances I_{0}, I_{5}, I_{2}, s are measured with a type of meter that is insensitive o polarization (not all of themetre). The operational definition of the Stokes parameters is then given by the relations

$$
\begin{aligned}
& S_{0}=2 I_{0} \\
& S_{1}=2 I_{1}-2 I_{0} \\
& S_{2}=2 I_{2}-2 I_{0} \\
& S_{3}=2 I_{3}-2 I_{0} .
\end{aligned}
$$

(8.45a)

$$
(0.70)
$$

[8.45b)

$$
(8.45 c)
$$

$$
(8.45 d)
$$

Notice that δ_{0} is simply the incident irradiance, and δ_{1}, S_{2}, and S_{3} specify the state of polarization. Thus S_{1} refects a tencency for the polarization to resemble elcher a horizontal stace (whereupon $s_{1}>0$) or a isplaysno preferential orientation with xes $\left(\delta_{2}=0\right)$ it may be elliptical at $\pm 45^{\circ}$ circular or unpolarized. Similarly S_{8} implies a tendency for the light to resemble a \mathscr{P}-state oriented in the direction of $+45^{\circ}$ (when $\delta_{2}>0$) or in the direction of -45° (when $\left.S_{2}<0\right)$ or neither ($S_{2}=0$). In quite the same way S_{5} reveals a tendency of the beam toward right-handedness ($\delta_{9}>0$), left-handedness $\left(\delta_{3}<0\right)$, or neither $\left(\delta_{3}=0\right)$. Now recall the expressions for quasimonochromatic light,
$\mathbf{E}_{\times}(t)-\hat{i} E_{0 \times}(t) \cos \left[(\overline{k z}-\bar{\omega} t)+\varepsilon_{x}(f)\right] \quad[8.34(\lambda)]$ and
$\mathbf{E}_{y}(i)=\hat{\mathrm{I}} E_{0 y}(t) \cos \left[(\bar{k}-\bar{\omega} t)+\varepsilon_{y}(t)\right], \quad[8.94(b)]$ here $\mathbf{E}(t)=\mathbf{E}_{x}(t)+\mathbf{E}_{y}(t)$. Using these in a fairly straightforward way, we can recast the Stokes parameters** as

$$
\begin{array}{ll}
\delta_{0}=\left\langle E_{0_{x}}^{2}\right\rangle+\left\langle E_{0 y}^{2}\right\rangle & \text { (8.46a }\rangle \\
\delta_{1}=\left\langle E_{\left.0_{x}^{2}\right\rangle}^{2}\right\rangle-\left\langle E_{0\rangle}^{2}\right\rangle & (8.46 b) \\
\delta_{2}=\left\langle 2 E_{0 x} E_{0 y} \cos \varepsilon\right\rangle & (8.46 c) \\
\delta_{0}=\left(2 E_{0} E_{0} \sin \varepsilon\right\rangle & (8.46 d)
\end{array}
$$

Here $\varepsilon=\varepsilon_{y}-\varepsilon_{x}$ and we've dropped the constant $\epsilon_{0} c / 2$, so that the parameters are now proportional to irradi-
ances. For the hypothetical case of perfec matic light, $E_{0 x}(t), E_{0 y}(t)$, and $\varepsilon\{(i)$ arec dent, and one need only drop the \langle ? ingly enough, these same rekes paray ingly enough, these same results can 1
time averaging Ea. (8.14), which time averaging ka.
for elliptical light.*
If the beam is unpolarized, $\left\langle E_{0 x}^{2}\right\rangle=$ averages to zero, because the amplitudet averages to zero, because the amplitude
always positive. In that case $S_{0}=\left\langle E^{2}\right)+\left(\pi^{2}\right.$ S_{2} always positive. In that case $\left.\delta_{0}=\left\langle E_{0 \lambda}^{2}\right\rangle\right\rangle\left\langle R^{2}\right.$ $S_{2}=S_{3}=0$. The latter two parameters go 0 the amplitudes. It is often convenient tep Stokes parameters by dividfrg each one $\$_{0}$. This has the effect of using an incide irradiance. The set of parameters (δ, nataral light in the normalized representa ($1,0,0,0$). If the light is horizontally pol no vertical component, and the normalized are ($1, \mathrm{I}, 0,0$). Similarly, for vertically we have ($1,-1,0,0$). Representations of a polarization states are listed in Table 8.5 (the are displayed vertically for reasons to be dfo Notice that for completely polarized light in: Eq. (8.46) that

$$
S_{0}^{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2}
$$

Moreover, for partially polarized light it an te tom that the degree of polarization (8.29) is given by

$$
V=\left(\delta_{1}^{2}+S_{2}^{2}+\delta_{3}^{2}\right)^{1 / 2} / \delta_{0} .
$$

Imagine now that we have two quasimono wayes described by ($\mathcal{S}^{\prime} \mathcal{S}^{\prime} S^{\prime}, S^{\prime}$) and ($\mathcal{S}^{\prime \prime}, 8$ which are superimposed in some region of long as the waves are incoherent, any one of the sinat long as the waves are incoherent, any one of corresponding parameters of the constitue which are proportional to irradiance). In otin the set of parameters describing the result
 density vertical $\mathscr{\rho}$-state $(1,-1,0,0)$ is a incoherent \mathscr{Q}-state (see Table 8.5) of flux densinf
F. Conlett, "The Description of Polarization in Cassicy pmen Am, J. Phys 96, 713 (1968).
 45 45

a columin yector,

8.12.2 The Jones Vectors

Another representation of polarized light, which complements that of the Stokes parameters, was invente in 1941 by the American physicist R. Clark Jones. The technique he evolved has the advantages nf being applicable to coherent beams and at the same time being extremely concise. Yet unlike the previous formalism, it is only applacable to polanized waves. In that case it would seem that the most naturai way to represent the beam would be in terms of the electric vector itself. Written in column form, this Jones vector is

$$
\mathbf{E}-\left[\begin{array}{c}
E_{x}(t) \\
E_{y}(t)
\end{array}\right],
$$

where $E_{x}(i)$ and $E_{y}(i)$ are the instantaneous scalar com ponents of \mathbf{E}. Obviously, knowing \mathbf{E}, we know every thing about the polarization state. And if we preserve the phase information, we will be able to handle coher ent waves. With this in mind, rewrite Eq. (8.50) as

$$
\mathbf{E}=\left[\begin{array}{l}
E_{0 x_{2}} e^{k_{p}} \\
E_{00_{y}} e^{i_{y}}
\end{array}\right],
$$

where φ_{x} and φ_{y} are the appropriate phases. Horizontal and vertical \mathscr{P}-states are thus given by

$$
\mathbf{E}_{k}-\left[\begin{array}{c}
E_{0,} e^{i \varphi_{x}} \\
0
\end{array}\right] \text { and } \mathbf{E}_{v}=\left[\begin{array}{c}
0 \\
\left.E_{0,}, e^{i \varphi_{y}}\right\rangle
\end{array}\right]
$$

respectively. The sum of two coherent beams, as with the Stokes vectors, is formed by a sum of the corre sponding components. Since $\mathrm{E}=\mathbf{E}_{k}+\mathbf{E}_{v}$, when, for example $E_{0_{x}}-E_{0_{y}}$ and $\varphi_{x}-\varphi_{y}, \mathbf{E}$ is given by

$$
\mathbf{E}=\left[\begin{array}{l}
E_{0 \mathrm{o}} e^{i i_{x}} \\
E_{\mathrm{o} s} i^{i \varphi_{x}}
\end{array}\right]
$$

324 Chapter 8 Polarixation
ar, alier factoring by

$$
\mathrm{E}=E_{0 \mathrm{x}} e^{i \varphi_{x}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

which is a \mathscr{P}-state at $+45^{\circ}$. This is the case since the mplitudes are equal and the phase difference is zero There are many applications in which it is not necessary to know the exact amplitudes and phases. In such in stances we can normalize the irradiance to unity, thereb forfeiting some information but gaining much simple expressions. This is done by dividing both etements in the vector by the same scalat (real or complex) quancity such that the sum of the squares of the components one. For example, dividing both terms of Eq. (8.53) by $\sqrt{2} E_{0} e^{i{ }^{i+x}}$ leads to

$$
\mathrm{E}_{45}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Similarly, in normalized form

$$
\mathbf{E}_{h}-\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \mathbf{E}_{v}-\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Right-circular light has $E_{0 x}=E_{0 \text { p }}$, and the y-comporen leads the x-component by 90°. Since we are using the form (k - wh), we will have to add $-\pi / 2$ to 9 , thus

$$
\mathbf{E}_{S A}-\left[\begin{array}{c}
E_{0} e^{v_{0}} \\
E_{0 e^{2}} e^{\left(x_{0}-\pi / 2\right)}
\end{array}\right] .
$$

Dividing both components by $E_{5 x} e^{i_{5}}$, we have

$$
\left[\begin{array}{c}
1 \\
e^{-1 \pi / 2}
\end{array}\right]-\left[\begin{array}{c}
1 \\
-i
\end{array}\right] ;
$$

hence the normalized Jones vector ist $\mathbf{E}_{\mathscr{S}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]$ and similarly $\mathbf{E}_{\mathscr{4}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ i \\ i\end{array}\right]$ (8.57) The sum $\mathrm{E}_{s x}+\mathrm{E}_{s}$ is

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1+1 \\
-i+i
\end{array}\right]-\frac{2}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0
\end{array}\right],
$$

\dagger Had we used (ot - ke) for the phase, the vertas in \mathbf{E}_{a} would have been interchanged. The present notation, although peasibly a bit often used in modern works. Be wary when consulting references (e.g., Shurcifif).

This is a horizontal $g p_{\text {-state }}$ having an amy our earlier calculation of Eq. (8.10). The for eiliptical light can be obtained by the ored to arrive at $\mathbf{E}_{\mathcal{z}}$ and \mathbf{E} e equal to $E_{\text {on }}$, and the phase difference 90°. In essence, for vertical and horizontal e need to do is stretch out the circular ellipse by multiplying either components by a sold Thus

Thiprical light.
Two vectors \mathbf{A} and \mathbf{B} are said to be ontbomal
$A \cdot B=0$; similarly two complex vectors are
when $\mathbf{A} \cdot \mathbf{B}^{*}=0$. One refers to two polatik:
as being orthogonal when their Jones vectole orthogonal. For example,

$$
\mathrm{E}_{\mathscr{A}} \cdot \mathrm{E}_{\dot{S f}}^{*}=\frac{1}{2}\left([1)(1)^{*}+\langle-i)(t)^{*}=0\right.
$$

$$
E_{h} \cdot E_{0}^{*}=\left[(1)(0)^{*}+(0)(1)^{*}\right]=0
$$

where taking the complex conjugates of beviousiy leaves them unaltered. Any pol will have a corresponding orthogonal state

$$
\mathbf{E}_{\mathfrak{g}} \cdot \mathrm{E}_{\mathfrak{B}}^{*}-\mathbf{E}_{\mathscr{4}} \cdot \mathbf{E}_{\mathscr{P}}^{*}=\mathrm{I}
$$

and

$$
\mathbf{E}_{\mathfrak{M}} \cdot \mathbf{E}_{\mathcal{Y}}^{*}=\mathbf{E}_{\mathscr{P}} \cdot \mathbf{E}_{\mathscr{P}}^{*}=0 .
$$

Such vectors form an orthonormal set, as abi As we have seen, any polarization state c by a linear combination of the vectors in the orthonormal sets. These same ideas able importance in quantum mechaniaif wran in deals with orthonormal wave functions?
8.12.3 The Jones and Mueller Mahn

Suppose that we have a polarized incideng beant

Thent, emerging as a new vector \mathbf{E}_{t} corretement, emeited wave. The optical element thed E_{i} into E_{t}, a process that can be Himed E_{i} iclily using a 2×2 matrix. Recall 4natrix is just an array of numbers that has matrix is just and multiplication operations. Let ed additiou ansformation matrix of the optical question. Then

$$
\mathbf{E}_{t}=\alpha \neq \mathbf{E}_{i}
$$

$$
\mathscr{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right],
$$

(8.60)
detechumivections are to be treated like any other atus Asz renindet, we write Eq. (8.59) as

$$
\left[\begin{array}{l}
E_{5 x} \\
E_{y \mathrm{y}}
\end{array}\right]=\left[\begin{array}{ll}
a_{13} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
E_{\mathrm{ixx}} \\
E_{3 \mathrm{y}}
\end{array}\right],
$$

(8.6i)

4/, apoo repanding. we obtain

$$
E_{t x}=a_{4,} E_{\mathrm{ix}}+a_{12} E_{\mathrm{i} \gamma}
$$

$$
E_{\mathrm{ky}}=a_{\mathrm{k} 1} E_{\mathrm{ix}}+a_{22} E_{i t}
$$

Tult 8 d cmbins a brief listing of Jones matrices for 14 cprial elements. To appreciate how these are wed his eazmine a few applications. Suppose that \mathbf{E}_{2} ixrenels 9 -state at $+45^{\circ}$, which passes through a ve plate whose fast axis is vertical (i.e., in the Thi. The polarization state of the emergent Tre wound as follows, where we drop the constantclars for convenience:

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
E_{x x} \\
E_{t y}
\end{array}\right],
$$

$$
\mathbf{E}_{7}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right] .
$$

Me bani, as you weil know, is right-circular. If the manses surough a series of optical elements repated sematrices a series of optical elements $\mathbf{E}_{t}=\mathscr{A}_{n} \cdots \mathscr{A}_{2} \mathscr{A}_{1} \mathbf{E}_{i}$.

A Mathematical Description of Polarization

Linear optical element	Jones matrix	Mueller matrix
Horizontal lincas polarizer	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$
Vertical linear polarizer	$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Linear polarizer at $+45^{\circ}$	$\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Linear polazizer	$\frac{1}{2}\left[\begin{array}{rr} 1 & -1 \\ -1 & 1 \end{array}\right]$	$\frac{1}{2}\left[\begin{array}{rrrr}1 & 0 & -1 & 9 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Quarter-wave plate, Fast axis vertica!	$e^{2 \pi / 4}\left[\begin{array}{cc} 1 & 0 \\ 0 & -i \end{array}\right]$	$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$
Quarter-wave plate, fast axis horizontal	$e^{\operatorname{xixf(4}}\left[\begin{array}{ll} 1 & 0 \\ 0 & i \end{array}\right]$	$\left[\begin{array}{rrrr}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 4\end{array}\right]$
Homogeneous circular polarizer right O	$\frac{1}{2}\left[\begin{array}{cc} 1 & i \\ -i & 1 \end{array}\right]$	$\frac{1}{2}\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
$\begin{gathered} \text { Homogeneous circulst } \\ \text { polarizer left } \end{gathered}$	$\frac{1}{2}\left[\begin{array}{cc} 1 & -i \\ i & 1 \end{array}\right]$	$\frac{1}{2}\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right]$

the proper order. The wave leaving the first optical element in the series is $\mathscr{A}_{1} \mathrm{E}_{\mathrm{i}}$; after passing through the eiement in the series is $\mathscr{S}_{1} \mathrm{E}_{6} ;$ aiter passing through the
second element, it becomes $\mathcal{A}_{2} \mathscr{A}, \mathrm{E}$, and so on. To illustrate the process, return to the wave considered above (i.e., a \mathscr{P}-state at $+45^{\circ}$), but now have it pass through two quarter-wave plates, both with their fast
axes vertical. Thus, agair discarding the amplitude fac
tors, we have

$$
E_{t}=\left[\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

whereupori

$$
E_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right]\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

and finally

$$
E_{t}=\left[\begin{array}{r}
1 \\
-\mathrm{I}
\end{array}\right] .
$$

The transmitted beam is a \mathscr{P}^{P}-state at -45°, having essentially been flipped through 90° by a half-wave plate. When the same serics of optical elements is being used to examine various states it becomes desirable to replace the product $\operatorname{sl}_{n} \cdots \alpha_{2} d_{1}$ by the single 2×2 Wem matrix obtained by carrying out the multiplication then $S_{3} \mathcal{S I}_{2}, \mathcal{F}_{1}, \mathrm{etc}$.)
In 1943 Hans Mueller, then a professor of physics at the Massachusetts Institute of Technology, devised a matrix method for dealing with the Stokes vectors. Recall that the Stokes vectors have the attribute of being applicable to both polarized and partially polarized light. The Mueller method shares this quality and thus serves to complement the Jones method. The latter, however, can easily deal with coherent waves, whereas the former cannot. The Mueller, 4×4, matrices are There is therefore little need to discuss the metrices There is therefore little need to discuss the method at 8.6 , should suffee Imagine that a ance unpolarized wave through a linear hotizote polarizer. The Sowes vector of the emerging wave S,
$S_{t}=\frac{1}{2}\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}\frac{1}{2} \\ \frac{1}{\frac{2}{2}} \\ 0 \\ 0\end{array}\right]$
The transmitred wave has an irradiance of $\frac{1}{1}\left(S_{0}=\frac{1}{2}\right.$) and is linearly polarized horizontally $\left(S_{1}>0\right)$. As another example, suppose we have a partially polarized elliptical
wave whose Stokes parameters have be to be, say, (4, 2, 0, 3). Its irradiance is 4; itit horizontal than vertical ($\delta_{1}>0$), it is righte 1 0), and it has a degree of polarization of none of the parameters can be larger thal of $g_{5}=3$ is fairly large, indicating thate the resembles a circle. If the wave is now mat mhe ellipw
a quarter-wave plate with a vertical fast axis/ in

and thus

$$
s_{1}-\left[\begin{array}{r}
4 \\
2 \\
-3 \\
0
\end{array}\right],
$$

The emergent wave has the same irradian
f polarization but is now partially linearl We have only touched on a few of the mort spects of the matrix methods. The tull extmal th subject goes far beyond these introductory rematian

POBLEMS

8.1 Describe completely the state of polarizatitil of each of the following waves:
a) $\mathbf{E}=\hat{\mathrm{i}} E_{0} \cos (k z-\omega t)-\hat{\mathrm{j}} E_{0} \cos (k z-$ b) $\mathbf{E}=\hat{1} E_{o} \sin 2 \pi(\lambda / \lambda-\nu t)-\hat{\mathrm{L}} E_{0} \sin 2 \pi($ c) $\left.\mathbf{E}=\hat{1} E_{0} \sin (\omega t-k z)+\hat{j} E_{0} \sin (\omega t-k z=-\pi / 4)\right\}, d$,
8.2 Consider the disturbance given by the $\mathbf{E}(z, i)=[\hat{\mathrm{i}} \cos \omega l+\hat{\mathrm{I}} \cos (\omega t-\pi / 2)] E_{0} \sin k z$, $\mathbf{E}(z, i)=\left[\hat{\cos } \cos \omega t+\mathrm{I} \cos (\omega t-\pi / 2) E_{0} \sin k z\right.$
of wave is it? Draw a rough sketch showingan.
features.
One can weave a more elaborate and der
Statisical Optics
fically, show that the superposition of an \mathscr{P} are having different amplitudes will yiel as chown
an expression for a \mathscr{F}-state lightwave of thauency ω and amplitude E_{0} propagating - -axis with its plane of vibration at an angle te x - olane. The disturbance is zero at $t=0$

$$
\text { Hrite an expression for a } 0 \text {-state lightwave of }
$$ quency a and amplitude E_{0} propagating re in the $x y$-plane at 45° to the x-axis and wing its plane of vibration corresponding to the x , $0, y$ the field is zer

6 Wrie an expression for an \mathscr{F}-state lightwave of quency a propagating in the positive x-direction that at $y=0$ and $x=0$ the E-field points in the ainc r-rirection.
8. What that is initially natural and of flux density through two sheets of HN- 82 whose trans es are parallel, what will be the fux density earging beam?
2. 8^{\prime} Will be the irradiance of the emerging beam
ith
.13" A pencil mark on a sheet of paper is covered by a calcite crystal. With illumination from above, isn't the light impinging on the paper already polarized, having passed through the crystal? Why then do we see wo images? Test your solation by polarizing the light from a flashlight and then reflecting it off a sheet of paper. Try specular reflection off glass; is the reflected light polarized?
8.14 Discuss in detail what you see in Fig. 8.68. The crystal in the photograph is calcite, and it has a blunt corner at the upper left. The two polaroids have their ransmission axes parallel to their shom edges.

Flyure 8.6 .
8.15 The calcite crystal in Fig. 8.69 is shown in three different orientations. Its bunt corner is on the left in (a), the lower left in (b), and the bottorn in (c). The polaroid's transmission axis is horizontal. Explain each photograph, particularly (b).
8.16 In discussing calcite we pointed out that its large birefringence arises from the fact that the carbonate birefringence arises from the fact that the carbonate Show in a sketch and explais why the poiarization of the group will be less when E is perpendicular to the CO_{3} plane than when \mathbb{P} is parallel to it. What does this mear with respect to $v_{\text {, and }} \psi_{1}$, that is, the wave's speeds hen E is linearly polarized perpendicular or paraliel to the optic axis?

(a)

(b)

Mgare 8.69

- gine that we have a transmiter of micro avy hagine that linearly polarized wave whose - copwo to be parallel to the dipole ditection feflect as much energy as possible off the fond (having an index of refraction of 9.0) fssary incident angle and comment on the f the beam.

4. Abeam of natural light is incident on an air3. Ah face $\left(n_{1}=1.5\right)$ at 40°. Compute the degree Fation of the refleced light
5. Wivis of natural light incident in air on a glas Face at 70° is partially refiected. Comput a 0 arn ceflectance. How would this compare wich "r aur telniderre at, say, 56.3° ? Explain.

220 A tay of yellow light is incident on a calcite plate Croo wise plate is cut so that the optic axis is paralici face and perpendicular to the plane of erging rays

Tm of light is incident normally on a quartz caxis is perpendicular to the beam. If =ssysim. compute the wavelengths of both the thary and extraordinary waves. What are their ropexitis?
2.22 A beam of light enters a calcite prism from the bf, as \$hown in Fig. 8.70. There are three possibie Was of the optic axis of particular interest, and \therefore Pat pond to the x-, y, and z-directions. Imagine Whing and emerging bearns, showing the state of Wing and cmerging bearns, showing the state of alisen, and n_{r} ?

8.23 The electric feld vector of an incident \$-state makes an angle of $+30^{\circ}$ with the horizontal fast axis o a quarter-wave plate. Describe, in detail, the state of po.arization of the emergent wave
8.24 Compute the critical angle for the ordinary ray that is, the angle for total internal reffection at the calcite-balsam layer of a Nicol prism.
8.25* Draw a quartz Wollaston prism, showing aill per tinent tays and their polarization states.
8.26 The prism shown in Fir. 8.71 is knownasa Rochon poiarizer. Sketch all the pertinent rays, assuming
a) that it is made of calcite
b) that it is made of quart
c) Why might such a device be more useful than a dichroic polarizer when functioning with high-fuxdensity laser light?
d) What valuable feature of the Rochon is lacking in the Wollaston polarizer?

Figure 8.

8.27* Take two ideal polaroids (the first with its axis vertical and the second, horizontal) and insert between them a stack of 10 hall-wave plates, the first with its fast axis rotated 10 ad frome the verical and each sequent one rotated $/ 40$ ud from the previous one Determine the ratio of the emerging to incident irrad Determine the ratio of the emerging to incident irradt-
ance showing your lo
8.28* Suppose you were originally given only a linear polarizer and a quarter-wave plate. How couid you determine which was which?
8.29* An 2 -state traverses an eighth-wave plate hav ing a horizontal fast akis. What is its polatization state on emerging?
8.30* Figure 8.72 shows two polaroid lincar poiarizers and between them a microstope slide to which is attached a piece of cellophane tape. Explain what you see.

Figue 8.72
3.31 A Babinet compensator is positioned at 45° between crossed linear polarizers and is being ilumi nated with sodium light. Wher a thin sheet of mica nated with sodrum light. When a thin sheet of mica the black bands all shift by 1 of the space separain them. Compute the retardance of the sheet and its thickness.
8.32 Imagine that we have unpolarized room light incident almost normaly or the glass surface of a rada screen. A pottion of it would be specularly reflecte back toward the vicwer and would thus tend to obscur the display. Suppose now that we cover the sc:een with a right-circular polazizer, as shown in Fig. 8.73. Trac the incident and reflected beams, indicating their polarization states. What happens to the reflected beam?
8.33 Is it possible for a beam to cunsist of two orthogonal incoherent 9 -states and not be natural light? Explain. How might you arrange to have such a beam?
8.34* The specific rotatory power olved in water as $20^{\circ} \mathrm{C}\left(\lambda_{0}=589.3\right.$ nana $)$ sucn 10 cm of path traversed through a solution ψ_{68}. g of adive substance (sugar) per cm^{3} of conto -m tube containing $1000 \mathrm{~cm}^{3}$ enters at ona end is sucrose. At what orientation willution, oflatat of
8. 35 On examining a piece of stressed plopowithi,
material between crossed linear polarizers wo see a set of colored bands (isochromatics) posed on these, a set of dark bands tiso might we remove the isoclinics, leaving onlywith Ho matics? Explain your solution. Incidentalby arrangement is independent of the orientertion pro photoelastic sample.
8.36* Consider a Kerr cell whose plates are ${ }^{\text {B }}$ by a distance d. Let ℓ be the effective lengeth plates (silightly different from the actual left: berat of fringing of the field). Show that

$$
\Delta \varphi=2 \pi K / V^{2} / / \pi^{2} .
$$

. 57 Compute the half-wave voltage for ockels cell made of ADA (ammonium rsenate) at $\lambda_{0}=5.50 \mathrm{ntm}$, where $\mathrm{P}_{59}=5.5$. $\mu_{0}=1.58$.

38 Find a Jones vector \mathbf{E}_{2} representing tate orthogonal to
Sketch both of $\mathbf{E}_{1}=\left[\begin{array}{c}1 \\ -2 i\end{array}\right]$.

\square Tim intonem light beams represented
 in detail the polarization states of each of Hese. red beam and describe its polarization state. its degree of polarization?
the resulting light produced by overlapping Thierent beams $(1,1,0,0)$ and $(1,-1,0,0)$?

40 Show by direct calculation, using Mueller Show that a unit-irradiance beam of natural light grough a vertical linear polarizer is converted *ifical 9 -state. Determinie its relative irradiance quative or polatization.
 hast a unit-irradiance beam of natural light bugh a linear polarizer with its transmission if con inadiace and degree of potaration
by diret calculation using Mueller
 -plate with its fast axis horizontal emerges
8.4.43 Wonfirm that the matrix
$\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$
5as a Mueller matrix for a quarter-wave plate
gax axis at $+45^{\circ}$. Shine linear light polarized at drough it. What happens? What emerges when a zontal \mathscr{P}-state enters the device?
244 Detive the Mueller matrix for a quarter wave Hith ito fast axis at -45°. Check that this matrix y cancels the previous one, so that a beam chrough the two wave places succerssively
8.45* Pass a beam oi horizortally polarized linear light through each one of the λ-plates in the two previous questions and describe the states of the emerging light. Explain which field component is leading which and how Fig. 8.7 compares with these resulcs.
8.46 Use Table 8.6 to derive a Mueller matrix for a half-wave plate having a verticai fast axis. Utilize your half-wave plate having a verticai fast axis. Unilize your the same wave piate will conver an \mathscr{L} - to an \mathscr{R}-state. Advancing cr retarding the relative phase by $\pi / 2$ should have the same effect. Check this by deriving the matrix for a haif-wave plate with a horizontal fast axis.
8.47 Corstruct one possible Mueller matrix for a right circuiar polarizer made out of a linear polatizer and a quarter-wave plate. Such a device is obyiously an inhomogeneous two-element train and will differ from the homogeneons circular poiarizer of Table 8.6. Test your matrix to determine that it will convert natural light to an \mathscr{R}-state. Show that it wilh pass K-states, as will the homogeneous matrix. Your matrix should convert \mathscr{L}-states incident on the input side to \mathscr{P}-states, whereas the homogeneous polarizer will totally absorb them. Verify this
8.48* If the Pockels cell modulator shown in Fig. 8.66 is illuminated by light of irradiance I_{i}, it will transmir a beam of itradiance I_{4} such that

$$
I_{4}=I_{1} \sin ^{2}(1 \varphi / 2) .
$$

Make a plot of $I_{/} / L_{1}$ versus applied volkage. What is the significance of the volcage that corresponds to maximum will cause I_{t} to be zero for ADP $\left(\lambda_{o}=546 . \mathrm{I}\right.$ nm)? How can things be rearranged to yield a maximum value of I / I_{i} for zero voltage? In this new configuration what irradiance results when $V=\boldsymbol{V}_{\lambda / 2}$?
8.49 Construct a Jones matrix for an isotropic plate of absorting material having an amplitude transmission coefficient of t. It might sometimes he desirable to keep rack of the phase, since even if $t=1$, such a piate is still an isotropic phase relarder. What is the Jones matrix for a region of vacuum? What is it for a perfect absorber?
8.50 Construct a Mueller matrix for an isotropic plate of absorbing material having an amplitude transmission coefficient of t. What Mueller marrix will completely depolarize any wave without affecting its irradiance? (It has no physical counterpart.)
8. 51 Keeping Eq. (8.29) in mind, write or the unpolarized flux-density compo meters. Tocheck your result, add of the vector of fux dersity 4 to an \mathfrak{R}-state of " Then see if you get $I_{u}-4$ for the resultapequar. I

- INTERFERENCE

the individual constituent disturbances. Briefy then, optical inlentur may be termed an interacion of two mora lightwaves vielding a resultant irradiance that deviates

Figure 9.1 Water waves from two point sources in a ripple tank.
from the sum of the component irradiances.
Out of the multitude of optical systems that produce Out of the multitude of optical systems that produce interference, we will choose a few of the more importan the sake of discussion into two groups: wivefront split ting and amplitude splitting. In the first instance, porting and amplitude spitting. In the first instance, por-
tions of the primary wavefront are used either directy as sources to emit secondary waves or in conjunction with optical devices to produce virtual sources of secondary waves. These secondary waves are then brought together, thereupon to interfere. In the case of amplitude splitting, the primary wave itself is divided into two segments, which travel different paths before recombining and interfering.

9.I GENERAL CONSIDERATIONS

We have already examined the problem of the superposition of two scalar waves (Section 7.1), and in man respects those results will again be applicable. But light is, of coursc, a vector phenomenon; the electric and magnetic ficlds are vector fields. And an appreciation of this fact is fundariental to any kind or incuinive understanding of optics. stull, there are many situation corfigured that the vector nature of light is of littie practical signifcance We will therefore derive the basi interference equations within the context of the vector model, thereafter delineating the conditions under which the scalar treatment is applicable. In the scalar treatment is applicable.
In accordance with the principle of superposition, from the separate fields $E_{1}, \mathbf{E}_{2}, \ldots$ of various contribut ing sources is given by

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}+\cdots . \tag{9.1}
\end{equation*}
$$

Once again, note that the optical disturbance, or ligh field \mathbf{E}, varies in time at an exceedingly rapid rate, roughly

$$
4.3 \times 10^{14} \mathrm{~Hz} \text { to } 7.5 \times 10^{14} \mathrm{~Hz} \text {, }
$$

making the actual field an impractical quantity to detect. On the other hand, the irradiance I can be measured directly with a wide variety of sensors (e.g., photocells,
bolometers, photographic enukions, or eses) Indtad hen, if we are to study interferencew we Ind be approach the problem by way of the irradiang. be
Much of the analysis to foliow can without specifying the particular shapel perfo without specitying the particular shapel of the
fronts, and the results are therefore fonts, and the results are therefore quites gen licity, however, consider two point soupe mitting monochromatic waves of the sed S in a homogeneous medium. Furtherm 0 separation a be much greater than λ, Locare of observation P far enough away from the sol. point hat at P the wavefronts will be planes (Fige 9 ? he moment, we will consider only linearly polarit waves of the form

$$
\mathbf{E}_{1}(\mathbf{r}, t)=\mathbf{E}_{01} \cos \left(\mathbf{k}_{1}-r-\omega+4_{1}\right) \quad \text {, m, m }
$$

and

$$
\mathbf{E}_{2}(\mathbf{r}, t)=\mathbf{E}_{02} \cos \left(\mathbf{k}_{2} \cdot \mathbf{r}-\boldsymbol{\sigma} t+\mathrm{v}_{2}\right)
$$

We saw in Chapter 3 that the irradiance at P ind

$$
I=\operatorname{cu}\left\langle\mathrm{E}^{2}\right\rangle .
$$

Inasmuch as we will be concerned orly wilth relacial irradiances within the same medium, we will, for the irradiances within the same medium, we wim for tha
time being at least, simply neglect the constantgit

$$
I=\left\langle\mathbf{E}^{2}\right\rangle
$$

What is meant by $\left\langle\mathbf{E}^{2}\right\rangle$ is of course the time a the magnitude of the electric field intensity sị!〈E•E \rangle. Accordingly

$$
\mathbf{E}^{2}=\mathbf{E} \cdot \mathbf{E}
$$

where now

$$
\mathbf{E}^{2=}\left(\mathbf{E}_{1}+\mathbf{E}_{2}\right) \cdot\left(\mathbf{E}_{1}+\mathbf{E}_{2}\right),
$$

and thus

$$
\mathbf{E}^{2}=\mathbf{E}_{1}^{2}+\mathbf{E}_{2}^{2}+2 \mathbf{E}_{1} \cdot \mathbf{E}_{2} .
$$

Taking the time average of hoth sides, we and aints irradiance becomes

$$
I=I_{1}+I_{2}+I_{12},
$$

provided that

$$
I_{1}=\left\langle\mathbf{E}_{\hat{2}}^{\mathrm{R}}\right\rangle,
$$

(a)
(14at * 4 霉ves from two point sources ovellapping in spare

$$
I_{2}=\left\langle\mathbf{E}_{2}^{2}\right\rangle
$$

$I_{12}=2\left\langle\mathbf{E}_{1} \cdot \mathbf{E}_{2}\right\rangle$
expression is known as the interference tetm Irate it in this specific instance, we form
$\mathbf{E}_{1} \cdot \mathbf{E}_{2}=\mathbf{E}_{01} \cdot \mathbf{E}_{02} \cos \left(\mathbf{k}_{1} \cdot \mathbf{r}-\omega t+\varepsilon_{1}\right)$

$$
x \cos \left(\mathbf{k}_{2} \cdot \mathbf{r}-\omega t+\varepsilon_{2}\right)
$$

to tipualerily

$\mathbf{E}_{1} \cdot \mathbf{E}_{\mathbf{Q}^{2}}=\mathbf{E}_{\mathrm{Es}_{2}} \cdot \mathbf{E}_{02}\left[\cos \left(\mathbf{k}_{1} \cdot \mathbf{r}+\varepsilon_{1}\right)\right.$

$$
\left.X \cos \omega t+\sin \left(\mathbf{k}_{1} \cdot \mathbf{r}+\varepsilon_{1}\right) \sin \omega t\right]
$$

$$
\times\left[\cos \left(\mathbf{k}_{2} \cdot \mathbf{r}+\varepsilon_{2}\right) \cos \omega t\right.
$$

$$
\left.+\sin \left(\mathbf{k}_{\underline{2}} \cdot \mathbf{r}+\varepsilon_{2}\right) \sin \omega t\right] .
$$

$$
\begin{aligned}
& \left.+\sin \left(\mathbf{k}_{0} \cdot \mathbf{r}+\varepsilon_{2}\right) \sin \omega t\right] \text {. } \\
& \text { whene time average of some function } f(t) \text {, taken } \\
& \text { Herval } T \text {, is }
\end{aligned}
$$

$$
\langle f(i)\rangle=\frac{1}{-} \int^{c+T} f\left(l^{\prime} \backslash d l^{\prime}\right.
$$

The fatiod τ of

$$
(9.10)
$$

τ of the harme
of the harmonic functions is $2 \pi / \omega$, and yat concern $T \gg r$. In that case the $1 / T$
front of the integral has a dominant effect.

(b)

After multiplying out and averaging Eq. (9.9) we have

$$
\left\langle\mathbf{E}_{1} \cdot \mathbf{E}_{2}\right\rangle=\frac{1}{2} \mathbf{E}_{01} \cdot \mathbf{E}_{02} \cos \left(\mathbf{k}_{1} \cdot \mathbf{r}+\varepsilon_{1}-\mathbf{k}_{2} \cdot \mathbf{r}-\varepsilon_{2}\right),
$$

where use was made of the fact that $\left\langle\cos ^{2} \omega t\right\rangle=\frac{1}{2}$, $\left\langle\sin ^{2} \omega t\right\rangle=\frac{1}{2}$, and $\langle\cos \omega t \sin \omega t\rangle=0$. The interference term is then

$$
\begin{equation*}
I_{19}=\mathbf{E}_{01} \cdot \mathbf{E}_{02} \cos \delta \tag{9.1I}
\end{equation*}
$$

and δ, equal to ($\mathbf{k}_{1} \cdot \mathbf{r}-\mathbf{k}_{2} \cdot \mathbf{r}+\varepsilon_{1}-\varepsilon_{2}$), is the phase difference arising from a combined path-length and initial phase-angle difference. Notice that if \mathbf{E}_{01} and \boldsymbol{E}_{00} (and therefore \mathbf{E}_{3} and \mathbf{E}_{2}) are perpendicular, $I_{12}=0$ ine to yield an \mathscr{R}. x_{1}-states will combirxe to yla an \propto, \mathscr{L}, \varnothing,
ensity distribution will be unaltered.
The most common situation in the work to follow irradiance reduces to the value found in the scalar reatment of Section 71. Under those conditions

$$
I_{12}=E_{01} E_{02} \cos \delta
$$

This can be written in a more convenient way by noticing

$$
I_{\mathrm{t}}=\left\langle\mathbf{E}_{3}^{2}\right\rangle=\frac{E_{0 \mathrm{I}}^{2}}{2}
$$

(s.12)

$$
\begin{equation*}
I_{z}=\left\langle\mathbf{E}_{2}^{2}\right\rangle-\frac{E_{\sigma 2}^{2}}{2} . \tag{9.19}
\end{equation*}
$$

The interference term becomes

$$
I_{12}=2 \sqrt{I_{1} I_{2}} \cos \delta,
$$

whereupon the total irradiance is

$$
\begin{equation*}
I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \delta . \tag{9.14}
\end{equation*}
$$

At various points in space，the resuitant irradiance can be greater，less than，or equal to $I_{1}+I_{2}$ ，depending on the irradian that is，depending on δ ．A maximun

$$
I_{\max }=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}}
$$

when

$$
\delta=0, \pm 2 \pi, \pm 4 \pi, \ldots
$$

In this case the phase difference between the two waves is an integer multiple of 2π ，and the disturbances are said to be in phase．One speaks of this as tatal constructive interference．When $0<\cos \delta<1$ the waves are out of phase，$I_{i}+I_{2}<I<I_{\text {max }}$ ，and the result is known as onstructive inierference．At $\delta=\pi / 2, \cos \delta-0$ ，theoptical disturbances are said to be 90° out of phase，and $I=$ $I_{1}+I_{2}$ ．For $0>\cos \delta>-1$ we have the condition of destructive interference，$I_{\mathrm{t}}+I_{2}>I>I_{\text {min }}$ ．The min－ mum in the irradiance results when the waves are 180° out of phase，troughs overlap crests， $\cos \delta=-1$ ， and

$$
\begin{equation*}
I_{\min }-I_{1}+I_{2}-2 \sqrt{I_{1} I_{2}} \tag{9.15}
\end{equation*}
$$

This occurs when $\delta= \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots$ ，and it is referred to as total destnuctive interference． Another somewhat special yet very important case arises when the amplituces of both waves reaching P contributions from both sources are then equal $I_{1}=I_{2}=I_{0}$ Fquation（914）can now be writen as

$$
I-2 I_{0}(1+\cos \delta)=4 I_{0} \cos ^{2} \frac{\delta}{2},
$$

from which it foilows that $I_{\min }-0$ and $I_{\max }=4 I_{0}$ ．

The flux density in the region surround S_{2} will cerainly vary from point to point ，S_{1} varies．Nonetheless，from the principie point of energy，we expect the spatial avera ge of of energy，we expect the spatial average of constant and equal to the average of $I_{1}+I_{2}$ ．
average of I_{12} must therefore be zero， werified by Eq．（ 9.11 ），since the average o term is，in fact，zero（for further discussion see Problem 9．2）．
Equation（ 9.17 ）will be applicable when between S_{1} and S_{2} is small in comparison r_{2} and when the interference region is also swis．in the same sense．Under these circumstances E E be considered independent of position，that over the small regior examined．If the emit are of equal strength，$E_{01}=E_{02}, I_{1}=I_{2}=$ have

$$
I^{-} 4 I_{0} \cos ^{2} \frac{1}{2}\left[h\left(r_{1}-\tau_{2}\right)+\left(\varepsilon_{1}-\varepsilon_{2}\right)\right] .
$$

Irradiance maxima occur when
$\delta=2 \pi m$,
provided that $m=0, \pm 1, \pm 2, \ldots$ Similaris minime it
provided that $m=0, \pm 1$
$\delta=\pi m^{\prime}$,

Where $m^{\prime-} \pm 1, \pm 3, \pm 5, \ldots$ or if your like Using Eq．（9．19）these two expressions rewritten such that maximum irradiance | |
| :---: | －$\left.r_{1} r_{2}\right)$ it $\left.T_{1}-r_{2}\right)=\left[9 \pi m+\left(\varepsilon_{2}-r_{1}\right)\right] / k \quad$ pera

Note that m is positive where $r_{1}>r_{2}$
and 值imum when
$\left(r_{1}-r_{2}\right)=\left[\pi m^{\prime}+\left(\varepsilon_{9}-\varepsilon_{1}\right)\right] / k . \quad$（ $9.20 b$ b
of chese equations defines a family of sur－ which is a hyperboloid of revolution．The fight－hand sides are separated by distances gight－hand sides of Eqs．（9．20a）and（9．20b）． located at S_{1} and S_{2} ．If the waves are in
Fance at the emitter，$\varepsilon_{1}-\varepsilon_{2}=0$ ，and Eqs．（9．20a）and
Sin on 咥 simplified to咯 simplified to
$r_{2}=2 \pi m / k-m \lambda$
$\left(r_{1}-r_{2}\right)=\pi m^{\prime} / k=\frac{1}{2} \pi \pi^{\prime} \lambda \quad\{9.21 b\}$
and minimum irradiance，respectively．

Figure 9．3（a）shows a few of the surfaces over which there are irradiance maxima．The dark and light zones that would be seen on a screen placed in the region of interference are known as interference fringes［Fig 9.3 （b）］．Notice that the central bright band，equidistant from the two sources，is the so－alled zerot－order minima，and these，in turn arc bounded by the firt minima，$= \pm 1$ ） order（ $m= \pm 1$ ）maxima，which are straddied by the $m^{\prime=}+3$ minima，and so forth．
9.2 CONDITIONS FOR INTERFERENCE

It should be kept in mind that for a fringe pattern to be observed，the two mources need not be in phase with each other．A somewhat shifted but otherwise identical interference pattern will occur if there if nome initial phase difference between the sources，so long as it remains constant．Such sourcess（which may or may no be in step but are always marching together）are said to be cokerent．＊Remember that because of the granu lar nature of the emission process，conventional quasi monochromatic sources produce light that is a mix of photon wavetrains．Ateach illuminated point in space there is a net field that oscillates nicely（through roughly a million cycies）for less than 10 ns or so before it randomly changes phase．This interval over which the lightwave resembles a sinusoid is a measure of what is called its temporal catherence．The average time inter val during which the lightwave osciluates in a predictable of the radiat The longer the caherence time，the ofeater the temporai coherence of the source．
greater fom fired point in space
lightwave a ppears fairly sinusoidal for some number of oscillations between abrupt changes of phase．The cor responding apatial extent over which the Iightwave oscit－ lates in a regular，predictable way we have called the coherence length［Eq．（7．64）］．Once again，it will be convenient to picture the light beam as a progression of well－defined，more or less sinusoidal，wavegroups of
＊Chapter 10 is devoter to the stacis of cherence，so here we＇l：merely touch on those aspects that are irrmediately pertinent．
average length $\Delta x_{e,}$ whose phases are quite uncorrelated to one another. Bear in mind that temporal coherenc is a manifestation of spectral purity. If the light wer ideally monochromatic, the wave would be a perfee sinusoid with an infinite coherence letgeth. All real sous ces fali short of this, and ali actually emit a range of frequencies, albeit sometimes quite narrow. For in stance, an ordinary laboratory discharge lamp has coherence length of several milimeters, whereas certain kinds of lasers routineiy provide coherence lengths of tens of kilometers.
Two ordinary sources, two light bulbs or candle flames, can be expected to maintain a constant relative phase for a time no greater chan Δt_{c}, so the interference paucen whey produce will randomiy shit around in making it cuie impmetel to observe Until the advent of the laser it was a working principle tha no two individual sources could ever produre an obsarvable interference pattern. The coherence time of Tasers, however cin be appreciable (ot the order of milhowever, can be appreciable (ot the order of millliseconds), and interferente via mdependent iasers has rather slow himan eye). The most common means of overcoming this problem, as we shall see, is to make one source serve to produce two coherent secondary sources.
If two bearns are to interfere to produce a stable pattern, they must have very nearly the same frequency A significant frequency difference would result in a rapidy varying, ina-dependerat phase diference which in turn would cause 1 , to average to zeto during the detection interval (see Seation 7.1). Still, if the sources both emit white iight, the component reds will interfere with reds, and the blues with blues. A grea Erany fairly similar, slightly displaced, overlapping monochromatic patterns will procuce one tocal whiteant patern. I wir no be as harp or as catensive aquasimonochrorratic paservoble interference
The clearest patterns will exist when the interfering waves have equal or nearly equal amplitudes. The cen tral regions of the dark and light fringes will then correspond to complete destructive and constmutive interference, respectively, yielding maximum contras

In the previous section, we assumed, that the om polarized and parallel. Nonetheless, werefor Section 9.1 apply as well to more complica andeed the treatment is applicable rep polarization state of the waves. To apprefo hat any polarization state can be synthesio orthogonal 9 -states. For natural (unot hese \mathscr{P}-states are mutually incoherent, but thu "ghan esents no particular difficulty,
suppose that every wave has its propagat. in the same planc, so that we can label the cruan yoctint orthogonal \mathscr{P}-states with respect to that prantitultin example, \mathbf{E}_{10} and \mathbf{E}_{\perp}, which are paralle ${ }^{\text {fictar }}$
dicular to the plane, respectively dicular to the plane, respectively [Fig. 9.4 plane wave, whether polarized or rot, capa and ($\mathbf{E}_{12}+\mathbf{E}_{17}$) emitred from two surces superimpose in some cesiond resulting flux-density distribution will on space The independent, precisely, overlapcing intertistis tho cemas $\left\langle\left(\mathbf{E}_{11}+\mathbf{E}_{4 y}\right]^{2}\right\rangle$ and $\left\langle\left(\mathbf{E}_{11}+\mathbf{E}_{10}\right)^{2}\right)$. ${ }^{2}$ eras $\left(\mathbf{E}_{11}+\mathrm{E}_{\text {q2 }}\right\}$ and $\left\{\left(\mathbf{E}_{11}+\mathbf{E}_{12}\right)\right.$. tion specifically for linear light, they are aprous ann any polarizarion state, including nacural lighte Notice that eren though \mathbf{E}_{11} and \mathbf{E}_{12} qare awwep parallel to each other, \mathbf{E}_{41} and $\mathbf{E}_{\| 2}$, whickh are in ${ }^{\text {an }}$ reference plane, need not be. They will be gaty when the two beams are themseives paralle -2). The inherent vector nature of the ixx process as manifest io the dot-product repres, 9.11) of t_{12} cannot therefore be ignored. Ast see, there are many practical situations in whituyw beamst approach being parallel, and in these chet seiar theory will do rather nicely. Even so, (b) in Fig. 9.4 are included as an urge to caution depict the imminent overlapping of inearly posarized waves. In .os the beali
 ptical vectors are perpendicular, and $\overline{7}$ would be the case here cven if the beams
Fresnel and Amga pade an extensive onditions under which the interferentof of pan light occurs, and their conclugions sam

Thingonal coherent is-ctates cannot interfere he sense that $I_{12}=0$ and no fringes resuit rallel, coherent \mathscr{P}-states will interfere in the

ine way as will natural light.

3. the two conntiurnt orthogonal \mathscr{P}-states of natural
mot interfere to form a readily observable tern even if rotated into afitgnment. This understandabie, since these \mathscr{P}-states are
0.3

2. iveronispliting interfromiters

thire foe a monest to Fig. (9.3), where the equation

$$
\left(r_{1}-r_{2}\right)=m \lambda \quad \quad[a, Y \mid a j
$$

The the surfaces of maximum irradiance. Since
gth λ for light is very small, a large number
Scorresponding to the lower values of $i n$ will , and on either side of, the plane $m=0$. A

number of fairly straight paraliel fringes will therefore ppear on a screen placed perpendicular to that ($m=0$) plane and in the vicinity of it, and for this case the pproximation $\mathrm{r}_{1} \approx \mathrm{r}_{2}$ will hold. If $S_{\text {: }}$ and S_{2} are then displaced nornal to the $S_{1} S_{s}$ line, she fringes will merely e displaced parallel to themselves. Two narrow slits will therefore increase the irradianct, leaving the central region of the two-point source pattern othe rwise essentizily urchauged.
Consider a hypocherical monochromatic plane wave luminating a long nerrow slit From thac plane wave cilinating a long narrow shti. From that primary sit cylindrical wave will emerge. Suppose diat his wave, turn, falls on two parall, narro, dose apaced is, 0 . When symmetry existe the segments of the pimary portront artiving at two slits will che thy in thase and witl constinute two coberent secondary sources. We expect that wherever the two waves combing from S_{1} and S_{2} overlap, interference will occur (provided that the optical path difference is less than the coherence length, $c \Delta t_{c}$).
Consider the construction shown in Fig. 9.5(c). In a

Chapter 9 Interference
9.3 Wavefront-Spliting Interferometers

Figure 9.5 Young's experiment, (a) Cylindrical waves superimposed in the region beyond the aperturc screcn. (b) Overiapping waves
showing peaks and troughs. (c) The geometry of Young's experiment. (d) A path-iength difiference of one waveleng th corresponds $t 0$ on $= \pm$ and the first-ordcr maximum. (c) (Photo courtesy M. Cagnet, M.
Francon, and f. C. Thrierr: Adtas aptischer Exschetinungen, Berlin Heidelberg-New York: Springer, 1962.) (f) A modern version of Young's experiment using a photadecector (e.g., a photovoltaic cell or photodiode like the RS $805-462$) and an $X-Y$ recorder. The detector rides on a motot driven slide and sans the interference pattern.

(d)

|||||||||||||||

(e)
... Baysical situation the cistance between each of de streas would be very large in comparison with the Inrenbenwern the two sitts, several thousand time and all the fringes would be fairly close to the 0 of the screen. The path difterence between along $\overline{S_{1} P}$ and $\overline{S_{2} \bar{P}}$ can be determined, to a proximation, by dropping a perpendicular onto $S_{8} P$. This path difference is given by $\left(\overline{S_{1} B}\right)=\left(\overline{S_{1} P}\right)-\left(\overline{S_{2} P}\right) \quad(9.92)$ $\left(\overline{S_{1} B}\right)^{-}-r_{1}-r_{2}$.
whing with this approximation (Problem 9.13) recpess the path difference as

Hhace $\sin \theta$. No
ce that
$\theta=\frac{y}{s}$,
(9.23)
(9.24)

so

$$
r_{1}-r_{2}-\frac{a}{\varsigma} y . \quad \text { (9.25) }
$$

In accordance with Section 9.1, constructive interference will occur when

$$
r_{1}-r_{2}=m \lambda . \quad \text { (9.26) }
$$

Thus, from the last two relations we obtain

$$
\begin{equation*}
y_{m}=\frac{s}{a} m \lambda . \tag{0.27}
\end{equation*}
$$

This gives the position of the m th bright fringe on the screen, if we count the maximum at 0 as the zeroth fringe. The angular position of the fringe is obtained by substituting the last expression into Eq. (9.24); thus

$$
\theta_{m}=\frac{m \lambda}{a}
$$

$$
(9.28)
$$

This relationship can be obtained directly by inspecting

Fig. 9.5(c). For the m th-order interference maximum m whole wavelengths should fit within the distance $r_{1}-T_{2}$. Therefore, from the triangle $S_{1} S_{2} B$,
or

$$
a \sin \theta_{m}=m \lambda
$$

$$
\theta_{m}=m A / a .
$$

The spacing of the fringes on the screen can be gotten readily from Eq. (9.27). The difference in the positions of two consecutive maxima is

$$
y_{m+1}-y_{m}-\frac{s}{a}(m+1) \lambda-\frac{s}{a} m \lambda
$$

or

$$
\Delta y=\frac{s}{a} \lambda
$$

Since this pattern is equivalent to that obtained for two overlapping spherical waves (at least in the $r_{E} \approx r_{2}$ region), we can apply Eq. (9.17). Using the phase difference

$$
\delta-k\left(r_{1}-r_{2}\right) .
$$

Equation (9.17) can be rewritten as

$$
I=4 I_{0} \cos ^{2} \frac{k\left(r_{1}-\tau_{2}\right)}{2},
$$

provided, of course, that the two beams are coherent

Figure 9.6 Idealized irradiance versus distance curve.
and have equal irradiances I_{0}. With
the resultant $\mathrm{r}_{1}-\mathrm{r}_{2}=\mathrm{ya} / \mathrm{s}$

$$
I=4 I_{0} \cos ^{2} \frac{y a \pi}{s \lambda} .
$$

As shown in Fig. 9.6, consecutive maxi by the Δy given in Eq. (9.30). It should b that we effectively assumed that the slits ifinitesimally wide, and so the cosine-squar of Fig. 9.6 are really an unattainable idealiza actual pattern, Fig. 9.5 (e), drops of 青ith distayc.
either side of O because of diffraction n, as P in Fig. 9.5 (c) is
In addition, as P in Fig. 9.5 (c) is taken farchis from
the axis, $\overline{S_{1} B}$ (which is less than
 length, as the optical path difference increas cally paired wavegroups will no longer be abl at P exactly together-there will be an amount of overlap in portions of uncorrell wavegroups, and the contrast of the fringelo degrade. It is possible for Δx_{c} to be less than $\overline{S x}$? that case, instead of two correlated portions wavegroup arriving at P, only segments of wavegroups will overlap, and the fringes will depicted in Fig. 9.7 (a), when the path-length did exceeds the coherence length, wavegro source S_{1} arrives at P with wavegroup- D_{2} fix is interference, but it lasts only for a short? the pattern shifts as wavegroup- D_{i} besebly 10 overlid If the coherence the relative phase , the path averoup- D_{1} would maro or tat interact with its clone wavegroup- D_{2}, and pair. The phases would then be correl interference pattern stable [Fig. 9.7(b)]. Sinces. light source will have a coherence length of o three wavelengths or so, it follows from Eq. (2)

* Modffications of this pattern arising as a resulk of 䑁: width of either the primary S or secondary-source s In width of either che primary \mathcal{S} or secondary-source
sidered in later chapters (10 and 12) In the form sidered in later chaptcrs (10 and 12). In the forg
cortrast will be used as a measure of the degree of 12.1). In the later, diff raction effects becornc signdity

The fringe pattern can be directly observed by punching two small pinholes in a thin card. The holes should ing two small pinholes in a thin card. The holes should be approximately the size of the type symbol for a period about threc radii. A street lamp, car headlight, or traffic signal at night, located a few hundred feet away, will signal at night, located a few hundred feet away, will
serve as a plane wave source. The card should be posiserve as a plane wave source. The card shoold eye The tioned directly in front of and very close to the eye. The
fringes will appear perpendicular to the line of centers. fringes will appear perpendtcular to the line of centers.
The pattern is much more readily seen with slits, as discussed in Section 10.2.2, but you should give the pinholes a try.
Microwaves, because of their long wavelength, also offer an easy way to observe double-slit interference Two slits (e.g., $\lambda / 2$ wide by λ long, separated by 2λ) cut in a piece of sheet metal or foil will serve quite well as secondary sources (Fig. 9.8).
The interferometric configuration discussed above, with either point or slit sources, is known as Young's experiment. The same physical and mathematicai considerations apply directly to a number of other wave front-splitting interferometers. Most common among these are Fresnel's double mitror, Fresnel's double prism, and Lloyd's mirror
Fresners souble mirror consists of two plane front silvere, as show in Fig 9.9. One potion of the cylindrical wavefront coming from slit S is reflected from the first mirror, and another portion of the wavefron is reflected from the second mirror. An interference

Figure 9.8 A microwave interferometer.

344

field exists in space in the region where the two reflected waves are superimposed on each other. The images (S and S_{2}) of the slit S in the two mirrors can be considered as separate coherent sources, placed at a distance a apart. It follows from the laws of reflection, as illustrated in Fig. 9.9(a), that $\overline{S A}=\overline{S_{1} A}$ and $\overline{S B}=S_{2} B$, so that $\overline{S A}+\overline{A P}=r_{1}$ and $\overline{S B}+\overline{B P}=r_{2}$. The optical path length difference between the two rays is then simply $r_{2}-r_{2}$. The various maxima occur at $T_{1}-r_{2}=m \lambda$, as they do with Young's interferometer. Again, the separation of the fringes is given by

$$
\Delta y=\frac{s}{a} \lambda,
$$

here s is the cistance between the plane of the two virtual sources $\left\{S_{1}, S_{2}\right.$) and the screen. The arrangemen in Fig. 9.9 has again been deliberately exaggerated to make the geometry somewhat clearer. Notice that th angle θ between the mirrors must be quite small if the
lectric field vectors for each of the two be parallel, or nearly so. Let \mathbf{E}_{1} and \mathbf{E}_{2} fe ight waves emitted from the coherent virtua and S_{2}. At any instant in time at the point ${ }_{\text {Th }}$ paraliel and perpendicular to the plane of amp With \mathbf{k}_{1} and k_{z} parallel to $\overline{A P}$ and $\overline{B P}$, teq should be apparent that the components ot on the plane of the figure will approach beine parall only for small θ.
The Fresnel double prism or biprom conege of thin prisms joined at their bases, as shown in fio A single cylindrical wavefront impinges on 6 The top portion of the wavefront is refrat ward, and the lower segment is refracted upwavill In the region of superposition, interference oc. Hiere again, two virtual sources S_{1} and S_{2} evsi, sponiter a distance a, which can be expressed in terms of the prism angle α (Problem 9.15), where sait The

Figure 9.9 Fressel's double mirror.

(a)

Wellis ercsners bipristr.
infain tor the separation of the fringes is the same exim.
The hast arefefront-spliting interferometer that we will raskider is Lloyd's mirror, shown in Fig. 9.11. It Whatrol 2 flat piece of either dielectric or metal that Tmisia martor, from which is reflected a portion of arical wavefront coning from shit S. Another (he wavefront proceeds directly from the slit to the Eicreen. For the separation a, between the two What Purces, we take the distance between the nual slit aind its image S_{1} in the mirror. The spacing Whe Thes is once again given by (s/a). The distin Whahi : Ifeature of this device is that at glancing
 ints are the bol (0 -) with an addi (ahtal phase shift of $\pm \pi$,

$$
\delta=k\left(r_{1}-r_{2}\right) \pm \pi_{5}
$$

stile irratiance becomes

$$
I=4 I_{0} \sin ^{2}\left(\frac{\pi a y}{s \lambda}\right)
$$

age pattern for Lloyd's mirror is complemenf of Young's interferometer; the maxima of Fatern exist at values of y that correspond to

(b)
a in the other pattern. The top edge of the mirro equivalent to $y=0$ and will be the center of a dark fringe rather than a bright one, as in Youngs dy The lower half of the pattern wil be obstructed byuld presence of the mirrof itself. Consider what woure happen if a thin sheet of transparent diealy io the placed in the pain of the ras creen. ncreasing he number of worm move The entire patrern would accordingly move

Figure 9.11 Lloyd's mirrmor.
pward, where the reflected rays would travel a bit farther before interfering. Because of the obvious inherent simplicity of this device, it has been used over very wide region of the electromagnetic spectrum. The actual reflecting surfaces have ranged from crystais or x-rays, ordinary glass for light, and wire screening or microwaves to a lake or even the Earth's ionosphere or radio waves. ${ }^{\text {. }}$
All the above interferometers can be demonstrated quite readily. The necessary parts, mourted on a single optical bench, are shown diagrammatically in Fig. 9.12. The source of light should be a strong one; if a laser is not available, a discharge lamp or a carbon are followed The light will not be thenochromatic but the fricely. The light wil not be monochromatic, but the fringes, pproximation of monochromatic light an be obtaised with a fiter placed in front of the arr A low-power He-Ne laser is perth the easiest soutce to work with and you won't need a water cell or filter.

9.4 AMPLITUDE-SPLITIING INTERFEROMETERS

Suppose that a lightwave was incident on a half-silvered mirror \dagger or simply on a sheet of giass. Part of the wave would be transmitted and part would be reflected. Both he transmitted and reflected waves would, of course, have lower amplitudes than the original one. One might say figuratively that the amplitude had been "spiit." If he two separate waves could somehow be brought ogether again at a detector, interference would result, as long as the original coherence between the two had sot been destroyed. If the path lengths differed by a distance greater than that of the wavegroup (i.e., the coherence length), the portions reunited at the detector
${ }^{*}$ For a discussion of the effects of a finite slit width and a finite requency bandwidth, see R. N. Wolfe and F. C. Eisen, "Irradiance 38, 706 (1948).
A halffivivered minor is one that is semitranpparent, because the nctallic conting is too thin to be opaque. You can look throwgh it nd at the same time you can see your refertion in it Beam-spitite as devices of this kind aze cialled, an also be made of thin 5 se
plastic films, known as perlicte, or even uivecated giass plate.

Figure 9.12 Bench setup to study wavefrontanplitifit with a carbon arc source.
would correspond to different wavegroupa phase relationship would exist between the case, and the fringe pattern would be unstabit point of being unobservable. We will get ${ }^{[}$ For the moment we restrict ourselver for to those cases in which the path differe the coherence length

9.4.) Dieleciric Films-Double-Beam inierference

Interference effects are observable in shett bangen materials, the thicknesses of which vary overt a ye, broad range, from firms less than the lenge wave (e.g., for green light λ_{0} equals about ness of this printed page) to plates several thick. A layer of material is referred to as a a given wavelength of electromagnetic radiatioi $w i$ its thickness is of the order of that waveleasy: the early 1940 s the interference phenomena 2 with thin dielectric films, although well knowny rairly limited practical applicability. Wil slicks and fims howerer peasing aestherically and theoret were mainly curiosities.
With the advent of suimble vacuum depositico. teed niques in the 1930 s, precisely controlled coalims be produced on a commercial scale, and then, in tura

Feinith of interest in dielectric films. During 7. tvariety of coated optical devices, and by thayered coatings were in widespread use.

Fringes of Equal inclination
nitially, consider the simple case of a transparent parailel plate of dielectic material having a thickness d (Fig. 9.13). Suppose that the film is nonabsorbing and that the amplitude-reflection coefficients at the intertaces are so low that onfy the first two reflected beams $E_{i r}$ and $E_{8 r}$ (both having undergone only one reflection) need be considered (Fig 9.14). In practice, the amplicudes of the higher-order reflected beams (E_{3}, etc) generally decrease very rapidly, as can be shown for che air-wwater and air-glass interfaces (Problem 9.21). For the moment, consider S to be a monochrornatic point source. The film serves as an amplitude-splitting
devioe, so that E_{1}, and $E_{\text {go }}$ may be considered as arising devioe, so that $E_{1 \text { r }}$ and $E_{\text {Rr }}$ ray be considered as aris ng rom two cohereat virual sources ying behind the film; first and second iuterfases The reflected rays are parilel on leaving the film and can be brought together at a point P on the focal plane of a telescope objective or on the retina of the eve when focused at infinity. From Fir 914 the optical path-length difference for the first two reflected beams is given by

$$
\Lambda=n_{f}[(\overline{A B})+(\overline{B C})]-n_{1}(\overline{A D}),
$$

and since $(\overline{A B})=(\overline{B C})=d / \cos \theta$,

$$
\Lambda=\frac{2 n_{r} d}{\cos \theta_{1}}-n_{1}(\overline{A D}) .
$$

Now, to find an expression for ($\overline{A D}$), write

$$
(\overline{A D})-(\bar{A} \bar{C}) \sin \theta_{i}
$$

if we make use of Snell's law, this becomes

$$
(\overline{A D})=(\overline{A C}) \frac{n_{f}}{n_{\mathrm{I}}} \sin \theta_{\mathrm{i}},
$$

where

$$
(\overline{A C})=2 d \tan \theta_{t} .
$$

The expression for Λ now become

$$
A=\frac{2 n_{1} d}{\cos \theta_{4}}\left(1-\sin ^{2} \theta_{i}\right)
$$

or finally

$$
\Lambda=2 \pi_{f} d \cos \theta_{l} .
$$

348 Chapter 9 Interference

Figure 9.14 Fringes of equal incliration.
The corresponding phase difference associated with the optical path-length difference is then just the product of the free-space propagation number and A, that is, $k_{n} A$. If che film is immersed in a single medium, the index of refraction can simply be written as $n_{1}=n_{2}=n$. Realize, of course, that n may be less than n_{5}, as in the case of a soap film in air, or greater than n_{f}, as with ar
air film between two sheets of glass. In either case there will be an additional phase shift arising from the refle ions themselves Recall thet for incident andes up to about 90°, resardless of the polarization of the incoring light, the two bearns, one internally and one externally reflected, will experience a relative phase thift of os radians (Fig. 4.25 and Section 4.5). Accordingly,

$$
\delta=k_{0} \Lambda \pm \pi
$$

and more explicitly

$$
\delta=\frac{4 \pi u_{r}}{\lambda_{0}} d \cos \theta_{2} \pm \pi
$$

9.34)

$$
\delta=\frac{4 \pi d}{\lambda_{0}}\left(n_{f}^{2}-n^{2} \sin ^{2} d_{0}\right)^{l o n} \pm=
$$

The sigr of the phase shift is immatery choose the negative sign to make the equation will simpler in form. In reflected light an incerfe: in other words, an even, mpears at P when s in other words, an even multiple of π. to thitamil|
(9.34) can be rearranged to yietd
(maxima) $d \cos \theta_{1}=(2 m+1) \frac{\lambda_{f}}{4}, \quad$ si $-0,1, k$. where use has been made of the fact that $A_{1}-A_{\text {an }}$

. Jresponds to minima in the transmitted pin the orserence minima in refiected fight (maxima gred light) result when $\delta=\{2 m \pm 1) \pi$, that is
fiples of π. For such cases Eq. (9.34) yields

$$
\begin{equation*}
d \cos \theta_{t}=2 m \frac{\lambda_{i}}{4} . \tag{9.37}
\end{equation*}
$$

Hefly "(3) 3 . 97) is rather significant, as we will se rouid, of course, have a situation in whic or $n_{1}<n_{j}<n_{\mathrm{g}}$, as with a fluoride film $>1=\boldsymbol{N}_{2}$ or n_{1} optical element of glass irnmersed : in macosi Shase shift would then not be present, and hations would simply be modified approprised to focus the rays has a small aperture rifienre fringes will appear on a small porion of -fln Onty the rays leaving the point source that are Headed ifiraty into the lens will be seen (Fig. 9.15

For an extended source, light will reach the lens from various directions, ard the fringe pattern will spread ut over a large ared of the film (Fig. 9.16)
The angle θ_{i} or equivalently θ_{i}, determined by the position of P, will in turn control δ. The fringes appearing at points P_{1} and P_{z} in Fig. 9.17 are, accordingly, known as fringes of equal inclination. (Problem 9.26 discusses some easy ways to sec these fringes.) Keep in mind that each source point on the extended source is incoherent with respect to the others.
Notice that as the film becomes thicker, the separation
$\overline{A C)}$ between $E_{2 r}$ and $E_{2 r}$ also increases, since

$$
(\overline{A C})=2 d \tan a_{1} .
$$

When only one of the two rays is able to enter the pupil of the eye, the interference pattern will disappear. The larger lens of a celescope can then be used to gather in both rays, once again making the pattern visible. The separation can also be reduced by reducing θ_{t} and

Isure sin All

cherefore θ_{i}, that is, by viewing the film at nearly normal idence The cqualicin incidence. The equal-incitnation fringes that are seen fringes, after the Austrian physicist Wilhelm Karl fringes, after the Austrian physicist Wilhelm Kar1 Haidinger (1795-1871). With an extended source, the symmetry of the sotup requires that the interference centered on the perpendicular drawn from the eye to the firm (Fig. 9.18). As the observer moves, the interference pattern follows along.

Fringes of Equal Thickness
A whole class of interference fringes exish whid
 the optical thickness, $n_{j} a$, is the domina
rather than θ_{i}. These are referred to as fritily thickness. Under white-light illumination cence of soap bubbles, oil slicks (a feav wavele thick), and even oxidized metal surfaed is then fee variations in film thickness. Interferenter bands xind are analogous to the constant-heig of a topographical map. Each fringe is

Notice that the difference in film thickness between adjacentmaxima is simply $\lambda_{f} / 2$. since the beam reflected from the lower surface traverses the firm twice ($\theta_{1} \approx \theta_{2} \approx$ 0), adjacent maxima-differ-in-optical-path length by $\lambda_{\text {s }}$ Note, too, that the film thickness at the various maxima is given by

$$
d_{m}=\left(m+\frac{1}{2}\right) \frac{\lambda_{f}}{2},
$$

which is an odd multiple of a quarter wavelength Traversing the film twice yields a phase shift of π, which when added to the shift of π resulting from refection, puts the two ravs back in phase.

Figure 9.19 Fringes from a wedge-shaped film

Figure 9.20 is a photograph of a soap film held vertically so that it settles into a wedge shape under the influence of gravity. When illuminated with white light the bands are various colors. The black region at the top is a portion where the film is less than $\lambda_{j} / 4$ thick. reflection, is less an additional shift of $\lambda_{f} / 2$ due to the rays are therefore out of phase As the thicknes decrases still further of phase. As the thickness approaches π. The irradiance at the phserver goes to minimum (E 0.916) and the film apper bla minimum (Eq. 9 reflected light.
Press two w
The enclosed air filmed microscope slides together The enclosed air film will usually not be uniform. In (fringes of equal thickness) will be clearly visible across the surface (Fig. 9.21). The thin glass slides distort under pressure, and the fringes move and change accordingly. Indeed, if the two pieces of glass are forced together
*The relative phase shift of π between internal and external reflections
is requircd if the reflceted flux density is to go to zero smoothy, as the film gets thinner and inaily disappears.

gigure 9.20 A wedge-shaped film madc of liquid dishwashing scap
(Photo by E. H.)

igure 9.21 fringes in an air film between ino riontian
Photo by E. H.)
at a point, as might be done by pressing on them with a sharp pencil, a series of concentric, nearly Nes is formed about that point (Fig. 9, xamined 's rings, this patern is mor flat and illuminated ncidence with quasimonochromatic ights. of uniformity in the concentric circulat measure of the degree of perfection intio shereith lens. With R as the radius of curvature of thes conver ens, the relation between the distance x and the film thickness d is given by

$$
x^{2}=R^{2}-(R-d)^{2}
$$

or more simply by

$$
x^{2}=2 R d-d^{2} .
$$

Since $R \gg d$, this becomes

$$
x^{2}-2 R d .
$$

Robert Hooke (1685-1703) and lesac Newton udied a whole range of thin--1im phenomena, fro
the aitr film between lenses. Quoting from New
It took two Object-Elasses, the onc a Planoconvexf
oox Telescope, and the other a large double es
of about hifty Foot: and upon this, laying thex.
ssively emerge in the middile

(a)

(b)

Whe thetrminale by assuming that we need only wou twe reflected beams $E_{i f}$ and $E_{2 r r}$. The erference maximum will occur in the thin nness is in accord with the relationship $2 n_{f} d_{m}-\left(m+\frac{1}{2}\right) \lambda_{0}$
inlith of the m th bright ring is therefore found
by combining the last two expressions to yield

$$
x_{m}-\left[\left(m+\frac{1}{2}\right) \lambda_{j} R\right]^{1 / 2} .
$$

$$
x_{n}=(m \lambda, R)^{1 / 2} .
$$

If the two pieces of glass are in good contact (no dust), the central fringe at that point $\left(x_{0}=0\right)$ will clearly be a minimum in irradiance, an understancable result since d goes to zero at that point. In cransmitted light, the
 he center will now appear right
Newton's rings, which are Fizeau fringes, can be disinguished from the circular pattern of Haidinger's inges by the manner in which the diameters of the ings vary with the order m. The central region in the Haidinger patern corresponds to the maximum value

Figure 9.23 A standard setup to oberve Newton's rings.
of m (Problem 9.25), whereas just the opposite applies to Newton's rings.
An optical shop, in the business of making lenses, will have a set of precision spherical test plates or gauges. A dens in terms of the the surface accuracy of a new Newton rings that will be seen with a particular tes Nauge. The use of test plates in the manufacture of hauge. The use of tewality lenses, however, is giving way to far more sophisticated rechniques involving laser interferometers (Section 9.8.4).

9.4.2 Mirrored Interferometers

There are a good number of amplitude-splitting inter ferometers that uttize arrangements of mirrors and beam-splitters. By far the beat known and historically the most important of these is the Michelson inter ferometer. Its configuration is illustrated in Fig. 9.24. An extended source (e.g., a diffusing ground-glass plate illuminated by a discharge lamp) emits a wave, part of which travels to the right. The beam-splitter at O divides the wave into two, one segment traveling to the right

and one up into the background. The twu w. reflected by mirrors, M_{1} and M_{2} and retwnis op beam-splitter. Part of the wave coming froxy hrough the beam-splitter going deford the wave coming from M_{1} is defected byl spitter toward the detector. Te expected nited, and interference can be expected Notice that one beam passes through O three tim each beam will pass through equal thicknesseq of only when a compensator puate C is inserted in the $O M_{1}$. The compensator is an exact duplicata

(c)

Figure 9.24 The Michelean interferometer. (c) The frin Figure 9.24 The Michelson interferometer. (c) The
with the tip of a hot soldering fron in one arm. (Photo hat

bam piter, with the exception of any possible silverWhifilm coating on the beam-spitter. It is posicont angle of 45°, so that O and C are paraliel tidher. With the compensator in place, any optical Erence arises from the actual path difference. itan, because of the dispersion of the beamHe optical path is a function of λ. Accordingly,
: Native work, the interferometer without the mator work, the interferometer without the Wochromatic source. The inclusion of a comaggates the effect of dispersion, so that even atgates the effect of dispersion, so that even flle fringes.
marderstand h.
Eringes are formed, refer to the

(b)
omponens are represented more as matheratical surfaces. An observer at the position of the detector will simulsaneously see both mirrors M_{1} and M_{2} along with the source Σ in the beam-splitter. Accordingly, we can redraw the interferometer as if all the elements were in a straight line. Here $M_{\text {; }}^{\prime}$ corresponds to the image of mirror M_{1} in the beam-spiitter, and Σ has been swung ever in line with O and M_{2}. The posions of the tances from O (e g M^{\prime} can be in from of behind or coincident with M and an even pass through it) The surfaces Σ_{1} and Σ_{2} are the images of the source Σ in mirrors M_{1} and M_{2}, respectively. Now consider a single point S on the source emitting light in all directions; Iet's follow the course of one emerging ray. In actuality
wave from S will be split at O, and its segments wil! thereafter be refiected by M_{1} and M_{2}. In our schematic diagram we represent this by reflecting the ray off both M_{z} and M_{1}^{\prime}. To an observer at D the two reflected rays will appear to have come from the imge points S_{1} and $S_{\text {s }}$ [note that all rays shown in (a) and (b) of Fi , 9.25 share a common plane of incidencel For all practical purposes, S, and S_{2} are coherent point sources, and we purposes, S_{1} and S_{2} are coherent point sources, and we 9.14). As the figure shows, the optical path difference for these rays is nearly $2 d \cos \theta$ which represents a phase difference of $k_{0} 2 d \cos \theta$. There is an additional phase term arising from the fact that the wave traversing the arm $O M_{2}$ is internally refiected in the beam-splitter r_{z} whereas the $O M_{1}$-wave is externally reflected at O. If the beam-splitter is simply an uncoated glass plate, the elative phase shift resulting from the two reflections will (Section 4.5, p. 119) be π radians. Desiructive, rather than constructive, interference will then exist wher

$$
2 d \cos \theta_{m}=m \lambda_{0},
$$

(9.44)
where m is an inceger. If this condition is fulfilled for the point S, then it will be equally weil fuifiled for any point on Σ that lies on the circle of radius $O^{\prime} S$, where O^{\prime} is located on the axis of the detector. As illustrated in Fig. 9.26, an observer will see a draular fringe system concentric with the central axis of her eyes lens. Because e able to see the entire pattern without the use of a arge lens near the beampliter to collest ost mergent light. mergent light.
If we use a source containing a number of frequency

igure 9.26 Formation of circular fringe
components (e.g., a mercury discharg dependence of θ_{m} on λ_{0} in Eq. (9.44) requir Nuch component generate a ringe system coherence length of the source, it follows ters will be particularly casy to , it follows thate interferometer (see Section 95) demonspla made strikingly evident were we To poing produced by laser light with those comparers light from an ordinaty tungsten benerated the latter case, the path difference must the zero, if we are to see any fringes at all, whe former instance a difference of 10 cm , where able effect.
An interference pattern in quasimonochsint typically consists of a large number of alternand and dark rings. A particular xing correspondestap order m. As M_{2} is moved toward M_{1}^{\prime}, i deci? according to Eq. (9.44), $\cos \theta_{m i}$ increases wiziil θ_{-1} fore decreases. The rings shrink toward the the highest-order one disappearing decreases by $\lambda_{0} / 2$. Each remaining ring more and more fringes vanish at the centep a few fill the whole screen. By the time $d=$ reached, the central fringe will have spread the entire feld of wiew. With a phase shift of from reflection of the beam-splitter, the wholes tion in the optical elements can reuder this and tion in the optical elernents can render this und
able.) Moving M_{5} still farther causes the frite reappear at the center and move outward Notice that a central dark fringe for whichy θ_{m} in Eq. (9.44) carl be represented by

$$
2 d=m_{0} \lambda_{0} .
$$

(Keep in mind that this is a specia! case. The region might cortespond to neither a takirnue minimum.) Even if d is 10 cm , which is Fairlr n in laser light, and $\lambda_{0}=500 \mathrm{~nm}, m_{0}$ will be quatt lan namely 400,000 . At a fixed value of d, vuccessive rings wilt satisfy the expressions
$2 d \cos \theta_{\mathrm{I}}=\left(m_{0}-1\right) \lambda_{0}$
$2 d \cos \theta_{2}=\left\langle m_{0}-2\right\rangle \lambda_{0}$
$\stackrel{\vdots}{2 d} \cos \theta_{p}=\left(m_{0}-p\right) \lambda_{0}$.
ar position of any ring, for example, the pth the ng gular posiniod by combining Eqs. (9.45) and (9.46) ingy is isete
ip ileld

$$
2 d\left(\mathrm{I}^{-} \cos \theta_{p}\right)=p \lambda_{0}
$$

$=\theta_{p}$, both are just the half-angle subtended etector by the particular ring, and since $m=$ Eq. (9.47) is equivalent to Eq. (9.44). The new is somewhat more with $d=10 \mathrm{~cm}$, the sixch dark ane example as abo by stating that $p=6$, or in term trivg can be specified p thing, that $m=999,994$. If θ_{p} is
\square

$$
\cos \theta_{p}=1-\frac{\theta_{p}^{2}}{2},
$$

and Eq. (9.47) sields

$$
\theta_{p}=\left(\frac{p \lambda_{d}}{d}\right)^{1 / 2 / 2}
$$

gular radius of the p th fringe. 3truction of Fig. 9.25 represents one possible efgambe, the ant in which we consider only pairs of mallel emerging rays. Since these tays do not gasily meet, they cannot form an image without a Jandiglens of some sort. Indeed, that lens is most parsided by the observer's eye focused at infinity. 6. resulting, fringes of equal inclination ($\theta_{m}=$ constant) Feed at infinity are also Haidinger fringes. A comFon of Kigs. $9.25(\mathrm{~b})$ and $9.9(\mathrm{a})$, both showing two D- Anges at infinity, there might aiso be (real) Wimges at infinity, there might aiso be (real) Thein f lence if you illuminate the inter ferometer tarinedisource and shield out all extraneous light
CPin aily se the projected pattern on a sctecen in Fom (see Section 9.5). The fringes will space in front of the interferometer (i.e., titor is shown), and their size will increase distance from the beam-splitter. We will (real) fringes arising from point-source litcle later on.
rrors of the interferometer are inclined

ue masserved. The resultart wedge-shaped air
film between M_{2} and M_{1}^{\prime} creates a pattern of straight parallel fringes. The interfering rays appear to diverge from a point behind the mirrors. The eye would have of focus on this por in orcors to methe the frnges observale. Wen be the arientation of the approprial M_{1} and M_{2} fringes can be produced that are rersion ${ }_{1}$ arcular , elliptical parabolic, or hyperbolicthis holds as well for the real and virtual fringes.
It is apparent that the Michelson interferome
It is apparent that the Michelson interferometer can be used to make extremely accurate length measure-
ments. As the moveable mirror is displaced by $\lambda_{0} / 2$, ments. As the moveable mirror is displaced by $\lambda_{0} / 2$, occupied by an adjacent fringe. Using a microscope arrangement, one need only count the number of fringes N, or portions thereof, that have moved past a reference point to determine the distance traveled by the mirror Δd, that is,

$\Delta d=N\left(\lambda_{0} / 2\right)$.

Of course, nowadays this can be done fairly easily by electronic means. Michelson used the method to measure the number of wavelengths of the red cadmium line corresponding to the standard meter in Sèvres nea Paris. \dagger
The Michelson interferometer can be used along with a few polaroid filters to verify the Fresnel-Arago laws A polarizer inserted in each arm will allow the optical path-length difference to remain fairly constant, whil the vector field directions of the two beams are easily changed.
A microwave Micheison interferometer can be constructed winh sheet-metal mirrors and a chicken-wire fringe, it can easily measure shifts from maxima to minima as one of the mirrors is moved, thereby determining λ. A few sheets of plywood, piastic, or glass inserted in one arm will change the central fringe. Counting the number of fringe shifts yields a value for the index of refraction, and from that we can compute the dielectric constant of the material.

[^11]

Figure 9.87 The Mach-Zehnder interferometer.

The Mach-Zehnder interferometer is another ampli-tude-splitting device. As shown in Fig. 9.27, it consists ode-splitting device. As shown in Fig. 9.27, it consists The two waves within the apparatus travel along sepa rate paths. A difference between the optical paths can be introduced by a slight tilt of one of the heam-splitters. Since the two paths are separated, the interferometer is relatively difficult to align. For the same reason, however, the interferometer finds myriad applications. thas even been used, in a somewhat altered yet concep wally similar form, to obtain electron interference ringes.*
An object interposed in one bearn will alter the optical path-length diferenc, hereby changing the fringe pat ern. A common application of the device is to observe the density variations in gas-flow patterns within research chambers (wind tunnels, shock tubes, etc.). One beam passes through the optically flat windows of the test chamber, while the other beam traverses appropriate compensator plates. The beam within the an th propaga throgh gions ting ions in the for f rer
+L. Marton, J. Arol Sitmpor, and J. A. Sudderh, Rev. Sci. Instr. 25,
1099 (1954), and Ph\%s Rov. 90,490 (1953).

Figure 9.28 Scylla IV.

A particularly nice application is shown in Fig, 9.28 , which is a photograph of the magnetic cumpley device known as Scylia iv. It was used to sug, Scientific laboratory, In this application the Zehnder interferometer appears in the fornd of parallelogram, as illustrated in Fig. 9.29. The wo mith laser interferograms, as these photogtaphs are callews show (Fig. 9.30) the background pattern withoulf a

Figure 9.29 Schernatic of Scylda IV

$\mathrm{H}_{\text {me }} 9.80$ Gerietogrami without plasma.

The tubr and the density contours within the - Jirime a reaction (Fig. 9.91).

Plonther amplitude-splitting device, which differs avious instrument in many respects, is the Aferometer. It is very easy to align and quite

Fisure 9.31 inter ferogram with plastra. (Photo courtesy Los Alamos Scientific Laboratory,
stable. An interesting application of the device is dis cussed in the last section of this chapter, where we consider its use as a gyroscope. One form of the Sagna Fig. 9 . 9 (ber is showa in Fig 9.32 (a) and another Fig. 9.32(b); still others are possible. Notice that the

Figure 9.39 Thc Pohi interferometer.
main feature of the device is that there are two identical but oppositely directed paths taken by the beams and that both form closed loops before they are united to that both form closed loops before they are united to
produce interference. A deliberate slight shift in the proauce interference. A deliberate silght shift in the length difference and a resulting fringe pattern. Since the beams are superimposed and therefore inseparable, the interferometer cannot be put to any of the conventional uses. These in general depend on the possibility of imposing variations on only one of the constituen beams.

Real Fringes

Before we examine the creation of real, as opposed to virtual, fringes, let's first consider another amplitude splitting interferometric device, the Pohl fringe producing system, illustrated in Fig. 9.33. It is simply a thin transparent firm illuminated by the light coming and can accordingly be intercepted on a screen placed anywhere in the vicinity of the interferometer withou a condensing-lens system. A convenient light source to
use is a mercury lamp covered with a shidiel havitul small hole ($\approx \frac{1}{4}$ inch diameter) in it. As a thin film, wo a piece of ordinary mica taped to a dark-col ir ed be cover, which serves as an opaque barking If ye a laser, its remarkable coherence length and his density will allow yous to perform this same, with almost anything smooth and transpat the beam to about an inch or two in diamete it through a lens (a focal length of 50 to lo: do). Then just reflect the beam off the surfaced plate (e.g., a microscope slide), and the fring evident within the ilhuminated disk wherevopition slitise a screen.
The underlying physical principle involyef with point-source illumination for all four ferometric devices considered above can be Whown in Figs, 9.34 and 9.35.* The two vertical
9.934 or the incline on Fig. 9.35 , ri fig. 9.34, or the inclined ones in Fg. 9.35, adeil
hher the positions of the mirrorsor
*A. Zajac, H. Sadawski, and S. Licht, "The Real Fni

theturiate in the PohI interferometer. Let's assume in the surfounding medium is a point at constructive interference. A screen placed pint would intercept this maximum, as well as singe pattern, without any condensing systen. derent virtual sources emitting the interfering re inirror images S_{1} and S_{2} of the actual point 20. It should be noted what this kind of reat ring can be observed with both the Miche.son and Ginterferometers (Fig. 9.36). If either device is nerned with an expanded laserbeam, a real fringe potern will be generated directly by the emerging Wia This is an extremely simple and beautiful.

since that is the region where we need to focas ou detector (eye, camera, telescope). In general, the problem of locating fringes is characteristic of a given inter dev.
ges can be classfied, first, as either real or virtital and, second, as either nomocailzed or localized. Real fringes are those that can be seen on a screen withou the use of an additional focusing systern. The rays forming these fringes converge to the point of observa tion, all by themselves. Virtual fringes cannot be projec ted onto a screen without a focusing system. In this case the rays obviously do not converge.
Nonlocalized fringes are real and exist everywher within an extended (three-dimensional) region of space The patcern is literally nonlocalized, in' hat is in as illustrated in Fig 9.5, fils the space beyond the secondary sources with a whole array of real fringes Nonlocalized fringes of this sortare generally produced by smail sources, that is, point or line sources, be they real or virtual. In contrast, localized fringes are clearl

Figure 9.36 Real Michelson fringess using He-Ne laser light. (Phota by E. H.)
observable only over a particular surface. The pattern is literally localized, whether near a thin film or at infinity. This type of fringe will always result from the use of extended sources but can be generated with point source as well.
The Pohl interferometer (Fig. 9.33) is particularly useful in illustrating these principles, since with a point ource it will produce both real nonlocalized and virtual lacalized fringes. The real nonlocalized fringes (Fig. 9.37 , upper half) car be intercepted on a screen almost nywhere in front of the mica film.
For the nonconverging rays, realize that since the aperture of the eye is quite small, it will intercept only those rays that are directed almost exactly at it. For this small pencil of rays, the eye, at a particular position, sees either a bright or dark spot but not much more.

To perceive an extended fringe pattern parallel rays of the type shown in the botto med by Tight entering at other ove to be used to however, the source is usually somewhat, fringes can generally be seen by looking til with the eye focused at infinity. These il re localized at infinity and are equiralen inelination fringes of Section 9.4. Similarly, M_{1} and M_{2} in the Michelson interferomete the usual circular, virtual, equal-inclin ocalized at infinity will be seen. We can ing air film between the surfaces of the mirrors Mic acting to generate these fringes. As with th ation of Fig. 9.37 for the Pohl device, real no fringes will also be present.

is? thaget brsed by a wedge shaped film.

Setry of the fringe pattern seen in reflected transparent wedge of small angle d is shown The fringe location P will be determined cation of incidence of the incoming light thigs have this same other interferometers The equivalent interference system consists of Jolanes inclined slightly to each other. The \%of of Mach-Zehnder interferometer is in that by rotating the mirrors, one can local Aulting virtual fringes on any plane within the enerally occupied by the test chamber (Fig. 5889).

9.6 MULTIPLE-BEAM INTERFERENCE

Thus har we have examined a nutnber of situations in which two coherent beams are combined under divers onditions to produce interference patterns. There are, owever, other circumstances under which a much rger number of mulualy coherent waves are made to interfere. In fact, whenever the amplitude-reflection coefficients, the r 's, for the paralle! plate illustrated in Fig. 9.14 are not small, as was previously the case, the higher-order reflected waves $\mathbf{E}_{3}, \mathbf{E}_{4}, \ldots$ become quite ignificant. A glass plate, slightly silvered on both side o that the r 's approach unity, will generate a large number of mill whostre, and surounding medium are trans
 tase changes resulting from metal-coated surfaces.
To begin the analysis as simply as possible Iet the film be nonabsorbing and let $n_{1}=n_{2}$. The notation will be in accord with that of Section 4.5 ; in other words, en aplitude-transmission coefficients are represented by the fraction of the amplitude of a wave transmitted on entering into the film, and t^{\prime}, the fraction transmitted when a wave leaves the film. Keep in mind that the rays are actually lines drawn perpendicular to the wavefronts and therefore are also perpendicular to the optical felds $\mathbf{E}_{1 r}, \mathbf{E}_{2 r}$, and so forth. since the rays will remain nearly arallel, the scalar theory will suffice as long as we are areful to account for any possible phase shifts. As hown in Fig. 9.40, the scalar amplitudes of the reflected waves $\mathbf{E}_{1 r}, \mathbf{E}_{2 r}, \mathbf{E}_{3 r}, \ldots$, are respectively $E_{0} r, E_{0} \ell r^{\prime} t^{\prime}$, $E_{0} t^{3} l^{\prime}, \ldots$, where E_{0} is the amplitude of the initial incoming wave and $r=-r^{\prime}$ via Eq. (4.89). The minus ign indicates a phase shift, which we will consider later. imilarly, the transmitted waves $\mathbf{E}_{11}, \mathbf{E}_{2!}, \mathbf{E}_{3 t}, \ldots$ will have amplitudes $E_{0} t t^{\prime}, E_{0} t^{\prime 2} \boldsymbol{y}^{\prime}, E_{0} t r^{\prime 4} \mathrm{t}^{\prime}, \ldots$. Consider he set of paratel reflected rays. Each ray bears a fixed phase relationship to all the other reflected rays. The ath diferesces and phase shifts accurring at he various reffections. Nonetheless, the waves are mutually coherent, and if they are collected and brought o focus at a point P by a lens, they will all interfere.
${ }^{364}$ Chapter 9 Interference

The resultant irradiance expression has a particularly simple form for two special cases.
The difference in optical path length between adjacent rays is given by

$$
\Lambda=2 n_{j} d \cos \theta_{i} .
$$

[9.33]
Ali the waves except for the first, $\mathbf{E}_{1 r}$, undergo an odd number of reflections within the firm. It follows from the fild parallel internal refic 1 ideconponen phase by either 0 or π, depending on the internal incident angle, $\theta_{3}<\theta_{c}$. The component of the field perpendicular to the plane of incidence suffers no perpendicular to the plane of incidence sufters
change in phase on internal reflection when $\theta_{i}<\theta_{c}$. change in phase on internal reflection when $\theta_{i}<\theta_{c}$.
Clearly then, no relative change in phase among these waves results from an odd number of such reflections (Fig. 9.41). As the first special case, if $\Lambda=m \lambda$, the second, third, fourth, and successive waves will all be in phase at P. The wave $\mathbf{E}_{1 r}$, however, because of its reflection at the top surface of the film, will be out of phase by 180° with respect to all the other waves. The phase shif is embodied in the fact that $r=-\tau^{\prime}$ and r^{\prime} occurs only
in odd powers. The sum of the scalar amplitude that is, the total rejiected amplitude at point P, is the

$$
\left.E_{0 r}=E_{0} r-\left(E_{0} t r r^{\prime}+E_{0} t r^{3} i^{\prime}+F_{9} t^{\prime}\right)^{\prime}\right) \cdots
$$

$$
E_{0 r}=E_{0} r-E_{0} t r t^{\prime}\left(1+r^{2}+r^{4}+\cdot\right.
$$

where since $\Lambda=m \lambda$, we've just replaced r^{\prime} (fo \quad The geometric series in parentheses converges to the finite sum $I /\left(1-r^{2}\right)$ as long as $r^{2}<1$, so that

$$
E_{0 r}=E_{0} T-\frac{E_{0}+t^{\prime}}{\left.\left(1-T^{\prime}\right)^{2}\right)}
$$

0×10
It was shown in Section 4.5 , when we consid treatment of the principie of revers

$$
E_{0 x}=0 .
$$

Thus when $\Lambda^{-} m \lambda$ the second, third, fourth, essive waves exactly cancel the first reflected hown in Fig. 9.42. In this case no light is renectacy ${ }^{2}$. he incoming energy is transmitted. The second

(0ur 3 Wh Rhare shifts arixing purcly from the reflections (internal

 hase; that is, the second is out of phase with , the third is out of phase with the fourth, and 0 on. The resultant scalar amplitude is then
$\varepsilon_{0}=E_{2} t+E_{0} t r t^{\prime}-E_{0} t r^{3} t^{\prime}+E_{0} t r^{5} t^{\prime}-\ldots$
$E_{8},-E_{0} r+E_{0} r t t^{\prime}\left(1-r^{2}+r^{4}-\cdots\right)$,
The etis if: farencheses is equal to $\mathrm{I} /\left(\mathrm{I}+\mathrm{r}^{2}\right)$, in which

6 Multiple-Beam Interference

Figure 9.43 Phasor diagram
case

$$
E_{0 r}=E_{0} r\left[1+\frac{u^{\prime}}{\left(1+r^{2}\right)}\right] .
$$

Again, $t^{\prime}-1-r^{2}$; therefore, as illustrated in Fig. 9.43,

$$
E_{0 r}-\frac{2 r}{\left(1+r^{2}\right)} E_{0} .
$$

since this particular arrangement results in the addition of the first and second waves, which have relatively larg amplitudes, it should yield a large reffected fux density The irradiance is proportional to $E_{0 r}^{(} / 2$, so from Eq. (3.44)

$$
I_{r}=\frac{4 r^{2}}{\left(1+r^{2}\right)^{2}}\left(\frac{E_{\sigma}^{2}}{2}\right) .
$$

That this is in fact the maximum, $\left(I_{r}\right)_{\text {max }}$, will be shown later.
We will now consider the problem of multiple bean interference in a more general fashion, making use of the complex representation. Again let $n_{1}=n_{1}$ the of avoiding the need to introduce different reffection and cransmission coefficients at each interfa. The opical fields at point Pare given by
$E_{1 r}=E_{0} r e^{i=t}$
$E_{2 r}=E_{0} t r^{\prime} t^{\prime} e^{(\{\omega t-\delta)}$
$E_{3 r}=E_{0} t^{\prime 3} f^{\prime} e^{i(\omega)-2,8)}$

where $E_{0} \ell^{i \omega t}$ is the incident wave.
The terms $\delta, 2 \delta, \ldots,(N-1) \delta$ are the contributions
to the phase arising from an optical path-length difference between adjacent rays ($\delta=k_{0} \alpha$). There is an additional phase contribution arising from the optical mon to each ray and has been omitted. The relative phase shift undergone hy the first ray as a result of the pection is embodied in the quantity r Theresurt eflected solar wase is then qur efecied scalar wave is then

$$
E_{\mathrm{r}}=E_{1},+E_{2 r}+E_{3 \mathrm{r}}+\cdots+E_{\mathrm{Nr}},
$$

or upon substitution (Fig. 9.44)
$E_{\mathrm{r}}=E_{0} \gamma e^{i \omega t}+E_{0} \operatorname{tr}^{\prime} t^{\prime} e^{\mathrm{i}(\omega t-8)}+\cdots+E_{0} \operatorname{tr}^{r^{\prime 2}(2 N-3)} e^{\prime}$

$$
\times e^{[[\omega t-[N-1) ; 8]}
$$

This can be rewriten as

$$
\begin{aligned}
E_{y}= & E_{0} e^{i \omega i}\left\{r+r^{\prime} t^{\prime} e^{-i \delta}\left[1+\left\{r^{\prime 2} e^{-i \delta}\right\}\right.\right. \\
& \left.\left.+\left(r^{\prime 2} e^{-i t 5}\right)^{2}+\cdots+\left(r^{\prime 2} e^{-i \delta}\right)^{N-z}\right]\right\} .
\end{aligned}
$$

If $r^{2} e^{-i s}<1$, and if the number of terms in the series approaches infinity, the series converges. The resultant wave becomes
in the case of zero absorption, no energy being taken out of the waves, we can use the relations $r=-r^{\prime}$ and $h^{t}=1-r^{2}$ to zewrite Eq. (9.51) as

$$
E_{r}=E_{0} e^{i=\alpha}\left[\frac{r\left(1-\theta^{-i \omega}\right)}{1-r^{2} e^{-i t e}}\right] .
$$

Figure 9.44 Phasor diagram.

The reflected flux density at P is then $I_{\mathrm{r}}-E_{E_{7}}$ is,

 which can be transformed into

$$
I_{r}=I_{4} \frac{2 r^{2}(I-\cos \delta)}{\left(1+r^{4}\right)-2 \tau^{2} \cos (\sqrt{1})}
$$

The symbol $I_{i}=E_{0}^{2} / 2$ represents the incidely a density, since, of course, E_{0} was the amplis: incident wave Similarly, the arnplitudes of ted waves given by
can be added to yield

$$
E_{4}=E_{0} \varepsilon^{i \omega t}\left[\frac{u^{\prime}}{1-r_{8}^{\prime}-w_{d}}\right]
$$

Muttiplying this by its complex conjugate, W (Problem 9.35) the irradiance of the transmitter.

$$
I_{t}=\frac{\left.I_{i}(t)^{\prime}\right)^{9}}{\left(1+r^{4}\right)-2 r^{2} \cos \overline{\hat{p}}_{4}^{5} \frac{1}{4}} \quad \text { ISt }
$$

$$
\begin{aligned}
& \text { Using the trigonometric identity } \\
& 1-2 \sin ^{2}(8 / 2) \text {, Eqs. (9.52) and (9.54) becomg }
\end{aligned}
$$

and

$$
I_{i}=I_{i} \frac{1}{1+\left[2 r /\left(1-\tau^{2}\right)\right]^{2} \sin ^{2} \%}
$$

where energy is not absorbed, that is, $\|^{\prime}+r^{2}=\mathrm{L}$. . indeed none of the incident energy is absua hux density of the incoming wave should exa the sum of the flux density reflected off whe the total transmitted flux density emerging film. It follows from Eqs. (9.55) and (9.56)

$$
\begin{aligned}
& E_{1 t}=E_{0} u u^{t} e^{\text {tes }} \\
& E_{2 t}=E_{0} t^{\prime} r^{\prime 2} e^{i(\omega t-6)} \\
& E_{3 t}=E_{0} t t^{\prime} r^{\prime 4} e^{i(\omega t-28)}
\end{aligned}
$$

$$
\begin{equation*}
I_{i}=I_{r}+I_{t} \tag{9.57}
\end{equation*}
$$

he true, however, if the dielectric film is thin layer of semitransparent metal. Sur induced in the metal will dissipate a por

Ti ${ }^{4}$. . ider the transmitted waves as described by Eq now. maxinum will exist when the denominator pus as possible that is, when $\cos \delta=1$, in which iv 1 as posand

$$
\left(f_{t}\right)_{\text {max }}=I_{i} .
$$

We thesecueditions Eq. (9.52) indicates that

$$
\left(I_{r}\right)_{\min }=0,
$$

expect from Eq. (9.57). Again, from Eq. Grathar a minimum transmitted flux density an the denominator is a maximum, that is tom $\delta<-1$. In that case $\delta=(2 m+1) \pi$ and

$$
\begin{equation*}
\left(I_{1}\right)_{\min }=I_{i} \frac{\left(1-r^{2}\right)^{2}}{\left(1+r^{2}\right)^{2}} . \tag{9.58}
\end{equation*}
$$

The

$$
\begin{equation*}
\left(I_{r}\right\rangle_{\max }=I_{i} \frac{4 r^{2}}{\left(1+r^{2}\right)^{2}} \tag{9.sg}
\end{equation*}
$$

What that 国e constant-inclination fringe pattern has "tasirn vhen $\delta=(2 m+1) \pi$ or

$$
\frac{\pi r_{i}}{\lambda_{0}} d \cos \theta_{\mathrm{t}}=(2 m+i) \pi_{s}
$$

thath theiame at the result we arrived at previously S), by using only the first two reflected waves s.ethat Eq. (9.59) verifies that Eq. (9.50) was
mof Eqs. (9.55) and (9.56) suggests that wo new quantity, the coeffient of finesse F; such

$$
F=\left(\frac{2 r}{1-r^{2}}\right)^{2},
$$

Figure 9.45 Airy furction.

whereupon these equations can be written as

$$
\begin{aligned}
& \frac{I_{\tau}}{I_{i}}=\frac{F \sin ^{2}(\delta / 2)}{1+F \sin ^{2}(8 / 2)} \\
& \frac{I_{i}}{I_{i}}=\frac{1}{1+F \sin ^{2}(\delta / 2)}
\end{aligned}
$$(9.52)

The term $\left[1+F \sin ^{2}(\delta / 2)\right]^{-1} \equiv \mathscr{S}(\theta)$ in known as the Airy function. It represenes the transmitted fux density distribution and is plotted in Fig. 9.45. The complementary function [$1-s(\theta)$], that is, Eq. (9.61), is plotted as well, in Fig 9.46. When $8 / 2=m \pi$ the Airy function is equal to unity for all walues of F and therefore r. When r approaches 1, the transmitsed fluk density is very small, except within the sharp spikes centered about

the points $\delta / 2^{-m \pi}$. Multiple-beam interference ha resulted in a redistribution of the energy density in comparison to the sinusoidal two-beam pattern (of which the curves corresponding to a small reflectance strated when). This effel we diff burner demon that time we will clearly see his sace peaking. At resulting from an increased number of coherent sources contributing to the interference pattern. Remembe that the Airy function is, in fact a function of $\theta_{\text {or }} \theta_{c}$ by way of its dependence on δ, which follows from Eqs (9.34) and (9.35), ergo the notation $\mathcal{S}(\theta)$. Fach spik in the flux-density curve corresponds to a particular and therefore a particular θ. For a plane-parailel plate, the fringes, in transmitted light, will consist of a series of narrow bright rings on an almost completely dark background. In reflected light, the fringes wilt be narrow and dark on an almost uniformly bright back ground.
Constant-thickness fringes can also be made shar and narrow by applying a light silver coating to th relevant reflecting sulfaces to produce mulfip.e-beam interference. This procedure has a number of practica applications, one of which will be discussed in Section 9.8.2, when we consider the use of multiple-beam Fizeau fringes to exarnine surface topography.

9.6.1 The Fabry-Perot Interferometer

The multiple-bearn interferometer, first constructed by Charles Fabry and Alfred Perot in the late 1800s, is o considerable importance in modern optics. Beside being a spectroscopic device of extremely high resolving power, it serves as the basic laser resonant cavity. In principle, the device consists of two plane, parallel highly reflecting surfaces separated by some distance d. This is the simplest configuration, and as we shall see other forms are also widely in use. In practice, two semisilvered or aluminized glass optical flats furtir the reflecting boundary surfaces. The enclosed air gap gen erally ranges from several millimeters to several cen timeters when the apparatus is used interferometrically and often to considerably greater lengths when it serves as a laser resonant cavity. If the gap can be mechanically
varied by raoving one of the mi an interferometer. When the mirrors and adjusted for parallelism by screwing ort of spacer (invar or quartz is compdoind aid to be an etolon (although it is, of couys ised shir interferometer in the broad sense). Indeged surtaces of a single quarty plate are appro ed not i, ften made to have a sitht wed sides of th of arc) to reduce the interference pape (o ${ }^{2}$ reflections off these sides. The etalon in and hown illuminated by a broad source, whigi a mercury are or a He-Ne laser beam sph nuigity diameter to severalcentimeters. Thiscan bere nicely by sending the beam into the back telescope focused at infinity. The light can the diffuse by passing it through a sheet of Oniy one ray emitted from some point S, on s traced through the etalon. Entering by partially silvered plate, it is multiply reflec he gap. The transmitted rays are colledzas nd brought to a focus on a screen, where of form either a bright or dark spot. particular plane of incidence, which contairid all the eflected rays. Any other ray emitted frome differmo point S_{2}, parallel to the original ray and in 0 . plang of incidence, will form a spot at the same he screen. As we shall see, the discussion on section is again applicable, so that Eq. (9.54). he transmited fux density, P, P ? S_{2},

v

Figure 9.47 Fabry-Perot etalon.

Completely incoherent with respect to those
that there is no sustained mutual interfercontribution to the irradiance i_{i} at P is jus the are the two irradiance contributions.
ancle circular fringe of With circul diffuse source the interference Sill be narrow concentric rings, corresponding onle-beam transmission pattern.
d. Wsystem can be observed visually by looking the etalon, while focusing at infinity. The想asing lens, which is no longer needed, is tone 4 wivere At large values of d, the rings will be - together, and a telescope might be needed zaify the pattern. A relatively inexpensive monwill serve the same purpose and will allow Tographing the fringes localized at infinity. As The expected from the considerations of Section His passible to produce real nonlocalized fringes Pright point source.
Pedd to to intrially transparent metal films that are ofter to increase the reflectance ($R-r^{2}$) will absorb a

A of the flux density; this fraction is referred
He aboreptatice
lif expersite
$t^{\prime}+r^{2}-1$

$T+R=1$,
[4.60]
where T is the transmittance, must now be rewritten as

$$
T+R+A=1
$$

One further complication introduced by the metallic films is an additional phase shift $\phi\left(\theta_{2}\right)$, which can differ from either zero or π. The phase difference between wo successively transmitted waves is then

$$
\begin{equation*}
\delta=\frac{4 \pi n_{j}}{\lambda_{0}} d \cos \theta_{1}+2 \phi \tag{9.64}
\end{equation*}
$$

For the present conditions, θ_{8} is small and ϕ may be considered to be constant. In general, d is so large, and h_{u} so small, that ϕ can be neglected. We can now express Eq. (9.54) as

$$
\begin{aligned}
& \qquad \frac{I_{t}}{I_{\mathrm{i}}}=\frac{T^{2}}{\mathrm{I}+R^{2}-2 R \cos \delta^{\prime}} \\
& \text { or equivalently } \\
& \frac{I_{t}}{I_{\mathrm{i}}}-\left(\frac{T}{1-R}\right)^{2} \frac{1}{1+[4 R /(1-R\}] \sin ^{2}(8 / 2)} \quad \text { (9.65) }
\end{aligned}
$$

Making use of Eq. (9.63) and the definition of the Airy
function，we obtair

$$
\frac{I_{i}}{I_{i}}=\left[1-\frac{A}{(1-\overline{R)}}\right]^{2} \mathscr{N}(\theta), \quad \quad(9.66)
$$

as compared with the equation for zero absorption

$$
\frac{I_{I}}{I_{\mathrm{i}}}=\mathscr{A}(\theta) .
$$

Inasmuch as the absorbed portion A is never zero，the cransmitted flux－density maxima（ $\left.I_{i}\right)_{\text {max }}$ ，will always be somewhat less than I_{i} ．［Recall that for $\left(I_{i}\right)_{\text {max }}, \mathcal{A}(\theta)=1$ ．］ Accordingly，the peak transmission is defined as $\left.I_{i} / I_{i}\right)_{\max }=$

A silver film 50 nm thick would be approaching its maximum value of R（e．g．，about 0.94 ），while T and A night be，respectively， 0.01 and 0.05 ．In this case，the ake of the fringe pattern will still be dermiradi－ nce ol fringe pattern will still be determined by he Airy function，since

$$
\frac{I_{\iota}}{\left(I_{h}\right)_{\max }}=\Omega\{(\theta) .
$$

A measure of the sharpness of the fringes，that is， how rapidly the irradiance drops off on either side of the maximum，is given by the half－width y ．Shown in

$\delta=\delta_{\text {mux }}-\delta_{1 / 2} \quad \delta=\delta_{\text {mut }}+\delta_{12}$
Figure 9．49 Fabry－Perot fringes．

Figure 9.50 Overlapping fringes．

Fig．9．49，γ is the width of the peak，in radiagin whem $I_{t}=\left(I_{t}\right)_{\text {max }} / 2$
Peaks in the． the phase difference $\delta_{m o n}=2 \pi m$ specific pilaz of the phase difference $\delta_{\text {max }}=2 \pi m$ ．Accordidey，the $\left.\mathscr{\sim}(\theta)=\frac{1}{2}\right)$ whenever $\delta=\delta_{\text {max }} \pm \delta_{2 / 2}$ ．Inasmuch

$$
\mathscr{A}(\theta)=\left[t+F \sin ^{2}(\delta / 2)\right]^{-}
$$

then when

$$
\left[1+F \sin ^{2}\left(\delta_{1: 2} / 2\right)\right]^{-1}=\frac{1}{2}
$$

follows that

$$
\delta_{1 / 2}=2 \sin ^{-1}(1 / \sqrt{F}) .
$$

Since F is generally rather large， $\sin ^{-1}(1 / \sqrt{2 \pi} \cdot \mid \sqrt{8}$ and therefore the half－width $\gamma^{-}=28$

$$
y=4 / \sqrt{F} .
$$

Recall that $F=4 R /(\mathrm{I}-R)^{2}$ ，so that the largei．．is，山⿰⿻丷木⿱⿱亠䒑十纟 sharper the transmission peaks will be．
Another quantity of particular interest
Another quantity of particular interest is． Known as the finesse， $\bar{F}=2 \pi / \gamma$ or，from Eq．(9.69)

$$
\xi^{\pi}-\frac{\pi \sqrt{F}}{2}
$$

Over the visible spectrum，the finesse of mout andivy
Fabry－Perot instruments is about 30 ．The phyal tation on \mathscr{F} is set by deviations in the miratis
thlyelism．Keep in mind that as the finesse the half－width decreases，but so too does the the hall－wiss．Incidentally，finesse of about 1000

Wit specirosec
㐬erot interferometer is frequently used to erot interferometer is frequeny used to detailed structure of spectral Ines．We will． rather will define the relevant ter－ riefly outlining appropriate derivations．\dagger
have seen，a hypothetical，purely monochro－
are have seen，a hypothetical，purely monochro－
 4p of two such monochromatic components， posed ring systems would result．When the fringes partially overlap，a certain amount raty exists in deciding when the two systems widually discernible，that is，when they are said ugalued．Lord Rayleigh st criterion for resolving Two＂4li－irradiance overlapping slit images is well en if somewhat arbitrarily in the present Its use，however，will allow a comparison grating instruments．The essential feature ion is that the fringes are just resolvable when
Fadde point，of the resultant broad fringe is $8 / \pi^{2}$
Thaximum irradiance．This simply means that
ynd see a broad bright fringe with a grey central
Thi and a more analytic about it，examine Fig．
th．Consider the pase in which the of the
多es have equal irradiances，$\left(I_{a}\right)_{\text {max }}=\left(I_{b}\right)_{\text {max }}$
Whltpple Beam Interferometry，＂by H．D．Polster，App Ab shaould be of intercst．Also look at＂The Optical dianar，C．Seaton，and S．Smith，Sct．Am．（Fee Topptcal transistor．

siza．
reconsidered with respect to diffraction in the －10．40） Eq．（9．68）

$$
\left(8 / \pi^{2}\right) \frac{\left(\Lambda_{\theta \text { max }}\right.}{\left(S_{b}\right)_{\text {max }}}=\left[\mathscr{A}\{(\theta)]_{\delta=\delta_{4}+\Delta \delta / 2}+[\mathscr{A}(\theta)]_{\delta-\delta_{0}+\Delta \delta / 2 .} .\right.
$$

Using（ $\left.I_{i}\right)_{\text {max }}$ given by Eq．（9．71），along with the fact that

$$
\frac{\Gamma^{+}}{\left(I_{a}\right\rangle_{m w x}}=[\mathscr{A}(\theta)]_{\delta-s_{a}+\Delta \delta,}
$$

we can solve Eq．（9．72）for $\Delta \delta$ ．For large values of F ，

$$
(\Delta \delta) \approx \frac{4.2}{\sqrt{F}}
$$

This then represents the smallest phase increment （ $\Delta \delta_{\text {minin }}$ ，separating two resolvable fringes．It can be related to equivalent minimum increments in wavelength $\left(\Delta \lambda_{0}\right)_{\text {min }}$ ，frequency $(\Delta \nu)_{\text {min }}$ ，and wave num

$$
m \lambda_{0}=2 \pi_{f} d \cos \theta_{\mathrm{t}}+\frac{\phi \lambda_{0}}{\pi}
$$

Dropping the term $\phi \lambda_{0} / \pi$ ，which is clearly negligible and then differentiating，yields

$$
\text { or } \begin{array}{r}
m\left(\Delta \lambda_{0}\right)+\lambda_{0}(\Delta m)=0 \\
\frac{\lambda_{0}}{\left(\Delta \lambda_{0}\right)}=-\frac{m}{(\Delta m)}
\end{array}
$$

The minus will be omitted，since it means only that the order increases when λ_{0} decreases．When δ changes by $2 \pi, m$ changes by 1 ，so

$$
\frac{2 \pi}{(\Delta \delta)}=\frac{1}{(\Delta n)}
$$

and thus

$$
\frac{\lambda_{0}}{\left(\Delta \lambda_{0}\right)}=\frac{2 \pi m}{(\Delta \delta)^{\prime}}
$$

The ratio of λ_{0} to the least resolvable wavelengt difference, $\left(\Delta \lambda_{0}\right)_{\text {min }}$, is known as the chromatic resolv ing power \Re of any spectroscope. At nearly norma incidence

$$
\begin{equation*}
\mathscr{R}=\frac{\lambda_{0}}{\left(\Delta \lambda_{0}\right)_{\text {min }}} \approx \mathscr{F} \frac{2 n_{5} d}{\lambda_{0}} \tag{.76}
\end{equation*}
$$

or

$$
\mathscr{R} \Rightarrow \sqrt{4} m
$$

For a wavelength of $500 \mathrm{~nm}, n_{f} d=10 \mathrm{~mm}$, and $R=$ 90%, the resolving power is well over a million, a rang only recently achieved by the finest diffraction gratings. follows as well, in this example, that $\left(\Delta \Lambda_{0}\right)_{\text {min }}$ is less han a millionth of λ_{0}. In tems of frequency, the minimum resolvable bandwidth is

$$
(\Delta \nu)_{\text {min }}=\frac{c}{g 2 n_{f} d},
$$

inastruch as $|\Delta \nu|=\mid c \Delta \lambda_{0} / \lambda^{2}$
As the two components present in the source become increasingly different in wavelength, the peaks shown erlapping in Fig. 9.50 separate. As the wayeleng difference increases, the 0 th-order fringe for on wavelength λ_{0} will approach the ($m+1$)th-order forth ther wavelength $\left(\lambda_{0}-\Delta \lambda_{0}\right.$. The particular wavelength difference at which overlapping takes place, $\left(\Delta \lambda_{0}\right)$) known as the free spectral range. From Eq. (9.75), a change in δ of 2π corresponds to $\left(\Delta \lambda_{0}\right)_{\text {sr }}=\lambda_{0} / m$, or at near normal incidence,

$$
\left(\Delta \lambda_{0}\right)_{\mathrm{fs}} \approx \lambda_{0}^{2} / 2 n_{j} d,
$$

(9.78)
and similarly
$(\Delta \nu)_{\text {tre }}=c / 2 n_{f} d$.
(9.79)

Continuing with the above example (i.e., $\lambda_{0}=500 \mathrm{~nm}$ and $\left.n_{f} d=10 \mathrm{~mm}\right),\left(\Delta \lambda_{0}\right)_{E s}=0.0125 \mathrm{~nm}$. Clearly, if we ttempt to increase the resolving power by merely increasing d, the free spectral range will decrease, bring ing with it the resulting confusion from the overlapping of orders. What is needed is that $\left(\Delta \lambda_{0}\right)_{\text {min }}$ be as snatl a possible and ($\Delta \lambda_{\text {) }}$) ber as large as possible. But lo and behold,

$$
\frac{\left(\Delta \lambda_{0}\right)_{\mathrm{sr}}}{\left(\Delta \lambda_{0}\right)_{\text {min }}}=F
$$

(9.80)

This result should not be too surprising original definition of $\mathscr{F F}$. Fabry-Perot interferometer are numpatsi Etalons have been arranged in series win as well as with grating and prism spe multilayer dielectric films have been pert metallic mirror coatings.
Scanning rechniques are now widely take advantage of the superior linearity o detectors over photographic plates, to reliable fux-density measurements. The ba central-spot scanning is illustrated in Fig. 9,510 : is accomplished by varying δ, by changing than $\cos \theta_{t}$. In some arrangements, n_{f} is sum by altering the air pressure within the etz tively, mechanical vibration of one mirro placement of $\lambda_{0} / 2$ will be enough to scan tral range, corresponding as it does to $\Delta \delta$ lar technique for accomplishing this utiliz tric mirror mount. This kind of material The voltage profile determines the mis applead to of Instead of photographically recording mocien over a large region in space, at a single poot... in tim this method records irradiance over a buree recime time at a single point in space space.
The actual configuration of the etalon itself haza in 1956 first described the stherical-miniont $/$ shonm interferometer. Since then, curved-mirror systemp haw become prominent as laser cavities and arel sit: increasing use as spectrum analyzers.

20e 9.51 Central spot scancing.
horizon sensors. The applications of thin-film device are manifold, as are their structures, which extend from the simplest single coatings to intricate arrangement of 100 or more layers.
The treatment of multilayer film theory used here wiil deal with the total electric and magnetic fields and their boundary conditions in the various regions. Thi is a far more practical apprath mane used sys

9.7.1 Mathematical Treatment

Consider the linearly polarized wave shown in Fig. 9.53 impinging on a thin dielectric film between two semi infinite transparent media. In practice, this might corre spond to a dielectric layer a fraction of a wavelengt thick, deposited on the surface of a lens, a mirror, o a prism. One point must be made clear at the outset each wave $E_{r 1}, E_{r 11}^{\prime}, E_{i 1}$, and so forth, represents the resultant of all possible waves traveling in that direction, at that point in the medium. The summation process is houndary conditions ponents of both the eloctric (\mathbf{E}) and manetic $\left(\mathbf{H}=\mathrm{B}^{\prime} \mu\right)$ fields be continuous across the boundaries (ie, equa) on both sides). At boundary

$$
E_{1}=E_{i 1}+E_{r 1}=E_{\mathrm{II}}+E_{r \mathrm{rl}}^{\prime}
$$

and

$$
\begin{align*}
H_{\mathrm{I}} & =\sqrt{\frac{\epsilon_{0}}{\mu_{0}}}\left(E_{\mathrm{iI}}-E_{r_{1}}\right) n_{0} \cos \theta_{\mathrm{iI}} \\
& =\sqrt{\frac{\epsilon_{0}}{\mu_{0}}}\left(E_{\left.\mathrm{ti}-E_{\mathrm{rII}^{\prime}}^{\prime}\right) n_{1} \cos \theta_{\mathrm{iII}},},\right. \tag{9.82}
\end{align*}
$$

where use is made of the fact that \mathbf{E} and \mathbf{H} in non magnetic media are related through the index of refrac tion and the unit propagation vector

$$
\mathbf{H}^{-} \sqrt{\frac{\epsilon_{0}}{\mu_{0}}} n \hat{\mathbf{k}} \times \mathbf{E} .
$$

*For a very readable nonmathematical discussion, see P. Baumeister
and G . Pincus, "Optical interterence Coaungs," Sci. Amer. 223, and G. Pincus, "O
(Decrmber 1970).

Figure 9.53 Fields at the boundaries.
At boundary II

$$
E_{41}-E_{\mathrm{rl}}+E_{\mathrm{rII}}-E_{t \mathrm{II}} \quad \text { (9.83 }
$$

and

$$
\begin{aligned}
H_{\mathrm{HI}} & =\sqrt{\frac{\epsilon_{0}}{\mu_{0}}}\left(E_{i \mathrm{II}}-E_{\mathrm{rI}}\right) n_{\mathrm{y}} \cos \theta_{\mathrm{iH}} \\
& =\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} E_{i \mathrm{II}} n_{s} \cos \theta_{\mathrm{iI}},
\end{aligned}
$$

(9.84)
the substate having an index n_{3}. In accord with Eq . 9.33), a wave that traverses the film once undergoes shift in phase of $k_{0}\left(2 n_{1} d \cos \theta_{311}\right) / 2$, which will be denoted by $k_{0} h$, so that

$$
\begin{align*}
& E_{\mathrm{il1}}=E_{\mathrm{tI}} \mathrm{e}^{-\mathrm{i} k_{0} h} \tag{9.85}\\
& E_{r \mathrm{rI}}=E_{\mathrm{r} 1 \mathrm{I}} e^{+i \mathrm{i}_{\boldsymbol{k}} k}
\end{align*}
$$

and

Theral, if p is the number of layers, each with a farral, if p is n and h, then the first and the last fee are related by

$$
\left[\begin{array}{l}
E_{1} \\
H_{1}
\end{array}\right]=\mu_{1} \cdot \mu_{(11} \cdots \boldsymbol{\mu}_{p}\left[\begin{array}{l}
E_{(p+k)} \\
H_{(p+1)}
\end{array}\right]
$$

(9.95)
cetivic matrix of the entire system is the 5 the product (in the proper sequence) of the 2×2 matrices, that is,

$$
\boldsymbol{u}_{p}=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right] . \quad(9.96)
$$

Hons for the amplitude coefficierits of reflection
ansmission using the above scheme. By reformu-
art 40 (90. in (9.841 I and setting
981. 19.E21 and (9.84)) and setting

When \mathbf{E} is in the plane of incidence the dibo

$$
Y_{1}=\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} n_{1 / \cos \theta_{i \mathrm{II}} .} .
$$

$\stackrel{\text { In m }}{\text { form }}$

$$
\left.\left[\begin{array}{c}
E_{\mathrm{t}} \\
H_{\mathrm{I}}
\end{array}\right]=\left[\begin{array}{cc}
\cos k_{0} h & \left(i \sin k_{0} h\right) Y_{\mathrm{I}} \\
Y_{1} i \sin k_{0} h & \cos k_{0} h
\end{array}\right]\left[\begin{array}{c}
E_{\mathrm{E}_{1}} \\
H_{0}
\end{array}\right] \text {, } 0.01\right)
$$

or

$$
\left[\begin{array}{c}
E_{\mathrm{I}} \\
H_{1}
\end{array}\right]=\mathscr{w}_{\mathrm{t}}\left[\begin{array}{c}
E_{\mathrm{II}} \\
H_{\mathrm{II}}
\end{array}\right]
$$

The characteristic matrix. \boldsymbol{H}_{1}, relates the feizr ai ut two adjacent boundaries. It follows, therefote, thal if two averlaying firms are deposited on the substrate there will be three boundaries or interfaces, and now

$$
\left[\begin{array}{l}
E_{\mathrm{II}} \\
H_{\mathrm{a}}
\end{array}\right]-\boldsymbol{H}_{\mathrm{H}}\left[\begin{array}{c}
E_{\mathrm{HI}} \\
H_{\mathrm{HI}} \\
\hline
\end{array}\right.
$$

Multiplying both sides of this expression by $\mathbb{A}_{1 \mathrm{w}}$ we obtain

$$
\left[\begin{array}{c}
E_{1} \\
H_{\mathrm{I}}
\end{array}\right]=\# A_{\mathrm{II}}\left[\begin{array}{c}
E_{\mathrm{IIT}} \\
H_{\mathrm{II}}
\end{array}\right] . \quad \text {, }
$$

Applications of Single and Multilayer Film

375
To find either r or t for any configuration of films, we need only compute the characteristic matrices for each film, multiply them, and then substitute the resulting matrix elements into the above equations.

9.7.2 Antireflection Coatings

Now consider the extremely important case of normal incidence, that is,

$$
\theta_{i \mathrm{I}}=\theta_{\mathrm{iII}}-\theta_{i 11}-0
$$

which in addition to being the simplest, is also quite frequently approximated in practical situations. If we put a subscript on \boldsymbol{r} to indicate the number of layers present, the reflection coefficient for a single film hecome

$$
T_{1}=\frac{n_{1}\left(n_{0}-n_{3}\right) \cos k_{0} h+i\left(n_{0} n_{3}-n_{1}^{h}\right) \sin k_{0} h}{n_{2}\left(n_{0}+n_{z}\right) \cos k_{0} h+i\left(n_{0} n_{2}+n_{1}^{2}\right) \sin k_{0} h} .
$$

Multiplying r_{1} by its complex conjugate leads to the refectance
$R_{1}=\frac{n_{1}^{2}\left(n_{0}-n_{3}\right)^{2} \cos ^{2} k_{0} h+\left(n_{0} n_{4}-n_{1}^{2}\right)^{2} \sin ^{2} k_{0} h}{n_{1}^{2}\left(n_{0}+n_{y}\right)^{2} \cos ^{2} k_{0} h+\left(n_{0} n_{4}+n_{1}^{2}\right)^{2} \sin ^{2} k_{0} h} \quad$ (9.:100
This formula jecomes particularly simple when $k_{0} h=$ $\frac{1}{2} \pi$, which is equivalent to saying that the optical thickness h of the film is an odd multiple of ${ }_{4}^{1} \lambda_{0}$. In this case $d=\frac{1}{4} \lambda_{s}$, and

$$
R_{1}=\frac{\left(n_{0} n_{1}-n_{1}^{2}\right)^{2}}{\left(n_{0} n_{1}+n_{2}^{2}\right)^{2}},
$$

(9.101)
which, quite remarkably, will equal zero when

$$
n_{i}^{2}-n_{0} n_{s} . \quad \text { (9.102) }
$$

Generaily, d is chosen so that h equals $\frac{1}{4} \lambda_{0}$ in the yellowGeneraily, d is chosen so that h equals $\frac{1}{4} \lambda_{0}$ in the yellowgreen portion of the visible spectrum, where the eye is
most sensitive. Gryolite ($n=1.35$), a sodium aluminum fuoride compound, and magnesium fluoride ($n=1.38$) fleoride compound, and magnesium fluoride ($n=1.38$) are common low-index fims. Since MgF_{3} is by far the
more durable, it is used more frecuently. On a glass more curable, it is used more frequently. On a glass
substrate, ($n_{s} \approx 1.5$), both these fims have indices that substrite, ($m_{s} \sim 1.5$), both these fims have indices that
are still somewhat too large to satisfy Eq. (9.102). Nonetheless, a single $\frac{1}{4} \lambda_{0}$ layer of MgF_{2} will reduce the reflectance of glass from about 4% to a bit more than 1%, over
he visible spectrum. It is now common practice to apply antireflection coatings to the elements of optical instruments. On camera lenses, such coatings produce a decrease tn the haziness caused by stray internally scatered gh, as well as a med incase inage arn R increases and the lens surface will ppear blue-red in reflected light
por a doublelayer, quarter-w
, coating,
or more specifically

$$
\mathscr{A}-\left[\begin{array}{cc}
0 & i / Y_{1} \\
i Y_{1} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & i / Y_{2} \\
i Y_{2} & 0
\end{array}\right]
$$

(9.109)

At normal incidence this becomes

$$
\boldsymbol{M}=\left[\begin{array}{cc}
-n_{2} / n_{1} & 0 \tag{9.10.4}\\
0 & -n_{1} / n_{2}
\end{array}\right] .
$$

Substituting the appropriate matrix elements into Eq. 9.97), yields r_{2}, which, when squared, leads to the eflectance

$$
R_{z}=\left[\frac{n_{2}^{2} n_{0}-n_{i} n_{1}^{2}}{n_{2}^{2} n_{0} n_{0}+n_{1} n_{1}^{2}}\right]^{2} .
$$

For R_{2} to be exactly zero at a particular wavelength, we

$$
\left(\frac{n_{2}}{n_{1}}\right)^{2}=\frac{n_{5}}{n_{0}} .
$$

This kind of film is referred to as a double-quarter, single-minimum coating. When n_{1} and n_{2} are as small single-minimum coating. When n_{1} and n_{2} are as sman as possible, the refectance will have its single broadest mhould be clear from Eq. (9.106) that $n_{2}>n_{1}$; accordingly, it is now common practice to designate a (glass)(high index)-(low index)-(air) system as gHLa. Zirconium dioxide $\{n=2.1$), titanium diuxide ($n-2.40$), and zinc sulfide ($n=2.32$) are commonly used for H layers, and magnesium fluoride ($n=1.38$) and cerium fluoride ($n=1.68$) often serve as L-layers.
Other double- and triple-layer schemes can be designed to sarisfy specific requirements for spectral

Figure 9.55 Lens elements coated with a multilayer filn (Photor co
response, incident angle, cost, and so on. Fig. 9.56 is scene photogiaphed through a 15 element lent with a $150-\mathrm{W}$ lamp pointing directly into the The lens elements were covered with a sin $\mathrm{MgF}_{\mathrm{z}}$. For Fig , 9.55 a triple-layer antireflf was used. The improved contrast and gia are apparent,

. It Hivlayer Periodic Systems

rst kind of periodic system is the quarter-wau Ih is made up of a number of quarter-wave periodic structure of alternately high- and findex materials, illustrated in Fig. 9.56, is desig . jndex

$g(H L) a$.

1 illustrates the general form of a portion tal reflectance for a few multhayer fiters
Ef the high-reflectance central zone increase Ting vatues of the index ratio n_{0} / \vec{n}_{5}, and it Mrohn increases with the number of layers. Note that Wixm reflectance of a periodic structure such dean be increased further by adding another Wo that in high reflectance ean be produced disarrangement.
atall peak on the short-wavelength side of the垪can be decreased by adding an eighth-wave nim to both ends of the stack, in which cas In mbde aryangemenc will be denoted by
$g(0.5 L)(H L)^{m} H(0.5 L) a$.

Applications of Single and Multilayer Films

Figure 9.57 Refiectance and transmittance for scyral periodic ructures.

This has the effect of increasing the short-wavelength high-frequency transmittance and is therefore known as a high-pass filter. Similarly, the structure

$$
g(0.5 H) L(H L)^{m}(0.5 H) a
$$

nerely corresponds to the case in which the end H layers are $\lambda_{0} / 8$ thick. It has a higher transmittance as he long-wavelength, low-frequency range and serves a low-pass ftut
At nonnormal incidence, up 10 about 30°, there is quite frequently little degradation in the response of thin-film coatings. In gerieral, the effect of increasing the incident angle is a shift in the whole reflectance curve down to slightly shorter wavelengths. This kind cf behavior is evidenced by several naturally occurring periodic structures, for example, peacock and hummingbird feathers, butterfly wings, and the backs of severa. varieties of beet.es.
The last maldiayer system to be considered is the interference, or more precisely the Fabry-Perot, filter. If order of λ, the transmission peaks will be widely sepa rated in wavelength. It will then he possible to bleck all he peaks but one by using absorbing filters of colored glass or gelatin. The transmitted light corresponds to a single sharp peak, and the etalon serves as a narrow band-pass filter. Such devices can be fabricated by depositing a semitransparent metal film onto a glass support, followed by a MgF_{2} spacer and another metal coating.

All-dielectric, essentially nonabsorbing Fabry-Perot filters have an analogous structure, two possible examples of which are
g HLH LL HLHa
and
g HLHL HH LHLHa
The characteristic matrix for the first of these is

but from Eq. (9.104)

$$
\boldsymbol{M}_{L} \boldsymbol{H}_{L}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right],
$$

or
$\mu_{L} \mathscr{N}_{L}--\mathscr{\prime}$,
where Φ is the unity matrix. The central double layer, corresponding to the Fabry-Perot cavity, is a half-

Figure 9.58 Interfetence of scatiered light.
welengh thick ($d=\frac{1}{2} \lambda$). It therefore has no effect the reflectance at the particuiar wavelengh under consid ation. Thus, it is said to be an absentee layer, and as a consequence,

The same conditions prevail over and over again at thes center and will finally result in

$$
N=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

At the special frequency for which the filter was de signed, r at normal incidence, according to Eq. (9.97) reduces to

$$
\tau=\frac{n_{0}-n_{j}}{n_{0}+n_{s}},
$$

the value for the uncoated substrate. In particular, for glass ($n_{s}=1.5$), in air ($n_{0}=1$) the theoretical peak trans? mission is 96% (neglecting reflections from the back surface of the substrate, as well as losses in both the blocking filter and the films themselves).

9.8 APPLICATIONS OF INTERFEROMETRY

There have been many physical applications of the principles of interferometry. Some of these are only of historical or pecagogical significance, whereas others are now being used extensively. The advent of the lase and the resultant availability of highly coherent quasimonochromatic light have made it particularly easy to create new interferometer configurations.

9.8.1 Scatlered-Light Interference

Probably the earliest recorded study of interferente fringes arising from scattered light is to be found in Sis Isaac Newton s Opliks (1704, Book Two, Part IV). Our present interest in this phenomenon is twofold. First, it provides an extremely easy way to see some rather beautiful colored interference fringes. Second, it is the basis for a remarkably simple and highly useful interf ferometer.

To see the fringes, lightly rub a thin layer of ordinary talcum powder onto the surface of any common backsilvered mirror (dew will do as well). Neither the thick ness nor the use of a bright point source, however, is crucial. A satisfactory source car be made by taping a heavy piece of cardboard having a hole about $\frac{1}{4}$ inch in diameter over a good flashlight. Initially, stand back from the mirror about 3 or 4 feet; the fringes will be too fine and closely spaced to see if you stand much nearer. Hold the flashlight alongside your cheek and iliuminate the mirror so that you can see the brightest reflection of the bulb in it. The fringes will then be clearly seen as a number of alternately bright and dark bands.
In Fig. 9.58 two coherent rays leaving the pointsourch are shown arriving at point P after traveling different youtes. One ray is reflected from the mirror and then scattered by a single transparent talcum grain toward P. The secand ray is first scattered downward by the grain, after which it crosses the mirror and is reflected back toward P. The resulting optical path-length
incidence, the pattern is a series of concentric rings of

$$
\rho=\left[\frac{n m \lambda a^{2} b^{2}}{d\left(a^{2}-b^{2}\right)}\right]^{1 / 2} .
$$

Now consider a related device, which is very useful in testing optical systems. Known as a scatter plate, it enerally consists of a slightly rough-surfaced, transarent sheet. In an arangement such as the one shown Fig 9.59 it serves as anpitude splitting element. In this application it must have a center of symmetry; that is, each scattering site is required to have a duplicate, symmetrically located about a central point. In the system under consideration, a point source of quasimonochromatic light S is imaged, by means of lens L_{1} on the surface, at point A of the mirror being tested. A portion of the light coming from the source is scatered by the scatter plate and thereafter illuminates the entire surface of the mirror. The mirror, in turn, reflects ght back to the scatter plate. This wave, as well as the
 Light," Am. P. Phys 35 . 301 (1967).

Light forming the image of the pinhoie at point A, passes hrough the scatter plate again and finally reaches the mage plane (either on a screen or in a camera). Fringes are formed on this latter plane. The interference prococis, wich is manifest in the formation or these fringes, accurs because each point in the final image plane is one originating at A and the crher at some point B, which reflects scattered light. Indeed as strange as ther ay look ar first sight, well-defined tringes do restle may look at first ight, well-derined tringes do restult, shown in Fig. 9.60.
a bit more detail, conside light through the system on the scatter plate and assume light initialiy incident as shown in Fig. 9.61. After it passes th rough the scaturer plate, the incident plane wavelront \mathbf{E}_{i} will be distorted unto a transmitted wavefront E_{T}. We envision this wave, an turn, split into a series of Fourier components conaigting of plane waves, that is,

$$
E_{T}=\mathbf{E}_{1}+\mathbf{E}_{2}+
$$

(9.107)

Two of these constituents are shown in Fig. 9.61(a). Now suppose we attach a specific meaning to these components: namely, \mathbf{E}_{1} is taken to represent the light waveling to the point A in Fig. 9.59, and E_{2} that traveling oward B. The analysis of the stages that follow could be continued in the sarne way. Let the portion of the avefront returning from A be represented by the wavefront E_{A} in Fig. $9.61(b)$. The scatter piate will
\qquad by $\mathbf{E}_{a t}$ in the same a complicated configuration, but it can Fourier components consisting of plane wis above case. Irl Fig. $9.61(6)$, two of these wavefronts have been drawn, one traveling of of and the other inclined at an angle θ. The watan wave front, which is denoted by $E_{A \theta}$, is focused by hass L_{4}, the point P on the screen (Fig. 9.69). The wavefront returning from B to the satter peay

Figure 9.60 Fringes in scattercd light

(c)

Figure 9.61 Wavefronts passing through the scater plate.
\mathbf{E}_{B} in Fig. 9.61 (c). Cpon craversing the it will be reshapes into the wave $\mathbf{E}_{B r}$. One rier components of this wavefront, denoted Endined at the angle θ and will thereforc be Thi at the same point P on the screen.
woud the waves arriving at P win be concrent in hat interterence ocars. To oblan resulGudance I_{P}, first ad E_{p} and then suare and gise E.
tiscussion above only rwo point sources at the ctiscussion above, onty wo point sources at the Tipemirror is illuminated by the ongoing light, he mirror is thurainated by the ongoing tight,
point of it will serve as a secondary source ofoint of it whil serve as a secondary source ning waves. All the waves will be deformed by her plate, and these, in turn, can be split into
whe components. In each series of conponent re will be one inclined at an angle θ, and al of these will be focused at the same point P on the of theen Theresultant amplitude will then have the form

$$
\mathbf{E}_{P}=\mathbf{E}_{A \theta}+\mathbf{E}_{B \theta}+\cdots .
$$

ching the image plane can be envisioned in part of two optical fields of special interest. athese results from light that was scattered onfy ge through the phate toward the mirror, and esults from light that was scattered orily on Uife toward the image plane. The former broadly Wraver the test mirror and ultimately resuits in an Noried to the region about atter, which was indially Ews the screen. The point A is chosen so that the toll area fin the vicinity of it is free of aberrations. I Hircue, the wave refiected from it serves âs a refer 5 With wilb to compare the wavefront correspond torn will ruthe mirror surface. The interference patthisin thow, as a series of contour fringes, an (hivistio tiom perfection in the mirror surface.*
discussion of the scatcr phate, the reader night consult
fint papers by T. M. Burch, Nafure I71, $889(1953)$

 Wake and Usc a Scalterplate Interferometer." Ophical

9.82 Thin-Film Measurements by Multiple Beam Interierometry

Return to Fig. 9.32 and now suppose that the wedge has a step in it. Figure 9.62 illustrates the fringe pattern that might be seen under these circumstances. If the that might be seen same for each surface, that is, if the top suriaces are parallel, the fringes wiil be equally spaced.

When the separation of the fringes is b and the shit is a. then the height of the step is given by

$$
t=\frac{a_{b}}{b} \frac{\lambda_{f}}{2} .
$$

If one of the boundaries of the film is an optical Hat and the other boundary is a crystal surface or some other surface examined for flaness, then these Fizeau fringes are concours of the surface under examination.
An actual optical sysiem for measuring the thickness a thin film deposited on a glass substrate is shown in Fig. 9.63. The film whose thickness is to be determined is coated with an opaque layer of silver, about 70 nm thick, which accurately contours the undersurface. The

Fisure 9.62 Fringes arising from a stepped wedge-shaped film

382 Chapter 9 Interference

Figure 9.68 Arrangement for measuring fim thickness.
opposing silvered surfaces generate a sharp multiplewave Fizeau pattern. The upper plate is tilted slightly to create an air film in the form of Fig. 9.62, so that the same arrangement of fringes is now observed (Fig 9.64). Firm thicknesses of about 2.0 nm can readity be determinied in this manner, Such methods yield a reso iution in depth comparable to the aierai resolution of an electron microscope. Tolansky, using the multiple beam techniques that he invented, has measured heigh changes of 1×10^{-8} inches, nearly the size of a single atom.
9.8.3 The Michelsor-Mortey Experiment

Over the years since 1881 , the Micheison interferometes has had innumerable applications, most of which are now mainly of historical :nterest. One of the most sig-

igure 9.64 Adual fringes frori a stt.pped wedge.
nificant of these was its use in the Michetom-shirtb experiment.
During the last century scientists commont that there existed a medium, the luminifele. carrying) aether, which permeated all matter, ait space, was massless, and neither solic, biquy gas. As James Maxwell wrote in the Encwot Briamica:

Acchers were invented for the pianets to swint in, 6 Achers were invented for the pian migrobls itom constitute clectric atmospteres and of ons bodle 1 to convey sensations from ane and so on, untilall space had beetmian or four times over with aethers ... The ici wlich has survived is that which was acestor of Huygerts to explain the propagation of bighor
It was well established that light was a wave
It was well established that light was a wo did

With chat assumption, the nature of the to match terrestrial and astronomical yuy low to match the there was no denying the fignions. Al of aether; the debate centered on its exproperties. Was the zether stationary in space propernics. W reference frame from which to ? the alsolute motion of all other objects? Or the atsolang by the planets as they moved giged II the aether were stationary, an obserGarth would be able to detect an aether wind gannty biver its surface, as it moved in orbit. A. A later joined by E. W. Morley, set our to Ceffects of the aether wind, using his interphich was desigred specitically for that pur ${ }_{3}$ ariented, as shown in Fg. 9.6, wiuh th faralle to the veloct of the Michelson-Morley He derived from purely classical laws of physics, Sal derived from purely classical laws of physics, ans: we speed with respect to the moving inter感 $c-v$, it is moving against the ate her wind ${ }^{3} c-\nu$, it is moving against the atiher wind

$$
i t=\frac{e_{i}}{c-v} .
$$

Eor the keturn trip, $M_{1} O$, the beam travels with the

Kn M. Michelson-Morley experimert. Overall configar-

Figure 9.56 The Micheison-Morley experiment. Gcometry for the Hatisverss beam.
ether wind, and

$$
I_{1}^{\prime}=-\frac{\ell_{1}}{\epsilon+v} .
$$

The total time, $t_{1}^{\prime}+t_{1}^{\prime}$, to traverse $\mathrm{OM}_{1} \mathrm{O}$ is

$$
t_{1}=\frac{\ell_{1}}{c-v}+\frac{\ell_{1}}{c+v}
$$

which can be written as

$$
t_{1}=\frac{2 \ell_{1}}{c} \beta^{2},
$$

where

$$
\beta=\frac{1}{\sqrt{1}-\frac{v^{2}}{v^{2}} / c^{2^{2}}} .
$$

The time of travel toward the second mirror can be determined with the help of Fig. 9.66. From the right triangle, where t_{2}^{\prime} is the transit time to cover $O M_{2}$,

$$
c^{2} t_{2}^{\prime 2}=v^{2} t_{2}^{\prime 2}+\ell_{2}^{2}
$$

from which it follows that

$$
t_{2}^{\prime}=\frac{\ell_{2}}{c} \beta
$$

But this is also the time $t_{2}^{\prime \prime}$ that it takes the beam of light to return from M_{2} to O, and since $t_{2}-t_{2}^{\prime}+t_{2}^{\prime \prime}$,

$$
t_{2}-\frac{2 \ell_{2}}{\varepsilon} \beta .
$$

Notice that even when $\ell_{1}-\ell_{2}-\ell_{1} t_{1} \neq i_{2}$ and

$$
t_{1}-t_{2}=\frac{2 \ell}{c}\left\{\beta^{2}-\beta\right\rangle
$$

Using the binomial expansion with $c \gg z$, we obtain

$$
\beta^{2}=\left(1-v^{2} / c^{2}\right)^{-1}-1+v^{2} / c^{2}
$$

and

$$
\begin{gathered}
\beta=\left(1-v^{2} / c^{2}\right)^{-1 / 2} \\
\beta=1+\frac{1}{2} v^{2} / c^{2} .
\end{gathered}
$$

We find that with $\Delta t-t_{1}-t_{2}$

$$
\Delta t=\frac{f}{c}\left(\frac{y}{c}\right)^{2}
$$

A time difference Δt in the two paths corresponds to a difference in the number of wavelengths fitting between $O M_{1} O$ and $O M_{2} O$.

$$
\Delta N=\Delta t t_{\mathrm{T}} \text { or } \Delta N=\nu \Delta t,
$$

where T is the period and ν the frequency. This is also the number of pairs of fringes (i.e., a maximum and a minimum) that would shift past the telescope cross hairs, if a time difference Δt were somehow introduced during the obervation. Suppose that the Earth were stationary In space aod then started moving with a speed v, such that $\Delta N=\frac{1}{2}$. Furthermore, suppose the observer set the cross hairs initially at the center of a bright fringe. As the Earth began to move, the bright frtinge would sweep by, and the cross hairs would shift to the center of the adjacent dark fringe. We cannot, of cuurse, stop the world, but we can rotate the interferometer. If the instrument is rotated 90°, the new transit time difference, which can be determined by just interchang-
ing the I and 2 subscripts, is equal to $-\Delta$. This that if the observer were to rotate the interfer which, in that example $\Delta N=$ would be introduc would end up on the next brioht fringe thos haim This is essentially what Michelsonge. Their apparatus was multimirrored to moriey did Their apparase was mukis $p=1$ to maknoshn did. length as large as possible, $\ell_{1}=\ell_{2} \approx 11.0$ 酸
on a massive stone, which fioared on a massive stone, which fioated on a trout
mercury (Fig. 9.67). Each man took around with the slowly revolving stone tinuously observing the fringe pattern. Wite assumed to be equal to the Earth's orbital spte $30 \mathrm{~km} / \mathrm{s}$ and $\lambda_{0}=550 \mathrm{~nm}$, the fringe shiftom would be

$$
\Delta N=\frac{2 P}{\lambda}\left(\frac{v}{c}\right)^{2}
$$

or

$$
\Delta N=0.4
$$

They made many observations at different Earth's daily cycie and on different days duri orbit. Even though they could have detected a minute fraction of a fringe, they saw none whatel There was no aether wind; Michelson and Morley sounded the pretude to special relativity. the possibility that the aether was being dragged

Figure 9.67 The Michelson-Moriey experiment.

Figure 9.68 A variation of the Michelson-Morley experiment.
spherical mirror M_{2} has its center of curvature coindident with the focal point of the lens. If the lems being tested is free of aberrations, the emerging reflected light returning to the bearn-splitter will again be a plane waverraion deforms the waveront a fringe pattern cearly manifesting these distortions an be seen and

photographed. When M_{2} is replaced by a plane mirror a nurnber of other elements (prisms, optical fats, ext can be tested equally well. The optician interpreting the fringe pattern can then mark the surface for further polishing to correct high or low spots. In the fabrication of the finest optical systems, telescopes, high-allitude cameras, and so forth, the interferograms may even be scanned electronically, and the resulting data analyzed by computer. Computer-coatroiled plotters can then automatically produce surface contour maps or perspec tive "three-dimennional" drawings of the distorted wavefront generated by the element being tested. These procedures can be used throughout the fabrication pro cest to ensure the highest-quality optical instruments. Complex systems with wavefront aberrations in the frac-tional-wavelength range are the result of what might be called the new technology."

9.8.5 The Rotating Sagnac interferometer

Use of the Sagnac interferometer to measure the rotational speed of a system has generated interest in recent times. In particular, the ring laser, which is essentialiy a Sagnac interferometer containing a laser in one or
"Take a look ar R. Berygren, "Analysis of Interferograms," Optica Sprita, (Dec. 1970), p. 22
nore of its arms, was designed specifical purpose. The first ring laser gyroscope was this sort (Fig. 9.70). The initial experimen impetus to these efforts were performed by 1911. At chat time he rotated the entire inter mirrors, source, and detector, about a pernis axis passing through its center (Fig. 9.71). R Section 9.4.2, that two overla pping beams interferometer, one clackwise, the other couthercigs wise. The totation effectively shortens the patif tane by one beam in comparison to that of the others In th aterierometer the result is a fringe shift prup to the angulax speed of rotation ω. In the ringluyt, is a frequency difference between the two beame chet is proportional to s.
Consider the arrangement-depicted Fig. 9.71 corner A (and every other corner) moves witha speed $t=R \omega$, where R is half the diggonal ond of travel of light along $A B$ is
or

$$
t_{A B}=\frac{R \sqrt{2}}{c-v / \sqrt{2}}
$$

$$
t_{A B}=\frac{2 R}{\sqrt{2} C-\omega R}
$$

Figure 971 The rotaing Satmacinterferometry. Orizinaliy it wa $1 \mathrm{~m} \times 1 \mathrm{~m}$ with $=-120 \mathrm{cv} / \mathrm{min}$

This can be expressed in terms of the area $A=2 R^{2}$ of the square formed by the treams of light as

$$
\Delta:=\frac{4 A \omega}{c^{2}} .
$$

Le the period of the monochromatic light used be $\tau=\lambda / \sigma$; then the fractional displacement of the fringes, given by $\Delta N-\Delta t / \tau_{3}$, is

$$
\Delta N=\frac{4 A \omega}{c \lambda}
$$

a result that has been verified experimentally. In parCine Mithon tular, Michelson and Gate used Earth.
ine the angular vality of the Earth.
inasmuch as it $3 s 50 m e s$ speeds in excess of c an assump ion that is contrary to the dictates of special relativity Furthermore, it would appear that since the system is accelerating, general relativity would prevaii. In fact. all these formalisms yield the same results.

Micheison and Gaik, Astroplog. J. 61, I40 (1925).

388 Chapter 9 Interference

PROBLEMS

9.1 Returning to Section 9.1. let
and
where the wavefront shapes are not explicitly specified and E_{1} and E_{9} are complex vectors depending on space and E_{1} and E_{2} are complex vechar deperdence term is then given by

$$
I_{12}=\frac{1}{2}\left(\boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2}^{*}+\boldsymbol{E}_{j}^{\prime \prime} \cdot \boldsymbol{E}_{\gamma}\right) .
$$

You will have to cvaluate terns of the form

$$
\left\langle\boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2} e^{-\varepsilon \text { zat }}\right\rangle=\frac{\boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2}}{T} \int_{1}^{1+T} e^{-2 \text { ziwt } t} d t
$$

for $T » r$ (take another look at Problem 3.4). Show that Eq. (9.108) leads to Eq. (9.11) for plane waves.
9.2 In Section 9.1 we considered the spatial distribu tion of energy for two point sources. We mentioned that for the case in which the separation $« \gg \lambda, \Lambda_{1}$ spatially averages to zero. Why is this true? What hap pens when a is much less than λ ?
9.3 Will we get an interference pattern t_{n} Young's experiment (Fig. 9.5) if we replace the source slit S by single long-filament light bulb? What would occur if we replaced the slits S_{1} and S_{2} by these same bulbst
9.4* Two $1.0-\mathrm{MHz}$ radio antennas emitting in phase are separated by 600 m along a nortb-south line. A dio receiver placed 2.0 km east is equidistant from oth transmiting antennas and picks up a fairly strong signal. How far north should that receiver be moved if it is again to detect a signal nearly as strong?
9.5 An expanded beam of red light from a He-N aser ($\lambda_{0}=632.8 \mathrm{~nm}$) is incident on a screen contairing wo very narrow horizontal slits separated by 0.200 mm . A fringe pattern appears on a white screen held 1.00 m away.
) How far (in xadians and millimeters) above and below the central axis are the first zeros of irradiance?
b) How far (in mm) from the axis is the fith bright band?
c) Compare these two results.
9.6 6^{*} Red plane waves froni a ruby laser $\left(\lambda_{0}=\right.$ 694.3 nm) in air impinge on two paraliel slits in an opaque screen. A fringe pattern forms on a distint wall, and we sec the fourth bright band 1.0° above the central axis. Kindly calculate the separation between the slits.
$9.7^{*} \quad$ A 3×5 card containing two pinholes, 0.08 mm in diameter and separated center to center by 0.10 mm is ifluminated by parallel rays of blue light from an argon ion laser ($\lambda_{0}=487.99 \mathrm{~nm}$). If the fritiges on ad observing screen are to be 10 mm apart, how far away should the screen bet
9.8* White light falling on two long narrow slits emer ges and is observed on a distant screen. If red ligh; $\left(\lambda_{0}=780 \mathrm{~nm}\right)$ in the first-order fringe overlaps violet in the serond-crder fringe, what is the latter's wavelength?
9.9* Considering the double-slit experiment, derive an equation for the distance $y_{m^{\prime}}$ from the central axis to the $n n^{\prime}$ th irradiance minimum, such that the first dark bands on either side of the central maximum cortespond to $m^{i=}=1$ Identify and justify ali your approxty mations.
9.10* With regard to Young's experiment, derive a general expression for the shift in the vertical position of the mith maximum as a result of placing a thin parallab sheet of glass of index n and thickness d directly overs one of the slits. Identify your assumptions
9.11* Plane waves of monochromatic lighr impinges an angle θ_{i} on a screen containing two narrow shis separated by a distance a. Derive an equation for angle measured from the central axit which locates for mth maximum.
9.12* Sunlight incident on a screen containing two long narrow alits 0.20 mm apart casts a patrem on a white sheet of paper 2.0 m beyond. What is the distanes
eparating the violet ($\lambda_{D}=400 \mathrm{mma}$) in the first-order end from the red ($\left.\lambda_{0}=600 \mathrm{nma}\right)$ in the second-order fand?
9. 13 To examine the condirions under which the監pproximations of Eq. (9.23) are valid:
Apply the law of cosines to triangle $S_{1} S_{2} P$ in Fig $9.5(c)$ to get

$$
\frac{r_{3}}{r_{1}}=\left[1-2\left(\frac{a}{r_{1}}\right) \sin \theta+\left(\frac{a}{r_{1}}\right)^{2}\right]^{1 / 2}
$$

) Expand this in a Maclaurin scries yielding

$$
r_{2}=r_{1}-a \sin \theta+\frac{a^{2}}{2 r_{1}} \cos ^{2} \theta+.
$$

c) In light of Eq. (9.17), show that if ($r_{1}-r_{2}$) is to equal $a \sin \theta_{7}$ it is required that $r_{1} \geqslant a^{2} / \lambda$.
9.14 A stream of electrons, each having an energy of 10.5 eV impinges on a pair of extremety thin slits separated by $10^{-2} \mathrm{~mm}$. What is the dstance bent m $9.108 \times 10^{-31} \mathrm{~kg}, 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$.)
9.15 Show that a for the Fresnel biprism of Fig. 9.10 ziven by a $=2 d(n-1) \alpha$.
9.16* In the Fresnel double mirror $s=2 \mathrm{~m}, \lambda_{0}$ M9.m, and the separation of the fringes was found to bel 0.5 rmm . What is the angle of inclination of the mifrors, if the perpendicular distance of the actual poin curce to the intersection of the two mirrors is I m?
6.17* The Fresnel biprism is used to obtain fringes Crom a point source that is placed 2 m from the screen and the prism is midway between the source and the , Lhe indcx of refraction of the lighas be be $\lambda_{0}=1500 \mathrm{~nm}$ sthe prist angle if the separation of the fringes 0.5 mm ?

13 What is the general expression for the separatio
ह fringes of a Fresnel biprism of index 12 imaratio Hedium having an index of refraction n ?
9.19 Using Lloyd's mirror, x-ray tringes wera 0.0025 cm . The spacing of which was found to be source-screen distance was 3 m , how high above the mirror plane was the point source of x-rays placed?
9.20 Imagine that we have an antenna at the edge of a lake picking up a signai from a distant radio star (Fig. 9.72), which is just coming up above the horizon. Write expressions for 8 and for the angular position of the star when the antenna detects its first maximum.

Figure 9.72
9.21* If the plate in Fig 9.14 is glass in air, show that the amplitudes of $E_{1} E_{2 \text { and }}$ and $E_{s_{r}}$ are respectively $0.2 E_{0 i} .0 .192 E_{v_{i},}$, and $0.008 E_{0 i}$, where $E_{0 i}$ is the incident amplitude. Make use of the Fresncl coefficients at normal incidence, assuming no absorption. You might repeat the calculation for a water film in air
9.22 A soap film surrounded by ait has an index of refraction of 1.34. If a region of the film appears bright red ($\lambda_{0}=633 \mathrm{~nm}$) in normaliy reflected light, what is its minimum thickness there?
9.23* A thin fitm of chiyd atcohol ($n-1.36$) spread on a flat glass plate and illuminated with white light shows a color pattern in reflection. If a region of the film reflects only green light (500 nm) strongly, hos thick is it?
9.24. A soap film of index 1.34 has a ragion where it is 550.0 nim thick. Determine the vacuum wavelengths of the radiation that is not reffected when the film is illuminated from above with sunlight.

Chapter 9 Interference

9.25 Consider the circular pattern of Haidinger's friness resulting from a film with a thickness of 2 mm and an index of refraction of 1.5 . For monochrornatic illumiation of $\lambda_{0}=600 \mathrm{~nm}$, find the value of m for the central fringe $\left(\partial_{t}=0\right)$. Will it be bright or dark
9.26 Illuminate a microscope slide (or even better, a hin cover-glass sidde). Colored fringes can casily be seen with ant ordinary fuorescent lamp serving as a broad ource or a mercury street light as a point source. Describe the fringes. Now rotate the glass. Does the pattern change? Duplicate the conditions shown in Figs. 9.15 and 9.16. Try it again with a sheet of plastic food wrap stretched across the top of a cup.
9.27 Figure 9.73 illustrates a setup used for testing enses. Show tha!

$$
\dot{d}=x^{2}\left(K_{2}-R_{1}\right) / 2 R_{1} R_{2}
$$

when d_{1} and d_{2} are negligibie in comparison with $2 R_{1}$ hen d_{1} and d_{2} are geometry that relates the products of the segments of intersecting chords.) Prove that the radius of the π th arkecing chords.) Prove that the radus of the $n n$th dark fringe is then

$$
x_{m}-\left[R_{1} R_{z} m \lambda_{j} /\left(R_{z}-R_{1}\right)\right]^{1,2} .
$$

How does this relate to Eq. (9.43)?

9.28* Newton rings are observed on a film with quasimonochromatic light that has a wavelength of quas nonochromatic light that has a wavelength of
500 nm . If the 20 ch bright ring has a radius of 1 cm . 500 nm . If the 20 h bright ring has a radius of 1 cm , What is the radius of curvature of the lens forming one
part of the interfering system?
9.29 Fringes are observed when a parallel beam of light of wavelength 500 nm is incident perpendicularly onto a wedge-shaped film with an index of refraction of 1.5. What is the angle of the wedge if the fringe scparation is $\frac{1}{3} \mathrm{~cm}$?
9.30* Suppose a wedge-shaped air film is made between two sheets of glass, with a piece of pape $7.618 \times 10^{-5} \mathrm{~m}$ thick used as the spacer at their ver ends. If light of wavelength 500 nm comes down from directly above, determine the number of bright fringes that will be seen across the wedge
9.31 A Michelson interferometer is illuminated with monochromatic light. One of tis mirrors is then moved $2.58 \times 10^{-5} \mathrm{~m}$, and it is observed that 92 fringe-pairs bright and dark, pass by in the process Determine the wavelength of the incident beam.
9.39* One of the mirrors of a Michelson intererometer is moved, and 1000 fringe-pairs shift past the hairline in a viewing telescope during the proces. if the device is illuminated with $500-\mathrm{nm}$ light, how far was the mirror moved?
.99* Suppose we place a chamber 10.0 cm long with .35 . fat parallel windows in one arm or a Mches ist forometer that is being illumariated by $600-\mathrm{rm}$ light. he refractive index of air is 1.00029 and all the air untped our or the cell, how many ringe-pairs will shtft ift the proceas?
9.34* A form of the Jamin inter ferometer is illustrated in Fig. 9.74. How does it work? To what use might it be put?
9.35 Starting with Eq. (9.53) for the transmitted wave, compute the flux density, i.e. Eq. (9.54).
9.36 Given that the mirrors of a Fabry-Perot inter ferometer have ar amplitude reflection coefficient of $r .=0.8944$, find
a) the coefficient of finesse,
b) the half-width,
) the finesse, and,

$$
C=\frac{\left(I_{i} / I_{i}\right)_{\text {max }}}{\left(I_{i} / I_{i}\right)_{\text {min }}}
$$

9.37 To fill in some of the details in the derivation of the smallest phase increment separating two resolvable Fabry-Perot fringes, that is,

$$
\begin{equation*}
\langle\Delta \delta\rangle=4.2 / \sqrt{F}, \tag{9.78}
\end{equation*}
$$

satisfy yourself that

$$
[\mathscr{A}(\theta)]_{s=\delta_{a} \pm \Delta S / 2}-[\mathscr{A}(\theta)]_{a=\Delta \delta / 2}
$$

Skow that Eq. (9.72) can be rewritten as
$2[\Phi \mathbb{d}(\theta)]_{s=\Delta 5 / 2}=0.81\left\{1+\left[\mathscr{s}\{(\theta)]_{\delta=\Delta \delta}\right\}\right.$.
When F is large γ is small, and $\sin (\Delta \delta) \approx \Delta \delta$. Prove that Eq. (9.73) then follows.
9.38 Consider the interference pattern of the Michel son interferometer as arising from (wo beams of equal flux density. Using Eq. (9.17), compute the half-width What is the separation, ir δ, between adjacent maxima What then is the finesse?
9.39* Satisfy yourself of the faci that a film of thicknes $\lambda_{1} / 4$ and index n_{1} will always reduce the reflectance of the substrate on which it is deposited, as long as n_{s} > $n_{1}>n_{0}$. Consider the simplest case of normal incicence nd no 1. She ${ }^{2}$. the waves refleced back from the two interfaces cancel one another.
9. 40 Verify that the reflectance of a substrate can be increased by coating it with a $\lambda_{f} / 4$, high-index layer that is $n>n$. Show that the reflected waves interfer constructively. The quarter-wave stack $g(H L)^{\omega} \mathrm{Ha}$ can be thourht of as a series of such structures.
9.41 Determine the refractive index and thickness of a film to be deposited on a glass surface ($n_{g}=1.54$) such that no normally incident light of wavelength 540 nm is reflected.
9.42 A glass microscope iens having an index of 1.55 is to be coated with a magnexium fluoride film increase the transmission of normally inctident yeliow light ($\lambda_{0}-550$ nim). What minimum thickness should be deposited on the iens?
9.49* A glass camera lens with an index of 1.55 is to be coated with a cryolite film ($n \approx 1.50$) to decrease th reflection of normally incident green light ($\lambda_{0}=$ 500 nm) What thickness should be deposited on the lens?
10.1 PRELIMINARY CONSIDERATIONS An opaque body placed midway between a screen and a point source casss an intricate shadow made up of
bright and dark regions quite unlike anything one might bright and dark regions quite unlike anything one might
expect from the tenets of geometrical optics (Fig. 10.1).* expect from the tenets of geometrical optics (Fig. 10.1).*
The work of Francesco Grimaldi in the 1600 s was the first published detailed study of this deviation of light from rectilinsar propagation, something he called "diffrac tio." The efect is a generai characteristic of wave phenomena occurting whenever a portion of a wavefront, be it sound, a mather wave, or light, is obsiructed in some way. If in the course of encountering an obstacle, either transparent or opaque, a region of the wavefront is altered in amplitude or phase, diffraction will occur. \dagger The various seg ments of the wavefront that propagate beyond the obstacle interfere, causing the particular energy-density distribution referred to as the diffraction pattern. There
-The effect is easily seen, but you need a fairiy srrorg source. A high-intensity lamp shining through a sraall hole works well. If you
lock at rhe stadow pastern arising from a pencil under point-source lock al the shadow pattern arising from a pencil under point-source
illumination, you will see an unuscal bright region bordering the edge and even a faintly illuminated band down the middle of the edge and even a faintly iluminatea band down the midale of the
shado a the staduw cast by your hand in dircce sunlight.
\dagger Diffraction associated with transparent obslacles is not usually considered, although if you have ever driven an autamobilc at night with
a few rain droplets on your eveglasses, you are nod oubt quite famitiar with the effect. If you bave not, put a droplet of water or saliva on a glass plate, hald it very closs to your eye, and look directly through it at a point soutce. You'll see bright and dark fringes.

Figure 10.1 The shadow of a hand holding a dime, east directily on $\times 5$ Polaroid Ac. . A. 3000 fim using a Hc -Ne bearn and no lenses. (Photo by E.H.)
no significant physical distinction between interference and diffaction. It has, however, become somewhat customary, if not always appropriace, to speak of interference when considering the superpooicion o. only a lew waves and diffraction when treating a large number of waves. Even so, one refers to multiple-beam interference in one context and diffraction from a grating in another.
We might mention parentherically that the wave
heory, although the most naturai, is not the only means Wer dealing with certain diffraction phenomena. For Cample, diffraction from a graing (Section 10.2.7) can We analyzed using a corpuscular quantum approaci. For our purposes, however, Which provides che shoughout this chapter.
pare than suftice throughout that optical instruments It should be emphasized that optical instruments make usent. Diffraction effects are accordingly of great Whefront. Diffraction effects are accordingly of devices Sigificance in the detailed understandirg of and so on. Tifall defects in a lens system were removed, the ultimate If all derects of an image would be limited by diffraction (Problem 10.23).
As an initial approach to the problem, let's reconsider Huygens's principle (Section 4.2.1). Exch point on a Havefront can be envisaged as a source of secondary pherical wavelets. The progress through space of the phavefront or any portion thereof can then presumably be determined. At any particular time, the shape of the Wwavefront is supposed to be the envelope of the secondery wavelets (Fig. 4.3). The technique, however多nores most of each secondary wavelet, retaining only Shat portion common to the envelope. As a result o Ehis inadequacy, Huygens's principle by itself is unable Waccount for the details of the diffraction process. Tha Whis is indeed the case is borne out by everyday Experience. Sound waves (e.g., $\nu=500 \mathrm{~Hz}, \lambda \approx 68 \mathrm{~cm}$) Easily "bend" around large objects like telephone poles and trees, yet these objects cast fairly distinct shadows when illuminated by light. Huygens's principle is however and would predict the same wavefront configurations in both situations. The difficulty was resoived by Fresnel with his addition of the concept of presoived by Fresnel corresponding Huygens-Fresne
 Erinciplestaternt instant in time, serues as a source of spherical fecondary wavelets (uith the same frequency as that of the (primary wave). The amplitude of the opsical feeld af any poink Beyond is the superpasition of all these wavelets (considering their amplitudes and relative phases). Applying these ideas In the very simplest qualitative level, refer to the ripple
W. Duane, Prac. Nai. Acad. Sci. 9,158 (1923).
tank photographs in Fig. I 0.2 and the illustration in Fig. 10.3. If each unobstructed point on the incoming plane wave acts as a coherent secondary source, the maximum optical path-length difference among then will be $A_{\max }=|\overline{A P}-\overline{B P}|$, corresponding to a source point at each edge of the apierture. But $A_{\text {max }}$ is less than or equal to $\overline{A B}$, the latter being the case when P is on

 in a ripple ank, (Photo courtecy PSSC Physict, D. C. Heath, Boston, 1960.)

Figure 10.3 Diffraction at a small aperture.
the screen. When $\lambda \gg \overline{A B}$, as in Fig. 10.3 , it follows that $\lambda \geqslant \Lambda_{\max }$, and since the waves were initially in phase they must all interfere constructively ito varying degrecs) wherever P happens to be [see Fig 102 (c)] The antithetic situation occurs when $\lambda \ll \overline{A B}$, as in Fig. I0.2(a). Now the area where $\lambda \gg \Lambda_{\text {max }}$ is limited to a small region extending out directly in front of the aperture, and it is only there that all the wavelets will interfere constructively. Beyond this zone some of the wavelets can interfere destructively, and the "shadow" begins. Keep in mind that the idcalized geometric stadow corresponds to $\lambda \rightarrow 0$.
The Huygens-Fresnel principle has some shortcomings (which we will examine later), in addition to the fact that the whole thing at this point is rathex hypothetical. Gustav Kirchhoff developed a more rigorous theory based directly on the solution of the differential wave equation. Kirchhoff, although a contemporary of Maxwell, did his work before Hertz's demonstration (and the resulting popularization) of the propagation of electromagnetic waves in 1887. Accordingly, Kirchhoff employed the oider elastic-solid theory of light. His refined analysis lent credence to the formulation of Huygens's principle as an eratecise sequence of the wave equation. Fven so, the Kirchhoff theory is itself an approximation that is valid for sufficiently small wavelengths, that is, wher, the diffract ing apertures have dimensions that are large in com-
parison to λ. The difficulty arises from the fact that wed require the solution of a partial differential equation that meets the boundary conditions imposed by the obstruction. This kind of aigorous solution is obtainable only in a few special cases. Kirchhoft's theory works airly well, even though it deals only with scalar waves and is insensitive to the fact that light is a transverse vector feld.*
It should be stressed that the problem of determining an exact solution for a particular diffracting configur ration is among the most troublesome to be dealt with, in optics. The first such solution, utilizing the electomagnetic theory of light, was published by Arnold Johannes Wilhelrn Sommerfeld (I868-195I) in 1896. Although the problem was physically somewhat unrealstic, in that it involved an infinitery thin yet opaque. perfectly conducting plane screen, the result was noned theless extremely valuable, providing a good deal of Rigorous solutions of this sont do not exist even
r many of the configurations of practical interest We will therefore, out of nurecssity, rely on the interest. We treatments of Huygens-Fresnel and Kirchhoff. In recent times, microwave techniques have been recent umes, microwave techniques have been
employed to conveniently study features of the diffraction field that might otherwise be almost impossible to examine opticaly. The Kirchooff theory has held up remarkably well under this kind of scrutiny. \dagger In many cases, the simpler Huygens-Fresnel treatment will prove adequate for our purposes.

10.I.1 Opaque Obsfructions

Diffraction may be envisioned as arising from the inter action of electromagnetic waves with some sort of phys cal obstruction. We would therefore do well to reexamine briefy the processes involved; in other words,
A vectorial tormulation of the scalar Kirchhof theory is discussed Optic, p. 325. You rmight as well uake a look at B. B. Bakerar and E. E, T. Copson, The Math henatical Theor of Huzzens' Principle as a general reference to diffraction. None of thesc texts is easy reading. +C. L. Andrews, Am. J. Phys. 19, 250 (1951); S. Silver, J. Oph Soc. Avi. 52, 131 (1962).
what actually
One possible description is that a screen may be considered to be a continuum; that is, its microscopic structure may be neglected. For a nonabsorbing metal sheet no joule heating, therefore infinite conductivity) we can write Maxwell's equations for the metal and for the surrounding medium, and then match the two at the boundaries. Precise solutions can thus be obtained for very simple configurations. The reflected and diffracted waves then resule from the current distribution within he sheet.
Examining the screen on a submicroscopic scale, imagine the electron cloud of each atom set into vibraion by the elecric field of the incident ratiaton. The lassical model, with spare the b 35) serves quite well so that we need oncerned with the quantum mochanical descriptionThe amolitude and phase of a particular oscillator whin the screen are determined by the local electric eld surrounding it This in turn is a superpostion of he incident field and the fields of all the other vibrating electrons. A large opaque screen with no apertures, be tt made of black paper or aluminum foil, has one obvious effect: there is no optical field in the region beyond it.

Figure 10.4 Ripple-tank photos. In one
cese the waves ares ismply diffrated hya slitit
in the other a series of equaly spaced point
sources span the aperture and gene:ate a siminiar pattern. (Photos courtesy
Phuies, D. C. Heath, Boson, 1960)

Electrons near the illuminated surface are driven into oscilation by the impinging light. They emit radiant energy, which is ultimately "reflected" backward absorbed by the material in the form of heat, or both oscillor , he incident primary wave and the electronzero lizhelds superimpose in such a way as to yie. seem a rema point beyond the screen. This gh If the primary whecial balance, but it actuallyis not would propary wave were not canceled completeiy, exciting mopere electrons to radiate. This in the screen, further weaken the primary wave until it ultimately vanished if the the primary wave until it ultimately vanished fif the screen were thick enough, Even an
opaque material such as silver, in the form of a sufficiently thin sheet, is transparent (recali the halfsilvered mirror)
Now, remove a small disk-shaped segment from the center of the screen, so that light streams through the aperture. The oscillators that uniformly cover it are removed along with the disk, so the remaining electron first and certainly approximate approach, assume tha the mutual interaction of the oscillators is essentially neati ghe mate; that is, the electrons in the screen are completely giote; that is, the electrons in the screen are completely
unaffected by the removal of the electrons in the disk. The field in the region beyond the aperture will then
be that which existed before the removal of the disk, namely zero, minus the contribution from the disi alone. Except for the sign, it is as if the source and screen had been taken away, leaving only the osciliator on the disk, rather than vice versa. In other words, the diffraction field, in this approximation, can be pictured as arising exclusively from a set of fictitious noninteract ing oscillaters distributed uniformly over the region of the aperture. This of course, is the essence of the Huygens-Fresnel principle.
We can expect, hawever, that instead of no interaction at all between electron-oscillators, there is a short-range effect, since the oscillator fields drop off with distance In this physically more realistic vicw, the electrons
within the vicinity of the aperture's edge are affected when the disk is removed For large apertures, the nem ther disk the number along the edge. In such cases if the point of observation is far away and in the forward direction, the Huygens-Fresnel principle should, and does, work well (Fig. 10.4). For very small apertures, or at points of observation in the vicinity of the aperture edse effects become important, and we can anticipate difficul ties. Indeed, at a point within the aperture itself, the electron-oscillators on the edge are of the greatest sig nificance because of their proximity. Yet these electron were certainly not unaffected by the removal of the adjacent oscillators of the disk. Thus, the deviation from the Huygens-Fresnel principle should be appreciable

10.1.2 Fraunhofer and Fresnel Diffraction

magine that we have an opaque shield, Σ, containing single small aperture, which is being illuminated by plane waves from a distant point source, S. The plane of observation σ is a screen parallel with, and very close o, $\mathrm{\Sigma}$. Under these conditions anhage of the aperure is projected onto the screen, hich is ctearly recogniz If the plane of observation is moved farther away from Σ the tmare of the aperture athourh still easily recog nizabie, becomes increasingly more structured as the fringes become more prominent. This phenomenon is nown as Fresnel or near-field diffraction. If the plane
fobservation is slowly moved out still. farther, a con, inuous change in the fringes results. At a very great istance from Σ the projected pattern wili have spreat out considelably, bearing little or no resemblance to the actual aperture. Thereatter moving σ essentially changes only the size of the pattern and not its shape This is Fraunhofer or far-field diffraction. If at that oint we could sufficiently reduce the wavelength of he incoming radiation, the pateern would revert to the resnel case. If λ were decreased even more, so that it pproached zero. the fringes would disappear, and th mage would take on the limiting shape of the aperture as predicted by geometrical optics. Returning to the original setup, if the point source was now move oward Σ, spherical waves would impinge on the ape ure, and a Fresnel pattern would exist, even on a distan servation
In other words, consider a point source S and a poin of observation P, where both are very far from Σ and no lenses are present (Problem 10.1). As iong as both the incoming and outgoing waves approach being planar differing therefrom by a small fraction of a wavelength) ouen the extent of the diffracting apertures (or obstacles) Fraunhofer diffraction obtains. Another way to appreciat his is to realize that the phase of each contribution P, due to differences in the path craversed, is crucial to the determination of the resultant field. Moreover, if he wavefronts impinging on, and emerging from, the perture are planar, then these path differences will be escribable by a linear function of the two aperture ariabies. This lineanty in the apenare cariables is the deffnitive mathematical criterion of Fraunhofer diffraction On the other hand, when S or P or both are too near Σ for the curvature of the incoming and outgoing waveronts to be negligible, Fresnel diffraction prevails.
Each point on the aperture is to be visualized as a source of Huygens waveleis, and we should be a little concerned about their relative strengths. When S is nearby, compared with the size of the aperture, spherical wavefront will iluminate the hoke. The ils different and the strengtl of ene aperure wich which drops off inversely with distance) will vary from point to point over the diffrating screen. That would not be the case for incoming homogeneous plane waves,

Figure 10.5 Frauchofer diffraction

Much the same thing is true for the diffracted wave roing from the screen to P. Even if they are all critted with the same amplitude (e.g., when the input beam is lanar), if P is nearby the waves converging on it are planar), if P is nearby, the waves converging on it are distances from various parts of the aperfure to P. Ideally, for P at infinity the waves arriving there will be planar, and we need not worry about differences in field strength. That tro contributes to the simplicity of the limiting Fraunhofer case.
As a practical rule of thumb. Fraunhofer diffraction Ni. occur at an aperture (or obstacle) of greatest width a when

$$
R>a^{2} / \lambda,
$$

where R is the smaller of the two distances from S to Σ and Σ to P (Problem 10.1). Of course, when $R=\infty$ the finite size of the aperture is of little concern. Moreover, an increase in λ clearly shifts the phenomenon toward the Fraunhofer extreme
Where both S and P are effectively at infinity, is andition, by using an arrangement equivalent in that, if achieved y using an arrangement equivalent to that of Fig. 10.5. of lens L_{F}, and the plane of observation is the second flocal plane of L_{2}. In the terminology of geometrical optics, the source plane and σ are conjugate planes. These same ideas can be generalized to any lens
system forming an image of an extended source or object (Problen 10.5).* Indeed, the image would be a Fraunhofer diffraction pattern. It is because of these portant practical considerations, as well as the inhe simplicity of Fraunhofer diffraction, that we will xamine it before Fresriel diffraction, even though it is a special case of the latter.

10.1.3 Several Coherent Oscillators

As a simple yet logical bridge hetween the studies of interference and diffraction, consider the arrangement in Fig. 10.6. The illustration depicts a linear array of N coherent point oscillators (or radiating anternas), which are all identical, evern to their polarization. For the moment, assume that the oscilators have no intrins phase difference; that is, they each have the same initial phase angle. The rays shown are all aimost paralle mecting at some very distant point P. If the spatial extent of the array is comparatively small, the separate wave amplitudes arriving at P will be essentially equal, having craveled nearly equal distances, that is,

$$
E_{0}\left(r_{1}\right)=E_{\mathrm{u}}\left(r_{2}\right)-\cdots=E_{0}\left(r_{N}\right)-E_{00}(T) .
$$

*A Hc-ve lase can be wr, *ithc-Nc lasut can be set up to generate magnificent pat

Figure 10.6 A linear array of in-phase coherent oscilitators. (a) Notc that at the angle shown $\delta=\pi$ while at $\theta=0, \delta$ would be zero. (b) Onc of many scts of wave ronts emitted from a line of coherent poin sources.

The sum of the interfering spherical waveiets yields an electric field at P, given by the real part of
$E=E_{0}(\mathrm{r}) e^{i\left(k r_{1}-\omega t\right)}+E_{0}(r) e^{i\left(t r_{2}-\omega t\right)}+\cdots+E_{0}(r) e^{2\left(k\left(r_{N}-\omega t\right)\right.}$
It should be clear from Section 9.1, that we need no It should be wir, frorn Section 9.1, that we need not for this configuration. Now then

$$
E^{-} E_{0}(r) e^{-i \omega t} e^{i * r_{2}}
$$

$$
\times\left[1+e^{i k\left(r_{2}-r_{1}\right)}+e^{r k\left(r_{2}-r_{1}\right)}+\cdots+e^{i k\left(r_{N}-\tau_{1}\right)}\right] .
$$

The phase difference between adjacent sources is obtained from the expression $\delta=k_{0} \Lambda$, and since Λ = $n d \sin \theta$, in a 10.6, it follows that
as

$$
\begin{aligned}
E= & E_{0}(r) e^{- \text {jist }} e^{i k r_{1}} \\
& \times\left[1+\left\{e^{i \delta}\right)+\left(e^{i \delta}\right)^{2}+\left(e^{i \delta}\right)^{3}+\cdots+\left(e^{* i} y^{N-1}\right.\right.
\end{aligned}
$$

The bracketed geometric series has the value

$$
\left(e^{i 8 N}-1\right) /\left(e^{i 8}-1\right),
$$

which can be rearranged into the form

$$
\frac{e^{i N \sigma / 2}\left[e^{i N \delta / 2}-e^{-i N s / 2}\right]}{e^{i \delta / 2}\left[e^{i \delta / 2}-e^{-i \delta / 2}\right]}
$$

or equivalently

$$
e^{i(N-1) \varepsilon ; 2}\left[\frac{\sin N 8 / 2}{\sin \delta / 2}\right] .
$$

(b)

Tac field then becomes

Todice that if we define R as the distance from the ter of the line of oscillators to the point P, that is,

$$
R=\frac{1}{2}(N-\mathrm{I}) d \sin \theta+r_{\mathrm{t}},
$$

(gen Eq. (10.3) takes on the form

$$
E=E_{0}(r) e^{i(\ell R-\operatorname{sos})}\left(\frac{\sin N \delta / 2}{\sin \delta / 2}\right) .
$$

Whally, then, the flux-density distribution within the Fraction pattern due to N coherent, identical, distant int sources in a linear array is proportional to $E E^{*} / 2$ Complex E or

$$
I=I_{0} \frac{\sin ^{2}(N \delta / 2)}{\sin ^{2}(\delta / 2)},
$$

Where I_{0} is the flux density from any single source - Fiving at P. (See Problem 10.2 for a graphic derivation and for $N=2$, , (9.17). The functional dependence of I on θ is more apparent in the form

$$
I=I_{0} \frac{\sin ^{\mathrm{q}}[N(k d / 2) \sin \theta]}{\sin ^{2}[(k d / 2) \sin \theta]} .
$$(10.6)

The $\sin ^{2}[N(k d / 2) \sin \theta]$ term undergoes rapid fluctuations, whereas the function that modulates in,伿 $[(k d / 2) \sin \theta]\}^{-2}$, varies relatively slowly. The cominned expression gives rise to a series of sharp principal Reaks separated by small subsidiary maxima. The prinApal maxima occur in directions θ_{m}, such that $\delta=2 m \pi$, where $m=0, \pm 1, \pm 2, \ldots$ Because $\delta=k d \sin \theta$,

$$
d \sin \theta_{m}=m \lambda .
$$

(10.7)

Since $\left[\sin ^{2} N \delta / 2\right] /\left[\sin ^{2} \delta / 2\right]-N^{2}$ for $\delta=2 m \pi$ (from Hospital's rule), the principal maxima have values of ${ }^{51} I_{0}$. This is to be expected, inasmuch as all the oscillators are in phase at that orientation. The system will radiate a maximum in a direction perpendicular to the anray $\left(m=0, \theta_{0}=0\right.$ and $\left.\pi\right)$. As θ increases, δ increases Note that if to zero at $N 8 / 2^{-} \pi$, its first minim

Figure 10.7 Interferometric radio telescope at the University of east-west bastial $(N=32, \lambda-21 \mathrm{~cm}, d=7 \mathrm{~m}, 2 \mathrm{~m}$ diameter,
zero-order principal maximum exists. If we were lookin at an idealized line source of electron-oscillators separated bo atomic distances, we could expect only that one principal maximum in the light fold.

$$
\begin{aligned}
& \text { naximum in the ight feld. } \\
& \text { The antenna array in Fis }
\end{aligned}
$$

in the narrow beam or lobe corresponding to radiation maximum. (The parabolic dishes shown reflect in the forward direction, and the radiation pattern is no longe symmetrical around the common axis.) Suppose that we have a system in which we can introduce an intrinsi phase shift of ε between adjacent oscillators. In that case

$$
\delta=k d \sin \theta+\varepsilon ;
$$

the various principal maxima will occur at new angles

$$
d \sin \theta_{m}=m \lambda-\varepsilon / k .
$$

Concentrating on the central maximum $m=0$, we can vary its orientation θ_{0} at will by merely adjusting th value of ε

The principle of reversibility, which states that without absorption, wave motion is reversible, leads to the same field pattern for an antenna used as either radio telescope, there "ore "pointed" by combin ing the output from the individual atennas with a ppropriate phase shift, ε, introduced between each of them. For a given ε the output of the system corre
sponds to the signal impinging on the array from a specific direction in space.

Figure 10.7 is a photograph of the first multipie radio interferometer, designed by W. N. Christiansen and antennas, each 2 m in diameter, designed to function in phase at the wavelength of the $21-\mathrm{cm}$ hydrogen emission line. The antennas are arranged along an emission line. The anternas are arranged and This east-west base 1 nne with 7 m separating each one. This
particular array utilizes the Earth's rotation as the scanning mechanism.*
Examine Fig. 10.8, which depicts an idealized line source of electron-oscillators (e.g., the secondary sources of the Huygens-Fresnel principle for a long slit whose width is much less than λ, illuminated by plane
waves). Each point emits a spherical wavelet, which we write as

$$
E=\left(\frac{\varepsilon_{0}}{\tau}\right) \sin (\omega t-k \tau)
$$

explicitly indicating the inverse r-dependence of the amplitude. The quantity ε_{0} is said to be the source strength. The present situation is distinct from that of Fig. 10.6, since now the sources are very weak, their number, N, is tremendously large, and the separation between them is vanishingly small. A minute but finite segment of the array Δy_{4} will contain $\Delta y_{2}(N / D)$ sources, where D is the entire length of the array. Imagine that the array is divided up into M such segments (i.e.. i goes from 1 to M. The contribution to the electric field intensity at P from the i th segment is accordingly

$$
E_{i}=\left(\frac{\mathcal{E}_{\mathrm{G}}}{r_{i}}\right) \sin \left(\omega i-k r_{i}\right)\left(\frac{N \Delta y_{i}}{D}\right),
$$

provided that Δy_{1} is so small that the oscillators within it have a negligible relative phase difference ($r_{2}=$ constant), and their fields simply add constructively. We can cause the array to become a continuous (coherent) Ine source by letting N approach infinity. This descriptso allows the use of the calculus for more complicated geometries. Certainly as N approaches infinity the geometries. Certainly as N approaches infinity, the *See L. Brookner. "Phased-Array Kadars," Sci. Am. (Feb. 1985),
p. 94.

Figure 10.8 A caherent line source.
source strengths of the individual oscillators mus diminish to nearly zero, if the total output is to be finite We can therefore define a constant ε_{1} as the sourse strength per unit length of the array, that is,

$$
\varepsilon_{1}=\frac{1}{D} \lim _{N \rightarrow \infty}\left(\varepsilon_{0} N\right)
$$

(20.8)

The net field at P from all M segments is

$$
E=\sum_{i=1}^{M} \frac{\mathcal{E}_{L}}{r_{2}} \sin \left(\omega t-k r_{i}\right) \Delta y_{i} .
$$

For a continuous line source the Δy_{i} must become
infinitesimal $(M \rightarrow \infty)$, and the summation is then transt formed into a definite integral

$$
E=E_{L} \int_{-D / 2}^{+D / 2} \frac{\sin (\omega t-k T)}{\tau} d y_{,}
$$

where $r=r(y)$. The approximations used to evaluate Eq . (10.9) must depend on the position of P with resped to the array and-will therefore make the distinction between Fraunhofer and Fresnel diffraction. The coherent optical line source does not now exist as a physical entity, but we will make good use of it as a mathematical device.

10.2 FRAUNHOFER DIFFRACTION

0.2.1 The Single Slit

Return to Fig. 10.8, where now the point of observation Recturn to Fig. 10.8, where now the point of observatio逢very distant from the coherent line source and R \& $D D$ Under these circumstances $r(g)$ never deviates appreciWhiy from its midpoint value R, so that the quantity follows from Eq. (10.9) that the field ac P due to the differential segment of the source $d y$ is

$$
d E=\frac{\varepsilon_{t}}{R} \sin (\omega t-k r) d y
$$

(10.10)
here ($\left.\varepsilon_{L} / R\right) d$ is the amplitude of the wave. Notice that the phase is much more sensitive to variations in $r(y)$ than is the amplitude, so that we will have to be more careful about introducing approximations into it We can expand $r(y)$, in precisely the same marner as was done in Problem (9.13), to make it an explicit function of y; thus

$$
r=R-y \sin \theta+\left(y^{2} / 2 R\right) \cos ^{2} \theta+\cdots, \quad(I 0 . H
$$ where θ is measured from the $x z$-plane. The third term can be ignored so long as its contribution to the phase is insignificant even when $y= \pm D / 2$; that is, ($\pi D^{2} / 4 \lambda R$) $\cos ^{2} \theta$ must be negligible. This will be true for all vacues of θ when R is adequately large. We now have the Faun incr condion, where the cistance r therefore the phase can be witten a a tinear function of the aperture variables Substitutins into Eq (1010) Eq. (20.10) and integrating leads to

$$
E=\frac{\varepsilon_{1}}{R} \int_{-\mathrm{D} / 2}^{+\mathrm{D} / 2} \sin \left[\omega t-k\left(R^{-} y \sin \theta\right)\right] d y, \quad(0.12)
$$ and finally

$$
E=\frac{\varepsilon_{L} D}{R} \frac{\sin [(k D / 2) \sin \theta]}{(k D / 2) \sin \theta} \sin (\omega t-k R) . \quad(10.13)
$$

To simplify the appearance of things let
$\beta=(k D / 2) \sin \theta_{\%}$

$$
E=\frac{\varepsilon_{t} D}{R}\left(\frac{\sin \beta}{\beta}\right) \sin (\omega t-k R) . \quad(10.15)
$$

The quantity most readily measured is the irradiance (forgetuing the constants) $I(\theta)=\left\langle E^{2}\right\rangle$ or

$$
I(\theta)=\frac{1}{2}\left(\frac{\varepsilon_{L} D}{R}\right)^{2}\left(\frac{\sin \beta}{\beta}\right)^{2}
$$

(19.16)
where $\left\langle\sin ^{2}(\omega t-k R)\right\rangle=\frac{1}{2}$. When $\theta=0, \sin \beta / \beta=1$ and $I(\theta)=I(0)$, which corresponds to the principa maximum. The iradiance resulting from an idealized coherent ine source in the Frauthofer approximation is then

$$
\begin{equation*}
I(\theta)-I(0)\left(\frac{\sin \beta}{\beta}\right)^{2} \tag{10.17}
\end{equation*}
$$

or, using the sine function (Section 7.9 and Table 1 of the Appendix),

$$
I(\theta)=I(0) \sin ^{2} \beta
$$

There is symmetry about the y-axis, and this expression holds for θ measured in any plane containing that axis Notice that since $\beta=(\pi D / \lambda) \sin \theta$, when $D \gg \lambda$, the madiance drops extranely for large values of length D (a centimeter or so wher using Jight) The phase of the line source is equivalert by way of $\mathrm{Eq}_{\mathrm{q}}(1015)$ to that of a point source located at the center of the array, a distance R from P. Finally relatively long coherent line source ($D \gg \lambda$) can be envisioned as a single point emitter radiating preenvisioned as a single point emitter radiating pre-
dominantly in the forward, $\boldsymbol{\theta}=0$, direction; in orher words, its emission resembles a circular wave in the wards, its emission resembles a contrast, notice that if $\lambda \gg D, \beta$ is small, $\sin \beta \approx \beta$, and $I(\theta) \approx I(0)$. The irradiance is then constant for all θ, and the line source resembles a point source emitting spherical waves.
We can now turn our attention to the problem of Fraunhofer diffraction by a slit or elongated narrow ectangular hole (fig. 10.9). An aperture of this sort might typical. y have a width of several hundred λ and length of a few centimeters. The usual procedure to follow in the analysis is to divide the slit into a series of long differential strips ($d z$ by 0) parallel to the y-axis

as shown in Fig. 10.10. We immediately recognize, however, that each strip is a long coherent line source and can therefore be replaced by a point emitter on the z-axis. In effect, each such emitter radiates a circular wave in the $(y-0$ or $x z$-plane. This is certainly reasonable, since the slit is long and the emerging wavefronts are practically unobstructed in the silt direction. There will thus be very little diffraction parallel to the edges of the slit. The problem has been reduced to that of finding the field in the $x z$-plane due to an infinite number of point sources extending across the width of the interng he 2 -axis. We then need only evaluate dz in the Frauphofer a pproximation. But once again his is equivalent to a merent line source, so that the complete solution for the slit is, as we have seens

$$
\begin{aligned}
I(\theta) & =I(0)\left(\frac{\sin \beta}{\beta}\right)^{2},
\end{aligned} \quad\left[\dot{10.17]} \text { provided that } \quad \begin{array}{rl}
\beta & =(k b / 2) \sin \theta
\end{array}\right.
$$

and θ is measured from the x-plane (see Problem 10.3). Note that here the line source is short, $D=b, \beta$ is not higher-order subsidar mavim will bepbervabie The extrema of $I(\theta)$ ocur at value of 3 that cause dI/dB
(b)

to be zero, that is,

$$
\frac{d I}{d \beta}-I(0) \frac{2 \sin \beta(\beta \cos \beta-\sin \beta)}{\beta^{5}}=0 . \quad(10.19)
$$

The itradiance has minima, equäl to zero, when $\sin \beta=$ 0, whereupor

$$
\beta= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots
$$

It also follows from Eq. (10.19) that when

$$
\beta \cos \beta^{-} \sin \beta=0
$$

$$
\tan \beta=\beta
$$

The solutions to this transcendental equation can be determined graphically, as shown in Fig. 10.11. The points of intersection of the curves $f_{1}(\beta)=\tan \beta$ with the straight line $f_{2}(\beta)-\beta$ are common to both and so satisty Eq. (10.21). Only one such extremum ex:sis between adjacent minima (10.20), so that $I(\theta)$ must have subsidiary maxima at these values of β (± 1.4303 弯 $\pm 2.4590 \pi, \pm 3.4707 \pi, \ldots$).
There is a particularly easy way to appreciate what's happening here with the aid of Fig. 10.12. We envision every point in the aperture emitting rays in all directio In the xz-plane. The light that continues to propaga beam, all the rays arrive on the viewing screen in phase

Figure 10.10 (a) Point P on c is essentially infinitely far from Σ ((b)
Tigure 10.10 (a) Point P on c is essentially infinitely far from \sum, (b)
fivgrens wavelets emited across the apperture. (c) The cquivalcnt Wyygens wavelets emitted across the aperture. ic) Thc cquivalcnt
Cpresentation in terms of rays Each point emits rays in all direcions. The parallel rays in various directions are seen. (d) These ray bundles
and a central bright spot will be formed by them. If the fcreen is not actually at infinity, the rays that converge Qit are not quite parallel but with it at infinity, or better (ill, with a lens in place, the rays are as drawn. Figure
At an angle θ_{1} where the path-length difference between he rays from the very top and hotom, $b \sin \theta_{1}$ is made qual to one wavelength. A ray from the middle of the dit will then lag ta behind a ray fromthe top and exactly ancel it. Similarly, a ray from just below center will ancel a ray from just below the top, and so on; all

(d)

(c)
correspond to plane waves, which can be thought of as the three dimensional Fourier components. $\{\in\}$ A single slit illuminated b monochromatic planc waves.
across the aperture ray-pairs will cancel, yielding minimum. The irradiance has dropped from its high central maximum to the first zero on either side a $\sin v_{1} \pm \lambda / b$
As the angle increases further, some small fraction of the rays will again interfere constructively, and the increase in the angle produces another minimum a shown in Fig 10.12 (c) when $b \sin \theta_{2}=24$ Now imagine the aperture divided into quarters. Ray by ray the top quarter will cancel the one beneath it, and the next, th

Figure 10.11 The points of intersecion of the two curves are the
Figure 10.11 The point
solutions of Eq. (10.2).
third, will cancel the last quarter. Ray-pairs at the same locations in adjacent segments are $\lambda / 2$ out of phase and destructively interfere. In general then, zeros of irradiance will occur when

$$
b \sin \theta_{m}=m \lambda,
$$

where $m= \pm 1, \pm 2, \pm 3, \ldots$, which is equivalent to Eq . (10.20), since $\beta=m \pi=(\mathrm{kb} / 2) \sin \theta_{m}$.

We should inject a note of caution at this point: one f the frailties of the Huygens-Fressel principle is that is does not take proper regard of the variations in ir does not wake proper surface of each secondary wavelet We will come back to this when we consider the obliquits factor in Fresnel diffraction, where the effect is significant. In Fraunhofer diffraction the distance from the aperture to the plane of observation is so large that we need not be concerned about it, provided that θ remains small.
Figure 10.18 is a plot of the flux density, as expressed Eq. (10.17). Envision some point on the curve, for example, the third subsidiary maximum at $\beta=$

$$
3
$$

$$
1
$$

ए5 4707π; since $\beta=(\pi b / \lambda) \sin \theta$, an increase in the slit菂 4707π; since b requires a decrease in θ, if β is to be constant. Finder these conditions the pattern shrinks in towar me principal maximum, as it would if λ were decreased. Ge the source emits white tight, the higher-order maxima forw a succession of colors trailing off into red with frineasing θ. Each different colored light component pitareas minima and subsidiary maxima at angular positions characteristic of that wavelength (frobill all the ndeed, only in the region about $\theta=0$ whe sonstituent colors overlap to 109 would be imared a The point source S in Fig. 1.9 would the diffracting the position or the 1 . creen \sum were removed. Uhe the slit in place is a series of he patcern proplane of the screen σ, much like a dashe
pread-(in place of S) positioned parallel to the slit, in the focal plane of the collimator L_{1}, will broaden the pattern out into a series of bands. Any point on the line source generates an independent diftraction pattern, which is displaced, with respect to the others, along the y-direction. With no diffracting screen present, the mage of the line source would be a line paralle to the original slit. With the screen in place che line spep in out, as was the point image of S (Fig. 10.14). Keep is mind that it's the small dimension of the the spreading out.
The single-sit pattern is easily observed without the use of special equipment. Any number of sources wil do (e.g., a diatant street light at night, a small incandes cent lamp, sunlight streaming through a narrow space
. 3 Fraunhofer diffraction patern of a single slit

Figure 10.14 The single-siit pattern with a line source. Sce firs photograph of Fig. 10.17.
in a window shade); almost anything that resembles a point or line source will serve. Probably the best source for our purposes is an ordinary clear, straight-filamen display bulb (the kind in which the fiament is vertica and about nches long, You csit arrangements (e comer ork rotated to decrease the projected space between the tines, or a scratch across a layer of india ink on a mictoscope slide) An inexpensive vernier caliper makes a remarkably good variable slit. Hold the caliper close to your eye with the slit, a few thousandths of an inch wide, parallel to the filament of the lamp. Focus your eye beyond the slit at infinity, so that its lens serves as L_{2}.

1O.2.2 The Double Slit

It might at first seem from Fig. 10.10 that the location of the principal maximum is always to be in line with the center of the diffracting aperture; this, however, is not generally truc. The diffraction pattern is actually centered about the axis of the lens and has exactly the same shape and location, regardless of the slit's position, as long as its orientation is unchanged and the approximations are valid (Fig. 10.15). All waves traveling point of L this then is the image of S and the center
of the diffraction pattern. Suppose now that we two long slits of width b and center-to-center separat a (Fig. 10.16). Each aperture, by itself, would genep a (Fig. 10.16). Each aperture, by itself, would genepa
the same single-shit diffraction pattern on the viept screen σ. At any point on σ, the contributions from two slits overlap, and even though each must be essen tially equat in amplitude, they may well differ nificantly in phase. Since the same primary wave excil he secondary sources at each slit, the resulting wavere, will be coherent, and interierence must occur. If the primary plane wave is incident on Σ at some angle 6 (see Problem 10.3), there will be a constant relative phase difference between the secondary sources. At normal incidence, the wavelets are all emitted in phase, The interference fringe at a particular point of observat tion is determined by the differences in the optical path lengths traversed by the overlapping wavelets from the wo slits. As we will see, the flux-density distribution Fig. (0.17) is the result of a rapidly varying couble-slity interference sy To obtain.
To obtain an expression for the optical disturbance single-sit analysis. Each of the two a pertures is divided into differential strips ($d z$ by ℓ), which in turn behave ike an infirite number of point sources aligned along

Figure 10.15 The double-slit sctup
he -axis. The rotal contribution to the electric ficld, the z-axis. The total contribution (10.12), is then

$$
E=C \int_{-b / 2}^{b / 2} F(x) d z+C \int_{a-b / 2}^{a+b / 2} F(z) d z, \quad(10.2 q)
$$

where $F(2)=\sin [\omega t-k(R-z \sin \theta)]$. The constantmplitude factor C is the secondary source strength per amplitude factor C is the secondary source streng the z-axis (assumed to be independent unit length along the 2 -axis (assume R which is measured from the origin to P and is taken as constant. We will fem concern with relative fux densities on σ, 50 e the actual value of C is of ittle interest to us now. interest to us now. Integration of Eq. (10.22) yields

$$
E=b C\left(\frac{\sin \beta}{\beta}\right)[\sin (\omega t-k R)+\sin (\omega t-k R+2 \alpha)],
$$

Fisure 10.17 Single and double-sit Praunhofer patcerns. The fain Figure 10.17 Single and double-sit Praunhoitr parnns
cross hatchling arises entirelp in the printing procm. (Phetos conruesy cross hatching a Mses enarich, and J. C. Thrierr: Allhs optaschty Excheinunger. Berlin-Heidelberg-New York: Springer, 1962.)

Thi $\alpha=(k a, 2) \sin \theta$ and, as before, $\beta \equiv(k b / 2) \sin \theta$. This is just the sum of the two fields at P, one from each slit, as given by Eq. (10.15). The distance from the first slit to P is R, giving a phase contribution of $-\hbar R$ The distance from the second sit to P is $(R-a \sin \theta)$ or $(R-2 \alpha / k)$, yielding a phase term equal to ($-k R+$ the phase difference ($k A$) between two quantity 2,3 is rays, arriving at a point P berwe two nearly paralle of the slits. The quantity $a \alpha$, from the edges of one between two waves arriving $2 a$ is phase difcrence at any point in the frss slit the other coming from the corresponding point in the semond slit Simplify E. (10.23) a bit further it becomes

$$
E=2 b C\left(\frac{\sin \beta}{\beta}\right)
$$

which when squared and averaged over a relatively long interval in time is the irradiance

$$
I(\theta)=4 I_{0}\left(\frac{\sin ^{2} \boldsymbol{\beta}}{\boldsymbol{\beta}^{2}}\right) \cos ^{2} \alpha .
$$

(6.24)

In the $\theta=0$ direction (i.e., when $\beta=\alpha=0$), I_{0} is the flux-density contribution from either slit, and $I(0)=4 I_{0}$ is the total fux density. The factor of 4 comes from the fact that the amplitude of the electric field is twice what it would be at that point with one slit covered.
If in Eq. (10.24) b becomes vanishingly small ($k b \ll 1$) then $(\sin \beta) / \beta=1$, and the equation reduces to the lux-density expression for a pair of long line sources, that is, Young's experiment, Eq. (9.17). If on the other Eq. (10.24) becomes equivalent of Eq . (10 12) $=41_{u}\left(\sin ^{n} \beta\right) / \beta^{2}$. This is the the source strength dopled we might then envision the total expression as being gencrated by a $\cos ^{2} \alpha$ interference term modulated by a $\left(\sin ^{2} \beta\right) / \beta^{2}$ diff raction term. If the slits are finite in width but very narow the diffraction pattern from either slit will be uniform, over a broad central region, and bands resembling the dealized Young's fringes willappear within that region. At angular positions (θ-values) where

$$
\beta= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots
$$

diffraction effects are such that no light reaches σ. and

igure 10.18 A double-sit pattern (a-3b).
early none is available for interference. At points o σ where

$$
\alpha= \pm \pi / 2, \pm 3 \pi / 2, \pm 5 \pi / 2, \ldots
$$

the various contributions to the electric feld will b completely out of phase and will cancel, regardless of the actual amount of light made available from the diffraction process.
The irradiance distribution for a double-slit Fraunhoter pattern is illustrated in Fig. 10.18. Notice that it is a combination of Figs 9.6 and 10.13 . The
for the particular case in which $a=3 b$ (ie., $\alpha=3 \beta$).
for the particular case in which $a=3 b$ (Le., $\alpha=3 \beta$). fou can get a rough icea of what the pattern will look解解 2 m bright fringes (counting "fractional fringes" as (iell)" within the central diffraction peak (Problem (0.10). An interference maximum and a diffraction finimum (zero) may correspond to the same θ-value. fon that case no light is available at that precise position to partake in the interference process, and the suppressed peak is said to be a missing order.
The double-slit patsern is also rather easily observed, and the seeing is well worth the effort. A straight thiament, tubular bulh is again the best line source. For prits, coat a microscope slide with India ink; if you Happen to have some, a colloidal suspension of graphite nin aloohol works even better (it's more opaque). Scratch pair of slits across the dry ink with a razor blade and stand about 10 feet from the source. Hold the slitit parallel to the filament and close to your eye, whith, when focuscd at infinity, will serve as the needed lens mierpos the width of the fringes, Find out what hap change in perrosep slide. Move the slits slowly in the I-direc fon; then holding them sationary move your eye in the z-direction. Verify that the position of the center of the pattern is indeed determined by the lens and no the aperture.

10.2.3 Diffraction by Many Slits

The procedure for obtaining the irradiance function for a monochromatic wave diffracted by many slits is essentially the same as that used when considering two slits. Here again, the lirnits of integration must be appropriately altered. Consider the case of N Iong parallel, narrow slits, each of width b and center-tocenter separation a, as illustrated in Fig. 10.19. With the origin of the coordinate system once more at the center of the first silit the total optical disturbance at "Notice that m need not be an integer. Moreover, 1 if m
there will be "thali-tringes," as shown in Fig. $10.18(\mathrm{~b})$.

P is on σ essertailly infinitely far fromi Σ.
point on the screen σ is given by

$$
E-C \int_{-b / 2}^{t / 2} F(z) d z+C \int_{\alpha-b / 2}^{a+\delta / 2} F(z) d z
$$

$+C \int_{2 a-b / 2}^{2 a+b / 2} F(z) d z+\cdots$
$+C \int_{(\mathbb{N}-1) \mathrm{a}-\mathrm{b} / \mathrm{R}}^{(\mathrm{N}-\mathrm{i}) \mathrm{a}+\mathrm{m} / \mathrm{z}} F(\mathrm{z}) d z$,
(10.25)
where as before, $F(z)=\sin [\omega t-k(R-z \sin \theta)]$. This pplies to the Fraunhofer condition, so that the aperture configuration must be such that all the slits are close to he origin, and the approximation (10.1t)

$$
r=R-z \sin \theta
$$

(10.2b)
applies over the entire array. The contribution from he jth slit (where the firs one is numbered ieme obtained by evaluating only that one integral in Eq.

Figure $\mathbf{1 0 . 1 9 (b , ~ c , ~ d)}$

$$
\begin{aligned}
& \text { (10.25), is then } \\
& \qquad \begin{aligned}
E_{j}= & \frac{C}{h \sin \theta}[\sin (\omega t-k R) \sin (k z \sin \theta) \\
& -\cos (\omega t-k R) \cos (k z \sin \theta)]]_{j \alpha-b / 2,2}^{j o+/ 2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { provided that we require } \theta_{j} \approx \theta \text {. After some manipulat } \\
& \text { tion this becomes, }
\end{aligned}
$$

$$
E_{j}=b C\left(\frac{\sin \beta}{\beta}\right) \sin (\omega t-k R+2 \alpha j),
$$

$$
\text { recalling that } \beta=(k b / 2) \sin \theta \text { and } \alpha=(k a, 2) \text { sin }
$$

Notice that this is equivalent to the expression for a

$$
\begin{aligned}
& \text { source (10.15) or, of course, a single slit, where in accoed } \\
& \text { with Eq. } 10.26 \text { and Fig. } 10.19 . R_{i}=R-i \sin A
\end{aligned}
$$

$$
\begin{aligned}
& \text { With Eq. } 10.20 \text { and Fig. IN.i9, } K_{j}=R-\mu a \sin \theta \text {, so tinis. } \\
& -k R+2 \alpha j=-k R_{\text {i }} \text {. The total optical disturbance }
\end{aligned}
$$

given by Eq. (10.25), is simply the sum of the contribur

$$
\begin{aligned}
& \text { given by Eq. (} 10.25 \text {), is simply the sum of the contribu } \\
& \text { tions from each of the slits; that is, }
\end{aligned}
$$

$$
E=\sum_{j=0}^{N-1} E_{j}
$$

or

$$
E=\sum_{j=0}^{N-1} b C\left(\frac{\sin \beta}{\beta}\right) \sin (\omega t-k R+2 \alpha j) . \quad(a 0.2)_{i}
$$

This in turn can be written as the imaginary part of a complex exponential:

$$
E=\operatorname{Im}\left[b C\left(\frac{\sin \beta}{\beta}\right) e^{i(\omega t-A k)} \sum_{j=0}^{N-1}\left(e^{i 2 \alpha}\right)^{j}\right] .(a 0.29)
$$

But we have already evaluated this same geometric series in the process of simplifying Eq. (10.2). Equation (10.29) therefore reduces to the form

$$
E=b C\left(\frac{\sin \beta}{\beta}\right)\left(\frac{\sin N \alpha}{\sin \alpha}\right) \sin [\omega t-k R+(N-1) \alpha] .
$$

The distance from the center of the array to the poin P is equal to $[R-(N-1)(a / 2) \sin \theta]$, and therefore the phase of E at P corresponds to that of a wave emitted froun the midpoint of the source. The flux-density distribution function is

$$
I(\theta)=I_{0}\left(\frac{\sin \beta}{\beta}\right)^{2}\left(\frac{\sin N \alpha}{\sin \alpha}\right)^{2} .
$$

Note that I_{n} is the flux density in the $\theta=0$ direction emitted by any one of the sits and that $1(0)=N I_{0}$. 1 other words, the waves arriwing at P in the forward direction are all in phase, and their helds add construc tively. Each slit by iself would generate precisely the same fux-density distribution. Superimposed, the various contributions yield a multiple wave interference system modulated by the single-slit diffraction envelope If the width of each aperture were shrunk to zero, Eq. (10.31) would become the flux-density expression (10.6) for a linear coherent array of oscillators. As in that earlier treatment (10.17), principal maxima occur when $(\sin N \alpha / \sin \alpha)=N$, that is, when

$$
\alpha=0, \pm \pi, \pm 2 \pi, \ldots
$$

or equivalently, since $\alpha=(k a / 2) \sin \theta$,

$$
a \sin \theta_{m}=m \lambda
$$

(10.32)
with $m=0, \pm 1,+9 \quad$ This is quite general and gives rise to the same θ-locations for these maxima, regardless of the value of $N \geq 2$. Minima, of zero flux density, exist whenever $(\sin N \alpha / \sin \alpha)^{2}=0$ or when
$\alpha= \pm \frac{\pi}{N}, \pm \frac{2 \pi}{N}, \pm \frac{3 \pi}{N}, \ldots, \pm \frac{(N-1) \pi}{N}, \pm \frac{(N+1) \pi}{N}, \ldots$
(10.38)

Between consecutive priricipal maxima (i.e., over the range in α of π) there will theretore be $N-1$ minima. And of course between each pair of minima there will have to be a subsidiary maximum. The term ($\sin N \alpha / \sin \alpha)^{2}$, which we can think of as embodying the interterence effects, has a rapidly varying numerator and a slowly varying denominator. The subsidiary maxima are therefore located approximately at point, where $\sin N \alpha$ has its greatest value, namely,

$$
\begin{equation*}
\alpha= \pm \frac{3 \pi}{2 N}, \pm \frac{5 \pi}{2 N}, \tag{10.34}
\end{equation*}
$$

The $N-2$ subsidiary maxima between consecutive prin cipal maxima are clearly visible in Fig. 10.20. We can get some idea of the flux density at these peaks by rewriting Eq. (10.31) as

$$
I(\theta)=\frac{I(0)}{N^{2}}\left(\frac{\sin \beta}{\beta}\right)^{2}\left(\frac{\sin N \alpha}{\sin \alpha}\right)^{2} .
$$

(00.35)
where at the points of interest $|\sin N \alpha|=1$. For la $N_{1} \alpha$ is small and $\sin ^{2} \alpha=\alpha^{2}$. At the first subsidiatin peak $\alpha=3 \pi / 2 N$, in which case

$$
I=I(0)\left(\frac{\sin \beta}{\beta}\right)^{2}\left(\frac{2}{3 \pi}\right)^{2},
$$

and the flux density has dropped to about $\frac{1}{\frac{1}{2}}$ of thas the adjacent principal maximum (see Problem 10.1 Since $(\sin \beta) / \beta$ for small β varies slowly, it will not di from 1 appreciably, close to the zeroth-order princin maximum, so that $I / I(0)=\frac{1}{2}$. This flux-density ratio for the next secondary peak is down to $\frac{\sigma}{5}$, and it $c o$ unues to decrease as a approaches a value halfu between the principal maxima. At chat sy monery po $\alpha \approx \pi / 2, \sin a=51$, and the fuy-density ratio has lowest value, approximately $1 / N^{2}$. Thereafter $\alpha>\pi / \sqrt{\text { 原 }}$ and the flux densities of the subsidiary maxima begini o increase.
Try duplicating Fig. 10.20 using a tubular bulb and homemade slits. You'll probably have difficulty seeing ne y percery maxima nultiple-slit patterns may be an apparent broade and in the dark regions between principal maima. As: Fig. 10 20, the dark regions will hecome wider than the bright bands as N increases and the secondary peaks fade out. If we consider each principal maximum to be bounded in width by two adjacent zeros, then each will] extend over a length in θ, ($\sin \theta \approx \theta$) of approximately $2 \lambda / N a$ as N increases, the principal maxima maintain their relative spacing (λ / a) while becoming increasingly narrow. Figure 10.21 shows the case of six slits, with $a=4 b$.
The muluple-shit interference term in Eq. 0.35 has the form $\left(\sin ^{2} N \alpha\right) / N^{2} \sin ^{2} \boldsymbol{\alpha}$; thus for large N, $\left.N^{2} \sin ^{2}{ }^{\alpha}\right)^{2}$ may be envisioned as the curve bereath which $\sin ^{2} N \alpha$ rapidly varies. Notice that for smail a this interference term looks like $\operatorname{sinc}^{2} N \alpha$.

O.2.4 The Rectangular Aperture

Consider the configuration depicted in Fig. 10.22. A monochromatic plane wave propagating in the x-direcfion is incident on the opaque diffracting screen Σ. We

Figure 10.21 Multiplestit parcern $(a \sim 4 b, N=6$).

114 Chapter so Diffraction

wish to find the consequent (far-field) fux-density disribution in space or equivalently at some arbitrary distant point P. According to the Huygens-Fresnel principle, a differential area dS, within the aperture, may be envisioned as being covered with coherent secondary point sources. But ds is much smaller in extent than is λ, so that all the contributions at P remain in phase and interfere constructively. This is true regardless of θ : that is, $d S$ emits a spherical wave (Problem 10.13). If ε_{A} is the source strength per unit area, assumed to be constant over the entive aperture, then the optical disturbance at P due to $d S$ is either the real or imaginary part of

$$
d E=\left(\frac{E_{A}}{r}\right) e^{t(t e r-k r)} d S .
$$

(10.37)

The choice is yours and depends only on whether you ike sine or cosine waves, there being no difference except for a phase shift. The distance from $d S$ to P is

$$
r=\left[X^{2}+\left(Y^{\prime}-y\right)^{2}+(Z-z)^{2}\right]^{1 / 2}, \quad(10.38)
$$

nd as we have seen, the Fraunhofer condition occurs when this distance approaches infinity. As before, it will whence to replace r by the distance $\overline{O p}$, that is, R, in the

10.22 Fraumbofer difrogio from in abirate wherc r and R are very large compared to the size of the hole.
amplitude term, as long as the aperture is relative small. But the approximation for r in the phase nee to be treated a bit more carefully; $k=2 \pi / \lambda$ is a lard number. To that end we expand out Eq. (10.38) anc by making use of

$$
R=\left[X^{2}+Y^{2}+Z^{2}\right]^{1 / 2}
$$

$r^{=} R\left[1+\left(y^{2}+z^{2}\right) / R^{2}-2(Y y+z z) / R^{2}\right]^{1 / 2}$
In the far-fied case R is very large in comparison to the dimensions of the aperture, and the $\left(y^{2}+z^{2}\right) / /$ term in call θ can in large,

$$
r=R\left[1-2(Y y+Z z) / R^{2}\right]^{1 / 2}
$$

and dropping all but the first two terms in the binomial expansion, we have

$$
r=R\left[1-\langle Y y+Z z\rangle / R^{2}\right] .
$$

The total disturbance arriving at P is

$$
E=\frac{\varepsilon_{A} e^{1(\theta)=-k R)}}{R} \iint_{\text {Apercure }} e^{i z\left(Y_{3}+z_{2}\right) / R} d S . \quad(10.4 i)
$$

Consider the specific configuration shown in Fig. 10.23. Equation (10.41) can now be written as

$$
E=\frac{E_{A} \theta^{i(\omega)}(\omega / k R)}{R} \int_{-b / 2}^{+b / 2} e^{i \hbar / \gamma / R / R} d y \int_{-a / 2}^{+\pi / 2} e^{i b z / 2 / R} d z
$$

where $d S=d y d z$. With $\beta^{\prime}=k b Y / 2 R$ and $\alpha^{\prime}=k a Z / 2 R$ we have

$$
\int_{-b / 2}^{+b / 2} e^{i \mathrm{i} y y / k} d y=b\left(\frac{\theta^{\psi^{\prime}}-e^{-i \beta^{\prime}}}{2 \dot{\beta} \beta^{\prime}}\right)-i\left(\frac{\sin \beta^{\prime}}{\beta^{\prime}}\right)
$$

and similarly

$$
\int_{-a / 2}^{+a / 2} e^{i k z z / R} d z=a\left(\frac{e^{i \alpha^{\prime}}-a^{-b}}{2 i a^{\prime}}\right)=a\left(\frac{\sin \alpha^{\prime}}{a^{\prime}}\right)
$$

so that

$$
E=\frac{A E_{A} \beta^{f(5 \alpha \omega-k R)}}{R}\left(\frac{\sin \alpha^{\prime}}{\alpha^{\prime}}\right)\left(\frac{\sin \beta^{\prime}}{\beta^{\prime}}\right), \quad(10.42)
$$

where A is the area of the aperture. Since $I=\left\langle(\operatorname{Re} E)^{2}\right\rangle$,

$$
I(Y, Z)^{-} I(0)\left(\frac{\sin \boldsymbol{a}^{n}}{a^{\prime}}\right)^{2}\left(\frac{\sin \beta^{\prime}}{\beta^{\prime}}\right)^{2},
$$

(10.48)
irradiances are approximated simply by

$$
\frac{I}{I(0)}=\frac{1}{\beta_{m}^{\prime 2}},
$$

Similarly along the α^{\prime}-axis

$$
\frac{I}{I(0)}=\frac{1}{\alpha_{m}^{\prime 2}}
$$

The fux-density ratio* drops off rather rapidiy from 1 to $\frac{1}{2_{2}}$ to $\frac{1}{62}$ to $\frac{1}{122}$, and so on. Even so, the off-axis secondary
${ }^{\text {* }}$ These particular ohotographs were taken during an undergraduat *These particular photographs were taken during an undergraduate
laboratory session A $1.5-\mathrm{mW}$ He-Ne laser was used as a plane-wave source. The apparatus was set up in a long diarkened room, and the pattern was cast direcaly on 4×5 Polarooid (ASA 3000) Film. The film was located about 30 feet from a small aperture. so that no focusin Iens was needed. The shulter, placed ditcaly in front of the lase
wasa studest-contrived cardboard guillotine arrangement, and th Fore no exposure times are available. Any camera shutter (a singie-lens fore no exposure times are avalable. Any camera huterfasing:-e-ens
teffex with the tcns removed and the back open) will serve, but the cardboard one was more fun.

(b)

Figure 10.24 (a) Frumbhofer pattern of a square apertures, (b) The ame pattern further exposed to bring out some of the faint terrin
-
peaks are still smaller; for example, the four cornet peaks (whose coordinates correspond to appropriat ombinations of $\beta^{\prime}= \pm 3 \pi / 2$ and $\alpha= \pm 3 \pi / 2$ of $\left(\frac{1}{(x)}\right)^{2}$.

10.2.5 The Circular Aperture

Fraunhofer diffraction at a circular aperture is an efferat of great practical significance in the study of optical nstrumentation. Envision a typical arrangement: plane waves impinging on a screen \sum cortaining a cirn perture and the consequent far-feld siead acros a. By using a focusing lens L_{2}, we can bring σ in close to tho aperture without changing the pattern. Now. if L_{2}. 8 positioned within and exactly fills the diffracting opens ing in Σ, the form of the pattern is essentially unalierea. The lightwave reaching Σ is cropped, so that only a circular segment propagates through L_{z} to form an mage in the focal plane. This is obviously the same process that takes place in an eye, telescope, microscope, or camera lens. The image of a distant point source, a formed by a perfectly aberration-free converging len3, is never a point but rather some sort of diffraction pattern. We are essentialiy collecting only a fraction of the incident wavefront and therefore cannot hope to form a perfect image. As shown in the last section, the expression for the opical an arbtrary aperture in the far-field case, is

$$
E-\frac{\left.\varepsilon_{A^{1}} \mathrm{H}(\omega)-h R\right)}{R} \iint e^{1, k(y+(y+/ z) \mid R} d S .
$$

For a circular opening, symmetry would sugges introducing spherical polar coordinates in both the plane of the aperture and the plane of observation, as showri in Fig. 10.26. Thercfore, let

$$
\begin{array}{cc}
z=\rho \cos \phi & y-\rho \sin \phi \\
Z=q \cos \Phi & Y-q \sin \Phi
\end{array}
$$

The differenfial element of area is now

$$
d S=\rho d \rho d \phi .
$$

Waut $10,95^{\text {(a) }}$ The inradiance diatribution for a square aperture. Tithe irradiance produced by Fraunhofer dififracion at a spurare Sgrure. (c) The electric Eeld dierribution produced by Fraunhofer (tinois. Weslegan University.)

(h)

(c)

Substituting these expressions into Eq. (10.41), it becomes

Because of the complete axial symmetry, the solution must be independent of Φ. Wc might just as well solve Eq. (10.46) with $\Phi=0$ as with any other value, thereby simplifying things slightly
The portion of the double integral associated with he variable ϕ,

$$
\int_{0}^{2 \pi} e^{2(\$ \beta \alpha / R) \cos \phi} d \phi,
$$

is one that arises quite frequently in the mathematics of physics. It is a unique function in that it cannot be educed to any of the more common forms, such as the various hyperbolic, exponential, or trigonometric func-

perhaps the most often encountered. The quantity

$$
J_{0}(u)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2 w \cos v} d v
$$

(10.47)
is known as the Bessel

$$
J_{n}(u)=\frac{i^{-m}}{2 \pi} \int_{0}^{2 \pi} e^{(t, n u+(t \cos v)} d y \quad \text { (10.48) }
$$

represents the Bessel function of order 9 . Numerical values of $J_{0}(u)$ and $J_{1}(u)$ are tabulated for a large range of u in most mathematical handbooks. Just like sine and cosine, the Bessel functions have series expansions and are certainly no more esoteric than these familiar childhood acquaintances. As seen in Fig. 10.27, Jo (u) and $J_{1}(u)$ are slowly decreasing oscillatory functions that do nothing particularly dramatic.
Equation (10.46) can be rewritten as

$$
E-\frac{\varepsilon_{\Delta} \varepsilon^{t(R}(\pi-k R)}{R} 2 \pi \int_{0}^{a} J_{p}(k p q / R) \rho d p
$$

(10.49)

Another general property of Bessel functions, referred
to as a recurrence relation, is

$$
\frac{d}{d u}\left[u^{m} J_{m}(u)\right]-u^{m} J_{m-1}(u) .
$$

When $m=1$, this clearly leads to

$$
\int_{0}^{u} u^{\prime} J_{0}\left(u^{\prime}\right) d u u^{\prime}=u J_{1}(u)
$$

with u ' just serving as a dummy variable. If we now return to the integral in Eq. (10.49) and change 1 : variable such that $w=k \rho q / R$. then $d \rho^{-}(R / k q) d w$ an .ar
$\int_{\rho=0}^{\rho=\alpha} J_{0}(k \rho q / R) \rho d \rho=(R / k q)^{2} \int_{w=0}^{w-k q q / R} J_{0}(w) w d w$.
Making use of Eq. (10.50), we get

$$
E(i)=\frac{E_{\Delta} \beta^{i(k a-k a)},}{R} 2 \pi a^{2}(R / k a q) J_{1}(k a q / R) \text {. }
$$

The irradiance at point P is $\left((\operatorname{Re} E)^{2}\right)$ or $\frac{1}{2} E E^{*}$, that is

symmetry, the towering central maximum corresponds to a high-irradiance circular spot known as the Airy disk. It was Sir George Biddeli Airy (1801-1892), Astronomer Royal of England, who first derived Eq (10.56). The central disk is surrounded by a dark ring that corresponds to the first zero of the function $J_{1}(w)$. From Table io. $J_{i}(u)=0$ when $u=3.83$, that: is, $k a q / R=3.83$. The radius q_{1} drawn to the center of this first dark ring can be thought of as the extent of the Airy disk. It is given by

$$
q_{1}=1.22 \frac{R \lambda}{2 a} .
$$

For a lens focused on the screen σ, the focal length $f \approx R$, so

$$
\begin{equation*}
q_{1}=1.22 \frac{f \lambda}{D^{\prime}} \tag{00.58}
\end{equation*}
$$

where D is the aperture diameter, in ocher words, $D^{-2 a}$. (The diameter of the Airy disk in the visible spectrum is vety roughty equal to the $/ /$ t/ of the lens in millionths of a meter.) As shown in Figs. 10.29 to 10.31, q_{1} varies inversely with the hole's diameter. As D approaches λ, the Airy disk can be very large indeed, and the circular aperture begins to resemble a point source of spherical waves.

The higher-order zeros occurat values of kaq / R equal to $7.02,10.17$, and so forth. The secondary maxima are located where u satisfies the condirion

$$
\frac{d}{d u}\left[\frac{J_{1}(u)}{u}\right]-0
$$

which is equivalent to $J_{2}(u)=0$. From the tables then,

Figure 10.28 (a) The Airy pattern. (b) Electric field created by Fraunhofer diflaction at a circular aperiure (\&) Iradiance resultingy
from Fraunhofer diffraction al a circular aperture. (Phoors courtesy From Fraunhofer diffration at a circular ap,
R. G. Wilson, Ilinois Wcsleyan Univessity.)

Figure 10.29 Airy rings (0.5 mm holc diameter). (Pholo by E. H.)

Figure 10.30 Airy rings ($1.0-\mathrm{mm}$ hole diamcter). (Photo by E. H.)
these secondary peaks occur when $k a q / R$ equals 5.14 $8.42,11.6$, and so on, whereupon $I / I(0)$ drops from 1 $8.42,11.6$, and so on, whereupon $I / I(0)$ drops from 1
to $0.0175,0.0042$, and 0.0016 , respectively (Problem 10.22).

Circularaperturesare perber
Circular apertures are preferable to rectangular ones, as far as lens shapes go, since the circle's irradiance
curve is broader around the central peak and drops off curve is broader around the central peak and drops off total light energy incident on σ is confined to within

(a)

Figure 10.31 (a) Airy rings-long exposurc (11.5-mm hole diameten (b) Central Airy disc-shor exposure with the same aperture, (Photos by E. H.)
the various maxima is a question of interest, but one somewhat too involved to solve here.* On integrating the irradiance over a particular region of the pattern, one finds that 84% of the i.h herrives wittin the Airy ring ring.
*See Born and Wolf, Principples of Oplics, p. 398, or the very fine
elementiary text by Towne, Waus Phenomema, p. 464
10.2.6 Resolution of Imaging Systems

Imagine that we have some sort of lens system that forms an image of an extended object. If the object is self-luminous, it is likely that we can regard it as made up of ar array of incoherent sources. On the other hand, an object seen in reffected light wili surely display some phase correlation between its various scattering points. When the point sources are in fact incoherent, the Iens system will form an image of the object, which consists of a distribution of partially overiapping, yet independent, Airy patterns. In the finest lenses, which have negligible aberrations, the spreading out of each image point due to diffraction represents the ultimate himit on irnage quality.
Suppose that we simplify matters somewhat and examine only two equai-irradiance, incoherent, distant throurgh the objective lens of a telescope, where the entrance pupil corresponds to the diffracting aperture. Ir the previous section we saw that the radius of the Airy cisk was given by $a_{1}=1.22 \mathrm{\rho} / D$. If $\Delta \theta$ is the corresponding angular measure, then $\Delta \theta-1.22 \lambda / D$, inasmuch as $q / f=\sin \Delta \theta=\Delta \theta$. The Airy disk for each star will be spread out over an angular hali-width $\Delta \theta$ about its geometric image poini, as shown in Fig. 10.32. If the angular separation of the stars is $\Delta \varphi$ and if $\Delta \varphi>\Delta \theta$, the images will be distinct and easily resolved. As the stars approach each other, their respective images come together, overlap, and commingle into a single blend of fringes. If Lord Rayleigh's criterion is applied, the stars are satd to oe hust resolved when the center of one Airy disk falls on the firss minimum of the Airy patern of the other star. (We can certainly do a bit better than chis, but Rayleigh's criterior, howe ver arbirrary, has the virtue of being particularly uncompilicated.*) The mininum resolvabie angular separation or anguiar limat of resolution is

$$
(\Delta \varphi)_{\min }=\Delta \theta=1.22 \lambda / D, \quad \text { (10.59 }
$$

[^12]as depicted in $F i z$. 10.33. If ΔC is the center-to-center separation of the images, the limit of resolution is
$$
(\Delta)_{\operatorname{man}}=1.22 f \lambda / D .
$$

The resolving power for an image-forming system if generally defined as either $1 /(\Delta \varphi)_{\text {min }}$ or $I /\left(\Delta \emptyset_{\text {min }}\right.$ If the smallest resolvable separation between imas is to be reduced (i.e., if the resolving power is to smaller. Using ultraviolet rather than virible light microscopy allows for the percention of finer det The electron microscope utilizes equivalent wavelems of about 10^{-4} to 10^{-3} that oflight. This makes it poss to examine objects that would otherwise be completel to examine objects that would otherwise be completel
obscured by diffraction effects in the visible spectrumi onscured by amraction effects in the visible spectrund On the other hand, the resolving power of a telescope
can be increased by increasing the diameter of the can be increased by increasing the diameter of the
objective lens or mirror. Besides collecting more of the objecive lens or mirror. Besides collecing more of they
incident radiation, this will also result in a smaller Airy disk and therefore a sharper, brighter image. The Mount Palomar 200 -in telescope has a mirror 5 m in diameter (neglecting the obstructicn of a small region at its center). At 550 nm it has an angular limit of resolution of $2.7 \times 10^{-2} \mathrm{~s}$ of arc. In contrast, the Joditell Bank radio telescope, with a 250 - ft diameter, operates at a rather long, $21-\mathrm{cm}$ wavelength. It therefore has a limit of resolution of only about 700 s of arc. The hurnan eye has a pupil diameter that of course varies. Taking it, under bright conditions, to be about 2 mm , with $\lambda=550 \mathrm{~nm},(\Delta \varphi)_{\text {man }}$ turns out to be roughly 1 min of arc. With a focal length of about $20 \mathrm{~mm},\left(\Delta \ell_{\text {min }}\right.$ on the retina is 6700 nm . This is roughty twice the maan spacing berween receptos. The hunan eye shoun at a distance of some 100 yards You will probably not be able to do quite that well. one part in one thousand is more likely.
A more appropriate criterion for resolving power ha been proposed by C. Sparrow. Recall that at the Rayleigh limit there is a central minimum or saddle point between adjacent peaks. A further decrease ir the distance between the two point sources will cause the centrai dip to grow shallower and ultimatcly disappear. The angular separation corresponding to that configuration is Sparrow's limit. The resultant

Kerure 10.32 Overapping Imagea.

Tgicue 10.35 Overlapping imeges
maximum has a broad flat top; in other words, at the maxis which is the center of the peak, the secor origin, which is the center of the peak, the second change in slope (Fig. 10.40).
Unlike the Rayleigh rule, which rather tacitly assumes incoherence, the Sparrow condition can readily be generalized to coherent sources. In addition, astronomical studies of equal-brightress stars have shown that Sparrow's criterion is by far the more realistic.

10.2.7 The Diffraction Grating

A repetitive array of diffracting elements, either aper tures or obstacles, that has the effect of producing periodic afterations in the phase, amplitude, or both of an emergent wave is said to be a diffraction grating. One of the simplest such arrangements is the multiple-slit configuration of Section 10.2.3. It seems to have been invented by the American astronomer David Ritten house in about 18. Some years later Joseph vo Fraunhorer to mand tions to both the theory and technotogy of grating The earliest devices were indeed multiplc-slit assem blies, usually consisting of a grid of fine wire or thread wound about and extending between two paralle serews, which served as spacers. A wave front, in passin through such a system, is confronted by alternate opaque and transparent regions, so that it undergoes modulation in amplitude. Accordingly, a multiple-slit configuration is said to be a transmission amplifude gra ing. Another, more common form of transmission grat ing is made by ruling or scratching paraliel notches into the surface of a Hat, clear glass plate [Fig. 10.34(a)] Each of the scratches serves as a source of scattere light, and together they form a regular array of paralle line sources. When the grating is totally transparent, so that there is negigible amplitude modnation. the regular variations in the optical thickness across the grating yicld a modulation in phase, and we have what is know as a transmission phase grating (Fig. 10.35). In the Huygens-lresnel apresiaion you can envision the uncerfas Aner cor

Figure 10.34 A transmission grating.
periodic variations in its shape rather than its amplitude. This in turn is equivalent to an angular distribution of constituent plane waves.
On reflection from this kind of grating, light scattered by the various periodic surface features will arrive at some point P with a cefinite phase relationship. The consequent interference pattern generated after reflec tion is quite similar to that arising from transmission Gratings designed speciffcally to funcrion in this fashion are known as refiection phase gratings (Fig. 10.96). Contemporary gratings of this sort are generally ruled in optically flat glass blanks. The aluminum, being fairly

Figure 10.35 Light passing Iefi is the visiblc spectrum, that on the sight, the ultraviolet. (Phot courlesy Klinger Scientific Apparatus Corp.)
soft, results in less wear on the diamond ruling tool and is also a better reflector in the ultraviolet region. difficult, and relatively few are made In actulity moty gratings are exceedingly good plastic casting or rob of fine, master ruled gratings. of fine, master ruled gratings.
If you were to look perpendicularly through a trans-
mission grating at a distant parallet line soutce, eye would serve as a focusing lens for the diffraction pattern. Recall the analysis of Section 10.2 .3 and the expression
$a \sin \theta_{m}=m \lambda$,
[10.32]
Which is known as the grating equation for norma incidence. The values of m specify the order of the various principal maxima. For a source having a broad $m=0$ or spectrum, such as a cungsten filament, the $n=0$, or zeroth-order, image corresponds to the undefected, $6_{0}=0$, white-light view of the source. The grating equation is dependent on λ, and so for any value ponding to sliphtly

into a continuous spectrum. The regions occupied by the faint subsidiary maxima will show up as bands seem$m== \pm 1$ appears an either side of $\theta=0$ and is followed along with alternate intervals of cariness by the hicher order spectra, $\mathrm{m}^{-}+9,+3$ Notice that the smaller becomes in Eq. (10.32), the fewer witl be the number of visible orders.

It should be no surprise that the grating equation is in fact Eq. (9.29), which describes the location of the maxima in Young's double-slit setup. The interference maxima, all located at the same angles, are now simply sharper (fust as the multiple beam operation of the Fabry-Perot etalon made its fringes sharper). In the double-siit case when the point of observation is snmewhat off the exact center of an irradiance maximum the two waves, one from each slit, will still be more or less in phase, and the irradiance, though reduced, will still be appreciable. Thus the bright regions are fairly broad. By contrast, with multiple-beam systems though all the waves interfere constructively at the centers of the maxima, even a small displacement will cause certain ones to arrive out of phase by $\frac{1}{2} \lambda$ with respect to others For example, suppose P is slightly off from θ_{1} so that $a \sin \theta=1.010 \lambda$ instead of 1.000λ. Each of the waves from successive slits will arrive at P shifted by 0.01λ with respect to the previous one. Then 50 slits down from the first, the path length will have shifted by $\frac{1}{2} \lambda$, The same would be 1 and sit 51 wiff essentially cancel. 53 , and so forth. The result is and 2 and 52,3 and ance beyond the centers of the maxima Consider next the somewhat mone
oblique incidence as depicted general situation 0.36. The grating equation, for bot Figs. 10.34 and reflection, becomes

$$
a\left(\sin \theta_{m}-\sin \theta_{1}\right)=m \lambda .
$$

(10.6I)

This expression applies equally well, regardiess of the efractive index of the transmission grating itself (Probem 10.37). One of the main disadvantages of the devices examined thus far, and in fact the reason for their obsolescence, is that they spread the available light energy out over a number of low-rradiance spectral. orders. For a grating like that shown in Fig. 10.36, most of the incident light undergoes specular reffection, as if from a plane mirror. It follows from the grating equation that $\theta_{m}=\theta_{i}$ corresponds to the zeroth order, $n^{-} 0$. All of this light is essentially wasted, at least for spectroscopic purposes, since the constituent waveIngths overlap.
In an in the Encyclopaedia Britannica of 1888 Lord Rayleigh suggested that it was at least theoretically
possible to shift energy out of the useless zeroth orden nto one of the higher-order spectra. So motivated Robert Williams Wood (1868-1955) succeeded in 1910 in ruling grooves with a controlled shape, as shown-i Fig. 10.97. Most modern gratings are of this shaped blaved variery. The angular positions of the nong orders, θ_{m}-values, are determined by a, λ, and, of rine orders, θ_{m}-values, are determined by $a_{3} \lambda$, and, of ing from the normal to the grating plane and not wide respect to the individual groove surfaces. On the oth hand, the location of the peak in the single-facct diffre ion pattern corresponds to specular refection off that face, for each groove. It is governed by the blaze argo γ and can be varied independently of θ_{m}. This is somey

igure 10.37 Section of a blazed reffection phase grating.

Figure 10.38 Blazed grating
what analogous to the antenna array of Section 10.1.3 where we were able to control the spatial position of the interference pattern (10.6) by adjusting the relative phase shift between sources without actually changin heir orientations.
Consider the situation depicted in Fig. 10.38 when the incident wave is normal to the plane of a blazed For specular refection $\theta_{-}-\theta_{2}=2 \gamma$ (Fig. 10.37), most of the diffracted radiation is concentrated about $\theta_{r}=-2 \gamma$ (θ, is negative because the incident and reflected ray are on the same side of the grating normal.) This will correspond to a particular nonzero order, on one side of the central image, when $\theta_{\mu}=-2 \gamma$; in other words, $a \sin (-2 \gamma)=m \lambda$ for the desired λ and m

Grating Spectroscopy
Quantum mechanics, which evolved in the early 1920 s, had its initial thrust in the area of atomic physics. Predic tions were made concerning the detailed structure of
he hydrogen atom as manifested by its emitted radi-
ation, and spectroscopy provided the vital proving
ground. The need for larger and better gratings became apparent. Grating spectrometers, used over the range rom soft x-rays to the far infrared, have enjoyed coninued interest. In the hands of the astrophysicist or very origins of the universe, information as varied as the temperature of a star, the rotation of a galaxy, and the red shift in the specrum of a quasar. In the mid1900 s George R. Harrison and George W. Stroke 1900s George R. Harrison and George W. Stroke
remarkably improved the quality of high-resolution gratings. They used a ruling engine* whose operation was contrnlled by an tnterferometrically guided servomechanism.
Let us now examine in some detail a few of the major features of the grating spectrum. Assume an infinitesimally narrow incoherent source. The effective width of an emergent spectral line may be defined as the angular distance between the zeros on either side of a principal maximum; in other words, $\Delta \alpha=2 \pi / N$, which follows from Eq. (10.33). At oblique incidence we can redefine α as (ka/2) $\left(\sin \theta-\sin \theta_{3}\right)$, and so a small change in α is given by

$$
\Delta \alpha^{-}(k \alpha / 2) \cos \theta(\Delta \theta)=2 \pi / N, \quad \text { (10.62) }
$$

where the angle of incidence is constant, fhat is, $\Delta \theta_{i}=0$ Thus even when the incident light is monochromatic

$$
\Delta \theta=2 \lambda /\left(N a \cos \theta_{m}\right)
$$

is the angular width of a line, due to instnumental broadening. Interestingly enough, the angular linewidth varies inversely with the width of the grating itself, N. Another important quantity is the difference in angula position corresponding to a difference in wavelength The angular dispersion, as in the case of a prism, is defined as

$$
D=d \theta / d \lambda .
$$

Differentiating the grating equation yields

$$
\mathscr{D}=m / a \cos \theta_{m .}
$$

This means that the angular separation between two

For more detaks about these marvelous machines see A. R. Incalis, Si. Amer: 186, 45 (1952), or the article by E. W. Palmer and J. F. Veriit, Contemp. Phys. 9, 257 (1968).

428 Chapter re Diffraction

different frequency lines will increase as the order increases.
Blazed plane gratings with nearly rectangular grooves re most ofter mounted so that the incident propagaare most ofter mounted so that the incident propaga-
tion vector is aimost normal to either one of the groovetion vector is a most normal to either one of the groove
faces. This is the condition of autuollimation, in which θ_{1} and $\theta_{n 2}$ are or the same side of the normal and $\gamma^{-}=\theta_{i}=-\theta_{m 1}$ (sec Fig. 10.39), whercupon

$$
\mathscr{D}_{\mathrm{iuco}}=2 \tan \theta_{u} / \lambda,
$$

(10.56)
which is independent of α.
When the wavelength difference between two lines is small enough so that they overlap, the resuitant peak becomes somewhat ambiguous. The chromatic resolving power \mathscr{Z} of a spectrometer is defined as

$$
9 n=\lambda /(\Delta \lambda)_{\min }, \quad \quad[9.76]
$$

where $(\Delta \lambda)_{\text {tin }}$ is the least resolvable wavelength difference, or limit of resolotion, and λ is the mean wavelength. Lord Rayleigh's criterion for the resolution of two fringes with equal flux density requires that the principal maximurn of one coincide with the first minimum of the other. (Compare this with Fise 10.40 , at the limit of resolution the angula
separation is balf the linewidth, or from Eq. (10.63)

$$
(\Delta \theta)_{\tan }=\lambda / \mathrm{N}_{a} \cos \theta_{\pi x}
$$

Applying the expression for the dispersion, we get

$$
(\Delta \theta)_{\text {mix } 2}=(\Delta \lambda)_{\text {mia } 2} m / a \cos \theta_{m}
$$

The combination of these iwo cquations provides us with 54 , that is,
or

$\lambda /(\Delta \lambda)_{\text {min }}-m N$
$\mathscr{A}=\frac{N a\left(\sin \frac{\left.\theta_{m i}-\sin \theta_{2}\right)}{A} .\right.}{} .$

The resolving power is a function of the grating wid Na, the angle of incidence, and λ. A grating 6 inche wide and consaining 15,000 lines per inch will have otal of 9×10^{4} lines and a resolving power, in the secon order, of 1.8×10^{5}. In the vicinity of 540 nm the gratin could resolve a wavelength difference of 0.003 nim Notice that the resolving power cannot exceed $2 \mathrm{Na} / \mathrm{A}$ which occars when $\theta_{\mathrm{i}}=-\theta_{m}=90^{\circ}$. The largest value of \mathscr{K} are obtained when the grating is used in autocollic. rriation, whereupon

$$
9 \operatorname{comb}_{0}-\frac{2 N a \sin \theta_{i}}{\lambda},
$$

and again θ_{i} and $\theta_{2 \pi}$ are on the same side of the normal For one of Harrison's 260 -mm-wide blazed gratings a about 75° in a Littrow mount, with $\lambda=500 \mathrm{~nm}$, the resolving power just exceeds 10°
We now need to consider the problem of overlapping orders. The grating equation makes it quite ciear that a line of the same postion, θ_{m}, as a $00-m$ ine ordelength A and $(\lambda+\Delta \lambda)$ in successive orders $(n+1)$ wav d m just coincide, then
$a\left(\sin \theta_{m}-\sin \theta_{n}\right)=(m+1) \lambda-m(\lambda+\Delta \lambda)$.
That precise wavelength difference is known as the free spectral range,

$$
(\Delta \lambda)_{\mathrm{rr}}-\lambda / n r_{r}
$$

(10.70)
as it was for the Fabry-Perot interferometer. In cormparison with that dcrice, whose resolving power was

$$
\mathscr{R}=\mathscr{F} m
$$

we might take N to be the finesse of a diffraction grating (Problem 10.38).
A high-resolution grating blazed for the first order soasto bave the greatest free succtral range, will require a high groove density (up to about 1200 lines per mit limeter) in order to maintain (A) Equation (10.68) shows that \mathscr{F} can be kept constant by ruling fewer lines with increasing spacing, such that the grating width N_{a} is increasing spacing, such that the grating width \mathcal{N}_{a} is
constant. But this requires an increase in m and a subsequent decrease in free spectral range, characterized by overlapping orders. If this time N is held constant while a alone is made larger, M increases as does m, so that $(\Delta \lambda)_{\text {mar }}$ again decreases. The angular width of a line is reduced (i.e., the spectral lines become sharper), the coarser the grating is, but the dispersion ma given order diminishes, with the effect that the lines In that spectrum approach each other.
Thus far we have considered a particular type of periodic array, namely, the line grating. A good deal more information is available in the literature ${ }^{*}$ concern-
"SerF. Kneubühl, "Dif fraction Grating Spectroscopy", Appl. OpL 8
 R9, ecitied by S. Flügge, p. 426.

Figure 10.40 Oterlapping point images
ing their shapes, mountings, uses, and so forth There are a few unlikely household items that can be used as crude gratings, along with a small ligh source. The grooved suface of a phonograph record works nicely near grazing incidence. And surprisingly enough, under the same conditions an ordinary finetoothed comb will separate out the constituent wavelengths of white light. This occurs in exactly the same fashion as it would with a more orthodox reflection grating. In a letter to a friend dated May 12, 1673 , James Gregory pointed out that sunlight passing and he asked that his observations a coored pattern, Newton Is you've got one, a feather makes a ris one, a feather makes a nic transmission grating.

Two-and Three-Dimensional Gratings
Suppose that the diffracting screen Σ contains a large number, N, of identical diftracting objects (apertures or obstarles). These are to be envisioned as distributed ver the surface of Σ in a completely random manner. We also require that each and every one be similarly ofiented. Imagine the diffracting screen to be illuminated by plane waves that are focused by a perfect lens L_{2}, after emerging from Σ (see Fig. 10.15). The individual apertures generate identical Fraunhofer diffraction patterns, al. of which overlap on the image plane σ. If there is no regular periodicity in the location of the apertures, we cannot anficipate anything but a andom distribution in the relative phases of the waves arriving at an arbitrary point P on σ. We have to be rather careful, however, because there is one exception which occurs when P is on the central axis, that is $P=P_{0}$. All rays, from all apertures, parallel to the central axis will traverse equal optical path lengths before reaching P_{0}. The Now consider aroup of
ays in in the direction directed paralle mitted from a different aperture These will be focused at some point on e such that each corresponding wave will have an equal probability of arriving with any phase letween 0 and 2π. What must be decermined is the resultant field arising from the superposition of N
qual-amplitude phasors all having random relatiy phases. The solution to this problem requires an elabois te analysis in terms of probability theory, which is little too far afield to do here.* The important point that the sum of a number of phasors taken ac random angles is not simply zero, as might be thought. Thi general analysia begins, for statistical reasons, by assump og that there are a large number of individual apertur creens, each containing N random diffracting ape ures and each illuminated, in turn, by a monochromatige wave. We shouldn't be surprised if there is some ifference, however small, between the diffraction paterns of two different random distributions of, say maller N is the mor and the ma eo their silatitu to how up unee we can expen ther n considering a If
are all averagidual resulting irradiance distribuons are all averaged for a particular off-axis point on , it will be found that the average irradiance $\left(I_{a v}\right)$ ther ture: $I_{\alpha N}=N I_{0}$. Still, the irradiance at any point arising from any one aperture screen can differ from this average value by a fairly large amount, regardless of how great N is. These point-to-point Ructuations about he average manifest themselves in each particular patern as a granularity that tends to show a radial fibe tlik tructure. If this fine-grained mottling is averaged over small region of the pattern, which nonetheless contain many fuctuations, it will average out to NI_{n}.
Of course, in any real experiment the situation will not quite match the ideal-there is no such thing a nonochromatic iight or a truly random array of (nonverapping) diftracting objects. Nonetheless, with creen containing N randon apertures illuminated by quasimonochromatic, nearly plane-wave illuminadistribution closely resembling that of ar individual da N imes astro Moreocr brithol

For a statistical treatment, consult J. M. Stone, Radiation and Optics, p. 146, and Sommerfeld, Optics, p. 194. Also take a loukat "Diffraction lates for Classoom Demonstrations," by R. B. Hoover, Am. . Phe ments," Ami J. Phzs. 53, 227 (I985).
ill exist on-axis at its center, which will have a flux lensity of N^{2} times that of a simgle aperture. If, fo rample, the screen contains N rectangular holes [Fis 0.41 (a)], the resultant pattern [Fig. 0.41 (b)] wil esemble Fig. 10.24. Similarly, the array of circular hole depicted in Fig. 10.41 (c) will produce the diffraction
rings of Fig. $10.41(\mathrm{~d})$.
As the number of apertures increases, there will be a tendency for the centra. spot to become so bright as to obscute the rest of the pattern. Note as well that th above considerations apply when all the aperures ar illuminated completely coherently. In actuality, the

(d)

(e)

Figure $10.41 \quad(x)$ A andom array of retargular aperture
(b) The resulting white-light Fraunhofer patern. (c) A raid dom array of circular apertures. (d) The resulting white-ligh Fraunhofer pattern. (Photos courtesy The Ealing Corportion and Richard B. Hoover.) (e) A cancle fiame viewed
hrougha fogsed picce of glass. The spectral colors arevevisible as conccontric rings. (Photo by E. H.)
diffracted flux-density distribution will be determined by the degree of coherence (see Chapter 12). The pat tern will run the gamut from no interference with completely incoberent light to the case discursed above The slecely coberent illumination (Problem 10.40). The sarne kind of effects arise from what we might call a two-dimensional phase grating. For example, the from diffraction by

(a)

(1.e., cloud particles). If you would like to duplicate effect, rub a very thin film of talcum powder on microscope slide and then fog it up with your breat Look at a white-light point source. You should see pattern of clear, concentric, colored rings (I0.56) sure
rounding a white centrai disk if rounding a white central disk. If you just see a white
blur, you don't have a distribution of roughy blur, you don't have a distribution of roughly equar sized droplets; have another try at the talcum. Strikingik beautiful patterns approximating concentric ring sys
ems can be seen through an ordinary mesh nylon stockielig. If you are fortunate enough to have mercury-vapor ing. Mreet lights, you'll have no trouble sceing all their transticuent visible spectral frequencies. (If not, block out most of a fluorescent lamp, leaving something fesembling a small source.) Notice the increased sym5netry as you increase the number of Ritronsouse, the incidentally, this is precisely the way Ricesine, the inventor of the grating, became inchief.
emm, only he used a Consider ung elements (Fig 10.42) under normally of diffracting elements (rig. 10.4.) under noll element mecident plan conere. And because of the regupehaves as a colerent lattice of emitters, each emergent lar periodicity of the lattice of emitiors, cacters. There thall now be certain directions in which constructive will now be cerrain directions in these occur when the distances from each diffracting element to P are such that the waves are nearly in phase at arrival. The phenomenon can be observed by looking at a point多ource through a piece of square woven, thin cloth (such as nylon curtain material) or the fine metal mesh of a tea gtrainer (Fig, 10.84). The diffracted image is effectively the superposition of two grating patterns a Fight angles. Examine the center of the pattern carefull to see its gridilike structure.
As for the possibility of a chree-dimensional grating, there seems to be no particular conceptual difficulty. A regular spatial array of scattering centers would cer tainly yield interference maxima in preferred diec tions. In 1912 Max the ingenious idea of using the regularly spaced at within a crystal as a three-dimension (10.61) that if λ is apparent from the grating equation (10.61) chat ir λ much greater than the grating spaciog, only to $\theta_{0}=\theta_{1}$ order ($m=0$ is posilection. Since the spacing between hat is, specuiar refiction. Slace cral angstroms ($1 \mathrm{~A}=$ $10^{-1} \mathrm{~nm}$) light an be diffracted only in the zeroth order.
order.
Von Laue's solution to the problem was to probe the lattice, not with light but with x-rays whose wavelengths were comparable to the interatomic distances (Fig 10.45). A narrow beam of white radiation the broad

Figure 10.43 Transmission Laue patern

Figure 10.44 X-fay diffraction pattern for quarz $\left(\mathrm{SiO}_{2}\right)$ -
continuous frequency range emitted by an x-ray tube) was directed onto a thin single crystal. The firm plate (Fig. 10.44) revealed a Fraunhofer pattern consisting of an array of precisely located spots. These sires of constructive interference occurred whenever the angle between the beam and a set of atomic planes within the

Figure $\mathbf{1 0 . 4 5}$ Water waves in a ripple lank reflecting off an array of pegs acing as point scatcrets. (Photocourtesy PSSC Phyies, D. C pegs ading as point
Heath, Boston, 1960.)
crystal obeyed Bragg's law:
$2 d \sin \theta=m \lambda$.
(10.71)

Notice that in x-ray work θ is traditionaily measure from the plane and not the normal to it. Each set of planes difi racts a particular wavelength into a particuia direction. Figure 10.45 rather strikingly shows the analogous behavior in a ripple tank.
Instead of reducing λ to the x-ray range, we could have scaled everything up by a factor of about a billion and made a lattice of metal balls as a grating for micro waves.
10.3 FRESNEL DIFFRACTION
10.3.1 The Free Propagation of a Spherical Wave

In the Fraunhofer configuration, the diffracting system was relatively small, and the point of observation was very distant. Under these circumstances a few potentially problematic features of the Huygens-Fresnel principle could be completely passed over without concern. But we are now dealing with the near-field region,
which extends right up to the diffracting element it and any such approximations would be inapprop We therefore return to the Huygens-F resnel prixit in order to re-examine it more closely. At any inst every point on the primary waveftont is envisione a continuous emitter of spherical secondary way But if each wavelet radiated uniformly in all direcedt in addition to generating an ongoing wave, there wo also be a reverse wave traveling back toward the sou No such wave is found experimentally, so we m somehow modify the radiation pattern of the secont emitters. We now introduce the function $K(\theta)$, knO_{2} as the obliquity or inclination factor, in order to Fresnel recognized the need to secondary emissions this kind but he did litte to introcuce a quantity o this kind, but he did little more than conjecture abol formulation to provide an actual expression for X ho which, as we will see in Section 10.4 turns out to

$$
K(\theta)=\frac{1}{2}(\mathrm{I}+\cos \theta) .
$$

(10.72] As shown in Fig. 10.46, θ is the angle made with the normal to the primary wavefront, \mathbf{k}. This has it maximum value, $K(0)=1$, in the forward direction atit also dispenses with the back wave, since $K(\pi)=0$. Let us now examine the free propagation of a spherical monochromatic wave emitted from a poing source S. If the Huygens-Fresnel principle is corree we should be able to add up the secondary wavelety arriving at a point P and thus obtain the unobstrudts primary wave. In the process we will gain some insigh recognize a few shorcomings, and develop a very use 10.47. The spherical surface corresponds to the primp

It is interesting to read Fresnel's own words on the matter, keef in mind that hc was talking ahout light as an elastic vibration of ether.
Since the impulse communicated to every part of the primitive wave was directed along the normal, the motion which each tends to impress upon the aether ought to be mare intense in
this ditection than in any other; and the rays which would this direction than in any ocher; and the rays which would as they deviated more and more from this direction.
The investigation of the law according to which their atensity varies about each center of disturbance is doubtess a very diffculin matter;
fovefront at some arbitrary time t^{t} after it has been fitted from S at $t=0$. The disturbance, having dius p, can be represented by any one of the mathefatical expressions describing a harmonic spherical Fave, for example,

$$
\begin{equation*}
E=\frac{\varepsilon_{0}}{\rho} \cos \left(\omega t^{\prime}-k \rho\right) . \tag{10.79}
\end{equation*}
$$

As illustrated, we have divided the wavefront into a number of annular regtons. The boundaries of the various regions correspond to the intersections of the wavefront with a series of spheres centered at P of radius $r_{0}+\lambda / 2, r_{0}+\lambda, r_{0}+9 \lambda / 2$, and so forth. These are the Fresnel or half-period zones. Notice that, for a secondary point source in one zone, there will be a

Figure 10.48 propagation of
point source in the adjacent zone that is further from P by an amount $\lambda, 2$. Since each zone, although small, is finite in extent, we define a ring-shaped differentia area element $d S$, as indicated in Fig. 10.48. All the poin sources within dS are coherent, and we assume that cach vadictes in phase with the primaty waue (10.73). The secon dary wavelets travel a distance r to reach P, at a time all arriving there with the same phase, $\omega t-k\{\rho+\gamma$ The ampitudc of the primary wave at a distance ρ from S is boop. We assume, accordingly, that the source strength per unit area ε_{A} of the secondary ernitters on $d S$ is proportional to E_{0} / p by way of a constant Q, tha is, $\varepsilon_{A}=Q E_{1} / \rho$. The contribution to the oplical disturb ance at P from the secondary sources on $d S$ is, therefore

$$
d E=\mathrm{K} \frac{\varepsilon_{\mathrm{h}}}{r} \cos [\omega t-k(\rho+r)] d S . \quad \text { (10.74) }
$$

The obliquity factor must vary slowly and may be assumed to be constant over a single Fresnel zone. To get $d S$ as a function of r, begin with

$$
d S=\rho d \varphi 2 \pi\langle\rho \sin \varphi\rangle .
$$

Applying the law of cosines, we get

$$
T^{2}-\rho^{2}+\left(\rho+r_{\omega}\right\}^{2}-2 \rho\left\{\rho+r_{n}\right) \cos \varphi .
$$

Upon differentiation this yields

$$
2 r d r=2 \rho\left(\rho+\tau_{0}\right) \sin \varphi d \varphi,
$$

mas of cach zone are almost equal, they do increas slightly as $/$ increases, which neans an increased number femitcers. But the mean distance from each zone to P also increases, such that E (K, remainis constant (see (Problem 10.43).
The sum of the optical disturbances from all m zones at P is

$$
E=E_{1}+E_{2}+E_{y}+\cdots+E_{m},
$$

and since these alternate in sign, we can write

$$
E=\left|E_{\mathrm{i}}\right|-\left|E_{2}\right|+\left|E_{1}\right|-\cdots=\left|E_{\mathrm{m}}\right| . \quad \text { (10.77) }
$$

If m is odd, the series can be reformulated in two ways,
e.ther as
$E=\frac{\left|E_{3}\right|}{2}+\left(\frac{\left|E_{1}\right|}{2}-\left|E_{y}\right|+\frac{\left|E_{z}\right|}{2}\right)+\left(\frac{\left|E_{s}\right|}{2}-\left|E_{4}\right|+\frac{\left|E_{5}\right|}{2}\right)+\cdots$
with ρ and r_{0} held constant. Making use of the value of $d \varphi$, we find that the area of the elemen is therefore

$$
\dot{d} S=2 \pi \frac{p}{\left(\rho+r_{0}\right)} r d r .
$$

(10.75)

The disturbance arriving at P from the th zone is

$$
E_{l}=K_{i} 2 \pi \frac{\varepsilon_{A \rho} \rho}{\left\langle\rho+r_{0}\right\}} \int_{r_{r}}^{r_{i}} \cos [\omega t-k(\rho+r)] d r .
$$

Hence

$$
E_{i}=\frac{-K_{i} \varepsilon_{A} \rho_{k}}{\left(\rho+\varphi_{0}\right)}[\sin \{\omega t-k \rho-k r)]_{--r \mid}^{r=r_{t}} .
$$

Upon the introduction of $r_{t-1}-r_{0}+(l-1) \lambda / 2$ and $r_{t}=$ $\tau_{0}+l A / 2$, the expression reduces (Problem 10.42) to

$$
E_{i}=(-1)^{i+1} \frac{2 K_{i} \varepsilon_{\Lambda} \rho \lambda \lambda}{\left(\rho+\frac{1}{r_{0}}\right)} \sin \left(\omega t-h\left(\rho+r_{0}\right)\right] . \quad(10.76)
$$

Observe that the amplitude of E_{i} alternates between positive and negative values, depesding on whether is odd or even. This raeans that the contributions from adjacent zones are out of phase and tend to cancel. It is here that the obliquity factor makes a crucial difference. As l increases, θ increases and K decreases, on that successive contributions do not in fact completely cancel each other. It is interesting to note that $E_{i} / K_{\text {, }}$ t independent of any position variables. Although the

$$
\begin{equation*}
+\left(\frac{\left|E_{m 2,2}\right|}{2}-\left|E_{x t-1}\right|+\frac{\left|E_{m j}\right|}{2}\right)+\frac{\left|E_{n}\right|}{2} \tag{10.78}
\end{equation*}
$$

or as

$$
E=\left\lvert\, E_{l^{\prime}}^{\prime}-\frac{\left|E_{2}\right|}{2}-\left(\frac{\left|E_{4}\right|}{2}-\left|E_{3}\right|+\frac{\left|E_{4}\right|}{2}\right)\right.
$$

$$
-\left(\frac{\left|E_{5}\right|}{2}-\left|E_{5 \mid}\right|+\frac{\left|E_{6}\right|}{2}\right)+\cdots
$$

$$
+\left(\frac{\left|E_{m-1}\right|}{2}-\left|E_{m}\right|+\frac{\left|E_{m-1}\right|}{2}\right)-\frac{\left|E_{m}\right|}{2}+\left|E_{m}\right| .
$$

$$
(10.79)
$$

There are now two possibilities: either $\left|E_{k}\right|$ is greater [F F_{t+1}, or it is less than that mean. This is really a question concerning the rate of change of $K(\theta)$. When

$$
|E|>\left(\left|E_{t-1}\right|+\left|E_{t+1}\right|\right) / 2
$$

each bracketed term is negative. It follows from Eq. (10.78) that

$$
\begin{equation*}
E<\frac{\left|E_{i}\right|}{2}+\frac{\left|E_{m}\right|}{2} \tag{10.80}
\end{equation*}
$$

fand from Eq. (10.79) that

$$
E>\left|E_{3}\right|-\frac{\left|E_{E}\right|}{2}-\frac{\left|E_{x}+1\right|}{2}+\left|E_{m}\right| \cdot
$$

Since the obliquity factor goes trom to 0 over a greal many zones, we can neglect any variation between a dja cent zones, that is, $\left|E_{1}\right| \approx\left|E_{2}\right|$ and $\left|E_{m-d}\right|=\left|E_{m}\right|$ Expression (10.81), to the same degree of approxinta(ion, becomes

$$
E>\frac{\left|E_{\|}\right|}{2}+\frac{|E|}{2}
$$

We conclude from (10.80) and (10.52) that

$$
E=\frac{\left|E_{1}\right|}{2}+\frac{\left|E_{m}\right|}{2} .
$$

This same result is obtained when

$$
\left|E_{i}\right|<\left(\left|E_{t-1}\right|+\left|E_{t+1}\right|\right) / 2 .
$$

If the last term, $\left|E_{5 n}\right|$, in the series of Eq. (10.77) corresponds to an even m, the same procedure (Problem 10.44) leads in

$$
E \approx \frac{\left|E_{1}\right|}{2}-\frac{\left|E_{m}\right|}{2} .
$$

Fresnel conjectured that the obliquity factor was such that the last contributing zone occurred at $t=90^{\circ}$, that is,

$$
K(\theta)=0 \text { for } \pi / 2 \leq\{\theta \mid \times \pi \text {. }
$$

1n that case Eqs. (10.83) and (10.84) both reduce to

$$
E \approx \frac{\left|E_{1}\right|}{2}
$$

(10.85)
when $\left|\mathcal{E}_{m}\right|$ goes to zero, because $K_{m}(\pi / 2)=0$. Alterna tively, using Kirchhoft's correct obliquity factor, we divide the entire spherical wave into zones with the las or meth zone surrounding O. Now θ approaches $K_{m}(\pi)=0,\left|E_{m}\right|=0$, and once again $E=\left|E_{i}\right| / 2$. The optical disturbantice generated by the entire unobstricted wave front is approximately equal io one half the contribution from the first zone.
If the primary wave were simply to propagate from 5 to P in a time t, it would have the form

$$
E-\frac{E_{0}}{\left(\rho+r_{0}\right)} \cos \left[\omega i-h\left(\rho+r_{0}\right)\right] . \quad(I 2,86
$$

Yet the disturbance synthesized from secondary wave
lets, Eqs. (10.76) and (10.85), is

$$
\begin{equation*}
E=\frac{K_{1} \varepsilon_{\mu} p \lambda}{\left(p+r_{0}\right)} \sin \left[\omega l-k\left(\rho+r_{0}\right)\right] . \tag{10.87}
\end{equation*}
$$

These two equations must, however, be exactly equivalent, and we interpret the constants in Eq. (10.87) to make them so. Note that there is some latitude in how we do this. We prefer to have the obliquity factor equal to 1 in the forward direction, that is, $K_{1}=1$ rather than $1 / \lambda$), from which it follows that Q must be qual to $1 / \lambda$. In that case, $\varepsilon_{A} \rho \lambda=\varepsilon_{0}$, which is fine dimensionally. Keep in mind that ε_{A} is the secondarywavelet source strength per unit area over the primary vave front of radius ρ, and \mathcal{E}_{0} / ρ is the amplitude of that primary wave $E_{0}(\rho)$. Thus $\varepsilon_{A}=E_{0}(\rho) /$. There is one ther problem, and that is the $\pi / 2$ phase difference or if were willing to assume that the secondary sourtes ratione quarter of a wavelength out phas with he primary wave (see Section 3.5 . We hawe found it necesary
atement of the Huygens-Fresnel modify the initial should not distract us from our rather pragmatic rea ons for using it, which are twofold. First the HuygensFresnel theory can be shown to be an approximation of the Kirchhoff formulation and as such is no longer merely a contrivance. Second, it yields, in a fairly simple way, many predictions that are in fine agreement with experimental observations. Don't forget that it worked quite well in the Fraunhofer approximation.

0.3.2 The Vibration Curve

We now develop a graphic method for qualitatively nalyzing a number of difraction problems that arise predominantly from circularly symmetric configurations.
Imagime that the hirst, or polar, Fresnel zone in Fig. 10.47 is divided into N subzones by the intersection of spheres, centered on P_{7} of radii
$r_{0}+\lambda / 2 N, r_{0}+\lambda / N, r_{0}+3 \lambda / 2 N, \ldots, r_{0}+\lambda / 2$.

Each subzone contributes to the disturbance at \boldsymbol{P}, the resultant of which is of course just E_{1}. Since the phase difference across the entire zone, from O to its edge is π rad (corresponding to $\lambda / 2$), each subzone is shifted by π / N rad. 1 igure 10.49 depicts the vector acditio of the subzone phasors, where, for convenience, $N=$ 10. The chain of phasors deviates very slightly from the circle, because the obliquity factor shrinks each succes sive amplitude. When the number of subzones is increased to infinity (i.e., $N \rightarrow \infty$), the polygon of vector blends into a segment of a srnooth spiral called a vibr tion curve. For each additional Fresnel zone, the vibra tion curve swings through one half-turn and a phase of π as it spirals inward. As shown in Fig. 10.50, the point $O_{s}, Z_{s 1}, Z_{s 2}, Z_{s,}, \ldots, O_{s}^{\prime}$ on the spiral correspond to points $O, Z_{3}, Z_{9}, Z_{3}, \ldots, O^{\prime}$, respectively, on the wave
front in Fir. the periphery is separated by a (10.91), that the radius of each zone is proportional the square root of its numerical designation, m. The radius of the hundredth zone will be only 10 times th radius of the hundredth zone will be only 10 times that

Figure 10.49 Phasor addition.

Figure 10.50 The vibration curve.
of the first zone. Initially, therefore, the angle θ increases rapidly, the thereafter it gradually slows down as m becomes larger. Accordingly, $K(\theta)$ decreases the spiral circulates around with iricreasing m, it
becomes tighter and tighter, deviating from a circle by a smaller amount for each revolution
keep in mind that the spiral is made up of an infinite number of phasors, each shifted by a small phase angle The relative phase between any two disturbances at P coming from two points on the wavefront, say O and A, can be depicted as shown in Fig. 10.51. The angle made by the tangents to the vibration curve, at point O_{s} and A_{ρ}, is β, and this is the desired phase difference. If the point A is considered to lie on the boundary of a cap-shaped region of the wavefront, the resultant at P from the whole region is $\overline{O A_{s}}$ at an angle δ.
The total disturbance arriving at P from an unimpeded wave is the sum of the contributions from all the zones between O and O^{\prime}. The length of the vector from O_{s} to O_{s}^{\prime} is therefore precisely that amplifude. Note that the contribution from the first O_{0}^{\prime} has a hase of 0° with respet to the . Observe tha at P from O A wavelet emitted at O in phase with the primary exciation gets to p still in phase with the primary wave. This means that $\overrightarrow{O O^{\prime}}$ is 90° out of phase with the uoobstructed primary wave. This, as we hav seen, is one of the shortcomings of the Fresnel formu lation.

44° Chapter ro Diffraction

Figure 10.52 A circular aperture.
10.3.3 Circular Apertures
i) Spherical Waves

Fresnel's procedure, applied to a point source, can be used as a semiquantitative method to stucy diffraction at a circular aperture. Envision a monochromatic spherical wave impinging on a screen containing a small hole, as illustrated in Fig. 10.52. We first record the irradiance arriving at a very small sensor placed at point P on the symmetry axis. Our intention is to move the sensor around in space and so get a point-by-point map of the irradiance of the region beyond Σ.
Let us assume that the sensor at P sees an integral number of zones, in, filing the aperture. In actuality, having no reality If m is cven, then since $K=0$ having
$E=\left(\left|E_{1}\right|-\left|E_{2}\right|\right)+\left\{\left|E_{3}\right|-\left|E_{s}\right|\right)+\cdots+\left\{\left|E_{i n-1}\right|-\left|E_{\sum}\right\rangle\right\}$
Because each adjacent contribution is nearly equal,

$$
F=0
$$

and $I \approx 0$. If, on the other hand, m is odd,
$E-\left|E_{1}\right|-\left(\left|E_{2}\right|-\left|E_{3}\right|\right)$
$-\left(\left|E_{\mathrm{s}}\right|-\left|E_{\mathrm{j}}\right|\right)-\cdots-\left|\left|E_{--1}\right|-\left|E_{\mathrm{s}}\right|\right)$
and

$E \approx\left|E_{1}\right|$

which is roughly twice the amplitude of the unobstrua ted wave. This is truly an amazing result. By inserting a screen in the path of the wave, thereby blocking ou most of the wavefront, we have increased the irradiang at P by a factor of four. Conservation of energy dead demands that there be other points where the irradian has decreased. Because of the complete symmetry the setup, we can expect a circular ring pattern. If is not an integer (i.e., a fraction of a zonc appears the aperture), the irfadiance at P is somewhere betweed zero and its maximum value. you might see this als a bit more clearly if you imagne hat he apcrure The amplitude at P can be determined from the vibr tion curve, where A is any point on the cdge of the hole. The phasor magnitude $O_{s} A_{i}$ is the desired amplit tude of the optical field. Return to Fig. 10.51; as the hole increases, A, moves counterclockwise around thet hole increase:s, A, moves counterclockwise around to
spiral toward $Z_{s 1}$ and a maximum. Allowing the second sone in reduces O, A, to $O, Z_{s 2}$. which is nearly zero, and P zone in reduces O, A, to O, L_{s}, which is nearcy zero, a dark spot. As the aperure increastes, O, osciliates in length from nearly zero to a number of successive maxima, which themselves gradually

Finally, when the hole is ftiely large, the vave
 wevially umatoructed, A, approseties O_{p} and fur donges is $O_{A} A_{s}$ are imperceprible
io map the rest of the pottern, we now move the en er along any line perpendicular to the axis, as shonm in 15 IE 10.55. At P we assume that two complete zones if ine aperture and E m 0 . At P_{1} the second zone has xan partially obscured and the third begins to show, iif oo longer zero. At P_{y} a good Iraction of the susernd zone is hidecte, whereas the third a tven more evident. Since the contributions from the first and third zones are in phase, the sensor, placed ronds a bright spot. As it circle paves radially outward and portions of successive zones move uncovered, the sensor detects a series of relative

Figure 10.53 Zones in a circul aperture.

442 Chapter ro Diffraction

 for circ
size.

If the aperture has a radius R, a good approximation of the number of zoncs within it is simply

$$
\frac{\pi K^{2}}{A}=\frac{\left(\rho+r_{0}\right) K^{2}}{\rho r_{0} \lambda} .
$$

For example, with a point source 1 m behind the apyry ture ($\rho \approx \mathrm{Im}$), a plame of observation I m in front of it ($r_{n}=1 \mathrm{~m}$), and $\lambda=500 \mathrm{~nm}$, there are 4 zones whe ρ and τ_{0} are increased to the point where only a smotil

$$
R_{m}^{2}=m r_{0} \lambda+m^{2} \lambda^{2} / 4 .
$$

Linder most circumstances the sccond term in Eq (10.90) is negligible as long as m is not extremely large consequently

$$
R_{m}^{2}=m I_{\mathrm{p}} \lambda,
$$

and the radii are proportional to the square roots of integer Using a collimated He-Ne Iaser $\left(\lambda_{i,}=632.8 \mathrm{~nm}\right)$, th radius of the first zone is 1 mm when viewed from a Eq. (10.91) is applicabie as long as $m \& 10^{7}$, in which case $R_{m}-\sqrt{m}$ in millimate Firure 1053 , slight and $\overline{O_{3}}$ are perpendiuk en fromed the point of observation to Σ.

10.3.4 Circular Obstacles

In 1818 Fresnel entered a competition sponsored by the French Academy. His paper on the theory of diffraction ultimately won first prize and the title Mémoire Courronné, but not until it had provided the basis for a raister intetesting story. The judging committee conPoisson, Derr Laplace, Jean B. Biot, Simeon Lussac-a fomique F. Arago, and Joseph L. Gay an ardent a remarkable ant he wave description of light, dedur Fresnel's theory. He showed that a bright spot would be visible theory. He showed that a bright spot would be visible at the center of the shadow of a circular opaqu obstacle, a result that he felt proved the absurdity of Fresnel's treatment. We can come to the same conclusion by considering the following, somewhat over simplified argument. Recall that an unobstructed wave yieids a disturbance (10.85) given by $E \approx \mid E_{1} / 2$. If some so that its contribution of $\left|E_{1}\right|$ is subtracted $E \approx-E_{\mathrm{l}} / 2$. It is therefore possible that at some point P on the axis, the irradiance will be unaltered by the insertion of that obstruction. This surprising prediction, fashioned by Poisson as the death blow to the wave theory, was almost immediately verified experimentally
by Arago; the spot actually existed. Amusingly enough Poisson's spot, as it is now called, had been observed many years earlier (1723) by Maraldi, but this work had long gone unnoticed.
We now examine the problem a bit more closely, since it is quite evident from Fig. 10:56 that there is a good deal of structure in the actual shadow pattern. If the opaque obstacle, be it a disk or sphere, obscures the first ℓ zones, ther

$$
E-\left|E_{\ell+1}\right|-\left|E_{\ell+2}\right|+\cdots+\left|E_{m}\right|
$$

(where, as before, there is no absolute significance to the signs other than that alternate terms must subtract). Unlike the analysis for the circular aperture, $E_{\text {w }}$ now *See J. E. Harvey and J. L. Forgham, "The Spot of Arago: New
Reievance for an Old Phenomenon," Am. J. Phys 52.249 (1984).

Figure 10.56 Shadow of a $1 / 8$-inch diamcter ball bcaring. The beat ing was glued to an ordinary microscope slide and illuminated with a He-Ne laserbeam. There are some faint extraneous nonconcentri fringes arising from both the microscope slide and a lens in the beam. (Photo by E. H.)

Figure 10.57 The vibration curve applied to a circular obstruefle:
pproaches zero, because $K_{m} \rightarrow 0$. The series must valuated in the same manner as that of the unobstem ed wave (10.78 and 10.79). Repeating that procedu yields

$$
E=\frac{\left|E_{\ell+1}\right|}{2},
$$

(10.9.9
and the irraciance on the central axis is generally only lightly less than that of the unobstructed wave. Ther is a bright spot eucrywhere along the central axis exce mmediately behind the circular obstacle. The wavele propagating beyond the disk's circumference meet in phase on the central axis. Notice that as P moves clases to the disk, θ increases, $\mathrm{K}_{2+t^{-}} 0$, and the irradiance gradually falls off to zero. If the disk is large, the (f) 1)th zone is very narrow, and any irregularities in the obstacle's surface may seriously obscure that zone. For Poisson's spot to be readily observable, the obstacle mpl be smooth and circular.
If A is a point on the periphery of the disk or spheref A_{s} is the corresponding point on the vibration curye (rg. 10.57 . As he disk increases for a fixed P, A_{r} spin O radually decreas The same thing happens as moves toward a cisk of constant size
Off the axis, the zones covered in ircular aperture will now be exposed and vice versan a whole series of concentric bright and dark rings will surround the central spot

The opaque disk images S at P and would similarly form a crude image of every point in an extended furce. R. W. Pohl has shown that a small disk can Gerefore be used as a crude positive lens
The diffraction pattern can be seen with little fifficulty, but you need a telescope or binoculars. Glue Emall ball bearing ($\alpha=\frac{1}{8}$ or $\frac{1}{4}$ inch in diameter) to microscope slide, wich sen serves as a handle. Place fe bearig from 3 or 4 meters away position it so the is directly in front of and completely obscuring the is direce You will need the telescope to magnify the lource. Youce r_{0} is so large. If you can hold the telescope steady, the ring system should be quite clear.

10.3.5 The Fresnel Zone Plate

In our previous considerations we utilized the fact that Lucessive Fresnel zones tended to nullify each other This suggests that we will observe a tremendous increase in irradiance at P, if we remove either all the even or all the odd zones. A screen chat alters the light, eithe in amplitude or phase, coming from every other half period zone is called a zone plate.*
Suppose that we construct a zone plate that passes only the first 20 odd zones and obstructs the even zones.

$$
E=E_{1}+E_{3}+E_{5}+\cdots+E_{s 9},
$$

and each of these terms is approximately equal. For an ennobstructed wavefront, the disturbance at P would be $E_{1} / 2$, whereas with the zone plate in place, $E=20 E$ The irradiance has been increased by a factor of 1600 The same result would obviously be true if the even zones were passed instead.
To calculate the radii of the zones shown in Fig. 10.58, refer to Fig. 10.59. The outer edge of the mth rone marked by the point A_{m}. By definition, a wave that travels the path $S-A_{m}-P$ must arrive out of phase b

Lord Rayleigh seems to have invented the zone plate, as witnested Word Raylesigh seems this entry of April I1, 1871, in his nowebook: "The experimento Wocking out the odd Huygens zonea so to to tocrease the light a
10.3 Fresnel Diffraction
(c)

Iigure 10.58 (a) and (b) Zanc plates. (c) A zone plate used to image alpha particles coming from x target 1 cm in front, on photographic firm 5 cm behind. The plate is 2.5 mm in diameter and contains 100 Lawrence Livermore Laboratory.)
$m \lambda / 2$ with a wave that traverses the path $S-O-P$, that is,

$$
\left(\rho_{m}+r_{\pi}\right)-\left(\rho_{0}+r_{0}\right)^{-} m \lambda / 2 .
$$

Clearly $\rho_{m}=\left(\boldsymbol{R}_{m}^{2}+\rho_{0}^{2}\right)^{1 / 2}$ and $\gamma_{m}{ }^{*}=\left(\boldsymbol{R}_{m}^{2}+r_{0}^{2}\right)^{1 / 2}$. Expand both these expressions using the binomial series. Since R_{m} is comparatively small, retaining only the first two erms yields

$$
\rho_{m}=\rho_{0}+\frac{R_{m}^{2}}{2 \rho_{0}} \text { and } \tau_{m}=r_{0}+\frac{R_{m}^{2}}{2 \tau_{0}} .
$$

Finally, substituting into Eq. (10.93), we obtain

$$
\left(\frac{1}{\rho_{0}}+\frac{1}{r_{0}}\right)=\frac{m \lambda}{R_{n=}^{2}}
$$

Under plane-wave illumination ($\rho_{0} \rightarrow \infty$), and Eg. (10.94) reduces to

$$
R_{n}^{2}=m r_{0} \lambda,
$$

which is an approximation of the exact expression stated by Eq. (10.90). Equation (10.94) has a form identical to that of the thin-lens equation, which is not merely coincidence, since S is actually imaged in converging diffracted light at P. Accordingly, the primary focal length
is said to be

$$
f_{i}=\frac{R_{m}^{2}}{m \lambda}
$$

(Note that the zone plate will show extensive chromatic aberration.) The points S and P are said to be conjugate .. Whe a collmated incident beam (Fig. 10.60) the which in turn corresponds to frist-order focal length, the irradiance distribution. In addition to this real mage, there is also virtual image formed of diverging light a distance f_{1} in front of Σ. At a distance of f from Σ each ring on the plate is filled by exactly one halfperiod zone on the wavefront. If we move a sensor along the $S-P$ axis toward Σ, it registers a series of very small irradiance maxima and minima until it arrives at a point $f_{1} / 3$ from Σ. At that third-order focal point, there

${ }_{5}$
igure 10.59 Zone-plate gcometry.

Figure 10.60 Zone-plate foci.
s a pronounced irradiance peak. Additional focal points will exist at $f_{1} / 5, f_{1} / 7$, and so forth, unlike a lens bunt ven more unlike a simple opaque disk
Following a suggestion by Lord Rayleigh, R. W. Wood constructed a phase-reversal zone plate. Instead of blocking out every other zone, he increased the thickness of ince the entire plate is transparent the ampliud should double and the irradiance increase by a factor of four In actuality the device does not work quite that well , hecrause the phase is not really constant over each one. Ideally the retardation should be made to vary radually over a zone, jumping back by τ at the sart of the next zone.
The usual way to make an optical zone plate is to draw a large-scale version and then photographically educe it. Plates with hundreds of zones can be made by photographing a Newton's ring pattern, in collimated quasimonochromatic light. Rings of aluminum foil on cardboard work very well for microwaves.

See Ditchburn, Light, 2nd cd., p. 232; M. Sussman. "Elementary See Ditchburn, Ligh, 2nd ca., p. 232: M. Sussman. "Elementary
Diffraction Theory of Zonce Plates," Am, J. Phys. 28, 394 (1960); Ora Myers, Ir., "Studies of Transmission Zone Plates." Am. J. Phys Is,

Zone plates can be made of metal with a selfsupporting spoked structure, so that the transparent regions are devoid of any material. These will function as lenses in the range from uttraviolet to soft x-rays where ordinary glass is opaque.

10.3.6 Fresnel integrals and the Rectangular Aperture

We now consider a class of problems within the domain of Fresnel diffraction, which no longer have the circular of Fresnel diffraction, which no onger have the circulat Consider Fig. 10.61 where αS is an area element situated Consider Fig. 10.61 where $d S$ is an area element situated at some arbitrary point A whose coordinates are (y, z) The location of the origin O is determined by a perpendicular drawn to \sum from the position of the monochroturbance at P from the secondary sources on $d S$ has the form given by Eq. (0.74). Making use of what we learned from the freety propagating wave $\left(\varepsilon_{A} \rho \lambda=\varepsilon_{0}\right)$, we can rewrite that equation as

Figure 10.61 Fresncl difriaction at a rectangular aperiture.

$$
d E_{p}-\frac{K(\theta) \varepsilon_{\theta}}{\rho \tau \lambda} \cos [k(\rho+r)-\omega t] d S .
$$

The sign of the phase has changed from that of Eq. 10.74) and is written in this way to conform with traditonal treatment. In the case where the dimenstons of the er $K(\theta)=1$ and let 1 pr equal 1 (ρ_{0} o in the amplitude coeffien: Being more careful about approvimations ly the Pythatorean eorem to wiangles SOA and POA to

$$
\rho=\left(\rho_{0}^{2}+y^{2}+z^{2}\right)^{1,2}
$$

and

$$
r=\left(r_{0}^{2}+y^{2}+z^{2}\right)^{1 / 2} .
$$

Expand these using the binomial series and form

$$
\rho+r^{=} \rho_{0}+r_{0}+\left(y^{2}+z^{2}\right) \frac{\rho_{0}+r_{0}}{2 \rho_{0} r_{0}}
$$

bberve that this is a more sensitive approximation than that used in the Fraunhofer analysis (10.40), where the erms quadratic and higher in the aperture variables were neglected. The disturbance at P in the complex epresentation is

$$
E_{p}=\frac{\varepsilon_{0} e^{-i m 1}}{\rho_{0} r_{0} \lambda} \int_{n_{1}}^{y_{2}} \int_{i_{1}}^{r_{2}} e^{i\left(p_{1}+r\right)} d y d z . \quad(10.98)
$$

Following the usual form of derivation, we introduce the dimensionless variables u and v defined by

$$
u=y\left[\frac{2\left(\rho_{0}+r_{0}\right)}{\lambda \rho_{0} \tau_{0}}\right]^{1 / 2}, \quad v=z\left[\frac{2\left(\rho_{0}+r_{0}\right)}{\lambda \rho_{0} \tau_{0}}\right]^{1 / 2}
$$

(10.99)

Substituting Eq. (10.97) into Eq. (10.98) and utilizing the new variables, we arrive at
 (10.200)

The term in front of the integral represents the unobtructed disturbance at \boldsymbol{P} divided by 2 ; let us call it $E_{n} / 2$. he integral itself can be evaluated using two functions. $\mathscr{C}_{6}(w)$ and $\mathscr{f}(w)$, where w represents either u or v. These
and are defined by

$$
\begin{align*}
& \mathscr{C}(w)=\int_{0}^{w} \cos \left(\pi w^{\prime 2} / 2\right) d w^{\prime}, \\
& \mathscr{V ^ { \prime }}(w) \equiv \int_{0}^{w} \sin \left(\pi w^{\prime 2} / 2\right) d w^{\prime} . \tag{00.101}
\end{align*}
$$

Both functions have been extensively studied, and their numerical values are well tabulated. Their interest to us at this point derives from the fact that

$$
\int_{0}^{a} e^{i \pi w^{\prime} / 2 / 2} d w^{\prime}=\mathscr{C}(w)+i \mathscr{S}^{(w)},
$$

and this, in turn, has the form of the integrals in Eq (10.100). The disturbance at P is then

$$
\left.E_{\phi}=\frac{E_{u}}{2}[\mathscr{C}(u)-i \mathscr{S}(u)]_{u_{j}}^{v_{j}} \mathscr{C}(v)+i \mathscr{S}(v)\right]_{u_{0}, \quad(10.102)}^{v_{0}}
$$

which can be evaluated using the tabulated values of $\Psi\left(u_{1}\right), \Psi\left(u_{2}\right), \mathscr{S}\left(u_{1}\right)$, and 80 on. The mathematic becomes rather involved if we com position of the plane of observation, leaving the $S-O-P$ line and imagine that we move the ape the through small displacements in the $\bar{\Sigma}$-plane. This the effect of translating the origin O with respect to the fixed aperture, thereby scanning the pattern over the point P. Each new position of O corresponds to a new set of relative boundary iocations y_{1}, y_{1}, z_{1} and z_{2} These in turn mean new values of u_{1}, u_{2}, v_{1}, and τ_{2} which, when substituted into Eq. (10.102), yield a new E_{p}. The error encountered in such a procedure is negligible, as long as the aperture is displaced by distances that are small compared with ρ_{0}. This approach is therefore even more appropriate to incident plane waves. In that case if E_{0} is the amplitude of the incorning plane wave at Σ, Eq. (10.96) becotucs simply

$$
d E_{p}=\frac{E_{0} K(\theta)}{r \lambda} \cos (k r-\omega t) d S,
$$

where, as before, $\mathcal{E}_{A}=E_{0} / \lambda$. This time, with

$$
u=y\left(\frac{2}{\lambda r_{\mathrm{b}}}\right)^{1 / 2}, \quad v=z\left(\frac{2}{\lambda \tau_{0}}\right)^{1 / 2},
$$

where we have divided the numerator and denom in Eq. (10.99) by ρ_{0} and then let it go to infing takes the same form as Eq. (10.102), where $E_{\text {w }}$ in $E_{p} E_{p}^{*} / 2$ (keep in mind that E_{u} is complex): heni
$I_{p}=\frac{I_{0}}{4}\left\{\left\{\mathscr{G}\left(u_{2}\right)-\mathscr{C}\left(u_{1}\right)\right]^{2}+\left\{\mathscr{P}\left(u_{8}\right)-\mathscr{S}\left(u_{1}\right)\right]^{2}\right\}$
$\times\left\{\left[\mathscr{C}\left(v_{2}\right)-\mathscr{G}\left(v_{1}\right)\right]^{2}+\left[\mathscr{Y}\left(v_{2}\right)-\mathscr{S}_{\left(v_{1}\right)}\right]^{2}\right\}$
where I_{0} is the unobstructed irradiance at P As a simple example, envision a square hole 2 . on each side under plane-wave illuraination at 500 , If P is 4 m away and directly opposite point O ok center of the aperistre. $w_{2}=1.0, u_{1}=-1.0,1_{2}$ and $y_{i}=-1.0$. The Presoelintegrals are both odd fine tions, that is,
$\mathscr{C}(w)=-\mathscr{C}(-w)$ and $\mathscr{G}(w)=-\mathscr{P}(-w)$ consequently

$$
I_{p}=\frac{I_{0}}{4}\left\{[2 \mathscr{E}\{\mathrm{I})]^{2}+[2 \mathscr{G}(\mathrm{I})]^{2}\right\}^{2},
$$

and a numerical value is easily obtained. To find th 0.1 mm to some left of center in the pattern, for exay to the $O P$-line accordingly where the aperture rela $\rightarrow 0.9, v_{2}=1.0$, and $v_{1}=-1.0$. The resultant 1 be equal to that found at 0.1 mmo to the right of cenf Indeed, because the aperture is square, the same vat otains 0.1 mm directly above and below center (Fig. 10.62).
We can approach the firniting case of free propagh y allowing the aperture dimensions to fing indefinitely. Making use of the fact that $\mathscr{C}(\infty)=\mathscr{S}(\infty)$ and $\mathscr{C}(-\infty)=\mathscr{H}(-\infty)=-\frac{1}{2}$ the ir radiance at P, oppo the center of the aperture, is

$$
I_{p}=I_{0},
$$

which is exactly correct. This is rather remarkable, cop idering that when the length $\overline{\mathrm{OA}}$ is large, all approximations made in the derivation are no longe applicable. It should be realized, however, that at vely small aperture satisfying the approximations still be large enough to effectively show no diffraction

(a)

(d)

(b)

(e)

Trure 10.62 (a) A typical Fressel pateen for a square aperture -(f) A scries of Fressel patterns for incressing square aperture
the region opposite its center. For example, with $0_{0}=T_{0}=1 \mathrm{~m}$ an aperture that subtends an angle of bout 1° or 2° at P may correspond to values of $|u|$ and an roughly 25 to 50 . The quantities \mathscr{C} ard \mathscr{S} are hen very close to their limiting values of $\frac{1}{2}$. Further ncreases in the aperture dimensions beyond the point here the approximations are violated can therefor $\frac{1}{5}$ troduce only a small error. This implies that we need at be very concerned about restricting the actual aper Gre size (as long as $\dot{r}_{0} \gg \lambda$ and $\rho_{0} \gg \lambda$). The contribu
tons from wavefront regions remote from O must be
10.3 Fresmel Diffraction

(c)

(f)
puterrion for far more localized structure, (Photos by E. H.)
quite smali, a condition attributable to the obliquity factor and the inverse r-dependence of the amplitude of the secondary wavelets.

10.3.7 The Cornu Spiral

Marie Alfred Cornu (1841-1902), professor at the École Polytechnique in Paris, devised an elegant geometrical curve already considered Figraue 10.63 , whic is

as the Cornu spiral, is a plot in the complex plane of the points $B(w)=\mathscr{C}(w)+i \varphi(w)$ as w takes on all possible values from 0 ne horz are taken from Table 109 If $d \mathscr{A}$ is an element of length measured along the curve, then

$$
d \ell^{2}=d \mathscr{E}^{2}+d \mathscr{S}^{2} .
$$

From the definitions (10.101)

$$
d \ell^{2}=\left(\cos ^{2} \pi w^{2} / 2+\sin ^{2} \pi w^{2} / 2\right) d w^{2}
$$

and

$d \ell=d w$.

Values of w correspond to the arc leiggth and are marked off along the spiral in Fig. 10.63. As w
approaches $\pm \infty$, the curve spirais into its limiting valin
at $B^{+}=\frac{1}{8}+i \frac{1}{2}$ at $B^{+}=\frac{1}{2}+i \frac{1}{2}$ and $B^{-}=-\frac{1}{2}-i \frac{1}{2}$. The slope of the spibia
is is

$$
\frac{d Y}{d \mathscr{C}}=\frac{\sin \pi w^{2} / 2}{\cos \pi \omega^{2} / 2}=\tan \frac{\pi \omega^{2}}{2},
$$

and so the angle betwen the tangent 0 any point and the \mathscr{C}-axis is $\beta=\pi w^{2} / 2$. ns or as an aid toi which was also the picture of a diffraction patterg n example of its quantitative uses, reconsider the prde em of a 2 -mm-square hole, dealt with in the previou section ($A=500 \mathrm{~nm}, r_{0}=4 \mathrm{~m}$, and plane-wave illumixt tion). We wish to find the irradiance at P dired opposite the aperture's center, where in this case u_{2}

${ }_{6}(\underline{x})$	$g_{(w)}$	w	$\Psi_{(w)}$	$Y^{(}(\mathrm{w})$
0.0000	0.0000	4.50	0.5261	0.4342
0.1000	0.0005	4.60	0.5679	0.5162
0.1999	0.0042	4.70	0.4914	0.5672
0.2994	0.0141	4.80	0.4338	0.4968
0.9975	0.0334	4.90	0.5002	0.4350
0.4923	0.0647	5.00	0.5697	0.4992
0.5811	0.1105	5.05	0.5450	0.5442
0.6597	0.1721	5.10	0.4998	0.5624
0.7230	0.2493	5.15	0.4553	0.5427
0.7648	0.3998	5.20	0.4389	0.4969
0.7799	0.4883	5.25	0.4610	0.4535
0.7638	0.5865	5.30	0.5078	0.4405
0.7154	0.6234	5.35	0.5490	0.4662
0.6386	0.6863	5.40	0.5578	0.5140
0.5431	0.7195	5.45	0.5269	0.6519
0.4453	0.6975	5.50	0.4784	0.5537
0.3655	0.6389	5.55	0.4456	0.5181
0.3238	0.5492	5.60	0.4517	0.4700
0.9396	0.4508	5.55	0.4926	0.4441
0.8944	0.3734	5.70	0.5885	0.4595
0.4882	0.3434	5.75	0.5551	0.5049
0.5815	0.8743	5.80	0.5298	0.5461
0.6363	0.4557	5.85,	0.4819	0.5518
0.6266	0.5531	5.90	0.4486	0.5163
0.5550	0.6.97	5.95	0.4566	0.4688
0.4574	0.6192	6.00	0.4995	0.4470
0.8890	0.5500	6.05	0.6424	0.4689
0.3925	0.4529	6.10	0.5495	0.5165
0.4875	0.8915	6.15	0.5146	0.5496
0.5624	0.4101	6.20	0.4676	$0: 5398$
0.6058	0.4963	6.25	0.4493	0.4954
0.5616	0.5818	6.80	0.4760	0.4555
0.4664	0.5939	6.35	0.5240	0.4560
0.4058	0.5192	6.40	0.5496	0.4965
0.4885	0.4296	6.45	0.5292	0.5398
0.5326	0.4152	6.50	0.4816	0.5454
0.5880	0.4923	6.55	0.4520	0.5078
0.5420	0.5750	6.60	0.4690	0.4631
0.4481	0.5656	6.65	0.5161	0.4549
0.4228	0.4752	6.70	0.5467	0.4915
0.4984	0.4204	6.75	0.5902	0.3362
0.5738	0.4758	6.80	0.4881	0.5486
0.5418	0.5633	6.85	0.4539	0.5060
0.4194	0.5540	6.90	0.4792	0.4624
0.4383	0.4622	6.95	0.5207	0.4595

-1.0 and $u_{2}{ }^{-} 1.0$. The variable u is measured along the arc; that is, w is replaced by u on the spiral. Place two points on the spiral at distances from O_{s} equal to u_{1} and u_{2}. (These are symmetrical with respect to O because P is now opposite the aperture's cener.) Lab the two points $B_{1}(w)$ and $B_{2}(u)$, respectivel, as in Fig 10.64. The phasor $\boldsymbol{B}_{12}(u)$ drawn from $B_{1}(u)$ to $B_{2}(u)$ is just the complex number $B_{2}(u)-B_{1}(u)$,

$$
\mathbf{B}_{12}(u)=\left[\mathscr{C}_{(}(u)+i \mathscr{S}_{(u)}(u]_{u ;},\right.
$$

and is the first term in the expression (10.102) for E Similarly for $v_{1}=-1.0$ and $y_{2}=1.0, B_{2}(v)-B_{1}(v)$ is

$$
\mathbf{B}_{12}(v)=\left[\mathscr{G}(v)+i \mathscr{S}^{\prime}(v)\right]_{v, 1}^{v_{2}},
$$

which is the latter portion of E_{ϕ}. The magnitudes of these two complex numbers are just the lengths of the appropriate \mathbf{B}_{12}-phasors, which can be read of the curve with a ruler, us
is then simply

$$
I_{p}=\frac{I_{0}}{4}\left|\mathbf{B}_{12}(u)\right|^{2}\left|\mathbf{B}_{12}(v)\right|^{2},
$$

and the problem is solved. Notice that the arc lengths along the spiral (i.e., $\Delta u=u_{2}-u_{1}$ and $\Delta v=v_{2}-v_{1}$) are proportional to the aperture's overall dimensions in the y - and z-direction, respectively. The arc lengths ar therefore constani, regardless of the position of P in the plane

of observation. On the other hand, the phasors $\mathbf{B}_{12}(u)$ and $\mathbf{B}_{12}(v)$, which span the arc lengths, are not constant. and they do depend on the location of P.
Maintaining the position of P opposite the center of he diffracting hole, now suppose that the aperture size is adjustable. As the square hole is gradually opened, Δv and Δu increase accordingly. The endpoints B_{1} and B_{2} of either of these arc lengths spiral a round counterdockwise toward their limiting values of B^{-}and B^{+}, respectively. The phasors $\mathbf{B}_{1 z}(u)$ and $\mathbf{B}_{12}(\mathbf{v})$, which are identical in this instance because of the symmetry, pass through a series of extrema. The central spot in the pattern therefore gradually shifts from relative brightness to darkness and back. All the while, the entire rradiance distribution varies continually from one beautifully intricate display to the next (Fig. 10.62). For any particular aperture size, the off-center diffraction to visualize the arc length as a pece of sting whose measure is cqual to either Δv or As Imggine it lring on the spiral, with O, initially at its midpoint As P is moved, for example, to the leit along the y-axis 10.61), y_{1} and therefore u_{1} both become less negrive and y_{2} and u_{n} increase positively. The result is that our and y_{2} and u_{2} increase postrively. The result is that our the endpoints of the Δu-siring changes, $\left(B_{18}(u)\right.$ changes, and the irradiance (10.106) varies accordingly. When P is at the left edge of the geometric shadow. $y_{1}=u_{1}=0$. As the point of observation moves into the eometric shadow, u_{1} increases fositively, and the Δu string is now entirely on the upper half of the Cornu piral. As u_{1} and u_{2} continue to increase, the string winds ever more tighty about the B^{+}-limit. lts ends, B_{1} and B_{2}, become closer to each other, with the result ha: $\left|\mathbf{B}_{12}(u)\right|$ becomes quite small, and I_{p} decreases within the geometric shadow region. (We will come back o this point in more detait in the next section.) The ame process applies when we scan in the z-direction Δv is constant and $B_{12}(v)$ varies
If the apcrture is completely opened out, revealing $B_{1}\left(u_{i}=B_{1}(v)-B^{-}\right.$and $B_{1}(u)=B_{2}(w)=B^{+}$, which means that $B^{-} B^{+}$-line makes 45° angle with the 6 avis and has length equal to $\sqrt{2}$. Consequently the phasors $B_{1 z}(u)$ nd $B_{12}(v)$ each have magnitude $\sqrt{2}$ and phase $\pi / 4$, that

is, $\mathbf{B}_{12(}(u)=\sqrt{2} \exp (i \pi / 4)$ and $\mathbf{B}_{12}(v)-\sqrt{2} \exp (i \pi / 4)$ follows from Eq. (10.102) that

$$
E_{p}-E_{i^{\prime}} e^{t \pi / 2}:
$$

fanous
and as in Section 10.3.1, we have the unobstructe? amplitude, excopt fora $\pi / 2$ phase discrepancy. ${ }^{*}$ Finally using (10.106), $I_{p}=I_{\rho}$.
We car construct a more palpable picture of what the Cornu spiral represents by considering Fig. 10.65 , which depicts a cylindrical wave front propagating from a coherent line source. The present procedure is exadly the same as that used in deriving the vibration curve, and the reader is referred back of Section 10.3.2 for more leisurcly discussion. Suffice it to say that the wave front is divided into haif-period stripzones by its intersec thon with a family of cylnders having a common axi and radii of $r_{0}+\lambda / 2, r_{0}+\lambda, r_{0}+3 \lambda / 2$, and 50 on. The contributions from these strift zowes are proportionnd io their areas, which decrease rapidly. This is in contrast to the circular zones, whose radii increase, thereby keeping the areas neariy constant. Fach strip zone is simiarly divided into N subzones, which have a relative phase
*The phase discrepuncy will be resolved by the Kirchhoft heory in Section 10.4 .

Figure 10.66 Cornu spiral related so the cylindrical wavetronit.
difference of π / N. The vector sum of all the amplitude difference of fones the rene tine is contributions from zones above the center tue is a
spiraling polygon. If N zoes to ∞ and the contributions spiraing polygon. It N goes to ∞ and the contribution gencrated by the strip zones betowt the polygon smooths out into a continuous Cornu spiral. This is not surprising, since the coherent he source generates an infinite number of overlapping point-source patterns.
Figure 10.66 shows a number of unit tangent vectors Git various postions along the spiral. The vector at O_{3} passing through O on the wavefront. The points associted with the boundaries of each strip zone can be ocated on the spiral, since at those positions the relative Thase, β, is either an even or odd multiple of π. For pample, the point $Z_{\text {s }}$ on the spiral (Fig. 10.66), which is related to z_{1} (Fig. 10.65) on the wavefront, is by definition 180° out of phase with O_{5}. Therefore Z_{31} frast be located at the top of there $\beta=\pi m^{2} / 2=\pi$
It will be helpiul as we go along in the treatment to isualize the blocking out of these strip zones when nalyzing the effects of obstructions. Obviously one
could even make an approprtate zone plate, which would accomphish this to some advantage, and such devices are in use.

10.38 Fresnel Diffraction by a slit

We can treat Fresnel diffraction at a long slit as an extension of the rectangular-aperture problem. We nced onily elongate the rectangle by allowing y_{1} and y_{1} to move very far from O, as shown in Fig. 10.67. As the point of observation moves along the y-axis, so long as the vertical boundaries at either end of the slit are still essentially at infinity, $u_{2} \approx \infty, u_{1} \approx-\infty$, and $B_{12}(u) \approx \sqrt{2} e^{2 \pi / 4}$. From Eq. $\{10.106\}$, for either point source or plane-wave illumination,

$$
I_{p}=\left.\frac{I_{0}}{2}\left|\mathbf{B}_{12(v)}\right|\right|^{2}
$$

and the pattern is independent of y. The values of z and z_{2}, which fix the slit width, determine the important parameter $\Delta v=v_{2}-y_{1}$, which in turn governs $\mathbf{B}_{12}(v)$ Imagine once again that we have a string of length Δx

Figure 10.67 Single-sit gemetry.
lying along the spiral. At P, opposite point O, the aper-
ure is symmetrical, and the string is centered oner(Fig. 10.68). The chord $\left|\mathbf{B}_{12}(v)\right|$ need only be measured and substituted into Eq - (10.108) to find I_{p}. At point P_{1}, x_{1} and therefore y_{1} are smaller negative numbers, whereas z_{2} and v_{2} have increased positively. The arc length Δv (the string) moves up the spiral (Fig. 10.68), and the chord decreases. As the point of observation moves down into the geometric shadow, the string winds about B^{*}, and the chord goes through a series of relative extrema. If Δv is very small, our imaginary piece of string is small, and the chord $\left|\mathbf{B}_{12}(w)\right|$ decreases appreciably only when the radius of curvature of the spiral itself is small. This occurs in the vicinity of B^{+}or B^{-}, that is, Ear out into the geometric shadow. There will therefore be light well beyond the edges of the aperture, as long as the aperture is relatively small. Note too that with small Δv there will be a broad central maximum. fan prevails. This transition af Fq (10.108) in condition of Eq. (10.17) is more plausible when we realize that

Figure 10.68 Cornu spiral for the slit

Figure 10.69 An irradiance minimum in the slit patern.
for large w the Fresnel integrals have trigonometrid representations (see Problem 10.46)
an sidens, for a fixed r becomes larger, until a configuration iike that in Fig. 10.69 exists for point opposte the sit's center. If the point of observation is moved verically either up or down, Δv sides either down or up the spiral. Yet che chord increase in bath cases, so that the center of the diffraction pattern must be a relative minimum. Fringes now appear within the geometric image of the slit, unlike the Fraunhofet pattern.
Figure 10.70 shows two curves of $\left|B_{12}(w)\right|^{2}$ piotted against $\left(w_{1}+w_{2}\right) / 2$, which is the center poins of the arc length Δw. (Recall that the symbol w stands for either or v.) A ramily of such curves running the range in interest The curves are computed by frst rogin prtcular $\dot{\text { iw }}$ and then reading the values off the Cornu spiral as 4 aldes it des along it. For ${ }^{2}$ long slit

$$
I_{p}=\frac{I_{0}}{2}\left|\mathbf{B}_{12}(v)\right|^{2},
$$

[10. 108]

नot since Δx is the slit width that corresponds to Δx curve in Fig. 10.70 is proportional to the itradianse有 cal Tif lif the pomit of observation from the center of the won of (0.70bi $A v=3.5$, which means that a slit Sititine a $\Delta v=3.5$ dearly has fringes appearing within he geometric image as expected (Problem 10.45). The the geometric image as expected (Problem 10.45). The or Δz or Δy explicitly, but that would unnecessarily limit fien to one set of configuration parameters ρ_{0}, r_{0} arera to
a 4 at
as th
${ }^{2}$.
then surpasses 10. An increasing number of fringe appear within the geometric image, and the pattern n longer extends appreciably beyond that image.
The same kind of reasoning applies equally well to the analysis of the rectangular aperture, where use can also be made of the curves in Fig. 10.70 .
Toobserve Fresnel slit diffraction, form a long narrow space between two fingers held at arm's length. Make a similar parallel slit close to your eye, using your other hand. With a bright source, such as the daytime sky or a large lamp, illuminating the far slit, observe it throug the nearby aperture. After inserting the near slit the far slit will appear to widen, and rows of fringes will be evident

(a)

Figure $10.70 \quad \mid \mathbf{B}_{82}(w)^{2}$ versus $\left\langle w_{1}+w_{2}\right) / 2$ for $(\mathrm{d}) \Delta w=2.5$ and (b) $\Delta w=3.5$.

456 Chapter ro Diffraction

10.3.9 The Semi-Intinite Opaque Screen

We now form a scmi-infinite planar opaque screen by emoving the upper half of Σ in Fig. 10.67 . This is done simply enough, by letting $z_{2}=y_{1}=y_{2}=\infty$. Remembering the original approximations, we limit the geometry so that the point of observation is close to the screen's edge. Since $y_{2}=u_{2}-\infty$ and $u_{1}=-\infty$, Eq. (10.104) or (10.108) leads to

$$
I_{b}=\frac{I_{a}}{2}\left\{\left[\left[_{2}-\mathscr{E}\left(v_{1}\right)\right]^{2}+\left[\frac{1}{2}-\mathscr{P}\left(v_{t}\right)\right]^{2}\right\} . \quad(10109)\right.
$$

When the point P is directly opposite the edge, $\nu_{l}=0$, $\theta(0)=\mathscr{P}(0)=0$, and $I_{p}=i_{0} / 4$. This was to be expected, ince havf the wavefront is obstructed, the amplitude of the disturbance is halved, and the irradiance drops to one quarter. This occurs at point (3) in Figs. 10.71 and 10.72. Moving into the geometric shadow region to point (2) and then on to (1) and still further, the success10.46). No clearly decrease monotonically (Problem 10.46). No irradiance oscilations exist within that

Figure 10.71 The semi-infinite opasue screen.

(a)

(b)

Figure I0.72 (a) The Cornux spiral for a semi-infinite screen (b) The corresponilins irtadiance distribution

Fizare 10.28 The frimge pattorn for a badf-iscreen

region; the irradiance merely drops off rapidly. At any poini above (3) the screen's edge will be below it, in other words, $x_{1}<0$ and $u_{1}<0$. At about $p_{1}=-1.2$ the chord reaghes a maximum, and the irradiance is a maximum. Thereafter, I_{p} oscillates about I_{p}, graduall diminishing in magn, rechniques, many hutdreds of these fringes can be observed.
It is evident that the diffracion pattern of Fig. 10.78 would appear in the vicinity of the edses of a wide sti (Av greater than about 10) as a limiting case. The (Av greater than about 10) as a bmiting case. The is obtained only when λ goes to zero. Indeed as λ is obtained onty when λ goes to zero. Indeed as λ
decreases, the iringes move closer to the edge and cecreases, the iringes move closer to the edge and become increasingly fine in extent.
The straight-edge pattern can be observed using any length, as a soutce in front of a broad lamp at arm (e.g., a blackened microscope slide or a razor blade very near your cye. As the edge of the obstruction passe in front of the source slit parallel to it, a series of frigges will appear.
10.3.10 Diffraction by a Narrow Obstacie

Refer back to the description of the single narrow sit consider the complementary case in which the slit is opaque, and the screen transparens. Let's envision, for example, a vertical opaque wire. At a point directly opposite the wire's center there will be two separat tomtributing regions extending from ss to $-\infty$ and from y_{2} to $+\infty$. On the Carnu spiral these correspond to two
*). D. Bernett and F. S. Hareis, fr., f. Opt Sor. Aner. 52,697 (1959)
ic lengths from u_{1} to B^{-}and from u_{2} to B^{+}. The amplitude of the disturbance at a point P on the plane of observation is the magnitude of the uector sum of the
 As with the opaque disk, the sypanmetry is such that there axis. This can be seerin from the spiral, since when P is on the centrai axis $\bar{B}=\frac{1}{4}=B^{2}$ and their sum $a n$ never be zero. The arc length Au represents the bscured region of the spiral which inceases as the diameter of the wive increases. For thick wires, u_{1} pproaches $\boldsymbol{B}^{\prime \prime}$, \boldsymbol{u}_{0} approaches \boldsymbol{B}^{+}, the phasorz decrease in length, and the irradiance on the shadow's axis drops off. This is evident in Fig. 10.75, which shows the pat-

（9）

（b）
Figure 10.75 （a）The shadow patiern cast by the Iead from mechanical pencilil（b）The pastern cast by a l／8：inch diameter rod．
（Phoios by E．H．） －
terns actually cast by a thin piece of lead from a mechanical penci．and by a rod with a 8 －inch diameter． Imagine that we have a small irradiance sensor at poin P on the plane of observation（or the film plate）．As P moves of the central axis to the right，y_{1} and u_{1} increase negatively，whereas y_{2} and u_{2} ，which are positive decrease．The opaque region，Δu ，slides down the spiral When the sensor is at the right edge of the geometric shadow $y_{2}=0, u_{2}=0$ ，in other words，u_{2} is at O_{3} ．Notice will record a graduai decrease in small，the sensor will record a gradual decrease in irradiance as u_{2} Δu is large and u_{n} and u_{s} are large As Δv slis the spiral，the two phasors revolve through a number of complete rotations，going in and out of phase in the process．The resulting additional extrerna appearing within the geometric shadow are evident in Fig．
10.75 （b）．In fact，the separation between info varics inversely with the width of the rodt pattern arose from the interference of （Young＇s experiment）reflected at the rod＇s cilaza wave

10．3．11 Babinet＇s Principle

Two diffracting screens are said to be c when the transparent regions on onc exactly to the opaque regions on the other and vice wo such screens are overlapped，the comit obviously completely opaque．Now then，let E be the scalar optical disturbance arriving let $E_{\text {hat }}$ either complementary screen Σ_{1} or Σ_{8} ，respectis in place．The total contribution from each apest determined by integrating over the area bit that aperture．If both apertures are present at are no opaque regions at all；the limits of go to infinity，and we have the unobstructe E_{0} ，whercupon

$$
E_{1}+E_{2}=E_{0},
$$

रو土
which is the statement of Babinct＇s principle Take， whice took at Figs． 10.69 and 10.74 ，which defian th Cornu spiral configurations for a transparex 㿟 $_{5}$ sit and a narrow opaque obstacle．If the two arrange a narrow opaque obstacle．If the two arrang rinciple quite ciearly The phasor arisinget row obstacle $\left(\bar{B}^{-} \vec{B}_{1}+\overline{B_{2} B^{*}}\right)$ added to thet $B_{1} B_{2}$ yields the unobstructed phasor $\frac{B^{-}-2}{2}$
The principle implies that when $E_{0}=0, E_{1}$ ther words，these diturbances are precisel magnitude and 180° out of phase．One wotild bserve exactly the same irradiance distrive either $\Sigma_{\text {：}}$ or Σ_{2} in place，an interesting result ind is evident，however，that the principle cannot b． true，since for an unobstructed wave from ource，there are no zero－amplitude points， everywhere）．Yet if the source is imaged at $P_{\text {O }}$
 heyond the a large，cssentialy zer beyond disk）in which $E_{1}+E_{2}=E_{0}=0$ ．It is therefore the case of Fraunhofer diffrecion that complei

vee whss＇The Cornu spiral illustrating Rabinet＇s princtiple
eens puil gererate equivalent intadiance distribu就，$E_{1}=-E_{2}$（excluding point P_{0} ）．Nonethe－ Eq．Eq．（10．110）is valid in Fresriel diffaction，even he irradiances obey no simple relationship． emplified by the slit and narrow obstacle of － 6 ．Moreover，for a circular hole and disk，refer arin－Eigs． 10.52 and 10.58 and then examine Fig． tation (10.110) is again clearly applicable，even he diffraction patterns are certainiy not
（beauty of Babinet＇s principle is most evident Thied to Fraunhofer diffecion，as shown in Mg．W．2K where the patterns from complementary ocm are aimost identical
10.4 YiRCHHOFFS SCALAR DIFFRACTION THEORY
he have described à number of diffracting configu－ Mons，quite satisfactorily，within the context of the Gively simple Huygens－Fresnel theory．Yet the Whagery of surfaces covered with ficticious point Which was the basis of that analysis，was merely drather than derived from furdamental prin－

Figure 10.77 The vibration curve illustrating Babinet＇s principle．
ciples．The Kirchhoff treatment shows that these results are actually derivable from the scalar diferential wave equation．
The discussion to foliow is rather formal and in volved．Portions of it have therefore been relegated to an appendix，where we can indulge in succinctness and risk sactificing readability for rigor
In the past，when dealing with a distribution of monochromatic point sources，we computed the resul tant optical disturance at poin（i．．，E_{p} ） our a sporimply diferent approach，wich founded in patential theory．Here one is concerned not with the sources themselves but rather with the scala orticol disturibance and ite derivatives over an arbitrary closed surface surtounding P ．We assume that a Fourie analysis can scparate the constituent frequencies，so that we need only deal with one such frequency at a time The monochromatic optical disturbance E is a solution of the differential wave equation

$$
\nabla^{2} E=\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}} .
$$

Without specifying the precise spatial mature of the
ro. 4 Kirchhoff's Scalar Diffraction Theory
an unobstructed spherical wave originating at a poin souce s, as shown in Fig. 10.80. The disturbance ha the form

$$
E(\rho, t)-\frac{E_{0}}{\rho} e^{t(t \rho-a t)},
$$

in which case

$$
\mathscr{E}(\boldsymbol{\rho})=\frac{\varepsilon_{0}}{\rho} e^{i \pi \rho} .
$$

(10.116)

If we substitute this into Eq. (10.114), it becomes
$\mathscr{E}_{p}=\frac{1}{4 \pi}\left[\oiint_{S} \frac{e^{i k r}}{r} \frac{\hat{\partial}}{\partial \rho}\left(\frac{\mathcal{E}_{0}}{\rho} e^{e^{* / \rho}}\right) \cos (\hat{\mathbf{n}}, \hat{\boldsymbol{\rho}}) d S\right.$ $\left.-\oiint_{S} \frac{\varepsilon_{i}}{\rho} e^{-i k_{p}} \frac{\bar{c}}{\partial \tau}\left(\frac{e^{i k r}}{r}\right) \cos (\hat{\mathbf{n}}, \hat{\mathbf{r}}) d S\right]$,
where $d \mathbf{S}-\hat{\mathbf{n}} d S, \hat{\mathbf{n}}_{\hat{r}} \hat{\mathbf{r}}$ and $\hat{\mathbf{p}}$ are unit vectors,

$$
r\left(\frac{e^{i x r}}{r}\right)=\hat{\boldsymbol{r}} \frac{\partial}{\partial r}\left(\frac{e^{i k r}}{r}\right) .
$$

and
$\nabla \mathscr{8}(\mathbf{p})-\hat{\rho} \partial \mathscr{C} / \partial \rho$.
The differentiations under the integral signs are

$$
\frac{\partial}{\partial \rho}\left(\frac{e^{\text {dip }}}{\rho \rho}\right)-e^{\operatorname{inp}}\left(\frac{i k}{\rho}-\frac{1}{\rho^{2}}\right)
$$

Figute 10.78 (a)-(d) White-light diffraction patterns for reguia
arrays of aperures and complemertary obstacles in the form of
rounded pius signs. (e) and (f) Diffraction patterns for a regules array
of rectangular apertures and obstacles, respecively. (Photos courtesy The Ealing Corporation and Richard B. Hoover.)

and

When $\rho \geqslant \lambda$ and $r \gg \lambda$ the $1 / p^{2}$ and $1 / r^{2}$ terms can be neglected．This approximation is fine in the optical spectrum but certainly need not be true for microwaves． Proceeding，we write

$$
\mathscr{E}_{t}=-\frac{\mathcal{E}_{0} i}{\lambda} \oiint_{s} \frac{e^{i k(\rho+t)}}{\rho r}\left[\frac{\cos (\hat{\mathbf{n}}, \hat{\mathbf{r}})-\cos (\hat{\mathrm{n}}, \hat{\mathrm{p}})}{2}\right] d S
$$

which is known as the Fresnel－Kirchhoff diffaction formula．
Take a long look at Eq．（10．96），which represents the disturbance at P arising from an element $d S$ in the Huygens－Frespel theory，and compare it with Eq． 10．117），In Eq．（10．117）the angular dependence is
 which we shall call the obliquity factor $K(\theta)$ ，showing
it to be equivalent to Eq．（10．72）later on．Notice as will that k can be replaced by $-k$ everywhe，since H certainly couid have chosen the phase of Eq．（IO．IT年） to have been（ $\omega t-\mathrm{th}^{\mathrm{p}}$ ）．Now multiply both sides of $\mathrm{E}_{\text {，}}$ （10．117）by $\exp (-i \omega t)$ ；the differential element is then

$$
d E_{p}=\frac{K(\theta) \varepsilon_{0}}{\rho r \lambda} \cos [k(0+r)-\omega t-\pi / 2] d S .
$$

（10．1蕅
This is the contribution to E_{p} arising from an elemenif of surface area $d S$ a distance + from P ．The $\pi / 2$ temim in the phase results from the fact that $-i=\exp$（－int The Kirchhoff formulation therefore leads to the saint total result，with the exception that it includes the cors rect $\pi / 2$ phase shift，which is lacking in the Huygent Fresnel treatment $\{10.96$ ）．

We have set to ensure that the surface S can be made to correspond to the unobstructed portion of the wavefront，a does in the Huygens－Fresnel heor）．For the case of a tre propagating spherical wave emanating from the poe source s，we construct the doubly connected reg shown in Fig．10．81．The surface S_{2} completely

Founds the small spherical surface S_{1} ，At $\rho=0$ the Surbance $E(p, t)$ has a singularity and is therefore fperly excluded from the volume V between S_{t} and The integral must now include both surfaces S ，and Hut we can have S_{2} increase outward indefinitely requiring its radius to go to infinity．In that case，the gntribution to the surface integral vanishes．（This is （rue whatever the form of the incoming disturbance，筞long as it drops of at least as rapidly as a spherical gave．）The remaining surface S_{1} is a sphere centered
the point source．Since，over $S_{3}, \hat{\mathbf{n}}$ and $\hat{\boldsymbol{p}}$ are anti－ the point source．Since，over S_{3} ，it and ${ }^{\text {of }}$ are angles $0, \hat{i})$ and $(\hat{\mathbf{n}}, \hat{\boldsymbol{\rho}})$ are θ and 180° ，respectively．The Filiquity factor then becomes

$$
K\{\theta\rangle=\frac{\cos \theta+1}{2},
$$

Which is Eq．（10．72）．Ciearly，since the surface of integra Which is Eq．（10．72）．Clearly，since the surface of integra

Frare i0．81 A doubly connected region surrounding point s．

Fresnel principle is therefore directly traceable to the scalar ifferential wave equation．
We shan＇t pursue the Kirchhoff formulation any farther，other than to point out briefiy how it is applied to diffracting screens．The single closed surface of integration surrounding the point of observation P is generally taken to be the entire scieen Σ capped by which be whe The contribution to the the whe the reate hemisphere is保 annce immediately behind the opazue screen，so that this second region contributes nothing．The disturbance at F is therefore determined solely by the contributions rising from the aperture，and one reed only integrate Eq．（10．117）over that area
The fine results obtained by using the Huygens－ Fresnel principle are now justified theoretically，the main limitations being that $\rho \gg \lambda$ and $\uparrow \gg \lambda$ ．

0．5 BOUNDARY DIFFRACTION WAVES

In Section 10．1．1 we said that the diftracted wave could be envisioned as arising from a fictitious distribution of secondary emitters spread across the unobstructed por－ tion of the wavefront，namely，the Huysens－Fresnel principle．There is，however，another，completely different，and rather appealing possibility．Suppose that an incoming wave sets the electrons on the rear of the
diffracting screen Σ into oscillation，and these in turn diffracting screen 2 into oscilaton，and these ill the oscillators that are rernote from the edge of the aperture radiate back toward the source in such a fashion as to cancei the incoming wave at all points，except within the projection of the aperture itself．In other words，if this were the only contributing mechanism，a perfect geometrical image of the aperture would appear on the plane of observation．There is，however，an additional contribution arising from those oscillators in the vicinity of the aperture＇s edge．A portion of the energy radiated by these secondary sources propagates in the forward direction．The superposition of this scattered wave （known as the boundary diffraction wave）and the unob
ructed portion of the primary wave (known as the eometrical wave) yields the diffraction pattern. A rather cogent reason for contemplating such a scheme becomes apparent when one examines the following arrangement. Tear a small hole ($\approx_{2} \mathrm{~cm}$ in diameter) of arbitrary hape in a piece of paper, and hoding it at arm s length, view an ordinary light bulb some meters distant. Even with your eye in the shadow tegion, the edges of the aperture will be brightly illuminated. The ripple-tank photograph in Fig. 10.82 also illustrates the process. Notice how each edge of the slit seems to serve as a center for a circular disturbance, which then propagates beyond the aperture. There are no electron-oscillators here, which implies that these ideas have a certain gener lity, being applicable to elastic waves as well
The Tence of a scatered cdge wave and a geonetrical wa emitters of the Huygens-Fresnel principle. It is not however, a new concept. Indeed it was first propounded by the ubiquitous Thomas Young even before Fresnel's

Figure 10.82 Ripple-tank waves passing through a slit. (Photo cour tesy PSSC Physics, D. C. Heath, Boston, 1960.)
celebrated memoir on diffraction. But in tim brilliant successes unfortunately coryinced reject his own ideas, and he finally did so Fresnel in 1818. Strengthened by Kirchhoffir Fresnel conception of diffraction becames accepted and has persisted fright up to Sectio The resurrection of Young's theory began ire that time, Gian Antonio Maggi proved that K analysis, for a point source at least, was equ two contributing terms. One of these was a wave, but the other, unhappily, was an inte allowed no clear physical interpretation at till. his doctoral thesis (1893) Eugen Maey showef edge wave could indeed be extracted from a Arnold Sommerfeld's rigorous solution half-phati plane problem (see Section 10.1) showed that hall. drical wave actually does proceed from the edge. It propagates into both the geometriet shader region and the illuminated region. In the latrend the boundary diffraction wave combines with the geometrical wave, in complete accord with Yrenst theory. In 1917 Adalbert (Wojciech) Rubinowidis was able to prove that Kirchhoff's formula for a plate or spherical wave can be appropriately decompo. the two desired waves, thereby revealing the rectness of Young's ideas. He also later establi the boundary diffraction wave, to a fires approcmensis. was generated by reflection of the primary 1 . finted the aperture s edge. In 1923 Friedrich Kotel out the equivalence of the solutions of Rubinowicz, and one now speaks of the Y O Rubinowicy theory. Most recently, Kenro ${ }^{3}$ Emil Wolf (1962) have extended the botie tion theory to the case of arbitrary incidenty very useful contemporary approach to the prob been devised by Joseph B. Keller. He has dily rel Young's edge wave picture. Along with thg usiar aryof geometrical optics he hypothesizes the crisen-o of geometrical optics, he hypotn these di which are analogous to the laws of reflectio tion, are employed to determine the resia
*A fairly complete bibliography can be foud in the artiag by
Rubinowicz in Progress in Option Vol. 4, p. 199
S is perpendicular distance R point source S is a perpendicular distance om the screen. If the distance to the periphery is how that Fraunhofer diffraction will occur on stant screen when

$$
\lambda R \gg a^{2} / 2
$$

Wite smallest satisfactory value of R if the hole norinte smallest satisfactory value of R if the

7ing Fig. 10.83, derive the irradiance equation No, 2 virrent oscillators, Eq. (10.5)

Pexites
10.3* In Section 10.1.3 we talked about introducing an intrinsic phase shift ε between oscillators in a linear array. With this in mind show that Eq. (10.18) becomes

$$
\beta=(k b / 2)\left(\sin \theta-\sin \theta_{i}\right)
$$

hen the incident plane wave makes an angle θ_{i} with he plane of the slit.
10.4 Referring back to the multiple antenna system of Fig. 10.7, compute the angular separation between of Fig. 10.7, compute ine anguar spard the width of he central maximum.
10.5 Examine the setup of Fig. 10.5 in order to deterine whar is happening in the image space of the lenses; mine whar is happenitg the exd pupil and relate it to the diffraction process. Show that the configurations in Fig. 10.84 are cquivalent to that of Fig. 10.5 and will therefore result in Fraunhofer diffraction. Design at least one more such arrangement.

Figure 10.84

0．6 The andgular distance between the center and the Grst minimum of a single－sit Fraunhofer difraction pattem is called the half－angular broadth；write an expression for it．Find the corresponding halj－inear vidut（a）When no focusing lens is present and the it－viewing screen distance is L ，and（b）when a lens of focal length f_{2} is very close to the aperture．Notice that the half－linear width is also the distance between the uccessive minima．

10．7＂A single slit in an opaque screen 0.10 mm wide is tuminated（in air）by plane waves from a krypton ion laser（ $\lambda_{0}=461.9 \mathrm{~nm}$ ）．If the observing screen is 1.0 m away，determine whether or not the resulting diffraction pattern will be of the Ear－field variety and then compute the angular width of the central maximura．

10．8＊A narrow single slit（in air）in an opaque screen 10．8＊A narrow single slit（in zir）in an opaque screen
is illuminated by inftared from a He－Ne laser at illuminated by infrared from a He－Ne laser at 1152.2 nm ，and it is found that the center of the tenth 6.2° off the central axis．Please devermine the width of esli At what angle will the tenth minimum appear the entire arrangemens is inmersed in water（ $n_{1}=$ 1．39）rather than air（ $n_{m}=1.00029$ ）？

10．9 A collimated bean of microwaves impinges on a metal screen chat contains a long horizontal alit that is 0 cm wide har contains a long horkontal all that 0 cm wid．A dection movis paralle the surn radiance at an angle of 3687° above the central axio． Determine the wavelength of the radiation．

10．10 \＄how that for a double－slit ITrannofer pattern， if $a=m b$ ，the number of brightfringes（or parts thereof） within the central diffraction maximum will be equal 502 m

0．11＊Two long shits 0.10 mm wide，separated by 0.90 mm ，in an opaque screen are illuminated by light $0.20 \mathrm{~mm}_{\text {，in }}$ in opaque screen are illuminated by light is 2.5 m away，will the pattern correspond to F raunhofer
or Fresnel difiraction？How many Young？s be seen within the central bright band？

10．12 What is the relative irradiance of 4 maxima in a chree－slit Fraunhofer diffract Draw a graph of the irradiance distributio $2 b$ ，for two and then three slits，

10．13＊Starting with the irradiance expression a finite slit，abrink the slit down tog area element and show that it emits equall tions．

10．14＊Show tbat Fraumhofer diffraction pintur have a center of symmetry（i．e．，$I(Y, Z)=I(4)$ ？ 2 －in regardless of the configuration of the aperturgentian as there are no phase variations in the field ample region of the hole．Hegin with Eq，（10．41）．We＇h ser later（Chapter 11）that this restriction is equivelob to saying that the aperture function is real．

Pis． 10.25 Plotocolrrey R．G．Wison，rlimis Weet

（purn is is Protos courtesy R．G．Wison．ilinois Wesieqan Universty．
0.15 With the results of Probicm 10.14 in mind， nis tav symmetries that would be evident in the Tohofer diffraction pattein of an aperture that is貇血metrical about a line（assuming normally quasimonochromatic plane waves）．

Wh．Efom syrmmetry considerations，create a rough af the Fraunhofer diffraction patterns of an iriangular aperture and an aperture in the a plus sign
are 10.85 is the irradiance distribution in dor a coniguration of elongated rectangular bescribe the arrangement of holes that would osach a pattern and give your reasoning in

禁名． 10.86 （a）and（b）are the electric field dice distributions，respectively，in the far field ghration of elongated rectangular apertures． arrangement of holes that would give rise管eras and discuss your reasoning．

10．19 Figure 10.87 is a computer－generated Fraun hofer irradiance distribution．Describe the aperture that would give rise to sucha pattern and give your reasoning in detail

Figure 10．87 Photo courtesy R．G．Wisor，Itimots Wesleyan Uni versiny．

Figure 10.88 Phocos courtesy R. C. Wilson, Mlinois Wesleyan University,
10.20 In Fig. 10.88 (a) and (b) are the electric field and irradiance distributions, respectively, in the far field for a hole of some sort in an opaque screen. Describe he aperture that would give rise to such a pattern and give your reasoning in detail.
.in In light of the five previous questions, identify Fig. 10.89, explaining what it is and what aperure gave rise to il .
10.22* Verify that the peak irradiance I_{4} of the firs "ring" in the Airy pattern for far-fied diffraction at circular aperture is such that $I_{1} / I(0)-0.0175$. You might want to use the fact that
$J_{1}(u)=\frac{u}{2}\left[1-\frac{1}{1!2!}\left(\frac{1}{2} u\right)^{2}+\frac{1}{213!}\left(\frac{1}{2} u\right)^{4}-\frac{1}{314!}\left(\frac{1}{2} u\right)^{6}+\cdots\right]$.
10,23 No lens can focus light down to a perfect point, 10,23 No lens can for point because there will always be some diff raction. Estimate the size of the minimum spot of light of a lers. Discuss the relationship among the focal length, the lens diameter, and the spot size. the focal length, the lens diametcr, and the spot size. which is just about what you can expect for the fastest lens.
0.24 Figure 10.90 shows several apertume conif ations. Roughly sketch the Fraunhofer panems each. Note that the circular regions should geneady
Airy-like ring systems centered at the origid. -like ring systems centered at the origit

Figure 10.89 Photo courtesy R. G. Wilson, Illinotis
versity

Gopose that we have a laser emitting a diffracbeam $\left(\Lambda_{0}=632.84 \mathrm{~nm}\right)$ with a $2-\mathrm{mm}$ How big a light spot would be produced on te of the Moon a distance of $376 \times 10^{3} \mathrm{~km}$ away筑 a device? Neglect any effects of the Earth's

If you peered through a $0.75-\mathrm{mm}$ hole at an pou would probably notice a decrease in visual mpute the angular limit of resolution, assum s desermined only by diffraction; cake $\lambda_{0}=$ compare your resuls thich $4.0-\mathrm{mm}$ pupil.
=0, 27 The neoimpressionist painter Georges Seurat Shamber of the pointillist school. His paintings of an enormous number of closely spaced smal inch) of pure pigment. The illusion of color produced only in the cye of the observer from such a painting should one stand in orde尼 the desired blending of color?

L-2ZS5

0.98* Fhe Mount Palomar telescope has an objective fith a $508-\mathrm{cm}$ diameter. Determine its angular sointionata waveleng of m , t ,
lase be we the surface of the Moon if ther are to b Tale by the Paloma lescope? The Farth-Moo ce is $3.844 \times 10^{8} \mathrm{~m}$ thescope? The Earth-Moo must two objects be on the Moon if they are to inguished by the eye? Assume a pupil diamele 30 mm .
Wart A transmission grating whose lines are sepa $3.0 \times 10^{-6} \mathrm{~m}$ is illuminated by a narrow beal ($\lambda_{0}=694.3 \mathrm{~nm}$) from a ruby laser. Spots of gitc, on both sides of the undeflected beam, acreen 2.0 m away. How lar from the centra of the two nearest spots?
10.30^{*} A diffraction grating with slits $0.60 \times 10^{-3} \mathrm{~cm}$ arart is illuminated by light with a waveiength of apart is Auminated by will the third-order maximum appear?
10.31* A diffraction grating produces a second-order apertrum of yellow light $\left(A_{0}=550 \mathrm{~nm}\right)$ at 25°. Deter mine the spacing between the lines on the grating.
0.32 White light falls normatiy on a transmission grating that contains 1000 lines per centimeter. At what angle will red light ($\lambda_{9}-650 \mathrm{~nm}$) emerge in the firstorder spectrum?
10.33* Light from a laboratory sodium lamp has to rong yellow components at 589.5923 nm and 88.9953 nm . How far apart in the first-order spectrum will these two lines be on a screen 1.00 m from a grating having 10,000 lines per centimeter?
0.34* Sunlight impinges on a transmission grating hat is formed with 5000 lines per centimeter. Does the hird-order spectrum overlap the second-order spectrum? Take red to be 780 nm and violet to be 390 nm .
10.35 Light having a frequency of $4.0 \times 10^{14} \mathrm{~Hz}$ is incident on a grating formied with 10,000 hines per centimeter. What is the highest-order spectrum that can be seen with this device? Explain.
10.36* Suppose that a grating spectrometer while in vacuum on Earth sends $500-\mathrm{nm}$ light off at an angle of 20.0° in the first-order spectrum. By comparison, after landing on the planet Mongo, the same light is diffracted through 18.0°. Determine the index of refraction of the Mongoian atmosphere.
10.37 Prove that the equation

$$
a\left(\sin \theta_{m}-\sin \theta_{i}\right)=m \lambda,
$$

[10.61]
when applied to a transmission grating, is independen of the refractive index.
10.38 A high-resolution grating 260 mm wide, with 300 lines per millimeter, at about 75° in autocollimation
has a resolving power of just about 10^{6} for $\lambda=500 \mathrm{~mm}$ Find its free spectral range. How do these values of \because and $(\Delta \lambda)_{\text {tsr }}$ compare with those of a Fabry-Perot etalon having $a 1-\mathrm{cm}$ air gap and a finesse of 25 ?
10.39 What is the total number of lines a grating must have in order just to separate the sodium doublet ($\lambda_{i}=$ $5895.9 \AA, \lambda_{2}=5890.0 \AA$) in the third order
10.40* Imagine an opaque screen containing 30 ran domty located circular holes. The light source is such that every aperture is coherently illuminated by tis own plane wave. Each wave in turn is completely incoherent with respece to all the ethers. Describe the resulting
far-field diffraction partern.
10.41 Imagine that you are looking through a piece of square woven cloth at a point source $\left\{\lambda_{0}=600 \mathrm{~nm}\right)$ of square woven cloth at a point source ($\lambda_{0}=600 \mathrm{~nm}$)
20 m away. If you see a square arrangement of brith spots located about the point source (Fig. 10.91), each sparated by an apparent nearest-neighhor distance of 12 cm , how close together are the strands of cloth?
10.42* Perform the necessary mathematical operations needed to arrive at Eq. (10.76).

igure 10.91 Photo by E.H.
0.43 Referring to Fig. 10.48, integrate the hat zone,

$$
A_{t}=\frac{\lambda \underline{\#} \rho}{\rho+r_{0}}\left[r_{0}+\frac{(2 l-1) \lambda}{4}\right] .
$$

Show that the mean distance to the l th zone is

$$
r_{l}=r_{0}+\frac{(2 l-1) \lambda}{4},
$$

o that the ratio A_{4} / r_{i} is constant.
0.44* Derive Eq. (10.84).
10.45 Use the Cornu spiral to make a rough stles of $\left|\mathbf{B}_{12}(w)\right|^{2}$ versus $\left(w_{1}+w_{2}\right) / 2$ for $\Delta w=5.5$. Coxid your results with those of Fig. 10.70.
10.46 The Fresnel integrals have ihe asympt (corresponding to large values of w) given by

$$
\begin{aligned}
& \mathscr{C}(w)=\frac{1}{2}+\left(\frac{1}{\pi w}\right) \sin \left(\frac{\pi w^{2}}{2}\right), \\
& \mathscr{S}(w)=\frac{1}{2}-\left(\frac{1}{\pi w}\right) \cos \left(\frac{\pi w^{n}}{2}\right) .
\end{aligned}
$$

Thake a rough sketch of a possible Fresnel Matern arising from each of the indicated Figation perig. 10.92).
corresponding to large values of $w)$ given

$$
C(w) \approx \frac{1}{2}+\left(\frac{1}{\pi w}\right) \sin \left(\frac{\pi w^{2}}{2}\right),
$$

Suppose the slit in Fig. 10.67 is made very
ill arel diffraction pattern look like?
*** Colimated light from a krypton ion laser at - . P nm impinges normally on a circular aperture ficwed axially from a distance of 1.00 m , the hole
uncovers the first half-period zone. Determine its diameter
10.53* Plane waves impinge perpendicularly on a screen with a small circular hole in it. If is found that when viewed from some axial point P the hole uncovers of the first half-period zone. What is the irradiance at in terms of the irradiance there when the screen is emoved?
10.54* A collimated beam from a ruby laser 0.54 A callinated bean from a ruby laser $694.3 \mathrm{nta})$ having an irradiance of $10 \mathrm{~W} / \mathrm{m}^{2}$ is incident perpendicularly on an opaque screen consaming a qua
10.55* A long narrow slit 0.10 mm wide is illuminated by light of wavelength 500 nm coming from a point source 0.90 m away. Determine the irradiance at a point 2.0 m beyond the screen when the shit is centered on, and perpendicular to, the line from the source to the point of observation. Write your answer in terms of the unobstructed irradiance.

Sing this fact, show that the irradiance in the shasi. f a semi-infinite opaque screen decreases ind the inverse square of the distance to the edged ashi and therefore y_{1} become large.
0.47 What would you expect to see on the planso bservation if the hatf-plane Σ in Fig. 10.71 were tempransparent?
10.48 Plane waves from a collimated He-Nef lasery
beam ($\Lambda_{0}=632.8 \mathrm{~mm}$) impinge on a stee. re
5 -rim d.ameter, Draw a roush g a
3.16 m from the rod.
10.49 Make a rough sketch of the irradiancetwrin 10.43 Make a rough sketch of the irradiance zdotio for a Fresnel diffraction pattern arising from
slit. What would the Cornu spiral picture look at point P_{0} ?

11 FOURIER OPTICS

11.1 INTRODUCTION

In what is to follow we will extend the discussion of Fouxier methods introduced in Chapter 7. It is our intent to provide a strong besic introduction to the subject rather than a complete treatment. Besides it real mathematical power, Fourier ansiysis leads to a marvelous way of treating optical processes in terns of spatial frequencies. It is always exciting to discover a spatial frequencies." It is always exciting to discover a new bag of analytic toys, but it's perhaps cren more valuable to unfold yet another way of thinking about a
broad range of physical problems-we shall do both.t broad range of physical problems-we shall do both.t
The primary motivation here is to develop an understarding of the way optical systerns process light to form inages. In the end we want to know all about the amplitudes and phases of the lightwaves reaching the image plane. Founier methods are especially suited to that task, so we first extend the treatment of Fourier ransforms begun earlier. Several transforms are par ricularly useful in the analysis and these will be con sidered first. Among them is the delta function, which will subsequently be used to represent a point source

* See Chapter 14 for a further nonmaxhersatical discussion.
\dagger As peneral references for this chapper, nee R C J Jennison, Foarier Thansforma and Cinuotutions for the Experinarkthatists N. F. Barber

 1. Gaskilit; and the excellent series of hoockleas Inager and Infommations B. W. Jones, et al.
of light. How an optical system responds comprising a large number of delta-function ces will be considered in Section 11.3.1. The between Fourier analysis and Fraunhofer ton is given it in Section 11.3.3. The chapter return to the problem of image evaluation from a different, though reiated perspectivé treated not as a collection of point sout scatterer of plane waves.
1.2 FOURIER TRANSFORMS

I1.21 One-Dimensional Transforms
It was seen in Section 7.8 that a one-dimentin the funo tion of some space variable $f(x)$ oould be expr linear combination of an infinite number of ha contributions:

$$
f(x)=\frac{1}{\pi}\left[\int_{0}^{\infty} A(k) \cos k x d k+\int_{0}^{\infty} B(k) \operatorname{siv} y k x d k\right] .
$$

The weighting factors that determine the signi of the various angular spatial frequency (k) c, ions, that is, $A(k)$ and $B(k)$, are the Fouriet $c a$ sine transforms of $f(x)$ given by

$$
A(k)=\int_{-\infty}^{+\infty} f\left(x^{\prime}\right) \cos k x^{\prime} d x^{\prime}
$$

$B(k)=\int_{-\infty}^{+\infty} f\left(x^{\prime}\right) \sin k x^{\prime} d x^{\prime}$,
 17.577

lv, Here the quantity $z^{\prime \prime}$ is a dumony variable th the integration is carried out, so that neither B(k) is an explicit function of x^{\prime}, and the N Dor $B(k)$ is an expicit rancion of x, and the abind cosine transforms can be consolidated into a emplex exponential expression as follows: subFing Eq. (7.57) into Eq. (7.56), we obtain

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos k x \int_{-\infty}^{+\infty} f\left(x^{\prime}\right) \cos k x^{\prime} d x^{\prime} d k
$$

$$
+\frac{1}{\pi} \int_{0}^{\infty} \sin k x \int_{-\infty}^{+\infty} f\left(x^{\prime}\right) \sin k x^{\prime} d x^{\prime} d k
$$

But Fince $\cos k\left(x^{\prime}-x\right)=\cos k x \cos k x^{\prime}+\sin k x \sin k x^{\prime}$, sacan be rewritten as
$f(x)=\frac{1}{\pi} \int_{0}^{\infty}\left[\int_{-\infty}^{+\infty} f\left(x^{\prime}\right) \cos k\left(x^{\prime}-x\right) d x^{\prime}\right] d k$.
(11.1)

Quantity in the square brackets is an even function
and therrfore changing the limits on the outer Gral leads to
$=\frac{1}{i v} \int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} f\left(x^{\prime}\right) \cos k\left(x^{\prime}-x\right) d x^{\prime}\right] d k . \quad(H .2)$
not as we are looking for an exponential repatation, Euler's theorem comes to mind. Congeatly, observe that
$\frac{i}{2 r} \int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} f\left(x^{\prime}\right) \sin k\left(x^{\prime}-x\right) d x^{\prime}\right] d k=0$,
lis the factor in brackets is an odd function of k.
5 these last two expressions yieids the compiex
the Fourier integral,
$f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} f\left(x^{\prime}\right) e^{i k x^{\prime}} d x^{\prime}\right] e^{-i k x} d k \quad(11.5)$
Ther the can write

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(k) e^{-i k x} d k,
$$

$$
F(k)=\int_{-\infty}^{+\infty} f(x) e^{i k x} d x,
$$ said to be the Fourier transform of $f(x)$, which is syrn bolically denoted by

$$
F(k)=F\{f(x)\}
$$

Actually there are several equivalent, slightly differen ways of defining the transform that appear in the literature. For example, the signs in the exponential could be interchanged or the factor of $1 / 2 \pi$ could be split symmetrically between $f(x)$ and $F(k)$; each would then have a coenicicat of 1 (2π. Note that $A(k)$ is th real part of $F(k)$, while $B(k)$ is its imaginary part, that is,

$$
F(k)=A(k)+i B(k) .
$$

As was seen in Section 2.4, a complex quantify like this can also be written in terms of a real-valued amplitude $|F(k)|$, the amplitude spectrum, and a real-valued phase $\phi(k)$, the phase spectrum:

$$
F(k)=|F(k)| e^{i \phi(k)},
$$

and sometimes this form can be quite useful fsee Eq (11.96)].

Just as $F(k)$ is the transform of $f(x), f(x)$ itself is sail o be the inverse Pouriex transform of $F(k)$, or symboli cally
$f(x)=\mathscr{F}^{-1}\{F\{k)\}=\mathscr{F}^{-1}\{\bar{S}\{f(x)\}\}, \quad\{i .8 j$ nd $f(x)$ and $F^{\prime}(k)$ are frequently referred to as a Four-ier-transform pair. It's posssible to construct the trans orm aad its inverse in an even more symmetrical form a terms of the spatial frequency $\kappa=1 / \lambda=k / 2 \pi$. still, in whatever way its expressed, the transform wir not pretisel : of the minus sign in the exponenial. As a resutt frobem 1110), in the present formulation
$\mathscr{F}\{F(k)\}^{-} 2 \pi f(-x)$ while $\mathscr{F}^{-1}\{F(k)\}-f(s)$
This is most often inconsequential, especially for ever unctions where $f(x)=f(-*)$, so we can expect a good deal of parity between functions and their trangforms.

$f_{3}(x)=f_{1}(x)+f_{2}(x)$

Figure ihil A composite function and its Fourier transform.

Obviously, if f were a function of time rather than space, we would merely have to replace $\%$ by 1 and then k, the angular spatial frequency, by ω, the angular temporal frequency, in order to get the appropriate transform pair in the time domain, that i6,

$$
f(i)=-\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) e^{-i \omega} d \omega
$$

and

$$
F(\omega)=\int_{-\infty}^{+\infty} f(t) e^{\operatorname{Let} t} d x
$$

It should be mentioned that if we write $f(x)$ as a sum of functions, its transform (11.5) will apparently be the
surn of the transforms of the individual unctions. This can sometimes be quite a way of establishing the transforms of compl: ons that can be constructed from well. stituents. Figure 11.1 makes this procedure fairlḍ̂s sclf evident.

Transform of the Gaussian Function
As an example of the method, Iet's examive the Gaussian probability function,

$$
f(\boldsymbol{x})=C \epsilon^{-a \boldsymbol{x}^{2}},
$$

where $C=\sqrt{a / \pi}$ and a is a constant. If you like you an imagine this to be the pronk of a pulse 觰 $t=0$ The famillar bell-shaped curve [Fig. 11.2 (a)], d quitu requent.y encountered in optics. It will be gertiant cepresentation of individual photons, the tros. representation of individual photons, the troys.
rradiance distributiori of a laser beam in
rradiance distributiori of a laser beam infing:
mode, and the statistical treatment of thermal obtained by evaluating

$$
F(k)=\int_{-\infty}^{+\infty}\left(C e^{-a x^{2}}\right) e^{i k x} d x .
$$

On completing the square, the exponent, $-a x^{2}-i k$ becomes $-(x \sqrt{a}-i k / 2 \sqrt{a})^{2}-k^{2} / 4 a$, and lettin $k \sqrt{s}$. $i k / 2 \sqrt{a}=\beta$ yields

$$
F(k)=\frac{C}{\sqrt{a}} e^{-k^{2} \nmid \nmid a} \int_{-\infty}^{+\infty} e^{-\beta^{2}} d \beta
$$

The definite integral can be found in tabies and cyul $\sqrt{\pi}$; hence

$$
F(k)=e^{-k^{j} ; 4 a}
$$

which is again a Gaussian function [Fig. 11.2(b)] which is again a Gaussian function [Fig. $11.2(b)$] $/$ i defined as the range of the variable (x or k) over he function drops by a factor of $e^{-1 / 2}=0.607$ maximum value. Thus the standard dexin wo curves are $\sigma_{x}=1 / \sqrt{2 a}$ and $\sigma_{x}=\sqrt{2 a}$ As a increases, $f(x)$ becomes narrower while, $F(k)$ broadens. In other words, the shoref ength, the broader the spatial frequency bar

(a)
1.2.2 Two-Dimensional Transforms

Thus far the discussion has been limited to oneyunional functions, but optics generally involves farture or the flux-density distribution oyer an in perwne. The Fourie-transform pair can readily cheralized to two dimensions, whereupon

$$
\begin{equation*}
F\left(k_{x}, k_{y}\right)-\int_{-\infty}^{+\infty} \int_{-\infty} f(x, y) e^{\left.\varepsilon_{i}^{\left(k, x+k_{y}\right.}\right)} d x d y \tag{11.14}
\end{equation*}
$$

Rotities k_{x} and $k_{\text {, }}$ are the angular spacial frequenIt the two axes. Suppose we were looking at the a tired floor made up alternately of black and Gares aligned with their edges parallel to the tematical distribution of rellected light conld sded in terms of a two-dimensional Fourier the each tile having a length ℓ, the spatial period her axis would be 2ℓ, and the associated fundaangular spatial frequencies would equat π / ℓ 2and their harmonics would certainly be needed struct a function describing the scene. If the was finite in extent, the function would no truly periodic, and the Fcurier integral would
have to replaze the series. In effect, $E q_{1}$ (11.19) says that $f(x, y)$ can be constructed out of a tinear combination of elementary functions having the form $\exp \left(-i k_{x^{2}} x+\right.$ $\left.\left.k_{y} y\right)\right]$, each appropriately weighted in amplitude and phase by a complex factor $F\left(k_{x}, k_{y}\right)$. The transform simply tells you how much of and with what phase each elementary component must be added to the recipe. In three dimensions, the elementary functions appear a $\exp \left[-i\left(k_{2} x+k_{y} y+k_{s}\right)\right]$ or $\exp (-i k \cdot r)$, which corre spond to planar sarfaces. Furnerne, is $f(r$, i) these elementary contributions become plane waves that iook like exp [-i(k r r-ot)] Th other words, the disturtancesan be smetheized out pialinear combination of piane waves having various propagation numbers and of pane waves having vanious propagation numbers ind the elementary functions are "oriented" in different directions as well. That is to say, for a given set of value of k_{x} and k_{y}, the exponent or phase of the elementar functions will be constant along lines
or $\quad k_{x} x+k_{y y} y-$ constant $=A$

$$
\begin{equation*}
y=-\frac{k_{x}}{k_{y}} x+\frac{A}{k_{y}} . \tag{11.15}
\end{equation*}
$$

The situation is analogous to one in which a set of plane normal to and intersecting the $x y$-plane does po alon the lines given by Eq. (11.15) for differing values of A.

Figure 11.3 Geometry for Eq. (11.15)

Figure 11.5 The light ciffracted by a tramparency at the front (er
object) foes poim of a bena converges so formune far-field diffracion patitras as the back (or jurge) focal point of the tens.

If a screen were placed there, at Σ_{4}, the so-called tramsform plane, we would see the far-field difraction pattern of the object spread across it [this is essentialy the configuration of Fig. $10,10(\mathrm{e})$]. In other words, the electric field distribution across the object mask, which is known as the aperthre function, is transformed by the lens into the far-field diffraction partern. Remarkatly, that Fraunhofer E-field pattern corresponds to the exact Fourier transform of the aperture function-a fact we shall confirm more rigorously in Section 11.3.3. Here the object is in the froot focal plane, and all the various diffracted waves maintain their phase relationships traveling essentially equal optical path lengths to the transiorm plane. That doesnt quite happen whe. Then ohjecr is alsplaced from cie iront ocal plane. Then lithle consequence gince we are generally interested in the irmdiance where the phase information is averagec out and the thase distartion is unobservable.
Thus if on otherwise opaque object mask contains a single circular hole, the \mathbb{E}-field across it will resembic single circular hole, the k-gield across it will resembic Fourier transform, will be distributed in space as a Bessel function, looking very much like Fig, 11.4(b) Similarly, if the object transparency varies in density only along one avis, such that its amplitude transmistion profile is triangular [Fig. 11.6(a)], then the amplitude of the electric field in the diffraction pattern will corre-
47^{8} Chapter $1 x^{\text {F }}$ Fourier Optics

igure 11.6 The transform of the
spond to Fig. II.6(b)-the Fourier transform of the riangle function is the sinc-squared function.

1.2.3 The Dirac Della Function

There are many physical phenomena that occur over very short durations in time with great intensity, and one is frequently concerned with the consequent esponse of some system to such stimulf. For erample: How will a mechanical device, like a billiard ball respond to being slammed with a hammer? Or how will a particular circuit behave if the input is a short burst of current? In much the same way we can envision some stimulus that is a sharp pulse in the space, rather than the time, domain. A bright minute source of light imbedded in a dark background is essentially a highly localized, two-dimensional, spatial pulse-a apike of rradiance. A convenient idealized mathematical representation of this sort of sharply peaked stimulus is the Dirac delta function $\delta(x)$. This is a quantiry that is zero everywhere except at the origin, where it goes to infinity in a manner so as to encompass a unit area, that is,

$$
\delta(x)=\left\{\begin{array}{ll}
0 & x \neq 0 \\
\infty & x=0
\end{array} \quad\right. \text { (1.26) }
$$

and

$$
\int_{-\infty}^{+\infty} \delta(x) d x=1
$$

his is not really a function in the traditional matheatical sense. In fact, because it is so singular in nature,
remained the focus of considerable controw fter it was reintroduced and brought into p hey sometimes are, 1930 . Yet physicists, pragi soon became an established too highly puseful the a lack of rigorous justification. The ppite what a lack of rigorous justification. The precise mis cal theory of the delta function evolved rougkdil years later, in the early 1950s, principally at did
Laurent Schwartz.
be applied is the evaluation of the integral

$$
\int_{-\infty}^{+\infty} \delta(x) f(x) d x .
$$

Figure 11.7 The height of the arrow represent corresponds to the area under the function.
fere the cipression $(\{x$) costreppods oozar coesinuous Here the Oner a tiny inkerval running from $x=-y$ to functiciored about the origin, $f(x) \approx f(0) \approx$ constant, $+y$ cer function is continuous at $x=0$. From $x=-\infty$
since the wh $=-$ and from $x=+\gamma$ to $x=+\infty$, the integral is zero, sitriay becaul

$$
f(0) \int_{-\eta}^{+r} \delta(x) d x .
$$

Becaus $8 / 2$) $=0$ for all x other than 0 , the interval can be vanstimgty small, that is, $\gamma \rightarrow 0$, and stil

$$
\int_{-\gamma}^{+\gamma} \delta(x) d x=1,
$$

from F (11.27). Hence we have the exact result that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \delta(x) f(x) d x-f(0) . \tag{1.288}
\end{equation*}
$$

Bh d ofim spoken of as the sifting property of the of $f(x)$ taken at $x=0$ from all its possible values arly with a shift of origin of an amount x_{0},

$$
\delta\left(x-x_{0}\right)- \begin{cases}0 & x \neq x_{0} \\ \infty & x=x_{0}\end{cases}
$$

(11.29)
..: The spike resides at $x=x_{0}$ rather than $x-0$, as
Wh in Fig. 11.7. The corresponding sifting propert (x) preciated by fetting $x-x_{0}=x^{\prime}$, then with $f\left(x^{\prime}+\right.$
$\delta\left(x-x_{0}\right) f(x) d x=\int_{-\infty}^{+\infty} \delta\left(x^{\prime}\right) g\left(x^{\prime}\right) d x^{\prime}-g(0)$,
Wint since $g(0)=f\left(x_{0}\right)$,

$$
\int_{-\infty}^{+\infty} \delta\left(x-x_{0}\right) f(x) d x-f\left(x_{0}\right) .
$$

Formaly, rather than worrying about a precise defi $\delta(x)$ for each value of x, it would, be more a continue along the lines of defining the effect is some other function $f(x)$. Accor dingly, Eq. is really the definition of an entire operation
-assigns a number $f(0)$ to the function $f(x)$ is lly, functional.
It is poschib to consuct a number of rts por of width and a concomitantly increasing height such that ny one pulse encompases a unit area A sequence of quare pulses of height of and width $U / \frac{1}{}$ for which - 1,2,3 would fit the bill so would a sequence of Gaussians (11.11),

$$
\begin{equation*}
\delta_{x}(x)=\sqrt{\frac{a}{\pi}} e^{-a x^{2}} . \tag{11.31}
\end{equation*}
$$

as in Fig. 11.8, or a sequence of sinc functions

$$
\begin{equation*}
\delta_{a}(x)=\frac{a}{\pi} \operatorname{sinc}(a x) . \tag{11.32}
\end{equation*}
$$

Such strongly peaked functions that approach the sifting property, that is, for which

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \int_{-\infty}^{+\infty} \delta_{a}(x) f(x) d x=f(0) \tag{11.39}
\end{equation*}
$$

are known as delta sequences. It is often useful, but not ctually rigorously correct, to imagine $\delta(x)$ as the convergence limit of such sequences as $a \rightarrow \infty$. The extension of these ideas into two dimensions is provided y the definition

$$
\delta(x, y)= \begin{cases}\infty & x^{-} y^{-} 0 \\ 0 & \text { otherwise }\end{cases}
$$

[^13]and the sifting properiy becomes
\[

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f(x, y) \delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right) d x d y-f\left(x_{0}, y_{0}\right) . \tag{11.36}
\end{equation*}
$$

\]

Another represertation of the δ-function follows from Eq. (11.3), the Fourier incegral, which can be restated a

$$
f(x)=\int_{-\infty}^{+\infty}\left[\frac{1}{2 \pi} \int_{-\infty}^{+\infty} t^{-1 \cdot k\left(x-x^{\prime}\right)} d k\right] f\left(x^{\prime}\right) d x^{\prime},
$$

and hence

$$
f(x)=\int_{-\infty}^{+\infty} \delta\left(x-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}
$$

(11.37)
provided thât

$$
\left.\delta\left(x-x^{\prime}\right)-\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-1 k\left(x-s^{\prime}\right)} d k . \quad \quad \quad 11.98\right)
$$

Equation (11.37) is identical to Eq. (11.30), since by definition from Eq. (i1.29) $\delta\left(x-x^{\prime}\right)=\delta\left(x^{\prime}-x\right)$. 'The divergent integral of Eq. (11.38) is zero everywhere exceprat $x=x^{\prime}$. Evidentiy, with $x=0, \delta(x)=\delta(-x)$ and

$$
\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i k x} d k=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} p^{i k x} d k . \quad(I z, 39)
$$

This implies, via (11.4), that the delta function can be hought of as the inverse Fourier transform of unity, that is, $\delta(x)=\mathscr{F}^{-1}\{1\}$ and so $\$\{\delta(x)\}=1$. We car magine a square pulse becoming narrower and taller as its transform, in turn, grows broader, until finally he pulse is in initesimal in width, and its transform is finite in extent, in other woras, a constant.

Dispiacements and Phase Shifts
If the δ-spike is shifted off $x-0$ to, say, $x=x_{0}$, its rarisform will change phase but not amplitude-that

(aj

(c)

Figure 11.9 A shified squere wave showing the crmepritas Figure i1.9 a shified squere wave showit
change in phase hor earh couponevet wave.

$$
\mathscr{F F}\left\{\delta\left(x-x_{0}\right)\right\}=\int_{-\infty}^{+\infty} \delta\left(x-x_{0}\right) e^{2 k x} d x .
$$

sifting property (11.30) the expression

$$
\mathscr{F}\left\{\delta\left(x-x_{0}\right)\right\}=\varepsilon^{* k x_{0}}
$$

(11.40)
a add be compred with Eq. (11.76). What we see This slould be compared whi \&Y. (11.76), What we see
that only the phase is affected, the amplitude being is that chit was when $x_{0}=0$. This whole prooess can be ore arialed somewhat more intuitively if we switch to appre, (Sunch as a spark) occurting at $t=0$. This resuits generation of an infinite range of frequency ghents, which are ail initially in phase at the instant zation ($l=0$). On the other hand, suppose the n) Soccurs at a time to. Again every frequency is furced, but in this situation the harmonic comWite are all in phase at $t=t_{0}$. Consequently, if we Soolate back, the phase of each constituent at $t=0$ ofw have to be different, depending on the par-- frequency. Besides, we know that all these cortThas superinnose to yield zero everywhere except othat a frequency-dependent phase shift is quike
 the space domain. Note that it does vary with the

- II spatial krequency k. that the Fourier tinansform of a function that is Taced in space (or timer) is the itansform of the undisplaced naced in space (or time) is the transform of he undisplaced Tomicom multiplied by an exponential that is hinear in phave - special interest presently, when we consider the © of several point sources that are separated bat ise identical. The process can be appreciated anatically with the help of Figs. 11.9 and 7.13. To re square wave by $\pi / 4$ to the right, the fandamust be shifted d-wavelength (or, say, 1.0 mm), ay component must then be displaced an equal (i, e, , 1.0 mm). Thus each component must be Wh phase by an arnount specificto it that produces

We saw earlier (Fig. 11.1) that if the function at hand We saw earler (\%.s. 1 um of individual functions, it transform is simply the sum of the transforms of the component functions. Suppose we have a string of thelta functions spreadi our uniformly like the tect on a comb,

$$
\left.f(x)=\sum_{j} \delta\left(x-x_{j}\right) . \quad \quad\{i ; 4]\right)
$$

When the number of terms is infinite this periodic furtion is often cill d comb (x) in anyevent, the tran form will simply be a sum of terms, such as that of Eq (11.40)

$$
\mathscr{F}\{f(x)\}=\sum_{t} e^{i x_{x},}
$$

In particutar, if there are two 8 -functions, one at x_{0} $d / 2$ and the other at $x_{0}=-d / 2$,
$f(x)=\delta\left[x-\left(+d_{;}^{\prime}\right)\right]+\delta[x-(-d / 2)]$
and

$$
\mathscr{F}\{f(x)\}=e^{i k d T}+e^{-i k d R},
$$

which is just
$g_{F}\{f(x)\}-2 \cos (k d / 2)$,
as in Fig. 11.10. Thus the transform of the sum of the en two symmetrical δ-functions is a cosine function and two symmetrical δ-functions is a cosiue function and $F(k)=\left\{\int_{[}[f(x)]\right.$ will atro be real and even. This should be reminiscent of Young's experiment (p. 839) with infinisesimally nartow slits-we7l come back to it later.

Figure 1

482 Chapter in Fourier Optics

If the phase of one of the δ-functions is shifted, as in Fig. 11.11, the composite function is asymmetrical, it's odd,

$$
f(x)=\delta[x-(+\alpha / 2)]-\delta[x-(-d / 2)],
$$

and
$F^{G}\{f(x)\}-e^{i k d / 2}-e^{-i k d i 2}-2 i \sin (k d / 2) . \quad$ 11.f4) The real sine transform (11.7) is then

$$
B(k)=2 \sin (k d / 2),
$$

(15.45)
and it too is an odd function.
This raises an interesting point. Recali that there are two alternative ways to consider the complex transform either as the sum of a real and an imaginary part, from phase term, or as the product of an amplitude and a and sine are rat Eq. (11.7b). It happens that the cosine purely real and the special functions; the former functions, even harmonic ones, will usually be a blend of real and imaginary parts. For example, once a cosine is displaced a little, the new function, which is typically neither odd nor even, has both a real and an imaginary part. Moreover, it can be expressed as a cosinusoidal amplitude spectrum, which is appropriately phase shifted (Fig. 11.12). Nouce that when the cosine is shifted $\frac{1}{4}$ into a sine the relative phase difference between the two component delta functions is again π rad.
Figure 11.13 displays in summary form a number of transforms, mostly of harmonic functions. Observe how the functions and transforms in (a) and (b) combine to proch member of the pair of s pulses in 'd). As a rule
spectrum of a harmonic function is located k-axis at a distance from the origin equal to mental angular spatial frequency of $f(x)$. wellmbehaved periodic function can be expr Founier series, it can also be represented as an and each a distance from the weighted app angular spatial frequency of the prigin éd angular spatial frequency of the particulanib contribution-the frequency spectrum of any pariodic
tion will be discrete. One of the most remar periodic functions is $\operatorname{com} b(\mathbf{x})$: as shown remable its transform is also a comb function.

$$
\|^{f(x)=A \cos k_{0}\left(x-x_{0}\right)}
$$

Figure 11.12 The spectra oi a shifted cosine function fifide excursions are unavo
elop the need the analysis is the concept of a linear A key point in the ans is defined in terms of its input system, which in turn put relaing through some optical system results in an adpassing througn some optical syste
(y)

The input is a weighted sum of two (or more) 9. A the input is a weighted sum output will similarly .igions, $a,(\gamma, Z)$, $(Y Z)+b g_{2}(Y Z)$ where $f_{1}(y, z)$. the form $a g_{1}(Y, Z)+g_{2}(Y, Z)$, where $f_{1}(Y, z)$
and $f f_{2}(y, z)$ generate $g_{1}(Y, Z)$ and $g_{2}(Y, Z)$ respec-
more, a linear system will be space invarians if 4ses the property of stationarity; that is, in effect,
 So the output without altering us functional
The idea behind much of an be treated as a linear

- ition opto symer from the
mal poin the phe in fac, if we symbolically Tethe operation of the linear system as $\mathscr{L}\}$, the sut and output can be written as

$$
g(Y, \mathcal{Z})=\mathscr{L}\{f(y, z)\}
$$

Is the sifting property of the δ-function (11.96), becomes
$\alpha(F, Z\}=\mathscr{L}\left\{\int_{-\infty}^{+\infty} f\left(y^{\prime}, z^{\prime}\right) \delta\left(y^{\prime}-y\right) \delta\left(z^{\prime}-z\right) d y^{\prime} d z^{\prime}\right\}$.
nteggral expresses $f(y, z)$ as a linear combination of Gary delta functions, each weighted by a number It follows from the second linearity condition
r. 3 Optical Applications

Figure 11. 13 Some furctions and their transfiorms

Figure 11.14 (a) The comb function and its transform. (b) A shifted comb function and ist transform.
that the system operator can equivalently act on each of the elementary functions; thus

$$
\begin{equation*}
g(Y, Z)=\int_{-\infty}^{+\infty} \int^{1} f\left(y^{\prime}, z^{\prime}\right) \mathscr{L}\left\{\delta\left(y^{\prime}-y\right) \delta\left(z^{\prime}-z\right)\right\} d y^{\prime} d z^{\prime} . \tag{11.47}
\end{equation*}
$$

The quantity $\mathscr{L}\left\{\delta\left(y^{\prime}-y\right) \delta\left\{z^{\prime}-x\right)\right\}$ is the response of the system (11.46) to a delta function located at the point y^{\prime}, z^{\prime}) in the input space-it's called the impulse response. Apparently, if the impulse response of a system is known, the output can be determined directly from the input by means of Eq. (11.47). If the elementary sources are coherent, the input and output signals will have to be electric fields; if incoherent, they'Il be fux densities.
Consider the self-luminous and, therefore, incoher ent source depicted in Fig. 11.15. We can imagine that each point on the object plane, Σ_{0}, emits light that is spot on the focal or image piane Σ emerges to form a assume that the magnifcation between, object and image blane
is one. The image will be life-sized and erect,
makes it a litcle easier to deal with for Notice that if the magnification $\left(M_{-}\right)$was time b Notice that if the magnification $\left(M_{\text {T }}\right)$ was greatom equent image would be larger than the obtory and broader, so the spatial frequencies would bol licz contributions that go into synthesizing the the hahe zo be lower than those of the object. For the imagi that is a transparency of a sinusoidally yan, and white linear pattern (a sinusoidal ampi ing) would be imaged having a greater space be go maxima and therefore a lower spatial Besides that, the image irradiance would be decac y M_{T}^{2}, because the mage area would be inc factor of M_{T}^{2}.
If $I_{0}(y, z)$ is the irradiance distribution on thers plane, an element $d y d z$ located at (y, x) will emit a fux of $I_{0}(y, z) d y d z$. Because of diffraction (a ossible presence of aberrations), this light is s ut into some sort of blur spot over a finite area mage plane rather than focused to a point. The or ran u is位, the image point from dy dz is

This is the patch of light in the image plane 斯 $\left(Y, Z_{i}\right.$

Figure ill.15 A lens system forming an image.
each multiplied by a different weighting factor $I_{0}(y, z)$ but all of the same general shape independent of (f, z). but all of the same general shape independent of $(, z)$ f any object and conjugate image point have the same magnitude.
If we were dealing with coherent light, we would have o consider how the system acted upon an input that was again a δ-pulse, but this time one representing the field amplitude. Once more the resulting image would be described by a spread function, although it would be an amplitude spread function. For a diffractionimited circular aperture, the amplitude spread function ooks like Fig. 10.28 (b). And finally, we would have to be concerned about the interference that would take place on the image plane as the coherent fields interaced. By contrast, with incoherent object points the process occurring on the image plane is simply the summaion of overlapping trradiances, as depicted in one dimension in Fig. 11.17. Each source point, with its own strength, corresponds to an appropriately scaled δ pulse, and in the image plane each of these is smeared ut, via the spread function. The sum of all the overlapping contributions is the image irradiance.
What kind of dependence on the image and object space variables will $S(y, z ; Y, Z)$ have? The spread func-
 Figure the optical system with an inpur point source.
ion can only depend on (y, x) as tar as the location of is center is concerned. This the value of $S(y, z ; Y, Z)$ anywhere on Σ_{i} merely depends on the ctisplacement at that Iocation from the particular Gaussian image point ($Y=y, Z=z$) on which g is centered (Fig. 11.18). In other words,
$\delta(\%, Z ; Y, Z)=S(Y-y, Z-z) . \quad(11.50)$

Figure 11.17 Here (git is coavolved firse with (b) to produce (t) and the spread-out coneributions as indimeded by the dashed courve in (e).

Figure 11.18 The point-spread funcian

When the object point is on the central axis $(9-0$ $z=0$), the Gaussian image point is as wolit it the sprear function is then just $\delta(Y, Z)$, as depila 11.16. Under the circumstances of space inved incoherence,

$$
I_{i}(Y, Z)=\int_{-\infty}^{+\infty} \int_{0} I_{0}(y, z) \delta(Y-y, Z-2) d y d q^{2} \quad(11: \infty)
$$

11.3.2 The Convolution integral

Figure 11.17 shows a one-dimensional rep of the distribution of point-source δ-functio up the object. The corresponding image e cssentisp obtained by "dealing out" an appropriately weigat point-spread function the conviluty point on $\Sigma_{\text {, }}$ and then every pint of (and weirhted by) another process known as convolution and we say tuat a process known as convoluiion, and we $I_{0}(y)$, is convolved with another, $\left.s(4) Y()^{2}\right)$, or vice versa.
This procedure can be carried out in two...... as well, and that's essentially what is being and conm(11.51), the so-called convolution integrah ing the
the process are illustrated in Fig. 11.19. The resultio signal $g\left(X_{1}\right)$, at some point $X_{\text {, }}$ in the output space, is linear superposition of all the individual overlappin concributions that exist at X_{1}. In other words, each source element $d x$ yieids a signai of a particular strength $f(x) d x$, which is then smeared our by the system into region centered about the Gaussian image point ($X=$ x). The output at X_{1} is then $d g\left(X_{1}\right)=f(x) h\left(X_{1}-*\right) d s$ The integral sums up all of these contributions from each source element. Of couse the eiements mor remote from a given point on \sum_{i} contribute less, becaus the spread function generally drops off with displace-

The l1as The overlapping of wcishted spread functions

Chapter Ir Fourier Optics

nent. Thus we can imagine $f(x)$ to be a one-dimensional rradiance distribution, such as a series of vertical bands, as in Fig. 11.20. If the one-dimensional line-spread function, $h(X-x)$, is that of Fig. 11.20(d), the resulting mage will simply be input [fig. 11.20,e),
meremal entity A mathematical entity. Actually it's a rather subtle beast, performing a process that might certainly not be obvious differentwiewpoint Accordingly, we will have two ways of thinking about the convolution integral, and we shall

1120 Th $f(x)$ shown in (a). This is convolved with $\boldsymbol{x} \hat{\delta}$-function to a function (x) shown in (a). This is convolved with a \hat{o} function (() to yield a h_{2} in (d) yields a smoothed out curve represcnted by $g_{2}(x)$ in (e).
show that they are equivalen.
Suppose $h(x)$ looks like the asymmetricith Fig. 11.21 (a). Then $h(-x)$ appears in Fig. its shifted form $h(X-x)$ is shown in ((x). lution of $f(x)$ depicted in (d)] and $h(x)$ is $g(x)$ and by Eq. (11.52). This is often written more $f(x)$ h(x). he incegral simply says that the the product function $f(x) h(X-x)$ for all! x
Evidently the product is nonzero d wherein $h(X-x)$ is nanzero that is, over 4 鹃 $g(a x)$ d wherem $h(X-x)$ is nonzero, that is, whe in the output space 2 e $)$. At a particuf $f(x) h\left(X_{1}-x\right)$ is $g\left(X_{1}\right)$. This fairly direct intes prody can be related back to the physically more ple can be related back to the physically more ple tions, as depicted previously in Fig. 11.19. Rement that there we said that each source element waine out in a blur spot on the image plane having fin of the spread function. Now suppose we takeritin approach and wish to compute the product ateran $11.21(\mathrm{e})$ at X_{1}, that is, $g\left(X_{0}\right)$. A differential dion centered on any point in the region of ore $11.22(a)]$, say x_{1}, will contribute an amount, $\left.x_{3}\right) d x$ to the area. This same differential el make an identical contribution when vie overlapping spread-function scheme. To see thie examine (b) and (c) in Fig. I1.22, which ato now dreti in the output space. The latter shows the sprea "centered" at $X=x_{1}$. A source element δ, intincar located on the object at x_{1}, generates a sma $f\left(x_{1}\right)$ is justartamber The piece of this sign at X_{1} is $f\left(x_{1}\right) h\left(X_{1}-x_{1}\right) d x$ which indeed is
 differential element of the product area (at ant in Fig. 11.22(a) has its counterpart in a curve) of (d) but "centered" on a new point $\left\{X=x_{0}\right.$ beyond $x=x_{2}$ make no contribution, becauso not in the overlap region of (a) and, equs not in the overlap rey are too far from X_{1} for the smeat it, as shown in (e).
If the functions being convolved are simple en $g(X)$ can be determined roughly without an ? L_{a} tions at all. The convolution of two identic:

C

Whanes.

490 Chapter 11 Fourier Optics

Thery hits Compeliution of two square pulkes. The fact that we epreemped $f(x)$ ly tor the wepa in $n(X)$.
puises is illustrated, from both of the viewpo cussed above, in Figs. 11.23 and 11.24. In 位 each inpulse constituting $f(x)$ is spreadout inges. in as h varies, is plotted against \boldsymbol{X}. In both indit. as h varies, is plotted against X In both inden
result is a triangular pulse. Incidentally, obse $(f(h)=(h \otimes f)$, as can be seen by a changestin) ito ($x^{\prime}=X-x$) in Eq. (11.59), being carefui wibitulet (see Problem 11.15). (see Probiem 11.15).
tions $I_{0}(y, z)$ and $s(y, z)$ in two dimensions, of two tions $1_{0}(8, z)$ and $s(y, 3)$ in two dimensions, afint Eq. (11.51). Here the vaiume under the onethartal equals $I_{i}(Y, Z)$ at (Y, Z); gee Problem 11,16

rigure 11.24 Convoluilion of $t w o$ square pulses.

Figare 11.25 Convoution in two dimensions.

Thus
$G(k)=\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} n(X-x) e^{i k x} d X\right] f(x) d x$.
If we puit $w=X-x$ in the inner integral, then $d X=d w$ and

$$
G(k)=\int_{-\infty}^{+\infty} f(x) e^{i k x} d x \int_{-\infty}^{+\infty} h(w) e^{i+k w} d w
$$

Deffig = $C(k)$. The proof isquite straightforward:

$$
S[f(\theta)]=\int_{-\infty}^{+\infty} g(X) e^{i k X} d X
$$

$=\int_{-\infty}^{+\infty} e^{i x x}\left[\int_{-\infty}^{+\infty} f(x) h(X-x) d x\right] d X$.
$G(k)=F(k) H(k)$,
which verifies the theorem. As an example of its applica. which verines the theorem, As an the convolution of two identical square pulses $(f(), \mathrm{f})$ is a trianguiar pulse (g),

492 Chapter $1 x$ Fourier Optics

Figure 11,26 An illustration of the convolution theorem.
the product of their transforms (Fig. 7.17) must be the transform of g, namely

$$
\mathscr{F}\{E\}-[d \text { sinc }\{k d / 2)]^{2} . \quad \text { (Ii.55; }
$$

As an additional example, convolve a square pulse with the two δ-functions of Fig. 11.11. The transform of the resulting double pulse (Fig. 11.27) is again the product resulking double palse (Fig. I
of the individual transforms.
The k-space counterpart of Eq. (11.53), namely, the frequency convolution theorem, is given by

$$
\mathscr{F}\{f-h\}=\frac{1}{2 \pi} \mathscr{F}\{f\}(G F\{h\} ; \quad(I I .56)
$$

that is, the transform of the product is the convolution of the transforms.
Figure 11.28 makes the point rather nicely. Here an infinitely long cosine, $f(x)$, is multiplied by a rectangula pulse, $h(x)^{\text {, which }}$, truncates it into a short oscillator wavetrain, $g(x)$. The transform of $f(x)$ is a pair of della functions, the transform of the rectangular pulse is sinc function, and the convolution of the two is the transform of $g(x)$. Compare this result with that of Eq (7.60).
ii) Transform of the Gaussian Wove Packet

As a further example of the usefulness of the convohution theorem, Iet's evaluate the Fourier transtorm of
 form

$$
E(x, i)=E_{0} e^{-i\left(i, h_{0} x-\omega t\right)},
$$

one need only modulate the amplitude to get a pulse of the desired structure. Assuming the wave' a prolste to be independent of time, we can write it asd

$$
E(x, 0)=f(x) e^{-i k_{0} x} .
$$

Now, to determine $\mathscr{F}\left\{\left\{(x) e^{-i h_{0}{ }^{*}}\right\}\right.$ evaluate
$\int_{-\infty}^{+\infty} f(x) e^{-i t, x} e^{i t x} d x$.
Letting $k^{\prime}=k-k_{0}$, we get

$$
F\left(k^{\prime}\right)-\int_{-\infty}^{+\infty} f(x) e^{i k^{\prime} x} d x=F(k-k) \quad(11 . \infty)
$$

In other words, if $F(k)=\mathscr{F}\{f(x)\}$, then
$\mathscr{F}\left\{f(x) e^{-i k_{0} x}\right\}$. For the specific case of $\mathscr{F}\left\{f(x) e^{-i k_{0} x}\right\}$. For the specific case of erveiope (11.11), as in the figure, $f(x)=\sqrt{\text { and }}$ is.

$$
E(x, G)=\sqrt{a / \pi} e^{-a x^{2}} e^{-k_{0} x} .
$$

$$
\quad \mathscr{F}\left\{E(x, 0)^{-} e^{-\left(x-k_{0} 1^{2} / 4 a\right.} \quad\right. \text { (11). }
$$

-. Eficquency cor

Inquil a diferent way, the transform can be deterund from Eq. (11.56). The expression $E(x, 0)$ is now Fry as the product of the two functions $f(x)=$
 - hate $\mathscr{F}\{h$) is to set $f(x)=1$ in Eq. (11.57). This yields the firansform of 1 with A replaced by $k-h_{0}$. Since $4 \operatorname{Le}^{2} 2 \pi \delta\left\{k\right.$) (see Problem 11.4), we have $\mathscr{F}\left\{e^{-k_{0} x}\right\}=$ - \hat{k}_{0}). Thus $\mathscr{F}\{E(x, 0)\}$ is $1 / 2 \pi$ times the convo Thof $2 \pi \delta\left(k-k_{0}\right)$, with the Gaussian $e^{-k^{2} / 4 a}$ centered

on zero. The result ${ }^{*}$ is once again a Gaussian centered on k_{0}, narnely, $e^{-\left(k-k_{0}\right)^{j} / 4 a}$.

11.3.3 Fourier Methods in Diffraction Theory

) Frounhofer Diffraction

Fourier-transform theory provides a particularly beautiful insight into the mechanism of Fraunhofer diffraction. Let's go back to Eq. (10.41), rewritten as

We should actually have used the real part of exp $\left\langle-i k_{0} x\right\rangle$ to start with in this derivation. since the transform of the complex exponential is different from the transform of cos $k_{0} x$ and taking the real part therward is insufficient. This is the same sort of diffichlty onc always fral answer $\{11.66\}$ should, in fact, contain an additional exp $\left[-\left\{\frac{1}{2}+\right.\right.$ $\left.\left.x_{j}\right)^{2} / 4 a\right]$ term, as well as a multiplicative conslant of $\frac{1}{2}$. This second erm is usually negligible in comparison, howevet. Evech so, had we
 or cosine in this fachon is rignorosity incostrect, albcit pragmaticaily cormon practice. As a short-cut device, it should be indulged in only
with the greatest caution!

Chapter II Fourier Optics

This formula refers to Fig. 10.22, which depicts an arbitrary diffracting aperture in the $y z$-plane upon which is incident a monochromatic plane wave. The quantity R is the distance from the center of the aperture to the output point where the field is $E(Y, Z)$. Th souce strengh per unit area of the aperture is denoted by ε_{A}. We are talking about electric fields that are of course time-varying; the term exp $2(\omega t-k R)$ just relate the phase of the net cisturbance at the point $(x, 2)$ to that at the center of the aperture. The $1 / R$ corresponds to the drop-off of field amplitude with distance from the aperture. The phase term in front of the integra is of little present concern, since we are interested in the relative amplitude distribution of the fieid, and it doesn't much matter what the resultant phase is at any particular output point. Thus if we limit ourselves to a small region of ourput space over which R is essentially constant, everything in front of the integral, with the The $\varepsilon_{\text {A }}$ has thus far been assumed to be invariant over the aperture, but that certainly need not be the case Indeed if the sperture were filled with a jumpy piece of dirty glass, the field emanating from each area element $d y d z$ could differ in both amplitude and phase There would be noruniform absorption, as well as a position-dependent optical path length through the position-depencent optical path length through the
glass, which would certainly affect the diffracted feld glass, whict would certainly affect the diffracted field
distribution. The variations in ε_{A}, as well as the multiplicative constant, can be combined into a single complex quantity

$$
\mathscr{X}(y, z)=\mathscr{A}_{0}(y, z) e^{i \phi(y,-)}
$$

which we call the aperture function. The amplitude of the field over the aperture is described by $s \$_{0}(y, x)$, while the point-to-point phase variation is represented by $\exp [i \phi(y, z)]$. Accordingly, $2(y, z, d y d z$ is proportional to the diffracted fieid emanating from the cifferentia source element $d y d z$. Consolidating this much, we can reformulate Eq. (11.61) more generaliy as

$$
E(Y, Z)-\iint^{+\infty} \mathscr{A}(g, z) e^{2 k\left(Y_{y}+Z_{C}\right) / R} d y d z \quad(I I .6 . g)
$$

The limits on the integral can be extended to $\pm \infty$, because the aperture function is nonzero only over the region of the aperture.

igure 11.50 A bit of geonerry.
It might be heipful to envision $d E(Y, Z)$ at a given point P as if it were a plane wave propagatic direction of \mathbf{x} as in Fig. 11.30, and having an. etermined by $s(y, z) d y d z$. To underscore ty between Eq. (11,63) and Eq. (11//4), le's chatil spatial frequencies k_{y} and k_{z} as

$$
k_{y}=k Y / R=k \sin \phi=k \cos \beta \quad \text { (} 1: \alpha
$$

$$
k_{\mathrm{Z}}=k Z / R=k \sin \theta=k \cos \gamma .
$$

or each point on the image plane, there if e catmontint spatial frequency. The diffracted field can now, bea

as

 and we've arrived at the key point: the ford in the Fraunhofer diffraction pattern is the of the feeld distribution across the aperture unction). Symbolically, this is written as $E\left(k_{y}, k_{z}\right)=\mathscr{F}\{\mathscr{A}(y, z)\}$
wave. Assuming that there are no phase or amplitude variations across the aperture, $s\{(y, z)$ has the form of a square puise (Fig. 7.17):

$$
s q(y, z)=\left\{\begin{array}{cc}
s t_{0} & \text { when }|z| \leq b / 2 \\
0 & \text { when }|z|>b / 2,
\end{array}\right.
$$

where Ωf_{0} is no longer a function of y and z. If we take it as a one-dimensional problem,

$$
\begin{aligned}
E\left(k_{z}\right)-\mathscr{F}\left\{x d^{f}(z)\right\} & =s s_{0} \int_{x}^{+i b r a} e^{i k_{z}} d z \\
& =s s_{0} b \operatorname{sinc} k_{z} b / 2 .
\end{aligned}
$$

With $k_{Z}=k \sin \theta$, this is precisely the form derived in Section 10.2.1. The far-field diffraction pattern of rectangular aperture (Section 10.24) is the two dimensional counterpart of the slit. With $\mathbb{I}(y, z)$ again equal to $\$ s_{0}$ over the aperture (Fig. 10.28),
$E\left(k_{y}, k_{z}\right)=\mathscr{F}\{s\{(y, z)\}$
$-\int_{y=-b / 2}^{+4 / 2} \int_{z--\alpha / 2}^{+\pi / 2} d x_{0} t^{i\left(4 k_{y} y+k_{z}\right)} d y d z$

Figure 11.91 An illustration of the convolution theorem.
hence,

$$
E\left(k_{Y}, k_{Z}\right)=\mathscr{A}_{0} b a \operatorname{sinc} \frac{b k Y}{2 R} \operatorname{sinc} \frac{a k Z}{2 R}
$$

just as in Eq. (10.42), where $b s$ is the area of the hole.

Young's Experiment: The Double Slit
in our îrst treatment of Young's experiment (Section 9.3) we took the slits to be infinitesimaty wide. The aperture function was then two symmetrical δ-pulses, and the corresponding idealized field amplitude in the diffraction pattern was the Fourier transform, namely cosine function. Squared, this yields the familiar cosine-squared irradiance distribution of Fig. 9.6. More realistically, each aperture actually has some finite shape, and the real diffraction pattern will never be quite so simple. Figure 11.31 shows the case in which the holes are actual slits. The aperture function, $g(x)$, is obtained by convolving the δ-function spikes, $h(x)$, hat locate each silt with the rectangular pulse, $f(x)$, that corresponds to the particular opening. From the convoution theorem, the product of the transforms is the modulated cosine amplitude function representing the ing that would produce the anticipared double-slit gradiance distribution shown in Fig 1017 The onedimensional transform curves are ploted against k but that's equivalent to plotting against image-space variables by means of kq. (11.64) (The same reasoning apolied to circular apertures yields the fringe pattern of Fig. 12.2.)

(b)

Inree Slits
Looking at Fig. 11.18(d) it should be c ransform of the array of three 8 -functio thate the diagram will generate a cosine that is raise in th the 8 -function arthe the zero-frequency has twice the amplitude of the other that del totally positive. Now suppose we twa, the otally positive. Now suppose we have thy arrow parallel slits uniformly illuminated d entral 8 -function is half its prig. $11.32(\mathrm{a})$, entral α-function is half its previous size. Ac he cosine transform will drop one quarte the diffracted electric field amplitude ig. 11.32(c), is the three-slit irradiance pat

ii) Apodization

The term apodization derives from the Grespl. way, and $\pi 080 \sigma$, meaning foot. It refers to the prot of suppressing the secondary maxima (side lobes) feet of a diffraction pattern. In the case of pupil (Section 10.2.5), the diffraction pattern spot surrounded by concentric rings. The fit a flux density of 1.75% that of the central pea small but it can be troublesome. About 16% of th incident on the image plane is distributed in the tesolving power of an optical systerm toa apodization is called for, as is often the case and spectroscopy For cuampt, the star appears as the brightest star in the sky (it's in the

(ation Canis Major-the big dog), is actually one Ilation Canis Major-Che big iod by a faint white inary system. orbit about their mutual center of Eas they both or tremendous difference in bright 0 . 0 1) the image of the faint companion, 0^{2} with a telescope, is generally completely the the side lobes of the diffraction pattern of登in star.
Hization can be accomplished in several ways, for fie, by altering the shape of the aperture or its tision characteristics.* We already know from 1.66) that the diffracted field distribution is the 1.60) of $s s(y, z)$. Thus we could effect a change in Hobes by altering $\$ \xi_{0}(y, z)$ or $\phi(y, z)$. Perhaps the approach is the one in which only $\mathscr{A}_{0}(y, x)$ is fated. This can be accomplished physically by St the aperture with a suitably coated flat glass Gut gis coating the objective lens itself). Suppose that Ging becomes increasingly opaque as it goes y out from the center (me the piane) ges of a circular pupin. The ransil it is made to pocdingly decrease or-axis untl ine made Sre har, imagne that then dro-s) is a Gaussian func (3 in its transform $E(Y Z)$, and consequently the aigstem vanishes. Even though the central peak is dened, the side lobes are indeed suppressed (Fis
hoder rather heuristic but appealing way to look the process is to realize that the higher spatia ency contributions go into sharpening up the of the function being synthesized. As we saw in one dimension (Fig. 7.13), the high frequen fill in the comers on the square pulse. In on the a perture riecessitate the presence of siable contributions of high spatial frequency in iffracted field. It follows that making $s_{6}(y, z)$ fall dually will reduce these high frequencies, which
th is manifest in a suppression of the side lobes ha is manifest in a suppression of the side lobes.
odization is one aspect of the more encompassing dization is one aspect of the more encompassing Cuxensive treatment of the stabject, see P. Jacquinot and B. Mossis, "Apodization," in Vol. III oi Progress in Oppics

Figure 11.33 An Airy pattern compared with a Gaussian.
technique of sfatial filtering, which is discussed in an extensive yet nonmathernatical treatment in Chapter 14.
iii) The Array Theorem

Generalizing some of our previous ideas to two dimensions, imagine that we have a screen containing N identical holes, as in Fig. 11.34. In each aperture, at the same relative position, we locate a poin $O_{1}, O_{2}, \ldots, O_{N}$ at $y_{1}, z_{1},\left(y_{2}, z_{2}\right), \ldots, y_{N}, z_{N}$, , respec very. coordinate system ($y^{\prime} z^{\prime}$) Thus a point $\left(y^{\prime} z^{\prime}\right)$ in the local frame of the j th aperture has coordinates $\left(z+y^{\prime} z_{j}+z^{\prime}\right)$ in the ($\left(, z^{2}\right.$-system. Under coherent $\left(\mathrm{O}_{j}+y, z_{j}+\mathrm{I}\right)$ in the (9. 2 -system. Under coherent
monochromatic illumination, the resulting Fraunhofer diffraction field $E(Y, Z)$ at some point F on the image plane will be a superposition of the individual fields at P arising from each separate aperture; in other words.

$$
E\{Y, Z\}^{-} \sum_{j=1}^{N} \int_{-\infty}^{+\infty} \int_{0} \mathscr{A}_{I}\left(y^{\prime}, z^{\prime}\right) e^{i+\left[\gamma\left(y_{j}, y^{\prime}\right)+z^{\prime}\left(z_{3}, z^{\prime}\right) Y R\right.} d y^{\prime} d z^{\prime}
$$

or

$$
E(Y, Z)=\int_{-\infty}^{+\infty} \int_{-\infty} \mathscr{A}\left(y^{2}, z^{\prime}\right) e^{i k\left(y^{\prime}+z^{2}\right) \mid R} d y^{\prime} d z^{\prime}
$$

$$
\times \sum_{j=1}^{N} e^{\operatorname{ma}\left(x_{y}+2 z_{j}\right) / x}
$$

(11.7)

Figure 11.34 Multiple-zperture configutation.
where $\mathscr{A}_{1}\left(y^{\prime}, z^{\prime}\right)$ is the individual aperture function applicabie to each hole. This carı be recast, using Eqs. (11.64) and (11.65), as

$$
\begin{align*}
& E\left\{k_{Y}, k_{Z}\right)^{-} \int_{-\infty}^{+\infty} \int_{-\infty} \mathscr{S}_{I}\left(y^{\prime}, z^{\prime}\right) e^{i\left(k_{y^{\prime}} y^{+} k_{z^{\prime}}\right)} d y^{\prime} d x^{\prime} \\
& \times \sum_{j=1}^{N} e^{i\left(k_{x_{r}} y\right)} e^{i\left(k_{x i}\right) .} \tag{11.72}
\end{align*}
$$

Notice that the integral is the Fourier transform of the individual aperture function, while the sum is the transform (11.42) of an array of delta functions

$$
\begin{equation*}
A_{\delta}-\sum_{j} \delta\left(y-y_{j}\right) \delta\left(z-x_{j}\right) . \tag{11.73}
\end{equation*}
$$

Inasmuch as $E\left\{k_{Y}, k_{Z}\right\}$ itself is the transform $\mathscr{F}\{\mathbb{Q}(y, z)\}$ of the total aperiure function for the entire array, we have

$$
\mathscr{F}\{\mathscr{A}(9, z)\}=\mathscr{F}\left\{\mathscr{M}_{i}\left(y^{\prime}, z^{\prime}\right)\right\} \cdot \mathscr{F}\left\{A_{8}\right\} . \quad(11.74)
$$

This equation is a statement of the array theorem, which says that the field distribution in the Fraurhofer diffraction pattern of an array of similarly oriented identical aperiure equals (ion its diffracted fietd distribution) multiotied ty th tattern that world restlf from a set of point sources armayed in the same configuration (which is the tran.sforn of A_{s}).

This can be seen from a slightly different view. The total aperture function may bere convolving the individual aperture fund
 of the coordinate origins $\left(y_{1}, z_{1}\right)$, $\left(y_{2}, z_{2}\right)$) , at ons Hence

$$
\mathscr{A}(y, z)=\mathscr{A}_{1}\left(y^{\prime}, z^{\prime}\right) \odot A_{\delta}, \quad
$$

whereupon the array theorem follows directi) from
convolution theorem (I1.53).

As a simple example, imagine that we Youngs and

$$
\mathscr{A}_{1}\left(z^{\prime}\right)= \begin{cases}\mathscr{Q}_{00} & \text { when }\left|z^{\prime}\right| \leq b / 2 \\ 0 & \text { when }\left|z^{\prime}\right|>b / 2,\end{cases}
$$

and so

$$
\mathscr{F}\left\{\mathscr{A}_{I}\left(z^{\prime}\right)\right\}-\mathscr{A}_{r 0} b \sin c k_{z} b / 2
$$

With the slits located at $z^{-} \pm a / 2$,

$$
A_{S}=\delta(z-a / 2)+\delta(z+a / 2),
$$

and from Eq. (11.43)

$$
\mathscr{F}\left\{A_{8}\right\}=2 \cos k_{Z} a / 2 .
$$

Thus

$$
E\left(k_{z}\right)=2 \mathscr{A}_{10} b \sin c\left(\frac{k_{z} b}{2}\right) \cos \left(\frac{k_{z} a}{2}\right)_{b}
$$

which is the same conclusion arrived at ${ }^{2}$ 1.31). The irradiance pattern is a set of interference fe.

11.3.4 Spectra and Correlation

i) Parseval's Formula

Suppose that $f(x)$ is a pulse of finite extent,
is its Fourier transform (11.5). Thinking back to 7.8 , we recognize the function $F(k)$ as the sagrs! 7.8, we recognize the function $r(k) f(x)$. the spatial frequency spectram of contriby
then connotes the amplitude of pulse within the frequency range from

Figure 11.35 A damped harmonic wave.
as $\left(e^{-1 / \tau}\right)^{1 / 2}$. In any event, τ is known as the time constant as $\left(e^{-l v}\right)^{1 / 2}$. In any event, τ is known as the time constant
of the oscillation, and $\tau^{-1}-\gamma$ is the damping constant. The transform of $f(t)$ is

$$
F(\omega)-\int_{0}^{\infty}\left(f_{0} e^{-t / 2 \tau} \cos \omega_{0} t\right) e^{i \omega t} d t
$$

The evaluation of this integral is explored in the problems. One firds on performing the calculation that

$$
F(\omega)=\frac{f_{0}}{2}\left[\frac{1}{2 \tau}-i\left(\omega+\omega_{0}\right)\right]^{-1}+\frac{f_{0}}{2}\left[\frac{1}{2 \tau}-i\left(\omega-\omega_{0}\right\}\right]^{-1}
$$

When $f(t)$ is the radiated field of an atom, τ denotes the lifetime of the excited state (from around 1.0 ns to $10 \mathrm{~ns})$. Now if we form the power spectrum $F(\omega) F^{*}(\omega)$, it will be composed of two peaks centered on $\pm \omega_{0}$ and thus separated by $2 \omega_{0}$. At optical frequencies where $\omega_{0} \gg \gamma$, these will be both narrow and widely spaced, with essentially no overlap. The shape of these peaks is determined by the transform of the modulation envelope in Fig. 11.35, that is, a negative exponential. The location of the peaks is fixed by the frequency of the
modulated cosine wave, and the fact that there are two such peaks is a reflection of the spectrum of the cosine in this symmetrical frequency representation (Section 7.8). To determine the observable spectrum from $F(\omega) F^{*}(\omega)$, we need only consider the positive frequency term, namely.

$$
\begin{equation*}
|F(\omega)|^{2}=\frac{\gamma_{0}^{2}}{\gamma^{2}} \frac{\gamma^{\gamma} / 4}{\left(\alpha-\nu_{0}\right)^{2}+\gamma^{2} / 4} \tag{11.79}
\end{equation*}
$$

This has a maximum value of f_{0}^{2} / γ^{2} at $\omega=\omega_{0}$, as shown in Fig. 11.36. At the half-power points $\left(\omega-\omega_{0}\right)= \pm \gamma / 2$, $|F(\omega)|^{2}=f_{0}^{2} / 2 \gamma^{2}$, which is half its maximum value. The width of the spectral line between these points is equal to γ.
The curve given by Eq. (11.79) is known as the resnance or Lorentz profile. The frequency bandwidth axising from the finite duration of the excited state is called he natural linewidth
If the radiating atom suffers a collision, it can lose nerdy and thereby further shorten the duration of emission The frequency bandwidth increases in of process, which is known as Lorentz broadening Here gain, the spectrum is found to have a Lorentz profile, again, the spectrum is found to have a Lorentz profile.
Furthermore, because of the random thermal motion of the atoms in a gas, the frequency bandwidth will be increased via the Doppler effect. Doppler broadening, as increased via the Doppler effect. Dopplet broadening, as
it called, results in a Gaussian spectrum (Section 7.10). The Gaussian drops more slowly in the immediate vicinty of ω_{0} and then more quickly away from it than does he Lorentzian profile. These effects can be combined mathematically to yield a single spectrum by convolving he Gaussian and Lorentzian functions. In a lowpressure gaseous discharge, the Gaussian profile is by ar the wider and generally predominates.

Figure 11.36 The resonance or Lorentz profile.
iii) Autocorrelation and Cross-Cortelat

Let's now go back to the derivation of Pars it
and follow it through again, this modification. We wish to evaluate using much the same approach as $F(\omega)=\mathscr{F}\{f(b)\}$,

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} f(t+\tau) f^{*}(t) d t=\int_{-\infty}^{+\infty} f(t+\tau) \\
& \quad \times\left[\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F^{*}(\omega) e^{-i} d d\right. \\
& \text { Changing the order of integration, we obtains } \\
& \qquad \frac{1}{2 \pi} \int_{-\infty}^{+\infty} F^{*}(\omega)\left[\int_{-\infty}^{+\infty} f(t+\tau) e^{i \omega t} d t\right] d d t \\
& \quad=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F^{*}(\omega) \mathscr{F}\{f(t+\tau)\} d \omega .
\end{aligned}
$$

To evaluate the transform within the last in der that

$$
f(t+\tau)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) e^{-i \omega(l+\tau)} d \hat{\Delta}
$$

by a change of variable in Eq. (11.9). Hence

$$
f(t+\tau)=\xi F^{-1}\left\{F(\omega) e^{-i \omega \tau}\right\}
$$

so as discussed earlier, $\mathscr{F}\{f(t+\tau)\}=F(0)-\quad$ Eq. (11.80) becomes

$$
\left.\int_{-\infty}^{+\infty} f(t+\tau)\right)^{*}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F^{*}(\omega) F(\omega) t^{-\omega t} d \omega t
$$

and both sides are functions of the parang: left-hand side of this formula is said to be t id station of $f(t)$, denoted by

$$
\epsilon_{f i}(\tau)=\int_{-\infty}^{+\infty} f(t+\tau) f^{*}(t) d t, \quad
$$

which is often written symbolically as $f(t) \odot \rho+(a)$ if $\%$ take the transform of both sides, Eq. (11.81) then becomes
form of the Wiener-Khinchine theorem. It allows nomination of the spectrum by way of the relation of the generating function. The保 of $c_{f f}(\tau)$ applies when the function has finite When it doesn't, things will have to be changed The integral can also be restated as

$$
\left.\delta_{f f}(\tau)=\int_{-\infty}^{+\infty} f(i)\right)^{*}(t-\tau) d l \quad(11.84)
$$

pile change of variable ($t+\tau$ to 1$)$. Similarly, the upealation of the functions $f(t)$ and $h(t)$ is

$$
\begin{equation*}
c_{p}(\tau)=\int_{-\infty}^{+\infty} f^{*}(t) h(t+\tau) d t . \tag{11.85}
\end{equation*}
$$

nation analysis is essentially a means for comparsignals in order to determine the degree of signals in order to determine the degree of is displaced in time by an amount τ, the product displaced and undisplaced versions is formed pea under that product corresponding to the f overlap) is computed by means of the integral. overrelation function, $c_{y}(\tau)$ provides the result tidily br obtained in such a process for all values of turn hall be obtained in such a process for all values of mai reason for doing such a thing, tor example, is allee how the business works step by step, let's take the entrocorrelation of a simple function, such as ($\omega_{i}+\varepsilon$), shown in Fig. 11.37. In each part of the解 the function is shifted by a value of τ, the act $f(i) \cdot f(l+\tau)$ is formed, and then the area under roduct function is computed and plotted in part bice that the process is indifferent to the value of Final result is $c_{f f}(\tau)=\frac{1}{2} A^{2} \cos \omega \tau$, where this funcWolds through one cycle as τ goes through 2π,
St he same frequency as $f(i)$. Accordingly, if we
process for generating the autocorrelation, we init the angular frequency w.
Hing the functions to be real, we can rewrite

$$
c_{h i}(\tau)=\int_{-\infty}^{+\infty} f(i) h(t+\tau) d t
$$

(11.86)
convolution of (t) and $h(t)$. Equation (11.86) is written symbolically as $c_{f h}(\tau)=f(t) \bigcirc h(t)$. Indeed, if either $f(t)$ or $h(t)$ is even, then $f(t) \odot h(t)=f() \odot h(t)$, as we shat see by example presently. Recall that the convolution flips one of the functions over and then sums up the overlap area (fy. 11.21), that is, the area under the product curve. In contrast, the correlation sums up the overlap without flipping the function, and thus if the function is even, $f(t)=f(-t)$, it isn't changed by being flipped (or folded about the symmetry axis), and the two integrands are identical. For this to obtain, either function must be even, since $f(t)(*) h(t)=h(t) \oplus f(t)$ The autocorrelation of a square pulse is therefore equal to the convolution of the pulse with itself, which yields triangular signal, ain Fig. M.24. is same conclusion of a square pulse is a sine function, so that the pow n spectrum varices as sinc^{2} u The inverse transform of $|F(\omega)|^{2}$ that is $\operatorname{Ge}^{-1}\left\{\operatorname{sinc}^{2} u\right\}$ is $G(r)$ which as we have seen is aga triangular pulse (Fib 11 38).
It is clearly possible for a function to have
energy [11.76; over an integration ranging from $\rightarrow \infty$ from $-\infty$ to $+\infty$ and yet still have a finite average power

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{+T}|f(t)|^{2} d t
$$

Accordingly, we will define a correlation that is divided by the integration interval:

$$
C_{g h}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{+T} f(t) h(t+\tau) d t . \quad(11.87)
$$

For example, if $f(i)=A$ (ie., a constant), its autocorre ration

$$
C_{f /}(\tau)=\lim _{x \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{+T}(A)(A) d t=A^{2}
$$

and the power spectrum, which is the transform of the autocorrelation, becomes
$\mathscr{F}_{\{ }\left\{C_{f f}(\tau)\right\}=A^{2} 2 \pi \delta(\omega)$,
a single impulse at the origin ($\alpha=0$), which is sometimes referred to as a dc-term. Notice that $C_{f g}(\tau)$ can be
thought of as the time average of a product of two functions, ore of which is shifted by an interval τ. In the next chapter, expressions of the form $\left\langle f^{*}(t) h(t+\tau)\right.$)

arise as coherence functions relating electric fields. They are also quite useful in the analysis of noise problems, for example, film grain noise.
We can obviously reconstruct a furiction from its transform, but once the transform is squared, as in Eq. (11.83), we lose information about the signs of the frequency contributions, that is, their relative phases In the same way, the autocorrelation of a function contains no phase information and is not unique. To see this more clearly, inragine we have a number of harmonic functions of different amplitude and frequency. If their relative phases are altered, the resul.
ant function changes, as does its transtornap cases the amount of energy available at an must be constant. Thus, whatever the form ous. tant profile, its autocorrelation is analteredky is leita problem to show analyticsilly that $A \sin (\omega t+\varepsilon), C_{f(}(\tau)=\left(A^{2}-2\right) \cos \omega \tau$, which oss of phase information.
Figure 11.39 shows a means of opticallyagricaus iwo two-dimensional spatial functions. Erag of the in gnals is represented as a point-by-poia he irradiance transmission propert on a pha transparency (T, and T_{5}). For relatively sim)
fof the rectangular pulse $f(x)$ (i.e. full the Fouricer transform of the an of $f(x)$.

frreens with appropriate apertures could serve of transparencies (e.g., for square pulses).*'The of transparencies (e.g., or square pulses). Ths and bundle of parallel rays that has traversed both ivd buncle of parallel rays that has traversed both arencies. The coordinates of $P,(\theta f, \varphi /)$, are hixed
orientation of the ray bundie, that is, the angles - 6 orientation of the ray bundie, that is, the angles - If the transparenctes are identical, a ray passing ance f($(x, y$) will pass through a corresponding point $(-8 y+Y)$ on the second film where the transmitwace 㩆 $g(x+X, y+Y)$. The shifts in coordinate are
$X=\ell \theta$ and $Y=\ell \varphi$, where ℓ is the separation the transparencies. The irradiance at P is there Soprtional to the autocorrelation of $g(x, y)$, that
$f_{y I}(X, Y)=\int_{-\infty}^{+\infty} \int_{-\infty} g(x, y) g(x+X, y+Z) d x d y$,
(11.88)
tire flux-density pattern is ceiled a correlogram. Sparencies are different, the image is of course
of. Kovaszray and A. Arman, Rev. Sci. histr, 28, 793 (1958) Thachan, Jr., J. Obt Soc. Am, 52, 454 (1962).
epresentative of the cross-correlation of the functions. Similarly, if one of the transparencies is rotated by 180° with respect to the orater, the convolution can be btained (see Fig. 11.25) Before moving on, let
do have a good physical feeling for the operation performed by the correlation functions. Accordingly, sup-

Figure 11.39 Optical correlation of two functions.

504 Chapter 11 Fourier Optics

Figure 11.40 A signal fit) and its autocorrelation.
 Figure 11.41 The cross-corcel f fini.n of
$f(t)$ and $h(t)$.
pose we have a random noise-like signal (e.g.
ing irradiance at a point in space or a ting ng irradiance at a point in space or a tim autocorrelation of $f(t)$ in effect compares the with its value at some other time, $f(t+\tau)$. For exples with $\tau=0$ the integral runs along the signal examp summing up and averaging the product of $f(t+\tau)$; in this case it's simply $f^{2}(t)$. Since at of $t, f^{2}(t)$ is positive, $C_{i f}(0)$ will be a comparat number. On the other hand, when the noise is ro $f(t) f\left(t+\tau_{t}\right)$ is positive and other points vititr negative, so that the value of the integral dron $11.40(\mathrm{~b})$. In other words, by shifting the siss espect to itself, we have reduced the poin similarity that previousiv ($\tau=0$) occurred at As this shift τ increases, what little correlation quickly vanishes, as depicted in Fig. I1.40(c) assume from the fact that the autocorrelation ${ }^{2}$? power spectrum form a Fourier transform paila that the broader the frequency bandwidth of the narrower the autocorrelation. Thus form width noise even a slight shift markedly redude similarity between $f(t)$ and $/(i+\tau)$. Furthermore signal comprises a random distribution of resp: pulses, we can see intuitively that the similarity. of earlier persists for a time commensurate width of the pulses. The wider (in time) the " the more slowly the correlation decreases as τ But this is equivalent to saying that reducinget. band width broadens $C_{I f}(\tau)$. All of this is in keepiys out any phase information, which in this case swould

- Thond to the locations in time of the random pulcearly, $G_{g f}(T)$ shouldn't be affected by the position zpuse along
wisery much the same way, the cross-correlation is a neasure of the similarity between two different Orms, $f(t)$ and $h(t)$, as a function of the relative bift τ. Unlike the autocorrelation, there is now E special about $\boldsymbol{\tau}=0$. Once again, for each value The average the product $f(t) h(t+\tau)$ to get $C_{f h}(\tau)$ (11.87). For the functions shown in Fig. 11.41, rould have a positive peak at $\tau=\tau_{1}$.
-rge the 1960s a great deal of effort has gone into The pictorial data The potential uses range from repring fingerprints to scanning documents for utiorphrases; from screening aerial reconnaissance Dtest to creating terrain-following guidance systems aysiles. An example of this kind of optical pattern ion, accomplished using correlation techniques, in Fig. 11.42. The input signai $f(x, y)$ depicted

gare 11.42 An example of optical pattern recognition. (a) 1 .put signal, (b) reference dara, (c) correlation pattern. (Reprinted with permission from the No
Desight David Casasent.)
in photograph (a) is a broad view of some region thas is to be searched for a particular group of structures tholograph (o) isolated as the reference s.gnal $h(x, y)$. Of course, that small frame is easy enough to scan directly by eye, so to make things more realistic, imagine the input to be a few hundred feet of reconnaissance film. The result of optically correlating these two signals is displayed in photograph (c), where we immediately see, from the correlation peak (L.e., he spike of light), nheed the desired group ohrach. is it sput pict he peak

11.3.5 Transier Functions

i) An Introduction to the Concepts
ntil recent times, the traditional means of determining the quality of an optical element or system of elements was to evaluate its limit of resolution. The greater the

506 Chapter 11 Fourrier Optics

resolution, the better the system was presumed to be In the spirit of this approach one might train an optical systern on a resolution target consisting. for instance of a series of alternating light and dark parallel rectangular bars. We have already seen that an object point is imaged as a smear of iight described by the pointis imaged as a smear of iight described by the point
spread function $S(X, Z)$, as in Fig. 11.18 . Under incospread function $\delta(X, X)$, as in Fig. 1.18 . Under inco-
herent illumination these elementary fux-density patherent illumination thesc eiementary fux-density pat
terns overlap and add linearly to create the final image. The one-dimensional counterpart is the tine-spread function $\mathcal{S}(Z)$, which corresponds to the fux-density distribution across the image of a geometrical line source having infuitesimal width (Fig. 11.43). Because even an ideally perfect system is limited by diffraction effects the image of a resolution target (Fig. 11.44) will be
somewhat blurred (see Fig. 11.20). Thus, as the wic of the bars on the target is made narrowenda limit Ronchi ruling) will no longer be discernibe (akiy is the resolution limit of the system. We can as a spatial frequency cutoff where each brigh bar pair constitutes one cycle on the objeght. measure of which is line pairs per mm). An (ammas) analogy which underscores the shortcomil. approach would be to evaluate a high-iat approach would be to evaluate a high-fiate
system simply on the basis of its upper-fregut The fimitations of this scheme became quit. with the introduction of detectors such as the bicon, image orthicon, and vidicon. These tubedthen a relativeiy coarse scanning raster, which fixes id tion limit of the lens-tube system at a fairly low requency. Accoraingly, it would seem reasonal design the optics preceding such detectors so than provided the most contrast over this limited fre range. It would clearly be unnecessary and perhapo we shall see, even detrimental to select a mating system merely because of its own high limit of ution. Evidently it would be more helpful to hape figure of merit applicable to the entire operadit frequency range.
We have already
We have already represented the object as a pread function by the optical system, and that patcol

Imentild The irradiance into and out of a system.
v is then convolved into the imare. Now需the problem of image analysis froma different Hurce of an input lightwave, which itself is made Qurce of an input lightwave, which issel is made Tonding via Eqs. 11.64 and 1165 , to particular of spatial frequency. How does the system modify Whitude and phase of each plane wave as it transfrom object to image? Som object to image?
菏 system is the conter in evaluating the perform-

$$
\text { Modulation }=\frac{I_{\max }-I_{\mathrm{man}}}{I_{\max }+I_{\operatorname{mln}}}
$$

(Hig. 11.45). Here the output modu cosine, but one that's somewhat altered. The modulation, which corresponds to the amount the func tion varies about its mean value divided by that mean value, is a measure of how readily the fluctuations will be discernible against the de background. For the input the modulation is a maximum of 1.0 , but the output modulation is only 0.17 . This is only the response of our hypothetical system to essentially one spatial
frequency input-it would be nice to know what it does frequency input-it would be nice to know what it doe atalion was 0 and the Moreover, here the mpur modu easy. In general it will not be 10 , and so we define the ratio of inace modulation to thect modulation at all sotial frequacies as the modulation transer function spatial frequ
or MTF. or M.F.
Figure 11.46 is a plot of the MTF for two hypothetical lenses. Both start off with a zero-frequency (dc) value of 1.0 , and both cross the zero axis somewhere where frequency. Had they both been diffraction-limited lenses, that cutoff would have depended only on diffraction and, hence, on the size of the aperture. In any event, suppose one of these is to be coupled to a detector whose cutof frequency is indicated in the diagram Despite the fact that lens 1 has a higher limit of reso lution, lens 2 would certainly provide better perfor mance when coupled to the particular detector.

Figure 11.47 Harmonic input and resulting output.
It should be pointed out that a square bar target It should be pointed out that a square bar target
provides an input signal that is a series of square pulses, provides an input signal that is a series of square pulses, and the contrast in the image is actually a superposition of contrase valans due the constints in what is to follow is that optical elements functioning as linear operators trarsform a sinusoidal input into an undistorted
sinusoidal output. Despite this, the input and out
irradiance distributions as a rule will not be ide For example, the system's magnification ideate spatial frequency of the output (henceforther nification will be taken as one). Diffraction and tions reduce the sinusoid's amplitude (contrast). E asymmetrical abertations (e.g., coma) and poar ing of elements produce a shift in the position output sinusoid corresponding to the introducrita phase shiff. This latter point, which was consid? Fig. I 1.12 , can be appreciated using a diagrapith of Fig. 11.47.
If the spread function is symmetrieal, the irradiance will be an unshifted sinusoid. whe impargen output over a bit, as in Fig. 11 48. In eitherly pig less of the form of the shread function, we case, if the object is harmonic. Consequently if ne 3 object as being composed of Fourier component is manner in which these individual harmonic. the ponents are transformed by the optical sytmentinto th corresponding harmonic constituents of the into the the quintessential feature of the process. The funjoris is that performs this service is known as the opf fer function, or OTF. It is a spatial frequef dent complex quantity whose modulus is the: cransjer function (MIF) and whose phase enough, is the phase transfer function former is a measure of the reduction in contrasifl from object to image over the spectrum. The latter reg the commensurate relative phase shift. Phase sid. centered optical systems occur only off -axispand often the PTF is of less interest than the MTF. E監 n so, each application of the transfer function must be studied carefully; there are situations wherein the has become a crucial role. In point of fact, the MTF sorts of elemons system from corse of films to tescopes, the atmosphere, atid ape, and films ont a few. Moreover, it bas the tage that if the MTFs for the individual independ components in a system are known, the total MIX often simply their product. This is inapplite cascading of lenses, since the aberrations 突, e lens can compensate for those of another lens in canden

..). 11.48 Harmonicinputand output wish an asymmetric spread
and they are therefore not independent. Thus lograph an object having a modulation of 0.3 gycles per mm , using a camera whose lens at the priate setting has an MTF of 0.5 at $30 \mathrm{c} / \mathrm{mm}$ and Inget modulation will be $0.3 \times 0.5 \times 0.4=0.06$.
naikly, the whole idea of treating fitm as a noise-free linear B. Parrent, Jr., TTransfer Funcion for Cascaded Optical

i) A More Formal Discussion

We saw in Eq. (I1.51) that the image (under the conditions of space invariance and incoherence) could be expressed as the convolution of the object irradiance and the point-spread function, in other words,
$I_{i}(Y, Z)=I_{0}(y, z) \oplus \delta(y, z)$.
The corresponding statement in the spatial frequenc The corresponding statement in the spatial frequency
domain is obtained by a Fourier transform, namely,
$\mathscr{F}\left\{I_{i}(Y, Z)\right\}-\mathscr{F r}\left\{I_{0}(y, z)\right\} \cdot \mathscr{F}\{\mathcal{S}\{y, x)\}, \quad$ (11.9I where use was made of the convolution theorem (11.53). This says that the frequency specirum of the image irrodiance This says that the requency spectiom of the image irradiance the object itradiance distribution and the transfocm of the spread function (Fig. 11,49). Thus, it is multiplication by spread function (Fig. 11.49). Thus, it is multiplication by spectrum of the object, converting it into frequency spectrum of the object, converting it into that of the
image spectrum. In other words, it is $\mathscr{F}\{S(y, z)\}$ that, in image spectrum. In other words, it is $\mathscr{F}\{\mathcal{S}(y, z)\}$ that, in
effect, transfers the object spectrum into the image effect, tran. This is just the service performed by the OTF, and indeed we shall define the unnormalized OTF as
$\mathscr{F}\left(k_{Y}, k_{z}\right) \equiv \operatorname{SF}\left\{\mathcal{S}_{(y, x)}\right\}$,
(11.92)

The modulus of $\mathscr{F}\left(k_{Y}, k_{Z}\right)$ will effect a change in the amplitudes of the various frequency componge in the amplitudes of the various frequency components of the appropriately alter the phase of these components to yield $\mathscr{F}\left\{I_{i}(Y, Z)\right.$. Bear in mind that in the right-hand side of Eq. (11.90) the only quantity dependent on the actual optical system is $\delta(y, z)$, so it's not surprising that the spread function is the spatial counterpart of the OTF.
Let's now verify the statement. made earlier that a harmonic input transforms into a somewhat altered harmonic output. To that end, suppose

$$
I_{0}(z)=1+a \cos \left(k_{z^{2}}+\varepsilon\right), \quad \text { (IL.99) }
$$

where for simplicity's sake, we'll again use a onedimensional distribution. The 1 is a dc bias, which makes sure the irradiance doesn't take on any unphysical negative values. Insofar as $f(h=h \circledast f$, it will be more convenient here to use
$I_{i}(2)=S(z) \circledast I_{0}(z)$,
apler 11 Fourier Optics
between the object and reitionships spectra by way of the OTF and the object and image irradiancos by wey of the point-spread func-tion-all in inconherent illumi-
nation.

or
In addition,
$\mathscr{F}\{f(z)\}=\left|F\left(k_{z}\right)\right| e^{i \varphi\left(k_{z}\right)}=\left|F\left(k_{z}\right)\right|[\cos \varphi+$ 塀 F where $\left|F\left(k_{z}\right)\right|-\left[A^{2}\left(k_{z}\right)+B^{2}\left(k_{z}\right)\right]^{1 / 2} \quad(I l$ $\varphi(k)=\tan ^{-1} \frac{B\left(k_{z}\right)}{A\left(k_{z}\right)}$ In precisely the same way, we apply this to $1 \mathrm{~m}^{\prime}$ " writing it as

$$
\left.\mathscr{F}\{S(x)\} \equiv \mathscr{F}\left(k_{z}\right)-\mathcal{M}\left(k_{z}\right) e^{10 \times k_{z}}\right)_{g}
$$

where $\mathfrak{A}\left(k_{z}\right)$ and $\Phi\left(k_{z}\right)$ are the unnormalizec
Where $M\left(k_{z}\right)$ and $\Phi\left(\kappa_{z}\right)$ are the unnormant. the PTF, respectively. It is left

(c)
fill An example of the kind of lens design information Wearch

It has now become customary practice to define a set of nomalized transfer functions by dividing $\mathscr{T}\left(k_{z}\right)$ by its zero spatial frequency value, that is, $\mathscr{G}(0)==\int^{+\infty} \delta(z) d z$ The normalized spread function becomes

$$
S_{n}(z)=\frac{S(z)}{\int_{-\infty}^{+\infty} s(z) d z}
$$

(b)

(d)
ecall that the com working when transform we've

$$
\mathscr{F}_{\{ }\{f(z)\}-\mathscr{F}_{\{ }\{f(z)\}+i \mathscr{F}_{s}\{f(x)\}
$$

Chapter Ir Fourier Optics
while the normalized OTF is

$$
T\left(k_{z}\right)=\frac{\mathscr{S}\{S(z)\}}{\int_{-\infty}^{+\infty} \delta(x) d z}=\mathscr{F}\left\{S_{n}(z)\right\},
$$

or in two dimensions

$$
T\left(k_{\mathrm{Y}}, k_{z}\right)=M\left(k_{y}, k_{2}\right) e^{i \Phi\left(x_{y}, k_{2}\right)}, \quad(H 1.109]
$$

where $M\left(k_{Y}, k_{z}\right)=\mathcal{M}\left(k_{y}, k_{z}\right) / \mathscr{T}\{0,0)$. Therefore $I_{i}(Z$ in Eq. (11.99) would then be proportional to

$$
I+a M\left(k_{z}\right) \cos \left[k_{Z} Z+\varepsilon-\Phi\left(k_{z}\right)\right] .
$$

The image modulation (11.89) becomes $a M\left(k_{z}\right)$, the object modulation (11.93) is a, and the ratio is, as expected, the normalized MTF $=M\left(k_{z}\right)$.
This discussion is really only an introductory one designed more as a strong foundation than a complete structure. There are many other insights to be explored such as the relationship between the autocortelation of the pupil function and the $O T F$, and from there, the means of computing and measuring transfer functions (Fig. 11.50)-but for this the reader is directed to the literature. \dagger

PROBLEMS

11.1 Determine the Fourier transform of the function

$$
E(x)= \begin{cases}E_{0} \sin k_{p} x, & |x|<L \\ 0, & |x|>L\end{cases}
$$

Make a sketch of $\mathscr{F}\{(\mathbb{E}(x)\}$. Discuss its relationship to Fig. 11.11.
\dagger See the series of articles "The Evolution of the Transfer Function, \dagger See the series of articles "The Evolution of the Transfer Function," "Physical Optics Notebook," by G. B. Parrent, IF., and B B. J. Thompuon, beginning in Dccember 1964 , in the S.P.I.E. Joumal, Vol. 3; or "Image Scructure and Transier,", by K. Sayanagi, 1967 , availabl from the Institute of Optics, Univiverity of Rochester. A number of books are worth consulting for practical emphasis, e.g. Modern Oplic.
by E. Brown; Modem Optical Engivering, by W. Smith; and Applie Otrics, by L. Levi. In all of these, be careful of the sign convention in the transforms.
11.2* Determine the Fourier transform of

$$
f(x)= \begin{cases}\sin ^{2} k_{p} x, & |x|<L \\ 0, & |x|>L\end{cases}
$$

Make a sketch of it.
11.3 Determine the Fourier transform of

$$
f(t)= \begin{cases}\cos ^{2} \omega_{p} t, & |t|<T \\ 0, & |t|>T .\end{cases}
$$

$\underset{T \rightarrow \pm \infty}{\text { Make a sketch of } \boldsymbol{F}(\omega) \text {, then sketch lis limiting forn at } 1 .}$
$T \rightarrow \pm \infty$
11.4* Show that $\mathscr{F}\{1\}=2 \pi \delta(k)$
11.5* Determine the Fourier transform of the furo ion $f(x)=A \cos k_{0} x$
1.6 Given that $\mathscr{F}\{f(x)\}=F(k)$ and $\mathscr{F}\{h(x)\}$ if a and b are constants, determine $¥\{a f(x)+b$
1.7* Figure 11.51 shows two periodic furp and $h(x)$, which are to be added to produce? $z(x)$, then draw diagrams of the real and frequency spectra, as well as the amplitude $s p$ en each of the three functions.

impute the Fourier transform of the triangula wnin Fig. 11.52. Make a sketch of your answer the pertinent alues on the corve

Na.er 11.58

115 Given that $\mathscr{F}\{f(x)\}=F(k)$, introduce a constant factor $1 / a$ and determine the Fourier transform fa). Show that the transform of $f(-x)$ is $F(-k)$.
Show that the Fourier transform of the trans$\{9\{F(k)\}$, equals $2 \pi\{\{-x)$, and that this is not the transform of the transform, which equals $f(x)$ transorm of the transorm, wh equals $/(x)$ ent at the University of \mathbf{O} tawa

L11* The rectangular function is often defined as

$$
\text { rec }\left|\frac{x-x_{0}}{a}\right|= \begin{cases}0, & \left.\mid\left(x-x_{0}\right)\right] a \left\lvert\,>\frac{1}{2}\right. \\ \frac{1}{2}, & \left.\mid\left(x-x_{0}\right)\right) a \left\lvert\,=\frac{1}{2}\right. \\ 1, & \left|\left(x-x_{0}\right) / a\right|<\frac{1}{2},\end{cases}
$$

爰is set equal to $\frac{1}{2}$ at the discontinuities (Fig.
getermine the Fourier transform of

$$
f(x)=\operatorname{rect}\left|\frac{x-x_{0}}{a}\right| .
$$

The this is just a rectangular pulse, like that in
x_{0} shitted a distance x_{0} from the origin.
142 With the last two problems in mind, show that $\left.\operatorname{sinc}\left(\frac{\{ }{2} x\right)\right\}=\operatorname{rect}(k)$, starting with the knowl. $\{$ rect $(x)\}=\operatorname{sinc}\left(\frac{1}{(} k\right)$, in other words, Eq. an $L=a$, where $a=1$

Figure 11.58
11.18* Utilizing Eq. (11.38), show that $\mathscr{F}^{-1}\{F\{f(x)\}\}=$ $f(x)$.
1.14* Given $\mathscr{F}\{f(x)\}$, show that $\mathscr{F}\left\{f\left(x-x_{0}\right)\right\}$ differs rom it only by a linear phase factor
1.15 Prove that $f \circledast h=h \circledast f$ directly. Now do it sing the convolution theorem.
1.16* Supposc we have two functions, $f(x, y)$ and $h(x, y)$, where both have a value of 1 over a square region in the xy-plane and are zero everywhere else (Fig. 11.54) If $g(X, Y)$ is their convolution, make a plot of $g(X, 0)$.

Fyure 11.54
11.17 Referring to the previous problem, justify th at the convolution is zero for $|X|=d+\ell$ when is viewed as a spread function.
11.18* Use the method illustrated in Fig. 11.23 to convolve the two functions depicted in Fig. 11.55.

Figure 11.5
11.19 Given that $f(x) \times h(x)=g(X)$, show that after shifting one of the functions an amount x_{0}, we get shifting one of the function
$f\left(x-x_{0}\right) \oplus h(x)=g\left(X-x_{0}\right)$.
11.20^{*} Prove analytically that the convolution of any function $f(x)$ with a delta function, $\delta(x)$, generates the original function $f(X)$. You might make use of the fact that $\delta(\tilde{x})$ is even.
11.21 Prove that $\delta\left(x-x_{0}\right)$ (6) $f(x)=f\left(X-x_{0}\right)$ and discuss the meaning of this result. Make a sketch of two appropriate functions and convolve them. Be sure to use an asymmetrical $f(x)$.
1.22* Show that $\mathscr{F}\left\{f(x) \cos k_{0} x\right\}=\left[F\left(k-k_{0}\right)\right.$ $\left.F\left(k+k_{0}\right)\right] / 2$ and that $\mathscr{F}\left\{f(x) \sin k_{0} x\right\}=\left[F\left(k-k_{0}\right)-\right.$ $\left.F\left(k+k_{0}\right)\right] / 2 i$.
11.23* Figure 14.56 shows two functions. Convolve them graphically and draw a plot of the result.

Figure 11.56
11.24 Given the function

$$
f(x)=\operatorname{rect}\left|\frac{x-a}{a}\right|+\operatorname{rect}\left|\frac{x+a}{a}\right|
$$

determine its Fourier transform. (See Problésin 11.11 ,

11.26* Make a sketch of the function arising convolution of the two functions depicted in

Figure 11.57

11.27* Figure 11.58 depicts a rect function (as d above) and a periodic comb function. Convolve be to get $g(x)$. Now sketch the transform of each of tis functions against spatial frequency $k / 2 \pi=$ your results with the convolution theorem. relevant points on the horizontal axes in termbe the zeros of the transform of $f(x)$.

Figure 11.58
11.28 Figure 11.59 shows, in one dimension, the tric field across an ithuminated aperture con tric feveral opaque bars forming a grating. Consilf to be created by taking the product of a pert tangular wave $h(x)$ and a unit rectangular fun sketch the resulting electric field in the Fwol: region.
mask? In other words, we cause the aperture function to go from $2 l_{0}$ at the center to 0 at $\pm b / 2$ via a cosinusoidal drop-cff.
11.33* Show, from the integral definitions, that $f(x) \odot$ $g(x)=f(x)$ © $g(-x)$.
11.34* Figure 11.60 shows a transparent ring on an otherwise opaque mask. Make a rough sketch of its autocorrelation function, taking l to be the center-tocenter separation against which you plot that function.

11.35* Consider the function in Fig 1135 as a cosine carrier multiplied by an exponential envelope. Use the frequency convolution theorem to evaluate its Fourier transform.

12
 BASICS OF COHERENCE THEORY

 the superposition of waves, we've restricted the treat ment to that of either comp.etely coherent or comple as mathematical convenience, since, as is quite often th case, the extremes in a physical situation are the easiest to deal with analycically. In fact, both of these limiting conditions are more conceptual idealizations than actual physical realities. There is a middle ground between these antithetic poles, which is of considerable contemporary concem-the domain of partial coherente. Even so, the need for extending the theoretical structure is not new; it dates back ac least to the mid-1860s, when Emile Verdet demonstrated that a primary source commonly considered to be incoherent, such as the Sun, could produce observable fringes when it illuminated the closely spaced pinholes ($\$ 0.05 \mathrm{~mm}$) of Young's experiment (Section 9.8). Theoretical interest in the study of partial coherence lay dormant until it was revived in the 1930 by P. H. van Cittert and later by Frits Lernike. And as the technology flourished, advancing from traditional ight ptical frequency noise generators, the thas, a practical impecus was ecent abe orame related processes associated with the corpuscular aspects of the optical field.Optical coherence theory is currently an area of active esearch. Thus, even though much of the excitement in the field is associated with material beyond the level of this book, we shall nonetheless introduce some of the basic ideas.

12.1 INTRODUCTION

Earlier (Section 7.10) we evolved the highl ture of quasimonochromatic light as resembla of randomly phased finite wavetrains (Fig. 7 a disturbance is nearly sinusoidal, requency does vary slowly (in comparisor of oscillation, $10^{15} \mathrm{~Hz}$) about some mean value Moreover, the amplitude fluctuates as weil, but thion: is a comparatively slow variation. The average con* stituent wavetrain exists roughly for a time is the coherence t
bandwidth $\Delta \nu$.
ondwidth $\Delta \nu$.
It is offen convenient, even if rather artifcial? to divide coherence effects into two classificatio and statial. The former red ates directiy to the fro of the source, the lauer to its finite sxient in sh To he sure, if the Iight were monoch would be zero, and $\Delta t_{\text {c }}$ infinite, but this would be zero, and Δt_{c} infinite, but this s.
unattainable. However, over an interval much shonet than Δt_{c} an actual wave behaves essentially ad monochromatic. In effect the coherence time
poral interval over which we can reasomably prediod
of the lightwave at agiven point in space. This then
is meant by temporal coherence; namely, if Δ t.
the wave has a high degree of temporal cohere
vice versa.
The same characteristic can be viewed womevia differently. To that end, imagine that we have indion separate points P_{1} and P_{2} lying on the samed radiun
from \& quasimonochromacic point source. If the ne length, cant t^{2}, much larger anan the distance tween P_{i} and P_{2}, then a single wavetrain can extend over the whole separacon. The distur ${ }^{2} P_{1}$ would then be highly correlated with the zance occurring at P_{2}. On the other hand, if this fadinal separation were much greater than the ence length, many wavetrains, each with an anre phase, would span the gap r_{12}. In that case, the banoes at the two points in space would be Pendent at any given time. The degree to which a the amount of conginalnal coherenc. Whether we in term the coll rate, of the source.
dea of spatial coherence is most often used to be effects arising from the finite spatial extent of Minary light sources. Suppose then that we have a
Isical broad monochromatic source. Two point isical broad monochromatic source. Two point
alators on it, separated by a lateral distance that is tors on it, separated by a lateral distance that is Sdently. That is to say there will be a lack of on existing between the phases of the two emiturbances. Extended sources of this sort are gen sis aterred to as incoherent, but this description is aflewhat misleading, as we shall see in a moment. dyanc is interested not so much in what is happen on the source itself but rather in what is occurring in some distant region of the radiation field. The fion to be answered is really: How do the mature dide source and the geometrical configuration of the Wation relace to the resulting phase correlation Wheen two laterally spaced points in the light field? Vings to mind Young's experiment, in which a $y_{\text {monochromatic source } S \text { illuminates two pin- }}^{7}$ an opaque screen. These in tan opaque screen. These in turn serve as secondistant S_{1} and S_{2}, to generate a fringe pattern dy know that if S is an idealized point source the lets issuing from any set of apertures S, and $S_{\text {a }}$ on Il maintain a constant relarive phase; they will be ely correlated and therefore coherent a well array of stable fringes results, and the field is liy coherent. At the other extreme, if the pinholes
are illurninated by separate thermal sources (even with parrow bandwidths), no correlation exists; no fringes解 observable with existing detectors, and the fields S_{1} and S_{2} are said to be incoherent. The generation of interference fringes is then seemingly a very conenient measure of the coherence.
We can gain some important insights into the process by returning to the general considerations of Section 9.1 and Eq. (9.7). Imagine two scalar waves $E_{1}(t)$ and $E_{2}(t)$ traveling toward, and overlapping at, point P, as Fig. 9.2. If the light is monochromatic and both beams have the same frequency, the resulting interference pattern will depend on their relative phase at P. If the waves are in phase, $E_{2}(t) E_{2}(t)$ will be positive for all t $\left.E_{2}(t) E(t)\right)$ ill et irradiance I will exceed $I_{1}+I$ Similatly, if the ehtwaves are out of phase, one will be positive whe the other negative, with the result that the product $E_{1}(t) F_{\text {(}}(t)$ will always be necrative, pielding a negative nterference term I and the result that I will be less han $I_{1}+I_{2}$. In both these cases, the product of the two fields moment by moment is certainly oscillatory but it ields moment by moment is certainly oscillatory, but it verages in time to a nonzero value. Now consider the more realistic
ghtwaves are quasimonochromatic, rese which the two urbance in Fig. 7.21, which has a finite coherence ength. If we again form the product $E_{4}(t) E_{2}(t)$, we see in Fig. 12.1 (c) that it varies in time, drifting from negaive to positive values. Accordingly, the interference erm $\left\langle E_{1}(,) E_{2}(b)\right.$, which is averaged over a relatively ong interval compared with the periods of the waves, will be quite small, if not zero. $1 \approx I_{1}+I_{2}$. In other words, insofar as the two lightwaves are uncorrelated in their risings and fallings, they will not preserve a constant phase relationship, they will not be completely coherent, and they will not produce the ideal highWe shinterference pattern considered in Chapter 9. We should be reminded here of Eq. (11.87), which exp indeed if P is shifted in two plane of observation in Young's experiment), thereby introducing a relative time delay of τ between the two lightwaves, then the interference term becomes

Hainas

Figure 12.1 Twooveriapping E-ficidsand their product as functions of time. The more uncortelated the fields, the more nearly the produc
will average to zero.
$\left\langle E_{1}(t) E_{2}(t+\tau)\right\rangle$, which is the cross-correlation. Coher ence is correlation, a point that will be made formally in Section 12.3.
Young's experiment can also be used to demonstrate temporal coherence effects with a finite bandwidth source. Figure 12.2(a) shows the fringe patterns obtained with two small circular apertures illuminated by a He-Ne laser. Before the photograph in Fig. 12.2(b) was taken, an optically flat piece of glass, 0.5 mm thick, was positioned over one of the pinholes (say S_{1}). No change in the form of the pattern (other than a shift in its location) is evident, because the coherence length of the laser light far exceeds the optical path-length difference introduced by the glass. On the other hand, when the same experiment is repeated using the light
from a collimated mercury arc $\boldsymbol{I}(\mathrm{c})$ and (d) in Fig. I
the fringes disappear, Here the coher the fringes disappear. Here the coherence leag difference path wavetrains from the two long enough for un ofetrans in wavetrains that teave S_{1} and $S_{\text {, }}$, of any two delayed so long in the glass the one from behind the other and arrives at Σ talls complea different wavetrain from S_{2}.
In both cases of trom S_{2},
In both cases of ternporal and spatial coherentil ${ }_{\text {wo }}$ the correlation between optical disturbancess. That is

(a)

(c)

Figure 12.2 Double-beam interierence from a pair of ures. (a) He-Ne laserlight illuminating the holes. (b) 1 gain but now a alass slate, 0.5 mm thick is covering of
(c) Fringes with collimated mercury-arc illum inationt c) Fringes with collimazed mercury-arc illumination plate. (d) This lime the fringes disappear when the
sing mercury light. From B. J. Thompson, J. Soc 4, 7 (1965).]
generally interested in determining the effects we are generally incerested in determining fuctuations in the fields at two points in space-time. Admitredly, the term temporal poinence seems to imply an effect that is exclusively whocal However, it relates back to the finite extent of the vantivits in either space or time, and some people ents prefer to refer to it as longitudinal spatial 5) han temporal coherence. Even so, it does Lintrinsically on the stability of phase in time thordingly we will continue to use the term temFoherence. Spatial coherence, or if you will, lateral Troherence, is perhaps easier to appreciate, because oclosely related to the conceps of the wavefront. two laterally displaced points reside on the same refont at a given time, the fields at those points are said to be spatially coherent (see Section I2.3.1).

12.2 VISIBILITY

The quality of the fringes produced by an interaneatric system can be described quantitatively using Whitility V, which, as first formulated by Michelson,

$$
F(\mathbf{r})=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

iii Pourse, this is identical to the modulation of Eq. . Here $I_{\text {max }}$ and $I_{\text {min }}$ are the irradiances correing to the maximum and adjacent minimum in nge system. If we set up Young's experiment, we dvary the separation of the apertures or the size primary incoherent quasimonochromatic source,
Sive y as is changes in turn, and then relate all this ea of coherence in turn, and then relate all this daca of coherence. An analytic expression can be
 In more effectively, that is, to make the cones of diffracted by the finite pinholes more completely ${ }^{2} \mathrm{p}$ on the plane Σ_{0}. A point source S^{\prime} located on ditral axis would generate the usual pattern given 1. Tratir par follows that given by Towne to Chapter 11

by

$$
\begin{equation*}
I=4 I_{0} \cos ^{2}\left(\frac{Y a \pi}{s \lambda}\right) \tag{12.2}
\end{equation*}
$$

from Section 9.3. Similarly, a point source ahove or below S^{\prime} and lying on a line normal to the line $\overline{S_{1}} \overline{S_{2}}$, would generate the same straight band fringe system slightly displaced in a direction parallel to the fringes. Thus replacing S^{\prime} by an incoherent line source (normal to the plane of the drawing) effectively just increases the amount of light available. This is something we presumably alreacy knew. In contrast, an off-axis point source, at say $S^{\prime \prime}$, will generate a pattern centered about $p^{\prime \prime}$, its image point on Σ_{o} in the absence of the aperture screen. A "spherical" wavelet leaving $S^{\prime \prime}$ is focused at $P^{\prime \prime}$; thus all rays from $S^{\prime \prime}$ to $P^{\prime \prime}$ traverse equal optic paths, and the interference must be constructive; in other words, the central maximum appears at $P^{\prime \prime}$. The path $\frac{\text { difference }}{\overline{P^{\prime} P^{n}}} \overline{S_{1} P^{n}}-\overline{S_{2} P^{\prime \prime}}$ accounts for the displacement P. Consequentily, S produces a fringe system identical to that of S but shifted by an amount $P P$ with their tudes [Fig 123(e)] .3(e)]
The pattern arising from a broad source having a rectangular aperture of width b can be determined by line source parallel to $\frac{S_{1}}{S_{1} S_{2}}$. Notice, in Fig. I2.3(b), that the variable X_{0} describes the Iocation of any point on the image of the source when the aperture screen is absent. With Σ_{a} in place, each differential element of the fine source will contribute a fringe system centered about its own image point, a distance Y_{0} from the origin on Σ_{o}. Moreover, its contribution to the flux-density pattern $d I$ is proportional to the differential line element or, more conveniently, to its image, $d Y_{0}$, on Σ Thus, using Eq. (9.31), the contribution to the total irradiance arising from $d Y_{0}$ is

$$
\begin{equation*}
d I \quad A d Y_{0} \cos ^{2}\left[\frac{a \pi}{s \lambda}\left(Y-Y_{0}\right)\right], \tag{12.5}
\end{equation*}
$$

where A is an appropriate constant. This, in analogy to Eq. (12.2), is the expression for an entire fringe system of minute irradiance centered at Y_{0} contributed by the tiny piece of the source whose image corresponds

5*o Chapter 12 Basics of Cohereñce Theory

Mource. (c) A simple represencination of how sith with the same spatial frequencicy overlap and form a net disturbancc of that same spaptial fid

a reduced visibility (see Fig. 7.4)
4) 71 F_{0}. By integrating over the extent w of the of the line source, we effectively integrate over fe of the line source, we effectively
$1(Y)=A \int_{-w / 2}^{+w / 2} \cos ^{2}\left[\frac{a \pi}{s \lambda}\left(Y-Y_{0}\right)\right] d Y_{0} . \quad$ (12.4) After a good bit of straightforward trigonometric manipulation, this becomes
$I(Y)=\frac{A w}{2}+\frac{A}{2} \frac{s \lambda}{a \pi} \sin \left(\frac{a \pi}{s \lambda} w\right) \cos \left(2 \frac{a \pi}{s \lambda} Y\right)$.
(12.5)

The irradiance oscillates about an average value of $\bar{I}=A$ itid, which increases with w, which in turn increates with the width of the source slit. Accordingly,
$\frac{I(Y)}{\bar{I}}=\mathrm{I}+\left(\frac{\sin a \pi w / s \lambda}{a \pi w / s \lambda}\right) \cos \left(2 \frac{a \pi}{s \lambda} Y\right) \quad(12.6)$

$$
\frac{I(Y)}{\bar{I}}=1+\operatorname{sinc}\left(\frac{a \pi w}{s \lambda}\right) \cos \left(2 \frac{a \pi}{s \lambda} Y\right)
$$

Whows that the extreme values of the relative irradiWare given by

$$
\begin{aligned}
& \frac{I_{\max }}{\bar{I}}=1+\left|\operatorname{sinc}\left(\frac{a \pi w}{s \lambda}\right)\right| \\
& \frac{I_{\min }}{\bar{I}}=1-\left|\operatorname{sinc}\left(\frac{a \pi w}{s \lambda}\right)\right|
\end{aligned}
$$

When is very small in comparison to the fringe width $(s i / a)$) the sinc function (p. 624) approaches I and
$I_{\text {max }} I=2$, while I I $\bar{I}=0$ (see Fig 12.4) As ionmest, $I_{\min }$ begins to differ from zero, and the fringe Thantrast until they finally vanish entirely at w Thntween the arguments of π and 2π (i.e., $w=s \lambda / a$ ource twidens , the sinc is negarive. As the primary slit Fice widens beyond $w=s \lambda / a$, the fringes reappear Bhifted in phase; in other words, previously there Bicaxinum at $Y=0$, now there will be a minimum. Galasd ISeotion 10.2) so that the fringe system does not cortinue ore uniform that the fringe system doe

Figure 12.4 Fringes with varying source slit size. Here w is the width Figwe 12.4 Fringes with varying source slit size. Here w is the width
of the image of the slit and sa/a is the peak-to-prak width of the fringes.

Instead, the pattern of Fig. 12.4(a) will look more like Fig. 12.5.
As a rule, the extent of the source (b) and the separation of the slits (a) are very small compared with the distances between the screens (l) and (s), and con-

Figare 12.5 Double－seaan interference tringes showing the effect of difiracion．
：ions．While the above considerations were expressed in terms of w and s ，it follows from Fig．12．3（c），using － 1 ）$=(\pi+b / \lambda)$ The visibility of the frigges follows from Eq（12．1）；

$$
\begin{equation*}
V=\left|\operatorname{sinc}\left(\frac{a \pi v}{s \lambda}\right)\right|=\left|\operatorname{sinc}\left(\frac{a \pi b}{a \lambda}\right)\right| \tag{12.10}
\end{equation*}
$$

which is plotred in Fig．12．6．Observe that 5 is a function of both the source breadth and the aperture separation a．Holding either one of these parameters constant and varying the other will catse of to change in precisely the same way．Note that the visibilities in both Figs． $12.4(a)$ and 12.5 are equal to one，because $I_{\text {mith }}=0$ ． Clearly then，the visibility of the fringe systera on the plane of observation is linked to the way the light is distributed over the aperture screen．If the primary

Figure 12．5 The tisibility as given by Eq，（12，10）．
ource were in fact a point，b would equal zero ribibility would be a perfect 1 ．Shy of that，the dearer the fringes are．We can the bigger of of the degree of coherence of the light from of the degree of coherence of the light fromt source as spread over the aperure screen．K hat we have encountered the sinc function connection wih the diffraction patcern resulting fromi miguiar apertare．
When the primary source is circular，the good deal more complicated to calculate．I o be proporional to a first－order Bessel fund 12．7）．This too is quite reminiacent of difracticen this time at a circular aperture（ 10.56 ）．These similarid between expreasions for $\%$ and the corresponit diffraction pattems for an aperture of the same are not merely fortuitous but rather are a mat of something called the van Citert－Zernike s we will see presently．
Figure 12.8 shows a sequence of fringe which the carcular incoherent primary sourch in size but the separtition a between St rovease．The sises for（c）and decreases？ All the associated Y－values are plotted in Fig？ the shift in the peaks，that is，the change he shift in the peaks，that is，the change he center of the pattern for each point on ghal secouna labe of Fig． 12.7 （the Bessel function is ney ${ }^{\text {a }}$（ve over
that range）．In other words，（a），（b），and（c）tive a ceneral maximum，while（d）and（e）have a geomel minimum，and（ $)$ on che third lobe is pach to 1 maximum．In the same way，for a slit source？ where sinc（ n（awish）in Eq．（12．7）is positives will yield a maximum or minimum，nespecivas $I(0) / \bar{l}$ ．These for turn correspond to the ndd of eve lober of the visibility curve of Fig．12．6．Bear， that we could define a complex visibility of my ψ ，baving an argument corresponding to shift－we＇ll come back to this idea later．
Since the width of the fringes is inversely 0 a，the spatial frequency of the bright and increases accordingly from（a）to（f）in Eig 12.9 results when the separation a is held the primary incoherent source diametert

Whath will show ap in a given fringe pattern as a ally decreasing value of \mathscr{V} with Y ，as in Fig． 12.10 （hese cases 12,3 ）．When the visibility is determine these cases，usirg the central region of each of a coratim will again match Fig．12．7．

123 屃位MUTUAL COHERENCE FUNCTION AND THE DEGRE OF COHERENCE
fanty the discussion a bit further in a more ashion．Again suppose we have a broad，narrow hex represe，which gencrates a light field whose ivation effects，and therefore a scalar treatment a．The disturbances therefore a scalar treatment The then disturbances at wo points in space S_{1} and or a wayy line over quantities that are complex jus as a
\hat{E} ．（i）and \tilde{E}_{2}（t）．If these two points are then isolated using an opaque screen with two circular apertures（Fig． 12．1），we＇re hack to Young＇s experiment．The two apertures serve as sources of secondary wavelets，which provagate out to sorae point $P_{\text {of }} \mathbf{\Sigma}_{0}$ ．There the resul－ tant field is

$$
\begin{equation*}
\ddot{E}_{P}(t)=\tilde{K}_{1} \tilde{E}_{1}\left(t-t_{t}\right)+\tilde{K}_{2} \tilde{E}_{2}\left(t-t_{2}\right) \tag{i2,11}
\end{equation*}
$$ where $t_{1}=t_{1} c$ and $t_{2}=r_{2} c$ ．This says that the field he spaco－time point $(P, 0)$ can be determined from the elds that existed at S_{1} and S_{2} at t_{1} and t_{2} ，respectively， hese being the instants when the light，which is now verlapping，first emarged from the apertures．The quantixies \tilde{K}_{l} and $\dot{\mathbf{K}}_{2}$ ，which are knotpr as propagators， depend on the size of the apertures and their relative bations with respect to P ．They mathematically affect akerations in the field resuiting from its having traversed either of the apertures For example，the secondary wavelets issuing from the pinholes in this etup are out of phase by $\pi / 2 \mathrm{rad}$ with the primaty wave incident on the apreture screen，Σ_{a}（Section 10．3．1）． Clearly someone is going to have to tell $\tilde{E}(\mathbf{r}$ ，f）to shift phase beyond $\bar{\Sigma}_{a}$－that＇s just what the \tilde{K} lactors are int Morever，hiey relcu a reducrion in the held that and and and hase shift in the feld which an be introduced by

 and \tilde{K}_{0} are purely imagi ary numbers
The resumant irradiance at P measured over some inite time interval，which is long compared with the coherence tine，is

$$
I=\left(\check{E}_{R}(t) \tilde{E}_{\Gamma}^{*}(t)\right\rangle,
$$

（12．12）
It should be remembered that Eq．（12．12）is written sans several multiplicative constants．Heace using Eq． （12．11），

$$
\begin{aligned}
I= & \tilde{K}_{1} \tilde{K}_{l}^{*}\left\langle\tilde{L}_{1}\left(t-t_{1}\right\} \tilde{E}_{1}^{*}\left(t-t_{1}\right)\right\rangle \\
& +\tilde{K}_{2} \tilde{K}_{2}^{*}\left\langle\dot{E}_{2}\left(t-t_{2}\right\rangle \tilde{E}_{2}^{*}\left(t-t_{2}\right)\right\rangle \\
& +\tilde{K}_{1} \tilde{K}_{2}^{*}\left\langle\tilde{2}_{1}\left(t-t_{1}\right) \tilde{E}_{2}^{*}\left(t-t_{2}\right\rangle\right) \\
& +\tilde{K}_{1}^{*} \tilde{K}_{2}\left\langle\tilde{E}_{2}^{*}\left\{t-t_{1}\right\} \tilde{E}_{2}\left(t-t_{2}\right\rangle\right\rangle .
\end{aligned}
$$

524 Chapter 12 Basics of Coherence Theory

Firsure 12.8 Double-beam
coherens ligh. The photographs correspond to a variution partially azociated with changes in $\&$, the separation becwreen the apertures In the theorectal ourves $I_{\max } \times 1+\left[2 h_{1}(u) / 4 \mid\right.$ and $I_{\text {min }}{ }^{\circ}$

Words, it does not alter its statistical nature with time so that the time average is independent of whatever origin we select. Thus, even though there are fluctu ations in the field variables, the time origin can be shifted, and the averages in Eq. (12.18) will be unaffected. The particular moment over which we
decide to measure I shouldn't matter. Accordingly first two time averages can be rewritten as
 where the origin was displaced by amounts respectively, Here the subscripts underscore the f that these are the irradiances at points S_{1} and S_{2}. F origin by an anet $=l_{2}-l_{13}$ we cal 1213) ad whoun
$\tilde{K}_{1} \tilde{K}_{2}^{*}\left(\tilde{E}_{1}(t+\right.$
$\left(\tilde{E}_{1}(t+\tau) \tilde{E}_{2}^{*}(t)\right\rangle+\tilde{K}_{1}^{*} \tilde{K}_{2}\left(\tilde{E}_{1}^{*}\left(t \Psi_{\tau}\right) \tilde{E}_{2}(b)\right.$ But this is a quantity plus its own complotanime
12.3 The Mutual Coherence Function and the Degree of Coherence

(d)
and i therefore just twice its real part; that is, it equals $2 \operatorname{Re}\left[\tilde{K}_{1} \tilde{K}_{2}^{*}\left\{\tilde{E}_{1}(t+\tau) \tilde{E}_{2}^{*}(t)\right\}\right]$.
factors are purely imaginary, and so $\tilde{K}_{1} \tilde{K}_{2}^{*}=$
$\left|\tilde{K}_{\mathrm{l}}\right|\left|\bar{K}_{2}\right|$. The time-average portion of this term wos'-correlation function [Section 11.3.4(iii)], which
$\tilde{\Gamma}_{12}(\tau)=\left\langle\tilde{E}_{3}(t+\tau) \tilde{E}_{2}^{*}(t)\right\rangle$,
(12.14)
and roter to as the mutual coherence function of the Fireld at S_{1} and S_{2}. If we make use of all this, Eq \square (4.0.8) takes the form
$I=\left|\tilde{K}_{1}\right|^{2} I_{S_{S}}+\left|\tilde{K}_{2}\right|^{2} I_{\text {S }}+2\left|\tilde{K}_{1}\right|\left|\tilde{K}_{2}\right| \operatorname{Re} \tilde{\Gamma}_{12}(\tau)$.

(${ }^{(1)}$

The terms $\left|\tilde{K}_{1}\right|^{2} I_{S_{1}}$ and $\left|\tilde{K}_{2}\right|^{2} I_{S_{3}}$, if we again overiook multiplicative constants, are the irradiance at P arising when one or the other of the apertures is open aione, in other words, $\tilde{K}_{2}=0$ or $\tilde{K}_{1}=0$, respectively. Denoting hese as I_{1} and I_{2}, Eq. (12.15) become

$$
I-I_{1}+I_{2}+2\left|\tilde{K}_{t}\right|\left|\tilde{K}_{2}\right| \operatorname{Re} \tilde{\Gamma}_{12}(\tau) . \quad(12.16)
$$

Note that when S_{1} and S_{2} are made to coincide, the mutual coherence function becomes

$$
\tilde{\Gamma}_{1}(\tau)=\left\langle\tilde{E}_{[}(t+\tau) \tilde{E}_{1}^{*}(t)\right\rangle
$$

or
$\tilde{\Gamma}_{22}(\tau)-\left\langle\tilde{E}_{2}(t+\tau) \tilde{E}_{2}^{*}(t)\right\rangle$.

526 Chapter 12 Basics of Coherence Theory

We can imagine that two wavetrains emerge than phase delay proportional to τ. In the present sif τ becomes zero (since the optical path differemets to zero), and these functions are reduced to the col responding irradiances $I_{S_{1}}=\left\langle\bar{E}_{1}(t) \tilde{E}^{*}(t)\right\rangle$ and $I_{\text {Sq }}=$ $\left\langle\tilde{E}_{2}(t) \tilde{E}_{2}^{*}(t)\right\rangle$ on Σ_{a}. Hence

$$
\Gamma_{t_{1} 1}(0)=I_{s_{1}} \quad \text { and } \quad \Gamma_{22}(0)=I_{s_{s}},
$$

and these are calied self-coherence funcivion Thus
$I_{1}=\left|\tilde{K}_{1}\right|^{2} \Gamma_{21}(0)$ and $I_{2}=\left|\tilde{K}_{2}\right|^{2} \Gamma_{2}$,

Keeping Eq. (19.16) in mind, observe that
$\left|\tilde{K}_{1}\right|\left|\tilde{K}_{2}\right|=\sqrt{I_{1}} \sqrt{I_{2}} / \sqrt{\Gamma_{12}(\theta)} \sqrt{\Gamma_{42}(\theta) .}$
he normalized form of the mutual coherence Henction is defined as

anits spoken of as the complex degree of coherence, and raicns which will be clear imminently. Equation er raiont which will be cle
ilfill $i n$ then be recast as

$$
I=I_{2}+I_{2}+2 \sqrt{I_{1}} I_{2} \operatorname{Re} \tilde{\boldsymbol{y}}_{12}(\tau)
$$

thin in the general interference lato for partially coherent
ove qu
In quasimonochromatic light the phase angle पराजा एँ:

$$
\begin{equation*}
\varphi=\frac{2 \pi}{\bar{\lambda}}\left(r_{2}-r_{1}\right)=2 \pi \bar{\nu} \tau, \tag{}
\end{equation*}
$$

$\bar{i} \hat{i}$ and $\bar{\nu}$ are the mean wavelength and frequency. fir $\bar{\gamma}_{12}(\tau)$ is a complex quantity expressible as $\tilde{\gamma}_{12}(\tau)-\left|\tilde{\gamma}_{12}(\tau)\right| e^{i \phi_{12}(\tau)}$.
Thase angle of $\hat{\gamma}_{12}(\tau)$ relates back to Eq. (12.14) The phase angle between the fields. II we set Wint $\alpha_{12}(\tau)-\varphi$, then
$\operatorname{Re} \tilde{\gamma}_{12}(\tau)=\left|\hat{\gamma}_{12}(\tau)\right| \cos \left[\begin{array}{ll}\alpha_{12}(\tau) & \varphi\end{array}\right]$.
Fuation (12.18) is then expressible as

$$
=I_{1}+I_{2}+2 \sqrt{I_{1} \overline{I_{2}}}\left|\tilde{\gamma}_{12}(\tau)\right| \cos \left[\alpha_{12}(\tau)-\varphi\right] .
$$

(12.91)

Pinur C. 10

With inilating A

Figure 12.11 Xoung's experiment.

It can be shown from Eq. (12.17) and the Schwarn inequality that $0 \leq\left|\tilde{\gamma}_{12}(\tau)\right| \leq 1$. In fact, a comparison a Eqs. (I2.21) and (9.14), the latier having been derived for the case of complete coherence, makes it evident that if $\left|\tilde{y}_{12}(\tau)\right|=1, I$ is the same as that generated by two coherent waves out of phase at S_{1} and S_{z} by an amount $\alpha_{\mathrm{ig}}(\tau)$. If at the other extreme $\left|\tilde{\gamma}_{12}(\tau)\right|=0, I$ $I_{1}+I_{2}$, there is no interference, and the two distur bances are said to be incoherent. When $0<\left|\tilde{y}_{19}(\tau)\right|<1$ we have partiai coherence, the measure of which is $\mid \bar{y}_{12}(\tau)$ itself; this is known as the degree of coherence. In summary then,

$$
\begin{aligned}
\left|\tilde{z}_{122}\right|-1 & \text { coherent limit } \\
\left|\tilde{\gamma}_{12}\right|=0 & \text { incoherent limit } \\
0<\left|\tilde{\gamma}_{12}\right|<1 & \text { partiai } \mid \text { coherence }
\end{aligned}
$$

The basic statistical nature of the entire process must be undersoored. Clearly $\tilde{\Gamma}_{12}(\tau)$ and, therefore, $\tilde{\gamma}_{12}(\tau)$ be undersoored. Clearky $\tilde{I}_{12}(\tau)$ and, therefore, $\gamma_{12}(\tau)$ are the key quantities in the various expressions for the irradiance distribution; they are the essence of what we
previously called the interference term. It should be previously called the interference term. It should be
pointed out that $\tilde{\tilde{E}}_{1}(t+\tau)$ and $\tilde{E}_{2}(t)$ are in fact cwo pointed out that $E_{1}(t+\tau)$ and $E_{2}(t)$ are in fact cwo
disturbances occurring at different points in both space and time. We anticipate, as well, that the amplitudes and phases of these disturbances will somehow flucuuate in time. If these fluctuations at S_{1} and S_{e} are completely
independent, thean $\tilde{\Sigma}_{12}(\tau)=\left\langle\tilde{E}_{1}\langle\ell+\tau) \tilde{E}_{2}^{*}(t)\right\rangle$ will go to independent, thea $\tilde{F}_{12}(\tau)=\left\langle\tilde{E}_{1} \ell+\tau\right) \tilde{E}_{2}^{*}(t)$ will go to zero, since E_{1} and Σ_{2} can be either positive or negative with equal likelihood, and their product averages to
zero. In that case no correlation exists, and $\tilde{\Gamma}_{\text {I }}(\uparrow)=$ zero. In that case no correlation exists, and $\tilde{\Gamma}_{\mathrm{g} ~}(\tau)=$
$\vec{\gamma}_{12}(\tau)=0$. If the field at S_{1} at a time $(t+\tau)$ were per $\left.\gamma_{12} \tau\right)=0$.
fectly correlated with the field at S_{2} at a time t, their relative phase would remain unaltered despite individaal fluctuations. The time average of the product of the fields would certainly not be zero, just as it would not be zero even if the two were only slightly correlated. Borh $\left|\tilde{y}_{12}(\tau)\right|$ and $\alpha_{52}(\tau)$ are slowly varying functions of τ in comparison to $\cos 2 \pi \bar{\nu} \tau$ and $\sin 2 \pi \bar{\nu} \tau$. In other words, as P is moved across the resultant fringe system, the point-by-point spatial variations in I are predominantly due to the changes in φ as $\left(r_{2}-r_{1}\right)$ changes. The maximum and minimum values of I occur when the cosine term in Eq. (12.21) is +1 and -1 , respectively. The visibility at P (Problem 12.7) is then

$$
\begin{equation*}
\mathscr{V}=\frac{2 \sqrt{I_{1}} \sqrt{I_{2}}}{y_{1}+I_{q}}\left|\tilde{\gamma}_{12}(\tau)\right| . \tag{12.22}
\end{equation*}
$$

Perhaps the most common arrangement occurs when hings are adjusted so that $I_{1}=I_{2}$, whereupon

$$
V=\left|\bar{\gamma}_{12}(\tau)\right| ;
$$

(29.2.3)
that is, the modulus of the complex degree of coherence is dentical to the visibility of the fringes (take another look at Fig. 12.8).
It is essential to realize that Eqs. (12.17) and (12.18) cleariy suggest the way in which the real parts of $\tilde{\Gamma}_{12}(\tau)$ and $\tilde{y}_{12}(\tau)$ can be determined from direct measureaents. When the flux densities of two disturbances are djusted to be equal, Eq. (12.23) provides an experimental means of obtaining $\left|\tilde{\gamma}_{12}(\tau)\right|$ from the resuitant fringe pattern. Furthermore, the off-axis shift in the ocation of the central fringe (from $\varphi=0$) is a measure of $\alpha_{12}(\tau)$, the apparent relative retardation of the phase of the disturbances at S_{t} and S_{2}. Thus, measurements of the visibility and fringe position yield both the ampliude and phase of the complex degree of coherence.
By the way, it can be shown* thai $\left|\bar{\gamma}_{32}(\tau)\right|$ will equal for all values of τ and any pair of spatial points, if

The proofs are given in Beran and Parrent, Thtory of Partiai
Coherence, Section 4.2.
and only if the optical field is striclly monocheco Moreover, a nonzern a situation is unatraut for all values of τ and any pair of which $\tilde{\gamma}_{12}$ for all values of τ and any pair of spatial points orint exist in free space either

12.3.1 Temporal and Spatial Coherence

Let s now relate the ideas of temporal and sper ence to the above formalism.
If the primary source S in Fig. 12 II shrint to a point source on the central axis havin? requency banawidth, temporal coherence predominate. The optical disturbances at S then be identical. In effect, the mutual coherei between the two points will be the self-coherence field. Hence $\tilde{\Gamma}\left(S_{1}, S_{2}, \tau\right)=\tilde{\Gamma}_{i 2}(\tau)=\tilde{\Gamma}_{11}(\tau)$ or 鋆 $\tilde{\gamma}_{11}(\tau)$. The same thing obtains when S_{1} and $S_{2} c^{0}$ and $\dot{\gamma}_{11}(\tau)$ is sometimes referred to as the complet degree of temporal coherence at that point for two instances of time separated by an interval τ. Th lis wo be the case in an amplitude-splititing interferoma such as Michelson's, in which τ equals the path-lary Eq. (12.18), would by cen contain $\tilde{\gamma}$, τ) rather Suppose . disturbances of the form

$$
\tilde{E}(t)=E_{0} e^{i \phi(t)}
$$

by an amplitude-splitting interferometer, which hater recombines them to gencrate a fringe paternif Then

	$\dot{\gamma}_{11}(\tau)-\frac{\left\langle\bar{E}(t+\tau) \tilde{E}^{*}(l)\right.}{\|\underline{E}\|^{2}}$
or	
	$\ddot{\gamma}_{11}(\tau) \sim\left\langle e^{\text {id(} 1+r)} e^{-i \phi(t)}\right.$.
Hence	

$\tilde{\gamma}_{21}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{r}(\cos \Delta \phi+i \sin \Delta \phi)$ 雨.
$=\phi(t+\tau)-\phi(l)$. For a strictly monochro$\Delta \phi=\phi(t)$ infite coherence length, $\phi(t)=$ © plane wave of inn
$\bar{\gamma}_{11}(\tau)=\cos \omega \tau-i \sin \omega \tau=e^{-i \omega \tau}$.
$=1$; the argument of $\tilde{\gamma}_{11}$ is just $-2 \pi v \tau$, and complete coherence. In contradistinction, for te comphromatic wave where τ is greater than the retime, $\Delta \phi$ will be random, varying between 0 such that the integral averages to zero, $\left|\tilde{y}_{11}(\tau)\right|=$ responding to complete incoherence. A path nce of 60 cm , produced when the two arms of a son interferometer differ in length by 30 cm , ponds to a time delay between the recombining of $\tau \approx 2 \mathrm{~ns}$. This is roughly the coherence time hod isotope discharge lamp, and the visibility of tuera under this sort of ilhumnation will be quite If white light is used instead, Δv is large, Δt_{8} is swall, and the coherence length is less than one length. In order for τ to be less than Δt_{c} (i.e., in fars that the visibility be good, the optical path rence . The other extreme is laserlight in which tonge so long that a value of c - that will cause an can be so long he vishility would require an dically large interferometer.
see that $\Gamma_{11}(\tau)$, being a measure of temporal hee, must be intimately related to the coherence Watherefore the band width of the source. Indeed, wirier iransform of the self-coherence function, $\overline{\mathrm{T}}_{11}(\tau)$, (Thowet spectrum, which describes the spectral energy ultion of the light (Section 11.3.4).
Wgo back to Young's experiment (Fig. 12.11) with arrow-bandwidth extended source, spatial ence effects will predominate. The optical disturand S_{1} and S_{2} will differ, and the fringe pattern qill flepend on $\tilde{\Gamma}\left(S_{1}, S_{2}, \tau\right)=\tilde{\Gamma}_{12}(\tau)$. By examining the 20) (1) about the central fringe where $\left(r_{2}-r_{1}\right)=0, \tau=0$ $\hat{S}_{12}(0)$ and $\bar{\gamma}_{12}(0)$ can be detcrmined. This latter Whity is the complex degree of spatial coherence of tho points at the same instant in time. $\tilde{\Gamma}_{12}(0)$ plays Trall role in the description of the Michelson stellar Ferometer to be discussed forth with

Figure 12.12 (a) The geometry of the van Cittert-Zernixe theoren) Firure 12.12 (a) The geometry of the van Cittert-Zernike theorem
(b) The normatized difracting ratern cotrcsponds to the degree of (b) The normalimed diaracion patern corrssponds cotherence. Hert for a recan gula source sifit the diffaction pattern is sinc (riay/h).
the corresponding irradiance distribution across the extended source giving rise to the light Gelds. We shal make use of that relationship, the van Cittert-Zernik theorem, as a calculational aid without going throug 122 almady sugests some of the essentials. Figure 1212 represents an excended quasimonochromatic inconerent source s located on the plane σ and having an irradiance given by I(x, x). Also shown is an observa.
ion screen on which are two points. P_{1} and P_{2}. These are at distances R_{1} and R_{2}, respectively, from a tiny are at distances R_{1} and R_{2}, respectively, from a tiny $\dot{\boldsymbol{\gamma}}_{12}(0)$, which describes the correlation of the field wibraions at the two points. Note that although the source is incoherent, the light reaching P_{1} and P_{2} will generally be correlated to some degree, since each source element contributes to the field at each such point.
Calculation of $\tilde{y}_{\mathrm{i} 2}(0)$ from the fields at P_{1} and P_{2} results in an integral that has a familiar structure. The integral has the same form and will yield the same results as a well-known diffraction integral, provided we reinterpret each term appropriately. For instance, (y, z) appears in that coherence integral where an aperure function would be if it were, in fact, a diffraction integral. Thus, suppose that S is not a source but an aperture of identical size and shape, and suppose that $(2,2)$ is not a description of irradiance, but instead its unctional form corresponds to the field distribution across that aperture. In other words, imagine that there o is z) Furthermore nated by a spherical wave converging toward the fixed oint P_{2} (see Fig 12.12b) sothat ther will be diftrad pattern centered on P. This difracted feld distribution

normalized to unity at P_{2}, is everywhere (i.e., at \boldsymbol{P}_{0}
equal to the value of $\tilde{\gamma}_{12}(0)$ at that point The equal to the value of $\tilde{y}_{12}(0)$ at that point. Tisis it at $P_{i j)}$
Cittert-Zernike theorem. When P_{1} and P_{B} are
When P_{1} and P_{8} are close together and S is sma compared with \}, the complex degree of cohermy equals the ance dist ribution across the source. Furthermorteid a sinc function when the source is a stit and is sing a sinc function when the source is a stit and a) Bes the sinc function corresponds to that of Fige 10 . where $\beta=(\mathrm{kb} / 2) \sin \theta$ and $\theta \Rightarrow \sin \theta$. Thus if $n_{\text {it }}$ distance y from $P_{\mathrm{s}}, \beta=k b \theta / 2$ and $\theta=\gamma / 1$ $\left|\bar{y}_{12}(0)\right|=|\operatorname{sinc}(\pi b y / \Delta)|$. This result is explored 诫 in the problem set.
12.4 COHERENCE AND STELLAR INTERFEROM:

12.4.1 The Michelson Stellar Interferomeli:

In 1890 A. A. Michelson, following an earlier sume by Fizeau, proposed an interferometric ded 12.13) that is of interest here both because it wabl the precursor of some important modern techniquand because it lends itself to an interpretation in terms
ance theory. The function of the stellar intertor, as it is called, is to measure the small angular bans of remote astronomical bodies
widely spaced movable mirrors, M_{1} and M_{8} Tr rays, assumed to be parallel, from a very distant hat rays, assumed the tight is then channeled via mirrors M_{3} and through apertures S_{1} and S_{2} of a mask and thence the objective of a telescope. The optical paths R $H_{1} S_{1}$ and $M_{2} M_{4} S_{2}$ are made equal, so that the rela-ohase-angle diference between a disturbance at M_{1} . M_{2} is the same as that between S_{1} and S_{2}. The two titures generate the usual Young's experiment frithe system in the focal plane of the objective. WHally, the mask and openings ate not really Thasary; the mirrors alone could serve as apertures. sunpose we now point the device so that its central axis is. wected toward one of the stars in a closely spared deतtile-star configuration. Because of the tremendous Wices involved, the rays reaching the inter ferometer 6if either star are well collimated. Furthermore, we Wife, at least for the moment, that the light has a OW linewidth centered about a mean wavelength of disturbances arising at S_{1} and S_{2} from the axial centered on P Similarly, fiveat someangle θ buth, rays fomer and M_{2} (and therefore at S_{1} and S_{2}) are out of by approximately $\bar{k}_{0} h \theta$ or, if you will, retarded time $h \theta / c$, as indicated in Fig. 12.13(b). The resultfringe system is centered about a point P shifted Wangle θ^{\prime} from P_{0} such that $h \theta / c=a \theta^{\prime} / c$ Since stars behave as though they were incoherent point the individual irradiance distributions simply 0. The separation between the fringes set up by star is equal and dependent solely on a. Yet the varies with h. Thus if h is increased from nearly ntil $\vec{k}_{0} h \theta=\pi$, that is, until
$h-\frac{\bar{\lambda}_{0}}{2 \theta^{2}}$
(12.27)

Wivo fringe systerns take on an increasing relative dacment, until finally the maxima from one star :4p the minima from the other, at which point, if Tngas vatibh, ane need only measure h to when the
the angular separation between the stars, θ. Notice that the appropriate value of h varies inversely with θ. the approptiate value of h varies inversely with θ.
Note that even though the source points, the two stars, are assumed to be completely uncorrelated, the resulting optial fields at any two points (M_{1} and M_{2} are not necessarily incoherent. For that matter, as h becomes very small, the light from each point source arrives with essentially zero relative phase at M, and $M_{2} ; \mathscr{V}$ approaches I, and the fields at those location are highly coherent.
In much the same way as with a double star system, the angular diameter $\{\theta\rangle$ of certain single stars can be measured. Once again the fringe visibility correspond to the degree of coherence of the optical fied at M and M_{2}. If the star is assumed to be a circular distribu tion of incoherent point sources such that it has a uni form brilliance, its visibility is equivalent to that already plotted in Fig. 12.7. Eather, we alluded to the fact that V for this sort of source was given by a first-order Besse function, and in fact it is expressible as

$$
V=\left|\tilde{\gamma}_{12}\{0)\right|-2\left|\frac{J_{1}\left(\pi h \theta / \bar{\lambda}_{0}\right)}{\left.\pi h \theta / \tilde{\lambda}_{0}\right)}\right| .
$$

Recall that $J_{1}(u) / u=\frac{1}{2}$ at $\mu=0$, and the maximum value of q is 1 . as in Fig. 10.28. Equivalently, the fringes disappear as in

$$
h=1.22 \frac{\bar{\Lambda}_{0}}{\theta},
$$

and as before, one simply measures h to find θ.
In Michelson's arrangement, the two outrigged mir rors were movable on a long girder, which was mounted on the 100 -inch reflector of the Mt. Wilson Observatory Betelgeuse (α Orionis) was the first star whose angular diameter was measured with the device. It's the orangelooking star in the upper left of the constellation Orion In fact, its name is a contraction for the Arabic phrase meaning the armpit of the central one (i.e Orion). The fringes formed by the interferometer one cold December night in 1920, were made to vanish at $h=121$ inches, and with $\bar{\lambda}_{0}=570 \mathrm{~nm}, \theta=$ $\mathrm{I} .22\left(570 \times 10^{-9}\right) / 121\left(2.54 \times 10^{-2}\right)=22.6 \times 10^{-8} \mathrm{rad}$ or 0.047 seconds of arc. Using its known distance, deter mined from parallax measurements, the star's diameter turned out to be about 240 million miles, or roughly

280 times that of the Sun. Actually, Betelgeuse is an irregular variable star whose maximum diameter is so tremendous that it's larger than the orbit of Mars about the sun. The main hinitation on the use of the stellar interferometer is due to the inconvenientiy long miroo is true as well in radio astono whe setup has been widely used to measure the extent elestial sources of radiofrequency misions.
Incidentally, we assume as is fter done,
lncidentally, we assume, as is often done, that "good" source this occurs when thg $\bar{\pi}_{0}$ in Eq. (12 28) a disk one, that is when

$$
h=0.32 \frac{\bar{A}_{0}}{\theta} .
$$

(19.30)

For a narrow-bandwidth source of diameter D a dist ance R away, there is an area of coherence equal to $\pi(h / 2)^{2}$ over which $\left|\tilde{\gamma}_{2 l}\right| \leqslant 0.88$. Since $D / R=\theta$.

$$
\begin{equation*}
h=0.32 \frac{R \bar{R}_{D}}{D} . \tag{12.31}
\end{equation*}
$$

These expressions are very handy for estimating the equired physical parameters in an interference or diffraction experiment. For example, if we put a red filter over a 1 -mm-diameter disk-shaped Hashlight source and stand back 20 m from it, then
$h=0.32(20)\left(600 \times 10^{-9}\right) / 10^{-5}-3.8 \mathrm{~mm}$
where the mean wavelength is taken as 600 nm . This means that a set of apertures spaced at about h or less sould produce nice fringes. Evidently the area of oherence increases with R, and always find a distant bright street light to use as a convenient source.

12.4.2 Correlation Interterometry

Let's return for a moment to the represenfation of a disturbance emanating from a thermal source, as discussed m Section 7.10. Here the word theman connotes a light field arising predominantly from the superposition of spontaneously emitted waves issuing from a great
many independent atomic sources. ${ }^{*}$ A quasiumonie: matic optical felld can be represented by
$E(t)=E_{0}(t) \cos [\varepsilon(t)-2 \pi \bar{\nu} t]$. The amplitude is a relatively slowly varying fund ime, as is the phase. For that matter, the wak he amplitude fie. the envelope of the beforis the amplitude f.e., the envelope of the field vibret the coherence time is a measure of the fu. Thus, val of the phase, it is also a measure of the ina which $E_{0}(t)$ is fairly predictable. Large fuctuate are generatly accompanied by correspondingle: luctuations of E_{0}. Presumably a amplitude fluctuations of the field could be relare mp phase fluctuations and therefore to the relate (i.e., coherence) functions. Accordingly, att two pol in space-time where the phases of the cield are cone lated, we could expect the amplitudes to be related well.
When a fringe pattern exists for the Michelren: . interferometer, it is because the fields at M_{1}. he apertures, are somehow correlated, that is, Γ_{12} $\left.\tilde{E}_{1}(i) \dot{E}_{8}^{*}(t)\right\rangle \neq 0$. If we couid measure the field ain udes at these points, their fluctuations would like show an interrelationship. Since this isn't pracef because of the high frequencies involved, we instead measure and compare the fluctuations in ance at the locations of M_{1} and M_{2} and ${ }^{2}-1$ ome as yet unknown way, infer $\mid \tilde{\gamma}_{12}(0)$, in ops w . word Geld at the two points is partially coherent, ori between the irradiance fuctation ocations in intied This is the essential id. eries of remarkable expriments conciucted ${ }^{\text {in }}$ 052 to 1956 by R Hanbury-Brown in with R. Q. Twiss and others. The culmindti G^{3} work was the so-called correlation interferomere Thus far we have evolved only an intuil tification for the phenomenon rather than a firizo retical treatment. Such an analysis, however, is beyoge
*Thermal light is sometimes spoken of as Cozssiant amplitucic of the field follows a Gaustan probabiit
r2.4 Cokerence and Stellar Interferometry

Eqs. (12.92) and (12.35) become

$$
\left\langle\Delta I_{3}\langle t+\tau) \Delta I_{2}(t)\right\rangle=\left|\tilde{\Gamma}_{12}(\tau)\right|^{2}
$$

$$
\left.\left\langle\Delta I_{\mathrm{t}}(t+\tau) \Delta I_{\Sigma}(t)\right\rangle-\left\langle I_{2}\right\rangle\left\langle I_{2}\right\rangle\right\rangle\left.\tilde{\gamma}_{12}(\tau)\right|^{2}
$$

(Problem 12.11). These are the desired cross-correlations of the irradiance fluctuations, They exist as long as the field is partially coherent at the two points in question. Incidentally, these expressions correspond to linearly polarized light. When the wave is unpolarized, a mulciplicative factor of $\frac{1}{2}$ must be introduced on the right-hand side.
The validity of the principle of correlation inter ferometry was frst established in the radiofrequency region of the spectrum, where signal detection was fairly straightforward matter. Soon afterward, in 1956, Hanbury-Hrown and Twiss proposed the optical stella interferometer illustrated in Fig. 12.15. Bur the only suitable detectors that could be used at optical frequen cies were photoelectric devices whose very operation is keyed to the quantized nature of the light field. Thus

it was by no means certain that the correlation would be fully preserved in the process of photo-electric emission. For these reasons a laboratory experiment wis carried out as described below.*
That experiment is shown in Fig. (12.16). Filtered light from 2 Hg arc was passed through a rectangular aperure, and different portions of the emerging wavefront The degree of coherence was altered by moving $P M_{1}$. that is, by varying h. The signals from the two photothat is, by varying h. The signals from the two photomultiphers were presumably proportional to the
incident irradiances $I_{t}(t)$ and $I_{2}(t)$. These were then incident irradiances $I_{2}(t)$ and $I_{2}(t)$. These were then
filtered and amplified, such that the steady, or dc, component of cach of the sigmals (being proportional to $\left\langle I_{1}\right\rangle$ ponent of cach of the sigmals (being proportional to $\left\langle I_{1}\right\rangle$, n other words, $\Delta I_{1}(t)=I_{1}(t)-\left\langle I_{1}\right\rangle$ and $\Delta \Gamma_{q}(t)=I_{9}(t)-$ $\left\langle I_{2}\right\rangle_{\text {. The }}$ Two signals were then multiplied together in the correlator, and the time average of the product, which was proportional to $\left\langle\Delta I_{1}(t) \Delta I_{\mathrm{Q}}(t)\right\rangle$, was fmall recorded. Thevalues of $\hat{y}_{12}(0)$ for various separations, h, as deduced experimentally via Eq. (12.35), were in fine agreement with those calculated from theory. For the given geometry, the correlation definitely existed; moreover, it was preserved through photoelectric detection.
The irradiance fluctuations have a frequency bandwidth roughly equivalent to the bandwidth ($\Delta \nu$) of the 100 MHz or more 'This is much beter which is about follow the field alternation $10^{53} \mathrm{H}$ Even trying to circuitry with rourhly a 100-MHz pass bandwidh is required. In actuality the detectors have a finite resoly ing time T, so that the signal currents g_{1} and g_{2} are actually proportional to averages of $I_{1}(t)$ and $I_{2}(t)$ over T and not their instantaneous whes. In effect, the T and not their instantaneous walues. In effect, the by the dashed curve of Fig. 12.14(b). For $T>\Delta t_{c}$, which is normally the case, this just leads to a reduction, by a factor of $\Delta t_{c} / T$, in the correlation actually observed:

$$
\left\langle\Delta \mathscr{F}_{1}(t) \Delta \mathscr{F}_{2}(t)\right\rangle=\left\langle\mathscr{I}_{1}\right\rangle\left\langle\mathscr{\Phi}_{2}\right\rangle \frac{\Delta t_{c}}{T}\left|\tilde{\gamma}_{12}(0)\right|^{2} \quad(12.96)
$$

Taken from R. Hanbury-Brown and R. Q. Twiss, "Correlation Beween Photons in Two Coherent Beams of Ligh!," Natiure 127, 27
(956).

Figure 12.16 Hanbury-Brown and Twiss experiment.

For example, in the preceding laboratory ayt he Eltered mercury light had a coherence tim ns, while the electronics had a reciprocal pass batit idth or effective integration time of $\approx 40 \mathrm{nz}$. Note te Eq. (12.36) isn't any different conceptually Shortly after their successful laboratory ef Ganbury Brownand Twiss coustructed the ferometer shown in Fig. 12.15. Searchlight miff used to collect starlight and focus it onto two multipliers. One arm contained a delay line, so mirrors could physically be located at the same frel with compensation for any differences in the an times of the light. The measurement of $\left\langle\Delta \Delta_{1}(b) \Delta\right\}$ at varicus separations of the detectors allowed square of the modutus of the degree of able the $\left|\bar{\gamma}_{12}(0)\right|^{2}$, to be deduced, and this in turn vieldoyd the angular diameter of the source, just as it did whener Michelson stellar interferometer. This time, the separation h could be very large, becausd one 10 longer had to worry about messing up the phase of wayes, as was the case in the Michelson device. slight shift in a mirror of a fraction of a as fatal. Here, in contrast, the phase w so that the mirross didn't even have to be of 4)

Tiestar Sitius was the first to be examined ss fourd to have an angular diameter of 0.0069 5 of arc. More recently, a correlation interer with a baseline of 618 feet has been construcNayrabri, Australia. For certain stars, angular ers of as ithe as 0.0005 seconds of an dind
t electranics involved in irradiance correlation Te greatly simplifed if the incident light were tarly monochromatic and of considerably higher nsity, Laser light isn't thermal and doesn't display she statistical fluctuations, but it can nonetheless e dsed to generate psoudothermal \ddagger light. A pseudobermed source is composed of an ordinary bright furce (a laser is most convenient) and a moving Pmof nomuniform optical thickness, such as a rotatriund glass disk. If the scattered beam emerging fiom a stationary piece of ground giass is examined Sufficizutty slow detector, the inherent ir radiance Wions will be smoothed out completely. By setting Found glass in motion, irradiance fluctuations git with a simulated coherence time commensurate Ghe disk's speed. In effect, one has an extremely Int thermal source of variable Δt_{c} (from, say, 1 s
s.
s), which can be used to examine a whole range iference effects. For example. Fig. 12.17 shows the Hation effects. For example, Fig. 12.17 shows the (i) $((u)]^{2}$ for a pseudothermal circular anal to determined from irradiance fluctuations. The mentsetup resembies that of Fig. 12.16, atchough entsetup resembies that of Fig. 12.16, although ,

Obastion of the photsis, Scction aspects of irradiance corrclation, see petcal Physies, Section 6.2.5.2, or Klcin. Opitizs, Section, 6.4, aricicnssen and E. Spiller, "Coherence and Flucuations in
ms," $A \mathrm{~m}$ J. Phys. 32,919 (19641), and A. B. Hance and Nor, "Intensity Corrclations from Pseudothermal Light Am. J. P
Scrall reference for this chapher is the review article by L
tiE Wolf, "Coherence Properties of Optical Fieids," Reis. (tyernann, "Intercontincntal Radio Astronomy." Sci. Am.

Figure 12.17 A corrclation function for a perucothermal source. (From A. B. Haner and N. R. Isenor, Am J. Phyr., 38, 748 (1970),

PROBLEMS

12.1 Suppose we set up a fringe pattern using a Michelson interferometer with a mercury vapor lamp and discuss what will hap lamp in your minds ey mercury
12.2* We wish to examine the irradiance produced on the plane of observation in Yount's extorimen when the slits are illuminated simultaneously by two monochromatic plane waves of somewhat different frequency, E_{1} and E_{2}. Sketch these against time, taking $\lambda_{1}=0.8 \lambda_{2}$. Now draw the product $E_{1} E_{2}$ (at a point P) against time. What can you say about its average over a relatively long interval? What does $\left(E_{1}+E_{2}\right)^{2}$ look like? Compare it with $E_{i}+E_{2}^{2}$. Over a time that is long compared with the periods of the waves, approximate $\left\langle\left(E_{1}+E_{2}\right\rangle^{2}\right\rangle$.
12.3* With the previous problem in mind, now con sider things spread across space at a given moment in
time. Each wave separately would result in an irradiance distribution I_{1} and I_{2}. Plot both on the same space axis of your resuln their sum $I_{1}+I_{2}$. Discass the meaning happens to the net irradiance as more waves of differen frequency are added in'? Explain in terms of the coher ence length. Hypothetically, what would happen to the pattern as the frequency handwidth approached infinity?
12.4 With the previous problem in mind, return to the autocarrelation of a sine function, shown in Fig 11.37. Now suppose we have a signai composed of a great many sinusoidal components. Imagine that you take the autocorrelation of this complicated signal and piot the resuit (use three or four componens to star whi, as in part e) of Fig. H..3. What win the wayes is very laige and the signal resembles random noise? What is the significance of the $\tau=0$ value? How does this compare with the previous problem?
12.5* imagine that we have the arrangement depicted in Fig. 12.3. If the separation between fringes (max. to max.) is 1 mm and if the projected width of the source slit on the screen is 0.5 mm , compute the visibility.
arra Referring to the slit source and pinhole screen the source that

$$
I(Y) \propto b+\frac{\sin (\pi a / \lambda \Omega b b}{\pi a / \lambda l} \cdot \cos (2 \pi a Y / \lambda s) .
$$

Fiqure 12.18
12.7 Carry out the details leading to the Exproy for the visibility given by Eq. (12.22)
2.8 Under what circumstances will the irradia號 I_{0}, where the

Figure 12.19
12.9* Suppose we set up Young's experimert with mall circular hole of diameter 0.1 mm in fint of sodium lamp ($\bar{\lambda}_{0}-589.3 \mathrm{~nm}$) as the source. 背t the di ance from the source to the shits is 1 m , how tha apa will the slits be when the fringe pattern disdarnal:
2.10 Taking the angular diameter of the from the Earth to be about $1 / 2^{\circ}$, determine the of the corresponding area of coherence, ner ariations in brightness across the surface.
2.11 Show that Eqs. (12.34) and (18.85) foion lat Eqs. (12.32) and (12.33).
12.12* Return to Eq. (12.21) and separate itidnet terms representing a coherent and an incoherenter ution, the first arising from the superpositionid oherent waves with irradiances of $\left|\tilde{\gamma}_{12}(\underset{y}{*})\right|$ and $\bar{\gamma}_{12}(\tau) \mid I_{2}$ having a relacive phase of $\alpha_{12}(\tau)-{ }^{2}$ econd from the superposition of incetherentwa rradiznce $\left[1-\mid \bar{\gamma}_{12}(\tau)\right] I_{8}$ and $\left[1-\bar{F}_{12}(\tau)\right]_{2}$
 ulation how might view the visibility 3 in terms of it.
12.13 Imagine that we have Young's chat
density filter that cuts the irradiance by a factur Iufral-densive other hole is covered by a transpare of 10 , and the so there is no relative phase shift intro red. Compute the visibility in the

Suppose that Young's double-sht a apparatus 2. 1 inted by sunlight with a mean wavelength of thutinne Determine the separation of the slits that would ${ }^{59}$ 2. 2 the fringes to vanish.

We wish to construct a double-pinhole setup nated by a uniform, ז̧uasimonochromatic, incofilit source of mean wavelength 500 nm and widt gance of 1.5 m from the aperture screen. If the are 0.50 mm apart, how wide can the source visibility of the fringes on the plane of observa-

ton is

12.16. Suppose that we have an incoherent, quasipomatic uniform slit source such as a dis Tamp with a mask and filter in front of it We ifluminate a region on an aperture screen 10.0 m such that the modulus of the complex degree of free everywhere within a region 1.0 mm wide is
2.tin or greater than 90% when the wavelength is 500 nt. How wide can the silit be?
12.17* Figure 12.20 shows two incoherent quasimonochromatic point sources illuminating two pinhole in mask. Show that the fringes formed on the plan of observation have minimum visibility when

$$
a\left(\alpha_{2}-\alpha_{1}\right)=\frac{1}{2} m,
$$

where $m= \pm 1, \pm 3, \pm 5$.

Figure 12.20
12.18 Imagine that we have a wide quasimonochromatic source ($\lambda-500 \mathrm{~nm}$) consisting of a series of ver tical, incoherent, infinitesimally narrow line sources, each separated by $500 \mu \mathrm{~m}$. This is used to illuminate a pair of exceedingly narrow vertical slits in an aperture screen 2.0 m away. How far apart should the aperture be to create a fringe system of maximum visibility?

13
 SOME ASPECTS OF THE QUANTUM NATURE OF LIGHT

0ur understanding of the physical world has changed in a most profound manner since the beginning of this century. We have come to appreciate fundamental similarities between all of the various forms of radiant energy and matter. Optics, which was traditionaliy the study of light, has broadened its domain to encompass the entire electromagnetic spectrum Moreover, the advent of quantum mechanics ha brought with it yet another extension into what migh be called mailet optics (e.g., electron and neutron diffraction).

Our main purpose in this chapter conceptually is to weave some of the basic ideas of quantum mechanics into the fabric of optics.

13.1 QUANTUM FIELDS

The nineteenth-century physicist envisioned the electromagnetic field as a disturbance of the all-pervading tromagnetic feld as a disturbance of the all-pervading aether medum. If two charges interacted, it was because the aether in which they were imbedded was distorted
by their presence, and the resulting strain was transmitted from one to the other. Maxwell's field equations described this measurable disturbance of the medium without explicitly discussing the aecher itself. Light was then simply a wavetrain consisting of oscillatory mechanical stresses within the aether. Since there were electromagnetic waves, there had to be a transmitting medium-it was as clear as that. Yet curiously enough, even after the Michelson-Morley experiment Section
9.10.3) and Einstein's special theory of regtivity ha put aside the aether hypothesis, Maxwell's equatio remained. Even though the entire imnagery had to 2 changed, the validity of those equations persi There seemed little conceptual alternative itself had to be a physical entity, independ medium and capable of traversing otherwid empl space. An electromagnetic wave was seen as a di
bance propagated in the electromagnetic field. bance propagated in the electromagnetic field. In the early part of this century it becamed
that although Maxwell's equations seemed if truth, they could not be the whole truth. The eal enough, but experiments were startino fot behavior inconsistent with the representatio field exclusively as a fuid-like continuum. tromagnetic field displayed particle-like propertion that it was emitted and absorbed in tumpss and not at all continuously. Even in the the formative years of quantum theory, fiel cles were envisioned as separate entitics. became evident, with the melding of quarity and relativity, that each particle, material or 0 could be envisioned as a quantized manifestr distinct ficld (e.g., the photon is a quantian electromagnetic field). As with the photong particles can be created and destroyed. The all phyd sponding fields can transport all observal characteristics, such as energy, charge, and advancing through space as waves. Wramerne is cal of quantum field theory, as this description is cal particles are viewed essentially as localized packe

Gide energy* Another far-reaching distinction between fiit and the classical picture is in the consideration of if eractions. Quantum feld theory maintains that all Hereractions arise from the creation and annihilation of marticles. To wit, forces, in the classical sense, are envisioned as due to the exchange of quanta or lumps of the field in question. Charged particles can interact by absorbing and emitting, in a mutual exchange, quanta of the e gravitational interaction is similarly the
 fie of avitons.
theri is something of a cursory view of the direc Ton taken by contemporary quantum field theory. In the next tew sections we will consider some of the quant mimechanical photon picture.
13.2 BLACKBODY RADIATION - PLANCK'S QUANTUM HYPOTHESIS

- He turn of the nineteenth century, the electromag. theory of light, fashioned by Maxwell and meticillously verified by Hertz, was firmly established us on of the cornerstones of science. But periods of Whent in physics are usually short-lived, and Max irficly led unleashed a conceptual whirlwind that Firately led to a radical change in the picture of the
Gical universe. Planck, who had been a student of tholta and Kirchhoff, was working en a theoretical Tis of a seemingly obscure phenomenon known as - Sdy radiation. We know that if an object is in ther15 Equilibrium with is environment, it must emit as eftradiant energy as it absorbs. It follows that a good Ger is a good emitter. A perfect absorber, one which all tadiant energy incident upon $i t$, tegardless of geth, is said to be a blackbody. Generally, one - mates a blackbody in the laboratory by a hollow itd enclosure (an oven) that contains a small hole me wall. Radiant energy entering the hole has little Eof being reflected out again, so that the enclosure the nearly perfect absorber. The "black" pupil of the ove suggests the mechanism. On the other hand, if oven is heated, it can serve as a source emitting
energy through the hole. In accord with common experience, we can anticipate that the spectral distribu sion of the emitted radiant energy will be dependent on the oven's absolute temperature T. As the temperature increases, the hole will initially radiate predominantiy infrared, and then gradually it will take on a ain redash glow hat gecs brighter and brighter, mental investig, whe, and hably be-wice. ExpenPringheim, 1899) resulted in spectral curves simitar to those of Fig. 18.1. The quantity I which is ploted as she ordinate, is known as the spectral flux density or spectral exitance. it corresponds to the emitted power per unit area per unit wavelength interval leaving the hole. Were we to make such measurements, at least in principle, we could determine the exitance (in $\mathrm{W} / \mathrm{m}^{2}$) principle, we could determine the exitance (in W / m) sort of power meter. But in actuality, any such meter would accept a range of wavelengths $\Delta \lambda$ centered about λ, so we introduce the notion of spectral exitance. The curves of $I_{e \lambda}$ versus λ can be ploted so that the area beneath them is measured in $\mathrm{W} / \mathrm{m}^{2}$. Notice how the peaks in the curves shift toward the shorter wavelengths as T increases.
In 1879 Josef Stefan (1835-1893) observed that the total radiant fux density for exitance, I_{e}) of a blackbody

Figure 13.1 Blackbody radiation curacs. Tho
through peak points corresponds to Wien's law.
was proportional to the fourth power of its absolute temperature. A few years later, Ludwig Boltrmann (1841-1906) derived that relationship in a combined application of Maxwell's theory and thermodynamic arguments. The Stefan-Botumann law, as it is now called, is

$$
\begin{equation*}
I_{o}=\sigma T^{4} \tag{'s,i}
\end{equation*}
$$

where the Stefan-Boltzmann consiant σ is equal to $(5.6697 \pm 0.0029) \times 1 \sigma^{8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$. The last notable success in applying classical theory to the problem of success in applying classical theory to the problem of
blackbody radiation came in 1893 at the bands of the Glackbody radiation came in 1893 at the bands of the Werner Otto Fritz Franz Wien (1864-1928), known to Werner Otto Fritz Franz Wien (1864-1928), known to
his friends as Willy. He was able to show that the his friends as willy. He was able to show that the wavelength, $\lambda_{\text {max }}$, at which $I_{\text {ad }}$ (the flux oensity per unat
wavelength iriserval emerging from the blackbody) is a maximum, varies as

$$
\lambda_{\max } T=2.8978 \times 10^{-3} \mathrm{mK}
$$

(13.2)

As T increases, $\lambda_{\text {rrax }}$ decreases, and the peaks are displaced, as we have already pointed out in connection with Fig. 13.1. Accordingly, the expression (13.2) is known as Wien's displacement law.

It was at this point in time that classical theory began to falter. All attempts to fit the entire radiation curve (Fig. 13.1) with some theoretical expression based on electromagnetism led only to the most limited successes. Wien produced a formula that agreed with the observed data fairly well in the short wavelength region but deviated from it substancially at large λ. Lord Nayleigh John willami Strutt (1824-1919)] and later Sir James Jeans (1877-1946) developed a description in terms of the standing wave modes of the field within the enclosure. But the resulting Raylingh-Jeans formula
matched the experimentai curves only in the very long matched the experimentai curves only in the very long watally inexplicable; a turning point in the history of physics had arrived. physics had arrived.
atic and practical one the problen was a rather systenatic and practical one. He first matched the observed data with an empirical expression. Then he set about the framework of chermodynamics. In effect his model pictured the atoms in the walls of the oven to be in
thermal equilibrium with the enclosed radiap. Geide
He presumed that the atoms behaved lifye. He presumed that the atorns behaved liky
oscillators, absorbing and emitting sadiant further assumed that ali oscillator frequencias possible, and thus every frequency should 1 . in the emitted spectrum. Alt else having regretfully turned to the method of Boltan which he had little familiarity and less conf unprecedented ad hoc $25_{\text {umption }}$ ind unprecedented ad hoc a5, umption whose to ted that an atomic resonator could worked. Ph amounts of energy that were proportional to frequenc?. Moreever, each such energy wiol th integral muiliple of what he called an "energy elentica, an Thus all possible oscillator energies \mathscr{E}_{m} are given by

$$
\mathscr{E}_{\mathrm{m}} \sim m h \nu,
$$

where m is a positive integer and h is a constan determined by fitting the actual data. After bring bear statistical arguments, which are of little conos. here (and not actually correct anyhow)," Plange the following formula for the spectral exita he had already arrived at by fiuting curves to.

$$
I_{e \lambda}=\frac{2 \pi h c^{2}}{\lambda^{5}}\left[\frac{1}{e^{h c \lambda} \lambda \mathrm{k} T}-1\right] .
$$

(19.4)

Here k is Boltzmann's constant. Planck's mide on law as given by Eq. (13.4), is in extremely good, ecmen with experimental results when h is chosen: ately. The carrently accepted value of Planck'sis is
$h-(6.6256 \pm 0.0005) \times 10^{-34} \mathrm{~J} \mathrm{~s}$.
The hypothesis that energy was emitted at in quanta of $h v$ (which initially seemed only tional contrivance) has proved to be a futheatere statement of the nature of things. Moreoverf tity h, rather than simply being a particular cit tity h, rather than simply being a particular
parameter, has shown itself to be a univers? parameter, has shown
of the Flanck's origical derivation leads to erroncous ph4 + Don't conffuse this with spectra! energy density,
zinstein
that the true significance of Planck's work unsppreciated for several years, and even he was mine unsprious, as wiknessed by this commentasy on the Jonvelian: "
It ${ }^{\circ}$ true that we shall not thereby prove that this hyy dris represent the orily powirie or creache rop ade date copersion of the elementary dynamical law of wry probable that it may be greatly improved as it ary fif form and cretmats . . . and as tong as no wentror diciot in itself or with experiment is discovered in it, ant as long as no mote adequate hypochesis can be adianoed to replace it, it may justly claim a certain im wimes

W3 LiHE PHOTOELECIRIC EFFECT-EINSTEN'S PHOTON CONCEPT
Ther ironical that Heinrich Hertz, who helped to ligh the classical wave picture of radiant energy, Thiscaming contributor to its ulturnate reformulawhase description first appeatorectric Wencitled "On an Effect of Uhtraviolet Light upon fie Electric Discharge." While engaged in his now A) experiments on electromagnetic waves (Section experiments on clectromagnetic waves (Section noticed that the spark induced th his receiving
was stronger when the terminals of the gap were tited by the light coming from the primary spark. ated by the light coming fromithe primary spark. monced when ultraviolet impinged on the negative final of the gap, but he did not pursue the work gher. Later, in 1889, Wilhelin Hallwachs (1859owed that negative particies were released from illuminated metal surfaces, such as zinc, Wium, and potassium. Thereafter Phitipp Eduard Hon von Lenard (1862-1947), who was a colleague Herta, measured the charge-to-mass ratio of these Qicles, thus confirming that the spark enhancement rved by Hertz was the result of the errission of (now referred to as photoelectrons). Using
M. Pla that were similat in principle to the one depicted Fand M, Masius, The Theory of Heat Radiation.

Figure 13.2 Setup to obscrve the photoelearic effect.
in Fig. 18.2, a number of researchers begen to acerue dara on the photoelectric effect, that $i s$, the process wherchy data on the photoelectric effect, that is, the process whereby sfactpons are liberatad from malerials wnder the action of electric effect was another instance in which classical electromagnetic theory was paradoxically impotent. This protracted dilerima was finally resolved by Einthis procracted dinemma was finally resolved by EinPhosik of 1905.* It was there that he boldly extended lanck's quantum hypochesis and in so doing gave impetus to the sweeping reinterpretation of classical physics that was to take place later in the 1920s. Let's

[^14]543

52 Chapter 13 Some Aspects of the Quantum Nature of Light
now set the scene (c. 1905) so that we can appreciate how insightul Einstein's work actually was in light of the limited existent data
The early experiments of J. Elster and H. Geitel in 1889 had revealed that pbotoelectrons were frequently forcibly ejected from the illuminated metal surfaces under study. Electrons apparently experged with small but finite speeds ranging from zero to some maximum value, $v_{\text {maw }}$ By making the collecting plate negative with respect to the illuminated plate, a retarding force could exerted on the electrons. The retarding voluage, Which would stop even the most energetic elecuron rom reaching the collector, thereby bringing the pho curren Thus

$$
\frac{1}{2} m_{0} v_{\max }^{2}=q_{e} V_{0} .
$$

(19.5) depicts the manner in which the photocurrent is varies as the retarding voluge V is altered. There is nothing bout Fig. 13.3(a) that is at variance with the classicing picture. The distribution in energy of the emergion electrons, which manifests itselfin we grated to differenof the curve, can satisfing the various electrons to the ces in the energy metal. Electrons do such binding is quite reasonable metal surfaces, In 1893 it was obs imadiance, I, as indicated in Fig tional to the ince represented no departure from the 13.3(b). This wo repreasing I increases the total energ cassical scheme surface and should thus yield a propo absorbed by the surface and smitted photoelectrons. In contrast, it had early been established that there In con discernible time delay between the instant the was no discerniminated and the initiation of photoplatission. This behavior is completely incomprehensibl within the context of the classical description, For example, if $I=10^{-20} \mathrm{~W} / \mathrm{m}^{2}$ (at $\lambda_{0}=50$ nms), beory predicts (Problem 13.10) that it milghe the ant of hours before electrons could accund the energy they had been observed to possess. To contrary, Elster and Geitel, working ithe lag whatever ler irradiance, found no meat hor a given metal the In 1902 Lenard discovered that for a given metal the

Figure 19
stopping potential, and therefore the maximins energy, was independent of the radiant ins arriving at the plate, as shown schematically in He determined that even though the inciden was varied 70 -fold, it did not atter Vorm. It was W result led to yet another connergy of the photo that the maximunn source being used. Yet Lonn depended on the source by was independent of showed only conclude that the maximum kinetio could only conce way with the frequency of the varied not with the total incident energy-a pert, result indeed. Furthermore, recall that ultrav result indeed. Furent, pointed out that ultrav original experimen visible light was the effectiv: This implied that as the frequency of the rad, increased, a threshold value was reach too wa photoelectrons were emitted. Buit inexplicable; whether or D
epend on I and not on ν,
the energy of the radiation field could only change hat the energy oi that is, integer multiples of $h \mathrm{v}$. This discrete quanta, that is, integer multiples of $h \nu$. This vas a consequence of the fact that he had quandized the winergy of the electric osciliators. Going ar beyon that the matiation field itself was quaninstein proposed that the matianion freld it only in guanta iisd, and thus energy conns . The mechanism of the photo ofthy (later called phow becomes quite clear. Envision an dectric elent, within the interior of the material, which has dsarbed a photon $h \nu$. In rising to the surface it wil lose some of that energy, and in escaping from the surface it will lose even more. Let the total energy sper in leaving the material be Φ. The difference bet

$$
h v=\frac{m v^{2}}{2}+\Phi .
$$

(19.6)

Whe electron happens to be at the surface, Φ has mix hum value Φ_{0}. Known as the work function, Φ_{0} orrespondsin (sure Table 15.1). In that

$$
h \nu=\frac{m v_{\max }^{2}}{2}+\Phi_{0},
$$

Than a scatement of Einstein's photoolectric equation The lowest or threshald frequency $\left(\nu_{o}\right)$ capable of promot-

Toble 13.1 Pho
or a ficw mexals.

Mexal		$\nu_{0}\left(\mathrm{TH}_{2}\right)$	$\Phi_{0}(\mathrm{eV})$
Cesium	Cs	460	1.9
Berylium	Be	940	3.9
Titanium	Ti	990	~ 4.5
Mercury	$\stackrel{\mathrm{Hg}}{\mathrm{Ni}}$	1100 1210	4.6 5.0
Nicke! Platirum	$\underset{\mathrm{Ni}}{\mathrm{Ni}}$	1210 1580	6.3

ing emission would just barely eject the electrons. To wit, $v_{\text {max }} \approx 0$ and

$$
\nu_{\mathrm{c}}=\Phi_{0} / h .
$$

In the photon picture, an electron literally absorbs a last of energy as opposed ro a gradual trickle. Accord ingly, there will be no appreciable time delay in the mission. The interrelationship between irradiance and photocurrent is also quite understandabic. An increase phot Ind thus an increase in $i_{\text {p }}$, but not in V_{0}.
and thus an more theory rather neally accounts for the istence of a threshold frequency, tbe dependence of (v^{2} (2) on v, the lack of a time lag, the independence V_{0} on I and the relationship of I to i_{p}. Even so, ince ourntitative data were scanty and the photon so ince quantinative danained unaccepted by many.
The photoelectric equation went even furtber than The photoelectic equat known observations; it also represented one of the great prognostications of all times. After it had been published, a great furry of experimental work brought with it all sort of con extenion. The proportionality between I alian Emest 0 ded over a range of 5×10 wed a Rerr cell to Lawrence and J. W. Beams (1928) used Eear if time create pulses of iggt and therco lag existed in the emission of electrons, it hadicist Roher than" $8 \times 10^{-9} \mathrm{~g}$. In 1916 the American physicist Roheiv Andrews Millikan (1868-1953) published an extensip o and remarkably accura the photoelectric effect. His own
_- Whement of Time in the
*E. O. Lawrence and J. W. Beans, "Thc Ei

\square
words on the subject are quite enlightening
I spent ten years of my life testing the 1905 equation of Einstein's and contrary to all my expectations, I was compelled in 1915 to assert its unambiguous experi mental verification in spite of its unreasonableness since t seemed to violate everything that we knew about the interference of light.

A representation of Millikan's results is shown in Fig. 13.5. Note that since $\nu_{0}=\Phi_{0} / h$, we can write

$$
\frac{m v_{\text {max }}^{2}}{2}-h\left(\nu-v_{0}\right), \quad \quad(19.9)
$$

which means that a plot of maximum kinetic energy ($q_{e} V_{0}$) versus ν for any given material should be a straight line having a slope h and ar intercept of $-\Phi_{0}$ These predictions were completely confirmed by Milisikan.* The amazing fact that the slope actually turned out to be equal to h is a tribute to the insight of Planck and the genius of Einstein. Different metals have characteristic values of Φ_{0} and ν_{0}, but in all cases the lope of the line remained constant at h, as predicted. The quantization of the electromagnetic field had een established; all of physics, and particularly optics, would never quite be the same again. ${ }^{\dagger}$

13.4 PARTICLES AND WAVES

According to Maxwell's electromagnetic theory (see Chapter 3), the energy \mathscr{E} and momentum of (sce electromagnetic wave are related by the expression

$$
g=c p .
$$

(19.10)

Alternatively, the energy and momentum of a particle
In 1923, two years after Einstein received the Nobei prize for his
 honor, in part for his experimental efforts on that subjec.
INowithstanding the great influene the photoelectric effect had on he photon historically, it is nonetheless possible to explain chat effect Indeed onc an treat the field classically, imparing the quanturn M. O. Scully in Polarization, Moe cher article by W. E. Lamb, Ir, and , Maller and Radiation, jubilee Volumte in Honor of Alfred Kastier.

gure 19.5 Some of Milikan's resuls
of rest mass mo are related by way of the formulat

$$
\mathscr{E}-c\left(m_{0}^{2} c^{2}+p^{2}\right)^{1 / 2},
$$

whose origins are in the special theory of relativig nasmuch as the photon is a creature of hoth the discipines, we can expect either equation to foe pplable, inded hey mo the pho erf. 10 . expression $g=m c^{2}$ where

$$
m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}
$$ hus, since it has a finite relativistic mon wis a speed the energy \mathscr{E} is purely kinetic.

A few years later in France, Louis Victor, Prince de Broglie (b. 1891), in his doctorai thesis drew a marvelous analogy between photons and matter particles. He proposed that every particle, and not just the photon, should have an associated wave nature. Thus since $p=$ h/A, the wavelength of a particle having a momentum mv would then be

$$
\lambda=h / m v .
$$

Because $h=6.6 \times 10^{-84}$ is small and because of the relative enormity of the momenta of macroscopic relative enormity of the momenta of macroscopic entities, such bodies have miniscule wavelengths. For of $6.6 \times 10^{-23} \mathrm{~m}$, roughly 10^{22} times shorter than that f red light. In contrast, le's compute the voltage heeded to impart a wavelength of $I \AA$ to an electron; his is of the order of the spacing between atoms. Starting from rest, the electron has a kinetic energy of $m v^{2} / 2$ fter traversing a potential difference of V, that is,

$$
q_{2} V=\frac{m v^{2}}{2} .
$$

Using Eq. (13.14), we can write

$$
\begin{aligned}
V & =\frac{h^{2}}{2 m g_{d} \lambda^{2}} \\
& =\frac{\left(6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{2}}{2\left(9.1 \times 10^{-51} \mathrm{~kg}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(10^{-60} \mathrm{~m}\right)^{2}}
\end{aligned}
$$

or

$$
V-150 \mathrm{~V} .
$$

An electron so zocelerated has an energy of 150 eV $\left(1 \mathrm{eV}=1.602 \times 10^{-15} \mathrm{~J}\right)$ and a wavelength of $1 \dot{\mathrm{~A}}$, which is just about that of a typical x-ray photon.
Experimental verification of de Broglie's hypothesis Came in the years 1927-1928 as a result of the effor of Clinton Joseph Davisson (1881-1958) and Lester Germer (b. 1896) in the United States and Sir George Paget Thomson (1892-1975) in Great Britain. Davisson and Germer used a nickel crystal (face-centered cubic structure) as a three-dimensional diffraction grating for electrons. When a $54-\mathrm{eV}$ beam was incident, perpen

igure 19.6 The Davisson-Germer experiment.
dicular to the cut face of the crystal, as shown in Fig. 13.6 , a strong reflection appeared at 50° to the normal. Making use of the grating equation,

$$
\begin{equation*}
a \sin \theta_{m}=m \lambda, \tag{10.39}
\end{equation*}
$$

we find that the first-order ($m=1$) maximum corresponds to

$$
a \sin \theta_{1}=\lambda .
$$

n this instance the lattice spacing a is $2.15 \AA$. and so $\lambda=2.15 \sin 50^{\circ}$ or $1.65 \AA$, in fine agreement with the value of 1.67 A computed from the de Broglie equation (13.16). Amazingly enough, a beam of electrons had o a Girst observation of etectron diGmation that was made firs Davisson and Germer was quite accidental, they were

13.4 Particles and Waves 547

54 Chapter 13 Some Aspects of the Quantum Nature of Light

(a)

Figure 13.9 Difiraction patterns genarated by (a) neutrons, (b) x-ray
photons incident on a single crysel of NaCl. A polycrogaline apecimea would produce s greal many randomly oriented dot patterns of this sort which would blend lito the ring swotems of Fig. 19.7. (Phood (a) by E.O. Wollarh which along with (ib is from Lapp and Andrews, Clifts, N.J. (1963).]
rings (Fig. 13.7). In 1928 E. Rupp diffracted sow electrons (70 eV) at grazins incidence optical grating (1300 lines per cm) and observer secondt, and third-order images. Two yearsed fo 1930, I. Estermann and Otto Stern demonse occurzence of diffraction effects using beaxis helium atoms and molecular hydrogen.
In recent times it has become possible remarkable range of interference and did terns using electrons, as witness the photof 13.8.

Out of the long list of material particles that been observed to display wave properties, neut amongst the most useful. Because they carry ng yet be immune to the eiectrical forces theng yet be immune to the electrical forces that striog ght thermal neutrons (generaily originating fromic hermal neutrons generaily originating from ni? of atomic structure (Fig. I3.9).
Not very long ago (1969), a beam of neutral atoms was used to observe diffraction arisite fromi a macroscopic slit ($23 \times 10^{-6} \mathrm{~m}$ wide). The resul tern was in accord with de Broglie's hypothesignty in scalar Fresnel diffraction theory.*
We are limited by our language to a list of words much as ou: worldly experiences limit hose words bring to mind. Our senses hiou read t environment and in so doing provided the ${ }^{1}$ 解 anderstanding of it. In what seermed a logicall we have tried, a bit naively, to use macroscopie to describe submicroscopic entities. But eleupif 2 ? not behave like miniscule billiard balls any more than light can be pictured in terms of scaled-dow ocean waves. Particles and waves are macnuscont.
which gradually lose their telerance as we approaid. which gradually lose

13.5 PROBABILITY AND WAVE OPTICS

The fundamental wave nature of optical was established well overa hundred years

the familiar fringe pattern of Young's experiment. Thus the average number of photons impinging on a smal area element $d A$, in a time interval d, will be ($I d A d t) / h$ where I, of course, varies from one point to the rex over the surface of the screer. Keep in mind that we can only detect the emission or absorption of a photon, that is, its interaction with matter. There is no way to predict where a particular photon will arrive on the plane of observation, although some regions are mor likely sites than others. Accordingly, if a total of N photons strike the screen in each interval di, we can say that each phocan has a of arring at che given area element A . The iriaiance, as at this point to irtroduce, at lenst conceptually, a com pex quantity known as the probability amplitude th is a cuant ity whose absolute value sq. ${ }^{*}$ red the so-called rare-intensity) yields the probability distribution. It is this probability amplitude propagating as a wave that describes the whole range of interference effects. For exarriple, in Young's experiment the photor's probabil ity amplitude for reaching its final state is the sum of two amplitudes, each of these being associated with the photon's passage through one of the slits. The various contributing amplitudes in a given situation overlap and thereby effectively interfere, yieling the resultan probability amplitude and from that the irradiance. In answer to our initial question, we can say that it is the probability ampitude associated with the photon that is oscillating. Bear in mind that the same kind of discom forting reinterpretation of familiar ideas that we are encountering now had to be made when Maxwell' electromagnetic theory first emerged on the srene. Let's now briefly examine the implications of a rather amound Nol lade cist and Nobel laureate Paul Adrien Maurice Dirac (1902-1984):

$$
\begin{aligned}
& \text {...each photor interferes only with isself. Interference } \\
& \text { between different photons never occurs* }
\end{aligned}
$$

This is in accord with the conclusion that each photon possesses a distinct wave nature. Exidently the wave
properties of light are not autributable to the beam acting as a whole．In Young＇s experiment each photon somehow simultaneously interacts with bath slits；close either one and the fringes will disappear．Presumably， since each photon interferes with icseif，the same fringe pattern would gradually occur，one llash at a time，even if we shone a single photon a day at the slits．This remarkable conclusion was actually confirmed experi－ mentally hy Geoffrey I．Taylor，a student at the Univer－ sity of Cambridge in 1909．Using a light－proof box，a gas ⿴囗十me illuminating an entrance slit，and a number of attenuating smoked glass screens，he set about photo－ graphing the diffraction pattern in the shadow of a needle．By drastically reducing the incoming flux density，he was able to obtain exposure times of up to about 3 montins．In such cases the encrgy density in the box was so low hat there was usually only one photon theless，the customary array of difraction fringes theies，then difraction fring appeared，and moreover，

In no case was there any diminution in the sharpnoas
of the pattern．．．＊
Much of the foregoing discussion can be applied to material particles as well．In fact，the same dynamical equations determine the interrelationsbip of ν, λ ，and v with p and $\%$ for all particles，material or otherwise． Consequently from Eq．（ 13.11 ）we find that

$$
p=\left(\mathscr{E}^{2}-m_{0}^{2} c^{4}\right)^{1 / 2} / c,
$$

（15．17）
while $\lambda=h / p$ leads to

$$
\lambda=\dot{n} c /\left(\mathscr{C}^{2}-n_{0}^{2} c^{4}\right)^{7 / 2}
$$

Since $p-m v ; y=p c^{2} /\left(m c^{2}\right)=p v^{2} / 8$ and

$$
\begin{equation*}
v=c\left[1-\left(m_{0}^{2} c^{4} / \mathscr{C}^{2}\right)\right]^{1 / 2} . \tag{13.19}
\end{equation*}
$$

Evidently one of the main distinguishing characteristic of the photon is just its zero rest mass．In that case，the above equations simply become $p=\varepsilon / G, \lambda=h c / 8=c / v$ and $z=c$ ．
In a way analogous to that of the photor，the probabil ity amplitude or de Braglie wave for a matter field is
＊G．I．Tayios，＂Interference Fringes with Fecble Lighs，＂Proc．Camt Phil．Soc，15， 114 （ 1909 ）
represented by the function $\psi(x, y, z, t)$ 位so： particle of finite rest mass is then propor of find wave－intensity $|\psi|^{2}$ ．One determines the wave ${ }^{2}$ for a particular circumstance involving mate furg cies from the Schrödinger equation．Once materigl probability amplitude of the particle that is propagates through space as a wave，and interference．

13．6 FERMAT，FEYNMAN，AND PHOTONS

In classically treating interference and diff ret lems with coherent waves，one generally sum electric fieid contriburions at a given point－ frequently being written in complex form． of the absolute value of this sum is proportion irradiance and is consequently proportional tog ablity of finding a photon at the point in qued the fines of Richard Feynman＇s elegant yatifa mulation of quantum mechanics．＊Supposef mulacion of quantum mechanics．Stuppose point S and is later detected at point A ．The of arrival，P is equal to the square of the abso of arrival，P ，is equal to the square of the abs
of a complex quantity Φ ，which，as before，i the probability amplitude，that is，$P=|\Phi|^{2}$ ， classical treatment，where the field was expresser ti complex form as a convenience，Φ must be comple the quantum－mechanical formulation．Conso has an amplitude and a phase，the latter being of both the spatial position of A and time can occur by several alternative routes 1,2 ， it was postulated by Feynman that in such ciases on path contributes to the totai probability amplitude In words，

$$
\begin{aligned}
& \Phi=\Phi_{1}+\Phi_{2}+\Phi_{3}+\cdots \\
& P=\left|\Phi_{1}+\Phi_{2}+\Phi_{3}+\cdots\right|^{2}
\end{aligned}
$$

and so

R．P．Feyoman＂Space－Tirme A．pproach to Non－Rec tum Mechaniss，＂Rev．Mod．Phss 20,367 （1948）．
furber poalulaned that the magnitudes of thes It wid turther probability enplitssdes are all equal，that is，

$$
\begin{equation*}
\left|\Phi_{1}\right|=\left|\Phi_{2}\right|=\left|\Phi_{3}\right|=\cdots, \tag{18.22}
\end{equation*}
$$

whereas their phases are not equal and indeed depend on the particular patis．Note that a value of $P=1$ means that the partice will that it will most definitely not reach While P 隹te generally then，P will range in value between A Quite genquation（13．21）evidently introduces the and anon interference into the scheme，whether $\frac{1}{2}$ T／for photons or electrons．In contrast，if we werc hining with classical particles，such as a stream of BB －1 Hings，P would equal $\left|\Phi_{1}\right|^{2}+\left|\Phi_{2}\right|^{2}+\left|\Phi_{3}\right|^{2}+\cdots$ ，and Wetes would be no interference；in other words，P would froependent of the individual phases．As with inco－ Mgnt light，one then adds irradiances rather than amplitudes．
Let＇s now turn to the idealized Young＇s experiment Lefig．I3．10，consisting of two extremely small slits．In㿥 case

$$
\begin{equation*}
P=\left|\Phi_{1}+\Phi_{2}\right|^{2}, \tag{13.29}
\end{equation*}
$$

There are effectively two paths，one through each Thre．If the phases of the probability amplitudes at Wiifer by an odd multipie of π ．they will interfere
ithectively，that is， ：Hituctively，that is，

$$
P=\left(\left|\Phi_{\mathrm{r}}\right|-\left|\Phi_{2}\right|\right)^{2}=0
$$

（13．24）

On the other hand，if they are in phase，constructive interference results at A ，whercupon

$$
P=\left\{\left|\Phi_{1}\right|+\left|\Phi_{2}\right|\right)^{2}=4\left|\Phi_{1}\right|^{2}, \quad(18.25\}
$$

which is equivalent to

$$
\begin{equation*}
I=4 I_{0} \cos ^{2} \frac{8}{2} \tag{9.5}
\end{equation*}
$$

for $\delta=0, \pi, 2 \pi, \ldots$ ．The phases of the probability amplitudes at A depend on the path lengths traversed along each route，so P can dearly have any value between these extremes as well．In the same way，if we were shooting BB pellets through two small holes，the probability of their arriving at A would be the sum $\left|\Phi_{1}\right|^{2}+\left|\Phi_{2}\right|^{2}$ ．Here $\left|\Phi_{1}\right|^{2}$ and $\left|\Phi_{2}\right|^{2}$ are simply the individual probabilities of arrival with either hole 1 or hole 2 oper，respectively，as midicated in BB pellets is just the juch aperture；there are no fringes and no interference． If wo the probability of a photon reaching A would bc

$$
P=\left|\sum_{i=1}^{N} \Phi_{i}\right|^{12} .
$$

For a large aperture，for example，a lens or mirror，the summation becomes an integril over the area of th aperture．Incidentally，Feynman has shown that，for material particles，the total value of the probability

Fione tixin Doubic－beam experiment

Fhgure 1s．11 Lower hole overed in double－beam netap．
amplitude for all paths is the wave function satisfying Schrödinger＇s equation．
We now go back to the picture of a single ray of light leaving a source and reflecting off a mirror，ultimately to arrive at a sensor．The protability of a photon to arrive at a sensor．The probability of a photon encountering the sensor is determined by Φ ，which in possible parhs．All of this talk about paths should bring possible paths．All of this talk about paths should bring to mind Fermar＇s prisciple（Section 4．2．4），which maint Everything fits together rather nicely when we realize that the relative differences in path length and phase of the corresponding probability amplitudes at the sensor are small only for paths near the stationary one （ $\theta_{i}=\theta_{z}$ ）．These probability amplitudes interfere con－ structively，thereby providing the predominant contri bution to P ．This is then the quantum－mechanical basi for Fermat＇s principie．Probability amplitudes associ sted with paths remote from the staionary one wil have large phase－angle differences resulting in relativel little cumulative effect on \boldsymbol{P} ．Tbis discussion is reminis cent of the Cornu spiral（Section 10．3．7），which in quite an analogous fasbion can be thought of as the diagram maric sum of a grear nuaber or dhars，cach different amplitude but the same phase angle，suppain un the as ar a long slit In that cas ，
＊To vee how these ideas are rehared to Harnilon＇s pringiple function the prindiple of Least action，and the WKB approximation，refers，for the prindple of Least action，and the WKA approximasion，refes，fo Appheations，p 44，and S．Borowit，Fundemmials of Qzantum Mechanices p．165．
pond to the tightly wound regions of the spiral an herefore contribute litte to the complex rayng
 proporional to \mathbf{D}_{12} 手 Equation（13．20 cat crms of the adion of number of equal pidiss n terms of the addition of a number of equali－axyminal f the magnitude of the resultant．Phasors core ing to probability amplitudes for paths in the o stationary one differ in phase by very herefore add almost along a straight line，tote a major contribution．Where the relative phaga cessive phasors is large，the curve spirals anolu ittle effect on Φ ．The analogy can even be extemo If now visualize the Cornu spiral as if it 縉re coits posed of a great number of equai－amplituade fofere Whose phase angles are ever increasing assh he？ arther from the center of the spiral from Eq ．（1id） $\left.\beta=\pi w^{2} / 2\right]$ ．In any event the phasor representationt he contributing probability amplitudes is a handif device to keep in mind．

13．7 ABSORPTION，EMISSION，AND SCAIERIM

Let＇s now take a brief look at the quantum－1 Let＇s now take a brief look at the quantum－inders． between light and matier．Suppose that a photon of frequency v_{s} collides with and is absorbed by aniciom． Energy is transmitted to a bound electron，resuifing in the excitation of the ztom．The absorption probability is greatest when the frequency of the incident pirli－ is equal to an excitation energy of the atom（seessyms

14．In dense gases，liquids，and solids，absorption ms over a range or band of frequencies，and th try is gene rally dissipated by way of intermolecula dions，In contrast，the excited atoms of a low Whisure gas can reradiate a photon of the same posure $\left(\nu_{1}\right)$ in a random direction，a process first ntarived by R．W．Wood in 1904 and known as reso－ of fige radiation．Accordingly，there is preponderant ＂fthering at frequencies coincident with the excitation efrgies of the atoms．The effect is easily demonstrated Whe Wood＇s technique，which incorporates an evacu－ didalass bulb containing a bit of pure metalic，sodicm radually heating the bulb increases the sodium vap sin with a strong beam of liph from a sodium hared with a sha a bith of arc that portion will glo Na
resolankering can also occur at frequencies other than atering canding to the atom＇s stable energy levels． Th cases a photon will be reradiated without any seciable time delay and most often with the same sy as that of the absorbed quantum．The process多wn as elastic or coherent scattering，because there Aphase retationship betweer the incident and scat－ ed fields．This is the Rayleigh scattering we talked pout in Section 8．5．1．
is also possible that an excited atom will not return ． mitial state after the emission of a photon．This Wid of behavior had been observed and studied exten－ Hyzly by George Stokes prior to the advent of quantum 4isory．Since the atom drops down to an interim state， If gmits a photon of lower energy than the incident Aimary photon，in what is usually referred to as a Siokes 7hsilion，If the process takes place rapidly（roughly
TH ${ }^{*}$ s）it is called flourescence，whereas if there is an
 Whreciable delay（in some cases seconds，minutes，or
iminany hours），it is known as pbosphorescence．勆 ultraviolet quanta to generatc a fluorescent復loz of visible light has hccome an accepted occur－ in our everyday tives．Any number of common－ naterials（e．g．，detergents，organic dyes，and tooth Till），will emit characteristic visibic photons so that
 hexidesprasd use of the phenomenon for commercia！ displir purposes and for＂whitening＂cloths．

If quasimonochromatic light is scattered from a sub－ stance，it will thereafter consist mainly of light of the same frequency．Yet it is possible to observe very weak additional components having higher and lowe frequencies（side bands）．Moreover，the difference between the side bands and the incident frequency is found to be characteristic of the material and chese－ fore suggests an application to spectroscopy．The span－ tareors Ramam effect，as it is now called，was predicted in 1929 by Ach Sir in 190）by Sir cher of Calte The fer was difficult to put to actual use berase one needed strong sources（usually Hg dis charges were used）and larse samples，Often the ultra yiolet from the source would furthercomplicate matter hy decomposing the specimen．And so it is not surpris－ ing that little sustained interest was aroused by the promising practical aspects of the Raman effect．The aituation was changed dramatically when the lase

Figure 13.13 Spontaneous Raman sattering．

Figure 19.14 Rayleigh scattering
became a reality. Raman spectroscopy is now a unique and powerful analytical tool
To apprecate how the phenomenon operates, let's eview the germane features of molecular spectra. A molecule car absorb radiant energy in the far-infirared and microwave regions, converting it to rotational kinetic energy. Furthermore, it can absorb infrared photons (i.e., ones within a wavelength range from roughly $10 \mathrm{~mm}^{-2}$ down to about 700 nm), transforming

Figure 13.15 A laser-Ramar system.
that energy into vibrational motion of the \quad n
FinaIIy a molecule can absorb energy in the ultraviolet regions through the mechanion transitions, much like those of an atom. Supt hat we bave a molecule in some vibrational stare using quantum-mechanical notation, we call (b) as in di cated diagraromatically in Fig. I3.13(a). This necessarily be an excited state. An incident phetodon energy $h \nu_{\mathrm{i}}$ is absorbed, raising the system to someton mediate or virtual state, whercupon it intivit makes a Stokes transition, emitting a (scatten) of energy $h \nu_{s}<h \nu_{i}$. In conserving ent diference $h \nu_{i}-h \nu_{\nu}=h \nu_{c b}$ goes into excitin圆 bio possible that electronic or total energy level $10 / 4$ as well Alternativeiy if rotational excitation .he ial state is a one (just heat the sample), the molecule, aftered state [Fig. 13.13(b), thereby mack to an everif ransition. In this instance $h \nu>h \nu$ which mant some yibrational energy of the molecule (ha $=0$

(4) has been converted into radiant energy. In either le the resulting differences between ν_{s} and ν_{i} corre Snd to specific energy-level differences for the sub Gince under study and as such yield insights into its
 sake depicts Rayleigh scattering where $\nu_{s}=\nu_{i}$. The laser is an ideal source for spontareous Raman scatering. It is bright, quasimonochromatic, and availa a wide range of frequencies. Figure 13.15 ullus oitruments laser-paman system. Conplete available Thinding the laser (usually belium-neon, argon, of (mototon), focusing lens systens, and photon-counting Gitronics. The double scanning monochromator pro-倬 the nceded discrimination between ν_{i} and ν_{s}, since undifted laser light $\left(\nu_{i}\right)$ is scattered along with the Reman spectra (ν_{s}). Although Raman, scattering associwith molecular rotation was observed prior to the

Figure 13.16 Stimubuted Raman scaltering. (Sae R W. Minck, R. W. Terhune, and C.C. Wang. Proc. IEEE
use of the laser, the increased sensitivity now available nakes the process easier and allows even the effects of electron motion to be examined

13.7.2 The Stimulated Ramon Effect

In 1962 Eric J. Woodbury and Won K. Ng rather In 1962 Eni J. Woud a remarkable related eftect fortuitously discovered a remarkable related effect known as stimuloted Raman souttoring. They had been
working with a million-watt pulsed ruby laser incorworking with a million-watt pulsed ruby laser incor-
porating a nitrobenzene Kerr cell shutter (see Section porating a nitrobenzene Kerr cell shutter (see section
8.11.8). They found that about 10% of the incident energy at 694.3 nm was shifted in wavelength and appeared as a coherent scattered beam at 766.0 nm . It was subsequently deteruined that the corresponding frequency ahift of about 40 THz was characteristic o ane of the vibrational modes of the nitrobenzene

igure 13.17 Encrgy-icvel diagram of stimulated Raman scattering.
molecule, as were other new frequencies also present in the scattered beam. Stimulated Raman scattering can occur in solids, liquids, or dense gases under the ffluence of focused high-energy taser pulses (Fig 3.16). The effect is schematically depicted in Fig. 13.17 Here two photon beams are simultaneously incident on molecule, one corresponding to the laser frequency p_{p}, the other having the scattered frequency ν_{s}. In the $4_{\text {i }}$, the other having the scattered frequency ν_{s}. in the
original setup the scattered beam was reflected back and forth through the specimen, but the effect can occur without a resonator. The laser beam loses a photon $h \nu_{i}$, while the scattered beam gains a photon $h \nu_{s}$ and is subsequently amplified. The remaining energy (hu, $h \nu_{s}=h \nu_{b a}$) is transmitted to the sample. The chain reaction in which a large portion of the inciderat beam is converted into stimulated Raman light can only occur above a certain high-threshold flux density of the exciting laser beam.
Stimulated Raman scattering provides a whole new range of high-dux-density coherent sources extending rom the infrared to the ulitraviolet. It should be menioned that in principle each spontancous scattering mechanism (c.g., Rayieigh and Brillouin scattering) has ts stimulated counterpart.*

* For iurther reading on these subijects you might try the review-
 Effect," Am. I. Phss. $\mathbf{5 5}, 989(1967)$. It contains a fairly good biblogra-
phy as well as a historical appendix. Mary of the papers in Lasmet and Light also deal with this naterial and are highly recommended

PROBLEMS
13.1 Suppose that we measure the emitted from a small hole in a furnace to be $22.8 \mathrm{~W} / \mathrm{s}$ an optical pyrometer of some sort. Compute temperature of the furnace.
13.2* When the Sun's spectrum is photograiz using rockets to range above the Earth's atmoss it is found to have a peak in its spectral exitad $\dot{\text { L }}$, at roughly 465 nm . Compute the Sun's surface Cm perature, assuming it to be a blackbody. This apptent
mation yields a value that is about 400 K too hiogh mation yields a value that is about 400 K too higght
13.3 Beginning with Eq. (13.4), show that the per unit frequency interval for a blackbody is giver by

$$
I_{r y}=\frac{2 \pi h \nu^{3}}{c^{2}}\left[\frac{1}{e^{k \nu / k T}}-1\right] .
$$

13.4 Compute the wavelength of a $0.15-\mathrm{kg}$ be moving at $25 \mathrm{~m} / \mathrm{s}$. Compare this with the wavelen a hydrogen atom ($m_{0}-1.673 \times 10^{-27} \mathrm{~kg}$) haty speed of $10^{3} \mathrm{~m} / \mathrm{s}$.
13.5* Determine the energy of a $500-\mathrm{nm}$ (50 s photon in both joules and electron voits. Make the calculation for a $1-\mathrm{MHz}$ radio wave.
13.6 Write an expression for the wavelegg ${ }^{1010}$ of a 13.6 Write an expression for the waveleng of a
photon in angstroms $\left(1 \AA=10^{-10} \mathrm{~m}\right)$ in terxil of its photon in ang
energy in eV .
13.7 Figure 13.18 shows the spectral intadiant ing on a horizontal surface, for a clear day, a with the Sun at the zenith. What is the most eneriog photort we can expect to encounter (in eV and ant
13.8* Suppose we have a $100-\mathrm{W}$ yellow the ht bult $550 \mathrm{~nm}) 100 \mathrm{~m}$ away froma $3-\mathrm{cm}$-diametersal luttered aperture. Assuming the bulb to have a 2.5% o radiant power, how many photons will p the aperture if the shutter is opened for
13.9 The solar constant is the radiant flux densidfor spherical surface centered on the Sun having 艮radia

equal so that of the Earth's mean orbital radius; it has thent $0.188-0.14 \mathrm{~W} / \mathrm{cm}^{2}$. If we assume an average sidength of about 700 nom, how mamp phiceonsat most Arive on each square meter per second of a solar call pard just above the atmosphere?
13.1 With respect to the photoelectric effect, imagine we have an incident beam with an irradiance of We have an incident beam with an irradiance of gy per quantum? Supposing the target atoms to
名 radii of $10^{-10} \mathrm{~m}$, how long would it take for any them to accumulate the energy of a single photon, hem to accumulate the energy of a single photon, classicaily that an atomic oscillator absorbs at energy with an effective area of the order of λ^{2} onance. How does this help

The work function for outgassed polycrystalline is 2.28 eV . What is the minimum frequency a mast have in order to iberate an elecrron? What the maximum kinetic energy of an electron IV a $400-\mathrm{nm}$ photon?
4. Suppose that we have a beam of light of a given density incident on a photoelectric tube. Draw a of i_{p} versus V showing what we might expect to pen to the stopping potential as the frequency is wased from ν_{1} to ν_{2} to ν_{3}.
13.13 To examine the gravitational red shift conside a photon of frequency ν, which is emitted from a star having a mass M and a radius R. Show that at the star's surface the energy of the photon is given by

$$
g-h v\left(1-\frac{G M}{c^{2} R}\right) .
$$

When it arrives at the Earth, having essentially escaped the gravitational pull of the star, the photor will have a lower frequency. Show that the frequency shift is then

$$
\Delta \nu=\frac{G M}{i^{2} R} \nu
$$

The effect is quite noticeable for the class of stars known as while awarys. (This problem should have been analyzed using general relativity, but the answer would have been the same.)
13.14 Compute the fractional gravitationa! red shift that is, $\Delta \nu / \nu$, for the Sun ($M=1.991 \times 10^{30} \mathrm{~kg}$ arid $R=6, \mathrm{~m}$). How in
13.15 Show that a pheton moving upward a distance 13.15 Shew's a pravitational Geld (Section 13.4) will undergo a frequency decrease equal to

$$
\Delta \nu^{-}-g d v / c^{2} .
$$

Compute the value of $\Delta v / \nu$ if $d-20 \mathrm{~m}$. Pound and Rebia actually measured that shift in a vertical tower at Harvard University, using the extreme sensitivity of the Mössbauer effect
13.16 This problem concerns itself with the bexdin of a beam of light as it passes a massive body, such a the Sun. It should actually be solved using genera rather than special relativity because of the presence of gravity. As a result, our simple approach yields half the correct answer. Be that as it may, let us plunge on. Sho that the force component acting on the photon trans verse to its initial direction of motion (Fig. 13.19) is given by

$$
F=\frac{G M m}{R^{2}} \cos ^{3} \theta
$$

Since $c d t-d s=d(\boldsymbol{R} \tan \theta)$, show that the total trans verse component of momentum received by the photon is

$$
p_{\perp}=\frac{2 G M 7 n}{c R} .
$$

Inasmuch as $\phi_{\|}=m c$, compute ϕ for the Sun ($R=$ $6.960 \times 10^{8} \mathrm{~m}$ and $M^{-1}=1.991 \times 10^{30} \mathrm{~kg}$)

13.17* Imagine that we accelerate a beam of electrons through a potential difference of 100 V and then caus it to pass through a slit 0.1 mm wide. Determine the angular width of the central diffraction maximum (m_{0}) $9.108 \times 10^{-31} \mathrm{~kg}$). How do things change if we decreas the beam's energy?
13.18 A thermal neutron is one that is in thermal equilibrium with matter at a given temperature. Com pute the wavelength of such a neutron at $25^{\circ} \mathrm{C}$, - room temperatare). Recall from kinetic theory that the average kinetic energy would be equal to $\frac{3}{2}$ T (Boltzmann's constant $\mathrm{k}=1.380 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ and m_{0} $1.675 \times 10^{-27} \mathrm{~kg}$.)
13.19 In Young's experiment can we imagine that an incident photon splits and passes throught boobb slits? iscuss your concluston.
13.20* Suppose we have a laserbeam of radius avelength λ. Using the uncertainty principhes $x \Delta p_{x}$, make an approximate calculation of the spas ius q o conce P way a creen distance R away
13.21 What is the pholon fux Π of a $1000-W$ contipe... CO_{2} taser emitting at $10,600 \mathrm{~nm}$ th the IR?
3.22 Derive the dispersion relation, that is, ivistically in a region where it has constant potentit energy U.
13.23* Derive an expression for the dispersion tion of a free (U^{-})), relativistically moving parte rest mass m_{0}.
13.24 Assuming that the de Broglie wave for as in a region where its potential energy is constangis.
by
$\psi(x, t)=C_{1} e^{-i(\omega t+k x)}+C_{2} t^{-x \rightarrow t}$.
we the results of Problem (13.22) to show that

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m!} \frac{\partial^{2} \psi}{\partial x^{2}}+U \psi .
$$

This is a form of the famous Schrödinger egin af an quantum mechanics.

14 SUNDRY TOPICS FROM CONTEMPORARY OPTICS

141 IMAGERY - THE SPATIAL DISTRIBUTION of optical information

The manipulatsent of all sorts of data via optical techHes has already become a technological fait accompli. literature since the 1960 s reflects, in a diversity of Hess, this far-reaching interest in the methodology of © ifal data processing. Practical applications have been whife in the fields of television and photographic image dhancement, radar and sonar signal processing (phased of synchetic array antenna analysis), as well as in pat Thynchecic array antenna analysis), as well as in pat (x)print studies), to list only a very few.

Brancern here is to develop the nomenclature and
of the ideas necessary for an appreciation of this
mporary thrust in optics.
1.1. Spatial Frequencies

Thical processes one is most frequently concerned Inal variations in time, that is, the moment-byPity alteration in voltage that might appear across of terminals at some fixed location in space. B tion spread across a rest often concerned wion in time For in fie 141(a) as a two -rat diuributinn. It might be an illuminated tran Weny. 4 television picture, or an ime projected on
a screen; in any event there is presumably some function $I(g, z)$, which assigns a value of I to each point in the picture. To simplify matters a bir, suppose we scan across the screen on a horizontal line $(z=0)$ and plot point-bypoint variations in irradiance with distance, as in Fig. 4.1(b). The function $I(y, 0)$ can be synthesized out of harmonic functions, using the techniques of Fourier he function is ruther complicated, and this instance, many terms to represent it adequacely. Yet if the func tonal form of $I(y)$ is known, the procedure is straigh forward erough. Scanning across another fine for example, $z=a$, we get $I(p, a)$, which is drawn in Fig. 14.I(c) and which just happens to turn out to be a series of equally spaced square pulses. This function is one that was considered at length in Section 7.7, and a few of its constituent Fourier components are roughiy sketched in Fig. 14.1 (d). If the peaks in (c) are separated, center tocenter, by say, I-cm intervals, the spatial period equals 1 cm per cycle, and its reciprocal, which is the spatial trequency, equals 1 cycle per cm .
Quite generally we can transform the information associated with any scan tine into a series of sinusoidal functions of appropriate amplitude and spatial requency. In the case of either of the simple sine- or square-wave targets of Fig. 14.2, each such horizontal scan line is identical, and the patterns are effectively one-dimensional. The spatial frequency spectrum of ourier components needed to synthesize the square ave is mine bottle candeb. On the hand, $I(y, z)$

(d)

Figure 14.1 A two-oimensional irradiance distribution.
and we have to think in terms of two-dimension ier transforms (Section 11.2.2). We might mêb weli that, at least in principie, we could nave tes the amplitude of the electric field at each point scenc and then periormed a similar decomparis that signal into its Fourier components. Recall (Section 11.3.3) that the far-field or He diffracion pattern is, in fact, identical to the : transform of the aperture function $\mathscr{Z Z}(y, z)$." TT ture function is proporionai to $\varepsilon_{A}(y, z)$, the scurm strength per unit area (10.37) over the input it objag plane. In other words, if the field distribution objo object plane is given by $s a(y, z)$, its two-dimen Fourier transform will appear as the field distent $E(Y, Z)$ on a very distant screen. As in Fig. 10.100 we

Figure 14.2 (a) Sine-wave target and do matrewormpo

Figure 14.s Diffracion pattern of a grating. (Source unknown.)

Can introduce a lens (L_{4}) after the object in order en the distance to the image plane. That objective Sis commonly referred to as the transform Iens, since Then imagine it as if it were an opfical computer capable Eifnerating instani Fourier transformıs. Now, suppose Ti mainate a some what idealized transmission grating shi as the plane wave eqianaing from a laser or ghimated, filtered Ho arc source (Fix 143 in in c_{c}, the amplitude of the field is assumed to be fairly phime over the incident wavefront. The aperture lontins is then a periodic step function (Fig. 14.4); in other vords, as we move from point to point on the
object plane, the amplitude of the field is either zero or a constant. If a is the grating spacing, it is also the spatial period of the step function, and its reciprocal is the fundamental spatial frequency of the grating. The central spot $(m=0)$ in the diffraction pattern is the dc bias level thar arises from the fact that the inpur is everywhere positive. This hias level can be shifted by construating the stepfunction patern on a wiform gray backgrourid. As the spots in the image (or in this case the transiorm) plane get farther from the central axis, their associated spatial frequencies (m / a) increase in accord with the grating equation $\sin \theta_{m}=\lambda(m / a)$. A

Difirrechon pastern
Figure 14.4 Square wave and its transtorm.
coarser grating would have a larger value of a, so that a given order (m) would be concomitant with a lower frequency, (m / a), and the
the central or optical axis.
Had we used as an object a transparency resembling the sine target [Fig. 14.2(a)], such that the aperture function varied sinusoidally, there would ideally have only been three spots on the transform plane, thes being the zero-frequency central peak and side of th order or furidamental ($n- \pm 1$) on either side of the center. Extending things into two dirmensions, a crosse grating (or mesh) yields the diffraction pattern shown in Fig. 14.5. Note that in addition to the obvious periodicity horizontally and vertically across the mesh, it is also repetitive, for example, along diagonals. A more involved object, such as a transparency of the surface of the moon, would generate an extremely complex
diffraction pattern. Because of the simple
nature of the grating, we could think of nature of the grating, we could think of its Fo components, but now we will certa:nly have light in the diffraction pattem derotes the presence patial frequency, which is protortionai to its d the optical axis (zero-frequency location). Frequent ponents of positive and negative sign appear cally opposite each other about the central could measure the electric field at each point transform plane, we would indeed observe, the in the form of the aperture function, but this is not 3 Instead, what will be detected is the flux-dent bution, where at each point the irradiance is prome ional to the time average of the electric field squp or equivalently to the square of the amplitude al. the particular spatial frequency contribution at the potilic.

14.1.2 Abbe's Theory of Image Formation

 just an elaborated version of Fig. 14.3(b) Plane
 is a distorted waveftont, which we recolve intorath set of plane waves, each corresponding to a given: -

Figura 145 Distation pattern of a cossed axerich lywere of photo uniknown.)

(a)

not there, a diffraction pattern of the object would appear on Σ_{i} in place of the image
appear on $\Sigma_{\text {, in }}$ place of the image.
These ideas were first propounded by Professor $F_{\text {rnst }}$ Abbe (1840-1905) in 1878.* His interest at the time Abbe (1840-1905) in 1878 .* His interest at the tirne concerned the theory of microscopy, whose relationship to the above discussion is clear if we consider $L_{\text {s }}$ as a
microscope objective. Moreover, if the grating is microscope objective. Moreover, ir the grating is
replaced by a piece of some thin translucent material (i.e., the specimer being examined), which is iflumi(a.e., the specimer being examined, which is itumi-
nated by light from a small source and condenser, the system certainly resembles a microscope.
Carl 2eiss (1816-1888), who in the mid-1800s was running a small microscope factory in Jena, realized the shortcomings of the tria-and-error development techniques of that era. In 1866 he enlisted the services of Ernst Abbe, then lecturer at the University of Jena to establish a moore scientific approach to microscope

* An alternative and yct ultimateily equivalent approsch was put forth in 1896 by Lord Rayleigh. He envisaged cach point on thr out foct in 1896 by Lord Rayleigh. He envisaged each point on the object as an Airy pattern. Each of these in turn was centered on the ideal inage point ton $z_{\text {, }}$ of the corresponding point source. Hous $\Sigma_{\text {; }}$ yas covered with a patterns.

Object pasar or focal plane
Image plane
Figure 14. 7 The image of a slit.
design. Abbe soon found by experimentation that a arger apertuse resulted in higher resolution, even though the apparent cone of incident ight filled orily a small portion of the objective. Somehow the surrounding "dark space" contributed to the image. Consequently, he took the approach that the then wellknown diffraction process that occurs at the edge of a lens (leading to the Airy pattern for a point source) was not operative in the same serise as it was for an incoherently illuminated telescope objective. Specimens, whose size was of the order of λ, were apparently scattering light into the "dark space" of the microscope objective. Observe that if, as in Fig. 14.e(b), the aperture of the objective is not large enough to collect all of the diffracted fight, the image does not correspond exactiy to thas
object. Rather it relates to a fictitious object whose complete diffraction pattern matches the one collected by L_{c}. We know from the previcus section that these lost portions of the outer region of the Fraunhoier pattern are associated with the hither spatial frequencies. And, as we shall see presently their removal will
resuit in a loss in image sharpness and resolutiocsil
Practically speaking, unless the grating earlict has an infinite width, it cannot acting co periodic. This means that it has a cortinuas spectrum dominated by the usual discrete Rount terms, the other being much smaller in amplitugat plicated, irregular objecis clearly display the of nature of their Fourier transforms. In anylta. shoutd be emphasized that uniess the objective Lerid infinite aperiure, it functions as a low-pass filcer sbatial frequencies above og given vaiue and passingurd
below (the former being these the belows (the former being those that extend beyond physicat boundary of the lens). Consequently. tical lens systems will be limited in their ability to duce the high spatial frequency content of ank object under coherent illumination." It might with optical ion systems with optical inn
frequencies, t

14.1.3 Spatial Filiering

Suppose we actually set u_{P} the system shown in Fige 14.6(a), using a laser as a plane-wave source. If the points S_{0}, S_{1}, S_{2}, and so on are to te the sources a Fraunhofer pattern, the image screen must presuf be located at $x=\infty$ (although 30 or 40 ft will offe At the risk of being repetitious, recall that the reason for using L_{0} originally was to bring the diffraction tern of the object in from infinity. We now ingw an imaging lens L_{i} (Figs. 14.8 and 14.9) in ordest in from infinity the diffraction pattern of source points S_{0}, S_{1}, S_{2}, and so forth, thereb Σ_{i} at a convenient distance, The transform the light from the object to converge in the form 0 diffraction patterin on the plane Σ_{i}; that is, ip on Σ_{4} a two-dimensional Fourier transform of To wit, the spatial frequercy spectrum of , whe
spread across the transform plane. Theread spread across the transform plane. Thereag

1720 (1966), for ments in optics.

\dagger R. J. Becherer and C. B. Partens If *Nonlineatily

figure 14.8 Object, transform, and image plares.
"inverts" transform lens) projects the diffraction pattern the light distributed over $\Sigma_{\text {e }}$ onto the image plane In other words, it diffracts the diffracted beam, which nform. Thus essentially an inverse transform of the ransform. Mesears as the fina! image. Quite frequently data $L_{\text {i }} L_{i}$ and L_{t} are identical ($f_{i}=f$ well-corrected in pritielement lenses [for quality work these might have musolutions of about 150 line pairs $/ \mathrm{mm}$-one line pair being a period in Fig. 14.2(b)]. For less demanding beng a period in Fig. 14.2(b). For less demanding applications mo projector objectives or large aperture oughly 30 or 40 cm serve quite ricely. One of these enses is then merely turned around so that both their ack focai planes coincicie with Σ_{t}. Incidentaliy, the gitor object plane need not be located a focal length from L_{t}; the transform still a ppears on Σ_{t}. Moving fects only the phase of the amplitude distriburion, that is generally of little interest. The device shown
 Compnater, It allows us to insert obstructions (i.e. Whaly fikers into the tranform plane and in so doing Waily or completely block out certain spatiai frequerrocess of altering the frequency spectrum of the image is Fowns of attering the frequency spectrum of the image is - beautiful, exciting and promising aspects of the

mour earlier discussion of Fraunhofer diffraction 2W that a long narrow sitt at Σ_{0}, regardless of its Wistion and location, generates a transform at Σ Whing of a series of dashes of light lying along a poing throph toe origin. Consequently, if the straight lint ibjea is described by $y=m z+b$, the diffraction
pattern lies along the line $Y=-\boldsymbol{Z} / m$ or equivalently, rom Eqs. (11.64) and (11.65), $k_{r}=-k_{z} / m$. With this and the Airy pattern in mind we should be able to anticipate some of the gross structure of the transforms of various objects. Be aware as well that theme transforms are centered about the zero-frequency optical axis of the system. For example, a transparent plus sign whose horizontal line is thicker than its vertical one has a two-dimensional transform again shaped more or less like a plus sign. The thick horizontal line generates a series of short vertical dashes, while the thin vertical element produces a line of long horizontal dashes. Remember that object elements with small dimensions Abbe, one could relatively large angles. Along with Lobe, one could hink of ence subject in these frequency fitering ind more modern infurence of communication theory. The vertical portions of the symbol E in Fis generate the broad frequency spectrum appearing as the horizontal pattern. Note that all parallel line sources on a given object correspond to a single linear array on the transform plane. This, in turn, passes throush the origin on Σ_{f} (the intercept is zero), just as in the case of the grating. A transparent figure 5 will generate a pattern consisting of both a horizontal and vertical disribution of spots extending over a relatively large requency range. There will also be a comparatively low-frequency, concentric ring-like structure. The ransforms of cisks and rings and the like will obviously be circularly symmetric. Similarly a horizontal elliprical aperture will generate vertically oriented concentric elliptical bands. Most ofter, far-field patterns possess a center of symmetry (see Prohlems 10.14 and 11.29).
We are now in a hetter position to appreciate the process of spatial filtering and to that end will consider an experiment very similar to one published in 1906 A. B. Rorker, Figure 14.10(a) shows a fine wire mesh of dus With the mesh as $\Sigma_{\text {w }}$ His ransform as it would appearo Σ Now the fun sta ince the transform information welating to the dust is located in an irregular cloud-like distribution about the center point, we can easily eliminate it by inserting an opaque mask at Σ_{t}. If the mask has holes at each of the principal maxima, thus passing on only those freque:1-
${ }^{666}$ Chapter 14 Sundry Topics from Contemporary Optics

14.1 Imagery-The Spatial Distribution of Optical Information

Figure 14.9 (continued)
cies, the image appears dustless [Fig. 14.11(a)]. At the Ath atreme if we just pass the cloud-like pattern center, very hitue of the periodic scructure appears, Ales [14.11(b)] Passing only the zero-order central generates a uniformly illuminated (dc) field, just
. the mesh were no longer in position. Observe that as more and more of the higher frequencies are eliminated, the detail of the image deteriorates markedly [(d), (e), and (f) in Fig. 14.11]. This can be understood quite simply by remembering how a tunction, with what
we might call "sharp edges," was synthesized out of

Clol

(6)
harmonic components. The square wave of Fig. 7.1 serves to illustrate the point. It is evident that the addi tion of higher harmonics serves predominantiy to square up the corners and latten our the peaks and trougs of the pronle. 1 aim whe thail between light and cro is and ar fous of the en frion and consequept loss of resolution in the two-dimensional case. wo-dimensional case.
Tig. 14.1!(c)] by passing eyerything bat the central apot? A point on the original image that appears black in the photo denotes a near-zero irtadiance and perin the photo denotes a near-zero irtariance and, all of the various optical field components completely cancel each other at that point-ergo, no light. Yet with the rempval of the dc term the point in question must certainiy then have a nonzero field amplitude. When quared ($I \propto E_{d}^{2} / 2$) this will generate a nonzern irradiance. It follows that regions that were originally black in the photo will now appear whitish, while regions that were white will become grayish, as in Fig. 14.12.
Let's now examine sorne of the possible applications of this technique. Figure 14.13(a) shows a composite photograph of the Moon consisting of film strips pieced together to form a single mosaic. The video data were telemetered to Earth hy Lunar Onbitar I. Clearly the grating-like reguiar discontinuiticg between adjacent strips in the objed photograph generate he broadband is 13 , When these frequency on onents are rive the ehanced imate shows no sign of haping been a mosaic. In very muct the same way, one can uppress extraneous data in bubble chamber phowraphs of subatomic particle tracks.* These photographs are made difficult to analyze because of the presence of the unscattered beam tracks (Fig. 14.14),
D. G. Fateconer, "Optical Processhing of Bubbic Chamber Proto-

which, since they are all parallet, are easily गrated b spatial Fitcering.
Consider the famitar half-tone or facsimile by which a printer can create the itlusion of vatith take a close lock at a newspaper photo cake a close look at a newspaper photogit
transparency* of such a facsimile is insert trabsparency* of such a facsimile is inserit of it If Fig. 14.8, its frequency spectrum will appeays on Σ Once again the relatively high-frequency contigenme This yieids an innage in shades of gray (Fichan) showing none of the digcontinuous nature . original. One could construct a precise filter to of hemer only the square mesh frequencies by actually virersa negative transparency of the transform of thensa checkerboard artay. Alternatively, it usually use a low-pass circular aperture fiter, and igha inadvertenily discard some of the high-frequen, of the original scene, at least as long as frequency is comparatively high. The same p can be used to remove the graininess of highly photographs, which is of value, for example photo reconnaissance. In contrast, we could shi the details in a slightly blurred photograph by ϵ ing its high-frequency camponents. frequency portion of the spectrum A reafe deal of frequency portion of the spectrum. A gred he study effot, hat imate estancement, and densuing of photographic mage exhle indeed. Fromititing among these contributors is A. Marechal of the Institus d'Optique, Universite de Paris, who haskic absorbing and phase-shifting filters to recong detail in bacly blurred photographs. Thesed ters an transparent coatings deposited on optical Ades so as th retard the phase of various portions of the peyectrut (Section 14.1.4). As this work in optica! dataproctaing coationes inlo As this work in optica! data krocheng codnangine

[^15] while Kociak 649 plates are good where higher repolit?
of the transparency.

the corning decades, we will surely see the replacemen of the photographic stages, in increasingly tnany applications, by real-fime electro-optical devices (e.g., a arrays input are are tight modulators forming a moutichanne puter will reach a certain maturity, becoming an even more powerful wool when the input, filtering, and output functions are performed electro-optitally. A confinuous stream of real-time data could flow into and out of such a device.

14.1.4 Phase Contrast

It was mentioned rather brieffy in the last section that the reconatructed inpage ocould be altered by introducing 2 phase-shiftitg fiter. Probably the best-known example of the rchnique dates back to 1ask and he work of metrod of phase contrast and applind it in the phan method of phase contras! miacrascoper
An object can be "seen" because it stands out from which provides contrass a color, tone, or lack of color of structure is known as an andlityde objech, because it is observable by dint of variations that it causes in the is observable by dint of variations that it causes in the reflected or transmitued by such an object becomes amplisude madulated in the process. In contradistinction, it is often desirable to "see" phase objects, that is, ones that are transparent, thereby providing practizlly no contrast with their environs and altering only the phas of the detected wave. The optical thickness of such objects generally varies from point to point as either the refractive index or the actual thickness or both vary.
 more extensive discussion of these matters is siven, for exampice by Goodman in Introducion to Fourier Ophics, Crapter 7 . Thas text als includes a good reference list for further reaniris in the journal literaturc, Also see P. F. Mucller, "Linear Multipic Inage Storage." Appl. Opt 8,267 (1969L Here, as in much of molert optics,
frontiers are iast moving, and obsolestrnce is a hard fider.

(6)
of (a) ———He erorath order was removed. (Photos from D. Dution, M, © Grent in' E. Hopkins, Speokra-Phwies Laser Tedmical Bulikith

Obviously, since the eye cannot detect phase vaziza such objectsare ne eye cand biologists to develop techniques ior staining to microscope specimens and in so doing to centig
 unsatisfactory in many respects jor exumplo what the unsatisfactory in many respects, jor esumpli, whan

(a)

(b)

(c)

(4)
 Moon. (b) Filtered version of cha photo sans horivoncial lines. (\&) A trpizal 2 пoomscape. (d) Dififration partern with the vention dor parkeren finterern wikh Chooos crartery D. A. Ampler, W. A. BlikKeh, The Conductron Corporations, and
N.LS.A.)

tain kills the specimen whose life processes are under stady, as is all teo often the case.
Recall that diffraction occurs when a portion of the surface of constant phase is obstructed in some way, chat is, when a region of the wavefront is aitered (either in amplitude or phane, ie., shape). Suppose then that a plane wave passes through a transparent particle,
which retards the phase of a region of the emerging wave is no longer periectly planar tains a small indentation corresponding to conretarded by the specimert the wave is phasif te are Taking a rather simplistic view of thinzs ..lled inagine the phase-modulated wave $E_{P M}\left(x_{+}\right)$(Fie) 14.16) to consist, of the original incident plane wave $E_{i}(x, t)$ plus a localized disturbance $E_{a}(r, u)$. (The wave r means that $E_{P_{M}}$ and $E_{d} d e p e n d$ on x, x andib: i.e. they yary over the $y z-p$ pane, whereas E_{i} is uniforth and does not.) Indeed, if the phase retariation is verem and the iocalized aisturbance is a wave of very smalligest tude, $E_{0 \text { ox }}$ lagging by just about $\lambda_{0} / 4$, as in Fig. 度 There the difference between $E_{P_{A}}(r, t)$ and shown to be $E_{d}\left(r_{s} i\right)$. The disturbance $E_{i}(x, i)$ 迬 ted ubue The former produces a uniformly in field at Σ which is prafected by the ot jea batrer carries alj of the information atout the structure of the particle. After broadly divertirn the object. these, higher-order spatial frequeno. (see Section 14.1.2) are caused to converge on'in: plane. The direct and diffacted waves recomp plane. The drect and dufracted waves recom:-
of phase by $\pi / 2$, again forming the phase-modth: wave. Since the amplitude of the reconstructegh way $E_{P M}(\mathrm{r}, \Lambda)$ is everywhere the same on Σ_{i}, even lameni the phase varits from point to point, the fux tensit is uniform, and no image is perceptible liaekise, the

igure 14.15 A self-portrait of K. E. Bethethe. of only black ard white regions as in a maditore. the higis frequenctes are filered outs, thades of

4 4ith-order spectrum of a phase grating will be $\pi / 2$ phase with the higher-order spectra. Ge could somehow shift the relative phase between diffracted and direct beams by an additional $\pi / 2$ TH to their recombination, they would still be coherand could then interfere either constructively or puctively (Fig. 14.18). In either case, the reconstrucavefront over the region of the image would then plitude modulated-che image would be visible an see thit in a very simple analytical way where

$$
\begin{equation*}
\left.E_{0}(x, t)\right|_{x=0}=E_{0} \sin \omega t \tag{19.j}
\end{equation*}
$$

coming monochromatic lightwave at Σ_{0} withous
the specimen in place. The particle will induce a posi-tion-dependent phase variation $\phi(y, z)$ such that the wave just leaving it is

$$
\left.E_{r M}(\mathbf{r}, t)\right]_{x-0}=E_{0} \sin [\omega t+\phi(y, z)] . \quad(14.2)
$$

This is a comstant-amplitude wave, which is essentialy the same on the con jugate unage plane. That in there are some losses, but if the lens is large and aberration free and we neglect the orientaion and size of the image, Eq. (14.2) will suffice to represent the PM wave or either Σ_{0} or Σ_{i}. Reformulating that disturbance as
$E_{P M}(y, z, t)=E_{0} \sin \omega t \cos \phi+E_{0} \cos \omega t \sin \phi$
and limiting ourselves to very small walues of ϕ, we obtain $E_{P M}(y, z, t)=E_{0} \sin \omega t+E_{0} \phi(y, z) \cos \omega t$.
The first term is independent of the object, while the second term obviously isn't. Thus, as abowe, if we change their relarive phase by $\pi / 2$, that $i s$, either change the cosine to sine or vice versa, we get

$$
E_{A M(}(y, z, t)=E_{0}[1+\phi(y, z)] \sin \omega l,
$$ which is an amplitude-modulated wave. Observe that $\phi(y, z)$ can be expressed in terms of a Fourier expansion, thereby introducing the spatiat frequencies associate with the object. Encidentally, this discussion is precisely analogous to the one proposed in 1996 by E. H. Arm strong for convering AM radio waves so FM [ϕ (t) conld be thought of as a frequency modulation wherein the

Figure 14.17 Wavefronts in the phase-contrast process.

Figure 14.18 Eflect of phase shifts.
zeroth-order term is the carrier]. An electrical be zeroth-order term is the carrierj. An electrical was ing informarion epperum 50 that the $\pi / 2$ phazso ing information spectrum so that the $\pi / 2 \mathrm{phays}$ srine couid be accomplished. Zerrike's method ofsone epatial filter is the transform piane Σ_{i} of the object
 phase shift. Observe that the direct light actuaily small image of the source on the optical axis bocation of $\Sigma_{\text {a }}$. The filter could then be a small cu indentation of depth a erched in a transpareaty gisa plate of index π_{4}. Ideally, oniy the direa beam pass through the indentation, and in so doing it take on a phase advance with respect to the dits wave of $\left(n_{g}-1\right) 4$, which is made to equal $\lambda_{0} / 4$; As 2 . of this sort is known as a phase plate, and since its effete. corresponds so Fig. 14.18(b), that is, destructive ind ference, phase objects that are thicker or have luy indices appear dark against a bright background

Fread, the phase plate had a small raised disk at its gread, the phase plate had a small raised disk at its Ward fositive-fhase contrast; the latler, negative-phase - Sirash

In actual practice a brighter image is obtained by Ging a Eroad, rather than a point, source aiong with a Ging a broad, rather than a point, source aiong with than annular diaphragn (Fig. 14.19), which, since it he ance plane, is conjugate to the transform plane the ource plive. The zeroth-or der waves, shown in the fithe objective. The zeroth-order waves, shown in the
 2. geanetrical optis. They then irzverse the thin fion of the plate is quite smail, and so the cone of Hracted rays, for the most part, misses it. By making eannular region absorbing as well (a thin metai fitin Wifl do), the very large uniform zeroth-order term (fig.
4.20) is reduced with respect to the higher orders, and the contrast improver. Or, if you like, E_{0} is reduced to a value comparable with that of the diffracted wave E_{0}. Generally a microsconpe will come with an assortmen of these phase plates having different absorptions
In the parlance of modern optics (the still-bluihing bride of commuaications theory, phase contrast is simply the process whereby we introduce a $\pi / 2$ phase shift in the zeroth-arder spectrum of the Fourier transform of a phase object (and perhaps auenuate its amplitude as welli) through the use of an appropriate spatial filter.
The plase-contrast microscope, wbich earmed Zercations (Fig. 14.21), perhaps the most fascinating of which is the study of the life functions of otherwise invistibe organisms.

Figure 14.20 Field amplicude over a circular region on the image plane. In one casc there is no abso ption in the ptase plate and the
irradiance woild be a sraall ripple on a great plateau. With the zeroth order attenuated the contrast increases.

14.1. The Dark-Ground and Schlieren Methods

Suppose we go back to Fig. 14.16, where we were exarnining a phase object, and tha time rather than retard and attenuate the central zeroth order, we remove it completely with an opaque disk at S_{e}. Without the object in place the image plane will be completely dark-ergo the name dark ground. With the object in Σ, on the localized difracted wave will appear o microscopy by illuminating the object obliquly 50

(a)

(b)

Figure 14.21 (a) A conventional photomicrograph of) - and bacteria (b) A phase photomicrograph of the sarrucssene by T. J. Lowery and R. Hawlep.)
that no direct light enters the objective lens.) Obse that by eliminating the dc contribution, the amplift distribution (as in Fig. 14.20), will be lowered tions that were near zero prior to filtering wili
negative. Inasmuch as irradiance is proportion
andiplitude squared, this will result in somewhat of a anplrast reversal from that which would have been seen in phase contrast (see Section 4.1.3). In general this redarique has not been as satisfactory as the phasecontratt method, which generates a Aux-density distribulion across the image that is directly proportional to the phase variations induced across the object. .n 1864 A . Toepler introduced a procedure for examining defect in method * we will discuss it here known as the se widespread current usagre of the method oesabroad range of fuid dynarnics studies and furthermare because it is another beautiful example of the more bection of spatial filtering. Schlieren systems are paticularly usefulin bailistics, aerodynamics, and ultraponic wave analysis (Fig. 14.22), indeed wherever it is debirable to examine pressure variations as revealed by reftactive-index mapping.
Suppose that we set up any one of the possible artangements for viewing Fraunhofer diffraction (e.g., Fib. 10.5 or 10.84). But now, instead of using an apet ture of some sort as the diffacting amplitude object weinsert a phase object, for example, a gas-filled cham ber (Fig. 14.23). Again a Fraunhofer pattern is formed in Σ_{n}, and if that plane is followed by the objective lens of a camera, an image of the chamber is formed on the fllt plane. We could then photograph any amplitude obfects within the test area, but, of course, phase objects wegild still be invisible. Imagine that we now introduce aknife edge at $\Sigma_{\text {, }}$, raising it from below untilit it obstructs thifefore all the parially) the zeroth-order light. and weil. Just as in the dark-ground method, phase objects ant then perceptible. Inhomogeneities in the test cham bet windows and flaws in the lenses are also noticeable Fof this reason and because of the large field of view usifiliy required, mirror systerns (Fig. 14.24) have now become commonplace.
ust of when resulting data are to be aralyzed electronicafly, for example, with a photodetector. Sources with

Whord Schiberen in German meansstreaks or striae. It's frequently PWhed because all nouns are in German and not because there - M4 Mr. Schlieren.

Figure 14.22 A schilieren photo of a spoon in a candle flame. (Photo by E. H.)
a broad spectrum, on the other hand, allow us to exploit the considerable color sensitivity of photographic emul sions, and a number of color schlieren systems have been devised.

14.2 LASERS AND LASERLIGHT

During the early 1950s a remarkable device known as the maser came into being through the efforts of a number of scentists. Principal amongst these people were Chatles Hard Townes of the U.S.A. and Alexand Mikhailovich Prokhorov and Nikolai Gennadievich Basov of the U.S.S.R., all of whom shared the 1964 Nobel Prize in Physics for their work. The maser, which Nober Prize in Physics ior their work. The maser, Which
is an acronym for Microwave Amplification by Stimuis an acronym for Microwave Amplifcation by Stiml-
lated Emission of Radiation, is, as the name implies, an extremely low-noise, microwave amplifier.* It func-
"See James P. Gorden, "The Maser." Sci. Am. 199, 42 (December

a ruckus and electron cloud) possesses a certain amount
of internal energy, and each tends to maintain its lowest anmen configuration. This is the ground state for that pribullar kind of atom. Furthermore, each atom can mill in specific, well-defined configurations correraing to higher energies than the ground state. Any These are termed excited states.
In a conventional light source, such as a tungsten We energy is prumped into the reacting atoms, in this . l led"ed into excited states. Fach can then drop back "\$ed" into excited states. Each can then drop back Wintaneously (i.e., without external inducement) to the Wind state, emitting the absorbed energy in the form dirandomly directed photon. Atoms in this kind of Fice radiate essentially independently. The photons He emitted stream bear no particular phase relationmaking direct use of the quantum-mechanical interaction of matter and radiant energy. Almost immediately after its inception speculation arose as to whether or not the same technique could be extended into the optical region of the spectrum. In 1958 Townes and Arthur L. Schawlow prophetically set forth the general physical conditions that would have to be met in order to achieve Light Amplification by Stimulated Emission of Radiation. And ther in July of 1960 Theodore H.

Maiman announced the first successful operation 6 optical maser or laser-certainly one of the great stones in the history of optics, and indeed in the hisic. of science, had been achieved.

14.2.1 The Laser

Speaking first in generalities, suppose we have a coll. tion of atoms, as for example, in a solid, gas, or liof tion of atoms, as for example, in a sold, gomposera
aties in phase from point to point and moment to Thtarm.
of some sort. If an incident photon is energetic enorigh, it may be absorbed by an atom, raising the latter to an excited state. It was pointed out by Einstein in 1917 need excited atom can revert to a lower state (whough photon ernisessarily be the ground state) In one photon emission via two dtstanctive mechanisms. Thine the other it is triggered into emission by the presence of electromagnetic radiation of the proper frequency. The latter process is known as stimulated emiseion, and it is a key to the operation of the laser. In either situation the emerging photon will carry off the energy difference $\left(h \nu_{i f}\right)$ between the initial higher state $|i\rangle$ and the final lower state $|f\rangle$, that is,

$$
\mathscr{E}_{i}-\mathscr{E}_{f}-h v_{i},
$$

(14.5)
where \mathscr{E}_{i} and \mathscr{E}_{f} are the energies of the two states. If an incident electromagnetic wave is to trigger an excited ato
that the emitted photen is in phase with, has ine polarization of, and propagates in ihe same direction as, the stimulating radiation. Thus the photon is said to be in the same radiation mode as the incident wave and tends to add to it, increasing its fux density. However, since most of the atoms are ordinarily in the ground state, absorption is usually far more likely than stimulated ernission. But this raises an intriguing point: What would happen if a substantial percentage of the atoms could somehow be excited into an upper state, leaving the lower state all but empry? For obvious reasons this is known as population inversion. An incident photon of the proper frequency could then trigger an avalanche of stimulated photons-all in phase. The initial wave would continue processes (such as scatrering) and provided the popila tion inversion could be mazintained. In effect, energy (electrical, chemical, optical, etc.) would be pumped in to sustain the inversion, and a beam of ficht would be extracted after sweeping across the active medium
i) The Frist (Pulsed Ruby) Lase

To see how all of this is accomplished in practice, let's To see how all of this is accomplished in practice, let's take a look at Maiman's original device (Fig, 14.25). mall, cylindrical, synthetic, pale pink ruby, that is, an mall, cylindrical, synthetic, pale pink ruby, that is, an
$\mathrm{Al}_{2} \mathrm{O}_{3}$ crystal containing about 0.05 percent (by weight) of $\mathrm{Cr}_{2} \mathrm{O}_{3}$. Ruby, which is still one of the most common of the crystalline laser media, had been used earlier in

Figure 14.25 The first ruby-aser confgaration, just about life-sized.
maser applications and was suggested for use in th laser by Schawlow. The rod's end faces were polistien , parallel and normal to the axis. Then both w ilvered (one only partially) to form a resonant cote was surrounded by a helical gaseous discharge an oube, which provided broadband optical pumpin Ruby appears red because the chromium atoms hat bsorption bands in the blue and green regions ot spectrum [Fig. 14.26(a)]. Firing the flashtube gene an intense burst of light lasting for a few milliseo Much of this energy is lost in heat, but many of the Cr^{3+} ions are excited into the absorption bands. A plified energy-level diagram appears in Fig. 1 The excited ions rapidly relax (in about 100 ns), p energy to the crystal lattice and making nomiad ransitions, they preferentially drop "down" to They remain in these so-caled motastable state o several mitiseconds $(\sim 9$ ms as room semp before randomly, and in most cases spontar dropping down to the ground state. This is panied by the emission of the characteristic red ent radiation of ruby. The lower-level transition nates, and the resulting emission occurs in 2 t broad spectral range centered about 694.3 nm ; it ges in all directions and is incoherent. However, the pumping rate is increased somewhat, a popy inversion occurs. and the first few spontaneously ted photons stimulate a cham reaction. One gu triggers the rapid, in-phase emission of another ing energy from the metastable atoms into the lightwave. The wave continues to grow as it swee and forth across the accive medium fprovided energy is available to overcome losses at the ends). Since one of those reflecting surfaces wa silvered, an intense pulse of red laser light (las ges from that end of the ruby rod. Notice how neal everything works out. The broad absorption batide arke the initial excitation rather easy, while the lon ifetime of the metastable state facilirates the evirs The ato system in effect cons absorption bands, (2) the metastable state round state. Accordingly it is spoken of a ground
laser.

(b)

Figue 1426 Ruby-laser energy leyels

Today's ruby laser is generally a high-power source pulsed coherent radiation used extensively in work Winterferometry, plaima diagnostics, holography, and Pionth. Such devices operate with coherence tengths Ch From 0.1 m to 10 m . Modern configurations usually Hat external mirrors, one totally and the other eratestly reflecting. As an oscillator, the ruby laser generates millisecond pulses ix1 the energy range from around 50 J to upwards of 100 J , but by using a tandum 100 J can be produced. The commercial ruby laser typically
han 1\%, producing a beam that has a diameter ranging rom 1 mm to about 25 mm , with a divergence of from .25 mrad to about 7 mrad .
ii) Optical Resonant Cavities

The resonant caviry, which in this case is of colurse a Fabry-Perot etalon, plays a most significant role in the operation of the laser. In the early stages of the laser process, spontaneous photons are emitted in every direction, as are the concommiant ancertion of those But all of these, with the singular exception of aickly propagating very neary a re ruby. In contrast, the axial pass out ofthes to build as it bounces back and forth across the active medium. This accounts for the amazing degree of collimation of the issuing laserbeam, which is then effectively a coherent plane wave. Though the medium acts to amplify the wave, the optical feedback provided by the cavity converts the system into an oscillator and hence into a light generator-the acronym is thus somewhat of a misnomer
In addition, the disturbance propagating within the cavity takes on a standing-wave configuration determined by the separation (L) of the mirrors. The cavity resonates (i.e., standing waves exist within it) when there is an integer number (m) of half wavelengths spanning the region between the mirrors. The idea is simply that there must be a node at each mirror, and this can only happen when L equals a whole number multiple of $\lambda / 2$ (where $k-\lambda_{0}(n)$. Thus

$$
m=\frac{L}{\lambda / 2}
$$

and

$$
\begin{equation*}
\nu_{m}-\frac{m v}{2 L} . \tag{14.6}
\end{equation*}
$$

There are therefore an infinite number of possibl Till are therefore an inity ostlatery longitudinal cavity modes, each are separated by a constant difference,

$$
\nu_{m+1}-\nu_{m}=\Delta \nu=\frac{v}{2 L}
$$

which is the free spectral range of the etalon [Eq. (9.79)] and, incidentally, the inverse of the round trip time. For a gas laser 1 m ong, $\Delta \nu \approx 150 \mathrm{MHz}$. The resonan modes of the cavity are considerably narrower in frequency than the bandwidth of the normal spon taneous atomic transition. These modes, whether the device is constructed so that there is one or more, will be the ones that are sustained in the cavity, and hence the emerging beam is restricted to a region close to those frequencies (Fig. 14.27). In other words, the radiative transition makes available a relatively broad range of frequencies out of which the cavity will select and amplity only certain narrow bands and, if desired, eve extreme quasimonochromaticty Thus while the band width of the ruby transition to the ground state roughly a rather broad $0.58 \mathrm{~nm}(330 \mathrm{GHz})$-because of interactions of the chromium ions with the lattice-the corresponding laser cavity bandwidth, the frequenc spread of the radiation of a single resonant mode, is a much narrower $0.00005 \mathrm{~nm}(30 \mathrm{MHz}$). This situation is much narrower 0.000 (b) which shows a typical tran sition lineshape and a series of corresponding cavity spikes-in this case each is separated by $v / 2 L$, and each is 30 MHz wide.

A possible way to generate only a single mode in the cavity would be to have the mode separation, as give by Eq. (14.7), exceed the transition bandwidth. Then only one mode would fit within the range of available frequencies provided by the transition. For a ruby lase (with an index of refraction of 1.76) a cavity length of a few centimeters will easily insure single longitudinal mode operation. The drawback of this particula approach is that it limits the length of the active region contributing energy to the beam and so limits the output power of the laser.
In addition to the Iongitudinal or axial modes of oscillation, which correspond to standing waves set up a.ong the cavity or z-axis, transverse modes can to z these are known as TEM modes (transverse electric and magnetic). The m and n subscripts are the infeger number of transverse nodal lines in the x - and y-directions across the emerging beam. That is to say,

 several longitudinal modes under a roughly Gaussian es:
several longitudial tudinal mode.
(b)
he beam is segmented in its cross section into one or fore regions. Each such array is associated with a given $B \mathrm{M}$ mode, as shown in Figs. 14.28 and I4.29. The GMest order or TEM The $_{00}$ transverse mode is perhaps the Wiest order or TEM_{00} transverse mode is periaps the Wht widely used, and this for several compelling reaWis section (Fig. 14.30); there are no phase shifts in Felectric field across the beam, as there are in othe foodes, and so it is completely spatially coherent; the

Figure 14.29 Mode configurations (rectangular symmetry). CirIgure 14.29 Mode configurations (reetangular symmetry). Cir-
culartly symmetric modes arcaisoobse vabie, but any slightasymmetry (such as Brewster windows) destroys them.
eam's angular divergence is the smallest; and it can be focused down to the smallest-sized spot. Note that the amplitude in this mode is actually not constant over the wavefront, and it is consequently an inhornogeneous wave.
A complete specification of each mode has the form TEM $_{\text {runq }}$, where q is the longitudinal mode number. For each transverse mode (m, n) there can be many longitudinal modes (i.e., values of g). Often, however, it's unnecessary to work with a particular longitudinal mode, and the q subscript is usually simply dropped.* There are several additional cavity arrangements that are of considerably more practical significance than is the original plane-parallel setup (Fig. 14.31). For encave spherical mirrors separe by a distance very
 onfocal rent Thus focl pointse oincident on the axis midway between mirrors ergo

- Takca Iook at R. A. Philifipsand R. D. Gehry, "Laser Mode Structure Experiments for Undergraduate Laboratories," Am. J. Phys. 38, 429
the name confocal. If one of the spherical mirrors is made planar, the cavity is termed a hemispherical of hemiconcentric, resonator. Both these congligurations are considerably easier to align than is the plane-paralle form. Laser cavities are said to be either stable or unstablic to the degree that the beam tends to retrace itself and so remain relatively dose to the optical axis (Fig. 14.32). A beam in an unstable cavity will "walk out," going farther from the axis on each reflection until it quickly leaves the cavity altogether. By contrast, in a stable configuration (with mirrors that are, say, 100% and 98% reflective) the beam might traverse the resonator 50 times or more. Unstable resonators are commonly used in high-power lasers, where the faci that the beam traces across a wide region of the active medium enhances the amplification and allows for more energy to be media ted. This approach will be especily whe theam gains (iike carbon dol of energy on each sweep of the cavity. In ather words, the needed number of sweeps is determined by the so-called smatl-signal gain of the active

The decay of energy in a cavity is expressed in termg of the Q or quality factor of the resonator. The origin engineering, when it was used to describe the perfor enginee of will loss circuit meant a narrow handpass and a shapply tuned radio. If an opcical caviny is somehow disrupted, as for example by the displacement or removal of oue of the mirrors, the laser action generally ceases. When of the misrors, the laser action generally ceases. When
this is done deliberately in order to delay the onset of this is done deiliberately in order to delay the onset of
oscillation in the laser cavity, it's known as Q-speiling oscillation in the laser cavity, it's known as Q-spouitg
or Q-switching. The power output of a laser is selfof Q-switching. The power output of a laser is selicontinuously depleted through simulated emission hy the radiation feld within the cavity. However, if oscillation is prevented, the number of atoms pumped into the (long-lived) metastable state can be considerably increased, thereby creating a very extensive population inversion. When the cavity is swiched on at the prope moment, a tremendously powerful giant pudse (perhap up to several hundred megawatts) will emerge ss the atoms drop down to the lower state almost in unison. A great many Q-switching arrangements utilizing various control schemes, for example, bleachable absor bers that become transparent under illumination, rotat ing prisms and mirrors, mechanical choppers, ultrasonic cells, or electo-ptic shutters such as Kerr or Pockels ceils, have all been used.
iii) The Helium-Neon Lase

Maiman's announcement of the first operative laser Maiman's announcerment of the first operative laser
came at New York news conference on July 7,1960 .* carne at a New York news conierence on July 7, 1960. Hennett, Jr., and D. R. Herriott had reported the successful operation of a continupus-wave (c-w) heliumneon, gas laser at 1152.3 nm . The He-Ne laser (Fig 14.38) is currently the most popular device of is kind, most often providing a few milliwatts of continuous power in the visible (632.8 nrn). Its appeal arises primarily because it's easy to construct, relatively inex-

His initial paper, which wouid have made his findings known in a more traditional fashion, was rejected for pubication by the editors of Phsical Revieu Leilers-tris to their everlasting chagrin.

pensive, and fairly reliable and in most cases can be aperated by a Rick of a single switch. Pumping is usually accomplished by eiectrical discharge (via either dc_{c} ac, or electrodeless rf excitation). Free electrons and ions are accelerated by an applied field and, as a result of collisions, cause further ionization and excitation of the gaseous medium (typically a mixture of about 0.8 torr of He and about (0.1 torr of Ne). Many helium atoms, fter dropping

$\xrightarrow{\sim} \Longrightarrow$ Stimulated transition
Figure 14.34 He-Ne iaser energy levels.
are metastable states (Fig. 14.34) from which the e no allowed radiative transitions. The excited He atorin inclastically collide with and transfer energy to state Ne atoms, raising them in turn to th 45 -states. These are the upper laser levels, and there then exists a population inversion with respectifo the lower 4 p - and 3 -states. Transitions between
and 4 -states are forbidden. Spontaneous phen and 4 s-states are forbidden. Spontaneous photoni. ate stimulated emission, and the chain reaction 11593 nm and laser transitions correspo course, the ever-popular 632.8 nom in the viste red). The f-states drair off into the 3 s -state the selves remaining uncrowded and thereby continu sustaining the inversion. The 3 s-level is metastable that 3 s-atoms return to the ground state after losis energy to the walls of the enclosure. This is whos energy to the walls of the enclosure. . his is wh accordingly, a significant design parameter. In cola to the ruby, where the laser transition is down to th ground state, stimulated emission in the He-Ne lase occurs between two upper levels. The significance ' this, for example, is that since the 3 p-state is ordinatry only sparsely occupied, a population inversion 4 曽 ver, easily obtained, and this without having to half emidiz the ground state.
Return to Fig, 14.33, which pictures the relevant features of a basic early He-Ne laser. The mirrors coated with a rrultilayered dielectric film having reflectance of over 99%. The kaser output linearly polarized by the inciusion or Brews and termins (1.e., plates nited at the polariza faces instead normal to the axis, refection losses (4% 2 interface) would become urearable. By tilting thill
the polatization angle, the windows presumably have 100% transmission for light whose electic field componett is paraliel to the plane of incidence (the plane of the drawing). This polarization state rapidly becomes dominaint, since the normal component is partially eflected of-axis at each transit of the windows. Linearly polarized light in the plane of incidence soon becomes the preponderant stimulating mechanism in the cavity, the the ultimate exclusion of the orthogonal polar2 zation.*
Eposying the windows to the ends of the laser tube nd mounting the mirrors externally was a typical Goggh dreadful approach used commercially until the 1974 l . Inevitably, the epoxy leaked, allowing water or in and hellum cut. .oday, such lasers are har) mints, which support the mirrors within the tube. The Frors (one of which is generally $=100 \%$ reflective) remodern resistive coatings so they an tolerate the harge environment within the tube. Operating lifeHes of 20,000 hours and more are now the rule (up fon only a few hundred hours in the 1960 s. . Brewster Ahe only a few hundred hours in the 1960s). Brewster (ile-Ne lasers generate more or less "unpolarized" Feams. The typical mass-produced He -Ne laser (with an output of from 0.5 mW to 5 mW) operates in the gem M_{00} mode, has a coherence length of around 25 cm , a beam diameter of approximately 1 mm , and a low serall efficiency of only 0.01% to about 0.1%. Though gre are infrared He-Ne lasers, and even a new green $43.5 \mathrm{~nm})$ He-Ne laser, the bright red 632.8 -nm veran remains the most popular

19A Survey of Laser Deveiopments

is technology is so dynarnic a field that what was a Hiatory breakthrough a year of two ago may be ghonplace off-the-shelf item today. The whirlwind vili certainly not pause to allow descriptive terms like "the smaliest," "the largest," "the most powerful," and

FItr of the output power of the laser is zot lost in reflections at the
Brighter windows when the transcerse 9 -state ifght is saatered. En oty simply iss't continuously channeled into that polarization
con thonear by the cavity, If ti's reflected out of the plasma tubc. it's con dooneant by the cavity. If it's refiected out of the plasmat tubc, it's norpresent to stimulate further emission.
so on to be applicable for very long. With this in mind we briefly suryey the existing scene without trying to anticipate the wonders that will surely come after this type is set. Laserbeams have already been bounced of the Mcon; they have spot welded detached retinas, generated fusion neutrons, stimulated seed growth, served as communications links, guided milling machines, missiles, ships, and grating engines, carried color television pictures, drilled holes in diamonds, levitated tiny objects,* and intrigued countiess arnongst the curious.
Along with ruby there are a great many other solidstate lasers whose outputs range in wavelength from roughiy 170 nm to $390^{3+} \mathrm{Gd}^{3+} \mathrm{Tr}^{3+} \mathrm{Er}^{3+} \mathrm{Pr}^{3+}$ and Eu^{3+} undergo , $\mathrm{CaWO}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{SrMoO}_{4}, \mathrm{LaF}_{3}$ ytrium aiuminum net (YAG for short), and glass, to name only a few. O these, neodymium-doped glass and neodymium-doped YAG are of particular importance. Both constitute high powered laser media operating at approximately powered
1060 nm . Nd: YAG lasers generating in excess of a kilowatt of continuous power have deen constructed. Tremendous power outputs in pulsed systems have been obtained by operating scveral lasers in tandem. The first laser in the train serves as a Q-switched oscillator that fires into the next stage, which functions as an amplifier; and there may be one or more such amplifiers in the system. By reducing the feedback of the cavity, a laser will no longer be self-oscillatory, but it wifl amplify an incident wave that has triggered stimulated emission. 'Thus the amplifier is, in effect, an active medium, which is pumped, but for which the end faces are only partially reflecting or even nonrefecting. Ruby systems of this kind, delivering a few GW (gigawatts i.c., $10^{9} \mathrm{~W}$) in the form of puises Lasting several nanoseconds, are availabie commercially. On December all 10 of its beans at one for the time a warm-up shot of a merc 18 kJ of 850 -wu-, padian

[^16]

Figure 14.35 Nova, the worid's most powerful laser. (Photo courtcsy Lawrence Livermore National Laboratory.)
a 1-ns pulse (Fig. 14.35). When fully operational this immense neodymium-doped glass laser will focus up th 100 TW of green (580 nm) or blue (350 nm) light onto a fusion pellet-that's roughly 500 times more power than all the electrica. generating stations in the United States-albeit only for about $10^{-9} \mathrm{~s}$.
A large group of gas lasers operate across the spec trum from the far IR to the UV (1 mm to 150 nm) rimary amongst these are helium-neon, argon, and krypton, as well as several molecular gas systems, such as carbon dioxide, hydrogen fluoride, and molecular nitrogen $\left(\mathrm{N}_{2}\right)$. Argon lases mainly in the green, blue green, and violet (predominantly at 488.0 and $14.5 \mathrm{~nm})$ in either pused or commuens op toneashishow c . Theargon ion laser is similar orme rispects to the He laser, although it evidently differs in its usually greater power, shorter wavelenth broader linewidth, and higher price. All of the noble gases ($\mathrm{He}, \mathrm{Ne}, \mathrm{A}, \mathrm{Kr}, \mathrm{Xe}$) have been made to ase individually, as have the gaseous ions of many other
lements, but the former grouping has been studies most extensively.
The CO_{2} molecule, which lases between vibrationti modes, emits in the IR at $10.6 \mu \mathrm{~m}$, with typical c-w power levels of trom wats to several kilowatts, It efficiency can be an unusually high 15% when aidef: additions of N_{2} and He. While it once took a dised ube nearly 200 m long to generate $10 \mathrm{~kW} \mathrm{c}-\mathrm{W}$, cont ably smaller "table models" are now available colt cially. For a while in the 1970s, the record bo belonged to an experimental gas-dynamic laser thermal pumping or a mixtu $106 \mathrm{O}_{2}, \mathrm{~N}_{2}$, anc to generat
peration
The pulsed nitrogen laser operates at 33 ha the UV, as does the $c-w$ helium-cadmium laser. A laser transitions in the visible, but problems maintaining uniformity of the vapor in the dischanju region have handicapped their exploitation. The Kl Cd laser ernits at 325.0 nm and 441.6 nm . These are cransitions of the cadmium ion arising after excitationt resulting from collisions with metastable helium ato fit
The semiconductor laser-alternatively known?: unction or diode laser-was invented in 1962 after the development of the light-emitting diode (LED). Today it serves a central role in electersap primarily because of its spectral purity, high efficieg ($=100 \%$), ruggedness, ability to be modulatad extremely rapid rates, long lifetimes, and modes power (as much as 200 mW) despite its pinhead siza Junction lasers have already been used in the milliont in fiberoptic communications, laser disk audio and so forth.
The first such lasers were made of one materias gallum arenide, appropriatly doped to ford junction. The associated imited them to pulk so-called homostructures limited them to puis, operation and cryogenic temperatures; other, heat developed in their small structures would
them. The first tunable lead-salt diode developed in 1964, but it was not until almostion dozen years later that it became commercially' ava years later that it became comperatures, whit tainly inconvenient, but it can scan from $2 \mu \mathrm{mf}$ Later advances have since allowed a reducty

2 Lasers and Laserligh

Seahold and resulted in the advent of the continuous($c-w$), room temperature diode aser. Transitions gar between the conduction and valence bands, and simulated emission results in the immediate vicinity of sum p-n function (Fig. 14.36). Quite generally, as a migent flows in the forward direction through a semiWductor diode, electrons from the n-layer conduction - da will recombine with p-layer holes, thereupon erniting energy in the form of photons. This radiative Hocess, which competes for energy with the existing bsorption mechanisms (such as phonon production) hand and the current is large. To make che system lase mall anct from the diode is retained with a he light eavity and that's usually accomolished by Couly polishing the end faces perpendicular to the imply poilishing Simction channe.
specific needs, and there are many designs to meet specinc needs, and there are many designs producing
wavelengths ranging from around 700 nm to about $30 \mu \mathrm{~m}$. The early 1970s saw the introduction of the $\mathrm{c}-\mathrm{w}$ GuAs/GaAlAs laser. Operating at room temperature in Gie 750 rmm to $900-\mathrm{nm}$ region (depending on the rela tike amounts of aluminum and gallium), the tiry diode chip is usually about a sixteenth of a cubic centimeter南volume. Figure 14.36 (b) shows a typical heterostructure (a device formed of different materials) diode laser of this kind. Here the beam emerges in two directions froin the $0.2-\mu$ m-thick active layer of GaAs. These little lasers usually produce upward of 20 mW of continuous wave power. To take advantage of the low loss region $(\lambda \approx 1.3 \mu \mathrm{~m})$ in fiberoptic glass (p. 170) the GaInoutput of $1.2 \mu \mathrm{~m}$ to $1.6 \mu \mathrm{~m}$. The cleaved-coupled-cavity laser is a still more recent (1988) development (Fir 14.97). In it the number of axial modes is controlled in order to produce very-narrow-bandwidth turable radiation. Two cavities coupled together across a small gap rearict the radiation to the extremely narrow band wilth that can be sustained in both resonant chambers.*
4. W. Sueraassu, "Advances in Semiconductor Lasers," Plass Today 4.ay 1985). For a discussion of heterostructure diode lasers refer
\& B. Parish and I. Hayahhi, "A News Class of Diode Lasers." Sci. (3)285, 32 (july 1971).

(a)

Figure 14.36 (a) An cariy C ato an junction laser, (b) A muderil diode laser.

The first liquid laser was operated in January of 1963.* All of the early devices of this sort were exclusively chelates (i.e., metallo-organic compounds formed of a metal ion with organic radicals). That original liquid laser contained an alcohol solution of europium benzoylacetonate emitting at 613.1 nm . The discovery of laser action in nonchelate organic liquids was made

See Adam Heller, "Laser Accion in Liquids." Phys. Today (November (967), p. 35, for a more detailed account.
in 1966. It came with the fortuitous lasing (at 755.5 nm) of a chloroaluminum phthalocyanine solution during a of a chloroaiuminum phthalocyanine solution during a search for stimulated Raman emission in that subfarpilies as the fluoresceins, coumarins, and rhodamines ampilies as the fluoresceins, coumarins, and rhodamines
have since been made to lase at frequencies from the have since been made to lase at frequencies from the
IR into the UV. These have usually been pulsed, although c-w operation has been obtained. There are so many organic dyes that it would seem possible to build such a laser at any frequency in the visible. Moreover, these devices are distinctive in that they inherently can be tuned continuously over a range of wavelengths (of perhaps 70 nm or so, although a pulsed system turable over 170 nm existks. Indeed, there are other arrangements that will vary the frequency of a primary laserbeam (i.e., the beam enters with one color and emerges with another, Section 14.4), but in the case of the dye laser, the primary beam itself is tuned internally. This is accomplished, for example, by changing the concentration or the length of the dye cell or by adjusting a diffraction grating reflector at the end of the cavity. Several mulucolor dye laser systerns, which can easily be switched from one dye to another and thereby operate over a availabie commercially.
A chemical laser is one that is pumped with energy released via a chemical reaction. The first of this kind
was operated in 1964, but it was not until 1969 tbat a was operated in 1964, but it was not until 1969 tbat
continuous-wave chemical laser was developed. One of the most promising of these is the deuterium fluoridecarbon dioxide ($\mathrm{DF}-\mathrm{CO}_{\mathrm{k}}$) laser. It is self-sustaining, in that it requires no external power source. In brief, the reaction $F_{g}+D_{g} \rightarrow 2 D F$, which occurs on the mixing of these two fairly common gases, generates enougt energy to pump a CO_{2} laser.
There are solid-state, gascous, liquid, and vapor (e.g$\mathrm{H}_{2} \mathrm{O}$) lasers; there are semiconductor lasers, free elec tron (600 nm to 3 mra) lasers, x-ray lasers, and laser with very special properties, such as those that generate extremely short pulses, or those that have ewraordinary frequency stability. These latter devices are very useful in the field of high-resolution spectroscopy, but there is a growing need for them in other research areas a
*P. Sorokin, "Organic Lasers," Sci. Aner. 220, 30 (February 1969)

Figure 14.37 T
Bell Laboratories.
well (c.g., in the interferometers used to atrempe to etect gravity waves). In any event, these lasersym mut ave precisely controlled cavity configuration de distubing in luences of temperature yatratió bratious, and even sound waves. To date the recoi held by a laser at the Joint Institute for Labo strophysics in Boulder, Colorado, which maim requency stan (p.265) of nearly one part,

(4.2.2 The Light Fantastic

7serbeams difer somewhat in nature from one fype Elaser to another; yet there are several remarkable Stures that are displayed, to varying degrees, by all ali radiation. Quite apparent is the fact that most fheams are exceedingly directional, or if you will, aly collimated. One need only blow some smoke into herwise invisible, visijle-laserbeain to see (via scatering) a fantastic thread of light stretched across a Oom. A He -Ne beam th the TEM_{00} mode generally has a divergence of only about one minute of arc or less. Recall that in that mode the emission closely approximates a Gaussian irradiance discribution; that is, the flux density drops off from a maximum at the central axis of the beam and has no side lobes. The typcal laserbeam is quite narrow, usually issuing at no
 cemmert In fact, its directionality may be thesse spatially manizestation of that coherence I aserlight is puasimonochronutic generally havig an exceeding narow frequency bandwidth (see Section 710) In other words, it is temporally coherent.
Apother attribute is the high flux or radian power the can be delivered in that narrow frequency band Aswe've seen, the laser is distinctive in that it emits all itsenergy in the form of a narrow beam. In contrast, * (GO-W incandescent light buib may pour out considerfify more radiant energy in toto than a low-power c-w 10, changle, and it has a broad baridwidth as well. A good lens* can totally intercept a laserbeam and focus舜解ially all of its energy into a minute spot (whose paeter varies directly with A and the focal length and Wersely with the beam diameter). Spot diameters of - Wia few thonsandths of an inch can readily be attained "ini knes thas have a conveniently short focal length. inch is possible in of a few hundred-millionths of an reacily be generated in a focused laserbeam of can reaciy be generated in a focused laserbeam of over

$10^{37} \mathrm{~W} / \mathrm{cm}^{2}$. in contrast to, say, an oxyacetylene flam having roughily $10^{3} \mathrm{~W} / \mathrm{cm}^{2}$. To get a better feel for these power levels, note that a focused cO laserbeam of few kilowatts c -w can burn a hole through a quarter-inch stainless steel plate in about 10 seconds. By comparison a pinhole and filter positioned in front of an ordinary source will certainly produce spatially and temporally coherent light, but only at a minute fraction of the total power output.

Femfosecond Optical Pulses
The advent of the mode-locked dye laser in the earl part of the 197 Os gave a great boost to the efforts the being made at generating extremely short pulses of light.* Indeed, by 1974 subpicosecond (I $\mathrm{ps}=10^{-12} \mathrm{~s}$ optical puises were already being prodaced, although the remainder of the decade saw little significant pro gress. In 1981 two separate advances resulted in the creation of femtosecond laser pulses (i.e., $<0.1 \mathrm{ps}$ or < 100 fsp--a group at Bell Labs developed a colliding pulse ring dye laser, and a team at 1 BM devised a new pulse-compression stheme. Above and beyond the communications, these accoplishments fire estaflished a new field of research known as firmly thenomina. The most effective way to study the pro gression of a process that occurs exceedingly rapidy (e.g., carrier dynamics in semiconductors, floprescence photochernical biologica! processes, and molecular configuration changes) is to examine it on a time scale that is comparatively short with respect to what's happening. Puises lasting $\approx 10 \mathrm{fs}$ allow an entirely new access into previously obscure areas in the study of matter.
At the moment, the shortest pulses on record each lasted a mere 8 fs (10 s), which corresponds to wayetraiss only about 4 wavelenghs of red light in tength. One of the new techniques that makes these femtosecond wavegroups possible is based on an idea used in radar work in the 1950s called pulse compression. Here an initial laser pulse has its frequency spearum

Take a look at "Ulırafast Lascr pulscs" by A. De Maria, W. Clen?
broadened, the:eby allowing the inverse or temporal pulse width to be shortened-remember that $\Delta \nu$ and Δt are conjugate Fourier quantities (Eq. 7.63). The input pulse (several picoseconds long) is passed into a non linear dispersive medium, namely, a single-mode optical fiber. When the light intensity is high enough the index 14.4), and the carrier frequency of the pulse experiences a time-dependent shift On traversing perhaps 30 m of fiber, the frequency of the pulse is drawn 30 r "chirped." That is, a spread occurse in the spectrum of chirped. That is, a spread occurs in the spectrum of the pulse, with the low requencies leading and the high
frequencies trailing. Next the spectrally broadened Irequencies trailing. Next the spectrally broadene
pulse is passed through another dispersive system pulse is passed through another dispersive system (a
delay line), such as a pair of diffraction gratings. By traveling different paths, the blue-shifted trailing edg of the pulse is made to catch up to the red-shifted leading edge, creating a time-compressed output pulse.

The Speckle Eflect

A rather striking and casily observable manifestation of the spatial coherence of laserlight is its granular appea ance on relection from a diffuse surface-Using a $\mathrm{He}-\mathrm{N}$ laser (632.8 nm), expand the beam a bit by passing through a simple lens and project it onto a wall or piece of paper. The illuminated disk appears speckied with bright and dark regions that sparkle and shimme in a dazzling psychedelic dance. Squint and the grain grow in size; step toward the screen and they shrink take oft your eyeglasses and the pattern stays in perfect fring cused by duse on pear, but the spectles do not Hold a pencil at varvil distances from your do so that the disk appears jus above it At each position focus on the pencil. whereve you focus, the granular display is crystal clear. Indeed, look at the pattern through a telescope; as you adjust the scope from one extreme to the other, the ubiquitous granules remain perfectly distinct, even though the wal is completely blurred.

The spatially coherent light scattered from a diffuse surface fills the surroundirg region with a stationa interference pattern (just as in the case of che wavefron: splitting arrangements of Section 9.3). At the suface the
granules are exceedingly small, and they incredid size with distance. At any location in space the revilu feld is the superposition of many contributing so wavelets. These must have a constant relati determined by the optical path length from terer to the point in question, if the interferenc is to be sustained. Figure 14.38 illustrates did rather nicely. It shows a cement block illuminated one case by laseright and in the other by collima light from a Hg arc amp, both of about the same coherence. Yet while the laser's coherence length the coherence length of the Hy surface featur former case, the speckles in the photot is not. In. and they obscure the surface structure in the despite its spatial coherence, the speckle patien observable in the photograph, and the surface featin predominate. Because of the rough texture theatio pretominate. Because of the rough texture the-d a point in space, scattered from different surface it: is generally greater than the coherence length mercury light. This means that the relative the overlapping wavetrains change rapidly and domly in time, washing out the large-scale interfectas pattern.
A real system of fringes is formed of the scattereg waves that converge in front of the screen. The frime

(a)

Figure 14.98 Speckle patterns. (a) A cement block dinter.... ted by:

be viewed by intersecting the interference pattern ah a sheet of paper at a convenient location. After fruing the real image in space, the rays proceed to dionge and any region of the image can therefore be viened directly with the eye appropriately focused. In autras rays that initially diverge appear to the eye as if 1 tel had originated behind the scattering screen and thll form a virtual image,
arnal and farsighted eyes to for num and foreen cocus red ligh berresilic real field in front of he screen (r perso wavelength) Thus if the viewer moves her heat to thacht, the pattern will move to the right in the firs in anc (where the focus is beyond the screen) and to thelers in the second (focus in front). The pattern will then in the second (focus in front). The pattern will dive to the surface The same appareoc parallax moction ca be seen by looking through a kindows outside oljocts will seem to move with your head, inside ones of pasiletsit. The brilliant, narrow-bandwidth, spatially cotritit laserbeam is ideally suited for observing the griwhlar effect, although other means are certainly pesuble " In unfiltered sunlight the grains are minute, of the surface, and multicolored. The effect is easy to otsewve on a smooth, flat-black material (c-g., posterpaised paper), but you can see it on a fingernail or a w.in coin as well.
thltough it provider a marvelous demonstration, beliarsthotially and pectagogivally, Ilie grandif effect cal tex real praclical nuhante in coheranly sutminuted seckle Fartern corresponds in holographic manty the ound fooise. Incidentally very troublesome touk thing is observable when, very much the same kind here the signal strength ffuctuates from one locatio the next, depending on the environment and the Prulting interference pattern

Sfurber reading on this effect, see L. I. Goldfischer, $/$ Opt Soc.
S5, 247 (1965); D. C. Sinclair, J. Opt Soc. Am 55, 575 (1965)
Reigden and E. I. Gordon, Proce. IRE 50,2367 (1962); B. M. T. Pac, IEEE 51, 220 (1963).

14.3 HOLOGRAPHY

The technology of photography has been with us for a long time, and we've all grown accustomed to seeing the three-dimensional world compressed into the flatness of a scrapbook page. The depthless television pitchfashes althres of a myriad of phosphorescent pable than a postcard image of the Eiffel Tower paishare the severe limitation of being simply irr. Both mappings. In other words when the imply radiance s ordinarily reproduced by whatever traditional means, what we ultimately see is not an accurate reproduction of the light fieid that once inundated the object, but rather a point-by-point record of just the square of the field's amplitude. The light reflecting off a photograph carries with it information about the irradiance but nothing about the phase of the wave that once emanated from the object. Indeed, if both the ampliude and phase of the original wave could be reconstruced somehow, the resulting light field fassuming the requencies are the same) would be indistinguishable fom the origina. This means that you would then see (and could photograph) the re-formed image in perfect hree-dimensionality, exactly as if the object were there before you, actually generating the wave.

14.3.1 Methods

Dennis Gabor had been thitiking along these lines for number of years prior to 1947, when he began conucting his now famous experiments in hoography at he Research Laboratory of the British ThomsonHouston Company. His original setup, depicted in Fig. 44.39, was a two-step lensless imaging process in which efirst photographically recorded an interference pattern, generated by the interaction of scattered quasieference wave. The resulting patern a comern e called a hologram, after the G reek word holos, mean ing whole. The second step in the procedure was the reconstruction of the optical field or image, and this was done through the diffraction of a coherent beam by a

Seconstruction

twapareney，which was the developed hologram．In a w． 25 gite reminiscent of Zernike＇s phase－contrast tech－ n）${ }^{\text {ue }}$（Section 14．1．4），the hologram was formed when de uncobtered background or reference wave interfered with the diftracted wave from the small semmanapareas ojec，S－which was，in those early days，often a piece 0 microflm．The key poin is that he interference pureth or hologram contains，by cay of the fringe owfinualinn，information currespoodits to both the inpmiuedly，it＇s not at all obvious that by pove shinigg Whimedf，i＇s not at all obvious that by nove shining monestruct an image of the origival objort Suffice it to sh）for the moment that if the object were very small， sf for the moment that if the object were very small，
t）scattered wave would be nearly spherical，and the t）scattered wave would be nearly spherical，and the
ineterence pattern a series of concentric rings（cen－ iered about an axis through the object and normal to he plane wave）．Except for the fact that the circular解解es would vary gradually in ir radiance from one to the next，the resulting flux－density distribution would Tarrespond to a conventional Fresnel zone plate（Sec－ M 10.3 .5 ．Recall that a zone plate functions somewhat Wea lens in that it diffracts collimated light into a bearn Finerging to a real focal point，$P_{r .}$ In addition，it Watess diverging wave，which appears to come from
point P_{r} and constitutes a virtual image．Thus we Whaint P_{r} and constitutes a virtual image．Thus we
采 imagine，albeit rather simplistically，that each point on an extended object generates its own zone plate lifplaced from the others and that the ensemble of all ． M ch partially overlapping zone plates forms the diment zone plate forms both a real and virtual con－ of a single place Ghe hologram regenerates the original light field．When Wie reconstructing beam has the same wavelength as hhe initail recording beam twhich need not necessarily
 ond berted and appears at the location formerly occupied by the object．Thus it is the virtual image held that actually corresponds to the original object field．As
Wudh，the virtual image is sometimes spoken of as the 3uqh，the virtual image is sometimeas spoken of as the Int image，while the other is the real or，perhaps more
＂W．M．P．Givens，＂Introduction to Holography，＂Am，J．Phys．35，
lo．
li967）．

associated with that particular spatial frequency in the
form of a characteristic fringe pattern
To see how this occurs exaume the simplified twowave version depicted in Fig. 14.42. Ac the moment shown the reference wave happens to have a crest along the face of the film plane, and the scattered object wavelet, coming in at an angle θ, similarly bss crests at points A, B, and C. These correspond to points where pointsference maxima will occur at the moment shown. But as both waves progress to the right, they will remain in phase at these points, trough will overlap trough, and the maxima witl remain fixed at A, B, and C. Similarly, between these points, trough overlaps crest, and minima exist. The clative phase (ϕ) of these two waves, whith varies from point to point along the film,
can be written as a function of x. Since ϕ changest 2π as x goes the iength of $\overline{A B}, \phi / 2 \pi=x / \overline{A B}$. Nof that $\sin \theta=\lambda \sqrt{A B}$, and so getting rid of the spectition length $\overline{A B}$, the phase in general becomes

$$
\phi(x)=(2 \pi x \sin \theta) / \lambda .
$$

$$
E=2 E_{0} \cos \frac{1}{2} \phi \sin \left(\omega \hat{1}-k x-\frac{2}{2} \phi\right),
$$

and the itradiance distribution, which is proportion

$$
\begin{aligned}
& \text { to the field a } \\
& \text { has the form }
\end{aligned}
$$

$$
I(x)=\frac{1}{2} c \varepsilon_{0}\left(2 E_{0} \cos \frac{1}{2} \phi\right)^{2}=2 c \epsilon_{0} E_{6}^{2} \cos ^{2}{ }^{2} \operatorname{Din}^{2}
$$

Thare Id.41 A side-band Fresnel holographic setup for a trans"hare id.4.4
$I(x)=2 c \epsilon_{0} E_{0}^{2}+2 c \epsilon_{0} E_{0}^{2} \cos \phi . \quad(14,10)$
What we have is a cosinusoidal irradiance distriburion What we the film plane with a spatial perind of $\overline{A B}$ and a spatial frequency $(1 / \sqrt[A B]{ })$ of $\sin \theta / \lambda$. Upon processing the film so that the amplitude transmispon processing the corresponds to $Y(x)$), the result is a ctisnusoidal grating. When this simple hologram (winich Aficutially corresponds to a structureless object with no Ge original reference wave [Fig. 14.42 (c)] three beams will emerge: one zeroch and two first order. One of taese first-order beams will travel in the direction of The original object beam and corresponds to its reconstrocted wavefront.
Now suppose we go one step beyond this most basic holograra and examine an object that has some optical sthature. Accordingly, let's use as the object a transPathcy with a sinple periodic structure that has a single atival frequency-a cosine grating. A slightiy idealized Thes due to the firite size of the weak higher-order *hicted in Fig 14.43 , which shows the illuminated Thes, the three transmitted beams and the refreance What results is three sitiohty diferent versions

Figure 14
grating.
of Fig. 14.42, where each of the three transmited wave makes a slightly different angle (θ) wich the reference wave. Consequendly, each of the three overlap areas will correspond to a set of cosine fringes of a slightly different spatial frequency, from Eq. (14.9). Again when we play back the resulting holograre, Fig. 14.43 (b), we have three pieces of business: the undiffracted wave, the virtual image, and the real image. Observe that it is orly where the three beams come together to conribute their spatiai frequency content that images of he original grating are formed
When a still more complex object is used we can anticipate that the relative phase between the object and reference waves (t) wir pary foluting the basic carrier compleat (Fic i44) produced by two plane waves when ignal (Fig. 14.44) procuced by two pean generalize from Fig 14.43 and conclude that the phase argle difference ϕ (which varies with 9) is encoded in the configuration of the fringes. Furthermore, had the amplitudes of the reference and object wayes been different, the irradiance of those fringes would have been altered accordingly. Thus we can guess that the amplitude of the object wave at every point on the film piane will be encoded in the visibility of the resulting fringes.
The process depicted in Fig. 14.40 can be treated analytically as follows. Suppose that the xy-plane is the plane of the hologram, Σ_{H}. Then

$$
E_{B}(x, y)^{-} E_{0 \mathrm{~B}} \cos [2 \pi f t+\phi(x, y)] \quad \text { (14.H. }
$$ Ees the planar backgrourd or reference wave a Σ_{M}, overlooking considerations of polarization. It ampliucce, $E_{0 R}$, is constant, while the phase is a func tion of position. This just means that the rexerence wavefront is tiled in some known manner with respee it could be brought into coincidence with Σ_{H} by a singie cotion hrough an angle of θ ahout y the phase at any point on the hologram plane would depend on its value of x. Thus ϕ would agair have the form

$$
\phi=\frac{2 \pi}{\lambda} x \sin \theta=k x \sin \theta
$$

being, in that particular case, independert of y and

Figure 14.45 Notice that there are three regions with differ
Figure 14.9 Notice that there are three regions with oholity generates three waves.

arying inearly with x. For the sake of simplicity, we'l ust write it, quite generally, as $\phi(x, y)$ and keep in mind that it's a simple known function. The wave scattered from the object can, in turn, be expressed as
$E_{O}(x, y)=E_{00}(x, y) \cos \left[2 \pi / t+\phi_{O}(x, y)\right], \quad$ (IAII2 where boch the amplitude and phase are now complicated functions of position corresponding to an irregular wavefront. From the communications modulated point of view, this is an ampla formation carriet wave bearing is encoded in spatial rather than temporal variations of the wave. The two disturbances E_{B} and E_{0} superimpos and interfere to form an irradiance distribution, which is recorded by the photographic emulsion. The resulting irradiance, except for a multiplicative constant, is $\left.\psi_{4}, \bar{y}, y\right)=\left\langle\left(E_{B}+E_{o}\right)^{2}\right\rangle$, which, from Section 9.1, is giver
$\Psi(x, y)=\frac{E_{0 B}^{2}}{2}+\frac{E_{O O}^{2}}{2}+E_{O B} E_{0 O} \cos \left(\phi \quad \phi_{O}\right) \quad \quad$ (14.13)
Nerve once again that the phase of the object wave

- Situines the location on Σ_{H} of the irra diance maxima
and minima. Moreover, the contrast or fringe visibility

$$
\begin{equation*}
\mathscr{V}=\left(I_{\max }-I_{\min }\right) /\left(I_{\max }+I_{\min }\right) \tag{12.1}
\end{equation*}
$$

across the hologram piane, which is
$\gamma=2 E_{08} E_{10} /\left(E_{0 \mathrm{~B}}^{\partial}+E_{0 \mathrm{O}}^{2}\right)$,
(14.14)
contains the appropriate information about the object wave's amplitude.
Once more, in the parkance of communications theory, we mightu observe that the film plase serves as both the storage device and detector or miker. It produces, over its surface, a distribution of opaque region corresponding to a modulated spatial waveform. Accordingly, the third or difference frequency term in Eq. (I4.18) is both amplitude and phase modulated by way of the position dependence of $E_{00}(x, y)$ and $\phi_{0}(x, y)$.
Figure 14.44(b) is an enlarged view of a pontion of the fringe pattern that constitutes the hologram for a simple, essentialiy two-dimensional, semitransparent object. Were the two interfering waves perfectly planar as in Fig. 14.44(a)], the evident variations in fringe position and irradiance, which represent the information, would be absent, yielding the traditional Young's
pattern (Section 9.9). The sinusoidal transmissionpattern (Sotionation [Fig 14.44(a)] an be thourht o as the carrier waveform, which is then modulated by the signal. Furthermore, we can imagine that the coherent superposition of countless zone-plate patterns, one ent superposition of countless zone-plate patterns, one phosed into the modulated fringes of Fig. 14.44(b) When the amount of modulation is further greatly increased, as it would be for a large, three-dimensional diffusely reflecting object, the fringes lose the kind of symmetry still discernible in Fig. 14.44(b) and becom considerably more complicated. Incidentally, holo grams are often covered with extraneous swirls and concentric ring systems that arise from diffraction by dust and the like on the optical elements.

The amplitude transmission profile of the processed hologram can be made proportional to $I(x, y)$. In that case, the final emerging wave, $E_{F}(x, y)$, is proportional to the product $I(x, y) E_{R}(x, y)$, where $E_{R}(x, y)$ is the recon structing wave incident on the hologram. Thus if the seconstructing wave, of frequency ν, is inciden obliquely on $\boldsymbol{\Sigma}_{H}$, as was the background wave, we can write
$E_{R}(x, y)=E_{0 R} \cos [2 \pi \nu l+\phi(x, y)] . \quad$ (14.15) The final wave (except for a multiplicative constant) is the product of Eqs. (14.13) and (14.15):
$E_{F}(x, y)=\frac{1}{2} E_{0 R}\left(E_{0 B}^{2}+E_{0 O}^{2}\right) \cos [2 \pi \nu t+\phi(x, y)]$

$$
+\frac{1}{2} E_{0 R} E_{0 B} E_{0 D} \cos \left(2 \pi \nu t+2 \phi-\phi_{O}\right)
$$

$$
+\frac{1}{2} E_{0 R} E_{0 B} E_{00} \cos \left\{2 \pi v t+\phi_{0}\right\} . \quad\{1 \pm .16\}
$$

Three terms describe the light isssuing from the hologram; the first can be rewritten as

$$
\frac{1}{2}\left(E_{\sigma B}^{2}+E_{O O}^{2}\right) E_{R}(x, y),
$$

and is arr ampitude-modulated version of the reconructing wave. In effect, each portion of the hologram functions as a diffraction grating, and this is again the eroth-order, undefiected, direct beam. Since it contains no information about the phase of the object wave, ϕ_{O}, tis of little concern here.
The next two or side-band waves are the sum and
ifference terms, respectively. These are the two firstdifference terms, respectively. These are the diffracted by the grating-iike hoiogram. The
first of these (i.e., the sum term) represents a w except for a multiplicative constant, has the same ude as the object wave $E_{0 \circ}(x, y)$. Moreover, its contains a $2 \phi(x, y)$ contribution, which, as yoin rose from titting the background and recopit wavefronts with respect to Σ_{H} - It's this phase fact provides the angular separation between the fread irtual images. Furthermore, rather than contaition phase of the object wave, the sum term congit egative. Thus it's a wave carrying all of the appzo: information about the object but in a way that is quite right. Indeed, this is the real image fotero converging light in the space beyond the hologram is, between it and the viewer. The negative 薢 manifest in an inside-out image something like pseudoscopic effect occurring when the elementspot: a photographic stereo pair are interchanged. Bu front of and nearer to Σ_{H} are now imaged nearen to
 closest to the observer appears farthest away in the ke mage. The scene is turned in on itself along one axis in a way that perhaps must be seen to be appreciates For example, imagine you are looking down the holos graphic coniugate image of a bowling alley. The "bad. graphte conjugate image of a powtinit obscured by the "front" rows, are nonetheless imaged closer to the viewer than is the one-pin. Despite this, bear in mind that it's not as if you were looking at the array from behind. No light from the very backs of the pins was ever recorded-you're seeing an inside-out fron As a consequence, the conjugate image is limited utility, although it can be made to have configuration by forming a second hologram real image as the object.
The difference term in Eq. (14.16), except fo plicative constant, has precisely the form of wave $E_{0} o(x, y)$. If you were to peer into (now ankits illuminated hologram, as out only as if it were truly sitting there. You could move cxaur head a bit and look around an item in the fore ground in order to see the view it had previously obstructing In other words, in addition to co three-dimensionality, parallax effects are apparenifa

(a)

(c)

(b)

(d)
they are in no other reproducing technique (Fig. 14.45) Iratine that you are viewing the holographic image of a (xugnifving glass focused on a page of print. As you move your eye with, respect to the hologram plane, the werts lseing magnified by the lens (which is itself just ant Amage) actually change, just as they would in "real" "exith a "real" lens and "real" print. In the case of Estended scene having considerable depth, your cyes
and have to refocus as you viewed different regions T17 have to refocus as you viewed different region Finera lens would have to be readjusted if you were

Figure 14.45 Parts (b) through (d) are threc differcnt vicws photo graphed from the same hoiographic image generated by the
hologram in (z). (Photos from hologram in (z). (Photos from
Smith, Principles of Holography)
photographing different regions of the virtual image (Fig. 14.46).
There are other extremely important and interesting features that holograms display. For example, if you were standing close to a window, you could obscure all of it with, say, a piece of cardboard, except for a
tiny area through which you could then peer and tiny area through which you could then peer and still see the objects beyond. The same is true of a hologram, siabe each entire he saul vabe point, and each fragmen
pattern (Section 9.3). The sinusoidal transmissiongrating configuration [Fig. 14.44(a)] may be thought o as the carrier waveform, which is then modulated by the signal. Furthermore, we can imagine that the coherent superposition of countless zone-plate patterns, one arising from each point on a large object, have meta morphosed into the modulated fringes of Fig. 14.44(b). When the amount of modulation is further greatly increased, as it would be for a large, inree-dimensional, diffusely reflecting object, the fringes lose the kind of symmetry still discernible in Fig. 14.44(b) and become considerably more complicated. Incidentally, holograms are often covered with extraneous swirls and concentric ring systems that arise from diffraction by dust and the like on the optical elements.
The amplitude transmission profile of the processed hologram can be made proportional to $I(x, y)$. In that case, the final emerging wave, $E_{F}(x, y)$, is proportional to
 stracto reblituely on Σ, as was the background wave, we obliquely on Σ_{H}, as was the background wave, we can write
$E_{R}(x, y)=E_{0 R} \cos [2 \pi v t+\phi(x, y)] . \quad(14.15)$
The final wave (except for a multiplicative constant) is the product of Eqs. (14.13) and (14.15):
$E_{\mathrm{F}}(x, y)=\frac{1}{2} E_{0 R}\left(E_{0 \mathrm{~B}}^{2}+E_{O O}^{2}\right) \cos [2 \pi \nu t+\phi(x, y)]$

$$
+\frac{1}{2} E_{0 R} E_{0 B} E_{0 O} \cos \left(2 \pi \nu t+2 \phi-\phi_{O}\right)
$$

$$
+\frac{1}{2} E_{O R} E_{O B} E_{O O} \cos \left(2 \pi \nu t+\phi_{0}\right) . \quad \text { (14.16) }
$$

Three terms describe the light issuing from the hologram; the first can be rewritten a
$\frac{1}{2}\left(E_{0 \mathrm{~B}}^{2}+E_{0 \mathrm{O}}^{2}\right) E_{\mathrm{R}}(x, y)$,
and is an amplitude-modulated version of the recor structing wave. In effect, each portion of the hologram Eunctions as a diffraction grating, and chis is again the zeroith-order, undeflected, direct beam. Since it contain no information about the phase of the object wave, ϕ_{0} it is of little concern here.
diffence two sum and her waves diffracted by the gating like hologram. Th
irst of these (i.e., the sum term) represents.a was except for a multiplicative constant, has the w tude as the object wave $E_{o o}(x, y)$. Moreover contains a $2 \phi(x, y)$ contribution, which, as y arose from tilting the background and recons wavefronts with respect to Σ_{H}. It's this phase Fi. provides the angular separation between the: virtual images. Furthermore, rather than contio phase of the object wave, the sum term cone negative. Thus it's a wave carrying all of the apprin information about the object but in a way that quite right. Indeed, this is the real image foxiti converging light in the space beyond the hologram is, between it and the viewer. The negative phase is manifest in an inside-out image something like the pseudoscopic act ary photographic stereo pair are interchanged. Bump front of and nearer to Σ_{H} are now imaged weare but beyond Σ_{H}. Thus a point on the oreiner dosest to the observer appears farthest away in subjece mage. The scene is turned in on itself along one in a way that perhaps must be seen to be apprecint For example, imagine you are looking down the h di graphic con ugate image of a bowling alley. The "bad graphic conjugate image of a bowing, even though partially obscured by the "front" rows, are nonetheless imaged closer to the viewer than is the one-pin. Despite this, bear in mind that it's not as if you were looking at the array from behind. No tight from the very backs of the pins wat ever recorded -you're seeing an inside-out front 5 要 As a consequence, the conjugate image is usually limited utility, although it can be made to have a nom. configuration by forming a second hologram wilk real image as the object.
The difference term in Eq- (14.16), except for plicative constant, has precisely the form of the at wave $E_{0}(x, y)$. If you were to peer into (not at) thy illuminated hologram, as if it were a window look out onto the scene beyond, you would see che if your head a bit and look around an item in the fores your head a bre to the wiew had previouslyd: obstructing In other words in addition to coral three-dimensionality, parallax effects are apparexy

(c)
 Figure 14.45 Farss (b) through (d)
are three different vicws photographed frow the same holo-
graphic imaze generated by graphic image generated by the
hologram in (a). (Photef) from Smith, Principles of Holography)

Ware in no other reproducing technique (Fig. 14.45). IIagnifying glass focused on holographic image of Wive your cye with respea to the hologram plane the rids being magnified by the lens (which is itself just triage) actually change, just as they would in "real" With a "real" lens and "real" print. In the case of xtended scene having considerable depth, your eyes dd have to refocus as you viewed different regions atat various distances. In precisely the same way, a ymera lens would have to be readjusted if you were
photographing different regions of the virtual image (Fig. 14.46).
There are other extremely important and interesting features that holograms display. For example, if yo were standing close to a window, you could obscure tiny area through which of cardboard, except for a still see the objeas beyond could then peer and hologram, since each small Trement is ture of information about the entire objict at of it contain the same vantage point, and each fragmeitan romo
mage
Fgure $\mathbf{~} 4.47$ summarizes pictorially much of what's been said so far while also providing a convenient setup or actually making and viewing a hologram. Here the photographic emulsion is shown having some depth, as compared with Fig. 14.12, where it was treated as hough it were purely two-dimensional. Of course, any emulsion roust certainly have a finite thickness. Typically it would be about $10 \mu \mathrm{~m}$ thick, as compared with the spatial period of the fringes, which might average around $1 \mu \mathrm{~m}$ or so. Figure 14.48 (a) is closer to the point, showing the kind of three-dimensional fringes that actually exist throughout the emulsion. For plane waves hese straight parallel fringe-planes are oriented so as waves. Realize that all the holograms considered up to how have been wiewed by looking through them; chey're all transmission holograms, and in each case they were made by causing the reference wave and the ohject wave - travere the fim from the same side to traverse the flm from dre same side.

Something similar happens when the reference and

(6
as in Fig. 14.48 (b) waves be planar, the resulting pattern can be visule by siding two pencils along with the fronts; itwif: then be clear that the fringes are straight bands for: lying parailel to the face of the film plate. Whe.. actual, highly cortorted, object. wave is made to o. a planar, coherent, reference wave, these Thime become modulated with the information describingt object. The corresponding three-dimensional diff tion grating is called a reflection hologram. Duris playback it scatters the reiluminating bearn back on the hor the ver, and The (intarest the various hoiograohic schemes we've conpleg far, and this regardless of whether the diffrered was of the near- or far-field variety (i.e, whother had Fresnel or Fraunhofer holograms, respective we Indeed it applies generally where the interferog results from the superpositioning of the scater spherical wavelers from each object point and a

隦

146 A rind

plane or even spherical reference wave (provided the later's curvature is different from that of the wavelets) An inherent problem, which these schemes therefore have in common, arises from the fact that the zone-plate radii, R_{m}, vary as $m^{1 / 2}$ from Eq. (10.91). Thus the zone fringes are more densely packed farther from the center of each zone lens (i.e., at larger values of m). This is tantamount to an increasing spatial frequency of bright and dark rings, which must be recorded by the photo graphic plate. The same thing can be appreciated in the cosine-grating representation, where the spatial frequency increases with θ. Since film, no matter how fine-grained, is limited in its spatial frequency response, there will be a cutoff beyond which it cannot record data. All of this represents a built-in limitation on resolution. In contrast, if the mean frequency of the fringes could be made constant, the imitations imposed by the photographic medium would be considerably reduced, as it could record the average spatial fringe frequency, even a coarse emulsion, such as Polaroid P/N, could be

gure 14.48 (a) The interference of two plane waves travelio oward the same side to create a transmission holograrn. (b) The create a refection hologram.
sed without extensive loss of resolution. Figure 14.49 hows an arrangement that accompishes just this b having the diffracted object wavelets interfere with pherical reference wave of about the same curvatus The resulting interferogram is known as a Gad: ransform hologram (in this specific instance, $1 t$ high-resolution lensless variety). This scheme is o have the reference wave cancel the quadratic lens type) dependence of the phase with positg (as Σ_{H}. But that will occur precisely only for a planar wo-dimensional object. In the case of a three dimensional object (Fig. 14.50) this only happens ore plane, and the resuling hogre lons and composire or both types, that is, z zone ens and - ard by arm ar the same plane and oriented as if reflectedf he origin (Fig. 14.51)
The grating-tike nzture of all previous holograms vident here as weil. In fact, if you look througn Fourier-transform hologram at a small white-14i

gure 14.50 Lensless Fourier transform holography (an opaque Rbject.
statuettes-smail objects resting on giant blocks of granite. They had to be small because of limited laser power and cohercace length, while the ever-present nassive granite platiorm served to isolate the slightest vihrations that might blur the fringes and thereby degrade or obliterate the stored data. A loud sound or gust of air could result in deterioration of the reconstructed image hy causing the photographic plate, object, or mirrors to shift several millionths of an inch during the exposure, which itself might last of the order of a minute or so. That was the still-ife era or holghe phy. But now, with the use of new, more sensive flashes and the short duration (-40 ns) high-power ing fraiture from a single-mode pulsed ruby laser, even politr** (Fig. 4.52).

Throughout the 1960 s and much of the 19708 the emphasis in the field was on the obvious visual worders of holography. This continues in the 1980 s with the mass production of over a hundred million inexpensive
L. D. Sicbert. Appl. Phys. Letters 11, 326 (1967), and R. G. Zech and L. D. Siebert, Appl. Ph\% Lettiers 13.417 (1968)
plastic reflection holograms (bonded to credit cardit tucked in candy packages; decorating magazine coyva jewelry, and record albums). Indeed, the recent (19
development of and able to produce high-quality images will stimula the manufacture of even more of these throway holograms. Still there is now a widespread recogniti of the potential of holography as a nonpictor instrumentality, and that new direction is findin increasingly important applications.
i) Volume Holograms

Yuri Nikolayevitch Denisyuk of the Soviet Union, i 1962, introduced a scheme for generating hologra) that was conceptually similar to the early (1891) do photographic process of from the subject in bid the abea ward, overlapping the incoming cohe gates backward, overiapping the incoming conees thee dimensional patern of standing waves as in 14.48. The spatial distribution of fringes is recorded the photoemulsion throughout its entire thickness to

 55, 1327 (1965).]
form what has become known as a volume hologram. Several variations have since heen introduced, but the tatic tdeas are the same, rather than generating a twofimensional grating-ike scattering structure, the volume hologram is a turee-dimensional grating. In other words, it's a three-dimensional, modulated, periodic array of phase or amplitude objects, which represent the data. It can be recorded in several media, for example, in thick photoemulsions wherein the amplitude objects are grains of deposited silver; in photochromic glass; with halogen crystal.s, such as $\mathbf{~ K B r , ~}$ Which respond to irradiation via coor-center varations to with a ferroelectric crystal, such as lithium niobate which urdergoes local aterations ins index of refrac tion, thus hormg what one is thed a phase volume hologram however stored in the medium, which in the or druction process behace very much like a crystal being irradiated by x-rays, it scaters the incident (reconstructing) wave according to Bragg's law (Section (20.2.7). This isn't very surprising, since both the scatter ang centers and A have simply been scaled up propor dis nately.
Sone important feature of volume holograms is the interdependence [via Bragg's law, $2 d \sin \theta=m \lambda$

Kivure 14.52 A reconstruction of a holographic portrait. (Photo
(10.71)] of the wavelength and the scattering angle; that s, only a given color light will be diff racted at a particular angle by the hologram. Another significant property is hat by successively altering the incident angle (or the wavelength), a single volumne medium can store a great nany coekjsting holograms at one time. This latter propery makes such systems extremely appealing as ensely packed memory devices. For example, an 8-mim-thick hologram has been used to store 550 pages of information, each individually retrievable. In cheory a single lithium niobate crystal is capable of easily storing thousands of holograms, and any one of them could be eplayed by addressing the crystal with a laserbeam at the appropriate angle. Current research is also focusing n potassium tantalate niobate (KTN) as a potential phorezracive crystal-storage medium. Imagine a 3 -D tital statistics beauty marks credic cards, taxes, bad abis, income life history, and so on all recorded on handful of small transpatent crystels handiol mall transparent crystals.
Multicolored reconstructions have been formed using (black and white) volume holographic plates. Two, hree, or more different colored and mutually incoherate, cohabitating, component holograms of the object, and this can be done one at a time or all at once. When these are illuminated simultaneously by the various contituent beams, a multicolored image results
Another important and highly promising scheme, devised by G. W. Stroke and A. E. Labeyrie, is known s white-light reffection holography. Here, the recontructing wave is an ordinary white-iight beam from, ay, a fashlight or projector, having a wavefront similar o the original quasimonochromatic background wave. When illuminated on the same side as the viewer, only the specific wavelength that enters the volume hologram at the proper Bragg angle is reflected of to form a reconstructed 3-D virtual image. Thus if the scene were recorded in red laseringht, only red light would presumto point out, hosever the during the fixing process, and if is not swollen back to its original form chemically (with say triethylnolamine) the spacing of the Bragg planes, d decreases That means that at a given angle θ, the reflected
wavelength will decrease proportionately. Hence, scene recorded in He-Ne red might play back in orange or even green when reconstructed by a beam of whit Iight.
If several overlapping holograms corresponding to different wavelengths are stored, a mutlicolored tmage will result. The advantages of using an ordinary source D images a obvious and far-reaching.

D. Holographic Interferomery

One of the most innovative and practical of recent holographic advances is in the area of interfernmetry Three distinctive approaches have proved to be quit useful in a wealth of nondestructive testing situation where, for example, one might wish to study microinch distortions in an object resulting from strain, vibration, heat, etc. In the double exposure technique, one simply makes a hologram of the undisturbed object and then before processing, exposes the hologram for a second time to the light coming from the now distorted object The ultimate result is two overlapping reconstructed waves, which proceed to form a fringe patterrindicative of the displacernents suffered by the object, that is, the changes in optical path length (Fig. 14.53). Variation in index such as those arising in wind tunnels and the like will generate the same sort of pattern
In the real-time method, the subject is left in its original position throughout; a processed hologram is formed, and the resulting virtual mage is made to thatise during presequinshow on ookin through the hologram as a system of fringes, which an be tudied as they, evolve in real time The method applies to both opaque and trancparent objects Motion pictures can be taken to form a continuous record of the response.

The third method is the time-average approach and is particularly applicable to. rapid, small-amplitude oscillatory systems. Here the film plate is exposed for a relatively long duration, during which time the vibrat ing object has executed a numbr of oscillations. Th resulting hologram can be thought of as a superposition of a multiplicity of images, with the effect that a stand-

Hgure 14.53 Double exposure hologia 1 S. M. Zivi and G. H. Humberstane, "Chest Motion Visualized Holographic Intcrfcrometry." Medical Research Eng. p. 5 (June 1
ing-wave pattern ernerges. Bright areas reveal undeflected or stationary nodal regions, while contwe ines trace out areas of constant vibrational amplity Especially promising in the field of nondestrue esting is the commercial availability (1983) or a film. The holograms are produced in less than seconds after exposure, and the plate can be reat hundreds of times. Today holographic testing nechanical systems is already a well established pr in indusiry. It continues to serve in a broad ran pplications, from noise reduction in automobile missions to routine jet engine inspections.

Figure I4. 54 Real-time holographic miterfetometry.
UAcoustodi Holography
acoustical holography, an ultra-high-frequency od ave (ultrasound) is used to create the hologram wible and a laserbeam then serves to form a recog twibe reconstructed image. In one application, the सfimary ripple pattern on the surface of a water body onds te a hideyram if the objoct transducers corre ovographing it crates a hooctem ital 14.55) ated uptrally to form a visual imase Alternativ. r ripples can be irradiated from abo. Alternativeiy ram to can be an instantaneous reco fecred light an instantaneous reconsfruction in The advanta
that sound of acoustical techniques reside in the nces in sound waves can propagate considerable dis ances in dense liquids and solids where light cannot. Thus acoustical holograms can record such divers hings as underwater submarines and internal bod gans.* In the case of Fig. 14.55, one would see some Mapober 19693. Refer to A. L. Dalisa et al., "Photcanodic Engravin Holograms on silimon," Appl. Phys Letlers 17. 208 (1970), Eo
hing that resembled an x-ray motion picture of the fish. Figure 14.56 is the image of a penny formed via acouscical holography using ultrasound at a frequenc onater that corresponds to a waveleng roughly $30 \mu \mathrm{~m}$, and so each fringe contour reveal a change in elevation of $\frac{1}{2} \lambda$ or $15 \mu \mathrm{~m}$.
iv) Holographic Optical Elements

Evidently when two plane waves overlap, as in Fig. 14.42 , they produce a cnsine grating. This suggests th rather obvious notion that holography can be used for nompictorial purposes, like making diffraction grating Indeed the holographic optical element (HOE) is an diffractive devict consisting of a "fringe" system (i.e. a distribution of diffracting amplitude or phase objects) created either ditectly by interferometry or by com puter simulation thereof. Holographic diffraction grat ings, both blazed and sinusoidal, are available commer cially (with up to around 9600 lines $/ \mathrm{mm}$). Although st less efficient than ruled gratings, they do produce fa Iess stray light, which can be important in many applica tion

Figure I4.55 Acoustical holograp

Figure 14.56 Interferometric image of a peny via acoustical holography- (Photo courtesy Holosonics, Inc.)

Suppose we record the interference patterin of a converging heam using a planar reference wave. Upon cilluminating the resulting transmission hologram with matching plane wave, out wil come a recreated con(see Fig 14.99). Similarly, if the reference beam is a diverging wave from a point source and the object is a plane wave, the resulting hologram, reilluminated by the point source, will play back a plane wave. In this way a holographic optical element can perform the tasks of a complex lens with the added benefit of allowing or an inexpensive, lightweight, compact aystem design. Holographic optical elempents are already in use inside supermarket check-out scanners that automatically read the bar patterns of the Universal Product Code (UPC) on merchandise. A laserbeam passes througi a rotating disk composed of a number of holographic ens-prism facets. These rapidly refocus, shifi, and scan the bearn across a volume of space, ensuring that the code will be read on the first pass across the device. HOEs are used in so-called heads-up displays in airplane cockpits. These allow rellected data to appear on an otherwise transparent screen in front of the pilot's face and yet not obscure the view. They're also in office copy machines and solar concentrators.

As matched spatinl filters, HOEs are used in opti correlators (p. 505) to spot defects in semiconduct HOE tank in hologram formed using the Fourier transis of the target (e.g., a picture of a tank or prambanc printed word) as the object. Suppose the problem find a word on a printed page automatically, usin optical comeputer like that in Fig. 14.8, that is, to oid correlate the word and the page of words. The ta transform hologram is placed in the transform pil and illuminated with the transform of an entire pag of print. The field amplitude emerging from this HO filter will then be proportional to the product of the transforms of the page and the word. The transfoct of this product, generated by the last lens and display on the image plane, is the desired cross-correla (recall the Wiener-Khinchine theorem). If the word on the page, there will appear corimposed and a frigat spor where the target word ${ }^{\text {a }}$ It is posible to synthesize, point by poin, a of a fictitious object. In other words, in the most gina approach holograms can be produced by calculating with a digital computer, the irradiance distriburion?: would arise were some object appropriately illumin in a hypothetical recording session. A comer controlled piotter drawing or cathode ray tube read of the interferogram is then photographed, th serve as the actual hologram. The result upon illaris tion is a three-dimensional reconstructed image of object that never had any real existence in the first place. More practically, computer-generated HOEs are now routinely being produced, often to serve as refoed ences for optical testing. Since this mating of exe nologies can in principle generate wavefronts on essentially impossible to produce, the future is ive promising.

14.4 NONLINEAR OPTICS

Generally, the domain of nonlinear optics is understo to encompass those phenomena for which electrici magnetic field intensities of higher powers than

[^17]play a dominant role. The Kerr effect (Section 8.11.3), which is a quadratic variation of refractive index with applied voltage, and thereby electric feld, is typical of several long-known nonlinear effects.
The usual classical treatment of the propagation of哇ht-superposition, reflection, refraction, and so forth-assumes a linear relationship between the eler tromagnetic light field and the responding atomic sys tem constituting the medium. But just as an oscillator mechanical device (e.g., a weighted spring) can be over driven into nonlinear response through the application of large enough forces, so too we might anticipate tha an extremely intense beam of light could generate appreciabie nonlinear optical effects. The electric field will traditional sources are ordinary or, if you will, coupled with an initial lack of technical prowess, tha the subject had to await the advent of the taser in order that sufficient brute force could be brought to bear in the optical region of the spectrum. As an example of the kinds of fields readily obtainable with the current technology, consider that a good lens can focus a laser beam down to a spot having a diameter of about heam down to a spot having a diameter of abou $\mathrm{Cl}^{-9} \mathrm{~m}^{-3}$. A 200 -megawatt pulse from, say, a Q-switched ruby laser would then produce a flux density of $20 \times$ $10^{16} \mathrm{~W} / \mathrm{m}^{2}$. It follows (Problem 14.18) from Section 3.3.1 that the corresponding electric field amplitude is given by
\[

$$
\begin{equation*}
E_{0}=27.4\left(\frac{I}{n}\right)^{1 / 2} . \tag{14.17}
\end{equation*}
$$

\]

In this particular case, for $n \approx 1$, the field amplitude is about $1.2 \times 10^{8} \mathrm{~V} / \mathrm{m}$. This is more than enough to cause the breakdown of air (roughly $3 \times 10^{6} \mathrm{~V} / \mathrm{m}$) and just怎veral orders of magnitude less than the typical fields holding a crystal together, the latter being roughly about
the same as the cohesive field on the electron in a the same as the cohesive field on the electron in a
drogen atom $\left(5 \times 10^{1 i} \mathrm{~V} / \mathrm{m}\right)$. The availability of these hydrogen atom $\left(5 \times 10^{12} \mathrm{~V} / \mathrm{m}\right)$. The availability of thes wide range of importan feids has made possible and devices. We shall limit this discussion to the conEideration of several nonitinear phenomena associated with passive media (i.e., media that act essentially as Watyats without making their own characteristic
frequencies evident). Specifically, we'll consider optical rectification, optical harmonic generation, frequency mixing, and self-focusing of light. In contrast, stimu later Raman, Rayleigh, and Brillowin scattering (Section 13.8) exemplify nonlinear optital phenomena arising quencies on the lightwave.*
As you may recall (Section 3.5.1), the electromagnetic fieid of a lightwave propagating through a medium exerts forces on the loosely bound outer or valence electrons. Ordinarily these forces are quite small, and in a linear isotropic medium the resulting electric polarization is parallel with and directly proportional to the applied field. In effect, the polarization follows the fiedd; if the latter is harmonic, the former will be harmonic as well. Consequently, one can write

$$
P=\epsilon_{0} \chi E,
$$

where x is a dimensionless constant known as the electric susceptibility, and a plot of P versus E is a straight line. Quite obviously in the extreme case of very high fields, we can expect that P will become saturated; in other words, it simply cannot increase linearly indefinitely with E (just as in the familiar case of ferromagnetic materials, where the inagnetic moment becomes saturated at fairly low values of H). Thus we can anticipate a gradual increase of the ever-present, but usually insigof \boldsymbol{P} and \mathbf{E} coincide in the simest case of an istrons mium Ea cos medium, we can express the polarization mor effectively as a series expansion:

$$
P=\epsilon_{0}\left(\chi E+\chi_{2} E^{2}+\chi_{3} E^{3}+\cdots\right) \quad \text { (IA:IG) }
$$

The usual linear susceptibility, χ, is much greater than the coefficients of the nonlinear terms χ_{2}, x_{3}, and so on, and hence the latter contribute noticeably only at high-amplitude fields. Now suppose that a lightwave of

$$
E=E_{0} \sin \omega t
$$

is incident on the medium. The resulting electric

For a more extensive treacment than is possible here, see N . Vonlinear Opticis.
polarization

$$
\begin{aligned} P= & \epsilon_{6} X E_{0} \sin \omega t+\epsilon_{0} X_{2} E_{0}^{9} \sin ^{2} \omega t \\ & +\epsilon_{t} \chi_{3} E_{5}^{3} \sin ^{3} \omega t+\cdots\end{aligned}
$$

tan be rewritten as
$p=\epsilon_{0} \chi E_{0} \sin \omega t+\frac{\epsilon_{0} X_{\mathbb{I}}}{2} E_{3}^{2}(1-\cos 2 \omega t)$
$+\frac{\sigma_{0} X_{s}}{4} E_{v}^{3}(3 \sin \omega t-\sin 3 \omega t)+\cdots$
As the liarmonicl lightwave eweeps through the medum， it creases what might be thought of as a poiarization wave，that is，an undulating redistribution of charge withis the nater and ingonse to ctric polarization wave linear ternesent to an oscillatory current following would with the incident tight．The light thereafter along with the incident light．The light thereafter reraciated in such a process would be the usual refracted wave generally propagating with a reduced speed tan ，In contrast，the presence of higher－arder terms in Eq． contrast，the presence of higher－arder terus in Eq．
(14.20) implies that the poiarization wave cerainly does （ 14.20 ）implies that the polarization wave cenaine farse harmonic profile as the incident field． In fact，Eq．（14．21）can he likened to a Fourier series representatiton of the distored profile of $P(t)$ ．

14．4．1 Optical Rectification

The sccond term in Eq．（14．21）has two components of great interest．First there is a de or constant bias polariza great interest．First there is a de or constant bias polarixa tion varying as E_{i} ．Consequenty，if an intense plane－ polarized beam traverses an appropriate（piezoelectric） in part，be manifest by a constant electric polarization of the medium．A voltage difference，proportional to the beam＇s fux densicy，will accordingly appear across the crystal．This effect，in analogy to its radicirequency counterpart，is known as optical rectification．

14．4．2 Harmonic Generation

The $\cos 2 \omega t$ term（14．21）corresponds to a variation in electric polarization at twice the fundamental frequency （i．e．，at twice that of the incident wave）．The reradiated
light that arises from the driven oscillators also b component at this same frequency， 2ω ，and the pro
 for short．In terms of the photon representation we envision two identical photons of energy tho coale within the medium to form a single photon of energy A20．Peter A．Franken and several coworkers at th University of Michigan in 1961 were the first fo obsetw SHG experimentaliy．They focused a $3-\mathrm{kW}$ pulse of （ $694,3 \mathrm{~nm}$ ）ruby ${ }^{6}$ ． about one part in 10 of this incident wave was convertead
Notice that for a given materiat if $p_{(}(E)$ is
Notice that，for a given materiat，if $P(E)$ is an odd function，that is， 1 reversing the direction of the \mathbf{E}－field E in Fq． 14.19 must vanish．But this is just what hat in an isotropic medium，such as glass or water－t in an isotropic medium，such as glass or water－thend like calcite，which are so structured as to have what known as a center of symmetry or an inversion ceriter，a reversal of all of the coordinate axcs must leave the interrelationships between physical quantities unal－ tered．Thus no even harmonics can be produced by materials of this sort．Third－harmonic generation （THG），however，can exist and has been observec，for exampie，in calcite．The requirement for SHG that a crystal not have inversion symmetry is aiso necessativ for it to be piezoelectric．Under pressure a piezoelectricic crystal［such as quartz，potassium dihydrogen phosp］his （KDP），or ammonium dihydrogen phosphate（Ab） indergoes an asy mmetric distortion of its charge dise bution，thus producing a voltage．Of the 32 cry dasses， 20 are or this kind and ay in sta．The simple scalar exprosion（livelectriccrest
 feitd omponents in several different directions ifis a crystal can affect the electric polarization in anty one direction．A complete vreatment requires that \mathbf{P} and \mathbf{E} be related not by a single scalar but by a group of quantities arranged in the particular form of a tensor， namely，the susceptibibity tensor：＂

FIncidentully．there is nothing extraordinary about thes ity Incidcntally．there is nothing ext taordinary atout ensor，det
behavior－it comes up all he tirae．Therce are ineria tensor， netization coefficicnt tensors，stress tensors，und so forth．

A major difficulty in generating copious amounts of Acond－barnonic light arises from the frequency depen－ teconce of the refractive index，that is，dispersion．At gone initial point where the incident or ω－wave，gener－ ters the second－harancic or 2ω－wave，the two are patherent．As the ω－wave propagatesthrough the crystal Fif continues to genetate additional contributions of Fecond－harmonic light，which all combine totally con－ fructively only if they maintain a proper phase relation－ Kaip．Yer the ω－wave travels at a phase velocity ν_{ω} ，which佔，ordinarily different from the phase velocity，$v_{\text {sw }}$ ，of fete $2 w$－wave．Thus the newly emitted second harmonic geriodically falis out of phase with some of the pre－ aniously generated 20 －waves．When the irradiance of the second harmonic，$I_{2 u}$ ，emerging from a plase of thetidness ℓ is computed＊＊it turns out to be

$$
I_{2 \omega} \propto \frac{\sin ^{2}\left[2 \pi\left(n_{\omega}-n_{s \omega}\right) \ell / \lambda_{\omega}\right]}{\left(n_{\omega \omega}-n_{x_{\omega}}\right)^{7}}
$$

（14．22）
（see Fig．14．57）．This yields the result that $i_{2 w}$ has its maximum value when $\ell=t_{s}$ ，where

$$
\ell_{c}=\frac{1}{4} \frac{\lambda_{0}}{n_{0}-r_{201} \mid}
$$

this is quite commonly knowir as the coherence lengh筒though a different name would perbaps be better） and it susually of the order of only about $20 \lambda_{0}$ ．Despite hiss，efficient sha can be accomplished by a procedure nnown as index matcking，which negates the undesirable that $n=1$ a Tif is piezoelectric transpent Shaterial is KDP． II is prezoelcetric，transparent，and also negatively告g property that if the fundamental light is a linear ©ciarized ordimany wave，the resuiting second harmoaic will be an extrardinary wave．As can be seen from Fig 14，58，if lighi propagazes within a KDP crystal at the specific angle θ_{0} with respert to the optic axis，the index $n_{0 w}$ of the ordinary fundamental wave will precisely equal the index of the extraordinary second harmenic ${ }^{102}$ ew．The second－harmonic wavelets will then interfere constructively，thereupon increasing the conversion

EV，for exomple，B．Lengyel，Intraduction to Laser Physis，Chapter
Wh This is a fint elementary trcatment．

14－4 Nonlinear Optics

Figure 14.57 Sceond barmonic getrecation as a function of 9 for a 0.78 －mm thick getariz plate．Peaks uccure when the effective thickness
is an even muitiple of θ_{C} ．Fromi P．D Maker．R．W．Terhunc，M．

efficiency by several orders of magnitude．Second－ harmonic genrators，which are simply appropriateiy cut and oriented crystals，are available commerciaily，tut do keep ini mind that θ_{0} is a function of λ ，and each such device performs at one frequency．Not long ago， a continuous $1-\mathrm{W}$ second－harmonic beam at 532.3 nm was obtained by placing a barium sodium niobate crystal whin the cavity of a 1 －W 1.06μ laser．The fact that the ∞－wave sweeps back and forth through the crysta？ increases the net conversion efficiency
Optical harmonic generation soon lost its initial exotic quality and tecame a routine commercial process

Figure 14.58 Relracive index surfice for K.DP. (b) $I_{z w}$ versuscrystal orientaion in KDP. (From Maker et ai:)
by the early 1980s. Still, there continue to be excitin technical accomplishments, such as the 74 -cm-diami harmonic conversion array. Its. function is to conve Nova laser-fusion program. infrared ($1.05 \mu \mathrm{~mm}$) emisgio upwards of 80% of the from the neodyrnum-ghass liation. Because of its, muz
 sine the converter ingle-crystal pancls forming two layers, one behind other. To generate the second harmonic (green bip at $0.53 \mu \mathrm{~m})$, the array is positioned so that each laye functions indeperidently to produce two overlappin frequency-shifted components. These arise one trog each crystal layer and are orthogonally polarized. Tha third harmonic (blue light at $0.55 \mu \mathrm{~m}$) is created by reorienting the assembly to the appropriate phasematching angle so as to shift about two thirds of the beam energy into the second harmonic as it traverses the first crystal layer. The second layer mixes the emaining IR and the second-harmonic green light to produce third-harmonic blue.

14.4.3 Frequency Mixing

Another situation of considerable practical interesp involves the mixing of two or more primary beams dy different frequencies within a nonlinear dielectric. The process can most easily be appreciated by substitutin造 a wave of the form

$$
E=E_{01} \sin \omega_{1} t+E_{02} \sin \omega_{2} t
$$ into the simplest expression for P given by Eq. 134.199 The second-order contribution is then

$\epsilon_{0} X_{2}\left(E_{01}^{2} \sin ^{2} \omega_{1} t+E_{02}^{\gamma} \sin ^{2} \omega_{2} t\right.$

$$
\left.+2 E_{0} E_{00} \sin \omega_{1} t \sin \omega_{2} t\right) .
$$

The first two terms can be expressed as functions of $2 \omega_{1}$ and $2 \omega_{2}$, respectively, while the last quantity gives rise to sum and difference termis, $\omega_{1}+\omega_{2}$ and ω_{1}. As for the quantum picture, the photesing of the $\omega_{1}+\omega_{2}$ simply corrasp original photons where both quanta had the sam case of SHG, where both quanta had the

Figuse 14.59 The KDP frequency converter for the Nova laser. ghoto courresy Lawrence Livermore Nationat Laboratory.)

ERequency. The energy and momentum of the annihied photons are carried off by the created sum photon. Tithe generation of an $\omega_{1}-\omega_{2}$ difference-photon is momenturn involved. Conservation of energy and photon, only the higher-frequency ${ }^{\prime}$ photon vanishes, bereby creating two new quanta, one an $\omega_{\text {-ph }}$ and the other a difference-photo
As application of this photon.
eat, within a nonlinear crystal, a strong wave of
feequency ω_{y}, called the pump light, with a weak signal
tuave of lower frequency $\omega_{\text {s }}$, which is to be amplified Pump light is thereby converted tnto both signal light and a difference wave, called idler light, of frequency $\omega_{i}=\omega_{p}-\omega_{s}$. If the idler light is then made to beat wirh the pump light, the latter is converted into additiona amounts of idler and signal light. In this way both the signal and idler waves are amplified. This is actually an extension into the optical-frequency region of the wellknown concept of patametric amplification, whose use in the microwave spectrum dates back to the late 1940 s . The first optical-parametric oscilletor, which was operated in 1965 , is depicted in Fig. 14.60. The Hat parallel end faces of a nonlinear crystal (lithium niobate) were coated to form an optical Fabry-Perot cavity. The signal and idler frequencies (both about 1000 nm) corresponded the flux density of the pumping its of the cayty. When energy was ranstrred from it into the signal anough, oscillatory modes, with the conserpuent build-up of those modes and emission of coherent radient energy athose frequencies. This transfer of energy from one wave to another within a lossless medium typifies parametric another within a lossless medium typifes parametric tal (via temperature, electric field, etc.), the oscillator becomes tunable. Various oscillator configurations have since evolved, with other nonlinear materials used as well, such as barium sodium niobate. The optical parametric oscillator is a laser-like, broadly tunable source of coherent radiant energy in the IR to the UV.

14.4.4 Self-Focusing of Ligh

When a dielectric is subjected to an electric field that varies in space, in other words, when there is a gradient of the field parallel to \mathbf{P}, an internal force will result. This has the effect of altering the density, changing the permittivity, and thereby varying the refractive index, suppose ther that we shine an intense laserbeam with trarsverse Gaussian flux-density distribution onto a pecimen. The induced refractive-index variations will cause the medium in the region of the beam to function much as if it were a positive lens. Accordingly the beam

Figure 14.60 An optical paramctric oscillator. [After]. A. Giordmaine and R. C. Miller, Phys. Rev. Leters 4, 979 (1965).]
contracts, the flux density increases ever more, and the contraction continues in a process known as selffocusing. The effect can be stamed unt the bean $10^{-6} \mathrm{~m}$, being totally internally refected as if it were in a fiberoptic element imbedded within the medium. \dagger

PROBLEMS

14.1 What would the pattern Iook like for a laserbeam diffacted by the three crossed gratings of Fig. 14.61)
14.2 Make a rough sketch of the Fraunhofer diffraction pattern that would arise if a cransparency of Ft . 14.62(a) served as the object. How would you filter it to get Fig. 14.62(b)?
14.3 Repeat the previous problem using Fig. 14.63 instead.
† See J. A. Giordmaine, "Nonlinear Optics," Phys. Today, 99 (January $1969)$.

Figure 14,62 Photos courtesy R. A. Phillips.

Figure 14.68 Photos courtesy R. A. Phillips.
14.4* Repeat the previous problem using Fig. 14.64 this time.

Rigure 14.64 Photos courtesy R A Phillips
14.5 Returning to Fig. I4.10, what kind of spatial filte 14.5 Returning to ig. 14.10 , what kind of spatial fite
would produce each of the patterns shown in Fig. 14.65?

(b)

Fighre 14.65 Photos courtesy D. Dutton, M. P. Givens, and R. E. Hopkins.
14.6 With Fig. 14.9 in mind, show that the transverse magnification of the system is given by $-f_{i} / f_{t}$ and draw he appropriate ray diagram. Draw a ray up through the center of the first lens at an angle θ with the axis. rom the point where that ray intersects $\boldsymbol{\Sigma}_{\text {, }}$ draw a ray ens at 1 . Pro $h=$ of second

6.8 Chapter 14 Sundry Topics from Contemporary Optics

notion of spatial frequency, from Eq. (11.64), show that k_{0} at the object plane is related to k_{1} at the image plane $k_{0}{ }^{2 t}$
$b y$

$$
k_{f}-k_{o}\left(f / / f_{t}\right)
$$

What does this mean with respect to the size of the image when $f_{i}>f_{i}$? What can then be said about the spatial periods of the input data as compared with the spatial periods
image output?
14.7 A diffraction grating having a mere 50 grooves per cm is the object in the optical computer shown in per cm is the object in the optical computer shown in Fig. 14.9, If it is coherently illuminated by plane waves lens has a 100 cm focal length, what will be the spacing of the diffraction spots on the transform plane?
14.8* Imagine that you have a cosine grating (i.e., cransparency whose amplitucts transmission profile is cosinusoidal) with a spatial period of 0.01 mm . The grating is iliuminated by quasimonochromatic plane waves of $\lambda=500 \mathrm{~nm}$, and the setup is the same as that of Fig. 14.9, where the focal lengths of the transform and imaging lenses are 2.0 mm and 1.0 mm , respectively
a) Discuss the resulting pattern and design a fitter that will pass only the first-order terms. Describe it in
b) What will the image look like on $\mathbf{\Sigma}_{\mathrm{i}}$ with that filter in place?
c) How might you pass only the de term, and what would the image look like then?
14.9 Suppose we insert a mask in the transform plane of the previous problem, which obscures everything hu the $m=+1$ diffraction contribution. What will the re formed image look like on Σ_{i} ? Explain your reasoning Now suppose we remove only the $m=+1$ or the $m=-$ term. What will the re-formed image look like?
14.10* Referring to the previous two problems with the cosine grating oriented horizontally, make a sketch of the electric field oriented horizontally, make a sketch Plot the corresponding image irradiance distribution What will the electric 5 eld of the imare look the if the de term is fitered out Pla it Now plot the new irrad
ance distribution. What can you say about the spatiand frequency of the image with and without the filter ind place? Relate your answers to Fig. 11.13.
4.11 Replace the cosine grating in the previous per lem with a "square" bar grating, that is, a series of 算 ine alternating opaque and transparent bands of ese width. We now filter out all terms in the trand plane but the zeroth and the two first-order diffraction spots. These we determine to have relative irradiano of 1.00.0.36, and 0.36 : compare them with Figs. 7.15 ${ }^{6}$) and 7.16. Derive an expression for the general the of the irradiance distribution on the image planesketch of it. What will the resulting fringe systemb like?
14.12 A fine square wire mesh with 50 wires per cm is piaced vertically in the object plane of the optical computer of Fig. 4.8 . If the linses each have i.0 das $^{\text {s. }}$ the difraction spots on the transform plane ar teve a horizonal and vertical separation of 90 mm What will be the mesh spacing as it appears on the What will be the mesh spacing as it appears on the inga plane?
4.13* Imagime that we have an opaque mask into. Which are punched an ordered array of circular holedy of the same size, located as if at the corners of the puncher goes mad and makes an additional batch of hoies essentially randomly all across the mask. If this screen is now made the object in Problem. 14.1, what will the diffraction pattern look like? Given that the ordered holes are separated from their nearest neighbors on the object by 0.1 mm , what will be the spatial frequency of the corresponding dots in the ingese Describe a filter that will remove the random holes 餢 the final innage.
14.14* Imagine that we have a large photograph ransparency on which there is a picture of a stugdeit nade up of a regular array of small circular dote passes a spot of light with a particular field amplitit Considering the transparency to be illuminated by ${ }^{2}$
plane wave, discuss the idea of representing the electric field amplitude juat beyond it as the product (on average) of a regular two-dimensional array of top-ha functions (Fig. 11.4, p. 476) and the continuous twodimensional picture fuaction: the former like a dull bed of naiis, the latter an ordinary photograph. Applying the frequency convolution theorem, what does th distribution of light look like on the transform plane? How might it be filtered to produce a continuous outpu image?
14.15* Given that a ruby laser operating at 694.3 nm has a frequency bandwidth of 50 MHz , what is the corresponding linewidth?
14.16* Determine the frequency difference between 14.1 laser 25 cm long ($n \approx 1$).
14.17* A He-Ne c-w laser has a Doppler-broadened transition bandwidth of about 1.4 GHz at 682.8 nm tength for single-zxial-mode operation. Make a sketch of the trancion linewidth and the corresponding cwiy modes
14.18 Show that the maximum electric field intensity, $E_{\text {rax }}$, that exists for a given irradiance I is

$$
E_{\text {stax }}-27.4\left(\frac{I}{n}\right)^{1 / 2} \text { in units of } \mathrm{V} / \mathrm{m}
$$

where n is the refractive index of the medium.
14.19* The arrangement shown in Fig. 14.66 is used to convert a collimated laserbeam into a spherical wave. The pinhole cleans up the beam; that is, it eliminates diffraction effects due to dust and the like on the lens.
How does it How does it manage it?
14.20 What would happen to the speckle patters if a haserbeam were projected onto a suspension such as milk rather than onto a smooth wall?

Wigure 14.66 (a) and (b) A bists-power laserbeam before and alter spatial fittering. (Phoco coureesy Lawreace Iivermore National

Appendix 1 Electromagnetic Theory

MAXWELI'S EQUATIONS IN DIFFERENTIAL FORM

The set of integral expressions that have come to be known : Maxwell's cquations ate

$$
\begin{gather*}
\oint_{C} \mathbf{E} \cdot d \mathbf{I}=-\iint_{A} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{S} \tag{3.5}\\
\oint_{C} \frac{\mathbf{B}}{\mu} \cdot d \mathbf{I}=\iint_{A}\left(\mathbf{I}+\boldsymbol{\epsilon} \frac{\partial \mathbf{E}}{\partial t}\right) \cdot d \mathbf{S} \tag{s,Is}\\
\oint_{A} \in \mathbf{E} \cdot d \mathbf{S}-\iiint_{V} p d V \tag{3.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\oint_{A} \mathrm{~B} \cdot d \mathrm{~S}=\mathrm{C}_{2} \tag{3.9}
\end{equation*}
$$

where the units, as usual, are SI.
Maxwell's equations can be written in a differential form, which is more useful for deriving the wave aspects of the electromagnetic field. This transition can readily be accomplished by making use of two theorems from vector calculus, namely, Gauss's divergence theorem,

$$
\begin{equation*}
\oiint_{A} F \cdot d S=\iiint_{V} \nabla \cdot F d V \tag{A}
\end{equation*}
$$

and Stokes's theorem

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{I}-\iint_{A} \nabla \times \mathbf{F} \cdot d \mathbf{S} .
$$

Here the quantity \mathbf{F} is not one fixed vector, but a function that depends on the position variables. It is a rule that associates a single vector, for example, in

Cartesian coordinates, $\mathrm{F}(x, y, z)$, with each point (x,
in space. Vector-valued functions of this kind such
\mathbf{E} and \mathbf{B}, are known as vector fields.
Applying Stokes's theorem to the electric field intensity, we have

$$
\oint \mathbf{E} \cdot d \mathbf{I}=\iint \boldsymbol{\nabla} \times \mathbf{E} \cdot d \mathbf{S} .
$$

If we compare this with Eq. (3.5), it follows that

$$
\iint \boldsymbol{\nabla} \times \mathbf{E} \cdot d \mathbf{S}--\iint \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{S} .
$$

This result must be true for all surfaces bounded by the path C. This can only be the case if the integrandsy are chemselves equal, that is, if

$$
\begin{equation*}
\boldsymbol{\nabla} \times \mathbf{E}^{-}-\frac{\partial \mathbf{B}}{\partial t} \tag{A1.5}
\end{equation*}
$$

A similar application of Stokes's theorera to \mathbf{B}, using Eq. (3.13), results in

$$
\mathbf{v} \times \mathbf{B}-\mu\left(\mathrm{J}+\epsilon \frac{\partial \mathbf{E}}{\partial t}\right) . \quad(A I . \theta)
$$

Gauss's divergence theorem applied to the electric intensity yields

$$
\int \oint \mathbf{E} \cdot d \mathbf{S}=\iiint \boldsymbol{\nabla} \cdot \mathbf{E} d \boldsymbol{V}
$$

If we make use of Eq. (3.7), this becomes
$\iiint_{V} \nabla \cdot \mathrm{E} d V=\frac{1}{\epsilon} \iiint_{V} \rho d V, \quad(A 1.8)$
nd since this is to be true for any volume (i.e., for an arbitrary closed domain), the two integrands must be equal. Consequently, at any point $\left(x, y, z_{1}\right)$ in space-time
$\boldsymbol{\nabla} \cdot \mathbf{E}=\rho / \epsilon$.
(A! ${ }^{\text {S }}$)
In the same fashion Gauss's divergence theorem appiied the B-fieid and sombined with Eq. (3.9) yields

$$
\nabla \cdot \mathbf{B}=0 .
$$

Equations (A1.5), (A1.6) (A1.9), and (Al.10) are Maxwell's equations in differential form. Refer back to Eqs. 3.18) through (3.21) for the simple case of Cartesian coordinates and free space $\left(p=J=0, \epsilon=\epsilon_{\mathrm{U}}, \mu-\mu_{0}\right)$.

ELECTROMAGNEIIC WAVES

To derive the electromagretic wave equation in its most feneral form, we must again consider the presence of some medium. We saw in Section 3.5.1 that there is a eed to introduce the polarization vector P, which is measure of the overall behavior of the medium, in that it is the resultant electric dipole moment per monit olume. Since the field within the material has been ittered, we are led to define a new field quantity, the dixplacement \mathbf{D}

$$
\mathbf{D}^{-} \epsilon_{0} \mathbf{E}+\mathbf{P} .
$$

(A 1.1 H

$$
\text { Glearly then, } \quad \mathrm{E}=\frac{\mathrm{D}}{\epsilon_{0}}-\frac{\mathbf{P}}{\epsilon_{0}} .
$$

The internal clectric field \mathbf{E} is the difference between he field $\mathrm{D} / \epsilon_{0}$, which would exist in the absence of polarization, and the field $\mathbf{P} / \epsilon_{0}$ arising from polarizafor.
lfor a homogeneous, linear, isotropic dielectric, \mathbf{P} and Eare in the same direction and are mutually propor nomai. It follows that \mathbf{D} is therefcre also proportiona taE:

$$
\mathrm{D}=\epsilon \mathrm{E} .
$$

Like \mathbf{E}, \mathbf{D} extends throughout space and is in no way mited to the region occupied by the dielectric, as is \mathbf{P}. the lines of \mathbf{D} begin and end on tree, movable charges. Those of \mathbf{E} begin and end on etther free charges or
bound polarization charges. Ii no free charge is present, as might be the case in the vicinity of a polarized dielectric or in free space, the lires of \mathbf{D} close orl themselves Since in general the response of optical media to B-Gields is only slightly different from that of a vacuurn, we need not describe the process in detail. Suffice it to say that the material will become polarized. We can define a magntelic polarization or magnefization vector M as the magnetic dipole moment per unit voume. In polarined medium we introduce an muriliuy vector H polarized medium, we introduce an auxiliai traditionally known as che magretic field intensity

$$
\mathbf{H}=\mu_{0}^{-1} \mathbf{B}-\mathbf{M}
$$

For a homogereous, linear (nonferromagnetic), iso tropic medium, \mathbf{B} and \mathbf{H} are parailel and proportional:

$$
\mathbf{H}=\mu^{-1} \mathbf{B} .
$$

Along with Eqs. (Al.12) and (Al.14), there is one more constitutive equation,

$$
\mathrm{J}=\sigma \mathrm{E}
$$

Known as Ohm's law, it is a statement of an exper mentally determined rule that holds for conductors at comstant temperatures. The electric field intensity, and thertiore the force acing on each electron in a conduetor, determines the flow of charge. The constant of proportionality relating \mathbf{E} and J is the conductivity of the particular medium, o.
Consider the rather general environment of a linear (nonferroelectric and nonferromagnetic), homogeneous, istropic medium, which is physicaily at rest By making use of the constitutive relations, we can
rewrite Maxwell's equations as

| $\boldsymbol{\nabla} \cdot \mathbf{E}=\bar{\rho} / \boldsymbol{\epsilon}$ | $[A L .9]$ |
| ---: | ---: | ---: |
| $\boldsymbol{\nabla} \cdot \mathbf{B}=0$ | $[A 1,20]$ |
| $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$ | $[A 1.5]$ |
| $\boldsymbol{\nabla} \times \mathbf{B}=\mu \sigma \mathbf{E}+\mu \epsilon \frac{\partial \mathbf{E}}{\partial t}$. | $(A 1.16]$ |

and $\quad \nabla \times \mathbf{B}=\mu \sigma \mathbf{E}+\mu \epsilon \frac{\sigma}{\partial i}$. \quad (A1.26)
If these expressions are somehow to yield a wave equation (2.61), we had best form some second deriva-
tives with respect to the space variables. Taking the curi
of Eq. (Al.16), we obtain

$$
\nabla \times(\boldsymbol{\nabla} \times \mathbf{B})=\mu \sigma(\boldsymbol{\nabla} \times \mathbf{E})+\mu \epsilon \frac{\partial}{\partial l}(\boldsymbol{\nabla} \times \mathbf{E}),
$$

(A1.17)

where, since \mathbf{E} is assumed to be a weli-behaved function the space and time derivatives can be interchanged Equation (A1.5) can be substituted to obtain the needed cond derivative with respect to time:

$$
\nabla \times(\boldsymbol{\nabla} \times \mathbf{B})=-\mu \sigma \frac{\partial \mathbf{B}}{\partial t}-\mu \epsilon \frac{\partial^{2} \mathbf{B}}{\partial t^{2}} .
$$

The vector triple product can be simplified by making use of the operator identity

$$
\begin{equation*}
\nabla \times(\nabla \times)-\nabla\left(\nabla \cdot y-\nabla^{2}\right. \tag{A1.19}
\end{equation*}
$$

so that

$$
\nabla \times(\nabla \times \mathbf{B})=\nabla(\nabla \cdot \mathbf{B})-\nabla^{2} \mathbf{B},
$$

where in Cartesian coordinates

$$
(\boldsymbol{\nabla} \cdot \boldsymbol{\nabla}) \mathbf{B}=\nabla^{2} \mathbf{B}=\frac{\partial^{2} \mathbf{B}}{\partial x^{2}}+\frac{\partial^{2} \mathbf{B}}{\partial y^{2}}+\frac{\partial^{2} \mathbf{B}}{\partial z^{z^{2}}} .
$$

Since the divergence of \mathbf{B} is zero, Eq- ($\mathbf{A} 1.18$) becomes

$$
\nabla^{2} \mathbf{B}=\mu \epsilon \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}-\mu \sigma \frac{\partial \mathbf{B}}{\partial t}=0 .
$$

A similar equation is satisfied by the electric field intensity. Foliowing essentially the same procedure as above, take the curl of Eq. (A1.5):

$$
\nabla \times(\nabla \times E)--\frac{\partial}{\partial t}(\nabla \times B) .
$$

Eliminating B this becomes

$$
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{E})=-\mu \sigma \frac{\partial \mathbf{E}}{\partial t}-\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}},
$$

and then by making use of Eq. (A1.19), we arrive at

$$
\nabla^{2} \mathbf{E}-\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}-\mu \sigma \frac{\partial \mathbf{E}}{\partial t}=\nabla(\rho / \epsilon),
$$

having urilized the fact that
$\nabla(\nabla \cdot E)^{-} \boldsymbol{\nabla}\{\rho / \epsilon)$.

For an uncharged medium ($\rho-0$) and

$$
\nabla^{2} \mathbf{E}-\mu \epsilon \frac{\hat{\sigma}^{2} \mathbf{E}}{\partial t^{2}}-\mu \sigma \frac{\partial \mathbf{E}}{\partial t}=0
$$

Equations (A1.20) and (A1.21) are known as the equaz tions of telegraphy.*
In nonconducting media $\sigma=0$, and these equations become

$$
\begin{aligned}
& \nabla^{2} \mathbf{B}-\mu \epsilon \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}=0 \\
& \nabla^{2} \mathbf{E}-\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial i^{2}}=0
\end{aligned}
$$

and similarly

$$
\nabla^{2} \mathbf{H}-\mu \epsilon \frac{\partial^{2} \mathbf{H}}{\partial t^{2}}=0
$$

and

$$
\nabla^{*} \mathbf{D}-\mu \epsilon \frac{\partial^{2} \mathrm{D}}{\partial t^{2}}=0 .
$$

In the special nonconducting medium of a vacuum (fre space) where

$$
\rho^{e}=0, \quad \sigma=0, \quad K_{s}=1, \quad K_{m}-1,
$$

these equations become simply

$$
\nabla^{2} \mathrm{E}^{-}-\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathrm{E}}{\partial t^{2}}
$$

Appendix 2

The Kirchhoff Diffraction Theory

To solve the Helmholtz equation (10.113) suppose that
whave two scalar functions U_{1} and U_{2} for which Greqn's theorem is
$\iiint_{V}\left(U_{1} \dot{\nabla}^{2} U_{2}-U_{2} \nabla^{2} U_{1}\right) d V$

$$
=\oiint_{S}\left(U_{1} \nabla U_{2}-U_{2} \nabla U_{1}\right) \cdot d \mathrm{~S} . \quad\left(A Q^{1}\right)
$$

If is clear that if U_{1} and U_{2} are solutions of the Helmholtz equation, that is, if

$$
\begin{aligned}
& \nabla^{2} U_{1}+k^{2} U_{1} \quad 0 \\
& \nabla^{2} U_{2}+k^{3} U_{2}=0,
\end{aligned}
$$

and
then
$\oiint_{S}\left(U_{1} \nabla U_{2}-U_{2} \nabla U_{3}\right) \cdot d \mathbf{S}^{-} 0 . \quad(A 2.2)$
Let $U_{1}-$ 多, the space portion of an unspecified scalar Let ${ }_{1}$ ptical disturbance (10.112). And let

$$
U_{2}-\frac{e^{i k r}}{r}
$$

where r is measured from a point P. Both of these choices clearly satisfy the Helmholtz equation. There is Singularity at point P, where $r=0$, so that we surround I. by a small sphere in order to exclude P from the (esizn enclosed by S (see Fig. A2.1). Equation (A2.2) inv becomes

$$
\oiint_{s}\left[\mathscr{E} \nabla\left(\frac{e^{i k r}}{r}\right)-\frac{e^{i k r}}{T} \nabla \mathbb{E}\right] \cdot d S
$$

$$
+\oint_{S}\left[\mathscr{G} \nabla\left(\frac{e^{i k r}}{r}\right)-\frac{e^{i k r}}{r} \nabla \mathscr{C}\right] \cdot d \mathbf{S}=0 . \quad(A 2.9)
$$

Move expand out the portian of the integral oocrespond. itzto F. On the amall sphere, the unit normal $\hat{\mathbf{n}}$ points timand the origin at P, and

$$
\nabla\left(\frac{e^{* *}}{r}\right)=\left(\frac{1}{r^{2}}-\frac{i \hat{i}}{r}\right) e^{i+n_{n}},
$$

since the gradient is directed radially outward. In terms of the solid angle ($d S^{-} r^{2} d \Omega$) measured at P, the
integral over S^{\prime} becomes integral over S^{3} becomes

$$
\oint_{S^{\prime}}\left(\mathscr{E}-i \hbar \mathscr{E}+r \frac{\partial \mathscr{G}}{\partial \tau}\right) e^{i k r} d \Omega,
$$

(A2.4)
where $\nabla \mathbb{E} \cdot d \mathbf{S}=-(j \mathscr{G} / \partial r)_{r}^{2} d \Omega$. As the sphere sutrounding P shrinks, $r \rightarrow 0$ on S^{\prime} and $\exp (i k r) \rightarrow 1$. Because of the continuity of $\%$ its value at any point on S^{\prime} approaches its value at P, that is, \mathscr{E}_{p}. The last two cerms in Eq. (A2.4) go to zero, and the integral becomes $4 \pi \mathscr{C}_{6}$, Finally then, Eq. (A2.3) become

$$
\mathscr{E}_{t}-\frac{1}{4 \pi}\left[\oiint_{S} \frac{\varepsilon^{i k r}}{r} \nabla \mathscr{E} \cdot d S-\oiint \mathscr{E} \nabla\left(\frac{e^{i k r}}{r}\right) \cdot d S\right],
$$

which is known as the Kirchhoff integral theorem

Table 1

$\begin{array}{llll}-0.161015 & -0.162661 & -0.164881 & -0.165877 \\ -0.176350 & -0.177747 & -0.179119 & -0.180466\end{array}$

624

Table 1 (continued) | -0.199580 | -0.200883 | -0.201381 | -0.202926 | -0.0203016 | -0.203851 | -0.190423 | -0.196724 | -0.197700 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -0.0 .298652 | | | | | | | | |
| -0.207518 | -0.208179 | -0.208817 | -0.209430 | -0.2101020 | -0.210586 | -0.211128 | -0.211647 | -0.206124 |
| -0.212142 | -0.206833 | | | | | | | |

 $\begin{array}{llllllllll}-0.200501 & -0.199702 & -0.198887 & -0.198056 & -0.197208 & -0.196344 & -0.195464 & -0.194568 & -0.193656 & -0.192728 \\ -0.191785 & -0.100825 & -0.189883 & -0.188864 & -0.187860 & -0.186841 & -0.185888 & -0.184760 & -0.188699 & -0.182622 \\ -0.181532 & -0.180428 & -0.179311 & -0.178179 & -0.177035 & -0.175877 & -0.174706 & -0.1775522 & -0.172326 & -0.171117\end{array}$ $\begin{array}{llllllllll}-0.169895 & -0.168661 & -0.1167415 & -0.166158 & -0.164888 & -0.163697 & -0.162314 & -0.161010 & -0.159595 & -0.15815 \\ -0.157032 & -0.155684 & -0.154326 & -0.157545 & -0.158579 & -0.150191 & -0.148792 & -0.147384 & 0.145967 & 0.14\end{array}$ $\begin{array}{llllllllll}-0.157032 & -0.155684 & -0.154326 & -0.1529588 & -0.151579 & -0.150191 & -0.148792 & -0.147384 & -0.145967 & -0.1584540 \\ -0.143105 & -0.141660 & -0.141206 & -0.138744 & -0.137273 & -0.135794 & -0.134307 & -0.132812 & -0.131309 & -0.129798\end{array}$
 $\begin{array}{lllllllll}-0.096611 & -0.094976 & -0.0 .095336 & -0.107948 & -0.106338 & -0.104828 & -0.103644 & -0.101495 & -0.099871\end{array}-0.098243$

-0.046569
-0.024865
-0.013402
-0.3248
-0.0139
0.0026
$0.13402-0.0088903$

0.018211
$0 . n s 9095$

0.039095
0.047203
$0.060+25$
0.0472
0.0604
0.0726
0.09387
0.10267
0.11023
$\begin{array}{ll}0.110232 & 0 \\ 0.116498 & 0 \\ 0.121848 & 0\end{array}$
0.121447
0.125067
0.12733
0.125067
0.127338
0.128334
0.12348
0.12833
0.12801
0.126448

626	Table 5										Table 1627											
Table 1 (certioued)												Tabie 1 (continued)										
$(\operatorname{Sin} 2)^{2}$ ix																						
x	000	0.91	0.02	0.103	0.04	0.05	0.03	0.67	18	Outig		\triangle	0.90	01	0.12	(1.43	6.04	0.05	.06	0.17	6×4	Q n
8.0	0.123870	0123328	0.1222974	0.122609	$0.182 \% 39$	0.121843	0.121446	0.12 2036	0.120615	0.120188		12.0	-0.044714	-0.043972	-0.043927	-0.142479	-0.044727	-0.040973	-0.040215	-0.039456	-0.03869	-0.037999
8.1	0.119739	0.139286	0.118821	0.118345	0.117859	0.117363	0.116855	0.116338	0.115810	व.115970		12.1	-0.037161	-0.036591	-0.085618	-0.034844	-0.034067	-0.033388	-0.032506	-0.051723	-0.03n938	-0.030152
8.2	0.144723	0.114165	0.113596	0.183018	0.112429	0.14831	0.111228	0.110605	0.169978	0.141933_{4}		12.2	-0.029363	-0.128573	-1.097781	-0.026988	-0.026193	-0.025398	-0.024500	-0.023802	-0.02300?	-0.022202
8.3	0.108695	0.108040	0.107376	0.106702	0.106019	0.105327	0,104627	0.108918	0.103800	0.102473		12.3	-5.0141401	-0.020599	-0.019796	-0.018992	-0.018188	-0.017384	-0.016578	-0.015773	-0.014967	-0.014161
8.4	0.0101738	0.160994	0.100243	0.099783	0.098714	0.097938	0.697154	0.096362	${ }^{0.095562}$	0.094755		12.4	-0.013353	-0.512549	-0.011743	-0.010937	-0.010131	-0.009326	-0.008521	-0.007716	-0.006912	-0.006109
B. 5	0.093940	0.098117	0.092288	0.091450	0.0966606	0.0889755	0.088895	0.088031	0.087159	$\bigcirc 0.036230$		12.5	-0.005306	-0.008504	-0.083702	-2002902	-0.002103	-0.001304	-0.000507	0.000289	0.001083	0.001877
8.6	0.085895	0.084503	0.083805	0.082701	0.081799	0.080874	0.079951	${ }_{0}^{0.079023}$	0.0088 .453	0.07749		12.6	0.0092658	10.643459	10.1204348	0.005035	0.005820	0.006603	0.067385	0.008164	1942	9717
8.7	0.076203	2.075253	0.074296	0.073335	0.072969	${ }^{0.071397}$	0060410	0.0359886	0.058359	${ }_{0} 0.0574383$		12.7	0.010491	0.011262	0.012030	0.012797	0.013560	0.014321	0.915188	0.015838	0.016589	0.017939 0.024671
8.8	0.066468	0.063468	0.064465	0.063457	0.0622445		0.050025					12.8		0.018831	1).01.9572	0.020311	0.021045	0.021778	0.022506	0.023231	0.023953	0.024
8.9	0.056294	0.055257	0.054217	0.053178	0.052197	0.051077	0.050025	0.048970	0.047913	0.046853		12.9	0.1025386	0.026097	0.026304	0.0237507	(0,623807	0.023903	0.029594	0.030282	0.030966	0.481645
9.0	0.145791	0.044727	0.043660	0.042592	0.041521	0.040449	0.059375	0.0388300	0.037223	$0.03614{ }^{5}$		13.6	0.032321	0.032992	0.033658	n.034324	0.034978	0.035632	0.036281	0.036925	0.037564	0.038197
9.1	0.035066	0.033985	0.032904	0.031824	0.031788	0.0939594	${ }^{0.1028569}$	0.027484	0.0125993	0.025313		13.1	0.038829	0.139454	0.040075	0.040690	0.041300	0.041905	0.042506	0.043101	0.043690	0.044275
9.2	0.024227	n.029:41	0.022055	0.081970	0.119888	0.018799	${ }^{0.017714}$	${ }^{0.0 .15630}$	0	0.014464		13.2	0.044854	0.045428	0.045996	0.0465799	0.047117	0.047669	0.048215	0.048750	0.049291	0.049820
9.3	0.013382	0.012301	0.011222	0.010143	0.009086	0.007996	0.006916	0.005843	n.004772	${ }^{0.003703}$		13.3	0.050344	0.10 .151861	0.1051378	0.051879	0.1052979	0.052873	0.053361	0.053843	0.054319	0.054788
9.4	0.002636	0.001570	0.000567	-0.0001554	-0.001612	-0.002669	-0.003722	-0.004774	-0.0.105822	-0.006868 -0.017150		13.4	0.055952	0.055709	0.056160	0.386645	${ }^{0.057049}$	0.1577476	0.057901	0.058321	0.058733	0.059140
9.5	-0.007911	-0.008950	-0.00998	-0.011021	-0.01205i	-0.0.13078	-0.001101	-0.015121	-0.026081	-0,		13.5	0.959540	0.159933	2. 060320	0.060700	0.061073	0.061440	0.06 P60	0.062154	0.062500	0.062840
9.6	-0.018159	-6.019164	-0.020165	-0.021 L51	-0.022154	-0.023142	${ }^{-0.00489726}$	${ }_{-0} 0.034637$	-0.035562	-0.0.036482		13.6	0.063174	0.063500	0.068820	12064132	1).064488	0.064737	0.055029	0.065814	0.065593	0.065864
9.7	-0.028937	-0.028977	-0.029983 -0.039207	-0.030864	-0.040995	-0.04188i	-0.042760	-0.043683	-0.044500	-0.045361		13.8	0.0688384	0.068570	${ }^{0.066636}$	0.066879	0.06715	0.0677944	0.067566	0.067781	0.067989	0.068190
9.8	-0.037396	-0.038304	$\xrightarrow{-0.039207906}$	-0.04874	-0.099570	-0.050399	-0.051208	-0.059017	-0.052819	-0.533614		13.9	0.069929	0.070044	0.070152	0.0689	${ }^{0.069087}$	0.069245	dres	0.069540	0.069677	${ }^{0.009806}$
9.9	-0.046216	-0.047064	-0.047906	-0.04874.									-	,		0.079253	0.070346	0.170433	0.070512	0.070584	0.070649	0.070707
10.0	-0.054402	-0.055183	-0.055957	-0.056724	-0.057484	-0.058237	-0.058982	-0.059720	-0.060459	${ }^{-0.0611738}$		14.0	0.070758	0.070801	0.070838	0.070867	0.070889	0.070904	0.070912	0.070913.	0.076907	0.070893
10.1	-0.061888	-0.062596	-0.063295	-0.053988	-0.064673	-0.1163850	-0.066il19	-0.066n80	-0.067333	-0.057978		14.1	0.070873	0.070846	0.070811	0.0770770	0.070721	0.0740666	0.070603	0.070534	0.070457	0.070374
10.2	-0.068615	-0.069244	-0.069865	-0.070477	-0.071082	-0.671678	-0.072266	-0.079845	-0.073416	-0.073979		14.9	0.470284	0.070186	0.070082	0.069971	0.069854	0. 0669729	0.069598	0.069460	0.069915	0.069163
10.3	-0.174538	-0.075078	-0.076615	-0.076143	-0.076669	-0.077174	-0.07767	-0.078170	-0.088553	-0.079731		14.3	0.069005	0.0664840	0.068668	0.068490	0.068305	0.168114	0.067915	0.067712	0.1067501	0.067283
10.4	-4.079599	-0.080057	-0.080507	-0.0816947	-0.1881579	-0.081802	-0.082215	-0.082620	-0.083016	-0.783409		14.4	0.067060	0.065829	0.066593	0.066350	0.066101	0.065845	0.06558	0.065316	0.065042	0.064762
10.5	-0.087781	-0.081149	-0.084509	-0.084859	-0.0858800	-0.085532	-0.085855	-0.086169 -0.088797	${ }^{-0.085473}$	${ }^{-0.0867681}$		14.5	0.064476	0.064183	aescess	0.063581	0.063271	0.062954	0.169633	0.062305	0.061971	0.061632
10.6	-0.087074	-0.1887331	-0.087599	-0.0878.57	-0.083106	-0.088346		-0.090498	-0.090617			14.6	0.061287	0.061936	0.060580	0.060218	0.059851	0.059478	0.059100	0.058717	0.058828	0.0579
10.7	-0.089405	-0.089599	-0.089764	-0.089929	-0.690085	--0.090232	-0.19079 -0.091236	-0.090498	-0.091299	${ }_{-0.091316}$		14.7	0.057534	0.057129	0.056719	$0.05630 \pm$	0.055884	0.055459	0.055029	0.054594	0.054154	0.055710
10.8	-0.190827	-0.090919	-0.091001	-0.091673	-0.091137					-0.090990		14.8 14.9	0.0553269	0.052806	0.058937	0.051884	0.05446	0.850944	0.054467	0.049985	0.049500	0.649010
10.9	-0.091324	-0.091324	-0.091314	-0.091295	-0.091267	-0.091229	-0.091183	-0.091728	-6.09106t	-0.09099		14.9	0.048516	0.048017	0.047515	0.047008	0.046497	0.045988	0.045464	0.044942	0.044416	万. 0438886
0	-0.090908	-0.090817	-0.090717	-0.096608	-0.090460	-0.090364	-0.090228	-0.090084	-0.08993:	-0.0897770		15.0	0.443353	0.04281 ¢	n.042275	0.041730	0.041183	0.040632	0.410077	0.039590	0.488959	0.038595
11.1	-0.089599	-0.089420	-0.089233	-0.089037	-0.088832	-0.088619	-0.088397	-0.088107	-0.087929	-0.087882		15.1	0.037828	0.037957	0.036684	0.036108	0.035529	0.034948	0.054563	0.033776	0.053187	0.032595
11.2	-0.087427	-0.08763	-6036891	-0.086612	-0.086324	-0.086027	-0.085723	-0.085411	-0.085091	${ }^{-0.184763}$		15.2	0.032000	0.0131403	0.030803	0.030202	0.029598	0.028992	0.028383	0.027773	0.027161	0.026547
11.3	-0.084426	-0.084083	-0.083791	-0.088371	-0.083004	-0.082630	${ }^{-0.082247}$	${ }^{-0.081857}$	-0.077086	-0.076603		15.3	0.025931	0.825813	0.024693	0.0246172	0.023420	0.022825	0.028199	0.021572	0.0210944	0.020314
11.4	-0.080643	-0.080223	-0.079796	-0.079362	-0.078921	-0.078473	${ }_{-0.073088}$	-0.072559	-0.072023	-0.07		${ }^{15.4}$	0.019683	0.019051	0.018418	0.017789	0.017148	0.016512	0.018875	0.015937	6.014599	0.013960
11.5	-0.076126	-0.075636	-0.075140	-0.074637	-0.074127	-0.073611	${ }_{-0.067519}$		-0.066334	-0.065 38		13.5	${ }^{0.013320}$	0.012680	0.012040	0.011399	0.1010758	0.010116	0.009475	${ }^{0.008835}$	0.096191	0.067549
11.6	-0.070934	-0.070379	-0.069819	-0.059253	-0.068681	-0.058103	-0.007519	${ }_{-0.050789}$				15.8	0.906907	0.006266	1.0015624	9.004983	0.004342	0.003702	0.003062	0.002422	0.801783	0.001445
11.7	-0.065127	-0.06-1515	-0.063898	-0.063275	-0.052647	-0.0662014	-0.061376	-0.060733	-0.053345	-0.052646		$!5.7$	0.000507	-0.000130	-0.000766	-0.001401	-0.002035	-0.002666	-0.0v3500	-0.003931	-0.00456	-0.045190
11.8	-0.058773	-0.058111	-0.057413	-0.056771	-0.056095	-0.05549	-0.054728	${ }_{-0}^{-0.00469321}$	-0.046189	-0.045449		15.8	-0.005817	-0.006443	-0.007067	-0.007690	-0.008311	-0.008931	-0.009549	-0.010166	-0.010780	-0.011393
11.9	-0,951944	-0.051238	-0.050528	-0.049814	-0.04	-0.	-0.047650	-0.046921	-0.04618				-6.012004	-(1.01261.3	-0.013219	-0.013824	-0.013427	-0.015027	-0.015625	-0.016223	-0.016814	-0.017403

Table 1 (contimued)

${ }^{(S \operatorname{Sin} t)}$) u										
-	0.91	0.01	0.12	0.93	0.09	0.03	0.0 \%	0.07	0.04	
16.0	-0.017994	-0.018580	-0.019163	-0.019744	-n.020332	-0.020898	-0.021470	-0.022044	-0.022607	-
15.1	-0.023731	-0.124289	-0.024849	-0.025395	-0.024593	-0.126488	-0.027030	-0.027;68	-0.028103	
16.2	-0.029162	-0.029636	-0.030207	-0,0,150724	-0.031237	-0.031747	-0.032252	-0.032754	-0.033252	-0.033844
16.9	-0.034236	-0.034722	-0.035204	-0.035682	-0.086156	-0.036626	-0.1087091	-0.037552	-0.038009	-0.038461
16.4	-0.038909	-0,039352	-0.039792	-0.04022	-0.040656	-0.041981	-0.041502	-0.041918	-0.042:350	-0.042797
16.5	-0.043139	-0.043536	-0.043928	-0.044315	-0.044693	-0.045076	-0.045448	-0.045816	-0.046179	-0.045536
15.6	-0.646889	-0.047236	-0.047578	-0.047975	-0.048847	-0.048574	-0.048885	-0.049212	-0.049522	-0.049828
16.7	-0.055128	-0.050423	-0.0100713	-0.050997	-0.051275	-0.051518	-0.001816	${ }^{-0.0052078}$	-0.052335	-0.052586
15.8	-0.658831	-0.058071	-0.053306	-0.053535	-0.053758	-0.959575	-0.054187	-0.054893	-0.054594	-0.054789
16.9	-0.054978	-0.055151	-0.055339	-0.055511	-0.055677	-0.055837	-0.055992	-0.056141	-0.056284	-0.056421
17.0	-0.056553	-0.056678	-0.1056798	-0.056912	-0.057021	-0.057123	-0.057220	-0.057310	-0.057395	-0.05747场
17.1	0.057548	-0.057615	-0.057677	-0.057732	-0.057782	-0.057826	-0.057863	-0.057897	-0.057924	-0.057944
17.2	-0057959	-0.057968	-0.05972	-0.057969	-0.05796I	-0.057947	-0.157927	-0.057902	-0.057870	-0.557833
17.2	-0.057790	-0.087742	-0.057588	-0.057628	-0.057562	-0.057491	-3.057414	-0.057931	-0.057248	-0.057149
17.4	-0.057049	-0.056844	-0.056834	-0.036717	-0.056596	-0.056468	-0.056336	-0.055197	-0.056054	-0.055985
17.5	-0.055759	-0.055590	-0.055425	-0.155254	-0.055078	-0.054897	-0.054710	-0.054518	-0.054321	-0.059:19
17.6	-0.053912	-0.053599	-0.053481	-0.033258	-0.053031.	-0.052798	-0.052560	-0.052317	-0.052009	-0.051816
17.7	-0.051558	-0.051296	-0.051028	-0.050756	-0.050479	--0.050198	-0,049911	-0.049620	-0.093324	-0.049024
17.8	-0.048719	-0.048410	-0048096	-0.047778	-0.0474.55	-0.047128	-0.046795	-0.046461	-0.046121	-0.045776
17.9	-0.045428	-0.045075	-0.044718	-0.044358	-0.043993	-0.013624	-0.043251	-0.042875	-3.042494	-0.042110
18.0	-0.041722	-0.041830	-0.04093-4	-0.040535	-0.04013?	-0.039725	-0.039316	-0.038902	-0.038485	-0.038065
18.1	-0.037642	-0.037215	-0,036785	-0.03655!	-0.135515	-0.035475	-0.035633	-0.094587	-0.051139	-0.033587
18.2	-0.033233	-0.032775	-0.032315	-0.091883	- 0.081887	-0.030919	-0.030449	-0.029976	- 0.099500	-0.029022
18.3	-0.428541	-0.028059	-0.027574	-(1.2027086	-0.026597	-0.026105	-0.025612	-0.725116	-0.124619	-0.024119
18.4	-0.623618	-0.023114	-0.022610	-0.022103	-0.021594	-0.021085	-0.020573	-0.1220060	-0.019545	-0.019030
18.5	-0.018512	-0.017994	-0.017274	-0.016953	-0.016431	-0055908	-0.015384	-0.014859	-0.014333	-0.013805
18.6	-0.013278	-0.012750	-0.012220	-0.011691	-0.011160	-0.010629	-0.010093	-0.009566	-0.509033	-0.008501
18.7	-0.007958	-0.007435	-0.006903	-0.006368	-0.005834	-0.005301	-0.004767	-0.0054234	-0.003701	-0.003158
18.8	-0.0.92635	-0.002102	-0.001570	-0.061038	-0.000507	0.000024	0.000554	0.001083	0.001612	0.008140
18.9	0.002668	0.00319	0.003720	0.004245	0.004769	0.005292	0.945813	ย. 0.06834	0.006853	0.607371
19.0	0.007888	0.008404	0.008918	0.0094×1	0.009942	0.010452	0.010940	0.911465	0.011971	0.012474
19.1	0.012976	0.013475	0.013979	0.014468	0.014962	0.015454	0.015944	0.016431	0.016977	0.017400
19.2	0.917881	0.018360	0.018836	0.019310	0.019782	$0.02025!$	0.020717	0.021181	0.031643	0.022102
19.3	0.022558	0.023011	0.083462	0.029910	0.024355	0.024797	0.023236	0.026672	0.026105	0.026535
19.4	0029332	0.027386	0.027807	0.028824	0.128638	0.1229049	0.029457	0.029861	0.630262	0.030659
19.5	0.031053	0.031444	0.031831	0.032974	0.032594	0.032979	0.033942	0.053711	0.034076	0.034497
19.6	0.034794	6.035148	0.035497	0.035849	0.096185	0.036522	0.03585	0.037186	0.037512	0.037833
19.7	0.038151	$0.03846 \pm$	0.038774	0.039079	0.039979	0.039676	0.639968	0.0402 at	0.340540	0.040820
19.8	0.041095	0.641565	0.641632	0.041893	0.042151	0.042404	0.042652	0.042856	0.043133	0.043370
19.9	0.043600	0.049826	0.044047	u.0.04263	0.044475	0.044682	0.044885	043082	0.045275	0.045464

Adapted from L. Levi, Applied Opizcs

Solutions to

Selected Problems

CHAPTER 2

$2.1(0.0093)\left(2.54 \times 10^{-3}\right) 680 \times 10^{-9}=$ number of
 Waves exterad 3.9 m .
$2.7 \psi=A \sin 2 \pi(x x-\nu t), \psi_{1}=4 \sin 2 \pi(0.2 x-3 t)$
$\begin{array}{lll}\text { a) } \nu=3 & \text { b) } \lambda-1 / 0.2 & \text { c) } \tau=1 / 3 \\ \text { d) } A=4 & \text { e) } v=15 & \text { f) } p=1\end{array}$
d) $A=4 \quad$ c) $v=15 \quad$ f) positive x
$\psi^{2}=A \sin (k x+\omega t), \quad \psi_{2}=(1 / 2.5) \sin (7 x+3.5 t)$
$\begin{array}{lll}\text { a) } \nu=3.5 / 2 \pi & \text { b) } \lambda=2 \pi / 7 & \text { c) } r=2 \pi / 3.5 \\ \text { d) } A=1 / 2.5 & \text { e) } v=\frac{1}{2} & \text { f) negative } x\end{array}$
$2.9 y_{y}=-\omega A \cos (k x-\omega t+\varepsilon), a_{y}=-\omega^{2} y$ Simplc har monic motion since $a_{y} \times y$.
$2.10 \tau=2.2 \times 10^{-15}$ s; therefore $v=1 / \tau=4.5 \times 10^{1}$ $\mathrm{Hz} ; y=\mu, 3 \times 10^{8} \mathrm{~m} / \mathrm{s}^{=}\left(4.5 \times 10^{1.4} \mathrm{~Hz}\right) \mathrm{A}: \lambda^{-7}=6.6 \times$ $10^{-7} \mathrm{~m}$ and $k=2 \pi / \lambda=9.5 \times 10^{3} \mathrm{~m}^{-1} . \psi(x, i)^{-}\left(10^{9}\right.$ $0 / \mathrm{m}) \cos \left[9.5 \times 10^{\circ} \mathrm{m}^{1}\left(x+9 \times 10^{\circ} \mathrm{m} / \mathrm{s} l\right)\right]$. It's cosinc because $\cos 0 \geqslant 1$.
$2.11 y(x, t)-C]\left[2+(x+v t)^{2}\right]$.

2.13 No, not twice differentiable (in at noutriviai way) and not a solution of the differential wate equation.
$2.15 \quad \psi(z, 0)=A \sin (k z+\varepsilon) ;$
$\psi(-\lambda / 12,0)-A \sin (-\pi / 6+\varepsilon)=0.866 ;$ $\psi(\lambda / 6,0)=A \sin (\pi / 3+\varepsilon)=1 / 2 ;$
$\psi(\lambda / 4,0)=A \sin (\pi / 2+\varepsilon)=0$.
$A \sin (\pi / 2+\varepsilon)-A(\sin \pi / 2 \cos \varepsilon+\cos \pi / 2 \sin \varepsilon)$

$$
=A \cos \varepsilon=0, \varepsilon \pi \pi / 2 .
$$

$A \sin (\pi / 3+\pi / 2)-A \sin (5 \pi / 6)=1 / 2 ;$

$$
\text { therefore } A=1 \text {, hence } \psi(z, 0)=\sin (k z+\pi / 2) \text {. }
$$

 direction is negativ
$\psi(x, 0)=5.0 \exp \left(-25 x^{2}\right)$;

$2.19 \psi=A \exp i\left(k_{x} x+k, y+k_{2}\right)$

$$
k_{x}-k \alpha \quad k_{y}-k \beta \quad k_{z}=k y
$$

$|\mathrm{k}|=\left[(k \alpha)^{2}+(k \beta)^{2}+(k \gamma)^{2}\right]^{1 / 2}-k\left[\alpha^{2}+\beta^{2}+\gamma^{2}\right\}^{1 / 2}$.
2.2030° corresponds to $\frac{1}{12} A$ or (1/12) $3 \times 10^{8} / 6 \times$ $10^{-12} \mathrm{~nm}$.

$$
\begin{gathered}
2.21 \begin{array}{c}
\psi \sin 2 \pi\left(\frac{x}{\lambda} \pm \frac{i}{\tau}\right) \\
\psi=60 \sin 2 \pi\left(\frac{x}{400 \times 10^{-9}}-\frac{1}{1.33 \times 10^{-15}}\right) \\
\lambda=400 \mathrm{~nm}
\end{array}
\end{gathered}
$$

$v=400 \times 10^{-9} / 1.33 \times 10^{-15}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$y=(1 / 1.39) \times 10^{+15} \mathrm{~Hz}, \quad \tau-1.33 \times 10^{-15} 5$.
$2.23 \lambda-h / m u=6.6 \times 10^{-34} / 6(1)=1.1 \times 10^{-34} \mathrm{~m}$.
2.24 k can be constructed by forming a unit vector in the proper direction and multiplying it by k. The unit vector is
$[(4-0) \hat{i}+\hat{i}-0) \hat{\mathbf{j}}+(1-0) \hat{\hat{k}}] \sqrt{4^{2}+2^{2}+1^{2}}$

$$
-(4 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}) / \sqrt{21}
$$

and $\mathbf{k}=k(4 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}) / \sqrt{21}$.

$$
\mathbf{r}=x \hat{\mathrm{\imath}}+y \hat{\mathrm{I}}+z \hat{\mathrm{k}}
$$

hence $\psi(x, y, z, t)=A \sin [(4 k / \sqrt{21})$

$$
+(2 k / \sqrt{21}) y+(k / \sqrt{21}) z-\omega t] .
$$

$2.26 \psi\left(\mathbf{r}_{1}, t\right)-\psi\left[\mathbf{r}_{\mathbf{2}}-\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right), t\right]=\psi\left(\mathrm{k} \cdot \mathbf{r}_{1}, t\right)$

$$
=\psi\left[\mathbf{k} \cdot \mathbf{r}_{2}-\mathbf{k} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{\mathbf{z}}\right), t\right]
$$

$$
-\psi\left(\mathbf{k} \cdot \mathbf{r}_{2}, t\right) \quad \psi\left(\mathbf{r}_{2}, i\right)
$$

since $\mathbf{k} \cdot\left(\mathbf{r}_{\mathbf{2}}-\mathbf{r}_{\mathbf{1}}\right)-0$

CHAPTER 3

3.1 $\quad E_{y}=2 \cos \left[2 \pi \times 10^{14}(t-x / c)+\pi / 2\right]$
$E_{3}=A \cos \left[2 \pi \nu\left(t-\nu_{i}^{\prime} \nu\right)+\pi / 2\right]$ from Eq. (2.26)
a) $\nu=10^{14} \mathrm{~Hz}, v=c$, and $\lambda=c / \nu=3 \times 10^{8} / 10^{14}=3 x$
$10^{-6} \mathrm{~m}$, moves in positive x-direction, $A=2 \mathrm{~V} / \mathrm{r}$
$\varepsilon=\pi / 2$ linearly polarized in y direction.
b) $B_{x}=0, B_{s}=0, B_{z}=\frac{2}{c} \cos \left[2 \pi \times\left[0^{14}(t-x / c)+\pi / 2\right]\right.$.
$3.2 \quad E_{1}-0, E_{y}=E_{x}-E_{0} \sin (k z-\omega t)$ or cosine; $B_{2}=$
$0, B_{y}--B_{x}=E_{y} / c$, or if you like
$\mathrm{E}-\frac{E_{0}}{\sqrt{2}}(\hat{\mathrm{t}}+\hat{\jmath}) \sin \left(k z-(\omega l), \quad \mathbf{B}: \frac{E_{\mathrm{G}}}{c \sqrt{2}}(\hat{\mathrm{\jmath}}-\hat{\mathrm{i}}) \sin (k z-\omega t)\right.$.
$3.4\left\langle\cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t)\right\rangle=\frac{1}{T} \int_{t}^{1+T} \cos ^{2}\left(\mathbf{k} \cdot \mathbf{r}-\omega t^{\prime}\right) d t^{\prime}$.
Let $\mathrm{k} \cdot \mathrm{r}-\omega \|^{\prime}=\mathrm{x}$; then
$\left\langle\cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t\rangle\right)=\frac{1}{-\omega \bar{T}} \int \cos ^{2} \cdots d x$
$=\frac{1}{-\omega T} \int \frac{1+\cos 2 \mu}{2} d x$
$=-\frac{1}{\omega T}\left[\frac{x}{2}+\frac{\sin }{4} \frac{2 x}{}\right]_{k \cdot r-\omega t}^{k \cdot r-\omega(k+T)}$
. $6 \quad \mathrm{E}_{0}=\left(-E_{0} / \sqrt{2}\right) \hat{\mathrm{i}}+\left(\mathrm{E}_{0} / \sqrt{2}\right) \hat{\mathrm{j}} ; \quad \mathrm{k}=(2 \pi / \hat{\lambda})(\mathrm{i} / \sqrt{2}+\hat{\mathrm{j}} / \sqrt{20})$ ence $E=(1 / \sqrt{2})(-10 \hat{\hat{c}}+10 \hat{)}) \cos [(\sqrt{2} \pi / \lambda)(\alpha+y) \rightarrow \operatorname{cosin}$ 3.7
a) $l=c \Delta t=\left(3.00 \times 10^{b} \mathrm{~m} / \mathrm{s}\right)\left(2,00 \times 10^{-9} \mathrm{~g}\right)=0.600 \mathrm{~m}$.
b) The volume of one pulse is $(0.600 \mathrm{ma})\left(\pi R^{2}\right)=2.945 \times$ $10^{-5} \mathrm{~m}^{3}$; therefore (6.0 J) $2.945 \times 10^{-6} \mathrm{~mm}^{3}-2.0 \times$ $10^{6} \mathrm{~J} / \mathrm{m}^{3}$.
$3.8 u=\frac{(\text { power })(c)}{\text { (valume) }}=\frac{\left(10^{-3} \mathrm{~W}\right)(t)}{\left\langle\pi T^{2}\right)(c t)}=\frac{10^{-3} \mathrm{~W}}{\pi\left(10^{-3}\right)^{2}\left(3 \times 10^{T} t\right.}$
$u=\frac{10^{-4}}{3 \pi} \mathrm{~J} / \mathrm{m}^{2}=1.06 \times 10^{-9} \mathrm{~J} / \mathrm{m}^{3}$.
3.10 万 $=6.69 \times 10^{-34}, E-h \nu$
$\frac{I}{h \nu}-\frac{19.88 \times 10^{-2}}{\left(6.69 \times 10^{-24}\right)\left(100 \times 10^{6}\right)}$
4×10^{24} photons $/ \mathrm{m}^{2} \mathrm{~s}$.
All photons in volume V cross unit area in one second $V=(c t)\left(1 \mathrm{~m}^{2}\right)-3 \times 10^{5} \mathrm{~m}^{8}$

$$
3 \times 10^{24}-V(\text { density })
$$

$$
\text { density }=10^{16} \text { photons } / \mathrm{m}^{3} .
$$

$3.12 P_{c}-i V=(0.25)(3.0)-0.75 \mathrm{~W}$. This is the electrical power dissipated. The power available as light is

$$
P_{t}=(0.01) P=75 \times 10^{-4} \mathrm{~W} .
$$

a) Photon flux
$=P_{t} / h_{\mathrm{w}}=75 \times 10^{-4} \lambda / h$
$-75 \times 10^{-4}\left(550 \times 10^{-9}\right) /\left(6.63 \times 10^{-34}\right) 3 \times 10^{8}$
$=2.08 \times 10^{16} \mathrm{photons} / \mathrm{s}$.
b) There are 2.08×10^{16} in volume $\left(3 \times 10^{8}\right)(15) \times$ $\left(10^{-9} \mathrm{~m}^{2}\right)$;

$$
\frac{2.08 \times 10^{16}}{3 \times 10^{8}}=\text { photons } / \mathrm{m}^{3}=0.69 \times 10^{11}
$$

c) $1=75 \times 10^{-4} \mathrm{~W} / 10 \times 10^{-4} \mathrm{~m}^{2}-7.5 \mathrm{~W} / \mathrm{m}^{2}$.
3.14 Imagine two concentric cylinders of radius r_{1} and t_{2} surrounding the wave. The energy flowing per second through the first cylinder must pass through the second cylinder; that is, $\left\langle S_{1}\right\rangle 2 \pi r_{2}=\left\langle S_{2}\right\rangle 2 \pi r_{\mathrm{s}}$, and so
$\langle S\rangle 2 \pi r-$ constantand $\langle S\rangle$ varies
\langle invers S) varies inversely with r. The fore, since $\langle S\rangle \propto E_{0}^{2}, E_{0}$ varies as $\sqrt{1 / \tau}$

$$
\begin{array}{ll}
3.16 & \left\langle\frac{d p}{d t}\right\rangle-\frac{1}{c}\left\langle\frac{d W}{d t}\right\rangle, \\
A-\text { area. } & \langle\mathscr{P}\rangle=\frac{1}{A}\left\langle\frac{d p}{d t}\right\rangle=\frac{1}{A c}\left\langle\frac{d W}{d t}\right\rangle-\frac{I}{i} .
\end{array}
$$

$3.18 \mathscr{\varepsilon}-300 \mathrm{~W}(100 \mathrm{~s})=3 \times 10^{4} \mathrm{~J}$ $p-\mathscr{c} / \mathrm{c}=3 \times 10^{4} / 3 \times 10^{8}-10^{-4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
3.19
a) $\langle\mathscr{G}\rangle=2\langle S\rangle / c=2\left(1.4 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}\right) /\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{-}$ $9 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$
b) S, and therefore \mathscr{P}, drops off with the inverse square of the distance, and hence $\langle S\rangle=$ $\left[\left(0.7 \times 10^{9} \mathrm{~m}\right)^{-2} /\left(1.5 \times 10^{11} \mathrm{~m}\right)^{-2}\right]\left(1.4 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}\right)^{-}$ $6.4 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2}$, and $\langle\mathscr{F}\rangle=0.21 \mathrm{~N} / \mathrm{m}^{2}$.
$3.20 \quad\langle S\rangle=1400 \mathrm{~W} / \mathrm{m}^{2}$,
$\langle P\rangle=2\left(1400 \mathrm{~W} / \mathrm{m}^{2} / 3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)-9.3 \times 10^{-6} \mathrm{~N}^{\prime} / \mathrm{m}^{2}$,
$\langle F\rangle=\mathrm{A}\langle\mathscr{G}\rangle=2000 \mathrm{~m}^{2}\left(9.3 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}\right)=1.9 \times 10^{-2} \mathrm{~N}$.
$3.21\langle S\rangle=\left(200 \times 10^{3} \mathrm{~W}\right)\left(500 \times 2 \times 10^{-6} \mathrm{~s}\right) / \mathrm{A}(1 \mathrm{~s})$, $\langle F\rangle=A(P)\rangle=A(S) / c-6.7 \times 10^{-7} \mathrm{~N}$.
$3.22\langle F\rangle=A\langle B\rangle=A\langle S\rangle / c-\frac{10 \mathrm{~W}}{3 \times 10^{8}}=3.3 \times 10^{-8} \mathrm{~N}$
$a=3.3 \times 10^{-8} / 100 \mathrm{~kg}-3.3 \times 10^{-10} \mathrm{~m} / \mathrm{s}^{2}$
$v=a t=\frac{1}{3} \times 10^{-9}(t)-10 \mathrm{~m} / \mathrm{s}$
$t-3 \times 10^{10} \mathrm{~s}$, $\quad 1$ year $-3.2 \times 10^{7} \mathrm{~s}$.
3.23 B surrounds y in circles, and F is radiai, hence $\mathbf{E} \times \mathbf{B}$ is tangent to the sphere, and no energy radiates outward from it.
3.25 Thermal agitation of the moiecular dipoles causes a marked reduction in K, but has little effect on Atropic frequencies n is predominantly cue to ipoles having ceased to be effective at or requencies. equencies.
3.26 From Eq. (3.70), for a single resonant frequency we get

$$
n=\left[1+\frac{N q_{e}^{2}}{\epsilon_{0} m_{e}}\left(\frac{1}{\omega_{0}^{2}-\omega^{2}}\right)\right]^{1 / 2} ;
$$

ince for low-density materials $n \approx$, the second term is 《 1 , and we need only retain the first two terms of the binomial expansion of n. Thus $\sqrt{1+x} \approx 1+x / 2$ and

$$
n=1+\frac{1}{2} \frac{N q_{c}^{2}}{\epsilon_{0} m_{r}}\left(\frac{1}{\omega_{0}^{2}-\omega^{2}}\right) .
$$

$28 \quad x_{0}\left(-\omega^{2}+\omega_{\varepsilon}^{2}+i \gamma \omega\right)=\left(q_{c} E_{0} / m_{c}\right) e^{t \alpha}=\left(q_{c} F_{0} / m^{2}\right) \times$ $(\cos \alpha+i \sin \alpha) ;$ squaring both sides yields $x_{i}^{2}\left[\left(\alpha_{0}^{2}\right)\right.$ + $\left.\gamma^{2} \omega^{2}\right\}=\left(q_{c} E_{0} / m_{\mathrm{o}}\right)^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right), x_{0}$, follows moth sides of the first equation the imaginary parts of $\left(q_{e} E_{0} / m_{e}\right) \sin \alpha$, by the real parts, $x_{0}\left(\omega_{0}^{2}-\omega^{2}\right)=$ $\left.q_{c} E_{0} / m_{e}\right) \sin \alpha$, by the real parts, $x_{0}\left(\omega_{0}^{2}-\omega^{2}\right)=$
$\left(q_{,} E_{0} / m_{e}\right) \cos \alpha$ to get $\alpha-\tan ^{-1}\left[\gamma \omega /\left(\omega_{0}^{2}-\omega^{2}\right)\right], \alpha$ ranges continuousiy from 0 to $\pi / 2$ to π.
3.29 The normal order of the spectrum for a glass prism is R, O, Y, G, B, V, with red (R) deviated the east and violct (V) deviated the most. For a fuchsin prism, there is an absorption band in the green, and so he indices for yellow and blue on either side (n_{Y} and r_{B}) of it are extremes, as tri Fig. 3.26, that is, n_{Y} is the naximum, n_{B} the minimum, and $n_{Y}>n_{O}>n_{R}>n_{V}>$ a_{s}. Thus the spectrum in order of increasing deviation is B, V, black band, R, O, Y

30 The phase angle is retarded by an amount $n \Delta y 2 \pi / A)-\Delta y 2 \pi / \lambda$ or $(n-1) \Delta y \omega / c$. Thus

$$
E_{b}=E_{0} \exp i \omega\left[t-(n-1) \Delta y / c^{-} y / c_{0}\right.
$$

or $E_{p}-E_{0} \exp \left[-i \omega\left(n^{-1}\right) \Delta y / c\right] \exp i \omega(t-y / c)$
if $n \approx L$ or $\Delta y \ll 1$. Since $e^{x} \approx 1+x$ for small x, $\exp [-i \omega(n-1) \Delta y / c] \approx 1-i \omega(n-1) \Delta y / c$
and since $\operatorname{cxp}(-i \pi / 2)^{-}-i$

$$
E_{p}-E_{k}+\frac{\omega(n-1) \Delta y}{c} E_{u} e^{-i \pi / 2} .
$$

3.32 With ω in the visible, $\left(\omega_{0}^{2}-\omega^{2}\right)$ is smaller for lead lass and larger for fused silica. Hence $n\{\omega\}$ is larger for the former and smaller for the latter.
$3.33 C_{1}$ is the value that n approaches as λ gets arger
3.34 The horizontal values of $n\{\omega\}$ approacheril in each region between absorption bands increase and
o decreases.

4.3

$$
4.5 \quad n_{t i}=\frac{n_{4}}{n_{2}}=\frac{c / v_{t}}{c i v_{i}}=\frac{v_{i}}{v_{i}}-\frac{\nu \omega_{i}}{\nu \lambda_{1}}-\frac{\lambda_{2}}{\lambda_{i}}
$$

therefore $\lambda_{t}=\lambda_{2} 3 / 4-9 \mathrm{~cm}$

$$
\sin \theta_{1}=n_{t 5} \sin \theta_{2}
$$

$$
\left.\sin ^{-1}\left[\frac{3}{i} 40.707\right)\right]-\theta_{t}=32^{\circ} .
$$

4.8

4.9 The number of waves per unit length along $\overline{A C}$ on the interface equals $\left.\left(\overline{B C} / \Lambda_{i}\right) / \overline{B C} \sin \theta_{i}\right)=\left(\overline{A D} / \Lambda_{i}\right) \times$ (AD/sin θ_{1}). Snell's law follows on multiplying both side
4.12 Let T be the time for the wave to move along a may from b_{1} to a_{2}, from a_{1} to a_{3}, and from a_{1} to a_{3} Thus $\overline{a_{1} a_{2}}=\overline{b_{1} b_{2}}=v_{i} \tau$ and $\overline{a_{1} a_{3}}=v_{2} \tau$

$$
\sin \theta_{i}-\overline{b_{1} b_{2}} / \overline{a_{1} b_{2}}-v_{i} / \overline{a_{1} b_{2}}
$$

$$
\sin \theta_{1}=\overline{c_{1} a_{3}} \sqrt{a_{3} b_{2}}-v_{4} / \overline{a_{1} b_{2}}
$$

$$
\sin \theta_{k}=\overline{a_{1} a_{2}} / \overline{a_{1} b_{2}}=v_{i} / \sqrt{a_{1} b_{2}}
$$

$$
\frac{\sin \theta_{t}}{\sin \theta_{i}}=\frac{35}{u_{i}}-\frac{n_{i}}{n_{i}}=n_{t i} \text { and } \theta_{i}=\theta_{i}
$$

$$
\begin{array}{lll}
\sin \theta_{i} & u_{4} & n_{i} \\
\hline
\end{array}
$$

$$
n_{1}\left(\hat{\mathbf{k}}_{i} \times \hat{\mathbf{u}}_{n}\right)-n_{t}\left(\hat{\mathbf{k}}_{t} \times \hat{\mathbf{u}}_{n}\right),
$$

where $\hat{\mathbf{k}}_{i}, \hat{\mathbf{k}}_{\text {, }}$ are unit propagation vectors. Thus $n_{t}\left(\hat{\mathbf{k}}_{t} \times \hat{\mathbf{u}}_{n}\right)-n_{i}\left(\hat{\mathbf{k}}_{i} \times \hat{\mathbf{u}}_{n}\right)=0$
$\left(n_{i} \hat{\mathbf{x}}_{t}-n_{i} \hat{\mathbf{k}}_{i}\right) \times \hat{\mathbf{U}}_{A}=0$.
Let $n_{i}, \hat{\mathbf{k}}_{t}-n_{i} \hat{\mathbf{k}}_{\mathrm{i}}=\Gamma>\Gamma \hat{\mathbf{u}}$

Γ^{-}is often, referred to as the astigmatic constant; Γ^{-}the difference between the projections of $\pi \hat{r}$ and $n \hat{\mathbf{k}}$ on \hat{u}_{k}; in other words, take dot product Γ, a_{i}.
$\Gamma=n_{i} \cos \theta_{t}-n_{i} \cos \theta$
4.14 Since $\theta_{2}=\theta_{r}, \hat{\mathbf{k}}_{5 x}=\hat{\mathbf{k}}_{\text {re }}$ and $\hat{\mathbf{k}}_{1 y}=-\hat{\mathbf{k}}_{n}$, and since $\left(\hat{\mathbf{k}}_{i}-\hat{\mathbf{u}}_{n}\right) \hat{\mathbf{u}}_{n}=\hat{\mathbf{k}}_{r y}, \hat{\mathbf{k}}_{i}--\hat{\mathbf{k}}_{n}=2\left(\hat{\mathbf{k}}_{-} \cdot \hat{\mathbf{u}}_{i}\right) \hat{\mathbf{u}}_{n}$

4.15 Since $\overline{S B^{\prime}}>\overline{S B}$ and $\overline{B^{\prime} P}>\overline{B P}$, the shortest path corresponds to B^{\prime} coincident with B ini the plane of incidence.

Solutions to Selected Problems

$n_{1} \sin \theta_{2}=n_{2} \sin \theta_{4} \quad \theta_{2}=\theta_{i}^{\prime}$
$n_{2} \sin \theta_{2}^{\prime} \sim n_{1} \sin \theta_{t}^{\prime}$
$n_{1} \sin \theta_{i}=n_{1} \sin \theta_{i}^{\prime}$ and $\theta_{t}=\theta_{i}^{\prime}$.
$\cos \theta_{\mathrm{t}}=d / \overline{A \bar{A}}$
$\sin \left(\theta_{\mathrm{i}}-\theta_{\mathrm{i}}\right)-a / \overline{\mathrm{A} B}$
$\sin \left(\theta_{1}-\theta_{i}\right)-\frac{a}{d} \cos \theta_{t}$

$$
\frac{d \sin \left(\theta_{3}-\theta_{1}\right)}{\cos \theta_{1}}=0 .
$$

4.20 Rather than propagating from point S to point P in a straight line, the ray traverses a path that crosses the plate at a sharper angle. Although in so doing the path length in air are slightly increased, the decrease in time spent within the plate more than compensates. This being the case, we might expect the displacement a to increase with n_{21}. As n_{21} gets larger for a given θ_{1}, decreases. $\left(\theta_{1}-\theta_{1}\right)$ increases, and from the results of Problem 4.18, a clearly increases.
4.21 From Eq. (4.40)

$$
r_{1}=\frac{1.52 \cos 30^{\circ}-\cos 19^{\circ} 13^{\prime}}{\cos 19^{\circ} 13^{\prime}+1.52 \cos 30^{\circ}}
$$

where from Problem 4.1 $\theta_{t}=19^{\circ} 19^{\prime}$. Similurly

$$
\begin{aligned}
& t_{1}=\frac{2 \cos 30}{\cos 19^{\circ} 18^{\prime}+1.52 \cos 80^{\circ}} \\
& \tau_{1}=\frac{1.32-0.944}{0.944+1.32}=0.165
\end{aligned}
$$

$$
t_{11}=\frac{1.732}{0.944+1.32}=0.766
$$

4.22

$$
\begin{equation*}
\oint_{C} \mathbf{E} \cdot d \mathbf{I}^{-}-\iint_{A} \frac{\partial \mathbf{B}}{\partial!} \cdot d \mathbf{S} . \tag{8.5}
\end{equation*}
$$

This reducesin the limit to $E_{2 x}(\overline{B C})-E_{1 \times}(\overline{A D})=0$, since area $\rightarrow 0$ and $\partial \mathrm{B} / \partial t$ is finite. Thus $E_{2 x}=E_{1 x}$
4.23 Startıng with Eq. (4.34), divide top and bottom by n_{i} and replace n_{i} with $\sin \theta_{i} / \sin \theta_{1}$ to get

$r_{\perp}=\frac{\sin \theta_{1} \cos \theta_{3}-\sin \theta_{2} \cos \theta_{1}}{\sin \theta_{1} \cos \theta_{1}+\sin \theta_{1} \cos \theta_{1}}$

which is equivalent to Eq. (4.42). Equation (4.44) followe in exactiy the same way. To find r_{11} start the same wath with Eq. (4.40) and get

$$
r_{\|}=\frac{\sin \theta_{i} \cos \theta_{i}-\cos \theta_{i} \sin \theta_{i}}{\cos \theta_{1} \sin \theta_{i}+\sin \theta_{i} \cos \theta_{i}} .
$$

There are several routes that can be taken now: one is to rewrite $r_{\|}$as
$r_{1}=\frac{\left(\sin \theta_{i} \cos \theta_{t}-\sin \theta_{1} \cos \theta_{i}\right)\left(\cos \theta_{i} \cos \theta_{t}-\sin \theta_{i} \theta_{i}\right.}{\left(\sin \theta_{i} \cos \theta_{t}+\sin \theta_{i} \cos \theta_{i}\right)\left(\cos \theta_{i} \cos \theta_{i}+\sin \theta_{i} \sin =1\right.}$
and so $r_{\|}=\frac{\sin \left(\theta_{i}-\theta_{i}\right) \cos \left(\theta_{i}+\theta_{i}\right)}{\sin \left(\theta_{i}+\theta_{i}\right) \cos \left(\theta_{i}-\theta_{i}\right)}=\frac{\tan \left(\theta_{i}-\theta_{i}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}$
We can find $\ell_{\|}$, which has the same denominator, in a similar way.
$4.24\left[E_{0 r}\right]_{1}+\left[E_{00}\right]_{4}=\left\{E_{08}\right]_{1} ;$ tangential field in incident medium equals that in transmitting medium,

$$
\left[E_{01} / E_{0 i}\right]_{1}-\left[E_{0 r} / E_{0 i}\right]_{1}=1, \quad t_{1}-r_{1}=1 .
$$

Alternatively, from Egs. (4.42) and (4.44),

$$
\pm \frac{\sin \left(\theta_{i}-\theta_{2}\right)+2 \sin \theta_{1} \cos \theta_{2}}{\sin \left(\theta_{1}+\theta_{1}\right)} \xlongequal{2}
$$

$\frac{\sin \theta_{i} \cos \theta_{1}}{\sin \theta_{1}} \frac{\cos \theta_{1} \sin \theta_{1}+2 \sin \theta_{1} \cos \theta_{i}}{\theta_{1}+\cos \theta_{1} \sin \theta_{1}}=1$
4.27 From Eq. (4.73) we see that the exponential will be in the form $k(x-v t)$, provided that we factor on $k_{t} \sin \theta_{i} / n_{\mathrm{i}}$, feaving the second term as $\omega n_{\mathrm{t}_{\mathrm{i}} t / k_{t} \sin \theta_{i}}$ which must be $v_{t} t$. Hence $\omega n_{l}^{\prime \prime}\left(2 \pi / \lambda_{t}\right) n_{2} \sin \theta_{i}=v_{t}$, ant so $v_{i}=c / n_{i} \sin \theta_{i}=v_{i} / \sin \theta_{i}$.
4.28 From the defining equation (p. 107) $\beta=$ $k_{i}\left[\left(\sin ^{2} \theta_{t} / n_{i k}^{2}\right)-1\right]^{1 / 2}=3.702 \times 10^{6} \mathrm{~m}^{-1}$, and since $夕 \beta=$ $1, y=2.7 \times 10^{-7} \mathrm{~m}$.
4.29 The beam scatters off the wet paper and is mo transmitted until the critical angle is attained, at whe point the light is reflected back toward the source
$4.30 \quad 1.00029 \sin 88.7^{\circ}=n \sin 90^{\circ}$
$(1.00029)(0.99974)=n ; \quad n=1.00003$
$4.32 \quad \theta_{i}+\theta_{t}=90^{\circ}$ when $\theta_{i}=\theta_{p}$
$n_{i} \sin \theta_{p}=n_{t} \sin \theta_{t}=n_{t} \cos \theta_{p}$ $\tan \theta_{p}=n_{s} / n_{i}=1.52, \quad \theta_{p}=56^{\circ} 40^{\prime} \quad[8.95]$
4.34

$$
\tan \theta_{p}=n_{l} / n_{i}=n_{2} / n_{1},
$$

$\tan \theta_{\phi}^{\prime}=n_{1} / n_{2}, \quad \tan \theta_{p}=1 / \tan \theta_{\phi}^{\prime}$.
$\frac{\sin \theta_{p}}{\cos \theta_{p}}=\frac{\cos \theta_{p}^{\prime}}{\sin \theta_{p}^{\prime}} \quad \therefore \sin \theta_{p} \sin \theta_{p}^{\prime}-\cos \theta_{p} \cos \theta_{p}^{\prime}=0$
$\cos \left(\theta_{p}+\theta_{p}^{\prime}\right)=0, \quad \theta_{p}+\theta_{p}^{\prime}=90^{\circ}$.
4.35 From Eq. (4.94)

$$
\tan \gamma_{r}=r_{1}\left[E_{0 i} i_{1} / r_{\|}\left[E_{0 i}\right]_{\|}=\frac{r_{1}}{r_{\|}} \tan \gamma_{i}\right.
$$

and from Eqs. (4.42) and (4.43)

$$
\tan y_{r}=-\frac{\cos \left(\theta_{i}-\theta_{i}\right)}{\cos \left(\theta_{i}+\theta_{i}\right)} \tan \gamma_{i}
$$

4.37

4.38 $\quad T_{\perp}=\left(\frac{m_{1} \cos \theta_{i}}{m_{1} \cos \theta_{i}}\right) t_{\perp}^{2}$. From Eq. (4.44) and Snell's
$T_{\perp}=\left(\frac{\sin \theta_{i} \cos \theta_{i}}{\sin \theta_{i} \cos \theta_{\mathrm{i}}}\right)\left(\frac{4 \sin ^{2} \theta_{i} \cos ^{2} \theta_{i}}{\sin ^{2}\left(\theta_{\mathrm{i}}+\theta_{i}\right)}\right)=\frac{\sin 2 \theta_{i} \sin 2 \theta_{i}}{\sin ^{2}\left(\theta_{\mathrm{i}}+\theta_{i}\right)}$.
Similarly for T_{B}.

40 If Φ_{2}, is the incident radiant flux or power and T is the transmittance across the first air-glass boun dary, the transmitted flux is then $T \Phi_{1}$, From Eq. (4.68) at normal incidence the transmittance from glass to air is also T. Thus a fux $T \Phi_{i} T$ emerges from the firs slide, and $\Phi_{i} T^{2 N}$ from the last one. Since $T=1^{-} \Omega$ $T_{i}{ }^{-}(1-R)^{2 N}$ from Iq. (4.67).

$$
\begin{aligned}
R & =(0.5 / 2.5)^{2}=4 \% \\
T_{t} & =(0.96)^{6} \approx 78.3 \% .
\end{aligned}
$$

$4.41 \quad T=\frac{I(y)}{I_{2}}=e^{-\infty}, \quad T_{1}=e^{-\alpha}, \quad T=\left(T_{1}\right)^{g}$
$T_{1}=(1-R)^{2 N}\left(T_{1}\right)^{d}$.
4.42 At $\theta_{\mathrm{i}}=0, R=R_{1}=R_{1}=\left(\frac{n_{t}-n_{1}}{n_{t}+n_{4}}\right)^{2} \quad$ [4.67]

As $n_{t i} \rightarrow 1, n_{t} \rightarrow n_{i}$ and clearly $R \rightarrow 0$.
At $\theta_{i}=0$,

$$
T=T_{1}=T_{\perp} \frac{\frac{4 n_{1} n_{l}}{\left(n_{t}+n_{1}\right)^{2}}}{\text { a }}
$$

and sirice $n_{t} \rightarrow n_{i}, \lim _{n_{i} \rightarrow 1} T=4 n_{1}^{2} /\left(2 n_{2}\right)^{2}=1$.
From Problem 4.38, that is, Eqs. (4.100) and (4.101) and the fact that às $n_{4} \rightarrow n_{i}$ Snell's law says that $\theta_{1} \rightarrow \theta$ we have
$\lim _{n_{i} \rightarrow 1} T_{i}=\frac{\sin ^{2} 2 \theta_{1}}{\sin ^{2} 2 \theta_{i}}=1, \quad \lim _{n_{a} \rightarrow 1} T_{\perp}-1$.
From Eq. (4.43) and the fact that $R_{\|}=r_{i l}^{2}$ and θ_{i}
$\theta_{i}, \lim _{n_{i}+1} R_{\|}=0$.
Similarly from Eq. (4.42) $\lim _{n_{i} \rightarrow 1} R_{\perp}=0$.
4.44 For $\theta_{i}>\theta_{c}$, Eq. (4.70) can be written
$r_{\perp}=\frac{\cos \theta_{i}-i\left(\sin ^{2} \theta_{i}-n_{i}^{2}\right)^{1 / 2}}{\cos \theta_{i}+i\left(\sin ^{2} \theta_{i}-n_{i}^{2}\right)^{1 / 2}}$
$r_{1} r_{1}^{*}=\frac{\cos ^{2} \theta_{i}+\sin ^{2} \theta_{i}-n_{i}^{Q}}{\cos ^{2} \theta_{i}+\sin ^{2} \theta_{i}-n_{i}^{2}}=1$.
Similarly $r_{\|} r_{i}^{*}=1$.
remarks, see H. A. Daw and J. R. lzatt, J. Opt. Soc. Am.

$t_{11}=\frac{2 \sin \theta_{2} \cos \theta_{1}}{\sin \left(\theta_{1}+\theta_{2}\right) \cos \left(\theta_{1}-\theta_{2}\right)}$
$t_{1}=\frac{2 \sin \theta_{1} \cos \theta_{2}}{\sin \left(\theta_{1}+\theta_{2}\right) \cos \left(\theta_{2}-\theta_{1}\right)}$
$t_{1} t_{1}-\frac{\sin 2 \theta_{1} \sin 2 \theta_{2}}{\sin ^{2}\left(\theta_{1}+\theta_{2}\right) \cos ^{2}\left(\theta_{3}-\theta_{2}\right)}$
$=T_{1}$ from Eq. (4.100)
Stmilariy $t_{\perp} t_{\perp}^{\prime}=T$

$$
\begin{aligned}
& r_{\|}^{2}=\left[\frac{\tan \left(\theta_{1}-\theta_{2}\right)}{\tan \left(\theta_{1}+\theta_{2}\right)}\right]^{2}=\left[\frac{-\tan \left(\theta_{2}-\theta_{1}\right)}{\tan \left(\theta_{3}+\theta_{2}\right)}\right]^{2} \\
& r_{11}^{\prime 2}=\left[\frac{\tan \left(\theta_{2}-\theta_{1}\right)}{\tan \left(\theta_{1}+\theta_{2}\right)}\right]^{2}-r_{11}^{2}=R_{\|} .
\end{aligned}
$$

4.47 From Eq. (4.45)
$t_{1}^{\prime}\left(\theta_{p}^{\prime}\right) l_{1}\left(\theta_{p}\right)=\left[\frac{2 \sin \theta_{p} \cos \theta_{p}^{\prime}}{\sin \left(\theta_{k}+\theta_{\phi}^{\prime}\right) \cos \left(\theta_{p}^{\prime}-\theta_{p}\right)}\right]$

$$
\times\left[\frac{2 \sin \theta_{p}^{\prime} \cos \theta_{p}}{\sin \left(\theta_{p}+\theta_{p}^{\prime}\right) \cos \left(\theta_{p}-\theta_{p}^{\prime}\right)}\right]
$$

$$
=\frac{\sin 2 \theta_{p}^{\prime} \sin 2 \theta_{p}}{\cos ^{2}\left(\theta_{\psi}-\theta_{j}^{\prime}\right)} \text { since } \theta_{\psi}+\theta_{p}^{\prime}=90^{\circ}
$$

$$
=\frac{\sin ^{2} 2 \theta_{y}}{\cos ^{2}\left(\theta_{p}-\theta_{p}^{\prime}\right)} \text { since } \sin 2 \theta_{p}^{\prime}-\sin 2 \theta_{p}
$$

$$
=\frac{\sin ^{2} 2 \theta_{\rho}}{\cos ^{2}\left(2 \theta_{p}-90^{\circ}\right)}=1 .
$$

48 Can be used as mixer to get various proportions 4.48 Can be used as mixer the get varitted beams. This could be done by adjusting gaps. [For some further

55, 201 (1965).]

4.49 From Fig. 4.42 the obvious choice is silver. Note that in the vicinity of $300 \mathrm{~nm}, n_{3} \approx n_{R} \approx 0.6$, in which case Eq. (4.83) yields $R \approx 0.18$. Just above $300 \mathrm{~nm} n_{t}$ increases rapidly, while n_{R} decreases quite strongly, with the result that $R \approx 1$ across the visible and then some. 4.50 Light traverses the base of the prism as an evanescent wave, which propagates along the ad justable coupling gap. Energy moves into the dielectric film when ling gap. Energy moves into the die evanescent wave meets certain requirements. The film acts like a waveguide, which will support charactcristic vibration configurations or modes. Each made has associated with it a given speed and polarization. The evanescent wave will couple into the film when it matches a mode configuration

CHAPTER 5

5.1 From (5.2), $\ell_{0}+\ell_{3} 3 / 2=$ constant, $5+(6) 9 / 2=14$.1 Fefore $2 \ell+3 \ell=28$ wher $\ell_{0}=6, \ell_{1}=5.3, \ell_{0}=7$ $t_{i}=4.66$. Note that the arcs centered on S and P have to intercept for physically meaningful values of ℓ_{0} and $\stackrel{\text { to in }}{\ell_{2}}$

5.3 From Fig. 5.4(b) a plane wave impinging on a concave elliptical suriace becomes spherical. If the econd spherical surface has that same curvature, the wave will have afl rays normal to it and emerge unal tered.

5.5 First surface: $\frac{n_{1}}{s_{\varepsilon}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}$.

$$
\frac{1}{1.2}+\frac{1.5}{5_{1}}-\frac{0.5}{0.1}
$$

s. -0.36 m (real image 0.36 m to the right of first ver1ex). Secorxd surface $s_{0}=0.20-0.36=-0.16 \mathrm{~m}$ (virtual object distance).

$$
\frac{1.5}{-0.16}+\frac{1}{s_{i}}=\frac{-0.5}{-0.1}, \quad s_{i}=0.069 .
$$

Final image is real $\left(s_{i}>0\right)$, inverted $\left(M_{T}<0\right)$, and 6.9 cm to the right of the second vertex.
$3.6 s_{9}+s_{t}-s_{e} s_{i} / f$ to minimize $s_{0}+s_{i}$,

$$
\frac{d}{d s_{0}}\left(s_{o}+s_{i}\right)=0-1+\frac{d s_{s_{i}}}{d s_{0}}
$$

$$
\text { or } \frac{d}{d d_{i}}\left(\frac{s_{0} c_{i}}{f}\right)=\frac{s_{i}}{f}+\frac{s_{\varepsilon}}{f} \frac{d s_{i}}{d s_{0}}=0 .
$$

Thus $\frac{d s_{q}}{d s_{0}}=-1$ and $\frac{d s_{5}}{d s_{c}}=-\frac{s_{4}}{s_{q}}, \therefore s_{2}=s_{c}$.

The separation would be maximum if either were ∞, but both could not be. Hence, $s_{2}=s_{0}$ is the condition for a minirria. From Gaussian equation. $s_{o}=s_{i}=2 f$.
5.7 From (5.8), $1 / 8+1.5 / s_{i}=0.5 /-20$. At first surface $s_{i}=-10 \mathrm{~cm}$. Virtual image 10 cm to left of first vertex At second surface, object is real 15 cm from second vertex.
$1.5 / 15+\mathrm{l} / \mathrm{s}_{\mathrm{i}}=-0.5 / 10, \quad s_{i}=-20 / 3=-6.66 \mathrm{~cm}$. Virtual, to left of second vertex.
$5.91 / 5+1 / s_{1}=1 / 10, s_{2}=-10 \mathrm{~cm}$ virtuai, M_{T} $-s_{1} / s_{o}=10 / 5=2$ erect. Image is 4 cm high. Or $-5\left(x_{i}\right)=$ $100, x_{2}=-20, M_{T}--x_{i} / / f=20 / 10=2$
5.10

$5.11 \quad s_{1}<0$ because image is virtual. $1 / 100+1 /-50=$ $1 / f, f=-100 \mathrm{~cm}$. Image is 50 cm to the right as well. $1 / f, f=-100 \mathrm{~cm}$. Irrage is 50 cm to the right as well. $T_{T}=-s_{i} / s_{0}-50 / 00-0.5$. Ant's image is half-sized
$5.131 / f=\left(n_{1}-1\right)\left[\left(1 / R_{1}\right)-\left(1 / R_{2}\right)\right]$,
$=0.5[(1 / \infty)-\{1 / 10)]-0.5 / 10$ $f=-20 \mathrm{~cm}, \quad \Re-1 / f=-1 / 0.2=-5 \mathrm{D}$.
a) From the Gaussian lens equation

$$
\frac{\mathrm{l}}{15.0 \mathrm{~m}}+\frac{1}{s_{i}}-\frac{\mathrm{I}}{3.00 \mathrm{~m}}
$$

and $s_{i}{ }^{-}+3.75 \mathrm{~m}$.
b) Computing the magnification, we obtain

$$
M_{\mathrm{T}}=-\frac{s_{i}}{s_{0}}--\frac{3.75 \mathrm{~m}}{15.0 \mathrm{~m}}=-0.25
$$

Because the image distance is positive, the image is real. Because the magnification is negative, the image is inverted, and because the absolute value of the magnification is less than one, the image is minififed. c) From the definition of magnification, it follows that

$$
y_{i}=M_{T} y_{0}=(-0.25)(2.25 \mathrm{~m})--0.569 \mathrm{~m}
$$

where the minus sign reflects the fact that the image is inverted
d) Again from the Gaussian equation

$$
\frac{1}{17.5 \mathrm{~m}}+\frac{1}{s_{2}}=\frac{1}{3.00 \mathrm{~m}}
$$

and $s_{i} *+3.62 \mathrm{~m}$. The entire equine image is only 0.13 m long.
5.20 The first thing to find is the focal length in water, using the lensmaker's formula. Taking the ratio $f_{w} / f_{A}=$ $f_{w} /(10 \mathrm{~cm})=\left(r_{8}-1\right) \pi\left(\mu_{8} / r_{\omega}\right)-11=0.56 / 0.17=8.24$ $f_{0}=32 \mathrm{~cm}$. The Gaussian lens formula gives the image distance: $1 / s_{i}+1 / 100 \mathrm{~cm}=1 / 32.4 \mathrm{~cm}$; $s_{4}=48 \mathrm{~cm}$.
5.21 The image will be inverted if it's to be real, so the set must be upside down or else something more $114+1 / 3 s^{-1} 10.60 \mathrm{~m} s_{0}=0.80 \mathrm{~m}$, hence $0.80 \mathrm{~m}+$ $3(0.80 \mathrm{~m})=3.2 \mathrm{~m}$.

$$
\begin{aligned}
5.22 \frac{1}{f} & =\left(n_{l_{k a}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right), \\
\frac{1}{f_{w}} & =\frac{\left(n_{b a}-1\right)}{\left(n_{1}-1\right)} \frac{1}{f_{a}}=\frac{1.5 / 1.33-1}{1.5-1} \frac{1}{f_{a}}=\frac{0.125}{0.5} \frac{1}{f_{a}}, \\
f_{w} & =4 f_{a}
\end{aligned}
$$

$5.241 / f=1 / f_{1}+1 / f_{2}, 1 / 50=1 / f_{1}-1 / 50, f_{1}=25 \mathrm{cms}$ If R_{11} and R_{12}, and R_{21} and R_{22} are the radii of the first and second lenses.
$1 / f_{1}=\left(n_{i}-1\right)\left(1 / R_{11}-1 / R_{12}\right), \quad 1 / 25=0.5\left(2 / R_{11}\right)$.

$$
R_{11}--R_{12}=-R_{2!}=25 \mathrm{~cm},
$$

$$
1 / f_{2}-\left(n_{1}-1\right)\left(1 / R_{21}-1 / R_{22}\right),
$$

$$
-1 / 50=0.55\left(1 /-25-1 / R_{22}\right),
$$

$$
R_{22}=-275 \mathrm{~cm}
$$

5.25

$$
\begin{aligned}
& M_{T_{1}}=-s_{11} / s_{s_{1}}=-f_{1} /\left(s_{01}-f_{1}\right) \\
& M_{T_{2}}=-s_{i 2} / s_{Q_{2}}=-s_{12} /\left(d-s_{11}\right) \\
& M_{T}=f_{1} s_{12}\left(s_{0_{1}}-f_{2}\right)\left(d-s_{11}\right) .
\end{aligned}
$$

From (5.30), on substituting for sh: we have

$$
M_{T}=\frac{f_{i} s_{i z}}{\left(s_{6}-f_{i}\right) d-s_{o_{2}} i_{i}^{\prime}}
$$

5.26 First lens $1 / s_{11}=1 / 30-1 / 30=0, s_{11}=\infty$. Second ens $1 / s_{4}=1 /(-20)-1 /(-\infty)$, the object for the second lens is to the right at ∞, that is, $s_{02}=-\infty, s_{42}=-20 \mathrm{~cm}$, viruual, 10 cm to the left of first lens.
or from (5.34)

$$
M_{T}=\frac{30(-20)}{10(30-30)-30(30)}=\frac{2}{3} .
$$

5.28
5.31 Either the margin of L_{1} or L_{2} will be the A.S.: thus, since no lenses are to the left of L_{1}, either its periphery or P_{1} corresponds to the entrance pupil. Beyond (to the ieft of) point A, L_{1} subtends the smallest angle and is the entrance pupil; nearer in (to the right of A), P_{1} marks the edge of the entratice pupil. In the former case $\boldsymbol{P}_{\mathbf{q}}$ is the exit pupil) in the laterer (since there are no lenses to the right of L_{2}) the exit pupil is the edge of L_{2} itself.

5.32 The A.S. is either the edge of L_{1} or L_{2}. Thus the entrance pupil is either marked by P_{1} or P_{2}. Beyond F_{01}, P_{1} subtends the smaller angle; thus Σ_{1} locates the A.S. The image of the A.S. in the lenses to its right, L_{2},

5.33

$5.351 / s_{0}+1 / s_{1}--2 / R$. Let $R \rightarrow \infty: 1 / s_{0}+1 / s_{2}=0$ $s_{c}=-s_{b}$, and $M_{T}=+1$. Image is virtual, same size, and crect.
5.36 From Eq. (5.49), $1 / 100+1 / s_{1}=-2 / 80$, and so $s_{1}=28.5 \mathrm{~cm}$. Virtual $\left(s_{2}<0\right)$, erect $\left(M_{T}>0\right)$, and minified. (Check with Table 5.5.)
5.38 Image on screen must be real $\therefore s_{i}$ is ।
$\frac{1}{25}+\frac{1}{200}=-\frac{2}{R}, \quad \frac{5}{100}=-\frac{2}{R}, \quad R=-40 \mathrm{~cm}$.
5.39 The innage is erect and minified. That implies (Table 5.5) a convex spherical mirtor.
5.40 No-although she might be looking at you.
5.41 The mirror is parallel to the plane of the painting and so the girl's image should be direaly behind her and not off to the right.
5.43 To be magnified and erect the mirror must be concave, and the image virtual; $M_{r}=2.0=$ $s_{i} /(0.015 \mathrm{~m}), \quad s_{i}=-0.03 \mathrm{~m}$, and hence $1 / f=$
$1 / 0.015 \mathrm{~m}+1 /-0.03 \mathrm{~m} ; f=0.03 \mathrm{~m}$ and $/^{-}-R / 2 ; R=$ -0.06 m .
$\begin{array}{ll}5.44 & M_{T}=y_{i} / y_{0}=-s_{1} / s_{n}, \quad \text { using } \\ \text { Eq. } & (5.50), \\ s_{i} \\ \text { (}\end{array}$ $s_{0} /\left(s_{o}-f\right)$, and siace $f=-R / 2, M_{T}=-f /\left(s_{0}-f\right)$ $-(-R / 2) /\left(s_{o}+R / 2\right)=R /\left(2 s_{\mathrm{o}}+R\right)$
$5.47 M_{2}=-s_{5} / 25 \mathrm{~cm}=-0.064 ; s_{1}=1.6 \mathrm{~cm} \cdot 1 / 25 \mathrm{~cm}+$ $1 / 1.6 \mathrm{~cm}^{-}-2 / R, R=-3.0 \mathrm{~cm}$.
$5.51 f=-R / 2=30 \mathrm{~cm}, \quad 1 / 20+1 / \mathrm{s}_{\mathrm{i}}=1 / 30, \quad 1 / \mathrm{s}_{\mathrm{i}}=$ 1/30-1/20.

$$
s_{\mathrm{z}}=-60 \mathrm{~cm}, M_{T}=-s_{\mathrm{z}} / s_{\mathrm{o}}=60 / 20=3
$$

Image is virtual ($s_{i}<0$), erect ($M_{T}>0$), located 60 cm ehind nirror, and 9 inches tall
5.53 Draw the chief ray from the tip to L_{t} such that when extended it passes through the center. of the when extended it passes through the center. of the
entrance pupil. From there it goes through the center entrance pupil. From there it goes through the center
of the A.S., and then it bends at L_{2} so as to extend of the A.S., and then it bends at L_{2} so as to extend
through the center of the exit pupil A marginal ray from S extends to the edge of the entrance pupil, bends at L_{1} so it just misses the edge of A.S., and then bends at L_{2} so as to pass by the edge of the exit pupil.
5.54

image rotated through 180°
5.55 From Eq. (3.64)

$$
N_{A}=(2.624-2.310)^{+12}=0.550
$$

$$
\theta_{\max }-\sin ^{-t} 0.550=93^{\circ} 22^{\prime} .
$$

Maximum acceptance angle is $2 \theta_{\text {max }}=66^{\circ} 44^{\prime}$. A ray at 45° would quickly leak out of the fiber, in other words, very little energy fails to escape, even at the first reflection.
5.56 Considering Eq. (5.65) (p. 174), $\log 0.5=$ $-0.30--\alpha L / 10$, and so $L=15 \mathrm{~km}$.
5.57 From Eq. (5.64) (p.171) NA $=0.232$ and N_{m} 9.2×10^{2}.

$5.59 M_{T}=-f / x_{s}=-1 / x_{n} \mathcal{3}$. For the human eye B $=58.6$ diopters.
$x_{o}=230,000 \times 1.61=371 \times 10^{3} \mathrm{~km}$
$M_{T}=-1 / 8.71 \times 10^{6}(58.6)=4.6 \times 10^{-11}$

$$
y_{i}=2160 \times 1.61 \times 10^{3} \times 4.6 \times 10^{-i 1}-0.16 \mathrm{~mm} .
$$

$5.61 \mathrm{I} / 20+1 / s_{10}-1 / 4, \quad s_{10}=5 \mathrm{~m}$.

$$
1 / 0.3+1 / s_{u}=1 / 0.6, \quad s_{i e}=-0.6 \mathrm{~m}
$$

$$
M_{10}=-5 / 10=-0.5
$$

$$
M_{T_{r}}=-(-0.6) / 0.5=+1.2
$$

$$
M_{T 0} M_{T e}=-0.6 .
$$

5.64 Ray I in the figure above misses the eye-lens, and there is, therefore, a decrease in the energy arriving at the corresponding image point. This is vignetting
5.65 Rays that would have missed the eye-lens in the previous problem are made to pass through it by the Geild-lens. Noie how the field-lens bends the chief rays bit so that they cross the optical axis slightly Joser to the eye-lens, thereby moving the exit pupil and shortening the eye relief. (For more on the subject, see Modern Optical Eugineering, by Smith.)
$5.69 \mathscr{S}_{1}=\frac{9_{e}}{1+Q_{2}}=\frac{3.2 D}{1+(3.2 D}$ 3.2 D
(0.2D)(0.017 m$)$
or to two figures $+3.0 D$. $f_{1}=0.830 \mathrm{~m}$, and so the far point is $0.330 \mathrm{~m}-0.017 \mathrm{~m}=0.313 \mathrm{~m}$ behind the ey lens. For the contact lens $f_{t}=1 / 3.2=0.313 \mathrm{~m}$. Henc ane for both, as it indee must be.
5.71
a) The intermediate image-distance is obtained from the lens formula applied to the objective;

$$
\frac{1}{27 \mathrm{~mm}}+\frac{1}{s_{i}}-\frac{1}{25 \mathrm{~mm}}
$$

and $s_{0}=3.38 \times 10^{2} \mathrm{~mm}$. This is the distance fram the objective to the intermediate image, to which must be added the focal length of the eyepiece to $6 \times 10^{2} \mathrm{~ms}$ separation $8.28 \times 10^{2} \mathrm{~mm}+25 \mathrm{~mm}$ $M_{5}=-s_{1} / s_{5}$
b) $M_{r_{s}}=-s_{1} / s_{0}-3.38 \times 10^{2} \mathrm{~mm} / 27 \mathrm{~mm}-12.5 x$ While the eyepiece has a magnification of $d_{n} 2$ nification is $\mathrm{MP}=(-12.5)(10.2)--1.3 \times 10^{2}$. ih minus sign just means the image is inverted.
$\left.6.16 \quad h_{1}=n_{i 1}\left(1-a_{11}\right) /-a_{12}=\left(\mathscr{D}_{2} d_{2 \mathrm{z}} / n_{11}\right)\right\}$

$$
=-\left(n_{41}-1\right) d_{21} f / R_{2} n_{4},
$$

from Eq. (5.64) where $n_{t 1}=n_{t}$)

$$
h_{2}=n_{12}\left(a_{22}-1\right) /-a_{12}
$$

$\left.--\left(\mathscr{O}_{1} d_{21} / n_{n}\right)\right\}$ from Eq. (5.70).
$=-\left(n_{i 1}-1\right) d_{21} f R_{1} n_{i 1}$.

$$
\mathscr{R}_{2}=\left[\begin{array}{cc}
1 & -\mathscr{R}_{2} \\
0 & 1
\end{array}\right]
$$

and $\mathscr{D}_{2}=\left(n_{11}-1\right) /-R_{2}$ but $R_{2}=\infty$

$$
\mathfrak{R}_{z}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

which is the unit matrix, hence $-\mathcal{A}=\mathscr{T}_{21} \mathbb{R}_{1}$
$6.18 \quad \mathscr{Q}_{1}=\{1.5-1\} / 0.5=1$
and $\mathscr{D}_{2}=(1.5-1) /-(-0.25)=2$
$s=\left[\begin{array}{cc}2-2(0.3) / 1.5 & -1+2(1)(0.3)(1.5-2) \\ 0.3 / 1.5 & -1(0.5) / 1.5+1\end{array}\right]$
$=\left[\begin{array}{rr}0.6 & -2.6 \\ 0.2 & 0.8\end{array}\right]$
$|=9|=0.6(0.8)-(0.2)(-2.6)=0.48+0.52=1$.
6.22 See E. Slayter. Optical Methods in Biology. $\frac{6.2}{P C} / C A=\left(n_{1} / n_{2}\right) R / R=n_{1} / n_{2}$, while $C A / \overline{P^{\prime} C}=n_{1} / n_{2}$. Therefore triangles $A C P$ and $A C P^{\prime}$ are similar; using the sine law

$$
\frac{\sin \Varangle P A C}{\overline{P C}}=\frac{\sin \Varangle A P C}{\overline{C A}}
$$

$$
n_{2} \sin \Varangle P A C=n_{1} \sin \Varangle A P C \text {, }
$$

but $\theta_{\mathrm{i}}=\Varangle P A C$, thus $\theta_{\mathrm{t}}=\Varangle A P C=\Varangle P^{\prime} A C$, and the refracted ray appears to come from P.
6.23 From Eq. (5.6), let $\cos \varphi=\mathrm{I}-\varphi^{2} / 2$; then $\ell_{0}=\left[R^{2}+\left(s_{q}+R\right)^{2}-2 R\left(s_{o}+R\right)+R\left(s_{p}+R\right) \varphi^{2}\right]^{1 / 2}$,
$\ell_{0}^{-1}=\left[s_{0}^{2}+R\left(s_{0}+R\right) \varphi^{2}\right]^{-1 R_{2}}$
$\Gamma_{\mathrm{i}}^{-1}=\left[\mathrm{s}_{\mathrm{i}}^{2}-R\left(s_{1}-R\right) \varphi^{2}\right]^{-1 / 2}$,
where the first two terms of the binomial series are used

$$
f_{0}^{-1} \approx s_{\theta}^{-1}-\left(s_{0}+R\right) h^{2} / 2 s_{u}^{3} R \quad \text { where } \varphi \approx h / R,
$$

$$
\ell_{i}^{-1} \approx s_{i}^{-1}+\left(s_{t}-R\right) h_{i}^{2} / 2 s_{i}^{3} R .
$$

Substituting into Eq. (5.5) leads to Eq. (6.40)
6.24

CHAPTER 7

$7.1 \quad E_{0}^{2}=36+64+2 \cdot 6 \cdot 8 \cos \pi / 2=100, \quad E_{0}=10 ;$ $\tan \alpha=\frac{8}{6}, \quad \alpha=53.1^{\circ}=0.93 \mathrm{rad}$.

$$
E=10 \sin (120 \pi t+0.93)
$$

$7.5 \frac{1 \mathrm{ml}}{500 \mathrm{~mm}}-0.2 \times 10^{7}-2,000,000$ waves.
In the glass $\frac{0.05}{\lambda_{g} / \pi}=\frac{0.05(1.5)}{500 \mathrm{~nm}}=1.5 \times 10^{5}$;

$$
\text { in air } \frac{0.95}{\lambda_{0}}=0.19 \times 10^{7} \text {; }
$$

total 2,050,000 waves.
OPD $=[(1.5)(0.05)+(1)(0.95)]-(1)(1)$
$\mathrm{OPD}=1.025-1.000=0.025 \mathrm{~m}$

$$
\begin{gathered}
\frac{\Lambda}{\lambda_{0}}=\frac{0.025}{500 \text { rta }}=5 \times 10^{4} \text { waves. } \\
7.8 \quad E=E_{1}+E_{2}=E_{1 / 1}(\sin [\omega t-k(x+\Delta x)
\end{gathered}
$$ $+\sin \{\omega t-k x)\}$.

Since $\sin \beta+\sin \gamma=2 \sin \frac{\frac{1}{2}}{2}(\beta+\gamma) \cos \frac{1}{2}(\beta-\gamma)$,

$$
E^{\prime}=2 E_{01} \cos \frac{k \Delta x}{2} \sin \left[\omega t-k\left(x+\frac{\Delta x}{2}\right)\right] .
$$

7.9 $E=E_{0} \operatorname{Re}\left[e^{1(k x+\omega t)}-e^{i(f x-\omega t)}\right]$
$=E_{0} \operatorname{Re}\left[e^{i \in x}\left(e^{i v \tau}-e^{-i \omega t}\right)\right]$
$=E_{0} \operatorname{Rc}\left[e^{i k \times} 2 i \sin \omega t\right]$
$=E_{0} \operatorname{Re}[2 i \cos k x \sin \omega t-2 \sin k x \sin \omega t]$
and $E=-2 E_{0} \sin k x \sin \omega t$. Standing wave with node a $x=0$.
$7.10 \quad \frac{\partial E}{\partial x}=-\frac{\partial B}{\partial!}$.
Integrate to get

$$
\begin{aligned}
B(x, t) & =-\int \frac{\partial E}{\partial x} d t=-2 E_{0} k \cos k x \int \cos \omega t d t \\
& =-\frac{2 E_{0} k}{\omega} \cos k x \sin \omega l .
\end{aligned}
$$

But $E_{0} k / \omega=E_{0} / c^{*} B_{\theta ;}$ thus
$B(x, t)=-2 B_{0} \cos k x \sin \omega t$.

$7.15 E=E_{0} \cos \omega_{c} t+E_{0} \alpha \cos \omega_{m} t \cos \omega_{c} t$

$$
{ }^{-} E_{\rho} \cos \omega_{c} l
$$

$$
+\frac{E_{0}{ }^{\mu}}{2}\left[\cos \left(\omega_{\mathrm{s}}-\omega_{m \mathrm{~m}}\right) t+\cos \left(\omega_{\mathrm{c}}+\omega_{\mathrm{ri}}\right) t\right] .
$$

Audible range $\nu_{m}=20 \mathrm{~Hz}$ to $20 \times 10^{3} \mathrm{kz}$. Maximum modulation frequency $\nu_{m}(\max)=20 \times 10^{8} \mathrm{~Hz}$.

$$
\Delta \nu=2 \nu_{m}(\max)-40 \times 10^{3} \mathrm{~Hz} .
$$

644 Solutions to Selected Problems

$7.16 \quad v^{-\omega / k}-a h, \quad v_{s}=d \omega / d k-2 a \dot{k}=2 v$.

$$
\begin{aligned}
& \quad 4.17=\sqrt{\frac{g \lambda}{2 \pi}}-\sqrt{g / k} \\
& v_{5} v v+\hbar \frac{d y}{d k} \\
& \frac{d v}{d k}=-\frac{1}{2 k} \sqrt{\frac{g}{k}}=-\frac{t}{2 k} \\
& v_{g}=v / 2
\end{aligned}
$$

$$
7.19 v_{g}=v+k \frac{d v}{d k} \text { and } \frac{d v}{d k}=\frac{d v}{d \omega} \frac{d \omega}{d k}-v_{3} \frac{d v}{d \omega} .
$$

$$
\text { Since } v=c / n, \frac{d v}{d \omega}-\frac{d v}{d n} \frac{d n}{d \omega}=-\frac{c}{n^{2}} \frac{d n}{d \omega}
$$

$$
u_{s}=v_{1}-\frac{v_{k} c k}{n^{2}} \frac{d n}{d \omega}=\frac{v}{1+\left(c k / n^{2}\right)(d n / d \omega)}=\frac{c}{n+\omega(d n / d \omega)}
$$

$$
7.22 \omega \gg \omega_{i}, \quad n^{2}=1-\frac{N q_{e}^{2}}{\omega^{2} \epsilon_{0} m_{e}} \sum f_{i}=1-\frac{N q_{e}^{2}}{\omega^{2} \varepsilon_{0} m_{e}} .
$$

Using the binomial expansion, we have

Binomial expansion

$$
\begin{aligned}
(1-x)^{-1} & =1+x, \quad x \ll 1 \\
v & =c\left[1+N q_{2}^{2} / \epsilon_{0} m_{c}\left(\omega^{2} 2\right] ; \quad v v_{z}-c^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& (1-x)^{1 / 8} \approx 1-\frac{1}{2} x \text { for } x \ll 1 . \\
& n=1-N q_{e}^{2} / \omega^{2} \epsilon_{0} m_{c} 2, \quad d n / d \omega-N q_{d}^{2} \epsilon_{0} m, \omega^{3} \\
& v_{k}=\frac{-}{n+\omega(d n / d \omega)} \\
& =\frac{c}{1-N_{q}^{2} / / \omega^{2} \epsilon_{0} m_{8} 2+N_{q}{ }^{2 / 2} \epsilon_{0} m_{l} \omega^{2}} \\
& =\frac{\varepsilon}{1+N q_{\varepsilon}^{2} / \epsilon_{0} m_{0} \omega^{2} 2} \\
& \text { and } v_{g}<c \text {, } \\
& v=c / n=\frac{c}{1-N q_{e}^{2 / c_{0} m, \omega^{2} 2_{2}} .}
\end{aligned}
$$

7.24
$\int_{0}^{i} \sin a k x \sin 3 k x d x$

$$
\sim \frac{L}{2 k}\left[\int_{1}^{A} \cos [(a-i) k x] k d x\right.
$$

$$
\left.\int_{0}^{1} \cos [(a+b) k x] k d x\right]
$$

$$
=\left.\frac{1}{2 k} \frac{\sin (a-b) k x}{a-b}\right|_{0} ^{A}-\left.\frac{1}{2 k} \frac{\sin (a+b) k x}{a+b}\right|_{0} ^{\lambda}
$$

$$
-0 \text { if } a \neq b \text {. }
$$

Whereas if $a-b$,

$$
\int_{0}^{\lambda} \sin ^{2} a k x d x-\frac{1}{2 k} \int_{0}^{\lambda}(I+\cos 2 a k x) k d x=\frac{\lambda}{2^{\prime}}
$$

The other integrals are similar.
7.25 Even function, therefore $B_{m}-0$.
7.26

Let $k L / 2{ }^{-} w,(L / 2) d k=d w, k x=w x^{\prime}$.
$f^{\prime}(x)=\frac{E_{0}}{\pi} \int_{0}^{n} \frac{\sin \left(w+w x^{\prime}\right)}{w^{\prime}} d w^{\prime}+\frac{E_{0}}{\pi} \int_{0}^{1} \frac{\sin \left\langle w-a x^{\prime}\right\rangle}{w} w^{\prime}$
where $b=a L / 2$ Let $w+w x^{\prime}=t, d w / u t=d t / h 0 \leq w>1$ and $0 \leq t=\left\{x^{\prime}+1\right) b$. Let $w-w x^{\prime}--t$ in other integral
$0=w \leq b$ and $0 \leq t=\left(x^{\prime}-1\right) b$.

$$
\begin{aligned}
& A_{0}=\frac{2}{\lambda} \int_{-\lambda / a}^{N / a} d x=\frac{2}{\lambda}\left(\frac{\lambda}{a}+\frac{\lambda}{a}\right)=\frac{4}{a}, \\
& A_{m m}=\frac{2}{\lambda} \int_{-A / a}^{A / a}(1) \cos x+n k x d s \\
& \left.=\frac{2}{m k t} \sin m k x\right]_{-x / 4}^{x / 4}, \\
& A_{m}=\frac{2}{3 n \pi} \sin \frac{m 2 \pi}{a} \text {. } \\
& f^{\prime}(x)=\frac{J}{\pi} \int_{0}^{a} E_{0} L \frac{\sin k L / 2}{k L / 2} \cos k x d k \\
& =\frac{E_{0} L}{\pi 2} \int_{0}^{t} \frac{\sin (k L / 2+k x)}{k L / 2} d k \\
& -\frac{E_{L} L}{\pi 2} \int_{0}^{k} \frac{\sin (k L / 2-k x)}{k L / 2} d k^{2} .
\end{aligned}
$$

$f^{\prime}\left(x^{\prime}\right)=\frac{E_{0}}{\pi} \int_{0}^{\left.\left(t^{\prime}+1\right)\right\rangle} \frac{\sin t}{t} d t-\frac{E_{0}}{\pi} \int_{a}^{\left(x^{\prime}-1\right) \phi} \frac{\sin t}{t}-d t$
$f^{\prime}(x)=\frac{E_{0}}{\pi} \operatorname{Si}\left[b\left(x^{i}+i\right)\right]-\frac{E_{0}}{\pi} \operatorname{Si}\left[b\left(x^{\prime}-1\right)\right], \quad x^{\prime}-2 x / L$

7.27 By analogy with Eq. (7.61),

$$
A(\omega)=\frac{\Delta t}{2} E_{0} \operatorname{sinc}\left(\omega_{p}-\omega\right) \frac{\Delta i}{2} .
$$

From Table $1(\mathrm{p} .624) \operatorname{sinc}(\pi / 2)=63.7 \%$. Not quite 50% actually.

$$
\operatorname{sinc}\left(\frac{\pi}{1.65}\right)-49.8 \%
$$

$\left|\left(\omega_{p}-\omega\right) \frac{\Delta t}{2}\right|<\frac{\pi}{2}$ or $-\frac{\pi}{\Delta t}<\left(\omega_{p}-\omega\right)<\frac{\pi}{\Delta t} ;$
thus appreciable values of $A(\omega)$ Tie in a range $\Delta \omega$
$2 \pi / \Delta t$ and $\Delta v \Delta t \sim 1$. Irradiance is proportional to $A^{2}(\omega)$, and $[\operatorname{sinc}(\pi / 2)]^{2}-40.6 \%$.
$7.28 \quad \Delta x_{c}-c \Delta t_{c}, \Delta x_{c} \sim c / \Delta \nu$. But $\Delta w / \Delta k_{\mathrm{s}}=\bar{\omega} / \overline{k_{0}}-c$; thus $\left|\Delta \nu / \Delta \lambda_{g}\right|-\bar{\nu} / \lambda_{0}$.

$$
\Delta x_{c} \sim \frac{c \bar{\lambda}_{0}}{\Delta \lambda_{0} \bar{v}^{\prime}} \quad \Delta x_{c} \sim \bar{\lambda}_{j}^{2} / \Delta \lambda_{0} .
$$

Or try using the uncertainty principle:

$$
\Delta x \sim \frac{h}{\Delta p} \text { where } p=h / \lambda \text { and } \Delta \lambda_{0} \ll \dot{\lambda}_{0} \text {. }
$$

$$
\sim 1 \text { part in } 10^{7} .
$$

$7.30 \Delta z^{-}=54 \times 10^{3} \mathrm{~Hz}$;
$\Delta \nu / \overline{\bar{v}}=\frac{\left(54 \times 10^{8}\right)\left(10,600 \times 10^{-9} \mathrm{~m}\right)}{\left(3 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)}$
$=1.91 \times 10^{-9}$.
$\Delta x_{f}-c \Delta t_{c} \sim c / \Delta \nu$
$\Delta x_{c}-\frac{\left(3 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)}{\left(54 \times 10^{5} \mathrm{~Hz}\right)}=5.55 \times 10^{3} \mathrm{~m}$.
$7.32 \Delta x_{\mathrm{c}}-c \Delta i_{\mathrm{c}}=3 \times 10^{8} \times 10^{-10}=3 \times 10^{-2} \mathrm{~m}$, $\Delta \nu-1 / \Delta t_{c}=10^{10} \mathrm{~Hz}$,
$\Delta \lambda_{0}-\bar{\lambda}_{6}^{2} / \Delta x_{\mathrm{t}}$ (see Problem 7.28)
$-(632.8 \mathrm{~nm})^{2} / 3 \times 10^{-2} \mathrm{~m}=0.019 \mathrm{~nm}$.
$\Delta \nu=10^{15} \mathrm{~Hz}, \Delta x_{c}={ }_{c} \times 10^{-15}=300 \mathrm{~nm}$,
$\Delta \lambda_{0}-\bar{\lambda}_{0}^{2} / \Delta x_{c}-1334.78 \mathrm{~nm}$.

CHAPTER 8

8. 1
a) $\mathrm{E}^{-i} E_{0} \cos (k 2-\omega t)+\hat{i} E_{0} \cos (k z-\omega t+\pi)$. Equal mplitand, $E_{\text {y }}$ lags E_{x} by π. Therefore \nrightarrow-state at 185° or -45°.
b) $\mathbf{E}-i E_{0} \cos \left(k z-\omega^{\prime}-\pi / 2\right)+\hat{\jmath} E_{0} \cos (k z-m i+\pi / 2)$. Equal amplitudes, E_{y} lags E_{λ} by π. Therefore same as (a).
E_{x} leads E_{y} by $\pi / 4$. They have equal amplitudes. Therefore it is an ellipse tilted at $+15^{\circ}$ and is lefthanded
d) E, leads E_{x} by $\pi / 2$. They have equal amplitudes. Therefore it is an S_{n}-state
$8.2 \quad \mathbf{E}_{s}=\hat{i} \cos \omega t, \quad \mathbf{E}_{y}=\mathfrak{j} \sin \omega t$.
Left-handed circular standing wave.

$8.3 \mathrm{E}_{5 \mathrm{~s}}=\hat{\boldsymbol{i}} E_{0} \cos (k z-\omega t)+\hat{\jmath} E_{0} \sin (k z-\omega t)$ $\mathbf{E}_{\varphi,}=\hat{i} E_{0}^{j} \cos (k z-\omega t)-\hat{\mathfrak{1}} E_{0}^{j} \sin (k z-\omega t)$ $\mathbf{E}-\mathrm{E}_{\mathcal{R}}+\mathrm{E}_{\mathscr{P}}-\mathrm{i}\left(\mathrm{E}_{0}+E_{0}^{0}\right) \cos (k z-\omega)$

$$
+\hat{\mathfrak{r}}\left(E_{0}-E_{0}^{\prime}\right) \sin (k z-\omega t) .
$$

Let $E_{0}+E_{0}^{\prime}=E_{0,}^{\prime \prime}$ and $E_{0}-E_{o}^{\prime}=E_{0,}^{\prime \prime} ;$ then $\mathbf{E}=$
 and (8.12) it is clear that we have an ellipse where $\varepsilon=-\pi / 2$ and $\alpha=0$.
$8.4 E_{0 ;}=E_{6} \cos 25^{\circ} ; E_{0 z}=E_{0} \sin 25^{\circ}$ $\mathbf{E}(x, t)-(0.91 \hat{\mathrm{j}}+0.42 \hat{\mathbf{k}}) E_{0} \cos \left(k x-\omega!+\frac{1}{2} \pi\right)$
$8.6 \mathrm{E}=E_{f} \hat{\}} \sin (k x-\omega t)-\hat{\mathbf{k}} \cos (k x-\omega t) \hat{j}$
8.7 In natural light each filter passes 32% of the inedent beam. Half of the incoming flux density is in incdent bearn. Half of the incoming fux density is in the form of a $\$$-suate parallel to the extincrion a parallel to the transmission axis is transmitted. In the present problem $32 \% I_{i}$ enters the second filter, and $64 \%\left(32 \% I_{t}\right)=21 \% I_{r}$ leaves it.
8.11 From the figure (upper right), it follows that
$I=\frac{1}{2} E_{01}^{2} \sin ^{2} \theta \cos ^{2} \theta=\frac{E_{0 i}^{2}}{8}(1-\cos 2 \theta)(1+\cos 2 \theta)$
$=\frac{E_{01}^{2}}{8}\left(1-\cos ^{2} 2 \theta\right)=\frac{E_{01}^{2}}{8}\left[1-\left(\frac{1}{2} \cos 4 \theta+\frac{1}{2}\right)\right]$

8.12 No. The crystal performs as if it were two 8.12 No. The crystal performs as if it were wo oppositely oriented specimens in series. like similarly pecimen and thus separate the θ - and ℓ-rays even Inore.
8. 14 Light acattered from the paper passes through the polaroids and becomes lineariy polarized. Light from the upper left filter has its \mathbf{E}-field parallel to the principal section (which is diagonal across the second and fourth quadrants) and is therefore an 8 -ray. Notice how the letters P and T are shifted downward in an exiraordinaty rashton. The lower right filter passes an ray so that the letter C is undeviated. Note that the ordinary image is closer to the blunt corner.
8.15 (a) and (c) are two aspects of the previous problem. (b) shows double refiraction because the polaroid's axis is at roughly 45° to the principal section of the crystal. Thus both an o- and an enray will exist

8.16 When \mathbf{E} is perpendicular to the CO_{3} plane the polarization will be less than when it is parallel. In the former case, the ficld of each polarized oxygen atom tends to reduce the polarization of its neighbors. In other words. the induced fied, as shown in the frgure, sown while Eis up. When Eis si che carbonate plane olabilit leads to lower deonstand fractive index, and hicher speed Thus in $_{1}>\nu_{1}$

$8.20 n_{s}=1.6584, n_{e}-1.4864$. Snell's law:
$\sin \theta_{i}-n_{o} \sin \theta_{m}=0.766$
$\sin \theta_{1}=n_{e} \sin \theta_{t e}=0.766$
$\sin \theta_{\mathrm{to}} \approx 0.463, \quad \theta_{\mathrm{io}} \approx 27^{\circ} 35^{\prime}$
$\sin \theta_{t s}=0.516, \quad \theta_{t s}=81^{\circ} 4^{\prime} ;$
$\Delta \theta \approx 3^{\circ} 29^{\prime}$.
8.22 Calcite $n_{o}>n_{2}$. Two spectra will be visible when (b) or (c) is used in a spectrometer. The indices are computed in the usual way, using

$$
n=\frac{\sin \frac{1}{2}\left(\alpha+\delta_{w}\right)}{\sin \frac{1}{2} \alpha}
$$

$8.23 E_{x}$ leads E_{y} by $\pi / 2$. They were initially in phase and $E_{x}>E_{y}$. Therefore the wave is left-handed, ellip tical, and horizontal.
$8.24 \sin \theta_{c}=\frac{n_{\text {latcenen }}}{n_{0}}=\frac{1.55}{1.658}-0.935 ; \quad \theta_{\mathrm{c}} \sim 69^{\circ}$.
8.26

Undesired energy in the form of one of the graste can be disposed of without local heating probtems d) The Rochon transmits an undeviated beam the o ray), which is therefore achromatic as weil.
8.31

$$
\Delta \varphi=\frac{2 \pi}{\lambda_{0}} d \Delta n
$$

but $\Delta \varphi=(1 / 4)(2 \pi)$ because of the fringe shift. Therefore $\Delta \varphi_{\pi}-\pi / 2$ and

$$
\begin{aligned}
& \frac{\pi}{2}=\frac{2 \pi d(0.005)}{589.3 \times 10^{-9}} \\
& d=\frac{589.3 \times 10^{-9}}{2\left(10^{-2}\right)}=2.94 \times 10^{-5} \mathrm{~m} .
\end{aligned}
$$

648 Solutions to Selected Problems

8.32 The \mathscr{T}-state incident on the glass screen drives the electrons in circular orbits, and they reradiate refleced circular light whose E-field rotates in the same direction as that of the incoming beam. But the propagation direction has been reversed on reflection, so that although the incident hight is in an M wstate, the refiected light is left-handed. It will therefore be completely absorbed by the right-circular polarizer. This is illus trated in the figure below.

8.33 Yes. If the amplitudes of the \mathscr{P}-states differ. The transmitted beam, in a pile-of-plates polarizer especially for a small pile.
8.35 Place the photoelastic material between circula polarizers with both retarders facing it (as in Fig. 8.52) Under circular illumination no orientation of the stres axes is preferred over any other, and they will thus all be indistinguishable. Only the birefringence will have an effect, and so the isochromatics will be visible. If the two polarizers are different, that is, one an \mathscr{B}, the othe an \mathscr{L}, regions where $\Delta \pi$ leads to $\Delta \varphi=\pi$ will appear bright. If they are the same, such regions appear dark
$8.37 \quad V_{\lambda / 2}=\lambda_{0} / 2 \pi_{0}^{2} \tau_{63}$
$-550 \times 10^{-9} / 2(1.58)^{3} 5.5 \times 10^{-12}$
$-10^{5} / 2(3.94)-12.7 \mathrm{kV}$.
8.38
$\mathbf{E}_{1} \cdot \mathbf{E}_{2}^{*}=0, \quad \mathbf{E}_{2}=\left[\begin{array}{l}e_{21} \\ e_{22}\end{array}\right]$
$\mathrm{E}_{1} \cdot \mathbf{E}_{2}^{*}=(\mathrm{I})\left(e_{21}\right)^{*}+(-2 i)\left(e_{22}\right)^{*}=0$

8.44
8.46

where a phase increment of φ is introduced into both components as a result of traversing the plate.
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$8.50\left[\begin{array}{cccc}t^{2} & 0 & 0 & 0 \\ 0 & i^{2} & 0 & 0 \\ 0 & 0 & i^{2} & 0 \\ 0 & 0 & 0 & t^{2}\end{array}\right] \quad\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

$I_{p}=\left(S_{1}^{2}+S_{2}^{z}+s_{3}^{2}\right)^{1 / 2} ; \quad I-I_{p}=I_{2}$
$S_{0}-\left(S_{1}^{2}+S_{2}^{2}+S_{3}^{2}\right)^{1 / 2}=I_{u}$

$5-(0+0+1)^{1 / 2}-I_{x}$.

CHAPTER

9.1 $\mathrm{E}_{1} \cdot \mathbf{E}_{2}-\frac{1}{2}\left(\boldsymbol{E}_{1} e^{-i \omega t}+\boldsymbol{E}_{1}^{*} e^{i \omega \tau}\right) \cdot \frac{1}{2}\left(\boldsymbol{E}_{2} e^{-i \omega t}+\boldsymbol{E}_{2}^{*} e^{i \omega t}\right)$ where $\operatorname{Re}(z)=\frac{1}{(}\left(z+z^{*}\right)$.
$\mathbf{E}_{1} \cdot \mathbf{E}_{2}=\frac{1}{4}\left[\boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2} e^{-2, \omega t}+\boldsymbol{E}_{1}^{*} \cdot \boldsymbol{E}_{2}^{*} e^{2 i \omega t}+\boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2}^{*}\right.$ $\left.+E_{1}^{*} \cdot E_{2}\right]$.
The last two terms are time independent, while

$$
\left\langle\boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2} e^{-2 t a t}\right\rangle \rightarrow 0 \quad \text { and } \quad\left\langle\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{2}^{*} e^{2 i \omega s t}\right\rangle \rightarrow 0
$$

because of the $1 / T \omega$ coefficient. Thus

$$
I_{12}=2\left(\mathbf{E}_{1} \cdot \mathbf{E}_{2}\right)=\frac{1}{2}\left(\boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2}^{*}+\boldsymbol{E}_{1}^{*} \cdot \boldsymbol{E}_{2}\right) .
$$

9.2 The Iargest value of $\left(r_{1}-r_{2}\right)$ is equal to a. Thus if $\varepsilon_{1}-\varepsilon_{2}, \delta=k\left(r_{1}-r_{2}\right)$ varies from 0 to $k a$. If $a \gg A, \cos \delta$ and therefore I_{12} will have a great many maxima and mimima and therefore average to maro over a large
 o zero, and from Eq (917) I deviates fitle from 4 The two sources el tively behave as singe source double the original strength.
9.3 A bulb at S would produce fringes. We can imagine it as made up of a very large number of incoherent point sources. Each of these would generate an independent pattern, all of which would then overlap. Bulbs at S_{1} and S_{2} would be incoherent and could not generate detectable fringes
9.5
a) $\left(r_{1}-r_{2}\right)= \pm \frac{1}{2} \lambda$, hence $a \sin \theta_{3}= \pm_{2}^{\frac{1}{2}} \lambda$ and $\theta_{1}= \pm \frac{1}{2} \lambda / a$ $= \pm \frac{1}{2}\left(632.8 \times 10^{-9} \mathrm{~m}\right) /\left(0.200 \times 10^{-3} \mathrm{~m}\right)= \pm 1.58 \times$ $10^{-3} \mathrm{rad}$, or since $y_{1}=s \theta_{1}=(1.00 \mathrm{~mm})(\pm 1.58 \times$ $\left.10^{-3} \mathrm{rad}\right)= \pm 1.58 \mathrm{~mm}$

650 Solutions to Selected Problems
b) $y_{5}-s 5 \lambda i a=(1.00 \mathrm{~m}) 5\left(632.8 \times 10^{-9}\right) /\left(0.200 \times 10^{-3}\right.$ $\mathrm{m})=1.582 \times 10^{-2} \mathrm{~m}$
c) Since the fringes vary as cosine-squared and the answer to (a) is half a fringe width, the answer to (b) is 10 times larger.
$9.13 r_{2}^{2}=a^{2}+r_{1}^{2}-2 a r_{1} \cos (90-\theta)$. The contribution to $\cos \delta / 2$ from the third term in the Maclaurin expansion will be negligible if

$$
\frac{k}{2}\left(\frac{a^{2}}{2 r_{1}} \cos ^{2} \theta\right)<\pi / 2 ;
$$

therefore $r_{1} \gg a^{2} / \lambda$.
$9.14 \quad E=\frac{1}{2} m v^{2} ; \quad v=0.42 \times 10^{6} \mathrm{~m} / \mathrm{s}$;
$\lambda=h / \mathrm{mv}=1.73 \times 10^{-9} ; \quad \Delta y=s \lambda / a=3.46 \mathrm{~mm}$.
$9.18 \Delta y=s \lambda_{0} / 2 d \alpha\left(n-n^{\prime}\right)$.
$9.19 \Delta y-(\mathrm{s} / a) \lambda, \quad a=10^{-2} \mathrm{~cm}, \quad a / 2-5 \times 10^{-9} \mathrm{~cm}$
$9.20 \delta-k\left(r_{1}-r_{2}\right)+\pi$ (Lloyd's mirror)
$\delta=k\{a / 2 \sin \alpha-[\sin \{90-2 \alpha)] a / 2 \sin \alpha\}+\pi$

$$
\delta-k a\{\mathrm{I}-\cos 2 \alpha) / 2 \sin \alpha+\pi
$$

maximum occurs for
$\delta=2 \pi$ when $\sin \alpha(\lambda / a)-(1-\cos 2 \alpha)-2 \sin ^{2} \alpha$.
First maximum $\alpha=\sin ^{-1}(\lambda / 2 a)$.
9.22 Here $1.00<1.34>1.00$, hence from Eq. (9.36) with $m-0, d=\left(0+\frac{1}{2}\right)(633 \mathrm{~nm}) / 2(1.34)=118 \mathrm{~nm}$.
9.25 Eq. (9.37) $m=2 n_{f} d / \lambda_{0}-10,000$. A minimum therefore central dark region.

9.26 The fringes are generally a series of fine jagged bands, which are fixed with respect to the glass.
$9.27 x^{2}-d_{1}\left[\left(R_{1}-d_{1}\right)+R_{\mathrm{i}}\right]=2 R_{1} d_{1}-d_{1}^{2}$
Similarly $x^{2}=2 R_{2} d_{2}-d_{2}^{2}$

$$
d-d_{1}-d_{2}=\frac{x^{2}}{2}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right], \quad d-m \frac{\lambda_{f}}{2} .
$$

As $R_{2} \rightarrow \infty, x_{m}$ approaches Eq. (9.43).
$9.29 \quad \Delta x=\lambda_{j} / 2 \alpha, \quad \alpha=\lambda_{0} / 2 n_{f} \Delta x$,

$$
\alpha=5 \times 10^{-5} \mathrm{rad}-10.2 \text { seconds. }
$$

9.31 A motion of $\lambda / 2$ causes a single fringe pair to hift past, hence $92 \lambda / 2=2.53 \times 10^{-5} \mathrm{~m}$ and $\lambda=$ 50 nm .
$9.35 E_{:}^{2}-E_{E} E_{1}^{*}-E_{0}^{2}\left\{\left(i^{\prime}\right)^{2} /\left(1-r^{2} e^{-i 8}\right)\left(1-r^{2} e^{+i \delta}\right)\right.$

$$
\left.\left.I_{t}=I_{(}\left(t^{\prime}\right)^{2}\right) \ 1-r^{2} e^{-i 5}-r^{2} e^{i \delta}+r^{4}\right) .
$$

9.36
a) $R=0.80 \therefore F-4 R /(1-R)^{2}-80$
b) $\gamma=4 \sin ^{-1} 1 / \sqrt{F}=0.448$
c) $9=2 \pi / 0.448$
d) $C-1+F$
$9.37 \frac{2}{1+F(\Delta \delta / 4)^{2}}=0.81\left[1+\frac{1}{1+F(\Delta \delta / 2)^{2}}\right]$

$$
F^{2}(\Delta \delta)^{4}-15.5 F(\Delta 8)^{2}-30-0 .
$$

$9.38 \quad I=I_{\text {max }} \cos ^{2} \delta / 2$

$$
I-I_{\max } / 2 \text { when } \delta=\pi / 2 \quad \therefore \gamma=\pi .
$$

Separation between maxima is 2π
度 $-2 \pi / \gamma=2$
9.40 At near normal incidence ($\theta_{2} \approx 0$) Fig. 4.23(e) indicates that the relative phase shift between an internally and externally reflected beam is π rad. That means a cotal relative phase difference of
$\frac{2 \pi}{\lambda_{f}}\left[2\left(\lambda_{i} / 4\right)\right]+\pi$.

2π. The waves are in phase and interfere construc tively
$9.41 \quad n_{0}-1 \quad n_{5}-n_{g} \quad n_{1}-\sqrt{n_{F}}$
$\sqrt{1.54}-1.24$

$$
d=\frac{1}{4} \lambda_{f}=\frac{1}{4} \frac{\lambda_{0}}{n_{1}}-\frac{1}{4} \frac{540}{1.24} \mathrm{~nm} .
$$

No relative phase shiit between two waves
9.42 The refracted wave will traverse the film twice
and there will be no relative phase shift on reflection. Hence

$$
d-\lambda_{0} / 4 n_{f}-(550 \mathrm{~nm}) / 4(1.38)=99.6 \mathrm{~nm} .
$$

CHAPTER 10

$10.1(R+\ell)^{2}=R^{2}+a^{2}$; therefore $R *\left(a^{2}-\ell^{2}\right) / 2 \ell=$ $a^{2} / 2 \ell, \quad \ell R=a^{2} / 2$, so for $A \gg \ell, \quad \lambda R \gg a^{2} / 2 \therefore R=$ $\left(1 \times 10^{-3}\right)^{2} 10 / 2 A=10 \mathrm{~m}$

$10.2 E_{0} / 2-R \sin (\delta / 2)$
$E-2 R \sin (N \delta / 2) \quad$ chord length
$E=\left[E_{0} \sin (N \delta / 2)\right] / \sin (\delta / 2)$
$I-E^{2}$.
$10.4 d \sin \theta_{\mathrm{r}}=m \lambda$,

$d \sin \theta_{\pi}$	$=m \lambda$,	θ	$=N 8 / 2-\pi$
$7 \sin \theta$	$=(1)(0.21)$	δ	$=2 \pi / N$
		$=k d \sin \theta$	
$\sin \theta$	$=0.03$	$\sin \theta$	$=0.0009$
θ	$=1.7^{\circ}$	θ	$=3 \mathrm{~min}$.

10.5 Converging sphcrical wave in image space is diffracted by the exit pupil.

$10.9 \lambda=(20 \mathrm{~cm}) \sin 36.87^{\circ}=12 \mathrm{~cm}$.
$10.10 \quad \alpha=\frac{k a}{2} \sin \theta, \quad \beta-\frac{k b}{2} \sin \theta$
$a=m b, \alpha=m \beta, \alpha=m 2 \pi$
$N-$ number of fringes $-\alpha / \pi=m 2 \pi / \pi-2 \pi$.
$10.12 \alpha=3 \pi / 2 N=\pi / 2$ [10.34]

$$
I(\theta)=\frac{I(0)}{N^{2}}\left(\frac{\sin \beta}{\beta}\right)^{2}
$$

from Eq. (10.35)
and $I / I(0) \approx \frac{1}{9}$.

652 Solutions to Selected Problems
10.15 If the aperture is symmetrical about a line, the pattern will be symmetrical about a line parallel to it. Moreover, the pattern will be symmetrical about yet another line perpendicular to the aperture's symmetry axis. This follows from the fact that Fraunhofer patterns have a center of symmetry.
10.16

10.17 Three parallel short slits.
10.18 Two parallel short slits.
10.19 An equilateral triangular hole.
10.20 A cross-shaped hole.
10.21 The E-field of a rectangular hole.

Solutions to Selected Problems
10.27 I part in $1000.3 y d \approx 100$ inches.

10.32 From Eq. (10.32), where $a=\mathrm{I} /(1000$ lines per $\mathrm{cm})=0.001 \mathrm{~cm}$ per line (center to center), $\sin \theta_{m}$ $1\left(650 \times 10^{-9} \mathrm{~m}\right) /\left(0.001 \times 10^{-2} \mathrm{~m}\right)^{-} 6.5 \times 10^{-2}$ and $\theta_{1}=3.73^{\circ}$.
10.35 The largest value of m in Eq. (10.32) occurs when the sine function is equal to one, making the lef
 $\mathrm{Hz})=1.3$, and only the first-order spectrum is visible.
$10.37 \sin \theta_{t}-n \sin \theta_{\pi}$
Optical path length difference - $m \lambda$
$a \sin \theta_{m}{ }^{-} n a \sin \theta_{n}{ }^{-} m \lambda$
$a\left(\sin \theta_{m}-\sin \theta_{i}\right)=m \lambda$

$10.38 \mathscr{R}-m N^{-} 10^{6}, N^{-78 \times 10^{3}}$.
$\therefore m^{-10} / 78 \times 10^{3}$.
$\Delta \lambda_{\mathrm{Fs}}-\lambda / m=500 \mathrm{~nm} /\left(10^{5} / 78 \times 10^{3}\right)-39 \mathrm{~nm}$,

654 Solutions to Selected Problems

$$
A=2 \pi \rho^{2}-\pi \rho\left(2 \rho^{2}+2 \rho r_{0}-l \lambda t_{0}-l^{2} \lambda^{2} / 4\right) /\left(\rho+r_{0}\right)
$$

$$
A_{t}-A-A_{l-1}=\frac{i V_{p 2}}{\rho+T_{0}}\left[T_{0}+\frac{(2 l-1) \lambda}{4}\right] .
$$

10.45

$10.46 \quad I=\frac{I_{0}}{2}\left\{\left[\frac{1}{2}-\mathscr{C}\left(v_{1}\right)\right]^{2}+\left[\frac{1}{2}-\mathscr{T}\left(v_{1}\right)\right]^{2}\right\}$
$I=\frac{I_{0}}{2}\left(\frac{1}{\pi v_{1}}\right)^{2}\left[\sin ^{2}\left(\frac{\pi v_{1}^{2}}{2}\right)+\cos ^{2}\left(\frac{\pi v_{1}^{2}}{2}\right)\right]$ $=\frac{I_{0}}{2}\left(\frac{1}{\pi v_{1}}\right)^{2}$.
10.47 Fringes in both the clear and shadow region (see M. P. Givens and W. L. Goff, Am. J. Phys. 34, 248 (1966)].

CHAPTER II

$11.1 \quad E_{0} \sin k_{F} x=E_{0}\left(e^{i k_{p} x}-e^{-i k_{p} x}\right) / 2 i$

$$
\begin{aligned}
& F(k)=\frac{E_{0}}{2 i}\left[\int_{-L}^{+L} e^{i\left(k+k_{p}\right) x} d x \int_{-L}^{+L} e^{i\left(k-k_{p}\right) x} d x\right] \\
& F(k)-\frac{i E_{0} \sin \left(k+k_{p}\right) L}{\left(k+k_{p}\right)}+\frac{i E_{0} \sin \left(k-k_{p}\right) L}{\left(k-k_{p}\right)} \\
& F(k)=i E_{0} L\left[\sin c\left(k-k_{p}\right) L-\operatorname{sinc}\left(k+k_{p}\right) L\right] .
\end{aligned}
$$

$11.3 \cos ^{2} \omega_{y} t=\frac{1}{2}+\frac{1}{2} \cos 2 \omega_{y} t=\frac{1}{2}+\frac{t^{2} \omega_{i} \|+\theta^{-2 \pi} \omega_{0} t}{4}$.
$F(\omega)^{-\frac{1}{2}} \int_{-T}^{+T} e^{i \omega t} d t+\frac{1}{i} \int e^{i\left(\omega+2 \omega_{j}\right)^{t}} d t+\frac{1}{4} \int e^{i\left(\omega-2 \omega_{p}\right)^{2}} d t$
$F(\omega)=\frac{1}{\omega} \sin \omega T+\frac{1}{2\left(\omega+2 \omega_{p}\right)} \sin \left(\omega+2 \omega_{p}\right) T$

$$
+\frac{1}{2\left(\omega-2 \omega_{p}\right)} \sin \left(\omega-2 \omega_{p}\right) T
$$

$F(\omega)=T \operatorname{sinc} \omega T+\frac{T}{2} \operatorname{sinc}\left(\omega+2 \omega_{p}\right) T$
$+\frac{T}{2} \sin c\left(\omega-2 \omega_{y}\right) T$.

$11.6 S:\{a f(x)+b h(x)\}-a F(k)+b H(k)$
$11.8 F(k)^{-} L \operatorname{sinc}^{2} k L / 2$ at $k-0, F(0)-L$, and $F(\pm 2 \pi / L)=0$.
$11.15 \int_{x=-\infty}^{x=+\infty} f(x) h(X-x) d x$
$=-\int_{x^{\prime}-+\infty}^{x^{\prime}--\infty} f\left(X-x^{\prime}\right) h\left(x^{\prime}\right) d x^{\prime}$
$=\int_{-\infty}^{+\infty} h\left(x^{\prime}\right) \gamma\left(X-x^{\prime}\right) d x^{2}$
where $x^{\prime}-X-x, d x--d x^{\prime}$.

$$
f \circledast h-h \circledast f
$$

or

11.17 A point on the edge of $f(x, y)$, for example, at ($x=d, y^{-} 0$), is spread out into a square 2ℓ on a side centered on $X-d$. Thus it extends no farther than $X \sim d+\ell$, and so the convolution must be zero at X d $+\ell$ and beyond.
$11.19 f\left(x-x_{0}\right) \oplus h(x)-\int_{-\infty}^{+\infty} f\left(x-x_{0}\right) h(X-x) d x$,
and setting $x^{-} x_{0}-\alpha$, this becomes

$$
\int_{-\infty}^{+\infty} f(\alpha) h\left(X-\alpha-x_{0}\right) d \alpha-g\left(X-x_{0}\right)
$$

11.21

-
 \%

1.24 We see that $f(x)$ is the convolution of a rect-
function with two δ-functions, and from the convolution theorem,

$$
F(k)-\mathscr{F}\{\text { rect }(x) \circledast[\delta(x-a)+\delta(x+a)]\}
$$

$-\mathscr{F}\{\operatorname{rect}(x)\} \cdot \mathscr{F}\{[\delta(x-a)+\delta(x+a)]\}$
$=a \operatorname{sinc} \frac{1}{2} k a \cdot\left(e^{i k a}+e^{-i k a}\right)$
$-a \operatorname{sinc}\left(\frac{1}{2} k a\right) \cdot 2 \cos k a$.
$11.25 f(x) \oplus h(x)$
$=[\delta(x+3)+\delta(x-2)+\delta(x-5)] \times 6(x)$
$=h(x+3)+h(x-2)+h(x-5)$

656
Solutions to Selected Problems

$1.29 \mathcal{A}(y, z)-\mathcal{A}(-y,-z)$.

$$
E(Y, Z, t) \propto \iiint\left\{(y, z) e^{i\left(k_{y} y+k_{z}\right)} d y d z\right.
$$

Change Y to $-Y, Z$ to $-Z, y$ to $-y, z$ to $-z$, then k_{Y} goes to $-k_{y}$ and k_{z} to $-k_{z}$

$$
E(-Y,-Z) \propto \iint \operatorname{sss}\left(-y_{y}-z\right) e^{i\left(k_{y} y+k_{z} z\right)} d y d z
$$

$11.32 E\left(k_{z}\right)^{-} \int_{-b / 2}^{+b / 2} \mathscr{S}_{0} \cos (\pi z / b) e^{i k_{z}^{z}} d z$
$=\mathscr{A}_{0} \int \cos \frac{\pi z}{b} \cos k_{2 z} d z$
$+i \AA_{0} \int \cos \frac{\pi z}{b} \sin k_{Z z} d z$

$$
\therefore E(-Y,-Z)=E(Y, Z) .
$$

$$
E\left(k_{z}\right)=s_{0} \cos \frac{b k_{z}}{2}\left[\frac{1}{\left(\frac{\pi}{b}-k_{z}\right)}+\frac{1}{\left(\frac{\pi}{b}+k_{z}\right)}\right] .
$$

11.30 From Eq. (11.63),
11.31
$C_{F}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{+T} A \sin (\omega t+\varepsilon) A \sin (\omega t-\omega \tau+\varepsilon) d t$
$=\lim _{T \rightarrow \infty} \frac{A^{2}}{2 T} \int\left[\frac{1}{2} \cos (\omega T)-\frac{1}{2} \cos (2 \omega t-\omega \tau+2 \varepsilon)\right] d t$,
since $\cos \alpha-\cos \beta=-2 \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\alpha-\beta)$. Thus

$$
C_{f}=\frac{A^{2}}{2} \cos (\mathrm{~L} T) .
$$

CHAPTER 12

12.1 At low pressures, the intensicy emitted from the lamp is low, the bandwidth is narrow, and the coherence length is large. The fringes will initially display a high builds the coherence length will decrease the contrast will drop of and the fringes might even vanish entirel
12.4 Each sine function in the signal produces a cosinusoidal autocorrelation function with its own wavelength and amplitude. All of these are in phase at the zero delay point corresponding to $\tau=0$. Beyond that origin the cosines soon fall out of phase, producing a jumble where destructive interference is more likely. (The same sort of thing happens when, say, a square pulse is syathesized out of sinusoidseverywhere beyond the pulse all the contributions cancel.) As the number of components increases and the signal becomes more complex-resembling random noise-the autocorrelation narrows, ultimately becoming a δ-spike at $\boldsymbol{\tau}=0$.

$$
\begin{aligned}
& E(Y, Z)-\iint s(y, z) e^{\left.z \in(Y) Y+z_{z}\right) / R} d y d z \\
& E^{\prime}(Y, Z)-\iiint(\alpha y, \beta z) e^{i k(s y+z z) / R} d y d z ; \\
& \text { now let } y^{\prime}-\alpha y \text { and } z^{\prime}-\beta z \text { : } \\
& E^{\prime}(Y, Z)=\frac{1}{\alpha \beta} \iint \mathscr{A}\left\{\left(y^{\prime}, z^{\prime}\right) e^{\left.* *\left(\left[y^{\prime} / \alpha\right) y^{\prime}(z / \beta)\right] z^{\prime}\right\}} d y^{\prime} d z^{\prime}\right. \\
& \text { or } \quad E^{\prime}(Y, Z)=\frac{1}{\alpha \beta} E(Y / \alpha, Z / \beta) \text {. }
\end{aligned}
$$

12.6 The irradiance at Σ_{0} arising from a point scurce is $4 I_{0} \cos ^{2}(\delta / 2)=2 I_{0}(1+\cos \delta)$.
For a differential source element of width $d y$ at point S^{\prime}, y from the axis, the OPD to P at Y via the two slits is

$$
\begin{aligned}
\Lambda & =\left(\overline{S^{\prime} S_{1}}+\overline{S_{1} \bar{P}}\right)-\left(\overline{S^{\prime} S_{2}}+\overline{S_{2} P}\right) \\
& =\left(\overline{S^{\prime} S_{1}}-\overline{S^{\prime} S_{2}}\right)+\left(\overline{S_{1} P}-\overline{S_{2} P}\right) \\
& =a y / l+a Y / \text { from Section } 9.3 .
\end{aligned}
$$

The contribution to the irradiance from $d y$ is then

$$
d I \propto(1+\cos k \Lambda) d y
$$

$$
I \propto \int_{-\phi \pi}^{+\infty / L}(1+\cos k A) d y
$$

$$
I \propto b+\frac{d}{k a}\left[\sin \left(\frac{a Y}{s}+\frac{a b}{2 l}\right)-\sin \left(\frac{a Y}{s}-\frac{a b}{2 l}\right)\right]
$$

$$
I \propto b+\frac{d}{k a}[\sin (k a Y / s) \cos (k a b / 2 l)
$$

$+\cos (k a Y / s) \sin (k a b / 2 l)$
$-\sin (k a Y / s) \cos (k a b / 2 t)$ $+\cos (k a Y / s) \sin (k a b / 2 /)]$

$$
I \propto b+\frac{i 2}{k a} \sin (k a b / 2 l) \cos (k a Y / s)
$$

12.7

$$
\begin{aligned}
\mathscr{V} & =\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }} \\
I_{\text {max }} & =I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \mid \tilde{\gamma}_{12} \\
I_{\min } & =I_{1}+I_{2}-2 \sqrt{I_{1} I_{2}} \mid \tilde{\gamma}_{22} \\
\mathscr{V} & =\frac{4 \sqrt{I_{1} I_{2}} \hat{\gamma}_{12} \mid}{2\left(I_{1}+I_{2}\right)} .
\end{aligned}
$$

12.8 When
$S^{n} S_{1} O^{\prime}-S^{\prime} S_{1} O^{\prime}=\mathrm{A} / 2,3 \lambda / 2,5 \lambda / 2, \ldots$,
the irradiance due to S^{\prime} is given by

$$
\Gamma^{\prime}=4 I_{0} \cos ^{2}\left(\delta^{\prime} / 2\right)=2 I_{0}\left(\mathrm{I}+\cos \delta^{\prime}\right)
$$

while the irradiance due to S^{n} is
$I^{\prime \prime}=4 I_{0} \cos ^{2}\left(\delta^{n} / 2\right)=4 I_{0} \cos ^{2}\left(\delta^{\prime}+\pi\right) / 2$

$$
=2 I_{\theta}\left(\mathrm{I}-\cos \delta^{\prime}\right)
$$

Hence $I^{\prime}+I^{\prime \prime}=4 I_{0}$.
$12.10 \quad \theta=\frac{1_{2}^{\circ}}{2}=0.0087 \mathrm{rad}$

$$
\begin{aligned}
& h=0.32 \bar{\lambda}_{0} / \theta \text { using } \bar{\Lambda}_{\sigma}=550 \mathrm{~mm} \\
& h^{-}=0.32(550 \mathrm{~mm}) / 0.0087 \\
& h=2 \times 10^{-2} \mathrm{~mm} .
\end{aligned}
$$

$12.11 I_{1}(t)=\Delta I_{1}(t)+\left\langle I_{1}\right\rangle ;$ hence

$$
\left\langle I_{t}(t+\tau) I_{2}(t)\right\rangle
$$

$-\left\langle\left[\left\langle I_{1}\right\rangle+\Delta I_{1}(t+\tau)\right]\left[\left\{I_{2}\right\rangle+\Delta I_{2}(0)\right]\right.$, since $\left\langle\mathrm{I}_{\mathrm{I}}\right\rangle$ is independent of time.
$\left\langle I_{1}(t+\tau) I_{2}(t)\right\rangle=\left\langle I_{1}\right\rangle\left\langle I_{2}\right\rangle+\left\langle\Delta I_{1}(t+\tau) \Delta I_{2}(t)\right\rangle$,
if we recall that $\left\langle\Delta I_{1}(t)\right\rangle=0$. Eq. (12.34) follows by comparison with Eq. (I2.32).
2.13 From Eq. (12.22), $r=2 \sqrt{(10 I) I} /(10 I+I)=$ $2 \sqrt{10 / 11-0.57}$.
2.15 Using the van Cittert-Zernike theorem, we can find $\tilde{y}_{12}(0)$ from the diffraction pattern over the apertures, and that will yield the visibility on the observaures, and that will yield the visibitity on the oserva$\sin u / u=0.85$ when $u=0.97$, hence $\pi b y / l \lambda=0.97$, and if $y=\overline{P_{1} P_{2}}=0.50 \mathrm{~mm}$, then $b=0.97(\lambda \lambda / \pi y)=$ $0.97(1.5 \mathrm{~m})\left(500 \times 10^{-9} \mathrm{~m}\right) / \pi\left(0.50 \times 10^{-3} \mathrm{~m}\right)=0.46 \mathrm{~mm}$.
12.18 From the van Cittert-Zernike theorem, the degree of coherence can be obtained from the Fourier transform of the source function, which itself is a series δ-functions corresponding to a diffraction grating with spacing a, where $a \sin \sigma_{m}=m$. The coherence function is therefore aiso a series of δ-functions. Hence the $\bar{P}_{1} P_{2}$, the slit separation d, must correspond to the ocation of the first-order diffraction fringe of the source if V is to be maximum. $a \theta_{1} \approx \lambda$, and so $d \approx t \theta_{1} \approx A / / a=$ $\left(500 \times 10^{-9} \mathrm{~m}\right)(2.0 \mathrm{~m}) /\left\{500 \times 10^{-6} \mathrm{~m}\right)=2.0 \mathrm{~mm}$.

CHAPTER 13

$13.1 I_{r}=\sigma T^{4}$
13.9 $N h \nu=\left(1.4 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}\right)\left(1 \mathrm{~m}^{2}\right)(1 \mathrm{~s})$

$$
\mathrm{T}-\left[\frac{22.8 \times 10^{4}}{5.7 \times 10^{-8}}\right]^{1 / 4}=1.414 \times 10^{3}-1414 \mathrm{~K}
$$

$13.3 \nu-c / \lambda, \quad d \nu=-c d \lambda / \lambda^{2}$,
Since $I_{e s}$ and $I_{e v}$ are to be positive and since an increase in λ yields a decrease in ν, we write

$$
I_{e \lambda} d \lambda=-I_{c r} d \nu
$$

and
$I_{c v}-I_{e \lambda} d \lambda / d \nu=I_{e t} \lambda^{2} / \tau$.
$13.4 \quad \lambda=\frac{h}{m v}=\frac{6.63 \times 10^{-36} \mathrm{~J} \mathrm{~s}}{(0.15 \mathrm{~kg})(25 \mathrm{~m} / \mathrm{s})}$.
Baseball: $\quad \lambda=\frac{6.63 \times 10^{-34}}{3.75}=1.76 \times 10^{-34} \mathrm{~m}$
Hydrogen: $\quad \lambda=\frac{6.63 \times 10^{-98}}{\left(1.67 \times 10^{-87}\right)\left(10^{87}\right)}=3.96 \times 10^{-10} \mathrm{~m}$.
$13.6 \lambda=\frac{c}{\nu}=\frac{h c}{h \nu}=\frac{\left(6.65 \times 10^{-84}\right)\left(8 \times 10^{8}\right)}{\left(1.6 \times 10^{-19}\right) h \nu[\text { in } \mathrm{eV}]}$
$\lambda=\frac{12.39 \times 10^{-7} \mathrm{~m}}{h \nu[\mathrm{in} \mathrm{eV}]}=\frac{12,390 \AA}{h \nu[\mathrm{in} \mathrm{eV}]}$.
The usual mnemonic is

$$
\lambda=\frac{12,345 \AA}{h v[\mathrm{in} \mathrm{eV}]}
$$

$13.7 \lambda(\mathrm{~min})=300 \mathrm{~nm}$

$$
h \nu=h c / \lambda
$$

$=\frac{\left(6.63 \times 10^{-34} \mathrm{~J}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{500 \times 10^{-9} \mathrm{~m}}$
$\mathscr{E}=6.63 \times 10^{-19} \mathrm{~J}^{-} 4.14 \mathrm{eV}$,

$$
N=\frac{1.4 \times 10^{8}\left(700 \times 10^{-9}\right)}{\left(6.63 \times 10^{-34}\right)\left(5 \times 10^{8}\right)}=\frac{980 \times 10^{90}}{19.89}
$$

$N-49.4 \times 10^{20}$.
[13.1]
$13.10 h \nu-\frac{h c}{\lambda}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{9}\right)}{500 \times 10^{-9}}$
$=3.98 \times 10^{-9} \mathrm{~J}$
$h \nu=2.5 \mathrm{eV}$.
Energy per second ${ }^{-} \pi r^{2} I^{-}(3.14)\left(10^{-20}\right)\left(10^{-16}\right)$

$$
3.14 \times 10^{-30} \mathrm{~J} / \mathrm{s}
$$

$(T)\left(3.14 \times 10^{-50} \mathrm{~J} / \mathrm{s}\right)=3.98 \times 10^{-19} \mathrm{~J}$
$T^{-1.27 \times 10^{11}} \mathrm{~s} \quad\left(1 \mathrm{yr}-3.154 \times 10^{7} \mathrm{~s}\right)$

$$
T \sim 4000 \text { years }
$$

$\lambda^{2}-25 \times 10^{-14} \mathrm{~m}^{2} . \quad \lambda^{2} I=25 \times 10^{-24} \mathrm{~J} / \mathrm{s}$
$T=\frac{9.98 \times 10^{-19}}{2.5 \times 10^{-23}}=1.59 \times 10^{4} \mathrm{~s} \quad\left(3.6 \times 10^{3} \mathrm{~s} / \mathrm{h}\right)$
T 4.4 h (still impossible)
It would take twice as long if $h \nu=5 \mathrm{eV}$, which means (Problem 13.6)

$$
\lambda=\frac{12345 \AA}{5}=247 \mathrm{~nm} \text { (ultraviolet). }
$$

$13.11 \quad \nu_{0}=\Phi_{0} / h=\frac{2.28\left(1.6 \times 10^{-12}\right.}{6.63 \times 10^{-34}}$

$$
-5.5 \times 10^{14} \mathrm{~Hz}=550 \mathrm{THz}
$$

$\gamma=c / \lambda=3 \times 10^{8} / 400 \times 10^{-9}-750 \times 10^{12} \mathrm{~Hz}$

$$
\frac{m v_{\max }^{2}}{2}=h\left(\nu-\nu_{0}\right)=h 200 \times 10^{12} \quad[19.9]
$$

$$
-13.26 \times 10^{-20} \mathrm{~J} .
$$

13.13 The photon's gravitational potential energy
$=-G M m / R$, where m is photon mass hut $m^{-}=h \nu / c^{\prime}$ thus

Ergo $\quad \mathscr{E}=h \nu-G M h \nu / R c^{2}-h \nu\left(1-\frac{G M}{c^{2} R}\right)$.
At the Earth $\mathscr{E}_{6} h \nu_{c}$ and

$$
\begin{array}{r}
\nu_{\psi}=\nu-\frac{G M}{c^{2} R} \nu . \\
\text { Since } \Delta \nu-\nu-v_{\varepsilon}, \Delta \nu=\frac{G M}{c^{2} R} \nu .
\end{array}
$$

$13.14 \frac{\Delta \nu}{\nu}=\frac{\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(1.99 \times 10^{30} \mathrm{~kg}\right)}{\left(3 \times 10^{6} \mathrm{~m} / 6\right)^{2}\left(6.96 \times 10^{6} \mathrm{mg}\right)}$
$\frac{\Delta \nu}{\nu} \quad 2.12 \times 10^{-5}$
$\Delta \nu=\frac{2.12 \times 10^{-8}\left(3 \times 10^{8}\right)}{650 \times 10^{-9}}=9.8 \times 10^{8} \mathrm{~Hz}$
or
$\frac{\Delta \lambda}{\lambda}=\frac{\Delta \nu}{\nu} \therefore \Delta \lambda-\Delta \nu \lambda / \nu$
$\Delta \lambda=2.12 \times 10^{-6}\left(650 \times 10^{-9}\right)$
$\Delta \lambda-13.8 \times 10^{-13}=0.0014 \mathrm{~nm}$.
$13.15 h \nu_{f}-h \nu_{i}-m g d$
$\Delta \nu=-m g d / h--\frac{h v}{c^{2}} \frac{g d}{h}=-g d \nu / c^{2}$
$\frac{\Delta \nu}{y}=-\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(20 \mathrm{~m})}{\left(3 \times 10^{B} \mathrm{~m} / \mathrm{s}\right)^{2}}=-2.18 \times 10^{-15}$
$13.16 F=G M m / r^{2}-G M m / R^{2} \sec ^{2} \theta$
$F_{\perp}=F \cos \theta-G M m \cos \theta / R^{2} \sec ^{2} \theta$
$d t-R \sec ^{2} \theta d \theta / c$.
$p_{\perp}=\int F . d t=\frac{G M m}{c R} \int_{-\pi / 2}^{\pi / 2} \cos \theta d \theta-2 G M m / c R$.
$\tan \varphi=\boldsymbol{p}_{1} / \boldsymbol{p}_{\|}-2 G M / c^{2} R \approx \varphi$
$\varphi=\frac{2\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}{ }^{2}\right)\left(1.99 \times 10^{80} \mathrm{~kg}\right)}{\left(3 \times 10^{8} \mathrm{~m} / \mathrm{si}\right)^{2}\left(6.96 \times 10^{8} \mathrm{~m}\right)}$
$0-24.5 \times 10^{-5}$ degrees $=0.88$ seconds of arc.
$13.18 \frac{{ }_{2}^{2}}{2} T=6.17 \times 10^{-2 t} \mathrm{~J}=3.85 \times 10^{-2} \mathrm{eV}$
$p=\left[2 m_{0}\{3 \mathrm{k} T / 2)\right]^{1 / 2}-4.55 \times 10^{-24}$
$\lambda=h / p=1.45 \AA$.
3.19 No-splitting a photon would result in two ower-frequency pieces, which we could presumably separate and detect.
$13.21 \quad \Pi=\frac{1000 \mathrm{~W}}{h \nu}=\frac{1000\left(10600 \times 10^{-9}\right)}{6.63 \times 10^{-54}\left(3 \times 10^{8}\right)}$
-5.06×10^{22} photons/s.
13.22
$\mathscr{E}=\frac{p^{2}}{2 m_{0}}+U, \quad h \nu=\frac{h^{2}}{\lambda^{2} 2 m_{0}}+U, \quad \hbar \omega=\hbar^{2} k^{2} / 2 m_{0}+U$.
$13.24 \psi^{-} C_{1} e^{-i(t) r+k x)}+C_{2} e^{-!(t) t-k x)}$
$\frac{\partial \psi}{\partial t}=-i \omega \psi ; \quad \frac{\partial \psi}{\partial x}=-i k C_{1} e^{-i(\omega t+\kappa x)}+i k C_{2} e^{-i\{(\omega t-k c\}}$ $\frac{\partial^{2} \psi}{\partial x^{2}}=-k^{2} C_{1} e^{-i\{(\omega+k x)}-k^{2} C_{2} e^{-i\{(t e t-k x\rangle}=-k^{2} \psi$.
Using the dispersion relation of Problem 19.29, we obtain

$$
\begin{aligned}
& \hbar \omega \psi=\hbar^{2} k^{2} \psi / 2 m_{\theta}+U \psi \\
& i \hbar \frac{\partial \psi}{\partial t}=\frac{-\hbar^{2}}{2 m m_{0}} \frac{\partial^{2} \psi}{\partial x^{2}}+U \psi .
\end{aligned}
$$

CHAPTER 14

14.1

14.6 From the geometry, $f_{\theta} \theta-f_{i} \Phi: k_{0}-h \sin \theta$ and 14.6 From the geometry, $f_{0} \theta-f_{f} \Phi: k_{o}-h \sin \theta$ and $k_{I} \sin \Phi$, hence $\sin \theta \approx \theta \approx k_{O} \lambda / 2 \pi$ and $\sin \Phi \approx$
$\Phi \approx k_{I} \lambda / 2 \pi$, therefore $\theta / \Phi=k_{O} / k_{I}$ and $k_{i}=k_{O}(\Phi / \theta)=$ $k_{0}(f / f)$. When $f_{i}>f_{\text {, the }}$ the image will be larger than the $k_{0}\left(f_{i}, f_{2}\right.$. When $f_{i}>f_{t}$ the image will be larger than the
object, the spatial periods in the image willalso be larger, and the spatial frequencies in the image will be smaller than in the object.
$4.7 a-(1 / 50) \mathrm{cm}: a \sin \theta-m \lambda, \sin \theta=\theta$, hence $\theta=$ $(5000 \mathrm{~m}) \lambda$, and the distance between orders on the transform plane is $f \theta=5000 \lambda f=2.7 \mathrm{~mm}$.

Bibliography

4.9 Each point on the diffraction pattern corresponds a single spatial frequency, and if we consider th iffracted wave to be made up of plane waves, it also orresponds to a single-plane wave diredron. Such waves, by themselves, carry no information about th periodicity of the object and produce a more or less uniform image. The periodicity of the source arises in he image when the component plane waves interfere
4.11 The relative field amplitudes are $1.00,0.60$, and 0.60 ; hence $E \propto 1+0.60 \cos \left(+k y^{\prime}\right)+0.60 \cos \left(-k y^{\prime}\right)=$ +1.2 cos ky . This is a cosine oscillating about a line of this will correspond to the irradiance, and it will be series of tall peaks with a relative height of $(2.2)^{2}$ a series of tall peaks with a relative height of $(2.2)^{2}$
between each pair of which there will be a short peak between each pair of which there will be a short peak
proportional to $(0.2)^{2}$; notice the similarity with Fig 11.32.
14.12 $a \sin \theta-\lambda$, here $f \theta-50 \lambda f=0.20 \mathrm{~cm}$; hence $0.20 / 50(100)=400 \mathrm{~nm}$. The magnification is 1.0 when the focal lengths are equal, hence the spacing is gain 50 wires/cm.

$$
\begin{aligned}
& 14.18 \quad I=\frac{1}{2} v \epsilon E_{\sigma}^{2} \quad \frac{n}{2}\left(\frac{\epsilon_{0}}{\mu_{0}}\right)^{1 / 2} E_{0,}^{2} \text {, where } \mu \approx \mu_{0} \\
& E_{0}^{2}=2\left(\mu_{0} / \epsilon_{0}\right)^{1 / 2} I / n \quad\left(\mu_{0} / \epsilon_{0}\right)^{1 / 2}-376.730 \Omega \\
& E_{0}-27.4(I / n)^{1 / 2} .
\end{aligned}
$$

14.20 The inherent motion of the medium would cause the speckle pattern to vanish.

NDREWS, C. L Optics of the Electromagnetic Spectrom, Pron tice-Hall, Englewood Cliffs, N.J., 1960
baker, B. B. and E. J. Copson, The Mathematica Theory of Huygens' Principie, Oxford University Press, London, 1969. Aldwin, G. C., An Introduction to Nonlinear Optics, Plenum Press, New York, 1969.
Barber, N. F., Experimental Cotrelograms and Fourier Trans forms, Pergamon, Oxford, 1961
ARNOSKI, M., Fundamentadis of Optical Fiber Communications,
fibbok On Lighl, Longmans, Green,
Beard, D. B. and G. B. Beard, Quantum Mechanics With Applications, Allyn and Bacon, Boston, 1970.
BeEsiey, M., Lasers and Theit Applications, Taylor and Francis, New York, 1976.
beran, M. J. and G. B. Parrent, Jr., Theory of Partial Cohetence, Prentice-Hall, Englewood Cliffs, N.J., 1964.
Cofmbergen, N., Noninear Oplics, Benjamin, New York,
bloom, A. L., Gas Lasers, Wiley, New York, 1968 Bloss, D., An Introduction to the Methods of Optical Constal iography, Holt, Rinehart and Winston, New York, 1961. Orn, M. and E. Wolf, Principles of Optics, Pergamon, Oxiord, 1970.
Orowitr, S., Furdamentials of Quanium Mechanics, Ben-
raddick, H., Vibrations, Waves, and Diftaction, McGraw Hill, New York, 1965.
Rouwer, W., Matrix Methods in Optical Instrument Design, Benjarnin, New York, 1964. con, E. B., Hodo op Pisic, Ma

Cathey, W., Obtica! Information Processing and Holograbth Wiley, New York, 1974
Ghanc, W. S. C., Principies of Oucantum Electionics, Lasers 1969
Collier, R., C. Burckhardt, and L.
Holography, Academic Press, New York, 1971.
Conrady, A. E., Appized Optics and Optical Design, Dover ons, New York, 1929
C. A. Waves, Oliver
COULSON, C. A., Waves, Oliver and Boyd, Edinburgh, 1949 Crawford, F. S., Jr., Waves, McGraw-Hill, New York, 1965 Davis, H. F., Introduction to Vector Analysis, Allyn and Bacon Boston, 1961.
DAvis, S. P., Diffraction Grating Spectrographs, Holk, Rinehar and Winsion, New York, 1970
Denisyue Y Fudtan, If of Y , Moscow, 1984.
DeVelis, I. B. and G O Reynolds, Theor and Application of Holography, Addison-Wesley, Reading, Mass., 1967 . Dirac, P. A. M., Quantum Mechanies, Oxford University Press, London, 1958.
Drude, P., The Theory of Optics, Longmans, Green, London 1939.

Ditchburn, R. W., Light, Wiley, New York, 1963
Elmore, W. and M. HEald, The Physics of Waves, McGrawELMORE, New York, 1969.
FLüGGE, J., ed., Die wissenschafiche und angewandte Photographic; Band I, Das photographische Objektiv, Springer Verlag, Wien, 1955.
Fowles, G., Introduction to Modem Optres, Holt, Rinehart an Winston, New York, 1968.
Applicalions of Physical Optics, Inter science, New York, 1963.

Françon, M., Diffration Coherence in Optics, Pergaman Press, Oxford, t 966
York, M., Optical Interferometr, Academic Press, New
FRancon, M., N. Krauzman, I. P. Mathee and M. May, Experime:ts in Phgsieal Oplics, Gordon and Breach, New York, 1970
Francon, M., Oplical Image Formation and Processing, Acadenic Press, New York, 1979.
Fank, N. H., Introduction to Electricity and Optics, McGTaw-
Hill, New York, 1950.
French, A. P., Special Relalividy, Norton, New York,
1968.
1971.

FROOME, K. D. and L. Essen, The Velocity of Light and Radio Waves, Academic Press, London, 1969.
FRy, G. A., Gecmetrical Optics, Chilton, Philacilphia, 1969.
Garbuny, M., Optical Physics, Academic Press, New York, 1965.
askill, J., Linear Systems, Fourier Tranforms, and Optics, Wiley, New York, 1978.
GHATAK, A. K., An Introduction to Modern Optics, MoGrawHill, New York, 1971.
hatak, A. and K. Thyacarajan, Conhemporaty Optics, Plenum Press, New York, 1978.
Goldin, E., Waves and Photois, An Iniroduction to Quantum Theory, Wiley, New York, 1982.
, As. Waus, Atoms, and Nuclet: An GOODMAN, I. W., Intro, New York, 1965.
New York, 1968 .
HARDY, A. C. and F. H. PERRIN. The Prixcipies of Optics, McGraw-Hill, New Yock, 1932.
Harvey. A. F., Cohereni Light, Wiley, London, 1970 . Heavens, O. S., Optical Probeties of Thin Solid Films, Dover Publications, New York, 1955.
(tchr, E., Opfics: Schaum's Oatline Series McGraw-Hill, New York, 1975.
HermanN, A., The Genesis of ©uantum Theory (1899-1918), MERMANN, A., Che Giness Mass., 1971
Houston, R. A., A Treaise On Light, Longmans, Green, London, 1958.
Hunsperger, R., Iniegraded Optics: Treory and Technology, Springer-Verlage, Berlin, 1984.
Huvarns C., Treatise on Light, Daver Pubtications, New York, 1962 (1690).
Jackson, J. D., Classial Electrodymamies, Wiley, New York, 1962.

JENKINS, F. A. and H. E. White, Fundamentals of Optice, McGraw-Hill, New York, 1957
IENAISON, R. C., Fourier Transforms and Comiodrtions for the Exforimentadiot, Pergution, Oxford, 1961.
Jofnson, B. K., Opties and Optical Instruments, Dover Publications, New York, 1947.
JONES, B., et al., Images and Informaction, The Open Univeraity Press, Milton Keynes, Great Britain, 1978.
Klauder, J. and E. Sudarshan, fund
Ophics, Benjamin, New York, 1968.
KLein, M. V., Opsics, Wiley. New York, 1970
Kreyszic, E., Advanted Enginering Mathematics, Witey, New York, 1967 .
Leng Yel, B. A., Introduction to Lasef Physics, wiey, New York, 1966.

Lengyel, B. A., Lasers, Generation of Light by Stimulated Emission, Wiley, New York, 1962.
Levi, 1, Applied Opties, Wiley, New York, 1968
LIPSON, S. G. and H. Lipson, Optical Physiss, Cambridge University Press, London, 1969 . HUPST, R.
York, 1967.

NACH, E. The Principles of Physical Optics, An Historical and Philosaphical Tmalment, Dover Publications, New York | Philos |
| :--- |
| I |
| 1926. |

1926.

MAGIE, W.

Magie, W. F., A Source Book in Physics, McGraw-Hill, New
York, 1935. M and M. HEALD, Classical Electromagnetic Rudiatiom, Academic Press, New York, 1980.
Martin, L. C. and W. T. WELiFord, Technical Oprices 5 ir Isasac Piteman se Sons, Ued, London, 1966
Merer, C. F. Ths Diffretion of Light X-pazs and Moterial Merer, C. F., The Diffrection of Lighth X-7ags and Matrian Paridies, University of Chicago Press, Chicago, 1934.
MEYER-ARENDT, I. R., Introduttion to Clastical and Mo MEYER-ARENDT, J. R., Introcurtion inflasicul and MIDWINTER, J., Optical Fibers for Themsmivion, Wiey, New York, 1979.
Military Stamdardizution Handbook-Optical Design, MIL HDEK-141, 5 Ocrober 1962.
Minmatrt, M., The Naure of Ligte and Colour in the Opern Air, Dover Publications, New York, 1954
Morgan, I. Introduction to Gometrical and Physical Optics,
McGraw-Hill, New York, 1953.
Newton, I., Optiks, Dover Publications, New York, 1952 (1704).

NOAKES, G. R, A Text-Book of Light, Macriillan, London 1944.
ussaum a Geometric Optics: Ar Introduction, Addison Wesley, Reading, Mass., 1968

Scssaum, A. and R. Phillips, Contemparaiy Optics for Scientists and Engineers, Prentice Hall, Engiewood Cliffs, N.J., 1976.

Okoshi, T., Optical Fibers, Acadernic Press, New York, 1982. O'NEIIL, E. L., Introduction to Siatistical Optics, AddiscnWesley. Keading, Mas
OShea, D., W. Callen and W. Rhodes, Introdurion to Lasess and Their Apptications, Addison-Wesley, Reading, Mass., 1977.
Palmer, C. H., Optics, Experiments and Dennonstations, John Hopkins Press, Baltimore, Md., 1962.
Papoulis, A., The Founier Integral and Its Applicutions McGraw-Hill, New York, 1962.
Papoulis, A., Systems and Transforms unth Applications in Optics, MoGraw-Hill, New York, 1958.
PEARSON, J. M., A Theory of Waves, Allyn and Bacon, Boston,
ersonick, S. D., Oplical Fiber Transmission Swstems, Plenuin Press, New York, 1981.
PLANCK, M. and M. Masius, The Theory of Heat Radiation, Blakiston, Philadelphia, 1914
Preston. K., Coherent Optical Compulers, McGraw-Hill, New York, 1972.
Robertson, E. R.and J. M. Harvex, eds., The Enginsering Uses of Hologrophs, Cambridge University Press, London, 1970.

ROBERTSON, J. K., Introduction to Optics Geometrical and Physical, Van Nostrand, Princeton, N.J., 1957. RONCHI, V., The Nature of Ligh, Harvard University Press, Cambridge, Mass., 197
Rosisi, B., Opficis, Addison-Wesley, Reading, Mass, 1957
Ruechardt, E., Light Visibie and Invisible, University of Michigan Press, Aran Arbor, Mich., 1958
Sandeank, C. P., Optical Fibre Communication Systems, Wile Sanoers, I. H., The Velocity of Light, Pergamon, Oxfor i965.
Sargent, M., M. Scully, and W. Lamb, Laser Physics Addison-Wesley, Reading, Mass, 1974.
Shawlow, A. L., intr., Lasars and Light: Redings fron Scientiff American, Freeman, San Francisco, 19Eg.
sohródinger, E. C., Science Theory and Man, Dover Publications, New York, 1957.
Sears, F. W., Optics, Addison-Wesley, Reading, Mass, 1949 Shamos, M, H., ed., Gtoal Experiments in Paysics, Holt, New York, 1959
Shurcliff, W. A., Polatized Light; Production and Use, Har
vard University Press, Cambridgr. Mass., 1962 .

Shurcliff, W. A. and S. S. Ballarda, Polayized Light, Va Nostrand. Princeton, N.J., 1964
Simmons, J. and M. Gutimann, States, Wheves and Phens A Modem Introduction to Light. Addison-Wesley, Reariing Mass, 1970.
Sinclatr, D. C. and W. E. Beli, Gas Laser Technology, Hol Rinehart and Winston, New York, 1969.
SL.4YTER, E. M., Ophical Methods in Biology, Wiley, New York
1970
Smith,
Smith, F. and J Thomson, Optirs, Wiley, New York, 1971 Smith, H. M., Princijpies of Heigraphy, Wley, New York,

Smith, W. J., Modern Ophical Engineering. McGraw-Hill, New York, 1966.
 Radiation. Jubilee Volume in Honor of Alfred Kaxder. Presses Universitaires de France, Paris, 1965
Sommerfeld, A., Optics, Academic Ptess, New York, 1964
Southall, J. P. C., Intreduction to Physioiogical Optics, Dover Putications, New York, 1987
Southall J. P. C., Mirrors, Pristrs and Lenses, Macmillan, New York, 1933.
STark, H., A Applications of Optical Foutier Transfonns, Academic. Press, New York, 1982
STEWARD, E., Foutiey Ophics: An Introduction, Wiley, New
York, 1983. York, 1983
STONE,
STONE, J. M., Radialion and Oplics, McGraw-Hill, New York
Stroke, G. W., An Introduction to Coherent Opfics awd
Holography, Academic Press, New York, 1969.
Strong, I., Cencegts of Classical Optizs. Freeinan, San Francisco, 1958.
Svelto, O, Principtes of Lasers, Plenum Press, New York,
1977 . змио
1960. K. R., Mechanics, Adidison-Wesley, Reading, Mass.,

Tatasov, L., Laser Age in Optics, Mir Publishers, Moscow, 1981.

Tolansky, S., An Introduction to Interferometry, Longmans, Green, London, 1955
Tolansky, S., Curiositios of Light Rays and Light Waves, American Elsevier, New York, 1965.
Films Oxford Mniversity Pam Intetferomety of Surfaces and Films, Oxford University Press, London, 1948.
timore, 1968. Revolution in Optiss, Penguin Books, Bal-
Towne, D. H., Wave Fhenomena, Addison-Wesley, Reading,

664 Bibliography

ROUP, G., Optical Cohemmer Therry, Methucn, London, 1967. Valasek, J., Ophics, Thestastical and Experimenta, Wiley, New York, 1949.
Yan Heed, A C s of Adranced Optical Techniques American Elsevier, New York. 1967
MGGraw, A. C. S. and C. H. F. Velzel, what is Light?,
Vasteek, A., Optics of Thin Fitms, North-Holland, Amster-
dam, 1960.
Wagner, A. F., Experimental Optirs, Wilcy, New York, 1929. Waldron, R., Waves and Oscillations, Van Nostrand, Princeton, N.J.. 1964
Yes, R. H., Eiementary Wave Dptics, Academic Fress, New York, 1969 .

Applications of Interferometrs, Methuen, London, 1941.

Williamson, S. and H. Cummes, lie ani Cobo in Nauue and Art, Wiley, New. Forks, igeds.
Wolf, E., ed., Progruss in Ostics, North-Holland Amstendan. WoLF, H. F., ed., I Iardhooth of Fi ihe Optics: Theory and Applica ionns, Garland STPM Press, 1979
Wood, R. W., Physical Optics, Dover Fublications, New York
1934.

Wright, D., The Measurement of Color, V'an Nostrand, Ne York, 1971.
Yariv, A, Quantum Electronic, Wiley, New York, 1967
Younc, H. D., Fundamemeals of Optics and Modern Physiss MCGraw-Hill Now York, 1968 .
Zimmer, H., Ceametrical Optis, Springer-Veriag, Berlin 1970.

Index of Tables

Table 8.2 Verdet constants for sorne selected substances
31
Table 3.3 Kerr constants for sorne selected liquids ($20^{\circ} \mathrm{C}$
$\lambda=589.3 \mathrm{~nm}), 319$
Electro-optic consta 546.1 nm), 321

Stokes and Jones vectors for some polarization
tates, 329
jores and Mueller matrices, 325
Bessel functions, 419
Photoelecric threshold frequencies and work functions for a few metals, 543

Appendix
Table

Index

Amplifation, 556, 578	
Amplitude coefficients, 95, 96, 119. 120,299	
	reflection (7), 95,299 transmission (6), 95
Amplitude modulation, 252, 385. 570	
	Amplitude spectrum. 473
Amplitude spliting, 334, 346	
Anamorphic lenses, 184	
Anastigmats, 230	
Angstrom (A A $=10^{-10} \mathrm{~m}$), 15	
Angular devizaion, 163	
Angular dispersion, 427	
Angular ficld of vicw, 201	
	Angular frequency, 16, 258
Angular magnification (M_{A} or MP), 186 , 190	
Angular momentum, 27 \%	
Anharmoric waves, 17, 254	
Anomalous dispersion, 62, 25	
	Artirenection coatings, 975
Anti-Stokes transition, 554	
Apetture; see Diffraction numerical (NA), 171, 192 relative, 152 stop, 149	
Aperture funcion, 477, 494	
Apochrornatic objective, 192 Apodization, 496, 515	
Apollo, 169	
Arago, Dominique François Jean, 6, 7 , 298, 309, 443	
Area of coherence, 539	
	Argand diagram, 20

Argon laser, :
Aristophanes, 1.140
Aristophanes, 1. 140
Armstrong, E. H., 574
rray theorem, 497, 498
Aspherical surfaces, 129,150
stigmatic difference, 225
Astigmatic difference, 226
Astigmatism. 184,
utenuation. 174
Attenuation coeficient (a), 110
Autucoilimation, 428
Automatic lens design, 220
viogon lens, 202
Azimuthal angle $(\gamma), 185$
Babinet compensator, 304
Sabinet compensator, 304
Back forai lengih, 148, 181, 214
plane. 140
cocon, Roger, 2, 18
andwidth, 268, 306, 516
minimum resolvabie, 372
Barkla, Charles Glover. 298
Barrel distorior
Barrel distortion, 23
Barrier penetration, 189
Bariholinus, Erasmus. 285
Basov, Nikolai Cennadieyich, 577
Beam expander, 196
cam-spliter cube, 108
Bean-splittcrs, 109, 954
Beams, Jesse Wa
Bending of lersess, 212
Bennetr, Willian Ralph, Jr., 585
ennett, William Ralph,

Bessel functions. 418
Bcth, Richard A., 276

Biaxial crystals, 280, 289

Binocular right glasscs, 15
Binoculars, $169,195,196$
Bict. Jearn Baptiste, $5,309,443$
Bion
Siotar lens, 2 2s
Biprism
SFresnet
Biprism (Fresnep's double prism), 344
Bircfringence, 282

Stress, 315
Birefringcnt crystals, 288
Blackbody fadiation, 599
Blazed gratings, 426
Blazed grating
Blind spot, 180
Bler
Blur spot, 128
Bohr, Niels Henrik David, 9. 10, 548
Botzrmanr, Ludwig, 540
Buandary conditioris, 249
Boundary condititions, 249
Buounday difitraction wave, 463
Boundary diffraction wave, 463
Boundary wave, 107
Bradtey
Imes
7
Bradley, James. 7,8
Bragg's law, 434,605
Bremssirahlurg, 74
Brewster, David, 281, 298, 3
Brewster windows, 587
Brewster's angle, 298,589
Brilouin scatctring, 252, 5256,611 Brogie, Louis Victior, Prince de, 9, 545 Bunsen, Robert Wilheim, 10
Burning giass. $1,129,140$

C-W laser, 585
Cadmiut, red ine, 263, 357
Calicite $4,6,283,301,302$
Caicurn fuotide lenses, 192,
Caicurn fluortde lenses, 192, 202
Camera,
lenses, 201
pinhole, 199, 232
single lens refiex, 800
Carnera obscura, 2, 198
Canacia balsam, 290,29
Carban dioxide laser, 266, 588
Carbon disulfide, $31{ }^{\circ}$
Cardinal points, 21 i
Carocene, 116
Carrier wave, 252
Canesian oval, 129
Cauchy's equation, 78
Catoptries, 1,156
Cavilics. optical. 580
Caviics. optical., 580
Centered optical sysem, 135
Central-spot scaning, 372
Cesium dock, 70
Characteristic radiation, 74

elate lasers,
Chief ray. 150
Chlurophyl, 116
Cholesteric crystals, 313
Christiancen, C., 77
Christianscr. W. N., 400
Chromatic aberxations, 239
Chromatic resolving power (\%), 372
Circular birefringence, 310
Circular light, 271, 274
Gratar polarizers, 305
Cittert, Pieter Hendrik van, 316
Cladding, 171
Clausius, Rudolf Julius Emaruel, 226
Clear apenture, 152
Cleavage form, 285
Coddington magrifer, 188
Coefficient of fincsse (F), 367
Coherence, complex degree of ($\dot{\gamma}_{1}$)
Coherence, 516
area of, 532
functions 529
length, 264, 266, 342
longitudinal, 517
partial, 516, 597
temporal, 516, 528
theory. 516
time (Δt), 264, 306. 339, 516
Coherent fiber bundle, 17%
Coherent waves, 245,337
Cold miniror, 373
Collimated light, 141
Colors, 115
Comatic circle, 224
Comb funcion, 481
Compensator plase, 354.358
Compensators, 304
Babinet, 304
Soleil, 364
Complementary colors, 115, 309
Complex amplitude, 247
Complex representation, 19, 246
Compound lens, 135, 214
Compound microscope, 190
Compton, Artiur Holly, 545
Conductivity (σ), 108
Confocal resonator, 589
Conjugate points, 128, 130
Connes, Pierre, 372
Constructive interference, 245, 986
Contrast (V), 505, 599
rast factor (C), 391

integral, 486

theorem, 491 , Coppere, (110,111 Copper, 110,111
Corner cube, 169
Cornu, Marie Alfred, 449
Cornu spiral, 248, 449, 451 Corpuscular thecory, 3-11
Correlation interferomerry, 532 Correlcgram, 503 Cotton-Mouton effect. 318 Cover glass sides, 173

Cross-correiation, 501
Cross talk, 17 L
Cryolite 375
Cryolite, 375
Cube corner reflector, 169
Cusa, Nichoias. 181
Cryandinch lens, 185
cylindirical waves, $27,28,452$

D lines of sodium, 56.234
Dark-ground mechod, 576
Da Vrici, Leonardo, 2
Davison. Clinton
Davison. Clinton Jospph, 54
De Broglie wavelength. 545
De Brogire wavelength 545
Degree of coberence $\left.\left|y_{1}\right| \mid\right), 265,323$
Degree of coherence $\left.\left|\hat{\gamma}_{12}\right|\right), 265,323$
Degrec of polarizzation ($V, 29,232$
Deirat funcion, 478
Denisyuk, Yuri Nikolaycuìtch, 606
Descartes, René, $3,4,84,130,127$ Descartes, René, 3, 4, 84, 130, 177
Destructive interffercnce. 245, 336 Deviation, anguiar, 163
Dextrorotatory, 309
Dichroic crystals,
Dichroisn, 279
Dichromomophore, 28 :

Dielecricic films, $10,346,373$
double-beam interferrnce, 346
militilayer systems, 373 maililayer systems. 373
multiple-beam interference, 363 Differential wave equation
one-dimensional, 14 one-dimensional, 14
threc-dimensional, $23,24,40$ Diffrection, 3, 6, 129, 392. 493 Dinfacion,
array theocrem, 497 Babinet's principle, 45 boundary waves, 463

compar
396
Fourier raurrhofer, 396, 401, 493 corchlar apertur,
condition, 401 double slit, 406, 498
many sis, rectanglalar aperiure, 411, 415, 497
single silt, 401,495 Fresncl, 396, 434
circular apertures, 440
circular obstacles, 443
rectangular aperture, 447
semi-infinise
single slit, 453
zoncs,, 435
gratings, 424,56
. line gratings, 429
Kirchtofft's theoryy. 459
limited, 129
эpaque obstructions, 394
Diffration limited, 129
Doptric power (9), 181, 186-189
Dioptrics. 156
Dirac, Paul Adrien Maurike, $9,478,549$
Dirace delta function, 478
Dispersion, $56.57,163$
angular (3), 427
anomalious, 61,2
equation, 50,111
of glass, 62
of glass,, 62
normal, 61
relation,
rotatery,
312
indices. 284
Displacertuent current density (J_{1}). 38
Distorion, 230
Donders, Franciscus Cornclius, 185
Doppler broxdening, 500
Double refraction, 285
Drude, Paul Karl Ludwig, 110, 250
-
Efrecive focal length, 149,202, 212
Einstin, Alacr, $9,538,541,579$

Elcaric dipolc, 52
Flearic field (E), 54, 32, 119, 242
Electric permitivity (6), 36
lectromagneci- -photon spectram, 68
Eantruay rays, 74
infrared 69,70
light, 71
mircomaves, 69
radiofrequency, 68
radiofrequency, 6
ultaviolete, 73
$\begin{gathered}\text { x-rays, } 74 \\ \text { Electromagn }\end{gathered}$
Electromagnetic theory, $7,33,92$
electric palarization (
electric polatization (P), 58 Maxw ll's equation,
moxicnisum (ot) 45 mosicntumi (p), 45
nonconducting med
randiation, 47
ming
Elcctramagnctic waves, $39,52,621$
Electromorive force 35
Electromorive force, 35
Electronic
Electron, 9
diffraction, 545
vit (eV), 545
Electro optic constant. 320
Flectro optic consta
Electro-optics, 11
Eliprical light, 275
Elster, J., 542
Emission Erom an atom. 10, 552
Emission theary, 7
Emmetropic eye, 182
Enantiomorphs, 309
Enariory derspity (40 , 4
Energy level, 54
Enioptic perception, 179
Entrance pupi3, 150
Epoch angle $(\varepsilon), 17$
Erecting system, 195
Estermann. $\tau, 549$
Estermann. I., 548
Etalcn, Fabry-Pero
Euclid, $1,85,156$
Eulcr, Leonhard. 5.92
Evanescent wave. 107
Ewald-Oseen exínction theoren,
Ewald-Oseen exinctiou theorem, 68
Exit pupit, $150,187-195$
Exitance, spear rall 539
Exiended objects, images of, 141, 161
Extcrnal ychlcction, 98
Eyeglacses,
Eyt, 176
crommodation, 180
ciliary muscles
aqueous humor, 178
choroid, 179
compound,
compound, 177
cornea, $178,181,184$
crysalline lens, 178, 179, 182
crystaline lens, 178, 179. 182
far point, 182, 184
human, 177
human,
iris, 176,178
ncar point, 181,186
powers, 182
powers, 182
pupil, 178
resolution. 422
retina, 779
blind spot.
concs, 179
concs. 179
fovea ceniralis. 180
med
macula, 180
rods,, 179
sclera, 178
sclera, 178
vitreous humor, 179
Eye-lens, 189
Eycpicce. $188-190$
Eycpiccc. $188-190$
Effle, 189,196
Huybens, 189
Kelliner, 189,195
orthoscopic. 189
Remsden
.
.
Ramscien, 189,240
symmetric (9 Plosis)
symmetric (Ploss5), 189
Eye point, 189
Eye relief, 189
Eye relief,
Eyes, 176
f-number (ff/*), 152, 171, 200, 42
Fabry, Charles, 368

Fabry-Perot interferometer, 368, 373,
372, 429
Fabry-Pcrot spect roscopy, 971
Far-field dif Praction; see Fraur hofer
ar point, 182, 184
Faraday, Michacl, 7, 35, 316
Faraday, effect, s16
arssightedness,
ast axis 301
Fermar, Pierre de, 87
Fermat's sprinciple, 87 87-92, 133, 550, 552
Feynman, Richard Phillips, 92, 550
Fiberoptics, 10,170
cladding, 171, 179
coherent bunde, 172
$\underset{\text { cross talk, } 171}{\text { graded index, } 176}$

670 Index	
incoherent bundle, 172	Fraurhofer, Toseph vor, 10. 424
intermodal dispersion, 174	Fraunhofer diffracios, 396, 401, 560
mosaics, 179	Fraunhofer lines, 284
multimode, 174	Ftee spectral range, 372, 429
numerical aperture (NA). 171	Frequency (ν), 16
spectrai dispersion, 176	nngular (ω), 16, 258
stepped index, 174	bandwidth, 263
Field curvature, 428	beat, 251
Field fattener, 173, 229	mixing, 11, 514
Field-lens, 189	natural (ω_{0}), 59
Field stop, 149	pasmaa $\left\{\omega_{p}\right\}, 112$
F:ims: see Dielectric films	resonance (ω_{0}, , 55, 59, 60
Filles, 373	spectrum, 259
Fincsse. 871, 391, 429	Frequency slabiity, 255
Finitce con jugates, 191	CO_{2} laser, 266
Finite imagery, 140	He-Ne laser, 266
First-order theory. 134	Fressel, Augustin Jean, 5, 296, 3:0, 394,
Fizeau, Armand Hippolye Louis, 6, 8, 41, 530	$434,443,464$ Fresntl compasite prism. 91 !
Fizeau fringes, $850,857,381$	Fresnel diffraciou. 396
Floaters, 179	Fresnel double mirror, 343
Fluorescence, 553	Fressel double prism, 344
Fluoride fim, 348	Fresnel equations, 6, 94-104, 299
Flux density, 44, ¢46	derisation, 94
Focal length ()	inverpresation, 96
back (0.f1), 148, 181, 211, 214	amplinude coeffients ($(t, t), 97$
effective, 149, 202, 212	phase shifts, 99
first, 134	refiectance (R), 59, 299
front (f.f.1), 148, 218	transmititance $\{T$), 99
:mage, 134	Fresocl integrals, 448
of a lens, 138, 141, 219	Fresncl inultipie prism, 31 i
of a mirfor, 161	Fresnel rhomb. 304
object, 134	Frestel zorse plate, 445, 595
second, 13s	Fresnei zonces, 435
of a zone platc, 446	Fresnel-Arago lavs, 6, 339, 357
Focat plane, 139, 140, 161	Fresnel-Kirchhoff diftraction, 462
Focal point, 134	Fringe
Fontana, Francisco, 2	order, 397, 356
Focault, jean Berrard Léon, 6	resolution, 371
Fouricr, Jean Baprisue Joseph, Baron de, 254	Fringes equal iuclination, 34र, 357, 362
Fourier	equal hicknoss, 949
analysis, $10,41.255$	Fizeau, 350, 357
diffraction theory, 493	Haidinger, 949, 351, 357
integrals, 259, 260	tocalization, 357, 361
optics, 472, 559, 360	Front facal iengit (f.f.l), 148. 214
Fourier transforms, 254, 260, 472, 56\%)	
of cyinder funcion, 476 of Caussian, 474	Frustrated toxal internal reflection (FTRR) 107, 108, 171
of Gairssian wave packet. 492	Fuchsin. 77
twatimensional, 475	
via a lens, 477	Gahor, Deunis, 598
Fox Talbot, 7 ?	Gale, 387
franken, Peicr A, 612	Cailiea GaziLie, 2, 190, 192, 195

```
Gailleo's telcscope, 2, 192,196
Gallom,
Gallum, arsenide laser, 589
Gauss, Karl Friedrich, 3E, 134
    Gaus'' bww 
    elecari, 36
    Mmagneti, 3% ,
    Gausssian light, 532
    Gaussian optics, 194
    MGMussian optics, 194,
    Gaussian wave group, 492, 49
Gey-tul, H.,542
G
Gcometrical wave,454
Germa nium, 153
Germer, Lester, 545
C.an-Thompson. 291
Golay cel,}7
Gold}\mathrm{ bound elearons, 116
    bound elec
reflcclance, 113
Graded-index fbers,176
Gradiens iudcx (GR1N) lers,
Gravitational red shift, 545,
Cregory, Jarme, 196,430,
Grassecesce, Robert, 2
Grossereste, Robert, 2
Group indrx of refracion, 253
Grouy indrx of refracion,
Group vetacity (vy), 2
Haidinger, Wihelm Karl, 549
Haidizger fringes, 349, 551, 357
Malfanguar breadth. }
Half-linear width,455
M
Hall, Chesler Moor, 5, 2
Hallwachs, Wilheim, 541
Malwachs, Wilheim, 541 
Mamikon, William Rawan, 92
Hanbury-Brown and Twiss experiment,
Harmonic geueration, \, 612
Harmmnic geueration,
Marmonic waves,
M
```

Galileo's telcssope, 2, 192, 196
Gallium arsenise laser, 589 Gaus's' law
elecric., 36 magnetic, 37
Gaussian funcion, 13, 264, 474, 479, 497
Causcian lens formula, 138
Caussian Iens formu,
Gaussian light. 532
Gaussian optics, 194
Cay-Lussac, Joseph Louis, 443
Geitel, H. 542 Geitel, $\mathrm{H}, 542$
Geometrical waye, 454 48.211
Germanium, 153
Germer, Lester, 545
Chata-Foucault polarizer, 291
Clan-Thompson. 291
Glass $62,158.295$
Golay cell, 71
Cold
bound elearons, 116 $\underset{ }{\text { color, } 111}$ reflectance, 1 Graded-index fbers, 176
Gradienc iudcx (GRIN) Iers, 136 Gratirg equation, 425
Gravitational red shift, 545 Grapitational red shift, 545
Cregory, James, 196,430 Grimaldi, Francesco Maria, 3, 164, 392
Ground state, 54,73
Group vetacity $\left(v_{\}}\right), 252$
Gyroscope, 252, 386
Haidinger, Wihelm Karl. 349
Haidizger fringes, 349, ,551, 35
Halfangular breadth, 465
Half-linear width, 455
 Hallwachs, Wilheim, 54 Hanbury-Brown, R., 534 , 92
Hanbury-Brown and Twiss experiment,
Harmonic geueration, $\mathrm{n}, 612$
Harmonics, 258
Harmonics, 258

KDP, 320, 612,613
Keler. Josepph Bishop, 464,
Kcplr, Johannes, 2, 44, 94, 777, 193, 199
Kerr, Jokn, 318
Kers cril, 918,330
Kerry cili, 918,330
Kerr conslants, $3 i 8$
Kerr constants, 918
$K_{\text {err }}$ efea, 315,611
Kerf effect, 315 , 611
Kirchhoff, Gustav Kobert, 10,
Kic, 394,539
Kirchhoft's dilifractiou iheory', 394,459 ,

Kit chhoff's integrai theorem, 461, 623
Klingensticrna, Samucl, 5
Klingensticrna. Samuri, 5
K ohlrausch, Rudolph. 40
Kotller, Friedrich, 464
$\mathrm{K}_{\text {rypoon, }} 72,265$
Labeyrie, A. E., 607
Labeyrie, A. E., 607
Lagrange, Joseph Loxis, 98
Land, Edwin Herbert, 887
Land, Edwin Herbert, 881
Laplace, Pierrc Simon. Marquis dc, है, 449
Laplacian operator, 24, 40
Laser, 10,578
cavities, 580
developmenis, 586
first (pulsed

giant pulse, 585
helium-ncon, 266,585
modes, $474,58 \mathrm{~L}-589$
modes, 474, 581
operation, 579
Q-spailin, 585
Q-swicching, 585
Laserilght, 577
Laseriight, 57
Lasers
Lasers
chemical, 59
coupliced,cavity, 590
gas, 588
gas. 538
liquid, 589
semiconductcr, 588
solid state, 587
, 58
solid state, 587
turable, 589
Lateral color, 233
Laue, Max van, 133
Law of refcaction 1,89
Law of refacion, 88
law of refraction, 2,84

Lebedrv, Fyotr Nikotatevich, 46
Le Craw, R. C 317
Le Craw, R. C, 317
Leith, Erumetr Norman, 59
Lenard. Phiilipp Eduard Anton von, 541
Lens, 1, 2
bending, 211
compound, 135
cylindrical, 185
equation, 127
field fintener, 173,229
finite imagery, 40
first-arder theory, 134
fuorite. 237
fluorste, focal points and planes, 139
magnification, is4
optical center, iso
optical crnter.
simple, 1.35
teifephoo, 291, 202,281
telephron, 231, 202, 281
Tesssr, 201, 202, 280
thick, 211 ,
thin, 135,137
thin-lens comoinations, 145,148
toric, 185
lensmaker's formula, 138
Le Roux. 77
Levorutatory, 309
Lexis. G. N., 9
Lewis, G. N.. 9
Light-emitting diaa
i. ight ficid, 250
Light pipc, 171
ight propagation, 63 Light rays, 85
beam, 85 beam, 85
pencili, 85
Limit of restution, 422
Line-spread fiuncicn, 488, 506
Linear systems, 483
Lippmanu. Cabriel, 606 Lippershey, Hans, 2, 2 Liquid crystais, 318

Lister obicctive, 192
ishlum niobate, 607

Litrow mount, 429
Lioyd's misiror, 313, 345
Loventz, Hendrik Antoon, 8, 57,110
Lorentz, Hendrik Antoon,
Lorentz brcadcning, 500
Lorentizizn pofofic, 499
Lummer, Otuc, 539
Lunar Orbier, 567
Maer, Eugen, 464
Maer, Eugen, 464
Mach-Zenhrider inierierometer, 358, 363
Manggi, Gian Amonto

Magneaium Auordide, (158, 975 Magneetc induction (B), 54
Mangreto -opdic
Magnification
angular $\left(M_{A}\right)$, 186
Iateral or transverse
lit
Iateral or transverse $\left(M_{T}\right), 144,162,213$
longitudinal (M_{1}) 144

Magrifying glass, 1, 186
Magnifying power (MP), 186, 190,
195 195
Maiman. Throdore Harold, 578
Malus, Etirnsee Louis, $6,85,279,296$ Malus and Dispin. theorem, ot, 86 Malus's law. 277, 278. 318
Mariadi, 444
Maréchal, A,
,
.
Marginal fay, 150, 192
Marginal fay, 150 .
Mariner IV, 152
Marinet IV, 1.2
Maser, 577
Matrix methods
Matrix methods
lens design, 215
lens design, 215
poiarixation, 321
poiarization, 321
ihin filusus, 373
Mater waves, 5, 33, 545,547, 548
Mauperiuis, Pierre de, 92,10
Maxwell, James Cierk, $7,3,38,40,68$,
Sian
Miaxwells equations, $7,38,108,538,620$
Maxwills's relzation, 56
Meniscus iens. 135
Meniscus lens,
Mercury, 265
Meridional focus, 227
Meridional ray, $170,2 \pm 5$
Metal,
Metal, relection from, 112
Metals. optical prupersies, $108-114$
Mecastable states, 580
Mica, 302
Michelson, Abert Abralanis, 8, 253,

$383,557,530$ | $383,519.530$ |
| :--- |
| Ison and Gale, |

Michelson-Moriey cxperiment, 8, 252,

Michenson
53
Micron ($1 \mu \mathrm{n}_{1}=10^{-6} \mathrm{~m}$), 13, 170, 557
Microscope, compound. 2. 199
numerical aperturc. 191, 192 csolving power, 19
iubs length, 190
Microwave inverfer
Microwave inverferometer, 357
Microwaves, $69,108,251,276$

Microwayes,
Mit, Gustav, 294

Millikou. Robert Andrews, 543
Mrage, 93
Mirror
Iorn
Mirrors, 153
Mirrors,
aberrations. 293
asphericai
15s
asphericil
copatings, 153

Plane of incidence, 86
Plane of vibration. 29,970
Plane waves, 21,41
propagation vecior (k), 21-2
Plasma frequercy $\left(\omega_{p}\right)_{j}, 112$
Plato, 1
Peckels, Friedrich Car! Alwin
Prckels, Friedrich Cart Alwin, $3: 9$
Pockels cell 399
Pockels cell, 319
Pohl interferometer, 360, 362
Pohi, Robert Wichard, 444
Poincaré, Jules Henri, 8
Point-Spread fanction ($\$$), 485
Pcisson, Siméon Denis, 443
Poisson's spot, 444
Polar molecules, 58
Folarization, $279,294,338$
angle $\left(g_{3}\right), 97,98,2$
by reflection, 296
by reffection, 296
by scattering, 294
circular, 271
compensators. 304
ceque of $(V), 299$
degree of $(V), 299$
elliztical, 273
hall-wavc piate, 301, 802
historical notes, 4, 6
linear, 29, 41, 270
photons, 275
phoivons, 275
plane, 270
quarter-wave plates, 303
retzricers, 300
thombs, 304
thombs, 804
un oolarized Jight, $29,274, ~$
unpolarized light, 29, 274, 392
wave patates, 300
Polarization, elecrical (P), 58, 611, 621
Polarized sky light, 295
Pohinizers,, 277
bireftringent, 290
birctringent, 290
cirsular, 305
circular, 305
Clan-Ar, 291
Glan-Foucaut, 291
Glar-Thempson, 291
lixcar, 277
extinction axis, 279
vile-of-plates, 298
pilie-fif-plates, 298
Rochor, 329,647
Rochon, 329,647
witre-grid. 279
Wire-grid, 279
Polarond, 281,
Polychromatic

Polyvinyl aichonot, 28i, 282, 302, 306
Population inversion, 580

Porta, Giovanni Batista Della, 2, 198
Porter, A. B., 565
Porter, A. B., 565
Portrait Iens, Peizval's 202
Positive lens, 135
Positive uniaxial crystal, 289
Potassium didewter
$\underset{\substack{\text { Potassium } \\ \$ 20}}{ }$ dideuterium phiosphate (KD*P),
Potassiun dihydrogen phosphate (KDP)
Pound, Rober
Power spart Vivian, 54
Poynting, John Henty, 49
Poynzing vector, $44,53,100,12$
Pressure, radiation (\mathcal{P}), 45
${ }_{-}$Prinary aberrations, 221
Prinary cohrs, 115
Principal angle of incidence. 113
Principal maxima, 410
Principal points, 21
Princincal $\left.\begin{array}{l}\text { Iay, } 224 \\ \text { Principal section, }\end{array}\right\}$
Principal section, 286

Principle of interference
Principle of least uime

Principle of reversibility, 92,399
Principle of superposition. 242, 333
Pringsheim,
Pringsheim, E., 539
Pristrn, Fresnel composite, 311 Nicol, 290
Rochon, 929
Wollaston, 292,329
Prisms. 163
dispersing, I69; see aloo Reffecting
prisms
Abbe prism, 166
angular deviation 163
constant deviation, 165
constant deviation, 165
minimum deviation, 165 Pellin-Broca, 165
Probabiility amplitude (P)) 34, 550
Profite 13
Profife, 13
Progressive wave, 15
Prokhorov, Alexander Mikhailoyich,
Propagation number. 15, 23, 250
Pseutothermal light. 585
Prolemp, Claunius, i, 84
Prolemy, Claudius, I, 84
Puises, 15, 26. 55. 261. 59
Pumping, 579
Pupuils 119-151, 178
Purkinje figures, 180
Q (quality factor), 585
Q-switch, $919,321,585$

Quantum fields, 34, 538	Dove. 157
Quantum jump, 55	Leman-Springer, 169
Quantum mechanics, 9	Penta, 168, 200
Quantunn nature of light, 8, 34, 588	Pario, 167, 169
Quarter-wave plate, 303	rhomboid, 168
Quarter wave stack, 377	right-angle, 157
Quartz, $62,989,309,917,433$ optical activity, 309	Reflecion, 79
Quasimonochromatic. 56, 265, 516	external. 98 intermal, 98
	specular, 87, 88, 426, 427
Radizant Anx density, 44	Refracted wave, 65
Radiation, 47 charactetistic, 74	$\begin{aligned} & \text { Refraction, } 79 \\ & \text { at aspherical snrfaces, } 129 \end{aligned}$
ciectric-dipole, 68	Cartesian oval, 130
field, 49	equation. 216
Jinearly accelerating charge, 47	
рressure (9), 45	at sphctical surfaces, 132
synпhrotron, 49, 50, 71 zone, 52	Refractive index (n), 5fi, 60, 64 of air, 56
Radio interferometer. 399	Refracive indices of birefringent crystals
Radio waves, 52, 62, 68	tabie, 289
Raman, Chandrasckhara Vankata, 553	Relative aperture, 152
Raman scautering, 554, 611	Resolution, 371, 422
Raman specrroscopy, 553	Resolving power, 192, 422
Rayleigh [John Williarn Strutt], 294, 426, 445, 540, 563	chromatic (9), 372 Resonance profile, 499
Rayleigh-Jeans formula, 540	Resonamce cadiation, 292, 558
Rayleigh microscope image theory, 563	Resorant cavity, 580
Rayleigh scattering, 294, 555, 554, 6.1	Rcsonant frcquency, 59, 60
Rayleigh's criterion, 371, 429, 428	Relardation, 801, 303
Rays, 85	Retarders, 300
chicf, 150	Reticle (or reticule). 189
collimated, I41	Retina, 178, 179
converging, 188	Reversion, 154
direction in cryslas, 288	Rhomb, 304
diverging, 128	Rights-circular light, 272
extraordinary, 296	Ring laser, 252, 387
marginal, 150, 192	Rittenhouse, David, 424, 433
meridional, 170, 215	Ritter, Johann Wilhelm, 73
ordinary, 285	Rods, 179
principal, 224	Römer, Ole Christensen, 5
skew, 215	Ronchi nuling, 506
Ray tracing, 215 matrix methods, 216	Röntgen, Wilhelm Conrad, 74 Root-type prism, 169
Rebka, G. A., Jr., 545	Roating Sagrac interferometer, 386
Rectification, optical, 612	Rotatory dispersion, 312
Red stift, 545	Rotatory power. 310
Reflectance (R), 99, 299, 369	Rubinowica, Adallber, 464
of metals, 112	Rupp, E., 548
Refiecing prisms. 166	
achrorratic, 167	Sagital coma, 224
Amici 167	Sagital focus, 227
correr-cube, 169	Sagital plane, 226

Sagiteal rays, 226	Soleit compensator, 305	Subsidiary maximum, 411
Sagrac interfrrometer, 959, 363, 385	Sormmerfeld, Arnoid Johannes Wilheim,	Superposition, 242, 245, 333
Salt, 58, 289	394, 464	Surface waves, 106
Saturated color, 116	Sonnat Iens, 230	Synchrotron radiation. 49
Scater plate, 379	Source	Systerm matrix (N), 217
Scattered-light interference, 378	fsotropic. 24	
Scattering, 57, 54, 292,55\%	strength (sad, ε_{0}), 26, 400	T-number, 158
coherent, 553	Space invariance, 483	TEM mode, 582, 583
elastic, 553	Sparrow, C., 422	Tangential coma, 224
Mic, 994	Sparrow's criterion, 422	Tangential focus, 227
nomresonant, 57	Spatial coherence, 517,528	Tangential plane, 225
and polarization, 292	Spatial inter, 191	Teylor, H. Dennis, 202, $224.10{ }^{\text {a }}$
Raylcigh, 294, 553, 61 t	matched, 609	Taylor (or Cooke) triplet, 202, 230, 238
spontaneous Raman. 554	Spatial filtering, 497, 56.4	Taylor, Geoitrey 1., 500
stimulated Raman, 554, 611	Spatial frequenç, 10, 258, 47\%, 494, 559	Teiephoto lens, 201, 202
Schawiow, Arthur Leonard, 578	spectrum, 259	Telescope, 4, 192
Scheiner, Christoph, 177	Spatial period (λ) 15,28	caradioptric systerns, 197
Schlieren method, 576	Special relativity, 9, 538	Baker, 198
Schmidt, Bernhard Voldemrt, 197	Speckie effect, 592	Bouwers-Maksutov, 198
Schmidt camera, 197, 230	Spectacle lenses, 181	Schmidi, 197
Schrödinger, Erwin C., S, 33, 92	Spearal exitance, 539	reilecting systems, 4, 196
Schrödinger's equation, 33, 550, 558	Spratral flux density, 539	Cassegrainian, 197
Schwath, Laurent, 478	Spectral irradiance, 555	Gregorian, 197
Scylla iV, 858	Spearal lines, 10, 263	Newtonian, 4, 197
Sccondary spearum, 237	Speed, lens. 152	prime focus, 197
Seidel, Ludwig van, 291	Speed of light, measnred by Jupict	refracing systems, 4, 192
Seidel aberrations, 22 i-232	moon, 5	angular magnifcation, 194
Self-coherence function, 527	measured by roating mirrors, 5	astronomical, 194
Self-forusing, $\hat{1} 15$	measured by rotating toothed whecl, 6 ,	ereating systero, 195
Sellireier, 78	41	
Seneca. 1	in vacuum, 41	Temporal coherence., 397, 516, 598, 590
Side-band waves, 600	Speed of profile, 13	complex degree of, 528
Sidebands, 267	Spherical waves, 24, 42	Tessat lens, 201, 219. 220, 230
Sifting property, 479	Sporilaneous Raman effect, 553	Thermal lighr, 532
Sign convention, 134. 144	Stained glass, 62, 117	Thermal radiation, 72
Signal velocity (u_{s}), 254	Standard length, 72	Thermograph, 71
Silicon monoxide, 153	Standard lens,	Thick lens, 211
Since function, 26i, 401, 521	Standing waves, 248	cardinal points, 211
Table 1, 624	Stationarity, 483	combinations, 213
Sine condition, 226	Stationary wave, 249	nodal points, 211
Sine theorem. optical, 225	Stefan, Josef, 599	principai planes, 211
Sine waves, 15	Stefan-Bolzmann law, 540	principal poinsts 211
Skew rays, 215	Stellar aberration, 8	unis planes, 214
Skin depth, 110	Stellar interferometry, 530	Thin films; see Dielectric films
Sky, bline coior of, If6, 299	Stern, Otto, 548	Thin-film measurements, 381
Slow axis, 301	Stigmatic system, 128	Thin lenses, 195
Smekal, Adolf, 553	Stimulated emission, 579	Thin-lens, combinations, 145
Smith, Robert, 142	Stops, aperture and field, 149	cquation, 137
Smith, T., 216	Stokes, George Gabriel, 118, 321, 553	Third-order theory, 131, 221
Snell. Willctrord, 3, 84	Stokes parameters, 321	Thomson, George Paget, 545
Sneli's law, 3, 84, 164	Stokes transtion, 553	Thute avetage. 44, 75, 334, 388
photors, 120	Stokes treatment of refiection and	Toepler, August (Topler), 577
Sodium light, 56	Tefraction, 118	Tolansky, Samuel, 382
Soiar constant, 555	Stroke, Gearge W., 427, 607	Toric lens, 185

Telal internal reficction, 104, 167, 170
Tourmaline, 279,288
Towncs, Charles Hard. 57
Transfer, equation, 216
functions, 505 -512
matrix ($/ 5$), 217
Transition probability, $6:$
ransmission axis, 277
Tranmsitiance (T), 100. 359
unii (T_{1}), 126
Transerse waves
Transverse waves, 28
ciectronaa gretic. 41
electronnagretic,
historical note, 6
Tungsten lamp, 72
Twiss, R Q Q . 532
Twiss, R. Q.,532
Ulexite, 173
Ulitraviolet, $59,73,112$
mirrors, 153
Uniaxial crysal
Uniaxial cryseal, 2
Unit planes, 213
V-numbers, 234
ke Theorem, 522, 529
Van Laue, Max, 433
Vetograph, polaroid, 28
verdet constant. 316, 31 Vertcx (V), 130 Vibration curve, 248, 438 Vigneting, 15 Viftual, image,
obijec, 135
photonis, 34 photonis, 34
Visibilit
Vision
Vision
astigmatism,
is eycglasses. 18
ar point, 182
near point, $: 81,184$
nearsigniledness, 182
wavelength range of, 179
Vitello, 2, 84
Vitreous humour, 178
Voigz effect, 318
Watcr, 58, 62, 114, 317, 319
Watcr, $58,62,114,317$,
Wave
equation, 14,
function, 13
group, 262
number (κ), 18, 258
number (κ), 16,25
packet, 251.262
packet, 251.
plates, 300
plates, 300
profile, 13
surfaces, 22, 42
$\begin{aligned} & \text { theory, } 6 \\ & \text { velocity, 12, 17, 19, } 41\end{aligned}$
Wavefront continusty, 122
Wavefront splitining, 344, 339
Wavefronts. 23
Waveguide. 127,170
Wavefength (Λ), 15
Wavetrain, 55,264
Wavetra
Waves
cisula
circular, 19
cylindrical, 27
cylindrical, 27
electromagnetic, 39,39
evanescent (surface or boundary), 10
barmonic, 15
inh hom iogeneous, 23, 107, 583
at an interface, 92
linearly polarized. 29, 27
linearly y polarized.
longitudinal, 6.28
in a metal, 108
one-dimensional. 12
plane polarized, 28, 21,270
plane polatized, 28, 41, 27
propagation, $6 ?$
propagation vector, 22

propagation vec
spherical,
24

spherical, 24
transverse, $6,28,4$
Wavicles 10
Weber, Wilhelm, 40

Wheastone, Charles, 6
White light. 72. 338
White substances, 11
Wide angle lens, 202
Wien. Wilhelm Cari Werner Otto Frit
Wrannt, 540 displacement law, 539
Wiencer, Otto. 249
Wiener's experiment, 249
Wiener-Khintchine theorem, 501
Window, entrance, 191
exit, 191
witr, 191
Wire-grid polariza
Woif, Emil, 464
Wollaston, Willam Hyde, 10, 225
Wood, Robert Wiliams, 426, 445, 55 Work function (Φ_{0}) 543,55

X -raps, 62, 74, 179
Bragg's law. 434
Brages' law. 139,
frequency range, 74
transverse nature, 29
whitc radiation, 433
AG (yttrium aluminum garnet), 587
Yerkes Observatory, 152, 196
Yek (yutium iron garnet), 317 Young, Thomas, 5, 6, 296, 464 Young's diffraction thcory, 464 oung's experiment, $339,464,481$.
$518,523,529,549,550$
Zeeman effect. 251
eiss. Carl, 192, 563
Reiss Orthometer lens, 201, 230
ciss Orhometer lens, 201,230
Zeiss Sonnar lens, 230
Zernike. Fritz, 516, 570, 575
Zernike. Fitiz.
Zirrorium dioxide, 376
Zorc construxion, 435
Zone plate, 445, 595,602

ADDISON-WESLEY PUBLISHING COMPANY

[^0]: *OU

[^1]: Thdeasily of this alculacion uing J. J. Tromson's merhod o Milyzurg the kiath an be found in J.R. Tessmann and J. T. Fimnell
 1967). Asa general reference for radiaxion, see, ior example, Mariol THieald, Clussical Encheronagreeic. Radiation, Chapter 7.

[^2]:

[^3]: Ticir 1.27 \qquad

[^4]: Figure 4.36 Propagation vactors for in:ernal reflecion

[^5]: R. von Eshelman, Sia. Am 220. 78 (1969)

[^6]: 20 Discuss the results of Problem 4.18 in the light of Fermat's principle, that is, how does the relative index

[^7]: difficult to manufacture with great accuracy. Nonethe less, where the costs are justifiable or the required precision is not restrictive or the volume produced is will surely have ancreasingly important role The firs quality glass aspheric to be manufactured in great quan quality glass aspheric to be manufactured in great quancamera (1982). And the small-scale production of diffraction-limited molded-glass aspheric lenses has been reported in rccent times. Today aspherical lenses are frequentiy used as an elegant means of correcting imaging errors in complicated optical systems.
 A new generation of computer-controlled machines, aspheric generators, is producing elements with tolet ances (i.c., departures from the desired surface) of better than $0.5 \mu \mathrm{~m}$ (0.000020 inch). This is still about a factor of 10 away from the generally required toler ance of $\lambda / 4$ for quality optics, but that will surely come in time. Nowadays aspherics made in plastic ano glass can be found in all kinds of instruments across the whole range of quality, including telescopes, projectors, cameras, and reconnaissance devices.

[^8]: Premin for Formula
 Whage points equation that relates conjugate object and Whor unts to the physical parameters of a spherical Fing. Wi.fibat derived rather easily with the help of Fig of fried by $\overline{C A}$, observe that since $\theta_{i}=\theta_{r}$, the $\Varangle S A P$ of tratide SAP , which therefore divides the side $\overline{S P}$ \square S.AP into segments proportional to the

[^9]: T, 5. Jaseja, A. Javan, and C. H. Townes, "Frequency Stability of 10, 165 (1963).

[^10]: the incoming \mathbf{E}-field is in the incident plane, the elec-
 tron-oscillators near the surface will vibrate under the tron-oscillators near the surface will vibrate under the
 influence of the refracted wave, as shown diagrammatiinfluence of the refracted wave, as shown diagrammati-
 cally in Fig. 8.40 (b). Observe that a rather interesting thing is happening to the refected wave, Its flux density is now relatively low, because the reflected ray direction makes a small angle θ with the dipole axis. If we could arrange things so that $\theta-0$, or equivalently $\theta_{r}+\theta_{t}=$

[^11]: ${ }^{*}$ Sec, for example, Valasek, Optics, p. 135.
 \dagger A discussion of the procedure he used to avoid counting the
 $3,106,327$ fringes dirccliy can be found in Strong, Concepts of Classical Optics, p. 238, or Williams, Applicetions of Interfermenety, p. 5 !.

[^12]: In Rayltigh's own words: This rule is onverient on account of is simplicity and it is sufficiently accurate in vicw of the necrssary
 unceriainty as to what exactly is meant by resolution." See Section 9.6. 1. tor further discussion.

[^13]: Figure 11.8 A sequence of Gaussian

[^14]: 1008 was a good year for Hisutcin, It was then, at the age of abour 26, that he publilhed his theories of spectal relimivity, Brownian motion, and the photaclectric effect. Nonethecrss, he oace confided of five years of thinking about Pranck's hyporhesis.

[^15]: Polarcid $55 \mathrm{P} / \mathrm{N}$ hikm as suistarcory for mediaut for

[^16]: *See M. Lubin and A. Frass, "Fusion by Laser," Sci. Aim 224, 9 (iune 1971; R. S.Cization, R.L McGory, ind Soures, "Progres "The Pressure of Laser Light," Sci. Am. 226, 63 (Febiuary 1972).

[^17]: *See A Ghatak and K. Thyagarajan, Comumborary

